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Resumen

Los sensores hiperespectrales permiten captar cientos de imágenes, correspondientes a diferentes canales

espectrales, para un mismo área en la superficie terrestre. Dado que diferentes materiales tienen

caracteŕısticas espectrales diferentes, dichas imágenes ofrecen una herramienta muy efectiva para

discriminar y clasificar diferentes objetos. Sin embargo, existen varias dificultades a la hora de abordar el

proceso de clasificacion de imágenes hiperespectrales. Entre ellos, destaca la gran dimensionalidad de las

imágenes, aśı como la presencia de ruido y ṕıxeles mezcla (es decir, ṕıxeles en los que cohabitan diferentes

sustancias). El desarrollo de técnicas de clasificación probabiĺıstica basada en subespacios permite

abordar estos problemas de forma eficiente, y constituye la principal contribución del presente trabajo

de tesis doctoral. En concreto, proponemos nuevos métodos de clasificación probabiĺıstica basada en

regresión loǵıstica múltiple para estimar las probabilidades de las diferentes clases. Además, para abordar

el problema relacionado con la presencia de ṕıxeles mezcla en la escena, proponemos una metodoloǵıa

innovadora que integra probabilidades estimadas de forma local y global utilizando un nuevo concepto

de mapa de combinación de clases. Otra contribución novedosa de la tesis doctoral es la integración de

información espacial-contextual en el proceso de clasificación espectral, utilizando un método robusto de

relajación probabiĺıstica que incluye información estimada a partir de mapas de discontinuidad derivados

a partir de la imagen hiperespectral original. Por último, la tesis doctoral introduce un nuevo método

para el aprendizaje múltiple de caracteŕısticas que no requiere parámetros de regularización. El nuevo

método se aplica a la fusión y clasificación conjunta de imágenes hiperespectrales e imágenes LiDAR

(light detection and ranging). La eficacia de los nuevos desarrollos propuestos se compara con otros

métodos que han proporcionado resultados destacados en el estado del arte.

Palabras clave: imágenes hiperespectrales, clasificación espacial-espectral, métodos basados en

subespacios, máquinas de vectores de soporte, regresión loǵıstica múltiple, métodos de relajación

probabiĺıstica, aprendizaje múltiple de caracteŕısticas.
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Abstract

Hyperspectral sensors provide hundreds of images, corresponding to different wavelength channels, for

the same area on the surface of the Earth. Since different materials show different spectral properties,

hyperspectral imagery is an effective technology for accurately discriminating and classifying materials.

However, issues such as the high dimensionality of the data and the presence of noise and mixed pixels in

the data, present several challenges for image classification. Dealing with these issues, this thesis proposes

several new techniques for hyperspectral image classification. Developing subspace-based techniques

for probabilistic classification is the main focus of the thesis. Specifically, we propose subspace-based

multinomial logistic regression methods for learning the posterior probabilities. Furthermore, in order

to better characterize mixed pixels in the scene, we propose an innovative method for the integration of

the global posterior probability distributions and local probabilities which result from the whole image

and a set of previously derived class combination maps, respectively. Another contribution of the thesis

is the integration of spatial-contextual information using a robust relaxation method, which includes

the information from the discontinuity maps estimated from the original image cube. Finally, the thesis

introduces a new multiple features learning method which does not require any regularization or weight

parameters. We apply the proposed method for fusion and classification of hyperspectral and LiDAR

(light detection and ranging) data. The effectiveness of the proposed techniques is illustrated by using

several simulated and real hyperspectral data sets and comparing with state-of-the-art methods.

Keywords: Hyperspectral imaging, spectral-spatial classification, subspace-based approaches,

support vector machine, multinomial logistic regression, relaxation methods, multiple feature learning.
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Chapter 1

Introduction

This chapter presents a general introduction of this thesis. First, the context of the research work and

the existing literature is reviewed. Then, the thesis objectives and main contributions are described.

1.1 Context and Background

The work developed in this thesis is part of the actual research lines of the Hyperspectral Computing

Laboratory (HyperComp) group coordinated by Prof. Antonio Plaza Miguel at the Department of

Technology of Computers and Communications, University of Extremadura, who has served as advisor

of this work together with Prof. Jun Li. This work focuses on the development of new methodologies

for probabilistic classification of remotely sensed hyperspectral images, as well as on the integration of

spectral and spatial information to improve the obtained classification maps.

1.1.1 Hyperspectral versus multispectral imaging

Remotely sensed data acquisition from the surface of the Earth is a timely and effective way for gathering

information about the natural and built environments for planning and management of human resources.

For this purpose, multispectral imagery has been used from airborne and satellite systems since the 1960s

[1]. However, for multispectral images, up to tens of spectral bands are usually provided in the visible

and near-infrared region of the electromagnetic spectrum, which limits their functionality for Earth

observation purposes. The idea of hyperspectral imaging for remote sensing emerged at NASA’s Jet

Propulsion Laboratory in 1983, where the AVIRIS [2] was developed for delivering high-dimensional

data cubes with hundreds of contiguous spectral channels (bands) covering the wavelength region from

400 to 2500 nanometers. Nowadays, advanced hyperspectral sensor systems acquire the detailed spectrum

of reflected light throughout the visible, near-infrared, and mid-infrared portions of the electromagnetic

spectrum [1].

As shown in Fig. 1.1, in a hyperspectral image every pixel represents as a high-dimensional vector

containing values corresponding to reflectance spectrum so that the size of the vector is equal to the

number of spectral bands. In other words, the hyperspectral image can be considered as a three

dimensional hyperspectral data cube which stacks several gray scale images together corresponding

to different spectral channels from the same scene. Typically, several hundreds of spectral bands are

available for hyperspectral images. This amount of spectral information available for each pixel of a

scene increases the possibility of accurately distinguishing different physical materials. This is possible

because different materials exhibit different spectral signatures. Fig. 1.1 shows the spectral signatures of
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Figure 1.1: Hyperspectral data cube.

four different pixels from four materials, which show completely different behaviors in spectral domain.

Besides these advanced remote sensing and Earth observation applications, the rich spectral attributes

of hyperspectral data allow practical applications such as:

• Food Quality: Hyperspectral images can offer information about the chemical composition of food

products. Therefore, the hyperspectral sensor systems are considered as powerful in-line inspection

tools for increasing the quality and safety of food products such as poultry, fruits and vegetables

[3, 4].

• Medical Sciences: For non-invasively diagnostic medical applications, hyperspectral images are

used to get spectral information relating to the patient, tissue sample, or disease condition [5, 6].

• Mineralogy: Within the mining and mineral processing industries, hyperspectral imagery can be

taken into account to identify several kinds of minerals. The in-line inspection systems composed

of hyperspectral sensors increase the production capacity and efficiency [7, 8].

• Military Applications: Thanks to advances in hyperspectral sensor technology, the high spatial

resolution hyperspectral data are considered for a wide range of military and defense applications

such as target detection [9, 10].

1.1.2 Classification of hyperspectral images

Classification has been one of the most active areas of research and development in the field of

hyperspectral image analysis [11]. Given a set of observations (i.e., pixel vectors in a hyperspectral
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image), the goal of classification is to assign a distinct class label to every pixel in the image [12].

Generally, the classification techniques are divided into two most common approaches, supervised and

unsupervised as follows:

• Unsupervised classifiers: Based on a similarity criterion, unsupervised or clustering methods group

pixels into sets of prototype groups called clusters, where the analyst merely identifies the number

of clusters to generate in advance. Since multiple clusters may represent a single land cover class,

generally merging clusters into a land cover type is necessary. There are different image clustering

algorithms such as K-means [13] and ISODATA [14].

• Supervised classifiers: In these type of methods, the class labels and sets of representative samples

for each class called training samples are specified a priori by a trained analyst, and each pixel of

the image is labeled by taking information provided by the training samples. The training samples

can be obtained based on maps and aerial photography or based on some on-site measurements.

It is important to note that, in the remote sensing community, usually supervised classification is

simply called classification.

Various methods have been suggested for classification of hyperspectral images. Although, it seems

that hyperspectral images are not extremely different from multispectral images, in reality the analysis of

hyperspectral images is more challenging and conventional classifiers such as the ML [15, 11, 12], nearest

neighbors [16] and neural networks [17, 18, 19] may be not suitable for hyperspectral images. Because

of high dimensionality and volume issues, the degradation mechanisms associated to the measurement

process (e.g., noise and atmosphere), the high spatial and spectral redundancy, and their potential non-

linear nature the classification of hyperspectral images has been proved to be a very complex task [20, 21].

For example, in the ML method, performance is strictly related to the quality and number of training

samples. A sufficient number of training samples is required for proper parameter estimation of this

classifier. It is often stated that the number of training samples for each class should comprise at least

10-30 times the number of wavebands [22], which for hyperspectral data (with hundreds of bands) is

often unfeasible. This difficulty, i.e. the small ratio between the number of available training samples

and the number of bands is called curse of dimensionality (i.e., the Hughes phenomenon [23]), which

increases the noise and error factor of the classifier and makes it impossible to obtain reasonable estimates

of the classifier parameters. Among conventional classifiers, the distribution-free neural network based

classifiers of the 1990s have been broadly applied for classifying hyperspectral images. However, it is

always expected to achieve sufficient overall image classification accuracy by using efficient and robust

processing systems, thus the use of neural networks for hyperspectral image classification is not very

common now, mainly due to their algorithmic and training complexity [24].

In recent years, SVMs have offered a popular classification framework for hyperspectral images,

which has shown good performance with small training sample sizes [25, 26]. The SVM is a binary hard

classifier that separates two classes by using a linear hyperplane. For finding the separating hyperplane,

the training samples located near the class boundaries (i.e., the support vectors) that maximize the

separation between the two classes are found, by using a constrained optimization process [27]. An

important advantage of SVM algorithm is the possibility of using kernel trick in the formulation [28].

Because of several nonlinear phenomena present in the hyperspectral image, including such nonlinear

ability in the kernel and thus constructing a nonlinear classifier is a very effective approach. In this way,

the hyperspectral image may become linearly separable by projecting the pixel vectors into a higher

dimensional space [24]. One of the main drawbacks of the SVM classifier is that it is originally a binary
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hard classifier. The extension of SVM to the multi-class cases is usually done by combining several

binary classifiers using the one versus the rest and the one versus one methods [28]. Most importantly,

in [29] two techniques have been proposed for computing probabilities for the SVM classifier based on

combining all pairwise comparisons. This method is implemented in the LIBSVM [30]. An extensive

literature is available reporting techniques using the SVM classifier for classification of hyperspectral

images (see, e.g. [25, 26, 31, 32]). IVM [33] is another kernel-based approach that was efficiently utilized

for hyperspectral image classification [34, 35]. This classifier has the advantage of direct provision of a

probabilistic output. Selection of an adequate kernel and the need of using techniques like cross-validation

to estimate regularization parameters are the important disadvantages of the kernel-based methods SVM

and IVM.

MCS (or classifier ensemble) methods are another effective approaches to process hyperspectral data

when only a limited training samples are available [36, 37]. According to a certain combination approach

(such as majority vote, Bayesian rule, etc.) or based on an iterative error minimization, MCS integrates

the outputs of individual classifiers. In particular, RFs have shown remarkable performance in terms of

dealing with high-dimensional datasets [38, 39]. In RF algorithm, the forest composed of many decision

trees as binary classifiers, where each tree gives a unit vote for a particular class and the forest chooses

the class that has the most votes. Very recently, rotation forests, have been successfully applied to

hyperspectral remote sensing image classification [40]. This method consists in splitting the feature set

into several subsets, running transformation algorithms separately on each subset and then reassembling

a new extracted feature set. Different splits of the feature set lead to different rotations. Thus diverse

classifiers are obtained. As reported in [40] this method works much better than other ensemble methods.

The important drawback of the random and rotation forest methods is the need of a considerable amount

of memory since these methods always store big matrices in memory [41].

Recently, the MLR algorithm has been adopted in hyperspectral image processing as a discriminative

classifier [42, 43]. This method generalizes logistic regression to multiclass problems and exhibits a very

important advantage of being able to model the posterior class distributions in a Bayesian framework.

Logistic regression is a statistical binary classification method that fits data to a logistic function and tries

to model the conditional probability of the class label given its observation [44]. In a simple perception, in

the training phase of MLR algorithm (according to the number of class labels) the regression vectors are

learnt by using the training samples. And then in the classification phase the posterior class probability

of each test sample is estimated using all the regression vectors. The SMLR [45] adopts a Laplacian

prior enforcing sparsity and therefore controlling the machine generalization capabilities. The LORSAL

algorithm was introduced in [46], which is a faster algorithm than SMLR for processing of hyperspectral

images with a very large number of classes.

1.1.3 Subspace-based methods

It has been proved that the original spectral features in a hyperspectral image contain high redundancy

and there is a high correlation between adjacent bands [12]. Therefore, based on this assumption that

the hyperspectral data may effectively live in a lower-dimensional subspace [47], several subspace-based

methods have been proposed for classification [48, 49, 50, 51]. We can consider the following three main

advantages to use subspace-based classification methods: 1) Reducing the dimensionality of hyperspectral

data by projecting it to a precise subspace without losing the original spectral information; 2) Increasing

the separability of the classes which are very similar in spectral sense; 3) Handling the effects of noise

and the presence of heavily mixed pixels in a hyperspectral image. However, identification of subspaces
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i.e. the number of subspaces and their dimensions, is a crucial step in subspace-based classification

algorithms. A comprehensive discussion of hyperspectral subspace identification is available in [47],

where a technique called Hysime was presented to identify an unique subspace in which the hyperspectral

data live. The developers proposed the computationally efficient and automatic Hysime method using the

estimation of the signal and the noise correlation matrices and then selecting the subset of eigenvalues that

best represents the signal subspace in the least squared error sense. An extensive literature is available

on the subspace-based classification methods. For instance, in [52] (later revisited in [48]), the OSP

technique was introduced for hyperspectral image classification and dimensionality reduction based on

projecting each pixel vector onto a subspace which is orthogonal to the undesired or interfering signatures.

In [53], the OSP technique was revised and extended by three unconstrained least squares subspace

projection approaches to estimate signature abundance and classify a target signature at subpixel scale.

In [54], a kernel-based subspace projection technique was presented and evaluated in the context of an

agricultural application. Perhaps, one of the most successful subspace-projection-based classifiers for

processing of hyperspectral images has been MLRsub [51]. This classifier models the subspace associated

with each specific class in an MLR framework. In other words, based on the basic assumption that the

samples within each class can approximately lie in a lower dimensional subspace, the MLRsub uses a class

dependent procedure integrated with the MLR classifier to represent each class using a subspace spanned

by a set of basis vectors estimated from training samples. This approach has exhibited good classification

performance using several hyperspectral scenes. More recently, in [55] NRS classifier was proposed, which

couples nearest-subspace classification with the distance-weighted Tikhonov regularization [56] to seek

an approximation of each testing sample via a linear combination of training samples within each class.

1.1.4 Integration of spatial and spectral information

The hyperspectral images classification maps resulting from conventional pixel-based classifiers using only

spectral information show a large amount of salt and pepper effects, which decreases the classification

accuracy significantly. In 1980’s, Landgrebe and his research group proved that the methods for

classifying multispectral remote sensing images provide more smoothed maps by integrating spectral

properties of adjacent pixels [57, 58]. The basic assumption behind this approach was that a typical

scene may consist several homogeneous regions which are large compared to the size of a pixel, and

consequently, the pixels in the neighborhood are likely to assign the same class labels. Considering this

fact that modern hyperspectral sensors provide very fine spatial resolution images to obtain more detailed

information for the scene, integrating spectral and spatial-contextual information is a great advantage

for improving the quality of the classification maps and as a result, classification accuracies. During

recent years, various approaches have been discussed in the framework of spectral-spatial hyperspectral

image classification [59].

1.1.4.1 Spatial preprocessing prior to classification

Performing image segmentation as a pre-classification step, so-called object-based classification, is a

traditional and effective approach to use spatial information in order to improve classification accuracy.

Segmentation can be defined as dividing a given image into homogeneous regions (i.e. objects) using

appropriate homogeneity criterion [60]. The pixels of each region from a segmentation map would have

spatial and spectral similarities. Techniques such as watershed [61, 62], petitional clustering [63, 64], and

hierarchical segmentation [65, 66, 67] have been applied previously on remote sensing images. Several

object-based classifier have been proposed in the literature. The famous ECHO algorithm uses an ML
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method to classify mean vector of each region and then assign pixels belonging to the regions to label

of their mean vectors [57]. Van der et al. also used segmentation but improved classification of mean

vectors by using an SVM classifier [68]. More recently, in [63, 69, 70] Tarabalka et al. proposed to

perform pixelwise classification and segmentation independently, and then, combine the results using the

MV rule. While in [64] weighted MV rule was suggested for decision fusion, where pixels in the same

segment contribute differently according to their distance to the spectral centroid.

1.1.4.2 Exploiting texture features

Another common strategy of spectral-spatial classification of hyperspectral images is extracting different

kinds of spatial features and using them as complements of the spectral signatures in a classification

procedure. For these methods two important issues need to be fulfilled with are: 1) adopting suitable

spatial features and 2) developing an effective strategy for integrating spatial features into a classifier.

Generating texture profiles of hyperspectral image cubes has been widely used in the literature. For

the texture information, the well-known way is to locally generate pixel based spatial measurements

such as contrast, entropy or energy using a fixed neighborhood based procedure [12]. The GLCM is a

traditional method for quantitative characterization of texture [71]. The GLCM is formed by calculating

the occurrences of two neighboring pixels with specific values in an image by a given spatial relationship

such as distance and direction. Based on GLCM, several statistical measures like Energy, contrast,

correlation, entropy, and homogeneity can be extracted. The conventional 2-D GLCM is applied on a

single band image, thus for hyperspectral images, the GLCM is usually calculated from the first principal

component, which neglects the rich spectral information of hyperspectral images. In [72] a 3-D version

of GLCM was proposed for hyperspectral images to deal with this issue. Moreover, the Gabor filters [73]

and wavelet feature extraction methods [74, 75] have been recently proposed for 3-D texture analysis of

hyperspectral data.

1.1.4.3 Exploiting morphological features

Morphological filters [76] based approaches have shown great potential for extracting spatial features

from remotely sensed images. Opening and closing (which are the combinations of erosion and

dilation operators) are the applicable operators for mathematical morphology which work using an

SE of predefined size and shape. In a simple description, the opening and closing operators remove

structures smaller than the size of the SE. By changing the size of the SE and repeating the opening

and closing operations over a gray scale image, MP can be generated. Opening and closing by

reconstruction [76] are more useful operations for extracting spatial information, since they allow

removing of undesirable structures without considerably changing the shape of those structures of

the image, and will be helpful for recovering structures which are not completely removed. Opening

by reconstruction removes unconnected light structures of a gray scale image, whereas closing by

reconstruction removes unconnected dark objects. In [77], using the residuals from opening and closing

by reconstruction operations so-called DMP was suggested for feature extraction of very high resolution

panchromatic images. In [78], the concept of MPs has been successfully extended to hyperspectral image

classification. In this paper, they suggested EMPs by performing MP on the few principal components

of the data resulted from PCA [12] feature extraction method. Respect to the advantages of using

morphological AFs [79], recently, APs [80, 81, 82] were introduced as the generalization of the MP.

Generating APs based on attributes such as area, volume, standard deviation, etc. has shown to be

a relevant technique to model different kinds of the structural information available in remote sensing
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(a) (b) (c) (d) (e) (f) (g)

Figure 1.2: An example of an AP using attribute of area with conditions λ1 = 100, λ2 = 500 and
λ3 = 1000. The AP is composed of thickening images (a)-(c), the original image (d), and thinning
images (e)-(g).

images. For generating an AP based on a specific attribute a predefined condition λ is needed. If the

measured attribute of an object meets λ then that object is kept unchanged; otherwise, it is merged to

the most similar surrounding object. So that the merging operation to the adjacent object of a lower and

higher gray level are called thinning and thickening, respectively. Fig. 1.2 shows an example of generating

AP based on attribute of area which can provide information about the size and the shape of objects in

the image. Moreover, as illustrated in Fig. 1.3, EAPs are typically obtained by generating an AP on

each of the first few PCA components (or any other features retained after applying feature selection

on the original hyperspectral image) thus building a stacked vector using the AP on each feature. From

the EAP definition, the consideration of multiple attributes leads to the concept of EMAP [83] which

combines the EAPs by concatenating them in a single vector of features and improves the capability

in extracting the spatial characteristics of the structures in the scene. Although generating EMAP is

computationally heavy and time consuming, attribute filtering can be efficiently computed by applying

a Max-tree algorithm [84]. Choosing suitable attributes and threshold values are the main difficulties of

using the EMAP.

Besides spatial feature extraction issue, the other challenge in multiple feature learning is that

how to adequately exploit the information (i.e. spectral and spatial) containing in these features.

In a traditional way, the spatial features may be added as extra features on top of spectral bands

for improving classification. For example in [85], spatial feature extraction was done using GLCM

and then SVM classifier was applied on a stack vector of textural and spectral features. However,

the simple concatenation or stacking of features such as morphological APs and spectral features may

contain redundant information. In addition, as described before, a significant increase in the number

of features may lead to high dimensionality issues that are in contrast with the limited number of

training samples often available in remote sensing applications. In [86], applying feature extraction on

both the EMP and the original hyperspectral data and concatenating the extracted feature vectors into

one stacked vector was proposed. Exploiting spectral-spatial composite kernels is another strategy for

classification purposes. Especially the composite kernels and multiple kernel learning methods in the

framework of supervised SVMs have shown a significant capacity to integrate multiple types of features

[87, 88, 89]. The main limitations of SVM-based composite kernel methods are the requirement of the

convex combinations of kernels and optimizing the parameters. Recently, in [90] a successful framework

has been introduced for the development of generalized composite kernel machines for spectral-spatial

hyperspectral image classification, which equally balances the spectral and the spatial information

contained in the hyperspectral data without any weight parameters. A distinguishing feature of the

method in [90] is that it uses the MLR classifier, which naturally provides a probabilistic output and has

a lot of flexibility in the construction of nonlinear kernels.
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Figure 1.3: Graphical illustration of the procedure adopted in order to construct an EAP from a
hyperspectral image. The EMAP is a combination of EAPs obtained with different attributes.

1.1.4.4 Spatial postprocessing after classification

Another well-known way to include spatial information in a per-pixel classification consists in performing

postprocessing or postclassification [91]. This category includes traditional iterative methods, based on

using MFs, which have been shown to be beneficial in removing most of the noise from the classification

map [92]. The MF is a logical filter which relabels the center pixel of a neighborhood if it is not a member

of majority class. Usually, using MFs cause the problem of removing linear features such as roads, sports

tracks, buildings, etc., when trying to smooth the classification map [93]. On the other hand, by using

probabilistic classification method, not only the estimated class label and consequently the classification

map is known, but also the valuable membership information is available for each pixel in order to show

how close the pixel is to the other classes. As a result, incorporating spatial-contextual information

into the obtained probabilistic classification results is more effective. These normally iterative methods

are broadly referred to as CR or PR [94]. In other words, after a probabilistic pixel-wise classification

of the hyperspectral image, the postprocess of PR is applied to exploit the continuity, in probability

sense, of neighboring labels. In recent decades, a considerable amount of research has been devoted for

PR algorithms. One of the first approaches to include spatial-contextual information in probabilistic

classification was PLR [95, 12]. PLR strategies use the probabilities of neighboring pixels iteratively to

update the class probabilities for the center pixel based on a neighborhood function. A neighborhood

function can be defined using the probabilities of the neighboring pixels, compatibility coefficients, and

neighborhood weights. A priori compatibility coefficient describes numerically how compatible it is to
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Figure 1.4: Flowchart of MRF-based spectral-spatial classification of hyperspectral image

have pixelm classified as class k and neighboring pixel n classified as ḱ [12]. Recently, in order to correctly

differentiate linear boundaries between classes, the PLR method was successfully extended for including

of third-order statistics (i.e. using triplets of neighborhood pixels) within the probabilistic likelihood

calculation [93]. The main limitation of PLR-based method is determining compatibility coefficients,

which are normally calculated based on priori knowledge of the area under investigation and the sensor

characteristics [96].

Perhaps the most popular PR strategy is based on the use of MRFs [97, 98]. MRF theory provides

a convenient and consistent way of modeling spatial correlation of neighboring pixels in an image and

widely used in remote sensing society to integrate spatial information into pixel-wise image classification

problems. Practically, for the mathematically tractability, the statistical dependence among the labels

in an MRF model is defined based on Hammersley-Clifford theorem about the equivalence between MRF

and Gibbs distributions [97]. In a simple word, by using MRF model for classification of a pixel, the

information from its neighbors is considered. Normally, MRF is used together with the MAP decision and

estimation theory to formulate an objective function and in the MAP-MRF framework, the objective is

the joint posterior probability of the MRF labels [97]. MRF-based approach can be implemented in two

steps. First, a probabilistic pixelwise classification method is applied to learn the posterior probability

distributions from the spectral information. Second, contextual information is included by means of an

MRF regularization to refine the classification (see Fig. 1.4). Therefore, estimating class conditional

probability distributions is an intrinsic issue when using conventional MRF. Typically ML classifier is

applied to obtain an initial classification [99, 100]. However, because of poor estimates of the true mean

vector and covariance matrix of each class, ML classifier is not efficient for hyperspectral data with

limited training samples [11]. Unlike traditional methods, probabilistic SVM [29] is a distribution-free

algorithm that can overcome the problem of poor statistical estimation and has shown good performance

for classifying hyperspectral data. Several studies have been undertaken to integrate SVM within MRF
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framework for accurate spectral-spatial classification of remote sensing images, and satisfactory results

have been reported. For instance, in [101], class-conditional distributions were estimated by the Mean

Field-based SVM regression algorithm. Spectral-spatial hyperspectral image classification was performed

in [102], given the initial SVM classification map and a final MRF-based regularization process. For

computing the MAP estimate of the true classification map, they adopted Metropolis algorithm based

on stochastic relaxation and annealing [103, 104]. An adaptive MRF approach was proposed in [105],

for hyperspectral image classification. They introduced a relative homogeneity index for each pixel to

determine an appropriate weighting coefficient for the spatial contribution in the MRF regularization

procedure. In [106], a novel and rigorous framework was proposed for contextual hyperspectral image

classification, which combines SVMs and MRFs in a unique formulation. The authors in [107], proposed

a strategy to fully exploit the spatial information by combining fuzzy SVM classifier and an MRF-based

graph cut algorithm. Another recent tendency is to integrate MLR and MRF algorithms for spatial

contextual classification. For example, very recently, combining SMLR algorithm [45] with an SpATV

regularization was proposed, which showed significant performance [108]. In another effort to use MRF-

based prior, in [109], the hyperspectral classification results were obtained by maximizing the marginal

probability of the posterior distribution using the loopy belief propagation method, where the posterior

class probability was modeled as an MLR classifier and an MRF. Particularly, in order to encourage

neighboring pixels to have the same label, combining MRF-based multilevel logistic prior with MLRsub

algorithm was proposed in [51]. For this purpose, they suggested to use an efficient min-cut optimization

technique (α-Expansion algorithm) for computing a MAP segmentation [110], which showed significant

performance. Similar strategy of using the graph-cut-based α-expansion algorithm has been employed in

[111] and [112] for integrating spatial information with spectral classification results obtained by Gaussian

mixture model and probabilistic sparse representation, respectively.

As a contextual framework, CRFs model the class posterior probability in a way that incorporates the

spatial property in both the labeling field and the observation field, simultaneously [113]. There is some

work in the literature using CRFs for spectral-spatial classification of hyperspectral images. Particularly,

Zhong and Wang have done extensive research about the exploitation of CRFs for hyperspectral image

classification [114, 115, 116]. However, for CRF-based classification, it is necessary to train several model

parameters which is time consuming task and needs large number of training samples. Moreover, the

reported experimental results show that, in most cases, the CRF-based methods do not demonstrate

an improvement over the MRF-based methods. In another attempt for spectral-spatial classification

of hyperspectral data, in [117], a generalization of MRF named HMRF was used. They proposed to

combine the results of HMRF segmentation with SVM pixel-wise classification using majority voting

within each object.

1.2 Objectives

The main objective of the thesis work is to develop new techniques for probabilistic spectral-spatial

classification of hyperspectral images. Particularly, the focus is on the integration of the spectral

information (coming from probabilistic pixel-wise classification) with spatial information exploited from

probabilistic relaxation procedures. In order to achieve this general objective, we will address a number

of specific objectives which are listed below:

1. It has been proved that projecting hyperspectral data to a precise subspace (or union of subspaces)

can increase the separability of the classes. In addition to dealing with the problem of high
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dimensionality, subspace-based classification methods can better handle the effects of noise and

the presence of mixed pixels in a hyperspectral image. Consequently, this has been considered as

an objective of this thesis work.

2. The probabilistic classification of hyperspectral images has several advantages over standard

deterministic classification which simply obtains the ”best” class label for each pixel. In other

words, probabilistic algorithms allow us to assess classification uncertainty. Most importantly,

because of the way the probabilities are generated, probabilistic classifiers can be more effectively

incorporated into information fusion procedures. As described in the introduction, for refining the

classification results using MRF-based regularization process, a probabilistic classifier is needed.

In order to address this issue and increase the accuracy of spectral-spatial classification methods,

better estimation of probabilities is crucial.

3. In order to reduce the effect of the degradation of the classification performance in the neighborhood

of the class boundaries observed for existing relaxation strategies, as well as increasing the efficiency

of those classification methods, developing a robust relaxation method is particularly important.

As a result, we give special attention to the development of a framework able to include the

information from the discontinuity maps estimated from the original image cube to a spatial

relaxation procedure.

4. Efficiently exploiting the information coming from multiple features is a challenging issue in multiple

feature learning approaches. Therefore, in this thesis, addressing this issue is a particular highlight.

Specifically, we propose a robust technique for exploiting different types of features without any

regularization parameters is considered.

5. The integration of hyperspectral data with other sources of data is also a very important aspect

addressed in this thesis work. This is particularly critical in scenarios in which hyperspectral data

alone cannot characterize the information classes (despite the exploitation of the very rich spatial

and spectral information contained in hyperspectral images). As a result, in this thesis work we

also deal particularly with the integration of hyperspectral data with other widely available sources

such as LiDAR data.

1.3 Thesis Organization

1.3.1 Novel contributions of the thesis

The main contributions of the thesis are summarized in Fig. 1.5. As shown in this figure, all the newly

developed techniques for probabilistic classification of hyperspectral images, are designed in a way that

exploits the subspace projection concept. Moreover, one chapter of this thesis is specifically allocated for

the relaxation procedures. In the following, we provide a description of the different chapters in which

we have structured the present thesis work:

In Chapter 2, a new spectral-spatial classifier is presented for hyperspectral data that specifically

addresses the issue of mixed pixel characterization. In this approach, the spectral information is

characterized both locally and globally, which represents an innovation with regards to previous

approaches for probabilistic classification of hyperspectral data.

In Chapter 3, a new MLR method is proposed for pixelwise hyperspectral classification, in which the

feature vectors are formed by the energy of the spectral vectors projected on class-indexed subspaces.

11
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Figure 1.5: Flowchart illustrating the organization of this thesis.

The main rationale for this approach is that the hyperspectral measurements are often linear mixtures

of the endmembers signatures and, then, each class corresponds to a given subset of the endmembers,

thus defining a subspace.

In Chapter 4, a new probabilistic classification approach is presented based on union of subspaces

for hyperspectral images. The proposed method integrates subspace clustering with MLR method for

supervised hyperspectral image classification.

In Chapter 5, the subspace-projection-based concept is extended to SVMs, a very popular technique

for remote sensing image classification by constructing the SVM nonlinear functions using the subspaces

associated to each class.

In Chapter 6, a new discontinuity preserving relaxation strategy is developed which can be used for

postprocessing of class probability estimates, as well as preprocessing of the original hyperspectral image.

The newly proposed method is an iterative relaxation procedure which exploits spatial information such

a way that it considers discontinuities existing in the data cube.

In Chapter 7, a new probabilistic classification strategy is proposed to efficiently exploit the

information coming from multiple features. An important characteristic of the presented fusion approach

is that it does not require any regularization parameters, so that different types of features can be

integrated in a collaborative and flexible way. In this work, in addition to the spatial and the spectral

12
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Table 1.1: List of mathematical notations used in this thesis.

Mathematical Notations

n Number of pixels of an image

S = {1, 2, ..., n} Set of indexing integers

d Number of spectral bands

xi = [xi1, xi2, ..., xid]
T Spectral vector with dimension of d for i ∈ S

x = {x1,x2, . . . ,xn} Hyperspectral image

k Number of classes

K = {1, 2, . . . , k} Set of k classes

yi ∈ K Class label for i ∈ S

y = {y1, y2, . . . , yn} Labels of whole image

n
(c)
tr ∈ {n

(1)
tr , n

(2)
tr , . . . , n

(k)
tr } Number of training samples for class c ∈ K

D(c) ≡ {(x1, y1), (x2, y2), . . . , (xn
(c)
tr

, y
n
(c)
tr

)} Labeled training set for class c ∈ K

ntr =
∑k

l=1 n
(l)
tr Total number of samples in the training set

D ≡ {D(1),D(2), . . . ,D(K)} Whole training set

features extracted from hyperspectral data (as a source of complementary information) we use LiDAR-

based features to illustrate the proposed approach.

To conclude this chapter, the mathematical notations used throughout the thesis have been defined

in Table 1.1.
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Chapter 2

Spectral-Spatial Classification of
Hyperspectral Data Using Local and
Global Probabilities

2.1 Summary

Remotely sensed hyperspectral image classification is a very challenging task. This is due to many

different aspects, such as the presence of mixed pixels in the data or the limited information available a

priori. This has fostered the need to develop techniques able to exploit the rich spatial and spectral

information present in the scenes while, at the same time, dealing with mixed pixels and limited

training samples. In this chapter, we present a new spectral-spatial classifier for hyperspectral data

that specifically addresses the issue of mixed pixel characterization. In our presented approach, the

spectral information is characterized both locally and globally, which represents an innovation with

regard to previous approaches for probabilistic classification of hyperspectral data. Specifically, we

use the MLRsub method for learning the posterior probabilities and a pixel-based probabilistic SVM

classifier as an indicator to locally determine the number of mixed components that participate in each

pixel. The information provided by local and global probabilities is then fused and interpreted in order to

characterize mixed pixels. Finally, spatial information is characterized by including an MRF regularizer.

Our experimental results, conducted using both synthetic and real hyperspectral images, indicate that

the proposed classifier leads to state-of-the-art performance when compared with other approaches,

particularly in scenarios in which very limited training samples are available 1.

2.2 Introduction

Hyperspectral imaging instruments are now able to collect hundreds of images, corresponding to different

wavelength channels, for the same area on the surface of the Earth [1]. Hyperspectral image classification

has been a very active area of research in recent years [11]. Given a set of observations (i.e., pixel vectors

in a hyperspectral image), the goal of classification is to assign a unique label to each pixel vector so that

it is well defined by a given class [12]. The availability of hyperspectral data with high spectral resolution

1Part of this chapter has been published in: M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-Dias
and X. Li. Spectral-Spatial Classification of Hyperspectral Data Using Local and Global Probabilities for

Mixed Pixel Characterization. IEEE Transactions on Geoscience and Remote Sensing, vol. 52, no. 10, pp. 6298-6314,
October 2014 [JCR(2013)=2.933].
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has been quite important for many applications, such as crop mapping, environmental monitoring, and

object identification for defense purposes [59].

Several techniques have been used to perform supervised classification of hyperspectral data. Classic

techniques include ML [15, 11, 12], nearest neighbor classifiers [16], or neural networks [17, 18, 19],

among many others [59]. The quality of these pixelwise classification methods is strongly related to the

quality and number of training samples. In order to effectively learn the parameters of the classifier, a

sufficient number of training samples are required. However, training samples are difficult and expensive

to collect in practice [22]. This issue is quite problematic in hyperspectral analysis, in which there is often

an unbalance between the high dimensionality of the data and the limited number of training samples

available in practice, known as the Hughes effect [11].

In this context, kernel methods such as the SVM have been widely used in hyperspectral imaging

to deal effectively with the Hughes phenomenon by addressing large input spaces and producing sparse

solutions [25, 26, 31, 32]. Recently, the MLR [43] has been shown to provide an alternative approach to

deal with ill-posed problems. This approach has been explored in hyperspectral imaging as a technique

able to model the posterior class distributions in a Bayesian framework, thus supplying (in addition

to the boundaries between the classes) a degree of plausibility for such classes [43]. A main difference

between the MLR and other classifiers such as the probabilistic SVM is the fact that the former learns

the posterior probabilities for the whole image. As a result, these classifiers exploit the probabilistic

information in a different (possibly complementary) fashion, although this issue has never been explored

in the literature in the past. Recently, the advantages of probabilistic SVM as a soft classification

technique in discriminating between pure and mixed pixels, and automatically selecting endmember

subsets were, respectively, investigated in [118] and [119]. These techniques pay particular attention

to characterizing the number of mixtures participating in each pixel. A subspace-based version of the

MLR classifier, called MLRsub [51], has also been recently developed. This method relies on the basic

assumption that the samples within each class can approximately lie in a lower dimensional subspace and

uses subspace projection methods to find this subspace. Since hyperspectral data are likely to be noisy

and dominated by mixed pixels, the MLRsub has been shown to provide good performance (particularly,

in the case of limited training samples) as normally classes live in a much lower space in comparison with

the original data dimensionality.

Another strategy to deal with the limited number of training samples available in practice has

been to efficiently exploit labeled information by using multiple classifier systems or classifier ensembles

[120, 36, 121, 37]. This approach has been proved successful in different hyperspectral image classification

applications [38, 39, 122, 123].

Finally, a well-known trend in order to alleviate the problem of insufficient number of training

samples is to integrate the spatial-contextual information in the analysis. Many examples of spectral-

spatial classifiers can be found in the hyperspectral imaging literature [57, 58, 59, 60, 124, 89, 68, 86].

In particular, approaches based on MRFs have been quite successful in hyperspectral imaging

[97, 101, 102, 42, 43, 51]. In particular, [102] successfully combined a probabilistic SVM with an MRF

regularizer for the classification of hyperspectral images. All of these methods exploit, in a way or

another, the continuity (in probability sense) of neighboring labels. In other words, these methods

exploit the likely fact that, in a hyperspectral image, two neighboring pixels may have the same label.

In this chapter, we propose a new spectral-spatial classifier in which the spectral information is

characterized both locally and globally. Specifically, we use the MLRsub method to globally and locally

learn the posterior probabilities for each pixel, where addressing the local probability is one of the main

innovative contributions of this work. For local probability learning, we determine the number of mixed
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components that participate in each pixel. For this purpose, we use a probabilistic SVM as an indicator

to determine the number of mixed components. Finally, the spatial information is then characterized by

exploiting an MRF regularizer.

When compared to the probabilistic SVM, the presented classifier considers mixtures in the model.

This is very important since hyperspectral images are often dominated by mixed pixels. When compared

to the MLRsub, which already addresses the presence of mixed pixels, the proposed classifier constrains

the number of mixed components, thus improving its characterization since mixed pixels in hyperspectral

images normally comprise only a few mixing components [125]. As a result, the presented approach

provides two important contributions with regard to existing spectral-spatial approaches. The first one

is the consideration of probabilistic information at both local and global levels. The second one is the

characterization of the number of mixtures participating in each pixel, which is quite important since

mixed pixels often dominate hyperspectral data.

The presented approach also observes two of the most pressing needs of current hyperspectral

classifiers: the possibility to use very limited training sets (compensated by the multiple classifier flavor

of our approach) and the need to integrate spatial information in the assessment (addressed by the

inclusion of an MRF regularizer in the formulation). The resulting method, called SVM-MLRsub-MRF,

achieves very good classification results which are competitive or superior to those provided by many

other state-of-the-art supervised classifiers for hyperspectral image analysis.

The remainder of this chapter is organized as follows. Section 2.3 describes the different strategies used

to implement the proposed spectral-spatial classifier. Section 2.4 describes the proposed approach. An

important observation is that the presented approach should not be simply understood as a combination

of existing approaches. Specifically, each of the processing algorithms described in Section 2.4 correspond

to one out of many possible choices, selected based on their availability and also on the possibility to draw

comparisons with other established techniques for spectral-spatial classification. However, it should be

noted that other strategies for addressing local versus global information for mixed pixel characterization

and spatial regularization could be used. In this regard, our selection should be strictly understood as

a vehicle to demonstrate a new framework for classification of hyperspectral data and not merely as a

combination of processing blocks. To the best of our knowledge, the presented framework addresses for

the first time in the literature the aforementioned aspects in synergistic fashion. Section 2.5 presents

extensive experiments using both simulated and real hyperspectral data designed in order to validate the

method and provide comparisons with other state-of-the-art classifiers. Section 2.6 concludes with some

remarks and hints at plausible future research lines.

2.3 Main components of the proposed method

In this section, we describe the different components that have been used in the development of the

proposed method. First, we use probabilistic pixelwise classification methods to learn the posterior

probability distributions from the spectral information. Here, we use two strategies to characterize

spectral information: probabilistic SVM and MLRsub. Then, we use contextual information by means

of an MRF regularization scheme to refine the classification results. As it can be observed from Fig. 1.4,

estimating class conditional probability distributions is an intrinsic issue for the subsequent MRF-based

classification. In the following, we outline the different strategies used to characterize spectral and spatial

information, respectively, in the presented approach.
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2.3.1 Characterization of spectral information

With the aforementioned definitions (Table 1.1) in mind, probabilistic pixelwise classification intends to

obtain, for a given pixel xi, the class label yi. This label can be obtained by computing the posterior

probability p(yi|xi,D) as follows:

yi = c, if p(yi = c|xi,D) > p(yi = ct|xi,D)

∀ct 6= c
(2.1)

Various probabilistic classification techniques have been used to process hyperspectral data [12]. In

this chapter, we use the probabilistic SVM [27] and the MLRsub classifiers [51] for probability estimation.

SVMs and MLRsub rely, respectively, on discriminant functions and posterior class distributions which

have shown good performance in hyperspectral data classification, particularly in scenarios dominated

by small training samples. In the following, we describe these probabilistic classifiers in more details.

2.3.1.1 Probabilistic SVM algorithm

The SVM classifier is typically defined as follows [27]:

f(xj) =
∑

i

αiyiΦ(xi,xj) + b, (2.2)

where xj ∈ x, xi ∈ D , b is the bias, and {αi}
ntr

i=1 represents lagrange multipliers which are determined by

the parameter C (that controls the amount of penalty during the SVM optimization). Here, yi ∈ {−1, 1}

and Φ(xi,xj) is a function of the inputs, which can be linear or nonlinear. In SVM classification, kernel

methods have shown great advantage in comparison with linear methods [32]. In this chapter, we use

a Gaussian radial basis function kernel K(xi,xj) = exp(−γ‖xi − xj‖2), whose width is controlled by

parameter γ. Although the original SVM does not provide class probability estimates, different techniques

can be used to obtain class probability estimates based on combining all pairwise comparisons [29]. In

this chapter, one of the probabilistic SVM methods [126] included in the popular LIBSVM library [30]

is used.

2.3.1.2 MLRsub algorithm

MLR-based techniques are able to model the posterior class distributions in a Bayesian framework. In

these approaches, the densities p(yi|xi) are modeled with the MLR, which corresponds to discriminative

model of the discriminative-generative pair for p(xi|yi) Gaussian and p(yi) multinomial. The MLR model

is formally given by [44]:

p(yi = c|xi,ω) =
exp

(
ω

(c)Th(xi)
)

∑k
l=1 exp

(
ω

(l)Th(xi)
) , (2.3)

where h(xi) ≡ [h1(xi), . . . , hm(xi)]
T is a vector of m fixed functions of the input data, often termed as

features; ω(c) ≡ [ω
(c)
1 , . . . , ω

(c)
m ]T is the set of logistic regressors for class c, and ω ≡ [ω(1)T , . . . ,ω(k)T ]T .

Recently, Li et al. [51] have proposed to combine MLR with a subspace projection method called

MLRsub to cope with two main issues: the presence of mixed pixels in hyperspectral data and the

availability of limited training samples. The idea of applying subspace projection methods to improve

classification relies on the basic assumption that the samples within each class can approximately lie in

a lower dimensional subspace. Thus, each class may be represented by a subspace spanned by a set of
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basis vectors, while the classification criterion for a new input sample would be the distance from the

class subspace [51]. In the MLRsub formulation, the input function h(xi) is class dependent and is given

by

h(c)(xi) = [‖xi‖
2, ‖xT

i U
(c)‖2]T, (2.4)

where U(c) = {u
(c)
1 , . . . ,u

(c)

r(c)
} is a set of r(c)-dimensional orthonormal basis vectors for the subspace

associated with class c (r(c) ≪ d).

2.3.2 Characterization of spatial information

In this section we describe the mechanism used to include spatial-contextual information in the presented

method. For this purpose, we use MRF, which is a widely used contextual model and a classical

probabilistic method to model spatial correlation of pixel neighbors. This approach has been successfully

applied in the context of remote sensing problems [101, 126, 42]. In the MRF framework, the MAP

decision rule is typically formulated as the minimization of a suitable energy function [97]. Normally,

the MRF-based approach can be implemented in two steps in hyperspectral image analysis. First, a

probabilistic pixelwise classification method (such as those described in the previous section) is applied

to learn the posterior probability distributions from the spectral information. Second, contextual

information is included by means of an MRF regularization to refine the classification, as already outlined

in Fig. 1.4.

According to the MAP-MRF framework, a pixel belonging to a class c is very likely to have neighboring

pixels belonging to the same class. By using the Hammersly-Clifford theorem [127], we can compute the

MAP estimate of y as follows:

ŷ = argmin
y

(∑

i∈S

− log p(yi|xi)− µ
∑

i∼j

δ(yi − yj)
)
, (2.5)

where the term p(yi|xi) is the spectral energy function from the observed data, which needs to be

estimated by probabilistic methods. In this chapter, we use the probabilistic SVM and MLRsub to learn

the probabilities. Parameter µ is tunable and controls the degree of smoothness, and δ(y) is the unit

impulse function, where δ(0) = 1 and δ(y) = 0 for y 6= 0. Notice that the pairwise terms, δ(yi−yj), attach

higher probability to equal neighboring labels than the other way around. Minimization of expression

(2.5) is a combinatorial optimization problem involving unary and pairwise interaction terms. A good

approximation can be obtained by mapping the problem into the computation of a series of min-cuts on

a suitable graphs [110]. This aspect has been thoroughly explored in the context of hyperspectral image

classification in previous contributions [43].

2.4 Proposed approach

In this section, we present the proposed spectral-spatial classification approach called SVM-MLRsub-

MRF. The full methodology is summarized by a detailed flowchart in Fig. 2.1. As shown in Fig. 2.1,

the proposed approach mainly contains four steps: 1) generation of the class combinations map; 2)

calculation of the local and global probabilities; 3) decision fusion; and 4) MRF regularization. In the

following, we present the details of each individual steps.
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Figure 2.1: Flowchart of the proposed SVM-MLRsub-MRF method.

Figure 2.2: Example of the generation of a class combinations map, using threshold M = 2.

2.4.1 Generation of the Class Combination Map

The class combination map is generated from the probabilistic SVM classification results. Notice that

the probabilistic SVM is only used as an indicator to determine the number of mixtures appearing in each

pixel and does not contribute to the probability learning. For this purpose, a subset of the M most reliable

class labels (mixed components) is chosen for each pixel as the possible class combinations for that pixel,

and M ≤ k. In case M = k, the local learning is equivalent to the global learning. It is also important to

emphasize that, although in this work we use the probabilistic SVM for pixelwise classification due to its

proved effectiveness in hyperspectral classification [32], other probabilistic classifiers could also be used

as far as they are well suited to hyperspectral analysis. Furthermore, as a classifier, the probabilistic

SVM has different characteristics in comparison with MLRsub, thus allowing for the possibility to use

both classifiers in combined fashion in order to remove irrelevant class labels and to improve the efficiency

of the class dependent subspace projection step in the MLRsub method, which will be described in the

following section.

For illustrative purposes, Fig. 2.2 shows an example of how to generate a class combination map using

the aforementioned strategy for a three class problem, where the classes are denoted as {A,B,C} and

the number of mixed components is set to M = 2. Using the probabilistic SVM, for each pixel we obtain

a vector of three probabilities with respect to classes A, B, and C. As shown in Fig. 2.2, for the pixel at
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the top-right corner of the image we assume that the probabilities are 0.3, 0.1, and 0.6 (for classes A, B,

and C, respectively). Under these assumptions, the pixel would be assigned to the subset {A,C} (from

all possible combinations of the three classes). Notice that, in this example, there is no pixel assigned

to the class combination {B,C}. Finally, it should be noted that the number of class combinations is

given by C(k,M), where, in this example, it is C(3, 2) = 3.

2.4.2 Calculation of the local and global probabilities

In this section, we describe the procedure used to calculate the local and global probabilities. Here,

we use the MLRsub algorithm to learn the posterior probability distributions locally for the M classes

selected in the previous step and globally for all classes. Let pg and pl denote the global and local

posterior probabilities, respectively. For example, if we take the pixel used as an example in the previous

section (i.e., the one located at the top-right corner in Fig. 2.2), in this case, compute the global and

local probabilities as follows:

pg = {p(yi = c|xi,ωg), c = A,B,C}, (2.6)

pl = {p(yi = A|xi,ωl), 0, p(yi = C|xi,ωl)}, (2.7)

where (2.6) is the global learning step and ωg are the corresponding logistic regressors. On the other

hand, (2.7) is the local learning step, and ωl represents the associated regressors. The global probability

pg in (2.6) is learned from the original data by the MLRsub algorithm [51]. Here, we exploit the good

capabilities of MLRsub when dealing with mixtures. At this point, it is important to emphasize that

we selected the MLRsub because, in real images, it is very likely that an observed pixel is a mixture of

several components/classes. However, it is unlikely that the pixel is mixed by many components/classes

[125]. Based on this observation, (2.7) uses MLRsub to locally learn the class posterior probabilities from

the class combination map generated by the probabilistic SVM. Notice that, in the local estimation, only

M classes are considered for each pixel, and we remove the remaining ones, i.e., their probabilities are

set to 0. For instance, in (2.7), p(yi = c|xi,ωl) = 0, which means that c is a removed class. In this way,

by setting the probability of the irrelevant classes to zero, we remove those irrelevant classes from the

combination set such that we eliminate the influence of the less relevant classes (or noise) in the local

area. Therefore, considering the mixtures at a local (pixel) level is very important due to the following

reasons. First, by eliminating the less relevant classes, the proposed approach locally eliminates noise,

which greatly improves the separability of the features from noise, thus improving the performance of

the MLRsub algorithm. Second, the class-dependent subspace reduces its dimensionality such that less

training samples are required for learning.

2.4.3 Decision fusion

In this step, we combine the local and global probability distributions learned by the MLRsub algorithm

to produce the final probabilities. For this purpose, we use the consensus theory [128] which follows a

linear opinion pool [129]:

p(yi = c|xi) =

N∑

j=1

λjpj(yi = c|xi), (2.8)

where N is the number of data sources, pj(yi = c|xi) is a source-specific posterior probability associated

with data source j, and λj ’s are source-specific weights which control the relative influence of the data
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sources, where 0 ≤ λj ≤ 1 and
∑N

j=1 λj = 1. In this paper, we consider two data sources: global and

local probability distributions. We simply combine these two data sources to compute the final class

probability estimates as:

p(yi = c|xi) = λpg(yi = c|xi,ωg) + (1− λ)pl(yi = c|xi,ωl), (2.9)

where λ is a tunable parameter which controls the weights between the global and local probabilities and

0 ≤ λ ≤ 1. It should be noted that, if λ = 1, only the global information is considered and the method

remains as the original MLRsub. If λ = 0, only the local information is used. In our experimental results

section, we will analyze the impact of parameter λ and discuss the relevance of global information and

local information in the obtained classification results.

2.4.4 MRF-based spatial regularization

The last step of our proposed method consists of including the spatial-contextual information. As shown

by Fig. 2.1, this stage is applied on the output of the decision fusion step. Although many strategies can

be used for this purpose, we follow a commonly used strategy which relies on an MAP-MRF framework

[51], as described in subsection 2.3.2. The strategy adopted in this work is similar to the one adopted

by the SVM-MRF [101] or the MLRsub-MRF [43], which will be used for comparative purposes in the

following section. Our strategy is also similar to the one used by the SVM-MRF in [35] but emphasizes

that, in our comparisons, we do not exactly use the algorithm introduced in [35] but an implementation

of SVM-MRF developed by ourselves and based on graph-cuts [110].

2.5 Experimental results

In this section, we use both synthetic and real hyperspectral data sets to evaluate the performance of the

proposed SVM-MLRsub-MRF classification algorithm in different analysis scenarios. The main objective

of the experimental validation with synthetic hyperspectral image is the assessment and characterization

of the algorithm in a fully controlled environment, whereas the main objective of the experimental

validation with real data sets is to compare the performance of the proposed method with other state-

of-the-art methods in the literature. The remainder of this section is organized as follows. First, we

describe the hyperspectral data sets (synthetic and real) used in experiments. Then, we describe the

experimental setting. Next, we describe several experiments intended to address several important

aspects of the presented method, such as the impact of parameters λ and M , a comparison with other

standard methods, and an evaluation of the performance of the method in the presence of training sets

with different numbers of samples.

2.5.1 Hyperspectral data sets

2.5.1.1 Synthetic data

A synthetic image has been generated with size of n = 80× 120, and the class distribution displayed in

Fig. 2.3(a). The synthetic scene comprises eight classes which contain linear mixtures of a set of spectral

signatures randomly selected from a digital spectral library compiled by the USGS and available online2.

The USGS library contains spectral plots for nearly 500 materials (mostly minerals) in the 400−2500 nm

spectral range, where the bands have been convolved to the number of bands available for the AVIRIS [2]

2http://speclab.cr.usgs.gov/spectral-lib.html
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(a) (b)

class1 class2 class3 class4

class5 class6 class7 class8

(c)

Figure 2.3: (a) Classes in a synthetic scene with n = 80×120. (b) Spectral signatures of randomly selected
materials from the USGS digital library used in the simulation (c) Fractional abundance distributions
considered for generating mixed pixels using Gaussian filter of size k = 25 and standard deviation σ = 30.

that comprises 224 spectral bands. Fig. 2.3(b) shows the spectral signatures of eight randomly selected

mineral signatures allocated to the main classes displayed in Fig. 2.3(a).

In order to simulate mixed pixels using linear mixtures, the eight class abundance maps are filtered

by a k×k symmetric Gaussian lowpass filter with a fixed standard deviation σ. For illustrative purposes,

Fig. 2.3(c) shows the abundance maps associated to the eight classes of the synthetic scene after applying

a Gaussian filter of size k = 25 and standard deviation σ = 20. In each pixel of the scene, the fractional

abundances vary from 0% (black color) to 100% (white color) and sum to unity. Using this procedure,

signature abundance is not constant over class regions, and the pixels closer to the borders of the regions

are more heavily mixed, as expected in real scenarios. Finally, zero-mean Gaussian noise is added to each

band of the synthetic hyperspectral image so that the signal-to-noise ratio is equal to 20 dB according

to the definition given in [130].

2.5.1.2 Real data

Two real hyperspectral data sets are used to evaluate the proposed approach. The first one is the well-

known AVIRIS Indian Pines scene [see Fig. 2.4(a)], collected over Northwestern Indiana in June 1992

[11]. The scene is available online3 and contains 145×145 pixels and 220 spectral bands between 0.4 and

3https://engineering.purdue.edu/∼biehl/MultiSpec/
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(a) False color composition (b) Ground-truth

Figure 2.4: AVIRIS Indian Pines dataset.

2.5 micrometers. A total of 20 spectral bands was removed prior to experiments due to noise and water

absorption in those channels. The ground-truth image displayed in Fig. 2.4(b) contains 10366 samples

and 16 mutually exclusive classes having 20-2468 samples. This data is widely used as a benchmark

for testing the accuracy of hyperspectral data classification algorithms, mainly because it constitutes a

challenging classification problem due to the presence of mixed pixels in available classes and also because

of the unbalanced number of available labeled pixels per class.

We have also used a scene collected by the ROSIS for evaluation purposes. This data was acquired

over the urban area of the University of Pavia, Pavia, Italy. The flight was operated by the DLR in the

framework of the HySens project, managed and sponsored by the European Commission. The image

size in pixels is 610× 340, with very high spatial resolution of 1.3 meters per pixel. The number of data

channels in the acquired image is 103 (with spectral range from 0.43 to 0.86 micrometers). Fig. 2.5(a)

shows a false color composite of the image, while Fig. 2.5(c) shows nine ground-truth classes of interest,

which comprise urban features, as well as soil and vegetation features. In the original data set, out of

the available ground-truth pixels, 3921 were used for training, and 42776 samples were used for testing

[see Fig. 2.5(b)].

2.5.2 Experimental setting

Before describing our results, it is first important to discuss some considerations that define our

experimental setting. For the synthetic image experiments, we considered two strategies. In our first

strategy, we simulated some pure pixels for each class (using k = 20 and σ = 30 in the synthetic data

simulation). In the second strategy, we increased the size of the filter to k = 25 (with the same σ = 30)

so that all of the simulated pixels inside a class region were mixed with abundance fractions less than

80%, and the simulated image did not contain any pure pixels. In both cases, training samples were

extracted from the purest available classes. All of the results reported in this chapter with synthetic

data sets were obtained after 50 Monte Carlo runs in which we randomly select 8 different materials and

also randomly select different training sets.

Concerning our real data experiments, the experimental setting can be briefly summarized as follows.

For the experiments with the AVIRIS Indian Pines data, the training samples were randomly selected

from the available ground truth, and the remaining samples are used for validation. For the smallest

classes of this data set, if the total number of available labeled samples per class in the ground truth is
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(a) False color composition (b) Training data (c) Ground-truth

Figure 2.5: ROSIS Pavia University dataset.

smaller than the given number of training samples, we take half of the total samples for training. For

the ROSIS Pavia University dataset, the training sets are composed of subsets of the original training

samples, and the remaining test sets are used for validation. All of the results reported in this paper

with the two considered real data sets were obtained after 30 Monte Carlo runs.

The classifiers compared in the presented study are the proposed SVM-MLRsub-MRF in addition to

the standard SVM, MLRsub, and SVM-MRF. In all experiments for the MLRsub and MLRsub-MRF

algorithms, we optimized the parameters as indicated in [51]. Concerning the probabilistic SVM classifier,

we optimized the related parameters using tenfold cross validation. Finally, for the proposed approach,

we use SVM-MLRsub and SVM-MLRsub-MRF to denote the algorithms with and without the MRF

spatial regularizer, respectively.

2.5.3 Quantitative and comparative assessment

In this section, we conduct an experimental assessment of the presented approach using the simulated

and real data sets described in Section 2.5.1 and bearing in mind the experimental setting described

in Section 2.5.2. The experiments reported in this section can be summarized as follows. In a first

experiment, we perform an assessment of the impact of parameter λ, which controls the degree of global

information and local information used by the presented method. In a second experiment, we evaluate

the impact of parameter M , which controls the number of class combinations for local estimation. In

a third experiment, we compare the proposed method with other state-of-the-art methods. Finally, in

a fourth experiment, we analyze the sensitivity of the considered method to different training sets and

show the good performance of the proposed approach in the presence of limited training samples.

2.5.3.1 Experiment 1. Impact of parameter λ

In this experiment, we perform an analysis of the impact of parameter λ for the SVM-MLRsub-MRF

algorithm by using the considered (synthetic and real) data sets with M = 2 this means that we set the

number of class combinations to 2. The reason for this selection is to keep the number of mixtures per

pixel low, as it is often the case in real scenarios. Table 2.1 shows the OA and AA (as a function of

parameter λ) for the different scenes considered. For illustrative purposes, Fig. 2.6 provides a detailed
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(a) AVIRIS Indian Pines (b) Pavia University

Figure 2.6: Classification results obtained by the proposed method after using different values of
parameters λ and M for the (a) AVIRIS Indian Pines and (b) ROSIS Pavia University scenes.

analysis of the classification results obtained by the proposed method after using different values of

parameters λ and M for the two considered hyperspectral scenes. In all experiments, we choose 50

random samples per class for training so that, in total, we have 400, 697, and 450 training samples for

the synthetic data, AVIRIS Indian pines, and ROSIS Pavia University data sets, respectively (it should

be noted that, for the AVIRIS Indian Pines scene, we may select a different number of samples for the

small classes).

Several conclusions can be obtained from Table 2.1 and Fig. 2.6. First and foremost, it is remarkable

that the proposed approach, which integrates the global information and local information, obtained

the best performance in comparison with those results obtained only from the local (λ = 0) or global

(λ = 1) information. While λ ∈ [0.4, 0.6], the proposed approach obtained very good results for all

considered data sets (hence, a reasonable setting is to assign equal weight to local information and global

information, i.e., λ = 0.5). For other suboptimal values of λ, the obtained results are still better or

comparable to those obtained by using the local or global information alone.

Furthermore, Fig. 2.6(a) reveals that the results obtained for the AVIRIS Indian Pines using the

global information only (λ = 1) are better than those obtained using the local information alone (λ = 0).

In turn, Fig. 2.6(b) reveals an opposite behavior for the ROSIS Pavia University data. However, it is

clear from Fig. 7 that an intermediate value of λ(which is equivalent to considering both local and global

probabilities) leads to good classification results in the two considered cases, particularly when the value

of M is low (this is expected, since the number of mixtures in a given pixel is generally low). It can also

be seen in Fig. 2.6 that the value of M is more relevant for the ROSIS Pavia University data than for

the AVIRIS Indian Pines data, which is related with the different spatial resolutions of the considered

scenes. From this experiment, we conclude that, in the considered case studies, low values of M and

values of λ that ensure a good balance between local information and global information lead to good

classification results.
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Table 2.1: Overall (OA) and average (AA) classification accuracies [%] (as a function of parameter λ) obtained by the SVM-MLRsub-MRF method
for the synthetic and real data sets considered in experiments. The best results are outlined in bold typeface.

Data Accuracies
λ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Synthetic OA 70.05 70.40 70.63 71.34 72.60 73.61 73.99 73.26 72.56 71.48 70.55

(pure training samples) AA 68.15 68.47 68.74 69.48 71.15 72.84 73.93 73.45 73.13 72.19 71.33

Synthetic OA 75.13 75.66 76.12 76.68 77.82 79.27 79.40 78.63 77.36 76.16 75.08

(mixed training samples) AA 74.54 75.06 75.49 76.13 77.48 79.13 79.75 79.13 77.99 76.92 75.85

AVIRIS Indian Pines
OA 84.03 89.39 90.56 91.26 91.83 92.24 92.38 92.35 92.29 92.12 91.16

AA 89.00 92.97 93.93 94.49 94.91 95.08 95.21 95.13 95.02 94.81 94.01

Pavia University
OA 90.02 91.78 92.14 92.36 92.48 92.66 92.70 92.38 91.72 90.36 87.50

AA 90.65 91.53 91.62 91.68 91.79 91.85 91.78 91.44 90.87 90.18 88.23

2
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Table 2.2: Overall (OA) and average (AA) classification accuracies [%] (as a function of parameter M ,
with fixed λ = 0.5) obtained by the SVM-MLRsub-MRF method for the synthetic and real data sets
considered in experiments. The best results are outlined in bold typeface.

Data Accuracies
M

2 3 4 5 6 7 8

Synthetic OA 73.61 74.26 73.44 72.88 72.16 71.28 70.50

(pure training samples) AA 72.84 74.07 73.43 73.30 72.76 71.89 71.19

Synthetic OA 79.27 79.73 79.32 78.54 77.49 76.08 75.30

(mixed training samples) AA 79.13 79.95 79.46 78.80 77.84 76.55 75.81

AVIRIS Indian Pines
OA 92.24 91.60 91.05 90.90 91.47 91.58 91.17

AA 95.08 94.73 94.42 94.06 94.18 94.15 94.06

Pavia University
OA 92.68 90.64 89.82 88.93 88.19 87.89 87.58

AA 91.93 90.17 89.45 88.42 88.29 88.11 88.03

2.5.3.2 Experiment 2. Impact of parameter M

In this experiment, we perform an evaluation of the impact of parameter M (controlling the number of

class combinations) on the presented approach. Table 2.2 shows the classification results obtained by

the proposed approach using different values of parameter M for all of the considered data sets. For

the real data, the best results are obtained with M = 2, which means that most of the pixels are either

pure or made up of two mixing components. This is a reasonable assumption since, in reality, most

pixels are made up by a mixture of a limited number of materials, especially for images with high spatial

resolution. However, in our synthetic image experiments, the mixed pixels were simulated in a way that

pixels mixed by a higher number of materials are present in the scene. As a result, in the synthetic image

experiments, better results can be obtained by using higher values of M .

2.5.3.3 Experiment 3. Comparison with other methods

Table 2.3 shows a comparison of the classification results obtained by the proposed approach (using

different values of parameter M) with regard to those provided by other methods for the synthetic image

data. Similarly, Tables 2.4 and 2.5 show a comparison of the presented approach to other methods using

the AVIRIS Indian Pines and ROSIS Pavia University data sets, respectively. In all cases, different

values of parameter M were considered for the proposed method, and parameter λ was set to 0.5.

Several conclusions can be obtained from the experiments reported in Tables 2.3, 2.4 and 2.5. First

and foremost, it is noticeable that the MLRsub-MRF and SVM-MLRsub-MRF, which include spatial

information and also perform mixed pixel characterization, outperform the SVM-MRF which does

not characterize mixed pixels. For instance, Table 2.5 reveals that the proposed SVM-MLRsub-MRF

approach obtained an OA of 92.68%, which contrasts with the OA of 83.96% achieved by SVM-MRF in

the ROSIS Pavia University experiments. Similarly, Table 2.3 also reveals an OA of about 9.5% larger

than that obtained by the SVM-MRF algorithm. However, the situation is different for the experiments

with the AVIRIS Indian Pines reported in Table 2.4. Specifically, the MLRsub-MRF did not show a

significant improvement with regard to the SVM-MRF, and consequently, the results obtained by the

SVM-MLRsub-MRF method are not significant. The main reason for this behavior is the difference in the

reference data for different classes in the AVIRIS Indian Pines scene, which varies from 20 to 2468 pixels
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per class. For these data, we chose very limited training sets, and the samples are not evenly distributed

among classes. For example, if we take one of the large classes such as Soybeans-min till (which contains

2418 samples), we only consider 50 samples for training, which is less than 0.02% of this class. This

number of training samples is not enough to completely characterize the class, as it is also the case for

other similar classes such as Soybeans-no till and Soybeans-clean till. Another problem observed in the

classification of this image is the fact that class Bldg-Grass-Tree-Drives is a highly mixed class. Hence,

it is not efficient to use the training samples from this class in the subspace projection procedure and,

and consequently, the classification accuracy for the methods MLRsub-MRF and SVM-MLRsub-MRF

are not significantly increased with regard to other methods as it was the case in the experiments with

other data sets.

If we focus on the results reported in Table 2.3 in a fully controlled environment, we can conclude that

the class probabilities estimated by the SVM classifier may not be fully reliable to be used in the MRF

regularization procedure. This is because of the nature of the SVM method, which is a hard classifier.

In turn, the MLRsub-MRF method better characterized noise and mixed pixels. However, the SVM-

MLRsub-MRF method provided the highest classification accuracies in this experiment. For instance,

in the synthetic experiment using pure training samples, the OA achieved by the presented method

improved by 3.77% and 9.23% of the OA achieved by the MLRsub-MRF and SVM-MRF, respectively.

When mixed training samples were used, the proposed SVM-MLRsub-MRF algorithm obtained an OA

of 79.73%, which is the best result for this data set (4.40% and 10.05% higher than MLRsub-MRF and

SVM-MRF, respectively). This is because mixed training samples are near the decision boundaries and

can be very effective in class discrimination.

If we now focus on Table 2.5, we can observe that, in this experiment, the pixel-wise SVM classifier

already provides high classification accuracies. However, including the spatial-contextual information

significantly improves the classification accuracies as it can be particularly observed in the SVM-MLRsub-

MRF method. Here, by using only 50 training samples per class (in total 450 samples, which is a very

low number for this scene), the proposed algorithm obtained an OA of 92.68%, which is 5.18% and 8.72%

higher than MLRsub-MRF and SVM-MRF, respectively.

In order to analyze the statistical significance of the results obtained by the different compared

methods, we have used McNemar’s test [131]. In this test, a value of |Z| > 1.96 indicates that there is a

significant difference in accuracy between two classification methods. The sign of Z is also a criterion to

indicate whether a first classifier is more accurate than a second one (Z > 0) or vice versa (Z < 0). Table

2.6 provides the results obtained for all of the considered (synthetic and real) data sets. As it can be seen

from Table 2.6, the differences in classification accuracies between our proposed method (implemented

with parameters M = 2 and λ = 0.5) and the MLRsub-MRF method are statistically significant.

Compared to the SVMMRF method, SVM-MLRsub-MRF exhibits a statistically significant improvement

in classification accuracies except for the AVIRIS Indian Pines scene, in which the McNemar’s test

indicates that the performances of the two methods are similar.

For illustrative purpose, Figs. 2.7 and 2.8 show some of the obtained classification maps for the

AVIRIS Indian Pines and ROSIS Pavia University data sets, respectively. Each of the maps corresponds

to one out of the 30 Monte Carlo experiments which were averaged to produce the results, respectively,

reported in Tables 2.4 and 2.5. As shown in Figs. 2.7 and 2.8, good classification results with adequate

class delineation and spatial consistency can be observed for the presented method (which was run in

both cases using M = 2 and λ = 0.5) in comparison to other approaches.
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Table 2.3: Overall (OA), average (AA), individual class accuracies [%] and kappa statistic (κ) obtained by different methods with the synthetic
image data set, using a total of 450 training samples (50 per class).

Data Accuracies SVM MLRsub
SVM-MLRsub

SVM-MRF MLRsub-MRF
SVM-MLRsub-MRF

M = 2 M = 3 M = 4 M = 2 M = 3 M = 4

Synthetic Overall 65.23 68.49 69.77 71.33 71.09 65.03 70.49 73.61 74.26 73.44

(pure Average 66.32 68.97 68.44 70.54 70.65 62.74 71.19 72.84 74.07 73.43

training samples) κ 59.38 62.89 64.09 66.02 65.78 58.23 65.21 68.64 69.37 68.57

Synthetic Overall 69.33 72.18 74.68 75.95 75.70 69.68 75.33 79.27 79.73 79.32

(mixed Average 69.84 72.58 74.08 75.52 75.57 68.68 75.83 79.13 79.95 79.46

training samples) κ 63.88 67.04 69.86 71.35 71.07 63.78 70.72 75.31 75.90 75.34

3
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Table 2.4: Overall (OA), average (AA), individual class accuracies and kappa statistic (κ) obtained by different methods with the AVIRIS Indian
Pines data set, using a total of 697 training samples (50 per class, except for very small classes).

Class
Samples

SVM MLRsub
SVM-MLRsub

SVM-MRF MLRsub-MRF
SVM-MLRsub-MRF

Train Test M = 2 M = 3 M = 4 M = 2 M = 3 M = 4

Alfalfa 27 27 86.42 75.31 79.01 78.64 74.69 93.39 98.10 96.30 97.78 97.78

Corn-no till 50 1384 66.45 59.08 68.18 66.01 63.28 79.52 85.80 88.07 89.46 88.93

Corn-min till 50 784 68.76 61.27 67.73 61.55 58.78 87.05 89.75 90.58 89.13 88.68

Corn 50 184 84.13 79.96 84.20 84.40 83.70 99.26 98.88 98.99 98.82 98.89

Grass/trees 50 447 91.35 85.15 88.40 88.86 86.60 96.73 93.26 94.50 94.53 93.96

Grass/pasture 50 697 90.82 94.13 96.46 96.39 95.97 98.77 99.18 99.24 99.27 99.21

Grass/pasture-mowed 13 13 87.95 65.38 85.13 81.03 68.72 95.90 98.35 96.92 96.92 97.44

Hay-windrowed 50 439 95.87 98.73 98.37 98.07 98.56 99.34 99.48 99.45 99.46 99.51

Oats 10 10 85.33 83.00 90.33 88.67 87.67 94.52 92.38 100 97.00 95.33

Soybeans-notill 50 918 76.32 65.53 70.50 66.80 65.69 91.18 94.21 93.97 93.81 93.69

Soybeans-min till 50 2418 62.31 49.41 59.24 52.96 49.14 90.23 84.54 86.68 83.67 82.07

Soybeans-clean till 50 564 74.98 77.16 80.67 83.92 84.12 95.22 94.51 97.38 97.42 97.33

Wheat 50 162 97.59 99.63 98.93 99.36 99.51 98.90 99.86 99.90 99.90 99.84

Woods 50 1244 87.08 94.48 94.47 94.67 94.81 88.27 99.52 98.04 98.91 99.12

Bldg-Grass-Tree-Drives 50 330 70.87 41.45 53.84 49.10 46.64 99.70 77.85 81.78 79.99 79.42

Stone-Steel towers 47 48 98.26 93.89 89.17 92.36 93.54 99.86 99.03 99.17 99.58 99.51

OA 75.21 69.32 75.09 72.43 70.56 90.60 91.14 92.24 91.60 91.05

AA 82.78 76.47 81.54 80.17 78.21 94.24 94.04 95.08 94.73 94.42

κ 71.94 65.34 71.73 68.82 66.78 89.28 89.91 91.12 90.42 89.81
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Table 2.5: Overall (OA), average (AA), individual class accuracies [%] and kappa statistic (κ) obtained by different methods with the AVIRIS
Indian Pines data set, using a total of 450 training samples (50 per class).

Class
Samples

SVM MLRsub
SVM-MLRsub

SVM-MRF MLRsub-MRF
SVM-MLRsub-MRF

Train Test M = 2 M = 3 M = 4 M = 2 M = 3 M = 4

Asphalt 50 6631 73.67 43.99 65.73 59.55 54.52 95.05 80.13 91.05 89.79 85.62

Meadows 50 18649 63.79 66.31 75.95 72.55 70.90 69.63 89.71 94.26 93.00 93.16

Gravel 50 2099 71.34 63.80 67.07 63.70 63.55 72.61 71.56 73.66 68.33 68.42

Trees 50 3064 96.55 79.96 89.70 86.98 84.44 97.93 80.45 93.83 92.24 88.82

Meta sheets 50 1345 99.35 99.08 98.88 99.19 99.24 99.87 99.70 99.58 99.77 99.78

Bare soil 50 5029 87.06 63.96 65.97 61.81 60.83 98.19 91.09 91.55 84.34 84.25

Bitumen 50 1330 91.62 86.08 83.91 83.74 84.24 95.86 90.43 86.63 89.06 90.44

Bricks 50 3682 85.21 62.64 74.17 69.57 67.19 97.92 91.03 96.90 95.12 94.70

Shadows 50 947 98.90 98.52 99.10 98.61 98.50 99.13 99.72 99.86 99.85 99.83

OA 75.38 65.47 75.07 71.38 69.39 83.96 87.50 92.68 90.64 89.82

AA 85.28 73.81 80.05 77.30 75.94 91.80 88.20 91.93 90.17 89.45

κ 69.49 56.74 68.06 63.59 61.18 79.96 83.72 90.40 87.71 86.62
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Table 2.6: Statistical significance of differences in classification accuracies for all data sets (with parameters M = 2 and λ = 0.5)

Data
Z

(

classification method 1
/

classification method 2
)

SVM-MLRsub
/

SVM SVM-MLRsub
/

MLRsub SVM-MLRsub-MRF
/

SVM-MRF SVM-MLRsub-MRF
/

MLRsub-MRF

Synthetic (Pure T.S.) 9.87 4.44 17.33 8.58

Synthetic (Mixed T.S.) 11.58 7.33 19.33 11.19

AVIRIS Indian Pines -3.77 18.98 1.07 16.46

Pavia University -1.19 48.72 44.10 33.69
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SVM (75.22%) MLRsub (72.93%) SVM-MLRsub (76.65%)

SVM-MRF (89.75%) MLRsub-MRF (92.70%) SVM-MLRsub-MRF (93.61%)

Figure 2.7: Classification results and overall classification accuracies (in the parentheses) obtained by
different methods for the AVIRIS Indian Pines data set.

2.5.3.4 Experiment 4. Impact of the number of training samples

In this experiment, we first conduct an evaluation of the impact of the number of training samples on

the proposed approach, using the two real data sets and fixing parameters M = 2 and λ = 0.5. Table

2.7 shows the classification accuracies obtained by the presented method as a function of the number of

training samples per class (where the total number of training samples is given in the parentheses). In

the case of the ROSIS Pavia University scene, we also performed an experiment using all of the available

training samples (3921) in order to establish an upper bound to the presented results and to explore

if, with a more limited training set, the results are indeed close to that bound. The results reported

in Table 2.7 show that, for the AVIRIS Indian Pines data, we only need 40 training samples per class

(for a total of 570) in order to achieve an OA of around 90.00% (and AA larger than 93%). For the

ROSIS Pavia University data, we only need less than 40 samples per class in order to obtain an OA of

90%. This is remarkable, as sometimes it is very difficult to collect large training sets in practice. Table

2.7 also reveals that the presented method provided results which are comparable to those provided

by the SVM-MRF and superior than those provided by MLRsub-MRF with the AVIRIS Indian Pines

data. For the ROSIS Pavia University data, the proposed approach obtained an OA of 94.57% using

only 80 training samples per class (for a total of 720 samples). This result is quite close to the upper

bound result, obtained using all available (3921) training samples for this scene. In fact, this result is

4.32% higher than the results provided by MLRsub-MRF and 9.89% higher than the results provided

by the SVM-MRF. This leads to two main observations. First, by including the local information, the

SVM-MLRsub-MRF greatly improved the performance obtained by the MLRsub-MRF algorithm which
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SVM (76.80%) MLRsub (64.03%) SVM-MLRsub (75.72%)

SVM-MRF (82.97%) MLRsub-MRF (88.80%) SVM-MLRsub-MRF (96.36%)

Figure 2.8: Classification results and overall classification accuracies (in the parentheses) obtained by
different methods for the ROSIS Pavia University data set.

only considers the global information. A second observation is that the methods that characterize mixed

pixels, i.e. MLRsub-MRF and SVM-MLRsub-MRF, can outperform the methods that do not incorporate

mixed pixel characterization, even for scenes collected at high spatial resolution.

To conclude this section, Fig. 2.9 compares the performances of the methods: SVM-MRF, MLRsub-

MRF, and SVM-MLRsub-MRF in 30 Monte Carlo runs conducted for different random sets of training

sample sets for the two real hyperspectral scenes (AVIRIS Indian Pines, at the top of the figure, and

ROSIS Pavia University, at the bottom of the figure). In order to establish a fair comparison, in each

iteration, the same training set is used by all three methods. As Fig. 2.9 shows, when compared

with MLRsub-MRF, the proposed method shows more uniform results and appears less sensitive to

the quality of training samples. When compared with SVM-MRF, the proposed method shows slightly

superior results for the AVIRIS Indian Pines scene and consistently better performance for the Pavia

University scene. Again, we reiterate that the SVM-MLRsub method takes the advantages of both

SVM and MLRsub and can compensate the situation in which one of the methods does not provide
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Table 2.7: Overall (OA) and average (AA) accuracy [%] as a function of the number of training samples per class for the SVM-MLRsub-MRF
method, where the total number of training samples are given in the parentheses.

Methods Accuracies
AVIRIS Indian Pines Pavia University

20 (303) 40 (570) 60 (817) 80 (1057) 20 (180) 40 (360) 60 (540) 80 (720) All (3921)

SVM
OA 65.67 72.48 76.69 78.85 70.02 73.70 75.08 77.21 81.13

AA 75.98 81.01 83.26 84.66 80.50 84.24 85.65 86.71 89.05

MLRsub
OA 65.36 68.16 69.72 70.07 64.84 64.89 64.70 65.10 70.61

AA 75.10 76.10 75.65 75.10 72.72 74.08 73.97 74.16 73.92

SVM-MLRsub
OA 68.29 73.39 76.38 78.00 71.35 73.96 75.29 76.69 82.61

AA 76.44 80.42 82.15 82.43 77.50 80.03 80.92 81.61 83.80

SVM-MRF
OA 82.10 88.65 91.17 92.01 79.56 82.93 82.54 84.68 86.17

AA 89.54 93.52 94.26 94.36 86.13 91.12 91.68 92.36 92.56

MLRsub-MRF
OA 77.47 87.80 91.41 92.83 83.50 87.18 89.08 90.25 93.10

AA 85.84 92.02 94.23 95.31 84.73 88.61 89.75 89.44 86.67

SVM-MLRsub-MRF
OA 82.70 89.79 93.10 93.86 85.88 90.97 92.10 94.57 95.56

AA 88.89 93.40 95.52 96.14 87.06 91.17 92.70 93.06 90.69
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2.6 Summary and future directions

Figure 2.9: Comparison of the performance of the methods: SVM-MRF, MLRsub-MRF and SVM-
MLRsub-MRF in 30 Monte Carlo runs conducted for different random sets of training samples sets for
the two real hyperspectral scenes: AVIRIS Indian Pines (top), and ROSIS Pavia University (bottom).
In each run the same training set is used by all three methods.

good performance by taking advantage of the other method. This is also the reason why the proposed

SVM-MLRsub-MRF method can provide good performance in those cases in which none of the methods

SVM-MRF and MLRsub-MRF exhibits good classification accuracies. This is the case, for instance, in

iterations 6, 13, and 25 for the ROSIS Pavia University experiments reported in Fig. 2.9.

2.6 Summary and future directions

In this chapter, we introduce a novel spectral-spatial classifier for hyperspectral image data. The

proposed method is based on the consideration of both global posterior probability distributions and

local probabilities which result from the whole image and a set of previously derived class combination

maps, respectively. The proposed approach, which intends to characterize mixed pixels in the scene and

assumes that these pixels are normally mixed by only a few components, provides some distinguishing

features with regard to other existing approaches. At the local learning level, the presented method

removes the impact of irrelevant classes by means of a pre-processing stage (implemented using the

probabilistic SVM) intended to produce a subset of M most probable classes for each pixel. This stage

locally eliminates noise and enhances the impact of the most relevant classes. These aspects, together

with the joint characterization of mixed pixels and spatial-contextual information, make our method

unique and representative of a framework that, for the first time in the literature, integrates local and

global probabilities in the analysis of hyperspectral data in order to constrain the number of mixing

components used in the characterization of mixed pixels. This is consistent with the observation that,

despite the presence of mixed pixels in real hyperspectral scenes, it is reasonable to assume that the

mixing components in a given pixel are limited. Our experimental results, conducted using both synthetic
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and real hyperspectral scenes widely used in the hyperspectral classification community, indicate that

the proposed approach leads to state-of-the-art performance when compared with other approaches,

particularly in scenarios in which very limited training samples are available.

As future research, we are currently developing a version of the presented algorithm in which

parameter M is adaptively estimated for each pixel rather than set in advance as in the version of the

algorithm reported in this chapter. Interestingly, we have empirically observed that the adaptive selection

produces similar results to those obtained in this work with fixed parameter settings such as M = 2 or

M = 3, which result in much lower computational cost than an adaptive estimation of the parameter on a

per-pixel basis. As a result, we will continue exploring the possibility to select this parameter adaptively

in order to improve the obtained classification results without increasing computational complexity, which

currently stays on the same order of magnitude as the other methods used in the comparisons reported

in this work.

In future developments, we will further explore the relationship between the parameters of our method

and the spatial resolution, level of noise, and complexity of the analyzed scenes. We are also planning

on exploring the applications of the presented method for the analysis of multitemporal data sets.
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Chapter 3

Subspace-Based MLR Method for
Hyperspectral Image Classification

3.1 Summary

In this chapter, we propose an MLRmethod for pixelwise hyperspectral classification. The feature vectors

are formed by the energy of the spectral vectors projected on class-indexed subspaces. In this way, we

model not only the linear mixing process that is often present in the hyperspectral measurement process

but also the nonlinearities that are separable in the feature space defined by the aforementioned feature

vectors. Our experimental results have been conducted using both simulated and real hyperspectral data

sets, which are collected using NASA’s AVIRIS and the ROSIS system. These results indicate that the

proposed method provides competitive results in comparison with other state-of-the-art approaches 1.

3.2 Introduction

Hyperspectral sensors provide images in hundreds of continuous (narrow) spectral bands that can be used

to discriminate different objects on the earth surface [1]. Recently, MLR has shown good performance in

hyperspectral image classification. MLR is a discriminative approach that directly models the posterior

class distributions [132, 42, 43, 51]. Recent examples on the use of MLR in hyperspectral classification

problems can be found in [21, 133, 134, 135]. In this type of classifiers, we highlight the MLRsub method

[51] that was specifically designed with the linear spectral mixing process in mind. In the MLRsub

method, the classification of a pixel (with its associated spectral vector in a given class) corresponds

to the largest projection of that vector onto the class indexed subspaces. In this work, and in order to

model possible nonlinear mixing effects, we allow the MLR regression vectors to define arbitrary linear

combinations of the projections of the subspaces learned from the training set. In comparison with

the work in [51], which originally proposed MLRsub, the proposed subspace-based MLR (MLRsubmod)

introduces two main contributions:

• First, the newly developed method uses the projection of the original spectral vectors onto class-

dependent subspaces in order to enhance class separability. At this point, we can mention two

main reasons that support the use of these projections. One reason is that the hyperspectral

1Part of this chapter has been published in: M. Khodadadzadeh, J. Li, A. Plaza, and J. M. Bioucas-Dias. A Subspace-

Based Multinomial Logistic Regression for Hyperspectral Image Classification. IEEE Geoscience and Remote
Sensing Letters, vol. 11, no. 12, pp. 2105-2109, December 2014 [JCR(2013)=1.809].
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measurements are often linear mixtures of the endmembers signatures, and then, each class

corresponds to a given subset of the endmembers, thus defining a subspace. The other reason

is that we claim that a relevant number of nonlinear phenomena present in the hyperspectral

image yields spectral vectors that are linearly separable in the feature space defined by the class

indexed subspaces.

• Second, of the proposed method consists of including the class prior probabilities in the proposed

model. This is expected to introduce advantages in scenarios in which the number of training

samples per class depends on the area covered by that particular class in the scene.

The remainder of this chapter is structured as follows. Section 3.3 describes the newly proposed

subspace based MLR method. Section 3.4 presents experimental results using both simulated and real

hyperspectral scenes. The numerical results illustrate that the performance of the MLRsub classification

algorithm can be significantly improved by using the proposed subspace-based projection feature vectors,

and it incorporates the prior information from the known class proportions. Finally, Section 3.5 concludes

this chapter with some remarks.

3.3 Class Dependent Subspace Based MLR (MLRsubmod)

In [51], it was shown that the posterior class density p(yi = c|xi) can be computed in the MLR framework

by using the nonlinear functions h(c)(xi) = [‖xi‖2, ‖xT
i U

(c)‖2]T, where U(c) is a set of r(c)-dimensional

orthonormal basis vectors for the subspace associated with classes c = 1, 2, . . . , k. Following [51], in

this chapter U(c) is computed as U(c) = {e
(c)
1 , . . . , e

(c)

r(c)
}, while E(c) = {e

(c)
1 , . . . , e

(c)
d } is the eigenvector

matrix computed from correlation matrix R(c) = E(c)Λ(c)E(c)T . Here, Λ is the eigenvalue matrix with

decreasing magnitude. In this chapter, following [51], we use a subspace projection accounting for

99.9% of the original spectral information in order to determine the size of U(c). As shown in [51], the

MLRsub method aims to deal with the problems defined by the linear mixing model. However, nonlinear

mixing is very common in real scenarios. We claim that a number of nonlinearities present in the

hyperspectral mixing process are, approximately, linearly separable in the feature space defined by the

nonlinear functions h(xi) = [‖xi‖2, ‖xT
i U

(1)‖2, . . . , ‖xT
i U

(k)‖2]T , i.e., the vector features containing

as components the energy of the projections on all class subspaces plus the energy of the original vector.

This claim will be supported in Section 3.4 with the experimental results.

Here, we use a nonlinear vector of regression functions h(xi) = [‖xi‖2, ‖xT
i U

(1)‖2, . . . , ‖xT
i U

(k)‖2]T

to compute the posterior class density p(yi = c|xi) for a given class c as follows:

p(yi = c|xi,ω) =
exp

(
ω

(c)Th(xi)
)
p(yi = c)

∑k
l=1 exp

(
ω

(l)Th(xi)
)
p(yi = l)

, (3.1)

where, by assuming p(yi = c) = 1/k, we exactly have an MLR classifier. However, in order to

introduce the available prior knowledge, here, we include the estimation of the occurrence probabilities

of each land-cover class from the training set. The prior probability for class c may be computed as

p(yi = c) =
n
(c)
tr

ntr
[136].

Notice that, if the data live in a class dependent subspace defined by the linear mixing model, the

proposed approach (3.1) can be recovered by the conventional MLRsub in [51] by a setting of regressing

parameters ω
(c) = [ω1, 0 . . . , 0, ωc+1, 0, . . . , 0]

T . Another important aspect is that, if the data do not
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strictly live in a linear subspace and follow a nonlinear mixing model (which is a quite common scenario

in practice), then as supported in Section 3.4, the proposed MLRsubmod approach is able to separate the

classes in the newly proposed feature space. Therefore, the proposed approach has the ability to handle

both linear and nonlinear mixtures, which is the main contribution of this chapter. However, further

work should be conducted in order to fully analyze how the assumed dependence between the classes

handles the nonlinearity of the mixtures.

Under the present setup, we compute ω in (3.1) by calculating the maximum a posteriori estimate

as follows:

ω̂ = argmax
ω

ℓ(ω) + log p(ω), (3.2)

where ℓ(ω) ≡ log
∏ntr

i=1 p(yi|xi,ω) is the log-likelihood function. Similar to the MLRsub algorithm in [51],

p(ω) ∝ e−β/2‖ω‖2

(β ≥ 0 is a regularization parameter controlling the weight of the prior) is a quadratic

prior on ω that is intended to cope with difficulties in learning the regression vector ω associated with

bad or ill-conditioning of the underlying inverse problem.

The optimization problem in (3.2) is convex, although the term ℓ(ω) is non-quadratic. Following

previous work in [44, 137, 51], we approximate this term by a quadratic lower bound, which leads to a

sequence of quadratic problems that are easier to solve than the original problem.

3.4 Experimental Results and Discussion

In this section, we evaluate the proposed class subspace based MLR by using both simulated and real

hyperspectral images. For the parameter settings, we follow the indications given in [51] and include

a comparison with the MLRsub in [51]. It should be noted that, in this chapter, we only compare our

MLRsubmod with MLRsub. The main reason is that the proposed subspace based features yield better

performance than those used in MLRsub. Another reason is that, in [51], there is already a comprehensive

comparison with state-of-the-art methods.

3.4.1 Experiments with Simulated Data

In order to have an assessment in a fully controlled environment, we first used a simulated data set to

evaluate the capability of the proposed approach for handling nonlinear mixtures. For this purpose, we

generated a synthetic image with 50 × 50 samples for each of the eight classes simulated (see Fig. 3.1).

We considered the following nonlinear mixture model for generating each simulated mixed pixel in class

c:

x
(c)
i =

Ml∑

j=0

m(c+j)γj + α

Mnl∏

j=0

m(c+j) + ni, (3.3)

where m(l), l = 1, ..., 10 are different spectral signatures that were randomly selected from the USGS

digital spectral library, γj and α are the parameters controlling the impact of the linear and nonlinear

terms, respectively, and
∑Ml

j=0 γj = 1− α. In our simulation, γ0 is the abundance of the objective class,

i.e. the one that received the maximum abundance value in the simulation and that will define the label

for the considered class. To have a comprehensive comparison using both linear and nonlinear mixtures,

we used α = 0 for classes {1, 3, 5, 7}, which means that these four classes stay in a linear subspace, and

included nonlinear mixtures for classes {2, 4, 6, 8}. Furthermore, for each pixel we randomly chose a value

over {1,2} for parameters Ml and Mnl, which means that we set the number of mixtures in each pixel to
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Figure 3.1: Simulated hyperspectral image comprising eight different classes.

2 or 3. Pure spectral signatures are considered for the first four classes, whereas the remaining classes

are entirely made up of mixed pixels (see Table 3.1). Finally, zero-mean Gaussian noise with covariance

σ2I, i.e. ni ∼ N (0, σ2I), was added to the generated synthetic image. Here, the noise standard deviation

is σ = 0.4.

The classification experiments using the simulated data set have been conducted as follows. For each

class, we randomly chose 250 samples from the available ground truth for training, and the remaining

samples were used for testing. Table 3.1 tabulates the accuracy obtained by the proposed method as a

function of the value of parameter α that controls the impact of the nonlinear features, in comparison

with the conventional MLRsub, and all the values of the OA reported in this section correspond to

the average of the accuracy values obtained after 100 Monte Carlo runs. From the results reported in

Table 3.1, we can conclude that the results achieved by the proposed MLRsubmod algorithm are superior

to those obtained by the MLRsub algorithm for all the considered values of parameter α. However,

the improvement is more significant for low values of α. This is because, when parameter α increases,

the value of γ0 (i.e., the dominant class) decreases. If we compare the OA obtained for linear classes

{1,3,5,7}with regard to the OA obtained for nonlinear classes {2,4,6,8}, we can observe that the proposed

approach has very good improvements. This indicates that the proposed method can efficiently handle

nonlinear mixtures. Furthermore, if we compare the OA obtained for classes {1,2,3,4} (which contain

pure pixels) with the OA obtained for classes {5,6,7,8} (which contain mixed pixels), it is apparent

that the improvement in OA is more significant for the classes without pure pixels. In other words,

the proposed method can better manage mixed pixels instead of pure pixels as mixed pixels stay in the

boundaries of the subspaces so that they are more difficult for subspace identification.

3.4.2 Experiments with Real Hyperspectral Data

In this chapter, three different real hyperspectral images were used in our experiments: ROSIS Pavia

University, AVIRIS Indian Pines and AVIRIS Salinas. The first two images have been described in

subsection (2.5.1.2). Whereas in this chapter, for the AVIRIS Indian Pines image, we discarded four

classes: Alfalfa, grass/pasture-mowed, oats and stone-steel towers which contain less that 100 labeled

pixels. The considered ground truth map is shown in Fig. 3.2.

The third image considered in experiments is the AVIRIS Salinas image, collected over the Valley

of Salinas, Southern California, in 1998. It contains 217 × 512 pixels and 204 spectral bands and is

characterized by 3.7 m/pixel spatial resolution. Fig. 3.3(a) shows a false color composite of the image

and Fig. 3.3(b) shows the ground-truth map with 16 mutually exclusive classes. Due to the spectral

similarity of most classes, this data set also represents a very challenging classification problem.
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Table 3.1: Overall classification accuracies [%] for different values of parameter α (with the noise standard deviation set to σ = 0.4) obtained by
the MLRsub and MLRsubmod methods for the simulated data set in Fig. 3.1.

Simulated classes α = 0 α = 0.3 α = 0.4 α = 0.5

Class Mixtures Pure pixels MLRsub MLRsubmod MLRsub MLRsubmod MLRsub MLRsubmod MLRsub MLRsubmod

C1 Linear Yes 79.78 86.85 75.77 81.06 75.37 79.43 72.08 74.71

C2 Nonlinear Yes 74.70 83.80 75.59 82.83 74.56 80.15 71.82 77.31

C3 Linear Yes 75.92 86.34 73.26 79.31 69.09 74.78 66.15 70.26

C4 Nonlinear Yes 76.17 85.34 77.24 84.30 75.01 81.67 72.65 79.39

C5 Linear No 75.41 83.91 70.34 78.15 65.58 71.97 60.58 66.13

C6 Nonlinear No 74.86 83.77 69.25 79.05 67.66 76.33 65.44 73.92

C7 Linear No 74.19 82.51 66.53 75.48 62.84 71.12 58.18 65.06

C8 Nonlinear No 79.58 86.23 77.19 83.59 74.04 80.23 71.38 77.28

OA{1,2,3,4} - Yes 76.64 85.58 75.46 81.87 73.50 79.01 70.67 75.42

OA{5,6,7,8} - No 76.01 84.10 70.83 79.07 67.53 74.91 63.90 70.60

OA{1,3,5,7} Linear - 76.32 84.90 71.48 78.50 68.22 74.33 64.25 69.04

OA{2,4,6,8} Nonlinear - 76.33 84.78 74.82 82.44 72.82 79.59 70.32 76.97

Overall accuracy (OA) 76.33 84.84 73.15 80.47 70.52 76.96 67.28 73.01
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Ground truth

Figure 3.2: Twelve class Ground truth for the AVIRIS Indian Pines image

(a) False color composition (b) Ground-truth

Figure 3.3: AVIRIS Salinas data set.

In our experiments with real hyperspectral scenes, we designed two strategies to choose the training

set. In our first strategy, we choose a constant number of training samples per class. In the second

strategy, we choose a number of training samples per class that is proportional to the number of available

labeled samples. The classification accuracy reported for the real scenes was obtained after 30 Monte

Carlo runs.

Tables 3.2, 3.3 and 3.4 summarize the OA, AA, kappa coefficient (κ) and the class-specific accuracy

values for the two considered images, respectively. If we focus on the results reported for the classes in

which different numbers of training samples are selected for different classes, it is noticeable that the

MLRsubmod, which includes class dependent information and integrates the prior distribution of classes

in the scene, significantly improves the classification accuracy provided by the MLRsub. For instance,

Table 3.3 shows that the proposed MLRsubmod approach obtained an OA of 76.71% and an AA of 74.97%,

which contrasts with an OA of 73.51% and an AA of 68.30% achieved by MLRsub in the AVIRIS Indian
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3.5 Summary and future directions

MLRsub, OA=68.42%, AA=72.52% MLRsubmod, OA=76.35%, AA=81.87%

Figure 3.4: Classification results obtained for the ROSIS Pavia University data set with 781 training
samples

Pines scene. Furthermore, the results reported in Tables 3.2 and 3.4 reveal more significant improvements

for the Pavia University and Salinas images. Using the proposed method for the Pavia University image,

the OA and the AA are improved by 5.57% and 8.09%, respectively, compared to the MLRsub. More

significantly, for the AVIRIS Salinas image, the improvements in OA an AA are 9.46 % and 19.1%,

respectively.

If we focus on the results reported for the classes in which a constant number of training samples

is selected for all classes, we can see that the class specific accuracy values for MLRsubmod are higher

compared with those of MLRsub in most of the classes. This reveals that the proposed projection

based feature vectors provide a more consistent estimation of the posterior probability distributions.

For illustrative purposes, some classification maps are shown in Figs. 3.4, 3.5 and 3.6. These maps

correspond to one of the 30 Monte Carlo runs conduced for each scene. Effective results can be observed

in these figures.

3.5 Summary and future directions

In this chapter, we have developed a subspace-based MLR method for pixelwise hyperspectral

classification. The proposed approach assumes that the observed vectors live in subspaces constructed

by the classes and represents an extension of a previous methodology in which class independence was

assumed. An important contribution of the proposed approach lies in its ability to deal with both

linear and nonlinear mixtures. Our experimental results, which are conducted using both simulated

and real hyperspectral data sets collected using NASA’s AVIRIS and the ROSIS system, indicate that

the proposed algorithm accurately performs in different hyperspectral image classification scenarios,

particularly with limited training samples.
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Table 3.2: Overall (OA), average (AA), κ statistic and individual classification accuracies [%] obtained for the ROSIS Pavia University image.

Training set 100 samples per class (900 in total) 20% of the 3921 training set (781 in total)

Class
Samples Classification methods Samples Classification methods

Train Test MLRsub MLRsubmod Train Test MLRsub MLRsubmod

Asphalt 100 6531 44.61 67.00 109 6522 61.69 67.00

Meadows 100 18549 63.33 73.06 108 18541 72.89 76.67

Gravel 100 1999 65.91 66.94 78 2021 46.48 66.56

Trees 100 2964 76.68 94.36 104 2960 78.08 93.62

Metal sheets 100 1245 98.89 99.04 53 1292 98.45 98.87

Bare soil 100 4929 69.21 62.59 106 4923 65.37 64.25

Bitumen 100 1230 86.46 85.75 75 1255 66.60 85.56

Bricks 100 3582 64.22 78.07 102 3580 73.12 78.11

Shadows 100 847 99.29 99.71 46 901 94.73 99.57

OA 64.91 74.35 OA 70.46 76.03

AA 74.29 80.72 AA 73.04 81.13

κ 56.27 67.34 κ 62.20 69.31
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Table 3.3: Overall (OA), average (AA), κ statistic and individual classification accuracies [%] obtained for the AVIRIS Indian Pines image.

Training set 100 samples per class (1200 in total) 10% of available samples per class (1011 in total)

Class
Samples Classification methods Samples Classification methods

Train Test MLRsub MLRsubmod Train Test MLRsub MLRsubmod

Corn-no till 100 1334 60.63 64.90 143 1291 60.80 71.04

Corn-min till 100 734 65.56 65.40 83 751 39.61 60.04

Corn 100 134 89.07 86.89 23 211 24.44 46.57

Grass/trees 100 397 88.67 89.71 49 448 81.57 84.19

Grass/pasture 100 647 94.29 93.86 74 673 92.42 94.31

Hay-windrowed 100 389 99.38 99.07 48 441 99.24 98.34

Soybeans-notill 100 868 72.98 67.36 96 872 48.00 64.90

Soybeans-min till 100 2368 55.07 58.55 246 2222 89.68 78.33

Soybeans-clean till 100 514 84.01 79.26 61 553 58.09 64.73

Wheat 100 112 99.65 99.65 21 191 98.73 99.56

Woods 100 1194 91.47 91.63 129 1165 99.51 95.93

Bldg-Grass-Tree-Drives 100 280 66.53 70.54 38 342 27.49 41.70

OA 73.59 74.32 OA 73.51 76.71

AA 80.61 80.57 AA 68.30 74.97

κ 70.20 70.98 κ 68.87 73.23
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Table 3.4: Overall (OA), average (AA), κ statistic and individual classification accuracies [%] obtained for the AVIRIS Salinas image.

Training set 100 samples per class (1600 in total) 2% of available samples per class (1076 in total)

Class
Samples Classification methods Samples Classification methods

Train Test MLRsub MLRsubmod Train Test MLRsub MLRsubmod

Brocoli-green-weeds-1 100 1909 98.83 99.66 40 1969 86.39 99.37

Brocoli-green-weeds-2 100 3626 98.91 99.16 74 3652 99.04 99.13

Fallow 100 1876 59.76 95.64 39 1937 30.95 88.80

Fallow-rough-plow 100 1294 64.67 99.44 27 1367 6.33 99.19

Fallow-smooth 100 2578 99.28 98.15 53 2625 99.81 96.77

Stubble 100 3859 99.69 99.43 79 3880 99.70 99.36

Celery 100 3479 99.86 99.64 71 3508 99.81 99.59

Grapes-untrained 100 11171 58.52 66.85 225 11046 89.00 76.46

Soil-vinyard-develop 100 6103 99.70 98.59 124 6079 99.83 99.05

Corn-senesced-green-weeds 100 3178 92.04 91.64 65 3213 90.67 90.51

Lettuce-romaine-4wk 100 968 91.73 97.65 21 1047 8.72 93.13

Lettuce-romaine-5wk 100 1827 77.68 99.51 38 1889 55.54 98.35

Lettuce-romaine-6wk 100 816 99.59 98.89 18 898 98.94 97.02

Lettuce-romaine-7wk 100 970 96.00 98.00 21 1049 90.54 92.29

Vinyard-untrained 100 7168 76.40 72.61 145 7123 36.25 68.89

Vinyard-vertical-trellis 100 1707 98.53 98.25 36 1771 98.16 97.32

OA 84.02 88.17 OA 79.37 89.01

AA 88.20 94.57 AA 74.35 93.45

κ 82.27 86.87 κ 76.82 87.77
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3.5 Summary and future directions

MLRsub, OA=72.04%, AA=66.43% MLRsubmod, OA=76.88%, AA=73.76%

Figure 3.5: Classification results for the AVIRIS Indian Pines data set using 1076 training samples

MLRsub, OA=80.81%, AA=78.01% MLRsubmod, OA=88.22%, AA=92.18%

Figure 3.6: Ground truth and classification results obtained for the AVIRIS Salinas data set with 1076
training samples
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Chapter 4

Hyperspectral Image Classification
Based on Union of Subspaces

4.1 Summary

Characterizing mixed pixels is an important topic in the analysis of hyperspectral data. Recently, a

subspace-based technique in a MLR framework called MLRsub has been developed to address this issue.

MLRsub assumes that the training samples of each class live in a single low-dimensional subspace.

However, having in mind that materials in a given class tend to appear in groups and the (possible)

presence on nonlinear mixing phenomena, a more powerful model is a union of subspaces. This chapter

presents a new approach based on union of subspaces for hyperspectral images. The proposed method

integrates subspace clustering with MLR method for supervised classification. Our experimental results

using a newly released urban hyperspectral image indicate that the proposed method exhibits state-of-

the-art classification performance 1.

4.2 Introduction

The discrimination of different objects on the earth surface can be achieved by processing of the hundreds

of continuous narrow spectral bands collected by hyperspectral sensors [1]. Supervised classification in

hyperspectral image processing is defined as the task of assigning a unique label to each pixel vector of the

image under consideration using the information extracted from labeled training samples a priori. Several

techniques have been used to perform supervised classification of hyperspectral data. In particular, using

the class probability estimates resulting from a probabilistic classifier in an MRF framework, allows us

to have more accurate classification results by integrating spectral and spatial information [138, 51, 102].

Recently, the MLR has shown good performance in hyperspectral image classification which models the

posterior class distributions in a Bayesian framework [139, 140, 42, 43]. Specifically, the integration of a

subspace projection method with the MLR algorithm (called MLRsub) has shown significant classification

results [139, 51]. The assumption that hyperspectral vectors live in a lower-dimensional subspace is

strongly linked with the LMM [51, 141]. In essence, if each class is associated with a group of materials,

then the spectral vectors of this class are convex combinations of the spectral signatures from that class

1Part of this chapter has been published in: M. Khodadadzadeh, J. Li, A. Plaza and J. M. Bioucas-Dias. Hyperspectral

Image Classification Based on Union of Subspaces. IEEE Joint Urban Remote Sensing Event (JURSE’15), Lausanne,
Switzerland, 2015.
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Figure 4.1: Graphical illustration of the concept of union of subspaces

and thus they live in the subspace spanned by those spectral signatures.

There are number of factors which degrade the modeling power of the subspace model. Among these

factors, we highlight the possible presence of nonlinear mixing phenomena, and the typical low spatial

resolution of hyperspectral images, which increases the likelihood of having mixed pixels from a number

of different groups (clusters) of materials. Under these degrading factors, a better model is that the

spectral vectors in given class lie in unions of subspaces [142]. This concept is illustrated in Fig. 4.1.

Under the single subspace model, the class would be represented by the set in blue (a subspace). Under

the union of subspaces, the class is represented by the union of red, green, and orange sets (subspaces).

Notice that the single subspace model contains subsets that are not representative of the training set,

which is not the case with the union of subspaces.

Exploiting the union of subspaces in an MLR framework for supervised hyperspectral image

classification is the main contribution of this chapter. For this purpose, we suggest to use a subspace

clustering method before the classification in order to divide training samples of each class into multiple

subsets regarding to existing subspaces. Subspace clustering refers to the task of finding a multi-subspace

representation that best fits high dimensional data samples, i.e. finding the number of subspaces and

their dimensions and simultaneously clustering the data into multiple subspaces [143]. In this chapter,

we introduce a new hyperspectral image classification methodology based on RSC [143] which, so far as

we are aware, has not been applied for hyperspectral image analysis.

This chapter is organized as follows. In the next section we discuss methodological framework of the

proposed algorithm, including subspace clustering and subspace-based MLR classifier. The experimental

results are presented in Section 4.4. Finally, the proposed method is concluded and discussed in Section

4.5.

4.3 Methodological Framework

The proposed approach mainly comprises two main steps: 1) subspace clustering of training samples set;

2) subspace projection and probabilistic classification using MLR algorithm. In the following, we present

the details of each step for the proposed approach.
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4.3.1 Subspace Clustering

The first step of the proposed procedure consists in performing subspace clustering to find lower-

dimensional subspaces of the available training set of the hyperspectral image. Recently, several subspace

clustering algorithms have been developed. However, most of them are working under restrictive

conditions [143]. Here, we suggest to use RSC [143] algorithm, which, as our experiments showed,

is well suited for clustering of hyperspectral data. Based on the ideas from geometric functional analysis,

the RSC method can accurately recover the underlying subspaces under minimal requirements on their

orientation, and on the number of samples per subspace [143].

The RSC method is the extension of the SSC method [144] to cluster noisy data, that is always an

important issue in hyperspectral image clustering. The SSC method applies spectral clustering to an

adjacency matrix, obtained by sparsely representing each data point in terms of all the other data points

through l1-minimization; whereas, the RSC algorithm replaces the l1-minimization step in SSC by an

l1-penalized least squares, i.e., Lasso, step and successfully performs subspace clustering under Gaussian

noise.

4.3.2 Subspace-based MLR classifier

In [139, 51], the subspace for the class c, for c = 1, 2, . . . , k, is estimated via eigen-analysis of the spectral

vectors available in the set D(c). The respective subspace is represented by the orthogonal matrix U(c)

holding on its columns an orthogonal basis computed from the sample correlation matrix of those vectors.

As already stated, in these work we assume the spectral vectors xi ∈ D(c) live in an union of subspace

to be learnt using the RSC method. The output of RSC consists in a partition of D(c) into L(c) subsets.

That is, for each c, we obtain the collection of sets D
(c)
i such that D

(c)
i ∩ D

(c)
j = ∅ for i 6= j and

D(c) = D
(c)
1 ∪ D

(c)
2 ∪ . . . ∪ D

(c)

L(c) .

The obtained collection of subspaces is exploited by including the norms of the projection of the

spectral vectors onto the subspaces estimated by RSC. More concretely, we propose the following feature

vector:

h(xi) = [‖xi‖
2, ‖xT

i U
(1)
1 ‖2, . . . , ‖xT

i U
(1)

L(1)‖
2, . . . , ‖xT

i U
(k)
1 ‖2, . . . , ‖xT

i U
(k)

L(k)‖
2]T , (4.1)

where, U
(c)
l , c = 1, . . . , k and l = 1, . . . , L(c) are orthogonal matrices holding basis for the subspaces

spanned by the sets {xi ∈ D
(c)
l }.

Similarly to [43], we apply the LORSAL algorithm [46] to estimate the regressors for the proposed

subspace-based MLR classifier. The pseudocode of the proposed algorithm, referred as MLRusub, is

shown in Algorithm 1.

As shown in Algorithm 1, for the input, we have the hyperspectral data x and the training set D.

The classification objective is the image of classes labels y. In steps 3 and 4, we use the RSC method to

cluster the class dependent training sets, and estimate the individual subspaces for every cluster. Then in

step 5, the union of subspaces is obtained and in step 6, we use LORSAL for classification as LORSAL is

able to manage linear/nonlinear features. Finally, in step 7, we obtain the image of class labels following

model (2.3).

53



Hyperspectral Image Classification Based on Union of Subspaces

Algorithm 1 MLRusub (union of subspaces MLR)

1: Input: D, x
2: Output: y

for c := 1 to k do

3:
{
D

(c)
l

}L(c)

l=1
= RSC(D(c)) (∗ subspace clustering ∗)

for l := 1 to L(c) do

4: U
(c)
l = sub(D

(c)
l ) (∗ subspace computation ∗)

end for

end for

5: U ≡
{
U

(1)
1 , . . . ,U

(1)

L(1) , . . . ,U
(k)
1 , . . . ,U

(k)

L(k)

}

6: ω̂ = LORSAL(U,D)
7: y ≡ MLR(x, ω̂)

4.4 Experimental Results

In this section, use a newly released urban hyperspectral image, University of Houston, to evaluate the

proposed approach.

This data set was acquired on June 23, 2012 between the times 17:37:10 to 17:39:50 UTC by the

NCALM over the University of Houston campus and its neighboring area. The average height of the

sensor above ground was 5500ft. The hyperspectral image has 144 bands in the 380-1050 nm spectral

region and spatial resolution 2.5 m. The image size in pixels is 349×1905. Fig. 4.2(a) shows a false color

composite of the image, while Fig. 4.2(b) shows 15 classes of interest. In the original data set, 2832 were

used for training and 12197 samples were used for testing [see Fig. 4.2]. Table 4.1 details the classes and

the number of available training and test samples for each class. This data was distributed for the 2013

Data Fusion Contest of the IEEE GRSS. Detailed information about this image can be found in [145].

To have a complete comparison, the classification results are reported for the three probabilistic

classifiers: SVM with RBF kernel [30], MLRsub [51] and MLRsubmod [139]. Concerning the classifiers,

we optimized the related parameters. Figs. 4.3 (a)-(d) shows the obtained classification maps. As can

be seen, using union of subspaces the MLRusub classifier gives higher classification accuracies than the

other subspace based MLR classifiers. For instance, the proposed approach obtained an overall accuracy

of 82.94% which is 11.44% higher than the result obtained by the MLRsub algorithm. More importantly,

in the right part of the image where a large cloud shadow is present, the performance improvements

reported for the proposed method are quite significant. For example for the class ”Highway” in the

cloud-covered region, we can see a significant improvement in the obtained classification result.

4.5 Summary and future directions

In this chapter a new classification method based on union of subspaces was proposed for characterizing

mixed (linear and nonlinear) pixels in hyperspectral images. For this purpose, we exploited a subspace

clustering method to partition training samples obtained for each class to several subsets and then the

MLR algorithm was used to learn the posterior probability distributions from the spectral information

of each subset, using a subspace projection. Our experimental results with a new urban hyperspectral

image collected by the NCALM over the University of Houston campus showed that the proposed method

exhibits state-of-the-art classification performance as compared to other widely used methods.

54



4
.5

S
u
m
m
a
ry

a
n
d

fu
tu

re
d
ire

c
tio

n
s

(a) False color composition

(b) Test samples

(c) Training samples

(d) Labels color: 1-Healthy grass, 2-Stressed grass, 3-Synthetic grass, 4-Trees, 5-Soil, 6-Water, 7-Residential, 8-Commercial,

9-Road, 10-Highway, 11-Railway, 12-Parking Lot 1, 13-Parking Lot 2, 14-Tennis Court, 15-Running Track

Figure 4.2: University of Houston data set, classification maps and overall and average classification accuracies (in the parentheses) obtained by
different methods.
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(a) SVM (80.49%,83.37%)

(b) MLRsub (71.50%,74.44%)

(c) MLRsubmod (79.86%,82.51%)

(d) MLRusub (82.94%,85.19%)

(e) Labels color: 1-Healthy grass, 2-Stressed grass, 3-Synthetic grass, 4-Trees, 5-Soil, 6-Water, 7-Residential, 8-Commercial,

9-Road, 10-Highway, 11-Railway, 12-Parking Lot 1, 13-Parking Lot 2, 14-Tennis Court, 15-Running Track

Figure 4.3: University of Houston data set, classification maps and overall and average classification accuracies (in the parentheses) obtained by
different methods.
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4.5 Summary and future directions

Table 4.1: Information classes and training-test samples.

Class Samples

Number Name Train Test

1 Healthy grass 198 1053

2 Stressed grass 190 1064

3 Synthetic grass 192 505

4 Trees 188 1056

5 Soil 186 1056

6 Water 182 143

7 Residential 196 1072

8 Commercial 191 1053

9 Road 193 1059

10 Highway 191 1036

11 Railway 181 1054

12 Parking Lot 1 192 1041

13 Parking Lot 2 184 285

14 Tennis Court 181 247

15 Running Track 187 473

Total 2832 12197
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Table 4.2: Overall (OA), average (AA), κ statistic and individual classification accuracies [%] obtained
for the University of Houston image.

Class
Samples Classification methods

Train Test SVM MLRsub MLRsubmod MLRusub

Healthy grass 198 1053 82.34 82.05 82.72 80.72

Stressed grass 190 1064 80.55 81.39 81.95 82.14

Synthetic grass 192 505 99.80 100.00 100.00 100.00

Trees 188 1056 92.80 98.30 96.31 91.29

Soil 186 1056 98.11 99.53 98.67 97.63

Water 182 143 95.10 82.52 95.10 99.30

Residential 196 1072 74.91 90.58 74.07 81.53

Commercial 191 1053 35.04 34.85 39.13 45.30

Road 193 1059 75.92 66.10 77.71 76.39

Highway 191 1036 58.30 46.72 67.57 89.77

Railway 181 1054 80.46 54.46 85.77 84.72

Parking Lot 1 192 1041 71.37 31.80 73.87 83.29

Parking Lot 2 184 285 2.46 51.93 69.47 71.58

Tennis Court 181 247 100.00 99.60 100.00 98.38

Running Track 187 473 97.89 96.83 95.35 95.77

OA 75.99 71.50 79.86 82.94

AA 76.34 74.44 82.51 85.19

κ 74.16 69.06 78.19 81.51
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Chapter 5

Subspace-Based SVM Method for
Hyperspectral Image Classification

5.1 Summary

Hyperspectral image classification has been a very active area of research in recent years. It faces

challenges related with the high dimensionality of the data and the limited availability of training

samples. In order to address these issues, subspace-based approaches have been developed to reduce

the dimensionality of the input space in order to better exploit the (limited) training samples available.

An example of this strategy is a recently developed MLRsub technique able to characterize mixed

pixels, which are also an important concern in the analysis of hyperspectral data. In this chapter,

we extend the subspace-projection-based concept to SVMs, a very popular technique for remote sensing

image classification. For that purpose, we construct the SVM nonlinear functions using the subspaces

associated to each class. The resulting approach, called SVMsub, is experimentally validated using a real

hyperspectral data set collected using the National Aeronautics and Space Administration’s Airborne

Visible/Infrared Imaging Spectrometer. The obtained results indicate that the proposed algorithm

exhibits good performance in the presence of very limited training samples 1.

5.2 Introduction

Hyperspectral image classification has been a very active area of research in recent years [91]. Given

a set of observations (i.e., pixel vectors in a hyperspectral image), the goal of classification is to

assign a unique label to each pixel vector so that it is well-defined by a given class [11]. Although

techniques for unsupervised classification and/or clustering have also been used in the literature [12],

supervised classification has been more widely used [59] but it also faces challenges related with the

high dimensionality of the data and the limited availability of training samples [11]. Even though

hyperspectral images are characterized by their high spectral resolution, which allows capturing fine

details of the spectral characteristics of materials in a wide range of applications [146], it has been

demonstrated that the original spectral features contain high redundancy [12]. Specifically, there is a

high correlation between adjacent bands and the number of the original spectral features may be too high

1Part of this chapter has been published in: L. Gao, J. Li, M. Khodadadzadeh, A. Plaza, B. Zhang, Z. He, and H.
Yan. Subspace-Based Support Vector Machines for Hyperspectral Image Classification. IEEE Geoscience and
Remote Sensing Letters, vol. 12, no. 2, pp. 349-353, February 2015 [JCR(2013)=1.809].
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for classification purposes [59]. In addition, the original spectral features may not be the most effective

ones to separate the objects of interest from others, since the hyperspectral data may effectively live in a

lower-dimensional subspace [47]. These observations have fostered the use of subspace-based techniques

for hyperspectral image classification, aimed at reducing the dimensionality of the input space in order

to better exploit the (often limited) training samples available a priori.

In the hyperspectral imaging literature, subspace-based techniques have been widely used in spectral

unmixing problems [147, 141], which interpret mixed pixels in a hypespectral scene in terms of a collection

of pure spectral signatures (endmembers [148]) and their corresponding abundance fractions [149]. The

connections between spectral unmixing and subspace projection were first explored in [150]. In [47], a

technique called HySime was presented to identify the subspace in which the hyperspectral data lives,

which is related with the estimation of the number of endmembers in a given scene. However, subspace-

based techniques have also been used for detection and classification purposes, mainly due to their

capacity to deal with mixed pixels and interferers. For instance, in [52] (later revisited in [48]), an

OSP technique was introduced for hyperspectral image classification and dimensionality reduction. In

[53] a least squares subspace projection approach to mixed pixel classification was discussed. In [54], a

kernel-based subspace projection technique was presented and evaluated in the context of an agricultural

application. In [151], a technique for hyperspectral signal subspace identification in the presence of

rare signal components was explored. More recently, subspace-projection-based MLR classifier, called

MLRsub [51], has been presented. This classifier models the subspace associated with each specific

class. In other words, the MLRsub uses a class dependent procedure integrated with the MLR classifier

to represent each class using a subspace spanned by a set of basis vectors. This approach exhibited

good classification performance using several hyperspectral scenes. A general conclusion from the

aforementioned studies is that subspace projection methods are useful for the separation of classes which

are very similar in spectral terms due to spectral mixing and other phenomena.

Inspired by the previous development of MLRsub, this chapter presents a new methodology that

combines a class indexed subspace projection technique integrated with the SVM classifier [31, 32], which

has been widely used in order to deal effectively with the Hughes phenomenon. This phenomenon is

related with the imbalance between the high dimensionality (in spectral sense) of hyperspectral data and

the (generally limited) number of training samples available, which often compromises the performance

of supervised classification techniques [11]. The SVM was first investigated as a binary classifier [28].

Given a training set mapped into a space by some mapping, the SVM separates the data by an optimal

hyperplane. If the data are linearly separable, we can select two hyperplanes in a way that they

separate the data and there are no points between them, and then try to maximize their distance.

The region bounded by them is called the margin [152]. If the data are not linearly separable, soft

margin classification with slack variables can be used to allow mis-classification of difficult or noisy cases.

However, the most widely used approach in SVM classification is to combine soft margin classification

with a kernel trick that allows separation of the classes in a higher dimensional space by means of a

nonlinear transformation. In other words, the SVM used with a kernel function is a nonlinear classifier,

where the nonlinear ability is included in the kernel and different kernels lead to different types of SVMs.

The extension of SVMs to multi-class problems is usually done by combining several binary classifiers

[28]. In this chapter, our main contribution is to incorporate a subspace-projection based approach to

the classic SVM formulation, with the ultimate goal of having a more consistent estimation of the class

distributions. The resulting classification technique, called SVMsub, is shown in this work to be robust

to the presence of noise, mixed pixels and limited training samples.

The remainder of the chapter is organized as follows. Section 5.3 presents the proposed SVMsub
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classification technique. Section 5.4 evaluates the classification performance of the SVMsub method

in comparison with another established subspace-based classifiers such as the MLRsub, using a

hyperspectral data set collected by the AVIRIS over the Indian Pines region in Indiana. Our experimental

results indicate that the proposed SVMsub algorithm provides competitive classification results in

comparison with other approaches. Section 5.5 concludes this chapter with some remarks and hints

at plausible future research lines.

5.3 Class Dependent Subspace-Based SVM (SVMsub)

In chapter (3), a nonlinear function h(xi) = [‖xi‖
2, ‖xT

i U
(1)‖2, . . . , ‖xT

i U
(k)‖2]T was used to learn

the logistic regressors. With the aforementioned notation in mind, we now extend the class dependent

subspace concept to the SVM classifier, and also define the implementation of the nonlinear function

h(xi) for the SVM model. Therefore, after the nonlinear transformation, the hyperspectral data x turns

to h(x) ≡ {h(x1), . . . ,h(xn)} in the SVM implementation.

The SVM is a supervised non-parametric statistical learning technique which learns from a set of

labeled data instances, thus trying to find an optimal hyperplane that separates the dataset into a

discrete (and predefined) number of classes in a way that is consistent with the training examples

[32]. Here, the notion of optimal separation hyperplane refers to the decision boundary that minimizes

misclassifications, which is obtained after the training step. In our context, this would be equivalent to

assuming that the original spectral features are linearly separable in the input space. In practice, linear

separability is difficult as the basic linear decision boundaries are often insufficient to properly model

the data. For this purpose, a kernel trick is used to solve the inseparability problem by mapping the

nonlinear correlations into a higher-dimensional space [153].

Obviously, the choice of the input function can have a significant impact on the obtained results

[59]. In our approach, by introducing the class dependent subspace based nonlinear function h(x), the

decision rule for a pixel u can be obtained as:

yu = sgn

(
ntr∑

i=1

yiαi(h(xi)
Th(xu)) + b

)
, (5.1)

where ntr is the number of labeled samples, yi ∈ {−1, 1}, and 0 ≤ αi ≤ C, with C being the soft margin

parameter. For simplicity, sometimes, it is required that the hyperplane passes through the origin of

the coordinate system, whereas general hyperplanes not necessarily passing through the origin can be

enforced by setting b = 0 in (5.1) [152]. As shown in (5.1), in our approach the parameters involved in

the calculation of the input function are k-dimensional, where k is the number of classes, independently

of the size of the training set. This brings a significant advantage from a computational complexity

viewpoint since, for some conventional kernel functions such as the Gaussian RBF or polynomial, the

size of the kernel depends on the training set ntr. This generally results in a prohibitive calculation for

problems with large training sets. Therefore, the proposed approach (which adopts a linear SVM after

a nonlinear transformation) significantly reduces the computational complexity and allows the SVM to

manage problems with large training sets.

5.4 Experimental Results

In this section, we evaluate the proposed SVMsub using a real hyperspectral image. A comparison

with the conventional SVM, implemented with a Gaussian RBF kernel, is provided in order to evaluate
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the proposed formulation with regard to a widely used one in the remote sensing community. We

emphasize that our selection of the RBF kernel has been done after extensive experiments with other

types of kernels. In addition, we also perform comparisons with the MLRsub in [51]. Although it is

well-known that these methods can be combined with a spatial regularization technique such as the

Markov random field [154] in order to enhance classification accuracies, we have decided to focus only on

spectral-based classification in this contribution for clarity. We would also like to emphasize that, due

to space considerations, we could not include a quantitative comparison to other widely used techniques

for hyperspectral image classification. However, an extensive comparison of (classic and new) techniques

for hyperspectral image classification has been recently presented in [21] and can be used as reference.

The parameters of the different classification methods tested in this work have been carefully optimized

by means of fivefold cross-validation. As for the parameters involved in the subspace estimation stage,

we have also carefully optimized them following the procedure described in [51]. In all our experiments,

we randomly select training samples from the reference data and report the overall, average, individual

classification accuracies and the κ statistic obtained after 50 Monte Carlo runs.

In our first experiment with the AVIRIS Indian Pines scene, we analyze the performance of the

SVMsub method under different noise conditions. Table 5.1 shows the classification results obtained by

the different methods tested using only 320 training samples (20 samples per class). It should be noted

that this is a very limited number of labeled samples, which we have set on purpose in order to address

the fact that it is very common in practical scenarios that limited training sets are available. As shown

by Table 5.1, the proposed SVMsub obtained the best classification results in both scenarios (i.e., with

all the bands and with the noisy bands removed). Furthermore, MLRsub is also quite robust in noisy

conditions, while the classic SVM appears to be more sensitive to noise. In addition, it is worth noting

that the results obtained by subspace-based classifiers are comparable (or even slightly better) in the

case in which all spectral bands (including noisy ones) are considered. This is because, even with noisy

bands, the class dependent subspace can be better estimated as the dimensionality increases. This is

an important observation, which reveals that subspace-based techniques are important in order to fully

exploit the information present in the original hyperspectral data.

For illustrative purposes, Fig. 5.1 shows some of the obtained classification maps provided by the

different tested methods for the AVIRIS Indian Pines scene. These maps correspond to one of the 50

Monte Carlo runs conducted in each case. As shown by Fig. 5.1, the classification accuracies provided

by the SVMsub are significantly higher than those provided by the classic SVM formulation. Also,

we emphasize that these results were obtained with a very limited number of training samples, which

indicates that SVMsub can properly deal with the imbalance between the high dimensionality of the

input data and the limited availability of training information. The proposed method can also deal with

noise and mixed pixels, which dominate the AVIRIS Indian Pines since the agricultural features were

very early in their growth cycle when the image was acquired.

In our second experiment with the AVIRIS Indian Pines scene, we evaluate the performance of the

compared methods using different numbers of training samples. Here, we focus on the results obtained for

the full hyperspectral image (with 220 spectral bands), as this is generally a more difficult problem due

to noise and higher data dimensionality. Table 5.2 shows the overall classification accuracies (indicating

the standard deviation) and the κ statistic obtained by the different methods tested, as a function of the

number of training samples. The computational cost, including both the training and testing time, is

also reported. In our experiments, we approximately used the same number of training samples per class

(except for those classes which are very small). As shown by Table 5.2, the proposed SVMsub obtained

better results than the other tested methods in all cases. For instance, when a total of 560 labeled samples
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Table 5.1: Overall, average, individual class accuracies [%] and κ statistic obtained by the different tested methods for the AVIRIS Indian Pines
scene. In all cases, only 320 training samples in total (20 per class) were used.

Class # samples
Results using 220 spectral bands Results using 200 spectral bands

SVMsub SVM MLRsub SVMsub SVM MLRsub

Alfalfa 54 85.23 75.40 84.23 84.34 86.17 83.34

Corn-no till 1434 55.78 32.35 54.34 54.42 47.22 53.25

Corn-min till 834 54.45 39.18 59.92 57.32 50.42 59.47

Corn 234 75.94 66.55 74.95 73.39 71.36 73.03

Grass/pasture 497 83.21 69.94 83.91 84.02 79.54 83.68

Grass/tree 747 90.97 71.10 91.86 90.97 80.03 90.57

Grass/pasture-mowed 26 89.87 86.87 91.53 90.20 89.53 92.20

Hay-windrowed 489 93.07 77.59 94.69 91.78 89.11 93.36

Oats 20 95.76 65.02 98.60 94.96 87.51 95.78

Soybeans-no till 968 58.45 51.00 60.27 56.88 64.74 56.82

Soybeans-min till 2468 55.77 45.97 47.35 54.45 53.86 45.20

Soybeans-clean till 614 72.67 46.25 67.50 72.61 52.83 67.55

Wheat 212 98.88 91.22 99.65 98.95 93.91 99.58

Woods 1294 87.52 69.90 95.19 87.07 80.55 92.06

Bldg-Grass-Tree-Drives 380 63.84 45.22 30.83 61.94 52.30 37.22

Stone-steel towers 95 88.75 93.13 92.11 89.68 94.50 91.82

Overall accuracy 68.47 53.22 66.51 67.84 63.29 65.09

Average accuracy 78.13 64.17 76.68 77.69 73.35 75.93

κ statistic 64.39 47.69 62.31 63.72 58.76 60.78
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Results using 220 spectral bands:

Reference map SVMsub (66.73%) SVM (54.78%) MLRsub (64.45%)

Results using 200 spectral bands:

SVMsub (67.02%) SVM (64.80%) MLRsub (64.94%)

Figure 5.1: Classification maps obtained by the different tested methods for the AVIRIS Indian Pines
scene. In all cases, only 320 training samples in total (20 per class) were used. The overall classification
accuracies are given in the parentheses.

were used (approximately 35 samples per class), the proposed SVMsub obtained an overall accuracy of

78.92%, which is 19.23% higher than the one obtained by the traditional SVM and 8.94% higher than the

one obtained by the MLRsub. Another important observation is that the subspace based methods, i.e.,

SVMsub and MLRsub, are very fast even using a large number of training samples, while the conventional

SVM method needs much more time when the number of training samples increases.

5.5 Summary and future directions

In this chapter, we have developed a new subspace-based SVM classifier called SVMsub. The main

innovation of this classifier is that, in the construction of the SVM nonlinear function, we learn the

subspace associated to each class. This formulation allows us to better cope with several phenomena

that are quite important in hyperspectral image classification, such as the imbalance between the (high)

dimensionality of the input data and the (limited) availability of training samples, as well as with the

presence of noise and mixed pixels in the input data. The proposed method has been compared with

the classic SVM formulation and also with a previously developed subspace-based technique based on

the MLR classifier (MLRsub), obtaining good classification results with very limited training samples.

In future work, we will explore the impact of including spatial information in the proposed formulation

and also test the method under different conditions and analysis case studies.
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Table 5.2: Overall classification accuracies [%] (plus/minus the standard deviation) and κ statistic (in the parentheses) obtained by the different
tested methods for the AVIRIS Indian Pines scene, using different numbers of training samples. Computational cost (including both the training
time and testing time) is also included. Both the total number of samples used and the (approximate) number of training samples per class are
given (in the parentheses).

# Samples (per class)
Classification methods tested

SVMsub SVM MLRsub

160 (10)
Accuracy 61.16±2.82 (56.54) 39.23±3.91 (33.08) 61.37±2.52 (56.76)

Time (seconds) 0.73 2.67 2.54

240 (15)
Accuracy 65.74±2.20 (61.45) 44.74±4.30 (39.15) 64.61±2.30 (60.24)

Time (seconds) 0.77 3.44 3.27

320 (20)
Accuracy 68.47±2.06 (63.83) 53.22±2.15 (47.86) 66.51±1.85 (62.42)

Time (seconds) 0.79 4.40 3.08

400 (25)
Accuracy 70.28±2.10 (66.36) 56.24±1.67 (50.89) 67.62±1.72 (63.46)

Time (seconds) 0.81 5.51 3.30

480 (30)
Accuracy 72.01±1.57 (68.22) 59.03±1.73 (53.88) 69.29±1.81 (65.28)

Time (seconds) 0.83 6.78 3.50

560 (35)
Accuracy 72.80±1.32 (69.08) 60.69±1.40 (55.64) 69.98±1.41 (66.02)

Time (seconds) 0.85 8.07 3.82

640 (40)
Accuracy 73.69±1.66 (70.06) 62.05±1.00 (57.15) 71.04±1.35 (67.11)

Time (seconds) 0.89 9.57 3.90

720 (45)
Accuracy 74.00±1.46 (70.37) 63.25±1.16 (58.44) 71.65±1.49 (67.73)

Time (seconds) 0.91 11.53 4.22

800 (50)
Accuracy 74.36±1.58 (70.77) 64.16±0.96 (59.44) 71.47±1.34 (67.57)

Time (seconds) 0.96 14.24 4.48
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Chapter 6

A Discontinuity Preserving
Relaxation scheme for
Spectral-Spatial Hyperspectral
Classification

6.1 Summary

In remote sensing image processing, relaxation is defined as a method that uses the local relationship

among neighboring pixels to correct spectral or spatial distortions. In recent years, relaxation methods

have shown great success in classification of remotely sensed data. Relaxation, as a preprocessing step,

can reduce noise and improve the class separability in the spectral domain. On the other hand, relaxation

as a post processing approach, works on the label image or class probabilities obtained from pixel-wise

classifiers. In this work, we develop a discontinuity preserving relaxation strategy, which can be used for

postprocessing of class probability estimates, as well as preprocessing of the original hyperspectral image.

The newly proposed method is an iterative relaxation procedure which exploits spatial information in such

a way that it considers discontinuities existing in the data cube. Our experimental results indicate that

the proposed methodology leads to state-of-the-art classification results when combined with probabilistic

classifiers for several widely used hyperspectral data sets, even when very limited training samples are

available 1.

6.2 Introduction

Remotely sensed hyperspectral image classification has been a very active area of research in recent years

[21]. Although techniques for unsupervised classification and/or clustering have also been used in the

literature [12], supervised classification has been more popular in many applications [11]. Still, there are

several important challenges when performing supervised hyperspectral image classification [59], such

as the unbalance between high dimensionality and limited training samples, or the presence of mixed

pixels in the data (which may compromise classification results for coarse spatial resolutions). Another

1Part of this chapter has been submitted to: J. Li, M. Khodadadzadeh, A. Plaza, X. Jia and J. M. Bioucas-Dias. A

Discontinuity Preserving Relaxation scheme for Spectral-Spatial Hyperspectral Image Classification, IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015 [JCR(2013)=2.827].
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relevant challenge is the need to integrate the spatial and spectral information to take advantage of

the complementarities that both sources of information can provide. Such integration can reduce the

negative impact of the aforementioned challenges.

According to the principle that, in remote sensing images, neighboring pixels are likely to have

the same contextual properties, spectral-spatial techniques can be effectively exploited to improve the

classification accuracy [12]. For example in [87], simply adding mean of neighboring pixel values for

each band to the original spectral feature vector of central pixel has been shown better classification

performance than conventional spectral methods. In [89], it is proposed to extract textural features from

the hyperspectral image using efficient image enhancement algorithms and then combine them with

spectral information via kernels in a semisupervised graph-based framework for classification. In other

approaches, modelling different kinds of the structural information contained in hyperspectral images

by using morphological filters and integrating with spectral information have been successfully used for

hyperspectral image classification [155, 81, 90].

The important category of spectral-spatial techniques comprises relaxation methods which are defined

as methods that use the local relationship among neighboring pixels to correct spectral or spatial

distortions. As preprocessing, spatial smoothing over the hyperspectral data can remove noise and

enhance spatial texture information [124, 156, 157]. For example in [156], in order to classify land

cover mathematical morphology based noise reduction filter has been used before the ML classification

algorithm. In [124], authors showed that anisotropic diffusion algorithm can reduce the spatial

and spectral variability of the image, while preserving the edges of objects, which will improve the

classification accuracy of hyperspectral imagery. On the other hand, as a postprocessing method,

relaxation-based approaches can be an effective tool to improve classification accuracies [12]. These

normally iterative methods are broadly referred to as CR or PR [158, 94, 138, 159], which incorporate

spatial-contextual information into the obtained probabilistic classification results. In other words, after

a probabilistic pixel-wise classification of the hyperspectral image, the process of PR is applied to exploit

the continuity, in probability sense, of neighboring labels. Perhaps the most popular PR strategy is

based on the use of MRFs [98, 97, 12, 99]. Specifically, the MRF has been shown to be a very successful

technique for refining the classification results provided by classifiers such as the probabilistic SVM

[101, 102, 105] or, more recently, the MLR [42, 43, 51]. However, one of the first approaches to include

spatial-contextual information in probabilistic classification was PLR [93, 95, 12]. PLR strategies use

the probabilities of neighboring pixels iteratively to update the class probabilities for the center pixel

based on a neighborhood function [12].

It has been observed that, quite often, the use of spatial information as relaxation, although, on

one hand, it clearly improves the classification accuracy in smooth image areas, on the other hand, it

degrades the classification performance in the neighborhood of the class boundaries. Fundamentally, this

is a consequence of enforcing smoothness across the boundaries. Based on this observation, in this work,

we develop a new relaxation strategy for hyperspectral image classification which aims at introducing

spatial relaxation while, at the same time, accurately preserving the edges of class boundaries. This edge

preserving strategy relies on discontinuity maps estimated from the original image cube. These maps

are accurate because they are inferred from the many image bands, usually on the order of hundreds,

with aligned discontinuities.

The proposed approach can be also used as a preprocessing step to logically relax the original

spectral vectors by considering discontinuities from the data cube. This step is able to reduce noise and

improve the class separability while preserving discontinuities by including edge information. However,

as a postprocessing, the proposed approach is therefore based on the main principles of PLR-based
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Figure 6.1: Flowchart of the proposed method.

methods, which can be considered as a form of probabilistic relaxation since they iteratively improve

the probabilistic output of the considered classifier by naturally imposing spatial consistency in the

final classified image. This is important, as some spatial post-processing strategies tend to generate

an undesired blob-like effect in the final classification results. In this regard, our experimental results

indicate that the proposed methodology leads to state-of-the-art classification results when compared

with other widely used PR-based methods (e.g. PLR and MRF). The probabilistic outputs and the

fact that the presented method does not require prior information about the scene are other important

features of the proposed approach.

The remainder of the chapter is organized as follows. Section 6.3 describes the main stages of the

proposed classification framework, including preprocessing, classification and edge-preserving probability

relaxation. Section 6.4 presents an experimental validation of the method, conducted using three well-

known hyperspectral data sets collected by the AVIRIS over the Indian Pines, Indiana, and Salinas

Valley, California, and by the ROSIS over the city of Pavia, Italy. Section 6.5 concludes the chapter with

some remarks and hints at plausible future research.

6.3 Proposed Framework

In this section, we first present probabilistic pixelwise classification method which is applied in this

work and then we describe the proposed relaxation approach which is used in both preprocessing and

postprocessing methods. The flowchart of proposed method has been shown in Fig. 6.1.

6.3.1 Probabilistic Pixel-Wise Classification

Various probabilistic classification techniques have been successfully used for hyperspectral data

[91, 27, 51]. In this work, we consider an MLR algorithm. MLR-based techniques exhibit the advantage

of modelling directly the posterior class distributions. In this context, the densities p(yi|xi) can be

modelled by the MLR, which corresponds to a discriminative model of the discriminative-generative

pair for p(xi|yi) (Gaussian) and p(yi) (multinomial). In section 2.3.1.2, the MLR algorithm has been

explained in detail.

Recently, [51] proposed to combine the MLR with a subspace projection method called MLRsub. The

idea of applying subspace projection methods to improve classification relies on the basic assumption

that the samples within each class can approximately lie in a lower dimensional subspace. Thus, each

class may be represented by a subspace spanned by a set of basis vectors, while the classification criterion

for a new input sample is the distance from the class subspace [51]. In chapter 3, a modified version of
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MLRsub was proposed, which uses the input function h(xi) = [‖xi‖2, ‖xT
i U

(1)‖2, . . . , ‖xT
i U

(k)‖2]T .

The fact that hyperspectral vectors tend to live in unions of subspaces, underlies this input function. In

the following, we simply refer to the MLRsub classifier (see chapter 3) adopted in this work as MLR for

simplicity.

6.3.2 Discontinuity Preserving Relaxation

In this work, we introduce a new relaxation method to logically smooth the classification results

or the original hyperspectral image using both spatial and spectral information while preserving the

discontinuities extracted from the data cube.

Let p = [p1, . . . ,pn] ∈ R
k×n, pi = [pi(1), . . . , pi(k)]

T for i ∈ S be the k-dimensional multivariate

vector of probabilities defined on site i. Let u = [u1, . . . ,un] ∈ R
n×k, for i ∈ S, ui = [ui(1), . . . , ui(k)]

T

be the final vectors of probabilities obtained from the relaxation process. In this work, we implement a

relaxation scheme that is the solution of the following optimization problem

min
u

(1− λ)||u − p||2 + λ
∑

i

∑
j∈∂i

εj ||uj − ui||2

s.t.: ui ≥ 0, 1Tui = 1,
(6.1)

where the constraints are justified by the fact that the vectors ui represent probabilities 1 is a vector

column of k 1s, λ (0 ≤ λ ≤ 1) is a weight parameter controlling the relative impact of the both terms

in the objective function, ∂i denotes the 8-neighborhood of pixel i (other types of neighborhood can be

applied), and εj is a value in the site j ∈ S of edge image ε given by:

ε = exp

(
−

d∑

i=1

sobel(X(i))

)
, (6.2)

where sobel() denotes the Sobel filter, which detects the discontinuities in an image and the output at

each pixel is 0 or 1. The Sobel filter is applied on each spectral channel in a specific direction and X(i)

denotes the ith band of the original data cube X. Note that here, to have a better interpretation of the

edges, we considered the average of the results obtained by applying sobel() in two vertical and horizontal

directions.

In the proposed relaxation scheme (6.1), the fist term in the objective function measures the data

misfit and the second term promotes smooth solutions weighted by the parameter εj, which, according

to its definition, is large when there are no discontinuities between the neighboring pixels it connects

and small when there are discontinuities. The solution of (6.1) corresponds therefore to tradeoff between

adjustment to the ”noisy” classification, imposed by the first term, and smoothness imposed by the

second term. We stress, however, that due to the presence of map ε, the smoothness is not applied

across the discontinuities.

At this point we would like to make reference to edge preserving image restoration methods such as

those based on TV [159] or based on AD [160]. In both cases (i.e. TV and AD) the objective is similar

to ours: apply strong smoothing in areas away from edges and avoid smoothing the edges. However, in

our case we know the edges in advance, which is not the case of those methods. This is a considerable

advantage, which results from the availability of many hyperspectral bands.

Problem (6.1) is strictly convex and therefore is has a unique solution. Herein, we apply a projected

iterative Gauss Seidel scheme which consists in iteratively minimizing the objective function in (6.1) with
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respect to each optimization variable ui(k) and, after a complete sweep, project on the probabilities at

each pixel onto the probability simplex. The obtained algorithm is shown in Algorithm 2, where iters is

the number of maximum iterations defined in advance, Err(t+1) = ‖ut+1−ut‖
‖ut‖ is an error parameter and

τ is the error threshold parameter controlling the degree of convergence.

Algorithm 2 Discontinuity Preserving Relaxation (Probabilistic Relaxation)

Input: p, ε, λ, iters, Err(1) = ‖p‖, τ
Output: u

t := 1
while Err(t+1) − Err(t) ≤ τ or t ≤ iters do

for c := 1 to k do

u
(t+1)
i (c) =

(1−λ)pi(c)+λ
∑

j∈∂i
εju

(t)
j (c)

(1−λ)+λ
∑

j∈∂i
εj

end for

u
(t+1)
i = u

(t+1)
i /

∑k
c=1 u

(t+1)
i (c)

Err(t+1) = ‖ut+1−ut‖
‖ut‖

end while

At this point, we would like to call attention to the fact that, apart from the constraints used in

(6.1) linked to the fact that we estimating probabilities, the ratione used to carry out PR can be used to

denoise the original bands of the hyperspectral image X ensuring the preservation of the discontinuities.

The correspondent algorithm, which may be used as a preprocessing step, is shown in Algorithm 3, where

Err:m denotes the error parameter for the mth band, x̃:m is the processed image of the mth band which

corresponds to the original mth band, i.e., x:m = [x1m, . . . , xnm]. Finally, we empirically find out that

both algorithms converge very fast, say, less than 20 iterations.

Algorithm 3 Discontinuity Preserving Relaxation (Preprocessing)

Input: X, ε, λ, iters, Err(1) = ‖X‖, τ
Output: X̃

for m := 1 to d do

t := 1
Err

(1)
:m = Err(1)

while Err
(t+1)
:m − Err

(t)
:m ≤ τ , or t ≤ iters do

x̃
(t+1)
im =

(1−λ)xim+λ
∑

j∈∂i
εj x̃

(t)
jm

(1−λ)+λ
∑

j∈∂i
εj

Err
(t+1)
:m =

‖x̃t+1
:m −x̃t

:m‖
‖x̃t

:m‖

end while

end for

6.4 Experimental Results and Discussion

In this section, we use both simulated and real hyperspectral data to evaluate the proposed approach.

The main goal of using simulated data set is to evaluate the performance of the algorithm in a

fully controlled environment, while the experiments with real experiments are intended to provide a

quantitative evaluation of the method in real analysis scenarios. For simplicity, in this section we refer

to spatial preprocessing as “pp”, while “MLL” and “pr” denote MLL-based [110, 161] and PR-based

spatial relaxation, respectively.
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6.4.1 Experiments with Simulated Data

In our first experiment, we use a simulated image with eight classes and 100× 100 pixels, in which the

spatial distribution is extracted from a real image and the spectral signatures are selected from the USGS

digital spectral library2. The ground truth image and the spectral signatures of eight randomly selected

mineral signatures allocated to the main classes are shown in Fig. 6.2. We considered the following

linear mixture model for generating a simulated mixed pixel:

xi =
∑

j∈∂i

m(j)γj + ni, (6.3)

where, m(l), l = 1, ..., 8 are spectral signatures obtained randomly from the USGS spectral library, and

γj , which follows a random distribution with 0 ≤ γj ≤ 1 and
∑

j∈∂i
γj = 1, determines the abundance of

the signatures which contribute to the mixture model. Note that here, the maximum abundance value

of γj is assigned to the objective class according to the groundtruth image. ∂i is a neighborhood with

a specific size around the central pixel i over the considered ground truth image. ∂i determines a set of

class labels to contribute in the mixture. So that the pixels near the borders of the regions are generated

by mixtures of different class labels and the pixels far from the borders are considered pure. In our

simulations we set the size of the neighborhood to 9 × 9 pixels. For illustrative purposes, Fig. 6.2(c)

shows an example of the abundance maps associated to the eight classes of the simulation image. In

each pixel of the scene, the fractional abundances vary from 0% (black color) to 100% (white color) and

sum to unity. Note that, using the suggested procedure, signature abundance is not constant over class

regions and the pixels closer to the discontinuities are more heavily mixed, as expected in real scenarios.

Zero-mean Gaussian noise with covariance σ2I i.e. ni ∼ N (0, σ2I) is finally added to the generated

synthetic image. For each class, we randomly chose 10 samples (in total 80 samples) from the ground

truth image in Fig. 6.2(a) for training purposes.

We have conducted different experiments with the simulated hyperspectral image described earlier.

These experiments have been carefully designed in order to analyze several relevant aspects of our

proposed method in a fully controlled environment. All of the results reported in this chapter with the

simulated data sets were obtained after 30 Monte Carlo runs in which we randomly select 8 different

materials and also randomly select different training sets.

6.4.2 Impact of Parameter λ:

In our first experiment, we analyze the impact of the tunable parameter λ intended to control the relative

impact of the both terms in the proposed relaxation scheme. It should be noted that, if λ = 0, only

the first term is considered and the method remains as the original MLR algorithm. If λ = 1, only the

smoothing term is used. Fig. 6.3(a) plots the obtained OA results as a function of λ, with σ = 0.1 and the

maximum number of iterations as 20. From Fig. 6.3(a), we can conclude that the relaxation performance

indeed depends on the setting of λ. However, even with 0.7 ≤ λ ≤ 0.9, the proposed relaxation method

leads to significant classification results for the considered problem. Fig. 6.3(b) shows convergence of the

proposed PR method with different values of λ parameter. As can be observed, the proposed approach

converged very fast, i.e., less than 20 iterations, for all cases with different value of λ. Hence, in this

chapter, we set the parameter λ = 0.9 and the maximum number of iterations as 20 for the remaining

simulated experiments.

2http://speclab.cr.usgs.gov/spectral-lib.html

72



6.4 Experimental Results and Discussion

(a) (b)

class1 class2 class3 class4

class5 class6 class7 class8

(c)

Figure 6.2: (a) Classes in a synthetic scene with n = 100 × 100. (b) Spectral signatures of randomly
selected materials from the USGS digital library used in the simulation (c) Fractional abundance
distributions considered for generating mixed pixels using a fixed window of size 9× 9 pixels.

6.4.3 Impact of Noise:

In the other experiment with simulated data, we evaluate the impact of noise on the proposed relaxation

method. Table 6.1 shows the classification results obtained by the proposed approach using different

values of noise standard deviation σ. Several conclusions can be obtained from Table 6.1. First and

foremost, it is remarkable that the proposed approach, which carefully uses the local relationship among

neighboring pixels, has been improved the performance of MLR-based classification accuracy. Clearly,

the performance of the proposed relaxation method decreases as σ increases. When the noise is low, using

the proposed method as probabilistic relaxation shows better performance than preprocessing, however,

in high noise images, relaxation method as preprocessing shows significant improvements. Note that, the

results obtained using both preprocessing and probabilistic relaxation i.e. ppMLRpr are always superior.
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(a) (b)

Figure 6.3: Impact of parameter λ.

Table 6.1: Overall (OA) and average (AA) classification accuracies [%] (as a function of parameter σ)
noise

Methods Accuracies
σ

0 0.05 0.10 0.15 0.20

MLR
OA 92.63 91.09 83.02 69.92 56.16

AA 93.77 92.09 85.07 72.71 59.74

ppMLR
OA 93.08 95.50 91.50 79.19 65.74

AA 94.09 96.05 92.46 81.17 68.49

MLRpr
OA 95.70 95.77 87.76 72.69 57.82

AA 96.23 96.19 89.57 75.63 61.64

ppMLRpr
OA 94.57 95.90 91.80 79.62 65.90

AA 95.43 96.44 92.76 81.76 68.94

6.4.4 Real experiments

Three different hyperspectral images were used for the experiments: AVIRIS Indian Pines image

described in subsection 2.5.1.2, AVIRIS Salinas image described in subsection 3.4.2 and ROSIS Pavia

University image described in subsection 2.5.1.2. These data sets have different characteristics and

contexts (two agricultural areas and an urban area, with different spectral and spatial resolutions).

Moreover, for the three considered hyperspectral images, the discontinuities maps were generated

using equation (6.2) which have been shown in Figs 6.4.

6.4.4.1 Experimental setup

Before describing our results, it is first important to report the parameters and main considerations in

our experiments. For the experiments with the AVIRIS Indian Pines and Salinas images, the training
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(a) AVIRIS Indian Pines (b) AVIRIS Salinas (c) ROSIS Pavia University

Figure 6.4: Discontinuity maps for the considered data sets.

samples were randomly selected from the available ground truth and the remaining samples are used for

validation. However, for the ROSIS Pavia University image, small subsets of the original training samples

were used. Concerning the λ parameter of the proposed relaxation methods, we considered λ = 0.9. For

the stopping, the maximum number of iterations in all experiments was set to 20. These settings,

although suboptimal, lead to very good classification performance. Note that, in all the experiments,

the results reported correspond to the average of the results obtained after 20 Monte Carlo runs.

6.4.4.2 Experiments for AVIRIS Images

Tables 6.2 and 6.3 report the obtained classification accuracies for the AVIRIS Indian Pines and Salinas

images, respectively. The metrics reported are the individual classification accuracies, as well as the

OA, AA and κ statistic. These tables provide the results for each step of the proposed spectral-spatial

relaxation method. Moreover, the results have been compared with the recently proposed spectral-spatial

classification method MLRsubMLL [51]. From the results reported in Tables 6.2 and 6.3, we can conclude

that our proposed method exhibits state-of-the-art. For instance, Table 6.2 reveals that the proposed

relaxation method i.e. ppMLRpr obtained an OA of 91.05% for the AVIRIS Indian Pines image, which

contrasts with the OA of 64.30% obtained by the MLR-based classifier. Compared to MLRMLL the OA

achieved by the presented method improved by about 16% the OA obtained by this method. For the

AVIRIS Salinas image, we obtained comparable results.

A more detailed investigation of individual class accuracies is important to assess quantitatively the

impact of the proposed method on class separability. As indicated on Tables 6.2 and 6.3, the improvement

is quite significant for the sets of similar class labels. For example, the classification accuracies obtained

by the MLR method with preprocessing for the classes: Corn-no till, Corn-min till and Corn in the

AVIRIS Indian Pines scene were 82.49%, 86.60% and 94.94% respectively, which are 32.13%, 27.98%

and 25.24% higher than those obtained by the MLR algorithm. It is also remarkable that the accuracies

for these classes increased in 3.05%, 3.30% and 2.50%, respectively, when the proposed MLRpr method

with preprocessing was used. The same conclusion can be obtained after comparing the individual

class accuracies for the sets of {Grass/trees, Grass/pasture, Grass/pasture-mowed} and {Soybeans-no till,

Soybeans-min till, Soybeans-clean till}. For the AVIRIS Salinas image, it is also possible to consider other
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Table 6.2: Overall (OA) and average (AA) classification accuracies [%] obtained by different methods for the AVIRIS Indian Pines data set.

Class Train/Test

Methods

MLR MLRMLL
Proposed Relaxation Methods

ppMLR MLRpr ppMLRpr

Alfalfa 15 / 54 86.67 ( 4.06 ) 92.96 ( 5.29 ) 98.61 ( 1.33 ) 97.31 ( 0.95 ) 97.96 ( 1.02 )

Corn-no till 15 / 1434 50.36 ( 7.87 ) 61.98 ( 9.16 ) 82.49 ( 6.39 ) 70.25 ( 8.89 ) 85.54 ( 6.27 )

Corn-min till 15 / 834 58.62 ( 10.93 ) 70.85 ( 13.01 ) 86.60 ( 6.57 ) 74.03 ( 14.26 ) 89.90 ( 7.09 )

Corn 15 / 234 69.70 ( 10.81 ) 90.49 ( 8.71 ) 94.94 ( 4.96 ) 95.60 ( 9.13 ) 97.44 ( 4.48 )

Grass/trees 15 / 497 82.27 ( 5.68 ) 88.16 ( 5.32 ) 91.18 ( 4.04 ) 90.99 ( 7.57 ) 91.64 ( 5.11 )

Grass/pasture 15 / 747 88.80 ( 5.06 ) 96.06 ( 2.68 ) 97.48 ( 1.15 ) 99.65 ( 0.42 ) 98.25 ( 0.75 )

Grass/pasture-mowed 15 / 26 96.73 ( 2.87 ) 98.65 ( 2.26 ) 99.81 ( 0.86 ) 97.31 ( 4.69 ) 94.23 ( 22.34 )

Hay-windrowed 15 / 489 90.26 ( 4.35 ) 97.29 ( 3.14 ) 99.16 ( 0.71 ) 99.64 ( 1.36 ) 99.98 ( 0.06 )

Oats 15 / 20 99.75 ( 1.12 ) 100.00 ( 0.00 ) 100.00 ( 0.00 ) 43.50 ( 28.75 ) 92.00 ( 11.17 )

Soybeans-notill 15 / 968 53.36 ( 9.30 ) 68.16 ( 12.31 ) 87.57 ( 6.85 ) 74.83 ( 12.18 ) 88.57 ( 5.76 )

Soybeans-min till 15 / 2468 49.59 ( 9.57 ) 60.65 ( 10.74 ) 80.68 ( 5.78 ) 68.07 ( 14.52 ) 86.29 ( 5.72 )

Soybeans-clean till 15 / 614 58.36 ( 10.92 ) 76.69 ( 12.36 ) 88.88 ( 5.32 ) 84.45 ( 14.14 ) 93.20 ( 6.16 )

Wheat 15 / 212 97.81 ( 2.31 ) 99.46 ( 0.41 ) 99.58 ( 0.34 ) 99.98 ( 0.11 ) 99.62 ( 0.42 )

Woods 15 / 1294 86.81 ( 7.63 ) 94.11 ( 7.10 ) 93.96 ( 3.72 ) 95.89 ( 7.05 ) 95.24 ( 4.56 )

Bldg-Grass-Tree-Drives 15 / 380 44.30 ( 12.02 ) 57.25 ( 15.18 ) 94.99 ( 6.40 ) 72.33 ( 18.72 ) 95.96 ( 5.84 )

Stone-Steel towers 15 / 95 92.16 ( 4.29 ) 96.58 ( 4.19 ) 98.63 ( 2.11 ) 97.95 ( 2.01 ) 96.79 ( 1.95 )

OA 64.30 ( 2.29 ) 75.09 ( 2.86 ) 88.36 ( 1.67 ) 80.67 ( 3.12 ) 91.05 ( 1.87 )

AA 75.35 ( 1.60 ) 84.33 ( 1.36 ) 93.41 ( 1.03 ) 85.11 ( 2.52 ) 93.91 ( 2.27 )

κ 60.03 ( 2.45 ) 72.03 ( 3.10 ) 86.88 ( 1.86 ) 78.22 ( 3.36 ) 89.87 ( 2.09 )
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Table 6.3: Overall (OA) and average (AA) classification accuracies [%] obtained by different methods for the AVIRIS Salinas data set.

Class Train/Test

Methods

MLR MLRMLL
Proposed Relaxation Methods

ppMLR MLRpr ppMLRpr

Brocoli-green-weeds-1 15 / 2009 99.31 ( 0.55 ) 99.93 ( 0.40 ) 99.88 ( 0.27 ) 99.98 ( 0.13 ) 99.90 ( 0.24 )

Brocol-green-weeds-2 15 / 3726 98.42 ( 1.14 ) 99.12 ( 0.09 ) 99.41 ( 1.18 ) 99.79 ( 0.37 ) 96.67 ( 15.90 )

Fallow 15 / 1976 91.81 ( 6.20 ) 94.21 ( 5.43 ) 98.85 ( 2.85 ) 95.65 ( 6.10 ) 96.08 ( 18.27 )

Fallow-rough-plow 15 / 1394 98.35 ( 2.99 ) 98.70 ( 2.75 ) 99.79 ( 0.32 ) 99.94 ( 0.13 ) 98.90 ( 5.62 )

Fallow-smooth 15 / 2678 95.88 ( 2.70 ) 98.71 ( 1.53 ) 97.93 ( 1.00 ) 98.72 ( 0.22 ) 97.42 ( 6.96 )

Stubble 15 / 3959 98.62 ( 1.08 ) 99.31 ( 0.37 ) 99.69 ( 0.36 ) 99.82 ( 0.22 ) 98.49 ( 7.43 )

Celery 15 / 3579 98.78 ( 0.62 ) 99.22 ( 0.20 ) 99.76 ( 0.17 ) 99.91 ( 0.01 ) 98.25 ( 9.13 )

Grapes-untrained 15 / 11271 66.18 ( 9.09 ) 74.39 ( 24.50 ) 81.76 ( 5.80 ) 77.46 ( 12.22 ) 84.68 ( 6.42 )

Soil-vinyard-develop 15 / 6203 97.30 ( 0.90 ) 98.58 ( 1.04 ) 98.91 ( 0.76 ) 100.00 ( 0.01 ) 97.46 ( 9.05 )

Corn-senesced-green-weeds 15 / 3278 81.72 ( 5.92 ) 85.67 ( 2.08 ) 90.69 ( 3.24 ) 88.77 ( 8.35 ) 92.17 ( 3.51 )

Lettuce-romaine-4wk 15 / 1068 93.12 ( 3.61 ) 95.55 ( 1.89 ) 97.18 ( 2.80 ) 99.46 ( 0.77 ) 99.58 ( 0.52 )

Lettuce-romaine-5wk 15 / 1927 97.62 ( 2.98 ) 99.15 ( 0.00 ) 98.82 ( 1.97 ) 99.60 ( 1.28 ) 98.94 ( 1.98 )

Lettuce-romaine-6wk 15 / 916 98.70 ( 0.86 ) 99.01 ( 0.80 ) 98.73 ( 1.05 ) 98.86 ( 0.34 ) 98.73 ( 0.64 )

Lettuce-romaine-7wk 15 / 1070 94.20 ( 3.01 ) 96.81 ( 3.41 ) 97.47 ( 2.25 ) 97.21 ( 1.77 ) 97.13 ( 2.25 )

Vinyard-untrained 15 / 7268 63.90 ( 9.33 ) 71.53 ( 41.58 ) 87.32 ( 9.06 ) 78.01 ( 14.28 ) 90.55 ( 8.65 )

Vinyard-vertical-trellis 15 / 1807 94.16 ( 2.89 ) 96.32 ( 1.64 ) 96.71 ( 3.39 ) 98.36 ( 0.78 ) 96.93 ( 3.69 )

OA 85.28 ( 1.51 ) 89.02 ( 6.54 ) 93.30 ( 1.70 ) 91.26 ( 2.30 ) 93.79 ( 4.46 )

AA 91.76 ( 0.76 ) 94.14 ( 2.60 ) 96.43 ( 0.81 ) 95.72 ( 1.05 ) 96.37 ( 4.48 )

κ 83.67 ( 1.66 ) 87.80 ( 7.28 ) 92.56 ( 1.89 ) 90.29 ( 2.55 ) 93.11 ( 4.91 )
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A Discontinuity Preserving Relaxation scheme for Spectral-Spatial Hyperspectral Classification

MLR (64.15%) MLR-MLL (73.11 %)

ppMLR (86.66%) MLRpr (80.13 %) ppMLRpr (90.98 %)

Figure 6.5: Classification maps obtained by different methods for the AVIRIS Indian Pines scene (PP
refers to preprocessing and the overall accuracies are reported in the parentheses).

sets of similar classes and obtain the same conclusion. For instance, pixel-wise classifier MLR obtained

low accuracies for class Vinyard-untrained, i.e. 63.90%. However, after applying the preprocessing

method the accuracies for this class were increased by 23.42%. This improvement is significant because,

for example, the MLR+MLL method obtained 71.53% accuracy for this class, which is just 7.63% higher

than MLR result. It is also noticeable that the accuracy obtained by the proposed method ppMLRpr

for the class Vinyard-untrained is 90.55%, which is 26.65% higher than the result obtained by the MLR

algorithm.

For illustrative purposes, Figs. 6.5 and 6.6 show the obtained classification maps for the AVIRIS

Indian Pines and Salinas data sets. Each of the maps corresponds to one out of the 30 Monte Carlo

experiments which were averaged to produce the results reported in Tables 6.2 and 6.3. From Figs. 6.5

and 6.6, it can be seen that using spatial information (both at the preprocessing and postprocessing

level) can lead to more homogeneous regions in classification maps, when compared to the pixel-wise

classification maps. Most importantly, the proposed method exhibits very good performance in the task

of delineating the borders of classes of interest.

Figs 6.7 and 6.8 illustrate the performance of the proposed relaxation method in detailed. For

example Fig 6.7 shows the changes of probabilities of class Soybean min-till for the all pixels. We can

conclude that our proposed method preserve discontinuities during relaxation process. Similarly for

preprocessing(Fig 6.8), the proposed method obviously smooth the original hyperspectral image while it

considered edge information.

6.4.5 Experiments for the ROSIS Pavia University Image

Table 6.4 details the classification results obtained for the ROSIS Pavia University scene. Several

conclusions can be obtained from this table. First and foremost, it is remarkable that the proposed

relaxation approach exhibited very good performance using very limited number of training samples.

78



6.5 Summary and future directions

MLR (86.97%) MLR-MLL (90.67%)

ppMLR (95.87%) MLRpr (94.38%) ppMLRpr (96.80%)

Figure 6.6: Classification maps obtained by different methods for the AVIRIS Salinas scene (PP refers
to preprocessing and the overall accuracies are reported in the parentheses).

For instance, our proposed method obtained an OA of 85.05%, which is 18.05% higher than the one

obtained by the MLR algorithm, whereas the MLRMLL obtained an OA of 76.50%, which is 9.5%

higher than the result obtained by the MLR algorithm. For illustrative purposes, Fig. 6.9 shows the

obtained classification maps for the Pavia University data set.

6.5 Summary and future directions

In this work, we have developed a new methodology for spectral-spatial classification of remotely sensed

hyperspectral scenes. The main features of our proposed approach can be summarized as follows. First,

it provides spatially homogeneous regions after probabilistic classification, thus exploiting the intrinsic

correlation which exists between neighboring pixels to improve the final classification results. Second, it

specifically models the pixels at the borders of the regions to provide a better delineation of the classified
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Table 6.4: Overall (OA) and average (AA) classification accuracies [%] obtained by different methods for the ROSIS Pavia University scene.

Class Train/Test

Methods

MLR MLRMLL
Proposed Relaxation Methods

ppMLR MLRpr ppMLRpr

Asphalt 15 / 6631 61.32 ( 5.93 ) 75.38 ( 7.74 ) 76.81 ( 6.95 ) 89.03 ( 6.09 ) 78.14 ( 8.38 )

Meadows 15 / 18649 66.96 ( 9.98 ) 79.36 ( 12.78 ) 90.87 ( 5.14 ) 80.74 ( 12.94 ) 90.36 ( 6.37 )

Gravel 15 / 2099 57.06 ( 10.19 ) 57.39 ( 17.56 ) 79.47 ( 7.42 ) 71.59 ( 18.08 ) 81.55 ( 9.32 )

Trees 15 / 3064 89.64 ( 9.79 ) 91.72 ( 12.68 ) 86.11 ( 8.44 ) 84.68 ( 15.58 ) 83.49 ( 8.49 )

Metal sheets 15 / 1345 96.02 ( 5.15 ) 98.35 ( 4.05 ) 97.17 ( 3.11 ) 97.99 ( 3.55 ) 97.73 ( 4.44 )

Bare soil 15 / 5029 45.45 ( 8.64 ) 42.48 ( 18.93 ) 68.79 ( 12.56 ) 59.58 ( 17.55 ) 70.61 ( 14.96 )

Bitumen 15 / 1330 78.92 ( 9.50 ) 89.55 ( 13.16 ) 81.48 ( 13.29 ) 96.42 ( 11.89 ) 80.09 ( 12.51 )

Bricks 15 / 3682 70.67 ( 8.09 ) 90.10 ( 5.13 ) 87.65 ( 5.50 ) 92.25 ( 6.35 ) 88.88 ( 4.33 )

Shadows 15 / 947 98.50 ( 2.50 ) 99.50 ( 1.26 ) 91.38 ( 6.36 ) 99.90 ( 0.11 ) 92.41 ( 5.13 )

OA 67.00 ( 3.55 ) 76.50 ( 5.35 ) 84.83 ( 2.70 ) 81.81 ( 5.25 ) 85.05 ( 2.87 )

AA 73.84 ( 1.95 ) 80.42 ( 3.49 ) 84.41 ( 3.00 ) 85.80 ( 4.12 ) 84.80 ( 2.69 )

κ 58.23 ( 3.72 ) 69.46 ( 6.27 ) 80.06 ( 3.44 ) 76.40 ( 6.34 ) 80.36 ( 3.62 )
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6.5 Summary and future directions

The Soybean min-till class MLR (66.13 %)

ppMLR (75.77 %) MLRpr (65.72 %) ppMLRpr (81.20 %)

Figure 6.7: The Probability image of the class Soybean min-till resulted from the proposed methods

objects. In other words, our proposed approach is able to provide accurate spectral-spatial classification

while preserving the edges and the boundaries between classes, which is quite important as the inclusion

of spatial regularizer tends to blur the class boundaries and provide non-smooth delineations.

Our experimental results, conducted using a variety of (simulated and real) hyperspectral scenes and

spectral-spatial classification strategies, indicate that the proposed approach provides state-of-the-art

classification results. particularly, the proposed method provides high classification accuracies when

very limited training samples are used.

81



A Discontinuity Preserving Relaxation scheme for Spectral-Spatial Hyperspectral Classification

(a) (b) (c)

(d) (e) (f)

Figure 6.8: The bands of numbers 50, 100 and 150 of the original hyperspectal image before (a-c) and
after (d-f) preprocessing)
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6.5 Summary and future directions

MLR (65.52%) MLR-MLL (75.54%)

ppMLR (84.77%) MLRpr (81.41%) ppMLRpr (82.53%)

Figure 6.9: Classification maps obtained by different methods for the ROSIS Pavia University scene (PP
refers to preprocessing and the overall accuracies are reported in the parentheses).
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Chapter 7

Fusion of Hyperspectral and LiDAR
Remote Sensing Data Using
Multiple Feature Learning

7.1 Summary

Hyperspectral image classification has been an active topic of research. In recent years, it has been

found that LiDAR data provides a source of complementary information that can greatly assist in the

classification of hyperspectral data, in particular when it is difficult to separate complex classes. This is

because, in addition to the spatial and the spectral information provided by hyperspectral data, LiDAR

can provide very valuable information about the height of the surveyed area that can help with the

discrimination of classes and their separability. In the past, several efforts have been investigated for

fusion of hyperspectral and LiDAR data, with some efforts driven by the morphological information that

can be derived from both data sources. However, a main challenge for the learning approaches is how

to exploit the information coming from multiple features. Specifically, it has been found that simple

concatenation or stacking of features such as morphological attribute profiles may contain redundant

information. In addition, a significant increase in the number of features may lead to very high-

dimensional input features. This is in contrast with the limited number of training samples often available

in remote sensing applications, which may lead to the Hughes effect. In this work, we develop a new

efficient strategy for fusion and classification of hyperspectral and LiDAR data. Our approach has been

designed to integrate multiple types of features extracted from these data. An important characteristic

of the presented approach is that it does not require any regularization parameters, so that different

types of features can be efficiently exploited and integrated in a collaborative and flexible way. Our

experimental results, conducted using a hyperspectral image and a LiDAR derived DSM collected over

the University of Houston campus and the neighboring urban area, indicate that the proposed framework

for multiple feature learning provides state-of-the-art classification results 1.

1Part of this chapter has been published in: M. Khodadadzadeh, J. Li, S. Prasad and A. Plaza. Fusion of

Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning, IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, accepted for publication, 2015 [JCR(2013)=2.827].
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7.2 Introduction

Hyperspectral imaging is concerned with the extraction of information from objects or scenes lying on the

Earth surface, using hundreds of (narrow) spectral bands typically covering the visible and near infra-red

domains [21]. In hyperspectral imaging, also termed imaging spectroscopy [162], the sensor acquires a

spectral vector with hundreds or thousands of elements from every pixel in a given scene. The result

is the so-called hyperspectral image or hyperspectral data cube. It should be noted that hyperspectral

images are spectrally smooth and spatially piece-wise smooth; this means that the values in neighboring

locations and wavelengths are often highly correlated [91].

Hyperspectral image classification has been a very active area of research in recent years [59]. Given

a set of observations (i.e., pixel vectors in a hyperspectral image), the goal of classification is to assign

a unique label to each pixel vector so that it is well-defined by a given class. The wider availability of

hyperspectral data with high spatial resolution has been quite important for classification techniques.

However, in some cases the spatial resolution of the hyperspectral data is not enough to separate complex

classes such as those present in urban environments [59]. This aspect, together with the expected

(linear or nonlinear) mixing happening at sub-pixel scales [141], complicates the classification process

significantly. In some cases, the data coming from other sources can be used to improve and/or refine the

results of classification. A good example is the use of LiDAR data [163], which can provide information

about the height of the same surveyed area. LiDAR has been shown to be a very useful source of data

for classification purposes [164].

In the literature, many techniques have been developed for fusion of hyperspectral and LiDAR data

for classification purposes [165]. In 2013, the Data Fusion Technical Committee of the IEEE GRSS

organized a contest2 involving two data sets: a hyperspectral image and a LiDAR derived DSM, both

at the same spatial resolution (2.5m), and two parallel competitions were established in order to devise

advanced methods for fusion and classification of hyperspectral and LiDAR data3. Many other examples

can be found in classification of urban areas [166], but also in classification of complex forest areas [167].

Techniques based on morphological features have been quite successful in the literature. For instance,

the methodology in [168] jointly considered the features extracted by morphological attribute profiles

[80] computed on both the hyperspectral and LiDAR data, and then fused the spectral, spatial and

elevation information in a stacked architecture. In [169] it was pointed out that the simple concatenation

or stacking of features such as morphological attribute profiles may contain redundant information.

The main challenge in multiple feature learning is that how to adequately exploit the information

containing in these features. In addition, a significant increase in the number of features may lead

to high dimensionality issues that are in contrast with the limited number of training samples often

available in remote sensing applications [170], which may lead to the Hughes effect. To address these

issues, decision fusion techniques have been applied [171].

In this chapter, we develop a new strategy for fusing hyperspectral and LiDAR data for classification

purposes. The main contribution of our newly proposed approach is its capacity to integrate multiple

types of features extracted using spatial and spectral information. For the LiDAR data, the DSM provides

rich information in spatial sense, while for the hyperspectral data the very rich spectral resolution provides

detailed spectral signatures that can be very useful for classification purposes. A main characteristic of

the presented approach is that it can adaptively exploit information from both spatially and spectrally

derived features, thus being able to address practical scenarios in which different sources of information

2http://hyperspectral.ee.uh.edu/?page id=459
3http://hyperspectral.ee.uh.edu/?page id=795

86



7.3 Methodological Framework

(spatial or spectral) may be useful to separate different types of classes. In order to achieve this goal,

the proposed approach has been designed in a way that it exhibits great flexibility to combine different

types of features without any regularization parameters, thus taking advantage of the complementarity

that the features can provide without any a priori restrictions. Our presented approach is thus aimed at

exploiting the different properties that both spatial and spectral features can provide. In order to achieve

the desired spectral-spatial integration that is normally expected in advanced classification problems, we

consider morphological features as an important part of our framework, which also exploits the original

spectral information contained in the hyperspectral scene. The integration is achieved by a multiple

feature learning approach based on the MLRsub [51] classifier.

The remainder of this chapter is organized as follows. Section 7.3 describes the methodological

framework developed in this work for the fusion of hyperspectral and LiDAR data. Section 7.4 describes

our experimental results, conducted using a hyperspectral image and a LiDAR derived DSM collected

over the University of Houston campus and the neighboring urban area. This scene was recently used in

the IEEE GRSS contest and, therefore, the results obtained for this scene will be compared with other

several approaches already tested with these data. Finally, section 7.5 concludes the chapter with some

remarks and hints at plausible future research lines.

7.3 Methodological Framework

In this section, we introduce the proposed approach for the integration of the hyperspectral and LiDAR

data. The proposed approach comprises the following main steps. In the first step, we use morphological

attribute profiles [80] to extract the spatial features in the hyperspectral and LiDAR data. Then in

the second step, we perform classification over all the obtained spatial features and the original spectral

features by using the MLRsub classifier [51]. We have selected this classifier as it provide great flexibility

for multiple feature learning based on the LOGP rule [172] while, at the same time, offering great ability

for learning ill-posed problems by projecting the data into its class indexed subspace. In this way, by

working in a subspace the proposed method can adequately handle the unbalance between the increased

dimensionality of the data (expanded even more after including the morphological attribute profiles)

and the very limited availability of training samples in practice. In a final step, we use MRFs [97] for

spatial regularization in order to promote spatial smoothness in the final classification result, as indicated

in [51]. In the following, we present in detail each step of the proposed approach for classification of

hyperspectral and LiDAR data.

7.3.1 Feature Extraction by Morphological Attribute Profiles

Let XL ≡ (xL
1 , x

L
2 , ..., x

L
n) be the DSM derived from the LiDAR data, where n is the number of pixels

in XL. Similarly, let us denote the hyperspectral image as Xh ≡ (xh
1 ,x

h
2 , ...,x

h
n), where xi ∈ R

d, for

i = 1, 2, . . . , n, denotes a spectral vector, n is the number of pixels in Xh, and d is the number of spectral

bands.

Mathematical morphology was described in subsection 1.1.4.3 as an effective approach for modeling

the spatial characteristics of the objects in remotely sensed images. In this chapter we suggest to use

morphological APs for feature extraction from the both hyperspectral and LiDAR DSM images. In our

specific context, the multiple features available X are defined as follows: X ≡ (X̃1, X̃2, X̃3, X̃4), where

X̃1 = Xh (i.e., the hyperspectral data), X̃2 = XL (i.e., the LiDAR data), X̃3 = EMAP(Xh) (i.e., an

EMAP built on the first few PCA components of the original hyperspectal data), and X̃4 = AP(XL)
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(i.e., the AP of the LiDAR data). Notice that, for the LiDAR data, we could only generate its APs as

it is a single-channel DSM image.

7.3.2 Probabilistic Classification Using Spectral Features

In the literature, various probabilistic techniques have been suggested for classification of remote

sensing data. In this chapter we focus on two techniques: the SVM [27, 26, 31] and MLRsub (see chapter

3), which have shown good performance in hyperspectral data classification.

7.3.2.1 SVM Classification Technique

The SVM is originally a binary hard classifier that separates two classes by using a linear hyperplane.

For finding the separating hyperplane, the training samples located near the class boundaries (i.e.,

the support vectors) that maximize the separation between the two classes are found, by using a

constrained optimization process [27]. An important advantage of SVM algorithm is the possibility

of using a kernel trick in the formulation [32]. In this chapter, we use the multi-class probabilistic SVM

method [29, 126] implemented in the popular LIBSVM library [30], considering Gaussian RBF kernel

K((x̃i)m, (x̃j)m) = exp(−γ‖(x̃i)m − (x̃j)m‖2).

7.3.2.2 MLRsub Classification Technique

Using the notations in this chapter, the MLR classifier is given by:

pm(yi = c|(x̃i)m,ωm) =
exp

(
ω

(c)
m h((x̃i)m)

)

∑k
c=1 exp

(
ω

(c)
m h((x̃i)m)

) , (7.1)

where h((x̃i)m) ≡ [h1((x̃i)m), . . . , hl((x̃i)m)]T is a vector of l fixed functions of the input data, often

termed as features; ω
(c)
m is the set of logistic regressors for class c, and ωm ≡ [ω

(1)T

m , . . . ,ω
(k)T

m ]T . The

MLRsub combines the classic MLR formulation with a subspace projection method in order to cope

with highly mixed hyperspectral data using limited training samples. The idea of applying subspace

projection methods to improve classification relies on the basic assumption that the samples within each

class can approximately lie in a lower dimensional subspace. Thus, each class may be represented by

a subspace spanned by a set of basis vectors, while the classification criterion for a new input sample

would be the distance from the class subspace [51]. In this chapter, we use a modified version of MLRsub

algorithm which was proposed in chapter 3. This method use the following input function h(x̃i) in (7.1)

as:

h((x̃i)m) = [‖(x̃i)m‖2, ‖(x̃i)
T
mU(1)

m ‖2, . . . , ‖(x̃i)
T
mU(k)

m ‖2]T, (7.2)

where U
(c)
m = {(u

(c)
1 )m, . . . , (u

(c)

r(c)
)m} is a set of r(c)-dimensional orthonormal basis vectors for the

subspace associated with class c (r(c) ≪ dm, and dm is the dimensionality of feature X̃m).
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7.3.3 Probabilistic Classification Using Multiple Spectral and Spatial
Features

According to the LOGP rule [172], which is a decision fusion scheme that is commonly applied to combine

information from multiple features, for any pixel i = 1, . . . , n we have:

pLOGP(yi = c|(x̃i)1, . . . , (x̃i)4,ω1, . . . ,ω4, α1, . . . , α4) =
∏4

m=1 pm(yi=c|(x̃i)m,ωm)αm

∑
k
c=1

∏4
m=1 pm(yi=c|(x̃i)m,ωm)αm

, (7.3)

where {αm|0 ≤ αm ≤ 1,
∑4

m=1 αm = 1} is a tunable parameter which controls the impact of each feature

vector on the final decision probability. Notice that, for the multiple feature learning problem in (7.3),

we have two different types of parameters: 1) the logistic regressors ωm, and 2) the weight parameter

αm. These parameters are respectively associated with the classifier and with the features. This leads to

difficulties from the viewpoint of both their optimization and the overall computational cost. Learning

the weight parameter αm is generally the most difficult task in the LOGP framework.

In order to relax the difficulty of learning the two different types of parameters, in this work we

propose to use the MLRsub classifier in chapter 3 to model the posterior density pm(yi = c|(x̃i)m,ωm).

This provides the possibility of learning the regressors and the weight parameters in combined fashion,

so that we only need to learn one type of parameter. This greatly lightens the computational cost while,

at the same time, relaxing the optimization problem.

Under the present setup, by embedding the MLRsub model in (7.1) into the LOGP framework for

multiple feature learning in (7.3), we can now obtain:

pLOGP(yi = c|(x̃i)1, . . . , (x̃i)4,ω1, . . . ,ω4, α1, . . . , α4) =
exp

(
∑4

m=1 αmω
(c)
m h((x̃i)m)

)

∑
k
c=1 exp

(
∑4

m=1 αmω
(c)
m h((x̃i)m)

) . (7.4)

Notice that, in (7.4), we still have two different types of parameters αm and ωm. In general, in order

to learn the joint density (7.3) or (7.4), learning of the weight parameter αm is essential. In [172], several

strategies were provided in order to learn the weight parameters. However, as shown in [172] and also as

it was mentioned before, it is very time-consuming and difficult to search for the optimal value of αm.

However, the MLRsub has the potential to overcome these difficulties as it provides a different look to

the problem by associating the weight with the regressors instead of the features, i.e., by letting:

ω̃
(c)
m = αmω

(c)
m , (7.5)

the regressorsωm and weight parameters αm are now combined into a new set of regressors ω̃m associated

with the MLRsub classifier. In this way, we avoid the weight parameters for the features by introducing

them into the regressors. This means that, under this transformation, the weight parameters for the

features will be learned together the classifier. This provides important advantages from the viewpoint

of learning: by transferring the weight parameter used for the features (observations) to the weight

parameter used for the classifier, the proposed approach joins two different problems (parameter and

classifier learning) into a single one, which represents a main contribution of this work from the viewpoint

of simplifying and making more natural the process of learning from multiple features (i.e., those derived

by the hyperspectral and the LiDAR data). By introducing the transformation (7.5), problem (7.4)

changes to:

pLOGP(yi = c|(x̃i)1, . . . , (x̃i)4, ω̃1, . . . , ω̃4) =
exp

(
∑4

m=1 ω̃
(c)
m h((x̃i)m)

)

∑
k
c=1 exp

(
∑4

m=1 ω̃
(c)
m h((x̃i)m)

) . (7.6)
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Figure 7.1: LiDAR derived DSM for the Houston data.

Notice that problem (7.6) is able to handle multiple features with the advantage of having a similar

structure as the original MLRsub method. Therefore, problem (7.6) can be solved using the same

approach presented in [51], which provides a detailed optimization framework for learning the logistic

regressors. As the goal of this work is to adequately exploit the information coming from hyperspectral

and LiDAR data, the proposed framework in (7.6) provides a great flexility in handling features from

these two different sources of information, thus being able to naturally integrate spatial and spectral

features without the need for ad hoc weights or regularization parameters. Although the proposed

framework has the ability to integrate multiple types of features, in this work we constrain ourselves

to the set X ≡ (X̃1, X̃2, X̃3, X̃4) with X̃1 = Xh, X̃2 = XL, X̃3 = EMAP(Xh), and X̃4 = AP(XL) as

described in the previous subsection, for the validation of our approach (although additional features

can be included in future developments of the method).

7.4 Experimental Results

In our experiments we have considered University of Houston data set consists of a hyperspectral image

and a LiDAR derived DSM, both at the same spatial resolution (2.5m). The hyperspectral image was

described in subsection (4.4). The corresponding co-registered DSM consists of elevation in meters above

sea level (per the Geoid 2012A model). The data were acquired by the National Science Foundation

NCALM over the University of Houston campus and the neighboring urban area. The LiDAR data was

acquired on June 22, 2012, between the time 14:37:55 to 15:38:10 UTC. The average height of the sensor

above ground was 2000ft. The false color composition of the hyperspectral data, the available ground-

truth and the training set have shown in Fig. 4.2. Fig. 7.1 shows the LiDAR derived DSM. Moreover,

detailed information about the class labels and the number of available training and test samples has

been reported in Table 4.1. The hyperspectral/LiDAR data and the ground-truth available online for

public use, which allows for detailed inter-comparisons among different algorithms.

Tables 7.1 and 7.2 show the classification results obtained by the SVM and MLRsub classifiers,

respectively, and the different individual features considered in this work: the original hyperspectral

image (i.e., Xh), the AP built on the LiDAR DSM data [i.e., AP(XL)] and the EMAP built on the

hyperspectral data [i.e., EMAP(Xh)]. In order to build the EMAP(Xh) we fixed the number of principal

components to be retained to the number of components that contain more than 98% of the total variance

of the original hyperspectral data, where the obtained components are scaled to the range [0, 1000] and

converted to integer in order to build the attribute filters. Specifically, the EMAPs are built using the

area (related to the size of the regions) and standard deviation (which measures the homogeneity of the

pixels enclosed by the regions) attributes. The threshold values are chosen in the range {50, 500} with

a stepwise increment of 50 for the area attribute. For the standard deviation, attribute values ranging

from 2.5% to 20% of the mean of the feature with a stepwise increment of 2.5% are chosen [168]. Finally,
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in order to build the AP(XL) we also used the area and standard deviation attributes, with the same

configuration indicated above, but this time applied to a single component given by the LiDAR DSM

data. Concerning the probabilistic SVM and MLRsub classifiers, we optimized the related parameters.

In Tables 7.1 and 7.2, we display the classification results obtained for individual features, with

and without the MRF-based post-processing. As shown by Tables 7.1 and 7.2, the original spectral

information contained in the hyperspectral image seems to be the most useful type of feature for

classification purposes, while the AP built on the LiDAR DSM is not discriminative enough to separate

many of the classes. This is expected, since the LiDAR DSM alone provides information about height that

is not expected to be able to discriminate between the different urban classes in the considered data.

Interestingly, the EMAP built on the original hyperspectral data is also not as discriminative as the

original spectral information in this example. This also comes at no surprise, since the EMAP is mainly

based on the spatial features of the objects but the classes in the considered problem are all difficult to

discriminate based on spatial properties only, hence the use of spectral properties is quite important.

Ideally, the separability of the classes could improve if we considered multiple features simultaneously.

Additionally, if we compare the results obtained by SVM with the results obtained by the MLRsub

algorithm, we may conclude that SVM shows better performance for classification of the different

individual features. However, the performance of the two classifiers for classification of the original

hyperspectral image is comparable. Even the MLRsub-MRF has shown slightly better results in

comparison with SVM-MRF for classification of individual spectral features. This is expected, since

the MLRsub algorithm was originally developed for the classification of hyperspectral images based on

the assumption that the hyperspectral features lie in a lower dimensional subspace. The other reason

is that SVM is originally a hard classifier and the estimated class probabilities used in the MRF-based

relaxation procedure are often not reliable. At this point, it is also important to reiterate that the main

purpose of this chapter is developing a robust technique for improving the classification of hyperspectral

images using other complementary features, and the MLRsub method shows good potential for this

purpose.

On the other hand, Table 7.3 shows the classification results obtained by the proposed framework

for multiple feature learning when different types of features are considered for the classification. Here,

we also reported the results obtained by the MLRsub and by the MLRsub-MRF with spatial post-

processing. The cases considered are: the original hyperspectral image plus the APs built on the LiDAR

DSM [i.e., Xh+AP(XL)], the original hyperspectral image plus the EMAPs built on the same image [i.e.,

Xh+EMAP(Xh)], the APs built of the LiDAR DSM plus the EMAPs built on the original hyperspectral

image [i.e., AP(XL)+EMAP(Xh)] and all the features available [i.e., Xh+AP(XL)+EMAP(Xh)]. As

shown by Table 7.3, the combination of multiple features always increased the classification results

with regards to the single-feature cases reported on Table 7.2. In particular, the classification results

improved significantly when the three considered features: Xh, AP(XL) and EMAP(Xh) were used

simultaneously. Interestingly, the combination of AP(XL) and EMAP(Xh) without using the original

spectral information in Xh also provided good classification results, which is interesting since the AP and

EMAP are spatially-guided features. However, the combination of Xh and EMAP(Xh) resulted in the

lowest classification accuracies reported on Table 7.3. This observation is also interesting, since both Xh

and EMAP(Xh) are derived from the original hyperspectral image without including any information

about the LiDAR DSM. In turn, the inclusion of the LiDAR-based AP(XL) always resulted in an increase

in the classification accuracies reported which indicates that, under the proposed framework, the LiDAR

information represents a source of complementary information that can improve the analysis of the

hyperspectral data alone.
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Table 7.1: Class specific and overall classification accuracies [%] obtained by the SVM and the SVM-MRF
for different types of combined features. The best results for each class are outlined in bold typeface.

# Class
SVM SVM-MRF

Xh AP(XL) EMAP(Xh) Xh AP(XL) EMAP(Xh)

1 Healthy grass 82.43 42.55 82.15 83.00 35.71 80.82

2 Stressed grass 82.05 41.54 83.08 83.83 50.56 84.02

3 Synthetic grass 99.80 88.51 100.00 100.00 88.12 100.00

4 Trees 92.80 72.16 83.71 93.37 70.17 84.94

5 Soil 98.48 70.36 99.81 100.00 75.57 100.00

6 Water 95.10 66.43 93.71 95.80 66.43 79.02

7 Residential 75.47 71.74 75.00 81.16 67.63 77.61

8 Commercial 46.91 89.08 48.24 45.87 85.75 49.76

9 Road 77.53 59.02 77.05 86.02 66.01 81.78

10 Highway 60.04 63.90 47.49 65.64 64.00 48.55

11 Railway 81.02 99.91 91.08 83.21 100.00 91.37

12 Parking Lot 1 85.49 71.09 79.35 98.46 74.83 87.42

13 Parking Lot 2 75.09 69.47 72.63 84.21 72.28 76.49

14 Tennis Court 100.00 99.19 100.00 100.00 100.00 100.00

15 Running Track 98.31 98.94 100.00 99.15 100.00 100.00

OA 80.49 70.80 79.19 84.05 71.67 80.77

AA 83.37 73.59 82.22 86.65 74.47 82.79

κ 78.98 68.41 77.41 82.83 69.34 79.12

In order to evaluate the statistical significance of the difference in accuracy between two classifications,

the McNemar’s test has been widely used in the remote sensing community [131]. In this test, a value of

|Z| > 1.96 indicates that there is a significant difference in accuracy between two classification results.

The sign of Z is also a criterion to indicate whether the first classifier compared is more accurate than the

second one (Z > 0) or vice versa (Z < 0). As it can be seen from Table 7.4, the differences in classification

accuracies between the case of using all considered features and the other combinations are statistically

significant. Moreover, in a different scenario, in order to better evaluate the statistical significance of

the differences, the McNemar’s test was used for each object class and Bonferroni correction [173] was

applied for McNemar test values in order to control the family wise type-I error rate. We considered

each P value to indicate a significant difference if P was less than or equal to 0.001. The significant

differences in accuracy between the case of using all considered features and EMAP(Xh) were the most

for the MLR method and the least for the MLR-MRF method. Furthermore, differences in accuracy

between the case of using all considered features and Xh were the most significant for the MLR-MRF

method and the least significant for the MLR method.

At this point, it is important to reiterate that the proposed framework automatically integrates

the different sources of information (spatial and spectral) automatically, and without the need to set

a parameter to control their relative weight in the final classification result. This is a very important

characteristic, as it allows for the integration of multiple features in a very natural way. In fact, additional
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Table 7.2: Class specific and overall classification accuracies [%] obtained by the MLRsub and the
MLRsub-MRF for different types of combined features. The best results for each class are outlined in
bold typeface.

# Class
MLRsub MLRsub-MRF

Xh AP(XL) EMAP(Xh) Xh AP(XL) EMAP(Xh)

1 Grass Healthy 82.53 60.97 80.53 83.10 57.83 80.72

2 Grass Stressed 81.02 12.12 77.16 84.21 12.69 79.42

3 Grass Synthetic 99.41 88.12 100 100 78.81 100

4 Tree 97.44 50.47 65.25 100 45.45 66.57

5 Soil 96.12 22.35 96.40 99.53 30.59 99.15

6 Water 94.41 67.83 78.32 95.80 66.43 79.02

7 Residential 73.51 76.77 58.68 81.53 83.77 52.71

8 Comercial 62.68 80.72 40.46 57.55 77.68 41.03

9 Road 71.39 24.27 75.83 86.87 30.88 83.00

10 Highway 86.87 56.85 48.17 88.51 59.75 46.81

11 Railway 67.65 93.26 94.97 79.89 88.24 100

12 Parking Lot 1 59.85 61.38 81.65 72.72 53.41 97.79

13 Parking Lot 2 57.19 67.02 66.32 84.21 69.47 82.46

14 Tennis Court 97.57 99.60 96.76 100 100 100

15 Running Track 95.77 89.64 97.46 98.52 100 98.73

OA 79.60 58.08 74.53 85.18 58.26 77.44

AA 81.56 63.43 77.20 87.50 63.67 80.49

Kappa 77.86 54.67 72.35 83.92 54.76 75.52

features such as texture, border-related features, etc. could be integrated in the proposed framework

in order in enhance the obtained classification results. As shown by our experiments, the classification

results were obtained using a relatively low number of training samples, and the fact that we increased

the number of features did not decrease but rather increase the classification accuracies for the same

number of training samples. This is due to the subspace-based nature of the MLRsub and MLRsub-

MRF classifiers used to obtain the final classification maps. For illustrative purposes, Figs. 7.2 and 7.3

respectively show some of the classification maps obtained by using the MLRsub and the MLRsub-MRF

for the considered Houston hyperspectral/LiDAR data. Effective classification results can be observed

in the final maps reported in these figures.

Moreover, using the described data set, we have conducted another experiment to more carefully

analyze the validation set and the effectiveness of the selected features in the proposed method. In

this experiment we have randomly selected 10% of the available labeled samples of each class from the

validation set for training purposes. It is important to mention that in the original training set no

training samples were selected from the right part of the image where a large cloud shadow is present.

However, in the validation set, there are a significant number of samples from this part. Table 7.5 details

the average of the results for this experiment obtained after 30 Monte Carlo runs. Several conclusions

can be obtained from Table 7.5. First and foremost, it is remarkable that the proposed multiple feature

Learning method, showed better performances in comparison with using single kind of features which
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Table 7.3: class specific and overall classification accuracies [%] obtained by the MLRsub and the MLRsub-MRF for multiple feature combinations.
The best results for each class are outlined in bold typeface.

# Class

MLRsub MLRsub-MRF

Xh Xh AP(XL) Xh+AP(XL) Xh Xh AP(XL) Xh+AP(XL)

+AP(XL) +EMAP(Xh) +EMAP(Xh) +EMAP(Xh) +AP(XL) +EMAP(Xh) +EMAP(Xh) +EMAP(Xh)

1 Grass Healthy 83.00 80.91 80.63 82.91 83.00 80.91 80.82 83.10

2 Grass Stressed 77.44 81.48 74.34 81.48 79.79 84.30 74.25 83.08

3 Grass Synthetic 100 100 100 100 100 100 100 100

4 Tree 97.92 86.55 86.17 95.83 99.62 88.73 87.69 95.93

5 Soil 98.20 98.58 96.69 99.05 99.72 100 98.20 100

6 Water 91.61 95.10 79.02 91.61 95.80 95.80 79.02 95.80

7 Residential 86.29 76.77 88.15 87.59 82.56 81.72 90.67 84.79

8 Commercial 88.03 64.10 77.97 84.14 88.32 57.45 77.30 83.57

9 Road 85.65 82.34 93.77 91.78 92.92 88.86 97.92 96.51

10 Highway 69.11 92.28 71.43 86.20 69.69 99.90 73.26 86.78

11 Railway 98.10 74.95 98.86 98.58 99.53 82.92 99.91 99.72

12 Parking Lot 1 85.88 91.64 89.53 92.32 94.91 100 96.73 99.81

13 Parking Lot 2 70.53 70.53 76.49 76.84 75.79 86.32 78.25 85.26

14 Tennis Court 99.60 98.79 100 99.60 100 100 100 100

15 Running Track 98.73 98.10 98.73 98.73 98.94 98.73 98.94 98.73

OA 87.91 84.40 86.86 90.65 89.85 87.86 88.56 92.05

AA 88.67 86.14 87.45 91.11 90.71 89.71 88.86 92.87

Kappa 86.87 83.10 85.74 89.85 88.99 86.85 87.58 91.37
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Table 7.4: Statistical significance of differences in classification accuracies.

Method

Value of z calculated by the McNemar’s test
{
Xh+AP(XL)+EMAP(Xh)

}/

Xh AP(XL) EMAP(Xh)
{
Xh+AP(XL)

} {
Xh+EMAP(Xh)

} {
AP(XL)+EMAP(Xh)

}

MLR 30.78 59.70 42.42 13.61 22.32 16.42

MLR-MRF 24.87 61.73 41.23 11.51 20.11 15.42
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(a) MLRsub classification (79.60%) Xh

(b) MLRsub classification (58.08%) using AP(XL)

(c) MLRsub classification (74.53%) using EMAP(Xh)

(d) MLRsub classification (87.91%) using Xh+AP(XL)

(e) MLRsub classification (84.40%) using Xh+EMAP(Xh)

(f) MLRsub classification (86.86%) using AP(XL)+EMAP(Xh)

(g) MLRsub classification (90.65%) using all the available features: Xh+AP(XL)+EMAP(Xh)

Figure 7.2: Classification maps obtained by the MLRsub for different features: (a) Xh, (b)
AP(XL), (c) EMAP(Xh), (d) Xh+AP(XL), (e) Xh+EMAP(Xh), (f) AP(XL)+EMAP(Xh), (g)
Xh+AP(XL)+EMAP(Xh).
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(a) MLRsub-MRF classification (85.18%) using Xh

(b) MLRsub-MRF classification (58.26%) using AP(XL)

(c) MLRsub-MRF classification (77.44%) using EMAP(Xh)

(d) MLRsub-MRF classification (89.85%) using Xh+AP(XL)

(e) MLRsub-MRF classification (87.86%) using Xh+EMAP(Xh)

(f) MLRsub-MRF classification (88.56%) using AP(XL)+EMAP(Xh)

(g) MLRsub-MRF classification (92.05%) using all the available features: Xh+AP(XL)+EMAP(Xh)

Figure 7.3: Classification maps obtained by the MLRsub-MRF for different features: (a) Xh, (b)
AP(XL), (c) EMAP(Xh), (d) Xh+AP(XL), (e) Xh+EMAP(Xh), (f) AP(XL)+EMAP(Xh), (g)
Xh+AP(XL)+EMAP(Xh).
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means that our proposed method efficiently exploits the information contained in both data sources.

More importantly, the performance improvements reported for the proposed method using all kinds of

suggested features are quite significant. For example for the classes Parking Lot 2 corresponded to

parked vehicles and Highway in the cloud-covered region, we can see a significant improvement in the

obtained classification result.

7.5 Summary and future directions

In this chapter, we have developed a new efficient strategy for fusion and classification of hyperspectral

and LiDAR data. Our approach effectively integrates multiple types of features extracted from these

data without the need for any regularization or weight parameters, so that different types of features

can be efficiently exploited and integrated in a collaborative and flexible way. In this work we have

considered several types of spatial and spectral features derived from the original hyperspectral image

and from the LiDAR derived DSM, including the full original spectral information and different types of

morphological profiles calculated for the hyperspectral and the LiDAR data. Our experimental results,

conducted using a hyperspectral image and a LiDAR derived DSM collected over the University of

Houston campus and the neighboring urban area, indicate that the information provided by LiDAR can

effectively complement the spectral and the spatial information that can be extracted from the original

hyperspectral data, providing an increase in the classification accuracies when the LiDAR data is used

as a complementary source of information with regards to the original hyperspectral data. Although

our analysis in this work has been constrained to a reduced number and type of features, the proposed

framework is completely open and flexible in its capacity to integrate additional types of (spatial and

spectral) features. As a result, future work will be directed towards the inclusion of additional types of

features such as texture, border-oriented features, etc. Although our experiments have been reported

for a data set that has been widely used in the recent literature as it was distributed as part of the

IEEE GRSS Data Fusion contest in 2013, in the future we will also conduct further experiments using

additional hyperspectral and LiDAR image pairs and perform comparisons of our approach with regards

to other techniques recently presented for fusing hyperspectral and LiDAR data.
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Table 7.5: Class specific and overall classification accuracies [%] obtained by the MLRsub for different selection of feature combinations, using 10%
of validation samples for each class. The best results for each class are outlined in bold typeface.

# Class
Samples

MLRsub

Xh AP(XL) EMAP(Xh)
Xh Xh AP(XL) Xh+AP(XL)

Train Test +AP(XL) +EMAP(Xh) +EMAP(Xh) +EMAP(Xh)

1 Healthy grass 105 1053 95.95 ( 2.09 ) 38.73 ( 6.51 ) 83.16 ( 3.75 ) 94.90 ( 3.01 ) 96.22 ( 2.59 ) 87.59 ( 2.72 ) 95.23 ( 3.62 )

2 Stressed grass 106 1064 97.03 ( 1.37 ) 26.21 ( 4.78 ) 89.51 ( 4.07 ) 96.34 ( 1.31 ) 96.85 ( 1.36 ) 91.92 ( 3.65 ) 96.66 ( 1.40 )

3 Synthetic grass 50 505 99.93 ( 0.11 ) 86.66 ( 7.92 ) 100.00 ( 0.00 ) 100.00 ( 0.00 ) 100.00 ( 0.00 ) 100.00 ( 0.00 ) 100.00 ( 0.00 )

4 Trees 105 1056 94.13 ( 2.19 ) 82.24 ( 2.87 ) 88.72 ( 2.14 ) 98.91 ( 0.55 ) 94.25 ( 2.46 ) 98.45 ( 1.07 ) 99.42 ( 0.57 )

5 Soil 105 1056 98.00 ( 0.71 ) 61.49 ( 2.80 ) 97.53 ( 1.34 ) 98.32 ( 0.79 ) 99.23 ( 0.35 ) 98.38 ( 0.94 ) 99.51 ( 0.31 )

6 Water 14 143 93.54 ( 3.01 ) 69.72 ( 5.19 ) 77.55 ( 4.89 ) 92.73 ( 6.08 ) 93.99 ( 5.34 ) 80.58 ( 7.04 ) 93.45 ( 7.30 )

7 Residential 107 1072 83.21 ( 3.35 ) 82.62 ( 2.81 ) 62.22 ( 5.52 ) 96.48 ( 1.61 ) 89.42 ( 3.81 ) 96.45 ( 1.51 ) 98.37 ( 1.19 )

8 Commercial 105 1053 67.20 ( 7.34 ) 90.63 ( 2.81 ) 50.05 ( 3.05 ) 95.19 ( 2.08 ) 76.92 ( 6.37 ) 93.75 ( 2.92 ) 95.48 ( 2.55 )

9 Road 105 1059 72.51 ( 3.08 ) 59.35 ( 7.53 ) 78.75 ( 2.47 ) 89.12 ( 2.31 ) 87.07 ( 2.31 ) 93.50 ( 1.62 ) 94.65 ( 1.57 )

10 Highway 103 1036 86.82 ( 2.22 ) 65.16 ( 5.42 ) 90.00 ( 3.75 ) 93.99 ( 2.55 ) 96.57 ( 2.67 ) 97.70 ( 0.76 ) 99.07 ( 0.59 )

11 Railway 105 1054 77.75 ( 2.88 ) 90.95 ( 2.64 ) 90.28 ( 3.29 ) 96.39 ( 0.86 ) 87.91 ( 2.88 ) 97.44 ( 0.81 ) 97.33 ( 0.81 )

12 Parking Lot 1 104 1041 76.96 ( 4.22 ) 57.86 ( 10.11 ) 85.76 ( 5.36 ) 86.42 ( 4.43 ) 91.52 ( 3.58 ) 88.21 ( 4.39 ) 92.36 ( 2.90 )

13 Parking Lot 2 28 285 48.97 ( 6.41 ) 58.48 ( 7.90 ) 73.81 ( 4.59 ) 73.10 ( 4.34 ) 75.57 ( 4.32 ) 83.92 ( 3.84 ) 84.30 ( 3.72 )

14 Tennis Court 24 247 96.92 ( 1.81 ) 97.91 ( 0.82 ) 92.47 ( 3.28 ) 99.55 ( 0.33 ) 98.18 ( 1.20 ) 98.92 ( 0.50 ) 99.69 ( 0.27 )

15 Running Track 47 473 98.09 ( 0.84 ) 91.16 ( 5.01 ) 97.76 ( 1.09 ) 99.34 ( 0.58 ) 98.91 ( 0.66 ) 99.07 ( 0.60 ) 99.27 ( 0.57 )

OA 85.60 ( 1.17 ) 67.93 ( 1.54 ) 82.94 ( 0.79 ) 94.60 ( 0.51 ) 92.01 ( 1.08 ) 94.45 ( 0.46 ) 96.77 ( 0.34 )

AA 85.80 ( 1.03 ) 70.61 ( 1.41 ) 83.84 ( 0.67 ) 94.05 ( 0.63 ) 92.17 ( 0.99 ) 93.73 ( 0.50 ) 96.32 ( 0.49 )

κ 84.38 ( 1.27 ) 65.31 ( 1.65 ) 81.49 ( 0.85 ) 94.14 ( 0.55 ) 91.33 ( 1.17 ) 93.97 ( 0.49 ) 96.49 ( 0.37 )
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Chapter 8

Conclusions and Future Research
Lines

8.1 Conclusions

This thesis presented novel techniques and methodologies for classification of hyperspectral data. The

main emphasis was given to developing probabilistic classification approaches, considering the fact

that subspace-based methods can efficiently cope with the presence of noise and mixed pixels in the

hyperspectral images. Furthermore, we tried to exploit other complementary sources of information

such as spatial-contextual information available in hyperspectral data and height information coming

from LiDAR data in order to improve classification accuracies. As the main concluding remarks, the

following points can be mentioned:

• In the second chapter of the thesis, in order to address the issue of mixed pixel characterization,

a new spectral-spatial classifier was presented. The MLRsub classifier was used to learn the

probabilities, where in addition to considering global posterior probability distributions which

resulted from the whole image, a new strategy for locally learning the classification probabilities

using previously derived class combination map was proposed. Since the mixed pixels in a

hyperspectral image are normally mixed by only a few components, locally removing the impact

of irrelevant classes by means of a class combination map could better characterize mixed pixels.

The class combination map, that determines the number of mixtures appearing in each pixel as a

pre-processing stage, was generated from the probabilistic SVM classification results. Integrating

local and global probabilities in the analysis of hyperspectral data in order to constrain the number

of mixing components used in the characterization of mixed pixels, represents an innovation with

regard to previous approaches for probabilistic classification of hyperspectral data. Moreover, in

the final step of the proposed strategy and after fusing the information provided by local and global

probabilities, spatial information was characterized by including an MRF regularizer.

• In the third chapter of the thesis, we developed a subspace-based MLR method for pixelwise

hyperspectral image classification. As an extension of a previous methodology in which class

indexed input functions were used in the MLR algorithm for the subspace projection, in our

newly proposed approach the integration of class-indexed subspaces constructed by the information

coming from all the classes was explored. We showed that incorporating a general input

function instead of using several class indexed input functions in the MLR classifier for projecting
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hyperspectral data into union of subspaces can better handle the effects of noise and the presence

of mixed pixels in a hyperspectral image. The experimental results using both simulated and real

hyperspectral data sets demonstrated that our proposed method models not only the linear mixing

process that is often present in hyperspectral images but also the nonlinearities that are more

separable in the feature space defined by the union of class-indexed subspaces .

• In the forth chapter of the thesis, following the work in chapter 3, a new classification method

based on union of subspaces was proposed for characterizing mixed (linear and nonlinear) pixels in

hyperspectral images. In chapter 3, we showed that including subspace idea in the MLR classifier

using a general input function shows better performance than several class indexed input functions.

In addition to this strategy, in this chapter we proposed to use the assumption that the training

samples of each class may lie in a union of subspaces rather than a single lower-dimensional

subspace. For this purpose, we exploited a subspace clustering method to partition training samples

of each class to multiple subsets regarding to existing subspaces and then the MLR algorithm was

used to learn the posterior probability distributions from the spectral information of each subset,

using a subspace projection. For subspace clustering, we suggested to use a new concept of RSC

which, so far as we are aware, has not been applied for hyperspectral image analysis.

• In the fifth chapter of the thesis, we extended the subspace-projection-based concept to SVM

classifier, a very popular technique for hyperpsectral image classification. For this purpose, we

suggested to learn the subspace associated to each class in the construction of the SVM nonlinear

function. The resulted formulation for the SVM classifier allows us to better cope with several

phenomena that are quite important in hyperspectral image classification, such as the imbalance

between the (high) dimensionality of the input data and the (limited) availability of training

samples, as well as with the presence of noise and mixed pixels in the input data.

• In the sixth chapter of the thesis, we proposed a new methodology for spectral-spatial classification

of hyperspectral images. In order to use local relationship among neighboring pixels, we

developed a discontinuity preserving relaxation strategy, which can be used for postprocessing

of class probability estimates, as well as preprocessing of the original hyperspectral image. The

proposed approach showed significant performance in enforcing smoothness while, at the same time,

accurately preserving the edges of class boundaries. We suggested to estimate the discontinuity map

from the original image cube since it contains many image bands that allows consistent estimation.

• In the seventh chapter of the thesis, we developed a robust strategy for exploiting the information

coming from multiple features without the need for any regularization or weight parameters. The

proposed method was based on the integration of LOGP rule, which is a decision fusion scheme

that is commonly applied to combine information from multiple features, and MLRsub algorithm

in chapter 3 of this thesis, which is used for modeling the posterior probabilities. An important

contribution of this work was transferring the weight parameter used for the features (observations)

to the weight parameter used for the classifier. In this chapter we considered several types of spatial

and spectral features derived from the original hyperspectral image and from the LiDAR derived

DSM, including the full original spectral information and different types of morphological profiles

calculated for the hyperspectral and the LiDAR data.
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8.2 Perspectives

As with any new work, there are many open avenues for future research that deserve attention and

which will be explored in our future developments. In the following, we list the most relevant of these

perspectives for future work:

• It would be interesting to further improve the estimation of local probabilities by adaptively

estimating the number of mixed components for each pixel rather than set them in advance. This

is expected to improve the class separability and consequently the obtained classification results.

This aim should be fulfilled carefully without imposing high computational complexity.

• The integration of techniques for spectral unmixing and hyperspectral image classification is also

another future possibility which can be explored for integrating local and global probabilities in

the analysis of hyperspectral data in order to constrain the number of mixing components used in

the characterization of mixed pixels.

• We showed that performing subspace clustering of training samples as a preliminary step before

subspace based MLR algorithm may better characterize mixed pixels and consequently, improve

classification results. As an interesting future research line, we are planning to develop a unified

framework for probabilistic classification of hyperspectral images based on union of subspaces.

• We are currently developing probabilistic sparse representation approach using MLR algorithm to

estimate the class conditional distribution. The sparse representation-based classification method

looks for the sparsest representation of a test sample in a dictionary composed of all training

samples and thus, it can be considered for the problem of classification in the union of subspaces

setting.

• For the purpose of classification of hyperspectral images, future work will be directed towards the

inclusion of additional types of features such as texture, border-oriented features and performing

further experiments for the fusion of hyperspectral and LiDAR images.

• Another topic of research deserving future attention is the computationally efficient

implementations of the new techniques developed in this thesis using high performance computing

architectures, such as clusters of computers (possibly, with specialized hardware accelerators such

as graphics processing units).
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Apendix A

Publications

The results of this thesis work have been published in several international journal papers, peer-reviewed

international conference papers and peer-reviewed national conference papers. Specifically, the candidate

has co-authored 6 journal citation reports (JCR) papers, 9 peer-review international conference papers.

The candidate has been a pre-doctoral researcher in the Hyperspectral Computing Laboratory

(HyperComp), Department of Technology of Computers and Communications, University of

Extremadura, Spain. Below, we provide a description of the publications achieved by the candidate

providing also a short description of the journal or workshop where they were presented.

A.1 International journal papers

1. J. Li, M. Khodadadzadeh, A. Plaza, X. Jia and J. M. Bioucas-Dias. A Discontinuity

Preserving Relaxation scheme for Spectral-Spatial Hyperspectral Image Classification,

IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, accepted for

publication subject to minor revisions, 2015 [JCR(2013)=2.827].

This paper submitted to the journal IEEE Journal of Selected Topics in Applied Earth Observations

and Remote Sensing, which is a very important journal in the first quarter of the remote sensing

and electrical and electronic engineering areas of JCR. This paper develops an iterative relaxation

procedure which exploits spatial information in such a way that it considers discontinuities existing

in the hyperspectral data cube, and constitutes the basis for the sixth chapter of the thesis.

2. M. Khodadadzadeh, J. Li, S. Prasad and A. Plaza. Fusion of Hyperspectral and

LiDAR Remote Sensing Data Using Multiple Feature Learning, IEEE Journal of

Selected Topics in Applied Earth Observations and Remote Sensing, accepted for publication,

2015 [JCR(2013)=2.827].

This paper was published in the journal IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, which is a very important journal in the first quarter of the

remote sensing and electrical and electronic engineering areas of JCR. This paper proposes a

robust strategy for fusion and classification of hyperspectral and LiDAR data, and constitutes the

basis for the seventh chapter of the thesis.

3. L. Gao, J. Li, M. Khodadadzadeh, A. Plaza, B. Zhang, Z. He, and H. Yan. Subspace-Based

Support Vector Machines for Hyperspectral Image Classification. IEEE Geoscience and

Remote Sensing Letters, vol. 12, no. 2, pp. 349-353, February 2015 [JCR(2013)=1.809].



Publications

This paper was published in the journal IEEE Geoscience and Remote Sensing Letters, which is

one of the main journals of the remote sensing category of JCR. It is also in the second quarter

of the electrical and electronic engineering category of JCR. The paper extends the subspace-

projection-based concept to SVM classifier, and constitutes the basis of the fifth chapter of this

thesis.

4. M. Khodadadzadeh, J. Li, A. Plaza, and J. M. Bioucas-Dias. A Subspace-Based

Multinomial Logistic Regression for Hyperspectral Image Classification. IEEE

Geoscience and Remote Sensing Letters, vol. 11, no. 12, pp. 2105-2109, December 2014

[JCR(2013)=1.809].

This paper was published in the journal IEEE Geoscience and Remote Sensing Letters, which is

one of the main journals of the remote sensing category of JCR. It is also in the second quarter of

the electrical and electronic engineering category of JCR. Based on the idea of projection on class-

indexed subspaces, the paper proposes a subspace-based MLR method for pixelwise hyperspectral

classification, and constitutes the basis of the third chapter of this thesis.

5. M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian, J. M. Bioucas-Dias and X. Li. Spectral-

Spatial Classification of Hyperspectral Data Using Local and Global Probabilities for

Mixed Pixel Characterization. IEEE Transactions on Geoscience and Remote Sensing, vol.

52, no. 10, pp. 6298-6314, October 2014 [JCR(2013)=2.933].

This paper was published in the IEEE Transactions on Geoscience and Remote Sensing, which is

a top scholarly journal in the field of remote sensing. This paper develops a new spectral-spatial

classifier for hyperspectral image based on the consideration of both global posterior probability

distributions and local probabilities, and constitutes the basis of the second chapter presented in

this thesis.

A.2 International journal papers submitted

1. M. Khodadadzadeh, J. Li, A. Plaza and J. M. Bioucas-Dias. Hyperspectral Image

Classification Based on Union of Subspaces. submitted to IEEE Transactions on Geoscience

and Remote Sensing, 2015 [JCR(2013)=2.933].

This paper submitted to the journal IEEE Transactions on Geoscience and Remote Sensing, which

is a top scholarly journal in the field of remote sensing. This paper proposes a new probabilistic

classification approach based on union of subspaces for hyperspectral images.

A.3 Peer-reviewed international conference papers

1. M. Khodadadzadeh, A. Cuartero, J. Li, A. Felicisimo, A. Plaza. Fusion of Hyperspectral

And LiDAR Data Using Generalized Composite Kernels: A Case Study in

Extremadura, Spain. This work was presented as an oral presentation in the IEEE International

Geoscience and Remote Sensing Symposium (IGARSS) held in Milan, Italy, in 2015. This is the

most important international workshop in the remote sensing field. The paper proposes to exploit

composite kernels for the integration of hyperspectral and LiDAR data for classification purposes.

2. M. Khodadadzadeh, J. Li, A. Plaza and J. M. Bioucas-Dias. Hyperspectral Image

Classification Based on Union of Subspaces. This work was presented as an oral presentation
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A.3 Peer-reviewed international conference papers

in the IEEE Urban Remote Sensing Joint Event (JURSE) held in Lausanne, Switzerland, in

2015. JURSE is one of the most important international workshops that specialize in urban

hyperspectral remote sensing. Exploiting the union of subspaces in an MLR framework for

supervised hyperspectral image classification is the main contribution of this paper.

3. M. Khodadadzadeh, J. Li, A. Plaza, P. Gamba, J. A. Benediktsson and J. M. Bioucas-Dias. A

New Framework for Hyperspectral Image Classification Using Multiple Spectral and

Spatial Features. This work was presented as an oral presentation in the IEEE International

Geoscience and Remote Sensing Symposium (IGARSS) held in Quebec City, Canada, in 2014. This

is the most important international workshop in the remote sensing field. The paper develops a new

multiple feature learning approach for integrating spectral and spatial information in classification

of hyperspectral images.

4. M. Khodadadzadeh, J. Li, A. Plaza, H. Ghassemian and J. M. Bioucas-Dias. Spectral-

Spatial Classification for Hyperspectral Data Using SVM and Subspace MLR. This

work was presented as an oral presentation in the IEEE International Geoscience and Remote

Sensing Symposium (IGARSS) held in Melbourne, Australia, in 2013. This is the most important

international workshop in the remote sensing field. The paper presents a new multiple-classifier

approach for accurate spectral-spatial classification of hyperspectral images.

5. R. Rajabi, M. Khodadadzadeh and H. Ghassemian. Graph Regularized Nonnegative

Matrix Factorization for Hyperspectral Data Unmixing. This work was presented as an

oral presentation in the Iranian Conference on Machine Vision and Image Processing (MVIP) held

in Tehran, Iran, in 2011. This is the most important iranian conference specialized in the fields of

machine vision, image processing and their applications. This paper examines the applicability of

the graph regularized nonnegative matrix factorization algorithm for spectral unmixing.

6. M. Khodadadzadeh, R. Rajabi and H. Ghassemian. A Novel Approach for Spectral-

Spatial Classification of Hyperspectral Data Based on SVM-MRF Method. This work

was presented as a poster in the IEEE International Geoscience and Remote Sensing Symposium

(IGARSS) held in Vancouver, Canada, in 2011. This is the most important international workshop

in the remote sensing field. The paper presents an innovative approach for integrating contextual

information only for uncertain pixels which are the pixels near the borders (spatial boundaries) to

improve the classification performance.

7. M. Khodadadzadeh, R. Rajabi and H. Ghassemian. Segmentation and Classification of

Remote Sensing Images Using Confident Marker Selection. This work was presented as

a poster in the International Symposium on Artificial Intelligence and Signal Processing (AISP)

held in Tehran, Iran, in 2011. This is an important international event specialized in the fields of

artificial intelligence and signal processing. This paper proposes a straightforward spectral-spatial

method to choose the most reliable classified pixels in order to define suitable markers.

8. M. Khodadadzadeh and H. Ghassemian. A Novel Contextual Classification of

Hyperspectral Data Using Probabilistic Label Relaxation Process. This work was

presented as an oral presentation in the Iranian Conference on Electrical Engineering (ICEE)

held in Tehran, Iran, in 2011. This is the most important and flagship conference in electrical and

computer engineering in Iran. This paper proposes to use techniques that provide a multi-class
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probability estimate for SVM classifier and then by using these class probability estimates, perform

PLR after SVM classification to incorporate contextual information.

9. M. Khodadadzadeh, R. Rajabi, and H. Ghassemian. Combination of Region-Based and

Pixel-Based Hyperspectral Image Classification using Erosion Technique and MRF

Model. This work was presented as an oral presentation in the Iranian Conference on Electrical

Engineering (ICEE) held in Isfahan, Iran, 2010. This is the most important and flagship conference

in electrical and computer engineering in Iran. In this paper a new classification approach is

proposed for hyperspectral images based on combining region-based and pixel-based methods
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