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Preface

As statistical models become more and 
more complex, there is a growing need for 
methodological instruction. In the field 
of multilevel and hierarchical linear model-
ing, there is a distinct need to not only con-
tinue the development of complex statistical 
models, but also to illustrate their specific 
applications in a variety of fields. Although 
multilevel modeling is a relatively new field 
introduced first by Goldstein (1987) and 
then by Bryk and Raudenbush (1992), this 
field has enjoyed a large collection of pub-
lished articles and books in just the last few 
years. In addition, statistical software has 
become more powerful, providing substan-
tive researchers with a new set of analytic 
choices. Based on the explosion of research 
in this methodological field, the editors 
felt a need for a comprehensive handbook 
of advanced applications in multilevel 
modeling.

The benefit of this book to the broader 
research community is twofold. First, in 
many current texts, space is largely devoted 
to explaining the structure and function of 
multilevel models. This book is aimed at 
researchers with advanced training in mul-
tivariate and multilevel analysis. Therefore, 
the book immediately turns to the more 
difficult complexities of the broader class of 
models. Although the chief concern for the 
handbook is to highlight advanced appli-
cations, the initial chapter written by the 
editors, discusses the broad idea of multi-
level modeling in order to provide a frame-
work for the later chapters. Second, some 
of the leading researchers in the field have 

contributed chapters to this handbook. 
Thus, the later chapters are introduced and 
discussed by authors who are actively carry-
ing out research on these advanced topics.

The handbook is divided into five major 
sections: introduction; multilevel latent vari-
able modeling; multilevel models for longi-
tudinal data; special estimation  problems; 
and specific statistical issues. Section I, the 
Introduction, describes the basic multilevel 
regression model and multilevel structural 
equation modeling. Section II encompasses 
topics such as multilevel structural equation 
modeling, multilevel item response theory, 
and latent class analysis. Section III primar-
ily covers panel modeling and growth curve 
analysis. Section IV devotes attention to 
the difficulties involved in estimating com-
plicated models, including the analysis of 
ordered categorical data, generalized linear 
models, bootstrapping, Bayesian estima-
tion, and multiple imputations. The latter 
half of Section IV is devoted to explaining 
variance, power, effect sizes, model fit and 
selection, and optimal design in multilevel 
models. Section V and final section covers 
centering issues, analyzing cross-classified 
models, and models for dyadic data.

The primary audience for this handbook 
is statisticians, researchers, methodologists, 
and advanced students. The handbook is 
multidisciplinary; it is not limited to one 
specific field of study. Educational research-
ers may use these models to study school 
effects; while researchers in medicine will 
use the techniques to study genetic strains; 
and economists will use the methods to 
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register market, national, or even global 
trends. We will assume that the primary 
audience has a good working knowledge 
of multilevel modeling; therefore, the book 
aims at more advanced readers, but not nec-
essarily readers with a lot of mathematical 
statistics. The book should also be useful 
to researchers looking for a comprehen-
sive treatment of the best practices when 
applying these models to research data. 
This handbook would be ideal for a second 
course in multilevel modeling.

Supplementary materials for the hand-
book, such as data sets and program setups 
for the examples used in the chapters, are 
hosted on http://www.HLM-Online.com/. 

We thank the chapter authors for their 
commitment in contributing to our book. 
We also thank the multilevel community, 
members of the multilevel and semnet 
discussion lists, and participants in the 
International multilevel conferences for the 
many lively discussions that have inspired 
the editors to compile this handbook. We 

appreciated the feedback received from the 
reviewers: Ronald H. Heck, the University 
of Hawaii, Manoa; Noel A. Card, University 
of Arizona; and Scott L. Thomas, Claremont 
Graduate University. Their input was instru-
mental in helping us finalize the overall plan 
for the book. We also thank Debra Riegert 
at Routledge/Taylor & Francis for her con-
tinued support on this project. Without her 
help and encouragement, we might never 
have seen this project to completion!

Joop J. Hox 
J. Kyle Roberts
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1
Multilevel Analysis: Where We 
Were and Where We Are

Joop J. Hox
Department of Methodology and Statistics, 
Utrecht University, Utrecht, The Netherlands

J. Kyle Roberts
Annette Caldwell Simmons School of Education and Human 
Development, Southern Methodist University, Texas

1.1 IntRoductIon

Hierarchical or multilevel data are common in the social and behavioral 
sciences. The interest in analyzing and interpreting multilevel data has 
historical roots in educational and sociological research, where a surge 
in theoretical and statistical discussions occurred in the 1970s. Although 
sociology, by definition, studies collective phenomena, the issue of study-
ing relationships between individuals and the contexts in which they exist 
traces back to Lazarsfeld and Menzel (1961) and Galtung (1969). Lazarsfeld 
and Menzel developed a typology to describe the relations between different 
types of variables, defined at different levels. Galtung (1969) developed this 
scheme further, including levels within individuals. A simplified scheme is 
presented by Hox (2002):

Level 1 2 3 etc.
Variable type Global ⇒ Analytical

Relational ⇒ Structural
Contextual ⇐ Global ⇒ Analytical 

Relational ⇒ Structural 
Contextual ⇐ Global ⇒

Relational ⇒

In this scheme, the lowest level (level 1) is usually formed by the individu-
als. However, this is not always the case. Galtung (1969), for instance, defines 
roles within individuals as the lowest level, and in longitudinal designs one 
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can define repeated measures within indi-
viduals as the lowest. At each level, several 
types of variables are distinguished. Global 
variables refer only to the level at which they 
are defined, without reference to any other 
units or levels. Relational variables also refer 
to one single level, but they describe the rela-
tionships of a unit with other units at the 
same level. Sociometric indices, for example 
the reciprocity of relationships, are of this 
kind. Analytical and structural variables are 
created by aggregating global or relational 
variables to a higher level. They refer to the 
distribution of a global or relational variable 
at a lower level, for instance to the mean of a 
global variable from a lower level. Contextual 
variables, on the other hand, are created 
by disaggregation. All units at a lower level 
receive the value of a variable for the super 
unit to which they belong at a higher level.

The advantage of this typology is mainly 
conceptual; the scheme makes it clear to 
which level the measurements properly 
belong, and how related variables can be 
created by aggregation or disaggregation. 
Historically, the problem of analyzing data 
from individuals nested within groups was 
“solved” by moving all variables by aggre-
gation or disaggregation to one single level, 
followed by some standard (single-level) 
analysis method. A more sophisticated 
approach was the “slopes as outcomes” 
approach, where a separate analysis was 
carried out in each group and the estimates 
for all groups were collected in a group 
level data matrix for further analysis. A 
nice introduction to these historical analy-
sis methods is given by Boyd and Iverson 
(1979). All these methods are flawed, 
because the analysis either ignores the dif-
ferent levels or treats them inadequately. 
Statistical criticism of these methods was 
expressed early after their adoption, for 

example by Tate and Wongbundhit (1983) 
and de Leeuw and Kreft (1986). Better sta-
tistical methods were already available, for 
instance Hartley and Rao (1967) discuss 
estimation methods for the mixed model, 
which is essentially a multilevel model, and 
Mason, Wong, and Entwisle (1984) describe 
such a model for multilevel data, including 
software for its estimation. A nice summary 
of the state of the art around 1980 is given 
by van den Eeden and Hüttner (1982). The 
difference between the 1980 state of the 
art and the present (2010) situation is clear 
from its contents: there is a lot of discussion 
of (dis)aggregation and the “proper” level 
for the analysis, and of multiple regression 
tricks such as slopes as outcomes and other 
two-step procedures. There is no mention of 
statistical models as such, statistical depen-
dency, random coefficients, or estimation 
methods. In short, what is missing is a prin-
cipled statistical modeling approach.

Current statistical modeling approaches 
for multilevel data are listed under multi-
level models, mixed models, random coef-
ficient models, and hierarchical linear 
models. There are subtle differences, but the 
similarities are greater. Given these many 
labels for similar procedures, we simply use 
the term multilevel modeling or multilevel 
analysis to indicate the application of statis-
tical models for data that have two or more 
distinct hierarchical levels, with variables 
at each of these levels, and research inter-
est in relationships that span different lev-
els. The prevailing multilevel model is the 
multilevel linear regression model, with 
explanatory variables at several levels and 
an outcome variable at the lowest level. This 
model has been extended to cover nonnor-
mal outcomes, multivariate outcomes, and 
cross-classified and multiple membership 
structures. There is increasing interest in 
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multilevel models that include latent vari-
ables at the distinct levels, such as multilevel 
structural equation models and multilevel 
latent class models. Although multiple 
regression is just a specific structural equa-
tion model, and multilevel modeling can be 
incorporated in the general structural equa-
tion framework (Mehta & Neale, 2005), the 
differences in the typical application and the 
software capacities are sufficiently large that 
it is convenient to distinguish between these 
two varieties of multilevel modeling. Hence, 
in the next two sections we will introduce 
multilevel regression and multilevel struc-
tural equation modeling briefly, and in the 
final section we will provide an overview of 
the various chapters in this book.

What seems to be lost in the current surge 
of statistical models, estimation methods, 
and software development is the  interest 
in multilevel theories that is evident in the 
historical literature referred to earlier. Two 
different theoretical approaches are merged 
in multilevel research: the more European 
approach of society as a large structure that 
should be studied as a whole, and the more 
American approach of viewing society as pri-
marily a collection of individuals. Multilevel 
theories combine these approaches by 
focusing on the questions of how individu-
als are influenced by their social context, 
and of how higher level structures emerge 
from lower level events. Good examples of 
a contextual theory are the variety of ref-
erence theories formulated in educational 
research to explain the effect of class and 
school variables on individual pupils. One 
such is Davis’s (1966) frog-pond theory. The 
frog-pond theory poses that pupils use their 
relative standing in a group as a basis for 
their self-evaluation, aspirations, and study 
behavior. It is not the absolute size of the frog 
that matters, but the relative size given the 

pond it is in. Erbring and Young (1979) elab-
orate on this model by taking the interac-
tion structure in a school class into account 
to predict school success. In brief, they state 
that the outcomes of pupils that are, in the 
sociometric sense, close to a specific pupil, 
affect the aspiration level and hence the 
success of that pupil. In their endogeneous 
feedback model the success of individual 
pupils becomes a group level determinant 
of that same success, mediated by the socio-
metric structure of the group. Such explicit 
multilevel theories appear more rare today. 
Certainly, theory construction is lagging 
behind the rapid statistical developments.

1.2  MultIlevel RegRessIon 
Models

Although Robinson (1950) was arguably one 
of the first individuals to recognize the need 
for multilevel analysis through his studies in 
ecological processes, no great progress was 
made in this area until the 1980s due to lack 
of statistical power available in computers. 
Lindley and Smith (1972) were the first to 
use the term hierarchical linear models for 
the method by which to analyze such data 
through Bayesian estimation. However, 
prior to the development of the EM algo-
rithm (Dempster, Laird, & Rubin, 1977), the 
analysis of hierarchically structured data 
could prove magnanimous. Recently, how-
ever, the development of multiple statistical 
packages makes this type of analysis more 
accessible to those researchers who wish to 
examine the hierarchical structure of data.

Texts by both Goldstein (1995) and 
Raudenbush and Bryk (2002) were the ini-
tial texts that led to the rise of multilevel 
analysis. Although similar in their approach 
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to handling hierarchically structured data, 
each had their own notation to describe 
these models. For example, Raudenbush 
and Bryk would notate the variance of the 
intercepts as τ00 whereas Goldstein would 
notate σu0

2 . To begin describing the multi-
level regression model, we will first consider 
a model in which no covariates are added 
to the model. This is sometimes referred to 
as the null model or the multilevel ANOVA. 
We model this as:

 y u eij j ij= + + ,γ 00  (1.1)

where yij represents the score for individ-
ual i in cluster j, γ00 is the grand estimate 
for the mean of yij for the population of j 
clusters, u0j is the unique effect of cluster 
j on yij (also called the cluster-level error 
term), and eij is the deviation of individual i 
around their own cluster mean (also called 
the  individual-level error term). In this 
case, we assume that e Nij e

~ ( )0 2,σ  and that 
u Nj u0

20~ ( ),σ . This may also be written in 
matrix notation as:

 y X Z U ej j j j j= + + ,γ  (1.2)

where yj is a nj × 1 response vector for clus-
ter j, Xj is a nj × p design matrix for the fixed 
effects, γ is a p × 1 vector of unknown fixed 
parameters, Zj is a nj × r design matrix for 
the random effects, Uj is the r × 1 vector of 
unknown random effects ~N (0, σu), and ej is 
the nj × 1 residual vector ~N (0, σe).

For the null model, the matrix notation 
for a single cluster could be represented as:
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Likewise, a model with a single individual-
level covariate (say “math”) would take on the 
following matrix model form for cluster j:
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Were a random effect for math now mod-
eled, the matrix model form for cluster j 
would now be:
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Adding a cluster-level variable (say 
“schsize”) to the model would make the 
matrix model form for cluster j take on the 
form:
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Finally, we could add a cross-level interac-
tion effect between math and schsize mak-
ing the matrix model form for cluster j:
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It should be noted that the above model 
may take on different notations. For exam-
ple, Raudenbush and Bryk (2002) would 
notate this as a hierarchical linear model 
with the following form for the full model:

 

yij ij j

ij

= + +

+

γ γ γ

γ

00 10 01

11

math schsize

math schsiize math

.

j j ij

j

u

u r

+

+ +

1

0  (1.9)

This model could also be represented in 
the Raudenbush and Bryk form as a level 1 
model:

 y rij j j ij= + +β β0 1 math  (1.10)

and level 2 model:

 β γ γ0 00 01 0= + +schsize j u  (1.11)

 β γ γ1 10 11 1= + +schsize ,j u  (1.12)

with random effects:
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Goldstein (1995) would notate the same 
model as:

 

yij ij j

ij

= + +

+

γ γ γ

γ

00 10 01

11

math schsize

math schsiize math

,

j j ij

j ij

u

u e

+

+ +

1

0  (1.14)

with random effects:

 
u

u
Noj

j

u u u

u u u1

20
0

0 0 1

0 1






















,~

σ σ

σ σ
11

2


































.  (1.15)

1.3  MultIlevel stRuctuRal 
equatIon Models

Multilevel structural equation modeling 
assumes sampling at two levels, with both 
within group (individual level) and between 
group (group level) variation and covaria-
tion. In multilevel regression modeling, there 
is one dependent variable and several inde-
pendent variables, with independent vari-
ables at both the individual and group level. 
At the group level, the multilevel regression 
model includes random regression coef-
ficients and error terms. In the multilevel 
structural equation model, the random 
intercepts are second level latent variables, 
capturing the variation in the means. 
Conceptually, the issue is whether the group 
level covariation can be explained by a theo-
retical model. Statistically, the model used 
is often a structural equation model, which 
explains the covariation among the cluster 
level variables by a model containing latent 
variables, path coefficients, and (co)vari-
ances. Some of the group level variables may 
be random intercepts of slopes, drawn from 
the first level model, other group level vari-
ables may be variables defined at the group 
level, which are nonexistent at the individual 

to handling hierarchically structured data, 
each had their own notation to describe 
these models. For example, Raudenbush 
and Bryk would notate the variance of the 
intercepts as τ00 whereas Goldstein would 
notate σu0

2 . To begin describing the multi-
level regression model, we will first consider 
a model in which no covariates are added 
to the model. This is sometimes referred to 
as the null model or the multilevel ANOVA. 
We model this as:

 y u eij j ij= + + ,γ 00  (1.1)

where yij represents the score for individ-
ual i in cluster j, γ00 is the grand estimate 
for the mean of yij for the population of j 
clusters, u0j is the unique effect of cluster 
j on yij (also called the cluster-level error 
term), and eij is the deviation of individual i 
around their own cluster mean (also called 
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u Nj u0

20~ ( ),σ . This may also be written in 
matrix notation as:

 y X Z U ej j j j j= + + ,γ  (1.2)

where yj is a nj × 1 response vector for clus-
ter j, Xj is a nj × p design matrix for the fixed 
effects, γ is a p × 1 vector of unknown fixed 
parameters, Zj is a nj × r design matrix for 
the random effects, Uj is the r × 1 vector of 
unknown random effects ~N (0, σu), and ej is 
the nj × 1 residual vector ~N (0, σe).
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Likewise, a model with a single individual-
level covariate (say “math”) would take on the 
following matrix model form for cluster j:
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eled, the matrix model form for cluster j 
would now be:
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where
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Adding a cluster-level variable (say 
“schsize”) to the model would make the 
matrix model form for cluster j take on the 
form:
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Finally, we could add a cross-level interac-
tion effect between math and schsize mak-
ing the matrix model form for cluster j:
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level. In the typology presented above, the 
random intercepts and slopes are analyti-
cal variables (being a function of the lower 
level variables) and the group level variables 
proper are global variables. The first useful 
estimation method for multilevel structural 
equation models was a limited information 
method named MUML by Muthén (1989, 
1994). The MUML approach follows the 
conventional notion that structural  equation 
models are constructed for the covariance 
matrix with added mean vector, which are 
the sufficient statistics when data have a 
multivariate normal distribution. Thus, for 
a confirmatory factor model, the covariance 
matrix Σ is modeled by:

 Σ ΛΨΛ Θ= + ,  (1.16)

where Λ is the matrix of factor loadings, Ψ is 
the covariance matrix of the latent variables 
and Θ is the vector with residual variances. 
The MUML method distinguishes between 
the within groups covariance matrix Σw and 
between groups covariance matrix ΣB, and 
specifies a structural equation model for 
each. As Muthén (1989) shows, the pooled 
within groups sample matrix SPW is the 
maximum likelihood estimator of Σw, but 
the between groups sample matrix SB

∗  is the 
maximum likelihood estimator of the com-
posite Σw + cΣB, with scale factor c equal to 
the common group size n:

 SPW W= ,Σ


 (1.17)

and

 S cB W B
∗ = + .Σ Σ
 

 (1.18)

Originally, the multigroup option of con-
ventional SEM software was used to carry 
out a simultaneous analysis at both levels, 

which leads to complicated software  setups 
(cf. Hox, 2002). More recently, software 
implementations of the MUML method hide 
all the technical details, and allow direct 
specification of the within and the between 
model. However, the main  limitation of 
the MUML is still there: MUML assumes a 
common group size, and the fact that groups 
are generally not equal is simply ignored by 
using an average group size. Simulations 
(e.g., Hox & Maas, 2001) have shown that 
this works reasonably well, and analytical 
work (Yuan & Hayashi, 2005) shows that 
accuracy of the standard errors increases 
when the number of groups becomes large 
and the amount of variation in the group 
sizes decreases. A second, probably more 
important limitation is that the MUML 
approach models only group level variation 
in the intercepts, group level slope variation 
cannot be included.

A more advanced approach is to use 
Full Information Maximum Likelihood 
(FIML) estimation for multilevel SEM. 
The FIML approach defines the model and 
the  likelihood in terms of the individual 
data. The FIML minimizes the function 
(Arbuckle, 1996)
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1

1

log Σ

Σ

i

i

n

i i i i ilog x x( ) ( )µ µ ,,  (1.19)

where the subscript i refers to the observed 
cases, xi to the variables observed for case 
i, and μi and Σi contain the population 
means and covariances of those variables 
that are observed for case i. Since the FIML 
estimation method defines the likelihood 
on the basis of the set of data observed for 
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each specific individual, it is a very use-
ful estimation method when there are 
missing data. If the data are incomplete, 
the covariance matrix is no longer a suf-
ficient statistic, but minimizing the FIML 
likelihood for the raw data provides the 
maximum likelihood estimates for the 
incomplete data.

Mehta and Neale (2005) link multilevel 
SEM to the FIML fit function given above. 
By viewing groups as observations, and 
individuals within groups as variables, 
they show that models for multilevel data 
can be specified in the full information 
SEM framework. Unbalanced data, for 
example, unequal numbers of individu-
als within groups, are handled the same 
way as incomplete data in standard SEM. 
So, in theory, multilevel structural equa-
tion models can be specified in any SEM 
package that supports FIML estimation for 
incomplete data. In practice, specialized 
software routines are used that take advan-
tage of specific structures of multilevel data 
to achieve efficient computations and good 
 convergence of the estimates. Extensions 
of this approach include extensions for 
categorical and ordinal data, incomplete 
data, and adding more levels. These are 
described in detail by Skrondal and Rabe-
Hesketh (2004).

Asparouhov and Muthén (2007) describe a 
limited information Weighted Least Squares 
(WLS) approach to multilevel SEM. In this 
approach, univariate Maximum Likelihood 
(ML) methods are used to estimate the vec-
tor of means μ at the between group level, 
and the diagonal elements of Σw and ΣB. 
Next, the off-diagonal elements of SW and SB 
are estimated using bivariate ML methods. 
The asymptotic covariance matrix for these 
estimates is obtained, and the multilevel 
SEM is estimated for both levels using WLS. 

This estimation method is developed for effi-
cient estimation of multilevel models with 
nonnormal variables, since for such data it 
requires only low-dimensional numerical 
integration, while ML requires generally 
high-dimensional numerical integration, 
which is computationally very demanding. 
However, multilevel WLS can also be used 
for multilevel estimation with continuous 
variables. With continuous variables, WLS 
does not have a real advantage, since ML 
estimation is very well possible and should 
be more efficient. A limitation to the WLS 
approach is that it, like MUML, does not 
allow for random slopes.

Muthén and Muthén (2007) and Skrondal 
and Rabe Hesketh (2004) have suggested 
extensions of the conventional graphic path 
diagrams to represent multiple levels and 
random slopes. The two-level path diagram 
in Figure 1.1 uses the Muthén and Muthén 
notation to depict a two-level regression 
model with an explanatory variable X at the 
individual level and an explanatory vari-
able Z at the group level. The within part of 
the model in the lower area specifies that Y 
is regressed on X. The between part of the 
model in the upper area specifies the exis-
tence of a group level variable Z. There are 
two latent variables represented by circles. 
The group level latent variable Y represents 
the group level variance of the intercept for 
Y. The group level latent variable XYslope 
represents the group level variance of the 
slope for X and Y, which is on the group 
level regressed on Z. The black circle in the 
within part is a new symbol, used to spec-
ify that this path coefficient is assumed to 
have random variation at the group level. 
This variation is modeled at the group level 
using group level variables. The path dia-
gram in Figure 1.2 uses the Skrondal and 
Rabe-Hesketh notation to depict the same 
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two-level regression model. This notation is 
a little more complicated, but is more easily 
extended to complex models, for example, 
with a partial nesting structure.

1.4 contents of thIs Book

This book is divided into five sections. 
The first section is an introduction by the 
authors about multilevel analysis then and 
now. The second section is about multi-
level latent variable models and contains 
chapters by Muthén and Asparouhov on 
general multilevel latent variable model-
ing, by Kamata and Vaughn on multilevel 

item response theory, and by Vermunt on 
multilevel mixture modeling. The third 
section focuses on longitudinal modeling, 
with chapters by Hox on panel modeling 
and by Stoel and Galindo Garre on growth 
curve analysis. The fourth section focuses 
on special estimation problems, including 
a chapter by Hedeker and Mermelstein on 
ordinal data, Hamaker and Klugkist on 
Bayesian estimation, Goldstein on boot-
strapping, Van Buuren on incomplete data, 
and Kim and Swoboda on omitted variable 
bias. Also included in the fourth section is 
a chapter by Roberts, Monaco, Stovall and 
Foster on model fit, power, and explained 
variance, Hamaker, van Hattum, Kuiper, 
and Hoijtink on model selection, and 

fIguRe 1.2
Path diagram for a two-level regression model, 
Skrondal and Rabe-Hesketh style. Z

X Y

Group j

Individual i

ζ

ε

fIguRe 1.1
Path diagram for a two-level regression model, 
Muthén and Muthén style.

Z

YXslope

YXslope

Y

YX
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by Moerbeek and Teerenstra on optimal 
design. The fifth and final section discusses 
a selection of special problems, includ-
ing a chapter by Algina and Swaminathan 
on centering, Beretvas on cross-classified 
models, and Kenny and Kashy on dyadic 
data analysis.
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2.1 IntRoductIon

Multilevel modeling is often treated as if it concerns only regression analysis 
and growth modeling (Raudenbush & Bryk, 2002; Snijders & Bosker, 1999). 
Furthermore, growth modeling is merely seen as a variation on the regres-
sion theme, regressing the outcome on a time-related covariate. Multilevel 
modeling, however, is relevant for nested data not only with regression 
analysis but with all types of statistical analyses including

Regression analysis•	
Path analysis•	
Factor analysis•	
Structural equation modeling•	
Growth modeling•	
Survival analysis•	
Latent class analysis•	
Latent transition analysis•	
Growth mixture modeling•	

This chapter has two aims. First, it shows that already in the traditional 
multilevel analysis areas of regression and growth there are several new 
modeling opportunities that should be considered. Second, it gives an over-
view with examples of multilevel modeling for path analysis, factor analysis, 
structural equation modeling, and growth mixture modeling. Due to lack 
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of space, survival, latent class, and latent 
transition analysis are not covered. All of 
these topics, however, are covered within 
the latent variable framework of the Mplus 
software, which is the basis for this chapter. 
A technical description of this framework 
including not only multilevel features but 
also finite mixtures is given in Muthén and 
Asparouhov (2008). Survival mixture analy-
sis is discussed in Asparouhov, Masyn, and 
Muthén (2006). See also examples in the 
Mplus User’s Guide (Muthén & Muthén, 
2008). The user’s guide is available online at 
http://www.statmodel.com.

The outline of the chapter is as follows. 
Section 2.2 discusses two extensions of 
two-level regression analysis, Section 2.3 
discusses two-level path analysis and struc-
tural equation modeling, Section 2.4 pres-
ents an example of two-level exploratory 
factor analysis (EFA), Section 2.5 discusses 
two-level growth modeling using a two-part 
model, Section 2.6 discusses an unconven-
tional approach to three-level growth mod-
eling, and Section 2.7 presents an example 
of multilevel growth mixture modeling.

2.2 two-level RegRessIon

One may ask if there really is anything new 
that can be said about multilevel regres-
sion. The answer, surprisingly, is yes. Two 
extensions of conventional two-level regres-
sion analysis will be discussed here, taking 
into account measurement error in covari-
ates and unobserved heterogeneity among 
level 1 subjects.

2.2.1 Measurement error in covariates

It is well-known that measurement error in 
covariates creates biased regression slopes. 

In multilevel regression a particularly criti-
cal covariate is the level 2 covariate . jx , 
drawing on information from individuals 
within clusters to reflect cluster character-
istics, as, for example, with students rating 
the school environment. Based on relatively 
few students such covariates may contain a 
considerable amount of measurement error, 
but this fact seems to not have gained wide-
spread recognition in multilevel regression 
modeling. The following discussion draws 
on Asparouhov and Muthén (2006) and 
Ludtke et al. (2008). The topic seems to be 
rediscovered every two decades given ear-
lier contributions by Schmidt (1969) and 
Muthén (1989).

Raudenbush and Bryk (2002, p. 140, Table 
5.11) considered the two-level, random 
intercept, group-centered regression model

 y x x rij j j ij j ij= + − + ,.β β0 1 ( )  (2.1)

 β γ γ0 00 01j j jx u= + + ,.  (2.2)

  β1j = γ10, (2.3)

defining the “contextual effect” as

  βc = γ01 − γ10. (2.4)

Often, . jx  can be seen as an estimate of a 
level 2 construct that has not been directly 
measured. In fact, the covariates ( )x xij j− .  
and . jx  may be seen as proxies for latent 
covariates (cf. Asparouhov & Muthén, 2006),

 x x xij j ijw− ≈ ,.  (2.5)

 . ≈ ,j jbx x  (2.6)

where the latent covariates are obtained 
in line with the nested, random effects 
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ANOVA decomposition into uncorrelated 
components of variation,

 xij = xjb + xijw. (2.7)

Using the latent covariate approach, a two-
level regression model may be written as

 yij = yjb + yijw (2.8)

  = α + βb xjb + εj (2.9)

  + βw xijw + εij, (2.10)

defining the contextual effect as

  βc = βb − βw. (2.11)

The latent covariate approach of 
Equations 2.9 and 2.10 can be compared to 
the observed covariate approach Equations 
2.1 through 2.3. Assuming the model of the 
latent covariate approach of Equations 2.9 
and 2.10, Asparouhov and Muthén (2006) 
and Ludtke et al. (2008) show that the 
observed covariate approach introduces a 
bias in the estimation of the level 2 slope γ01 
in Equation 2.3,
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 (2.12)

where c is the common cluster size and icc 
is the covariate intraclass correlation (ψb/
(ψb + ψw)). In contrast, there is no bias in 
the level 1 slope estimate 10γ̂ . It is clear 
from Equation 2.12 that the between slope 
bias increases for decreasing cluster size c 
and for decreasing icc. For example, with 

c = 15, icc = 0.20, and βw − βb = 1.0, the bias 
is 0.21.

Similarly, it can be shown that the con-
textual effect for the observed covariate 
approach 01 10

ˆ ˆγ γ−  is a biased estimate of 
βb − βw from the latent covariate approach. 
For a detailed discussion see Ludtke et al. 
(2008), where the magnitudes of the biases 
are studied under different conditions.

As a simple example, consider data 
from the German Third International 
Mathematics and Science Study (TIMSS, 
2003). Here there are n = 1980 students in 
98 schools with average cluster (school) 
size = 20. The dependent variable is a math 
test score in Grade 8 and the covariate is 
student-reported disruptiveness level in the 
school. The intraclass correlation for disrup-
tiveness is 0.21. Using maximum-likelihood 
(ML) estimation for the latent covariate 
approach to two-level regression with a 
random intercept in line with Equations 2.9 
and 2.10 results in 

bβ̂ = − .1 35 (SE = 0.36), 

wβ̂ = − .0 098 (SE = 0.03), and contextual 
effect 

cβ̂ = − .1 25 (SE = 0.36). The observed 
covariate approach results in the corre-
sponding estimates 01 1 18γ̂ = − .  (SE = 0.29), 

10 0 097γ̂ = − .  (SE = 0.03), and contextual 
effect 

cβ̂ = − .1 08 (SE = 0.30).
Using the latent covariate approach in 

Mplus, the observed covariate disrupt is 
automatically decomposed as disruptij =  
xjb + xijw. The use of Mplus to analyze mod-
els under the latent covariate approach is 
described in Chapter 9 of the user’s guide 
(Muthén & Muthén, 2008).

2.2.2  unobserved heterogeneity 
among level 1 subjects

This section reanalyzes the classic High 
School & Beyond (HSB) data used as a 
key illustration in Raudenbush and Bryk 
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(2002; RB from now on). The HSB is a 
nationally representative survey of U.S. 
public and Catholic high schools. The data 
used in RB are a subsample with 7185 stu-
dents from 160 schools, 90 public, and 70 
Catholic. The RB model presented on pages 
80–83 is considered here for individual i in 
cluster (school) j:

 yij = β0j + β1j (sesij − mean_sesj) + rij, (2.13)

  β0j = γ00 + γ01 sectorj + γ02 mean_sesj + u0j,

 (2.14)

  β1j = γ10 + γ11 sectorj + γ12 mean_sesj + u1j,

 (2.15)

where mean_ses is the school-averaged stu-
dent ses and sector is a 0/1 dummy variable 
with 0 for public and 1 for Catholic schools. 
The estimates are shown in Table 2.1. The 
results show for example that, holding 
mean_ses constant, Catholic schools have 
significantly higher mean math achievement 
than public schools (see the γ02 estimate) 
and that Catholic schools have significantly 
lower ses slope than public schools (see the 
γ12 estimate).

What is overlooked in the above mod-
eling is that a potentially large source of 
unobserved heterogeneity resides in varia-
tion of the regression coefficients between 
groups of individuals sharing similar but 
unobserved background characteristics. 

taBle 2.1

High School & Beyond Two-Level Regression Estimates

Log-likelihood −23,248
Number of parameters 10
BIC 46,585

Parameter estimate SE est./SE
two-tailed 

P-Value
Within level
Residual variance
math 36.720 0.721 50.944 0.000
Between level
math (β0j) ON
sector (γ01) 1.227 0.308 3.982 0.000
mean_ses (γ02) 5.332 0.336 15.871 0.000
s_ses (β1j) ON
sector (γ11) −1.640 0.238 −6.905 0.000
mean_ses (γ12) 1.033 0.333 3.100 0.002
math WITH
s_ses 0.200 0.192 1.041 0.298
Intercepts
math (γ00) 12.096 0.174 69.669 0.000
s_ses (γ10) 2.938 0.147 19.986 0.000
Residual variances
math 2.316 0.414 5.591 0.000
s_ses 0.071 0.201 0.352 0.725

Source: Raudenbush, S.W., & Bryk, A.S., Hierarchical linear models: Applications and data 
analysis methods (2nd ed.). Newbury Park, CA: Sage Publications, 2002.
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It seems possible that this phenomenon is 
quite common due to heterogeneous sub-
populations in general population surveys. 
Such heterogeneity is captured by level 1 
latent classes. Drawing on Muthén and 
Asparouhov (2009), these ideas can be for-
malized as follows.

Consider a two-level regression mixture 
model where the random intercept and 
slope of a linear regression of a continuous 
variable y on a covariate x for individual i in 
cluster j vary across the latent classes of an 
individual-level latent class variable C with 
K categories labeled c = 1, 2, …, K,

 y x rij C c cj cj ij ijij| = = + + ,β β0 1  (2.16)

where the residual rij ~ N(0, θc) and a single 
covariate is used for simplicity. The prob-
ability of latent class membership varies as 
a two-level multinomial logistic regression 
function of a covariate z,

 P C c z e

e
ij ij

a b z

s

K
a b z

cj c ij

sj s ij

( )= | = .
+

=

+∑ 1

 (2.17)

The corresponding level-2 equations are

  β0cj = γ00c + γ01c w0j + u0j, (2.18)

  β1cj = γ10c + γ11c w1j + u1j, (2.19)

 acj = γ20c + γ21c w2j + u2cj. (2.20)

With K categories for the latent class vari-
able there are K − 1 equations (Equation 
2.20). Here, w0j, w1j, and w2j are level-2 cova-
riates and the residuals u0j, u1j, and u2j are 
(2 + K − 1)-variate normally distributed 
with means zero and covariance matrix Θ2 
and are independent of rij. In many cases 
z = x in Equation 2.17. Also, the level 2 
covariates in Equations 2.18 through 2.20 
may be the same as is the case in the HSB 
example considered below, where there 
is a common wj = w0j = w2j. To reduce the 
dimensionality, a continuous factor f will 
represent the random intercept variation 
of Equation 2.20 in line with Muthén and 
Asparouhov (2009).

Figure 2.1 shows a diagram of a two-
level regression mixture model applied to 
the HSB data. A four-class model is chosen 

ses
S

math

c
Level 1

Level 2
math

s

a1

a2

a3
f

Mean_ses

Sector

fIguRe 2.1
Model diagram for two-level regression mixture 
analysis.
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and obtains a log-likelihood value of 22,812 
with 30 parameters, and BIC = 45,891. This 
BIC value is considerably better than the 
conventional two-level regression BIC value 
of 46,585 reported in Table 2.1 and the 
mixture model is therefore preferable. The 
mixture model and its ML estimates can 
be interpreted as follows. Since this type 
of model is new to readers, Figure 2.1 will 
be used to understand the estimates rather 
than reporting a table of the parameter esti-
mates for Equations 2.16 through 2.20.

The latent class variable c in the level 1 
part of Figure 2.1 has four classes. As indi-
cated by the arrows from c, the four classes 
are characterized by having different inter-
cepts for math and different slopes for 
math regressed on ses. In particular, the 
math mean changes significantly across the 
classes. An increasing value of the ses cova-
riate gives an increasing odds of being in 
the highest math class that contains 31% of 
the students. For three classes with the low-
est math intercept, ses does not have a fur-
ther, direct influence on math: the mean of 
the random slope s is only significant in the 
class with the highest math intercept, where 
it is positive.

The random intercepts of c, marked with 
filled circles on the circle for c on level 1, 
are continuous latent variables on level 2, 
denoted a1 − a3 (four classes gives three 
intercepts because the last one is stan-
dardized to zero). The (co-)variation of the 
random intercepts is, for simplicity, repre-
sented via a factor f. These random effects 
carry information about the influence of 
the school context on the probability of 
a student’s latent class membership. For 
example, the influence of the level 2 covari-
ate sector (public = 0, Catholic = 1) is such 
that Catholic schools are less likely to con-
tribute to students being in the lower math 

intercept classes relative to the highest math 
intercept class. Similarly, a high value of the 
level 2 covariate mean_ses causes students 
to be less likely to be in the lower math 
intercept classes relative to the highest math 
intercept class.

The influence of the level 2 covariates on 
the random slope s is such that Catholic 
schools have lower values and higher mean_
ses schools have higher values. The influ-
ence of the level 2 covariates on the random 
intercept math is insignificant for sector 
while positive significant for mean_ses. The 
insignificant effect of sector does not mean, 
however, that sector is unimportant to math 
performance given that sector had a signifi-
cant influence on the random effects of the 
latent class variable c.

It is interesting to compare the mix-
ture results to those of the conventional 
two level regression in Table 2.1. The key 
results for the conventional analysis is that 
(a) Catholic schools show less influence of 
ses on math, and (b) Catholic schools have 
higher mean math achievement. Neither of 
these results are contradicted by the mix-
ture analysis. But using a model that has 
considerably  better BIC, the mixture model 
explains these results by a mediating latent 
class variable on level 1. In other words, 
students’ latent class membership is what 
influences math performance and latent 
class membership is predicted by both 
student-level ses and school characteristics. 
The Catholic school effect on math perfor-
mance is not direct as an effect on the level 
2 math intercept (this path is insignificant), 
but indirect via the student’s latent class 
membership. For more details on two-level 
regression mixture modeling and a math 
achievement example focusing on gender 
differences, see Muthén and Asparouhov 
(2009).
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2.3  two-level Path analysIs 
and stRuctuRal 
equatIon ModelIng

Regression analysis is often only a small 
part of a researcher’s modeling agenda. 
Frequently a system of regression equations 
is specified as in path analysis and structural 
equation modeling (SEM). There have been 
recent developments for path analysis and 
SEM in multilevel data and a brief overview 
of new kinds of models will be presented in 
this section. No data analysis is done, but 
focus is instead on modeling ideas.

Consider the left part of Figure 2.2 where 
the binary dependent variable hsdrop, repre-
senting dropping out by Grade 12, is related 
to a set of covariates using logistic regres-
sion. A complication in this analysis is that 
many of those who drop out by Grade 12 
have missing data on math10, the mathemat-
ics score in Grade 10, where the missingness 
is not completely at random. Missingness 
among covariates can be handled by adding 
a distributional assumption for the cova-
riates, either by multiple imputation or by 
not treating them as exogenous. Either way, 
this complicates the analysis without learn-
ing more about the relationships among 

the variables in the model. The right part 
of Figure 2.2 shows an alternative approach 
using a path model that acknowledges the 
temporal position of math10 as an interven-
ing variable that is predicted by the remain-
ing covariates measured earlier. In this path 
model, “missing at random” (MAR; Little 
& Rubin, 2002) is reasonable in that the 
covariates may well predict the missingness 
in math10. The resulting path model has a 
combination of a linear regression for a con-
tinuous dependent variable and a logistic 
regression for a binary dependent variable.

Figure 2.3 shows a two-level counterpart 
to the path model. The top part of Figure 2.3 
shows the within-level part of the model for 
the student relationships. Here, the filled 
circles at the end of the arrows indicate ran-
dom intercepts. On the between level these 
random intercepts are continuous latent 
variables varying across schools. The two 
random intercepts are not treated symmet-
rically, but it is hypothesized that increas-
ing math10 intercept decreases the hsdrop 
intercept in that schools with good mean 
math performance in Grade 10 tend to have 
an environment less conducive to drop-
ping out. Two school-level covariates are 
used as predictors of the random intercepts, 
lunch, which is a dummy variable used as a 

Logistic regression Path model
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fIguRe 2.2
Model diagram for logistic regression path analysis.
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poverty proxy and mstrat, measuring math 
teacher workload as the ratio of students to 
full-time math teachers.

Another path analysis example is shown 
in Figure 2.4. Here, u is again a categorical 
dependent variable and both u and the con-
tinuous variable y have random intercepts. 
Figure 2.4 further illustrates the flexibility 
of current two-level path analysis by adding 
an observed between-level dependent vari-
able z that intervenes between the between-
level covariate w and the random intercept 
of u. Between-level variables that play a role 
as dependent variables are not used in con-
ventional multilevel modeling.

Figure 2.5 shows a path analysis exam-
ple with random slopes aj, bj, and c′j. This 

illustrates a two-level mediational model. 
As described in Bauer, Preacher, and Gil 
(2006) for example, the indirect effect is 
here α × β + Cov(aj,bj), where α and β are 
the means of the corresponding random 
slopes aj and bj.

Figure 2.6 specifies a MIMIC model with 
two factors fw1 and fw2 for students on the 
within level. The filled circles at the binary 
indicators u1 − u6 indicate random inter-
cepts that are continuous latent variables on 
the between level. The between level has a 
single factor fb describing the variation and 
covariation among the random intercepts. 
The between level has the unique feature of 
also adding between-level  indicators y1 − y4 
for a between-level factor f, another example 

fIguRe 2.3
Model diagram for two-level logistic regression path 
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of between-level dependent variables. Two-
level factor analysis will be discussed in 
more detail in Section 2.4.

Figure 2.7 shows a structural equa-
tion model with an exogeneous and an 

endogenous factor that has both within-
level and between-level variation. The spe-
cial feature here is that the structural slope 
s is random. The slope s is regressed on a 
between-level covariate x.

x1
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u6

fw1

fw2

y1 y2 y3 y4

f

w fb
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fIguRe 2.6
Model diagram for two-level SEM.
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Model diagram for path analysis with mediation and 
random slopes.
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2.4  two-level exPloRatoRy 
factoR analysIs

A recent multilevel development concerns 
a practical alternative to ML estimation 
in situations that would lead to heavy ML 
computations (cf. Asparouhov & Muthén, 
2007). Heavy ML computations occur when 
numerical integration is needed, as for 
instance with categorical outcomes. Many 
models, including factor analysis models, 
involve many random effects, each one of 
which adds a dimension of integration. The 
new estimator uses limited information 
from first- and second-order moments to 
 formulate a weighted least squares approach 
that reduces  multidimensional integration 
into a series of one and  two-dimensional 
integrations for the uni- and bivariate 
moments. This weighted least squares 
approach is particularly useful in EFA where 
there are typically many random effects due 
to having many variables and many factors.

Consider the following EFA example. 
Table 2.2 shows the item distribution for 
a set of 13 items measuring aggressive-
 disruptive behavior in the classroom among 
363 boys in 27 classrooms in Baltimore 
public schools. It is clear that the variables 
have very skewed distributions with strong 
floor effects so that 40–80% are at the low-
est value. If treated as continuous outcomes, 
even nonnormality robust standard errors 
and χ2 tests of model fit would not give cor-
rect results in that a linear model is not suit-
able for data with such strong floor effects. 
The variables will instead be treated as 
ordered polytomous (ordinal). The 13-item 
instrument is hypothesized to capture three 
aspects of aggressive–disruptive behavior: 
property, verbal, and person. Figure 2.8 
shows a model diagram with notation anal-
ogous to two-level regression. On the within 
(student) level the three hypothesized fac-
tors are denoted fw1 − fw3. The filled circles 
at the observed items indicate random mea-
surement intercepts. On the between level 

taBle 2.2

Distributions for Aggressive-Disruptive Items

Aggression Items

Almost 
never 

(Scored as 1)

Rarely 
(Scored 

as 2)

Sometimes 
(Scored 

as 3)

Often 
(Scored 

as 4)

Very Often 
(Scored 

as 5)

Almost 
Always 

(Scored as 6)
Stubborn 42.5 21.3 18.5 7.2 6.4 4.1
Breaks rules 37.6 16.0 22.7 7.5 8.3 8.0
Harms others and 
property

69.3 12.4 9.40 3.9 2.5 2.5

Breaks things 79.8 6.60 5.20 3.9 3.6 0.8
Yells at others 61.9 14.1 11.9 5.8 4.1 2.2
Takes others’ property 72.9 9.70 10.8 2.5 2.2 1.9
Fights 60.5 13.8 13.5 5.5 3.0 3.6
Harms property 74.9 9.90 9.10 2.8 2.8 0.6
Lies 72.4 12.4 8.00 2.8 3.3 1.1
Talks back to adults 79.6 9.70 7.80 1.4 0.8 1.4
Teases classmates 55.0 14.4 17.7 7.2 4.4 1.4
Fights with classmates 67.4 12.4 10.2 5.0 3.3 1.7
Loses temper 61.6 15.5 13.8 4.7 3.0 1.4
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these random intercepts are continuous 
latent variables varying over classrooms, 
where the variation and covariation is rep-
resented by the classroom-level factors fb1 − 
fb3. The meaning of the student-level factors 
fw1 − fw3 is in line with regular factor anal-
ysis. In contrast, the classroom-level factors 
fb1 − fb3 represent classroom-level phenom-
ena for which a researcher typically has less 
understanding. These factors require new 
kinds of considerations as follows. If the 
same set of three within-level factors (prop-
erty, verbal, and person) are to explain the 
(co-)variation on the between level, class-
room teachers must vary in their skills 
to manage their classrooms with respect 
to all three of these aspects. That is, some 
teachers are good at controlling property-
oriented, aggressive-disruptive behavior 

and some are not, some teachers are good 
at controlling verbally oriented, aggressive-
disruptive behavior and some are not, and 
so on. This is not very likely and it is more 
likely that teachers simply vary in their abil-
ity to manage their classrooms in all three 
respects fairly equally. This would lead to a 
single factor fb on the between level instead 
of three factors.

As shown in Figure 2.8, ML estimation 
would require 19 dimensions of numerical 
integration, which is currently an impos-
sible task. A reduction is possible if the 
between-level, variable-specific residuals 
are zero, which is often a good approxi-
mation. This makes for a reduction to six 
dimensions of integration, which is still a 
very difficult task. The Asparouhov and 
Muthén (2007) weighted least squares 

Within
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

fw3fw2fw1

Between

y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13

fb3fb2fb1

fIguRe 2.8
Two-level factor analysis model.



26  •  Bengt Muthén and Tihomir Asparouhov

approach is suitable for such a situation and 
will be used here. The approach assumes 
that the factors are normally distributed 
and uses an ordered probit link function 
for the item probabilities as functions of 
the factors. This amounts to assuming mul-
tivariate normality for continuous latent 
response variables underlying the items in 
line with using polychoric correlations in 
single-level analysis. Rotation of loadings 
on both levels is provided along with stan-
dard errors for rotated loadings and result-
ing factor correlations.

Table 2.3 shows a series of analyses vary-
ing the number of factors on the within 

and between levels. To better understand 
how many factors are needed on a certain 
level, an unrestricted correlation model 
can be used on the other level. Using an 
unrestricted within-level model it is clear 
that a single between-level factor is suffi-
cient. Adding within-level factors shows an 
improvement in fit going up to four factors. 
The 4-factor solution, however, has no sig-
nificant loadings for the additional, fourth 
factor. Also, the 3-factor solution captures 
the three hypothesized factors. The factor 
solution is shown in Table 2.4 using Geomin 
rotation (Asparouhov & Muthén, 2009) 
for the within level. Factor loadings with 

taBle 2.3

Two-Level EFA Model Test Result for Aggressive–Disruptive Items

Within-Level 
Factors

Between-Level 
Factors Df chi-Square cFI RMSeA

Unrestricted 1 65 66 (p = 0.43) 1.000 0.007
1 1 130 670 0.991 0.107
2 1 118 430 0.995 0.084
3 1 107 258 0.997 0.062
4* 1 97 193 0.998 0.052

*4th factor has no significant loadings.

taBle 2.4

Two-Level EFA of Aggressive–Disruptive Items Using WLSM and Geomin Rotation

Within-Level Loadings Between-Level 
Loadings GeneralAggression Items Property Verbal Person

Stubborn 0.00 0.78* 0.01 0.65*
Breaks rules 0.31* 0.25* 0.32* 0.61*
Harms others and property 0.64* 0.12 0.25* 0.68*
Breaks things 0.98* 0.08 −0.12* 0.98*
Yells at others 0.11 0.67* 0.10 0.93*
Takes others’ property 0.73* −0.15* 0.31* 0.80*
Fights 0.10 0.03 0.86* 0.79*
Harms property 0.81* 0.12 0.05 0.86*
Lies 0.60* 0.25* 0.10 0.86*
Talks back to adults 0.09 0.78* 0.05 0.81*
Teases classmates 0.12 0.16* 0.59* 0.83*
Fights with classmates −0.02 0.13 0.88* 0.84*
Loses temper −0.02 0.85* 0.05 0.87*
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asterisks represent loadings significant on 
the 5% level, while bolded loadings are the 
more substantial ones. The loadings for the 
single between-level factor are fairly homo-
geneous supporting the idea that there is a 
single classroom management dimension.

2.5  gRowth ModelIng 
(two-level analysIs)

Growth modeling concerns repeated mea-
surement data nested within individu-
als and possibly also within higher-order 
units (clusters such as schools). This will be 
referred to as two- and three-level growth 
analysis, respectively. Often, two-level 
growth analysis can be performed in a mul-
tivariate, wide data format fashion, letting 
the level 1 repeated measurement on y over 
T time points be represented by a multivari-
ate outcome vector y = (y1,y2,…,yT)′, reduc-
ing the two levels to one. This reduction by 
one level is typically used in the latent vari-
able framework of Mplus. More common, 
however, is to view growth modeling as a 
two-level model with features  analogous 
to those of two-level regression (see, e.g., 
Raudenbush & Bryk, 2002). In this case, data 
are arranged in a univariate, long format.

Following is a simple example with linear 
growth, for simplicity using the notation 
of Raudenbush and Bryk (2002). For time 
point t and individual i, consider

yti: individual-level, outcome variable
ati:  individual-level, time-related variable 

(age, grade)
xi:  individual-level, time-invariant 

covariate

and the two-level growth model

 Level 1: yti = π0i + π1i ati + eti, (2.21)

 Level
x r
x r

i i i

i i i

2 0 00 01 0

1 10 11 1

:
= + + ,
= + + ,

π γ γ
π γ γ





 (2.22)

where π0 is a random intercept and π1 is a 
random slope. One may ask if there really 
is anything new that can be said about 
(two-level) growth analysis. The answer, 
surprisingly, is again yes. Following is a 
discussion of a relatively recent and still 
underutilized extension to situations with 
very skewed outcomes similar to those 
studied in the above EFA. Here, the exam-
ple concerns frequency of heavy drink-
ing in the last 30 days from the National 
Longitudinal Survey of Youth (NLSY), 
a U.S. national survey. The  distribution 
of the outcome at age 24 is shown in 
Figure 2.9, where a majority of individu-
als did not engage in heavy drinking in 
the last 30 days. Olsen and Schafer (2001) 
proposed a two-part or semicontinuous 
growth model for data of this type, treat-
ing the outcome as continuous but add-
ing a special modeling feature to take into 
account the strong floor effect.

The two-part growth modeling idea is 
shown in Figure 2.10, where the outcome 
is split into two parts, a binary part and a 
continuous part. Here, iy and iu represent 
random intercepts π0, whereas sy and su rep-
resent random linear slopes π1. In addition, 
the model has random quadratic slopes qy 
and qu. The binary part is a growth model 
describing for each time point the prob-
ability of an individual experiencing the 
event, whereas for those who experienced it 
the continuous part describes the amount, 
in this case the number of heavy drinking 
occasions in the last 30 days. For an indi-
vidual who does not experience the event, 
the continuous part is recorded as missing. 
A joint growth model for the binary and the 
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fIguRe 2.10
Two-part growth model for heavy drinking.
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continuous process scored in this way rep-
resents the likelihood given by Olsen and 
Schafer (2001).

Nonnormally distributed outcomes can 
often be handled by ML using a nonnormal-
ity robust standard error approach, but this 
is not sufficient for outcomes such as shown 
in Figure 2.9 given that a linear model is 
unlikely to hold. To show the difference in 
results as compared two-part growth mod-
eling, Table 2.5 shows the Mplus output for 
the estimated growth model for frequency 
of heavy drinking ages 18 to 25. The results 
focus on the regression of the random 

intercept i on the time-invariant covariates 
in the model. The time scores are centered 
at age 25 so that the random intercept refers 
to the systematic part of the growth curve 
at age 25. It is seen that the regular growth 
modeling finds all but the last two covariates 
significant. In contrast, the two-part model-
ing finds several of the covariates insignifi-
cant in one part or the other (the two parts 
are labeled iy ON for the continuous part 
and iu ON for the binary part. Consider as 
an example, the covariate black. As is typi-
cally found being black has a significant 
negative influence in the regular growth 

taBle 2.5

Two-Part Growth Modeling of Frequency of Heavy Drinking Ages 18–25

Parameter estimate SE est./SE Std StdYX

Regular growth modeling, treating outcome as continuous. nonnormality robust Ml (MlR)
i on
male 0.769 0.076 10.066 0.653 0.326
black −0.336 0.083 −4.034 −0.286 −0.127
hisp −0.227 0.103 −2.208 −0.193 −0.071
es 0.291 0.128 2.283 0.247 0.088
fh123 0.286 0.137 2.089 0.243 0.075
hsdrp −0.024 0.104 −0.232 −0.0240 −0.008
coll −0.131 0.086 −1.527 −0.111 −0.052

two-part growth modeling
iy on
male 0.262 0.052 5.065 0.610 0.305
black −0.096 0.059 −1.619 −0.223 −0.099
hisp −0.130 0.066 −1.963 −0.111 −0.111
es 0.082 0.062 1.333 0.191 0.068
fh123 0.213 0.076 2.815 0.495 0.152
hsdrp 0.084 0.065 1.289 0.195 0.078
coll −0.015 0.053 −0.280 −0.035 −0.016

iu on
male 2.041 0.176 11.594 0.949 0.474
black −1.072 0.203 −5.286 −0.499 −0.222
hisp −0.0545 0.234 −2.331 −0.254 −0.093
es 0.364 0.234 1.560 0.169 0.060
fh123 0.562 0.275 2.045 0.262 0.080
hsdrp −0.238 0.216 −1.103 −0.111 −0.044
coll −0.259 0.196 −1.317 −0.120 −0.056
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modeling, lowering the frequency of heavy 
drinking. In the two-part modeling this 
covariate is insignificant for the continuous 
part and significant only for the binary part. 
This implies that, holding other covariates 
constant, being black significantly lowers 
the risk of engaging in heavy drinking, but 
among blacks who are engaging in heavy 
drinking there is no difference in amount 
compared to other ethnic groups. These two 

paths of influence are confounded in the 
regular growth modeling.

As shown in Figure 2.11, a distal outcome 
can also be added to the growth model. In 
this example, the distal outcome is a DSM-
based classification into alcohol depen-
dence or not by age 30. The distal outcome 
is predicted by the age 25 random inter-
cept using a logistic regression model part. 
Table 2.6 shows that the distal outcome is 
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male
black
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hsdrp
coll
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y18 y19 y20 y24 y25

u18 u19 u20 u24 u25

dep30

fIguRe 2.11
Two-part growth model for heavy drinking and a distal outcome.

taBle 2.6

Two-Part Growth Modeling of Frequency of Heavy Drinking Ages 18–25 With a Distal Outcome

Parameter estimate SE est./SE Std StdYX

dep30 on
iu 0.440 0.141 3.120 0.949 0.427
iy 0.874 0.736 1.187 0.373 0.168

dep30 on
male −0.098 0.291 −0.337 −0.098 −0.022
black 0.415 0.294 1.414 0.415 0.083
hisp 0.025 0.326 0.075 0.025 0.004
es 0.237 0.286 0.830 0.237 0.038
fh123 0.498 0.325 1.532 0.498 0.069
hsdrp 0.565 0.312 1.812 0.545 0.101
coll −0.384 0.276 −1.390 −0.384 −0.081
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significantly influenced only by the age 
25-defined random intercept iu for the 
binary part, not by the random intercept for 
the continuous part. In other words, if the 
probability of engaging in heavy drinking 
at age 25 is high, the probability of alcohol 
dependence by age 30 is high. But the alco-
hol dependence probability is not signifi-
cantly influenced by the frequency of heavy 
drinking at age 25. The results also show 
that controlling for age 25 heavy drinking 
behavior, none of the covariates has a sig-
nificant influence on the distal outcome.

2.6  gRowth ModelIng 
(thRee-level analysIs)

This section considers growth modeling of 
individual- and cluster-level data. A typical 
example is repeated measures over grades 
for students nested within schools. One may 
again ask if there really is anything new that 
can be said about growth modeling in clus-
ter data. The answer, surprisingly, is once 
again yes. An important extension to the 
conventional three-level analysis becomes 
clear when viewed from a general latent 
variable modeling perspective.

For simplicity, the notation will be cho-
sen to coincide with that of Raudenbush 
and Bryk (2002). Consider the observed 
variables for time point t, individual i, and 
cluster j,

ytij:  individual-level, outcome variable
a1tij:  individual-level, time-related 

 variable (age, grade)
a2tij:  individual-level, time-varying 

covariate
xij:  individual-level, time-invariant 

covariate
wj: cluster-level, covariate

and the three-level growth model

 Level 1: ytij = π0ij + π1ij a1tij + π2tij a2tij + etij,

 (2.23)

 Level

x rij j j ij ij
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Here, the πs are random intercepts and 
slopes varying across individuals and clus-
ters, and the βs are random intercepts and 
slopes varying across clusters. The residuals 
e, r, and u are assumed normally distributed 
with zero means, uncorrelated with respec-
tive right-hand side covariates, and uncor-
related across levels.

In Mplus, growth modeling in cluster 
data is represented in a similar, but slightly 
different way that offers further model-
ing flexibility. As mentioned in Section 2.5 
the first difference arises from the level 1 
repeated measurement on y over time being 
represented by a multivariate outcome vec-
tor y = (y1,y2,…,yT)′ so that the number of 
levels is reduced from three to two. The 
second difference is that each variable, with 
the exception of variables multiplied by 
random slopes, is decomposed into uncor-
related within- and between-cluster compo-
nents. Using subscripts w and b to represent 
within- and between-cluster variation, one 
may write the variables in Equation 2.23 as 

 ytij = ybtj + ywtij, (2.26)
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  π0ij = π0bj + π0wij, (2.27)

  π1ij = π1bj + π1wij, (2.28)

  π2tij = π2tbj + π2twij, (2.29)

 etij = ebtj + ewtij, (2.30)

so that the level 1 Equation 23 can be 
expressed as

ytij = π0bj + π0wij + (π1bj + π1wij) 
   a1tij + (π2btj + π2wtij) a2tij + ebtj + ewtij. (2.31)

The three-level model of Equations 2.23 
through 2.25) can then be rewritten as a 
two-level model with levels corresponding 
to within- and between-cluster variation,
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 (2.33)

From the latent variable perspective taken 
in Mplus, the first line of the within level 
Equation 2.32 and the first line of the between 
level Equation 2.33 is the measurement part 
of the model with growth factors π0, π1 mea-
sured by multiple indicators yt. The next lines 
of each level contain the structural part of the 

model. As is highlighted in Equation 2.31, 
the rearrangement of the 3-level model as 
Equation 2.32, Equation 2.33 shows that the 
three-level model typically assumes that the 
measurement part of the model is invariant 
across within and between in that the same 
time scores a1tij are used on both levels.

As seen in Equation 2.32, Equation 2.33 
the decomposition into within and between 
components also occurs for the residual 
etij = ewtij + ebtj. The ebtj term is typically fixed 
at zero in conventional multilevel model-
ing, but this is an important restriction. 
This restriction is not clear from the way the 
model is written in Equation 2.23. Time-
specific, between-level variance parameters 
for the residuals ebtj are often needed to repre-
sent across-cluster variation in time- specific 
residuals.

Consider a simple example with no time-
varying covariates and where the time 
scores do not vary across individuals or 
clusters, a1tij = a1t. To simplify notation in 
the actual Mplus analyses, and dropping 
the ij and j subscripts, let iw = π0w, sw = π1w, 
ib = π0b, and sb = π1b be the within-level 
and between-level growth factors, respec-
tively. Figure 2.12 shows the model diagram 
for four time points using the within-level 
covariate x and the between-level covari-
ate w. The model diagram may be seen as 
analogous to the two-level factor analysis 
model, adding covariates. The between-level 
part of the model is drawn with residual 
arrows pointing to the time-specific latent 
variables y1 − y4. These are the residuals ebtj 
that conventional growth analysis assumes 
are zero.

The model of Figure 2.12 is analyzed 
with and without the zero residual restric-
tion using mathematics scores in Grades 
7 through 10 from the Longitudinal 
Survey of American Youth (LSAY). Two 
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 between-level covariates are added, lunch 
(a poverty index) and mstrat (math teacher 
 workload). The between-level Mplus ML 
results from the two analyses are shown 
in Table 2.7. The χ2 model test of fit results 
show a big improvement when adding the 
residual variances to the model. The sb 
regression on mstrat also shows large dif-
ferences between the two approaches with 
a smaller and insignificant effect in the 
conventional approach. Given that the 
sb residual variance estimate is larger for 
the conventional approach, it appears that 
the conventional model tries to absorb the 
residual variances into the slope growth 
factor  variance. The residual variance for 
Grade 10 has a negative insignificant value 
that could be fixed at zero but does not 
change other results much.

2.6.1  further three-level growth 
Modeling extensions

Figure 2.13 shows a student-level regres-
sion of the random slope sw regressed on 
the random intercept iw. With iw defined at 

the first time point, the study investigates to 
which extent the initial status influences the 
growth rate. The regression of the growth 
rate on the initial status has a random slope 
s that varies across clusters. For example, a 
researcher may be interested in how schools 
vary in their ability to reduce the influence 
of initial status on growth rate. Seltzer, Choi, 
and Thum (2002) studied this topic using 
Bayesian MCMC estimation, but ML can 
be used in Mplus. Figure 2.13 shows how 
the school variation in s can be explained 
by a school-level covariate w. The rest of the 
school-level model is specified as in the pre-
vious section.

Figure 2.14 shows an example of a mul-
tiple-indicator, multilevel growth model. 
In this case the growth model simply uses 
a random intercept. The data have four 
levels in that the observations are indica-
tors nested within time points, time points 
nested within individuals, and individuals 
nested within twin pairs. The model dia-
gram, however, shows how this case can 
be expressed as a single-level model. This 
is accomplished using a triply multivariate 

iw sw

y1 y2 y3 y4

x

ib sb

y1 y2 y3 y4

w

Within Between

fIguRe 2.12
A two-level growth model (three-level analysis).
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ib sb

y1 y2 y3 y4

w

s

y1 y2 y3 y4

iw sw
s

Student (within) Student (between)

fIguRe 2.13
Multilevel modeling of a random slope regressing growth rate on initial status.

taBle 2.7

Two-Level Growth Modeling (Three-Level Modeling) of LSAY Math Achievement, Grades 7–10

Parameter estimate SE est./SE Std StdYX

Conventional growth modeling:
Chi-square (32) = 179.58. Between-level estimates and SEs:
sb on
lunch −1.271 0.402 −3.160 −1.919 −0.397
mstrat 1.724 1.022 1.688 2.605 0.185

Residual variances
math7 0.000 0.000 0.000 0.000 0.000
math8 0.000 0.000 0.000 0.000 0.000
math9 0.000 0.000 0.000 0.000 0.000
math10 0.000 0.000 0.000 0.000 0.000
ib 5.866 1.401 4.186 0.736 0.736
sb 0.354 0.138 2.564 0.809 0.809
Allowing time-specific level 3 residual variances:
Chi-square (28) = 83.69. Between-level estimates and SEs:

sb on
lunch −1.312 0.367 −3.576 −2.495 −0.516
mstrat 2.281 0.771 2.957 4.338 0.308

Residual variances
math7 1.396 0.749 1.863 1.396 0.159
math8 1.414 0.480 2.946 1.414 0.154
math9 0.382 0.381 1.002 0.382 0.042
math10 −0.121 0.518 −0.234 −0.121 −0.012
ib 5.211 1.410 3.694 0.704 0.704
sb 0.177 0.155 1.143 0.640 0.640
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representation where the indicators (two in 
this case), time points (five in this case), and 
twins (two) create a 20-variate observation 
vector. With categorical outcomes, ML esti-
mation needs numerical integration that is 
prohibitive given that there are 10 dimen-
sions of integration, but weighted least 
squares estimation is straightforward.

Figure 2.15 shows an alternative,  two-level 
approach. The data vector is arranged as 
doubly multivariate with indicators and 

twins creating four outcomes. The two levels 
are time and person. This approach assumes 
time-invariant measurement parameters 
and constant time-specific factor variances. 
These assumptions can be tested using the 
single-level approach in Figure 2.14 with 
weighted least squares estimation. With cat-
egorical outcomes, the two-level formula-
tion of Figure 2.15 leads to four dimensions 
of integration with ML, which is possible 
but still quite heavy. A simple alternative 

Time 1 Time 2 Time 3 Time 4 Time 5
Twin 1

Twin 2

i1

i2

ACE model
constraint

fIguRe 2.14
Multiple indicator multilevel growth.

Level-1 variation
(across occasions) Not used in the analysis

Level-2 variation
(across persons)

Twin 1

Twin 2

i1

i2

ACE model
constraint

Measurement in variance
constant time-specific variances

fIguRe 2.15
Multiple indicator multilevel growth in long form.
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is provided by the new two-level weighted 
least squares approach discussed for multi-
level EFA in Section 2.4.

2.7  MultIlevel gRowth 
MIxtuRe ModelIng

The growth model of Section 2.5 assumes 
that all individuals come from one and the 
same population. This is seen in Equation 
2.22 where there is only one set of γ param-
eters. Similar to the two-level regression 
mixture example of Section 2.2, however, 
there may be unobserved heterogeneity in 
the data corresponding to different types 
of trajectories. This type of heterogeneity is 
captured by latent classes (i.e., finite mix-
ture modeling).

Consider the following example that was 
briefly discussed in Muthén (2004), but 
is more fully presented here. Figure 2.16 
shows the results of growth mixture mod-
eling (GMM) for mathematics achieve-
ment in Grades 7 through 10 from the 
LSAY data. The analysis provides a sort-
ing of the observed trajectories into three 

latent classes. The left-most class with poor 
 development also shows a significantly 
higher percentage of students who drop out 
of high school, suggesting predictive valid-
ity for the classification.

Figure 2.17 shows the model diagram for 
the two-level GMM for the LSAY example. 
In the within (student-level) part of the 
model, the latent class variable c is seen to 
influence the growth factors iw and sw, as 
well as the binary distal  outcome hsdrop. 
The broken arrows from c to the arrows 
from the set of covariates to the growth 
factors indicate that the covariate influ-
ence may also differ across the latent 
classes. The filled circles for the dependent 
variables math7 – math10, hsdrop, and c 
indicate random intercepts. These random 
intercepts are continuous latent variables 
that are modeled in the between (school-
level) part of the model. For the between 
part of the growth model only the inter-
cept is random, not the slope. In other 
words, the slope varies only over students, 
not schools. Since there are three latent 
classes, there are two random intercepts 
for c, labeled c#1 and c#2. On between 
there are two covariates discussed in 
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Growth mixture modeling with a distal outcome.



Beyond Multilevel Regression Modeling  •  37

earlier examples, lunch (a poverty index) 
and mstrat (math teacher workload).

Table 2.8 gives the estimates for the mul-
tinomial logistic regression of c on the 
covariates. On the within level (student 
level), the estimates are logistic regres-
sion slopes, whereas on the between level 
(school level), the estimates are linear 
regression slopes. The within level results 
show that the odds of membership in class 
1, the poorly developing class, relative to 
the well-developing reference class 3 are 
significantly increased by being male, 
black, having dropout thoughts in Grade 

7, and having been expelled or arrested by 
Grade 7. The odds are decreased by hav-
ing high schooling expectations in Grade 
7. The between level results pertain to 
how the school environment influences 
the student’s latent class membership. The 
probability of membership in the poorly 
developing class is significantly increased 
by lunch; that is, being in the poverty cat-
egory, whereas mstrat has no influence on 
this probability.

The top part of Table 2.9 shows the with-
in-level logistic regression results for the 
binary distal outcome hsdrop. It is seen 

female

hispanic

black

mother’s ed.

homeres.

expectations

drop thoughts

arrested

expelled

math7 math8 math9 math10

hsdrop

swiw

c

Within

Between

math10math9math8math7

Lunch ib

c#1

c#2

mstrat

hsdrop

fIguRe 2.17
Two-level growth mixture modeling with a distal outcome.



38  •  Bengt Muthén and Tihomir Asparouhov

that the probability of dropping out of high 
school is significantly increased by being 
female, having dropout thoughts in Grade 
7, and having been expelled by Grade 7. 
The dropout probability is significantly 
decreased by having high mother’s educa-
tion and having high schooling expecta-
tions in Grade 7.

The bottom part of Table 2.9 pertains to 
the between level and gives results for the 
random intercept ib of the growth model 
and the random intercept of the hsdrop 
logistic regression. These results concern 
the influence of the school environment 
on the level of math performance and on 
dropping out. For ib it is seen that increas-
ing mstrat (math teacher workload) lowers 
the school average math performance. For 
hsdrop it is seen that poverty status increases 
the probability that a student drops out of 

high school. The two random intercepts are 
negatively correlated so that lower math 
performance in a school is associated with 
a higher dropout probability.

It is interesting to study the effects of the 
school level poverty index covariate lunch. 
The model says that poverty has both direct 
and indirect effects on dropping out of high 
school. The direct, school-level effect was 
just discussed in connection with the bot-
tom part of Table 2.9. The indirect effect can 
be seen by poverty increasing the probability 
of being in the poorly developing math tra-
jectory class as shown in the between-level 
results of Table 2.8. As seen in Figure 2.16 
and also in the top part of the model dia-
gram of Figure 2.17, the latent class variable 
c influences the probability of dropping out 
on the student level. In other words, poverty 
has an indirect, multilevel effect mediated 
by the within-level latent class variable. This 
illustrates the richness of detail that a mul-
tilevel growth mixture model can extract 
from the data.

2.8 conclusIons

This chapter has given an overview of latent 
variable techniques for multilevel model-
ing that are more general than those com-
monly described in text books. Most, if not 
all, of the models cannot be handled by 
 conventional multilevel modeling or soft-
ware. If space permitted, many more exam-
ples could have been given. For example, 
using combinations of model types, one may 
formulate a two-part growth model with 
individuals nested within clusters, or a two-
part growth mixture model. Several multi-
level models such as latent class analysis, 
latent transition analysis, and discrete- and 

taBle 2.8

Two-Level GMM for LSAY Math Achievement: 
Latent Class Regres sion Results

Parameter estimate SE est./SE

within level
c#1 on
female −0.751 0.188 −3.998
hisp 0.094 0.705 0.133
black 0.900 0.385 2.339
mothed −0.003 0.106 −0.028
homeres −0.060 0.069 0.864
expect −0.251 0.074 −3.406
droptht7 1.616 0.451 3.583
expel 0.698 0.337 2.068
arrest 1.093 0.384 2.842
Between level 1

c#1 on
lunch 2.265 0.706 3.208
mstrat −2.876 2.909 −0.988

c#2 on
lunch −0.088 1.343 −0.065
mstrat −0.608 2.324 −0.262
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continuous-time survival analysis can also 
be combined with the models discussed. 
All these model types fit into the general 
latent variable modeling framework avail-
able in the Mplus program.
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3.1  IntRoductIon

In this chapter, we focus on extending the use of multilevel modeling for 
psychometric analyses. Such a use of multilevel modeling techniques has 
been referred to as multilevel measurement modeling (MMM; e.g., Beretvas 
& Kamata, 2005; Kamata, Bauer, & Miyazaki, 2008). When an MMM con-
siders categorical measurement indicators, such as dichotomously and/or 
polytomously scored test items, we refer to such a modeling framework 
as multilevel item response theory (IRT) modeling. Typically, traditional 
IRT models do not consider a nested structure of the data, such as stu-
dents nested within schools. However, data in social and behavioral science 
research frequently have such a nested data structure, especially when data 
are collected by multistage sampling. The strength of multilevel IRT model-
ing becomes important when we analyze psychometric data that have such 
a nested structure. A multilevel IRT model appropriately analyzes data by 
taking into account both within- and between-cluster variations of the data. 
Also, since multilevel modeling is essentially an extension of a regression 
model to multiple levels, the flexibility of multilevel IRT modeling offers the 
opportunity to incorporate covariates and their interaction effects. 

This chapter is organized into three main sections. First, traditional 
IRT modeling is introduced. Then, a multilevel extension of IRT model-
ing is presented. In this section, three different modeling frameworks are 
presented. Lastly, an illustrative data analysis to estimate the variation of 
differential item functioning (DIF) on a statewide testing program data is 
presented.
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3.2  IteM ResPonse 
theoRy Models

Item response theory modeling is a widely 
utilized class of traditional measurement 
models. For dichotomously scored test 
items, there are several well-recognized IRT 
models, such as the Rasch model, the two-
parameter logistic model, and the three-
parameter logistic model. For example, the 
two-parameter logistic model can be writ-
ten as

 pip
i p i

i p i
=

+[ ]
+ +[ ]
exp

exp
,

α θ δ
α θ δ1

 (3.1)

where θp is the ability of examinee p, αi is 
the discrimination power of item i, and 
δi is the threshold or location of item i. In 
IRT applications, the threshold is typically 
transformed into the difficulty parameter 
βi by βi = –δi/αi, such that the exponential 
function has a form of αi(θp – βi). However, 
in this chapter we will use the threshold 
parameter directly for simplicity from a 
modeling perspective. The metric of θp and 
–δi/αi are typically in a standardized scale, 
where 0 is the center of the distribution with 
a standard deviation of 1. When discrimi-
nation power is assumed to be equal for all 
items in the instrument and constrained to 
be 1, the model becomes

 pip
p i

p i
=

+[ ]
+ +[ ]
exp

exp
,

θ δ
θ δ1

 (3.2)

and is known as the Rasch model. The 
difference between θp and –δi = βi is 
directly a logit quantity, where θ indicates 
a typical ability or difficulty, respectively. 
Furthermore, the two-parameter logistic 

model can be extended to the three-param-
eter logistic model

 pip i i
i p i

i p i
= + −

+[ ]
+ +[ ]γ γ

α θ δ
α θ δ

( )
exp

exp
,1

1
 (3.3)

where γi is the lower asymptote of the logis-
tic curve and known as the pseudo guess-
ing parameter. Under the three-parameter 
logistic model, we assume a nonzero lower 
asymptote, indicating a nonzero probabil-
ity of endorsing an item for examinees with 
any ability level.

Item response modeling may be extended 
to polytomously scored items. One widely 
used model is the Graded Response Model 
(Samejima, 1969), which utilizes the 
 cumulative logit principle. The model is 
written as

 pijp
i p ij

i p ij

+ =
+[ ]

+ +[ ]
exp

exp
,

α θ δ
α θ δ1

 (3.4)

where p +
ijp is the probability for person p get-

ting the scoring category j or higher on item 
i. In this model, δij is the threshold param-
eter for the jth score boundary. As a result, 
the probability of getting a specific scoring 
category j is obtained by p p pijp ijp i j p= −+

+
+
( ) .1  

For the lowest scoring category (j = 0), 
p pi p i p0 11= − + , while p piMp iMp= +  for the high-
est scoring category M. If δij is transformed 
into βij = –δij/αi, βij is the category-bound-
ary difficulty for the jth score boundary. By 
assuming the discrimination coefficients 
are equal across all items, it is also sensible 
to make a one-parameter extension from 
this model. Another class of IRT models 
for polytomously scored items is based on 
the adjacent logit principle. One general 
form is the generalized partial credit model 
(Muraki, 1992)
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where x is the target response category for 
the item, and mi is the highest response cat-
egory for item i (j = 0, …, r, …, mi). Simpler 
variations of this model include the partial 
credit model with αi = 1 for all i (Masters, 
1982), and the rating scale model with αi = 1 
for all i and δij = ηi + κj, where ηi is the item 
location parameter and κj is the step param-
eter. In the rating scale model, step param-
eters κj are common to all items, indicating 
distances between step parameters are the 
same for all items.

3.3  MultIlevel IteM 
ResPonse ModelIng

A multilevel IRT model extends the above 
mentioned IRT models, such that they con-
sider variations of abilities between group 
units such as schools, as well as within group 
units. Accordingly, a multilevel IRT model 
will distinguish the individual-level abili-
ties and group-level abilities. For example, a 
multilevel extended two-parameter logistic 
IRT model for dichotomously scored items 
could be expressed as

 pip
i g pg i

i g pg i
=

+ +[ ]
+ + +[ ]
exp ( )

exp ( )
,

α ξ ζ δ
α ξ ζ δ1

 (3.6)

where θpg = ξg + ζpg. Here, θpg is the ability 
of person p in group g, but it is expressed 
with ξg that is the mean group ability g, and 

ζpg that is the amount of deviation from the 
group mean ability for person p in group g. 
This is one of the simplest forms of a mul-
tilevel IRT model. However, typical appli-
cations of multilevel IRT models involve 
covariates in the model.

Several different ways to formulate 
a multilevel IRT model have been pre-
sented in the literature. In this section, 
two approaches, Fox & Glas’s (2001) multi-
level IRT framework, and Kamata’s (2001) 
HGLM approach to multilevel IRT will be 
presented. We will also describe multilevel 
structural equation modeling with categor-
ical measurement indicators since both of 
these approaches can be viewed as special 
cases of the SEM. 

3.3.1  fox and glas’s Multilevel 
IRt Modeling

One aspect of multilevel IRT modeling 
traces back to the development of latent 
regression model (Vehelst & Eggen, 1989; 
Zwinderman, 1991, 1997), where observed 
variables are regressed on the latent vari-
able θ. Fox and Glas (2001) extended this 
idea to multilevel linear modeling with 
two-parameter normal ogive and graded 
response model as the measurement 
model. This is a multilevel IRT model due 
to the nature of the multilevel model being 
embedded in the IRT framework. In effect, 
it allows modeling the relationship between 
observed individual and group character-
istics and a latent variable represented by 
both dichotomous and polytomous items. 
In Fox and Glas’s formulation, the mea-
surement model is either a two-parameter 
normal ogive model or graded response 
model. Additionally, this model describes 
the structural relationship between the 
latent variable in the IRT model (ability) 
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and observed covariates. Thus, the level-2 
model is a structural model

θ β β β ζpg g g pg Qg Qpg pgx x= + + + +0 1 1
2… ( ) ,  (3.7)

where θ is the latent variable that  represents 
the trait measured in the measurement (IRT) 
model, x are level-2 covariates, β1g,…, βQg are 
corresponding coefficients, and ζ pg

( )2  is the 
error, where ζ σig N( ) ~ ( , )2 20 . Additionally, 
three-level models can be written as

β γ γ γ ξ

β γ γ
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g QS Sg Qgw+ + +… γ ξ( ) ,
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where w are level-3 covariates, γ are corre-
sponding coefficients, and ξ ξ0

3 3
g Qg

( ) ( ), ,…  are 
level-3 random effects, where ξ•g∼N(0, Ω). If 
there is no covariate in either levels of the 
structural models, the structural model is 
reduced to 

 θ ξ ζpg g pg= +0
3 2( ) ( ) ,  (3.9)

since β0g and γ00 become the means of ζpg  
and ξ0g, which are 0. This equation demon-
strates its equivalency to the general multi-
level IRT model equation presented in the 
previous section (Equation 3.6).

Fox and Glas (2001) and Fox (2005) have 
implemented a Markov chain Monte Carlo 
(MCMC) method to estimate the param-
eters in this model. An R package for the 
MCMC called mlirt has been made avail-
able for public (Fox, 2007). 

3.3.2  hglM  approach

We now focus on the use of hierarchical 
generalized linear models (HGLMs) for 
latent variable modeling. The uniqueness 

of the GLM over general linear models is 
in the dependent measure. The GLM allows 
response measures that follow any proba-
bility distribution in the exponential family 
of distributions. Generalized linear mod-
els are of great benefit in situations where 
the response variables follow distributions 
other than the normal distribution and 
when variances are not constant. This is of 
particular interest in IRT as response mea-
sures are typically dichotomous or polyto-
mous, discrete, and nonnormal.

The analysis of the GLM incorporates 
the use of a link since the dependent mea-
sure in GLMs may characterize many dif-
ferent types of distributions and thus the 
relationship between the predictor and the 
dependent measure may not be linear in 
nature. Many different link functions exist, 
yet Table 3.1 shows the most common in 
research and practice.

The HGLM approach provides a flexible 
and efficient framework for modeling non-
normal data in situations when there may 
be several sources of error variation. This 
is accomplished by extending the familiar 
GLM to include additional random terms 
in the linear predictor. One special case of 
HGLMs is generalized linear mixed models 
(GLMMs), which constrains the additional 
terms to follow a normal distribution and to 
have an identity link. However, many HGLMs 
do not have such restrictions. For example, if 
the basic GLM is a log-linear model (Poisson 

taBle 3.1

Common Link Functions for Popular 
Probability Distributions

Probability Distribution Link Function

Normal Identity
Binomial/normal cumulative Logit/probit
Poisson Log
Multinomial Logit/probit
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distribution and log link), a more appropri-
ate assumption for the additional random 
terms might be a gamma distribution and a 
log link. Thus, HGLMs bring together a wide 
range of models under a common approach. 
Each HGLM is made up of at least two levels 
in a multilevel model so as to incorporate sev-
eral sources of error variation. This approach 
is especially useful in situations involving 
nested or clustered data. In IRT analysis, this 
might manifest itself in situations of students 
nested within schools or individuals nested 
within families. By considering cluster 
effects, innovative questions can be consid-
ered (e.g., if any differential item functioning, 
DIF, effects vary from cluster to cluster).

3.3.2.1  Modeling IRT as Latent HGLM

Earlier in this chapter, various IRT models 
were shown. An IRT model can be modeled 
with a two-level logistic regression where 
the log-odds (i.e., logit link function) of 
subject p providing a positive answer to an 
item i is represented by:

 η
ϕ

ϕ
θ βip

ip

ip
p i=

−






= −log ,
1

 (3.10)

where φip represents the probability that sub-
ject p gets item i correct, θp represents the trait 
level associated with subject p (θp ∼ N(0, σ2), 
stating that θp is normally distributed with 0 
mean and the variance of σ2), and βi repre-
sents the difficulty of item i. In this model, ηip 

represents the log-odds of subject p getting 
item i correct (assuming dichotomous out-
comes). This simple IRT model is the Rasch 
model as detailed earlier. Adding one addi-
tional parameter αi to represent the extent 
to which item i can discriminate between 
subjects of different trait levels, the model 
becomes:

 η α θ β α θ α βip i p i i p i i= −( ) = − .  (3.11)

Finally, if a predictor is added to this 
model in order to provide an explanatory 
approach, the formulation becomes

 η α θ α β γip i p i i pX= − + ,  (3.12)

where γ is the regression coefficient for 
explanatory variable Xp. 

For a set of r items, the logit link function 
can be modeled as a hierarchical two-level 
logistic model (e.g., Van den Noortgate & 
De Boeck, 2005):
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where Xqi = 1 if q = i, 0 otherwise, and
u Np u∼ ( ,  )0 2σ . Kamata (2001) parameter-
ized the multilevel logistic model as:

 

η
ϕ

ϕ

β β β

ip
ip

ip

p p ip r pX

=
−







= + + + −

log

( )

1

0 1 1 1… XX

X

r ip

p qp qip
q

r

( )

.

−

=

−

= +∑
1

0
1

1

β β

(3.14)

Each Xqip represents the qth dummy indi-
cator variable for subject p. In order for the 
design matrix of the model to achieve full 
rank, one of the items must be dropped from 
the model or a no-intercept model could be 
fit. For the case where an item is dropped, for 
r set of items, only r – 1 items are included in 
the model. The coefficient, β0p, is interpreted 
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as the mean effect of the dropped item, and 
each βqp is interpreted as the effect of the qth 
dummy indicator (i.e., item i, for i = 1, …, 
r – 1) compared to the reference item. For a 
particular item i, a value of zero is assigned 
to Xqip for q ≠ i, and a positive one when 
q = i. This gives a logit for a particular item i, 
for q = i, as:

 η
ϕ

ϕ
β βqp

qp

qp
p qp=

−






= +log
1 0  (3.15)

where β0p is a random effect in which
β σβ0

20p N∼ ,( ) .
There are a variety of methods to extend 

this idea to ordinal polytomous outcomes. 
One popular approach is the formation of 
a cumulative probability model. For each 
ordered response m (m = 1, . . . , M), a prob-
ability of response yi on item i  is established 
for each unique response possibility:

 ϕm iP y m= =( ).  (3.16)

Defining the probability response model 
in this manner creates difficulty in 

formulating a single regression model. 
Thus, a  cumulative probability model is 
incorporated:

ϕ ϕ ϕ ϕm i mP y m* ( ) .= ≤ = + + +1 2   (3.17)

A cumulative logit function can be derived 
using the cumulative probabilities

η ϕ
ϕm
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for each ordinal response of m = 1, . . . , M – 
1. In this model, ηm represents the log-odds 
of responding at or below category m, ver-
sus responding above category m. 

A common intercept can be introduced 
into this model by considering the differ-
ence (δ ) between the thresholds. The gen-
eral logit model now becomes

This approach can be used to model a 
two-level HGLM for polytomous items with 
the IRT perspective mentioned previously. 
The level-1 (item-level) model for a set of r 
items is represented as:
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where ϕmip
*  is the cumulative probability as 

defined above. One random effect, β0p , is 
present that represents the expected effect 
of the reference item for subject p. For a 
particular item i, a value of positive one is 
assigned to Xqip when q = i, and a value of 
zero otherwise. For a particular item q, this 
model simplifies to:

 η β β δmqp p qp sj
s

m

= + +
=

∑0
2

.  (3.21)

One possible level-2 model (subject-level) 
with level-2 predictor Xp  added to all effects 
and thresholds is expressed as:
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More than one predictor can be incor-
porated and can be a variety of variables 
of interest to the researcher that are sub-
ject related. For example, in DIF studies, a 
categorical  level-2 predictor of group affili-
ation (reference versus focal group) can be 
considered. This modeling can easily be 
extended to a three-level model. If a third 
level is added, the level-2 terms can be 
allowed to vary among clusters of subjects 
and level-3 predictors (cluster related) can 
be added to explain the random nature of 
level-2 terms.

A variety of estimation procedures can be 
utilized for these HGLM multilevel models. 
With logistic regression models, estimation 
procedures have typically incorporated a 

maximum likelihood method (De Boeck & 
Wilson, 2004). However, use of this estima-
tion method can prove problematic for mul-
tilevel models. 

Penalized quasi-likelihood (PQL) estima-
tion was at one time a popular approach. 
However, this method has been shown 
to produce negatively biased parameter 
 estimates (Raudenbush, Yang, & Yosef, 
2000). Raudenbush et al. (2000) and Yang 
(1988) suggested a sixth order Laplace 
(Laplace6) approximation for estimation 
instead. Current software, such as HLM 6 
(Raudenbush, Bryk, & Congdon, 2005), 
allows for a Laplace6 approximation, but 
is limited to Bernoulli models of two and 
three levels. For ordinal models, however, 
the PQL estimation procedure is still widely 
used (typically because alternative methods 
are not widely available in some software 
packages). 

Due to this, some suggest a Bayesian 
approach as a more flexible option (Johnson 
& Albert, 1999) and some multilevel soft-
ware (e.g., MLWin) now have this estima-
tion procedure as an option. Breslow (2003) 
showed that a MCMC approach is a better 
choice over PQL for complex problems that 
involve high dimensional integrals. 

Many studies that do approach regular 
multilevel models from a Bayesian perspec-
tive use a probit link function in their for-
mulation (Elrod, 2004; Fox, 2005; Galindo, 
Vermunt, & Bergsma, 2004; Hoijtink, 2000; 
Mwalili, Lesaffre, & Declerck, 2005; Qiu, 
Song, & Tan, 2002). Also popular in certain 
studies that have considered a Bayesian mul-
tilevel approach is the cumulative logit func-
tion (Ishwaran, 2000; Ishwaran & Gatsonis, 
2000; Lahiri & Gao, 2002; Lunn, Wakefield, 
& Racine-Poon, 2001). Within this Bayesian 
framework, MCMC Gibbs sampling estima-
tion procedures are typically used. A variety 
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of software (e.g., WinBUGS, BRugs for R, 
MLwiN, etc.) allow for this Gibbs sampling 
estimation procedure for multilevel mod-
els. Although the use of Gibbs sampling 
has grown in popularity since the advent of 
powerful personal computers, some psycho-
metric areas still consider Gaussian quadra-
ture points instead for estimation. 

Chaimongkol (2005) and Vaughn (2006) 
both incorporated this approach in estimat-
ing random DIF in multilevel models for 
dichotomous and polytomous items. Vague 
priors were used in the estimation so that 
the estimated values would closely mirror 
those using frequentist methods. In order 
for the model to be identified, both authors 
replaced the model parameters with new 
“adjusted” quantities that were well iden-
tified yet did not change the logit of the 
model.

Although the above mentioned estima-
tion procedures are the most common in 
practice, there are many others available 
that might be considered. Goldstein and 
Rasbash (1992) detail a iterative generalized 
least squares (IGLS) method for estima-
tion. This approach is sometimes referenced 
as PQL2 and is incorporated in the com-
puter program MLWin. Also, as mentioned 
above, Gaussian quadrature estimation is a 
popular choice in other software (e.g., Sabre, 
Stata, and GLLAMM). 

3.3.3  Multilevel seM approach

A more general framework for a multi-
level IRT modeling is a two-level structural 
equation model with categorical indicators. 
The two-level SEM assumes that multiple 
individuals are sampled from each of many 
groups in the population (see Muthén and 
Asparouhov, Chapter 2 of this book). 

The two-level factor model with categori-
cal indicators can be written as

 y pg W pg pg
* ,= +ΛΛ θθ εε  (3.23)

which represents a linear regression of the 
vector of I unobserved latent response vari-
ables y pg

*  on the latent variables θpg for 
person p in group g. The latent response vari-
ables y pg

*  is an I × 1 vector of latent response 
scores to I items in the test, and θpg is a K × 1 
vector of factor scores (abilities) for K latent 
factors. As a result, ΛW are factor loadings 
(I × K matrix), where the W subscript indi-
cates “within-groups,” and εpg are residuals 
(I × 1 vector). In a unidimensional IRT appli-
cation, for example, K = 1, and both ΛW and 
εpg are I × 1 vectors. Observed dichotomous 
response yipg is defined such that
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Here, τi is the threshold for item i. Within 
groups, the latent factors are assumed to be 
distributed with mean vector α and covari-
ance matrix ψW. Similarly, for polytomously 
scored items with scoring categories rang-
ing from 0 to M, 
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The residuals εpg are assumed to be dis-
tributed with means of zero and covariance 
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matrix ΣW. Residuals are independent from 
each other according to the local indepen-
dence assumption of IRT models, resulting 
in a diagonal ΣW matrix. If errors are distrib-
uted as the logistic distribution, the model 
is known as the logistic model, and this will 
provide the basis of equivalency to logistic 
item response models. If we have θpg as a 
1 × 1 scalar (i.e., only one latent trait) and 
M = 2 (i.e., dichotomously scored items), 
the model is equivalent to the 2PL IRT 
model. On the other hand, if residuals are 
normally distributed, the model is known 
as the normal ogive model. One impor-
tant assumption with this approach is that 
these covariance matrices are homogeneous 
across all groups, which will result in iden-
tical covariance structures between groups. 
Accordingly, for group j, the  within-group 
covariance matrix is 

 V W W W W W( ) ,*y = ′ +ΛΛ ΛΛ ΣΣψψ  (3.26)

which is essentially the same for the single-
level SEM, except the W subscript for each 
quantity in the equation. On the other hand, 
the structural model of the two-level SEM 
can be written as

 θθ αα θθ ζζpg g g pg g pg pg= + + +B xΓΓ ,  (3.27)

where latent factors are regressed on other 
latent factors and some observed covari-
ates x. The intercepts are given by αg, slopes 
for latent predictors are Bg, and slopes for 
observed covariates are Γg. The residuals are 
assumed to be normally distributed with 
means of zero and K × K covariance matrix 
ψ. If no latent variable is specified as a pre-
dictor in the model, the intercepts, αj, are 
simply factor means, which are typically 
constrained to be 0. 

Due to nested data structure, the multilevel 
SEM imposes an additional between-group 
level factor structure on the covariance 
matrix (e.g., Ansari, Jedidi, & Dube, 2002; 
Goldstein & McDonald, 1988; McDonald 
& Goldstein, 1989; Muthén, 1994; Muthén 
& Satorra, 1995). The resulting covariance 
structure at between-group level is
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Here, the structure for the within- and 
between-groups covariance matrices are 
very similar (Equations 3.25 and 3.27). 
However, the parameter estimates and the 
factor structure of the model can be differ-
ent between the two parts of the model as 
indicated by different subscripts (W vs. B). 

Traditionally, parameter estimation for 
this type of model has relied on the weighted 
least squares methods with a tetrachoric or 
polychoric correlation matrix, which differs 
from the IRT estimation tradition, where a 
full information maximum likelihood has 
been a common approach. Also, the scal-
ing of parameters will be different from 
the parameter scale of IRT if the weighted 
least square is employed, which requires 
appropriate transformation of parameters 
(e.g., Kamata et al., 2008). More recently, a 
true full information maximum likelihood 
estimator has become available in several 
general SEM software programs, which 
is consistent with the IRT tradition. Also, 
the MCMC has been shown to be effective 
for this type of model, especially when the 
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number of random effects becomes large 
(e.g., Chaimongkol, 2005; Fox, 2005; Fox & 
Glas, 2001; Vaughn, 2006).

3.4  IllustRatIve data 
analysIs

Data used in the following illustrative analy-
ses were sampled from the 2005 administra-
tion of mathematics assessment for eighth 
graders in a statewide testing program in 
one particular state in the United States. The 
mathematics test consisted of 40 items based 
on five subscales of skills, including: Number 
Sense, Measurement, Geometry, Algebraic 
Thinking, and Data Analysis. Here, only one 
subscale, Data Analysis, was used for illus-
trative data analysis. With the Data Analysis 
subscale, items measured various skills 
to use and interpret data through mean, 
median, and probability, as well as the use of 
a Venn diagram. Among nine items in this 
subscale, eight items were scored dichoto-
mously and one item was scored polyto-
mously with five ordered scoring categories. 
All nonresponded items were scored as 0. 
The sample of examinees included a total of 
11,220 examinees from 30 schools. 

By using this data set, modeling a ran-
dom differential item functioning (RDIF) 
is demonstrated. An RDIF is a differential 
item functioning (DIF) that is treated as a 
random effect. To be more specific, we con-
sider that the magnitude of DIF for a partic-
ular test item to vary across schools. Here, 
we evaluate the RDIF between English 
language learners (ELL) and students in 
standard curricula. All model parameters 
are estimated by full-information maxi-
mum likelihood with adaptive numeri-
cal integration. Mplus syntax for the three 

analyses presented here are provided in the 
Appendix. 

First, a DIF detection model was fitted 
under the multilevel CFA with a covariate. 
The model can be written

 y Gipg i pg i pg ipg
* ( )  = + +λ θ β ε2  (3.29)

with structural models
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When these measurement and structural 
models are combined, the model is

 y G Gipg i pg g pg i pg ipg
* ( ) ( )( ) ,= + + + +λ ζ ξ β β εθ

2 3

  (3.31)

where Gpg is the group indicator (1 = ELL, 
0 = Standard Curricula). Consequently, βθ 

indicates the difference between ELL and 
Standard Curricula students in their abil-
ity, and βi is the DIF magnitude for item i. 
This is essentially the same as the MIMIC 
approach to DIF detection (e.g., Finch, 2005) 
with an additional cluster level. Since this 
model is not identified, it was constrained 
with the magnitude of DIF for the first item 
being zero. This constraint was based on 
our initial data screening, including single-
item DIF analysis for all items on the entire 
mathematics test. Therefore, we are quite 
confident that this constraint is not too far 
from reality, and that estimated DIF magni-
tudes for the remaining items can be inter-
preted as the magnitude of DIF. However, 
one might be more on the conservative side 
to interpret βi as the difference between 
the first item and the ith item in their DIF 
magnitudes. Note that this limitation in 
scaling the DIF parameter is not unique 
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to this current approach; it is an inherent 
problem in DIF analysis in general. Bolt, 
Hare, and Newmann (2007) and Penfield 
and Camilli (2007) provide more detailed 
discussions on this matter. Furthermore, 
the mean of the within-level and between-
level latent factor were constrained to zero 
and the variance of the within-level latent 
factor was constrained to be one. Although 
it is not required for identification, item 
discriminations (factor loadings) were con-
strained to be the same for within- and 
between-levels. Results are summarized in 
Table 3.2. Values in the table without paren-
thesis indicate estimates of parameters and 

the values inside parentheses are standard 
errors of estimates. 

The second model assumed that one of 
the DIF magnitudes was a random effect, 
where the assumption was that DIF varied 
across schools. This effect was modeled as 
another random effect ξig

( )3 in an additional 
structural model

 β γ ξi i ig= +0
3( ) .  (3.32)

Here, the DIF for the ith item is expressed 
as the sum of the mean of DIF for the item 
across schools γ0i and the random effect ξig

( ) .3

The variance of this random effect is our 

taBle 3.2

Results of Data Analysis with Three-Level DIF Detection Model

a. Fixed effects

Item Loading Thresholds DIF

1 0.930
(.029)

–.712
(.035)

0.000

2 1.447
(.061)

–2.897
(.086)

–.227
(.117)

3 0.849
(.036)

–.188
(.040)

–.158
(.112)

4 1.142
(.045)

–2.628: –1.74: 1.111: 2.129
(.056)  (.050)  (.047) (.040)

–.811
(.096)

5 0.889
(.040)

.218
(.044)

–.150
(.101)

6 0.716
(.035)

–.103
(.035)

–.123
(.093)

7 1.305
(.063)

–.711
(.061)

–.132
(.124)

8 1.233
(.054)

–.356
(.045)

.009
(.212)

9 0.894
(.033)

–.993
(.041)

–.118
(.089)

b. Random effects

Mean Variance
Within-level latent factor 0.000 1.000
Between-level latent factor 0.000 .091

(.018)
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main interest. The combined model can be 
written as

 

y G

G

ipg i pg g pg

i i pg

* ( ) ( )

( )

( )

( )

= + +

+ +

λ ζ ξ β

γ ξ

θ
2 3

0
3 ++ εipg ,  (3.33)

In the data analysis, the DIF of item 7 
was treated as a random effect. The results 
are shown in Table 3.3. Again, values in the 
table without parenthesis indicate estimates 
of parameters and the values inside paren-
theses are standard errors of estimates.

Note that the variance of DIF for item 7 
was found to be .419, which is equivalent 
to SD = .647. Assuming a normal distribu-
tion of DIF magnitudes across schools, it 
can be interpreted that the range of DIF for 
the middle 68% of schools is nearly 1.30, 
which is quite large around a reasonable 
logit value.

Next, one covariate was entered into 
the model in an attempt to explain the 
variation of the DIF for item 7. The cova-
riate used here is the proportion of limited 
English proficient (LEP) students in each 
school. The variable was scaled such as 

taBle 3.3

Results of Data Analysis with RDIF Model

a. Fixed effects

Item Loading Thresholds DIF

1 0.931
(.029)

–.710
(.035)

0.000

2 1.446
(.061)

–2.893
(.086)

–.225
(.118)

3 0.848
(.036)

–.186
(.040)

–.157
(.113)

4 1.142
(.045)

–2.628: –1.717: 1.113: 2.131
(.056)  (.050) (.047) (.040)

–.808
(.096)

5 0.891
(.040)

.220
(.045)

–.146
(.100)

6 0.716
(.035)

–.102
(.035)

–.121
(.093)

7 1.300
(.063)

–.707
(.061)

See the mean of random 
effect for item 7

8 1.237
(.054)

–.354
(.045)

.015
(.119)

9 0.893
(.033)

–.991
(.041)

–.117
(.089)

b. Random effects

Mean Variance
Within-level latent factor 0.000 1.000
Between-level latent factor 0.000 .090

(.018)
DIF for item 7 –.295 

(.136)
.419

(.150)
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10% = 1 unit. Some descriptive statistics 
were as follows; N = 30, minimum = .34, 
maximum = 4.73, mean = 1.19, SD = .90. 
Since one part of the structural model is 
expanded to β γ γ ξi i i g ig= + +0 1

3( ) ( )LEP_P , 
the model is now written

 

y Gipg i pg g pg

i i

* ( ) ( )( )

( )

= + +

+ +

λ ζ ξ β

γ γ

θ
2 3

0 1 LEP_P gg i pg ipgG+[ ] +ξ ε( ) .3

  (3.34)

The results are summarized in Table 3.4. 
Again, values in the table without paren-

thesis indicate estimates of parameters and 
the values inside parentheses are standard 
errors of estimates. The mean of the DIF of 
item 7 is now expressed as a linear function 
of LEP_P.

Note that the variance of DIF for item 7 
was .419, which is equivalent to SD = .647 
in the previous model. When a school-level 
covariate LEP_P is added to the model, this 
variance was reduced to .224 (65% reduction 
of the variance). The estimated coefficient for 
the covariate is .425 (SE = .086), indicating 
positive relationship between the proportion 
of ELL students and the DIF magnitude. 

taBle 3.4

Results of Data Analysis for RDIF Model with a Covariate

a. Fixed effects

Item Loading Thresholds DIF

1 0.930
(.029)

–.710
(.035)

0.000

2 1.446
(.061)

–2.892
(.086)

–.225
(.117)

3 0.848
(.036)

–.186
(.040)

–.157
(.112)

4 1.142
(.045)

–2.628: –1.717: 1.114: 2.132
(.056)  (.050) (.047) (.040)

–.808
(.095)

5 0.891
(.040)

.220
(.045)

–.147
(.100)

6 0.716
(.035)

–.102
(.035)

–.122
(.092)

7 1.303
(.063)

–.707
(.061)

See the mean of random 
effect for item 7

8 1.236
(.054)

–.354
(.045)

.014
(.119)

9 0.892
(.033)

–.991
(.041)

–.118
(.090)

b. Random effects

Mean Variance
Within-level latent factor 0.000 1.000
Between-level latent factor 0.000 .090

(.018)
DIF for item 7 –.836 + .425 (LEP_P)

(.190) (.086)
.224

(.102)
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Since the intercept is negative –.836, the 
interpretation is that schools with a very 
small proportion of ELL students had a larger 
disadvantage for ELL students for this item. 
As the proportion of ELL increases, schools 
had smaller disadvantages for this item. For 
schools with about 20% ELL students, DIF 
is predicted to be near zero, by substituting 
LEP_P = 2 into –.836 + .425(LEP_P). 

3.5  conclusIons

Multilevel IRT modeling as an extension 
of multilevel modeling was discussed in 
this chapter. Several different modeling 
frameworks were introduced. As a practi-
cal application of the multilevel IRT model-
ing, estimation of random DIF (RDIF) was 
demonstrated with a data set sampled from 
a statewide testing program in the United 
States. As mentioned earlier, traditional IRT 
models typically do not consider a nested 
structure of the data. However, data in 
social and behavioral science research fre-
quently have such a nested data structure, 
especially when data are collected by mul-
tistage sampling. As demonstrated in this 
chapter, the strength of multilevel IRT mod-
eling becomes important when we analyze 
psychometric data that have such a nested 
structure. A multilevel IRT model appropri-
ately analyzes data by taking into account 
both within- and between-cluster variations 
of the data. Also, since multilevel modeling 
is an extension of a regression model to mul-
tiple levels, the flexibility of multilevel IRT 
modeling offers the opportunity to incorpo-
rate previous approaches and techniques, as 
demonstrated in this chapter.
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aPPendIx

Mplus syntax for the data 
analysis Illustrations

1.  DIF detections with multilevel IRT 
model

TITLE:   2PL DIF detection model

DATA:     FILE IS math_lep4.dat;

VARIABLE:    NAMES ARE sch u1-u9 lep 
lep_p;

            CATEGORICAL ARE u1-u9;
            Cluster = sch;
            within = lep;
             usevariables = sch u1-u9 

lep;

ANALYSIS:   Type = Twolevel Random;

MODEL:     %Within%
            f BY u1* (1)
                 u2 (2)
                 u3 (3) 
                 u4 (4) 
                 u5 (5) 
                 u6 (6) 
                 u7 (7)
                 u8 (8) 
                 u9 (9); 
            [f@0];
            f@1;
            f on lep;
            u1 on lep@0;
            u2 on lep;
            u3 on lep;
            u4 on lep;
            u5 on lep;
            u6 on lep;
            u7 on lep;
            u8 on lep;
            u9 on lep;

            %between%
            fb BY u1* (1)
                 u2 (2)
                 u3 (3) 
                 u4 (4) 
                 u5 (5) 

                 u6 (6) 
                 u7 (7)
                 u8 (8) 
                 u9 (9); 
            [fb@0];

2.  RDIF detection for item 7 with multi-
level 2-PL IRT model

TITLE:    2PL RDIF model

DATA:     FILE IS math_lep4.dat;

VARIABLE:    NAMES ARE sch u1-u9 lep 
lep_p;

            CATEGORICAL ARE u1-u9;
            Cluster = sch;
            within = lep;
             usevariables = sch u1-u9 

lep;

ANALYSIS:   Type = Twolevel Random;

MODEL:     %Within%
            f BY u1* (1)
                 u2 (2)
                 u3 (3) 
                 u4 (4) 
                 u5 (5) 
                 u6 (6) 
                 u7 (7)
                 u8 (8) 
                 u9 (9); 
            [f@0];
            f@1;
            f on lep;
            u1 on lep@0;
            u2 on lep;
            u3 on lep;
            u4 on lep;
            u5 on lep;
            u6 on lep;
            s7 | u7 on lep;
            u8 on lep;
            u9 on lep;

            %between%
            fb BY u1* (1)
                 u2 (2)
                 u3 (3) 
                 u4 (4) 
                 u5 (5) 
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                 u6 (6) 
                 u7 (7)
                 u8 (8) 
                 u9 (9); 
            [fb@0];
            s7;

3.  RDIF explanation with a school-level 
covariate for item 7 with multilevel 2-PL 
IRT model

TITLE:     2PL RDIF model with a 
school-level covariate

DATA:    FILE IS math_lep4.dat;

VARIABLE:    NAMES ARE sch u1-u9 lep 
lep_p;

            CATEGORICAL ARE u1-u9;
            Cluster = sch;
            within = lep;
            between = lep_p;

ANALYSIS:   Type = Twolevel Random;

MODEL:     %Within%
            f BY u1* (1)
                 u2 (2)
                 u3 (3) 
                 u4 (4) 

                 u5 (5) 
                 u6 (6) 
                 u7 (7)
                 u8 (8) 
                 u9 (9); 
            [f@0];
            f@1;
            f on lep;
            u1 on lep@0;
            u2 on lep;
            u3 on lep;
            u4 on lep;
            u5 on lep;
            u6 on lep;
            s7 | u7 on lep;
            u8 on lep;
            u9 on lep;

            %between%
            fb BY u1* (1)
                 u2 (2)
                 u3 (3) 
                 u4 (4) 
                 u5 (5) 
                 u6 (6) 
                 u7 (7)
                 u8 (8) 
                 u9 (9); 
            [fb@0];
            s7 on lep_p;
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Mixture Models for Multilevel Data Sets
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4.1 IntRoductIon

Latent class (LC) and mixture models are currently part of the standard sta-
tistical toolbox of researchers in applied fields such as sociology, psychol-
ogy, marketing, biology, and medicine. In most of their applications, the aim 
is to cluster units into a small number of latent classes or mixture compo-
nents (McLachlan & Peel, 2000). This clustering can be based on a set of 
categorical response variables as in the traditional LC model (Goodman, 
1974), on a set of continuous items as in a latent profile model (Lazarsfeld & 
Henry, 1968; Vermunt & Magidson, 2002) and mixture factor analysis (FA) 
(McLachlan & Peel, 2000; Yung, 1997), on a set of repeated measures as is 
mixture growth models (Muthén, 2004; Nagin, 1999; Vermunt, 2007b) and 
mixture (latent) Markov models (Van de Pol & Langeheine, 1990; Vermunt, 
Tran, & Magidson, 2008), or on other types of two-level data sets, such as 
from experiments in which individuals are confronted with multiple experi-
mental conditions (Wedel & DeSarbo, 1994) and from studies in which mul-
tiple individuals are nested within higher-level units (Aitkin, 1999; Vermunt 
& Van Dijk, 2001; Kalmijn & Vermunt, 2007). Whereas the main application 
of LC models is clustering, restricted LC models, and LC models with mul-
tiple latent variables can also be used for scaling type of applications similar 
to IRT and FA (Heinen, 1996; Magidson & Vermunt, 2001; Vermunt, 2001).

Recently, a multilevel extension of the LC model was proposed (Vermunt, 
2003, 2008a). It can, for example, be used when individuals with multiple 
item responses or repeated measurements are nested within groups (Bijmolt, 
Paas, & Vermunt, 2004; Vermunt, 2003, 2005, 2008a), when multivariate 
repeated responses are nested within individuals (Vermunt et al., 2008), as 
well as with three-mode data sets on individuals observed with different 
measures in different situations (Bouwmeester, Vermunt, & Sijtsma, 2007; 
Vermunt, 2007a) and three-level data sets (Vermunt, 2004, 2008a). As in 
standard LC models, for the lower level units, the main goal will usually 
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be to build a meaningful cluster model. One 
variant of this hierarchical LC model also 
yields a clustering of higher-level units by 
assuming that these belong to higher-level 
latent classes that differ in either lower-level 
responses or lower-level class membership 
probabilities. Another variant makes use of 
random effects to capture higher-level vari-
ation in LC model parameters, especially in 
lower-level class membership probabilities.

The aim of this chapter is threefold. The 
first is to explain the relationship between 
LC analysis and multilevel regression anal-
ysis techniques. It will be shown that LC 
models can be conceptualized as models for 
two-level data sets in which parameters vary 
randomly across level-2 units. Whereas in 
multilevel regression analysis this variation 
is modeled by assuming that parameters 
come from a particular continuous distri-
bution (typically normal), which is equiva-
lent to introducing one or more continuous 
latent variables in the model, in LC analysis 
variation is modeled using discrete latent 
variables (Aitkin, 1999; Vermunt & Van 
Dijk, 2001).

Our second aim is to introduce the mul-
tilevel extension of the LC model proposed 
by Vermunt (2003, 2008a), which is a model 
for univariate three-level data sets and mul-
tivariate two-level data sets. The multilevel 
LC model uses either continuous or discrete 
latent variables at the higher level.

Third, we discuss other kinds of mixture 
models for these types of multilevel data 
sets by connecting multilevel LC analy-
sis to the general latent variable model-
ing framework described by Skrondal and 
Rabe-Hesketh (2004). This framework 
integrates factor analytic and random 
effects models, as well as models with con-
tinuous and discrete latent variables (see 
also Asparouhov & Muthén, 2008; Vermunt, 

2008b). We present a ninefold classification 
of latent variable models, where eight types 
can be labeled multilevel mixture models. 
Most of these models are implemented in 
software packages such as gllamm (Rabe-
Hesketh, Skrondal, & Pickles, 2004), Mplus 
(Muthén & Muthén, 2008), and Latent 
GOLD (Vermunt & Magidson, 2005, 2008).

4.2  two-level data sets: 
the standaRd latent 
class Model

Whereas the traditional LC model was 
developed for the analysis of multivari-
ate response data sets (Goodman, 1974; 
Lazarsfeld & Henry, 1968), LC analysis can 
also be used for the analysis of two-level 
data sets (Aitkin, 1999; Vermunt & Van 
Dijk, 2001; Wedel & DeSarbo, 1994), such 
as from students nested within schools and 
from longitudinal studies in which repeated 
measurement are nested within persons. 
However, when the responses are of the same 
type—for example, all binary or all contin-
uous—we can also conceptualize the tra-
ditional LC model as a model for  two-level 
data; that is, by treating the single-level 
multivariate responses (say on question-
naire or test items) as two-level univariate 
responses, as item responses nested within 
individuals. Note that this is similar to IRT 
modeling using multilevel techniques by 
treating multiple item responses as multiple 
observations nested within individuals (see 
De Boeck & Wilson, 2004). A similar con-
nection has also been established between 
FA and multilevel linear regression analysis 
(Hox, 2002).

Using the typical multilevel analysis nota-
tion, let yij denote the response of level-1 
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unit i belonging to level-2 unit j, nj the total 
the number of level-1 units within level-2 
unit j, and Yj the complete response vector 
of unit j. This could thus also be the nj item 
responses of person j, where i refers to a par-
ticular item and where nj takes on the same 
value for all persons. We refer to a particu-
lar latent class by the symbol c and to the 
number of latent classes by C. To stress the 
similarity between the discrete latent vari-
able in a LC model and random effects in 
a multilevel regression model, we use the 
symbol u to refer to the latent class mem-
bership of unit j. More specifically, ujc is one 
of C indicator variables, which take on the 
value 1 if level-2 unit j belongs to latent class 
c and 0 otherwise. As classes are exhaustive 
and mutually exclusive, exactly one of the 
C class indicators ujc equals 1 and the oth-
ers equal 0. The vector of class indicators is 
denoted by Uj. Using this notation, a stan-
dard LC model can be defined as follows:

f Y P u f Y u

P u f y

j jc j jc
c

C
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( ) ( ) ( | )
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= = =

= =

=
∑ 1 1

1
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∏∑ 1
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As can be seen, the LC model is a model 
for Yj, the full response vector of level-2 unit 
j. The model equation shows the two basic 
assumptions of a LC model. The first one 
is that the density of Yj, f (Yj), is a weighted 
sum of class specific densities f (Yj | ujc = 1), 
where the class proportion P(ujc = 1) serve 
as weights. In other words, a level-2 unit 
has a certain prior probability of belonging 
to class c, and conditional on belonging to 
class c it has a certain probability of giving 
responses Yj. The second basic assumption 

is that the level-1 responses are indepen-
dent of one another given a level-2 unit’s 
class membership. This assumption is typi-
cally referred to as the local independence 
assumption. Note that this assumption is 
also made in factor analytic and random 
effects models, in which responses are 
assumed to be independent conditional 
on a unit’s latent factor scores and random 
effects values, respectively.

The specific form chosen for the condi-
tional density f (yij | ujc = 1) depends on the 
scale type of the response variable. Examples 
are Bernoulli for binary responses, normal 
for continuous responses, and Poisson for 
counts. What we are typically interested in 
are the expected values of these conditional 
distributions, denoted by E(yij | ujc = 1), 
which can be binomial proportions, normal 
means, Poisson rates, and so on. These class-
specific expected values can be parameter-
ized using a generalized linear model; that 
is, using a linear model after applying the 
appropriate link function g[⋅]. Let us assume 
that we are dealing with a traditional LC 
model, which means that the level-1 obser-
vations are nj questionnaire items. A regres-
sion model for the nj ⋅ C conditional means 
E(yij | ujc = 1) can be formulated as follows:

 g[E(yij | ujc = 1)] = β0 + βi + λ0c + λic.

This (unrestricted) model contains an 
intercept (β0), item effects (βi), main effects 
for the classes (λ0c), and item-class interac-
tions (λic). Note that this model contains 1 

+ nj + C + nj ⋅ C unknown parameters, which 
means that 1 + nj + C identification restric-
tions should be imposed on the regression 
coefficients, for example, by using dummy 
coding where the parameters for the first 
item and the first class are fixed to zero, or by 
fixing the β0, βi, and λ0c parameters to zero.
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To show how the same regression model 
for the nj item responses can be formulated 
in the more typical multilevel analysis 
notation, let Xj and Zj be two (identical) 
design matrices with nj rows and nj + 1 
columns:

X Zj j= =



















1 1 0 0
1 0 1 0
1 0 0 0

1 0 0 1

.

.

.
. . . . .

.






.

The first column of Xj and Zj contains the 
1s for the intercept term and the remain-
ing columns contain dummies for the item 
effects. Using these design matrices and 
conditioning on the vector Uj rather than 
on ujc = 1, the regression model for yij can 
also be written as follows:

g E y U X Z

x u

ij j ij ij

p pij
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   (4.2)

Though this equation is already very 
similar to a two-level regression model, the 
similarity becomes even clearer if we define
u uqj c

C
qc jc

* = ∑ =1 λ ; that is,

g E y U X Z x

u z

ij j ij ij p pij
p

P

qj qij
q

[ ( | , )],

*

=

+

=

=

∑ β
0

00

Q∑ .

This equation shows that a LC model can 
be seen as a model with random effects
uqj

* . A difference compared to a standard 

 random-effects model is that rather than 
assuming that the random effects come 
from a Q-dimensional multivariate normal 
distribution, here we assume that these take 
on only C different values, where each value 
λqc occurs with probability P(ujc = 1). Both 
the values of the random effects (the loca-
tions) and the associated probabilities are 
free parameters to be estimated. The mean of 
uqj

* and covariance between uqj
*  and uq j'

*  can 
be obtained as uq qcc

C* = ∑ = λ1  P(ujc = 1) and 
σ λ λu u qc q c jcc

C
q qq q

P u u u
′
= =∑ −′= ′( ) * *11  (Aitkin, 

1999; Vermunt & Van Dijk, 2001).
In the above example, we used design 

matrices Xj and Zj with a very specific struc-
ture, with an intercept and a set of item 
effects. However, as in two-level regres-
sion models, these two matrices may also 
contain the values of other types of pre-
dictors. More specifically Xj may contain 
level-1 predictors, level-2 predictors, and 
cross-level interactions, and Zj may contain 
level-2 predictors and cross-level interac-
tions. This yields what is often referred to as 
a LC or mixture regression model (Aitkin, 
1999; Vermunt & Van Dijk, 2001; Wedel & 
DeSarbo, 1994), which is a regression model 
for two-level data sets.

In LC models, level-2 predictors cannot 
only be used in the regression model for the 
response variable yij, but can also be used to 
predict the class membership probabilities. 
Typically a multinomial logit model is used 
for this purpose:

logit[ ( | )] ,( ) ( )P u X xjc j rc rj
r

R
= =

=∑1 2 2

0
γ  (4.3)

where the first column of X j
( )2  (r = 0) defines 

the constant term. For identification, one 
constraint has to be imposed on γrc for each 
r, for example, γr1 = 0.
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It is important to note that also in standard 
two-level regression models one may define 
regression models for the latent variables 
representing the random effects, as is usu-
ally done in the hierarchical model specifi-
cation of the multilevel model. However, it 
is always possible to substitute the random 
effects in the model for the response vari-
able by their regression equations, yielding 
the well-known mixed model formulation 
of the multilevel model. Such a substitution 
is not possible in LC regression analysis.

Whereas the standard LC model is a 
latent variable model with a nominal latent 
variable, it is also possible to define LC 
models with a latent variable with ordered 
categories. Such an ordinal  specification is 
obtained by using a single uj with numeric 
scores instead of C class indicators ujc 
(Heinen, 1996; Vermunt, 2001), which 
implies replacing the term ∑ =c

C
qc jcu1 λ  in 

Equation 4.2 by λquj. In a three-class model, 
the class locations uj could, for example be 
–1, 0, and 1 or 0, 0.5, and 1.

The above model formulations can easily 
be adapted for LC models with more than 
one nominal or ordinal latent variable. For 
example, the LC model with multiple ordi-
nal latent variables proposed by Magidson 
and Vermunt (2001) can be defined by 
including a term λq j

L u =∑ 1 in Equation 
4.2, where u j  is one of L ordinal latent vari-
ables. Similarly, a model with L nominal 
latent variables can be defined by setting 
up a series of dummies for each latent vari-
able and using the term λq c jcc

CL u 

== ∑∑ 11

in Equation 4.2. In models with multiple 
latent variables, one will typically restrict 
the joint probability density of the L latent 
variables, for example, using a log-linear 
(path) model (Hagenaars, 1993; Vermunt, 
1997) or a latent Markov structure (Van de 
Pol & Langeheine, 1990).

4.3  thRee-level data 
sets: the MultIlevel 
latent class Model

Let us now expand the LC model for the sit-
uation in which we have either a three-level 
univariate response or a two-level multivar-
iate response data set. Note that by concep-
tualizing multivariate responses as nested 
univariate responses, the latter can also be 
seen as three-level data sets, which is what 
we will do here. The extension of the LC 
model discussed here yields what Vermunt 
(2003, 2008a) called multilevel LC analysis.

To accommodate the additional hierar-
chical level, two modifications of the nota-
tion introduced in the previous sections 
are needed: an index k is used to refer to a 
particular level-3 unit and, whenever neces-
sary, a superscript (1), (2), or (3) is used to 
denote whether we are referring to a level-1, 
level-2, or level-3 quantity. For example, 
level-1 responses are now denoted by yijk, 
a level-2 response vector by Yjk, level-2 class 
indicators by ujkc

( )2 , and a level-2 vector of 
class indicators byU jk

( )2 .
The main difference compared to the two-

level case discussed in the previous section 
is that a multilevel LC model contains either 
continuous random effects or a discrete 
latent variable (=discrete random effects) at 
level 3. These random effects pick up varia-
tion in LC model parameters across level-3 
units. Below, we first discuss the situation 
in which level-3 heterogeneity is modeled 
using discrete random effects, as well as two 
important special cases of this specification. 
Then we discuss the multilevel LC model 
with continuous random effects. The third 
part of this section introduces other types 
of multilevel mixture models; that is, mod-
els with discrete random effects at level 3 
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but that are not necessarily LC models at 
level 2.

4.3.1  Models with discrete Random 
effects at level three

Let us first look at the situation in which the 
heterogeneity at the highest level is modeled 
by assuming that level-3 units belong to one 
of D latent classes. The level-3 class mem-
bership is denoted using indicator variables 
ukd

( )3 , which take on the value 1 if unit k 
belongs to class d and 0 otherwise. The vec-
tor of level-3 class indicators is denoted by
Uk

( )3 . The corresponding multilevel exten-
sion of the LC model is as follows:

 

f Y u P u u

f

jk kd jkc kd
c

C
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1 1 1= = = =
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2 3

1

1 1

2

= =
=

∏
  (4.4)

As can be seen, the “only” modification 
compared to the standard LC model described 
in Equation 4.1 is that both the level-2 class 
proportions P u ujkc kd( | )( ) ( )2 31 1= =  and the class-
specific densities f y u uijk jkc kd( | , )( ) ( )2 31 1= =  may 
depend onUk

( )3 . It is important to note that a 
multilevel LC model is actually a model for 
Yk, the full response vector of higher-level 
unit k; that is,

 f Y P u f Y uk kd jk kd
j

n

d

k

( ) ( ) ( | )( ) ( )

( )

= = =
==

∏3 3

1

1 1

3

11

D

∑
  (4.5)

where f Y ujk kd( | )( )3 1=  was defined in Equ-
ation 4.4. It can easily be seen that Equation 

4.5 defines a LC model for the higher level 
units, which is very similar to Equation 4.1, 
the equation for a standard latent model. 
Equation 4.5 shows that groups are assumed 
to belong to one of D latent classes, as well 
as that level-2 observations are assumed to 
be independent of one another conditional 
on the level-3 class membership.

The fact that P u ujkc kd( | )( ) ( )2 31 1= =  and 
f y u uijk jkc kd( | , )( ) ( )2 31 1= =  depend on ukd

( )3  can 
also be expressed via the regression models 
for ujkc

( )2  and yijk. These will differ from the 
ones in Equations 4.2 and 4.3 in that they 
may now contain terms for ukd

( )3 . In addition, 
a logistic regression model may be specified 
for ukd

( )3  itself. We use (sometimes double) 
superscripts to distinguish the different 
parameters sets and design matrices, where 
the first index refers to the level of the depen-
dent variable in the equation concerned and 
the second, if present, to the level of the ran-
dom effect. The three regression equations 
defining the multilevel LC model are:
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logit[ ( | )] .( ) ( ) ( ) ( )P u X xkd k td tk
t

T
3 3 3 3

0
1= =

=∑ γ  (4.8)

The terms ∑ =c
C

qc jkcu1
1 2 2λ( , ) ( ) , ∑ =d

D
qd kdu1
1 3 3λ( , ) ( ), and 

∑ =d
D

scd kdu1
2 3 3λ( , ) ( )  have a similar (discrete) ran-

dom effects interpretation as was explained 
in the previous section. As in the two-level 
model, the level-2 classes may capture varia-
tion in the parameters of the model for the 
response variable. The level-3 classes may 
capture variation in the parameters of the 
response model, as well as in the parameters 
of the regression model for the level-2 classes.

When the model does not contain predic-
tors and when, as in the example used in the 
previous section, the design matrices are 
setup to yield intercepts and item param-
eters, the three regression equations can be 
written in a simpler form; that is,
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which yields the more typical LC analysis 
notation.

Let us look at two more restricted special 
cases of the model defined in Equations 4.4 
through 4.8. The first special case is obtained 
by assuming that groups differ in the 
 lower-level class membership probabilities 
but have the same response  variable  densities. 
This implies that f ( yijk | u(2)

jkc =  1,u(3)
kd =  1) = 

f ( yijk | u(2)
jkc ) = 1) or, equivalently, that the term 

 containing the λqd
( , )1 3 parameters is excluded 

from Equation 4.6. This is the special case 
used by Vermunt (2003, 2007a). The basic idea 
is that the model part linking the  lower-level 

class memberships to the responses is the 
same for all groups, which is conceptually 
similar to saying that there is measurement 
equivalence across higher-level units. Groups 
may, however, differ with respect to the lower-
level class membership probabilities of their 
members, as well as with respect to covari-
ate effects on these class membership prob-
abilities. These differences across group-level 
classes are defined with the second term in 
Equation 4.7.

The second special case is the  opposite 
from the first. It assumes that response den-
sities depend on the group-level class mem-
bership, but lower-level class  membership 
not. This implies that P( u(2)

jkc = 1 | u(3)
kd = 1) = 

P(u(2)
jkc ) = 1) or that the term containing the 

λscd
( , )2 3  parameters is omitted from Equation 

4.7. This model is very similar to a standard 
regression model in which the variation in 
the responses is decomposed into indepen-
dent parts (Goldstein, 2003). The model is 
also similar to the multilevel FA model 
proposed by Muthén (1994) and described 
by Hox (2002), in which the variation in a 
multivariate response vector is attributed 
to common latent factors at two levels of a 
hierarchical structure.

It should be noted that in three-level 
regression modeling with continuous ran-
dom effects these two special cases yield 
equivalent models: regressing a lower-level 
random effect on a higher-level random 
effect is the same as using the terms con-
cerned in the model for the response vari-
ables (Goldstein, 2003; Hox, 2002). In the 
case of a multilevel FA, the first specifica-
tion is a restricted special case of the sec-
ond one, which is obtained by equating the 
factor loadings across levels. In other words, 
indicating that the lower-level factor means 
vary randomly across higher-level units is 
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equivalent to having a set of higher-level 
factors with the same loadings as the lower-
level factors. Despite the conceptual simi-
larities of these models with the multilevel 
LC model, these equivalences do not apply 
to the latter.

The full model is conceptually simi-
lar to a three-level model in which level-2 
and  level-3 random effects are correlated, 
which is a specification that is seldom used 
in multilevel regression analysis. Another 
specific aspect of the multilevel LC model 
is that also level-1 variances (which are free 
parameters in linear models with normally 
distributed residuals) can be allowed to dif-
fer across lower- and/or higher-level classes. 
In other words, level-2 and level-3 units 
may randomly differ with respect to their 
level-1 variances. There exists no equivalent 
specification for this in standard three-level 
regression analysis. A last specific feature 
this author would like to mention is that 
interactions between level-2 and level-3 class 
effects can easily be included in the model; 
that is, by adding terms containing the prod-
uct u ujkc kd

( ) ( )2 3⋅  to Equation 4.6. Also for such 
interactions there is no equivalence in stan-
dard three-level regression analysis. Though 
this seems to be a somewhat exotic option, 
this is clearly not the case. A possible appli-
cation is the investigation of item bias, where 
not only item intercepts but also lower-level 
class effects on items may differ across high-
er-level classes. The latter would be similar 
to allowing that factor loadings differ ran-
domly across groups, which is not possible 
in (standard) multilevel FA.

4.3.2  Models with continuous 
Random effects at level three

Rather than using discrete random effects, 
it is also possible to use a more standard 

specification with continuous random 
effects. Vermunt (2003, 2005) proposed 
a multilevel LC model in which the class 
membership probabilities of lower-level 
units vary randomly across level-3 units. 
Using as much as possible the same nota-
tion as above, but now with usk

( )3  represent-
ing the sth random effect and Uk

( )3  the vector 
of random effects, we can write the model 
as follows:
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with regression equations
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Note that this specification assumes mea-
surement equivalence; that is, the param-
eters in the LC model for the response 
variable(s) do not vary across groups. 
Groups differ with respect of their level-2 
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class membership probabilities, which is 
specified using a random effects multino-
mial logistic regression model of the type 
proposed by Hedeker (2003) for the dis-
crete unobserved variableU jk

( )2 . This model 
uses a lower-dimensional representation 
of the S + 1 random effects for each of the 
C latent classes; that is, it uses the “factor 
analytic” constraint u usck sc sk

*( ) ( ) ( ) ,3 2 3= λ  which 
actually implies that the random effects for 
a particular s are perfectly correlated across 
latent classes (across values of c). Without 
covariates, Equation 4.12 reduces to a vari-
ance decomposition of the class member-
ship logits. A more detailed description of 
this type of multilevel LC model is provided 
by Vermunt (2005).

4.3.3  other types of Multilevel 
Mixture Models

The term multilevel LC or mixture model 
was used so far for the situation in which 
we have a LC model for level-2 observations 
combined with an additional hierarchi-
cal level, where this third level is dealt with 
using either continuous or discrete ran-
dom effects. However, looking at Equation 
4.5 that defines a mixture model for  level-3 
units, one can think of other types of mul-
tilevel mixture models; that is, models with 
latent classes at level 3 and continuous latent 
variables (or random effects) at level 2. An 

example is a variant of the mixture FA model 
where  mixture  components are not formed 
by individuals but by groups (Varriale, 2008). 
Moreover, there is nothing that prevents 
applying the same logic of hierarchically 
structured mixture models to situations with 
more than three hierarchical levels.

Using a more general perspective, we 
get into a general latent variable model-
ing framework described by Skrondal and 
Rabe-Hesketh (2004) and expanded in cer-
tain ways by Vermunt (2008b) and Muthén 
(this volume). Table 4.1 shows the ninefold 
classification of latent variable models for 
three-level data sets based on the scale types 
of the latent variables at level 2 and level 3. At 
each level, one may have continuous latent 
variables (or random effects), discrete latent 
variables, or a combination of these. All 
models except type A1 could be called mul-
tilevel mixture models; that is, models with 
latent classes at either one or at two levels.

Multilevel factor and IRT models (Fox & 
Glas, 2001; Goldstein & Browne, 2002; Grilli 
& Rampichini, 2007; Muthén, 1994), as well 
as three-level random effects regression 
models belong to category A1. The multi-
level latent class models described above 
belong, depending on whether the level-3 
random effects are treated as continuous 
or discrete, to either the B1 or B2 type. By 
introduction a continuous latent variable at 
level 2, which is a method for dealing with 

taBle 4.1

Ninefold Classification of Latent Variable Models for Three-
Level Data Sets

Level-2 Latent 
Variables Ujk

(2)

Level-3 Latent Variables Uk
(3) 

continuous Discrete combination
Continuous A1 A2 A3
Discrete B1 B2 B3
Combination C1 C2 C3
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local dependencies between items in LC 
analysis, one would obtain a model of type 
C1 or C2. An example of a model of type C1 
is the multilevel variant of the factor mix-
ture model (Allua, 2007). Vermunt (2008b) 
and Varriale (2008) used type A2 models 
to define multilevel mixture IRT and fac-
tor analytic models, respectively. Palardy 
and Vermunt (2010) used type A2 and A3 
models in the context of multilevel mixture 
growth modeling.

4.4  estIMatIon, Model 
selectIon, and 
saMPle sIze Issues

Vermunt (2003, 2004, 2005) demonstrated 
how to obtain maximum likelihood (ML) 
estimates of the parameters of multilevel LC 
models by means the EM algorithm. For this 
purpose, a (necessary) modification of the 
E step of the EM algorithm was developed, 
which was called an  upward–downward 
algorithm. This procedure, as well as a 
Newton-Raphson algorithm with numeri-
cal second derivatives based on analyti-
cal first derivatives, is implemented in the 
Latent GOLD software package (Vermunt 
& Magidson, 2008). The Appendix provides 
various examples of Latent GOLD syntax 
files. Also Mplus (Muthén & Muthén, 2008) 
can be used to estimate (most of) the mod-
els described in this chapter. The Mplus 
manual is not very explicit about the esti-
mation methods and algorithms that are 
used, but it seems to use similar procedures 
as Latent GOLD. The gllamm program 
(Rabe-Hesketh et al., 2004) can deal with 
the situation in which the latent variables at 
both levels are discrete (or both continuous) 
and in which only the responses depend 

on the higher-level class membership (spe-
cial case number two described in Section 
4.3.1). Optimization of the log-likelihood 
is performed using the Stata ML routines. 
Each of these three packages has options for 
obtaining robust standard errors as well as 
for dealing with missing values and com-
plex sampling designs.

Model selection is already a rather com-
plicated issue in standard LC analysis, but 
becomes even more complex in multilevel 
LC models, especially when the level-3 het-
erogeneity is modeled using level-3 latent 
classes. We then not only need to decide 
about the required number of latent classes 
at level 2 (the value of C), but also about the 
number of classes at level 3 (the value of D). 
In principle, in multilevel LC analysis the 
same types of model selection measures can 
be used as the ones that are used in standard 
LC analysis, with information criteria such 
as AIC, BIC, and AIC3 as the most popular 
ones. However, the use of BIC is somewhat 
problematic because it contains the sample 
size in its formula, and is not fully clear what 
sample size to use in the BIC formula in a 
multilevel analysis. Note that this is a prob-
lem for multilevel analysis in general, and 
thus not specific for multilevel LC analysis. 
A recent simulation study by Lukociene and 
Vermunt (2010) has shed some light on this 
issue: when deciding about the number of 
classes at the higher-level it is better to use 
the higher-level sample size in the BIC for-
mula instead of the lower-level sample size.

Multilevel LC models have been applied 
with very different level-1, level-2, and 
 level-3 sample sizes. Although little research 
has been done on this topic so far, some 
guidelines can be provided on sample size 
requirement. What should be understood 
is that in these types of models the sample 
size at a particular level may affect not only 
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sampling fluctuation but also the separa-
tion of the classes at higher levels, which is 
similar to the reliability of the measurement 
of a continuous latent variable. The total 
level-2 sample size and the level-3 sample 
size affect the sampling fluctuation in the 
level-2 and level-3 parameters, respectively. 
The required level-2 and level-3 sample size 
depends strongly on the separation of the 
level-2 and level-3 classes, respectively. But 
this separation is itself affected by the level-1 
sample size for the level-2 classes (the lon-
ger a test the more certain we can be about 
a person’s class membership), and by the 
level-2 sample size for the level-3 classes (the 
more level-2 units, the more certain we can 
be about a level-3 unit’s class membership). 
This shows that sample size requirements 
for one level may depend on the sample size 
at another level; for example, because of a 
better separation between level-3 classes, the 
required level-3 sample size is smaller with 
larger level-2 and level-1 sample sizes. It 
should be noted that there are other factors 
affecting the separation between classes, and 
thus the required sample size. One of these 
is how different latent classes are (the size 
of the λ parameters appearing in the above 
formulae): smaller samples are need with 
more dissimilar classes. Another factor is 
the scale type of the response variable: with 
continuous normal responses or Poisson 
counts smaller samples are needed than with 
the same number of dichotomous responses 
because the former are more informative 
about differences between classes.

4.5 aPPlIcatIons

This section presents two applications of 
the multilevel LC models described in the 

previous section. The first is a typical three-
level regression application, and concerns a 
data set containing repeated measurements 
from a longitudinal survey with individuals 
nested within regions. The second example 
uses a data set as is typically analyzed using 
cluster analysis or FA, with the complicat-
ing factor that individuals (children) are 
nested within groups (families); that is, this 
is an example of an analysis of a two-level 
data set with multiple continuous items.

For our analysis we used version 4.5 of 
the Latent GOLD program (Vermunt & 
Magidson, 2008). The Appendix presents 
examples of Latent GOLD syntax files. For 
model selection, we used two versions of 
BIC: BIC(2) based on the level-2 sample size 
and BIC(3) based on the level-3 sample size. 
When the two fit measures disagree with 
respect to the required number of level-2 
classes, we select the model with the low-
est BIC(2). Similarly, when disagreement 
concerns the number of level-3 classes, we 
select the model that is preferred by BIC(3).

4.5.1  three-level Mixture 
Regression analysis

The first application uses a data set from 
the data library of the Centre of Multilevel 
Modelling, University of Bristol (http://
w w w. c m m . br i s t o l . a c .u k / l e a r n i n g-
training/ multilevel-m-support/datasets.
shtml). The data consist of 264 participants 
in the 1983–1986 yearly waves from the 
British Social Attitudes Survey (McGrath 
& Waterton, 1986). It is a three-level data 
set: Individuals are nested within districts 
and time points are nested within indi-
viduals. The total number of level-3 units 
(districts) is 54.

The dependent variable is the number of 
yes responses on seven yes/no questions 
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as to whether it is a woman’s right to have 
an abortion under a specific circumstance. 
Since this variable is a count with a fixed 
total, it is most natural to work with a 
binomial error function and a logit link. 
Individual-level predictors in the data set 
are religion, political preference, gender, 
age, and self-assessed social class. In accor-
dance with the results of Goldstein (2003), 
we found no significant effects of gender, 
age, self-assessed social class, and political 
preference. Therefore, we did not use these 
predictors in the further analysis. The pre-
dictors that were used are the level-1 predic-
tor year of measurement (1983, 1984, 1985, 
and 1986) and the level-2 predictor religion 
(Roman Catholic, Protestant, Other, and 
No religion). As there was no evidence for 
a linear time effect, we used time as a cat-
egorical predictor in the regression model.

Vermunt (2004) used this data set to 
illustrate the similarity between three-level 
mixture regression models with intercept 
variation across latent classes and standard 
three-level random-intercept models. Here, 
the author presents a more extended analysis 
in which, among others, slopes are allowed 
to vary across level-2 and level-3 classes.

Our baseline model is a three-level mix-
ture regression model of the form described 
in Equations 4.4 through 4.8. More specifi-
cally, we specified models with a fixed inter-
cept and six fixed slopes (three for time and 
three for religion), a random intercept and 
random slopes for the time effects at level 2, 
and a random intercept and random slopes 
for the religion effects religion at level 3. This 
implies that Xijk

( )1 , Zijk
( , )1 2 , and Zijk

( , )1 3  contain 7, 
4, and 4 columns, respectively. Furthermore, 
we assume that the level-2 class membership 
does not depend on the level-3 class member-
ship (this is the second special case discussed 
in Section 4.3.1) nor on covariates. This means 

that Equation 4.7 contains only an intercept. 
Also Equation 4.8 contains only an intercept 
since we have no level-3 predictors.

Table 4.2 reports the log-likelihood (LL) 
value, the number of parameters (Npar), the 
BIC(2) value, and the BIC(3) value for mod-
els with 1–5 level-2 classes and 1–3  level-3 
classes. The fact that models with C > 1 (for 
constant D) have lower BIC values than 
 models with C = 1 shows that there is evi-
dence for level-2 variation in intercept and/
or time slopes. A similar conclusion can be 
drawn for the level-3 variation in intercept 
and/or religion slopes since models with 
D > 1 perform better according to the BIC 
statistics than the ones with D = 1. BIC(2) and 
BIC(3) select the same model as the best one; 
namely, the model with C = 4 and D = 2.

As a next step, we defined five alternative 
models to test specific aspects of our base-
line model with C = 4 and D = 2. Two more 
restricted models omit the random time 
and religion slopes, respectively. Three more 
extended models are estimated that add a 
level-3 random time effects, a direct effect of 
level-3 class on level-2 class, and an interac-
tion effect between level-2 and level-3 class 
in the model for the response variable. The 
fit measures in Table 4.2 indicate that the 
two more restricted models perform worse 
than the baseline model, which means that 
the level-2 and level-3 variation in the time 
and religion slopes are significant. The mod-
els with level-3 variation in the time effects 
and with an association between level-2 and 
level-3 class membership do not perform bet-
ter than the baseline model, which indicates 
that there is no need to include these effects. 
However, the last model has lower BIC values 
than the baseline model, which indicates that 
there is evidence that the  level-2 class inter-
cept differences vary across level-3 classes. 
This model will serve as our final model.
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Figure 4.1a depicts the estimated value of 
the intercept for each level-2 and level-3 class 
combination (these are obtained by adding 
up the fixed and the random intercept terms, 
including the interaction), Figure 4.1b the 
time effects per level-2 class (these sum to 0 
across time points and are obtained by add-
ing up the fixed and the random time effects), 
and Figure 4.1c the religion effects per level-3 
class (these sum to 0 across religion catego-
ries and are obtained by adding up the fixed 
and the random religion effects). Figure 4.1a 
and b show that level-2 class one contains the 
respondents who are most against abortion, 
irrespective of the level-3 (region) class, and 
whose opinion is most stable across the four 

measurement occasions. Depending on the 
region class, class two respondents are very 
much in favor or somewhat against abor-
tion, and they become less in favor during 
the observation period. Class three is (mod-
erately) against, and shows a decrease and 
subsequently a return to the initial position 
during the 4 years of the study. Class four is 
(moderately) in favor of abortion, but much 
less at the first two occasions than at the last 
two occasions.

As far as the level-3 classes is concerned, 
Figure 4.1a shows that level-3 classes of 
regions differ in opinion concerning abor-
tion only among class two respondents. 
Moreover, the religion effects (Figure 4.1c) 

taBle 4.2

Fit Measures for the Models Estimated with the Abortion Data

Model LL npar BIc(2) BIc(3)
C = 1 D = 1 baseline −2188 7 4416 4405
C = 2 D = 1 baseline −1745 12 3558 3539
C = 3 D = 1 baseline −1683 17 3460 3433
C = 4 D = 1 baseline −1657 22 3436 3401
C = 5 D = 1 baseline −1645 27 3441 3398
C = 1 D = 2 baseline −2073 12 4212 4193
C = 2 D = 2 baseline −1712 17 3519 3492
C = 3 D = 2 baseline −1671 22 3465 3431
C = 4 D = 2 baseline −1644 27 3438 3396
C = 5 D = 2 baseline −1636 32 3450 3399
C = 1 D = 3 baseline −1999 17 4092 4065
C = 2 D = 3 baseline −1699 22 3520 3485
C = 3 D = 3 baseline −1663 27 3477 3434
C = 4 D = 3 baseline −1638 32 3455 3404
C = 5 D = 3 baseline −1629 37 3465 3406
C = 4 D = 2 religion not 

random
−1651 24 3435 3397

C = 4 D = 2 time not random −1683 18 3467 3439
C = 4 D = 2 time also random at 

level-3
−1639 30 3444 3397

C = 4 D = 2 association between 
U2 and U3

−1640 30 3448 3400

C = 4 D = 2 interaction between 
U2 and U3

−1632 30 3432 3384

Note: Bold indicates lowest value.
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are small in class two, with “other religion” 
slightly more against and “no religion” 
slightly more in favor of abortion. In class 
one regions, the religion effects are huge: 
here, Catholics are much more against 
abortion that the other religion categories. 
The latter ones show similar mutual differ-
ences as in the other latent class.

This example showed that complex 
but interesting level-2 and level-3 vari-
ability in intercepts and slopes can be 
detected using model specifications that 
are rather straightforward within the mul-
tilevel LC analysis framework. The most 

similar specification using a “standard” 
 three-level logistic regression model would 
be a model with four normally distributed 
random effects at level 2 and four at level 
3. Interpretation of the results of such an 
analysis would probably have been more 
difficult than the results presented above.

4.5.2  Multilevel Mixture 
Modeling with a set of 
continuous Responses

The data for this example were collected 
by Van Peet (1992) and used by Hox (2002) 
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(a) Intercept for all combinations of level-2 and level-3 classes obtained with abortion data. (b) Time effects 
for level-2 classes obtained with abortion data. (c) Religion effects for level-3 classes obtained with abortion 
data.
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to illustrate multilevel FA. Six continuous 
measures supposed to be connected to intel-
ligence—“word list,” “cards,” “matrices,” 
“figures,” “animals,” and “occupations”—
are available for 269 children belonging to 
49 families. For 82 children, there is par-
tially missing information, but these obser-
vations can be retained in the analysis using 
standard ML estimation methodology with 
missing data.

Hox (2002) analyzed this data set (exclud-
ing cases with missing values) using multi-
level FA, which basically involves performing 
separate analyses of the within- and between-
family covariance matrices. At the within 
level, his final model  contained a “numeric” 
factor (loading on word list, cards, and matri-
ces) and a “perception” factor (loading on 
figures, animals, and occupations), whereas 
at the between level a single factor sufficed. 
His aim was to  determine whether the six 
measures relate to similar aspects of intel-
ligence at the within- and  between-family 
level, as well as to detect possible family 
effects, which may be explained by genetic 
and/or common environment factors.

To illustrate various types of multilevel 
mixture models, we will analyze this data 
set in three different ways, in each of which 
 level-3 variation is modeled by assuming that 
families belong to a small number of level-3 
classes. The first analysis uses a model corre-
sponding to the first special case discussed 
in Section 4.3.1; that is, a model in which 
level-2 classes affect the item responses 
and level-3 classes the level-2 class mem-
berships, but not directly the responses. 
Between-family differences in responses are 
thus explained by between-family differ-
ences in the likelihood of belonging to the 
child-level intelligence clusters. This is also 
the specification Vermunt (2008a) used in 
an earlier analysis of this data set.

The second analysis is conceptually 
similar to Hox’s analysis, but with discrete 
instead of continuous latent variables. In this 
analysis, both latent variables are assumed 
to affect the responses directly. The role a 
particular item plays in the clustering of 
children and the clustering of families may 
be fully different. Moreover, the cluster-
ing of children is conditional on the family 
clustering, which means that it is based on 
within-family differences that remain after 
taking into account the differences between 
family classes.

The third analysis uses continuous latent 
variables at level 2. The model is a multi-
level mixture factor model, a model with 
a mixture distribution at level 3 to capture 
between-family differences in the param-
eters of the child-level factor model. This 
can be seen as a kind of multiple group FA 
with a large number of groups. The aim is 
to investigate whether the factor model 
parameters can be assumed to be invariant 
across groups.

Preliminary analysis showed that simple 
univariate normal within-class distribu-
tions with homogeneous residual variances 
across lower- and higher-level classes can 
be assumed for the six response variables. 
More specifically, inspection or pairwise 
residuals showed that there is no need to 
allow for within-class correlations across 
responses, and comparison of models with 
equal and unequal variances showed that it 
is correct to assume that residual variances 
are homogeneous across lower- and higher-
level classes.

4.5.2.1  Analysis 1: Indirect Effect 
of Family Classes

In this first analysis, the six intelligence 
measures were used to cluster children into 
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intelligence classes and it was investigated 
whether (classes of) families differ in the 
distribution of (their) children over these 
“intelligence” clusters. Table 4.3 provides 
the fit measures for the estimated multilevel 
LC models. As can be seen, a model with 
four child-level classes and three family-
level classes performed best according to 
both BIC(2) and BIC(3).

Figures 4.2a displays the estimated λqc
( , )1 2  

parameters appearing in Equation 4.6 for 
the model with C = 4 and D = 3. These 
parameters (which sum to 0 over classes) 
show that the means of the six intelli-
gence indicators are nicely ordered across 
child-level classes one to three. These can 
therefore be labeled high, middle, and low. 
Children in class four show a somewhat 

mixed pattern: they perform better than 
the middle class on cards and figures, better 
than the low class on word list and matri-
ces and worse than the low class on animals 
and occupations.

Figure 4.2b displays the estimated  level-2 
class membership probabilities for the 
 level-3 classes. As can be seen, in family-
level class three almost all children belong 
to the low child-level class. Children from 
families belonging to family-level class one 
are more likely to be in the high intelligence 
class and children from family-level class 
two are more often in the middle and mixed 
intelligence classes. These results show that 
there is a very strong family effect on the 
performance of children on these six intel-
ligence subtests.

taBle 4.3

Fit Measures for the Models Estimated with the Intelligence Data 
(First Analysis)

Model LL npar BIc(2) BIc(3)
C = 1 D = 1 −4238 12 8543 8522
C = 2 D = 1 −4149 19 8404 8372
C = 3 D = 1 −4127 26 8400 8356
C = 4 D = 1 −4113 33 8411 8355
C = 5 D = 1 −4104 40 8432 8364
C = 2 D = 2 −4130 21 8378 8342
C = 3 D = 2 −4108 29 8379 8330
C = 4 D = 2 −4087 37 8381 8318
C = 5 D = 2 −4075 45 8402 8326
C = 2 D = 3 −4130 23 8388 8349
C = 3 D = 3 −4098 32 8374 8320
C = 4 D = 3 −4072 41 8374 8304
C = 5 D = 3 −4060 50 8400 8315
C = 2 D = 4 −4130 25 8399 8357
C = 3 D = 4 −4096 35 8388 8328
C = 4 D = 4 −4070 45 8391 8315
C = 5 D = 4 −4052 55 8412 8318
C = 2 D = 5 −4130 27 8410 8364
C = 3 D = 5 −4096 38 8405 8340
C = 4 D = 5 −4069 49 8412 8329
C = 5 D = 5 −4050 60 8436 8334

Note: Bold indicates lowest value.
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4.5.2.2  Analysis 2: Direct Effect 
of Family Classes

In this second analysis, the six intelligence 
measures are used to simultaneously find 
child-level and family-level intelligence 
classes based on the children’s responses. 
Table 4.4 provides the fit measures for the 
estimated multilevel LC models. As can be 
seen, the model with C=3 and D=3 performs 
best according to BIC(2), whereas the model 
with C=3 and D=4 performs best according to 
BIC(3). As the discrepancy is in the number of 
level-3 classes, we decided to keep the model 
selected by BIC(3) as the final model. Note 
that the BIC values of this model are lower 
than the ones found in the previous analysis, 
which indicates that the assumption we made 
earlier—that differences in responses across 
family classes are fully mediated by differ-
ences in child-level class membership—is not 
fully correct.

Figure 4.3a and b display the estimates 
for the λqc

( , )1 2  and λqd
( , )1 3  parameters from 

Equation 4.6, which can be used to label the 
level-2 and level-3 classes. The parameters 
for the level-2 classes show that class one 
scores higher on all measures than classes 
two and three. Class two scores higher than 

class three on the first four measures (with 
a large difference on cards), but lower than 
class three on animals and occupations. 
This pattern reveals that there is a kind of 
two-dimensional structure.

Although the fit measures indicated that 
there are significant differences between 
families, it is not easy to give a simple inter-
pretation to the encountered differences 
between the level-3 classes. Contrary to the 
results by Hox, we do not find a one-dimen-
sional structure, which would imply that 
classes should be (almost) ordered. Class one 
families score high on all measures, except for 
occupations on which they have a medium 
level score. Families belonging to class two 
score high on figures, medium on cards, 
and low on the remaining four items. Class 
three scores low on three items and medium 
on the remaining items. Class four families 
score extremely high on occupations, high 
on word list, figures and matrices, medium 
on cards, and somewhat low on animals.

4.5.2.3  Analysis 3: Multilevel 
Mixture Factor Analysis

In the third analysis, we used a factor 
analytic model at level 2. Similar to Hox’s 
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(a) Intercept differences between child-level classes obtained with intelligence data (first analysis). (b) Child-
level class proportions for family-level classes obtained with intelligence data (first analysis).
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taBle 4.4

Fit Measures for the Models Estimated with the Intelligence 
Data (Second Analysis)

Model LL npar BIc(2) BIc(3)
C = 1 D = 1 −4238 12 8543 8522
C = 2 D = 1 −4149 19 8404 8372
C = 3 D = 1 −4127 26 8400 8356
C = 4 D = 1 −4113 33 8411 8355
C = 5 D = 1 −4104 40 8432 8364
C = 1 D = 2 −4155 19 8417 8385
C = 2 D = 2 −4104 26 8354 8310
C = 3 D = 2 −4086 33 8356 8300
C = 4 D = 2 −4070 40 8364 8296
C = 5 D = 2 −4061 47 8385 8305
C = 1 D = 3 −4132 26 8410 8366
C = 2 D = 3 −4081 33 8346 8290
C = 3 D = 3 −4059 40 8342 8274
C = 4 D = 3 −4045 47 8354 8274
C = 5 D = 3 −4034 54 8370 8278
C = 1 D = 4 −4114 33 8413 8357
C = 2 D = 4 −4068 40 8361 8293
C = 3 D = 4 −4045 47 8352 8272
C = 4 D = 4 −4033 54 8368 8276
C = 5 D = 4 −4025 61 8391 8287
C = 1 D = 5 −4101 40 8425 8357
C = 2 D = 5 −4058 47 8379 8299
C = 3 D = 5 −4036 54 8374 8282
C = 4 D = 5 −4021 61 8384 8280
C = 5 D = 5 −4015 68 8410 8294

Note: Bold indicates lowest value.
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(a) Intercept differences between child-level classes obtained with intelligence data (second analysis). 
(b) Intercept differences between family-level classes obtained with intelligence data (second analysis).
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analysis, it is a two factor model, but with 
the difference that “figure” loads on both 
factors. Seemingly, the factor structure 
changes somewhat when retaining cases 
with missing values in the analysis. Our 
baseline multilevel mixture FA model is a 
model in which factor (co)variances, means, 
and loadings, as well as item intercepts 
are allowed to differ across family classes. 
Measurement equivalence across families 
is achieved when factor loadings and item 
intercepts turn out to be the same across 
family clusters.

We fitted models with one to four family-
level latent classes. Both BIC(2) and BIC(3) 
indicated that a model with three classes is 
the one that should be preferred. Restricting 
the factor (co)variances and loadings to be 
equal across classes did not deteriorate the 
fit of the model. However, assuming also 
that item intercepts are equal across classes 
yields a worse model fit. Actually, except for 
the two reference items (the two items for 
which intercepts were fixed to 0 to be able to 
identify the factor means), none of the item 
intercepts can be assumed to be equal across 
classes. This confirms the results we found 
in the models with a discrete level-2 latent 
variable; namely, it is not correct to assume 
that family effects on item responses can be 
assumed to be fully mediated by the child-
level latent variable(s).

4.6 conclusIons

Whereas typical applications of LC analysis 
concern single-level multivariate response 
data sets, in this chapter, this author dem-
onstrated how LC and mixture models can 
be used for analyzing univariate two-level 
data sets, univariate three-level data sets, 

and multivariate two-level data sets. Also 
discussed was how multilevel LC models fit 
into a more general latent variable modeling 
framework, which allows defining models 
with discrete and continuous latent vari-
ables at the multiple levels of a hierarchical 
structure.

The multilevel LC models were illustrated 
using two empirical examples. The first 
example showed how to use a multilevel 
mixture models for three-level regression 
analysis. Complex but interesting level-2 
and level-3 variability in intercepts and 
slopes were detected using model specifica-
tions which are rather straightforward with 
the presented framework.

A second empirical data set was analyzed 
in three different ways. Which of the three is 
most appropriate depends on the exact aim 
of the research concerned. It is, of course, 
also possible that none of the three is appro-
priate and that another type of analysis 
should be used, for example, the multilevel 
FA used by Hox (2002). Our second analy-
sis, as well as Hox’s multilevel factor model 
are more suited for exploration, whereas 
our first and third analysis are more suited 
when the items can be assumed to be mean-
ingful indicators for clustering or measur-
ing one or more underlying factors at the 
lower level.

Other types of illustrations of multilevel 
mixture models than the ones presented 
here can be found in the literature. Vermunt 
(2003, 2005, 2007a, 2008a) gave examples of 
multilevel variants of standard LC models 
for categorical response variables. A type 
of model that was not illustrated with an 
example is the model containing continu-
ous random effects at level 3 discussed in 
Section 4.3.2. Applications of this model are 
provided by Vermunt (2003, 2005). Other 
applications, which similarly to our third 
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analysis of the intelligence data, use contin-
uous variables at level 2 and discrete latent 
variables at level 3 are the multilevel mix-
ture growth models proposed by Palardy 
and Vermunt (2010), the multilevel mixture 
IRT models used by Vermunt (2008b), and 
the multilevel mixture factor models by 
Varriale (2008).

Since multilevel mixture modeling is a 
rather new area of statistical methodol-
ogy, it is not surprising that many issues 
have not yet been fully resolved. Future 
research should deal with issues such as 
sample size requirements, model selection 
strategies, model diagnostics, and effects of 
model misspecification. Possible extensions 
of the models presented in this chapter are 
multilevel LC models with ordinal latent 
variables and multilevel variants of latent 
Markov models.
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aPPendIx

The models in Table 4.2 can be estimated 
with either the Latent GOLD Regression 
or Syntax module. To illustrate the Latent 
GOLD Syntax language, these are possible 
“variables” and “equations” sections of 
a setup for the baseline models appearing in 
Table 4.2:

 variables
 groupid District_ID;
 caseid Case_ID;
  dependent Response binomial 

exposure=7;
  independent Year nominal, 

Religion nominal;
  latent U3 group nominal 2, 

U2 nominal 4;
 equations
  Response <- 1 + Year + 

Religion + U2 + U2 Year
  + U3 + U3 

Religion;
 U2 <- 1;
 U3 <- 1;

The “variables” section defines the 
level-3 (group) and level-2 (case) identi-
fiers, the dependent variable, the predic-
tors (independent), and the latent variables 
in the model. Note that both latent vari-
ables are nominal, with 2 and 4 categories, 
respectively. Moreover, for U3, the keyword 
“group” indicates that it is a level-3 latent 
variable. The “equations” section con-
tains, in fact, the regression Equations 4.6 
through 4.8, where “1” defines an intercept 
term and where dummies/effects are auto-
matically set up for nominal variables.

The two restricted models appearing in 
Table 4.2 can be obtained by eliminating 
either “+ U2 Year” or “+ U3 Religion” 
from the model for the response variable. 
The more extended models are obtained by 
adding “+ U3 Year” to the model for the 

response variable, “+ U3” to the model for 
the level-2 classes, and “+ U2 U3” to the 
model for the response variable.

The setup used for the second example dif-
fers from the one above in that the model is 
defined as a two-level model for multivariate 
responses. In other words, we have a model 
for six dependent variables rather than for 
one, but no case identifier needs to be speci-
fied since we have only one record per case. 
Another difference is that “equations” need 
to be specified for the residual variances of 
the response variables, because these are 
assumed to be normally distributed. The 
setup used for the models in Table 4.3 is:

 variables
 groupid family;
  dependent wordlist 

continuous, cards 
continuous, figures

  continuous, matrices 
continuous, animals 
continuous,

 occupations continuous;
  latent U3 group nominal 4, 

U2 nominal 3;
 equations
 cards <- 1 + U2;
 figures <- 1 + U2;
 matrices <- 1 + U2;
 animals <- 1 + U2;
 occupations <- 1 + U2;
 wordlist;
 cards;
 figures;
 matrices;
 animals;
 occupations;
 U2 <- 1 + U3;
 U3 <- 1;

A more compact specification of the equa-
tions using variable lists is

 equations
  cards - occupations <- 1 + 

U2;
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 cards - occupations;
 U2 <- 1 + U3;
 U3 <- 1;

For the second analysis (models in 
Table 4.4), we remove “+ U3” from model for 
“U2” and include it in the equations for the 
dependent variables. The multilevel mixture 
factor model can be defined as follows:

 variables
 groupid ...
 dependent ...
  latent U3 nominal group 3, 

F1 continuous, F2 
continuous;

 equations
 wordlist <- (1) F1;
 cards <- 1 | U3 + F1 | U3;
  figures <- 1 | U3 + F1 | U3 

+ F2 | U3;

  matrices <- 1 | U3 + F1 | 
U3;

 animals <- (1) F2;
  occupations <- 1 | U3 + F2 

| U3;
 wordlist - occupations;
 F1 <- 1 | U3;
 F2 <- 1 | U3;
 F1 | U3;
 F2 | U3;
 F1 <-> F2 | U3;
 U3 <- 1;

This setup illustrates various additional 
syntax options: two continuous latent vari-
ables are defined in “latent,” “equations” 
are included for the factor means and (co)
variances, the statement “| U3” is used 
to indicate that a parameter varies across 
level-3 clusters, and “(1)” is used to fix the 
parameter concerned to 1.
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5.1 MultIlevel Models foR change oveR tIMe

Multilevel or mixed models are becoming standard modeling tools for 
 longitudinal or repeated measures data. Compared to the classic MANOVA 
approach, they have several advantages. Firstly, they deal efficiently with 
panel dropout; because there is no assumption that each subject must be 
measured on the same number of occasions, subjects with incomplete data 
are simply retained in the data set. The assumption is that incomplete data 
are missing at random (Little, 1995), which is weaker than the assumption of 
missing completely at random, which is made by applying listwise deletion 
in MANOVA. Secondly, it is possible to include time-varying covariates in 
the model. Thirdly, using polynomial functions or piecewise regression the 
change over time can be modeled very flexibly. Finally, by allowing regres-
sion coefficients for the change model to vary across subjects, different sub-
jects can have their own trajectory of change, which can in turn be modeled 
by time invariant subject characteristics.

It is useful to distinguish between repeated measures that are collected 
at fixed or at varying occasions. If the measurements are taken at fixed 
occasions, all individuals provide measurements for the same set of occa-
sions, usually regularly spaced, such as once every year. When occasions 
are varying, a different number of measures is collected at different points 
in time for different individuals. Such data occur, for instance, in growth 
studies, where physical or psychological characteristics are studied for a 
set of individuals at different moments in their development. The data 
collection could be at fixed moments in the year, but the individuals 
would have different ages at that moment. For a multilevel analysis of the 
 resulting data, the difference between fixed and varying occasions is not 
very important. For fixed occasion designs, especially when the occasions 
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are regularly spaced and there are no miss-
ing data, repeated measures MANOVA is 
a viable alternative for multilevel analy-
sis. Another possibility in such designs is 
latent curve analysis, also known as latent 
growth curve analysis. This is a structural 
equation (cf. Willett & Sayer, 1994) that 
models a repeated measures polynomial 
analysis of variance. This chapter focuses 
on fixed occasion data. In addition to the 
familiar multilevel model equations, it 
uses path diagrams to clarify the models, 
but the analysis concentrates on the mul-
tilevel regression approach. In fact, mul-
tilevel models and structural equation 
models for change over time are just differ-
ent representations of the same underlying 
model. Bollen and Curran (2006) provide a 
thorough discussion of longitudinal mod-
els from a structural equation perspective, 
and Hedeker and Gibbons (2006) provide a 
comparable discussion from the multilevel 
regression perspective. Duncan, Duncan, 
and Strycker (2006) provide an introduc-
tion to longitudinal modeling from both 
perspectives.

The multilevel regression model for lon-
gitudinal data is a straightforward applica-
tion of the standard multilevel regression 
mode, with measurement occasions within 
 subjects replacing the subjects within groups 
structure. At the lowest, the repeated mea-
sures level, we have:

 Yti = π0i + π1iTti + π2iXti + eti. (5.1)

In repeated measures applications, the 
coefficients at the lowest level are often indi-
cated by the Greek letter π. This has the 
advantage that the subject level coefficients, 
which are in repeated measures modeling at 
the second level, can be represented by the 
usual Greek letter β, and so on. In Equation 

5.1, Yti is the response variable of individual 
i measured at time point t, T is the time 
variable that indicates the time point, and 
Xti is a time-varying covariate. Subject char-
acteristics, such as gender, are time invari-
ant covariates, which enter the equation at 
the second level:

 π0i = β00 + β01Zi + u0i, (5.2)

 π1i = β10 + β11Zi + u1i, (5.3)

 π2i = β20 + β21Zi + u2i. (5.4)

By substitution, we get the single equation 
model:

 Yti = β00 + β10Tti + β20Xti + β01Zi 
  + β11ZiTti + β21ZiXti + u1iTti   (5.5)
  + u2iXti + u0i + eti

In multilevel models for subjects within 
groups, there is an assumed dependency 
between the subjects who are in the same 
group. Most often, there is no need to 
assume a specific structure for this depen-
dency. Subjects within the same group are 
assumed exchangeable, and the intraclass 
correlation refers to the average correla-
tion between two randomly chosen subjects 
from the same group. In multilevel models 
for occasions within subjects, measure-
ment occasions are not freely exchangeable, 
because they are ordered in time. In such 
models, it often does make sense to assume 
a structure for the relationships between 
measurements across time. For example, 
an intuitively attractive assumption is that 
correlations between measures taken at dif-
ferent measurement occasions are higher 
when these occasions are close to each other 
in time.
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Longitudinal designs often concern the 
analysis of structured change, such as 
growth or decline over time. The appro-
priate model for such research problems is 
a latent curve model, where change in the 
outcome variable is modeled as a func-
tion of time. As outlined above, the use of 
polynomials and varying regression coef-
ficients makes this a very flexible analysis 
tool. As will be explained in more detail 
below, allowing coefficients for time to vary 
across subjects implies specific dependency 
structures. Since the focus is on modeling 
individual trajectories, the possibility of 
specifying specific structures across time is 
usually not explored.

Panel designs are longitudinal designs 
where the emphasis is on changes that do 
not follow a pattern of growth or decline 
across time. An example is using a panel 
to monitor satisfaction with the govern-
ment. Satisfaction with the government is 
not expected to increase or decrease con-
tinuously. However, it is expected to fluc-
tuate, and we may be able to predict these 
fluctuations with time-varying covariates 
that capture events that occur at different 
occasions. Here, time is not a relevant pre-
dictor variable. Still, it is logical to assume 
that there is a dependency structure over 
time, which cannot be ignored. In this case, 
exploring specific structures across time is 
very important.

Although modeling the dependencies 
over time can be done implicitly, by allowing 
random coefficients for the time variable, or 
explicitly, by specifying a specific structure, 
these approaches can also be combined. 
The remainder of this chapter discusses 
latent curve modeling, explicit modeling of 
dependency over time, and combining these 
approaches. The discussion takes up the 
issue when specific approaches are useful.

5.2  MultIlevel Models foR 
stRuctuRed change 
oveR tIMe

For structured change over time, we will use 
an example data set constructed by Patrick 
Curran. This data set, hereafter called the 
Curran data, was compiled from a large 
longitudinal data set. Supporting documen-
tation and the original data files are avail-
able on the Internet (Curran, 1997); the 
following  descrip tion is summarized from 
Curran (1997).

The Curran data are a sample of 405 chil-
dren who were within the first 2 years of 
entry to elementary school. The data consist 
of four repeated measures of both the child’s 
antisocial behavior and the child’s reading 
recognition skills. In addition, at the first 
measurement occasion, measures were col-
lected of emotional support and cognitive 
stimulation provided by the mother. These 
data are a subsample from the National 
Longitudinal Survey of Youth (NLSY), 
based on three key criteria. First, children 
must have been between the ages of 6 and 
8 years at the first wave of measurement. 
Second, children must have complete data 
on all measures used at the first measure-
ment occasion. Third, only one child was 
considered from each mother. All N = 405 
children and mothers were interviewed at 
measurement occasion one; on the three 
following occasions the sample sizes were 
374, 297, and 294. Only 221 cases were inter-
viewed at all four occasions.

The time-varying variables are Antisocial 
Behavior (anti1 –4) and Reading Recognition 
(read1–4). The time invariant variables are 
Emotional Support to the child (homeemo) 
and Cognitive Stimulation (homecog), 
Mother’s Age (momage) and Child Age 
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(kidage) in years at Time 1, and the child’s 
gender (kidgen).

In this example, reading recognition is 
the outcome variable. A simple start model 
for the effect over time is to include mea-
surement occasion as a predictor variable 
(coded 0,1,2,3), and allow only the intercept 
to vary across subjects. It turns out that the 
relationship between occasion and reading 
is nonlinear, and a quadratic term is added 
to the model. The results are given in the 
first column of Table 5.1 (REML estimates).

Table 5.1 shows in the fixed part the 
 regression coefficients, and in the random 
part the residual variance at the lowest level 
and the (co)variances at the second level, 
with standard errors in parentheses. All 

parameter estimates are significant by the 
Wald test, the variances are also significant 
using the more accurate likelihood ratio test.

The regression coefficients in the first col-
umn of Table 5.1 indicate a mean reading 
recognition score of 2.54 at the first measure-
ment occasion. The linear effect indicates that 
the reading score goes up at each occasion, 
and the negative quadratic effect indicates 
that this effect levels off at later occasions.

The second column in Table 5.1 pres-
ents the results from the model where the 
regression coefficient for occasion varies 
across subjects. The variance of this coef-
ficient is clearly significant. A third model 
with a varying coefficient for the quadratic 
component indicated no variance for that 
coefficient. To model the variance of the 
occasion coefficient interactions of other 
predictor variables with occasion must be 
added to the model. Cognitive stimulation 
and the child’s age predict reading, but there 
are no significant interactions. To simplify 
the exposition, the other variables are not 
included in the model here. The model with 
varying coefficients for the linear effect of 
occasion is presented as a SEM diagram 
in Figure 5.1. Note that for complete cor-
respondence with the multilevel regression 
approach, the variances of the four errors 
must be constrained to be the same.

taBle 5.1

Consecutive Models for Reading Recognition
fixed Part Model 1 Model 2
Predictor
Intercept 2.54 (.05) 2.54 (.05)
Occasion 1.67 (.05) 1.67 (.05)
Occasion squared −0.19 (.02) −0.19 (.01)

Random Part
Residual 0.41 (.02) 0.27 (.05)
Intercept 0.79 (.07) 0.63 (.06)
Occasion 0.09 (.01)
Intc-Occ 0.03 (.02)

fIguRe 5.1
Path diagram corresponding to growth model with 
four occasions (**2 denote slope-squared).

Intercept Slope Slope**2

9411111

1 2 3

Occasion 4Occasion 3Occasion 2Occasion 1

err err err err



Panel Modeling: Random Coefficients and Covariance Structures  •  89

The two models that underlie Table 5.1 
have different consequences for the pattern 
of covariances between reading measures 
over time. The combined model for the 
varying coefficient for occasion is:

 Yti = β00 + β10Tti + u1iTti + u0i + eti . (5.6)

In this model, the variance at a spe-
cific measurement occasion is given by 
(Goldstein, 2003; Raudenbush, 2002):

Var Y T Tti u ti u u ti u e( ) = + + +σ σ σ σ0
2

0 1
2

1
2 22 .  (5.7)

The covariance between two measure-
ment occasions is given by (Goldstein, 2003; 
Raudenbush, 2002):

 Cov T T T T Tti t i u ti t i u u ti t i u, ′ ′ ′( ) = + +( ) +σ σ σ0
2

0 1 11
2 .

 (5.8)

Together, Equations 5.7 and 5.8 specify 
a very restricted pattern for the variances 
and covariances across time. The pattern 
for the fixed occasion model is even more 
specific. By removing terms that refer to Tti 
we obtain:

 Var Yti u e( ) = +σ σ0
2 2  (5.9)

and

 Cov Tti t i u, ' .( ) = σ 0
2  (5.10)

The model with only a random inter-
cept assumes that all variances are the 

same, and all covariances are the same. In 
the MANOVA context, this assumption is 
known as compound symmetry, and con-
sidered highly restrictive.

Table 5.2 presents the observed means 
and variances and the means and vari-
ances implied by the Occasion Fixed and 
Occasion Random model. It is clear that 
the random coefficient model is predict-
ing the observed variances fairly well. It 
should be noted that some discrepancy is 
to be expected, because the observed means 
and variances are based on the nonmissing 
cases at each  measurement occasion, and 
the model predictions are predictions for 
the entire sample, assuming missing at ran-
dom for the missing data.

5.3  MultIlevel Models 
foR unstRuctuRed 
change oveR tIMe

As noted in the introduction, there are situ-
ations where it makes no sense to assume 
perpetual growth or decline, while it is still 
interesting to model change and predictors 
of change. The term unstructured change is 
used to indicate that there is no long-term 
trend to model.

The example data are simulated to reflect 
a diary study, in which changes are expected 
but no overall trend. In this hypothetical 

taBle 5.2

Observed and Modeled Means and Variances Reading

Occ. N Mean
Var. 

Observed
Mean 

Predicted
Var. T 
Fixed

Var. T 
Random

0 405 2.52 0.86 2.54 1.20 0.90
1 375 4.08 1.17 4.02 1.20 1.05
2 275 5.01 1.35 5.12 1.20 1.38
3 270 5.77 1.56 5.84 1.20 1.89
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study, a sample of 60 workers who work in a 
stressful work environment are asked to fill 
in a diary for 2 weeks (only working days). The 
study uses a State-Trait Anxiety Inventory. 
Trait anxiety (TraitAnx), which is assumed 
to be a relatively stable individual character-
istic, is measured only on the first day. State 
anxiety (StateAnx), which is assumed to be 
a transitory mood state, is measured each 
day. Both scales are commonly normed to 
T-scores that have a mean of 50 and a stan-
dard deviation of 10 in the test’s norm group. 
In addition, the study collects daily data on 
perceived job demands (7-point scale) and 
perceived social support (7-point scale).

For such data, no large differences are 
expected for the average anxiety on different 
days. This is borne out by a repeated mea-
sures MANOVA that finds no differences 
across the 10 days. The linear trend over 
time tested by MANOVA is also not signifi-
cant. Figure 5.2 presents a SEM diagram for 
repeated measures MANOVA. To test equal-
ity of means in a SEM context, the model in 
Figure 5.2 is compared to a model where the 
means are constrained to be equal.

Note that the path diagram explicitly 
shows that MANOVA estimates the vari-
ances and covariances for all measures over 
time. MANOVA is an unstructured model, 

there is no specific structure assumed for 
this covariance matrix. To model correlated 
errors in multilevel regression, we use a mul-
tivariate response model with a lowest level 
for the repeated measures, and a full set of 
dummy variables indicating the different 
occasions. Thus, we have 10 dummy vari-
ables, one for each day. The intercept term is 
removed from the model, and the variance 
of the lowest level residuals is constrained to 
zero. The dummy variables are all allowed to 
have random slopes at the second level. The 
equation for a model without further explan-
atory variables becomes:

 Y D D u D u Dti = +β β1 1 10 10 1 1 1 1… … .  (5.11)

Having 10 random slopes at level 2 pro-
vides us with a 10 × 10 covariance matrix 
for the 10 consecutive days. The regression 
slopes β1–β10 are simply the estimated means 
at the 10 occasions. Equation 5.11 defines 
the multilevel model that is equivalent to 
the MANOVA approach. Maas and Snijders 
(2003) discuss this model at length, and show 
how the familiar F-ratio’s can be calculated 
from the multilevel software output.

The model in Equation 5.11 is fully satu-
rated; it estimates all means and all (co)vari-
ances. Both the fixed part and the random 

Anx1 Anx2 Anx3 Anx4 Anx5 Anx6 Anx7 Anx8 Anx9 Anx10

fIguRe 5.2
SEM diagram corresponding to MANOVA on 10 consecutive anxiety measures.
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part can be simplified. We can replace the 
fixed part by a regression equation that 
includes predictors such as the state anxi-
ety and the time-varying predictors job 
demands and social support. This models 
the state anxiety in a more interesting way, 
as the result of the combination of trait 
anxiety and different pressures at work. 
In addition we have a more parsimonious 
model, since we replace 10 estimated means 
with four estimates for the intercept and the 
three regression coefficients.

The covariance matrix for the 10 occa-
sions has no restrictions. If we impose the 
restriction that all variances are equal, and 
that all covariances are equal, we have 
again the compound symmetry model. This 
shows that the model with occasion as fixed 
is one way to impose the compound sym-
metry structure on the random part of the 
model. Consequently, these models are 
nested, and we can use the overall chi-
square test based on the deviance of the two 
models to test if the assumption of com-
pound symmetry is tenable.

Models that assume a saturated model for 
the error structure are very complex. If there 
are k time points, the number of elements in 
the covariance matrix for the occasions is 
k(k + 1)/2. So, with 10 occasions, we have 55 

(co)variance parameters to be estimated. If 
the assumption of compound symmetry is 
tenable, this model is preferable, because the 
random part contains only two parameters 

to be estimated. However, the compound 
symmetry model is very restrictive, because 
it assumes that there is one single value for 
all correlations between time points. This 
assumption is not very realistic, because 
the error term contains all omitted sources 
of variation, which may be correlated over 
time. Different assumptions about the auto-
correlation over time lead to different struc-
tures of the covariance matrix across the 
occasions. For instance, it is reasonable to 
assume that occasions that are close together 
in time have a higher correlation than occa-
sions that are far apart. Accordingly, the 
elements in the covariance matrix Σ should 
become smaller, the further away they are 
from the diagonal. Such a correlation struc-
ture is called a simplex. A more restricted 
version of the simplex is to assume that the 
autocorrelation between the occasions fol-
low the first-order autoregressive model

 et = ρ et−1 + ε (5.12)

where et is the error term at occasion t, ρ is 
the autocorrelation, and ε is a residual error 
with variance σε². The error structure in 
Equation 5.15 is a first-order autoregressive 
process. This leads to a covariance matrix 
of the form:

The first term σε²/(1 − ρ²) is a constant, 
and the autocorrelation coefficient ρ is 
between −1 and +1, but typically posi-
tive. It is possible to have second-order 
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autoregressive processes, and other mod-
els for the error structure over time. The 
autoregressive model that produces the 
simplex in Equation 5.13 estimates one 
variance plus an autocorrelation. It is just as 
parsimonious as the compound symmetry 
model, but does not assume constant vari-
ances and covariances. The path diagram in 
Figure 5.3 illustrates this model.

Presenting the model as a SEM path dia-
gram immediately suggests other structures 
for the dependency over time. Some often 
used structures are discussed by Hox (2002) 
and in more detail by Hedeker and Gibbons 
(2006). When multilevel regression is used, 
some structures, such as compound sym-
metry or the saturated model are easy to 
specify. Other structures are more difficult 
or impossible, unless the software pro-
ducers have built in an option for specific 
structures. Many programs have these, for 
instance, both specialized programs like 
HLM and SuperMix and general packages 
like SPSS and SAS have a number of struc-
tures for dependency across time built in.

5.4  choosIng Between 
stRuctuRes and 
coMBIned Models

5.4.1 choosing Between structures

As explained in Section 5.2, allowing time 
varying covariates, including indicators 

for the measurement occasions, to vary 
across subjects, implies certain covariance 
structures over time. In addition, some 
software allows direct specification of spe-
cific covariance structures, for example, an 
autoregressive model. As a consequence, an 
observed set of relationships over time can 
often be modeled about equally well by two 
different approaches. Any of such models 
is nested within the fully saturated model, 
which means that a likelihood ratio test 
or the equivalent chi-square deviance dif-
ference test can be used to assess their fit. 
However, a model allowing random slopes 
and a model directly specifying a covari-
ance structure are not nested, and can only 
be compared using absolute fit indices such 
as Akaike’s AIC or Schwarz’s BIC. The AIC 
can be calculated from the deviance d and 
the number of estimated parameters q:

 AIC = d + 2q, (5.14)

and the BIC can be calculated as:

 BIC = d + qLn(N). (5.15)

When the deviance goes down, indicating 
a better fit, both the AIC and the BIC also 
tend to go down. However, the AIC and the 
BIC include a penalty function based on the 
number of estimated parameters q. When 
the number of estimated parameters goes 
up, the AIC and BIC tend to go up too. For 
most sample sizes, the BIC places a larger 
penalty on complex models, which leads to 

Anx1
r r r r r r r r r

Anx2
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fIguRe 5.3
Path diagram for autoregressive model.
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a preference for smaller models compared 
to AIC. A problem with BIC in multilevel 
analysis is what the relevant sample size is: 
the number of groups or the total number 
of individuals? Most software that reports 
BIC uses the latter. However, in the context 
of longitudinal data, the number of sub-
jects (i.e., the number of second level units) 
appears also reasonable. When a SEM pack-
age is used to specify the model, N is always 
the number of subjects. When a multilevel 
regression package is used, either level can 
supply the N, and the manual should be con-
sulted to find out what the model does, or 
BIC must be calculated manually. Hedeker 
and Gibbons (2006), referring to Raftery 
(1995), advise to use the number of subjects, 
a practice we will follow here.

As an example, we model the state-
 anxiety data in several ways. The fixed part 
has three predictors: Trait Anxiety at the 
subject level and the two time-varying pre-
dictors Job Demands and Social Support. 
The first model in Table 5.3 models the ran-
dom part using a saturated model. Models 
2 and 3 use the compound symmetry and 
the lag-1 autocorrelation model for the 
covariance structure. Model 4 derives the 
structure for the covariances from a ran-
dom intercept plus a random slope for Job 
Demands. Model 5 will be described in 
Section 5.4.2. The table reports for each 
model the number of parameters estimated, 

and the overall fit statistics deviance, AIC, 
BIC based on the number of subjects, and 
BIC based on the total number of measure-
ments (subjects × occasions). Full Maxi-
mum Likelihood estimation is used, so both 
regression coefficients and (co)variances 
enter the likelihood function.

All models are nested within the satu-
rated model, so they can be tested against 
that model using the deviance difference 
test. The difference between the deviances 
of the models is a chi-square variate with 
degrees of freedom equal to the difference 
in number of estimated parameters. The 
column p in Table 5.3 presents the p-value 
from the test of the model against the satu-
rated model. Models 2 and 3 differ signifi-
cantly from the saturated model, which 
means that they do not replicate the covari-
ances well. Model 4 is significantly different 
from the saturated model at the 5% alpha 
level, but not at the 1% level. It does a bet-
ter job at replicating the covariances than 
models 2 and 3.

It is clear that if one explores these data 
from a covariance structure perspective, the 
likely choice is for a model with all predic-
tors fixed and a lag-1 autocorrelation. From 
a random slopes perspective, the likely 
choice is for a model with a random inter-
cept plus a random slope for the variable 
Job Demands. The fit indices point toward 
the random slope model.

taBle 5.3

Comparing Different Models for the State-Anxiety Data

Model
# 

Parameters Deviance p AIc
BIc 

2nd lev. N
BIc 1st 
lev. N

1 Saturated 59 3650.67 — 3760.67 3892.23 4002.13
2 Autocorr (1) 6 3755.88 <0.01 3767.88 3780.45 3794.26
3 Comp. Sym. 6 3777.33 <0.01 3789.33 3801.89 3815.71
4  Intercept + JobDem 7 3727.25 0.02 3741.44 3755.91 3772.02
5  Int. + JobDem + Autocorr (1) 9 3667.67 1.00 3685.67 3704.51 3725.24
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5.4.2 combined Models

The choice for a particular approach is not 
an either/or choice, the two approaches can 
be combined in a single model. The last row 
in Table 5.3 presents the results for a model 
where the intercept and the slope for Job 
Demands have variation, and the remain-
ing structure over time is modeled using a 
lag-1 autocorrelation. All fit indices prefer 
this model to the simpler Intercept + Slope 
model. Not all combinations of regression 
model and covariance structure are possi-
ble. For instance, a saturated model for the 
covariances over time leaves no place for 
intercept or slope variance. Highly restricted 
models such as compound symmetry or 
lag-1 autocorrelation, which both estimate 
only two parameters for the (co)variances, 
leave much room for varying slopes.

The last row in Table 5.3 presents the fit 
information of a model that combines the ran-
dom intercept plus slope model with a lag-1 
autocorrelation structure. It fits very well, the 
p -value is 1.00, meaning that the model does 
not significantly differ from the saturated 

model. That is impressive, especially since the 
saturated model contains 59 parameters, and 
the combined model only nine. Since models 
4 and 5 are also nested (model 4 is models 5 
minus the autocorrelation part) they can also 
be compared using the formal test. The chi-
square is 59.6, with two degrees of freedom, 
and the difference between the two models is 
clearly significant. Thus, model 5 is a signifi-
cant improvement on model 4.

To assess the impact of various choices 
for the covariance structure on the fixed 
estimates, Table 5.4 presents the parameter 
estimates for the fixed part, and for the most 
important parameters in the random part. 
The values within brackets are the standard 
errors. These are given for the saturated 
model, the autocorrelation model, the ran-
dom intercept plus slope model, and the 
combined random  intercept and slope plus 
autocorrelation model.

Although all corresponding estimates 
are similar, they are clearly not identical. 
The combined model could be improved 
by removing the evidently nonsignificant 

taBle 5.4

Parameter Estimates for Four Selected Models

Model Saturated
Diagonal + 
Autocorr. Int. + Slope combined

fixed Part
Intercept 31.95 (4.77) 24.94 (4.43) 28.12 (4.17) 28.62 (4.23)
Job demands 1.46 (0.19) 1.68 (0.22) 1.61 (0.32) 1.63 (0.30)
Social support −1.85 (0.19) −1.66 (0.21) −1.76 (0.22) −1.69 (0.21)
Trait anxiety 0.41 (0.10) 0.52 (0.09) 0.46 (0.09) 0.44 (0.09)

Random Part
Residual n/a 18.84 (1.19)
Intercept n/a 12.62 (9.49) 13.53 (9.63)
Job dem slope (all 3.12 (1.06) 2.61 (0.93)
Cov (Int-slope) covariances) 1.61 (2.51) 2.30 (2.30)
Diagonal 92.12 (10.04) 20.16 (1.47)
Autocorrelation 0.82 (0.02) 0.25 (0.05)



Panel Modeling: Random Coefficients and Covariance Structures  •  95

 covariance between the intercept and the 
slope. If that is done, the deviance differ-
ence test for the variance of the intercept is 
 significant (χ2 = 10.08, df = 1, p = 0.002). The 
associated changes in parameter estimates 
are very small, so they are not reported here. 
The varying coefficient for Job Demands 
can in principle be explained by adding a 
cross-level interaction of Job Demands with 
Trait Anxiety to the model. However, the 
coefficient for this interaction is not signifi-
cant, and the variance of the Job Demands 
slopes remains unexplained.

The autocorrelation in the combined model 
is a conditional autocorrelation (Singer & 
Willett, 2003), conditional on the predictors 
in the model and the random effects of the 
intercept and of Job Demands. In the auto-
correlation model, without the random inter-
cept and slopes, the autocorrelation is much 
higher. Since there are no random effects in 
this model, the structure of the covariances 
over time must completely be explained by 
the autocorrelation function. In the com-
bined model, part of the covariance struc-
ture is explained by the random effects in the 
model, which leaves a lower autocorrelation.

The interpretation of the model results for 
the combined model is the following. The 
time-varying predictors Job Demands and 
Social Support are significant. On days that 
Job Demands are high, a higher state anxi-
ety is reported. On days that social support is 
high, a lower state anxiety is reported. Subjects 
who score high on trait anxiety report in gen-
eral a higher state anxiety as well. The slope 
variation for Job Demands shows that some 
subjects are more sensitive to changes in Job 
Demands than others. There is a medium 
size correlation between the residuals for 
state anxiety from one day to the next, which 
means that state anxiety has a certain amount 
of short-term stability over time.

5.5 conclusIons

This chapter makes a distinction between 
longitudinal data where indicators for time 
are predictors in the model, to model growth 
or decline over time, and models where 
time is not a predictor, and time-varying 
covariates are used to model change over 
time. When time or other time-varying 
covariates have varying regression slopes, 
the dependency structure in the covari-
ances over time is modeled implicitly, as a 
consequence of the estimated parameters 
in the random part. If there are no vary-
ing coefficients, the data must be modeled 
otherwise.
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6.1 IntRoductIon

Data originating from a longitudinal or panel design are common in the 
social sciences. A wide array of statistical models is available for analyzing 
data from such a design. Each of these methods has specific features and the 
use of a particular method in a specific situation depends on such things as 
the type of research, the research question, and so on. The central concern 
of longitudinal research, however, revolves around the description of pat-
terns of stability and change, and the explanation of how and why change 
does or does not take place (Kessler & Greenberg, 1981).

At the end of the last century, models that take a growth curve perspec-
tive have become increasingly used by researchers. Such growth curve 
models provide a parsimonious way to account for the dependency caused 
by the fact that the same subjects have been assessed repeatedly. The growth 
curve model has its roots in the models developed by Tucker (1958) and Rao 
(1958), the random-effects model (Laird & Ware, 1982), hierarchical model 
(Raudenbush & Bryk, 2002), multilevel model (Goldstein, 1995); random 
coefficients model (de Leeuw & Kreft, 1986), or mixed model (Longford, 
1993) covering the traditions of biostatistics, education, and psychomet-
rics. Bollen and Curran (2006) and Bollen (2007) provide a brief history of 
growth curve models.

One reason for the current popularity is the availability of powerful 
software packages for specifying and analyzing growth curve models, for 
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example, GLLAMM: Rabe-Hesketh, Pickles, 
and Skrondal (2001); Mplus: Muthén and 
Muthén (2001); LISREL: Jöreskog and 
Sörbom (1999); Amos4.0: Arbuckle and 
Wothke (1999); MlwiN: Rasbash, Steele, 
Browne, and Prosser (2004); HLM5: Bryk, 
Raudenbush, and Congdon (1996), in com-
bination with a growing amount of meth-
odological literature (tutorials as well as 
specialized papers and books) dealing with 
growth curve analysis (e.g., Biesanz, Deeb-
Sossa, Papadakis, Bollen, & Curran, 2004; 
Bollen & Curran, 2006; Duncan, Duncan, 
& Strycker, 2006; Hamagami & McArdle, 
2004; Klein & Muthén, 2006; Muthén 
& Curran, 1997; Willet & Sayer, 1994). 
Probably the most important reason for 
the popularity of these longitudinal growth 
models, however, is their elegance in rep-
resenting both collective and individual 
change as a function of time.

Although the growth curve model itself is 
not without debate we only touch upon that 
discussion here. In short, there is a fair body 
of research comparing the growth curve 
model to another important model class: the 
autoregressive model1 (see Bast & Reitsma, 
1997, 1998; Mandys, Dolan, & Molenaar, 
1994; Rogosa & Willett, 1985). In summary, 
it seems difficult to empirically discrimi-
nate between the autoregressive model and 
the growth curve model. The autoregres-
sive model may be a less restrictive model 
for change resulting as a consequence in the 
estimation of more parameters and a slightly 
more difficult interpretation. The growth 
curve model is a very elegant and parsimo-
nious model, and this probably contributed 
in recent years, among other things, to its 

1 Of course, more types of longitudinal models exist, 
as well as combinations of both models (see Bollen & 
Curran, 2004). In practice, however, researchers often 
make a choice between these two models.

increased application. Of importance in 
this chapter is that the choice between anal-
ysis techniques is not such an issue for the 
autoregressive model, since in practice with 
panel data this model is almost always esti-
mated using structural equation modeling 
(SEM) software. Growth curve models, on 
the other hand, are commonly estimated 
with either multilevel regression analysis 
(MLR) software or SEM software.

Standard MLR and SEM are highly 
 similar in the case of a growth curve anal-
ysis. In MLR the individual differences in 
growth across time are captured by random 
coefficients, the SEM approach treats the 
individual differences as latent variables. 
If the basic model is used to represent the 
same set of longitudinal data, their mod-
els yield identical estimates of the relevant 
parameters. This has been repeatedly shown 
by several authors (among which Chou, 
Bentler, & Pentz, 1998; Hox, 2000; Hox & 
Stoel, 2005; MacCallum, Kim, Malarkey, & 
Kiecolt-Glaser, 1997; Mehta & West, 2000; 
Stoel, Van den Wittenboer, & Hox, 2003). 
Differences appear in estimation, in the 
possibilities in which the growth model can 
be extended, and in the ease in which such 
extensions can be specified in the available 
software.

This chapter deals with the choice between 
MLR and SEM once the growth curve model 
has been chosen. We will discuss the simi-
larities and differences between these tech-
niques and discuss several extensions. We 
will not focus on the comparison of MLR 
and SEM in general, the chapter by Muthén 
in this edited volume will have a stronger 
focus on this (see also Bauer, 2003; Curran, 
2003; Muthén, 1997). Much has been writ-
ten yet on the comparison of MLR and SEM 
in the analysis of growth curve models, 
the editors thought it useful especially for 
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applied researchers to include a chapter on 
the topic in this volume. Applied researchers 
are often confused about the differences and 
similarities between the two approaches to 
growth curve modeling. The purpose of this 
chapter is to point researchers to issues that 
may be considered in the decision to apply 
one of these approaches to growth curve 
modeling, and to clarify the differences and 
similarities, so that researchers fully oversee 
what they may gain (or lose) from switching 
between the two approaches, and how the 
two approaches may complement each other. 
We will start with a discussion of the stan-
dard approach to growth curve analysis, in 
a later section extensions and adaptations of 
the standard approaches will be considered, 
such as the inclusion of definition variables 
in SEM, and the Generalized Linear Latent 
And Mixed Models (GLLAMM; Skrondal 
& Rabe-Hesketh, 2004).

In the next section we will introduce the 
general growth curve model, and possible 
extensions. Subsequently, a data set will 
be analyzed with both MLR and SEM, and 
we will show that this results in the same 
parameter estimates by using standard 
approaches.

To make matters concrete, we shall refer 
throughout this chapter to a hypotheti-
cal study in which data on the language 
acquisition of 300 children were collected 
during primary school at four consecutive 
occasions at 51 schools. Furthermore, data 
were collected on the children’s gender and 
intelligence, as well as, on each occasion, a 
measure of their emotional well-being. Of 
interest is whether there is growth in lan-
guage acquisition, and whether there are 
differences between the children concern-
ing their growth curves. Given the interin-
dividual differences in the growth curves, 
the study wants to investigate whether 

intelligence explains (part of) the interindi-
vidual variation in the growth curves, and 
whether emotional well-being can be used 
to explain the time specific deviations from 
the mean growth curve.

6.2 the gRowth cuRve Model

A general equation for a three-level linear 
growth curve model with two explanatory 
variables is:

 ytij = π0ij + π1ij Ttij + Σπ2t xtij + etij

  π0ij = β00j + β01 zij + u0ij

  π1ij = β10j + β11 zij + u1ij (6.1)

  β00j = β00 + v0j

  β10j = β10 + v1j

 etij ~ N(0, σ2
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where Ttij is a vector denoting the time of 
measurement for subject i in class j. The 
intercept and slope (i.e., linear growth rate) 
for each individual subject are expressed 
by the coefficients π0ij and π1ij with random 
deviations u0ij and u1ij. The class specific 
intercept and slope β00 and β10 have random 
deviations v0j and v1j; π2t represents the effect 
of the (time-varying) explanatory variable 
xtij on time t, β01 and β11 represent, respec-
tively, the effects of the (time-invariant) 
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explanatory variable zi on intercept and 
slope. The eti is a first-level residual, and 
Ω2 and Ω3 are the covariance matrices of 
intercept and slope on level 2 and level 3, 
respectively.

The essence of the growth curve model 
is that change is modeled explicitly as a 
function of time. Both MLR and SEM thus 
incorporate the factor time explicitly in the 
case of the growth curve model. Within 
the MLR framework time is modeled as 
an independent variable at the lowest level, 
the individual is defined at the second level 
and explanatory variables can be modeled 
at all existing levels. The interindividual 
differences in the parameters describing 
the growth curve are modeled as random 
effects. The SEM approach adopts a latent 
variable view, with the time dimension 
incorporated in the specification of the 
latent variables. The parameters of the indi-
vidual curves are modeled as latent vari-
ables (i.e., intercept and linear growth rate). 
The latent variables in LGC analysis corre-
spond to the random effects in MLR analy-
sis. Therefore it is possible to specify exactly 
the same model as a LGC or MLR model, 
with exactly the same parameter estimates. 
Curran (2003, p. 540) describes an “isomor-
phism” between MLR and SEM because the 
associated matrices defining the fixed and 
random effects are identical (see also Bauer, 
2003). This has also been noted by Bauer and 
Curran (2002), Neale, Boker, Xie, and Maes 
(1999), Rovine and Molenaar (1998, 2000, 
2001), and Mehta and Neale (2005). In fact 
Curran (2003) proposes that any two-level 
linear multilevel model can be estimated as 
a structural equation model given that this is 
essentially a data management problem.

Estimation of growth curve models is 
usually done by the Maximum Likelihood 
(cf. Eliason, 1993). Given a sufficiently 

large sample size, maximum likelihood 
estimation is expected to produce esti-
mates that are asymptotically efficient and 
consistent. Alternative estimation meth-
ods like Restricted Maximum Likelihood 
(RML), Markov Chain Monte Carlo 
(MCMC), and Bootstrapping methods (cf. 
Mooney & Duval, 1993). These alternative 
methods have their own peculiarities, and 
may sometimes be preferred to ML esti-
mation. Simulation based MCMC meth-
ods, for example, do give better estimates 
for some problems and can be applied to 
more complicated models where there is, 
at present, no equivalent iterative proce-
dure (Browne & Rasbash, 2002). We refer 
to Bollen (1989), Browne and Rasbash 
(2002), Goldstein (1995), and Loehlin 
(1987) for a description of alternative esti-
mation methods.

6.2.1 example

Table 6.1 shows the results of an analysis 
with both MLR (using MLwiN) and SEM 
(using Mplus) of the data on language 
acquisition. The data used in this example 
consist of the scores on language acquisi-
tion of the 300 children, measured on four 
occasions (yti) at 51 schools, the repeatedly 
assessed measure of emotional well-being 
(xti), and the measure of intelligence (zi); the 
covariates are mean centered. Analyzing the 
data with a three-level growth curve model 
(measurement-child-school) using both the 
MLR and SEM approach with Maximum 
Likelihood estimation leads to the param-
eter estimates presented in Table 6.1. The 
first column of Table 6.1 gives the relevant 
parameters; the second and third columns 
show the parameter estimates of, respec-
tively, MLR and SEM. Beside parameter 
estimates and their standard errors of the 
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three-level models, Table 6.1 includes those 
of the two-level models.

As one can see from the second and third 
column of Table 6.1, presenting the results 
of the three-level models, the estimates of 
the fixed and random part of the model 
are the same, but their standard errors are 
slightly different. However, the differences 
are very small and as a consequence both 
approaches would lead to the same substan-
tive conclusions. After controlling for the 
effect of the covariates, a mean growth curve 
emerges with an intercept, β01, of 9.87 and 
a growth rate, β10, of 1.93. The significant 
variation between the subjects around these 
mean values, σ2

u0 and σ2
u1, respectively, 

implies that subjects start their growth 

process at different values, and grow subse-
quently with different speeds. The correla-
tion between initial level and growth rate, 
σ2

u01, is zero, implying that the initial level 
has no predictive value for the growth rate. 
Intelligence has a positive effect on both 
intercept and slope, β01 and β11, respectively. 
So, more intelligent children show a higher 
score at the first measurement occasion, 
and a greater increase in language acquisi-
tion than children with lower intelligence. 
Emotional well-being explains the time 
specific deviations from the mean growth 
curve (β01, β11, π21, π21, π21, and π21). That is, 
children with a higher emotional well-being 
at a specific time point show a higher score 
on language acquisition than is predicted 

taBle 6.1

Maximum Likelihood Estimates of the Parameters of Equation 6.1 using MLR and SEM

Parameter
MLR

Three-Level
SeM

Three-Level
MLR

two-Level
SeM

two-Level

fixed Part
β00 9.869 (.109) 9.869 (.113) 9.807 (.056) 9.807 (.056)
β10 1.925 (.053) 1.925 (.077) 1.939 (.048) 1.939 (.048)
β01 .222 (.045) .222 (.043) .387 (.056) .387 (.056)
β11 .905 (.048) .905 (.048) .883 (.048) .883 (.048)
π21 .551 (.037) .551 (.035) .702 (.042) .702 (.042)
π22 .809 (.034) .809 (.034) .815 (.034) .815 (.034)
π23 .912 (.034) .912 (.034) .913 (.034) .913 (.034)
π24 .951 (.050) .951 (.050) .953 (.049) .953 (.049)

Random Part
σ2

e1 .124 (.038) .123 (.038) .216 (.049) .216 (.049)
σ2

e2 .296 (.030) .296 (.030) .257 (.029) .257 (.029)
σ2

e3 .235 (.039) .235 (.039) .252 (.038) .252 (.038)
σ2

e4 .297 (.082) .290 (.082) .229 (.079) .229 (.079)
σ2

u0 .368 (.050) .369 (.050) .784 (.081) .784 (.081)
σ2

u1 .637 (.060) .637 (.060) .641 (.057) .641 (.057)
σ2

u01 .010 (.038) .009 (.038) −.004 (.048) −.004 (.048)
σ2

v0 .512 (.119) .512 (.119)
σ2

v1 .026 (.029) .026 (.029)
σ2

v01 −.057 (.042) −.057 (.042)

Note: Standard errors are given in parentheses. The chi-square test of model fit for SEM: χ2(71) = 144.52 
(p = .00), RMSEA = .059; χ2(19) = 18.55 (p = .49), RMSEA = .000; for MLR: −2ll = 3233.479 for the 
three-level model, and −2ll = 3326.626 for the two-level model.
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by their growth curve. Furthermore, on the 
school-level, there are significant differences 
between schools in the intercepts (σ2

v0), but 
not in slopes (σ2

v1). So there appears to be 
some clustering with respect to the inter-
cepts but not with respect to the slopes.

In order to show the equivalence of MLR 
and SEM in a two-level growth curve model, 
columns 4 and 5 of Table 6.1 present these 
results. The two-level model can be regarded 
to be nested within the three-level model, 
since we obtain the two-level model by 
constraining three parameters to zero (i.e., 
σ2

v0, σ2
v1, and σ2

v01). The models can thus be 
tested against each other by means of a like-
lihood ratio (LR) test. The value of the LR 
test statistic can be directly obtained within 
the MLR approach and is found to be equal 
to 93.15 (3326.63 – 3233.48), and this value 
can subsequently be compared to the appro-
priate reference distribution for testing.2 A 
direct test of these models is, however, not 
directly obtained in the SEM approach. If 
we compare the number of df between the 
models we will see the number increas-
ing from 19 to 71, instead of decreasing by 
3–16! The reason is that the SEM approach 
(as implemented in Mplus) uses a different 
estimation procedure that decomposes the 
observed covariance matrix into two parts, 
so that effectively the number of elements 
in the covariance matrices doubles. With 
the SEM approach we would have to reesti-
mate the three-level model with the level-3 
covariance and variance constrained to 
zero, and subtract the χ2-value from that of 
the prior model. The LR test statistic is than 

2 Please note that this distribution is not a χ2(3)-
distribution, but a mixture of a χ2(1), a χ2(2), and a χ2(3)-
distribution due to the fact that the null-hypothesis (i.e., 
the two-level model) places the values of the σ2

v0 and σ2
v1 

on the boundary of the parameter space. We refer to 
Stoel, Garre, Dolan, and Van den Wittenboer (2006) for a 
thorough discussion of this topic.

equal to 93,40 (237.92 – 144.52). Please note 
that the fit of the standard two-level growth 
curve model in SEM (i.e., χ2(19) = 18.55) is 
not equal to its three-level counterpart (i.e., 
χ2(74) = 237.92).

6.3  seM veRsus MlR: the 
standaRd aPPRoach

A striking difference between MLR and 
SEM is the way time is treated in the stan-
dard growth curve model (cf. McArdle, 
1986, 1988; Meredith & Tisak, 1990; Willet 
& Sayer, 1994). In MLR, time is introduced 
as an explanatory variable, whereas in SEM 
it is introduced via the factor loadings. So, 
in MLR an additional variable is added; and 
in SEM the factor loadings are constrained 
in such a way that they represent time. The 
consequence of this is that MLR is essen-
tially a univariate approach to growth curve 
analysis, with time points treated as obser-
vations of the same variable, whereas SEM 
is a multivariate approach, with each time 
point treated as a separate variable. It there-
fore appears that MLR is more flexible in 
its treatment of time, since subject may be 
measured on completely different occasions, 
estimating a growth curve model within 
SEM will be a tedious exercise in this case. 
Random occasions may thus be more effec-
tively modeled with MLR, whereas fixed 
occasions can be modeled by both MLR 
and SEM. In their discussion on the equiva-
lence of SEM and MLR in general Mehta 
and Neale (2005) describe in detail that uni-
variate multilevel models are really multi-
variate unilevel models. Pointing to the fact 
that the between-cluster and within-cluster 
variation in MLR parallels those of com-
mon and unique variance in measurement 
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models from the SEM approach (Skrondal 
& Rabe-Hesketh, 2004). The parallel mea-
surement model (i.e., equal factor loadings 
and residuals) can be shown to be math-
ematically equivalent to the random inter-
cept model. An illustrating consequence of 
this mathematical equivalence is the follow-
ing. In MLR the level-1 units are assumed 
to be exchangeable, resulting in the fact 
that the ordering of the level-1 units within 
the level-2 units is arbitrary. In the paral-
lel measurement model the same is true, 
and changes in the ordering of the variables 
within a row of the data matrix will not 
affect the results. Although the observed 
covariance matrix will be  different, param-
eter estimates are essentially the same.

That MLR analysis is essentially a uni-
variate approach while SEM can be con-
sidered a multivariate approach is nicely 
illustrated by looking at the way the data 
are set up. Tables 6.2 and 6.3 present the 

data of the first two subjects from the lan-
guage acquisition study for, respectively, 
MLR and SEM.

Table 6.2 shows the values of language 
acquisition (y) being treated as scores on 
one variable, the same holds for the time-
varying covariate, emotional well-being (x). 
The scores of the time-invariant covariate, 
intelligence (z), represented by one variable 
with each score repeated four times for each 
subject. Time (t) is treated as an observed 
variable that will enter the model as a (fixed) 
time-varying covariate. The data setup for 
SEM in Table 6.3 shows that each variable 
measured at a specific occasion is treated as 
a separate variable. Time is not modeled as 
an observed variable, but instead via con-
straints of the factor loadings.

6.3.1  extensions of the 
Measurement Model

When multiple indicators of the same con-
struct are available SEM offers a number 
of possibilities for including them explic-
itly by means of a measurement model. 
Illustrative examples of a LGC model with 
multiple indicators can be found in Bollen 
and Curran (2006), Garst, Frese, and 
Molenaar (2000), and Hancock, Kuo, and 
Lawrence (2001). The multiple-indicator 
growth model, or curve-of-factors model 
(cf. McArdle, 1988), is actually a higher 
order factor model merging a common fac-
tor model for the multiple indicators with 
a growth curve model on the common 

taBle 6.2

Data Format for a Growth Curve Analysis in the 
MLR Approach

Variable 
Subject y X Z t
1 6.64 −.81 −.40 0
1 10.01 .15 −.40 1
1 12.28 −.87 −.40 2
1 15.50 −1.69 −.40 3
2 7.12 −.46 .027 0
2 9.39 .53 .027 1
2 9.92 −.33 .027 2
2 11.11 .26 .027 3

taBle 6.3

Data Format for a Growth Curve Analysis in the SEM Approach

Variable 
Subject y0 y1 y2 y3 x0 x1 x2 x3 z
1 6.64 10.01 12.28 15.50 −.81 .15 −.87 −1.69 −.40
2 7.12 9.39 9.92 11.11 −.46 .53 −.33 .26 .027
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factors. In other words, the common varia-
tion in the multiple indicators is accounted 
for by the first-order factors, while the 
second-order factors serve to explain the 
mean and covariance structure of the first-
order factors. Using similar restrictions 
as in the single indicator growth model, 
the  second-order factors can be given 
the interpretation of intercept and slope. 
Thus, instead of analyzing the sum scores 
or item parcels, as is the standard practice 
within MLR, the observed variables can be 
included explicitly in the model. Of course, 
not only the dependent variables may be 
measured with multiple indicators, and 
extensions to growth curve models with a 
separate measurement model for the pre-
dictor variables are straightforward.

The ability to model multiple indicators 
under a common factor is one of the advan-
tages of SEM, as is shown in the extensive 
literature dealing with issues concerning 
common factors and structural models in 
general (e.g., Bollen, 1989). Whenever mul-
tiple indicators of an outcome are available, 
the possibilities of MLR analysis consti-
tute only a subset of the potentials of SEM. 
Because of the ability to model multiple 
indicators, SEM allows for an explicit test of 
at least one of the assumptions underlying 
the longitudinal factor model, the so-called 
assumption of measurement invariance 
(Meredith, 1964, 1993). This assumption 
ensures a comparable definition of the 
latent construct over time. An explicit test 
of this assumption is important before any 
further analysis can be performed. In brief, 
the assumption of measurement invari-
ance implies equal factor loadings, and 
equal item intercepts across time for each 
repeatedly measured indicator. Violation 
of the assumption hinders the assessment 
of change or development of a subject over 

time because it will be confounded with 
change of the meaning of the construct 
over time. In a strict sense, the violation of 
the assumption of measurement invariance 
implies that analyzing the means, or any 
weighting of the indicators, is not permitted. 
However, scale scores, as is common prac-
tice in MLR, impedes the test of measure-
ment invariance. In that sense, it adds to the 
discussion on measurement invariance and 
item-parceling (e.g., Bandalos, 2002; Byrne, 
Shavelson, & Muthén, 1989; Stoel, Van den 
Wittenboer, & Hox, 2004).

Raudenbush, Rowan, and Kang (1991) 
proposed a way to include multiple indica-
tors in MLR. In this approach the indica-
tors are modeled on a separate level, with 
the assumption of them being parallel 
measures (i.e., residual variances and fac-
tor loadings of the indicators within each 
factor are equal). We refer to Hox (2002) 
for an illustration of multilevel confirma-
tory factor analysis (see also Li, Duncan, 
Harmer, Acock, & Stoolmiller, 1998). The 
multiple-indicator growth model could, in 
principle, be analyzed using MLR using 
the method of Raudenbush et al. (1991). 
However, the restrictions on the factor 
structure are implicit in the model and can-
not be relaxed, and the assumption of mea-
surement invariance can, therefore, not be 
tested  explicitly. As a consequence, the solu-
tion provided by Raudenbush et al. (1991) is 
only a partial (i.e., very restrictive) solution. 
Another way to include multiple indicators 
in MLR are the multilevel IRT models. An 
IRT model can be used to define a relation 
between observed categorical indicators 
and an underlying latent trait. Fox and Glas 
(2001), for instance, propose an algorith to 
estimate these models. Another extension 
to include multiple categorical indicators in 
MLR is Multilevel Latent Class (Vermunt, 
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2003). A latent class model can be used 
when both the indicators and the latent 
variables are categorical. Finally, another 
extension to include multiple indicators in 
MLR is proposed by Skrondal and Rabe-
Hesketh (2004). We dedicate a subsection 
to this approach.

6.3.2  estimating the shape of the 
growth curve

The issue to be discussed in this paragraph 
also concerns estimation of factor loadings, 
and is therefore related to the issue of mul-
tiple indicators. The growth curve models 
discussed so far all assume linear growth, 
with time incorporated explicitly in the 
model by constraining the factor loadings 
(SEM) or by including it as an independent 
variable (MLR). As described by McArdle 
(1988) and Meredith and Tisak (1990), 
within the SEM approach it is possible to 
estimate a more general model in which the 
factor loadings for the slope are estimated. 
Thus, instead of constraining the corre-
sponding factor loadings to, for instance, 
[0, 1, 2, ..., T], it is set to [0, 1, t3, t4, ..., tT]. 
In other words, the factor loadings t3 to tT 
are estimated, providing information on 
the shape of the growth curve. Muthén and 
Khoo (1998) explain this as the estimation 
of the time scores. The essence is captured 
effectively with the following citation of 
Garst (2000, p. 259): “Statistically, a linear 
model is still estimated, but the  nonlinear 
interpretation emerges by relating the esti-
mated time scores to the real time frame. … 
Therefore, a new time frame is estimated 
and the transformation to the real time 
frame gives the nonlinear interpretation.” 
Although this model has a similar repre-
sentation in MLR analysis (cf. MacCallum 
et al., 1997), it cannot be estimated using 

this approach. As a univariate approach, 
the repeated measurements are treated as 
realizations of just one dependent variable, 
and time is represented by another inde-
pendent variable. It is required that the val-
ues of the independent variable are known. 
However, more flexible time functions can 
be used to model time, such as splines or 
linear models with a change-point3 (for an 
illustration of splines functions see Pan & 
Goldstein, 1998 and for an application of 
linear functions with a change-point see 
Galindo-Garre, Zwinderman, Geskus, & 
Sijpkens, 2008).

6.3.3 Missing data

One of the advantages of the MLR analysis 
is its ability to handle missing data (Hox, 
2000; Raudenbush & Bryk, 2002; Snijders, 
1996). As a univariate technique, MLR 
analysis does not assume “time-structured 
data” (cf. Bock, 1979), so that the number 
of measurement occasions and its  spacing 
need not be the same for all individuals. 
Thus, the absence of measurements on a 
subject on one or more occasions poses no 
special problems; and/or the subjects may 
be measured at different occasions. In such 
instances, the time variable, as a fixed inde-
pendent variable, will just have a different 
number of scores for the subjects. In an 
extreme case, there may be many measure-
ment occasions, but there may be just one 
observation at each occasion. This can be 
seen as an advantage of the MLR model. 
As a result, MLR analysis easily models 

3 Spline functions in general are piecewise polynomials of 
degree n whose function values and first n−1 derivatives 
agree at the points where they join. The abscissae of these 
joined points are called knots. A linear function with a 
change-point is a function composed of two lines that 
are connected by an estimated change point. This point 
allows a different slope for both linear functions.
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longitudinal data with a less extreme pat-
tern of observations, such as, for example, 
panel dropout. The ability of MLR analysis 
to easily handle cases with missing values 
on the outcome variable (i.e., missing occa-
sions) is the natural result of the fact that 
MLR does not assume balanced data to 
begin with. The MLR has no special pro-
visions for incomplete data otherwise, so 
it cannot deal with missing values on the 
covariates.

On the contrary, SEM as such assumes 
time-structured data (fixed occasions). 
Special procedures are needed, if the num-
ber and spacing of the measurement occa-
sions varies. One possibility is to estimate 
the growth model using all available data of 
all cases using full-information maximum 
likelihood estimation (Muthén, Kaplan, & 
Hollis, 1987; Wothke, 2000). This approach 
actually constitutes a principled way to deal 
with incomplete data in any part of the data 
matrix, and is now commonly applied in 
the case of missing data.

Similar to MLR, full-information maxi-
mum likelihood does not make the restric-
tive assumption of Missing Completely At 
Random (MCAR), but instead it is based on 
the less restrictive assumption that the miss-
ing values are Missing At Random (MAR; 
Little & Rubin, 1987). The MAR assumes 
that the missing values can be predicted 
from the available data. It is not our purpose 
here to give a broad explanation of this pro-
cedure and of the different estimation tech-
niques. However, the advantage of MLR 
analysis concerning missing observations 
only holds for missing observations on the 
dependent variable. Whenever explanatory 
variables are missing, the growth model as 
such, cannot be estimated by MLR analy-
sis. If an explanatory variable is missing, 
the usual treatment within MLR analysis is 

to remove the subject from the analysis by 
listwise deletion, whereas the SEM can still 
be estimated using the full-information 
maximum likelihood approach.

6.3.4  extensions of the 
structural Model

Frequently, research hypotheses are not 
restricted to the pattern of change in a 
single process, but they focus, instead, on 
simultaneously modeling the change in 
several outcome variables (cf. cross-domain 
analysis, MacCallum et al., 1997; Willett & 
Sayer, 1996), or on modeling relationships 
between growth parameters and variables 
serving as outcomes of those parameters 
(e.g., Garst et al., 2000). In the language 
acquisition study, for example, the inter-
est may be in whether growth in language 
acquisition (of their mother tongue) in pri-
mary education (w), and intelligence can be 
used to predict the achievement of foreign 
language acquisition at the first year of sec-
ondary education.

A distinction between MLR and SEM 
relates to this kind of extensions of the 
“structural part” of the model. Compared 
to SEM, the multilevel approach is severely 
limited in modeling extensions of this 
kind. The typical MLR software (i.e., 
MlwiN and HLM) merely allows for the 
inclusion of measured predictors on all 
existing levels, and the estimation of the 
covariances between growth parameters 
in a multivariate model (e.g., MacCallum 
et al., 1997). Also, posterior Bayes esti-
mates (see Raudenbush & Bryk, 2002) of 
the intercept and slope parameters can be 
computed, and subsequently be included 
as predictors in a separate multiple regres-
sion analysis. The SEM, on the other hand, 
is more flexible. It is possible to estimate all 
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means and covariances associated with the 
latent growth parameters, or they can be 
modeled explicitly. As a consequence, SEM 
is better prepared to estimate (1) inter-
relationships (directional) among several 
growth processes, (2) simultaneous and 
joint associations of these growth processes 
and covariates, and (3) mediated effects of 
covariates (see also Willett & Sayer, 1994). 
In other words, the growth curve model 
as modeled in SEM, can be part of a larger 
structural model, in which, for example, 
the effects of the latent initial level and lin-
ear shape factor on other variables can be 
modeled simultaneously.

6.3.5 gllaMM

Skrondal and Rabe-Hesketh (2004) pro-
posed a general framework to estimate 
multilevel, structural equation models 
and longitudinal models. The essence of 
their model formulation is that it allows 
for the specification of hierarchical con-
ditional relationships and that the latent 
variables in the structural part may be 
regressed on other latent and observed 
variables. Their model includes three 
parts: (1) The response model or mea-
surement model that is a model for the 
observed responses  conditional on the 
latent variables and covariates. Observed 
responses do not need to be continuous. 
(2) The structural model for the latent 
 variables in which the latent variables 
may be regressed on other latent variables 
or on observed covariables. (3) The distri-
butions of the disturbances.

Let yj be the vector of responses for indi-
vidual j, Xjβ be the fixed part; Δj be the 
structure matrix, which may refer to both 
the design matrix Zj in the multilevel for-
mulation or the factor loading matrix Δ 

in SEM formulation; ηj be latent variables, 
which may be random effects or common 
factors; and εj be the vector of errors. The 
response model can be written as:

 y Xj j j j j= + +β η ε∆  (6.2)

The response model allows for the for-
mulation of a latent growth model as a ran-
dom coefficient model or as a factor model. 
The fixed part is written in the same way. 
The main difference between multilevel 
and SEM formulations is that the design 
matrix Zj for the random-effects model is a 
known matrix of covariates and constants 
whereas the factor loading matrix Δ for fac-
tor models may be an unknown parameter 
matrix. Factor models and random coeffi-
cient models can be unified by transform-
ing the design (factor loadings) matrix 
in a product of two matrices Zjλ where Zj 
is a design matrix and λ a parameter vec-
tor. In the latent growth model the factor 
loadings matrix is also fixed, and therefore 
the parameter vector will be a unit vector. 
In the same way as in structural equation 
models the structural model is used to 
define relationship between latent variables. 
The advantage of this formulation is that it 
easily allows relationships between latent 
variables of different levels.

Contrary to standard SEM, the distribu-
tion of the disturbances may be continuous 
(parametric and nonparametric), discrete, 
or mixed discrete and continuous.

6.3.6 software

Besides the well-known specialized multi-
level and SEM programs, standard  statistical 
packages also include functions, packages 
of macros to estimate both multilevel and/
or SEM models. The SAS contains a library 
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to estimate factor models, called PROC 
FACTOR, and a library to estimate SEM 
models, called PRO CALIS. More informa-
tion can be found at http://www.als.ucla.
edu/stat/sas/library and http://support.sas.
com/onlinedoc/913/docMainpag.jsp.

The STATA has a function to estimate 
multilevel models, called xtmixed, but does 
not have a specific function to estimate 
SEM models. The program GLLAMM, 
which has been programmed in STATA, 
can be used to estimate both models. The 
GLLAMM is a very flexible program, but 
it may work very slowly if the number of 
random effects or the number of records is 
very large.

The program R has several packages to 
estimate multilevel models and a package to 
estimate SEM models. These packages can 
be downloaded from http://www.r-project.
org. The most popular package to esti-
mate multilevel models is lmre. An excel-
lent description of multilevel (hierarchical) 
models and their estimation with R can be 
found in Gelman and Hill (2007). A descrip-
tion of the SEM package can be found in 
Fox (2006). The complexity of the models 
that can be estimated with this package is 
limited compared to dedicated multilevel 
and SEM software like MLwiN and Mplus.

Finally, WinBUGS is a very flexible 
Bayesian package that uses a Gibb sam-
pling algorithm. In principle every model 
can be estimated with this program. The 
only problem is that it may work very slow 
if the model is very complex or the number 
of records is very large. WinBUGS can be 
downloaded from http://www.mrc-bsu.
cam.ace.uk/bugs. Gelman and Hill (2007) 
also describe how to estimate different mul-
tilevel models with WinBUGS and exam-
ples of WinBUGS code for SEM models can 
be found in Congdon (2001).
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7.1 IntRoductIon

Models for grouped-time survival data are useful for analysis of failure-time 
data when subjects are measured repeatedly at fixed intervals in terms of the 
occurrence of some event, or when determination of the exact time of the 
event is only known within grouped intervals of time. For example, in many 
school-based studies of substance use, students are typically measured annu-
ally regarding their smoking, alcohol, and other substance use during the past 
year. An important question is then to determine the degree to which covari-
ates are related to substance use initiation. In these studies it is often of interest 
to model the student outcomes while controlling for the nesting of students 
in classrooms and/or schools. In analysis of such grouped-time initiation (or 
survival) data, use of grouped-time regression models that assume indepen-
dence of observations (Allison, 1982; Prentice & Gloeckler, 1978; Thompson, 
1977) is therefore problematic because of this clustering of students. More 
generally, this same issue arises for other types of clustered data sets in which 
subjects are observed nested within various types of clusters (e.g., hospitals, 
firms, clinics, counties), and thus cannot be assumed to be independent. To 
account for the data clustering, multilevel models (also called hierarchical lin-
ear or mixed models) provide a useful approach for simultaneously estimat-
ing the parameters of the regression model and the variance components that 
account for the data clustering (Goldstein, 1995; Raudenbush & Bryk, 2002).

For continuous-time survival data that are clustered, several authors 
(Clayton & Cuzick, 1985; Guo & Rodriquez, 1992; Lancaster, 1979; Paik, Tsai, 
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& Ottman, 1994; Self & Prentice, 1986; Shih 
& Louis, 1995; Vaupel, Manton, & Stallard, 
1979) have developed mixed-effects survival 
models. These models are often termed frailty 
models or survival models including hetero-
geneity, and review articles describe many 
of these models (Hougaard, 1995; Pickles & 
Crouchley, 1995). An alternative approach 
for dealing with correlated data uses the gen-
eralized estimating equations (GEE) method 
to estimate model parameters. In this regard, 
Lee, Wei, and Amato (1992) and Wei, Lin, 
and Weissfeld (1989) have developed contin-
uous-time survival models.

Application of these continuous-time 
models to grouped or discrete-time sur-
vival data is generally not recommended 
because of the large number of ties that 
result. Instead, models specifically devel-
oped for grouped or discrete-time survival 
data have been proposed. Both Han and 
Hausman (1990) and Scheike and Jensen 
(1997) have described proportional haz-
ards models incorporating a log-gamma 
distribution specification of heterogene-
ity. Also, Ten Have (1996) developed a 
discrete-time proportional hazards sur-
vival model incorporating a log-gamma 
random effects distribution, additionally 
allowing for ordinal survival and failure 
categories. Ten Have and Uttal (1994) used 
Gibbs sampling to fit continuation ratio 
logit models with multiple normally dis-
tributed random effects. In terms of a GEE 
approach, Guo and Lin (1994) have devel-
oped a  multivariate model for grouped-
time survival data.

Several authors have noted the relation-
ship between ordinal regression models 
(using complementary log-log and logit link 
functions) and survival analysis models for 
grouped and discrete time (Han & Hausman, 
1990; McCullagh, 1980; Teachman, Call, 

& Carver, 1994). Similarly, others (Allison, 
1982; D’Agostino et al., 1990; Singer & 
Willett, 1993) have described how dichoto-
mous regression models can be used to model 
grouped and discrete time survival data. 
The ordinal approach simply treats survival 
time as an ordered outcome that is either 
right-censored or not. Alternatively, in the 
dichotomous approach each survival time is 
represented as a set of indicators of whether 
or not an individual failed in each time unit 
(until a person either experiences the event 
or is censored). As a result, the dichotomous 
approach is more useful for inclusion of 
time-dependent covariates and relaxing of 
the proportional hazards assumption.

Several authors have generalized these 
fixed-effects regression models for cat-
egorical responses to the multilevel setting 
(Barber, Murphy, Axinn, & Maples, 2000; 
Grilli, 2005; Hedeker, Siddiqui, & Hu, 2000; 
Muthén & Masyn, 2005; Rabe-Hesketh, Yang, 
& Pickles, 2001; Reardon, Brennan, & Buka, 
2002; Scheike & Jensen, 1997; Ten Have, 
1996; Ten Have & Uttal, 1994). The resulting 
models are generally based on dichotomous 
and ordinal mixed-effects regression models, 
albeit with the extension of the ordinal model 
to allow for right-censoring of the response. 
Typically, these models allow multiple ran-
dom effects and a general form for model 
covariates. In many cases, proportional or 
partial proportional hazards or odds models 
are considered. In this chapter, this class of 
two-level models will be described where the 
random effects are assumed to be normally 
distributed. Because we assume the normal 
distribution for the random effects, standard 
software (e.g., SAS PROC NLMIXED) can 
be used to estimate these models, and there-
fore broaden the potential application of this 
approach. Syntax examples will be provided 
to facilitate this.
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7.2  MultIlevel gRouPed-tIMe 
suRvIval analysIs Model

Let i denote the level-2 units (i = 1, …, N) 
and let j denote the level-1 units (j = 1, …, ni). 
Note that this use of i for level-2 units and j 
for level-1 units is consistent with usage often 
found in statistics (Verbeke & Molenberghs, 
2000) and biostatistics (Diggle, Heagerty, 
Liang, & Zeger, 2002), but is opposite from 
the typical usage in the multilevel literature 
(de Leeuw & Meijer, 2008; Goldstein, 1995). 
If subjects are nested within clusters, the 
subjects and clusters represent the level-1 
and level-2 units, respectively. Alternatively, 
if there are multiple failure times per sub-
ject, then the level-2 units are the subjects 
and the level-1 units are the repeated fail-
ure times. Suppose that there is a continu-
ous random variable for the uncensored 
time of event occurrence (which may not 
be observed), however assume that time (of 
assessment) can take on only discrete posi-
tive values t = 1, 2, …, m. For each level-1 
unit, observation continues until time tij 
at which point either an event occurs or 
the observation is censored, where censor-
ing indicates being observed at tij but not 
at tij + 1. Define Pijt to be the probability of 
failure, up to and including time interval t; 
that is,

 P t tijt ij= ≤Pr[ ] (7.1)

and so the probability of survival beyond 
time interval t is simply 1 − Pijt.

Because 1 − Pijt represents the survivor 
function, McCullagh (1980) proposed the 
following grouped-time version of the con-
tinuous-time proportional hazards model:

 log[ log( )] .− − = + ′1 0Pijt t jα xi ββ  (7.2)

This is the so-called complementary log-
log function, which can be re-expressed in 
terms of the cumulative failure  probability, 
Pijt = 1− exp(−exp( α0t +x′ijβ)). In this model, 
xij is a p × 1 vector including covariates that 
vary either at level 1 or 2, however they do 
not vary with time (i.e., they do not vary 
across the ordered response categories). 
They may, however, represent the average 
of a variable across time or the value of the 
covariate at the time of the event.

Since the integrated hazard function 
equals −log(1 − Pijt), this model represents 
the covariate effects (β) on the log of the 
integrated hazard function. The covari-
ate effects are identical to those in the 
grouped-time version of the proportional 
hazards model described by Prentice and 
Gloeckler (1978). As such, the β coefficients 
are also identical to the coefficients in the 
underlying continuous-time proportional 
hazards model. Furthermore, as noted by 
Allison (1982), the regression coefficients of 
the model are invariant to interval length. 
Augmenting the coefficients β, the intercept 
terms α0t are a set of m constants that rep-
resent the logarithm of the integrated base-
line hazard (i.e., when x = 0). As such, these 
terms represent cut points on the integrated 
baseline hazard function; these parameters 
are often referred to as threshold param-
eters in descriptions of ordinal regression 
models. While the above model is the same 
as that described in McCullagh (1980), it is 
written so that the covariate effects are of the 
same sign as the Cox proportional hazards 
model. A positive coefficient for a regressor 
then reflects increasing hazard with greater 
values of the regressor.

Adding random effects to this model, 
we get

 log[ log( )]− − = + ′ + ′ ,1 0Pijt t ij ij iα υx wββ  (7.3)
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or

 
Pijt t ij ij i= − − + ′ + ′

= − −

1

1

0exp( exp( ))

exp(

α υx wββ  

eexp )zijt ,
 (7.4)

where υi is the r × 1 vector of unknown ran-
dom effects for the level-2 unit i, and wij is 
the design vector for the r random effects. 
The distribution of the r random effects υi 
is assumed to be multivariate with mean 
vector 0 and covariance matrix Συ. An 
important special case is when the distri-
bution is assumed to be multivariate nor-
mal. For convenience, the random effects 
are often expressed in standardized form. 
Specifically, let υ = Sθ, where SS’ = Συ is the 
Cholesky decomposition of Συ. The model 
for zijt then is written as:

 zijt t ij ij i= + ′ + ′ .α θ0 x w Sββ   (7.5)

As a result of the transformation, the 
Cholesky factor S is estimated instead of 
the covariance matrix Συ. As the Cholesky 
factor is essentially the square-root of the 
covariance matrix, this allows more stable 
estimation of near-zero variance terms.

7.2.1 Proportional odds Model

As applied to continuous-time (cross-sec-
tional) survival data, the proportional odds 
model is described by Bennett (1983). For 
grouped-time, the multilevel proportional 
odds model is written in terms of the logit 
link function as

 log[ /( )]P P zijt ijt ijt1− =  (7.6)

or alternatively as Pijt = 1/(1 + exp( −zijt)). The 
choice of which link function to use is not 
always clear-cut. Bennett (1983) noted that 
the proportional odds model is useful for 

survival data when the hazards of groups of 
subjects are thought to converge with time. 
This contrasts to the proportional hazards 
model where the hazard rates for separate 
groups of subjects are assumed propor-
tional at all time points. However, this type 
of nonproportional hazards effect can often 
be accommodated in the complementary 
log-log link model by including interac-
tions of covariates with the baseline hazard 
cut points (Collett, 1994). Also as Doksum 
and Gasko (1990) note, large amounts 
of high quality data are often necessary 
for link function selection to be relevant. 
Since these two link functions often pro-
vide similar fits, Ten Have (1996) suggests 
that the choice of which to use depends 
upon whether inference should be in terms 
of odds ratios or discrete hazard ratios. 
Similarly, McCullagh (1980) notes that link 
function choice should be based primarily 
on ease of interpretation.

7.2.2  Pooling of Repeated 
observations and 
nonproportional hazards

Thus far, survival time has been repre-
sented as an ordered outcome tij that is 
designated as censored or not. An alterna-
tive approach for grouped-time survival 
data, described by several authors (Allison, 
1982; D’Agostino et al., 1990; Singer & 
Willett, 1993, and others) treats each indi-
vidual’s survival time as a set of dichoto-
mous observations indicating whether or 
not an individual failed in each time unit 
until a person either experiences the event 
or is censored. Thus, each survival time is 
represented as a tij × 1 vector of zeros for 
censored individuals, while for individu-
als experiencing the event the last element 
of this tij × 1 vector of zeros is changed to 
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a one. These multiple person-time indica-
tors are then treated as distinct observa-
tions in a dichotomous regression model. 
In the case of clustered data, a multilevel 
dichotomous regression model is used. 
This method has been called the pooling of 
repeated observations method by Cupples, 
D’Agostino, Anderson, and Kannel (1985) 
and is extensively described in Singer 
and Willett (2003). For multilevel mod-
els, Reardon et al. (2002) provide a useful 
illustration of this approach. The dichoto-
mous treatment is particularly useful for 
handling time-dependent covariates and 
fitting nonproportional hazards models 
because the covariate values can change 
across each individual’s tij time points.

For the dichotomous approach, define pijt 
to be the probability of failure in time inter-
val t, conditional on survival prior to t:

 p t t t tijt ij ij= = ≥Pr[ | ].  (7.7)

Similarly, 1 − pijt is the probability of sur-
vival beyond time interval t, conditional on 
survival prior to t. The proportional hazards 
model is then written as

 log[ log( )] ,− − = + ′ + ′1 0pijt t ijt ij iα x w Sββ θθ  (7.8)

and the corresponding proportional odds 
model is

 log[ ( )]p pijt ijt t ijt ij i/ − = + ′ + ′ ,1 0α x w Sββ θθ  (7.9)

where now the covariates x can vary across 
time and so are denoted as xijt. Augmenting 
the model intercept α01, the remaining inter-
cept terms α0t (t = 2, … m) are obtained by 
including as regressors m − 1 dummy codes 
representing deviations from the first time 
point. Because the covariate vector x now 
varies with t, this approach automatically 

allows for time-dependent covariates, and 
relaxing the proportional hazards assump-
tion only involves including interactions 
of covariates with the m − 1 time-point 
dummy codes.

Under the complementary log-log link 
function, the two approaches character-
ized by (7.3) and (7.8) yield identical results 
for the parameters that do not depend on t, 
namely the regression coefficients of time-
independent covariates and the Cholesky 
 factor (Engel, 1993; Läärä & Matthews, 1985). 
For the logit link, similar, but not identical, 
results are obtained for these parameters. 
Comparing these two approaches, notice 
that for the ordinal approach each obser-
vation consists of only two pieces of data: 
the (ordinal) time of the event and whether 
it was censored or not. Alternatively, in 
the dichotomous approach each survival 
time is represented as a vector of dichoto-
mous indicators, where the size of the vec-
tor depends upon the timing of the event or 
censoring. Thus, the ordinal approach can 
be easier to implement and offers savings 
in terms of the data set size, especially as 
the number of time points gets large, while 
the dichotomous approach is superior in 
its treatment of time-dependent covariates 
and relaxing of the proportional hazards or 
odds assumption.

7.2.3  Proportional hazards/odds 
assumption

Relaxing the proportional hazards or odds 
assumption in the ordinal model is possi-
ble; Hedeker and Mermelstein (1998) have 
described a multilevel partial proportional 
odds model. For this, the model can be 
rewritten as:

 zijt t ij t ij ij i= + ′ + ′ + ′ ,∗ ∗α α0 ( )u w Sx ββ θθ  (7.10)
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or absorbing α0t and ααt
∗ into αt,

 zijt ij t ij ij i= ′ + ′ + ′ ,u x w Sαα ββ θθ  (7.11)

where, uij is a (l + 1) × 1 vector contain-
ing (in addition to a 1 for α0t) the values of 
observation ij on the set of l covariates for 
which interactions with the cut points of 
the integrated baseline hazard are desired. 
Here, αt is a (l + 1) × 1 vector of regres-
sion coefficients associated with the l vari-
ables (and the intercept) in uij. Under the 
complementary log-log link this provides a 
partial proportional hazards model, while 
under the logistic link it would be a partial 
proportional odds model. Of course, all 
covariates could be in u, and none in x, to 
provide purely nonproportional hazards/
odds models.

Tests of the proportional hazards or odds 
assumption for a set of covariates can then be 
performed by running and comparing mod-
els: (a) requiring proportional odds/hazards 
(i.e., covariates are in x), and (b) relaxing 
proportional odds/hazards assumption (i.e., 
covariates are in u). Comparing the model 
deviances from these two using a likelihood 
ratio test then provides a test of the propor-
tional odds/hazards assumption for the set 
of covariates under consideration.

Note that because the dichotomous and 
ordinal approaches only yield identical 
results under the proportional hazards 
model (i.e., the complementary log-log 
link and covariates with effects that do not 
vary across time), differences in interpreta-
tion emerge for covariates allowed to have 
varying effects across time under these two 
approaches. For covariates of this type, the 
dichotomous approach is generally pre-
ferred because it models the covariate’s 
influence in terms of the conditional proba-
bility of failure given prior survival (i.e., the 

hazard function), rather than the cumula-
tive probability of failure (i.e., the integrated 
or cumulative hazard function) as in the 
ordinal representation of the model.

7.3  MaxIMuM lIkelIhood 
estIMatIon

For the dichotomous approach, standard 
methods and software for multilevel analy-
sis of dichotomous outcomes can be used. 
This is well-described in Barber et al. (2000). 
For the ordinal treatment of survival times, 
the solution must be extended to accommo-
date right-censoring of the ordinal outcome. 
For this, let δij = 0 if level-1 unit ij is a cen-
sored observation and equal to 1 if the event 
occurs (fails). Thus, tij denotes the value of 
time (t = 1, …, m) when either the ijth unit 
failed or was censored. It is assumed that 
the censoring and failure mechanisms are 
independent. In the multilevel model the 
probability of a failure at time t for a given 
level-2 unit i, conditional on θ (and given αt, 
β, and S) is:

 Pr( | )t t P Pij j t ijt ij t= ∩ = ; , , = − , −δ 1 1θθ αα ββ S   
  (7.12)

where Pij0 = 0 and Pij,m+1 = 1. The corre-
sponding probability of being right censored 
at time t equals the cumulative probability 
of not failing at that time, 1 − Pijt.

Let ti denote the vector pattern of failure 
times from level-2 unit i for the ni level-1 
units nested within. Similarly, let δi denote 
the vector pattern of event indicators. The 
joint probability of patterns ti and δi, given 
θ, assuming independent censoring is equal 
to the product of the probabilities of the 
level-1 responses:
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where dijt = 1 if tijt = t (and = 0 if tit ≠ t).
The marginal density of ti and δi in the 

population is expressed as the following 
integral of the conditional likelihood, (·), 
weighted by the prior density g(·):

 h g di i t( ) ( | ) ( )t t Si i, = , ; , ,∫δδ δδ θθ αα ββ θθ θθ
θ


 (7.14)

where g(θ) represents the multivariate 
distribution of the standardized random 
effects vector θ in the population. The 
marginal log-likelihood for the patterns 
from the N level-2 units is then written as
log log ( )L hi

N
i i= ∑ ,t δδ . Maximizing this log-

likelihood yields maximum  likelihood (ML) 
estimates, which are sometimes referred to 
as maximum marginal likelihood estimates 
(Bock, 1989) because integrating the joint 
likelihood of random effects and responses 
over the distribution of random effects 
translates to marginalization of the data 
distribution. Specific details of the solution, 
utilizing numerical quadrature to integrate 
over the random effects distribution, are 
provided in Hedeker et al. (2000). As men-
tioned, SAS PROC NLMIXED can be used 
to obtain the ML estimates; several syntax 
examples are provided in the Appendix.

7.4 exaMPles

Three examples will be presented to illus-
trate the ordinal representation of the 

grouped-time survival analysis multilevel 
model. The first two examples are from 
school-based studies and treat students 
nested within schools. In the first exam-
ple, there is right-censoring only at the 
last time point; these censored observa-
tions then form an additional category of 
the ordered time to event outcome. Thus, 
the model is akin to an ordinary multi-
level ordinal regression using a comple-
mentary log-log link function to yield a 
proportional hazards model. The second 
example has intermittent right-censoring 
(i.e., observations can be right-censored 
at any time point) and so the likelihood 
function must be adapted for the censored 
observations, as described in the section 
on Estimation. This is perhaps the more 
usual situation in survival or time-to-
event data. The final example is a joint lon-
gitudinal and survival model that allows 
the two processes to be correlated. In this 
example, time until study dropout is the 
survival outcome that is related to the lon-
gitudinal outcomes via the random effects 
of the latter.

7.4.1 example 1: eMa study

The data for this example are drawn from 
a natural history or Ecological Momentary 
Assessment (EMA; Smyth & Stone, 2003; 
Stone & Shiffman, 1994) study of adoles-
cent smoking. Participants included in this 
study were in either 9th or 10th grade at 
baseline, and reported on a screening ques-
tionnaire 6–8 weeks prior to baseline that 
they had smoked at least one cigarette in 
their lifetimes. The majority (57.6%) had 
smoked at least one cigarette in the past 
month at baseline. A total of 461 students 
completed the baseline measurement wave. 
Baseline measurement was coordinated in 
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the schools of these students. In all, there 
were 16 schools in this study.

The study utilized a multi-method 
approach to assess adolescents including a 
week-long time/event sampling method via 
hand-held computers (EMA). Adolescents 
carried the hand-held computers with them 
at all times during a data collection period 
of seven consecutive days and were trained 
both to respond to random prompts from 
the computers and to event record (initiate 
a data collection interview) in conjunction 
with smoking episodes. Random prompts 
and the self-initiated smoking records were 
mutually exclusive; no smoking occurred 
during random prompts. Questions con-
cerned place, activity, companionship, 
mood, and other subjective variables. 
The hand-held computers date and time-
stamped each entry.

In a previous paper based on an earlier 
EMA data set (Hedeker, Mermelstein, & 
Flay, 2006), our group observed that ado-
lescent smoking reports were most com-
monly observed on Fridays and Saturdays 
(i.e., weekend smoking), but that mid-week 
smoking was more informative in deter-
mining the level of an adolescent’s smoking 
behavior. Here, our interest is in modeling 
time until the first smoking report follow-
ing the weekend.1 The idea being that ear-
lier post-weekend smoking is a potentially 

1 Here, we consider Friday and Saturday to be the weekend 
days, and Sunday to be the first post-weekend day. This, 
of course, is technically incorrect, but gets at the notion 
that for adolescents most social events involving peers 
occur on Friday and Saturday.

greater indicator of dependency among ado-
lescents. Thus, for each subject, we recorded 
the first day in which a smoking report 
was made, ordering the days as Sunday, 
Monday, …, Friday, Saturday (this variable 
will be denoted as Smk). Table 7.1 lists the 
frequencies of responses across these seven 
days, and also the number of students who 
did not provide a smoking report during 
the week. Smk is thus an ordinal outcome 
with eight response categories.

In terms of predictor variables, for sim-
plicity, we only considered a subject’s level 
of social isolation (denoted as SocIso), 
which has previously been shown to be 
related to smoking in adolescents (Ennett 
& Bauman, 1993; Johnson & Hoffmann, 
2000). This variable was based on responses 
from the random prompts and consisted 
of a subject’s average, across all prompts, 
on several individual mood items, each 
rated from 1 (not at all) to 10 (very much), 
which were identified via factor analysis. 
Specifically, SocIso consisted of the aver-
age of the following items that reflected a 
subject’s assessment of their social isola-
tion before the prompt signal: I felt lonely, 
I felt left out, and I felt ignored. Over all 
prompts, and ignoring the clustering of 
the data, the marginal mean of SocIso was 
2.709 (sd = 1.329) reflecting a relatively low 
level of social isolation on average.

A proportional hazards model was fit to 
these data using Smk as the time to event 
variable and SocIso as the independent vari-
able. First, a model was run that ignored the 
clustering of students in schools. The effect 

taBle 7.1

Onset of Smoking Event Across Days Frequencies (and Percentages), N = 461

Sunday Monday tuesday Wednesday Thursday Friday Saturday never
68 56 39 21 18 24 8 227
(14.75) (12.15) (8.46) (4.56) (3.90) (5.21) (1.74) (49.24)
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of social isolation was observed to be signif-
icant in this analysis (β̂ = .1085, se = .04650, 
p < .02). Thus, students with higher aver-
age social isolation scores had increased 
hazards for earlier post-weekend smoking. 
However, when the clustering of students in 
schools was taken into account, by includ-
ing a  random school effect in the model, 
the effect was no longer significant at the 
.05 level (β̂ = .0986, se = .04813, p < .059). 
While not a dramatic change between these 
two, nonetheless, the conclusion based 
on the multilevel model would be that the 
effect of social isolation was only margin-
ally significant.

The random effect variation, expressed as 
a standard deviation ( υσ̂ ), was estimated to 
be .2926 (se = .09882). This estimated school 
variability can be expressed as an intraclass 
correlation, ˆ ( ˆ )σ σ συ υ

2 2 2/ + , where σ2 repre-
sents the variance of the latent continuous 
event time variable. For the  complementary 
log-log link, the standard variance σ2 = π2/6, 
while for the logit link, σ2 = π2/3 (Agresti, 
2002). Applying this formula, the  estimated 
intraclass correlation equals .04947 under 
the proportional hazards model (i.e., com-
plementary log-log link). This value is cer-
tainly in the range reported by Siddiqui, 
Hedeker, Flay, and Hu (1996), who exam-
ined school-based ICCs for a number of 
similar outcomes, and suggests a fair degree 
of similarity in terms of time to smoking 
within schools.

To test the proportional hazards assump-
tion, a model was also fit allowing the effect 
of SocIso to vary across the ordinal Smk out-
come. With eight categories of Smk, seven 
coefficients for SocIso were estimated, one 
for each cumulative comparison of these 
categories. The deviance for this extended 
model was 1450.8, while the deviance for 
the above proportional hazards model was 

1453.2. Based on these values, the  likelihood 
ratio chi-square statistic is 2.4, which on six 
degrees of freedom is not significant. Thus, 
the proportional hazards assumption is 
reasonable. Appendix 1 provides the SAS 
PROC NLMIXED syntax for both of these 
analyses.

7.4.2 example 2: tvsfP study

This example is taken from the Hedeker et al. 
(2000) article that used MIXOR (Hedeker & 
Gibbons, 1996) to estimate model parame-
ters. Here, we replicate the results using SAS 
NLMIXED code. Relative to the previous 
example, this one will have right-censored 
observations at all time points, so the pro-
gram code must reflect this, as noted just 
below Equation 7.12. Namely, the probabil-
ity of being right censored at time t equals 
the cumulative probability of not failing at 
that time, 1 − Pijt.

The Television School and Family Smok ing 
Prevention and Cessation Project (TVSFP) 
study (Flay et al., 1988) was designed to 
test independent and combined effects of a 
school-based  social-resistance curriculum 
and a television-based program in terms 
of tobacco use prevention and cessation. 
The sample consisted of  seventh-grade stu-
dents who were assessed at pretest (Wave 
A), immediate post-intervention (Wave B), 
1-year follow-up (Wave C), and 2-year fol-
low-up (Wave D). A cluster  randomization 
design was used to assign schools to the 
design conditions, while the primary out-
come variables were at the student level. 
Schools were randomized to one of four 
study conditions: (a) a social-resistance 
classroom curriculum (CC); (b) a media 
(television) intervention (TV); (c) a combi-
nation of CC and TV conditions; and (d) a 
no-treatment control group.
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An outcome of interest from the study 
is the onset of cigarette experimentation. 
At each of the four time points, students 
answered the question: “Have you ever 
smoked a cigarette?” In analyzing the data 
below, because the intervention was imple-
mented following the pretest, we focused 
on the three post-intervention time points 
and included only those students who had 
not answered yes to this question at pretest. 
In all, there were 1556 students included in 
the analysis of smoking initiation. Of these 
students, approximately 40% (n = 634) 
answered yes to the smoking question at 
one of the three post-intervention time 
points, while the other 60% (n = 922) 
either answered no at the last time point or 
were censored prior to the last time point. 
The breakdown of cigarette onset for gen-
der and condition subgroups is provided 
in Table 7.2. In terms of the clustering, 
these 1,556  students were from 28 schools 
with between 13 to 151  students per school 
(n = 56, sd = 38).

A proportional hazards model was fit to 
these data to examine the effects of gender 
and intervention group on time to smoking 
initiation. Specifically, gender was included 
as a dummy variable expressing the male 
versus female difference. For the condi-
tion terms, because the CC by TV inter-
action was observed to be nonsignificant, 
a main effects model was considered. The 
maximum likelihood estimates (standard 
errors) were: Male = 0.05736 (0.07983), 
CC = 0.04461 (0.08418), and TV = 0.02141 
(0.08311). Thus, none of the regressors are 
close to being significant, though the direc-
tion of the effects are increased hazards 
of smoking initiation for males and those 
exposed to the CC and TV interventions. 
The random effect  variation, expressed as a 
standard deviation ( υσ̂ ), was estimated to 
be 0.05119 (0.1242). So the clustering effect 
attributable to schools is not large, and is 
much smaller than the previous example. 
Expressed as in intraclass correlation, it 
equals .00159, which reflects a rather low 

taBle 7.2

Onset of Cigarette Experimentation Across Three Waves Frequencies (and Percentages) for Gender and 
Condition Subgroups

Wave B Wave c Wave D

event censored total event censored total event censored total
Males 156 83 742 89 134 503 63 217 280

(21.0) (11.2) (17.7) (26.6) (22.5) (77.5)
Females 130 105 814 117 154 579 79 229 308

(16.0) (12.9) (20.2) (26.6) (25.6) (74.4)
Control 66 60 401 53 69 275 34 119 153

(16.5) (15.0) (19.3) (25.1) (22.2) (77.8)
CC only 75 27 392 53 61 290 49 127 176

(19.1) ( 6.9) (18.3) (21.0) (27.8) (72.2)
TV only 71 54 410 60 79 285 38 108 146

(17.3) (13.2) (21.1) (27.7) (26.0) (74.0)
CC and TV 74 47 353 40 79 232 21 92 113

(21.0) (13.3) (17.2) (34.1) (18.6) (81.4)
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degree of similarity in smoking initia-
tion times within schools. The SAS PROC 
NLMIXED syntax for this example is listed 
in Appendix 2.

7.4.3  example 3: Joint longitudinal 
and survival Model

The data for this example come from 
the National Institute of Mental Health 
Schizophrenia Collaborative Study. In 
terms of the longitudinal outcome, we 
will examine Item 79 of the Inpatient 
Multidimensional Psychiatric Scale (IMPS; 
Lorr & Klett, 1996). Item 79, “Severity of 
Illness,” was originally scored on a 7-point 
scale ranging from normal, not at all ill (0) 
to among the most extremely ill (7). Here, 
as in Hedeker and Gibbons (1994), we will 
analyze the outcome as an ordinal variable, 
specifically recoding the original seven 
ordered categories of the IMPS 79 severity 
score into four: (1) normal or borderline 
mentally ill, (2) mildly or moderately ill, 
(3) markedly ill, and (4) severely or among 
the most extremely ill.

In this study, patients were randomly 
assigned to receive one of four medications: 
placebo, chlorpromazine, fluphenazine, or 
thioridazine. Since our previous analyses 
revealed similar effects for the three anti-
psychotic drug groups, they were combined 
in the present analysis. The experimental 
design and corresponding sample sizes are 
presented in Table 7.3. In this study, the 

protocol called for subjects to be measured 
at weeks 0, 1, 3, and 6; however, a few sub-
jects were additionally measured at weeks 2, 
4, and 5. There was some intermittent miss-
ingness in this study, however, dropout was 
a much more common pattern of missing-
ness. In all, 102 of 437 subjects did not com-
plete the trial.

The main question of interest is address-
ing whether there is differential change 
across time for the drug groups, here com-
bined, relative to the control group. We 
have previously addressed this question by 
analyzing these data using multilevel ordi-
nal regression using both a probit (Hedeker 
& Gibbons, 1994) and logistic link (Hedeker 
& Gibbons, 2006). A potential issue with 
these previous analyses is that the assump-
tion of missing at random (MAR), inherent 
in the full maximum likelihood estimation 
of model parameters of the ordinal multi-
level models, may not be plausible. That is, 
it could be that there was an association 
between missingness and the value of the 
dependent variable (i.e., severity of illness) 
that would have been measured. Though the 
observed data cannot confirm or refute this 
possibility, one can fit missing not at ran-
dom (MNAR) models as a means of doing a 
sensitivity analysis.

One class of MNAR models augment the 
usual multilevel model for longitudinal 
data with a model of dropout (or missing-
ness), in which dropout depends on the ran-
dom effects of the multilevel model. These 

taBle 7.3

Experimental Design and Weekly Sample Sizes Across Time

Sample Size at Week

Group 0 1 2 3 4 5 6 total
Placebo 107 105 5 87 2 2 70 108
Drug 327 321 9 287 9 7 265 329

Note: Drug = Chlorpromazine, fluphenazine, or thioridazine.
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models have been called random-coefficient 
selection models (Little, 1995), random-
 effects-dependent models (Hogan & Laird, 
1997), and shared parameter models (De 
Gruttola & Tu, 1994; Schluchter, 1992; Ten 
Have, Kunselman, Pulkstenis, & Landis, 
1998; Wu & Bailey, 1989; Wu & Carroll, 
1988) in the literature. Appealing aspects of 
this class of models is that they can be used 
for nonignorable missingness and can be 
fit using some standard software. Guo and 
Carlin (2004) present an excellent descrip-
tion for longitudinal outcomes and con-
tinuous time until event data, and provide 
a Web page with PROC NLMIXED syntax to 
carry out the analysis. Here, we will modify 
their approach and syntax for a longitudinal 
ordinal outcome and a grouped-time sur-
vival event (i.e., time until study dropout).

In terms of the ordinal severity of illness 
outcome (denoted imps79), as in Hedeker 
and Gibbons (2006), we will use a multilevel 
ordinal logistic regression model including 
random subject intercepts and time trends. 
Here, if i represents subjects, j time points, 
and c ordinal response categories, the longi-
tudinal outcome model is
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where, Tx denotes treatment group (0 = pla-
cebo and 1 = drug) and W denotes week 
(the square root of week is used to linear-
ize the relationship between the cumulative 
logits and week). This is a cumulative logit 
model where Pijc = Pr (imps79ij ≤ c), and 
the threshold parameters γc represent the 

cumulative logit values when the covariates 
and random subject effects equal zero. As 
parameterized above, a positive regression 
coefficient β indicates that as the regressor 
increases so does the probability of a higher 
value of imps79.

For time to dropout, let the variable 
Di = j if subject i drops out after the jth 
time point; namely, impsij is observed, 
but impsi,j + 1, …, impsi,n are all missing 
(here n represents the last possible time 
point, week 6). Note that we are ignoring 
intermittent missingness and focusing on 
time until a subject is no longer measured. 
Because there were no subjects who were 
only measured at week 0 in this study, Di 
will take on values of 1 to 5 for subjects 
dropping out prior to the end of the study, 
and a value of 6 for subjects completing 
the study (i.e., was measured at week 6). 
Table 7.4 lists the frequencies of time to 
dropout (D) by treatment group.

For analysis of time to dropout, consider 
the following proportional hazards survival 
model (i.e., ordinal regression model with 
complementary log-log link):
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This model specifies that the time of drop-
out is influenced by a person’s treatment 
group (α1) and their intercept and trend in 
imps79. For the latter, α2 and α3 represent 
the effect of these on dropout among the 
placebo group (i.e., when Txi = 0) , whereas 
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α4 and α5 are the analogous effects for the 
drug group (i.e., when Txi = 1).

Table 7.5 lists the regression coefficient 
estimates from separate and shared param-
eter modeling of these data. The separate 
parameter model sets α2 = α3 = α4 = α5 = 0. 
The separate parameter model yields iden-
tical parameter estimates and standard 
errors as running these two models, one for 
the longitudinal outcome and one for time 
to dropout, separately (not shown). Thus, 
the results for the longitudinal component 
represent the usual ordinal model with 
random subject intercepts and time-trends 
assuming MAR. As can be seen, both the 

W and Tx ×  W  terms are significant. 
This indicates that, respectively, the placebo 

group is improving across time and that the 
drug group is improving at an even faster 
rate across time. Additionally, because the 
Tx term is not significant, these groups are 
not different when week = 0 (i.e., at base-
line). The dropout component indicates that 
the drug group has a significantly dimin-
ished hazard. Exponentiating the estimate 
of −.693 yields approximately .5, indicating 
that the hazard for dropout is double in the 
placebo group, relative to the drug group.

The shared parameter model fits these 
data significantly better, as evidenced by the 
likelihood ratio test, X p4

2 18 2 002= . , < . . This 
is not necessarily a rejection of MAR, but it 
is a rejection of this particular MAR model 
in favor of this particular MNAR shared 

taBle 7.4

Crosstabulation of Treatment Group by Time to Dropout—Frequencies (Percentages)

time to Dropout

treatment Group 1 2 3 4 5 6 total
Placebo 13 5 16 2 2 70 108

(.12) (.05) (.15) (.02) (.02) (.65)
Drug 24 5 26 3 6 265 329

(.07) (.02) (.08) (.01) (.02) (.81)

taBle 7.5

Separate and Shared Parameter Models

Separate Shared

Parameter estimate Se P < estimate Se P <

outcome
Tx β1 .048 .392 .90 .149 .382 .70

W  β2 −.887 .218 .0001 −.708 .221 .002
Tx ×  W  β3 −1.692 .252 .0001 −1.909 .257 .0001

dropout
Tx α1 −.693 .205 .0008 −.719 .281 .02
Placebo random intercept α2 .242 .094 .02
Placebo random slope α3 .570 .289 .05
Drug random intercept α4 −.150 .071 .04
Drug random slope α5 −.553 .177 .002
Deviance 4056.7 4038.5



128  •  Donald Hedeker and Robin J. Mermelstein

parameter model. In terms of the longitu-
dinal component, we see that the conclu-
sions are the same as in the MAR model. 
If anything, the results are slightly stron-
ger for the drug group in that the drug by 
time interaction is somewhat larger in the 
MNAR shared parameter model. In terms 
of the dropout component, all of the terms 
are significant. The significant Tx effect indi-
cates that the drug group has a significantly 
diminished hazard of dropping out. For the 
terms involving the random effects, higher 
(i.e., more positive) intercepts and slopes 
are associated with dropout for the placebo 
group, whereas for the drug group it is lower 
(i.e., more negative) intercepts and slopes 
that are associated with dropout. In other 
words, among placebo subjects, those who 
start off worse (i.e., higher severity scores) 
and who are not improving, or improving 
at a slower rate, are more likely to drop out. 
Conversely, for the drug subjects, those who 
start off relatively better and who have more 
negative slopes (i.e., greater improvement) 
are more likely to drop out. SAS PROC 
NLMIXED code for the shared parameter 
model is provided in Appendix 3.

7.5 dIscussIon

Multilevel categorical regression models 
have been described for analysis of clustered 
grouped-time survival data, using either a 
proportional or partial proportional hazards 
or odds assumption. For models without 
time-dependent covariates, and assuming 
proportional hazards or odds, the data are 
analyzed utilizing an ordinal mixed-effects 
regression model. In this approach, survival 
times are represented as ordinal outcomes 
that are right-censored or not. Alternatively, 

in the dichotomous representation of the 
model, survival times are represented as 
sets of binary indicators of survival and 
analyzed using multilevel methods for 
dichotomous outcomes. In this chapter we 
have focused on the ordinal representation 
of the model; for extensive information on 
the dichotomous version see Barber et al. 
(2000) and Singer and Willett (2003).

Three examples were presented to illus-
trate the flexibility of this approach. The 
first did not have any intermittent right-
censoring, and so the model was akin to a 
standard ordinal multilevel model using a 
complementary log-log link. Intermittent 
right-censoring was present for the sec-
ond example, and the resulting likelihood 
function was modified to account for this. 
The final example illustrated how the ordi-
nal representation of the survival analysis 
model can readily be used in longitudinal 
trials where there is interest in jointly mod-
eling the longitudinal process and time to 
study dropout. For all examples, SAS PROC 
NLMIXED code was provided to allow data 
analysts to apply these methods.
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aPPendIx 1

In this listing for Example 1, and in subse-
quent syntax listings, expressions with all 
uppercase letters are used for SAS-specific 
syntax, while expressions including lower-
case letters are used for user-defined entities. 
In this example, SocIso is the regressor 
and bSocIso is its regression coefficient. 
Note that PROC NLMIXED requires the user 
to name all model parameters in the syntax. 
The variable Smk indicates the day of the first 
smoking event with Sunday = 1, Monday = 
2, …, Saturday = 7, and Never Smoked = 8. 
The final category of Never Smoked repre-
sents all right-censored observations (i.e., 
there is no intermittent right-censoring). 
Under the complementary log-log link, the 
cumulative probability of an event occur-
ring up to a particular time point is given 

by Equation 7.4. Because this is a cumula-
tive probability, the actual probability for a 
given time point is obtained by subtraction 
of these cumulative probabilities, except for 
the first and last categories. The last category 
(i.e., Never Smoked) is obtained as 1 minus 
the cumulative probability of smoking up 
to and including Saturday (i.e., the last day). 
The parameters a1,a2,…,a7  represent the 
baseline hazard (i.e., hazard when all covari-
ates equal 0); there are seven of these in this 
example because the total number of Smk 
categories is eight. These are akin to the 
threshold parameters in ordinal regression 
models and the values of these parameters 
should be increasing to reflect increased 
hazard across time. Finally, the variable 
Schoolid is the cluster (level-2) id, which 
indicates the students that belong to what 
schools. The random effect variance attrib-
utable to schools is estimated as a standard 
deviation and named sd. For clustered 
data, where the cluster variance is thought 
to be small, it is usually better to estimate 
the standard deviation than the variance 
because the latter will be much smaller 
and close to zero. Also, the random effect, 
named theta, is multiplied by its standard 
deviation in the model, as in Equation 7.5, 
and so it is in standardized form (i.e., the 
variance of theta equals 1 on the RANDOM 
statement).

PROC NLMIXED;
PARMS a1 = -1.9 a2 = -1.7 a3 = -1.4 a4 = -1.1 a5 = -.9 a6 = -.8 a7 = -.6 

bSocIso = .1 sd = .2;
 z = bSocIso*SocIso + sd*theta;
IF (Smk = 1) THEN
 p = 1 - EXP( - EXP(a1 + z));
ELSE IF (Smk = 2) THEN
 p =(1 - EXP( - EXP(a2 + z))) - (1 - EXP( - EXP(a1 + z)));
ELSE IF (Smk = 3) THEN
 p =(1 - EXP( - EXP(a3 + z))) - (1 - EXP( - EXP(a2 + z)));
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Users must provide starting values for all 
parameters on the PARMS statement. To do 
so, it is beneficial to run the model in stages 
using estimates from a prior stage as starting 
values and setting the additional parameters 
to zero or some small value. For example, one 
can start by estimating a fixed-effects model 
to provide starting  values for the regression 
coefficients using SAS PROC PHREG.

In order to test the proportional haz-
ards assumption, one can compare the 

above model to one in which the effect 
of SocIso is allowed to vary across the 
cumulative comparisons of the ordinal 
outcome (i.e., a nonproportional hazards 
model). For this, seven response mod-
els (named z1, z2, …, z7) with varying 
effects of SocIso (named bSocIso1, 
bSocIso2, …, bSocIso7) are defined. 
The appropriate response  models are then 
indicated in the calculations for the cat-
egory probabilities.

PROC NLMIXED;
PARMS a1 = -1.9 a2 = -1.7 a3 = -1.4 a4 = -1.1 a5 = -.9 a6 = -.8 a7 = -.6 sd = .2
 bSocIso1 = .1 bSocIso2 = .1 bSocIso3 = .1 bSocIso4 = .1 bSocIso5 = .1
 bSocIso6 = .1 bSocIso7 = .1;
 z1 = bSocIso1*SocIso + sd*theta;
 z2 = bSocIso2*SocIso + sd*theta;
 z3 = bSocIso3*SocIso + sd*theta;
 z4 = bSocIso4*SocIso + sd*theta;
 z5 = bSocIso5*SocIso + sd*theta;
 z6 = bSocIso6*SocIso + sd*theta;
 z7 = bSocIso7*SocIso + sd*theta;
IF (Smk = 1) THEN
 p = 1 - EXP( - EXP(a1 + z1));
ELSE IF (Smk = 2) THEN
 p =(1 - EXP( - EXP(a2 + z2))) - (1 - EXP( - EXP(a1 + z1)));
ELSE IF (Smk = 3) THEN
 p =(1 - EXP( - EXP(a3 + z3))) - (1 - EXP( - EXP(a2 + z2)));
ELSE IF (Smk = 4) THEN
 p =(1 - EXP( - EXP(a4 + z4))) - (1 - EXP( - EXP(a3 + z3)));
ELSE IF (Smk = 5) THEN
 p =(1 - EXP( - EXP(a5 + z5))) - (1 - EXP( - EXP(a4 + z4)));
ELSE IF (Smk = 6) THEN
 p =(1 - EXP( - EXP(a6 + z6))) - (1 - EXP( - EXP(a5 + z5)));

ELSE IF (Smk = 4) THEN
 p =(1 - EXP( - EXP(a4 + z))) - (1 - EXP( - EXP(a3 + z)));
ELSE IF (Smk = 5) THEN
 p =(1 - EXP( - EXP(a5 + z))) - (1 - EXP( - EXP(a4 + z)));
ELSE IF (Smk = 6) THEN
 p =(1 - EXP( - EXP(a6 + z))) - (1 - EXP( - EXP(a5 + z)));
ELSE IF (Smk = 7) THEN
 p =(1 - EXP( - EXP(a7 + z))) - (1 - EXP( - EXP(a6 + z)));
ELSE IF (Smk = 8) THEN
 p = EXP( - EXP(a7 + z));
logl = LOG(p);
MODEL Smk ~ GENERAL(logl);
RANDOM theta ~ NORMAL(0,1) SUBJECT = Schoolid;
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aPPendIx 2

For Example 2, Male, Cc, and Tv are 
indicator variables of male, CC interven-
tion, and TV intervention, respectively. 
The regression coefficients for these vari-
ables are named bMale, bCc, and bTv. 
The variable Onset indicates whether the 
student either answered yes to the smok-
ing question or was censored at immediate 

 post-intervention (Onset = 2), the 1-year 
follow-up (Onset = 3), or the second year 
follow-up (Onset = 4). The indicator sta-
tuse distinguishes censored observations 
(Statuse = 0) from smoking observations 
(Statuse = 1). Notice that if the event 
occurs, then the cumulative probability, 
under the complementary log-log link, is 

given by Equation 7.4, whereas if the event is 
censored then the probability equals 1 minus 
this expression. The parameters a1, a2, and 
a3 represent the baseline hazard; there are 
three in this example because there are three 
time points and there is right-censoring. As 
in Example 1, the variable Schoolid is the 
cluster (level-2) id, and the random effect 
variance attributable to schools is estimated 
as a standard deviation and named sd.

aPPendIx 3

To estimate the shared parameter model in 
Example 3 with NLMIXED, first, one must 
do a bit of data managing to produce a data 
set with both the longitudinal outcomes 
and the time to dropout. The code for this 
is listed below.

PROC NLMIXED;
PARMS a1 = -3.5 a2 = -2.9 a3 = -2.4 bMale = .2 bCc = .1 bTv = .1 sd = .2;
 z = bMale*Male+bCc*Cc + bTv*Tv +  sd*theta;
IF (Onset = 2 AND Statuse = 1) THEN
 p = 1 - EXP( - EXP(a1 + z));
ELSE IF (Onset = 2 AND Statuse = 0) THEN
 p = EXP( - EXP(a1 + z));
ELSE IF (Onset = 3 AND Statuse = 1) THEN
 p =(1 - EXP( - EXP(a2 + z))) - (1 - EXP( - EXP(a1 + z)));
ELSE IF (Onset = 3 AND Statuse = 0) THEN
 p = EXP( - EXP(a2 + z));
ELSE IF (Onset = 4 AND Statuse = 1) THEN
 p =(1 - EXP( - EXP(a3 + z))) - (1 - EXP( - EXP(a2 + z)));
ELSE IF (Onset = 4 AND Statuse = 0) THEN
 p = EXP( - EXP(a3 + z));
logl = LOG(p);
MODEL Onset ~ GENERAL(logl);
RANDOM theta ~ NORMAL(0,1) SUBJECT = Schoolid;

ELSE IF (Smk = 7) THEN
 p =(1 - EXP( - EXP(a7 + z7))) - (1 - EXP( - EXP(a6 + z6)));
ELSE IF (Smk = 8) THEN
 p = EXP( - EXP(a7 + z7));
logl = LOG(p);
MODEL Smk ~ GENERAL(logl);
RANDOM theta ~ NORMAL(0,1) SUBJECT = Schoolid;
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Each subject contributes ni records in the 
input data file, namely, the file schzrepo.
dat only contains datalines for which a 
subject has a valid measurement at a given 
time point. Thus, the maximum value of 
the time variable week for a given sub-
ject is the last time point that a subject is 
measured on. This variable, named d, then 
serves as the time to dropout variable in the 
analysis.

Below is the NLMIXED code for the 
shared parameter model, which, as men-
tioned, is based on the code of the Guo and 
Carlin (2004) article. The first part of the 
code is for the time to dropout model, and 
the latter part is for the ordinal longitudinal 
outcome.

For time to dropout, Zsurv represents 
the response model and Psurv is the prob-
ability for a given observation based on the 
complementary log–log link  function. As 
time to dropout is ordinal, with values of 1 
to 6 indicating the final week of measure-
ment for the individual, the cumulative 

probabilities represent the probability of 
response in a given category and below. 
Individual category probabilities, the 
Psurv’s, are therefore obtained by sub-
traction. As noted, the i1 to i5 parameters 
represent the cumulative baseline hazard, 
and the parameters aTx to aDslp are the 
effects on time to dropout. In particular, 
the latter four, aPint to aDslp, indicate 
the effect of the random subject intercepts 
and time-trends of the longitudinal model 
on time to dropout.

In terms of the longitudinal model (i.e., 
the ordinal imps79 scores), the b terms 
are for the regression coefficients (i.e., the 
β’s), the u terms are for the random subject 
effects, and the v terms are for the random-
effects variance–covariance parameters. 
The Cholesky factorization of the variance–
covariance matrix of the random effects is 
used in the code below. The ordinal out-
come imps79 can take on values from 1 
to 4 and the cumulative probabilities (i.e., 
the Plong’s) are calculated using the 

DATA one; INFILE ‘c:\schzrepo.dat’; INPUT id imps79 week tx ;

/* The coding for the variables is as follows:
id = subject id number
imps79 = overall severity (ordinal version from 1 to 4)
week = 0,1,2,3,4,5,6 (most of the obs. are at weeks 0,1,3, and 6)
tx 0 = placebo 1 = drug (chlorpromazine, fluphenazine, or thioridazine)

/* compute the square root of week to linearize relationship */
sweek = SQRT(week);

/* calculate the maximum value of WEEK for each subject */
PROC MEANS NOPRINT; CLASS id; VAR week;
OUTPUT OUT = two MAX(week)= d;

/* adding the max of week (d) to the original data set */
DATA all; MERGE one two; BY id; IF id NE.;

/* create an indicator of the last observation of a subject (last) */
PROC SORT DATA = all; BY id week;
DATA all; SET all; BY id;
last = LAST.id;
RUN;
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logistic response function. As in the ordi-
nal survival model, individual category 
probabilities are obtained by subtraction. 
The t parameters represent the threshold 

parameters. Because an intercept is in 
the model (b0), the number of thresholds 
equals the number of ordinal categories 
minus two.

PROC NLMIXED DATA=all;
PARMS b0=7.3 bTx=0 bSwk=-.88 bTxSwk=-1.7 t2=4 t3=6.5 s11=1 s12=0 s22=.5
 aTx=0 aPint=0 aPslp=0 aDint=0 aDslp=0 i1=-1 i2=-.7 i3=-.5 i4=0 

i5=.2;

/* Compute log likelihood contribution of the survival data part */
/* when the last observation of a subject is reached */
IF (last) THEN DO;
 Zsurv = aTx*Tx + aPint*(1-Tx)*u0 + aPslp*(1-Tx)*u1 + aDint*Tx*u0 +   
   aDslp*Tx*u1;
 IF (d = 1) THEN
 Psurv = 1 - EXP( - EXP(i1+Zsurv));
ELSE IF (d = 2) THEN
 Psurv = (1 - EXP( - EXP(i2+Zsurv))) - (1 - EXP( - EXP(i1+Zsurv)));
ELSE IF (d = 3) THEN
 Psurv = (1 - EXP( - EXP(i3+Zsurv))) - (1 - EXP( - EXP(i2+Zsurv)));
ELSE IF (d = 4) THEN
 Psurv =(1 - EXP( - EXP(i4+Zsurv))) - (1 - EXP( - EXP(i3+Zsurv)));
ELSE IF (d = 5) THEN
 Psurv =(1 - EXP( - EXP(i5+Zsurv))) - (1 - EXP( - EXP(i4+Zsurv)));
ELSE IF (d = 6) THEN
 Psurv = EXP( - EXP(i5+Zsurv));
IF (Psurv > 1e-8) THEN Lsurv = LOG(Psurv);
ELSE Lsurv = -1e100;
END; ELSE Lsurv = 0;

/* Cholesky parameterization of the random effects var-covar matrix */
/* This ensures that the matrix is nonnegative definite */
v11 = s11*s11;
v12 = s11*s12;
v22 = s12*s12 + s22*s22;

/* Compute the contribution of the longitudinal part */
/* Every observation in the data set makes a contribution */
Zlong = b0 + bTx*tx + bSwk*sweek + bTxSwk*tx*sweek + u0 + u1*sweek;
IF (imps79 = 1) THEN
 Plong = 1 / (1 + EXP(-(-Zlong)));
ELSE IF (imps79 = 2) THEN
 Plong = (1/(1 + EXP(-(t2-Zlong)))) - (1/(1 + EXP(-(-Zlong))));
ELSE IF (imps79 = 3) THEN
 Plong = (1/(1 + EXP(-(t3-Zlong)))) - (1/(1 + EXP(-(t2-Zlong))));
ELSE IF (imps79 = 4) THEN
 Plong = 1 - (1 / (1 + EXP(-(t3-Zlong))));
IF (Plong > 1e-8) THEN Llong = LOG(Plong);
ELSE Llong = -1e100;

/*  Any numeric variable can be used as the response in the MODEL 
statement */
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/* It has no bearing on the results */
MODEL last ~ GENERAL(Llong + Lsurv);
RANDOM u0 u1 ~ NORMAL([0, 0],[v11,v12,v22]) SUBJECT=id;
/* Compute the variances and covariance of the random effects */
ESTIMATE ‘Var[u0]’ v11;
ESTIMATE ‘Cov[u0,u1]’ v12;
ESTIMATE ‘Var[u1]’ v22;
RUN;
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8.1 IntRoductIon

There is a growing interest among both statisticians and empirical research-
ers for Bayesian statistics (Poirier, 2006). Two key factors that have contrib-
uted to this development are the rapid increase in computational power of 
PCs, and the development of Markov Chain Monte Carlo (MCMC) methods 
in the nineties (Gelfand & Smith, 1990; Gilks, Richardson, & Spiegelhalter, 
1996). The latter has revolutionized Bayesian statistics, as it allows for the 
empirical estimation of probability distributions that are difficult (or impos-
sible) to derive analytically (Gill, 2008; Poirier, 2006). Together, the PC and 
MCMC methods have made Bayesian statistics flexible and computation-
ally feasible, and it is to be expected that in the next decade we will wit-
ness a steady increase in Bayesian applications in the social sciences. In fact, 
several popular statistical packages already include the option of Bayesian 
analysis (e.g., MLwiN, SAS), and recently several books have appeared that 
encourage the social scientist to explore Bayesian analysis (Gelman & Hill, 
2007; Gill, 2008; Lynch, 2007).

The fundamental difference between the dominant approach in statis-
tics—which is referred to as frequentistic or classic—and Bayesian statis-
tics, is the way in which the concept probability is handled. Frequentists 
interpret probability as “the limit that the relative frequency approaches 
when the same experiment is repeated infinitely many times” (hence, the 
name frequentists). Bayesians on the other hand use the term probability to 
refer to “uncertainty” or “degree of believe.” This difference has far reaching 
consequences for the way in which model estimation and model selection 
are handled by frequentists and Bayesians. For instance, Bayesians place 
a probability distribution on a model parameter because they are uncer-
tain about the true value. However, to frequentists this is unacceptable, 
since model parameters are considered to be fixed and the frequentists’ 
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interpretation of probability only allows 
for probability distributions to be placed 
on random phenomena. Similarly, when 
comparing a number of competing models, 
the Bayesian can determine the probability 
that a particular model generated the data. 
Again, to the frequentist this is unaccept-
able, because a model (i.e., a hypothesis) is 
either true or not, and it is not a random 
quantity for which a probability distribu-
tion can be defined.1

This chapter is meant as a first introduc-
tion into Bayesian estimation for readers 
already familiar with multilevel modeling. 
We begin with discussing a number of gen-
eral arguments for considering Bayesian 
estimation. This is followed by a section 
on the basics of Bayesian estimation, and 
a section on Bayesian estimation of multi-
level models. To illustrate some of the fea-
tures and details of Bayesian estimation, 
we make use of an empirical illustration, 
which is included as a running example 
throughout these two sections. All the 
analyses in this chapter are performed 
using WinBUGS (Spiegelhalter, Thomas, 
Best, & Lunn, 2003), which was called 
from R using the function bugs() from 
the package R2WinBUGS (Sturtz, Ligges, 
& Gelman, 2007; for a thorough descrip-
tion of how to use bugs(), see Gelman & 
Hill, 2007). Both WinBUGS and R can 
be downloaded freely. We end this chap-
ter with a discussion of the specific mer-
its of Bayesian estimation for multilevel 
modeling.

1 Although the frequentists’ and Bayesian viewpoints are 
incompatible, it is important to note that both interpre-
tations of probability are compatible with the axioms 
of probability; that is, mathematically they behave like 
probabilities (Gill, 2008).

8.2  why consIdeR BayesIan 
estIMatIon?

In a nutshell Bayesian estimation consists of 
placing probability distributions on model 
parameters to represent prior uncertainty, 
and to update this in the light of current 
data to obtain a posterior distribution for 
the model parameters that contains less 
uncertainty (Lynch, 2007). Hence, the pos-
terior distribution is a compromise between 
the prior distribution and the data, and it 
represents the status of knowledge about 
the model parameters.

Having to place a prior distribution on 
the model parameters is seen as both a vir-
tue and a weakness of Bayesian statistics. 
On a positive note, if one has prior knowl-
edge from previous research, the prior 
distribution forms a means by which this 
knowledge can be incorporated in the cur-
rent study. As such it offers the opportunity 
to build on previous research results, rather 
than having to start from scratch with each 
new study. However, it can be difficult to 
formulate reasonable prior distributions, 
especially if one has no prior knowledge, 
but also if the current study differs from 
previous studies in that the sample comes 
from a (slightly) different population, or 
that it includes some additional (or differ-
ent) variables. In such cases researchers may 
decide to specify vague prior distributions 
that represent a lot of uncertainty (i.e., dis-
tributions with a large variance), such that 
the prior distribution plays a negligible role 
and the posterior distribution is dominated 
by the data.2

2 Note that this only applies to estimation. In case of 
Bayesian model selection, prior distributions on the 
parameters do not become negligible when they are 
vague.
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This leads to the question: Why should 
one be interested in Bayesian estimation, 
if informative priors are hard to get by, 
while vague priors are negligible and lead 
to parameter estimates that are (almost) the 
same as the parameter estimates obtained 
within the frequentists’ approach? This is 
a legitimate question that deserves a con-
vincing answer. In fact, there are several 
advantages of Bayesian estimation over the 
frequentists’ approach, besides the option of 
building on prior knowledge.

First, the Bayesian approach is not based 
on normality assumptions or on asymptotic 
results (Gill, 2008; Lynch, 2007). That is, 
Bayesian estimation results in a posterior dis-
tribution from which the mean, median, or 
mode can be used as the parameter estimate, 
and in addition a 100 (1 − α)% interval around 
this estimate can be derived for inferential 
purposes. The construction of such credibil-
ity intervals is discussed in more detail in the 
following section. Here it suffices to state that 
these credibility intervals do not depend on 
normality assumptions and/or asymptotic 
results, making this a potentially advanta-
geous approach for small sample sizes.

Second, the posterior distributions of 
parameters always lie in the sample space—
given the prior was defined in the sample 
space. This implies that where maximum 
likelihood estimation may lead to negative 
estimates of variance terms, this problem does 
not arise in Bayesian estimation. Similarly, 
while the classical approach may lead to the 
estimation of a correlation larger than one, 
this will not occur in Bayesian estimation.

Third, a Bayesian credibility interval 
around a parameter estimate has the intuitive 
interpretation that is often erroneously given 
to frequentistic confidence intervals, namely, 
there is a 1 − α chance that the true value 
lies in this interval. In contrast,  confidence 

intervals require the interpretation that 100 
(1 − α)% of such intervals contain the true 
parameter value. Hence, Bayesian results are 
easier to communicate (Gill, 2008).

Fourth, it is extremely easy to obtain 
 parameter estimates and credibility inter-
vals for quantities that are functions of 
 parameters in the model (e.g., for some 
 probability p and for the logit (p)). This also 
implies that one can easily construct hypoth-
eses concerning parameters that are not 
directly estimated in the model, which can 
then be investigated by  determining whether 
a particular value lies inside the credibility 
interval of the quantity of interest.

Fifth, Bayesian estimation algorithms can 
easily handle missing data, an issue we will 
elaborate on in the following section. The 
Bayesian package WinBUGS treats missing 
data in the dependent variable automatically.

Finally, Bayesian model estimation is still 
likely to work even for complex models, 
when the classical approach breaks down 
(Berger, 2006). Especially with MCMC meth-
ods, Bayesian estimation becomes extremely 
flexible, as will become clear below.

8.3  aBc of BayesIan 
estIMatIon

Bayesian estimation consists of finding the 
posterior distribution of unknown param-
eters based on the observed data and a prior 
distribution—the latter being defined by the 
researcher. In this section, we begin with 
explaining how the combination of a prior 
distribution and the data lead to the poste-
rior distribution. Then we discuss the Gibbs 
sampler—an MCMC method—which is a 
convenient method for obtaining the pos-
terior distribution. This is followed by an 
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example in which the Gibbs sampler is used 
to estimate means of different groups. In 
addition, it is shown that it is easy to include 
an extra step in the Gibbs sampler to handle 
missing data. At the end, posterior estimates 
for parameters and for functions of param-
eters are provided and discussed.

8.3.1  Bayes’ theorem and how to 
get from the Prior to the 
Posterior

In a Bayesian approach uncertainty about 
parameters is represented by a probability 
distribution: the prior distribution repre-
sents the uncertainty or knowledge before 
observing any data, and the posterior distri-
bution expresses the knowledge after taking 
the observed data into account. The poste-
rior distribution is obtained through Bayes’ 
theorem, which, in general notation, states

 p y p y p
p y

( ) ( ) ( )
( )

θ θ θ| = | ,

where p(θ|y) is the posterior distribution for 
a parameter vector θ given observed data y, 
p(y|θ) is the sampling density for the data, 
which is identical to the likelihood L(θ|y) 
with all (normalizing) constants included, 
p(θ) is the prior distribution for the model 
parameters, and p(y) is the marginal prob-
ability of the data. Note that the denomi-
nator p(y) is a normalizing constant and 
is required to make the posterior a proper 
density—meaning it integrates to one. 
Often, the posterior distribution is required 
up to proportionality only; that is,

 p y p y p( ) ( ) ( )θ θ θ| ∝ | .  (8.1)

Hence, the posterior distribution is pro-
portional to a combination of the informa-
tion contained in data and prior.

The role of prior distributions is a point 
of discussion, and often seen as the bottle-
neck of Bayesian analyses. Since a prior 
distribution represents (subjective) prior 
knowledge, different researchers may come 
up with different priors and subsequently 
obtain different results. In many applica-
tions, however, vague or uninformative pri-
ors can be used, leading to results that are 
determined by the observed data only. As an 
example, consider the uniform distribution: 
p(θ) ∝ c. This prior states that any value for 
the parameter θ between −∞ and + ∞ is a 
priori equally likely. Using this uniform or 
constant prior results in a posterior distri-
bution that is proportional to the likelihood 
function, as all values of the likelihood are 
weighted by the same value c to obtain the 
posterior in Equation 8.1.

However, note that the unbounded uni-
form prior is improper, in that it is not a 
density because the integral is not finite. 
While for relatively simple models it may be 
straightforward to show that an improper 
prior still leads to a proper posterior, in more 
complex models, like the multilevel model 
with several regression parameters and 
variance terms, improper priors may lead to 
posteriors that are not proper densities. To 
avoid this risk, often proper prior distribu-
tions are preferred. WinBUGS, for instance, 
does not allow for improper priors.

To make proper priors vague or unin-
formative, one can choose the hyper-
parameters, that is, the parameters that 
define the prior distribution, in such a way 
that the prior becomes very wide and flat. 
For instance, a normal prior distribution 
N(a, b2) approaches the uniform prior if b2 
is specified large enough, but it remains a 
proper density. A popular choice for proper 
prior distributions are conjugate priors, 
which means that the functional form of 
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the prior distribution is such that, combined 
with a specific density for the data, it leads 
to a posterior distribution of the same func-
tional form. This is an intuitively appealing 
choice, and furthermore it has many com-
putational advantages.

In models with multiple parameters, 
instead of using a conjugate prior for all 
model parameters, one can also use semi-
conjugate priors (Gelman, Carlin, Stern, & 
Rubin, 2004), which are sometimes referred 
to as conditional conjugate priors (Gelman, 
2006). Such priors are conjugate priors for 
some parameter(s) in the model, if the other 
parameter(s) are known. Because Gibbs 
sampling, discussed in detail below, is based 
on sampling from conditional posterior dis-
tributions, choosing conditional conjugate 
priors such that the conditional posterior is 
of a known functional form is advantageous 
when using this algorithm. Throughout this 
chapter we will use vague conditional con-
jugate priors for the illustrations.

8.3.2 gibbs sampler

Bayesian estimation is based on deriving the 
posterior and then summarizing the entire 
distribution. In general, summarizing a dis-
tribution with quantities like, for instance, 
means and variances involves solving (com-
plex) integrals and is, at best, analytically 
challenging and more often unsolvable (for 
instance, for complex, multivariate distri-
butions or when nonconjugate priors are 
used). Alternatively, one can make use of 
sampling approaches to approximate the 
integrals of interest. The MCMC methods 
are a class of algorithms for sampling from 
complex probability distributions using 
iterative methods and certain, less complex, 
proposal distributions. A Markov chain is 
constructed by using the previous sample 

values to randomly generate the next sam-
ple value. The state of the chain after a large 
number of steps is then used as a sample 
from the desired distribution.

Perhaps the most popular MCMC sam-
pling method is the Gibbs sampler (Gelfand 
& Smith, 1990; Geman & Geman, 1984; 
Smith & Roberts, 1993), which is a special 
case of the Metropolis-Hastings algorithm 
(Chib & Greenberg, 1995; Hastings, 1970). 
Gibbs sampling can be used when  sampling 
from a multivariate posterior is not feasible, 
but sampling from the univariate condi-
tional distributions is. For the illustrations 
in this chapter, the Gibbs sampler can be 
applied to obtain a sample from the posterior 
distribution and, therefore, other MCMC 
sampling methods are not discussed (but 
see Chen, Shao, & Ibrahim, 2000; Chib & 
Greenberg, 1995; Hastings, 1970; Robert & 
Casella, 1999).

The basic idea of the Gibbs sampler is that 
sampling from a multidimensional poste-
rior distribution can be done via repeatedly 
sampling from the univariate  distribution 
of each parameter, conditional on the cur-
rent values of the other parameters. For 
a  parameter vector θ = {θ1, …, θQ} and 
observed data y, a sample from the joint 
posterior p(θ|y) is obtained by a Gibbs sam-
pler consisting of the following steps:

 1. Set h = 0 and assign arbitrary starting 
values to θ(h)

 2. Set h = h + 1
 3. Sample θ1

( )h  from p … yh
Q
h( )( ) ( )θ θ θ1 2

1 1| , , ,− −

 4. Sample θ2
( )h  from p … yh

Q
h( )( ) ( )θ θ θ2 1

1| , , ,−

  5. …
 6. Sample θQ

h( ) from p … yQ
h

Q
h( )( ) ( )θ θ θ| , , ,−1 1

 7. If h < H go to Step 2

The conditional posterior distributions 
generally have simpler structures than the 



142  •  Ellen L. Hamaker and Irene Klugkist

joint posterior, so that they are easier to 
sample from. A key issue in the successful 
implementation of any MCMC sampler is the 
number of runs (iterations) until the chain 
converges. Typically a first set of iterations is 
discarded (the burn-in period) since the ini-
tial samples are affected by the arbitrary start-
ing values. The required length of burn-in 
can be shortened by choosing sensible initial 
values. For the remaining iterations one of 
various checks is used to assess whether con-
vergence has indeed been reached. A good 
impression of length of required burn-in and 
convergence of the sampling can be obtained 
by visual inspection of plots of the sampled 
values, especially if several chains with dif-
ferent starting values are compared. Also, 
one can compute formal diagnostics as, for 
instance, the R̂ (Gelman & Rubin, 1992) that 
evaluates the between and within chains 
variation to get information on convergence 
of the MCMC sample. For a more elaborate 
presentation and discussion of convergence 
diagnostics, see Cowles and Carlin (1996).

The remaining iterations after burn-in 
constitute a sample from the intended pos-
terior distribution. Discrete formulas can be 
applied to these samples to summarize the 
(posterior) knowledge about parameters. 
For instance, the mean of the distribution of 
a parameter θq is estimated by the average of 
the sampled values of θq

h( ). In a similar way, 
the posterior standard deviation and vari-
ous quantiles can be computed (e.g., 95% 
credibility interval).

8.3.3 example

To illustrate some of the issues presented 
above, we make use of an empirical example. 
The data we use in this chapter come from 
the Panel Study of Income Dynamics (PSID), 
and consist of four biannual measurements 

of body mass index (BMI) from 3355 males 
between 1999 and 2005.3 In the example here 
the object is to estimate the mean BMI at the 
first measurement occasion for four (inde-
pendent) groups based on the self-reported 
importance to maintain a healthy weight: the 
first group indicated it was “not at all impor-
tant”; the second group indicated it was “not 
too important”; the third group indicated it 
was “somewhat important”; and the fourth 
group indicated it was “very important.” In 
Table 8.1, the sample BMI scores at the first 
measurement occasion are summarized for 
each of the four groups. Subsequently, the 
sample mean (M), standard deviation (SD), 
sample size (n), and number of missing 
BMI-scores (nmiss) are presented for each of 
the four groups.

8.3.3.1  Bayesian Estimation of Group 
Means and Residual Variance

Let yji denote the BMI-score of the ith indi-
vidual in the jth group (for i = 1, …, nj and 
j = 1, …, 4), and let μj denote the mean BMI 

3 See http://psidonline.isr.umich.edu/. Note that the PSID 
is not a random sample from the U.S. population, but 
it includes sample weights such that proper inferences 
can be made. Since this is a subsample from the PSID 
 sample—depending on whether the information was 
given to compute the BMI (i.e., weight and height)—the 
current subsample can not be used to make inferences to 
the population.

taBle 8.1

Sample Descriptives on BMI at the First Measurement

Group M SD n nmiss

1 25.90 4.46 110 1
2 27.95 5.67 208 2
3 27.88 4.48 1013 6
4 26.92 4.05 1992 23

Note: Group 1 indicates maintaining a healthy weight is 
“not at all important.” Group 2 indicates it is “not too 
important.” Group 3 indicates it is “somewhat impor-
tant.” and Group 4 indicates it is “very important.”
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in group j. Then the observed BMI score can 
be expressed as

 y eji j i= + ,µ  (8.2)

where the residual ei is assumed to be nor-
mally distributed with mean zero and vari-
ance σ2.

From the expression in Equation 8.1 it 
is clear that in order to obtain the poste-
rior distribution we need both the density 
of the data, and a prior distribution for the 
parameters. For the current illustration the 
density of the data can be expressed as
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where y y … y … y … yn n= , , , , , ,{ }11 1 41 41 4
, μ =  

{μ1, μ2, μ3, μ4}, and N = Σjnj.
To specify a prior for all five model param-

eters (i.e., the four μ’s and the variance σ2), 
we begin by assuming the means and the 
variance are independent, such that the 
joint prior can be written as p(μ, σ2) = p(μ) 
p(σ2). Using conditional conjugate priors 
for the four μ’s and for σ2, we get

 p N a b IG c d
j

j j( ) ( ) ( )µ σ, = , × , ,
=

∏2

1

4
2  (8.4)

where N a bj j( ), 2  denotes a normal distri-
bution with mean aj and variance bj

2 (for 
j = 1, …, 4) and IG(c, d) denotes an inverse 
gamma distribution with hyperparameters 
c and d. The prior in Equation 8.4 is vague 
if bj

2 is chosen large, and c = d approaches 
zero.

Through combining the density of the 
data and the joint prior we obtain the poste-
rior distribution
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To make inferences for a specific parame-
ter based on this joint posterior distribution, 
we need to integrate the above expression 
over the other parameters. For instance, if 
we want to determine a credibility interval 
for μ1, we have to integrate μ2, μ3, μ4, and 
σ2 out first to obtain the marginal  posterior 
distribution of μ1. While this may be fairly 
easy for simple models, it can become rather 
difficult or even impossible for more com-
plex models.

Alternatively, instead of evaluating the 
expression in Equation 8.5 directly, we 
can obtain an empirical approximation of 
it using the Gibbs sampler. To this end we 
need the conditional posterior  distributions 
of each μj and of σ2. Since the means are 
assumed to be independent in the model 
defined in Equation 8.3, the conditional pos-
terior distribution of each mean is also inde-
pendent of the other means. Using the normal 
density Equation 8.3 and a normal prior for μj, 
and assuming σ2 is known, results in a nor-
mal posterior (see for instance, Lynch, 2007, 
pp. 62–64; Gelman et al. 2004, p. 49); that is
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where jy  denotes the average BMI-score in 
group j. From the parameters of the normal 
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distribution it can be seen that the posterior 
is a compromise of the information in data 
and prior. For instance, the mean of the 
conditional posterior for μj is the average of 
prior mean aj, weighted with corresponding 
precision 1 2/bj , and data mean jy  weighted 
with precision nj/σ2.

The conditional posterior distribution of 
the variance needed for the Gibbs sampler 
is obtained by combining the normal 
 likelihood Equation 8.3 with the inverse 
gamma prior Equation 8.4 and assuming 
the means are known. This results in a pos-
terior distribution that is also an inverse 
gamma distribution (see, for instance, Gill, 
2008, pp. 77–78)

Note that, as with the conditional pos-
terior for the means, the parameters of the 
posterior inverse gamma distribution are 
a compromise between prior (i.e., c and d) 
and data information (i.e., N/2 and yji).

Using these conditional posterior distri-
butions, the Gibbs sampler for estimating 
the means and residual variance can be 
written as

 1. Set h = 0 and assign an arbitrary (pos-
itive) starting value to σ2(h)

 2. Set h = h + 1
 3. For j = 1, …, 4, sample µ j

h( ) from 
p(μj|σ2(h−1), y)

 4. Sample σ2(h) from p(σ2|μ(h), y)
 5. If h < H go to Step 2

8.3.3.2 Missing Data

The Gibbs sampler discussed above can be 
easily extended to handle missing data on 

the dependent variable. At the first mea-
surement, 32 respondents failed to report 
the information needed to compute their 
BMI. Let y = {yobs, ymis}, where yobs are the 
observed cases, and ymis are the cases for 
which BMI is missing. Note that for all 
respondents group membership is known; 
that is, respondents did indicate how impor-
tant it was to them to maintain a healthy 
weight. The missing data assumption, in 
the algorithm presented hereafter, is that—
conditional on all information in the model 
(i.e., here just group membership)—the 
missing observations on BMI are  random. 
Under this missing at random (MAR) 
assumption, missing data are  easily dealt 

with using MCMC sampling and is imple-
mented in WinBUGS. Compared with the 
Gibbs sampler presented before, initial val-
ues for ymis are specified and in each itera-
tion h, new values for ymis are sampled along 
with the samples for the model parameters. 
Sampling of the missing values is condi-
tional on the current values of the param-
eters; that is

 1. Set h = 0 and assign an arbitrary (pos-
itive) starting value to σ2(h) and arbi-
trary starting values to ymis

h( )

 2. Set h = h + 1
 3. For j = 1, …, 4, sample µ j

h( ) from 
p y yj

h
mis

h
obs( )( ) ( )µ σ| , ,− −2 1 1

 4. Sample σ2(h) from p y yh
mis

h
obs( )( ) ( )σ µ2 1| , ,−

 5. Sample ymis
h( ) from p(ymis|μ(h), σ2(h), yobs )

 6. If h < H go to Step 2

Sampling ymis
h( ) in Step 5 is straightforward, 

since within each iteration h, the parameters 
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μ and σ2 have known current values. If a 
person’s score is missing, this score yji is 
sampled from N j

h h( )( ) ( )µ σ, 2 . Again, choos-
ing sensible starting values for ymis

( )0  shortens 
the required burn-in of the Gibbs sampler. 
WinBUGS generates such starting val-
ues automatically. Note that the algorithm 
described above is a form of multiple impu-
tation (Rubin, 1987). This means that the 
uncertainty in the model parameters is 
taken into account by multiple imputing 
values for the missing scores conditional on 
the current values of the parameters.

8.3.3.3 Posterior Estimates

We use WinBUGS to obtain a sample from 
the posterior distribution based on the prior 
in Equation 8.4 with aj = 25 and bj

2 610=  (for 
j = 1, …, 4), and c = d = .001. To examine 
the required burn-in and total number of 
iterations, two samples are obtained using 
different starting values. In Figure 8.1, the 
first 50 iterations of two chains are plotted 
for each of the parameters. It can be seen 
that, in this example, the effect of the arbi-
trary starting values disappears within just 
a couple of iterations.
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fIguRe 8.1
Comparison of the first 50 iterations of two chains with different starting values.
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All estimates in this section are based 
on 4000 iterations after discarding the 
first 2000. Figure 8.2 shows the iterations 
plots on the left and the posterior density 
plots on the right for all five parameters. 
For the means, the same scale on the x-axis 
is used to show the difference in (mean) 
location as well as in the variance of the 
resulting posterior distributions. The lat-
ter is caused by the large differences in 
sample size, ranging from 110 in the first 
group to 1992 in the fourth group. This 

can also be seen in Table 8.2 where the 
posterior summaries are provided. The 
posterior mean is obtained by computing 
the average of the 2000 draws for the cor-
responding parameter. Likewise, the pos-
terior SD is the standard deviation across 
all iterations. Quantiles are obtained by 
sorting the sampled values and report-
ing the parameter value corresponding 
with the desired quantiles. The 2.5th and 
the 97.5th percentile, for instance, provide 
the lower and upper bound of the 95% 
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Chains of 2,000 iterations after burn-in (left) and summary of posterior density (right) for all parameters. 
Vertical lines mark the 95% credibility interval.
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central credibility interval for each param-
eter. Note that to obtain such an interval 
no normality assumption is made, so for 
skewed distributions the interval is, cor-
rectly, not symmetric around the mean. 
Skewed posterior distributions are not 
uncommon, especially for variance param-
eters in small samples. In this illustration 
however, all marginal posteriors look quite 
normally distributed, as can be seen both 
in Figure 8.2, and when comparing, for 
instance, the posterior mean and median 
(they are equivalent for all parameters) in 
Table 8.2. This is to be expected given the 
large sample sizes.

The power of the Gibbs sampler, or any 
MCMC method, is that by obtaining a 
sequence of univariate conditional random 
variables we can compute any feature of all 
marginal distributions (as shown above), 
as well as any feature of the marginal 
distributions of functions of the param-
eters. We will illustrate the latter with two 
 examples. First, suppose we are interested 
in  differences between groups 2 and 3. It 
may be expected that differences in BMI 
will be observed for the extreme groups 
“not at all important” and “very important” 
compared to the in-between group “not 
too important” or “somewhat important,” 
while there is no clear distinction between 
the latter two. Since μ2 and μ3 have values 

in each iteration, we can also compute a 
value for the difference Q h h h

1 3 2
( ) ( ) ( )= −µ µ  in 

each iteration. This provides 2000 values 
for the difference scores and thus a discrete 
summary of the posterior distribution of 
Q1. The results are plotted in Figure 8.3 
(top). The resulting posterior of Q1 indi-
cates that the difference between the mean 
BMI scores of groups 2 and 3 is very likely 
to be (close to) zero.

The two plots at the bottom of Figure 8.3 
represent another question of interest: Can 
we observe a difference in average BMI 
scores for the fourth group compared to 
the two in-between groups 2 and 3? Within 
each iteration, Q2

(h) = μ4
(h) − (μ2

(h) + μ3
(h))/2 is 

computed. The posterior distribution of Q2 
is plotted and shows that the entire pos-
terior is smaller than zero. This indicates 
that men in the group that indicates main-
taining a healthy weight is very important 
to them, have, on average, a lower BMI 
than the two groups that indicate that it is 
not too  important and somewhat impor-
tant. A  possible explanation for this find-
ing is that those who find maintaining a 
healthy weight very important will put in 
more effort to actually maintain a healthy 
weight than those who do not find it that 
important.

In this section we have introduced sev-
eral basic concepts concerning Bayesian 

taBle 8.2

Posterior Distributions for Four Means and the Variance

PM PSD .025 .25 .50 .75 .975

μ1 25.90 0.40 25.12 25.62 25.90 26.18 26.66
μ2 27.93 0.30 27.36 27.73 27.93 28.14 28.53
μ3 27.88 0.14 27.61 27.79 27.88 27.97 28.15
μ4 26.91 0.09 26.73 26.85 26.91 26.98 27.10
σ2 18.64 0.45 17.79 18.33 18.64 18.95 19.55

Note: Posterior mean (PM), posterior standard deviation (PSD), and several percentiles of the posterior 
distribution (.025, .25, .50, .75, .975).
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estimation, and provided illustrations in 
the context of the estimation of indepen-
dent group means. In the remainder of this 
chapter, we will extend these ideas and illus-
trate them for multilevel modeling.

8.4  BayesIan estIMatIon In 
MultIlevel ModelIng

Multilevel modeling fits so naturally into a 
Bayesian framework that virtually any text-
book on Bayesian analysis includes a chapter 
on multilevel modeling (e.g., Gelman, 2006; 
Gill, 2008; Lynch, 2007). In contrast to those 
presentations, which present multilevel mod-
eling as the novel issue, here the Bayesian 
aspects are considered the novel part. We 
discuss three multilevel models; that is, the 
well-known random intercept model, the 
growth curve model, and a less typical mul-
tilevel model with time-varying covariates. 
The latter illustrates the flexibility of formu-
lating alternative models in WinBUGS.

8.4.1  the Basics of Bayesian 
estimation of a Multilevel 
Model

A typical approach to multilevel modeling 
consists of specifying the model at each 
level. Hence in a multilevel model with 
two levels, one begins with specifying the 
model at level 1, and then proceeds with 
specifying the model at level 2. When using 
Bayesian estimation for multilevel model-
ing, an additional step is required, in which 
the hyperprior distributions are specified 
for the parameters in the model at level 1 
and 2.

Let ykm be the m-th observation in clus-
ter k, where k = 1, …, K, and m = 1, …, Mk. 
Let’s assume that within each cluster the 
data are distributed according to a particu-
lar distribution, Q with parameter θ, such 
that we can define the model at level 1 as

 ykm ∼ Q(θk). (8.6)

Next, we assume that the parameters 
θk come from a distribution R that is 

Q
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fIguRe 8.3
Chains of 2000 iterations after burn-in (left) and summary of posterior density (right) for Q1 and Q2. Vertical 
lines mark the 95% credibility interval.
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characterized by parameter γ, such that we 
can define the model at level 2 as

 θk ∼ R(γ). (8.7)

Thus far, this does not differ from defining 
a multilevel model in the classical approach. 
The next step however is unique to the 
Bayesian approach: We define a prior distri-
bution for the hyperparameter γ; that is,

 γ ∼ S(a, b). (8.8)

The last step is sometimes referred to as 
the third level (e.g., Press, 2003, p. 342), 
because the model in Equation 8.6 through 
Equation 8.8 can be thought of as a multi-
level model with 3 levels, for which we have 
observed just one unit at level 3. To avoid 
confusion however, we refer to the distribu-
tion in Equation 8.8 as the hyperprior distri-
bution, because this distribution is the prior 
for the hyperparameters in Equation 8.7.

Now let y y … y … y … yM K KMK
= , , , , , ,{ }11 1 11

 
denote all observed data. Then the joint 
posterior distribution of all unknowns in 
the multilevel model, that is, the popula-
tion parameter γ and the cluster parameters 
θ = {θ1, …, θk}, can be obtained through 
employing Bayes’ theorem; that is,

 p y p y p p( ) ( ) ( ) ( )γ θ θ γ θ γ γ, | ∝ | , | ,  (8.9)

where the density of the data is obtained 
through

 p y p y
k

K

m

M

km k

k

( ) ( )| , = | ,
= =

∏∏θ γ θ γ
1 1

and the prior for the random effects is

 p p
k

K

k( ) ( )θ γ θ γ| = | .
=

∏
1

From the joint posterior distribution in 
Equation 8.9, one can derive the conditional 
posterior distributions through selecting 
only those terms that contain the param-
eter of interest, but this can be very tedious 
(cf. Lynch, 2007, pp. 242–245). When using 
WinBUGS, it suffices to specify the model 
and the hyperprior distributions.

8.4.2  Model 1: Random 
Intercept Model

For the multilevel models considered here, 
we make use of all four measurement occa-
sions between 1999 and 2005. The sample 
consists of 3355 males, for whom we have 
at least one BMI measurement over a 6-year 
period. In Table 8.3 it can be seen that the 

taBle 8.3

Frequencies of BMI Categories Over a 6-Year Period for 3355 Males

BMI category

Year < 18.5 [18.5–25) [25–30) [30–35) ≥ 35 Miss

99 10 1066 1518 545 184 32
01 15 983 1534 589 211 23
03 11 940 1521 619 239 25
05 13 883 1548 628 258 25

Note: Four measurement occasions between 1999 and 2005. A BMI below 18.5 is considered underweight; 
between 18.5 and 25 is considered healthy; between 25 and 30 is considered overweight; between 30 
and 35 is considered obese; and above 35 is considered severely obese. Last column contains the 
number of missing observations per measurement occasion.
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number of men in the obese and severely 
obese categories increases over the span of 
the study, while the number of men in the 
healthy category steadily decreases. As a 
result the number of men in the overweight 
category remains more or less in equilib-
rium. We interpret this as an indication 
that BMI of most individuals in the study 
increases over the 6 years between 1999 and 
2005. We will investigate this with growth 
curve models below.

We start with a simple multilevel model 
known as the random intercept model. The 
measurements are denoted as yit, where 
i refers to individual, and t refers to mea-
surement occasion (i.e., t = {1, 2, 3, 4}). 
Each individual is allowed its own inter-
cept denoted as αi. Hence at level 1 we have 
yit = αi + eit, with eit ~ N(0, σ2), and at level 2 
we have αi = α(0) + εi, with ε ταi N∼ ( )0 2, . 

Using probability notation (Lynch, 2007), 
we can write this model as
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To ensure the priors are uninformative, 
we set b2 = 106 with a = 0, and g = h = q = 
r = .001. We used 2000 iterations as burn-in 
and another 2000 iterations for estimation. 
The results are given in Table 8.4.

In Bayesian estimation of a multilevel 
model, the random effects are typically not 
integrated out of the model. As a result, we 
also obtain estimates of the actual random 

taBle 8.4

Results for Four Multilevel Models on Repeated Measures of BMI

Parameter Model 1 Model 2a Model 2b Model 3

α(0) 27.64 (.077) 27.28(.075) 27.29(.075) 27.29(.078)
[27.50, 27.81] [27.14, 27.43] [27.13, 27.43] [27,13, 27.44]

β(0) .12(.008) .12(.008) .11(.007)
[.10, .13] [.10, .13] [.10, .12]

τα
2 18.75(.459) 18.08(.464) 18.03(.483) 18.10(.465)

[17.85, 19.64] [17.19, 18.99] [17.06, 18.99] [17.24, 19.07]
τβ

2 .09(.005) .09(.005) .09(.005)
[.08, .10] [.08, .10] [.08, .10]

τσβ .02(.034)
[−.05, .09]

α(1) .67(.105)
[.46, .88]

α(2) −.22(.11)
[−.44, .01]

σ2 2.62(.036) 1.94(.03) 1.94(.034) 1.94(.032)
[2.55, 2.69] [1.88, 2.01] [1.88, 2.01] [1.88, 2.00]

Note: For each parameter in the model the posterior mean is given, with the posterior standard deviation in parentheses. 
Underneath the 95% credibility interval is given between square brackets. Parameters: α(0) is the average intercept; β(0) 
is the average slope; τα

2  is the variance of the random intercept; τβ
2 is the variance of the random slope; τσβ is the covari-

ance between the random intercept and random slope; α(1) is the effect of transitioning into a relationship; α(2) is the 
effect of transitioning out of a relationship; and σ2 is the residual variance.
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effects for each individual. In Figure 8.4 we 
have plotted the intercept estimates αi (i.e., 
the posterior distributions) of all 3355 indi-
viduals (panel a), and the density of these 
(panel b). From this it can be seen that the 
distribution of the intercepts is skewed 
upwards. In addition we have plotted the 

2000 draws from the conditional posteriors 
of the mean α(0) and the variance of the ran-
dom intercept τα

2 . The random draws over 
2000 iterations in panels c and e show that 
the Gibbs sampler converged. The density 
plots given in panels d and f show that these 
distributions are quite symmetric.
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Panel a represents the individual intercepts plotted against participant number. These estimates were 
obtained by taking the mean of each individual’s posterior distributions of the intercept. Panel b contains the 
density of these individual intercepts with the 95% (central) interval indicated by the vertical lines. Panel c 
are the Gibbs samples for the mean intercept (plotted against iteration), and panel d is the posterior density 
of the mean intercept with the 95% credibility interval. Panel e consists of the Gibbs samples of the variance 
of the intercept (plotted against iteration), and panel f is the posterior distribution of the variance with the 
95% credibility interval.
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Moreover, the Gibbs sampler can also be 
used to determine a credibility interval for a 
specific individual’s intercept. In Figure 8.5 
we plotted the posterior densities of the 
intercepts of the first nine individuals in the 
sample. Based on this density we have also 
determined the 95% credibility intervals for 
each of these individual intercepts. Hence, 
we can determine for each individual in the 
sample whether his average BMI over the 

6-year period covered by the current study 
differs from, for instance, 25 (the upper 
bound of a healthy BMI), or 30 (the upper 
bound of the category “overweight”).

8.4.3 Model 2: growth curve Model

The random intercept model can be exten-
ded to include a random slope βi for the pre-
dictor time that we denote as Tit. Because we 
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fIguRe 8.5
Posterior distributions of the intercepts of the first nine individuals in the sample. Vertical lines indicate the 
bounds of the 95% credibility interval.
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have biannual measurements, we use Ti1 = 0, 
Ti2 = 2, Ti3 = 4, and Ti4 = 6. This implies that 
αi is the (predicted) BMI value of individual 
i at the first measurement occasion, while βi 
is the annual change of individual i over the 
6 years.

We begin with a growth model in which 
the random intercept and random slope are 
uncorrelated. This model, which we refer to 
as model 2a, can be written as
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To ensure the priors are vague, we set a =  
c = 0, b2 = d2 = 106, and g = h = q = r = .001. 
The results are presented in Table 8.4. From 
this we can see that there is an average 
increase in BMI of .12 per year.

Alternatively, one can include a covari-
ance between the random intercept αi and 
the random slope βi. To this end, the ran-
dom parameters need to be drawn from a 
bivariate normal distribution. Let θi = [αi 

βi]′ come from a multivariate normal distri-
bution with mean θ(0) = [α(0) β(0)]′, and cova-
riance matrix Σ, which contains τα

2  and τβ
2 

on the diagonal, and the covariance τσβ as 
the off-diagonal element. Using this setup 
requires us to specify hyperprior distribu-
tions for the parameters in θ(0), for instance, 
a multivariate normal distribution, and Σ(0).

To ensure the covariance matrix Σ is 
symmetric and positive definite, we use an 
inverse-Wishart distribution as its prior 
distribution. This distribution is defined by 
degrees of freedom k, which can be inter-
preted as the prior effective sample size (i.e., 
it is the weight we wish to give to the prior), 
and a matrix R, which can be interpreted as 
the prior estimate for the covariance matrix. 
While the effect of specific choices for k and 
R have been investigated in a simulation 
study (Browne & Draper, 2000), defining a 
vague inverse Wishart prior remains a dif-
ficult task. Here we consider two options 
suggested by Browne and Draper (2000): an 
inverse-Wishart distribution with R equal 
to the covariance matrix obtained with 
restricted maximum likelihood estimation 
and k = 4; and R = I2, and k = 2.

The growth curve model with correlated 
intercept and slope, which we refer to as 
model 2b, can be written as
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By setting the diagonal elements of G 
large, we ensure that the prior distribution 
of θ(0) is vague too.

Given the large data set, the different 
hyperparameters for the inverse-Wishart 
distribution had virtually no effect on the 
results. The results are presented in Table 
8.4. Note that the 95% credibility interval of 
the covariance includes zero, such that we 
can conclude that the covariance is prob-
ably not (very) different from zero. Since 
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we find correlations easier to interpret, we 
also let WinBUGS compute the correla-
tion between the intercept and slope at 
each iteration of the Gibbs sampler, based 
on the latest samples of the variances and 
the covariance. This way, we also obtain an 
approximation of the marginal posterior 
distribution of the correlation, from which 
we can make inferences. The posterior 
mean for the correlation is .013 (posterior 
SD = .027), and its 95% credibility interval 
lies between −.037 and .067.

In Figure 8.6 the random intercepts and 
random slopes (i.e., the posterior means 
per individual) are presented for the two 
models: the top contains the results for the 
uncorrelated intercept and slope (model 2a), 
while the bottom contains the results for 

the correlated intercept and slope (model 
2b). This also shows clearly that adding the 
correlation to the model has virtually no 
influence on the estimation of the random 
intercepts and slopes.

8.4.4  Model 3: growth Model with 
time-varying Predictors

The growth curve model used above can 
be easily extended with predictors that 
are either time-invariant—meaning they 
are included in the level-2 equation(s)—or 
time-varying predictors—meaning they are 
included in the level 1 equation. Here we 
consider an atypical example of the latter, 
for which we use information obtained at 
each measurement occasion on whether a 
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Results for the random intercept and random slope of model 2a (top) and model 2b (bottom).
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participant was cohabiting with a spouse, 
or living without a spouse.

We are interested in whether the transi-
tion from singlehood to a relationship, or 
vice versa, affects the change in BMI. To this 
end, we make six dummy variables, two for 
each of the occasions 2, 3, and 4, such that 
x1it is a dummy that identifies the individuals 
who transition into a relationship between 
t − 1 and t, and x2it is a dummy that identifies 
individuals that transition out of a relation-
ship between t − 1 and t. Note that since we 
have no information on relationship status 
before the observations started, we do not 
have dummies for the first occasion.

We assume each individual has a sin-
gle growth parameter for all time points, 
denoted as βi. If a transition into or out of 
a relationship is associated with an increase 
or decrease in BMI, this effect is assumed 
to continue to exist at the subsequent occa-
sions. For instance, suppose that a par-
ticular individual i = g transitioned into a 
relationship between occasions 2 and 3, and 
did not experience transitions out of a rela-
tionship. Then, for the four occasions in the 
study, the scores of this individual g can be 
expressed as
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We interpret α(1) as a shift in the indi-
vidual’s intercept, such that it persists after 
the transition has taken place. Hence, we 
obtain an intercept that is time-dependent, 
such that for this individual we can write 
αg1 = αg2 = αg, and αg3 = αg4 = αg + α(1).

More generally, we can express the time-
dependent intercepts as: αi1 = αi, and for 
t = 2, 3, 4 we can write αit = αi, t−1 + α(1)

x1it + α(2)x2it. Note that by including the 
individual’s intercept at the previous occa-
sion (i.e., αi, t−1), changes that happened in 
the past are maintained in the model.

This model, which we refer to as model 3, 
can be expressed as
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such that α(1) denotes the average additional 
change in BMI for men transitioning into a 
relationship, while α(2) denotes the average 
additional change in BMI for men transi-
tioning out of a relationship.

The results for this model are presented 
in the last column of Table 8.4. Note that 
in comparison to model 2a, the estimates 
of the fixed effects α(0) and β(0), and the 
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variance components τα
2 , τβ

2, and σ2 have 
not changed much. In Figure 8.7 the pos-
terior distributions are plotted of the aver-
age intercept αβ(0), the average slope β(0), the 
shift in intercept due to a transition into a 
relationship α(1), and the shift in intercept 
due to a transition out of a relationship α(2). 
From the 95% credibility intervals it can be 
concluded that the transition into a rela-
tionship implies an additional increase in 
BMI, while a transition out of a relation-
ship is not associated with any additional 
change in BMI. The posterior mean for α(1) 
is .67. Comparing this to the average annual 
change in BMI (i.e., β(0) = .11), it can be 

stated that transitioning into a relationship 
is associated with an additional increase in 
BMI that is equal to the average increase in 
BMI over a 6-year period!

8.4.5  some additional Remarks on 
Priors for variance components 
in Multilevel Models

For the priors of the random effects in 
the illustration above we have used either 
inverse-gamma(ε, ε) distributions, or an 
inverse-Wishart(R, k) distribution (to allow 
for a correlated random intercept and ran-
dom slope). These priors are popular choices 

27.0 27.1 27.2 27.3 27.4 27.5

Intercept

0.08 0.09 0.10 0.11 0.12 0.13 0.14

Slope

0.4 0.6 0.8 1.0

Transition into relationship

−0.6 −0.4 −0.2 0.0 0.2

Transition out of relationship

fIguRe 8.7
Posterior distributions of the intercept, slope and the two regression parameters for the dummy variables 
indicating a transition into or out of a relationship; 95% credibility intervals are given for each parameter.
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in Bayesian multilevel analysis, because they 
are conditionally conjugate, which makes 
them easy to combine with Gibbs sampling 
(Gelman, 2006, p. 517).

However, there are some indications that 
these prior distribution may not be appro-
priate in multilevel modeling if one wishes 
to use vague priors. Regarding the inverse 
gamma distribution, Gelman (2006) has 
shown that this can lead to large shrinkage 
of the random effects (i.e., they are shrunk 
to the mean), such that the posterior distri-
bution of the standard deviation of the ran-
dom effect peaks close to zero. Moreover, if 
the standard deviation of the random effect 
is estimated close to zero, the resulting 
inferences will be sensitive to the choice of 
ε. Therefore, Gelman (2006) advises using a 
noninformative uniform prior on the stan-
dard deviation (instead of the variance) of 
the random effect.

We investigated whether the choice of ε 
had an effect on the results in the random 
intercept model (model 1), by comparing 
the results obtained with ε = .001, with the 
results obtained with ε = 1. This only had a 
very minor effect on the posterior distribu-
tion of the variance of the random intercept: 
the posterior mean changed from 18.75 to 
18.73; the posterior SD remained the same; 
and the credibility interval changed from 
[17.85,19.64] to [17.84,19.63].

Regarding the inverse-Wishart distribu-
tion, we have already indicated that it is 
difficult to choose R and k such that it is a 
vague prior. Gelman & Hill (2007) indicate 
that choosing k equal to the dimension of 
θ(0) plus 1, results in a uniform prior on the 
correlations associated with Σ, but it has 
the undesirable effect that the variances 
in Σ are quite constrained. Using a differ-
ent value for k results in a less informative 
prior for the variances, but constrains the 

correlations (Gelman & Hill, p. 289). To 
overcome these restrictions, Gelman and 
Hill (2007) suggest using a scaled inverse 
Wishart prior, which is obtained by pre- 
and post-multiplying the matrix from the 
inverse Wishart distribution by a vector 
with scale parameters (see p. 377, Gelman 
& Hill, 2007 for an example using bugs()). 
Note however that in our example (model 
2b), the different choices of R and k had no 
effect on the results, due to the large sample 
size involved.

8.5 dIscussIon

The current chapter presented an introduc-
tion into Bayesian estimation of multilevel 
models. At the beginning of this chapter 
we gave a number of general arguments 
for preferring a Bayesian approach over the 
classical approach. Here we emphasize sev-
eral of these arguments specifically in the 
context of multilevel modeling, and discuss 
an additional argument that is (more) exclu-
sively associated with multilevel modeling.

As indicated before, Bayesian estimation 
is not based on normality assumptions and 
asymptotic results. In the context of mul-
tilevel modeling this is an important van-
tage over the classical approach, because 
(higher level) variances play a key role in 
these models, and it is well-known that the 
sampling distribution of a variance is only 
approximately normal if sample size is large 
enough. Maas and Hox (2004) performed a 
simulation study in which they showed that 
standard errors of level-2 variances may be 
seriously underestimated when the num-
ber of level-2 units is small (say less than 30 
 clusters), or when the level 2 residuals are 
nonnormal (e.g., the random intercept in 
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model 1, see panel b in Figure 8.4). Moreover, 
even robust standard errors (based on the 
sandwich estimator) are too small for level 2 
variance components (Maas & Hox, 2004).

Browne (1998) and Browne and Draper 
(2000) performed a number of simula-
tion studies to compare diverse likelihood 
based estimation procedures with Bayesian 
results obtained with MCMC methods in 
multilevel models. Overall the conclusion 
from these simulation studies is that while 
Bayesian estimates are biased, the coverage 
rate of their 100(1 − α)% credibility inter-
vals are in general much closer to 1 − α than 
the rates obtained with the likelihood based 
100(1 − α)% confidence intervals.4 Because 
the normal distribution is a bad approxima-
tion for level 2 variances in small samples, 
Browne (1998) also constructed 100(1 − α)% 
confidence intervals based on the inverse 
Gamma distribution, but this did not solve 
the problem. In sum it can be concluded 
that if the focus is not just on the point 
estimates, but also on making inferences 
based on intervals around point estimates, 
Bayesian estimation outperforms the maxi-
mum likelihood approaches for small (level 
2) samples in multilevel modeling.

Another issue that comes up in multilevel 
modeling—particularly with small sam-
ple sizes at level 2—is that one can obtain 
a negative estimate for the variance of a 
random effect (cf. Browne, 1998; Maas & 
Hox, 2004). Clearly, from a statistical point 
of view, this is impossible, and the typical 
way to handle this is by fixing the variance 
to zero. In Bayesian estimation however, 
the entire posterior distribution will lie 
in the parameter space, and therefore the 

4 For multilevel logistic regression Browne (1998) found 
that the MCMC methods outperformed the likelihood 
based methods both in terms of bias and coverage rates.

parameter estimate obtained will always lie 
in the sample space.

A third advantage of Bayesian estima-
tion is the ease with which missing data are 
handled. We have already shown how miss-
ing observations in the dependent variable 
are dealt with in the Gibbs sampler, and 
indicated that this is done automatically in 
WinBUGS. Moreover, Carrigan, Barnett, 
Dobson, and Mishra (2007) show how 
missingness in a covariate in longitudinal 
data can be handled using WinBUGS. They 
also indicate that WinBUGS can easily deal 
with missing categorical data, whereas most 
other packages rely on an assumption of 
normality such that categorical data cannot 
be imputed (Carrigan et al., 2007).

Another advantage of Bayesian estima-
tion is that it can handle complicated prob-
lems that are difficult to tackle within the 
classical approach. For instance, Wang and 
McArdle (2008) showed in a simulation 
study that Bayesian estimation of multilevel 
change-point models leads to better results 
than two classical estimation procedures. 
In particular, the Bayesian method was not 
affected by the initial values, while the two 
classical methods only gave unbiased results 
if the initial values were close to the true 
values. Another example can be found in 
Oravecz, Tuerlinckx, and Vandekerckhove 
(2009), who based their multilevel model on 
differential equations to allow for unequal 
intervals between the repeated measure-
ments of individuals. Such unequal inter-
vals are characteristic of many diary studies. 
They indicate that the classical approach 
would require high-dimensional integra-
tion over the numerous random effects 
distributions, which is not necessary in the 
Bayesian approach. Finally, in Bayesian esti-
mation it is easy to incorporate inequality 
constraints on model parameters, including 
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multilevel models (Kato & Hoijtink, 2006; 
Kato & Peeters, 2008).

A fifth advantage that was mentioned 
and illustrated in this chapter, is that with 
MCMC methods it is easy to obtain addi-
tional quantities that may be of interest. 
Another example of this in multilevel mod-
eling can be found in Hoijtink (2000), who 
considered a traditional random intercept 
model for a data set consisting of test results 
from children who are nested in schools. 
Within each iteration of the Gibbs sampler, 
the rank order of the schools was deter-
mined, based on the random intercepts. By 
saving the rank order numbers, and plot-
ting these afterwards with their 95% cred-
ibility intervals, it became easy to see that 
for instance the first 10 schools were not 
different with respect to their ranking. Such 
information would be extremely difficult, if 
not impossible, to obtain within the classi-
cal approach.

Besides these general advantages of 
Bayesian estimation, there is an additional 
advantage that specifically applies to multi-
level modeling. In the previous section, we 
have shown that Bayesian analysis results 
in the simultaneous estimation of model 
parameters (i.e., both fixed effects and the 
variance components), and the actual ran-
dom effects. The latter are of interest for 
model evaluation, for instance, to check for 
outliers (Hox, 2002, pp. 22–30). Moreover, 
estimates of the actual random effects are 
essential if one wishes to make inferences at 
the cluster level, for instance, to rank schools 
(Hoijtink, 2000), or to select individuals 
who need treatment (Candel, 2004).

However, in the classical approach to 
multilevel modeling, the cluster effects are 
integrated out of the likelihood function, 
such that only the population parameters 
(i.e., fixed effects and variance components) 

are estimated. In order to obtain estimates 
of the random effects, one can use what is 
known as the empirical Bayes estimates 
(EBE). However, Candel (2004) has shown 
in a simulation study that the quality of 
the EBEs depends on whether one uses full 
maximum likelihood or restricted maxi-
mum likelihood, and whether negative sec-
ond level variances are fixed to zero or not. 
In addition, the performance may depend 
on sample sizes at level 1 and 2, and on the 
intraclass correlation (Candel, 2004).

In comparison, the advantage of taking a 
truly Bayesian approach as discussed in this 
chapter is that the random effects αi are not 
integrated out of the model. Hence, rather 
than having to estimate the random effects 
using other parameter estimates (for the 
variance components and the fixed effects), 
the random effects are sampled along with 
all the other unknown model parameters. 
In the random effects model we illustrated 
that for each level-2 unit we obtain a pos-
terior distribution, from which we can use 
the mean or median as the parameter esti-
mate, and construct a credibility interval 
for which we do not have to rely on large 
sample theory.

In conclusion, Bayesian estimation helps 
to tackle some of the problems that are fre-
quently encountered in multilevel model-
ing. The availability of software packages 
such as WinBUGS and MLwiN, which 
allow for Bayesian estimation of multilevel 
models, makes it an easy to use and attrac-
tive alternative to the classical approach. 
Moreover, Bayesian estimation opens up 
possibilities that are difficult or impossible 
within the classical context, but may be 
valuable to the researcher using multilevel 
modeling.

In this chapter we have focused exclu-
sively on Bayesian estimation, as it is the 
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first step in Bayesian analysis. Additional 
steps in Bayesian analysis consist of 
hypothesis testing using posterior predic-
tive p-values, and model selection using 
posterior model probabilities or the Bayes 
factor. While these topics are beyond the 
scope of the current chapter, it is impor-
tant to note that, besides the advantages 
of Bayesian estimation brought forward in 
this chapter, there are additional reasons for 
choosing a Bayesian approach, which are 
associated with Bayesian hypothesis testing 
and Bayesian model selection (cf. Kass & 
Raftery, 1995; Meng, 1994).
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9.1 what Is a BootstRaP saMPle?

The bootstrap was devised for situations where the usual estimators may 
be biased, or where exact inference is required, for example, because distri-
butional assumptions are not satisfied or only large sample properties hold 
(Davison & Hinckley, 1997).

Consider a simple random sample of n observations x1,…xn, from which 
we wish to estimate a population quantity, say a mean or median. We choose 
an estimator, say x , and we wish to estimate features of the distribution of 
this estimator, say its standard error or population quantiles. The simplest 
nonparametric bootstrap is obtained as described below. 

We sample randomly (i.e., according to the assumed mechanism that 
generated the observations), with replacement, n observations from the 
original sample. Denote this by X x xn

* * *{ ,...., }= 1 . Then we can obtain B of 
these bootstrap samples, X X X B* * *, ,....,1 2 . For each of these we calculate our 
estimate, say of the mean, and each of these is referred to as a bootstrap 
replicate. It is such replicates that are used for inference. In this chapter we 
shall first review some standard uses for the bootstrap and then discuss 
extensions to multilevel data.

9.2  standaRd eRRoR and quantIle 
estIMates fRoM the BootstRaP

For a set of nonparametric bootstrap replicates we can calculate the stand-
ard deviation of, say, a mean, or a set of distribution quantiles, to make our 
inferences. Thus, we can get an estimate of the standard error of the mean 
simply by calculating the standard deviation of the bootstrap replicates for 
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the sample mean. Note, however, that this is 
only an estimate: it is based on a finite sam-
ple of bootstraps. As the sample size tends 
to infinity, this becomes more accurate and 
approximates the ideal bootstrap estimate. 
If θ*  is a bootstrap estimator then the ideal 
bootstrap estimate for the standard error is 
the square root of EF ( )*θ θ− 2 , where F is the 
distribution function for the data.

We note, however, that even as the number 
of bootstrap replications tends to infinity, the 
estimate of the population density function 
that is used to generate the bootstrap sam-
ples is the empirical “plug in” one derived 
from the actual sampled observations by 
placing mass points (e.g., equal probabili-
ties) at each one. In other words the sample 
is assumed to be a reasonable representation 
of the population. Thus, with nonparametric 
bootstrapping, we do not have exact infer-
ence. This does not carry over to the para-
metric case that we describe below, where the 
model-based (assumed) population distri-
bution is used for sampling: we shall return 
to this case later. In fact, in some situations 
the nonparametric bootstrap can perform 
very badly, for example, in small or moder-
ate samples where the statistic of interest is 
the smallest or largest value, say of a set of 
higher level residuals in a multilevel model.

In practice, we would normally wish to stop 
generating bootstrap replicates by inspecting 
the running estimate of the quantity of inter-
est. This estimate is simply the value computed 
after a particular chosen number of replica-
tions. When this “settles down” to a value 
with a predetermined accuracy—for example 
in terms of the coefficient of  variation—we do 
not sample further replicates. In fact the coef-
ficient of variation depends on the underly-
ing distribution so will often not be useful 
when that is unknown. Clearly we require 

a general practical stopping rule. What will 
be important also is visual inspection of the 
updated histogram of values and a smoothed 
density function.

A further consideration, as with all sta-
tistical analysis, is the detection of rogue 
values or “outliers,” in this case individual 
replicates. Density displays and box and 
whisker plots are useful diagnostic tools 
here. We should be careful about discarding 
extreme values, since these will naturally 
occur given enough bootstrap replicates, 
and as an alternative we might possibly use 
robust estimators of the standard error of 
replicates. One such would be

 
ˆ ˆ*( ) *( )

( )

θ θα α

α

− −1

2z
 (9.1)

where z(α) is the 100 αth percentile of the 
standard Normal distribution and θ α*( )  is 
the 100 α th percentile of the bootstrap esti-
mator from the observed bootstrap replica-
tions, with α typically being taken as 0.90 
or 0.95. Unless the distribution of the boot-
strap estimator is Normal, this is biased and 
inspection of the bootstrap density function 
and the use of Normal plots will show how 
good the Normal approximation is in any 
particular case.

In some cases, for example, estimating a 
mean or a set of regression coefficients, the 
standard error of a bootstrap sample can be 
obtained analytically, depending only on 
functions of covariates (e.g., a cross product 
matrix) and the residual variance of the obser-
vations that is obtained from the original 
analysis. This does not carry over directly to 
the multilevel case, where the standard errors 
are functions of the parameters, but we can 
study the accuracy of these estimated stand-
ard errors via the bootstrap replications.
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9.3  BootstRaPs foR coMPlex 
data stRuctuRes

We shall use as an illustration a two-level 
variance components model and the JSP 
data set containing test scores for primary 
school pupils (Goldstein, 2003, Chapter 2). 

 y X u eij ij j ij= + +( )β  (9.2)

where the explanatory variables are 8 year 
math scores and gender and the response 
is 11 year math scores. We have simulated 
the response from the model results given 
in Goldstein (2003, Chapter 2) to ensure an 
approximately Normal distribution. Based 
on 887 pupils in 48 schools the maximum 
likelihood estimates are given in Table 9.1.

We now consider drawing a bootstrap 
sample. We first consider nonparametric ver-
sions. To do this we need to decide whether 
we are going to sample complete units or just 
residuals. In general it seems that we would 
wish to use the latter, since mostly we are 
concerned with conditional inference; that 
is, fixing the explanatory variables. In some 
situations, however, such as survey samples, 
it is more natural to think of all the variables 
as generated randomly so that complete unit 
selection is to be preferred. 

The process of selecting a bootstrap sample 
corresponds to the supposed probabilistic 
mechanism that generated the data. This can 
be modeled as the selection of a simple ran-
dom sample of school residuals according to 
their estimated distribution and within each 
school a sample of students according to the 
estimated distribution of the pupil residuals. 
As we shall see, this is appropriate for the 
parametric bootstrap but raises difficulties 
in the nonparametric case.

9.4  a nonPaRaMetRIc 
MultIlevel BootstRaP

In the nonparametric complete level-2 unit 
bootstrap suppose we sample, with replace-
ment, a random sample of schools. This will 
in general lead to variable total numbers (N) 
of students across bootstrap samples. This 
procedure, however, does retain the data 
structure. The variability of N will add some 
noise to our estimates, but for moderate or 
large sample sizes this will be negligible and 
the procedure will be consistent. For each 
bootstrap sample we then fit our model.

Another possibility is to sample level-1 
units directly. Having selected a random 
sample of the required size we then sort into 
their actual level-2 units. This leads to a vari-
able number of level-2 units and a variable 
number of level-1 units per level-2 unit, but 
retains the overall number of level-1 units. 
This procedure, however, pays no attention 
to the sample structure since each level-1 
unit is sampled independently so that the 
within-unit correlation structure is not pre-
served. Likewise, if we sample level-2 units 
and then sample level-1 units from within 
each level-2 unit, the joint probability of 

taBle 9.1

JSP 2 Level Variance Components 
Model Parameter Estimates

fixed
Intercept 16.06 (0.93)
Gender –0.17 (0.37)
8 year math 0.58 (0.033)
Random
Level-2 4.61 (1.32)
Level-1 29.32 (1.43)
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selection for two level-1 units within a level-2 
unit is the product of their separate selection 
probabilities. This is also the case for two 
level-1 units from different level-2 units—in 
the balanced case these joint probabilities 
are 1/n2, where n is the size of each level-2 
unit. Thus, again the within-unit correlation 
structure is not preserved since this should 
be a function also of the between-unit vari-
ation. In both these cases the independent 
selection of level-1 units will tend to add pre-
cision to the estimation of level-2 effects and 
so overestimate the level-2 variation in the 
bootstrap samples. We note that the same 
considerations apply if the level-1 units are 
selected with replacement, sorted into their 
level-2 units and then these level-2 units 
selected with replacement.

9.5  sIMPle ResIduals 
BootstRaP PRoceduRes

We now describe some different ways of 
sampling residuals to preserve the mul-
tilevel structure, in a bootstrap where we 
work with the estimated (posterior) residu-
als (possibly after centering them to ensure 
they have zero means). We show that these 
procedures, although intuitively attractive, 
do not provide a satisfactory solution, and in 
a later section we shall look at extensions.

We first sample with replacement the 
 level-2 residuals, one for each level-2 unit. For 
each level-2 unit, sample with replacement 
the required number of level-1  residuals 
associated with that same bootstrap sam-
pled level-2 residual. The required number is 
the number in the original data set for that 
level-2 unit. Note that in some cases this 
will mean sampling more level-1 residuals 
(with replacement) than there actually are 

associated with the chosen  level-2  residual. 
The reason for this is that the level-1 and 
 level-2 residual estimates are correlated 
and we need to preserve this correlation 
structure in our bootstrap sampling. Note 
that both level-1 and level-2 residuals are 
“shrunken”: the variance of each is less than 
the population variances, but the correla-
tion between them ensures that the variance 
of the sum is equal to the total residual vari-
ance. In the variance components case this 
is equivalent to using the raw residuals for 
each chosen level-2 unit and then sampling 
with replacement from these raw residuals 
to achieve the required number. 

For each bootstrap sample we then carry 
out the estimation of the parameters of 
the model. The results of doing this, sam-
pling residuals, for the JSP data is given in 
Table 9.2. We have chosen a sample of 500 
after inspection of the running estimates of 
the parameters. A difficulty with this proce-
dure, however, is that the amount of shrink-
age is correlated with the school size. Thus, 
the larger level-2 residuals will also tend to 
have the largest number of level-1 residuals 
so that these will be given greater weight in 
the estimation. This violates the assumption 
that the random errors provided for the boot-
strap should be independent of the unit sizes. 
This will tend to lead to an upward bias of 
the level-2 variance and this is  confirmed in 
Table 9.2 (linked level-1 residuals). The alter-
native procedure of selecting  level-1 residuals 
from the overall set of level-1 residuals will 
tend to reduce both  level-2 and level-1 vari-
ances as is also shown in Table 9.2 (unlinked 
level-1 residuals).

A final possibility is to select, for each 
school, a set of linked level-1 + level-2 resid-
uals and attaching these to the same number 
of sets of fixed variables by selecting these 
with replacement from each school. This, 
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however, destroys the sample structure and 
again leads to overestimation of the level-2 
variation. In a later section we show how a 
restandardizing procedure can improve the 
residuals bootstrap.

We notice in Table 9.2 that only in the 
complete level-2 unit case do we obtain sat-
isfactory estimates of the random param-
eters, for the reasons we have discussed. 

9.6  the PaRaMetRIc 
BootstRaP

In the parametric case, we sample first the 
level-2 residuals from the (estimated) level-2 
distribution, in this case a simple Normal 
distribution. Then we sample level-1 residu-
als from the (estimated) level-1 distribution. 
The structure is preserved since, according 
to the model assumptions, the distributions 
are independent across levels. The proce-
dure extends naturally to the random coef-
ficient case.

Table 9.3 shows the results of a fully para-
metric bootstrap obtained by simulating 
from the estimated random parameters of 
the model.

We see now that the bootstrap estimates 
are very close to those from the fitted model 
and similar to those from the complete 
 level-2 nonparametric bootstrap in Table 9.2, 
although the standard deviation for the lev-
el-2 variance in the latter case appears to be 
an underestimate. The restricted maximum 
likelihood level-2 estimate that  corrects for 
the maximum likelihood bias is higher by 
an amount, which is the difference between 
the fitted estimate and the bootstrap one, 
implying that the bootstrap accurately cor-
rects for the bias in the ML estimate of this 
parameter. This leads us to the topic of bias 
correction.

9.7  BootstRaP BIas 
coRRectIon

If the bootstrap estimate of a parameter (or 
other function of the data) is θ*  then the 
bias in the estimate θ̂  is θ θ* ˆ− . Thus the bias 
corrected estimate is ˆ ( ˆ) ˆ* *θ θ θ θ θ− − = −2 . 
In some models the bias of the estimation 
procedure is a function of the parameter 
values, so that a simple bias correction will 
be an approximation only and an iterative 

taBle 9.2

Results of 500 Bootstrap Replications for Four Bootstrap Procedures for the JSP Data in Table 9.1. Mean of 
Bootstraps (s.d. in brackets—estimating model s.e.)

Sampling 
complete Level-2 

Units

Random 
Sample of Level-1 

Units

Posterior 
Residuals— 

Linked Level-1

Posterior 
Residuals— 

Unlinked Level-1

fixed coefficient
Intercept 16.11 (0.91) 16.03 (1.09) 15.97 (1.40) 16.09 (0.95)
Gender –0.14 (0.38) –0.18 (0.38) –0.18 (0.36) –0.18 (0.36)
8 year math 0.55 (0.033) 0.58 (0.034) 0.58 (0.032) 0.58 (0.032)
Random
Level-2 variance 4.46 (1.00) 6.34 (1.09) 6.62 (1.40) 3.11 (0.95)
Level-1 variance 29.27 (1.46) 27.75 (1.38) 26.69 (1.96) 28.12 (1.35)
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procedure will be necessary and this is 
the case for generalized linear multilevel 
models. We shall not give details here but 
a discussion is given by Goldstein (2003). 
Because a bias corrected estimate of a 
parameter may have greater variability, it is 
also routinely useful to check the accuracy 
of a bias corrected estimate by using it (or 
a set of these) as the basis for another set of 
bootstrap replications. As a rule of thumb, 
500 bootstrap replications should be used 
for bias correction.

9.8 the ResIduals BootstRaP

One potential drawback to the fully para-
metric bootstrap is that it relies upon the 
(Normal) distribution assumption for the 
residuals. In single level linear models a 
residuals bootstrap can be implemented by 
fitting the model, calculating the empiri-
cal residuals by subtracting the predicted 
response from the observed, and then for 
each bootstrap iteration sampling from these 
residuals with replacement. In a multilevel 
model, however, the situation is more com-
plicated. Consider first a “crude” residuals 
bootstrap as follows for the Equation 9.2:

 1. Estimate residuals (ˆ , ˆu ej ij). These are 
the standard posterior shrunken 
estimates.

 2. Sample with replacement m level-2 
residuals and N level-1 residuals, add 
these to the fixed part estimate to gen-
erate a new set of Y values.

 3. Fit the model to these new data and 
obtain the parameter estimates.

 4. Repeat steps 2 and 3, say 1000 times.

Such a procedure, however, leads to biases 
because the residuals are shrunken and the 
estimates across levels are correlated, nega-
tively in the present case, so independent 
resampling is inappropriate. Therefore, we 
require both to reflate residuals and create 
independence before resampling. 

Consider first just reflating the residuals 
separately at each level. We illustrate with the 
general random coefficient two-level model 

 
y X ZU e

U U U

ij ij j ij

T

= + +

=

( ) ( )

{ , ....}

β

0 1

 (9.3)

Having fitted the model we estimate the 
residuals for each level-2 unit j

 {ˆ , ˆ ....}, ˆ.u u ej j0 1  

taBle 9.3

JSP 2 Level Variance Components Model Parameter Estimates (Maximum 
Likelihood) and 500 Parametric Bootstraps

fixed Fitted Model (s.e.) Bootstrap (s.d.)
Intercept 16.06 (0.93) 16.06 (0.93)
8 year math –0.17 (0.37) –0.17 (0.37)
Gender 0.58 (0.033) 0.58 (0.033)
Random
Level-2 4.61 (1.32) 4.46 (1.29)
Level-1 29.32 (1.43) 29.20 (1.36)
Note: The restricted maximum likelihood estimates for the level-2 and level-1 vari-

ances are 4.76 and 29.30, respectively.
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Analogous operations can be carried out 
at all levels. Write the empirical covariance 
matrix of the estimated residuals at level-2 
in Equation 9.3 as

 S U U
m

T
=

ˆ ˆ
,  (9.4)

and denote the corresponding model esti-
mated covariance matrix of the random 
coefficients at level-2 as R. The empirical cov-
ariance matrix is estimated using the number 
of level-2 units, m, as divisor rather than 
m-1. We assume that the estimated residu-
als have been centered, although centering 
will only affect the overall intercept value. 
We also note that no account is taken of the 
relative sizes of the level-2 units and we could 
consider a weighted form of Equation 9.5

 S U W U
N

T
=

ˆ ˆ
 (9.5)

where W is the (m × m) diagonal matrix with 
unit sizes on the diagonal. This is equivalent 
to defining new residual variables

 ′ =U U mn Nhj hj j /  (9.6)

and using these with Equation 9.4.
We now seek a transformation of the 

residuals of the form

 ˆ* ˆU UA=

where A is an upper triangular matrix of 
order equal to the number of random coef-
ficients at level-2, and such that

 ˆ ˆ / ˆ ˆ ,* *U U m AU UA A SA RT T T= = =  (9.7)

so that these new residuals have the required 
model covariance matrix, and we now can 

sample sets of residuals with replacement 
from ˆ *U . This will be done at every level 
of the model, with sampling being inde-
pendent across levels, thus retaining the 
independence assumption of the model. 
Having sampled a set of these residuals we 
back transform these using ˆ ˆ *U U A= −1  and 
add to the fixed part of the model, along 
with the corresponding level-1 residuals to 
obtain the new set of responses.

We form A as follows. Write the Cholesky 
decomposition of S, in terms of a lower trian-
gular matrix as S L LS S

T=  and the Cholesky 
decomposition of R as R L LR R

T= . We have

 
L L U U L L L L S L L

L

R S
T

R S
T

R S S
T

R
T

R

− − − −=

=

1 1 1 1ˆ ˆ( ) ( ) ( )

(( )L RR
T =

and the required matrix is therefore
A L LR S

T= −( )1 .
Carpenter, Goldstein, and Rasbash (1999) 

use this procedure, unweighted, to dem-
onstrate the improved (confidence interval 
based) coverage probabilities compared to 
the parametric bootstrap when the level-1 
residuals have a chi-squared distribution 
rather than a Normal. Further work confirms 
this but also suggests that the procedure may 
underestimate coverage for certain depar-
tures from an assumed Normal distribution. 
(Carpenter, Goldstein, & Rasbash, 2003). In 
the present case running an unweighted 
residuals bootstrap for 500 samples gives 
estimates that are virtually indistinguish-
able from those in Table 9.1.

The above reflating procedure takes no 
account of dependencies across levels. If we 
now write

Q U U e Q N pT T= × +{ , ...., } ( [ ])0 1 1, is  (9.8)
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where p is the number of level-2 random 
effects and QT is the length of the data 
matrix, then analogously to Equation 9.4 
we form 

 S Q Q
N

T
=

ˆ ˆ
,

and proceed as before with computing 
transformed residual sets for the resampling 
bootstrap. The R matrix has the form 

 
Ωu

e

0
0 2σ







so that the Cholesky decomposition is 
formed in the same way as the separate 
ones above. The S matrix, however, does not 
have this form since there are cross product 
terms for the level-2 and level-1 residuals of 
the form

 1
N

u ehj ij
ij

ˆ ˆ .∑∑  (9.9)

We note that the Q vectors are still 
uncorrelated across levels so that we 
can sample them separately at each level 
and maintain the model independence 
assumption as before. We also note that 
if we ignore the terms in Equation 9.9 we 
obtain the weighted procedure given by 
Equation 9.5.

9.9 confIdence InteRvals

For many purposes the Normal approxi-
mation for the bootstrap replications is 
adequate and we can use the estimated 
standard errors for constructing confidence 
intervals (and significance tests). For exam-
ple Figure 9.1 is a Normal plot based on 
1000 bootstrap replications for the  level-2 
variance from Table 9.3.

In general, however, we may not be able 
to rely upon the Normal approximation 
(although studying plots such as Figure 9.1 
should help in making a decision in any 
particular case). In this case the simplest 
procedure is to use the empirical bootstrap 
distribution by simply reading off the 100 
α – percentile points, interpolating where 
necessary. Call these confidence limits 
ˆ , ˆ*( ) *( )θ θα α1 2  where in the standard symmet-
rical case α2 = 1 − α1 and the coverage is 2α. 
This does, however, require a large number 
of replicates, as a rule of thumb 2000 can be 
used for a 95% interval. 

Where there may be biases, a better inter-
val is the bias corrected one computed as 
follows. Define 
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fIguRe 9.1
Normal score plot for level-2 variance bootstrap 
replications of Table 9.3.
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where Φ is the standard Normal cumulative 
distribution function and B is the number 
of bootstrap replicates. 

9.10 BootstRaP lIkelIhood

The likelihood, considered as a function of a 
parameter θ, is proportional to

 L p yi
i

( ) ( | )θ θ=∏
where i indexes the data units, assumed 
conditionally independent. The partial 
likelihood based on a parameter estimate 
θ̂  rather than the data {yi} can be approxi-
mated by a bootstrap as follows. We con-
sider the parametric bootstrap.

The first stage is to generate B1 bootstrap 
replications to produce bootstrap parameter 
estimates: label the set of the parameter of 
interest S1 = { ˆ ,.., ˆ ,.., ˆ* * *θ θ θ1 1b B }. For each rep-
lication (i.e., from the parameter estimates 
associated with each replication) we generate 
a second stage bootstrap set of replicates giv-
ing the set of interest S2b = { ˆ ,...., ˆ** **θ θb bB1 1

}. For 
S2b we estimate the (Normal) kernel density 
ˆ( | ˆ )*p t bθ as a function of t and evaluate it at
t = θ̂ . Because the set S2b was generated from 
a population with parameter ˆ*θb , ˆ(ˆ | ˆ )*p bθ θ is 
an estimate of the partial likelihood of θ at
θ θ= ˆ . We thus have estimates of the likeli-
hood for all the values in S1 and we can use 
a suitable smoother (such as LOESS) to plot 
the likelihood function. In fact, for the region 
of interest a simple polynomial or fractional 
polynomial function may be adequate. From 
this function we can obtain the maximum 
and by plotting – 2log(likelihood) we can 
obtain confidence intervals using the asymp-
totic chi-squared approximation. 

This can be extended to more than one 
parameter (the estimates for all the param-
eters are available from the bootstrap replica-
tions), but this will then involve smoothing in 
more than one dimension, although again we 
may be able to achieve a satisfactory smooth-
ing via an additive function of polynomials. 

9.11 conclusIons

The bootstrap is a very general procedure for 
bias correction and especially for providing 
accurate estimates where standard assump-
tions do not hold. In the multilevel case the 
fully parametric bootstrap, if the model 
assumptions are accepted, is usually pre-
ferred, especially for complex models such 
as those with several random coefficients or 
cross classifications. Where model assump-
tions may not be acceptable, the modified 
residuals bootstrap will often perform ade-
quately. One problem with the bootstrap, 
however, is the computing load associated 
with it. An alternative, especially for accurate 
quantile estimates, is a Markov Chain Monte 
Carlo (MCMC) estimation that is generally 
faster and allows a fully Bayesian approach.

RefeRences

Carpenter, J., Goldstein, H., & Rasbash, J. (1999). A 
non-parametric bootstrap for multilevel mod-
els. Multilevel Modelling Newsletter, 11, 2–5.

Carpenter, J. R., Goldstein, H., & Rasbash, J. (2003). 
A novel bootstrap procedure for assessing the 
relationship between class size and achieve-
ment. Journal of the Royal Statistical Society, 
Series C, 52, 431–443.

Davison, A. C., & Hinckley, D. V. (1997). Bootstrap 
methods and their application. Cambridge, UK: 
Cambridge University Press.

Goldstein, H. (2003). Multilevel statistical models (3rd 
ed.). London, UK: Edward Arnold.





173

10
Multiple Imputation of Multilevel Data
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10.1 IntRoductIon

In the early days of multilevel analysis, Goldstein (1987, p. 8) wrote: “We 
shall require and assume that all the necessary data at each level are avail-
able” (Goldstein, 1987). Despite the many conceptual and computational 
advances that have been made over the last two decennia, Goldstein’s 
requirement is still dominant today. To illustrate this, consider how modern 
software for fitting multilevel models deals with missing data. Dedicated 
packages like MLwiN (Rasbash, Steel, Browne, & Prosser, 2005) and HLM 
(Raudenbush, Bryk, & Congdon, 2008) remove all level-1 units with missing 
values on any level-1 variable. If level-2 explanatory variables have miss-
ing values, the associated level-2 units are deleted, including all level-1 data. 
Thus, if the age of the teacher is unknown, all data of all children within the 
class are removed prior to analysis. Multilevel procedures in general pur-
pose statistical software, like SAS PROC MIXED (Littell, Milliken, Stroup, 
& Wolfinger, 1996), SPSS MIXED (SPSS Inc., 2008), STATA xtmixed 
(StataCorp LP, 2008), S-PLUS library nlme3 and the R package nlme 
(Pinheiro & Bates, 2000), and the R package arm (Gelman & Hill, 2007) use 
a similar approach. Deletion is not only wasteful of costly collected data, but 
it may also bias the estimates of interest (Little, 1992; Little & Rubin, 2002).

Alternative approaches have been tried. In older versions of HLM it was 
possible to perform pairwise deletion, a method to calculate the covariance 
matrix where each element is based on the full number of complete cases for 
that pair of variables. However, this approach causes estimation problems 
due to the possibility of nonpositive definite covariance matrices. Also, 
model comparisons in terms of the log-likelihood are debatable since there 
is no clear-cut way to calculate the degrees of freedom. Version 6 of HLM 
therefore dropped this feature.

Mplus (Muthén & Muthén, 2007) uses full information maximum like-
lihood. This approach specifically deals with the case of multiple outcome 
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variables. If one or more outcomes are miss-
ing, the values of the remaining dependent 
variables are still used. In this way, there is no 
need to delete the whole level-1 unit. When 
there are missing data in any covariates how-
ever, Mplus resorts to listwise deletion.

Some general purpose programs offer 
modules to impute missing data (e.g., SAS 
PROC MI and the new Multiple Imputation 
procedure in SPSS V17.0). These approaches 
generally ignore the clustering structure in 
hierarchical data. Not much is known how 
imputation by such procedures affects the 
complete data analysis.

This chapter discusses critical issues asso-
ciated with imputation of multilevel data. 
Section 10.2 introduces the notation used 
and outlines how two formulations of the 
same model are related. Section 10.3 dissects 
the multilevel missing data problem into five 
main questions that need to be addressed. 
Section 10.4 outlines six different strategies 
for dealing with the missing data problem. 
Section 10.5 describes a multilevel imputa-
tion method for univariate data, and dis-
cusses its properties. Section 10.6 describes a 
method to apply the univariate method iter-
atively to multivariate missing data. Finally, 
Section 10.7 sums up the major points and 
provides directions for future research.

10.2  two foRMulatIons 
of the lIneaR 
MultIlevel Model

Let yj denote the nj × 1 vector containing 
observed outcomes on units i (i = 1,…,nj) 
within class j (j = 1, …, J). The univariate 
linear mixed-effects model (Laird & Ware, 
1982) is written as
 yj = Xjβ + Zjuj + ej (10.1)

where Xj is a known nj × p design matrix in 
class j associated with the common p × 1 
fixed effects vector β, and where Zj is a 
known nj × q design matrix in class j associ-
ated with the q × 1 random effect vectors uj. 
The random effects uj are independently and 
interchangeably normally distributed as uj ~ 
N(0, Ω). The number of random effects q is 
typically smaller than the number of fixed 
effects p. Symbol ej denotes the nj × 1 vec-
tor of residuals, which are independently 
normally distributed as ej ~ N(0, σj

2I(nj)) for 
j = 1, …, J. It is often assumed that the resid-
ual variance is equal for all classes: σj

2 = σ2. 
In addition, ej and uj are uncorrelated so 
cov(ej, uj) = nj0q, an nj × q matrix of zeroes. 
Model formulation of Equation 10.1 clearly 
separates fixed from random effects.

It is also convenient to conceptualize 
Equation 10.1 as constructed from a set of 
different levels. To see how this works, write 
the two-level linear model as

 yj = Zjβj + ej level-1 equation (10.2a)

where βj is a q × 1 vector of regression coef-
ficients that vary between the J classes. At 
level-2, we model βj by the linear regression 
model

  βj = Wjβ + uj level-2 equation (10.2b)

where Wj is a q × p matrix of a special struc-
ture (see below), and where uj can be inter-
preted as the q × 1 vector of level-2 residuals. 
Equations 10.2a and b are sometimes collec-
tively called the slopes-as-outcome model 
(Bryk & Raudenbush, 1992). Note that the 
regression coefficient β is identical in all 
level-2 classes. Substituting Equation 2b 
into Equation 2a yields

 yj = ZjWjβ + Zjuj + ej, (10.3)
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which is a special case of the linear mixed 
model (Equation 10.1) with Xj = ZjWj.

Matrix Wj has a special structure for the 
linear multilevel model. Suppose the model 
contains q = 2 random effects (an intercept 
and a slope) and a level-2 predictor whose 
values are denoted by wj (j = 1, …, J). The 
structure of Wj is then

 W
w

wj
j

j

=










1 0 0

0 1 0
.  (10.4)

The first two columns of Wj correspond 
to the random intercept and random 
slope terms, respectively. In the expres-
sion Xj = ZjWj, this part effectively copies 
Zj into Xj. Multiplication of Zj by the third 
column Wj replicates wj as nj elements in 
class j, thus forming a covariate associated 
with the main (fixed) effect in matrix Xj. 
Multiplication by the fourth column adds 
the interaction between the random slope 
and the fixed level-2 predictor, also known 
as the cross-level interaction term. In appli-
cations where this term is not needed, one 
may simply drop the fourth column of Wj. 
It is easy to extend Equation 10.4 to multi-
ple level-2 predictors by padding additional 
columns with the same structure. Note 
that Equation 10.2 implicitly assumes that 
all level-1 variables are treated as random 
effects. It is straightforward to exclude the 
random part for the lth (l = 1, …, q) variable 
by requiring u1l = … = ujl = … = uJl = 0, or 
equivalently, by setting the corresponding 
diagonal element in Ω to zero. In the sequel, 
we assume that all level-1 data are collected 
into Zj.

Equation 10.1 separates the fixed and ran-
dom effects, but the same covariates may 
appear in both Xj and Zj. This complicates 
imputation of those covariates. To make 

matters more complex, Xj can also contain 
interactions between covariates at level-1 
and level-2. Equation 10.2 distinguishes the 
level-1 from the level-2 predictors. There is 
no overlap between Wj and Zj. This is a con-
venient parameterization if we are trying 
to understand the missing data processes 
that operate on different levels of the data 
collection.

10.3  classIfIcatIon of 
MultIlevel IncoMPlete 
data PRoBleMs

This section provides a typology of incom-
plete data problems that can appear in a 
multilevel context. There are five major fac-
tors to consider: the role of the variables in 
the model, the pattern of the missingness, 
the missing data mechanism, the distribu-
tion of the variable, the design of the study. 
In order to be able to provide an adequate 
treatment to the missing data we need 
answers on the following questions:

Role: In which variables do the miss-•	
ing data occur?
Pattern: Do the missing data form a •	
pattern in the data?
Mechanism: How is the probability to •	
be missing related to the data?
Scale: What is the scale of the incom-•	
plete variables?
Design: What is the design of the •	
study (e.g., random, clustered, 
longitudinal)?

This section classifies problems in incom-
plete multilevel data into five subproblems: 
role, pattern, mechanism, scale, and design. 
We briefly indicate the major difficulties 
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and consequences of missing data in each 
case. The typology can be used to charac-
terize particular data analytic problems. In 
addition, the typology provides insight into 
what fields are well covered in the literature 
and those less covered. Different combina-
tions of the five factors correspond to differ-
ent analytic situations and may thus require 
specialized approaches.

10.3.1  Role of the variable 
In the Model

Missing data can occur in yj, Zj, Wj, and 
j. The consequences of incompleteness of 
a variable depend on the role the variable 
plays in the multilevel model.

10.3.1.1 Missing Data in yj

Many classical statistical techniques for 
experimental designs require balanced data 
with equal group sizes (Cochran & Cox, 
1957). The experimental factors are under 
control of the experimenter and the miss-
ing data typically occur in yj. The problem 
of missing data in yj is that they may destroy 
the balance present in the original design. 
In the days of Fisher, this used to be a major 
setback since the calculations required for 
the analysis of unbalanced data are much 
more demanding than those for the bal-
anced case. In a similar vein, the classic 
approach to analyzing change relies on 
repeated measurements of the same subject 
on a fixed number of occasions (de Leeuw 
& Meijer, 2008). Missing data that occur 
in repeated measures result in incomplete-
ness of the subject’s response vector, which 
leads to severe complications in MANOVA. 
Many techniques have been proposed to cir-
cumvent and deal with problems of missing 
outcomes in experiments (Dodge, 1985).

The advent of multilevel modeling opened 
up new ways of analyzing data with missing 
yj. Modern likelihood-based methods have 
been developed in which missing data in yj 
no longer present a problem. Snijders and 
Bosker (1999, p. 52) write that the model 
can be applied “even if some groups have 
sample size nj = 1, as long as other groups 
have greater sizes.” We add that this state-
ment will only go as far as the assumptions 
of the model are met: data in yj are missing 
at random and the model is correctly speci-
fied. Section 10.4.5 discusses the likelihood-
based approach in more detail.

The problem of missing data in yj has 
received vast attention. There is an exten-
sive literature, which often concentrates 
on the longitudinal case (Daniels & 
Hogan, 2008; Molenberghs & Verbeke, 
2005; Verbeke & Molenberghs, 2000). 
For more details, see the overview of the 
state-of-the-art including direct likeli-
hood approaches, Generalized Estimating 
Equations (GEE), Weighted GEE, and oth-
ers (Beunckens, Molenberghs, Thijs, & 
Verbeke, 2007).

10.3.1.2 Missing Data in Zj

Missing data can also occur in the level-1 
predictors Zj. In applications where pupils 
are nested within classes, missing data in 
Zj occur at the child level: age of the pupil, 
occupational status of the father, ethnic 
background, and so on. In longitudinal 
applications where time is nested within 
persons, missing data in Zj may occur on 
time-varying covariates. Examples include 
breast-feeding status and stage of pubertal 
development at a particular age.

The effect of missing data in Zj is that 
the estimators become undefined. The 
usual solution is simply to remove the 
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incomplete cases before analysis. This is 
not only wasteful, but may also bias esti-
mates of the regression weights (Little, 
1992). Some authors suggest that data 
missing at the micro units may not need to 
be replaced or imputed if the data are to be 
aggregated and the analysis is to be done 
at the macro level (McKnight, McKnight, 
Sidani, & Figueredo, 2007). While easy to 
perform, this advice is only sound under 
the restrictive assumption that the process 
that caused the missing data is missing 
completely at random.

Several solutions for handling missing 
data in Zj have been offered. Goldstein pro-
posed to extend the multilevel model with 
one extra level that contains a dummy vari-
able for each incomplete variable (1987). 
Petrin implemented this suggestion, and 
noted that the procedure is “susceptible to 
producing biased parameters estimates.” 
The procedure requires reorganization of 
the data and, according to Petrin, is “very 
tedious” (2006). Schafer noted that miss-
ing values in Zj are problematic since they 
require a probability model on the covari-
ates (1997). Handling this in general “would 
require us to incorporate random effects 
into the imputation model, which remains 
an open problem.” Longford observed that 
drawing imputations using random effects 
models is hard because the relevant param-
eter distributions depend on the within–
between classes variance ratio, which is 
often not estimated with high precision 
(Longford, 2005).

Schafer and Yucel (2002) suggested 
transferring incomplete variables in Zj to 
the other side of the equation, and impute 
the missing data in the multivariate out-
comes under a joint multivariate model 
(Yucel, 2008). This approach has been 
implemented in their PAN package. There 

is a macro for MLwiN that implements this 
approach (Carpenter & Goldstein, 2004). 
Multiple imputation of multilevel data 
is possible using the chained equations 
approach (Jacobusse, 2005). This method 
is implemented in the WinMICE computer 
program, which can be downloaded from 
www.multiple-imputation.com. Similar 
research was done by Yucel, Schenker, 
and Raghunathan (2006), who called their 
approach SHRIMP. Longford (2008) pro-
posed an Expectation–Maximization  (EM)
algorithm to estimate the parameters in the 
multilevel model in case of missing Zj. In its 
generality, this approach requires substan-
tial programming effort and, according to 
Longford, would only be practical if few 
missing data patterns arise.

10.3.1.3 Missing Data in Wj

The problem of missing data in Wj has 
received little attention. Missing data in the 
level-2 predictors Wj occur if, for example, 
it is not known whether a school is public 
or private. In a longitudinal setting, missing 
data in fixed person characteristics, like sex 
or education, lead to incomplete Wj.

Missing entries in Wj complicate the esti-
mation of group-level effects. The typical 
fix is to delete all records in the class. For 
example, suppose that the model contains 
the professional qualification of the teacher 
(e.g., teacher school, university, PhD). If 
the qualification is missing, the data of all 
pupils in the class are removed before the 
analysis. Again, this strategy is not only 
wasteful, but may also lead to selection 
effects at level 2.

Some have studied the use of (inap-
propriate) flat-file imputation methods 
that ignore the hierarchical group struc-
ture in multilevel data. Standard errors 
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are underestimated, leading to confidence 
intervals that are too short (Cheung, 2007; 
Gibson & Olejnik, 2003; Roudsari, Field, & 
Caetano, 2008). Zhang (2005) reports how-
ever that flat multiple imputation worked 
well with multilevel data, and advises that 
future researchers should feel confident 
applying the procedure with a missing data 
level up to 30%. There is no consensus yet on 
this issue, and some more work is needed to 
clear things up.

Imputation methods for level-2 predic-
tors should assign the same imputed value 
to all members within the same class. Some 
authors suggest creating two data sets, one 
with only individual-level data, and one with 
group-level data, and do separate imputa-
tions within each data set while using the 
results from one in the other (Gelman & 
Hill, 2007; Petrin, 2006). Note that the steps 
can also be iterated.

10.3.1.4 Missing Data in j

It is also possible that the group identifica-
tion is unknown. For example, some pupils 
may have failed to fill in their class number 
on the form. The result is that the investi-
gator cannot allocate the pupil to a group. 
Though one might envisage applications of 
imputing class memberships, we will not 
deal with the case of missing data in j. For 
now, the only action one could do is to elim-
inate the record from the data.

10.3.2 Missing data Pattern

For both theoretical and practical reasons, it 
is useful to distinguish between monotone 
and nonmonotone missing data patterns, 
and between univariate and multivariate 
missing data patterns. A pattern is mono-
tone if the variables can be ordered such 

that, for each person, all earlier variables 
are observed if all subsequent variables are 
observed. Monotone patterns often occur as 
a result of drop out in a longitudinal study. 
It is often useful to sort variables and cases 
to approach a monotone pattern.

Little and Rubin (2002) graphically dem-
onstrate the univariate/multivariate and 
the monotone/nonmonotone distinctions 
for flat files. Things become more com-
plicated in the context of multilevel data. 
Figure 10.1 demonstrates several possibili-
ties. Figure 10.1a is the case where all miss-
ing data are confined to the outcome yj, and 
where a person is lost once dropped out. 
Figure 10.1b depicts the situation where the 
person only misses one or more visits, but 
does not completely drop out. This leads 
to missing data that are intermittent. Note 
that the difference between 10.1a and b only 
makes sense for longitudinal data (i.e., when 
Zj can be interpreted as time).

If Zj attains identical values in each group 
(i.e., if the data are repeated measures at fixed 
time points), we can reorder the file into a 
broad matrix where each cluster occupies 
one record, and where a set of columns rep-
resent the time points. It is then easy to see 
that drop out leads to a monotone missing 
data problem, whereas intermittent missing 
data result in a nonmonotone pattern. The 
practical usefulness of a monotone pattern 
is that it opens up the possibility to solve the 
missing data problem by a sequence of sim-
ple steps without the need to iterate (Little 
& Rubin, 2002).

Figure 10.1c represents the situation 
where there are also missing data in level-1 
predictors Zj. For example, Zj could contain 
body height and yj could be body weight. 
Multilevel multivariate missing data usually 
correspond to a missing data pattern that 
is nonmonotone. Figure 10.1d depicts the 
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one most general situation where missing 
data occur in level-2 predictors Wj, level-1 
predictors Zj and level-1 outcomes yj. Note 
that all level-1 units have missing level-2 
predictors if Wj is missing. This is perhaps 
the most complex case, but also a case that 
occurs frequently.

10.3.3 Missing data Mechanism

The process that created the missing data 
influences the way the data should be ana-
lyzed. Except in artificial cases, the precise 
form of the missingness process is generally 
unknown, so one has to make assumptions. 
If the probability to be missing is inde-
pendent of both unobserved and observed 

data, then the data are said to be Missing 
Completely at Random (MCAR; Rubin, 
1976). If, conditional on the observed 
data, the probability to be missing does 
not depend on the unobserved data, then 
the data are said to be Missing at Random 
(MAR). Note that MCAR is a special case of 
MAR. A mechanism that is neither MCAR 
nor MAR is called Missing Not at Random 
(MNAR).

It is possible to test between MCAR and 
MAR. For data missing due to drop out, 
Diggle (1988) proposed a test for the hypoth-
esis that the probability a unit drops out at 
time tj is independent of the measurement 
on that unit up to time tj−1. An alternative 
for general monotone data was developed by 

j y z w j
(b)(a)

(d)(c)

y z w
1 1

1 1

1 1

2 2

2 2

3 3

3 3

3 3

3 3
Univariate, drop out Univariate, intermittent

j y z w j y z w

1 1

1 1

1 1

2 2

2 2

3 3

3 3

3 3

3 3
Multivariate, level-1 Multivariate, mixed

level-1 and 2

fIguRe 10.1
Four typical missing data patterns in the multilevel 
data with two levels and three groups. The grey parts 
represent observed data, whereas the transparent 
cells indicate the missing data.
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Little (1988). It is not possible to test MNAR 
versus MAR since the data needed for such 
a test are, by definition, missing.

A closely related concept is ignorability 
of the missing data process. If the data are 
MAR and if the parameters of the complete 
data model are independent of those of the 
missing data mechanism, then likelihood 
inference of the observed data can ignore 
the missing data process. Suppose that the 
random variable R = 1 indicates that Y is 
observed, whereas R = 0 for missing Y. The 
information about Y that is present in X, 
Z, and R is summarized by the conditional 
distribution P(Y | X, Z, R). Cases with 
missing Y; that is, with R = 0, do not pro-
vide any information about P(Y | X, Z, R), 
and so we have only information to fit mod-
els for P(Y | X, Z, R = 1). However, we need 
the distribution P(Y | X, Z, R = 0) to model 
the missing Ys. Assuming that the missing 
data mechanism is ignorable corresponds to 
equating P(Y | X, Z, R = 0) = P(Y | X, Z, R = 1) 
(Rubin, 1987).

The assumption of ignorability generally 
provides a natural starting point for analysis. 
If the assumption is clearly not reasonable 
(e.g., when data are censored), we may use 
other forms for P(Y |X, Z, R = 0). The fact that 
R = 0 allows for the possibility that the P(Y |X, 
Z, R = 1) ≠ P(Y |X, Z, R = 0; cf. Rubin, 1987, 
p. 205), so nonignorable nonresponse can 
be modeled by specifying P(Y |X, Z, R = 0) 
different from P(Y |X, Z, R = 1). The differ-
ence can be just a simple shift in the mean of 
the distribution (Van Buuren, Boshuizen, & 
Knook, 1999), but it may also consist of highly 
customized (selection, pattern mixture, 
shared parameter) models that mimic the 
nonresponse mechanism (Daniels & Hogan, 
2008; Demirtas & Schafer, 2003; Little & 
Rubin, 2002). Daniels and Hogan (2008) sug-
gest viewing the effects of alternative missing 

data assumption in terms of departures from 
MAR. A key requirement is that the assumed 
nonignorable model should be more reason-
able and sensible than the model implied by 
the assumption of ignorability.

A somewhat different strategy to bypass 
the assumption of ignorability is to construct 
double robust estimators. An estimator is 
double robust if it remains consistent when 
either (but not necessarily both) a model 
for the missing data mechanism or a model 
for the distribution of the complete data is 
correctly specified (Bang & Robins, 2005; 
Scharfstein, Rotnitzky, & Robins, 1999). The 
approach uses inverse probability weigh-
ting, and its pros and cons with respect to 
multiple imputation have been the subject of 
debate (Kang & Schafer, 2007). The literature 
is now moving toward using the best of both 
worlds from inverse probability weight-
ing and multiple imputation (Beunckens, 
Sotto, & Molenberghs, 2008; Carpenter, 
Kenward, & Vansteelandt, 2006).

10.3.4 scale

Data can be measured on many types of 
scales: continuous (but are usually rounded 
to whole units), ordered categorical, unor-
dered categorical, binary, semicontinuous 
(i.e., a mixture of a binary and a continuous 
variable), counts, censored (with known 
or unknown censoring points), truncated 
(with known or unknown truncation 
points), below the detection limit, brack-
eted response (e.g., obtained by a format 
that zooms in by posing successively more 
detailed questions), constrained by other 
data (e.g., a sum score or interaction term), 
and so on. In addition the data can take 
almost any distribution, including bimodal, 
skewed, and kurtotic shapes. Moreover, the 
relations can be highly nonlinear.
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All these factors can occur in conjunction 
with multilevel data. The most advanced 
methods for dealing with missing data in 
a multilevel context invariably assume that 
variables follow a multivariate normal dis-
tribution. Though multiple imputation is 
generally robust to violations of the mul-
tivariate normality assumption (Schafer, 
1997), advances could be made that respect 
the scale, the distribution, and nonlinear 
relations of the data.

10.3.5 study design

The study design determines the class of 
incomplete data models that can be usefully 
applied to the data. Popular designs that 
lead to hierarchical data include:

Multistage sample: A design where sam-
pling progresses in a number of stages, for 
example, first sample from school, then 
 sample classes within schools, and then 
 sample pupils within classes. Missing data 
can occur at any stage of sampling, but 
usually only missing data in the level-1 
 outcomes are explicitly considered as miss-
ing data. This is a common design in the 
social sciences.

Longitudinal study with fixed occasions: A 
design where data are collected according 
to a number of planned visits. Missing data 
may result from missed visits (intermittent 
missing data) or panel attrition (drop out). 
This design is common in the biomedical 
field.

Longitudinal study, varying occasions: A 
design where the data are ordered accord-
ing to time and nested within individuals. 
There is no such thing as a complete data 
vector. The number of observations per 
individuals may vary widely, can be as low 
as one, and can occur anywhere in time 
(Snijders & Bosker, 1999).

Planned missing data: A design where 
intentional missing data occur in the data 
as a consequence of the administration pro-
cedures. For example, the investigator could 
use matrix-sampling to minimize the num-
ber of questions posed to a student (Thomas 
& Gan, 1997). Missing data are an automatic 
part of the data. The percentage of missing 
data is typically large, sometimes over 75%.

File matching: A post-hoc procedure for 
combining two or more data sets measured 
on the same units. Missing data occur in 
the rows and in the columns since different 
data sources can measure different units on 
different attributes (Rässler, 2002; Rubin, 
1986).

Relational databases: A common way for 
storing information on different types of 
units (e.g., customers, products, stores) as a 
set of linked tables. Missing data result from 
partial tables and imperfect links.

10.4  stRategIes to deal 
wIth IncoMPlete data

10.4.1 Prevention

The best solution to the missing data prob-
lem is not to have any. Consequently, the 
best strategy is to deal with unintentional 
missing data and to minimize their num-
ber. There are many factors that influence 
the response rate in social and medical 
studies: design of the study (number of vari-
ables collected, number and spacing of time 
repeated measures, follow-up time, miss-
ing data retrieval strategy), data collection 
method (mode of collection, intrusive mea-
sures, sensitivity of information collected, 
incentives, match of the interviewer and 
the respondent), measures (clarity, layout), 
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treatment burden (intensity of the interven-
tion) and data entry coding errors. For more 
information, we refer to the appropriate lit-
erature (De Leeuw, Hox, & Dillman, 2008; 
McKnight et al., 2007; Stoop, 2005). When 
carefully planned and executed, prevention 
of missing data may substantially increase 
the completeness of the information.

10.4.2 listwise deletion

Listwise deletion (or complete case analy-
sis) is the simplest and most popular way of 
dealing with missing data. Listwise deletion 
simply eliminates any incomplete record 
from the analysis. This is potentially a very 
wasteful strategy because valuable data are 
thrown away, especially when variables at 
the higher levels have missing data. If the 
missing data are confined to yj and if the 
missing data mechanism is MAR, then list-
wise deletion followed by the appropriate 
likelihood-based analysis is unbiased. Note 
that any covariates that predict the missing-
ness in yj should be included into the model, 
even if they are of no scientific interest to 
the researcher. For missing data in Wj or Zj, 
analysis of the complete cases will gener-
ally bias parameter estimates, even under 
MCAR (Little, 1992).

10.4.3  last observation 
carried forward

Last Observation Carries Forward (LOCF) 
is a technique applicable only to longitudinal 
data with drop out. The LOCF substitutes any 
missing yj after drop out by the last observa-
tion. LOCF is popular for clinical trials in 
order to be able to perform an “intention 
to treat” analysis; that is, an analysis of the 
subject as randomized, irrespective of treat-
ment compliance. However, LOCF makes 

the strong and often unrealistic assump-
tions that the response profile of the subject 
remains constant after dropping out of the 
study. The LOCF does not even work under 
MCAR (Molenberghs & Kenward, 2007). 
The magnitude and direction of this bias 
depend on the true but unknown treatment 
effects. In contrast to the widespread belief 
that LOCF leads to conservative tests, it is 
entirely possible that LOCF induces effects 
where none exist. Furthermore, because there 
is no distinction between the observed and 
the imputed data, LOCF artificially increases 
the amount of information in the data. This 
results in confidence intervals that are too 
short. All in all, the use of LOCF is discour-
aged (Lavori, 1992; Little & Yau, 1996).

10.4.4 class Mean Imputation

Class mean imputation replaces each miss-
ing value with the class or cluster mean. 
The method is applicable to both longitu-
dinal and nonlongitudinal data. Thus, class 
mean imputation substitutes the miss-
ing grade of a pupil by the average of the 
known grades of all pupils in the class. Just 
like LOCF, the method is unconditional on 
any other information from the pupil, so 
the method may distort relations between 
variables. Unless special methods are used 
to analyze the imputed data, the variabil-
ity may be severely underestimated (Little 
& Rubin, 2002; Schafer & Schenker, 2000). 
All in all, class mean imputation can be as 
damaging as LOCF and should generally 
not be used.

10.4.5 likelihood-Based Methods

Likelihood-based methods attempt to 
analyze the entire data without systemati-
cally biasing the conclusions of the subject 
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matter question. The method maximizes 
the likelihood function derived from the 
underlying model. If there are missing 
data, the likelihood function is restricted 
to the observed data only. If the missing 
data mechanism is ignorable, we may write 
the likelihood of the observed data L(θ 
|Yobs) as

 
L Y L Y Y dY( | ) ( | , )θ θobs obs mis mis= ∫  (10.5)

where θ are the parameters of interest, and 
where L(θ |Yobs, Ymis) is the likelihood of the 
hypothetically complete data. The observed 
data likelihood averages over the distribu-
tion of the missing data. The EM algorithm 
(Dempster, Laird, & Rubin, 1977) maxi-
mizes L(θ|Yobs) by filling in the complete 
data sufficient statistics.

The linear mixed-effects model (Equation 
10.1) subsumes repeated-measures ANOVA 
and growth curve models for longitudinal 
data as special cases. The model parameters 
can be estimated efficiently via likelihood-
based methods. Laird and Ware devel-
oped an EM algorithm that can be used to 
fit the mixed linear model to longitudinal 
data (1982). Jennrich and Schluchter (1986) 
improved the speed of the method by Fisher 
scoring and Newton–Raphson. Currently, 
full-information maximum likelihood 
(FIML) is widely used to estimate the 
model parameters. Restricted maximum 
likelihood estimation (REML) is a closely 
related alternative that is less sensitive to 
small-sample bias of maximum likelihood 
(Fitzmaurice, Laird, & Ware, 2004; Verbeke 
& Molenberghs, 2000).

Software for fitting mixed models has 
the ability to handle unbalanced longi-
tudinal data, where the response data 
yj are observed at arbitrary time points 

for each subject. Missing data in yj are 
ignored by the maximum likelihood and 
REML methods along with their values 
on Wj and Zj. An advantage of the multi-
level model for the analysis of longitudi-
nal data is its ability to handle arbitrary 
time points. Missing values in Wj and Zj 
are however problematic (Longford, 2008; 
Schafer, 1997). No generally applicable 
likelihood-based approach has yet been 
developed for the case of missing values 
in Wj and Zj.

Despite the attractive properties of the 
multilevel model, likelihood-based meth-
ods should be used with some care when 
data are incomplete. First, the standard 
multilevel model implicitly assumes is 
that the missing data in the outcomes are 
MAR. This assumption can be suspect 
in some settings. For example, patients 
who drop out early from a trial often have 
slopes that differ from patients who stay in 
the trial. Another assumption is that the 
individual patient slopes have a common 
normal distribution. This assumption may 
not be realistic if drop out occurs. There is 
an active statistical literature on the prob-
lem of estimating the linear mixed model 
under MNAR situations (Daniels & Hogan, 
2008).

In the case that the MAR assumption is 
correct, the factors that govern the prob-
ability of the missing data must be included 
into the multilevel model, for example, as 
covariates. Failing to do so may introduce 
biases in the estimate of the treatment effect. 
Note that this requirement complicates the 
interpretation of the complete-data model, 
and may lead to models that are impossible 
to estimate and more complex to interpret. 
Also, missing data problems may actually 
worsen if the additional covariate(s) contain 
missing values themselves.
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Third, the missing data may increase the 
sensitivity of inferences to misspecifica-
tion of the model for the complete data. 
Incorrectly assuming a linear relation-
ship between an outcome and a covari-
ate may lead to more serious bias when 
missingness depends on the value of the 
covariate than when it does not (Little, 
2008). Zaidman-Zait and Zumbo (2005) 
performed simulations where the missing 
data mechanism depended on a person 
factor. Theoretically, including the person 
factor into the model should adequately 
deal with the missing data. However, they 
found bias in the MAR case and attribute 
that to the incorrect specification of the 
level-1 model.

Fourth, it is generally more difficult to 
derive appropriate standard errors if there 
are missing data. For example, the occur-
rence of missing data may destroy the 
 block-diagonal structure of the information 
matrix in many repeated measure designs. 
Hence, the full matrix needs to be inverted, 
which can be time consuming (Little, 
2008).

In summary, likelihood-based methods 
are the preferred approach to missing data 
if all of the following hold:

 1. The missing data are confined to yj,
 2. The MAR assumption is plausible,
 3. Any factors in the MAR  mechanism 

are included into the multilevel 
model,

 4. The multilevel model for the complete 
data is correctly specific.

If one or more of these conditions are not 
met, using likelihood methods for incom-
plete data could be problematic. Not much 
is yet known about the relative importance 
of each factor.

10.4.6 Multiple Imputation

The likelihood-based approach attempts to 
solve both the missing data and complete data 
problems in one step. An alternative strategy 
is to attack the problem in two steps: First 
solve the missing data problem by imputing 
the missing data, and then fit the complete 
data analysis on the imputed data. Such a 
modular approach breaks down the model 
complexity in each step. It is well known that 
the precision of the complete-data estimates 
is overestimated if no distinction is made 
between observed and imputed data. The 
solution to this problem is to use multiple 
imputation (MI), which can produce cor-
rect estimates of the  sampling variance of the 
estimates of interest (Rubin, 1987, 1996).

10.5  IMPutatIon of 
unIvaRIate MIssIng 
data In yj

10.5.1  Multilevel Imputation 
algorithm

The linear mixed model formulation of the 
multilevel model is given by Equation 10.1: 
yj = Xjβ + Zjuj + ej with uj ~ N(0, Ω) and 
ej ~ N(0, σ2I(nj)). In order to derive imputa-
tions under this model, we adopt a Bayesian 
approach. For complete data, the distribu-
tion of the parameters can be simulated by 
Markov chain Monte Carlo (MCMC) meth-
ods (Schafer & Yucel, 2002; Zeger & Karim, 
1991). The main steps are:

 1. Sample β from p(β | y, u, σ2)
 2. Sample uj from p(u | y, β, Ω, σ2)
 3. Sample Ω from p(Ω | u) (10.6)
 4. Sample σ2 from p(σ2 | y, β, u)
 5. Repeat step 1–4 until convergence
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The rate of convergence of this Gibbs sam-
pler depends on the magnitude of the corre-
lation between the steps. Many variations on 
the above scheme have been proposed (Chib 
& Carlin, 1999; Cowles, 2002; Gelman, 
Carlin, Stern, & Rubin, 2004; Gelman, Van 
Dyk, Huang, & Boscardin, 2008).

Let us first consider the case where y 
contains missing data. Let yobs represent 
the observed data and let ymis be the miss-
ing data, so that y = [yobs, ymis]. If the MAR 
assumption is plausible, we can replace 
y by yobs in the above steps, and simulate 
the parameter distribution using only the 
 complete records. At the end, we append an 
additional step to generate imputations for 
the missing data:

 6.  Sample ymis from p(ymis | yobs, 
β, u, Ω, σ2). (10.7)

Under model Equation 10.1, we calculate 
imputations by drawing

 ej
* ~ N(0, σ2) (10.8)

 yj
* = Xjβ + Zjuj + ej

* (10.9)

where all parameters that appear on the 
right are replaced by their values drawn 
under the Gibbs sampler.

The classic algorithm outlined above will 
not produce good imputations for incom-
plete predictors. A considerable advance 
in imputation quality is possible by using 
a slightly more general version of model 
Equation 10.1, where the within-cluster var-
iance σj

2 is allowed to vary over the clusters. 
Kasim and Raudenbush (1998) proposed 
a Gibbs sampler for this heterogeneous 
model. They specify

 p j( | , )~σ σ φ σ χ
φ

2
0
2 0

2
1
2

 (10.10)

where σ0
2 and ϕ are hyperparameters. The 

hyperparameter σ0
2 describes the location 

of prior belief about residual variance σj
2 in 

the conjugate prior distribution for σj
2. The 

hyperparameter ϕ is a measure of variabil-
ity of the variances σj

2. Both σ0
2 and ϕ are 

also updated within the Gibbs sampler. The 
algorithm was implemented in R by Roel 
de Jong, where σj

2 = 1 and ϕ = 1 are used 
as starting parameters. Below, we will refer 
to this method as multilevel  imputation 
(ML).

10.5.2 simulation study

Data with a multilevel structure were gen-
erated according to the model yij = 0.5 
zij + uj + eij with ej ~ N(0, σ2) and uj ~ N(0, 
Ω). This model is a special case of Equation 
10.1 and 10.2), where Xj = Zj = (1, zij) with 
i = 1,…,nj is the nj × 2 data matrix of class 
j, where Ω = diag(ω2,0), where β = (0,0.5)T 
is a 2 × 1 vector of fixed parameters, and 
where Wj is the identity matrix. We varied 
the variance parameters (σ2, ω2) in pairs as 
{(0.75,0.00), (0.65,0.10), (0.45,0.30), (0.25, 
0.50)}. Since variable zij was drawn as zij ~ 
N(0,1), the intraclass correlation coefficient 
(ICC) under the stated model equals ω2, so 
the ICC effectively varies between 0.0 and 
0.5. We fixed the total number of respond-
ents to 1,200. The number of classes was 
chosen 12, 24, and 60, yielding 100, 50, 
and 20 respondents per class, respectively.

Two missing data mechanisms were spec-
ified: Y and Z. Mechanism Y generates 50% 
missing data in yij under MAR. For values 
of zij < 0, the nonresponse probability in yij 
is 10%. For zij ≥ 0, this probability is 90%. 
Vice versa, mechanism Z generates 50% 
missing data in zij under MAR given yij. For 
values of yij < 0, the nonresponse probability 
is 10%. For yij ≥ 0, the probability is 90%.
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The following methods for handling the 
missing data were used:

Complete Case Analysis (CC). This •	
method removes any incomplete 
records before analysis, also known as 
listwise deletion.
Multiple Imputation Flat File (FF). •	
This method multiple imputes miss-
ing data while ignoring any clustering 
structure in the data by standard lin-
ear regression imputation.
Multiple Imputation Separate Classes •	
(SC). This method multiple imputes 
missing data by treating the cluster 
allocation as a fixed factor, so that dif-
ferences in intercepts between classes 
are modeled.
Multiple Imputation Multilevel Impu-•	
tation (ML). This method applies the 
Gibbs sampler as described above to 
generate multiple imputations from 
posterior of the missing data given the 
observed data.

The number of multiple imputation was 
fixed to 5. Parameter estimates are pooled 
using Rubin’s rules (Rubin, 1987; Rubin, 
1996). The complete-data model was fit-
ted by the lmer() function in R package 
lme4 (Pinheiro & Bates, 2000).

10.5.3 Results

Table 10.1 contains results of the simula-
tions. When missing data are confined to 
yij, then CC is unbiased for both the fixed 
and random parameters, as expected. 
Method FF is unbiased in the fixed param-
eters, but severely biased in the random 
parameters for clustered data (i.e., when 
ω2 > 0). Method SC produces unbiased 
estimates of both the fixed and random 

parameters. Note that this is related to 
the fact that the model that generated the 
data included only random intercepts and 
no random slopes. Also, method ML is 
unbiased in both the fixed and random 
parameters.

If missing data occur in zij, the results are 
drastically different. The estimates under 
CC are severely biased, both for the fixed 
and random parameters. Thus even under 
MAR, the standard practice of eliminating 
incomplete records can produce estimates 
that are plainly wrong. Of the three impu-
tation methods, SC and ML yield estimates 
that are close to population values, FF is 
generally less successful. Method SC had 
computational problems for small clus-
ter sizes (nj = 20) because the number of 
observations in the cluster that remain after 
missing data were created could become 
too low (≤3). The FF and ML methods are 
insensitive to this problem since they com-
bine information across clusters.

Table 10.2 contains estimates of the cov-
erage of the 95% confidence interval for the 
fixed parameters. The number of replications 
used is equal to 100, so the simulation stan-
dard error is √(0.95(1 − 0.95)/100) = 2.2%. 
For missing data in yij, CC has appropriate 
coverage. However, coverage for missing 
data in zij is dismal, so statistical infer-
ences are unwarranted under incomplete 
zij. The FF is generally not well calibrated, 
and may achieve both under- or overcover-
age depending on the amount of clustering. 
The SC has appropriate coverage of β0, but 
coverage is suboptimal for βx. The ML has 
appropriate coverage for larger cluster sizes 
for both β0 and βx. Coverage for small clus-
ter sizes is however less than ideal, though 
still reasonable.

This section addressed the properties of 
four methods for dealing with univariate 
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missing data within a multilevel context. 
The CC method is easy and works well under 
MAR when missing data are restricted to 
yij. However, the performance CC with zij 
missing at random is bad. We therefore rec-
ommend against CC if many zij are missing. 
An alternative is to apply multiple imputa-
tion. Three such methods were studied. The 
overall best performance was obtained by 
the ML Gibbs sampling method.

10.6  MultIvaRIate MIssIng 
data In yj and zj

10.6.1 general approach

Missing data may also occur in yij and zij 
simultaneously. The present section deals 
with the case where both yij and zij are incom-
plete. There are two general approaches to 
impute multivariate missing data: Joint 

taBle 10.2

Coverage (in Percentage) of the True Values by the 95% Confidence Interval for Fixed 
Parameter Estimates Under Four Methods for Treating Missing Data in Y or Z, Respectively

J nj β0 cc FF Sc ML βx cc FF Sc ML

Y
A 12 100 95 96 72 90 90 95 96 73 72 90
B 12 100 95 89 69 96 87 95 96 82 76 91
C 12 100 95 94 71 94 91 95 97 98 70 93
D 12 100 95 94 68 94 97 95 94 100 78 91

E 24 50 95 95 71 91 87 95 97 66 68 88
F 24 50 95 96 73 90 89 95 97 76 63 87
G 24 50 95 92 63 93 88 95 96 90 66 94
H 24 50 95 91 73 94 95 95 96 95 72 87

I 60 20 95 98 66 92 84 95 98 73 69 90
J 60 20 95 99 64 88 88 95 93 71 68 89
K 60 20 95 97 67 88 98 95 97 79 76 86
L 60 20 95 92 66 96 88 95 97 89 73 87
Z
A 12 100 95 0 88 92 95 95 0 84 84 93
B 12 100 95 0 84 94 87 95 2 83 85 94
C 12 100 95 25 82 90 94 95 23 49 86 94
D 12 100 95 75 91 91 92 95 39 5 87 95

E 24 50 95 0 88 93 90 95 0 94 80 87
F 24 50 95 0 88 99 95 95 1 78 84 87
G 24 50 95 5 96 96 95 95 11 25 94 91
H 24 50 95 54 91 94 94 95 29 1 94 94

I 60 20 95 0 91 92 89 95 0 77 78 85
J 60 20 95 0 87 95 98 95 1 83 86 83
K 60 20 95 0 90 # 96 95 2 35 # 79
L 60 20 95 17 88 # 91 95 16 1 # 85

Notes: CC = complete case analysis, FF = MI flat file, SC = MI separate group, ML = MI multilevel.
# solution could not be calculated due to almost empty classes.
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Modeling (JM) and Fully Conditional 
Specification (FCS).

Joint modeling partitions the observa-
tions into groups of identical missing data 
patterns, and imputes the missing entries 
within each pattern according to a joint 
model for all variables. The first such model 
was developed for the multivariate normal 
model (Rubin & Schafer, 1990). Schafer 
(1997) extended this line and developed 
sophisticated JM methods for generating 
multivariate imputations under the multi-
variate normal, the log-linear, and the gen-
eral location model. This work was extended 
to include multilevel models (Schafer & 
Yucel, 2002; Yucel, 2008).

The fully conditional specification 
imputes data on a variable-by-variable basis 
by specifying an imputation model per 
variable. The FCS is an attempt to specify 
the full multivariate distribution of the 
variables by a set of conditional densities 
for each incomplete variable. This set of 
densities is used to impute each variable by 
iteration, where we start from simple initial 
guesses. Though convergence can only be 
proved in some special cases, the method 
has been found to work well in practice 
(Raghunathan, Lepkowski, van Hoewyk, & 
Solenberger, 2001; Van Buuren et al., 1999; 
Van Buuren, Brand, Groothuis-Oudshoorn, 
& Rubin, 2006). The R mice package (Van 
Buuren & Groothuis-Oudshoorn, 2000) 
enjoys a growing popularity. Van Buuren 
(2007) provides an overview of the similari-
ties and contrasts of JM and FCS.

10.6.2 simulation study

Using the same complete-data model as 
before, we created missing data in both 
xij and yij by applying mechanisms Y and 

Z each to a random split of the data. For 
missing zij the procedure is identical to that 
given before. For missing yij, the procedure 
is reversed. For values of zij < 0, the nonre-
sponse probability in yij is 90%. For zij ≥ 0, 
this probability is 10%. Thus, many high zij 
and many low yij will be missing.

We created five multiple imputed data 
sets with mice using the three imputation 
methods. The number of iterations in mice 
was fixed to 20.

10.6.3 Results

Table 10.3 contains the parameter estimates 
averaged over 100 simulations. Complete 
case (CC) analysis severely biases the esti-
mates of the intercept term β0 and the 
within-group variance σ2, especially when 
the clustering is weak. Methods FF and SC 
have a somewhat better performance for the 
fixed effects, and behave differently for the 
variance estimates. The best overall method 
is ML, but note that ML is not yet ideal 
since β0 is biased slightly upward while βx 
is biased slightly downward. No systematic 
bias appears to be present in the variance 
estimates, so ML seems to recover the mul-
tilevel structure present in the original data 
quite well.

Table 10.4 contains the accompanying 
coverage percentages. The best method is 
ML, but none of the methods is really sat-
isfactory. Trouble cases include A, E, and 
I, where ω2  = 0. The Gibbs sampler can get 
stuck if there is no between-cluster varia-
tion (Gelman et al., 2008), so this might be a 
reason for the low coverage. It also appears 
to be difficult to get appropriate coverage 
for small cluster sizes.

The simulations suggest that FCS is a 
promising option for imputing incomplete 
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multilevel data. The FCS used in conjunc-
tion with multiple multilevel imputation is 
a considerable improvement over standard 
practice. The methodology is not yet ideal 
however, and further optimization and tun-
ing is needed.

10.7 conclusIons

Multilevel data can be missing at differ-
ent levels. Variables in which missing data 
occur can have different roles in the analy-
sis. The optimal way to deal with missing 
data depends on both the level and the role 
of the variable in the analysis.

Multilevel models are often presented 
in the form of the linear mixed model 
Equation 10.1. This formulation complicates 
conceptualization of the missing data prob-
lem because the same variable can appear at 

different places. It is useful to write the mul-
tilevel model as a slopes-as-outcomes model 
Equation 10.2, which clearly separates the 
variables at the different levels. Section 10.2 
describes how Equations 10.1 and 10.2 are 
related.

Missing data can occur in yj (level-1 out-
comes), Zj (level-1 predictors) are Wj  (level-2 
predictors) and j (class variable). The prob-
lem of missing data in yj has received con-
siderable attention. The linear multilevel 
model provides an efficient solution to this 
problem if the data are missing at random 
and if the model fits the data. There is a large 
literature on what can be done if the MAR 
assumption is suspect, or when models for 
other outcome distributions are needed. By 
comparison, the problem of missing data in 
Zj, Wj , and j received only scant attention. 
The usual solution is to remove any incom-
plete records, which is wasteful and could 
bias the estimates of interest. Several fixes 

taBle 10.4

Coverage (in Percentage) of the True Values by the 95% Confidence Interval for Fixed 
Parameter Estimates Under Four Methods for Treating Missing Data in Both Y and X

J nj β0 cc FF Sc ML βx cc FF Sc ML

YZ
A 12 100 95 0 5 42 37 95 46 29 27 85
B 12 100 95 2 18 64 81 95 55 23 22 77
C 12 100 95 45 25 83 89 95 71 32 26 76
D 12 100 95 83 38 85 90 95 88 29 17 82

E 24 50 95 0 6 39 37 95 48 28 30 64
F 24 50 95 0 9 56 79 95 56 30 27 67
G 24 50 95 16 21 76 84 95 75 25 15 55
H 24 50 95 69 28 81 87 95 82 28 13 72

I 60 20 95 0 1 # 34 95 42 19 # 55
J 60 20 95 0 13 # 50 95 53 24 # 57
K 60 20 95 1 12 # 73 95 52 22 # 42
L 60 20 95 28 17 # 82 95 76 27 # 43

Notes: CC = complete case analysis, FF = MI flat file, SC = MI separate group, ML = MI multilevel.
# solution could not be calculated due to almost empty classes.



Multiple Imputation of Multilevel Data  •  193

have been proposed, but none of these have 
yet gained wide use.

Other questions that need to be addressed 
are less particular to the multilevel setting: 
the missing data pattern, the missing data 
mechanism, the measurement scales used, 
and the study design. A successful attack on 
a given incomplete data problem depends 
on our capability to address these factors 
for the application at hand.

Section 10.3 outlines six strategies. Quick 
fixes like listwise deletion, last observation 
carried forward and class mean imputa-
tion will only work in a limited set of cir-
cumstances and are generally discouraged. 
Prevention, likelihood-based methods, and 
multiple imputation are methodologically 
sound approaches based on explicit assump-
tions about the missing data process.

Multiple imputation is a general statisti-
cal technique for handling incomplete data 
problems. Some work on MI in multilevel 
setting has been done, but many open issues 
remain. We performed a simulation study 
with missing data in yij or zij, and compared 
complete case analysis with three MI tech-
niques: flat file (FF) imputation that ignores 
the multilevel structure, separate clusters 
(SC) imputation that includes a group factor, 
and multilevel (ML) imputation by means of 
the Gibbs sampler. Complete case analysis 
was found to be a bad strategy with missing 
data in zij. The best imputation technique 
was ML. A second simulation addressed the 
question of how the methods behave when 
missing data occur simultaneously in yij or 
zij. Though its performance is not yet ideal, 
multiple imputation by ML within the FCS 
framework considerably improves upon 
standard practice.

Simulation is not reality. The missing data 
mechanisms we have used in the simulation 

have a considerable amount of miss-
ing information, and are probably more 
extreme than those encountered in prac-
tice. The simulations are still useful though. 
Differences between methods in absolute 
terms may be smaller in practice, but the 
best methods will continue to dominate 
others in less extreme situations. All other 
things being equal, we therefore prefer to 
use imputation methods that performs best 
“asymptotically” in extreme situations.

Since ML requires more work than 
 complete case analysis it would be useful 
to have clear-cut rules that say when doing 
ML is not worth the trouble. No such rules 
have yet been devised. This would be a use-
ful area of further research. Another area 
for research would be to further optimize 
and tune the ML imputation method to 
the multivariate missing data problem. 
For example, taking alternative distribu-
tions for within-cluster residual variance 
σj

2 could improve performance. The cur-
rent implementation of the method uses a 
full Gibbs sampler. Though the algorithm 
is robust, it is not particularly fast. Adding 
parameter expansion (Gelman et al., 2008) 
could be useful to prevent the Gibbs sam-
pler from getting stuck at the border of the 
parameter space at ω2 = 0. Computations 
could be speeded up, for example by 
obtaining marginal maximum likelihood 
estimates of β and Ω using numerical 
integration via Gauss–Hermite (Pinheiro 
& Bates, 2000). Extensions toward higher 
level models are also possible (Yucel, 
2008). Finally, we can classify missing data 
problems by combining the answers on 
the five questions posed in Section 10.3. 
Classification of the combinations opens 
up a whole research agenda with many 
white spots.
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Tests and Robust Estimation
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University of Wisconsin at Madison, Madison, Wisconsin

11.1 IntRoductIon

Multilevel models allow researchers to examine hypothesized relationships 
across different units of analysis in a statistically appropriate way, thus per-
mitting more accurate modeling of complex systems. At the same time, 
the complexity of multilevel models introduces other challenges in statis-
tical modeling, as many assumptions are needed (Goldstein, 2003; Hox, 
2002; Raudenbush & Bryk, 2002; Snijders & Bosker, 1999). In particular, 
there are multiple random effects in multilevel models and it is assumed 
that all predictors in the model are uncorrelated with all of the random 
effects. Standard estimation methods for multilevel models such as full 
information maximum likelihood (FIML), restricted (or residual) maxi-
mum likelihood (REML), generalized least squares (GLS), empirical Bayes, 
and fully Bayesian estimators all assume the independence of predictors 
from random effects and would yield biased estimates if the assumption 
is violated.

However, independence between predictors and random effects is prone to 
be violated in practice. There are three common forms of bias due to corre-
lated effects (Kim & Frees, 2007). First, unobserved effects can lead to omitted 
variable bias. Second, predictors might be measured imprecisely and result in 
measurement error or error-in-variable bias. Third, some predictors may not 
only cause but also be influenced by the outcome variable (two-way causality), 
yielding simultaneity bias. Among these, this chapter focuses on handling 
correlated effects due to omitted variables, which is a common thread in most 
observational and quasi-experimental studies in the social and behavioral 
sciences.
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Whereas model specification tests have 
been one of the most important areas 
of research in econometrics for decades 
(Frees, 2004; Hausman, 1978; Wooldridge, 
2002), specification issues have been often 
overlooked in multilevel analysis. We argue 
that concerns for omitted variables and 
other specification issues should be routine 
in multilevel analysis. An omitted variable 
at one level may yield severe bias at all levels 
in terms of regression coefficients as well as 
variance components (Kim, 2009).

This chapter provides a tutorial for the 
recent statistical developments in Kim and 
Frees (2006, 2007), which introduced a set 
of statistical tools for testing the severity 
of omitted variable bias and for obtaining 
robust estimators in the presence of omit-
ted variable effects. While these two origi-
nal articles are more technical, this chapter 
provides a more conceptual review of the 
methodology with less emphasis on math-
ematics. An application of the methods is 
illustrated with a well-known data set, the 
National Education Longitudinal Study of 
1988 (NELS:88). For details on the proce-
dures and longitudinal data examples, we 
refer to the original papers.

The rest of the chapter is organized as 
follows: We define fundamental concepts 
such as endogeneity and exogeneity in 
linear models and provide a review of 
econometric treatment of omitted vari-
ables in Section 11.2. Sections 11.3 and 
11.4 present omitted variable tests and the 
generalized method of moments (GMM) 
estimation technique, respectively. Section 
11.5 applies the methodologies of the pre-
vious two sections to NELS:88. The last 
section provides a summary and ends 
with a discussion of related topics in vari-
ous disciplines.

11.2 BackgRounds

11.2.1  endogeneity and omitted 
variable Bias

The problem of endogeneity in a regres-
sion model occurs when a predictor is cor-
related with the error term in the model. 
Endogeneity is defined similarly in mul-
tilevel modeling but, unlike a regression 
model, there exist multiple random compo-
nents in a multilevel model and thus more 
opportunities for endogeneity to occur.

We consider a linear model as:

 y X= + ,ββ δδ  

where X is the collection of predictors 
across the levels and δ is the collection of all 
random components. If a predictor is cor-
related with δ, it is an endogenous variable. 
If not, it is an exogenous variable. Thus, the 
exogeneity assumption implies that all pre-
dictors are uncorrelated with all random 
components in the model.

As this chapter focuses on linear models, 
we express the condition for exogeneity as:

 E( )X 0δδ = .  (11.1)

Variables that do not satisfy this condi-
tion are said to be endogenous. Sometimes, 
a more restrictive assumption E(δ|X) = 0 is 
also used as the exogeneity condition.

To illustrate the problem of omitted vari-
ables, consider a “true” model:

 y X U= + + ,ββ γγ δδ  (11.2)

where U are unobserved predictors that 
affect the outcome. Since U is unobserved—
hence omitted in the analysis—the “fitted” 
model is
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 y X= + ,ββ δδ  

where δδ γγ δδ= +U . The expected value of the 
least squares estimates for the regression 
coefficients associated with X can be shown 
to be β + (X′X)–1X′Uγ. Unless either X′U = 0 
(observed and unobserved predictors are 
uncorrelated) or γ = 0 (unobserved predic-
tors do not affect the outcome), E( )Xδδ ≠ 0  
and the least squares estimator of β is biased 
and inconsistent.

In multilevel models, GLS estimators, ML 
estimators, and empirical Bayes estimators 
often provide indistinguishable solutions. 
GLS solutions are sometimes used as starting 
values for other estimators for complex mul-
tilevel models or a large data set. Importantly, 
all of these estimators rely on the assumption 
that predictors are uncorrelated with ran-
dom components. However, this exogeneity 
assumption is prone to be violated in most 
observational and quasi-experimental stud-
ies, where researchers do not have the ability 
to control for or collect all the right variables.

The endogeneity problem has been stud-
ied extensively in econometrics, mainly in 
the context of panel data analysis (Frees, 
2004; Frees & Kim, 2008; Hsiao, 2003), and 
statistical tests for omitted variable effects 
such as the Hausman test (1978) have been 
steadily used for the past 30 years. In the 
following section, we review the economet-
ric treatment of omitted variable bias and 
explain why the methodology for panel data 
models is not appropriate for more complex 
multilevel models.

11.2.2  econometric treatment 
and Its limitations

A panel data model that includes omitted 
variables can be written as

 y uit i it i it= + ′ + + ,α εx ββ  (11.3)

where individual i = 1,…,n is observed 
over time points t = 1,…,Ti. Equation 11.3 
includes the outcome variable yit (test score, 
for example), disturbance term εit, predic-
tors xit, and coefficient vector β. The model 
also contains a latent intercept variable αi 
that is constant over time. This latent vari-
able induces a correlation among individual 
responses over time and serves as a proxy 
for unobserved time-constant characteris-
tics, such as “ability,” that are uncorrelated 
with the predictors. Without the omitted 
variable ui, the model in Equation 11.3 is a 
two-level random intercept model.

Unlike αi, ui may be correlated with one 
or more of the predictors in xit. Thus, this 
variable may create bias in the estimates of 
β. To mitigate the effects of ui, one can apply 
a fixed effects (FE) transformation, sweep-
ing out the time-constant omitted variable. 
Here, the phrase “sweeping out” refers to the 
fact that the FE transformation in Equation 
11.4 below would remove all time-constant 
variables. To see the impact of the FE trans-
formation strategy, take averages over time 
in Equation 11.3 to get

 i i i i iy u= + ′ + + .α εx ββ  

Subtracting this from Equation 11.3 yields 
the transformed model equation:

 y yit i it i it i− = − ′ + − .( )x x ββ ε ε  (11.4)

Then the least squares estimator of β is
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This estimator is unbiased even in the pres-
ence of the time-constant omitted variable 
ui. We denote this estimator as a fixed effects 
(FE) estimator bFE. One important strength 
of the FE estimator is that there are relatively 
few assumptions needed, compared to alter-
native procedures. For example, instrumen-
tal variable estimation requires the analyst 
to identify a proxy for the omitted variable. 
Similarly, simultaneous equations modeling 
requires specifying a model for the latent, 
unobserved, omitted variables. Although 
these alternatives are certainly appropri-
ate in many circumstances, they do require 
additional (and sometimes unavailable) 
knowledge from the analyst.

Another important advantage is that these 
procedures are easy to implement. Generally, 
one can implement the calculations using 
standard statistical packages while only spec-
ifying certain “fixed effects” nuisance param-
eters, or unwanted “dummy variables.” Note 
that we do not actually introduce these extra 
unwanted parameters into the model; the 
estimates are simply a by-product of the esti-
mation procedures when Equation 11.5 is 
calculated by a computer program that is not 
specifically designed for the FE estimator.

Equation 11.5 also underscores a major 
limitation of FE estimation. Note that this 
estimator only provides estimates for vari-
ables that vary by time; if the jth predic-
tor of xit is constant over time, then the jth 
row of (xit – x–i) is identically zero so that β 
is not estimable. This means that while the 
FE approach removes undesirable ui, it also 
sweeps out potentially important x–i such as 
variables related to family characteristics, 
teacher qualities, and school environments. 
This loss of information would be a critical 
drawback in many applications.

Therefore, if bias due to omitted vari-
ables is not significant, one may prefer other 

options that do not lose information. To 
evaluate the size of omitted variable bias, 
we again consider the model in Equation 
11.3 but now assume that there are no omit-
ted variables so that ui = 0. Without ui, 
predictors are uncorrelated with random 
effects in the model and one can estimate 
β using standard procedures discussed 
earlier, including REML, FIML, GLS, and 
Bayesian estimators. We refer to a resulting 
estimator using the independence assump-
tion between predictors and random effects 
as a random effects (RE) estimator, denoted 
as bRE. Note that bRE would be biased in the 
presence of omitted variables (ui ≠ 0).

The severity of omitted variable bias for a 
given data set can be examined by compar-
ing FE with RE estimators, as the former is 
robust to the presence of ui and the latter 
is not. Hausman (1978) presented a test for 
examining the effect of omitted variables by 
measuring the distance between vectors bFE 
and bRE:

χ
Hausman FE RE FE RE

FE

2 1= −( )′ −( )

× −

−b b b b

b b

Var Var

RRE( ).
  

   
  (11.6)

This test statistic follows a chi-square dis-
tribution under the null hypothesis of no 
omitted variables, with degrees of freedom 
equal to the number of parameters in bFE. 
Under the null hypothesis that there exist 
no omitted variables, both bFE and bRE are 
unbiased. In contrast, only bFE is unbiased 
if the null hypothesis is not true. Thus, 
when the hypothesis is retained, the ana-
lyst would choose bRE without the loss of 
information in bFE. On the other hand, if 
the distance between the two estimators is 
statistically significant, this implies that the 
random effects estimator is biased due to 
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the presence of omitted variable effects, and 
the robust fixed effects estimator should be 
used despite its limitations.

The Hausman test is an effective tool for 
panel data models, but its applicability is 
limited for multilevel models, because the 
test was developed for examining omit-
ted variable effects at the second level in 
two level models, not for three- or higher-
level models. If there exist omitted variable 
effects at a lower level (e.g., teacher level), 
applying the Hausman test at a higher 
level (e.g., school level) would yield falla-
cious results, as both estimators in the test 
would be biased. Simulation studies have 
shown that the level-3 (school) fixed effects 
estimator could be as severely biased as the 
random effects estimator when there exist 
level-2 (teacher) omitted variable effects 
(Kim & Frees, 2006). This is not a problem 
of the Hausman test itself, but rather is an 
improper use of the test for which it is not 
designed.

Therefore, while we recommend the 
Hausman test for a panel data model, which 
is mathematically equivalent to a two-level 
random intercept model, it should be noted 
that the test is not appropriate for examining 
more complex models with more than two 
levels and/or random slopes. Test results can 
be highly misleading in more general mul-
tilevel modeling contexts. On the one hand, 
retaining the null hypothesis may not imply 
the absence of omitted variable effects but 
may reflect that both the fixed and random 
effects estimators are biased in a similar 
way. On the other hand, rejecting the null 
hypothesis may suggest that the fixed and 
random effects estimators are biased in a 
different way.

In the rest of the chapter, we explain 
recent methodology for extending the idea 
of the Hausman test to be applicable in 

more general multilevel models. Extensions 
involve multiple hypotheses and corre-
sponding tests to determine the location 
and severity of omitted variable effects. 
Moreover, we present an alternative robust 
estimation approach that overcomes the 
loss of information problem of the FE esti-
mator. The methodology and its implica-
tions are presented in the context of a model 
for mathematics achievement in NELS:88. 
This chapter ends with a discussion of 
related topics in various disciplines.

11.3  oMItted vaRIaBles In 
MultIlevel Models

A key to understanding the methodology 
for handling omitted variable bias is to 
recognize that when we have only one set 
of estimates, we do not know if those esti-
mates are biased or not. To diagnose bias, we 
need to consider multiple sets of estimates 
obtained from different estimators, ideally 
where some are more robust than others. 
This section presents notation for a three-
level model, defines two FE estimators and 
the RE estimator in the three-level model, 
and introduces statistical tests to compare 
these estimators.

11.3.1  Multilevel Models with 
unobserved variables

Consider three levels of nesting, where the 
subscript s identifies a school, the subscript 
t identifies a teacher belonging to school s, 
and the subscript p denotes a pupil belong-
ing to school s and teacher t. The level-1 
model is then written as:

 ystp stp st stp stp= + + ,( ) ( ) ( ) ( )1 1 1
1

1Z Xββ ββ ε  
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where ystp denotes the response variable. 
Predictors stp

( )1Z  and stp
( )1X  may be related to 

the pupil, teacher, or school. Parameters that 
are constant appear in the β1 vector and so 
we interpret stp

( )1X 1ββ  to be part of the “fixed 
effects” portion of the model. The term st

( )1ββ  
captures latent, unobserved characteristics 
that are school and teacher specific. We 
wish to allow for, and test, the possibility 
that these latent characteristics are related 
to predictors stp

( )1Z  and stp
( )1X . For identifica-

tion purposes, we adopt the usual conven-
tion and assume that the disturbance term, 
ε stp

( )1 , is independent of the other right-hand 
variables, stp

( )1Z , stp
( )1X , and β1.

The level-2 model describes the variability 
at the teacher level and is written as

 st st s st st
( ) ( ) ( ) ( ) ( )1 2 2 2

2
2ββ ββ ββ= + + .Z X ε  

Analogous to the level-1 model, the pre-
dictors st

( )2Z  and st
( )2X  relate to the teacher 

or school. Constant parameters appear in 
the β2 vector and so we interpret X st

( )2
2ββ  to 

be the fixed effects at the teacher level. The 
term ββs

( )2  captures latent, unobserved char-
acteristics that are school specific; these 
latent characteristics may be related to pre-
dictors Z st

( )2  and X st
( )2 .

Finally, the level-3 model describes vari-
ability at the school level, and is written as

 ββ ββ εεs s s
( ) ( ) ( ) .2 3

3
3= +X  

The variables X s
( )3  may depend on the 

school. We let εεs
( )3  represent other unob-

served characteristics of the school that are not 
explained by the fixed effects portion, X s

( )3
3ββ .

It is well known that a multilevel model 
may be written as a linear mixed-effects 
model for, among other reasons, parameter 

estimation purposes. For fitting multilevel 
models as linear mixed-effects models, 
Singer (1998) provides an insightful over-
view using SAS PROC MIXED examples. 
Combining the separate models for the 
three levels above, the multilevel model 
can be expressed as a linear-mixed effects 
model:

 
ystp stp st s s

stp s

= +( )

+

Z Z X

Z X

( ) ( ) ( ) ( )

( )

1 2 3
3

3

1

ββ εε

tt st stp stp
( ) ( ) ( ) ( )2

2
2 1

1
1ββ εε ββ εε+( )+ + .X

  
   
  (11.7)

Next, define 2
1

, =stp stpZ Z( ) and Z3,stp = 
Z Zstp st

( ) ( ) .1 2  With this notation, we may sum-
marize all random component terms as δstp 

= Z3,stp ε ε εs stp st stp
( ) ( ) ( )3

2
2 1+ + .,Z  Further, define 

the K × 1 vector ββ ββ ββ ββ= ′ ′ ′( )′1 2 3, ,  and the 1 × K 
vector stp stp stp st stp sX X Z X Z X= : :( )., ,

( ) ( ) ( )1
2

2
3

3  
With this notation and stacking, we may 
express the model as

 y Xs s s= +ββ δδ ,  (11.8)

which emphasizes that schools are inde-
pendent units in the model. The exogeneity 
assumption would be violated if some of Xs 
are correlated with δs.

It is useful to consider a special and com-
mon case of this general three-level model 
where there are no random slopes, but 
the intercepts are associated with random 
coefficients. Using the above notation, this 
implies Z stp

( )1 1=  and Z 1st
( )2 = . Multilevel 

models of this kind are referred to as ran-
dom intercept models. We can write the 
three-level random intercept model as a 
single equation of the form:

 
ystp s st stp s

st

= + + +

+

X X X( ) ( ) ( ) ( )

(

3
3

2
2

1
1

3

2

ββ ββ ββ ε

ε )) ( )+ .ε stp
1

  
   
  (11.9)
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To illustrate omitted variable problems in 
multilevel models, we denote unobserved 
effects of schools and teachers as us

( )3  and
ust

( )2 , respectively, and add them to Equation 
11.9:

 
ystp s st stp s st= + + + +X X X( ) ( ) ( ) ( ) (3

3
2

2
1

1
3 2ββ ββ ββ ε ε ))

( ) ( ) ( )+ + + .ε stp s st
1 3 2u u

  
   
  (11.10)

The latent intercept variables ε s
( )3  and ε st

( )2  
are uncorrelated with the predictors. By con-
trast, us

( )3 and ust
( )2  may be correlated with 

one or more of the predictors in the model 
and thus their omission may create bias in 
the estimates of β. In the next section, we 
present omitted variable tests to examine 
bias due to us

( )3  and ust
( )2  in a given data set.

11.3.2 different estimators

As mentioned earlier, commonly used 
multilevel model estimators such as 
REML, FIML, GLS, and Bayesian estima-
tors assume that u us st

( ) ( )3 2= = 0  in Equation 
11.10, and each of these estimators can be 
considered as a random effects (RE) esti-
mator, bRE, which provides an unbiased 
solution in the absence of omitted vari-
ables but yields biased estimates of model 
parameters if the assumption is violated. 
To examine the degree of bias in bRE, we 
also considered the fixed teacher effects 
estimator bFEt, which is robust against 
the presence of both us

( )3  and ust
( )2 , and the 

fixed school effects estimator bFEs, which 
is robust against the presence of us

( )3  but 
not ust

( )2 .
The two FE estimators, bFEt and bFEs, can be 

obtained by treating the teacher and school 
identification variables as discrete variables. 
This may take some time and the output 

can be long (unless suppressed), if the num-
ber of units is large, because the program 
would estimate nuisance parameters for the 
dummy variables assigned to the entities. In 
Section 11.4, we present a direct approach to 
obtain bFEt and bFEs without the unnecessary 
dummy variables. Note that while bRE pro-
vides estimates at all three  levels, bFEt only 
provides estimates for the level-1 variables 
while bFEs provides estimates for the level-1 
and level-2 variables. Because of this severe 
loss of information, one may not choose the 
FE estimators unless the bias in RE is statis-
tically significant.

11.3.3  three types of omitted 
variable tests

Kim and Frees (2006) presented three omit-
ted variable tests for examining omitted 
variable bias in multilevel models. They can 
be recognized as multiple-level, intermedi-
ate-level, and highest-level tests, respectively. 
The names of the tests indicate the locations 
of potential omitted variables being tested. 
The multiple-level test can be viewed as an 
“omnibus” test for examining all poten-
tial omitted variable effects simultaneously 
across levels by comparing the most robust 
estimator to the most efficient estimator. If 
this test indicates that the most efficient but 
least robust estimator (i.e., bRE) is unbiased, 
no further test may be necessary and we can 
make inferences based on bRE.

In most applications, the analyst may have 
some ideas about omitted variables and want 
to test one or more levels separately. Omitted 
variable effects at lower  levels can be tested 
by the intermediate-level test, regardless of 
omitted variable effects at higher levels. In a 
three-level school– teacher–pupil model, the 
omitted teacher effects can be tested regard-
less of omitted school effects. In a four-level 
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model, omitted variable effects at the second 
and/or third level can be tested regardless of 
omitted variable effects at the fourth level 
using the intermediate-level test.

Finally, the highest-level test examines 
omitted variable effects at higher levels, 
assuming there exist no omitted vari-
able effects at lower levels. In the school– 
teacher–pupil model, omitted school effects 
can be tested assuming there exist no omit-
ted teacher effects. In a four-level model, 
omitted variable effects at the fourth level 
can be tested assuming there exist no omit-
ted variable effects at the second and third 
levels. Also, omitted variable effects at the 
third and fourth level can be tested assum-
ing there exist no omitted variable effects at 
the second level using the highest-level test.

All three tests can be defined by one test 
statistic:

 

χ
OVT robust efficient

robustVar Var

2 = −( )′

× −

b b

b beefficient

robust efficient

( )

× −( )

−1

b b ,

  
   
   
  (11.11)

and a pair of robust and efficient estima-
tors is determined with respect to the 
 hypothesis being tested. For a three level 
model, the hypotheses and corresponding 
robust and efficient estimators for the three 
omitted variable tests can be summarized 
as follows:

Omitted 
Variable test Hypothesis

Robust 
estimator

efficient 
estimator

1.  Multiple-level 
test

u us st
( ) ( )3 2= = 0 bFEt bRE

2.  Intermediate-
level test

ust
( )2 = 0 bFEt bFEs

3.  Highest-level 
test

us
( )3 = 0 bFEs bRE

In regard to determining what tests 
would be appropriate for a given model, 
one may consider the following two proper-
ties. First, the omnibus multiple-level test 
would be recommended in general if omit-
ted variable effects are of concern at all  levels. 
When the  multiple-level test is rejected, one 
can subsequently test each level using the 
other tests. However, if one suspects omit-
ted variable effects at a particular level, the 
 intermediate-level or highest-level test would 
be more powerful than the multiple-level test.

Second, it is important to note the asym-
metry properties of the second and third 
tests; that is, while the intermediate-level 
test is valid regardless of omitted variable 
effects at higher levels, the highest-level 
test is only valid without omitted variable 
effects at lower levels. This occurs because 
the lower-level fixed effects estimators are 
robust against higher-level omitted vari-
able effects, but the higher-level fixed effects 
estimators are not robust against lower-level 
omitted variable effects. Therefore, the ana-
lyst should either assume or test ust

( )2 = 0  
before testing us

( )3 = 0 . The three omitted 
variable tests are shown at the top of Figure 
11.1, which provides a flowchart for data 
analysis procedures for model specification 
tests and selecting the optimal estimator. 
Figure 11.1 will be revisited with an empiri-
cal example in Section 11.5.

11.4  geneRalIzed Method 
of MoMents (gMM) 
InfeRence

The generalized method of moments 
(GMM) is a general estimation method for 
statistical models. As its name indicates, it is 
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a generalization of the method of moments 
(Hansen, 1982) and can also be viewed as 
an extension of instrumental variable (IV) 
methods. The area of GMM inference is 
more technical than other topics in this 
chapter and involves several statistical con-
cepts such as instrument, projection, trans-
formation, and generalized inverse. For this 
reason, we seek to convey the conceptual 
ideas of the methodology rather than its 
details. For GMM approaches in general, 
we refer the reader to Chapters 3 and 4 in 
Hayashi (2000). For their adaptations to 
multilevel models and formulas for model 

specification tests and robust estimation, 
the reader is referred to Kim and Frees 
(2007).

11.4.1 the gMM estimator

Exogenous variables that are useful for 
estimating coefficients in β are said to be 
instruments. When all model variables X 
are exogenous, we can estimate β exclu-
sively based on X. However, if some X are 
endogenous, the econometric IV meth-
ods require additional nonmodel instru-
mental variables for consistent estimation. 

1. Multiple-level test

Significant

Significant

Significant

bFEt bGMMt

bFEt vs. bGMMt

bFEs bGMMt

Significant

Significant

Significant

Not significant

Not significant

Not significant

Not significant

Not significant

bRE

bFEt vs. bGMMt bFEs vs. bGMMs bGMMs

Not significant

H0: us
(3)=ust

(2)=0

bFEt vs. bRE bFEt vs. bFEs bFEs vs. bRE bRE

H0: ust
(2)=0 H0: us

(3)=0

2. Intermediate-level test 3. Highest-level test

fIguRe 11.1
General guideline for conducting omitted variable tests and selecting the optimal estimator in a three-level 
model. One may start with any one of the three tests. However, Test 3 is valid when Ust

(2) = 0. One should 
assume Ust

(2) = 0 or conduct Test 2 beforehand.
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On the other hand, Kim and Frees (2007) 
developed a procedure of building “inter-
nal” instruments by utilizing the nested 
structure of hierarchical data that does not 
require additional “external” variables. In 
their approach, internal instruments are 
functions of variables in the model, and 
various sets of instruments can be defined 
in multilevel models.

To define the GMM estimator, we recall 
the stacked version of a linear mixed 
effects model ys = Xsβ + δs in Equation 
11.8. The outcome ys is independent over 
s with Eδs = 0 and Var δs = Vs. As schools 
are  independent units in this model, the 
variance- covariance matrix V is a block 
diagonal matrix, denoted as V = blkdiag 
(V1,…,Vn). Let Ws be a known weight matrix 
associated with δs. The matrix of instru-
ments, denoted as Hs, are exogenous and 
thus uncorrelated with the random effects 
δs in the model such that:

 E s ns s s′ = 0, = ,..., .H W δδ 1  (11.12)

Let y = (y1ʹ ,...,ynʹ )́ , X = (X1ʹ ,...,Xnʹ )́ , H = 
(H1ʹ ,...,Hnʹ )′ and δ  = (δ1ʹ ,...,δnʹ )′. With the 
matrix of weights W = blkdiag (W1,…,Wn), 
the GMM estimator is defined as:

 GMM ( ) ( )b X W H WX X W H Wy= ′( ) ′−P P ,   
  (11.13)

where P( ) ( )H H H H H= ′ − ′  is the projec-
tion onto the linear space spanned by the 
columns of H and “–” denotes a generalized 
inverse.

For this GMM estimator, we have intro-
duced weights Ws to allow for a variance 
structure, which is usually ignored in IV 
methods. In that case, one may use the iden-
tity for the weight matrix. Alternatively, the 
weight can be the inverse of the square root 

of the variance–covariance matrix of the 
disturbance term ( s

− /1 2V ), thus producing a 
GLS estimate. As another option, in mixed 
linear effects modeling (see, for example, 
Diggle, Heagerty, Liang, & Zeger, 2002), 
it is customary for analysts to use a weight 
matrix that approximates s

− /1 2V  and then 
use a robust estimate of standard errors to 
correct for misspecifications:

 

Var

P P

blkdiag

GMMb

X W H WX X W H W

e e



= ′( ) ′

× ′

−1

1

( ) ( )

( 11

1

, )

( ) ( )

…

P P

n n, ′( )

× ′ ′( ) ,−

e e

W H WX X W H WX

determined from the residuals es = ys – 
XsbGMM. We used these empirical robust 
standard errors, also known as Huber–
White sandwich standard errors (Huber, 
1967; White, 1982), instead of model-based 
standard errors in our applications, as the 
latter are known to be sensitive to omitted 
variable effects and may provide severely 
underestimated standard errors and con-
sequently falsely large effects (Kim & Frees, 
2006; Maas & Hox, 2004).

11.4.2  creating the estimator 
continuum using 
Internal Instruments

The formula for the GMM estimator in 
Equation 11.13 indicates that we obtain differ-
ent bGMM with a different set of instruments 
H. In fact, we can estimate bFEt, bFEs, and bRE 
in previous sections using Equation 11.13, 
and the calculation of FE estimators is much 
faster than the dummy variable approach 
mentioned earlier. More importantly, the 
GMM estimator provides useful alternative 
options when the RE estimator is biased and 
the FE estimators are not desirable. Using 
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the FE, RE, and additional GMM estima-
tors, we can create a continuum of estimators 
from the most robust but least efficient bFEt at 
one end to the most efficient but least robust 
bRE at the other end. The purpose of building 
this continuum is to find an estimator that is 
robust against omitted variables and also as 
efficient as possible.

The internal instruments H can be con-
structed without nonmodel variables, con-
sisting of functions of model variables X. In 
particular, within-group deviations and group 
means of X can be used as instruments in mul-
tilevel models. Note that different groups can 
be identified in three- or  higher-level models. 
Previously we considered a school–teacher–
pupil model, and schools and  teachers can 
thus be considered as groups having differ-
ent deviations and means. Also, different 
amounts of information can be used for dif-
ferent estimators. Specifically, bFEt is obtained 
under the idea that all predictors might be 
endogenous, and thus corresponding instru-
ment HFEt is composed of only within-teacher 
deviations, which are not affected by omitted 
variables us

( )3  and ust
( )2 . Similarly, the instru-

ment HFEs for bFEs is  composed of within-
school deviations.1

On the other hand, bRE is obtained by 
assuming all predictors are exogenous and 
HRE is composed of within-group deviations 
as well as the group means of all predictors in 
the model. Using more information than bFEt 
and bFEs, bRE is more efficient if all predictors 
are indeed exogenous. Unlike deviations, 
however, group means are affected by omit-
ted variables and bRE would be biased if some 
predictors are endogenous. Either teachers 
or schools as groups provide the same bRE.

1 The same idea of using deviations to remove unobserved 
variable ui from a linear longitudinal model is shown 
from Equations 11.3 to 11.5.

There is a third option for the GMM esti-
mator, taking a middle-of-the-road approach 
by using both deviations and means of exog-
enous variables and only deviations of endog-
enous variables. To implement the GMM 
estimators, therefore, one needs to separate 
out potentially endogenous variables in the 
model, and then construct instruments 
HGMM by merging the within-group devia-
tions of all predictors and the group means 
of exogenous variables. This approach is 
reasonable because one would not wish to 
rely on potentially endogenous variables as 
much as the other exogenous variables for 
the estimation of model parameters.

For example, if it is of concern that SES, 
but not MALE, might be endogenous due to 
unobserved school variables such as district 
and neighborhood characteristics, only the 
within-school deviation (SES SESstp s− ) may 
be used as an instrument, whereas both school 
average sMALE  and within-school deviation 
(MALE MALEstp s− ) may be included in 
HGMMs for the estimation of the GMM school 
estimator bGMMs. Analogously, teacher devia-
tions and means can be used as instruments 
for the GMM teacher estimator bGMMt. The 
idea of the GMM estimator is rooted in the 
Hausman–Taylor estimator (Hausman & 
Taylor, 1981) and IV estimators in economet-
rics (Hsiao, 2003; Wooldridge, 2002).

To summarize, it may be more than is nec-
essary to regard all predictors as endogenous 
yet too lenient to assume all are exogenous 
in many applications. The GMM estimator 
encompasses the two extreme approaches by 
treating part of the variables as endogenous. 
In the school–teacher–pupil model, within-
teacher deviations and within-school devia-
tions are used as instruments for bFEt and 
bFEs, respectively. For the corresponding 
GMM estimators, denoted as bGMMt and 
bGMMs, teacher means and school means of 
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exogenous variables are additionally used 
as instruments. Note that different GMM 
estimators would be obtained for different 
choices of endogenous variables. When all 
predictors are considered as exogenous, the 
GMM estimator is equivalent to the RE esti-
mator. The five estimators can be arranged 
in the order of bFEt, bGMMt, bFEs, bGMMs, and 
bRE, with regard to their robustness against 
omitted variables us

( )3  and ust
( )2 .

11.4.3  comparing Multilevel 
Model estimators using 
the gMM tests

After building the estimator continuum, it is 
of interest to examine if differences among 
the estimators are statistically significant. 
The GMM tests for comparing FE, RE, and 
GMM estimators can be presented as:

 χ
GMM

Var2
2 1 2 1

1
2 1= −( )′ −( )( ) −( ).−b b b b b b   

  
(11.14)

This test statistic has an asymptotic chi-
square distribution with degrees of freedom 
equal to the rank of Var (b2 – b1). Hausman 
and colleagues (Hausman, 1978; Hausman 
& Taylor, 1981) introduced a test statistic of 
this form for model specification tests with 
panel data models. Kim and Frees (2006, 
2007) extended the Hausman test to more 
general multilevel models and also incorpo-
rated GMM estimators. As a result, the fol-
lowing five types of tests can be conducted 
using Equation 11.14:

 1. Fixed effects estimator versus random 
effects estimator: for example, bFEt 
versus bRE

 2. Two fixed effects estimators: for exam-
ple, bFEt versus bFEs

 3. GMM estimator versus random effects 
estimator: bGMMt versus bRE

 4. Two GMM estimators: for example, 
bGMMt versus bGMMs

 5. Fixed effects estimator versus GMM 
estimator: bFEt versus bGMM

To summarize the model specification 
tests discussed in this chapter, when the 
model consists of only two levels and no ran-
dom slopes, the Hausman test in Equation 
11.6 is sufficient. For three or more levels, 
one should consider the multilevel omitted 
variable tests in Equation 11.11. When the 
results of the omitted variable tests indi-
cate bias in random effects estimators, one 
may consider the GMM tests in Equation 
11.14. When comparing estimators using 
the GMM tests, one can also consider each 
coefficient with a chi-square distribution 
with one degree of freedom. This is referred 
to as the individual coefficient test or one-
degree-of-freedom test in Kim and Frees 
(2007). Individual coefficient tests can be 
particularly useful in understanding the 
sources of omitted variable bias.

11.5 an exaMPle wIth nels:88

The methodology in this chapter can be 
applied to various forms of multilevel 
models, including latent growth models 
for longitudinal data and cross-sectional 
hierarchical models for organizational 
data. This section illustrates the imple-
mentations of the methods with a three-
level model for the National Education 
Longitudinal Study of 1988 (NELS:88), 
which is one of the most used large-scale 
data sets in education.
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11.5.1  selection of variables and 
Multiple Imputation

Achievement test scores in the NELS:88 con-
sist of four subjects —mathematics, reading, 
history, and science—and mathematics is by 
far the most studied subject among the four. 
This may be partly due to an understanding 
that students’ mathematics performance is 
more sensitive to teacher and school effec-
tiveness than other subjects (Shouse & 
Mussoline, 2002). We also considered the 
10th grade mathematics achievement test 
scores as the outcome variable.

For the selection of predictors, we reviewed 
the relevant literature extensively to gather 
variables that are commonly used as predic-
tors in educational production functions. 
Among many references, we chose most 
of the variables based on Goldhaber and 
Brewer (1997), Brewer and Goldhaber (2000), 
Ehrenberg, Brewer, Gamoran, and Willms 
(2001), and Rivkin, Hanushek, and Kain 
(2005) that are hypothesized to be related 
to student achievement, including teacher 
and school characteristics as well as student 
background variables. Wayne and Youngs 
(2003) surveyed a large number of articles on 
teacher effectiveness and argued the impor-
tance of controlling for prior student achieve-
ment. Battistich Solomon, Kim, Watson, and 
Schaps (1995) and Lee and Smith (1997) also 
stated that socio-economic status (SES), gen-
der, minority status and some form of prior 
achievement are necessities in educational 
production functions. We used the IRT-
equated eighth grade mathematics score for 
controlling for prior achievement.

Table 11.1 shows the predictors at the stu-
dent, teacher, and school levels and their 
summary statistics. Note that we compared 
descriptive statistics based on two differ-
ent forms of NELS:88; one after listwise 

deletion (N = 5278) by removing all subjects 
with missing values for the predictors in the 
model, and the other with imputed observa-
tions for the missing values (N = 7334) using 
the multiple imputation procedure imple-
mented in SAS (SAS Institute Inc., 2004; 
Schafer, 1999). By comparing the percent-
ages of different categories and mean math-
ematics scores of the variables between the 
two forms, especially with respect to SES, 
prior achievement, and minority status, it is 
apparent that the missing completely at ran-
dom (MCAR) assumption is far from satis-
fied in NELS:88 and thus listwise deletion is 
inappropriate. On the other hand, although 
the multiple imputation procedure is not 
assumption free, it requires the considerably 
weaker assumption of missing at random 
(MAR) instead of MCAR (Little & Rubin, 
2002). Therefore, we used the imputed data 
set for our analysis in this chapter.

11.5.2 omitted variable tests

We fitted a three-level random intercept model 
and first obtained the random effects estima-
tor bRE, assuming no omitted variable effects. 
This is equivalent to assuming u us st

( ) ( )3 2= = 0  
in Equation 11.10. As noted earlier, we would 
not be able to tell if this bRE is biased unless 
we compare it with more robust estimators. 
Therefore, we also obtained the fixed teacher 
effects estimator bFEt, which is robust against 
the presence of both us

( )3  and ust
( )2 . In addi-

tion, we obtained the fixed school effects esti-
mator bFEs as well, which is robust against the 
presence of us

( )3  but not ust
( )2 .

The three sets of estimates, bFEt, bFEs, and 
bRE, are listed in Table 11.2. One might ques-
tion why bFEt is not always used if it is robust 
against both omitted teacher and school 
effects. The reason is shown in Table 11.2. 
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While bRE provides estimates for all three 
levels, bFEt only provides estimates for the 
level-1 variables and bFEs provides estimates 
for the level-1 and level-2 variables. Because 
of this severe loss of information, one would 
not choose bFEt nor bFEs, unless bRE is biased.

Figure 11.1 provides a flowchart summa-
rizing different paths for testing omitted 
variable effects and for finding the optimal 
estimator. Among the three omitted vari-
able tests at the top of Figure 11.1, we started 
with the omnibus multiple-level test (Test 1) 

taBle 11.1

Percentages or Means of Predictors and Average Mathematics Scores by Subgroups; Standard 
Deviations in Parens

Percentage or Mean Math Score

Variable
Listwise 
Deletion MI

Listwise 
Deletion MI

student

N 5278 7334
Current achievement 45.43 (13.74) 44.35 (13.92)
Prior achievement 37.85 (11.96) 36.97 (12.05)
SES 0.07 (0.79) 0.03 (0.80)
Female 0.51 (0.50) 0.50 (0.50) 45.02 (13.45) 44.12 (13.58)
Male 0.49 (0.50) 0.50 (0.50) 45.84 (14.02) 44.58 (14.24)
Minority 0.24 (0.43) 0.28 (0.45) 40.43 (13.93) 39.11 (13.75)
Caucasian 0.76 (0.43) 0.72 (0.45) 47.01 (13.30) 46.37 (13.44)

teacher
N 2151 3016
Has a math background 0.28 (0.45) 0.27 (0.44) 46.30 (12.46) 45.51 (12.53)
No math background 0.72 (0.45) 0.73 (0.44) 43.41 (13.24) 42.14 (13.30)
Experienced (3 + years) 0.89 (0.31) 0.89 (0.32) 44.67 (13.09) 43.40 (13.24)
Not experienced ( < 3 years) 0.11 (0.31) 0.11 (0.32) 40.93 (12.57) 39.98 (12.38)
Female 0.48 (0.50) 0.49 (0.50) 44.20 (13.06) 42.84 (13.18)
Male 0.52 (0.50) 0.51 (0.50) 44.31 (13.11) 43.21 (13.19)
Minority 0.09 (0.28) 0.10 (0.31) 38.80 (12.57) 37.26 (12.30)
Caucasian 0.91 (0.28) 0.90 (0.31) 44.77 (13.01) 43.69 (13.12)

school
N 626 859
Urban 0.36 (0.48) 0.37 (0.48) 45.36 (10.96) 43.33 (11.61)
Rural 0.27 (0.44) 0.26 (0.44) 42.53 (8.82) 41.47 (8.92)
Suburban 0.37 (0.48) 0.37 (0.48) 45.58 (9.89) 44.11 (10.04)
School size/100 11.48 (6.70) 11.85 (6.78)
% Caucasian/10 7.11 (2.77) 6.87 (2.88)
% Single parent homes/10 2.83 (1.78) 2.94 (1.79)
Public school 0.82 (0.39) 0.83 (0.38) 43.02 (9.34) 41.48 (9.64)
Private school 0.18 (0.39) 0.17 (0.38) 52.18 (9.99) 51.21 (10.41)

Note: MI: Multiple imputation.
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for examining omitted school and teacher 
effects simultaneously. It is generally sug-
gested to start with Test 1 if omitted variable 
effects are of concern at multiple levels. The 
other tests can be subsequently conducted 
as shown in Figure 11.1. One may also start 
with the intermediate-level test (Test 2), if 
the analyst wishes to test omitted variable 
effects at each level separately. However, cau-
tion should be made before starting with the 
highest-level test (Test 3), as it is not valid if 
there exist omitted variables at lower levels. 
See Section 11.3 for further discussion on 
the properties of the three OV tests.

The results of the OV tests are summa-
rized at the bottom of Table 11.2. On the 
basis of the multiple-level test, it is clear 
that bRE is biased. Even with the empirical 

standard errors in Section 11.1 (as opposed 
to model-based errors that tend to under-
estimate variability and may provide falsely 
large test statistics), the chi-square test sta-
tistic is very large (143.34, df = 4, p < 0.01). 
Using the individual coefficient tests, we 
found statistically significant differences 
for the effects of prior mathematics achieve-
ment (0.85 vs. 0.95) and SES (0.71 vs. 1.11). 
This means the effects of the two variables 
would be upward biased, if we ignore omit-
ted variable effects and use bRE.

Next, we conducted the intermediate-level 
test and the results indicate that there exist sig-
nificant omitted teacher effects (χ2 = 130.64, 
df = 4, p < 0.01) and that bFEs is also biased. As 
we found that bFEs is biased, comparing the 
biased estimator to another biased estimator 

taBle 11.2

Omitted Variable Tests; Empirical Standard Errors in Parens

Variable bFet bFes bRe bFet vs. bRe bFet vs. bFes

Intercept 9.71 (0.77)*
Prior 
achievement

0.85 (0.01)* 0.94 (0.01)* 0.95 (0.01)* –0.10 (0.01)* –0.09 (0.01)*

SES 0.71 (0.18)* 0.94 (0.15)* 1.11 (0.13)* –0.40 (0.13)* –0.23 (0.12)*
Female 0.14 (0.21) 0.17 (0.18) 0.17 (0.17) –0.04 (0.14) –0.03 (0.13)
Minority –0.55 (0.31) –0.64 (0.25)* –0.76 (0.23)* 0.21 (0.20) 0.10 (0.18)
Math 
background

0.71 (0.25)* 0.53 (0.21)*

Experienced 0.56 (0.36) 0.45 (0.30)
Female 0.42 (0.25) 0.39 (0.20)*
Minority –0.36 (0.46) –0.42 (0.38)
Urban –0.43 (0.28)
Rural –0.37 (0.28)
School size/100 –0.02 (0.02)
% Caucasian/10 –0.01 (0.05)
% Single parent 
homes/10

–0.10 (0.07)

Public school –0.93 (0.37)*
*p < 0.05.
Omitted variable test 1: H0: No omitted teacher and school effects exist. bFEt vs. bRE.
χ2 = 143.34, df = 4, p < 0.01.
Omitted variable test 2: H0: No omitted teacher effects exist. bFEt vs. bFEs.
χ2 = 130.64, df = 4, p < 0.01.
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bRE is not meaningful. Therefore, we did not 
conduct the highest-level test. This example 
shows the very reason why the econometric 
treatment for two-level models discussed in 
Section 11.2 would fall short in multilevel 
models. If we had applied the Hausman test 
to examine omitted school effects at the third 
level (i.e., OV Test 3), the test would have 
compared two biased estimators.

Although we have one estimator that is 
robust to the omitted teacher and school 
effects, we cannot estimate the effects 
of teacher-level and school-level vari-
ables using bFEt. Sweeping out higher-level 
effects is a critical limitation of fixed effects 
approaches and might be one of the main 
reasons why efficient random effects esti-
mators have been used routinely despite the 
danger of omitted variable bias. To avoid 
this problem, some studies selected out stu-
dents who switched schools, which allow for 
estimating the effects of teacher and school 
variables. However, this approach has sev-
eral serious problems. Most importantly, 
these “movers” or “switchers” are usually 
a small proportion of the whole popula-
tion and often have different characteristics 
than the rest. Consequently, not only can 
the estimation be unstable due to a small 
sample size, but also the findings based on 
the movers’ group may not be generalizable 
to the majority who did not switch schools. 
Therefore, instead of relying on biased bRE 
or limited information bFEt, we further our 
analysis to find the GMM estimator.

11.5.3  searching for the 
optimal estimator

As explained earlier, the RE and FE estima-
tors treat all and none of predictors as exog-
enous, respectively. On the other hand, the 
GMM estimator provides a middle ground 

between the two extreme “all or nothing” 
approaches and allows for some of predic-
tors to be endogenous and treats the others 
as exogenous. By making this distinction, 
the analyst can use both the within- and 
between-group information of exogenous 
variables, while using only the within-group 
information from endogenous variables as 
instruments (see Section 11.2).

In this chapter, we demonstrate the 
internal instruments approach that utilizes 
variables already in the model. If available, 
external variables can be easily added to the 
set of instruments. However, it is important 
that one can obtain the unbiased GMM 
estimator without relying on additional 
variables that may not be available. It is also 
important to identify endogenous variables 
properly. We expect that the analyst would 
have some understanding or theory about 
endogeneity issues in relation to the nature 
of the topic (e.g., confounding factors) 
and the data (e.g., data collection process), 
based on experience and knowledge in the 
field. The choices of instruments should be 
guided by this knowledge.

It should be clarified that the purpose of 
our example is to demonstrate the meth-
odologies rather than to make substantive 
inferences. Nonetheless, we made efforts to 
gather proper information and our choice 
of predictors and endogenous variables are 
based on the literature in the field. Among 
the predictors summarized in Table 11.1, 
prior achievement, SES, and school-level 
percentage of minority students were sus-
pected to be endogenous. Prior achievement 
is a concern in regard to factors that would 
affect both prior and current achievement 
but are not available in the data set. It is nat-
ural to view any value-added type predictor 
as endogenous because of this inevitable rela-
tionship (Alexander, Pallas, & Cook, 1981). 
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SES would also likely be correlated with 
numerous factors that influence student 
achievement. Finally, there is concern that 
school-level percentage of minority students 
might be related to omitted school, district, 
and neighborhood information.

Thus, we hold the three predictors as poten-
tial endogenous variables, which means 
only within-teacher deviations of these vari-
ables are used as instruments, whereas both 
within-teacher deviations and teacher-level 
means of the rest of the 14 variables are used 
as instruments H in the calculation of bGMMt 
in Equation 11.13. Similarly, within-school 
deviations of the three endogenous variables 
are used and both within-school deviations 
and school-level means of the exogenous 
variables are used as instruments for bGMMs. 
Although we obtained bGMMs to complete the 
estimator continuum, as we already found 
that bFEs is biased in the OV Test 2 above, 
the corresponding GMM estimator does not 
carry much value in the current analysis. 
The results of the five estimators are sum-
marized in Table 11.3. They are ordered 
from the most robust to the least robust as: 
bFEt, bGMMt, bFEs, bGMMs, and bGLS.

An important question in Table 11.3 is 
whether bGMMt is as robust as bFEt. If so, 
we can obtain unbiased estimates for the 
effects of variables at all levels from bGMMt. 
This constitutes the GMM Test 5 in Section 
11.3, a test between an FE estimator and a 
GMM estimator. We found that bFEt and 
bGMMt provide almost identical estimates 
and the test statistic (χ2) was as small as 
0.03. Therefore, we concluded that bGMMt 
is the optimal estimator in our three-level 
model for the mathematics achievement 
scores in NELS:88.

While making inferences based on bGMMt, 
we also compared bGMMt to bRE for each 
coefficient. This comparison may help 

understand sources of omitted variable bias 
in bRE, and the information can be utilized 
in further research. The detailed results of 
this comparison are shown in Table 11.4. 
The test between bGMMt and bRE results in 
a large χ2 value of 150.55 (p < 0.01) with 15 
degrees of freedom. The individual coef-
ficient tests showed significant differences 
for many variables including prior achieve-
ment, family SES, urbanity, school size, 
school percentage of Caucasian, and pub-
lic status, suggesting the omission of some 
important information in relation to these 
variables. This is consistent with our litera-
ture review and concern over the impor-
tance of accounting for individual and 
family attributes, community dynamics, 
and school climates in the study of school 
and teacher effectiveness (e.g., Alexander 
et al., 1981).

Interestingly, there was a clear pattern 
in the direction of bias. While bRE overes-
timates the student level variables of prior 
achievement and family SES, it substantially 
underestimates several school effects, espe-
cially concerning characteristics of schools 
such as urban status, public status, school 
size, and ethnicity composition. Based on the 
robust estimator bGMMt, the negative effect of 
students’ ethnicity (being minority) became 
nonsignificant, while several school-level 
variables, including school size and the per-
centage of Caucasian, became significant.

We conclude our data analysis example 
with suggesting several general guidelines 
for the analysis of other data sets, which 
can be accompanied by the flowchart in 
Figure 11.1. First, when bRE is biased, one 
may end the analysis with bFEt or bFEs, espe-
cially if it is difficult to identify endogenous 
variables or it is suspected that the major-
ity of predictors are endogenous. In many 
applications, however, the GMM estimator 
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can be as robust as the corresponding FE 
estimator and would be preferred. Second, 
one may choose bFEs over bFEt, as long as 
the difference is not significant. Similarly, 
bGMMs would be preferred to bGMMt, if both 
are unbiased. Third, consider the compari-
son between bFEs and bGMMs in the right-
most panel. If the difference is significant 
(i.e., bGMMs is biased), one may further con-
sider bGMMt instead of bFEs. Note that bFEs 
and bGMMt are not directly comparable so 
bGMMt should be compared to bFEt. If the test 
between bFEt and bGMMt reveals that bGMMt is 
biased, one would go back to bFEs in the pre-
vious step. In sum, the flowchart starts with 
one of the three OV tests and ends with one 
of the five estimators for a three-level model. 
There would be a larger number of entities 
and paths for higher-level models. In our 
analysis of NELS:88, the starting point was 
the OV Test 1 and the ending point was 
bGMMt in the middle panel.

11.6  suMMaRy and 
dIscussIon

Although few would argue the danger of 
omitted variable bias, the harmful con-
sequences in data analysis are often over-
looked. This is partly because of the lack 
of statistical methods for handling omitted 
variables in multilevel models until recently. 
As in many observational studies the ana-
lyst does not have the ability to collect all 
the “right” variables, it is of great interest to 
utilize statistical techniques to handle omit-
ted variables as much as possible and ideally 
obtain unbiased solutions.

This chapter provides an introduction to 
recent statistical methodology for model 
specification tests and robust estimation 
techniques in multilevel models including 
three types of omitted variable tests (Section 
11.3) and GMM estimators (Section 11.4). 

taBle 11.3

Five Estimators From Most Robust to Most Efficient; Empirical Standard Errors in Parens

Variable bFet bGMMt bFes bGMMs bRe

Intercept 9.41 (1.57)* 8.97 (0.99)* 9.71 (0.77)*
Prior achievement 0.85 (0.01)* 0.85 (0.01)* 0.94 (0.01)* 0.94 (0.01)* 0.95 (0.01)*
SES 0.71 (0.18)* 0.71 (0.17)* 0.94 (0.15)* 0.94 (0.15)* 1.11 (0.13)*
Female 0.14 (0.21) 0.12 (0.17) 0.17 (0.18) 0.17 (0.17) 0.17 (0.17)
Minority –0.55 (0.31) –0.55 (0.31) –0.64 (0.25)* –0.68 (0.25)* –0.76 (0.23)*
Math background 0.58 (0.23)* 0.71 (0.25)* 0.52 (0.21)* 0.53 (0.21)*
Experienced 0.59 (0.31) 0.56 (0.36) 0.47 (0.30) 0.45 (0.30)
Female 0.39 (0.21) 0.42 (0.25) 0.40 (0.20)* 0.39 (0.20)*
Minority 0.16 (0.48) –0.36 (0.46) –0.27 (0.40) –0.42 (0.38)
Urban 0.18 (0.38) –0.28 (0.30) –0.43 (0.28)
Rural –0.54 (0.32) –0.39 (0.28) –0.37 (0.28)
School size/100 0.08 (0.03)* 0.04 (0.02) 0.02 (0.02)
% Caucasian/10 0.52 (0.15)* 0.12 (0.08) 0.01 (0.05)
% Single parent 
homes/10

–0.05 (0.10) –0.08 (0.07) –0.10 (0.07)

Public school –1.94 (0.42)* –1.07 (0.38)* –0.93 (0.37)*

*p < 0.05.
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It is shown that the versatile GMM tech-
nique provides an overarching framework 
encompassing the well-known random 
and fixed effects estimators and also offers 
additional and often more desirable options 
between the two extremes.

In the three-level model analysis for 
NELS:88, bRE turned out to be severely biased. 
However, we found bGMMt, which is unbiased 
without losing higher-level information like 
bFEt. Despite its advantageous properties, an 
outstanding shortcoming of GMM estima-
tion is that its implementation is cumber-
some, as formulas for the GMM estimator 
in Equation 11.13 and the GMM tests in 
Equation 11.14 are not utilized in statistical 
programs. All required formulas are given 
in Kim and Frees (2007). The SAS IML code 
written by Frees, Kim, and Swoboda is avail-
able by request to the authors of this chapter.

It is well known that multilevel mod-
els can be written as linear mixed-effects 

models. However, this chapter demonstrates 
that it is critical to retain the multiple-level 
representation when inspecting omitted 
variables at different levels. Also, the GMM 
estimation technique exploits the hierarchi-
cal nature of multilevel data and can create 
internal instruments, so that the researcher 
is not forced to look for additional variables 
that were not involved in the original model 
formulation. For nonhierarchical data 
(without replications within clusters), one 
cannot obtain unbiased GMM estimators 
without external instruments in the pres-
ence of endogenous variables.

Additionally, for those who are familiar 
with IV approaches in econometrics, the 
GMM methodology in this chapter extends 
that related work in several important ways. 
First, the GMM estimator generalizes the 
original work of Hausman and Taylor (1981) 
for panel data models to more complex mul-
tilevel frameworks. Second, the GMM tests 

taBle 11.4

Comparing the Teacher-Level GMM Estimator and the Random Effects Estimator

Variable bGMMt bRe Difference Std err Individual coeff. test ( χ1
2 )

Prior achievement 0.85 0.95 –0.10 0.01 108.70, p < 0.01
SES 0.71 1.11 –0.40 0.13 9.85, p < 0.01
Female 0.12 0.17 –0.06 0.08 0.42, p = 0.52
Minority –0.55 –0.76 0.21 0.20 1.11, p = 0.29
Math background 0.58 0.53 0.06 0.20 0.20, p = 0.65
Experienced 0.59 0.45 0.14 0.16 0.73, p = 0.39
Female 0.39 0.39 0.00 0.10 0.00, p = 0.99
Minority 0.16 –0.42 0.57 0.30 3.55, p = 0.06
Urban 0.18 –0.43 0.60 0.27 5.04, p = 0.02
Rural –0.54 –0.37 –0.17 0.16 1.15, p = 0.28
School size/100 0.08 0.02 0.06 0.02 11.69, p < 0.01
% Caucasian/10 0.52 0.01 0.51 0.13 14.20, p < 0.01
% Single parent 
homes/10

–0.05 –0.10 0.05 0.08 0.44, p = 0.51

Public school –1.94 –0.93 –1.02 0.21 23.72, p < 0.01
GMM Test: bGMMt vs. bRE

χ2 = 150.55, df  = 15, p < 0.01
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provide a general procedure for directly com-
paring various types of estimators beyond 
the FE and RE estimators. Third, empiri-
cal standard errors are adapted as opposed 
to traditional model-based standard errors 
that are known to underestimate variability 
when the models are not correctly specified. 
Finally, the GMM estimator extends the IV 
estimator by incorporating weights to accom-
modate the variance structure of a multilevel 
model and can handle more complex covari-
ance structures in hierarchical data.

As a final note, we recall that Kim and Frees 
(2006) linked the omitted variable problem 
to a larger issue of unobserved heterogeneity 
in the population. Unobserved heterogeneity 
is a recurrent issue across many disciplines, 
including econometrics, psychometrics, bio-
statistics, and sociology. However, the com-
monality across these literatures has been 
overlooked, and problems related to unob-
served heterogeneity have been acknowl-
edged under various names such as latent 
classes or finite mixtures, omitted vari-
ables, correlated effects, unobserved covari-
ates, measurement error, and confounding 
variables. In these applications, different 
assumptions are made about the nature of 
the unobserved variables (e.g., mutual exclu-
siveness, independent error terms, time-con-
stant or time-varying variables, parametric 
or nonparametric mixing distributions) and 
also different implications of unobserved het-
erogeneity are emphasized in different disci-
plines (e.g., impact on causal inference, bias 
in regression coefficients, collapsibility, etc.). 
Among the extensive literature dealing with 
these issues, we refer to Heckman and Singer 
(1982), Chamberlain (1985), Yamaguchi 
(1986), Palta and Yao (1991), Vermunt (1997), 
Frank (2000), McLachlan and Peel (2000), 
Halaby (2004), and Frees (2004) for further 
readings.
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With the rise of the use and utility of multilevel modeling (MLM), one ques-
tion has consistently been posed to authors and on listserves: “How much 
variance does my model explain?” Answering this question within the MLM 
framework is not an easy task where it is actually possible to explain “nega-
tive variance” when the addition of explanatory variables increases the corre-
sponding variance components (Snijders & Bosker, 1999). Because effect size 
measures previously proposed consider variance at each level, a single mea-
sure is needed that helps researchers interpret the strength of the model as a 
whole. The purpose of this paper is to provide a history of past MLM effect 
sizes and present three new measures that consider “whole model” effects.

The utility of effect sizes in research interpretation has generated con-
siderable discussion, much of which centers on the role and function of 
effect sizes, especially concerning the relationship to statistical signifi-
cance tests (cf. Harlow, Mulaik, & Steiger, 1997). Many authors agree that 
effect sizes can serve a valuable function to help evaluate the magnitude 
of a difference or relationship (cf. Cohen, 1994; Kirk, 1996; Schmidt, 1996; 
Shaver, 1985; Thompson, 1996; Wilkinson & APA Task Force on Statistical 
Inference, 1999). Their articles, along with current publications (cf., Knapp 
& Sawilowsky, 2001a; Roberts & Henson, 2002) continue to debate both the 
use and utility of measures of effect size when considered both in conjunc-
tion with and peripheral from statistical significance testing.

One positive thing that has occurred while researchers began to debate the 
issue of effect size reporting (e.g., Knapp & Sawilowsky, 2001b; Thompson, 
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2001) is the encouragement of researchers 
to consider more than just p-values before 
making interpretations as to the notewor-
thiness (or lack thereof) of a given study. 
And although it may seem that the field of 
research follows changes and adopts a new 
course with the speed and acuteness of a 
glacier, the fact that this glacier is moving is 
predicated by the adoption of such language 
in the APA Publication Manual (2001):

The general principle to be followed, how-
ever, is to provide the reader not only 
with information about statistical signifi-
cance but also with enough information 
to assess the magnitude of the observed 
effect or relationship. (p. 26)

12.1  catalog of effect 
sIzes In MlM

A history of effect sizes has been dealt with 
exhaustively in Huberty (2002), and does 
not bear repeating here. One thing absent 
from Huberty’s catalog was the use of effect 
size indices in multilevel analysis. It was 
wisely absent from Huberty’s manuscript, 
since there is much misconception, and 
even disagreement, as to the interpretation 
of these effects. We will quickly list some of 
the proposed effect size indices for use in 
MLM and give brief explanations as to their 
utility.

12.1.1 Intraclass correlation

Intraclass correlation (ICC) is generally 
thought of as the degree of dependence of 
individuals upon a higher structure to which 
they belong; or, the proportion of total vari-
ance that is between the groups of the regres-
sion equation. Put more succinctly, it “is the 

degree to which individuals share common 
experiences due to closeness in space and/
or time” (Kreft & de Leeuw, 1998, p. 9). Hox 
(1995) explains the ICC as a “population 
estimate of the variance explained by the 
grouping structure” (p. 14). The ICC for a 
two-level model can be represented as:

 ρ τ
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σ σI
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u e
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0
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0
2

0
2

0
2

,  (12.1)

where the numerator is represented by the 
variance at the second level of the hierarchy

τ0
2( ) , and the denominator represents the 

total variation in the model at both level-2 
and level-1 (σ2).

Although the ICC actually is not a mea-
sure of the effect size of an MLM model, it 
bears mentioning here because it sometimes 
is wrongly thought of as a measure of the 
“power” or strength of MLM over ordinary 
least squares (OLS) regression. However, 
this type of thinking is commonly illus-
trated in passages like the following:

Determining the proportion of the total 
variance that lies systematically between 
schools, called the intraclass correla-
tion (ICC), constitutes the first step in an 
HLM analysis. We conduct this analysis 
with a fully unconditional model, which 
means that no student or school charac-
teristics are considered. This first step can 
also indicate whether HLM is needed or 
whether a single level analytic method is 
appropriate. Only when the ICC is more 
than trivial (i.e., greater than 10% of the 
total variance in the outcome) would the 
analyst need to consider multilevel meth-
ods [emphasis mine]. Ignoring this step 
(i.e., assuming an ICC of either 0 or 1) 
would be inappropriate if the research 
question were multilevel. Investigation of 
contextual effects, I argue, is by nature a 
multilevel question. (Lee, 2000, p. 128)
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Roberts (2002) has rightly pointed out 
that it would be incorrect to interpret 
this statistic as a measure of the magni-
tude of difference between OLS and MLM 
estimates.

12.1.2  Proportion Reduction 
in variance

The process of building a multilevel model 
often begins with a null model (also called 
the baseline model by Hox, 2002). In this 
baseline model, just the grand mean is fit in 
the model such that:

 y u eij j ij= + +γ 00 0 ,  (12.2)

where, γ00 is the model grand mean (or inter-
cept), u j0  is the random group-level effect 
with variance σu0

2 , and eij is the person level 
effect with variance σe

2 . This baseline mod-
el’s variance estimates serve as a bench-
mark for determining the R2 at each level of 
the hierarchy. By using variance estimates 
from the null model (e.g., σu b0

2
| ) and vari-

ance estimates from the model where all 
predictors are entered (e.g., σu m0

2
| ), the per-

centage reduction in variance between the 
null model and the complete model can be 
estimated by:
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for the percentage reduction in level-2 vari-
ance and by:

 R e b e m
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for the reduction percentage in level-1 vari-
ance, where |b and |m represent the baseline 
and full models, respectively. This formula 

is reflected in many forms by Hox (2002, 
p. 64), or conversely as:

 R null full
null2

2 00 00

00
= −τ τ

τ
( ) ( )

( )
 (12.5)

by Raudenbush and Bryk (2002, p. 74) and 
Kreft and de Leeuw (1998, p. 118).

Although perceived as a tool for noting 
the reduction in variance at each level of the 
model, Hox (2002) and Snijders and Bosker 
(1999) are quick to caution researchers 
against directly interpreting this statistic, 
since it is possible to obtain negative values 
for R2 with these formulas when either σe

2  
is a biased estimator or when level-2 pre-
dictors are included in the model. This is a 
difficult concept to grasp, because in nor-
mal OLS models, the addition of variables 
to the model can only help prediction of 
the dependent variable (raise R2), not hurt 
prediction. A negative R2 value in MLM 
might be wrongly interpreted to mean that 
the predictor variables are performing at 
worse levels than just the grand mean as a 
predictor.

Negative variance can occur in an exam-
ple where we use a variable that has almost 
no variation at one of the levels. Consider 
the case of a model where we have one single 
level-1 predictor. It would be safe to assume 
that the addition of this variable would 
reduce both the between-and within-groups 
variance. If we add a group-level predictor, 
then we could expect that it would reduce 
only the between-groups variance, not the 
within-groups variance, ultimately increas-
ing the estimate for the population variance
σ̂u0

2 . For example, consider the output in 
Table 12.1 from a two-level model.

The data in this example were adapted from 
a hypothetical data set written to illustrate 
multilevel models (Roberts, 2004). In model 
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M1, just a single level-1 predictor is included 
in the model with variance estimates of 
σ̂e

2  = 0.651 and σ̂u0
2  = 80.923. If we are to 

consider this in terms of Equation 12.4, we 
could see that we actually would be decreas-
ing the variance explained (or increasing σ̂u0

2 ) at 
the second level with the introduction of this 
predictor (hence negative variance explained 
between the two models).

Although the amount of variance explai-
ned is noteworthy at level-1 (R1

2 =  (1.979 – 
.0651)/1.979 = 0.671), the amount of variance 
explained at the second level is actually 
–2.381(R2

2 = (23.923 – 80.890)/23.923 = –2.381). 
Not only is this number troubling, but it is 
counter-intuitive to the way most researchers 
think about the effectiveness of a model. If we 
were to interpret this model without previous 
knowledge of multilevel models, we might 
be inclined to say that the addition of the 
predictor “ses” is a worse predictor of “math 
achievement” at the second level than if we 
had no predictor at all, being that it explains 
–238% variance!

12.1.3  explained variance as 
a Reduction in Mean 
square Prediction error

Snijders and Bosker (1999) argue for a 
slightly different approach to computing R2 
values in multilevel models by computing 
the model’s associated mean square predic-
tion error. The R2 for level-1 is then computed 

as one minus the combined variance at both 
levels for the full model divided by the com-
bined variance for the null model, or:
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where Yij is the outcome variable, γh repre-
sents the coefficient for outcome variable 
Xhij for all h variables, σ̂2 is an estimate of 
the variance at the first level, and τ̂0

2  is an 
estimate of the variance at the second level.

The level-2 R2 is then found by dividing 
the σ̂2  by the group cluster size (B), or by 
the average cluster size for unbalanced data, 
such that:
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In this formula, it is easy to see that the 
R2 estimate at level-2 is similar to the R2 
for level-1, having just reduced the level-1 
variance to represent an average variance 
for each group. Although this estimation 
differs from the previous definition of R2 
(Equations 12.3 and 12.4), it is still possible 
to obtain “negative” values for R2.

Using Table 12.1, R2 at level-1 is:

 R1
2 1 0 651 80 890

1 979 23 923
2 148= − +

+
= −. .

. .
. ,  

and for level-2 is:

 R2
2 1 0 651 10 80 890

1 979 10 23 923
2 356= − +

+
= −. / .

. / .
. ..

taBle 12.1

Illustration of Negative Variance With the Addition 
of a Level-1 Predictor

Model Formula

estimate

σe
2 σu0

2

M0: science u eij j ij= + +γ 00 0 1.979 23.923
M1: science ses u eij j ij= + + +γ γ00 10 0( ) 0.651 80.890
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Once again this solution is extremely prob-
lematic, as we have again obtained negative 
values for R2.

12.1.4  Pooling as a Measure of 
explained variance

Like Snijders and Bosker (1999), Gelman 
and Pardoe (2006) propose a method that 
defines a measure of explained variance (R2) 
at each level of the model. (Here the term 
level “corresponds to the separate variance 
components rather than the more usual 
measurement scales.”) However, their mea-
sure does not require fitting multiple models 
and can be interpreted similarly to the clas-
sical R2 in that it is the proportion of vari-
ability explained by the linear predictors. 
However, it is important to note that since 
the proposed R2 is computed at each level, 
it does not directly measure the overall pre-
dictive accuracy of the model.

They define the explained variance at the 
data level as:

 R
n

n n
2

2

2 2
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Gelman and Pardoe also define a sum-
mary measure for the average amount of 
pooling (λ) at each level of the model. A low 
measure of pooling (< 0.5) suggests a higher 
degree of within-group information than 
population-level information. The opposite 
is true for a high measure of pooling. Note 
that this pooling factor is clearly related to 
the number of effective parameters. This 
pooling factor may be defined at the data 
level as:
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and at the group level as:
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Together these two measures clarify the 
role of predictors at the different levels 
and are very useful for understanding the 
behavior of complex multilevel models. 
These measures shed insight into model fit 
at each level as well as the extent to which 
the errors are pooled toward their common 
prior distribution.

12.1.5  whole Model 
explained variance

Xu (2003) proposes three measures that 
could be used to estimate the amount of vari-
ation being explained by predictors in a lin-
ear mixed effects model. To obtain all three 
of these measures both a null and full model 
must be fit to the data. The first of these three 
measures, r2, uses maximum likelihood 
to directly estimate the variance compo-
nents under these two models. An empiri-
cal Bayes approach is taken to estimate the 
random effects, and a second measure, R2, is 
obtained by comparing the residuals of the 
full and null models. The third measure, ρ2, 
is based on the idea of explained random-
ness and relies on the Kullback-Leibler gain. 
Xu defines the following formulae where:

 r 2
2

0
1= −

ˆ
ˆ ,σ
σ

 R RSS
RSS

2

0
1= − ,



224  •  J. Kyle Roberts, James P. Monaco, Holly Stovall, and Virginia Foster

and

 ρ σ
σ σ σ
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ˆ
ˆ exp ˆ ˆ ,RSS

N
RSS
N

where σ̂2  is an estimate of the residual 
variance at the lowest level (given by Xu as 
εij) with all predictors present, and σ̂0

2  is 
an estimate of the residual variance given 
only the clustering. RSS is then defined 
as the residual sum of squares such that
ˆ /( ).σ2 ≈ −RSS N df

The performance of the three measures, r2, 
R2, and ρ2, was assessed by Xu through sim-
ulation, and the results suggest that r2 gives 
accurate estimates of the true amount of vari-
ation explained. R2 and ρ2 are good estimates 
when the cluster size is large, but they overes-
timate if the cluster sizes are too small with R2 
over estimating the truth slightly more than 
ρ2. Thus, all three of these measures seem well 
suited for summarizing the predictive ability 
of a linear mixed effects model.

12.2  dIstance MeasuRes 
foR calculatIng R2 In 
MultIlevel Models

In turning our thoughts to multiple regres-
sion, the multiple R2 can be thought of as 
the correlation between a function of the 

predictor variables and the dependent vari-
able. Another way to think about this value 
is that it is the correlation between the 
dependent variable, y, and ŷ , the values of 
the dependent variable predicted from the 
independent variables. This association can 
be seen in Figure 12.1 where x1, x2, and x3 
are all predictors of y.

Therefore we could write a formula to 
represent Figure 12.1 as:

 R Ry x x x yy( , , ) ˆ .1 2 3
2 2=  (12.8)

If we are to think theoretically about this 
formula, we can describe ŷ  as simply any 
given person’s predicted y score based on 
the weights derived for each independent 
variable. The distance between an individ-
ual’s predicted score, ŷ , and their observed 
score, y, would simply be thought of as an 
error, or variance unaccounted for.

Although this is a relatively simple for-
mula, it can be applied easily to MLM, if 
we are to think of MLM as belonging to 
the General Linear Model of statistics. If we 
consider that the point of any analysis is to 
try to produce a series of coefficients that 
closely approximates an individual’s origi-
nal score, then we can see that in MLM, the 
ŷ  is simply any predicted value based on 

a set of regression coefficients derived from 
the MLM model, and the error term is sim-
ply the distance between ŷ  and y. In the 

fIguRe 12.1
Graphical representation of correlation between y 
and predictor variables.

y

ŷ

x1

x2

x3
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case of hierarchical linear modeling, these 
weights are derived through maximum like-
lihood estimates of the fixed effects, with 
the individual estimates being the product 
of empirical Bayesian estimates.

Although it would seem that a researcher 
could simply correlate these ŷ  and y val-
ues to obtain an estimate of R2, we must 
remember and maintain in MLM that we 
wish to honor the procedure by which the 
estimates were obtained. In OLS regression, 
we can typically compute the total variance 
in the model as:

 Y Yi
i

n

−( )
=

∑ 2

1

.  (12.9)

In a multilevel model, we must remember 
that we typically define the null model as hav-
ing both fixed effects (the grand mean for the 
dependent variable) and random effects (the 
variation of each group’s mean around that 
grand mean). In defining our model in this 
manner, we cannot simply compute the total 
variance in the same manner as it is computed 
in Equation 12.9. Instead, the total variance 
must be the predicted values of y when only 
the grand mean is used as a predictor, or:

 y cons uij j= +γ 00 0( ) .  (12.10)

Notice that the random estimate for indi-
viduals has been left out of Equation 12.10. 
By doing this, the grand mean value of the 
dependent variable is being estimated for the 
entire model and the random level-2 deviate 
u0j (also known as β0j for each group). We 
then can compute the total amount of vari-
ance in this model as:

 ′ = −( ) =
==

∑∑σtotal ij j ij
i

n

j

J

y y e
j

2 2 2

11

 ,  (12.11)

where y j  is the random estimate for group 
j and yij is the original outcome score for 
person i in group j. This number is the 
same value as the sum of the square of all 
of the residual values eij, but is distinctly 
different from the variance estimate from 
the unbiased estimator of σ2 that contains 
a correction factor for the Q + 1 regression 
parameters such that:

 ˆ /( ).σ2 2 1= − −∑e n Qij  (12.12)

As noted in the OLS model, the error 
variance in a model can be viewed as the 
distance between ŷ  and y. Likewise, in 
MLM after the ŷ  are calculated using the 
full model, the error variance for the total 
model can be explained as:

 ′ = −( )
==

∑∑σerror ij ij
i

n

j

J

y y
j

2 2

11

ˆ ,  (12.13)

where ŷij  is the predicted value for person i 
in group j based on the full model:

 ˆ ,y X W u eij q ij q j j ij= + + + +γ γ γ00 0 0 0  (12.14)

and Wj is a level-2 predictor. Once these val-
ues are computed, an R2 value may be com-
puted as:

 1
2

2
− ′

′
σ
σ

error

total
.  (12.15)

12.2.1 R2 Measure that 
Incorporates a gaussian 
Probability density function

So far, these formulas are not very dissimilar 
from the previously proposed estimators of 
variance explained, with the difference being 
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that they do not use the unbiased estimator 
for variance. However, consider if we were to 
aggregate this formula to the level-2 grouping 
structure such that we gain an R2 value for 
each level-2 group and then average across 
all groups. Doing so would further enhance 
the above formulas such that the estimate of 
variance explained would be defined by:

 R kj
2 ,  (12.16)

where k is the number of level-2 groups 
and,

 R e full
e nullj

i

i

2
2

2
1= − ( )

( )
,  (12.17)

with ei
2  representing the measure of each 

residual for the ith person in each distinct 
group j for both the full model and the null 
model. Although this would represent an 
“average” R2 for the entire model by produc-
ing a mean R2 based on each group’s R2, it 
does not take into account that the original 
estimation method used to produce these 
values was based on a probability of inclu-
sion in the model from maximum likelihood 
estimates. Unless each group has exactly the 
same sample size and the same probability of 
selection, it would not follow to use Equations 
12.16 and 12.17 to solve for a model R2.

By inserting the Gaussian probability 
density function into the above equations, 
we could gain a measure of R2 as a function 
of the probability of inclusion of the given 
value assuming the model. Doing so would 
modify Equation 12.11 such that:

 σtotal

ij ij
ij

ij
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where ′eij  is an estimate of the residual for 
each i person in the jth group in the null 
model, and:

 p y p d s p sij ij j j( ) ( | ) ( )=  (12.19)

where p(dij • sj) is the probability of the per-
son i, given that they belong to the jth group, 
and p(sj) is the probability of group j, given 
the entire sample of level-2 units. In extrap-
olating Equation 12.19 further and apply-
ing the probability density function from a 
Gaussian distribution, it can be shown that:
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with σij
2  representing the variance of the 

i individuals around their jth group mean 
for the null model, σ j

2 is the variance of β0j 
around γ00, and ′eij  and ′uj  are the residual 
scores for the level-1 and level-2 estimates, 
respectively.

As would follow from Equation 12.13, the 
model error could be thought of as:
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where ′′eij  is an estimate of the residual for 
each i person in the jth group in the full 
model, and:
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with σij
2  representing the variance of the 

i individuals around their jth group mean 
for the full model, σ j

2 is the variance of β0j 
around γ00, and ′′eij  and ′′uj  are the residual 
scores for the level-1 and level-2 estimates, 
respectively. The final estimate of variance 
explained could then be derived from com-
bining Equations 12.18 and 12.21:

 1
2

2
− σ

σ
error

total
.  (12.23)

The strength of a measure such as this is 
twofold. First, it puts what would normally 
be a complicated interpretation of a model 
into a palatable form for the less-informed 
researcher who might be reading an MLM 
analysis. Although it often seems that the 
goal of many statistical concepts is to con-
fuse the graduate student (e.g., the multi-
plicity of effect sizes currently available for 
use), in doing so, we only confuse the future 
researcher, and likewise, future research.

Second, it allows the researcher, outside 
of the Akaike Information Criterion AIC 
(Akaike, 1987) or the Bayesian Information 
Criterion BIC (Schwarz, 1978), with a single 
statistic to interpret just how well a model is 
performing. Since the goal of most research is 
to find variables that fully describe the varia-
tion in the dependent variable, a measure 
like this could potentially prove very useful 
in helping the researcher make judgments 
about the effectiveness of a MLM model.

12.2.2  group Initiated R2 based on 
weighted least squares

In addition to alternative ways of comput-
ing an effect size mentioned above, another 
type of effect size can be conceived through 
maximum likelihood methods. In a typical 
multilevel ANOVA, the grand estimate for 

the slope coefficient is simply the weighted 
least squares estimator (or maximum likeli-
hood estimate) γ00 where:

 ˆ ,γ 00
1 1= −

•
−∑ ∑∆ ∆j j jY  (12.24)

and ∆j is the sum of the two variance compo-
nents Var(u0j) and Var( e j• ; see Raudenbush 
& Bryk, 2002, p. 40 for further discussion). 
Put simply, the grand estimate for the mean 
of all of the groups (γ00) is the sum of all of 
the group means (Y j• ) after applying the 
precision parameter ( ∆ j

−1 ) and then divid-
ing by the sum of the precision parameters. 
The effect of these precision parameters on 
the grand estimate is to apply more weight to 
the groups that are measured with more pre-
cision (cf., more level-1 units). This formula 
for grand estimates also could be applied to 
the idea of an R2 effect size measure.

In typical OLS regression, the multiple R2 
can be expressed as:
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where yi is any given individual’s score 
on the dependent variable, ŷi is that indi-
vidual’s predicted score from the linear 
regression equation, and y  is the mean of 
all individuals on the dependent variable. 
For any given group within a set of level-2 
units, Equation 12.25 could be considered 
the mathematical equivalent of:
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where nj is the number of people in group 
j and σij

2  is the variance of the individuals 
in group j. For simplification purposes, we 
will define the latter part of Equation 12.26 
as being an error term corresponding to a 
normalized error for a given group. In rep-
resenting this with the term Ei, Equation 
12.26 can be thought of as:

 R
n

Ej
j

i
i

nj

2

1

1 1= −
=

∑ .  (12.27)

This would mean that the total weighted 
least squares normalized error for all groups 
could be thought of as:

 E p s Ej j i
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where p(sj) is the probability of group j exist-
ing given the sample of all j groups such 
that:
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with ′uj  being the residual score for group 
j around the mean of all groups and σ j

2  
the variance of j groups’ means around the 
grand mean of the dependent variable.

In performing analyses that are not 
 multilevel in nature, we could simply com-
pute the R2 for each group, and then aver-
age these values across all groups to obtain 
an average group R2 based on the sample 
of groups that we drew from the greater 
population of all level-2 units. As was 
previously stated, this makes little sense, 
however, since in multilevel modeling 

we are producing an equation for each 
 second-level group based on weighted least 
squares estimators. It seems appropriate, 
then, to produce an entire model R2 that 
is also weighted for the probability of the 
group from which the estimate was drawn. 
In expanding Equation 12.27 to include 
all groups and also reflect the need to use 
a weighted estimator, RT

2 could be thought 
of as:
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where Ej is the total weighted least squares 
normalized error for all groups from 
Equation 12.28. We can further deduce 
that RT

2:
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And since we already have defined Rj
2  in 

Equation 12.26, we can then interpret:

 R

n p s R

n p s
T

j j j
j

J

j j
j

J
2

2

1

1

=

⋅ ⋅

⋅

=

=

∑

∑

( )

( )

,  (12.31)

which, theoretically, is simply the weighted 
least squares average of all of the R2 val-
ues from each group. What is present 
in Equation 12.31 is a solution that will 
produce estimates similar in interpreta-
tion to OLS R2 measures. Equation 12.31 
seems considerably more appropriate than 
Equations 12.15 and 12.23, since it honors 
both the nesting structure of the data and 
the fact that the model was derived through 
weighted least squares estimates.

12.3 conclusIons

Snijders and Bosker (1999) presented good 
arguments for instances when Equations 
12.6 and 12.7 produce results that yield 
negative values for R2 in multilevel mod-
els. While it is sometimes helpful to be 
able to know the variance accounted for 
at each level of the MLM model, the lan-
guage with which researchers must refer to 
these estimates is, at best, confusing to the 
non-MLM minded researcher. With the 
further encouragement from editors to 
begin reporting effect sizes in all research, 
it is becoming more necessary for research-
ers using MLM to be able to explain their 
results in a way that is common with other 
statistical methods. Although results from a 
multilevel model probably will need further 

explanation, it is hoped that the continued 
development of these models will help in 
their proliferation.

There is a caution, however, in making 
these models more accessible. Just because 
a researcher has the software and program-
ming skills to utilize complicated techniques 
does not mean that that technique is war-
ranted. With the growth of a likewise com-
plicated field of statistics, MLM, Goldstein 
(1995) voiced similar concerns:

There is a danger, and this paper reminds 
us of it, that multilevel modeling will 
become so fashionable that its use will be 
a requirement of journal editors, or even 
worse, that the mere fact of having fitted a 
multilevel model will become a certificate 
of statistical probity. That would be a great 
pity. These models are as good as the data 
they fit; they are powerful tools, not uni-
versal panaceas. (p. 202)

It is our sincere hope that develop-
ing MLM as a more user-friendly field of 
statistics will improve its utilization and 
interpretation, but along with this must 
come responsibility in evaluating such 
models.
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Model selection consists of comparing two or more models—which rep-
resent different theories about reality—and deciding which of these mod-
els gives the best description of the current data. The dominant approach 
to model selection in the social and behavioral sciences is null hypothesis 
testing (NHT). This approach has received much criticism over the years, 
ranging from practical issues to more philosophical ones (cf. Raftery, 
1995; Wagenmakers, 2007; Weaklim, 2004). Some of the most eminent 
practical limitations of using NHT for model selection purposes are: its 
limitation to the comparison of two models; the need for these two mod-
els to be nested; and the impossibility of finding evidence for the null 
model.

An alternative approach to model selection, which does not suf-
fer from these limitations, was started by Akaike (1973), who devel-
oped An Information Criterion (AIC, typically referred to as Akaike’s 
Information Criterion). Not long after the introduction of the AIC, 
the Bayesian Information Criterion (BIC) was introduced by Schwarz 
(1978), which is also referred to as the Schwarz Information Criterion 
(SIC). Although the BIC bears a strong resemblance to the AIC, the two 
measures have quite different roots: While the AIC is derived within 
the framework of information theory, the BIC is based on the poste-
rior model probability, which is an inherently Bayesian concept. More 
recently the Deviance Information Criterion (DIC) was introduced by 
Spiegelhalter, Best, Carlin, and Van der Linde (2002), which is derived 
within a decision theoretical framework. All three information criteria 
can be recognized as a penalized log likelihood, which  balances model 
fit in the form of the log likelihood and model complexity in the form of 
the dimension of the model. Smaller values for an information criterion 
imply more appropriate models. In general, the information criteria are 
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easy to compute and most software pack-
ages report at least one of the information 
criteria mentioned above.

Despite the advantages of information 
criteria for model selection and their inclu-
sion in most multilevel modeling (MLM) 
programs, the literature on model selection 
in MLM is dominated by NHT (cf. Bryk 
& Raudenbush, 1992; Hox, 2002; Kreft & 
de Leeuw, 1998; Longford, 1995; Snijders 
& Bosker, 1999). What may contribute to 
this neglect of information criteria is unfa-
miliarity with these measures and a lack 
of understanding of the rationale behind 
them: Their rather simple appearance may 
give the erroneous impression that these 
measures were “invented” in an ad hoc 
fashion, rather than that they are soundly 
rooted in, for instance, information theory 
or Bayesian statistics. In addition, it is not 
always clear how to apply information crite-
ria within the MLM context. Specific ques-
tions that may arise here are whether or not 
the random effects themselves should be 
penalized (an issue for all three informa-
tion criteria considered here), and what the 
actual number of observations is (in case of 
the BIC).

The aim of this chapter is to provide 
detailed derivations of the AIC, DIC, and 
BIC, and to discuss and illustrate their 
application in the context of MLM. In 
the following section the basics of model 
selection using information criteria are 
presented. This is followed by a section on 
MLM in which the Laird–Ware model is 
presented (Laird & Ware, 1982), which is 
a general way to present multilevel models 
with two levels. In addition, two inferential 
focuses in MLM are discussed, which are 
based on whether or not the random effects 
are integrated out of the model. In the third 

section we derive the three information cri-
teria and discuss their application in MLM. 
In the fourth section we present an empiri-
cal illustration, in which we make use of five 
different software packages and compare 
multiple nested and nonnested models. We 
end this chapter with a discussion in which 
we summarize the most important findings 
of this chapter and discuss several addi-
tional issues that are relevant when using 
information criteria.

13.1  Model selectIon usIng 
InfoRMatIon cRIteRIa

In comparison to NHT, model selec-
tion based on information criteria has 
three practical advantages. Suppose we 
are interested in comparing the following 
four models: M1: θ1 = 0, θ2 = 0, θ3 = 0; M2a: 
θ1 = 0, θ2, θ3; M2b: θ1, θ2 = 0, θ3; and M3: θ1, 
θ2, θ3, where θ1, θ2, and θ3 are parameters 
of the statistical model at hand. First, com-
paring nonnested models like M2a and M2b 
is rather difficult in the context of NHT, 
because it is not clear which of the two 
models should serve as the null model (cf. 
Cox, 1962). In contrast, the use of informa-
tion criteria is not restricted to nested mod-
els, making the comparison of M2a and M2b 
straightforward.

Second, information criteria allow us to 
compare multiple models simultaneously. 
As a result, certain conflicting results, 
which may arise in the context of NHT due 
to the kind of comparisons that are made, 
will not arise here. For instance, suppose 
testing M1 against M2a results in χ2

2 = 5.4, 
which is not significant, and testing M2a 
against M3 results in χ1

2 = 3.2, which is also 
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insignificant (critical values for α = .05 are 
5.99 and 3.84, respectively). Then testing M1 
against M3 must render χ3

2 = 5.4 + 3.2 = 8.6, 
which is in fact significant (critical value for 
α = .05 is 7.81). Hence, whether to select M1 
or M3 using NHT will depend on the kind 
of model comparisons that are made. In 
contrast, since the use of information crite-
ria allows one to compare multiple models 
simultaneously, this problem does not exist 
in this context.

Third, in NHT it is not possible to find 
evidence for the smallest model—M1 in the 
example above. Even if M1 is not rejected 
in comparison to any of the other models 
under which it is nested, this cannot be 
interpreted as evidence in favor of M1. In 
contrast, when using an information crite-
rion, we select the model with the smallest 
value for this criterion. This may well lead 
to the conclusion that the smallest model in 
our set is the best model.

When using information criteria, one 
first has to specify the models of interest. In 
addition one has to choose a measure quan-
tifying the support in the data for each of 
the models. Well known instances of such 
measures are the AIC (Akaike, 1973), the 
BIC (Kass & Raftery, 1995; Schwarz, 1978), 
and the DIC (Spiegelhalter et al., 2002). All 
three measures consist of a part that rep-
resents model (mis)fit and a part that rep-
resents the size or dimensionality of the 
model; that is,

 IC ,= − | +2log ( ˆ)f dy θθ λ  (13.1)

where IC denotes information criterion, 
f(y | θ̂) denotes the likelihood of the data 
y evaluated at an estimate of the model 
parameters (i.e., θ̂ is an estimate of θ), λ is 
the penalty weight, which differs across the 

various information criteria (i.e., 2 for AIC 
and DIC, and log(n) for BIC where n is the 
sample size), and d is (an estimate of) the 
size or dimensionality of the model.

Information criteria are based on the 
idea that models are mere approxima-
tions of the truth, so that the issue is not 
to find the “true” model, but to find the 
best approximating model given the set 
of models under consideration (Burnham 
& Anderson, 2004). Models with smaller 
values for the quantity in Equation 13.1 
are considered better  models. When two 
or more models have about the same 
value for the criterion at hand, these 
models are considered equally good can-
didates. Stated otherwise, model selection 
can be used to account for model uncer-
tainty (Draper, 1995; Hoeting, Madigan, 
Raftery, & Volinsky, 1999), and instead of 
looking for the single best model, it can 
be used to look for a small set of reason-
able models. We return to this issue in the 
discussion.

While a smaller value for the informa-
tion criterion at hand indicates a more 
appropriate model, researchers may feel 
uncomfortable drawing conclusions based 
on small differences between two models, 
which have very large values: What does 
a difference of three points in AIC or BIC 
mean, if for instance the smallest value is 
20,486 and the second smallest is 20,489? 
To facilitate the interpretation of infor-
mation criteria, the values can be trans-
formed, using

 IC IC∗ = −



 .exp 1

2
 (13.2)

If one is interested in making a comparison 
between just two models, one can take the 



234  •  Ellen L. Hamaker, Pascal van Hattum, Rebecca M. Kuiper, and Herbert Hoijtink

ratio of the transformed criteria of these 
models. For the AIC this ratio is
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and for the BIC this is
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These ratios can be interpreted in a simi-
lar manner as likelihood ratios (Burnham 
& Anderson, 2002, pp. 77–80), or Bayes fac-
tors (Kass & Raftery, 1995; Raftery, 1995). 
For the values suggested above, this results 
in exp(−.5·(20486 – 20489)) = 4.48, mean-
ing that the first model is 4.48 times more 
likely to have generated the data than the 
second model.

Another transformation that can be used 
when there are two or more models consists 
of determining the model weights. Given a 
set of K models, the weight of model k is

 w k
k

j

K

j

IC IC

IC
.

*

*
=

=∑ 1

 (13.5)

Note that these model weights add to 
one.1 These weights can be based on either 
the AIC or the BIC, and are referred to as 
Akaike weights (cf. Burnham & Anderson, 
2002, pp. 75–77; Wagenmakers & Farrell, 
2004), or Schwarz weights, respectively. 
Schwarz weights can be interpreted as (an 
estimate of) the posterior model probability; 
that is, it is the probability that this model 
generated the data, given the other mod-
els in the set (Raftery, 1995). Similarly, the 
Akaike weight is interpreted as the weight 
of evidence in favor of this particular model 
being the best model, given the set of mod-
els (Burnham & Anderson, 2002).

Suppose we have obtained the two values 
for an information criterion (AIC or BIC) 
suggested above—20,486 and 20,489—and 
there is a third model that resulted in a 
value of 20,501. Then the model weights are 
.8172 for the first model, .1823 for the sec-
ond model, and .0005 for the third model. 
Hence, we can be quite certain the third 
model did not generate the data. Moreover, 
the first model is more likely to have gener-
ated the data than the second model. These 
transformations show that it is not the size 
of the information criterion that matters: 
Rather, it is the difference between informa-
tion criteria for competing models that is of 
interest.

13.2 MultIlevel ModelIng

The Laird-Ware linear mixed model is a 
convenient way of expressing a multilevel 

1 When the values for the IC are very large, this may lead 
to computational difficulties. To overcome these, one can 
subtract the same constant from all the IC of each of the K 
models. For instance, one may subtract the smallest value 
for the IC that was obtained; that is, ICmin. Then, instead of 
using the ICj, one uses the ΔICj = ICj − ICmin, and the expres-
sion in Equation 13.5 becomes: ωICk = ΔICk

∗ / Σk
j=1 ΔICj

∗.
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model with two levels (Laird & Ware, 1982). 
In this section we begin with presenting the 
Laird–Ware model. Next we discuss two 
different focuses that can be taken when 
making inferences from multilevel models 
with two levels.

13.2.1 laird–ware Model

Let yi be the vector with ni responses 
from cluster i, with i = 1, … , m. Then, the 
Laird and Ware (1982) model can be writ-
ten as

 yi = Wiµ + Viαi + εi, (13.6)

where Wi and Vi are the ni × p and ni × q 
matrices with covariates for the fixed and 
random effects, respectively, μ is a p-vari-
ate vector with unknown fixed effects, αi is 
a q-variate vector with unknown random 
effects, which is normally distributed; that 
is, αi ~ N (0, Ω), and εi is an ni-variate vector 
with residuals, which is also normally dis-
tributed; that is εi ~ N (0, Ri). A further sim-
plification is obtained by assuming that the 
residual covariance structure does not vary 
across clusters, and that the residuals are 
independently and identically distributed, 
such that R Ii ni

= σ2 , where Ini
 is an identity 

matrix of size ni.
The model defined in Equation 13.6 

can be used for longitudinal data, where 
the clusters are made up by individuals 
and the measurements within the clusters 
consist of observations made at different 
occasions. Alternatively, the clusters could 
be different groups, for instance, schools 
or hospitals, such that the measurements 
within a cluster represent individuals 
belonging to a specific group (i.e., pupils 
nested in schools or patients nested in 
hospitals).

13.2.2  two Inferential focuses 
in MlM

Vaida and Blanchard (2005) have argued 
that researchers dealing with this kind of 
multilevel data have to choose between 
two inferential focuses (cf. Spiegelhalter et 
al., 2002). In the first focus, the clusters are 
assumed fixed and inferences are made to 
other observations from these same clusters; 
that is, with respect to μ and the random 
effects αi. When dealing with repeated 
measurements this implies the researcher 
generalizes to different measurement occa-
sions in the same individuals. When deal-
ing with pupils from different schools it 
implies the researcher generalizes to differ-
ent pupils from these same schools. Vaida 
and Blanchard (2005) refer to this as the 
cluster focus, or the conditional focus, as it 
is conditional on the random effects.

Alternatively, the clusters may be viewed 
as a random selection from all clusters in 
the population. Then the aim is to gener-
alize to the other clusters from the popula-
tion and hence the emphasize is on μ and 
Ω, rather than on the actual αis. This is 
referred to by Vaida and Blanchard (2005) 
as the population focus, or the marginal 
focus, as the random effects are integrated 
out. As a result, in longitudinal data the 
purpose is to generalize to other individu-
als from the same population, and for data 
consisting of pupils in schools the aim is 
to generalize to other schools from this 
population.

These different focuses imply different 
likelihood functions and, consequently, 
different model dimensions (Vaida & 
Blanchard, 2005). To show this, we denote 
the Laird–Ware model as

 yi | µ, αi, σ2 ~ N (yi | Wiµ + Viαi, Ri). (13.7)
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Let N = Σm
i=1 ni, and y = [yT

1, …,yT
m]T (mean-

ing y is a vector with all N observations). 
Then, conditional on the random effects 
α = [αT

1, …,αT
m]T the likelihood of the model 

can be denoted as

 f f
i

m

i i( ) ( )y y| , , = | , ,
=

∏µµ αα µµ αασ σ2

1

2 ,

 (13.8)
where
 f (αi | Ω) = N (Ω). (13.9)

Note that without Equation 13.9, the 
model in Equation 13.8 becomes a fixed 
effects model (i.e., the standard ANOVA 
model). The conditional likelihood in 
Equation 13.8 is compatible with the cluster 
focus, in which the clusters are considered 
given. For the population focus the random 
effects are integrated out, such that we get

where f(α | Ω) = Πm
i=1  f(αi | Ω).

The degrees of freedom for the likeli-
hood functions in Equation 13.8 and 
Equation 13.10 differ (Vaida & Blanchard 
2005). In the population focus, the ran-
dom effects are integrated out, and the 
number of degrees of freedom is equal 
to the number of parameters; that is, 
p + 1 + {q·(q + 1)}/2 (p degrees of free-
dom for the parameters in μ, one degree 
of freedom for σ2, and {q·(q + 1)}/2 degrees 
of freedom for the unique parameters in 
Ω). In the cluster focus it is more diffi-
cult to determine the effective number of 
degrees of freedom (Hodges & Sargent, 
2001; Vaida & Blanchard, 2005). The num-
ber of parameters in the cluster focus is 
p + 1 + {q·(q + 1)}/2 + m·q (i.e., the same 
parameters as in the population focus, 

plus an extra m·q number of parameters 
representing the actual random effects αi). 
However, since the random effects αi are 
tied by the distributional property f(α|Ω), 
the effective number of degrees of freedom 
is smaller than this. We elaborate on this 
issue in the following section.

13.3  thRee InfoRMatIon 
cRIteRIa

Three popular information criteria are the 
AIC, DIC, and BIC. Although the appear-
ances of these criteria are rather similar, 
their derivations are quite different. To elu-
cidate their backgrounds, we begin by pre-
senting the measure of support for each of 
the three information criteria. Then we give 

a detailed derivation, such that the reader 
can see how each information criterion is 
an approximation of its own measure of 
support. This is followed by a discussion 
of their use in MLM. In particular, we dis-
cuss the inferential focus that is associated 
with them. Readers who are not interested 
in the algebraic details are advised to skip 
these paragraphs and turn to the sum-
mary at the end of this section, in which the 
three measures and their use in MLM are 
summarized.

Model selection consists of comparing 
K models, which can be denoted as f1(·|θ1) 
to fK(·|θK). Each model k can be thought of 
as a set of densities, depending on the val-
ues taken on by the parameter vector θk. In 
what follows, we abbreviate fk(·|θk) to f(·|θ) 
when possible.

 f (y | µ, σ2, Ω) = ∫ f (y | µ, α, σ2) f (α | Ω)dα, (13.10)
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13.3.1 aIc

The AIC is based on minimizing the 
Kullback-Leibler (K-L) criterion (Bozdogan, 
1987; Burnham & Anderson, 2002). Let p(·) 
be the truth—or the data generating 
 mechanism—from which our data y arise. 
Then the K-L criterion is the amount of 
information that is lost when using f(·|θ)—
our model of interest—to approximate p(·). 
This criterion is defined as
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where Ep(y) implies the expectation is taken 
with respect to the truth p(y). Since for all 
models Ep(y)[log p(y)] = c, minimizing the 
expression in Equation 13.11 is equivalent 
to maximizing the expected log likeli-
hood Ep(y)[log f(y|θ)]. However, θ can take 
on a range of values that makes it impos-
sible to evaluate this expectation directly. 
Let θ* be the vector that maximizes the 
expected log likelihood (and thus mini-
mizes the K-L criterion) for a particu-
lar model f(y|θ): Then the goal is to find 
the model with the largest value for Ep(y)

[log  f k(y | θk*)].
Because θ* is unknown, we could con-

sider the maximum likelihood estimate 
obtained in y—which is denoted as θ̂y—as 
an estimate of it. However, this would have 
the undesirable property that the data y are 
used twice: first, for obtaining the maxi-
mum likelihood estimate and second, for 
evaluating the fit of the model. To avoid 
this problem, a hypothetical cross-valida-
tion data set x is introduced, which is also 

generated by p(·). By entering the maximum 
likelihood estimates for θ obtained from 
y in the expected log likelihood of x,2 we 
get the estimated relative K-L criterion Ep(x)

[log  f(x | θ̂y )]. Note that this measure is nec-
essarily smaller than the relative K-L crite-
rion Ep(x)[log  f(x | θ)], unless θ̂y = θ*.

Finally, to rule out sampling error due 
to the fact that the maximum likelihood 
 esti mate θ̂y is based on a single data set, the 
expe ctation is taken with respect to p(y), 
which results in the expected estimated 
 relative K-L criterion. Now the aim is to 
show that

 E E ,p p y yf f d( ) ( )[ {log ( ˆ )}] log ( ˆ )y x x | ≈ | −θθ θθy

 (13.12)

where d is the effective degrees of freedom 
of the model. Multiplying by −2 results in 
the expression for the AIC; that is,

 AIC .= − | +2 2log ( ˆ )f dyy θθ  (13.13)

There are multiple ways to derive the 
approximation in Equation 13.12 (cf. 
Bozdogan, 1987; Burnham & Anderson, 
2002). The derivation below is based on one 
of the derivations presented by Burnham 
and Anderson (2002, pp. 365–368).

13.3.1.1 Derivation of the AIC

Using the expected estimated relative K-L 
criterion in Equation 13.12 as the point of 
departure, we begin with a second-order 

2 Note that in Burnham and Anderson (2002) the roles of 
the observed data set and the hypothetical data set are 
reversed in that the maximum likelihood estimates from 
the hypothetical data set are entered in the relative K-L 
criterion of the observed data set. The current use was 
chosen such that the similarities and differences between 
the derivation of the AIC and the DIC become more 
apparent.
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Taylor expansion of log  f(x | θ̂y ) around 
θ*—the (unknown) vector that maximizes 
the relative K-L criterion—to obtain

When taking the expectation of this 
expression with respect to the truth p(x), we 
can make use of the fact that the expecta-
tion of the second term on the right-hand 
side of Equation 13.14 is equal to zero. For 
the third term we write

 E * *p T p
f

( ) ( )
log ( ) ( )x

x I∂ |
∂ ∂







= − .⋅

2 θθ
θθ θθ

θθ  (13.15)

Note that the matrix Ip(·)(θ*) is not the 
usual Fisher information matrix, which we  
denote as I(θ*), because the expectation is 
taken with respect to the truth p(x), rather 
than with respect to the fitted model f(x|θ). 
Hence, only when p(x) is a special case of 
the model under consideration f(x|θ), we 
have Ip(·)(θ*) = I(θ*).

Now the expected estimated relative K-L 
criterion in Equation 13.12 can be written as

where the latter is obtained by applying a 
standard result for quadratic terms,3 and 

3 Let A be a symmetric matrix, E[y] = c and Var[y] = Ψ. 
Then E[yTAy] = tr[AΨ] + cTAc.

Σ = Ep(y)[(θ̂y−θ*)(θ̂y−θ*)T ] is the large sam-
ple covariance matrix of the maximum 
likelihood estimate of θ.

If p(·) is a special case of the fitted model 
f(·|θ), then Ip(·)(θ*) = I(θ*) = Σ−1 and thus 
tr{Ip(·)(θ*)Σ} = d, where d is the number 
of elements in θ. However, it has been 
shown that this also holds when the truth 
is more general than the model, as long as 
the model is a good approximation of the 
truth. Moreover, Burnham and Anderson 
(2002) argue that in case the model is a 
poor approximation of p(·), the compo-
nent that represents misfit in the AIC (i.e., 
−2log  f(y | θ̂y)) will be relatively large, such 
that this model will not be selected anyway.

Hence, we can approximate the expected 
estimated relative K-L criterion in Equation 
13.12 with
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To eliminate the unknown vector θ* in 
Equation 13.17, we make use of another 
 second-order Taylor series  approximation, 
but now of f(x|θ*) around θ̂x—the 

 log ( ˆ ) log ( ) log ( ) (ˆf f f
y

T

yx x x| ≈ | + ∂ |
∂{ }θθ θθ θθ
θθ

θθ* * −−

+ − ∂ |
∂ ∂{ } −

θθ

θθ θθ θθ
θθ θθ

θθ θθ

*

* * *

)

(ˆ ) log ( ) (ˆ1
2

2

y
T

T y
f x )).

 (13.14)

 
E E

E E

p p y

p p

f

f

( ) ( )

( ) ( )

[ {log ( ˆ )}]

[ {log (

y x

y x

x |

≈

θθ

xx I| + − − −

=

⋅θθ θθ θθ θθ θθ θθ* * * *

E

)} (ˆ ) ( ( ))(ˆ )]( )
1
2 y

T
p y

p(( ) ( ){log ( )} { ( ) }x x If p| − ⋅θθ θθ* tr * ,1
2

Σ

 (13.16)



Model Selection Based on Information Criteria in Multilevel Modeling  •  239

maximum likelihood estimate obtained in 
x—that is

Note that since the second term on the 
right-hand side of Equation 13.18 is zero, 
the first term in Equation 13.17 can be 
approximated by

where Î(θ̂x ) is the negative Hessian of the 
log likelihood evaluated at θ̂x. Using the 
true Fisher information matrix I(θ*) as an 
approximation of Î(θ̂x ), we can write
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Using this result in Equation 13.19, and 
using Equation 13.19 in Equation 13.17, we 
can write the expected estimated relative 
K-L criterion in Equation 13.12 as
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Finally, since x and y were both gener-
ated by p(·), we can replace Ep(x)[log  f(x | θ̂x)] 

by Ep(y)[log  f(y | θ̂y)]. Using log  f(y | θ̂y) as an 
unbiased estimator of this quantity shows 

that −2 times the expected estimated  relative 
K-L criterion can be approximated by the 
AIC as defined in Equation 13.13.

13.3.1.2 Applying AIC to MLM

The derivation of the AIC presented above 
is based on a double expectation, using two 
independent samples y and x. As a result, 
AIC-based model selection is asymptotically 
equivalent to cross-validation (Burnham 
& Anderson, 2002; Stone, 1977). However, 
as Vaida and Blanchard (2005) point out, 
this cross-validation aspect implies that 
when the AIC is used in multilevel analy-
ses, researchers have to be clear on what is 
considered as the independent and iden-
tical sample: Is it a sample from the same 
population with different clusters, or is it a 
sample of different observations within the 
same clusters?

If one chooses the population focus, the 
cross-validation data set x contains differ-
ent clusters with different random effects. 
Then the likelihood function that should be 
considered is the marginal observed likeli-
hood f(y | θ̂y), where the parameter vector θ̂y 
contains the p fixed effects μ, the residual 
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variance σ2, and the {q·(q + 1)}/2 unique 
elements of Ω. The penalty dmar associated 
with the marginal likelihood is equal to the 
number of parameters in θ̂y. This AIC is 
referred to as the marginal AIC.

In the cluster focus however, the K-L cri-
terion that needs to be minimized is based 
on the conditional likelihood as defined in 
Equation 13.8 and the truth p(·|υ), where υ 
is the vector with true (but unknown) ran-
dom effects for the clusters under consider-
ation (i.e., the clusters in our data set). This 
K-L criterion can be expressed as

 I[p(⋅ | υ), f(⋅ | α, θ)] = Ep(y |υ) [log p(y | υ)

  − log f(y | θ, α)],

(13.22)

Again, since Ep(y|υ)[log p(y|υ)] is a constant 
when we are comparing multiple models, 
we can focus on maximizing the relative 
K-L criterion Ep(y|υ)[log f(y|θ, α)]. Let θ* and 
α* be the vectors that maximize this relative 
K-L criterion. As estimates of these vectors 
we can use the maximum likelihood esti-
mates θ̂y and the empirical Bayes estimates 
α̂y—also known as the shrinkage estima-
tor—for the random effects.

To avoid having to use the data y twice, 
a hypothetical data set x is introduced, 
which also arises from p(·|υ). Note that 
this implies that the cross-validation data 
set represents observations from the same 
clusters. By entering the estimates from 
y into the relative K-L criterion for x, we 
obtain the estimated relative K-L criterion. 
Finally, to rule out sampling error due to 
the fact that the estimates θ̂y and α̂y are 
based on a single data set, the expectation 
is taken with respect to p(y, υ) = p(y|υ)
p(υ), such that the expected estimated rela-
tive K-L criterion is obtained. Vaida and 

Blanchard (2005) show that this measure 
can be approximated by
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Multiplying by −2 results in the condi-
tional AIC; that is,

 cAIC f dy y c= − | + .2 2log ( ˆ ˆ )y θθ αα,  (13.24)

The term dc is the effective number of 
degrees of freedom associated with the clus-
ter focus. As mentioned in the previous sec-
tion, the number of degrees of freedom is 
actually smaller than the number of param-
eters in the model, due to the fact that the 
random effects αi are restricted to come 
from a particular distribution.

To determine the effective degrees of 
freedom in the cluster focus, Vaida and 
Blanchard (2005) propose to rewrite the 
multilevel model as an ordinary linear 
regression model, as shown by Hodges and 
Sargent (2001). From ordinary regression 
analysis it is known that the dimension of a 
model is given by the trace of the projection 
matrix H, for which ŷ = Hy.4 The purpose of 
rewriting the multilevel model as an ordi-
nary linear regression model is to find the 
projection matrix by which to get ŷ from y, 
such that the dimension of the model can 
be estimated.

Let r = m · q be the total number of param-
eters in α, then Vaida and Blanchard (2005) 
propose to rewrite the model in Equation 
13.6 as

4 If y is regressed on X through y = Xβ + ε, the least squares 
estimate of β is β̂ = (XT X)−1 XT y. Then the prediction of y 
is given by ŷ = Xβ̂ = X (XT X)−1 XT y. Hence, the projection 
matrix can be written as H = X (XT X)−1 XT.
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where 0 in Y is an r-variate zero vector 
making Y an (N + r)-variate vector, 0 in U 
is a p × r zero matrix, W = [WT

1, …,WT
m]T is 

an N × p matrix with the covariates for the 
fixed effects, and V = diag[V1, … ,Vm] is an 
N × r block diagonal whose diagonal blocks 
are the ni × q matrices with the covariates 
for the random effects, and Ir is an r-dimen-
sional identity matrix. The top N cases in Y 
(and W) are referred to as the data cases, 
while the lower r cases are referred to as the 

constraint cases. The latter are included to 
ensure that the random effects are not esti-
mated freely, but actually obey the covari-
ance structure imposed by Ω. To this end 
the covariance matrix of η = [εT, αT ]T is a 
block diagonal with σ2IN and m times Ω; 
that is,
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where 0 is an N × (r · m) zero matrix, and 
Ωm is an r × r diagonal block matrix with m 
times the block Ω on the diagonal.

The expression in Equation 13.29 bears 
strong resemblance to an ordinary linear 
regression model. However, the residual 
terms in η are not independently and iden-
tically distributed. Hence, we need to find 
a matrix Γ by which to premultiply the 
expression Equation 13.29 to get an expres-
sion in which the residuals are i.i.d. Let 
Ωm = σ2Φm, such that var(η) = σ2diag(IN, 
Φm). Now there is some matrix Δ for 
which Φm = (ΔTΔ)−1. Let Γ = diag(IN, Δ). 
Premultiplying Y with Γ results in Y. 
Premultiplying η with Γ results in a vector 
whose covariance matrix is σ2IN + r . Thus we 
can write

which is like an ordinary linear regres-
sion equation with i.i.d. residuals. Hence, 
the least squares estimate of ξ is obtained 
through

 ˆ ( ) ( )ξξ = =− −
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From this we can find the matrix by which 
y is mapped to ŷ; that is,
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where H1 is referred to as the “hat” matrix.5 
Hence, the effective number of degrees of 
freedom of this model is defined as the trace 
of H1 (Vaida & Blanchard, 2005).

However, in contrast to the hat matrix 
in ordinary linear regression analysis, the 
matrix H1 is not only a function of the 
observed values in W and V, but it also 
requires us to know σ2 and Ω (since both 
are needed to derive Δ). In case that σ2 is 
unknown, but Φm is known, the degrees 
of freedom dc become tr[H1] + 1. However, 
when Φm is also unknown, it is rather com-
plicated to derive the effective degrees of 
freedom. Therefore, Vaida and Blanchard 
(2005) propose to use the degrees of free-
dom associated with σ2 unknown, but Φm 
known. With the function hatTrace() from 
the R-package lme4, one can estimate the 
dimensionality of a multilevel model within 
the cluster focus. However, to obtain the 
conditional likelihood—which is needed to 
compute the conditional AIC—some addi-
tional programming is needed.

13.3.2 dIc

The DIC is a Bayesian information crite-
rion and is based on Bayesian estimation. 
The latter consists of combining the likeli-
hood for the data f(y|θ) with a prior dis-
tribution for the parameters h(θ) in order 
to obtain the posterior distribution for the 
parameters g(θ|y). Because the DIC for an 
approximately normal likelihood with a 
vague prior is asymptotically equivalent 
to the AIC (Spiegelhalter et al., 2002), the 
DIC is sometimes referred to as a Bayesian 

5 Vaida and Blanchard (2005) point out that this matrix is 
not the usual hat matrix, but only the upper left block of 
it. The hat matrix itself is H = U(UTU)−1UT.

generalization of the AIC. However, 
whereas the AIC has an information theo-
retical background, Spiegelhalter et al. 
(2002) indicate that the DIC is obtained 
using an approximate decision theoretical 
justification.

Point of departure in the derivation of 
the DIC is the loss, which is defined as 
−2log  f(·|θ̃), where θ̃ is a Bayesian esti-
mate of θ, for instance the mean, mode or 
median of the posterior distribution g(θ|·). 
Because the goal is to favor models for 
which the loss is expected to be small, the 
criterion is based on the expected loss, also 
known as the frequentist loss (Berger, 1985, 
pp. 9–10). Making use of two independent 
samples that arise from p(·)—that is, our 
observed data set y, and a hypothetical 
cross-validation data set x—the expected 
loss can be denoted as Ef(x|θ*)[−2log  f(x|θ̃y)]. 
Spiegelhalter et al. (2002) refer to θ* as the 
“pseudotrue” parameter value: It has the 
same interpretation here as in the deriva-
tion of the AIC; that is, it is the parameter 
vector that minimizes the distance between 
truth p(·) and the model of interest f(·|θ) 
in terms of the K-L criterion as defined 
in Equation 13.11 (see Spiegelhalter et al., 
2002, p. 585). Spiegelhalter et al. (2002) 
indicate that their derivation of the DIC 
implicitly relies on the assumption that 
f(·|θ*) forms a good approximation of p(·) 
and they refer to this as the “good model” 
assumption.

Using −2log  f(y|θ̃y) as an approximation 
of the expected loss, we can write

 
E *f y yf f

c

( )[ log ( )] log ( )
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x x y
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where c(y, θ*, θ̃y) is the bias in the approxi-
mation, also referred to as the optimism. 
Since a Bayesian perspective is taken, the 
pseudotrue θ* is replaced by the random 
quantity θ and then, to deal with the fact 
that θ is unknown, the posterior expectation 
of the expected loss is taken (Spiegelhalter et 
al., 2002, p. 604). Because the posterior 
expectation of the first term on the right-
hand side of Equation 13.30 is equal to 
−2log  f(y|θ̃y), this expected posterior loss can 
be written as

The DIC is an approximation of the 
expected posterior loss in Equation 13.31 
and its derivation is based on finding an 
approximation of the posterior expectation 
of the optimism Eg(θ|y){c(y, θ, θ̃y)}. Denoting 
this approximation as 2dDIC, the DIC is 
defined as

 DIC = − | + .2 2log ( )f dy DICy θθ  (13.32)

Spiegelhalter et al. (2002) provide several 
exact forms and approximations for the pos-
terior expectation of c(y, θ, θ̃y), which apply 
within specific contexts (i.e., to particular 
densities and prior distributions). However, 
the term can also be approximated by mak-
ing use of Markov Chain Monte-Carlo 
(MCMC) methods as discussed below.

13.3.2.1 Derivation of the DIC

Before taking the expectation with respect 
to the posterior g(θ|y), we first rewrite the 
optimism term. Let D(a|b) denote −2log 
f(a|b), such that based on Equation 13.30—
and after replacing the pseudotrue θ* by 

the random quantity θ—we can express the 
optimism as
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 (13.33)

To approximate the first expectation on 
the right-hand side of Equation 13.33, we 
make use of a second-order Taylor expan-
sion of D(x|θ̃y) around θ; that is,
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Since the first term on the right-hand side 
of Equation 13.34 is D(x|θ) we can approxi-
mate the first expectation on the right-hand 
side of Equation 13.33 with
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The first expectation on the right-hand 
side of Equation 13.35 can be rewritten such 
that
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where the step from Equation 13.36 to 
Equation 13.37 is based on a standard result 
from score statistics. From this it is clear 
that the first expectation on the right-hand 
side of Equation 13.35 is equal to zero.

Hence, the expression in Equation 13.35 
can be approximated using
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where I(θ) is the (usual) Fisher information 
matrix for both x and y.

As the Bayesian estimate θ̃y we consider the 
posterior mean θ‒y. In addition, by  making 

use of the good model assumption, we can 
replace I(θ) in Equation 13.38 by the observed 
Fisher information matrix at the estimated 
parameter values (i.e., the  negative Hessian of 
the log  likelihood evaluated at θ y), which we 
denote as ˆ( ) log ( ) .I yθθ θθ θθ θθy y

Tf= −∂ | / ∂ ∂2  
If we  substitute Equation 13.38 in Equation 
13.33 and take the expectation with respect 
to the posterior distribution g(θ|y), we can 
approximate the posterior expectation of the 
optimism with
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where Λ = − −|Eg y y
T

( )[( )( ) ]θθ θθ θθ θθ θθy  denotes 
the posterior covariance matrix of θ.

Spiegelhalter et al. (2002) suggest that 
the second term on the right-hand side of 
Equation 13.39 can be eliminated, based 
on the following argumentation. Let f(y) 
be the (fully) marginal likelihood, which 
is obtained by f(y) = ∫ f(y,θ)dθ. Note that 
f(y,θ) = f(y)g(θ|y) = h(θ)f(y|θ). We abbrevi-
ate Ef(x|θ) [D(x|θ) − D(y|θ)] to Q(y,θ). Taking 
the expectation of the second term on the 
right-hand side of Equation 13.39 with 
respect to f(y), we can write
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Clearly, since y and x are both generated 
by p(·), the latter is equal to zero. Therefore, 
Spiegelhalter et al. (2002) drop the second 
term on the right-hand side of Equation 
13.39. In addition, they indicate that they 
hope this term will cancel out when com-
paring different models, but indicate this 
needs further investigation (Spiegelhalter 
et al., 2002, p. 605). Stone (2002, p. 621) indi-
cates in his commentary to Spiegelhalter 
et al. (2002) that taking the expectation 
with respect to f(y) looks “suspicious.”

To show that the first term on the right-
hand side of Equation 13.39 is approximately 
equal to the last term on the right-hand 
side of Equation 13.39, we make use of a 
 second-order Taylor expansion of D(y|θ) 
around θθy; that is,
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Taking the expectation of Equation 13.41 
with respect to the posterior distribution, 
we can write

Subtracting D y( )y | θθ  from both sides of 
Equation 13.42 results in

 tr E{ˆ( ) } [ ( )] ( )( )I y yyθθ θθ θθθθy g yD DΛ ≈ | − | ,|

 (13.43)

which shows that the first term on the right-
hand side of Equation 13.39 is approximately 
equal to the last term on the right-hand side 
of Equation 13.39. Substitution of this result 
in Equation 13.39 results in an expression 
for the posterior expectation of the opti-
mism; that is,
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From this it follows that the DIC as 
defined in Equation 13.32 is an approxima-
tion of the posterior expected loss as defined 
in Equation 13.31, with
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The term dDIC can be easily computed 
using an MCMC procedure, as is discussed 
below.

13.3.2.2 Applying DIC to MLM

By entering the expression obtained for dDIC 
in Equation 13.45 into the DIC defined in 
Equation 13.32 we get
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Hence, the issue becomes to find D( )y | θθ  
and D y( )y | θθ . These quantities can be esti-
mated using the results from an MCMC 
method. Let θ(1),…,θ(Q) be Q draws from 
g(θ|y) obtained with an MCMC method. 
Then we can estimate

 D
Q

f
q

Q
q( ) log ( )( )y y| ≈ − | ,

=
∑θθ θθ1 2

1

 (13.47)

and

 D f
Qy

q

Q
q( ) log ( )( )y y| ≈ − | .

=
∑θθ θθ2 1

1

 (13.48)

Note that the number of samples Q does 
not depend on (observed) sample size, and 
hence the estimates in Equation 13.47 and 
Equation 13.48 will converge to their true 
values if Q is chosen large enough.

The possibility to either maintain the 
 random effects—resulting in a cluster or 
conditional DIC—or integrate them out—
resulting in a population or marginal DIC—
was already suggested by Spiegelhalter et al. 
(2002), and the discussants of their paper. 
However, when using MCMC methods for 
MLM, the random effects are typically sam-
pled along with the other parameters in the 
model, and are thus kept in the model. In 
that case, use of the Laird-Ware model 
requires us to know the posterior distribu-
tion g(θ|y) of the parameters in μ, α, σ2, and 
Ω. It can be shown that this posterior dis-
tribution is proportional to the product of 
the density of the data (i.e., the conditional 
likelihood in Equation 13.8), the prior dis-
tributions of μ, α, σ2, and Ω; that is

The distribution at the second level; 
that is, f(α|Ω) = Πi   f(αi|Ω), is as defined 

in Equation 13.9, and is referred to as the 
prior. The remaining distributions—h(μ) 
and h(σ2), and the distribution for the level 
two  parameters; that is, h(Ω)—are referred 
to as hyperprior distributions, or simply as 
the third level. Note that the parameters that 
define the hyperprior distributions have to 
be specified by the user. Common choices for 
the hyperprior distributions, such that they 
are vague, are: h(μ) ~ N(μ 0, S0), with large 
diagonal elements for S0; h(σ2) ~ χ−2(v0,t2

0), 
with v0 chosen small; and h(Ω) ~ W−1(δ0, 
t0), with δ0 chosen as small as possible (i.e., 
equal to the number of rows of Ω).

In a recent paper Celeux, Robert, and 
Titterington (2007) indicated that multi-
level models can also be thought of as miss-
ing data problems, where the random effects 
αi have not been observed. They discussed 
three different focuses that can be chosen 
when dealing with missing data: the cluster 
focus based on f(y|μ, α, Ω, σ2); the popula-
tion focus based on f(y|μ, σ2, Ω); and a novel 
focus, which they refer to as the joint focus 
based on f(y, α|μ, Ω, σ2). For each focus 
Celeux et al. (2007) present multiple formu-
lations of the DIC, showing that within the 
same focus, one may obtain different val-
ues for the DIC, while DICs from different 
focuses may lead to the same value of the 
DIC. As of yet it is unclear how these differ-
ent DICs perform in the context of MLM.

13.3.3 BIc

Thus far we have discussed a  frequentist 
approach to model selection, which is 

based on minimizing the K-L criterion 
(AIC), and a Bayesian approach based on 

 g(μ, α, σ2, Ω | y) ∝ f (y | μ, α, σ2)h(μ)h(σ2) f (α | Ω)h(Ω). (13.49)
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minimizing the frequentist loss (DIC). 
An alternative Bayesian model selection 
approach consists of choosing the model 
Mk (from a set of K models), which has the 
largest posterior model probability p(Mk|y). 
The posterior model probability for model 
MK is defined as

 p M f p M

f p M
k

k k

j

K

j j

( ) ( ) ( )

( ) ( )
| = ,

=∑
y y

y
1

 (13.50)

where fk(y) is the marginal model prob-
ability of the data for model MK and p(MK) 
is the prior probability for model MK. 
Assuming that the prior model probabili-
ties p(MK) are equal for all models, finding 
the model with the largest posterior prob-
ability is the same as choosing the model 
with the largest marginal model probabil-
ity fk(y).

For ease of presentation we drop the 
model subscript k hereafter. It can be 
shown that −2 times the log of the mar-
ginal model probability of the data that is, 
log f(y) can be approximated by the BIC 
(Congdon, 2005; Raftery, 1995), which is 
defined as

 BIC = − | + ,2log ( ˆ ) log( )f d nyy θθ  (13.51)

where −2log  f(y|θ̂y) is the measure of mis-
fit, θ̂y is the maximum likelihood estimator, 
and d log(n) is a penalty term based on the 
dimensionality of the model d and sample 
size n. The derivation below closely follows 
Raftery (1995).

13.3.3.1 Derivation of the BIC

The marginal model probability of the 
data f(y) in Equation 13.50 is obtained by 

integrating the joint distribution f(y, θ) over 
the parameter space θ; that is,

 f f d f h d( ) ( ) ( ) ( )y y y= , = | ,∫∫ θθ θθ θθ θθ θθ

 (13.52)

where f(y|θ) is the likelihood of the data 
and h(θ) is the prior distribution of the 
parameters θ. Because the marginal 
model probability of the data is obtained 
by integrating the parameters out, it is 
also referred to as the integrated or aver-
aged likelihood, or as the marginal likeli-
hood.6

To rewrite the expression in Equation 
13.52, we first obtain the second-order 
Taylor approximation of log f(y, θ) around 
the posterior mode 
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(13.53)

Since 

θθ is the posterior mode, the second 

term on the right-hand side of Equation 
13.53 equals zero. Taking the exponential of 

6 Note that this is not the same as the likelihood denoted 
in Equation 13.10, which is associated with the popula-
tion focus: Although the latter is also referred to as the 
marginal likelihood sometimes—because it is obtained 
by integrating the random effects out—it still depends 
on model parameters; in contrast, the marginal model 
probability of the data used here does not depend on any 
parameters (i.e., it is completely marginal), and it is not 
restricted to the context of MLM.
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Equation 13.53 and substituting it into 
Equation 13.52 gives

where A equals the negative second-order 
derivative of log ( )f y,


θθ , and is referred to as 

the precision.7
The integrand in Equation 13.54 can be 

rewritten making use of the Laplace meth-
ods of integrals. Let d be the number of 
parameters in θ. Then using the well-
known expression for the cumulative mul-
tivariate normal distribution function, we 
can write

such that
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Since |A−1|1/2 = |A|−1/2, using the result from 
Equation 13.56 in Equation 13.54 gives

 f f
d

( ) ( )( )y y A≈ , .−
θθ 2 2

1
2π  (13.57)

7 Note that since this second-order derivative is based on 
the joint distribution (i.e., of the data and the parame-
ters), it differs from the second-order derivatives encoun-
tered in the derivations of the AIC and the DIC, which 
were based on f(y|θ).

Taking the log of the marginal likelihood 
approximation in Equation 13.57 renders
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In samples with large n, 

θθ θθ= ˆ

y; that is, the 
posterior mode is the same as the maximum 
likelihood estimator, and A ≈ nJ, where J is 
the expected Fisher information matrix for 
one observation. In that case, A J≈ nd  and 
substituting this in Equation 13.58 gives
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Suppose that the prior h(θ) is a multivari-
ate normal density with mean θ̂y and covari-
ance matrix J−1, meaning it contains the same 
amount of information as a single observa-
tion (Raftery, 1995). Then the prior distribu-
tion in Equation 13.59 can be written as

such that

 log (ˆ ) log( ) logh d
yθθ = − + .

2
2 1

2
π J  (13.61)
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Substituting this result in Equation 13.59 
gives

 log ( ) log ( ˆ ) log( )f f d nyy y≈ | − .θθ
2

 (13.62)

Multiplying the expression in Equation 
13.62 by −2 results in the BIC defined in 
Equation 13.51.

13.3.3.2 Applying BIC to MLM

In the derivation of the AIC and DIC a 
hypothetical cross-validation data set was 
used, which clearly showed the nature of 
inferences that can be made when using 
them. That is, the cross-validation data 
set was either conditional on the random 
effects such that inferences can be made to 
other observations from the same clusters, 
or it was independent of the random effects 
such that inferences can be made to obser-
vations from other clusters in the same 
population.

Since the derivation of the BIC is not 
based on the use of a cross-validation data 
set, it is less obvious which inferential 
focus is used. Note however that the BIC 
is an approximation of −2log f(y), where 
f(y) is the marginal probability of the data. 
Kass and Raftery (1995) indicate that log 
f(y) may be viewed as a predictive score, 
since log f(y) = Σi log f(yi|yi−1, …, y1). This 
shows that out-of-sample predictions are 
made without relying on parameter values. 
For this reason, some have suggested that, 
within the context of MLM, inferences 
based on the BIC go beyond the  population 
from which the current sample was taken.8 

8 See the WinBUGS Web site http://www.mrc-bsu.cam.
ac.uk/bugs/winbugs/dicpage.shtml and the slides by 
David Spiegelhalter, http://www.mrc-bsu.cam.ac.uk/
bugs/winbugs/DIC-slides.pdf

For example, if one has observed pupils 
(level 1) in schools (level 2) in a specific 
country, countries may be thought of as 
the third level for which only one case 
is observed. Using the marginal prob-
ability of the data—as is done implicitly 
when using the BIC—implies inferences 
are made to observations from other coun-
tries, because not only the cluster effects 
α, but also the parameters that define the 
current  population (i.e., μ and Ω) are inte-
grated out.

Another issue in using the BIC for MLM 
is the sample size n, which is used in the 
penalty term. As a general rule, Raftery 
(1995) defines n as the scalar that makes 
the approximation | |≈ | |ˆ(I J


θθ nd , used in the 

derivation of Equation 13.59, most accu-
rate. In MLM there are several numbers 
that could be considered as the sample 
size. First, one could consider it to be equal 
to the number of clusters m. Second, one 
could consider the number of responses 
in each cluster ni. Third, it could be the 
total number of responses, represented by 
Σm

i=1  ni. In practice, all three “sample sizes” 
are being used (DeLeeuw, 2004; Vermunt, 
2004), but as shown in the illustration 
below most MLM packages use the third 
option as n.

13.3.4 conclusion

In this section the derivations of the AIC, 
DIC, and BIC were given and their use in 
the context of MLM has been discussed. The 
DIC and conditional AIC can be used if the 
purpose is to make inferences to observa-
tions from the same clusters. The marginal 
AIC can be used if one wishes to make infer-
ences to observations from different clusters 
that come from the same population. With 
respect to the BIC it has been suggested 
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that—despite its similar appearance to the 
marginal AIC—it can be used for making 
inferences to observations from different 
populations.

While the derivations of the three infor-
mation criteria in this section have empha-
sized their different backgrounds, several 
authors have also pointed out connections 
between these three measures. We already 
mentioned the asymptotic equivalence 
between the AIC and the DIC for approxi-
mately normal likelihoods with uninforma-
tive priors (Spiegelhalter et al., 2002; see also 
Kuha, 2004). Note that whereas the deriva-
tion of the AIC is based on the estimated 
relative K-L criterion Ep(x)[log  f(x|θ̂y)]—
where the expectation is taken with respect 
to p(·)—the DIC is based on expected loss 
Ef(x|θ*)[log  f(x|θ̃y)]—where the expectation 
is taken with respect to the best candidate 
of f(·|θ), which minimizes the K-L criterion 
I[p(·), f(·|θ)]. This implies that if one uses 
the expected loss to compare a number of 
models, typically the expectation will be 
taken with respect to a different density for 
each model (unless fk(·|θk

*) =fk′(·|θk′
*)], where 

k ≠ k′).
With respect to the AIC and the BIC, 

Burnham and Anderson (2002, pp. 302–
305) have shown that the Akaike weights 
can be thought of as posterior model prob-
abilities in a Bayesian context as defined in 
Equation 13.50, albeit with different model 
priors p(Mk) than the ones used in the deri-
vation of the BIC. Moreover, they also show 
how the BIC can be derived as a non-Bayes-
ian result using the K-L distance. While 
these are interesting general connections 
between the AIC and BIC, it is yet unclear 
how to interpret this in the light of the dif-
ferent inferential focuses that are associated 
with the (marginal) AIC and the BIC in the 
context of MLM.

13.4 eMPIRIcal exaMPle

To illustrate the use of information cri-
terion for model selection in MLM, we 
make use of five different software pack-
ages: MLwiN, a program specifically 
developed for MLM; SPSS, which contains 
the module “Linear mixed-effects model-
ing;” Mplus, a flexible structural equation 
modeling package that also allows for 
MLM restricted to two levels; R, which is a 
freely available statistical package and for 
which we made use of the lme-package for 
the multilevel analyses; and WinBUGS, 
which is also freely available and can be 
used for Bayesian estimation and model 
evaluation. Note that although SPSS and 
R offer the option of restricted maximum 
likelihood, we made use of full maximum 
likelihood estimation in the first four 
programs to ensure that the results are 
comparable.

The data used here are included in 
MLwiN under the title “tutorial.ws,” and 
consist of a selection from a large data set 
concerning the examination results from 
six inner London education authorities. 
The data include 4,059 students clustered 
in 65 schools. We will predict the chil-
dren’s normalized exam performance 
from a number of other variables described 
below. The main research question in this 
section is whether the child’s gender and/
or the gender of the school have an influ-
ence on the normalized exam score after 
correcting for differences in verbal rea-
soning abilities.

Using i as school index and j as sub-
ject index (with j = 1, …, ni), model 1 (M1) 
with school as a random effect and verbal 
 reasoning as a covariate can be written 
as yij = μ0 + wij,1μ1 + wij,2μ2 + αi + εij, where 
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wij,1 is a dummy variable to indicate whether 
the verbal reasoning score of individual j in 
school i is in the top 25% (wij,1 = 1) or not 
(wij,1 = 0), and wij,2 is a dummy variable to 
identify whether the individual’s score is in 
the lowest 25% (wij,2 = 1) or not (wij,2 = 0). 
Note that this implies that the reference 
group consists of the middle 50% (identified 
by wij,1 = wij,2 = 0). We can also present this 
as the Laird–Ware model,
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The other models consist of extensions of 
M1 with additional fixed effects. Since these 
extensions are straightforward, we will not 
give their Laird–Ware representation. In 
M2a the school’s gender is included as a 
fixed effect. To this end two dummies are 
used, wij,3 and wij,4, which identify students 

in boys’ schools and girls’ schools, respec-
tively (i.e., wij,3 = 1 and wij,4 = 0 implies 
the child is in a boys’ school; wij,3 = 0 and 
wij,4 = 1 implies the child is in a girls’ 
school; and wij,3 = wij,4 = 0 implies the child 
is in a mixed school). This results in yij = 
μ0 + wij,1μ1 + wij,2μ2 + wij,3μ3 + wij,4μ4 + αi + 
εij. Instead of including the school’s gen-
der, M2b consists of including the child’s 
gender as a fixed effect by having a dummy 
variable wij,5 to identify girls (i.e., wij,5 = 1 
implies the child is a girl, wij,5 = 0 implies 
it is a boy). Hence, the model becomes yij = 
μ0 + wij,1μ1 + wij,2μ2 + wij,5μ5 + αi + εij. Note 
that while M1 is nested under both M2a and 
M2b, the latter two are not nested. In M3 
we include both the child’s gender and the 
school’s gender as fixed effects, so we have 
yij = μ0 + wij,1μ1 + wij,2μ2 + wij,3μ3 + wij,4μ4 + 
wij,5μ5 + αi + εij.

The results for these four models 
obtained with MLwiN, SPSS, Mplus and 
R are given in Table 13.1. As can be seen, 
all criteria favor M2b; that is, child’s gen-
der and not school gender inf luenced 
the normalized examination score. The 
 estimates of the parameters in M2b are 
displayed in Table 13.2. This shows that 
on average girls score .18 higher than boys 
on the standardized exam score, after 

taBle 13.1

Results Obtained With MlwiN, SPSS, Mplus, and R for Four Nonnested Models

Model −2log f(y|θ̂y) dmar AIC BIC

1 9645.2 5 9655.2 9686.7
2a 9638.4 7 9652.3 9696.5
2b 9615.2 6 9627.1 9665.0
3 9611.3 8 9627.3 9677.0

Notes: Data consist of 4059 children clustered in 65 schools.
 The dependent variable is normalized exam performance. Model 1 contains a random intercept 

and two dummies to indicate whether the child’s verbal reasoning score is in the top or bottom 
25%; in model 2a two dummies are added to indicate whether the child is going to a girls’ 
school, boys’ school, or a mixed school; in model 2b, instead of the school’s gender, the child’s 
gender is added; in model 3 both the school’s gender and the child’s gender are included. The 
BIC uses sample size n = 4059, which is total number of children (number of schools is 65).
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controlling for differences in verbal rea-
soning and school.

Note however that the AIC values of M2b 
and M3 are rather close. Transformation 
of these values to the ratio defined in 
Equation 13.3 renders AIC*2b /AIC*3 = exp 
(−1/2{9627.1−9627.3}) = 1.1; that is, accord-
ing to the Akaike weight the relative sup-
port for M2b and M3 in the data is about 
equal. In a similar manner the BIC of 
both models can be transformed to an 

approximate Bayes factor using Equation 
13.4; that is, BIC*2b /BIC*3 = exp(−1/2{9665.0
−9677.0}) =  403.4, which indicates that the 
support in the data is about 403 times larger 
for M2b than for M3.

The results from WinBUGS for the DIC 
associated with the cluster focus are pre-
sented in Table 13.3. Based on the DIC we 
conclude that both M2b and M3 are equally 
likely to have generated the data. Note that 
the dimensionality dDIC of all four models 
is much larger than the dimensionality d mar 
for the marginal AIC and the BIC, which 
are based on f(y|μ, Ω, σ2). Since the number 
of clusters m in this example is 65, it makes 
sense that the dimensions of the models is a 
little less than 65 + dmar.

In sum, this example illustrates the fol-
lowing. First, it shows that both nested and 
nonnested models can be compared using 
information criteria. Second, it shows that 
all models can be compared simultane-
ously, which makes it possible to select 
the smallest model as the most appropri-
ate model. Third, this example shows how 
the ratio of two transformed information 
 criteria can be used to determine how 
much evidence there is for a particular 
model in comparison to another model. 
Note, however, that the ratios can lead to 

taBle 13.2

Parameter Estimates and Their Standard Errors 
as Obtained Within MLwiN, SPSS, Mplus, and R 
for M2b

θ θ̂ Se

μ1 −.23 .05
μ2 .82 .03
μ3 −.79 .04
μ5 .18 .03
ω .10 .02
σ2 .60 .01

Notes: μ1 is the mean of boys in the group with the middle 
50% of the verbal reasoning score; μ2 is the difference 
between children with the highest 25% verbal 
 reasoning scores and children in the middle 50%; μ3 
is the difference between children with the lowest 
25% verbal reasoning scores and children in the mid-
dle 50%; μ5 is the difference between the boys and 
girls; ω is the variance of the random intercept; and 
σ2 is the residual variance.

taBle 13.3

Results Obtained With WinBUGS for Four Nonnested Models Using the Cluster Focus

Model D y( ),θθ D(y,θθy) dDIC DIC
1 9497.18 9436.52 60.66 9557.85
2a 9497.05 9436.77 60.27 9557.32
2b 9470.10 9408.94 61.15 9531.25
3 9470.18 9408.85 61.33 9531.52

Notes: Data consist of 4,059 children clustered in 65 schools.
 Model 1 contains a random intercept and two dummies to indicate whether the child’s verbal 

reasoning score is in the top or bottom 25%; in model 2a two dummies are added to indicate 
whether the child is going to a girls’ school, boys’ school, or a mixed school; in model 2b, 
instead of the school’s gender, the child’s gender is added; in model 3 both the school’s gender 
and the child’s gender are included.
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quite different conclusions, depending on 
whether they are based on the (marginal) 
AIC or the BIC.

13.5 dIscussIon

In this chapter we have discussed model 
selection in the context of MLM, based on 
three information criteria (i.e., AIC, BIC, 
and DIC). In order to provide more insight 
into the philosophical and mathematical 
backgrounds of these three information cri-
teria, we have presented a derivation for each 
of them. In addition, we have discussed the 
inferential focuses that can be taken when 
using information criteria in MLM and we 
have illustrated these by using five different 
software packages for MLM on an empiri-
cal data set.

The question arises what information 
criterion should be used when involved in 
MLM. While there is no simple answer to 
this question, there are several issues one 
should keep in mind. First, information 
criteria from different inferential focuses 
should not be mixed when comparing mod-
els. In particular, one should not compare 
the marginal AIC from one model to the 
conditional AIC of another model (Vaida 
& Blanchard, 2005). Second, the researcher 
should decide whether inferences are to be 
made to the clusters, the population, or even 
beyond the (current) population. While 
most models can be compared using any of 
these focuses, there is an important limita-
tion: Vaida and Blanchard (2005) point out 
that if one wishes to compare a random 
intercept model to a standard ANOVA, one 
is restricted to the cluster focus, because the 
standard ANOVA is based on considering 
the clusters fixed.

Our illustration has shown that by choos-
ing specific software, we may also be lim-
iting our choice of inferential focus: The 
DIC obtained with WinBUGS is compat-
ible with the cluster focus, while the AIC 
from MLwiN, SPSS, R, and Mplus is based 
on the population focus (i.e., it is the mar-
ginal AIC). The BIC that is obtained with 
these programs appears to be very similar 
to the marginal AIC, but it is suggested that 
the focus associated with it goes beyond the 
current population.

In a broader context—not restricted to 
MLM—it can be stated that the AIC and 
the BIC have a different target model. The 
AIC aims at finding the model that mini-
mizes the K-L criterion and it does not 
require the true model to be in the set of 
models. Even if the true model is in the set 
of models, it may not be the best model in 
terms of the AIC, because it may not lead 
to the best predictions of future observa-
tions. Moreover, if we are considering 
a world in which the truth is infinitely 
dimensional—such that the fitted models 
are simplifications of the truth—and there 
are many tapering effects, then the “best” 
model actually depends on the sample 
size (Burnham & Anderson, 2002, p. 298; 
Forster, 2001). Hence, within this frame-
work it makes sense to select more com-
plicated models as sample size increases, 
which is exactly what AIC does.

In contrast, the BIC aims at selecting the 
model with the largest posterior probability 
and it has been shown that asymptotically 
BIC selects with certainty 1 the true model 
if it is in the set of models. Hence, what 
should be considered the best model within 
the framework of the BIC does not depend 
on sample size (Burnham & Anderson, 
2002), at least not when the true model is 
among the fitted models.
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This difference in target model explains 
why simulation studies may give conflicting 
results when comparing the performance 
of AIC and BIC: Depending on the setup of 
the study—aspects such as whether or not 
the true model that generated the data is 
included in the set of fitted models and the 
sample sizes that are considered—one may 
conclude that AIC outperforms BIC or vice 
versa (Burnham & Anderson, 2002; Forster, 
2001; Kuha, 2004; Weaklim, 2004). Hence, 
Weaklim (2004) stated that the choice 
between AIC and BIC depends in part on 
the researcher’s belief in the plausibility 
that certain effects are completely nonex-
isting (i.e., hypotheses of the form θ = 0). If 
this is considered likely to be true, the BIC 
should be preferred, but if one assumes that 
most effects are never completely nonexist-
ing, it is better to use the AIC, as “The AIC 
weeds out only those parameters that are so 
poorly estimated that they detract from the 
predictive power of the model” (Weaklim, 
2004, p. 183).

Another approach to model  selection, 
which is advocated by Kuha (2004), is based 
on multiple information criteria (possibly 
in combination with NHT), rather than 
choosing one measure over the other. If 
all criteria point to the same model, one 
can be fairly confident that this is the best 
model in the set. However, if the measures 
lead to different conclusions, Kuha (2004) 
suggests that instead of trying to select a 
single model, the researcher should select 
a subset of models from the entire set and 
present these as the best models. In such 
cases, and in cases where the best model is 
not much better than the second best model 
(as we saw for the AIC in our example), 
one may also consider the option of mul-
timodel inference, which is also referred 
to as model averaging (e.g., Burnham & 

Anderson, 2002; Madigan & Raftery, 1994; 
Raftery, 1995). This consists of weighting 
the parameter estimates from different 
models by their (posterior) model prob-
abilities as obtained in Equation 13.5. 
However, despite the fact that model aver-
aging has been advocated for quite some 
time in Bayesian statistics, it is a relatively 
new topic in frequentistic statistics, and 
it is likely to take some time before this 
alternative approach to model selection 
and prediction becomes accepted by the 
mainstream.
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14.1 IntRoductIon

In the social, behavioral, and biomedical sciences experiments are conducted 
to evaluate the effect of an experimental treatment condition on particular 
outcome variables of interest. The randomized controlled trial is generally 
considered the gold standard for comparing treatment conditions. With this 
type of trial, subjects are randomly sampled from a population and ran-
domly assigned to treatment conditions. One of the treatment conditions is 
a control condition existing of either a conventional treatment or no treat-
ment at all. When possible, such a trial is double-blind such that neither the 
patient nor the experimentalist knows who is assigned to which treatment 
condition. Data obtained from such trials are often analyzed with traditional 
linear or logistic regression. These analysis methods provide valid point esti-
mates and statistical tests on the treatment effect if the assumption of inde-
pendence is met (Moerbeek, van Breukelen, & Berger, 2003). 

In trials where humans are the study subjects there is often some degree of 
interaction between the participants. For instance, this is the case when the 
subjects in the target population are nested within naturally existing groups, 
such as schools, families, worksites, or general practices. Measurements on 
opinion, health, behavior, and attitude of subjects within the same group are 
likely to be correlated due to mutual influence and group characteristics, such 
as group policy and the behavior of group leaders. Clustering may also occur 
in individually randomized trials when subjects are clustered within groups 
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that are established for the purpose of the 
trial (Lee & Thompson, 2005). An example is 
a trial where subjects with social phobia are 
randomized to a control condition consist-
ing of pharmacotherapy or an experimental 
condition consisting of cognitive behavior-
al-group therapy. Those randomized to the 
latter treatment condition are subsequently 
randomized to different therapy groups. 
Once a therapy group is established, its 
members will mutually influence each other 
and be influenced by the therapist leading 
the group. Once again, we may expect the 
response variables of subjects within the 
same group to be correlated.

The presence of correlated responses 
complicates the analysis of data obtained 
from trials with nested data. The correct 
statistical model to analyze data from such 
experiments is the multilevel model, which 
explicitly takes nesting of subjects within 
groups into account by modeling ran-
dom effects at the subjects and group level 
(Goldstein, 2003; Hox, 2002; Raudenbush 
& Bryk, 2002; Snijders & Bosker, 1999). 
Ignoring the nested data structure may 
result in type I or type II errors for the test 
on treatment effect, and consequently in 
incorrect conclusions with respect to the 
effectiveness of the experimental treatment 
condition. In addition, nesting of subjects 
within groups has implications for the cal-
culation of the optimal design. Not only the 
total sample size needs to be calculated, but 
the optimal allocation of units as well. That 
is, should we sample many small groups or 
just a few large groups? Of course, a design 
with many groups and many subjects per 
group results in maximal statistical power, 
but is often not feasible because of limita-
tions on the budget and on the number of 
subjects that are willing to participate in the 
trial. 

The aim of this chapter is to present sam-
ple sizes for trials with nested data such that 
a desired power level is achieved. It restricts 
to two treatment conditions (i.e., an experi-
mental and a control condition), two lev-
els of nesting and continuous outcomes. 
Optimal designs for three levels of nesting 
and binary outcomes can be found elsewhere 
(Moerbeek, 2000; Moerbeek & Maas, 2005; 
Moerbeek, van Breukelen, & Berger, 2000, 
2001a). Four types of trials with nested data 
are considered: cluster randomized trials, 
multisite trials, pseudocluster randomized 
trials and trials comparing group and indi-
vidual treatments. With cluster randomized 
trials existing groups are randomized to 
treatment conditions and all subjects within 
the same group receive the same treatment 
condition. An example is a school-based 
smoking prevention intervention where 
schools are randomized to either the inter-
vention or control condition. With multisite 
trials both the experimental and the control 
condition are available in each group that 
participates in the trial. In the medical sci-
ences this type of trial is often referred to 
as multi-center clinical trial and is adopted 
when any single center cannot provide suffi-
cient patients to achieve an acceptable power 
level. Cluster randomized trials and multi-
site trials are studied in Section 14.2. Section 
14.3 focuses on pseudocluster randomized 
trials. These are an extension to cluster 
randomized trials. They were developed to 
overcome problems that are common when 
cluster randomized trials are implemented 
in general practice, namely selection bias 
and slow recruitment in the general practices 
that are randomized to the less interesting 
control condition. Section 14.4 focuses on 
trials comparing group and individual treat-
ments. With this type of trial, we have nest-
ing of subjects within groups in the group 
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therapy condition but not in the individual 
therapy condition. For each of these trials, 
the rationale of the design is given and the 
advantages and disadvantages are discussed, 
the multilevel model is presented and the 
required sample sizes to achieve a desired 
power level are derived. For cluster random-
ized trials and the multisite trials we will 
also consider the optimal number of groups 
and group size given budgetary constraints. 
At the end of this chapter some concluding 
remarks are given.

14.2  clusteR RandoMIzed 
tRIals and 
MultIsIte tRIals

14.2.1 description of designs

With cluster randomized trials complete 
groups of subjects are randomized to treat-
ment conditions and all members within 
a group receive the same treatment, see 

Donner and Klar (2000) and Murray (1998) 
for a general introduction. In multisite tri-
als, subjects within a site are randomly 
assigned to treatment conditions. Figures 
14.1 and 14.2 give a graphical representa-
tion of these two types of trials. For both 
types, eight groups with 10 subjects each 
are displayed. The white subjects represent 
the control condition and the black subjects 
the experimental condition. The 10 subjects 
within a circle are nested within the same 
group, irrespective of the color with which 
they are represented. Data on both treat-
ment conditions are available within each 
group for the multisite trial. For cluster ran-
domized trials, data for only one treatment 
condition are available within each group, 
so the other data are missing by design.

Cluster randomized trials are often cho-
sen from political, ethical, administra-
tive, and financial reasons (Gail, Mark, 
Carroll, & Green, 1996). For instance, a 
school-based smoking prevention interven-
tion where the experimental condition is 

fIguRe 14.1
Graphical representation of a cluster randomized trial.
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delivered to all children within only half of 
the schools may result in lower travel costs 
for the health professionals delivering the 
intervention than a trial where the experi-
mental condition is delivered to only half 
of the children within each school. In addi-
tion, the administrative costs in the first 
trial may be lower since each child within 
a school receives the same treatment con-
dition. An example where the choice of 
the level of randomization may be driven 
by ethical criteria is a trial on the effects of 
vitamin-A supplementation on childhood 
mortality in northern Summatra (Sommer 
et al., 1986). In such a trial one may choose 
to randomize complete villages to treatment 
conditions if it is considered unethical to 
treat some children within a certain village 
and withhold the treatment from others. In 
addition to the reasons given above, cluster 
randomized trials minimize the probabil-
ity of control group contamination, which 
occurs when both the experimental and 
control condition are available within each 

group and information on the contents of 
the experimental condition leaks to the sub-
jects assigned to the control. In some cases, 
there is no alternative to cluster randomiza-
tion, such as in community intervention 
trials where the intervention is designed 
to affect all members within a community. 
An example is an intervention using mass 
media such as television and advertorials in 
regional or local newspapers. 

In contrast to cluster randomized trials, 
multisite trials are trials where each treat-
ment condition is available within each 
group. So, randomization to treatment con-
ditions is done at the subject level within 
each group. Such trials can be shown to be 
more efficient than cluster randomized tri-
als, and in addition they allow for the esti-
mation of the interaction between treatment 
and group. Such trials may be a good choice 
when the magnitude of the treatment effect 
is expected to vary across groups. On the 
other hand, they should only be chosen from 
a practical point of view when the degree of 

fIguRe 14.2
Graphical representation of a multisite trial.
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control group contamination is expected to 
be absent or small. This assumption may be 
realistic in double blind clinical trials where 
neither the patient nor the health professional 
knows who is assigned to which treatment 
condition, but may not be tenable in trials 
where the experimental treatment relies on 
interpersonal communication such as in 
risk-reduction sessions and peer-pressure 
groups (Moerbeek, 2005). In other settings, 
control group contamination may be due to 
the person delivering the intervention. An 
example is a trial where general practitioners 
are given information about new guidelines 
to reduce unhealthy life styles and both the 
education and control condition are available 
in each general practice. It will be difficult for 
the general practitioner not to let patients in 
the control condition benefit from the educa-
tion. In this case, a cluster randomized trial 
is the only appropriate option.

14.2.2 Multilevel Model

For multisite trials the model that relates 
treatment condition xij to outcome yij of 
subject i within group j is given by

 yij = β0j + β1jxij + eij. (14.1)

The random effect e Nij e~ ( , )0 2σ  is the 
deviate of the outcome of subject i in group j 
from its group mean. If treatment condition 
is coded –1 for the control condition and +1 
for the experimental condition, then the 
intercept β0j is the mean outcome in group 
j and the slope β1j is half the difference in 
mean outcomes between the control and 
experimental condition in group j.

The intercept and slope may vary across 
groups, randomly and/or as a function of 
covariates at the group level. In this chapter 
we will restrict to models without covariates, 

but it can be shown that the results also hold 
for models with covariates at the subject and 
group level as long as these covariates are 
uncorrelated with the treatment condition 
and the treatment condition is coded –1 
and +1 (Moerbeek, van Breukelen, & Berger, 
2001b). The random intercept is now writ-
ten as β0j = β0 + u0j, where β0 is the overall 
mean and the random term u Nj u0 0

20~ ( , )σ  
is the deviate from this mean for group j. 
Similarly, β1j = β1 + u1j, where β1 is half 
the overall difference in mean outcomes 
between the control and experimental con-
dition and the random term u Nj u1 1

20~ ( , )σ  
is the deviate from this difference in group 
j. The random effects u0j and u1j may be cor-
related and their covariance is denoted σu01. 
In the remainder of this chapter we assume 
this correlation to be equal to zero. This does 
not affect estimation or hypothesis testing 
of the fixed effects or variances of the ran-
dom effects as long as the data are balanced 
and the treatment indicator xij is centered 
around zero (Raudenbush, 1993).

Substitution of the expressions for the ran-
dom intercept and slope into Equation 14.1 
results in the single-equation model 

 yij = β0 + β1xij + u0j + u1jxij + eij. (14.2)

The random error term at the subject level, 
eij, is assumed to be independent from u0j 
and u1j. As follows from Equation 14.2, the 
random interaction u1jxij between treatment 
and group can be estimated in a multisite 
trial. That is, the treatment effect is allowed 
to vary across the groups. The mean treat-
ment effect is given by δ = 2β1, and this 
parameter is often of particular interest in 
experiments.

For cluster randomized trials only one 
treatment condition is available within each 
group, so the variability of the treatment 
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effect across the groups cannot be estimated. 
Equation 14.2 reduces to

 yij = β0 + β1xj + uj + eij. (14.3)

The variance components σu0
2  and σu1

2  
cannot be estimated separately. Instead, their 
sum σ σ σu u u

2
0

2
1

2= +  is estimated. As for mul-
tisite itrials, the random effects u Nj u~ ( , )0 2σ  
and e Nij e~ ( , )0 2σ  are assumed to be inde-
pendent of each other, and the treatment 
effect is given by δ = 2β1.

For both levels of randomization, the 
total variance of the outcome variable is 
given by var( )yij u u e= + +σ σ σ0

2
1

2 2 , and the 
proportion variance at the group level is 
given by the intraclass correlation coeffi-
cient ρ σ σ σ σ σ= + + +( )/( )u u u u e0

2
1

2
0

2
1

2 2 . This 
parameter measures the proportion in total 
outcome variance that is at the group level. 
It ranges between 0 and 1. If ρ = 0 then all 
variability is at the subject level and the out-
comes of persons within the same group 
are no more correlated than outcomes 
from different groups. If ρ = 1 then subjects 
within the same group respond identically. 
The intraclass correlation coefficient may 
be split up into two parts associated with 
the random intercept and slope: ρ = ρ0 + ρ1, 
where ρ σ σ σ σ0 0

2
0

2
1

2 2= + +( )/( )u u u e  and
ρ σ σ σ σ1 1

2
0

2
1

2 2= + +( )/( )u u u e . For a multisite 
trial ρ1 is the correlation between persons in 
the same group with different treatments and 
ρ0 + ρ1 is the correlation between persons in 
the same group with the same treatment. For 
a cluster randomized trial ρ0 + ρ1 is the cor-
relation between persons in the same group.

In the calculations that follow a bal-
anced design is assumed: the total number 
of groups is n2 and the group size is con-
stant and denoted n1. For multisite trials 
1
2 1n  subjects per group are randomized to 

the experimental condition and the others 

are randomized to the control condition, 
assuming n1 is even. For cluster random-
ized trials the number of groups per treat-
ment condition is 1

2 2n , assuming an even 
total number of groups. Optimal sample 
sizes given an unbalanced design are pre-
sented elsewhere (Liu, 2003; Van Breukelen, 
Candel, & Berger, 2007).

For both levels of randomization the 
 treatment effect δ is simply estimated by
δ̂ = −y ye c , where ye  and yc  are the mean 
outcomes in the experimental and control con-
dition, respectively. For cluster randomized 
 trials, the variance of this estimator is given by

 

var(ˆ)
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 (14.4)

The term 1 + (n1 –1)ρ is called the design 
effect and gives the number of times a sample 
size from a simple random sample needs to 
be multiplied in a cluster randomized trial to 
have the same level of efficiency. The design 
effect is equal to 1 or larger, and increases 
with the group size and the intraclass cor-
relation coefficient. Already for small val-
ues of the intraclass correlation coefficient 
the design effect may be considerable. For 
instance, it is equal to 1.95 when ρ = 0.05 
and n1 = 20, meaning that almost twice as 
many subjects are needed in a cluster ran-
domized trial than in a simple randomized 
trial to achieve the same efficiency. 

For a multisite trial, a similar formula 
holds:
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The design effect 1 – ρ0 + (n1 – 1)ρ1 may be 
less than, equal to, or larger than 1, depend-
ing on the values ρ0, ρ1, and n1. Justifications 
of the formulae (Equations 14.4 and 14.5) are 
given in Moerbeek et al., 2000; Raudenbush, 
1997; and Raudenbush and Liu, 2000. 

The variance of the treatment effect esti-
mator, var(ˆ)δ , plays a key role in the deter-
mination of the optimal allocation of units 
since this variance is inversely related to the 
power of the test on treatment effect. The 
size and significance of the treatment effect 
are generally the main interest in experi-
ments, therefore the variance of its estimator 
is chosen as sole optimality criteria in this 
chapter. Of course, in some settings interest 
may also lie in other parameters than the 
treatment effect, for instance the intraclass 
correlation coefficient. If it turns out that the 
amount of between-school variability in the 
outcome variable in a school-based health-
promotion intervention is large, then it may 
be worthwhile to identify the schools for 
which the intervention performs worst and 
try to describe these in terms of their school 
characteristics. The intervention can then 

be adjusted for this type of school. However, 
in this chapter the variance of the treatment 
effect estimator is our main objective in 
optimizing the number of groups and group 
size. Optimal designs that combine multiple 
optimality criteria are not part of this chap-
ter but can be found elsewhere (Moerbeek & 
Wong, 2002).

The multisite trial has lower variance than 
the cluster randomized trial with the same 
group size and number of groups. This is 
also depicted in Figure 14.3, where the rela-
tive efficiency of cluster randomized trials 
and multisite trials is shown as a function 
of the intraclass correlation coefficient. The 
relative efficiency is defined as the ratio of 
the var(ˆ)δ  as achieved with a multisite trial 
and the var(ˆ)δ  as achieved with a cluster 
randomized trial. The left plot represents 
that the case treatment by group interaction 
is absent (i.e., ρ1 = 0), the right panel is an 
example where this interaction is present 
(ρ1 = 0.05). The inverse of the relative effi-
ciency gives the number of times the cluster 
randomized trial needs to be replicated to 
be as efficient as the multisite trial. 
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fIguRe 14.3
Relative efficiency of a cluster randomized trial (a) versus a multisite trial (b).
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Already for small values of the intraclass 
correlation coefficient the loss of efficiency 
may be large. For absent treatment by group 
interaction the relative efficiency is about 
0.66 if ρ = 0.05 and n1 = 10. This means 
that (0.66–1 –1) × 100% = 52% more groups 
should be added to the cluster randomized 
trial in order to be as efficient as the mul-
tisite trial. Especially for large group sizes 
and large intraclass correlation coefficients 
the loss in efficiency may be considerable, 
meaning that the multisite randomized 
trial is preferable from a statistical point of 
view. However, when treatment by group 
interaction is assumed present, the relative 
efficiency becomes larger, meaning that the 
loss in efficiency from using a cluster ran-
domized trial is less severe. 

Of course, the choice of the optimal level 
of randomization should not only be driven 
by statistical criteria, but by practical con-
siderations as well, as was discussed at the 
beginning of this section. In many types of 
trials the experimental condition relies on 
interpersonal communication and in such 
trials the risk of control-group contamina-
tion may be large. For that reason, the opti-
mal allocation of units is derived for both 
levels of randomization.

14.2.3 sample size and Power

The aim of an experiment is to test whether 
there is a treatment effect in the population 
from which the subjects are sampled. This 
can be done by testing the null hypothesis 

H0: δ = 0 against the two-sided alternative 
Ha: δ ≠ 0, where δ is the treatment effect. 
When appropriate, a one-sided alternative 
may be used. The test statistic t = ˆ / var(ˆ)δ δ  
has a central t-distribution under the null 
hypothesis, with n2−2 degrees of freedom 
for the cluster randomized trial and n2 - 1 
degrees of freedom for the multisite itrial. 
When the number of groups is large, the 
standard normal approximation can be 
used, as will be done in the remainder of 
this chapter.

In statistical hypothesis testing, two types 
of errors can be made, see Figure 14.4. 
A type I error occurs when the null hypoth-
esis is incorrectly rejected. In this case, it is 
concluded that there is a treatment effect 
while in reality such an effect does not exist. 
A type II error is made when the null hypoth-
esis is incorrectly accepted. In this case it is 
concluded that there is no treatment effect, 
while in reality such an effect does exist. 

The power of a statistical test is the proba-
bility to reject the null hypothesis and accept 
the alternative when a treatment effect does 
exist. As is obvious, large power levels are 
desired, and values of 0.8 or 0.9 are gener-
ally used in power calculations. The power 
1−γ of a test is related to the type I error 
rate α, the true treatment effect δ and the 
variance of the treatment effect estimator 
var(ˆ)δ  by the following equation

 var(ˆ) .
/

δ δ
α γ

=
+− −z z1 2 1

 (14.6)

Unknown truth
H0 true Ha true

Retain H0 Correct decision Type II errorDecision based
on statistical test Reject H0 Type I error Correct decision

fIguRe 14.4
Correct and incorrect decisions in statistical hypothesis testing.
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Here, z1-α/2 and z1−γ are the 100(1−α/2)% 
and 100(1−γ)% standard normal deviates. 
In case of a one-sided alternative, z1−α/2 is 
replaced by z1−α.

The type I error rate α is the probability 
of incorrectly rejecting the null hypoth-
esis of no treatment effect. Its size may be 
controlled by the experimenter and should 
be chosen to reflect the consequences of 
a type I error. If these consequences are 
severe, then the type I error should be cho-
sen to be small. It is often set equal to 5%, 
but values of 10% or 1% may also be appro-
priate. Larger type I error rates result in 
larger power levels. This is obvious since the 
null hypothesis is more likely to be rejected 
if the type I error rate is large; hence a larger 
power level is achieved.

The population value of the treatment 
effect quantifies the true difference between 
the control and experimental condition with 
respect to the response variable. As follows 
from Equation 14.6 a larger treatment effect 
results in a larger power level. This is obvi-
ous, since larger differences between both 
treatments are easier to detect than small 
differences. The true value of the treatment 
effect is generally unknown in the design 
phase. This introduces a vicious circle: the 
aim is to conduct an experiment in order 
to gain insight into the population value of 
the treatment effect, but in order to design 
the experiment such that a sufficient power 
level is guaranteed the true value of this 
parameter must be known. This problem 
may be overcome by using the minimal rel-
evant treatment effect in the power calcula-
tion. Instead of an absolute treatment effect, 
one may chose to use a standardized treat-
ment effect, which is defined as the absolute 
treatment effect divided by the standard 
deviation of the outcomes. The standard-
ized treatment effect is scale free and a value 

zero corresponds to the null hypothesis of 
no treatment effect. Standardized treatment 
effects of size 0.2, 0.5, and 0.8 are considered 
small, medium, and large (Cohen, 1992).

The variance of the treatment effect esti-
mator, var(ˆ)δ , quantifies the error that is 
made in estimating the treatment effect. 
As is obvious, larger errors result in lower 
power levels. The var(ˆ)δ  can be controlled 
by the group size n1 and the number of 
groups n2, as follows from the formulae 
for var(ˆ)δ  as given in Equations 14.4 and 
14.5. By substitution of these equations in 
Equation 14.6 the required sample sizes can 
be derived.

In some cases the group size is fixed to 
n1. The minimal number of groups n2 to 
achieve a power level 1 - γ in a two-sided 
test with significance level α is given by
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In other cases the number of groups n2 is 
limited by the number of groups willing to 
participate in the trial. The minimal group 
size n1 is then calculated from
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These two formulae hold for the cluster ran-
domized trial. In both formulae, the vari-
ance component σu

2 should be replaced by 
σu1

2  if a multisite trial is considered instead 
of a cluster randomized trial.

Figure 14.5 shows the power to detect a 
small standardized treatment effect in a 
cluster randomized trial as a function of 
the number of groups and the group size 
in a two-sided test with significance level 
α = 0.05 and an intraclass correlation 
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coefficient ρ = 0.05. As is obvious, power 
increases with the group size and the num-
ber of groups. The left plot in Figure 14.5 
shows that the power increases to the value 
1 when the number of groups increases 
and the group size is fixed. The right plot in 
Figure 14.5 shows that the power increases 
to a limit not necessarily equal to 1 when 
the group size increases and the number 
of groups is fixed. This can be explained 
by the fact that the number of groups only 
appears in the denominator of the var(ˆ)δ  
as given by Equation 14.4, whereas the 
group size appears in both the numera-
tor and the denominator. So, a small 
number of groups cannot always be com-
pensated by a large group size in order to 
achieve sufficient statistical power. In such 
cases one must either increase the num-
ber of groups or rely on other methods to 
improve power, such as matching or pre-
stratification (Murray, 1998; Raudenbush, 
Martinez, & Spybrook, 2007), the inclusion 
of covariates (Moerbeek, 2006; Murray & 
Blitstein, 2003; Raudenbush et al., 2007), or 
taking repeat measurements (Feldman & 

McKinlay, 1994; McKinlay, 1994; Murray 
& Blitstein, 2003). 

14.2.4  optimal sample sizes given 
Budgetary constraints

In the previous section either the group size 
or the number of groups was assumed to be 
fixed in advance and the other was calculated 
such that a certain power level was achieved. 
In this section we focus on sample size calcu-
lations where neither the group size nor the 
number of groups is fixed. In particular, we 
focus on optimal sample sizes given a budget-
ary constraint. Table 14.1 gives the var(ˆ)δ , the 
optimal sample sizes, and var(ˆ)δ  given these 
optimal sample sizes.

As follows from Table 14.1, the variance 
of the treatment effect estimator is a func-
tion of the variance components σe

2 and σu1
2  

(or the sum σu
2 in case of a cluster random-

ized trial). Furthermore, this variance is a 
function of the group size n1 and the num-
ber of groups n2. As is obvious, variance 
decreases with increasing sample sizes. 
In practice, sample sizes cannot increase 
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without boundaries due to limited financial 
resources. Therefore, a budgetary constraint 
is used in the derivation of the optimal allo-
cation of units. This constraint is given by

 c1n1n2 + c2n2 ≤ C, (14.9)

where the costs to include a person (c1) are 
multiplied with the total number of per-
sons, and the costs at the group level (c2) are 
multiplied with the total number of groups. 
These components sum up to the total costs, 
which should not exceed the budget C that 
is available for measuring and sampling. 
For both levels of randomization, the opti-
mal group size n1 is found by expressing 
the optimal number of groups n2 in terms 
of the costs and budget and group size n1 
using the constraint in Equation 14.9: 
n2 = C/(c1n1 + c2). This expression is then 
substituted into the var(ˆ)δ  as given in the 
second column of Table 14.1 from which the 
optimal group size n1 can then be derived.

The optimal allocations of units follow 
between the third and fourth column of Table 
14.1, the var(ˆ)δ  given the optimal allocation 
is given in the last column. From Table 14.1 
it follows that the number of groups and the 
group size depend on the variance compo-
nents as well as the costs at the subject and 
group level. However, increasing the budget 
C has an effect on the number of groups but 
not on the group size. From Table 14.1 we 

also observe that the optimal group size n1 
increases with the costs ratio c2/c1. This is obvi-
ous since a design with a few large groups is 
favored when it is relatively expensive to sam-
ple and measure a group. Furthermore, we 
observe that smaller group sizes are required 
when the intraclass correlation coefficient 
is large. This is also obvious since subjects 
behave more identically when the intraclass 
correlation is large, thus increasing the group 
size has a smaller effect on the var(ˆ)δ  than 
increasing the number of groups.

The optimal allocation of units as given in 
Table 14.1 was derived such that the smallest
var(ˆ)δ , and hence largest power, are achieved 
and the budget C is not exceeded. It can be 
shown that these sample sizes are also opti-
mal when the budget C to achieve a certain 
power level is to be minimized. 

Figure 14.6 shows the power to detect a 
small standardized treatment effect in a two-
sided test with type I error rate α = 0.05. The 
power is plotted as a function of the group 
size, the number of groups, and for various 
budgets. The intraclass correlation coef-
ficient is equal to ρ = 0.05, and the costs at 
the subject and group level are c1 = 10 and 
c2 = 250. The optimal group size is equal to 
n1 = 22 and does not depend on the budget. 
The optimal number of groups is an increas-
ing function of the budget. Power levels of 
0.8–0.9 are generally used. For C = 80,000 

taBle 14.1

var(ˆ)δ . Optimal Sample Sizes, and var(ˆ)δ  given these Optimal Sample Sizes
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the maximal power level as achieved with the 
optimal allocation of units is almost equal to 
one. In this case, an unnecessarily high sam-
ple size is used. For C = 40,000 the maximal 
power level is about 0.9 and for C = 20,000 it 
is lower than 0.6, which is an unacceptable 
low power level. With such a small budget, 
one has to choose between increasing the 
budget and not conducting the study at all.

Figure 14.6 furthermore shows that the 
power curves are rather flat around their 
maximum when the budget is large. In that 
case, a small deviation from the optimal 
allocation of units hardly results in a loss 
of power. This is a useful finding for practi-
cal applications where the actual group size 
is unequal to the optimal group size. For 
instance, if children are grouped in class sizes 
of 30 and complete classes are included in 
a school-based health-promotion interven-
tion study, then the loss in power from using 
the actual sample size n1 = 30 instead of the 
optimal sample size n1 = 22 hardly results in 
a loss of power when the budget C is equal to 
40,000 (and ρ = 0.05, c1 = 10, c2 = 250).

14.3  PseudoclusteR 
RandoMIzed tRIals

14.3.1 description of design

Pseudocluster randomization combines ran-
domization at the level of the individual and 
randomization at the level of the cluster. It 
consists of two steps: first the clusters are 
randomized into two types, E and C, and the 
results of this randomization are not revealed. 
Then, within each cluster of type E, subjects 
are randomized to either condition in such a 
way that the majority receives the experimen-
tal condition e and, therefore, the minority 
receives the control condition. In the clusters 
of type C, the situation is reversed; that is, 
the majority of subjects are randomized to the 
control condition c (see Figure 14.7, where the 
subjects in black and white receive the experi-
mental and control condition, respectively).

Pseudocluster randomization is a com-
promise between individual randomization 
and cluster randomization, when neither is 
preferable over the other. Such a dilemma 
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Power to detect a small standardized treatment effect as a function of the group size (a) and the number of 
groups (b) for various budgets and ρ = 0.05, c1 = 10, c2 = 250.
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arises when randomization at the individ-
ual level risks contamination, while ran-
domization at cluster level risks selection 
bias and recruitment problems.

Consider for example a trial that evaluates 
the effects of a new method for physicians 
to coach their patients. Randomization on 
patient (= subject) level is possible, but the 
physician may consciously or unconsciously 
mix up elements of the treatments that 
reduce the contrast between the new coach-
ing method and usual care (contamination). 
This means that only the contaminated effect 
can be estimated, which is smaller than the 
true effect, and that the sample size must be 
enlarged to have sufficient power for testing 
this smaller effect (Moerbeek, 2005; Slymen 
& Hovell, 1997).

To avoid contamination, randomization 
can be done on physician (= cluster) level 
(see Section 14.2.2), but this may need a 
larger sample size (see Figure 14.3). Another 
disadvantage of cluster randomization is 

that it is often impossible to recruit patients 
before randomization of the clusters, for 
example, because patients are recruited 
when they consult their physician for a prob-
lem. Consequently, the physicians know in 
advance the treatment their recruited sub-
jects will receive and this may influence their 
choice of subjects (selection bias), which leads 
to differences between the treatment groups at 
baseline (Hahn, Puffer, Torgerson, & Watson, 
2005; Jordhoy, Fayers, Ahlner-Elmqvist, & 
Kaasa, 2002; Puffer, Torgerson, & Watson, 
2003). Moreover, advance knowledge of treat-
ment allocation may also influence the rate of 
recruitment: a physician that is allocated to 
give a treatment that he or she does not con-
sider to be of much interest, may recruit fewer 
subjects and produce data of poorer quality 
(Klar & Donner, 2001; Moore, Summerbell, 
Vail, Greenwood, & Adamson, 2001).

In a situation as above, pseudocluster ran-
domization can reduce selection bias and 
contamination, while improving recruitment. 

fIguRe 14.7
Graphical representation of a pseudocluster randomized trial.
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Due to the two-step randomization, the phy-
sicians do not know in which type of clus-
ter they are, nor do they know in advance 
what treatment the next patient will be on. 
This reduces the chance of selection bias. 
Moreover, no longer are half of the physicians 
left with only patients on the “uninterest-
ing” treatment (as in cluster randomization), 
which may improve recruitment. Finally, in 
clusters of type E, most patients are on con-
dition e and only a few are on condition c. 
This means that the contamination of e by c 
is small. On the other hand, the contamina-
tion of c by e may be substantial, but that only 
affects the few patients on c. Similar consider-
ations apply to clusters of type C. 

Upon closer examination, pseudocluster 
randomization will reduce selection bias 
to the extent that the predictability of the 
treatment allocation sequence is reduced. 
Obviously, the physician can never be sure 
about which condition will be allocated next, 
so predictability will always be less than in 
a cluster randomized design. Nevertheless, 
the physician may guess how big the chance 
is of condition e being allocated in his or her 
cluster. By not revealing the type of cluster 
the physician is randomized to and by keep-
ing the cluster size small, this effect can be 
reduced, so that it would be hard for the 
physician to guess what cluster group he or 
she is allocated to.

Pseudocluster randomization will reduce 
contamination if the degree of contamina-
tion is proportional to exposure in the fol-
lowing sense: control subjects in a cluster 
will be less contaminated (or: fewer control 
subjects will be contaminated) if there are 
fewer subjects on the experimental condi-
tion in that cluster. This is a reasonable 
assumption if the dissemination of elements 
of the experimental condition to the control 
group is a gradual process that depends on 

the number of subjects on the experimental 
condition in each cluster. However, it would 
be an unreasonable assumption if one single 
patient on the experimental condition will 
lead to complete contamination of all other 
patients. For contamination the other way 
around, which is mostly interpreted as non-
compliance, similar considerations apply.

The above two conditions were satisfied 
in the Dutch EASYcare trial, a pseudoclus-
ter randomized study (Melis, van Eijken, & 
Borm, 2005) on improving the care of elderly 
with common geriatric problems such as falls 
or dementia. Usual care by the physician was 
compared to patient coaching by a special-
ized geriatric nurse that had expert advice of 
a geriatrician and regular feedback meetings 
with the patient’s physician. In the EASYcare 
trial, pseudocluster randomization effectively 
reduced predictability, as the large majority 
of physicians thought that a 1:1 randomiza-
tion ratio was used in their cluster (Melis, 
Teerenstra, Olde Rikkert, & Borm, 2008). 
Furthermore, the experimental condition 
was a complex collaboration of nurse, geria-
trician, and physician. Thus, for a physician to 
copy (elements of) the intervention, not only 
would he or she have to accumulate passive 
knowledge through the feedback meetings, 
but also would he or she need to acquire/learn 
new skills and attitudes. Therefore, assum-
ing that contamination was proportional to 
exposure was deemed reasonable. Further 
evaluation of the performance of pseudoclus-
ter randomization in this trial is provided by 
Melis et al. (2008).

14.3.2 Multilevel Model

The model for the outcome of subject i in 
cluster j is 

 yij = β0 + β1xij + uj + eij, (14.10) 
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which is similar to the model of the clus-
ter randomized trial (see the formula of 
Equation 14.3 in Section 14.2.2), except that 
the treatment indicator xij varies by subject 
as there are two conditions in each cluster. 
The model estimates the effect averaged 
over all clusters, in particular averaged over 
both types of clusters. If sufficient informa-
tion is available (i.e., many clusters are avail-
able) the above model can be extended to 
estimate interaction of the effect by type of 
cluster and by cluster (so that asymmetrical 
contamination and variation of the treat-
ment effect over clusters can be assessed). 

Assume there are 1
2 2n  clusters of type E 

and C, respectively, and that in each cluster 
a fraction f > 0.5 receives one condition and 
that the rest (a fraction (1−f) < 0.5) receives 
the other condition; that is,

Observe that f = 1 corresponds to a cluster 
randomized trial and f = 0.5 to a multi-
site trial. For a pseudocluster randomized 
trial, the choice of f has to be tailored to 
each study, but f = 0.8 seems to be a good 
choice in general (Borm, Melis, Teerenstra, 
& Peer, 2005).

As two types of patients receive the experi-
mental condition e (viz., Ee- and Ce-patients), 
the effect of condition e can be estimated by 
averaging the mean effect of Ee-patients and 
Ce-patients. Let y j

Ee and y j
Ce be the mean out-

come of condition e in cluster j n=1 1
2 2, ,…  of 

type E and C, respectively. As the Ce-patients 
in a cluster are from a relatively small subset, 
the estimates y j

Ce  may be more contami-
nated and will at least have less precision 
than the y j

Ee  estimates. Therefore, it may be 
more efficient to weight the y j

Ce  estimates. 
The mean outcome of condition e is there-
fore estimated as: 
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Weights can be chosen such as to maxi-
mize the power of the estimator δ̂ = −y ye c  
(max t-ratio weights). However, calculation 
of the max t-ratio weights requires knowl-
edge of the (unknown) contamination rates, 
which limits their applicability at the design 
and analysis stages. Fortunately, the max 
t-ratio weights are often close to minimum 
variance weights (Borm et al., 2005):
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where q u e= σ σ2 2 is the ratio of the level 2 and 
level 1 variance. For this choice of weights, the 
variance of δ̂ = −y ye c is minimal and equals 

var
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In a comprehensive simulation study 
(Teerenstra, Moerbeek, Melis, & Borm, 
2007), various methods of analyzing data 
from pseudocluster randomized trials were 
compared including a multilevel model, a 
covariance pattern model, the generalized 
estimating equation approach, and a paired 
t-test. The multilevel model had practically 
the best power and has the advantage of 
being readily available in major statistical 
packages. 

14.3.3  sample size and Power 
given fixed group size

The estimator of the treatment effect in the 
multilevel model is equivalent to the estima-
tor y ye c−  for a fixed number of clusters n2 
and a fixed cluster size n1 (Teerenstra et al., 
2007). Therefore, the power can be calculated 
as in Section 14.2.3 using Equation 14.6 with 
the substitution of Equation 14.11 for var(ˆ)δ . 
This results in the relation 
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from which either the required cluster size 
n1 or number of clusters n2 can be calcu-
lated, given the other (Teerenstra, Melis, 
Peer, & Borm, 2006). The expected effect 

δ actually depends on f. For f = 1, for 
 example, the cluster randomized trial, the 
contamination will be (ideally) absent and 
the treatment effect is equal to δ0 = μe – μc, 
the difference between the expected out-
comes in the experimental and control 
condition in absence of contamination. 
For f = 0.5, for example, the multisite trial, 
 cross-exposure of the conditions in each 
cluster will be maximal, and the contami-
nation of the effect is expected to be maxi-
mal. If f is between 0.5 and 1, the expected 
outcome of condition e in the subset Ee 
will be μe – cmajorδ, where 0 ≤ cmajor ≤ 1 is 
the one-sided relative contamination of the 
majority (the Ee-patients) by the minority 
(the Ec-patients) in each cluster of type E. 
In Ce, the expected outcome is μe – cminorδ. 
Similarly, the expected outcomes in treat-
ment groups Cc and Ec are μc + cmajorδ 
and μc + cminorδ. The expected effect of the 
weighted estimator y ye c−  is 

δ δ δ= −
+ −
+ −0 0

2 2 1
1

fc w f c
f w f

major minor( )
( )

. (14.13)

The relative contamination rates cmajor and 
cminor depend on f: when f moves from 0.5 
to 1, the contamination cmajor of the major-
ity will decrease to its minimum while the 
contamination cminor of the minority will 
increase to its maximum. However, the 
total effect of the contamination of major-
ity and minority; that is, the second term 
in Equation 14.13, depends on the rate of 
contamination and the number of subjects 
contaminated. 

Using Equations 14.12 and 14.13, the rela-
tive efficiency of pseudocluster random-
ization can be compared to that of cluster 
randomization and individual randomiza-
tion stratified by cluster (without treatment 
by cluster interaction). 
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Figure 14.8 shows the relative efficiency 
of pseudocluster randomization and indi-
vidual randomization compared to that of 
cluster randomization (which is set to 1) as 
a function of n q nu e1

2 2
1= σ σ( / ) , which is 

the ratio of the between- and within-vari-
ance of the cluster means. The contami-
nation of the majority by a minority in a 
cluster is set to zero in the upper subplots, 
while in the lower subplots contamination 
of the majority by the minority is allowed 
(cmajor = 0.25cminor and cmajor = 0.5cminor). 
In general, cluster randomization is most 

efficient for small values of n1q and indi-
vidual randomization is better for large 
values of n1q. In the range between, pseudo-
cluster generally outperforms both, while 
its efficiency is close to that of individual 
randomization for large values of n1q, 
especially if in each cluster the contami-
nation of the majority (by the minority) is 
small compared to the contamination of 
the minority (by the majority).

In conclusion, the main reasons for 
applying pseudocluster randomization are 
methodological (to reduce selection bias 
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compared to a cluster randomized design 
and/or to reduce contamination compared to 
an individually randomized design) or prac-
tical (to improve recruitment compared to a 
cluster randomized design). Nevertheless, 
pseudocluster may also be more efficient 
than either cluster or individual randomiza-
tion of which the Dutch EASYcare study is 
an example (Teerenstra et al., 2006).

14.4  tRIals coMPaRIng 
gRouP and IndIvIdual 
tReatMents

14.4.1 description of design

In (pseudo)cluster randomized trials and 
multisite trials, clustering occurs because 
individuals are nested within naturally 
existing groups. Examples of such groups 
are schools, families, worksites, or general 
practices. In such cases, the possibility of 
correlated responses can be easily acknowl-
edged by the experimenter and taken into 
account in the design and analysis. There 
can be no excuse for ignoring correlated 
responses in cluster randomized trials and 
multisite trials and analysis since com-
puter programs are available for the design 
(Raudenbush, Bryk, & Congdon, 2004) of 
such trials and analysis of their data (Bryk, 
Raudenbush, & Congdon, 1996; Rasbash, 
Steele, Browne, Goldstein, 2009).

In other types of trials, clustering is less 
apparent and therefore often not acknowl-
edged or incorrectly ignored. Clustering 
may occur in individually randomized trials 
when two types of health professionals are 
compared, for instance a nurse practitioner 
and a general practitioner. Patients are ran-
domly assigned to either a nurse practitioner 

or general practitioner. In general, multiple 
practitioners are involved and each of them 
treats more than one patient. Even when there 
is no interaction among patients being treated 
by the same practitioner, there can be a prac-
titioner effect. With this type of trial, we have 
clustering in both arms and we can therefore 
use sample size formulae for cluster random-
ized trials as presented in Section 14.3. These 
can be used when the intraclass correlation 
coefficient does not vary across the two arms. 
For more general sample size formulae we 
refer to Roberts and Roberts (2005).

Another type of an individually random-
ized trial with clustering effects is a trial com-
paring group and individual treatments. A 
graphical representation of this type of trial 
is given in Figure 14.9. The groups are rep-
resented by circles. The subjects represented 
in black are those in the group therapy and 
those represented in white are those in the 
individual therapy. Thus, the trial consists of 
four groups of size 10 and 40 subjects in the 
individual therapy. An example is a trial that 
compares the effectiveness of a smoking ces-
sation group therapy to a control condition 
that does not offer participation in groups. In 
this example, subjects are randomly assigned 
to the group or individual treatment. Those 
randomized to the group treatment are sub-
sequently randomized to a therapy group. 
Once these therapy groups are established, 
the group members within a group will 
mutually influence each other and be influ-
enced by the therapist leading the group. 
This results in a group effect; in some groups 
the members are more likely to quit smok-
ing that in other groups.

The focus of this section is on the lat-
ter type of trials. Although such trials are 
often conducted, there is actually very little 
research on their design and analysis. This 
is not surprising since with this type of trial 
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we have partially nested data. In the group 
condition we have subjects nested within 
groups while in the individual condition 
subjects are not nested. Experimenters 
generally tend to ignore this complicated 
type of data structure and rely on simple 
t-tests or linear regression analysis and 
corresponding sample size formulae. This 
may result in underpowered studies and 
incorrect conclusions and inflated type 
I error for the test on treatment effect 
since the nesting in the group therapy is 
ignored. Only in the last few years has this 
type of trial gained attention from statisti-
cians. This section is based on two recent 
papers (Moerbeek & Wong, 2008; Roberts 
& Roberts, 2005).

14.4.2 Multilevel Model

The data in trials comparing group and 
 individual treatments are partially nested. 
We formulate regression equations for 
each of the two treatments separately and 

combine these in a single-equation model. 
We focus on models with continuous 
outcomes.

For subject i = 1, …, n in the individual 
condition the outcome variable yi is related 
to control (individual) condition xi by the 
following equation

 yi = β0 + β1xi + ri. (14.14)

Here, r Ni r~ ( , )0 2σ is the random term 
at the subject level. The error terms are 
assumed to be independently and identi-
cally distributed as the subjects are assumed 
not to influence each others’ outcomes. This 
assumption is reasonable when there is no 
mutual influence among subjects and no 
influence of a therapist treating the subjects. 
This may be the case, for instance, when the 
individual treatment consists of a pharma-
cotherapy treatment or no treatment at all.

For subject i = 1, …, n1 in group j = 1, …, 
n2 in the experimental (group) condition 

fIguRe 14.9
Graphical representation of a trial comparing group and individual treatments.
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the relation between outcome yij and treat-
ment condition xij is given by

 yij = β0 + β1xij + uj + eij, (14.15)

with u Nj u~ ( , )0 2σ  and e Nij e~ ( , )0 2σ  the 
random group and individual effect, respec-
tively. These random effects are assumed 
uncorrelated. As previous, the intraclass 
correlation coefficient ρ σ σ σ= +u u e

2 2 2/ ( )  
measures the proportion of variance that is 
at the group level.

The total variance σ σu e
2 2+  in the group 

condition is not necessarily equal to the vari-
ance σr

2  in the individual condition. Hence, 
the model allows for heteroscedasticity. The 
variance ratio is defined as θ σ σ σ= +( )/ .u e r

2 2 2  
The treatment condition is coded 0 for the 
individual treatment and 1 for the group 
treatment. Subsequently, β0 is the mean out-
come in the individual treatment, β0 + β1 is 
the mean outcome in the group treatment 
and δ = β1 – β0 is the treatment effect.

The two Equations 14.14 and 14.15 can be 
combined into a single equation by using 
treatment condition x and its complement 
(1 - x) as dummy variables:

 yij = β0 + β1xj + xjuj + xjeij + (1 – xj)rij.  
  (14.16)

The computer program MLwiN (Rasbash 
et al., 2000) allows the incorporation of such 
dummy variables. It should be noted that the 
subjects in the individual condition are not 
nested in a group. This can be solved in the 
multilevel model by assigning each of them 
the value j = k + 1 to the group indicator, 
where k is the number of groups in the group 
condition. In that case, treatment condition 
only needs to be subscribed by the group 
indicator j, as is done in Equation 14.16. 

The Equation 14.16 can be extended to 
include covariates. If we assume random 
assignment of subjects to treatment condi-
tions and large sample sizes, then the cova-
riates are likely to be uncorrelated with 
treatment condition and in that case the 
treatment effect is simply estimated by the 
difference in mean scores of the two treat-
ments: δ̂ = −y ye c , where ye  and yi  are the 
mean outcomes in the experimental (group) 
and control (individual) treatment condi-
tion, respectively. The variance of this esti-
mator is equal to
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This formula holds when all therapy 
groups have the same size. The first and 
second terms at the right side are the vari-
ances of the mean outcomes in the group 
and individual condition, respectively. As 
is obvious, the variance of the mean in the 
group condition is a function of the design 
effect 1 + (n1–1)ρ. The larger the therapy 
group size and the larger the correlation 
between members within the same group, 
the larger the variance of the treatment 
effect estimator.

14.4.3  sample size and Power given 
fixed therapy group size

The power of a trial is inversely related to 
the variance of the treatment effect estima-
tor. The larger this variance, the smaller 
the power, and vice versa. The variance of 
the treatment effect estimator is a function 
of the therapy group size n1, the  number 
of therapy groups n2, and the number of 
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subjects n in the individual condition, see 
Equation 14.17. The larger these sample 
sizes, the smaller the variance and hence 
the larger the power. Of course, these sam-
ple sizes cannot increase without boundar-
ies because the number of subjects that is 
available is often limited. Furthermore, the 
therapy group size is often fixed in advance. 
A therapy group is often small to promote 
dialogue between group members; group 
sizes between 5 and 15 are reasonable. 

In this section sample sizes are presented 
for fixed therapy group sizes and such 
that the total number of subjects n1n2 + n 
is minimized. The optimal sample ratio is 
given by

 n n
n

n1 2
1 1 1= − +θ ρ(( ) ).  (14.18)

From Equation 14.18 we observe that the 
number of subjects n1n2 in the group treat-
ment increases with the variance ratio θ 
and the design effect (n1 – 1)ρ + 1. This 
means that more subjects in this condi-
tion are required when the variability of 
the responses in this condition increases, 
when the therapy group size increases and/
or when the correlation between outcomes 
of subjects within the same therapy group 
increases. The required number of subjects 
in the individual condition to achieve a 
power 1−γ to detect a unstandardized treat-
ment effect δ in a two-sided test with sig-
nificance level α is calculated from

n n
z z

r= − + +( ) +
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2
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Figure 14.10 shows the power to detect 
a small standardized treatment effect as 
a function of the sample sizes in both 

conditions in a two-sided test with signifi-
cance level α = 0.05 and an intraclass corre-
lation coefficient ρ = 0.05. In both plots, the 
variance ratio is equal to θ = 1. In the left 
plot the therapy group size is fixed to n1 = 5, 
in the right plot it is equal to n1 = 10. For 
both conditions, a sufficient power level can 
be achieved provided sample sizes are large 
enough. However, larger sample sizes are 
required when the group size increases.

14.5 conclusIons

This chapter has presented optimal designs 
for trials with nested data. It was concluded 
that a multisite trial results in a more effi-
cient design than a cluster randomized trial. 
Furthermore, multisite trials enable the 
estimation of the treatment by group inter-
action. Unfortunately,  randomization at the 
subject level may result in contamination of 
the control group. On the other hand, clus-
ter randomized trials may be hampered by 
selection bias and slow recruitment rates in 
the control condition. Recent research has 
focused on the development of pseudoclus-
ter randomized trials (Borm et al., 2005; 
Teerenstra et al., 2006, 2007) that aim to 
overcome these problems.

It should be mentioned that the calculations 
of the optimal designs were restricted to bal-
anced designs, since those designs have maxi-
mal statistical power. This means that the 
groups are of equal size and that the number 
of groups per condition for cluster random-
ized trials or the number of subjects per con-
dition per group for multisite trials does not 
vary. In practice this assumption is often not 
tenable. Group sizes vary by nature and by 
drop-out and nonresponse. Recent research 
has shown that the relative efficiency of using 
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varying cluster sizes instead of fixed cluster 
sizes is generally above 0.9 (Van Breukelen 
et al., 2007). This means that at most 11% 
more clusters are required in order to achieve 
the same power level as a trial with fixed clus-
ter sizes. Furthermore, unequal costs between 
treatment conditions may be a reason to use 
unbalanced designs (Liu, 2003). With such 
trials, less subjects and groups are located 
to the more expensive treatment condition. 
Furthermore, there may be other nonstatisti-
cal reasons to use an unbalanced design, such 
as ethics, the need to gain additional informa-
tion on the new treatment, and avoiding loss of 
power from dropout or crossover (Dumville, 
Hahn, Miles, & Torgerson, 2006).

Finally, it should be noted that the opti-
mal sample sizes depend on the true value 
of the intraclass correlation coefficient. This 
value is often unknown in the design phase 
and an educated guess based on expert 
knowledge or estimates as published in the 
literature must be used. In the last decade 
a number of papers that present intraclass 
correlation coefficient estimates were pub-
lished in the literature, see Hedges and 

Hedberg (2007) and Murray, Varnell, and 
Blitstein (2004) and the references therein. 
Recent research by the first author of this 
chapter and coworkers shows that the rela-
tive efficiency of a design for a group ran-
domized trial with budgetary restrictions 
hardly drops below 0.9 when the prior 
estimate of the intraclass correlation coef-
ficient departs at almost 75% from the true 
intraclass correlation coefficient. This can 
be corrected by sampling 11% more clusters 
(Korendijk, Moerbeek, & Maas, in press). If 
one is not confident that this requirement 
can be fulfilled, one has to rely on robust 
optimal designs, such as maximin designs. 
A maximin optimal design is a design that 
maximizes the minimal relative efficiency 
over a range of plausible values of the intra-
class correlation coefficient. In other words, 
it selects the best worse-case scenario 
among all possible designs. See Berger and 
Tan (2004), and Ouwens, Tan, and Berger 
(2002) for an application to repeated mea-
sures designs. Other types of robust opti-
mal designs are Bayesian optimal designs 
and designs with internal pilots. Bayesian 
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optimal designs pose a prior distribution 
on the intraclass correlation coefficient and 
sample a large number of times from this 
prior distribution in a simulation study. 
For each sample the required group sizes 
and number of groups to achieve a specific 
power level are calculated and summarized 
in a predictive distribution. One can select 
the required sample sizes from these distri-
butions such that one is sufficiently confi-
dent that the required power level can be 
achieved. See Spiegelhalter (2001) for an 
application of Bayesian designs to cluster 
randomized trials. Designs with internal 
pilots re-estimate the sample size after data 
from the pilot have been collected. The esti-
mated sample sizes in the second stage of 
the trial are based on the estimate of the 
intraclass correlation coefficient as obtained 
from the pilot. See Lake, Kammann, Klar, 
and Betensky (2002) for an application to 
group randomized trials.
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15.1 centeRIng In two-level nested desIgns

In this chapter we review basic results about centering independent vari-
ables in two-level nested designs. We present the major results in the con-
text of an example in which the available data are math achievement (MA), 
socioeconomic status (SES), and the school a student attends. The goal of 
the data analysis is to demonstrate the effect of centering of the independent 
variable SES on the relationship between SES and the dependent variable 
MA. Three types of centering of SES are considered:

Grand mean centering in which the grand mean of •	 SES is subtracted 
from each SES score: SES SES− ,  where SES  is the average of all of the 
SES scores in the sample.
Group mean centering in which for each student in a school, the •	
school mean of SES is subtracted from the SES score: SES SES j− ,
where SES j  is the average of SES score for students who are in the 
analysis and attended school j.
No centering, in which a mean is not subtracted from •	 SES.

In our review, we emphasize that centering, in particular group mean cen-
tering, addresses certain potential assumption violations and also affects the 
interpretation of the fixed effects and variance components in the model. 
Because of the impact of centering decisions on interpretation, we present 
recommendations for centering decisions.
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As noted above we present the results per-
taining to centering in the context of exam-
ples. More formal presentation of these 
results can be found in Kreft, de Leeuw, 
and Aiken (1995) and Snijders and Berkhof 
(2008). Other expositions on centering can 
be found in Enders and Tofighi (2007); 
Hox (2002); Misangi, LePine, Algina, and 
Goeddeke (2006); Raudenbush and Bryk 
(2002); and Snijders and Bosker (1999).

As noted earlier, we present the major results 
about centering in the context of an example 
in which data are available for three variables: 
MA, SES, and a variable that indicates the 
school a participant attended. The SES data 
were taken from the High School and Beyond 
file supplied with HLM 6.0 but were trans-
formed by adding five points to each student’s 
SES score. This change was made in order to 
highlight the effect of centering on intercepts. 
The values of the dependent variable MA were 
simulated in order to ensure that the models 
we use to analyze the data are correct. The 
sample sizes are 7185 students in 160 schools. 
The model used to simulate the data for our 
first set of analyses was:

 E MA SES SESij ij j( ) = + ( )+ ( )15 2 2 3 8. .

and

 MA MA u u SESij ij j j ij ij= ( )+ + +E 0 1 ε

where

MA•	 ij is the mathematics achievement 
score for student i in school j
SES•	 ij is the socioeconomic status score 
for student i in school j
SES j•	  is the mean socioeconomic status 
score in school j
E MAij( )•	  is the expected value of math-
ematics achievement conditional on 
SESij and SES j

u•	 0j + u1jSESij + εij is the residual 
i.e., MA MAij ij− ( )( )E . The variables 

u0j and u1j were constants for stu-
dents within school j but varied across 
schools. The variable εij varied over 
students within a school.

In the simulation, the coefficients for SES 
and school means SES were set to values 
similar to those obtained by analyzing the 
HSB data. The covariance matrix for the 
variables u0j and u1j was set as

 16 00
2 50 0 50

.
. .−







and the variance for εij was taken as 37. The 
variances and covariances above are similar 
to the values obtained by analyzing the HSB 
data. Descriptive statistics for the data are 
presented in Table 15.1.

15.2  sIMPle lIneaR 
RegRessIon Models

If the data were not multilevel an appropri-
ate analysis would be to use ordinary least 
squares (OLS) to estimate the simple linear 
regression model with MA as the depen-
dent variable and SES as the independent 
variable:

 MAij = β0 + βTSESij + εij.

taBle 15.1

Descriptive Statistics for Math Achievement and 
Socioeconomic Status

Variable M SD
MA 45.22 7.00
SES 5.00 0.78

Note: n = 7185.
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In this model, the two βs are fixed constants 
to be estimated and εij is a random quantity. 
Fixed constants, either in regression models 
or multilevel models, are also called fixed 
effects. Random quantities are called ran-
dom effects and the variance (and covari-
ances) of random effects are called variance 
components. The T subscript in βT stands 
for total and indicates that the grouping 
structure was not taken into account in the 
analysis.

The OLS estimate of the slope is ˆ .βT = 3 327 
and its standard error is 0.098.

To examine the effect of centering in this 
simple model, the independent variable 
is taken as the deviation of SES from the 
grand mean SES :

 MA SES SESij T ij ij= + −( )+β β ε0 .

From Table 15.1, SES = 5 00. . The estimated 
slope is again ˆ .βT = 3 327 with a standard 
error of 0.098. That is, in simple linear 
regression, grand mean centering does not 
affect the estimated slope or its standard 
error.

Although grand mean centering did not 
affect the estimated slope or its standard 
error, grand mean centering does affect the 
estimate of the intercept. When SES is used 
as the independent variable the intercept 
is 28.587 and when grand mean centered 
SES is used as the independent variable the 
intercept is 45.222. Why are these estimates 
so different? When SES is not centered the 
estimated regression equation is

 MA SES = + ( )28 587 3 327. . .

By definition the intercept is the predicted 
value when the independent variable is zero. 
When SES is used as the independent vari-
able, zero is an SES score that is well below 

the grand mean of SES (5.00). As the stan-
dard deviation for SES is .78, a SES of zero 
is about 6.4 standard deviations below the 
grand mean. Thus 28.587 is predicted MA 
corresponding to an SES that is 6.4 stan-
dard deviations below the grand mean. 
When grand mean centered SES is used 
as the independent variable, the estimated 
regression equation is

 MA SES SES = + −( )45 222 3 327. . .

Now the intercept, 45.222, is the predicted 
value of MA when SES SES− = 0 ; that is, 
when SES = 5.00. So the reason the two 
intercepts are different is because they are 
predicted values corresponding to different 
SES scores. Another way to see the relation-
ship between the slopes and the intercepts 
in the noncentered and the centered models 
is by noting that

 
MA SES SES

SES SES

ij T ij ij T

T ij

= + + = +( )
+ −(

β β ε β β

β

0 0

))+ εij .

Thus, while the slope remains the same, the 
intercept in the centered model is β β0 + T SES  
and its estimate is 28.585 + 3.327(5) = 45.222.

Is the difference in the intercepts of fun-
damental importance? No, because any esti-
mate or hypothesis test that can be obtained 
by using one of the two simple linear regres-
sion models can also be obtained by using 
the other model. If we use the model for 
noncentered SES, the predicted MA score 
for a student with an SES exactly equal to 
the grand mean is

 MA = + ( ) =28 587 3 327 5 00 45 222. . . .

and is equal to intercept under grand mean 
centering. A score of zero on the SES scale 
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is equal to a score of 0–5.00 = –5.00 on the 
grand mean centered SES scale. If we use the 
model for grand mean centered SES and cal-
culate the predicted value at the score −5.00 
we get

 MA = + −( ) =45 222 3 327 0 5 00 28 587. . . .

Thus, given the results from one model, the 
intercept for the other model can be obtained 
by algebra. Models are statistically equivalent 
if any estimate or hypothesis test that can be 
obtained by using one of the models can also 
be obtained by using the other models.

The OLS method makes the important 
assumption that residuals are independent. 
This assumption is violated when the data 
are multilevel in nature as illustrated in 
Figure 15.1 where an idealized diagram of 
the data is presented. The large ellipse rep-
resents the scatter plot of all the data and 
the slanted line is the OLS regression line 
for the model MAij = β0 + βTSESij + εij. The 
smaller ellipses represent the scatter plots 
for six schools. A residual is the deviation 
of a student’s MA score from the regression 
line. The scatter plots for Schools A and B 
are wholly above the regression line and the 
residuals for the schools are all positive. The 

scatter plots for Schools E and F are wholly 
below the regression line and the residuals 
for the schools are all negative. The scatter 
plots for these schools illustrate that the 
residuals are similar in size within schools. 
As a result the residuals are statistically 
dependent, violating an important assump-
tion of the OLS estimation procedure.

15.3 the fIxed effects Model

One solution to the problem of noninde-
pendent residuals is to use the fixed effects 
model (see, for example, Baltagi, 2005; 
Frees, 2004; or Greene, 2007). As applied in 
the current situation, the fixed effects model 
specifies a different intercept for each of the 
160 schools and a common slope for all 
schools. The model is

 MAij = β0j + βWSESij + εij.

The coefficient β0j is the intercept in the 
jth school. These 160 intercepts are fixed 
effects that can be estimated but often are 
not because they are of limited interest. 
Treating the intercepts as fixed effects is 

fIguRe 15.1
Depiction of the simple regression model.
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the reason the model is called a fixed effect 
model. The coefficient βW is a fixed effect 
that will be estimated. The W subscript in 
βW stands for “within.” The fixed effects 
model is equivalent to the ANCOVA model 
and is estimated by OLS. As is well known, 
the slope in the ANCOVA model is assumed 
to be equal across schools and is a within-
school slope; that is, the slope estimates the 
relationship between MA and SES within 
any one of the 160 schools. This is the rea-
son for the W subscript in βW.

The fixed effects model is depicted in 
Figure 15.2. Note, for example, the regression 
line for School A goes through the scatter 
plot for School A. The residual for a student 
within a school is defined as the deviation of 
that student’s MA score from the regression 
line for the student’s school. In School A, as 
in all of the other schools in Figure 15.2, there 
would be both positive and negative residuals 
and so the problem of nonindependent resid-
uals is addressed. The coefficient β̂W is equal 
to 2.181 with a standard error of .109. Note 
that β̂W  is approximately .65 the size of ˆ .βT  
For the purposes of comparing results, coef-
ficients for the various models considered so 
far and several that will be considered subse-
quently are presented in Table 15.2.

15.4  the RandoM effects 
Model (RandoM 
InteRcePts Model)

Another possible solution to the problem of 
nonindependent residuals is to use the ran-
dom effects model (see, for example, Baltagi, 
2005; Frees, 2004; Greene, 2007). The model 
can be written in the same form as the fixed 
effects model

 MAij = β0j + βSESSESij + εij.

but (a) βSES is not necessarily equal to βW, 
and (b) the β0j are regarded as random 
quantities. Treating the intercepts as ran-
dom quantities is the reason the model is 
called the random effects model. Since β0j 
is a random variable, it can be expressed as 
β0j = γ0 + u0j, where γ0 is the expected value 
of β0j and u0j = γ0 – β0j is the random error. 
Substituting β0j = γ0 + u0j, the model can be 
written as

 MAij = γ0 + γSESSESij + u0j + εij (15.1)

where γSES = βSES, and the fixed effects to 
be estimated are γ0 and γSES. Both u0j and 
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Depiction of the fixed effects model.
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εij are random effects. The variances of u0j 
and εij are the variance components. In the 
random effects model, the variance of u0j 
is also the variance of the school specific 
intercept β0j. The estimated coefficient for 
SES is ˆ .γ SES = 2 373.

The term random effects model comes 
from the econometric literature. In the 
multilevel modeling literature, the random 
effects model is often called the random 
intercepts model. The model is depicted 
in Figure 15.3. As for the simple linear 
regression model, a single regression line 
for all schools is estimated. A residual is 
the deviation of a student’s MA score from 
the regression line. Just as in the depiction 
for the simple linear regression model in 
Figure 15.1, the scatter plots for Schools A 
and B are wholly above the regression line 
and the residuals for the schools are all pos-
itive and the scatter plots for Schools E and 

F are wholly below the regression line and 
the residuals for the schools are all negative. 
Thus it would seem that the random effects 
model has the same problem as the simple 
linear regression model. However, in the 
random intercepts model the residual has 
two components u0j + εij whereas the resid-
ual in the simple regression model has only 
one component. Because u0j is equal for all 
students within a school, the inclusion of u0j 
in the random intercepts model accounts 
for the similarity of residuals within schools 
and therefore the random intercepts model 
is more appropriate for the data than is the 
simple linear regression model.

Just as in the simple linear regression 
model, with the random intercepts model 
SES can be grand mean centered:

 MA SES SES uij SES ij j ij= + −( )+ +γ γ ε0 0

taBle 15.2

Summary of Results for Selected Models

Model equation

coefficient 
(Standard 

error) for SES

coefficient 
(Standard error) 

for MeAn SES
Simple 
regression

MA = β0 + βTSES + ε 3.327
(0.098)

NA

Simple 
regression

MA SES SEST= + −( )+β β ε0
3.327

(0.098)
NA

Fixed effects MA = β0j + βW(SES) + ε 2.181
(0.109)

NA

Random 
intercepts

MA = γ0 + γSESSES + u0 + ε 2.373
(0.107)

NA

Random 
intercepts

MA SES SES uSES= + −( )+ +γ γ ε0 0
2.373

(0.107)
NA

Random 
intercepts

MA SES SES uW j j= + −( )+ +γ γ ε0 0
2.181

(0.109)
NA

Intercepts as 
outcomes

MA SES SES uW C j j= + ( )+ + +γ γ γ ε0 0
2.181

(0.109)
4.186

(0.400)
Intercepts as 
outcomes

MA SES SES SES uW C j j= + −( )+ + +γ γ γ ε0 0
2.181

(0.109)
4.186

(0.400)
Intercepts as 
outcomes

MA SES SES SES uW j B j j= + −( )+ + +γ γ γ ε0 0
2.181

(0.109)
6.367

(0.385)



Centering in Two-Level Nested Designs  •  291

Grand mean centering does not affect γ̂ SES 
because

 

MA SES u

SES

ij SES ij j ij

SES SES

= + + +

= +( )+

γ γ ε

γ γ γ

0 0

0 SSES SES

u

ij

j ij

−( )
+ +0 ε .

.

As can be seen from the preceding 
equation, the intercepts when SES is not 
centered and when SES is grand mean cen-
tered are different and for the same reason 
presented in connection with the simple 
linear regression model. Because the two 
versions of the model are statistically 
equivalent, the intercept for each model 
can be calculated from the results for the 
other model. Similarly, while the esti-
mated variance component for u0j, which 
is the estimated variance for β0j, will not 
be the same for the two models, the vari-
ance component for u0j for one model can 
be obtained from the results for the other. 
These statements apply to all statistically 
equivalent models considered in this sec-
tion and in the next section, and will not 
be repeated in each case.

15.5  InteRcePts as 
outcoMes Model

The random intercepts model presented 
in Equation 15.1 assumes that the random 
effects (i.e., u0j and rij) are uncorrelated 
with SES. Because β0j = γ0 + u0j, the ran-
dom intercepts model also assumes that β0j 
is uncorrelated with SES. You can envision 
investigating this assumption by consider-
ing a plot with SES on the horizontal axis 
and β0j on the vertical axis. If the assump-
tion is met, the scatter plot would have a 
zero slope. Furthermore, if the assumption 
is met, a scatter plot with β0j on the vertical 
axis and school mean SES i.e., SES j( )  on 
the horizontal axis would also have a zero 
slope. That is, assuming β0j is uncorrelated 
with SES implies the assumption that β0j is 
uncorrelated with SES j .

We can write the random intercepts 
model as a two-level model
Level-1:

 MAij = β0j + βSESSESij + εij

Level-2:

  β0j = γ0 + u0j

  βSES = γSES.
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fIguRe 15.3
Depiction of the random effects model.
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Since βSES is fixed, it does not have an error 
component; changing the notation from βSES 
to βSES = γSES is merely for the purpose of con-
formity. Substituting the level-2 models into 
the level-1 model shows that the two-level 
model yields the random intercepts model 
in Equation 15.1. If we think the data violate 
the assumption that β0j is uncorrelated with 
SES j or wish to test the assumption, we can 
add school mean SES to the model for β0j:
Level-1:

 MAij = β0j + βSESSESij + εij

Level-2:

 β γ γ0 0 0j C j jSES u= + +

  βSES = γW,

and our model becomes

 MA SES SES uij W ij C j j ij= + ( )+ + +γ γ γ ε0 0 .

  (15.2)

This is an example of an intercepts as out-
comes model.

In Equation 15.2 a noncentered level-1 
variable and the mean of the level-1 vari-
able are included in the model. The mean 
is called a contextual or compositional 
variable (Raudenbush, 1989) because it is a 
measure of the context of the group. The 
coefficient for the contextual variable is 
called a context coefficient and the subscript 
C on γC denotes context. Note that with the 
introduction of SES j  as an independent 
variable in the model, the subscript to the 
coefficient for SES has been changed from 
SES to W, signaling that including SES j  in 
the model changes the interpretation of the 

coefficient for SES. Estimates of the param-
eters are ˆ .γW = 2 181  and ˆ . .γ C = 4 186  (The 
standard errors are 0.109 and 0.400, respec-
tively.) Note that the coefficient for SES is 
exactly the same in the fixed effects model 
and in the intercepts as outcomes model.

An alternative model using grand mean 
centering for SES is

 
MA SES SES SES

u

ij W ij C j

j ij

= + −( )+

+ +

γ γ γ

ε

0

0 .

Since

 

MA SES SES u

SES

ij W ij C j j ij

W

= + ( )+ + +

= +( )
γ γ γ ε

γ γ

0 0

0 ++ −( )
+ + +

γ

γ ε

W ij

C j j ij

SES SES

SES u0 ,

the grand mean centered model is statisti-
cally equivalent to the model in Equation 
15.2 and the estimates of γW and γC are the 
same for the two models. The intercept in 
the grand mean centered model is, however, 
γ γ0 + W SES .

15.6  the RandoM InteRcePts 
Model wIth gRouP 
Mean centeRIng

Recall that β0j in the random intercepts model 
(see Equation 15.1) is assumed to be uncor-
related with SES and this assumption implies 
that β0j is uncorrelated with school mean SES. 
Estimating the intercepts as outcomes model 
(see Equation 15.2) is one way to address 
this implication. Another way to address the 
assumption is by group (school) mean center-
ing SES in the random intercepts model. To 
school mean center SES, we replace SES in 
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Equation 15.1 by SES SESij j− .  The assump-
tion now is that β0j is uncorrelated with the 
school means of SES SESij j− .  Because the 
school mean for SES SESij j−  must be zero 
for each school, the correlation between β0j 
and the school-mean-centered variable will 
be zero. Thus by school mean centering SES 
we have ensured that the assumption is met.

The random intercepts model in which 
SES is group mean centered is

 MA SES SES uij W ij j j ij= + −( )+ +γ γ ε0 0 .

The estimated coefficient for SES is ̂ .γW = 2 181 
with standard error 0.109 exactly the same as 
for the fixed effects model and the intercepts 
as outcomes model. However, γ̂W is differ-
ent than γ̂ SES that was obtained by using the 
random intercepts model with noncentered 
SES or with grand mean centered SES. This 
is because while the uncentered model is

 MAij = γ0 + γSESSESij + u0j + εij,

the group mean centered model is

MA SES SES u

SES

ij W ij j j ij

W ij

= + −( )+ +

= + + −

γ γ ε

γ γ

0 0

0 γγ εW j j ijSES u( ) + +0 .

The group mean centered model is equiv-
alent to a model that has two independent 
variables SES and SES j and, in which, the 
coefficients for the two variables have oppo-
site signs that are equal in absolute value. 
Because of this, the uncentered model is not 
statistically equivalent to the group mean 
centered model. Hence, for the random 
intercepts model, while the uncentered and 
the grand mean centered models are statis-
tically equivalent producing identical slope 
parameters (and equivalent intercepts), 

these two models are not statistically equiv-
alent to the random intercepts model with 
school mean centering.

15.7  the InteRcePts as 
outcoMes Model wIth 
gRouP Mean centeRIng

As an alternative to the intercepts as out-
comes model without centering or with 
grand mean centering, a model with school 
mean centering can be used:

 
MA SES SES SES

u

ij W ij j B j

j ij

= + −( )+ ( )

+ +

γ γ γ

ε

0

0 .
 

  (15.3)

This model is statistically equivalent to the 
uncentered or the grand mean centered 
intercepts as outcome model. In compar-
ing the uncentered model with the group 
mean centered model in Equation 15.3, we 
see that

 

MA SES SES SES

u

ij W ij j B j

j ij

= + −( )+ ( )

+ +

= +

γ γ γ

ε

γ

0

0

0 γγ γ γ

ε

W ij B W j

j ij

SES SES

u

+ − ( )

+ +

( )

.0

Thus the coefficient of the group centered 
SES is the same as the coefficient of uncen-
tered SES; the coefficient of SES in the 
group centered model is equal to γB–γW in 
the uncentered model. As in the other two 
intercepts as outcomes models, the coef-
ficient for SES is the within-school coef-
ficient and is estimated to be ˆ .γW = 2 181 
just as for the other two models. The coef-
ficient for school mean SES, however, is not 
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the context effect (γC). Instead it is γB, the 
between groups coefficient.

To help understand the difference between 
γC and γB consider the means as outcomes 
model

 MA SES uij B j j ij= + ( )+ +γ γ ε0 0 .  (15.4)

In this model the coefficient for the SES vari-
able is a slope relating school specific MA 
means to school specific SES means. This 
is a between school relationship and there-
fore the coefficient for mean SES is denoted 
by γB; for the current example ˆ .γ B = 6 365
. Similarly the coefficient for mean SES 
in the intercepts as outcomes model with 
group mean centering is a between-school 
relationship; the coefficient for mean SES is 
also denoted by γB and the estimated coef-
ficient is ˆ . .γ B = 6 367  (The estimates of γB 
in the means as outcomes model and the 
intercepts as outcomes model are not neces-
sarily equal, but will be similar.) Earlier we 
found that ˆ .γW = 2 181 and ˆ . .γ C = 4 186  We 
can see that γ̂ C is equal to ˆ ˆ . .γ γB W− = 4 186  
Moreover, as was seen earlier, γC = γB–γW. 
That is, the context effect is simply the dif-
ference between the between-school effect 
and the within-school effect.

Recall that the models that include γC (i.e., 
the context effect) are

 MA SES SES uij W ij C j j ij= + ( )+ + +γ γ γ ε0 0 ,

and

 
MA SES SES

SES u

ij W ij

C j j ij

= + −( )
+ + +

γ γ

γ ε

0

0 .

The coefficient γC asks whether including 
school mean SES in the model is necessary if 

individual SES (in its non centered or grand 
mean centered forms) is also in the model. 
If γC = 0, it is not necessary to include school 
mean SES in the model and one can use the 
random intercepts model

 MA SES uij SES ij j ij= + ( )+ +γ γ ε0 0 .

Also if γC = 0, then γB = γW and

 
MA SES SES

SES u

ij W ij j

B j j ij

= + −( )
+ ( )+ +

γ γ

γ ε

0

0

 (15.5)

simplifies to

 MA SES uij SES ij j ij= + ( )+ +γ γ ε0 0 ,

implying it is unnecessary to include school 
mean SES in Equation 15.5. It can be shown 
that when γB = γW, γ̂ SES estimates the com-
mon coefficient and γ̂ SES has a smaller sam-
pling variance than does γ̂W or ˆ .γ B

According to Raudenbush and Bryk 
(2002), γ̂ SES is a weighted average of γ̂ B and 
ˆ .γW  This makes it clear that if γB ≠ γW, then 
the random intercepts model without cen-
tering or with grand mean centering should 
not be used because it averages coefficients 
that provide information about two differ-
ent aspects of the relationship between MA 
and SES.

The means as outcomes model in Equation 
15.4 includes SES j  but does not include 
SES SES j− , whereas the intercepts as out-
comes model with school mean centered 
SES in Equation 15.3 includes both variables. 
Nevertheless the estimate of the coefficient for 
SES j  i.e., γ̂ B( ) will be similar for the models. 
Why is the estimate of γB largely unaffected by 
the inclusion of SES SES j−  in the intercepts 
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as outcomes model? Because SES SES j−  and 
SES j  are uncorrelated. If SES SES j−  is plot-
ted against SES j, then at any point on the  
SES j  axis, the mean of SES SES j−  must be 
zero and so the plot will have a slope that is 
equal to zero. (This claim assumes that the 
participants who have a score on SES SES j−   
are the same participants for whom SES j  
was calculated.)

Rather than including SES j  as an inde-
pendent variable we may want to include a 
level-2 variable that is not a mean of a  level-1 
independent variable. Following Susser 
(1994), we refer to a variable that is not a 
mean of a level-1 independent variable as 
an integral variable. Just as SES SES j−  and 
SES j  are uncorrelated, SES SES j−  will be 
uncorrelated with any  level-2 integral vari-
able. For example, suppose we want to study 
the relationship between the schools’ disci-
plinary climate (DC) and MA. The correla-
tion between DC and SES SES j−  will be 
zero. As a result the coefficient for DC will be 
similar in the following models (these analy-
ses use the actual HSB data):

Means as outcomes model:

 MA DC uij DC
B

j j ij= + + +γ γ ε0 0  (15.6)

 MA DC = + −( )12 59 1 49. .

Intercepts as outcomes model:

 
MA SES SES

DC u

ij W j

DC
B

j j ij

= + −( )

+ + +

γ γ

γ ε

0

0

 (15.7)

MA SES SES DCj
 = + −( )+ −( )12 59 2 19 1 49. . .

where the superscript in γ DC
B  indicates a 

between-schools coefficient. So, including 

group mean centered SES in the model did 
not materially affect the estimate of γ DC

B . In 
essence, by group mean centering SES in 
Equation 15.7 we have failed to control for 
SES. Alternatively we can say that we have 
controlled for the deviation of SES from 
school mean SES, but not for school mean 
SES. Regardless of how we describe the con-
trol, we do not know whether the relation-
ship of MA to DC would be the same if we 
had a more complete control of SES. In our 
opinion models like that in Equation 15.7 
should not be used unless the researcher 
wants to estimate the within-school rela-
tionship for the level-1 variables and a 
between-school relationship for the level-2 
variables.

More complete control of SES can be 
achieved by including school mean SES in 
the model:

 
MA SES SES SES

DC u

ij W j SES
B j

DC j j

= + −( )+

+ + +

γ γ γ

γ ε

0

0 iij ,
 

  (15.8)

 
MA SES SES

SES DC

j
 = + −( )

+ + −( )

12 63 2 19

3 11 0 69

. .

. . .

The coefficient γDC does not have a B 
superscript because γDC is not a between-
school coefficient when both SES SES j−  
and SES j  are included in the model. The 
coefficient γDC does not have a C super-
script because we reserve the term con-
text effect for the coefficient of the mean 
of a  level-1 variable e.g., SES j( )  when 
the model also includes the level-1 vari-
able and that variable is not centered or is 
grand mean centered. Either of the other 
two types of centering will provide a sta-
tistically equivalent model.
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15.8  ols estIMatIon 
RevIsIted

Just as school mean SES can be included in 
multilevel models, it can be included in a 
single-level regression model:

 MA SES SESij W ij C j ij= + + +β β β ε0 ,

 MA SES SES SESij W ij C j ij= + −( )+ +β β β ε0 ,

and

 MA SES SES SESij W ij j B j ij= + −( )+ +β β β ε0 .

For all three models ˆ ˆ . .β γW W= = 2 181  The 
coefficient β̂C will be similar to γ̂ C but not 
identical (unless the sample size is the same 
in all schools). Likewise, the coefficients γ̂ B

and β̂B will be similar (but will be identical if 
the sample size is the same in all schools).

If the regression models and multilevel 
models result in the same or similar coef-
ficients, is it necessary to use the multilevel 
model? In the multilevel models the schools 
are viewed as having been sampled from a 
larger group of schools. If this reflects the 
researcher’s point of view, then using ˆ ,γW  
and/or γ̂ B and/or γ̂ C will result in standard 
errors that correctly reflect this view. If the 
researcher’s view is that the schools are a 
fixed set of schools of interest, then the stan-
dard errors for β̂B and β̂C will be correct. 
The standard error, however, for β̂W will be 
incorrect. The correct standard error for β̂W 
should be obtained by using the fixed effects 
model, but if the total sample size is large the 
two standard errors will be quite similar.

Finally it can be shown that β̂T has a 
mathematical relationship to β̂B and ˆ .βW  
Specifically, if R2 is the proportion of 

variance due to the schools in a one-way 
ANOVA of the MA data, then

 ˆ ˆ ˆ .β β βT B WR R= + −( )2 21

(See, for example, Pedhazur, 1982). That 
is, β̂T is a proportion of variance weighted 
average of β̂B and β̂W and will be an inap-
propriate coefficient if βW ≠ βB.

15.9  suMMaRy and 
RecoMMendatIons In 
RegaRd to RandoM 
InteRcePts and 
InteRcePts as 
outcoMes Models

15.9.1  Models without 
level-2 variables

The random intercepts model, without 
centering or with grand mean centering, 
entails the assumption that the school spe-
cific intercepts (β0j) are uncorrelated with 
the independent variable. If this assump-
tion is violated, or equivalently, if the within 
group (γW) and between group (γB) coeffi-
cients are not equal, the coefficients for the 
independent variables can be misleading 
in the random intercepts model without 
centering or with grand mean centering. If 
the researcher is only interested in within 
group coefficients, the random intercepts 
model with group mean centered indepen-
dent variables should be used.

15.9.2  Models with level-2 
variables

If the variables in the model are (a)  level-1 
variables, and (b) contextual level-2 variables 
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that are means of the level-1 variables and 
if the researcher is interested in the within 
group coefficient (γW) and either the between 
group coefficient or the context coefficient 
(γC), any of the intercepts as outcomes mod-
els can be used. The models in which the 
independent variable is not centered or is 
grand mean centered may have greater util-
ity because these models directly result in a 
test of H0 : γC = 0. However, if the independent 
variable is group mean centered H0 : γC = 0 
can be tested by testing H0 : γB–γW = 0.

If the researcher is interested in an integral 
level-2 variable (e.g., disciplinary climate) 
in the model then the correct centering 
depends on the question the researcher 
plans to address. If the researcher is inter-
ested in the within-group effect of the lev-
el-1 variables and the between group effect 
of the level-2 variables, then the level-1 
variables should be group mean centered. 
However, such models should be used with 
caution because the level-2 variables are 
investigated without complete control of 
the level-1 variables. In our opinion it will 
usually be preferable to include means of 
the level-1 variables in the model and then 
any of the three centering options can be 
used (see Equation 15.7, for example).

15.10  ModIfyIng the 
RandoM InteRcePts 
and InteRcePts as 
outcoMes Models: 
addIng a RandoMly 
vaRyIng sloPe

The random intercepts model and the inter-
cepts as outcomes model entail the assump-
tion that the school specific slope is a 
constant across schools. Incorrectly making 

this assumption is not likely to have a strong 
impact on the coefficients in these models, 
but it can impact the standard errors and pre-
cludes estimation of the variance of the school 
specific slopes. Both the random intercepts 
model and the intercepts as outcomes models 
can be modified by specifying that the school 
specific slope varies across schools.

15.10.1  Random Regression 
coefficients Models

By adding a randomly varying slope to the 
random intercepts model we obtain the ran-
dom regression coefficients model. The ver-
sion of this model without centering SES is
Level-1:

 MA SESij j j ij ij= + +β β ε0 1 .

Level-2:

 β γ0 0 0j ju= +

 β γ1 1j SES ju= + .

Combined

 MA SES u u SESij SES ij j j ij ij= + + + +γ γ ε0 0 1 .  
  (15.9)

As with the random intercepts models, 
there are two other variations of the ran-
dom regression coefficients model, created 
by either grand mean centering or group 
mean centering the independent variable. 
When the independent variable is grand 
mean centered the model is

 
MA SES SES

u u SES SES

ij SES ij

j j ij

= + −( )
+ + −( )+

γ γ0

0 1 εεij .
 (15.10)
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The models in Equation 15.9 and Equation 
15.10) are statistically equivalent. Because 
the intercepts in Equations 15.9 and 15.10 
are defined for different values on the SES 
scale (see the discussion of the intercept for 
the simple regression model when the inde-
pendent variable is not centered and when 
it is grand mean centered) the estimated 
intercepts (33.33 and 45.21), variance com-
ponents for u0j (29.85 and 5.68) and cova-
riance for u0j and u1j (–4.18 and –0.64) are 
different for the two models. Nevertheless, 
the results for one of the models can be 
obtained from the results for the second. 
The estimated variance component for u1j 
will be the same for the two models and is 
0.71 for the example.

Each of the models given in Equations 
15.9 and 15.10 assumes that the school spe-
cific intercept (β0j) is independent of SES. If 

the data analyst does not want to make this 
assumption, the independent variable can be 
group mean centered. The resulting model is

 
MA SES SES

u u SES SES

ij W ij j

j j ij j

= + −( )
+ + −( )+

γ γ0

0 1 εεij,
 (15.11)

and is not statistically equivalent to the 
other two. Results for the three models are 
shown in Table 15.3. The coefficients for SES 
are equal for the first two models, but not 
for the third.

Type of centering affects the meaning 
of the intercepts and as a consequence the 
intercept (45.11) is different for Equation 
15.11 than for Equation 15.9 or Equation 
15.10. Similarly the variance component 
for u0j (10.14) and covariance for u0j and u1j 
(−0.96) are different for Equation 15.11) than 

taBle 15.3

Summary of Results for Random Regression Coefficients and Intercepts and Slopes as Outcomes Models

Model equation

coefficient 
(Standard 
error) for 

SES

coefficient 
(Standard 
error) for 

MeAn SES
Random 
regression 
coefficients

MA SES u u SESSES= + + + +γ γ ε0 0 1 2.375
(0.127)

NA

Random 
regression 
coefficients

MA SES SES u u SES SESSES= + −( )+ + −( )+γ γ ε0 0 1
2.375

(0.127)
NA

Random 
regression 
coefficients

MA SES SES u u SES SESSES j j= + −( )+ + −( )+γ γ ε0 0 1
2.173

(0.127)
NA

Intercepts 
and slopes 
as outcomes

MA SES SES u u SESW C j= + + + + +γ γ γ ε0 0 1
2.186

(0.128)
4.115

(0.402)

Intercepts 
and slopes 
as outcomes

MA SES SES SES u u SES SESW C j= + −( )+ + + −( )+γ γ γ ε0 0 1
2.186

(0.128)
4.115

(0.402)

Intercepts 
and slopes 
as outcomes

MA SES SES SES u u SES SESW j B j j= + −( )+ + + −( )+γ γ γ ε0 0 1
2.183

(0.127)
6.295

(0.382)
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for Equations 15.9 and 15.10. For all three 
types of centering, the variance component 
for u1j is the variance of the school specific 
slope (β1j). Nevertheless the estimate is dif-
ferent for Equation 15.11 than for Equation 
15.9 and Equation 15.10. For Equation 
15.11 the estimate is 0.63. According to 
Raudenbush and Bryk (2002) group mean 
centering results in a better estimate of the 
variance component for u1j.

Comparing results for the random inter-
cepts (Table 15.2) and random regression 
coefficients (Table 15.3) models, we see that 
even with the same kind of centering, the 
coefficients vary somewhat across the two 
types of models. However, as in this exam-
ple, the coefficients are typically fairly simi-
lar for the two model types.

15.10.2  Intercepts and slopes 
as outcomes Models

By adding a randomly varying slope to the 
intercepts as outcomes model we obtain an 
intercepts and slopes as outcomes model. 
The version of this model without centering 
SES is
Level-1:

 MA SESij j j ij ij= + +β β ε0 1 ,

Level-2:

 β γ γ0 0 0j C j jSES u= + +

 β γ1 0j W ju= + ,

Combined:

 
MA SES SES u

u SES

W C j j

j ij

= + + +

+ +

γ γ γ

ε

0 0

1 .
 (15.12)

There are two varieties of the intercepts 
and slopes as outcomes model. In the first 
variety, which is the subject of this section, 
the level-2 variable is a predictor of the inter-
cept only. In the second variety, the subject 
of a subsequent section entitled “Models 
with Cross-level Interactions,” the level-2 
variable is a predictor of the slope.

Observations about the first variety of the 
intercepts and slopes as outcomes model are 
similar to the observations about random 
regression coefficients models. The model in 
Equation 15.12, with a noncentered level-1 
independent variable and the model with a 
grand mean centered level-1 independent 
variable,

 
MA SES SES SES u

u SES SES

W C j j

j

= + −( )+ +

+ −( )+

γ γ γ

ε

0 0

1 iij ,
 

  (15.13)

are statistically equivalent. The coefficient 
for SES in these models is a within school 
coefficient and the coefficient for school 
means SES is a context coefficient. When 
the level-1 independent variable is group 
mean centered, the model is

 
MA SES SES SES u

u SES

ij W ij j B j j

j ij

= + −( )+ +

+ −

γ γ γ0 0

1 SSES j ij( )+ ε
  (15.14)

and is not statistically equivalent to the 
other two models. The fact that the three 
models are not statistically equivalent 
stands in contrast to the equivalence status 
of the three intercepts as outcomes model.

Recall that we defined statistically equiv-
alent models as models for which any esti-
mate or test statistic obtained by using one 
of the models can be obtained by using the 
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other models. Kreft et al. (1995) classified 
models as equivalent in the fixed effects and/
or equivalent in the variance components. 
Models are equivalent in the fixed effects if 
the population fixed effects for one model 
can be expressed as functions of the popula-
tion fixed effects of the other model. Models 
are equivalent in the variance  components 
if the population variance components for 
one model can be expressed as functions of 
the population variance components of the 
other model. Models that are statistically 
equivalent by our definition are equivalent 
by both of the criteria set forth by Kreft et 
al. (1995). The models in Equations 15.12, 
15.13, and 15.14 are equivalent in the fixed 
effects. The model in Equation 15.14 is not 
equivalent to the other models in the vari-
ance components.

Despite the fact that γW is the same 
parameter for Equation 15.12 to Equation 
15.14, the estimate of γW for Equation 15.14 
is not necessarily the same as is the esti-
mate of γW in Equations 15.12 and 15.13. 
This occurs because the models are not 
equivalent in the variance components 
and the variance components are used in 
estimating the fixed effects. In the pres-
ent example γ̂W for Equation 15.14 differs 
from γ̂W  in Equations 15.12 and 15.13 in 
the third decimal place. This is consistent 
with our experience that all three mod-
els will provide similar estimates of γW. 
With the intercepts as outcomes model, 
ˆ ˆ ˆ .γ γ γC B W= −  This is not necessarily true 
with the intercepts and slopes as out-
comes model (see Table 15.3). Comparing 
results for the intercepts as outcomes 
(Table 15.2) and intercepts and slopes as 
outcomes (Table 15.3) models we see that 
even with the same kind of centering, the 
coefficients vary across the two types of 
models.

In Section 15.7 we discussed models in 
which a level-2 variable is an integral vari-
able rather than a contextual variable. With 
the following exceptions, the discussion  in 
Section 15.7 applies to the first variety of 
intercepts and slopes as outcomes model.

 1. The difference in the estimates of γ DC
B  

in the means as outcomes model (see 
Equation 15.7) and in the intercepts as 
outcomes model (see Equation 15.6) is 
likely to be smaller than the difference 
in the estimates of γ DC

B  in the means as 
outcomes and in intercepts and slopes 
as outcomes model:

 MA SES SES DC

u SES SES
ij W j DC

B
j

j j

= + −( )+
+ + −( )
γ γ γ0

0 uu j ij1 + ε .
  (15.15)

 2. The model in Equation 15.15 is not 
statistically equivalent to the versions 
of this model in which the level-1 vari-
able is not centered or it is grand mean 
centered, though it is equivalent in the 
fixed effects.

15.11  RecoMMendatIons: 
In RegaRd to 
RandoM RegRessIon 
coeffIcIents and 
InteRcePts and sloPes 
as outcoMes Models

When a researcher is only interested in 
the within group effect (γW), the random 
regression coefficients model with group 
mean centering should be used. In addi-
tion, according to Raudenbush and Bryk 
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(2002) using group mean centering pro-
vides a better estimate of the variance com-
ponents for u1j.

When the researcher is interested in the 
within group coefficient and the context 
coefficient (γC) the intercepts and slopes 
as outcomes model can be used. The inde-
pendent variable should either be noncen-
tered or grand mean centered. When the 
researcher is interested in the within group 
coefficient and the between group (γB) the 
intercepts and slopes as outcomes model 
with a group mean centered independent 
variable can be used.

15.12  Models wIth cRoss-
level InteRactIons

As noted earlier, the model with SES and 
school mean SES as independent variables,

 
MA SES SES u

u SES

ij W C j j

j ij

= + + +

+ +

γ γ γ

ε

0 0

1 ,

is an example of the first variety of the inter-
cepts and slopes as outcomes model. One 
assumption of this model is that the school 
specific slope β1j is uncorrelated with SES j .  

To address this assumption the following 
intercepts and slopes as outcomes model, an 
example of the second variety, can be used:
Level-1:

 MA SESij j j ij ij= + +β β ε0 1

Level-2:

 β γ γ0 0 2 0j j jSES u= + +

 β γ γ1 1 3 1j j jSES u= + + ,

Combined:

MA SES SES SES SES

u u SE

ij j j

j j

= + + + ×( )

+ +

γ γ γ γ0 1 2 3

0 1 SS ij+ ε .
  (15.16)

The inclusion of SES SES j×  allows 
investigation of the cross-level interaction. 
Alternatives to Equation 15.16 replace SES 
by grand mean centered SES or by group 
mean centered SES. As usual, the model 
with group mean centered SES is not sta-
tistically equivalent to the other two, which 
are statistically equivalent. In addition, as 
shown by Kreft et al. (1995) the model with 
group mean centered SES is not equivalent 

taBle 15.4

Summary of Results for Intercept and Slopes as Outcomes Model with a Cross-Level Interaction

Random 
effect for 
the Slope

centering for 
SES

coefficient 
(Standard error) 

for SES ( )1γ̂γ

coefficient 
(Standard error) 
for Mean SES ( )2γ̂γ

coefficient 
(Standard error) for 

Interaction ( )3γ̂γ

Yes None 2.074 (1.568) 4.056 (1.592) 1.524 (0.314)
Grand Mean 2.074 (1.568) 11.674 (0.378) 1.524 (0.314)
Group Mean 1.752 (1.660) 21.157 (0.361) 1.587 (0.332)

No None 1.943 (1.285) 3.937 (1.381) 1.547 (0.257)
Grand Mean 1.943 (1.285) 11.673 (0.376) 1.547 (0.257)
Group Mean 1.672 (1.378) 21.157 (0.361) 1.602 (0.276)
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to the other two models in the fixed effects 
or in the variance components.

To generate data to compare the results 
of applying the three model variations, we 
used the following model:

 
E MA SES SES

SES SE

ij ij j

ij

( ) = + ( )+ ( )

+ ×

15 2 2 3 8

1 5

. .

. SS j( )

and

 MA MA u u SESij ij j j ij ij= ( )+ + +E 0 1 ε .

The covariance matrix for the u0j and u1j 
was again

 
16 00
2 50 0 50

.
. .−







and the variance for εij was 37.
The first three lines in the body of tables 

15.4 contain results for the three models. 
Note that the estimate of the coefficient for 
the product term (γ3) when SES is group 
mean centered is different than the estimate 
of γ3 for the other types of centering and is 
less similar to 1.5, which is the true value of 

γ3. To determine if this finding is specific to 
this particular set of simulated data, we rep-
licated the simulation 1000 times. The results 
are reported in Table 15.5 and indicate little 
if any difference among the three centering 
methods in the parameter being estimated 
by ˆ .γ 3  We also calculated the standard devia-
tion of the difference between the estimate of 
γ3 under group mean centering and the esti-
mate under either of the other types of center-
ing. These latter two estimates must be equal. 
The standard deviation was .09, indicating 
that estimates of γ3 were fairly similar across 
centering methods in most replications.

In our example, centering had a minimal 
effect on the estimate of γ3. However, the 
type of centering used in Equation 15.16 can 
affect the estimate of γ3 and when it does, it 
typically means that an independent vari-
able has been omitted from the model. For 
example, if the following model is correct 
for the data

 
E MA SES SES DC

SES DC

ij ij j j

j j

( ) = + + +

+ ×

γ γ γ γ

γ

0 1 2 4

5 ,
 

  (15.17)

and if SES DCj j×  and SES SES SESj ij −( )  
are correlated, then in

taBle 15.5

Summary of Simulation Results for Intercept and Slopes as Outcomes Model with a 
Cross-Level Interaction

centering 
for SES

coefficient 
(Standard Deviation) 

for SES ( )1γ̂γ

coefficient (Standard 
Deviation) for Mean 

SES ( )2γ̂γ

coefficient (Standard 
Deviation) for 

Interaction ( )3γ̂γ

None 2.19
(1.43)

3.81
(0.72)

1.50
(0.29)

Grand 
mean

2.19
(1.43)

11.32
(0.42)

1.50
(0.29)

Group 
mean

2.20
(1.52)

20.84
(0.42)

1.50
(0.30)
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E MA SES SES SES

SES SES

ij ij j

j ij

( ) = + −( )+

+

γ γ γ

γ

0 1 2

3 −−( )SES ,
 

  (15.18)

γ3 will not be equal to zero and spurious 
evidence for the cross-level interaction of 
school mean SES and individual SES can 
emerge. The same conclusion holds for the 
version of Equation 15.17 in which SES 
is not centered. However, if SES is group 
mean centered the correlation between 
SES DCj j×  and SES SES SESj ij j−( ) must 
be zero and, assuming Equation 15.17 is 
the correct model for the data, γ3 will be 
equal to zero when the version of Equation 
15.18 with a group mean centered SES is 
used.

As an alternative to using Equation 15.18, 
the following equation can be used

 

E MA SES SES

SES SES DC

ij ij j

j ij

( ) = + +

+ × +

γ γ γ

γ γ

0 1 2

3 4 jj

j jSES DC+ ×γ 5 .

Then assuming Equation 15.17 is the correct 
equation, spurious evidence for the cross-
level interaction of school mean SES and 
individual SES should not emerge. That is, 
if the researcher knows what integral vari-
able (i.e., DCj) is likely to interact with the 
contextual variable i.e., SES j( ),  then the 
product term SES DCj j×  can be included 
in the model and there should not be spu-
rious evidence that γ3 ≠ 0. This will be true 
regardless of which type of centering is used 
for X.

Similarly, Raundenbush (1989; see also, 
Enders & Tofighi, 2007; & Hoffman and 
Gavin, 1998) pointed out that if Equation 
15.17 is correct, then using

 
E MA SES SES DC

SES SES

ij ij j

ij

( ) = + −( )+

+ −(

γ γ γ

γ

0 1 4

6 ))DCj ,
  (15.19)

could result in spurious evidence that γ6 ≠ 0 
because SES DCj j×  and SES SES DCij j−( )  
will be correlated. The same conclusion 
applies to the version of Equation 15.19 in 
which SES is not centered. This problem can 
be overcome by using group mean center-
ing. In addition, as pointed out by Enders 
and Tofighi (2007), if H0 : γ6 = 0 is tested by 
using

 

E MA SES SES SES

DC SE

ij ij j j

j

( ) = + −( )+

+ +

γ γ γ

γ γ

0 1 2

4 5 SS DC

SES SES DC

j j

ij j j

×

+ −( )γ 6 ,

then, assuming Equation 15.17 is correct, 
spurious test results for the test of H0 : γ6 = 0 
should not emerge. The same conclusion 
holds regardless of the centering of SES. 
The general principal in these two examples 
is that in multilevel models as in regres-
sion models, it is essential to avoid omit-
ting important variables from the model. 
Raudenbush and Bryk (2002, Chapter 10) 
describe a procedure for detecting omitted 
level-2 variables.

In Table 15.4, the estimate of the coeffi-
cient for the SES variable (γ1) is quite differ-
ent when SES is group mean centered than 
it is for the other two types of centering, but 
results in Table 15.5, for the 1000 simulated 
data sets, indicate little if any difference 
among the three centering methods in the 
parameters estimated by ˆ .γ1  The standard 
deviation of the difference between the 
estimates of γ1 under group mean centering 
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and the estimate of γ1 under either of the 
other type of centering was .50, indicating 
that the estimate of γ1 under group mean 
centering could be quite different than the 
estimate under the other types of center-
ing. This is consistent with the results in 
Table 15.4.

In Table 15.4, the estimate of the coef-
ficient for school mean SES (γ2) varies 
dramatically across the three methods of 
centering. We can understand these dif-
ferences by considering the formula for 
the estimated simple slope for school mean 
SES. The general expression for a simple 
slope is (a) the coefficient for the variable of 
interest, which is school mean SES in the 
present example and is equal to ˆ ,γ 2  plus (b) 
the coefficient of the product term, which 
is ˆ ,γ 3  multiplied by the other variable in 
the product term, which will be one of the 
forms of SES. Under group mean centering, 
the formula for the simple slope for SES j  
is ˆ ˆ .ˆγ γ γ2 3+ −( )SES SES j  Substituting a value 
for SES SES j−( )  in the formula provides 
an estimate of the slope for SES j  among 
students at that level of SES SES j−( ) . 
For example, if we focus attention on stu-
dents with an SES that is two points above 
the mean SES for their school we find 
21.157 + 1.587(2) = 24.331, the simple slope 
for school mean SES among students whose 
SES is two points above the mean SES for 
their school. Based on ˆ ˆ ,γ γ2 3+ −( )SES SES j  
γ̂ 2 is obtained by substituting zero for 

SES SES j−( )  and is the simple slope for 
school mean SES among students whose 
SES is equal to their school mean SES. Thus 
γ̂ 2 = 21.157 is the simple slope for school 
mean SES among students whose SES is 
equal to their school mean SES.

When SES is not centered, the simple 
slope for school mean SES is ˆ ˆ .γ γ2 3+ SES  

Using ˆ ˆ ,γ γ2 3+ SES  γ̂ 2 is obtained by sub-
stituting zero for SES and is the slope for 
school mean SES among students whose 
SES is 0. Thus γ̂ 2 = 4.056 is the simple 
slope for school mean SES among students 
whose SES is 0. To obtain the simple slope 
formula for grand mean centering, replace 
SES in ˆ ˆ ,γ γ2 3+ SES  by SES SES−( )  to obtain 
ˆ ˆ .γ γ2 3+ −( )SES SES  Therefore, under grand 
mean centering ˆ .γ 2 11 674=  is the simple 
slope for school mean SES among students 
whose SES SES−  is equal to zero or, equiv-
alently, whose SES is at the grand mean. 
These considerations show that γ̂ 2 varies 
across the centering because γ̂ 2 is a simple 
slope for school mean SES when the SES 
independent variable is zero and the mean-
ing of zero on the SES independent variable 
varies across the three centering methods.

Recall that ˆ .γ 2 11 674=  in the model 
with grand mean centered SES and that 
γ̂ 2 is the simple slope for school mean SES 
among students whose SES is at the grand 
mean. The simple slope for mean SES in 
the model in which SES is not centered is 
ˆ ˆ .γ γ2 3+ SES  We can use this expression to 
find the simple slope for school mean SES 
among students whose SES is at the grand 
mean by substituting 5 for SES. We find 
4.056 + 1.524(5) = 11.676, which is within 
rounding error of the result obtained by 
using the model in which SES was grand 
mean centered. This illustrates that when 
models are equivalent, any estimate that 
can be obtained from one model can also be 
obtained from the other model.

Comparison of the formula for the sim-
ple slope for school mean SES under group 
mean centering ˆ ˆγ γ2 3+ −( ) SES SES j  to 
either the formula when there is no centering 

ˆ ˆγ γ2 3+[ ]SES  or the formula when there is 
grand mean centering ˆ ˆγ γ2 3+ −( ) SES SES  
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shows that the nature of the simple slope 
is quite different under group mean cen-
tering. Specifically ˆ ˆγ γ2 3+ −( )SES SES j  
estimates the effect of school mean SES 
for students who are a particular dis-
tance from their school mean SES. 
For example if SES SES j−( ) =1  then 
ˆ ˆγ γ2 3+ −( )SES SES j  = 21.157 + 1.587(1) = 22.744 
and tells us that among students whose SES 
is one point above the school mean SES, the 
effect of school mean SES is about 23 points. 
According to the model, this implication 
holds regardless of the school’s mean SES. 
So if we focus attention on students with an 
SES of 4.5 in schools with an average SES of 
3.5 (a low SES) or on students with an SES 
of 7.5 in a school with an average SES of 6.5 
(a high SES), the effect of school mean SES 
will be 23 points. By contrast, according to 
either of the other models the simple slope 
for school mean SES depends on the stu-
dent’s actual SES.

Cross-level interactions can also be inves-
tigated by using intercepts and slopes as out-
comes models without a random effect for 
the slope. If SES is not centered the model is

 
MA SES SES

SES SES u

ij j

j j ij

= + +

+ ×( )+ +

γ γ γ

γ ε

0 1 2

3 0 .

Results for this model, as well as results 
for variations on this model obtained by 
grand mean or group mean centering, are 
presented in the last three lines in the body 
of table 15.4. The effect of deleting the u1j 
term on the coefficients is fairly small. But 
it is known that failing to include a required 
random effect tends to result in standard 
errors that underestimate the sampling vari-
ability in the estimates. Consistent with this 
result, the standard errors for the estimates 

tend to be smaller when the u1j term is not 
included.

15.13  RecoMMendatIons foR 
Models wIth cRoss-
level InteRactIons

One issue is whether or not to include the uij 
term in the model. Whenever possible the 
uij term should be included. Another issue is 
the type of centering for the level-1 indepen-
dent variables. In our simulation, centering 
had little effect on the interaction effect. 
These results no doubt reflect the fact that 
we used the same model to simulate the data 
and to analyze the data. Nevertheless, our 
experience is that centering often has little 
effect on the interaction coefficient. When 
centering has a strong effect on the estimate 
of the interaction parameter, it typically 
means that an independent variable has 
been omitted from the model. If centering 
does not have a strong impact on the cross-
level interaction (i.e., the interaction is sig-
nificant both when group mean centering is 
used and when it is not or is not significant 
in both cases) then we recommend against 
group mean centering unless the researcher 
wants to investigate the simple effect for the 
level-2 variable defined by how far removed 
the participant is from the group mean on 
the level-1 variable and not on the partici-
pant’s actual score on the level-1 variable. If 
centering does have a strong impact on the 
cross-level interaction (i.e., the interaction 
is not significant when group mean center-
ing is used but is significant with the other 
two types of centering) then we recommend 
excluding the cross-level-interaction from 
the model.
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15.14  centeRIng level-2 
vaRIaBles

When a level-2 variable is centered, the new 
model is statistically equivalent to the origi-
nal model. Therefore any estimate or hypoth-
esis test that can be obtained by using the 
original model can also be obtained by using 
the revised model. Consequently centering 
level-2 variables is a less important issue than 
is centering level-1 variables. To illustrate let 
us consider Equation 15.16 and the model 
obtained by grand mean centering SES j :

 

MA SES SES SES

SES SES SES

ij j

j

= + + −( )
+ × −[ ]
γ γ γ

γ

0 1 2

3 (( )
+ + +u u SESj j ij0 1 ε .

Results for Equation 15.16, originally 
reported in Table 15.4, are γ̂1 = 2.074, 
γ̂ 2 = 4.056, and γ̂ 3 = 1.524. After grand 
mean centering γ̂1 = 9.692, γ̂ 2 = 4.056, and 
γ̂ 3 = 1.524. Grand mean centering did not 
affect γ̂ 2 or γ̂ 3 because their interpreta-
tion is independent of level-2 centering. 
Grand mean centering did affect γ̂1 because 
its interpretation is affected by level-2 
centering:

When •	 SES j  is the level-2 variable γ̂1 
is the simple slope for SES when SES j  
is zero
When •	 SES SESj −  is the level-2 vari-
able γ̂1 is the simple slope for SES when 
SES j  is equal to the grand SES mean

Similarly when the level-1 variable is cen-
tered (either grand mean or group mean) in 
the cross-level interaction model, centering 
the level-2 variable only affects the estimate 
of γ1. In the multilevel models considered in 

this chapter that do not include cross-level 
interactions, centering the level-2 variable 
only affects the intercept.

15.15  Models wIth 
RePeated MeasuRes

As an example of a repeated measures 
design, consider the data provided with 
HLM 6.0 in which adolescents were asked 
about their attitudes toward deviant 
behavior (ATT) and exposure to deviant 
peers (EXP) each year from age 11 to age 
15. (For the sake of simplicity we used a 
version of this data set in which all par-
ticipants with missing data were elimi-
nated from the data file.) Henceforth we 
refer to data like those in the MA and SES 
example as between-subjects data because 
all of the variables vary between-subjects. 
We refer to data like those in the ATT and 
EXP example as mixed data because the 
variables vary within-subjects (over time) 
and between-subjects. The same issues we 
developed in the context of the MA and SES 
example could be developed in the context 
of this new example. Rather than repeat-
ing the developments we introduce some 
issues that apply primarily or uniquely in 
repeated measures designs.

Suppose the researchers are interested 
in the relationship of ATT to EXP and the 
researchers use the model

 ATT EXP uij EXP ij j ij= + + +γ γ ε0 0 , (15.20)

where ATTij is the attitude for person j at 
age i. By using this model the researchers 
run the risk of confounding the within per-
son relationship between the two variables 
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(how ATT changes over time with changes 
in EXP) with the between person relation-
ship (how ATT scores vary across people in 
relation to variation in EXP scores across 
people.) Based on the developments for 
between-subjects data, the two relation-
ships can be separated by using the model

 ATT EXP EXP uij W ij C j j ij= + + + +γ γ γ ε0 0 ,  
  (15.21)

where EXP j  is the average EXP score for 
person j over the five ages. Separation of 
the two aspects of the relationship can 
also be achieved by using the other center-
ing options. With group mean centering, 
the EXP independent variable becomes 
EXP EXPij j−  and is the deviation of the jth 
person’s EXP score at age i from that person’s 
mean over the five ages. Thus, group mean 
centering in a repeated measures design is 
person mean centering. With grand mean 
centering, the EXP independent variable 
becomes EXP EXPij −  and is the deviation 
of the jth person’s EXP score at age i from 
the grand mean; that is, the mean over all 
ages and participants. Applying Equation 
15.21 we obtain ˆ . ,γ 0 324=  ˆ . ,γW = 465  and 
ˆ . .γ C = 071  Testing H C0 0: γ =  tests the same 
hypothesis that is tested in Hausman’s 
(1978) test to determine if a fixed or random 
effects model is appropriate for the data. If 
H C0 0: γ =  is rejected then Equation 15.21 is 
preferred over Equation 15.20 and, as noted 
above, yields γ̂W that is equal to the coeffi-
cient one would obtain by using the fixed 
effects model.

The purpose of including the person 
mean of EXP is to account for the pos-
sibility that u0j is correlated with EXP in 
Equation 15.20 or equivalently that the 
within person intercept β0j = γ0 + u0j is cor-
related with EXP. There is another approach 

to accounting for this possibility that can 
be used with repeated measures data. The 
model is

 ATT EXP uij W ij j ij= + + +γ γ ε0 0 , (15.22)

but the estimation procedure allows for the 
possibility that u0j is correlated with EXP at 
each occasion (Allison, 2005). Allowing for 
the possibility that u0j is correlated with EXP 
at each occasion results in estimation of a 
within person coefficient. This procedure 
can be implemented in any structural equa-
tion modeling program. Appendix A pres-
ents an Mplus program for implementing 
the method. The code—a1 a2 a3 a4 a5 
(3)—restricts the variance of the residuals 
to be equal at all ages to maximize similar-
ity of the results obtained by using Equation 
15.21; the restriction is not  necessary. The 
results are ˆ .γ 0 324=  and ˆ .γW = 465. The esti-
mate γ̂W  and its standard error are equal to 
the estimate β̂W  and its standard error that 
would be obtained by using the fixed effects 
model. A likelihood ratio test comparing 
the model that specifies u0j is correlated 
with EXP at each occasion to one with-
out the specification can be used to select 
between the two approaches. Without the 
restriction on the residual variances, the 
results are ˆ .γ 0 319=  and γW = .456.

Estimation of Equation 15.22 allowing for 
the possibility that u0j is correlated with EXP 
at each occasion can also be implemented in 
a hierarchical linear modeling program by 
writing the model as
Level-1:

 ATT EXPij j ij ij= + +β β ε0 1

Level-2:

 β γ γ γ0 0 01 11 05 15j j j ojEXP EXP u= + + + +
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and

 β γ1 = W .

where EXP11j,…,EXP15j are the exposure 
variables at the five ages. The level-2 equa-
tion is equivalent to Chamberlin’s (1982, 
1984) specification for the relationship of 
u0j to the predictors in the model. The com-
bined model is 

 
ATT EXP EXP

EXP u

ij W ij j

j j

= + +

+ + + +

γ γ γ

γ

0 01 11

05 15 0 εεij ,
 (15.23)

Comparing Equations 15.23 and 15.21 
shows that if γ01 = … = γ05 ≡ γ then Equation 
15.23 simplifies to Equation 15.21 with 
γC = 5γ. To estimate Equation 15.23, we used 
the multivariate linear two-level model with 
heterogeneous residual variances in HLM 
6.0. A screen shot of the program is pre-
sented in Appendix B. The results obtained 
were ˆ .γ 0 302=  and γW = .465. The coeffi-
cient γ̂ 0 is different in Equation 15.23 and 
Equation 15.22, but the intercept obtained 
by using Equation 15.22 can be obtained 
by revising Equation 15.23 with each of 
EXP11j,…,EXP15j centered around its mean. 
The hypothesis H0:γ01 = … = γ05 = 0 can be 
tested to determine if correlations between 
the person-specific intercepts and the expo-
sure variable at each age are required in the 
model. The hypothesis tested in Hausman’s 
test is a special case of H0:γ01 = … = γ05 = 0 
because Hausman’s approach assumes 
γ01 = … = γ05 = γC/5.

Another approach to centering in repeated 
measures designs involves the concept of the 
cross-sectional and the longitudinal effects 
(see Diggle, Heagerty, Liang, & Zeger, 2002). 
Consider the two-level model

Level-1:

 ATT EXP EXPij j j ij j ij= + −( )+β β ε0 1 11

Level-2:

 β γ γ0 0 11 0j X j jEXP u= + +

and

 β γ1 j L=

where the subscript X denotes cross-
sectional and the subscript L abbreviates 
longitudinal. Rather than group mean or 
grand mean centering EXP, the variable 
EXPij–EXP11j expresses EXP as a deviation 
from the value of EXP at age 11. The com-
bined model is 

 
ATT EXP EXP EXP

u

ij X j L ij j

j ij

= + + −( )
+ +

γ γ γ

ε

0 11 11

0 .

In the level-1 equation, EXP is expressed 
as a deviation from EXP at age 11. As a con-
sequence of this new type of centering, the 
intercept β0j is expected ATT when EXP is 
equal to its value at age 11. We can think of 
β0j as model-implied attitude for the adoles-
cent j at age 11. An adolescent with a high 
β0j will tend to have a high ATT at age 11 
and an adolescent with a low β0j will tend 
to have a low ATT at age 11. The coefficient 
γX is the cross sectional effect and measures 
the effect of EXP at age 11 on ATT at age 
11. The variable EXPij – EXP11j measures 
change over time in EXP. Thus γL mea-
sures the effect of changes in EXP on ATT. 
The results are ˆ .γ X = 409, implying that at 
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age 11 adolescents with more exposure to 
deviant peers have a more positive attitude 
toward deviance, and ˆ .γ L = 504, implying 
that as exposure to deviant peers increases 
(decreases) overtime, attitude toward devi-
ance increases (decreases).

An alternative conceptualization of the 
model is
Level-1:

 ATT EXPij j j ij ij= + +β β ε0 1

Level-2:

 β γ γ0 0 1 11 0j j jEXP u= + +

and

 β γ1 2j = .

The combined model is

 ATT EXP EXP uij j ij j ij= + + + +γ γ γ ε0 1 11 2 0 .

It follows then that γ2 = γL is the longitu-
dinal effect, and γ1 = γX – γL is the difference 
between the cross sectional and longitudi-
nal effects. The two models are statistically 
equivalent. The alternative model clarifies 
the nature of the assumption in regard to 
β0j. The model assumes that β0j is uncorre-
lated with EXP at ages 12 to 15. By contrast 
the models in Equations 15.21 and 15.22 
do not make this assumption. The results 
of the new model are ˆ ˆ .γ γ2 504= =L  and 
ˆ ˆ ˆ .γ γ γ1 095= − = −X L .

In models considered so far, for both 
between-subjects and repeated measures 
data, centering was used to address assump-
tion violations but centering also impacted 
interpretation of some of the parameters 

of the model. When the distribution of the 
level-1 variable is the same for all partici-
pants, centering is used to enhance inter-
pretation of the parameters, not to address 
assumption violations. (The discussion that 
follows also applies when randomly missing 
data results in a distribution of the level-1 
variable that is not the same for all partici-
pants.) For example, in the attitude toward 
deviant behavior example, attitudes were 
assessed annually from age 11 to 15 and a 
level-1 model of interest could be

 Att Ageij j j ij ij= + +β β ε0 1 , (15.24)

where Ageij ranges from 11 to 15. Thus the 
distribution of age is the same for all par-
ticipants. The level-2 models are

 β γ0 00 0j ju= +

and

 β γ1 10 1j ju= + .

At any time point, Ageij is the same for all 
participants and therefore it is impossible 
for u0j or u1j to be related to age and, con-
sequently, no need to be concerned that u0j 
or u1j are related to age. Nevertheless, cen-
tering can enhance the interpretation of β0j 
and therefore of γ00. In Equation 15.24 the 
intercept β0j is the expected attitude score 
for person j at age 0, and therefore is not 
subject to a meaningful interpretation. To 
make the intercept subject to a meaningful 
interpretation one of two alternative mod-
els, obtained by centering Age, might be 
used. The first model is 

 Att Ageij j j ij ij= + −( )+β β ε0 1 11 .  (15.25)
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Using Ageij–11 as the independent vari-
able centers the data so that zero repre-
sents the earliest age at which participants 
are measured. Then the intercept β0j is 
the expected attitude score for person j at 
Ageij–11 = 0, that is, at age 11 and in the 
combined model

 
Att Age u

u Age

ij ij j

j ij

= + −( )+

+ −( )+

γ γ

ε

00 01 0

1

11

11 iij .

γ00 is the average attitude at age 11. The sec-
ond model is

 Att Ageij j j ij ij= + −( )+β β ε0 1 13 ,  (15.26)

where 13 is the midpoint of the age distri-
bution. Using (Ageij–13) as the independent 
variable centers the data so that zero repre-
sents the midpoint of the ages at which par-
ticipants are measured. Now, the intercept 
β0j is the expected attitude score for person 
j at Ageij–13 = 0, that is, at age 13 and in the 
combined model

 
Att Age u

u Age

ij ij j

j ij

= + −( )+

+ −( )+

γ γ

ε

00 01 0

1

13

13 iij ,

γ00 is the average attitude at age 13. The 
intercepts in Equation 15.25 and Equation 
15.26 are different and therefore the vari-
ance of u0j is different in these models as are 
the covariances of u0j and u1j. However, γ10 
is equal in the two models as is the variance 
of u1j.

When the distribution of the level-1 vari-
able is the same for all participants (or dif-
fers only due to randomly missing data), it 
is common to investigate polynomial trends 

in the data. For example, a second degree 
trend in the data could be investigated by 
replacing Equation 15.24 by

Att Age Ageij j j ij j ij ij= + + +β β β ε0 1 2
2 .

(15.27)

Unfortunately, the meaning of β1j is not 
the same in Equations 15.24 and 15.27. 
Similarly the meaning of γ β10 1= ( )E j  is not 
the same in Equations 15.24 and 15.27. In 
Equation 15.24, β1j and γ10 are the linear 
trend for person j and the average linear 
trend in the data, respectively. In Equation 
15.27 β1j is the instantaneous rate of change 
in attitude at zero years of age and γ10 mea-
sures the average, over adolescents, instan-
taneous rate of change in attitude at zero 
years of age. In order to avoid changes in 
the meaning of terms as higher order pow-
ers are added to the model, orthogonal 
polynomial variables can be used in place 
of powers of Age variable. Table 15.6 shows 
the orthogonal polynomial variables for use 
in the Age example. For example if the goal 
were to investigate linear and quadratic 
trends in the data, the model would be

Att Linear Quadraticij j j ij j ij ij= + + +β β β ε0 1 2 .

taBle 15.6

Orthogonal Polynomial Variables for the Age Example

Age

Orthogonal Polynomial Variables

Linear Quadratic cubic Quartic
11 −2 2 −1 1
12 −1 −1 2 −4
13 0 −2 0 6
14 1 −1 −2 −4
15 2 2 1 1
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If the data analysts wanted to add a cubic 
trend to the model, s/he would use

 
Att Linear Quadratic

Cub

ij j j ij j ij

j

= + +

+

β β β

β

0 1 2

3 iicij ij+ ε .

In both models, β1j measures the linear trend 
for person j and β2j measures the quadratic 
trend for person j. It should be noted that 
the orthogonal polynomials in Table 15.6 
are only appropriate if the values of Age 
are equally spaced or if there are five values 
for Age.

15.16 conclusIons

In this chapter we have used examples to 
present the basic results on centering in 
two-level models. Our approach was to 
present centering as a method that not only 
addresses assumption violations but also 
affects interpretation of parameters. Our 
presentation was primarily in the context 
of between-subjects designs. Rather than 
repeating the developments that apply 
to both between-subjects designs and 
repeated measures designs, for repeated 
measures designs we introduce some issues 
that apply primarily or uniquely to these 
designs.
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aPPendIx a

Mplus Program for Estimating the Random 
Intercepts Model With Correlation 
Between Exposure and the Random 
Intercepts

title:
Random intercepts model; Residual 
correlated with exposure;
data:
file is “g:\7474\longcross.correct\
cross.dat”;
Variable:
names are a1-a5 e1-e5;
MODEL:
  u0i by a1@1;
  u0i by a2@1;
  u0i by a3@1;
  u0i by a4@1;
  u0i by a5@1;
  a1 ON e1 (1) u0i;
  a2 ON e2 (1) u0i;

  a3 ON e3 (1) u0i;
  a4 ON e4 (1) u0i;
  a5 ON e5 (1) u0i;
  [u0i@0];
  u0i with e1;
  u0i with e2;
  u0i with e3;
  u0i with e4;
  u0i with e5;
  [a1 a2 a3 a4 a5] (2);
  a1 a2 a3 a4 a5 (3);
output:
sampstat;
res;

aPPendIx B

Screen Shot of HLM Program for Estimating 
the Random Intercepts Model With 
Correlation Between Exposure and the 
Random Intercepts.
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16
Cross-Classified and Multiple-
Membership Models

S. Natasha Beretvas
Department of Educational Psychology, The University of 
Texas at Austin, Austin, Texas

The previous chapters in this book have described models designed to han-
dle purely hierarchical data structures. However, as will be explained in 
the current chapter, some data structures involve clustered data but do not 
qualify as pure hierarchies. These extensions to the multilevel model are 
called cross-classified (C-C) models and are commonly encountered in all 
realms of social science as well as many other types of research. This chap-
ter will provide examples of various cross-classified data structures, ways 
to assess and depict what factors are cross-classified and to formulate the 
relevant models. In addition, extensions to cross-classified models (called 
multiple-membership models) will also be described and explained.

Several multilevel textbooks provide chapters describing cross-classified 
models (including Beretvas, 2008; Hox, 2002; Raudenbush & Bryk, 2002; 
Snijders & Bosker, 1999). Hox’s and Beretvas’s chapters include demonstra-
tions of various multilevel software packages for estimating C-C models. A 
couple of textbooks include chapters on both cross-classified and multiple-
membership models (Goldstein, 2003; Rasbash & Browne, 2001). A report 
by Fielding and Goldstein (2006) also provides a comprehensive resource 
offering several examples of cross-classified and multiple-membership data 
structures. The reader is encouraged to review these chapters and the report 
to assist in mastery of these complex models.

This first section will build on a simple educational example to explain 
and demonstrate the distinction between pure hierarchies, cross-classified 
data sets and structures that are termed multiple-membership structures. 
This explanation will include the use of tables and figures (in the form of 
network graphs) to help the reader identify the data’s structure. The next 
section will briefly discuss how cross-classified data sets are typically han-
dled and the effect of inappropriate modeling of cross-classified structures. 
Next, formulation of both cross-classified and multiple-membership  models 
(as well as combinations thereof) will be presented.
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16.1  dIstInctIon Between 
PuRe and cRoss-
classIfIed data 
stRuctuRes

A very typical example of a hierarchical 
data structure is the scenario in which indi-
vidual students are clustered within middle 
schools. Table 16.1 contains a very small 
data set used to demonstrate the clustering 
of students within middle schools. Each let-
ter (A through V) represents a student. Each 
student only appears once in Table 16.1. The 
table represents each student’s affiliation 
with only a single middle school although 
there are multiple students within each 
middle school. Thus middle school is a clus-
tering variable. Figure 16.1 also depicts the 
pure clustering of students within middle 
schools for students in Table 16.1 in a net-
work graph.

In a network graph, each unit of each 
variable (here, student and middle school) 
is labeled and lines represent the connec-
tions (clusters) among elements across clus-
tered and clustering variables. Network 
graphs provide a way of identifying data 

sets’ structures. Goldstein (2003) provides 
an alternative graphical technique for 
describing a data set’s structure, however 
network graphs seem to provide a better 
way for identifying the type of structure that 
can be then summarized using Goldstein’s 
graphs.

For data to be considered purely clus-
tered, clusters of elements from one level all 
belong to single elements of a higher level. 
If it is possible to construct a network graph 
in which the lines [representing affiliations 
of lower level units (here, students) with a 
higher level unit (here, middle schools)] do 
not cross, then the data’s structure can be 
considered a pure hierarchy.

To extend this first example further, a 
researcher might recognize that model-
ing this two-level structure (with students 
at level-1 clustered within middle schools 
at level-2) ignores the effect of high school 
on a student. If each individual high 
school enrolls students only from a single, 
associated middle school then it would be 
impossible to separate out the effects of 
middle and high schools. If, however, in a 
better approximation to reality, it could be 
assumed that each high school took students 

taBle 16.1

Pure Two-Level Clustering of Students (Level-1) within Middle 
School (Level-2) 

Middle School

1 2 3 4 5 6 7 8
A,B,C D,E F,G,H,I J,K L,M,N O,P Q,R,S,T U,V

Middle school 1

B C D E F G H I J K L M N O P Q R S T U VA

2 3 4 5 6 7 8

Student

fIguRe 16.1
Network graph of pure two-level clustering of students (level-1) within middle school (level-2).



Cross-Classified and Multiple-Membership Models  •  315

from its own set of middle schools then the 
data set could be considered as having three 
levels. Table 16.2 depicts this pure clustering 
of students (level-1) clustered within middle 
schools (level-2) and middle schools as clus-
tered within high school (level-3).

As soon as another clustering variable is 
being considered, assessment of the struc-
ture of a data set becomes more compli-
cated. Depiction of a data set’s structure 
using a table can help identify whether data 
are purely clustered or not. In Table 16.1, 
columns represent units of one of the clus-
tering variables (here, middle schools) and 
rows represent levels of the other clustering 
variable (here, high school). If the data are a 
pure hierarchy then either exactly one cell 
per row or exactly one cell per column (but 
not both rows and columns) will contain 
elements in it (Rasbash & Browne, 2001). In 
this particular example, each column only 
has one cell with elements in it. For example, 
Middle School 3 only has elements in the cell 
that corresponds to High School II. However, 
in this data set, at least one row (actually, 
all of them except that of High School IV) 
contain more than one cell with elements in 
them. For example, there are students from 
Middle Schools 6 and 7 who attend High 
School III. If only one cell per column has 
all of that column’s elements in it, then the 
column variable is purely nested within the 

row variable. If, on the other hand, only one 
cell per row has all of each row’s elements 
within it, then the row variable is purely 
nested within the column variable.

It does not matter how the table is drawn. 
In other words, it does not matter what level 
is used as the column versus the row vari-
able. The data structure in Table 16.2 is also 
depicted in Table 16.3 in which the Middle 
School variable is now a row variable and 
High School is represented by columns. In 
this depiction of the data’s structure, only 
one cell in each row (i.e., middle school) 
contains elements and most of the columns 
have several cells containing elements. Thus 
we can infer that middle schools are purely 
clustered within high school.

taBle 16.2

Pure Three-Level Clustering of Students within Middle Schools within High 
Schools with Middle School as Column Variable

High 
School

Middle School

1 2 3 4 5 6 7 8
I A,B,C D,E
II F,G,H,I J,K L,M,N
III O,P Q,R,S,T
IV U,V

taBle 16.3

Pure Three-Level Clustering of Students within 
Middle Schools within High Schools with Middle 
School as Row Variable

Middle 
School

High School

I II III IV
1 A,B,C
2 D,E
3 F,G,H,I
4 J,K
5 L,M,N
6 O,P
7 Q,R,S,T
8 U,V
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Figure 16.2 contains a network graph of 
the data structure contained in Table 16.2 
(and, obviously, Table 16.3). For purely 
clustered data, it is possible to line up each 
(clustered or clustering) variable’s units 
such that no lines on the graph cross each 
other. And this holds in Figure 16.2 for 
both  clustering variables. An alternative 
representation of the data in Figure 16.2 
appears in Figure 16.3. The pure clustering 
of middle school within high school can 
be modeled more simply by stacking units 
by level (i.e., student within middle school 
within high school). None of the lines cross 
that connect level-1s (students’) units with 

those of level-2 and the same holds for the 
lines  connecting elements of level-2 (middle 
schools) with level-3 (high schools).

Unfortunately, the pure hierarchy depicted 
in Tables 16.2 and 16.3 and Figures 16.2 and 
16.3 does not always match reality. Not all 
clustered data structures are pure clusters. 
In the context of the current example, it is 
more likely that sets of middle schools do not 
send their students to a single high school. 
Instead the data might look more like the 
example given in Table 16.4. In Table 16.4, 
students are clustered within middle schools 
and within high schools as evidenced by 
some cells in the table containing more than 

Middle school 1

B C

I II III IV

D E F G H I J K L M N O P Q R S T U VA

2 3 4 5 6 7 8

Student

High school

fIguRe 16.2
Network graph of pure three-level clustering of students within middle schools within high schools.

High school

Middle school 1

I II III IV

B C D E F G H I J K L M N O P Q R S T U VA

2 3 4 5 6 7 8

Student

fIguRe 16.3
Alternative network graph of pure three-level clustering of students within middle schools within high 
schools.

taBle 16.4

Cross-Classified Dataset Containing Students Cross-Classified by Middle 
School and High School

High 
School

Middle School

1 2 3 4 5 6 7 8
I A,B D,E
II C F,G, J,K L
III H,I M,N O,P Q,R
IV S,T U,V
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one student. Thus middle school and high 
school are both clustering variables or “clas-
sifications” for students. However, mid-
dle schools are not clustered within high 
schools and high schools are not clustered 
within middle school. This can be inferred 
because single cells in rows do not contain 
all of a row’s elements, and vice-versa for 
columns. The pattern of the data depicted 
in Table 16.4 involves a cross-classification 
of students by middle and high school. By 
definition, a cross-classified data structure 
is inferred because while one set of units 
(here, students) are clustered within each of 
the classification variables (middle school 
and high school), neither of the classifica-
tion variables is purely clustered within the 
other.

The crossed lines in the network graph 
(see Figure 16.4) associated with the con-
tents of Table 16.4 should also lead the 
reader to infer that students are cross-
classified by middle and high school. The 

cross-classifications in Table 16.4 are alter-
natively depicted in Figure 16.5. The differ-
ence between Figures 16.4 and 16.5 is that 
in Figure 16.4, students are lined up by 
their middle school clusters. In Figure 16.5, 
students are lined up by their high school 
clusters. In both figures, lines cross thereby 
supporting the  cross-classification of stu-
dents by middle and high school.

So far, only cross-classified examples 
with one level of clustering have been dis-
cussed. It is, of course, possible to encounter 
additional levels. For example, in addition 
to the cross-classification of students by 
middle and high school, the clustering of 
students within middle school classrooms 
might affect the outcome of interest. The 
data structure might appear as contained 
in Table 16.5 and depicted in Figure 16.6. 
We see in Figure 16.6 the pure clustering of 
students within middle school classrooms 
and of these classrooms within middle 
school. We also see the cross-classification 

Middle school

High school

Student A B

1 2

I II III IV

3 4 5 6 7 8

C D E F G H I J K L M N O P Q R S T U V

fIguRe 16.4
Network graph depicting cross-classification of students by middle school and high school with students 
listed by middle school cluster.

Middle school 1

A B D

I II III IV

E C F G J K L H I M N O P Q R S T U V

2 3 4 5 6 7 8

Student

High school

fIguRe 16.5
Network graph depicting cross-classification of students by middle school and high school with students 
listed by high school cluster.
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of students by middle and high school. We 
can see in Figure 16.6 that there are two 
hierarchies with middle school and high 
school at the highest level of each. We also 
see that if there is a lower level of cluster-
ing within one of the C-C factors, then the 
crossing of the higher level classifications 
results in the other C-C factor also being 
crossed with the lower level clustering 
variable (Rasbash & Browne, 2001). In the 
current example, this means that because 
students are cross-classified by middle and 
high school, and middle school classrooms 
are clustered within middle school then stu-
dents are also cross-classified by middle 
school classroom and high school.

The three-level data structure in Figure 
16.6 depicts two hierarchies with the cross-
classification originating at the highest level. 

It is possible to have a three-level data struc-
ture where the cross- classification does not 
occur at the highest level. For example, 
variability in student scores on a science 
achievement test could be attributed to the 
high school biology and chemistry classes. 
For this example, it is assumed that students 
attended only a single high school but that 
the set of students in a biology class were 
not exactly the same as the set of students 
in a corresponding chemistry class. This 
data structure (see Table 16.6) would con-
sist of students cross-classified by biology 
and chemistry class where both are purely 
clustered within high school. Figure 16.7 
depicts the cross-classification of stu-
dents by biology and chemistry classroom. 
Figure 16.8 depicts the clustering of biol-
ogy and chemistry classrooms within high 

taBle 16.5

Data Set Containing Students Nested within Middle School Classrooms 
and Middle Schools and Cross-Classified by High School

High 
School

MS 1 classroom
MS 2 

classroom MS 3 classroom

a b c d e f g h
I A,B D,E
II C F,G J,K L
III H,I M,N O,P Q,R
IV S,T U,V

Note: MS = middle school.

Middle school 1

b c d e f g ha

A B C

I II III IV

D E F G H I J K L M N O P Q R S T U V

2 3

Middle school
classroom

Student

High school

fIguRe 16.6
Network graph depicting clustering of students by middle school and middle school classroom and cross-
classification with high school.
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school. Figures 16.7 and 16.8 could be com-
bined into one, as presented in Figure 16.9, 
to represent the cross-classification at lev-
el-2 and the clustering of both level-2 C-C 
factors at level-3. Note that, in this particu-
lar data set, students attending high school 
2 are not cross-classified by biology and 
chemistry classroom. However, consider-
ing the data set as a whole, there are some 
students for whom biology and chemistry 
classrooms are crossed factors.

It is also possible for a cross-classification 
to occur at level-1. This is manifested by 
every cross-classification cell containing 
only a single unit within them by design. 

A current, classic example is the cross-
classification of item scores on a test by 
item and student (Goldstein, 2003; Van den 
Noortgate, De Boeck, & Meulders, 2003). 
Table 16.7 contains a (very small) sample 
data set with item scores cross-classified at 
level-1 by student and item, with students 
clustered within middle schools. For this 
very small example, only three of the item 
scores of the students are depicted. And the 
sample data set only depicts two students 
per middle school. Each cell only has a sin-
gle element within it. (Note that although 
in the current example all cells have an 
element within them, it is possible to have 

taBle 16.6

Data Set Containing Students Cross-Classified by Biology and 
Chemistry Classrooms Clustered within High School

Bio 
class

HS 1 chem. class
HS 2 chem. 

class
HS 3 chem. 

class

c1 c2 c3 c4 c5
B1 A,B,D F,H
B2 C,E G,I,J
B3 K,L,M,N
B4 O,Q,R S,T
B5 P U,V

Notes: HS = high school; Chem. = Chemistry; Bio = Biology.

Chemistry class

Biology class

Student

C1

A B C

B1 B2 B3 B4 B5

D E F G H I J K L M N O P Q R S T U V

C2 C3 C4 C5

fIguRe 16.7
Network graph depicting cross-classification of students by biology and chemistry classrooms.

High school

Class C1 B1

I II III

C2 B2 C3 B3 C4 B4 C5 B5

fIguRe 16.8
Network graph depicting clustering of biology and chemistry classrooms within high schools.
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crossed level-1 factors with some empty 
cells).

The single unit per cross-classification cell 
is occurring by design, not by chance. For 
example, in Table 16.5 there are two cells 
that contain only a single element. Only 
student C attended middle school 1, class-
room a and high school II, and only student 
L attended classroom e in middle school 5 
and high school II. However, in Table 16.5, 
not all cells have only a single element within 
them and the single-cell occurrences result 
only by chance, not as a result of the study’s 
design. The data structure from Table 16.7 
is depicted in Figure 16.10. The cross-
 classification is evident from the crossing of 
the lines connecting items to scores. And if 
the network graph were depicted with scores 
listed by item (rather than by student), then 
the lines connecting students with scores 
would be crossed.

One further complication in data struc-
tures occurs when units are multiple mem-
bers of one of the classification variables. 
Returning to the initial example in this sec-
tion (of students clustered within middle 
school), students might have attended mul-
tiple middle schools. This possibility is dem-
onstrated using the data set in Table 16.8. In 
the table, students who attended multiple 
middle schools have their identifier bolded 
and italicized. In this (very small) data set, 
three students (A, G, and Q) were members 
of multiple middle schools. Students A and 
G attended two middle schools each (middle 
schools 1 and 2, and 3 and 4, respectively) 
while student Q attended three middle 
schools (specifically 6, 7, and 8).

Figure 16.11 contains a network graph 
representing the data in Table 16.8. In this 
(multiple membership) network graph, 
if the student attended multiple middle 

High school

Student

Biology class

Chemistry class C1

I II III

B1 B2 B3 B4 B5

A B C D E F G H I J K L M N O P Q R S T U V

C2 C3 C4 C5

fIguRe 16.9
Network graph depicting clustering of biology and chemistry classrooms within high schools and of cross-
classification of students by science classroom type.

taBle 16.7

Data Set Containing Item Scores Cross-Classified (at Level-1) by 
Student and Item with Students Clustered within Middle School

Item

Middle School 1 Middle School 2

Student A Student B Student c Student D
1 1YA 1YB 1YC 1YD

2 2YA 2YB 2YC 2YD

3 3YA 3YB 3YC 3YD

Note: iYj represents the score on item i for person j.
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schools, then hatched lines are used to 
 connect a student with each middle school 
that the student attended. If, in a network 
graph, there is more than one line connect-
ing the lowest unit (level-1, here student) 
with the higher level clustering variable 
(level-2, here, middle school), then the data 
structure qualifies as a multiple member-
ship structure. In the single-membership 
model depicted in Figure 16.1, there is a 
single line originating from each student 
to the (middle school) clustering variable. 
For example, student A is connected solely 
with Middle School 1 (and thus a single 
line connects student A with middle school 
1). In the multiple-membership struc-
ture depicted in Figure 16.10, however, 
two (hatched) lines connect some units 
of the clustered variable (student) with 
units of the clustering variable (middle 
school). For example, there are two lines 

connecting (student) A with two middle 
schools (schools 1 and 2).

In multiple-membership network graphs, 
the lines connecting units that are mul-
tiple members to their clustering variable 
(here, middle school) will cross although 
the crossing does not necessarily represent 
a cross-classification. The current example 
(students as multiple members of middle 
school) only has a single clustering vari-
able (middle school) and thus cannot be 
a cross-classified structure. There must 
be at least two clustering or classification 
variables for cross-classification to occur. 
Data sets in which elements are multiple 
members of a level (or classification) are 
termed multiple-membership structures. 
Multiple-membership models can be used 
to model that the effect of middle school on 
a student is a function of all middle schools 
attended.

Middle school 1 2

Student A B C D

Score
1YA 2YA 3YA 1YB

It1 It2 It3

2YB 3YB 1YC 2YC 3YC 1YD 2YD 3YD

Item

fIguRe 16.10
Network graph depicting level one cross-classification of scores by student and item and clustering of  students 
within middle school.

taBle 16.8

Multiple-Membership Data Set Containing Students who Attended Multiple Middle 
Schools

Middle School

1 2 3 4 5 6 7 8
A,B,C A,D,E F,G,H,I G,J,K L,M,N O,P,Q Q,R,S,T Q,U,V

Note: Bolded and italicized student identifiers represent students who enrolled in more than 
one middle school.
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Extending the example even further, it is 
possible that students might have attended 
multiple middle schools before attend-
ing a single high school (see Table 16.9). 
For example, student G attended both 
middle school 3 and middle school 4 
before attending high school II. Thus, 
a unit might be a member of multiple 
units of one clustering variable (middle 
school) with a higher level of pure cluster-
ing (here, of middle schools within high 
schools). This pure hierarchy is evidenced 
in Table 16.4 by single cells in each col-
umn containing elements while some 
rows contain more than one nonempty 
cell. Figures 16.12 and 16.13 are alterna-
tive network graphs designed to represent 
this data structure. They are distinguished 
by whether high school appears directly 
connected to students (Figure 16.12) or 
to middle schools (Figure 16.13). The 
pure hierarchy of middle schools within 
high schools is evidenced by no lines 

crossing in the connection between stu-
dents and high schools (in Figure 16.12) 
and thus no lines crossing in the connec-
tion between  middle and high schools (in 
Figure 16.13).

It is possible to encounter cross- classified 
multiple-membership data sets. An exam-
ple appears in the data set  appearing 
in Table 16.10 and the associated net-
work graphs in Figures 16.14 and 16.15. 
Table 16.10 clearly contains cross-clas-
sified data (with multiple cells contain-
ing elements in both rows and columns). 
The multiple- membership facet (of stu-
dents within middle schools) is evidenced 
by some students (A, G, and Q) appear-
ing in multiple middle schools (columns). 
The crossing of (unhatched) lines in 
Figures 16.14 and 16.15 also support the 
existence of a  cross- classified data  structure. 
Figure 16.14 contains students listed by 
middle school clusters. Figure 16.15 con-
tains students listed by high school clusters. 

taBle 16.9

Three-Level Multiple-Membership Data Set with Level-1 Units (Students) Multiple Members of 
Level-2 (Middle School) Classification Clustered within Level-3 (High School)

High 
School

Middle School

1 2 3 4 5 6 7 8
I A,B,C A,D,E
II F,G,H,I G,J,K
III L,M,N
IV O,P,Q Q,R,S,T Q,U,V

Note: Bolded and italicized student identifiers represent students who enrolled in more than one middle 
school.

Middle school

Student A B C D E F G H I J K L M N O P Q R S T U V

1 2 3 4 5 6 7 8

fIguRe 16.11
Network graph depicting multiple-membership data set containing students who attended multiple middle 
schools.
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Either depiction leads to crossed lines sup-
porting the cross-classification of students 
by middle and high schools.

The examples of cross-classified and 
of multiple-membership data structures 
that have been described here are of the 
simplest variety. It is, of course, possible 
to have more than two cross-classified 
 factors, more than a single multiple-mem-
bership variable, more than one or two 
hierarchies and more than a single level of 

cross-classifications. In addition, for the 
purposes of the current chapter, the middle 
and high school context is being used. The 
reader is encouraged to think of classifi-
cations within their own research context 
that might correspond with the pattern of 
structures discussed here. There are some 
clear and useful  additional examples of 
these models provided in Fielding and 
Goldstein (2006), Goldstein (2003), and in 
Rasbash and Browne (2001).

taBle 16.10

Students Cross-Classified by Middle School and High School with Some Students 
Members of Multiple Middle Schools

High 
School

Middle School

1 2 3 4 5 6 7 8
I A,B A,D,E
II C F,G G,J,K L
III H,I M,N O,P,Q Q,R Q
IV S,T U,V

Note: Bolded and italicized student identifiers represent students who enrolled in more than 
one middle school.

High school I

1

A B C D E F G H I J K L M N O P Q R S T U V

2 3 4 5 6 7 8

II III IV

Middle school

Student

fIguRe 16.13
Alternative network graph of three-level multiple-membership data set with level one units (students) mul-
tiple members of level two (middle school) variable clustered within level three (high school).

Middle school 1

B C

I II III IV

D E F G H I J K L M N O P Q R S T U VA

2 3 4 5 6 7 8

High school

Student

fIguRe 16.12
Network graph of three-level multiple-membership data set with level one units (Students) multiple members 
of level two (middle school) variable clustered within level three (high school).
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16.2  InaPPRoPRIate ModelIng 
of cRoss-classIfIed 
data stRuctuRes

Despite the ubiquity of cross-classified data 
structures, use of C-C random effects model-
ing is far from commonplace. Estimation of 
cross-classified models and interpretation of 
their results is complex. Unfortunately, just 
as ignoring the pure clustering inherent in 
many social science data sets can reduce the 
validity of associated statistical inferences, 
so will ignoring the cross-classified nature of 
data sets. Researchers have avoided modeling 
the C-C nature of their data sets using one 
of two strategies (Meyers & Beretvas, 2006). 
The simplest cross-classified data set will be 
used here to demonstrate these strategies.

As a first strategy, a researcher might sim-
ply ignore one of the C-C clustering variables. 

For example, if students were cross-classi-
fied by both middle and high school (as in 
Table 16.4), then the researcher might ignore 
the student’s middle school membership and 
instead model the two-level clustering of 
students within high school. Ignoring a C-C 
factor will not lead to biased nor inconsistent 
fixed effects estimates (Fielding & Goldstein, 
2006). However, as noted by Rasbash and 
Browne (2001) and Fielding and Goldstein 
(2006), and empirically supported by others 
(Meyers & Beretvas, 2006; Raudenbush & 
Bryk, 2002), ignoring a C-C factor results in 
an under-specified model that can result in 
negatively biased standard error estimates. 
Deflated standard errors will then inflate 
the Type I error rate of associated statisti-
cal tests. Ignoring a C-C factor can also lead 
to inaccurate variance component estima-
tion (Fielding & Goldstein, 2006; Rasbash & 
Browne, 2001). A simulation study designed 

Middle school

Student

High school

A B

1 2

I II III IV

3 4 5 6 7 8

D E C F G J K L H I M N O P Q R S T U V

fIguRe 16.15
Network graph of students cross-classified by middle school and high school with some student members 
of multiple middle schools; sorted by high schools. Note: Hatched lines connecting a student with a middle 
school indicates that the student was a member of multiple middle schools.

Middle school 1

B

I II III IV

C D E F G H I J K L M N O P Q R S T U VA

2 3 4 5 6 7 8

High school

Student

fIguRe 16.14
Network graph of students cross-classified by middle school and high school with some student members of 
multiple middle schools; sorted by middle schools. Note: Hatched lines connecting a student with a middle 
school indicates that the student was a member of multiple middle schools.
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to assess the effect of inappropriately mod-
eling a C-C data structure found that the 
variance component associated with the 
ignored C-C factor was instead associated 
with the nonignored C-C factor (Meyers & 
Beretvas, 2006). Thus the nonignored C-C 
factor’s variance component will be over-
estimated.

The data in Table 16.4, in which students 
are cross-classified by middle and high 
school, will be used to demonstrate the 
second strategy. A researcher might rec-
ognize that the cross-classification of stu-
dents by middle and high school seemed 
unimportant and that for the most part 
students who attend a set of middle schools 
go on to attend the same high school. In 
other words, the data are close to being a 
pure hierarchy. The researcher could delete 
from analysis the small sets of students 
who prevent the data from being a pure 
hierarchy. Table 16.11 demonstrates the 
data points (students) that could be deleted 
from the analysis to provide a data set with 
a pure hierarchy (i.e., students C, H, I, L, 
Q, and R would be deleted from analysis). 
After deletion, the data could be consid-
ered a pure clustering of students (level-1) 
within middle school (level-2) within high 
school. However, this deletion strategy 
will result in less power and reduces the 

generalizability of the results (Meyers & 
Beretvas, 2006).

Beyond problems with estimation, use 
of either strategy (either deletion of data 
or ignoring a C-C factor) results in a loss 
of information about the ignored factor. In 
addition, while relationships among char-
acteristics of that factor and the outcome 
of interest can be modeled, the precision of 
estimation of this relationship will be biased 
if the variance component structure is inap-
propriately modeled. While it is possible to 
use corrections that adjust standard errors 
to correct for variance components that are 
not being explicitly modeled, this restricts 
the associated research questions that can 
be explored. For example, when standard 
errors are adjusted instead of modeling the 
relevant cross-classified factor, then residu-
als for that C-C factor cannot be calculated. 
Currently, residuals can provide important 
information used, for example, to identify 
value added by a C-C unit such as school 
(Fielding & Goldstein, 2006).

The next section will provide formula-
tions for the various cross-classified and 
multiple-membership models that have 
been discussed. The section will also briefly 
demonstrate how characteristics of the dif-
ferent classifications can be explored as pre-
dictors of the outcome of interest.

taBle 16.11

Deletions in the Cross-Classified Data Set from Table 16.4 Resulting in a 
Pure Hierarchy of Middle School within High School

High 
School

Middle School

1 2 3 4 5 6 7 8
I A,B D,E
II C F,G J,K L
III H,I M,N O,P Q,R
IV S,T U,V

Note: A double strike through crossing out a student’s identifier (letter) indicates a 
student whose information has been deleted from the analysis.



326  •  S. Natasha Beretvas

16.3  foRMulatIon of 
the cRoss-classIfIed 
RandoM effects Model

16.3.1  two-level ccReM with 
two c-c factors

The notation used by Rasbash and Browne 
(2001) will be adopted here in the formula-
tion of the models. First, a classification is 
defined as a function that maps the N units 
at level-1 to a set of M classification units 
(where M ≤ N; Rasbash et al., 2000). For 
purely hierarchical data structures, each 
level-1 unit is classified by just one classifica-
tion unit. For a cross-classification to occur, 
level-1 units are classified by more than one 
classification but the classification units are 
not nested within each other.

The simplest example of a cross-classified 
data structure in which students are cross-
classified by middle and high school will be 
used to present the formulation of the cross-
classified random effects model (CCREM)
(see Table 16.4 and Figure 16.4 or 16.5). The 
two C-C factor, two-level CCREM uncon-
ditional model for a normally distributed 
outcome is parameterized as follows:

Y u u u ei j j j j j j j j i( , ) ( , )1 2 1 2 10 2 1 20 0 00 00= + + + +×β (( , ) .j j1 2
 

      (16.1)

In Rasbash and Browne’s (2001) notation, 
the number of letters in the subscript iden-
tifies the number of classifications (here, 
there are three: student, middle school, and 
high school). The higher the level of the clas-
sification unit, the further to the right the 
associated subscript will appear. Thus, for 
example, the level-1 classification unit (here, 
student) appears as the first subscript letter, 
i. Subscripts with the same common letter 

(e.g., “ j”) appearing in parentheses  separated 
by a comma identify cross-classified factors 
at the same level. Ordering of subscripts 
or C-C factors within parentheses is arbi-
trary. Here, the middle school identifier, j1, 
appears before the high school identifier, j2, 
but the reverse ordering could also work. 
This subscripting scheme means that for 
students cross-classified by middle and high 
school, Yi j j( , )1 2

 represents the score of student 
i from middle school, j1 and high school, j2. 
The highest number in the subscript of the 
outcome variable, Y, identifies the number 
of cross-classified factors at the level (here, 
two). The lack of a number subscripting 
the “i” subscript means that the associated 
unit (here, student) is a member of multiple 
cross-classifications. Pure clustering of clas-
sification units can be interpreted by the lack 
of a comma separating a set of indices. For 
example, the following hierarchies exist for 
the data in Table 16.4: students within middle 
school (Yij1), and students within high school 
(Yij2). It should be noted that while there is a 
comma between j1 and j2  in Yi j j( , )1 2

, there is 
no comma separating the set of level-1 indi-
ces (here, just i) from the set of (C-C) level-2 
indices (j1 and j2).

Four residuals are listed in the uncondi-
tional model in Equation 16.1. Each resid-
ual, e, is assumed normally distributed with 
a mean of zero and its own variance, σe

2. 
Covariances among residuals are typically 
assumed to be zero. Thus, for example, the 
covariance between level-1 units in different 
classifications (i.e., here, in different middle 
and high schools) is assumed to equal zero 
(Goldstein, 2003). These residuals can be 
interpreted as follows. The random effects
ei j j( , )1 2

, u j00 1
 and u j00 2

 are associated with each 
of student i from middle school j1 and high 
school j2, with middle school j1 and with high 
school j1, respectively. The “0” appearing in 
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the subscript of the “u”s matches the sub-
script of the parameter around variability is 
modeled, here around the intercept, γ000.

The last residual in Equation 16.1, u j j00 1 2× , 
represents the random interaction effect 
between the two C-C factors (middle school 
and high school). Without sufficiently large 
within-cell sample sizes, it is hard to separate 
the variance, σe

2, associated with the level-1 
classification unit (students) from the vari-
ance of this interaction effect (Raudenbush 
& Bryk, 2002). Thus, this random effect is 
most typically set to zero when CCREM 
models are estimated and will be set to zero 
henceforth in this chapter.

As with purely clustered multilevel mod-
els, variance component estimation under 
the unconditional model can be used to cal-
culate a form of intraclass correlation. The 
intraclass correlation coefficient (ICC) for 
one of the cross-classified factors, for exam-
ple, middle schools, is calculated as follows:

 ρ
σ

σ σ σY Y
u

e u u
i j j i j j

j

j
( , ) ( , ),

1 2 1 2

0 10

0 10

2

2 2′
=

+ +
000 2

2
j

.  (16.2)

In the current example, the ICC in 
Equation 16.2 represents the correlation 
between achievement scores (Y) for stu-
dents in middle school j1 who attend dif-
ferent high schools (j2 and j2′ where j2 ≠ j2′; 
Raudenbush & Bryk, 2002). The same for-
mula for the ICC for high schools could be 
calculated and would represent the correla-
tion between students’ scores on Y for stu-
dents who attend the same high school but 
different middle schools. As with multilevel 
analyses of purely hierarchical data sets, 
the ICCs can be used to interpret the pro-
portion of variability attributable to each 
classification.

Goldstein (2003) cautions that ICCs’ 
values for different classifications can be 

affected by the number of units within a 
classification. In Goldstein’s example, the 
ICC for primary schools was three times 
as large as that of secondary schools and 
part of the source of that disparity was in 
the number of units per secondary school 
being larger than that of primary schools. 
Keeping this caveat in mind, however, the 
ICCs for CCREMs can be interpreted in 
the same way as in traditional multilevel 
models. Similarly, when predictors are 
added to the CCREM model, their effect 
on the ICCs can be explored to assess their 
relationship with the outcome. Given this 
does not differ from the use of ICCs with 
purely hierarchical data, the ICCs will 
not be mentioned further in this chapter. 
Readers are encouraged to read Beretvas 
(2008), Hox (2002), and Raudenbush and 
Bryk (2002) for more details about cross-
classified models’ ICCs.

A researcher might be interested in using 
a student-level descriptor, X, to explain 
variability in the outcome. For example, 
the researcher might wish to model gender 
differences in achievement. Given the com-
plexity of the CCREM’s formulation, the 
levels’ equations used in Raudenbush and 
Bryk (2002) will sometimes be adopted, 
here, to simplify the explanation of the 
model. Addition of a level-1 (here, student) 
descriptor to the unconditional model (in 
Equation 16.1) results in:

 Y X ei j j j j j j i j j i j( , ) ( , ) ( , ) ( , ) (1 2 1 2 1 2 1 20 1= + +β β
11 2, )j , 

  (16.3)

for the level-1 equation and at level-2:
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Equation 16.4 indicates that the relation-
ship between the outcome and the variable, 
X, is modeled as fixed across middle schools 
and high schools. As a single model equa-
tion, Equations 16.3 and 16.4 become:

 
Y X e

u

i j j i j j i j j

j

( , ) ( , ) ( , )1 2 1 2 1 2

1

000 100

0

= + +

+

γ γ

00 200+u j .
 (16.5)

As with multilevel models of pure hier-
archies, interpretation of the intercept, γ000, 
changes from the unconditional model to 
a model including a predictor. In Equation 
16.1, γ000 is the predicted outcome score 
averaged across middle and high schools. 
For the model including a predictor, the 
intercept becomes the average predicted 
outcome score for a student with a value of 
zero on X. Thus, interpretation of the inter-
cept depends on how the predictor (here, 
gender or X) is centered.

Variability in the intercept across mid-
dle and high schools can be explained 
using middle and high school predictors. 
For example, a researcher might hypoth-
esize that the middle school character-
istic, Z (say, a measure of middle school 
resources), explains some of the variabil-
ity in the intercept across middle and high 
schools. If this is the case, then Equation 
16.4 becomes:

 
β γ γ
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0 000 010 0 00

1

1 2 1 10 2

1 2
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j j

Z u u= + + +

==





 γ100

.  (16.6)

Addition of Z to the model again changes 
interpretation of the intercept so that it rep-
resents the predicted score on Y control-
ling for Z and for X (i.e., for a student with 
a value of zero on X who attends a middle 
school with a value of zero on Z). As with 

the ICCs, interpretation of coefficients with 
cross-classified models will not be thor-
oughly reviewed in this chapter because 
it corresponds exactly with their interpre-
tation in simpler multilevel models. The 
reader is referred to the chapters by Beretvas 
(2008), Hox (2002), and Raudenbush and 
Bryk (2002) for more details about inter-
preting these coefficients.

In Equation 16.6, the relationship, γ010, 
between middle school resources, Z, and 
achievement, Y, is modeled as fixed across 
high schools. It could instead be modeled as 
varying across high schools:

β γ γ0 000 010 01 0 001 2 2 1 10 2( , ) .j j j j j ju Z u u= + +( ) + +  

  (16.7)

A high school descriptor (say, whether the 
high school is private or public) could also 
be used to explain variability in the rela-
tionship between middle school resources, 
Z, and the student’s achievement score, Y.

Similar to the series of equations demon-
strated for the relationship between Z and 
the intercept, variability in the intercept 
could also (or alternatively) be explained 
using a high school descriptor and this 
relationship modeled as fixed, randomly, 
or nonrandomly varying across middle 
schools (see Beretvas, 2008; Raudenbush & 
Bryk, 2002).

Thus far, all of these equations have mod-
eled the relationship between the level-1 
descriptor, X, and the outcome as fixed (as 
represented by β γ1 1001 2( , )j j =  in Equations 16.4 
and 16.6). As with the modeling of the inter-
cept term, β0 1 2( , )j j , the slope for X, β1 1 2( , )j j , can 
be modeled in a number of ways. Residual 
terms u j10 1

 and u j10 2
 could be included in the 

second equation of the two in Equation 16.4 
to model the relationship between X and Y 
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as varying across middle and high schools, 
respectively. Either, both or neither residual 
could be included. For example, if it were 
hypothesized that the relationship between 
student’s gender and achievement varied 
across middle schools only, the set of equa-
tions in Equation 16.6 (without any predic-
tors of the intercept term) would become:
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1 2 1 10 2

1 2

( , )

( , )

j j j j j

j j

Z u u= + + +
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 γ100 1 01
u j

 (16.8)

and the single equation for this model (com-
bining Equations 16.3 and 16.8) would be:

 
Y Z u u
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The researcher might hypothesize that 
some middle school characteristics, Z, 
explains some of the variability across 
middle schools in the gender differences 
in achievement. In the levels’ formulations, 
Equation 16.9 would then become:
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As a single equation, the model then 
becomes:

Y Z u ui j j j j j( , )1 2 1 10 2000 010 0 00

100 11

= + + +

+ +

γ γ

γ γ 00 1 01 1 1 2 1 2
Z u X ej j i j j i j j+( ) +( , ) ( , ) .

  (16.11)

We see in Equation 16.11 that the relation-
ship between X (gender) and Y (achievement) 

is modeled to be moderated by the middle 
school descriptor, Z.

The set of level-2 equations in Equation 
16.11 could be further expanded to include 
additional predictors of the intercept term, 
β0 1 2( , )j j , along with predictors of β1 1 2( , ) .j j

However, as with multilevel analyses of 
pure hierarchies, the more random effects 
included in a model, the more complex the 
estimation. A balance needs to be found 
between correctly specifying the variance 
components and parsimony.

16.3.2  three-level ccReM with 
two hierarchies and 
c-c at level three

The example data structure provided in 
Table 16.5 and depicted in Figure 16.6 con-
tains two hierarchies. The clustering of stu-
dents in middle school classrooms nested 
within middle schools is one three-level 
hierarchy. In addition, students are clus-
tered within high schools. Middle school 
and high school are crossed classifications 
(and thus middle school classroom and high 
school are also crossed). The unconditional 
model is:

Y v v u ei jk k k k jk i jk( , ) (1 2 1 2 10000 000 000 00= + + + +γ
11 2, ) ,k

  (16.12)

where Yi jk k( , )1 2
 is the score on outcome Y for 

student i in middle school classroom j of 
middle school k1 who attended high school 
k2. Each of the four residuals in Equation 
16.12 are assumed normally distributed 
with a mean of zero and its own variance 
component. As was demonstrated above, 
characteristics of each classification unit 
can be added as predictors to the model. 
For example, it might be hypothesized that 
there are gender differences in achievement. 
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The model (represented as levels) becomes, 
at level-1:

 Y X ei jk k jk k jk k i jk k( , ) ( , ) ( , ) ( , )1 2 1 2 1 1 20 1= + +π π ii jk k( , )1 2
,  

  (16.13)

at level-2:
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and at level-3:
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and as a single equation:
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  (16.16)

Equation 16.16 models the relationship 
between gender, X, and Y as randomly 
varying across classrooms (due to inclusion 
of u jk10 1

 in the level-2 equation for X’s slope 
coefficient, π1 1 2( , )jk k ) and fixed across middle 
and high schools. A classroom descriptor, C 
(such as a measure of the teacher’s experi-
ence), could be modeled as moderating the 
relationship between gender and achieve-
ment so that the equation for the slope of X, 
π1 1 2( , )jk k , at level-2 (in Equation 16.16) becomes
π β β1 10 11 101 2 1 2 1 2 1 1( , ) ( , ) ( , )jk k k k k k jk jkC u= + + . Thus, 
we have another coefficient, β11 1 2( , )k k , which 
can be modeled as fixed or randomly varying 
across middle and/or high schools. It could 
also be modeled as nonrandomly varying 
with middle and/or high school charac-
teristics used to explain variability in this 

coefficient across middle and high schools. 
Again, the reader is warned that inclusion 
of too many close-to-zero random compo-
nents can lead to estimation problems.

16.3.3  three-level ccReM 
with two hierarchies 
and c-c at level two

Parameterization of the three-level model 
with cross-classified factors at level-2 will 
be described using the example depicted 
in Figures 16.7 and 16.8. In this example 
student science achievement scores, Y, are 
cross-classified by biology (j1) and chemis-
try (j2) classrooms that are both clustered 
within high school (k). Thus, the uncondi-
tional model appears as follows, at level-1 
(students):

 Y ei j j k j j k i j j k( , ) ( , ) ( , )1 2 1 2 1 20= +π ,  (16.17)

at level-2 (biology and chemistry classrooms):

 π β0 000 0 001 2 10 2( , ) ,j j k k j k j ku u= + +  (16.18)

and at level-3 (high schools):

 β γ000 0000 000k kv= + ,  (16.19)

and as a single equation:

Y u u ei j j k k j k j k i j( , ) ( ,1 2 10 2 10000 000 0 00= + + + +γ ν jj k2 ) ,  

  (16.20)

with the expected four variance com-
ponents associated with the four  residuals 
(ei j j k( , )1 2

, u j k0 10
, u j k00 2

, and v000k). The same 
assumptions are made about the indepen-
dence of the residual terms and their (nor-
mal) distributions as for the other CCREMs 
described in this chapter. Similarly, as 
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above, classification factor characteristics 
can be added to explain variability in the 
relevant coefficients.

16.3.4  two-level ccReM with 
   cross-classification 
at level one

To demonstrate the formulation of the 
CCREM when the cross-classification 
occurs at level-1 (using the example from 
Table 16.7 and Figure 16.10), it will initially 
be assumed that item scores are interval-
scaled and normally distributed. If this is 
the case, then the single equation for the 
unconditional model would be

 Y u e ei i j j i j i j( , ) ,
1 2 10 2000 00 0= + + +γ  (16.21)

where i1 indexes student, i2 indexes item, 
and j indexes middle school. As usual, pre-
dictors describing facets of the relevant clas-
sification could be included in the model to 
explain variability identified in a variance 
component (e.g., at the item, student, or 
middle school level).

It is more likely that the item score can-
not be assumed to be normally distributed. 
Instead, the item score might be dichoto-
mous (e.g., multiple choice items with scores 
of zero or one). If this is the case, then the 
item score could be assumed to follow a 
binomial distribution (e.g., Bernoulli) and 
the log-odds of a correct score could instead 
be modeled with a logit link function in an 
unconditional model, as follows:

 log ( , )

( , )

p
p

ui i j

i i j
j

1 2

1 2
1 000 00−







= +γ  (16.22)

where p i i j( , )1 2
 is the probability of a score 

of one on item i2 for student i1 at middle 
school j. Item, student, and middle school 

predictors can, of course, be added to the 
model in Equation 16.22 as fixed, random, 
or randomly varying effects.

It is also possible that the item scores might 
be ordinal. In this case, models designed 
for analysis of ordinal outcomes could be 
used (e.g., a proportional odds model). It 
should be noted that there are other ways to 
parameterize this multilevel measurement 
model (e.g., Kamata, 2001; Williams & 
Beretvas, 2006) but the C-C random effects 
version provides a useful context to demon-
strate an example of a scenario of a cross-
 classification occurring at level-1.

16.4  foRMulatIon 
of the MultIPle 
MeMBeRshIP Model

16.4.1  two-level Multiple-
Membership Model

As described earlier, it is possible that units 
of a classification are clustered within a 
higher level classification and are members 
of multiple units of that higher level classi-
fication. For example, as in Table 16.8 and 
Figure 16.11, students are clustered within 
middle schools but some students attended 
(and are thus multiple members of) more 
than one middle school. If it is assumed that 
each middle school contributes to the score 
of a student, then use of a multiple-mem-
bership model should be considered.

Using Rasbash and Browne’s (2001) 
parameterization, the unconditional mul-
tiple-membership model would be param-
eterized as follows:

 Y w u ei j ih h
h j

i j{ }
{ }

{ }= + +
∈
∑γ 00 0  (16.23)
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where i indexes the level-1 unit (here, 
 student) that is a member of multiple units 
of the level-2 classification j (which, in the 
current example, is middle school), ei{j} is 
the level-1 residual for student i from the 
set j, {j}, of middle schools, u0h is the resid-
ual associated with level-2 (middle school) 
unit h, wih is the weight assigned to level-1 
unit i’s (student) association with unit h of 
the j classifications (middle schools) of the 
student. Each level-1 unit’s set of weights 
sum to one. The maximum number of 
middle schools attended by students in 
the data set was three with equal weight 
assumed assigned for the middle schools 
that were attended. Thus, using the data in 
Figure 16.11, Equation 16.23 would be:

 

Y u u e

Y

A and A and

B

{ } { }

{ }

. . ,1 2 00 01 02 1 2

1

0 5 0 5= + + +γ

== + +

= + +

γ

γ

00 01 1

5 00 05 5

6 7

u e

Y u e

Y

B

L L

O a

{ }

{ } { }

{ ,

,

,

nnd

O

u u

u e

8 00 06 07

08 6 7

0 33 0 33

0 33

}

{ ,

. .

.

= + +

+ +

γ  


aand 8}

 

  

(16.24)

for each of the following students: A, B, L, 
and O. The  student-specific equations listed 
in Equation 16.24 can be used to demon-
strate a couple of facets of the multiple-
membership model. In the unconditional 
model, the score of student i is modeled as a 
function of the overall average score, γ00, of 
the level-1 residual, ei{j}, and of the residu-
als, u0js, associated with each of the middle 
schools of which the student was a member. 
The “function” of the middle school residu-
als is the weight. The weights sum to one for 
each student. In the current example the 
weight equals one divided by the number 

of schools attended (i.e., equal weight is 
assigned to every school attended by a stu-
dent). Thus if a student attended two schools, 
the weights for each middle school residual, 
u0j, is 0.5. If the student only attended a 
single school, then the weight is one, and so 
on. Each level-2 (middle school) residual is 
assumed normally distributed with a mean 
of zero and a variance of σu

2 (Goldstein, 
2003; Rasbash & Browne, 2001).

The multiple-membership model is a 
form of two-level cross-classified model 
(where the level-1 unit is cross-classified by 
each level-2 unit of which it is a member). 
In this analogy, the number of cross-clas-
sified factors corresponds to the maximum 
number of level-2 units (middle schools) of 
which the level-1 unit (student) is a mem-
ber. In addition, the variance (σu

2) of each 
cross-classified factor is constrained equal 
and the dummy coding used in model esti-
mation consists of the weights rather than 
ones (Goldstein, 2003).

The unconditional model is presented 
in Equation 16.24. Characteristics of each 
classification can, of course, be added to 
the model. For example, a researcher might 
hypothesize that a level-2 (middle school) 
characteristic, Z, might explain some of the 
variability in the intercept:

 Y w Z u ei j ih h h
h j

i j{ } { } .= + +( )[ ]+
∈

∑γ γ00 01 0  

  (16.25)

In Equation 16.25, we see that it is assumed 
that the relationship, γ01, between the 
middle school characteristic, Z, and the 
outcome, Y, is assumed constant across 
middle schools (thus, the single parameter). 
However, because a student might attend 
different middle schools that have different 
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values on Z, a weighted average of the Zs 
across the set of j middle schools for student 
i is used.

The researcher might also hypothesize 
that a level-1 (student) characteristic, X, is 
also related to the outcome. Thus Equation 
16.25 becomes:
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Equation 16.26 models the relationship 
between X and the outcome, Y, as fixed 
across middle schools. It could instead be 
modeled as randomly varying across mid-
dle schools:
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or as nonrandomly varying with part of the 
variability in the relationship between X 
and Y explained by the same middle school 
predictor, Z:
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In Equations 16.27 and 16.28, the mid-
dle school intercept and slope residuals 

are distinguished by the zero and one, 
 respectively, appearing as the first charac-
ter in the subscripts. As with all multilevel 
models, and mentioned earlier, inclusion of 
random effects complicates already com-
plex estimation procedures.

16.4.2  cross-classified Multiple-
Membership Models

This section will provide the parameteriza-
tion of a cross-classified multiple member-
ship model that could be used to describe 
relationships among variables for the data 
structure appearing in Table 16.10 and 
Figures 16.14 and 16.15. In this data, some 
students are multiple members of middle 
schools and are cross-classified by middle 
school and high school. The associated 
unconditional model for this pattern of 
classifications would be:

 Y w u u ei j j ih h
h j

j i j({ }, )
{ }

({1 2

1

2000 0 0 00= + + +
∈
∑γ

11 2}, )j  

  (16.29)

where Yi j j({ }, )1 2
 represents the score of stu-

dent i who attended the set of j1 middle 
schools and high school j2. Equation 16.29 
demonstrates the contribution to Yi j j({ }, )1 2

 of 
high school, u j00 2

, the set of middle schools 
attended, ∑

∈h j
ih hw u

{ }1
0 0, and of the individual 

student, ei j j({ }, )1 2
, over and above the average 

predicted Y score, γ000. As demonstrated 
using the simpler multiple-membership 
model (see Equations 16.23 and 16.25 
through 16.27), student, middle school, 
and high school predictors could be added 
to this unconditional model and the coef-
ficients modeled as fixed, random, or non-
randomly varying across the units of other 
classifications.
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16.5 conclusIons

This chapter has provided an introduction 
to cross-classified and multiple membership 
models. Some simple examples have been 
provided offering the link between the data’s 
structure and the resulting model’s param-
eterization. As has been mentioned already, 
it should be emphasized that further compli-
cations are available in terms of additional 
classifications and predictors. In addition, 
most of the models demonstrated here have 
involved univariate, interval-scaled out-
comes that are assumed normally distrib-
uted. These models can, of course, be used 
with multivariate outcomes and noninterval-
scaled outcomes. As with any sophisticated 
statistically modeling techniques, a balance 
should be found between the complexity of 
the model and the complexity of the neces-
sary estimation  procedures and inferences 
(Raudenbush & Bryk, 2002).

The reader should refer to Hox (2002) and 
especially Goldstein’s (2003) text and his 
many articles to find detailed information 
about the estimation procedures and options 
used for estimating these models. Several 
software packages can be used to estimate 
CCREMs although only MLwiN currently 
provides a direct way of estimating multiple-
membership random effects models.

The complexity of the data structures 
encountered in social science research, the 
negative effect of inappropriately modeling 
this complexity, and the availability of soft-
ware that facilitates estimation of these mod-
els behooves the importance of researchers’ 
understanding and increasingly using cross-
classified and multiple-membership models.
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Multilevel modeling (MLM) is a method for analyzing hierarchically nested 
data structures such as over-time data from individuals (i.e., observations 
are nested within individuals) or group data (i.e., individuals are nested 
within groups). One way to conceptualize multilevel analyses is as a two-step 
process: A “lower-level” regression is computed separately for each “upper-
level” unit (e.g., the relationship between a person’s score on X and the per-
son’s score on Y is computed across individuals for each group), and then the 
lower-level regression estimates are pooled across groups. In the prototypi-
cal multilevel case, both the intercepts and slopes from these regressions are 
treated as random effects. Therefore, in addition to estimating the average 
intercept and average Y-X slope, both of which are fixed effects, the variance 
of the intercepts and variance of the slopes are also estimated.

In this chapter we consider multilevel analyses for dyadic data. Dyads 
are a special case of groups in that the number of individuals nested within 
each group equals two. From a multilevel perspective, this small group size 
represents a potential difficulty because, with only two data points, the two-
step analysis conceptualization does not work. That is, if there are only two 
data points, it is not possible to compute a lower-level regression for each 
dyad because any two data points fall exactly on a line. Nonetheless, as we 
discuss in this chapter, MLM represents a powerful tool for the analysis of 
dyadic data, both for simple dyadic designs in which each person is a mem-
ber of only one dyad as well as for complex designs in which individuals 
may participate in more than one dyad.

Dyadic data are very common in the social and behavioral sciences. The 
prototypical dyad study involves heterosexual married couples. However, 
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there are many other possibilities: room-
mates, dating couples, friends, coworkers, 
patient and caretaker, siblings, and parent 
and child. Dyads need not be preexisting but 
can be created in the laboratory. Members of 
the dyad need not even interact, as in the case 
of yoked controls. Moreover, the two observa-
tions may not even be from two people; they 
might be from two animals, two eyes, two 
arms, or the left and right side of the brain.

Recently Kenny, Kashy, and Cook (2006) 
have extensively discussed the analysis 
of dyadic data, and MLM is an important 
tool in many of the analyses they describe. 
In this chapter, we review and extend their 
discussion. We begin with key definitions 
in dyadic analysis concerning types of 
dyads, types of dyadic designs, and types 
of variables. We then consider the use of 
MLM for the three major types of dyadic 
designs. Finally, we consider the analysis 
of over-time data for one of those designs. 
Most dyadic researchers would benefit from 
reading the entire chapter even if they have 
an interest in only one of these designs. 
Topics that are discussed in one section 
(e.g., coding of variables, computer syntax, 
and interpretation of results) are relevant 
for the other sections of the chapter.

Because we cover many topics, we are 
limited in the amount of space that can be 
dedicated to illustrations; however, we have 
included example data sets, syntax files, and 
outputs on the website for the book. Here we 
focus primarily on the syntax of computer 
applications, but space limitations preclude 
discussion of all programs, and so we pres-
ent syntax for use with SAS software (SAS 
Institute Inc., 2002–2003). We chose SAS 
because of its flexibility and its ability to 
link to data transformations and other pro-
cedures. However, at times we discuss the 
use of SPSS (SPSS for Windows Rel. 16.0) 

and other programs. To help interpret the 
syntax, we adopt the convention that syn-
tax commands are denoted by upper-case 
terms whereas variable names are denoted 
by lower-case terms in bold. We presume 
that the reader already has some familiarity 
with the concepts of MLM.

17.1 defInItIons

17.1.1 distinguishability

One important question in dyadic research 
and data analysis is whether or not the two 
dyad members can be distinguished from 
one another by some variable. In hetero-
sexual dating relationships, dyad members 
may be distinguishable by gender: Each 
couple has one man and one woman. In 
sibling dyads, the two siblings may be dis-
tinguished by birth order. In both of these 
examples, a systematic ordering of the 
scores from the two dyad members can be 
developed based on the variable that dis-
tinguishes them. However, there are many 
instances in which there is no such natural 
distinction. Same-sex roommates or friend-
ship pairs, homosexual romantic partners, 
and identical twins are all examples of dyads 
in which the members are typically indis-
tinguishable. If dyad members are indistin-
guishable or exchangeable, then there is no 
systematic or meaningful way to order the 
two scores.

The issue of distinguishability is both con-
ceptual and empirical. The examples of gen-
der in heterosexual couples and birth order 
in siblings highlight the conceptual com-
ponent of distinguishability: There must 
be a categorical variable that can be used 
to  systematically classify dyad members. 
However, even when dyad members are 
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conceptually distinguishable, they may not 
be empirically distinguishable. Empirical 
 distinguishability occurs when there are 
detectable differences between dyad mem-
bers as a function of the distinguishing vari-
able. That is, if there are no differences in the 
means, variances, and covariances as a func-
tion of the distinguishing variable, then dyad 
members are not empirically distinguish-
able and a simpler and more parsimonious 
model (i.e., the model for indistinguishable 
dyads) can be estimated.

We shall see that whether dyad members 
are distinguishable has important implica-
tions for analyses, and we discuss procedures 
that can be used to test distinguishability. 
If there is no evidence of differences as a 
 function of the distinguishing variable, we 
recommend that researchers use methods 
that are appropriate for indistinguishable 
dyads because such methods allow research-
ers to pool estimates both within and across 
dyads, which increases precision and statis-
tical power. Even in cases in which there are 
compelling conceptual reasons for treating 
dyad members as distinguishable, one can 
statistically evaluate whether distinguish-
ability makes a difference.

17.1.2 typology of dyadic designs

In this chapter we discuss variants of 
three types of dyadic designs at length: the 
 standard dyadic design, the over-time stan-
dard dyadic design, and the one-with-many 
design. We also provide a brief introduction 
to the Social Relations Model (SRM) design. 
The factor that differentiates these designs 
is the number of dyads in which each per-
son participates. In addition, each of these 
designs can be reciprocal or nonreciprocal. 
A design is reciprocal when both dyad mem-
bers provide outcome scores, and a design 

is nonreciprocal when only one of the two 
persons is measured on the outcome.

In the standard design, each person is a 
member of one and only one dyad. As seen in 
Table 17.1, the six persons, 1 through 6, form 
three dyads: {1,2}, {3,4}, and {5,6}. The stan-
dard design is by far the most common dyadic 
research design, and it is typified by studies of 
marital relationships because (in most studies 
of marriage at least) each husband is paired 
with only one wife. For the standard design 
we consider only reciprocal designs in which 
both persons are measured on the outcome, 
because if only one person provides an out-
come score the data would not be multilevel.

Likewise, in the over-time standard 
design, each person is a member of one and 
only one dyad. However, in this design, both 
partners are measured at multiple occa-
sions. Most commonly, the two individuals 
are measured at the same points in time. 
For example, in a study of the transition 
to parenthood, both partners’ relationship 
satisfaction might be measured one month 
prior to birth, and again 1, 3, and 6 months 
after birth. Thus, in this case individuals 
are nested within dyads, but time is crossed 
with individuals. Less commonly, the two 
partners are measured at different occa-
sions, and so occasions are nested within 
the individual, and individuals are nested 
within dyad. We limit our discussion of 
the over-time standard design to the more 
common crossed structure.

taBle 17.1

Possible Dyads for the Three Designs With Six 
People (1 Through 6)
Standard: {1,2} {3,4} {5,6}
One-with-many: {1,2} {1,3} {4,5} {4,6}
SRM: {1,2} {1,3} {1,4} {1,5} {1,6} {2,3} 

{2,4} {2,5} {2,6} {3,4} {3,5} {3,6} 
{4,5} {4,6} {5,6}
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In the one-with-many design each per-
son is paired with multiple others, but 
these others are not paired with any other 
persons. As seen in Table 17.1, for the one-
with-many design, the dyads are {1,2}, {1,3}, 
{4,5}, and {4,6}. Note that the “ones” are 
persons 1 and 4, and the “many” are 2, 3, 5, 
and 6. As an example of the one-with-many 
design, Kashy (1992) asked people to rate 
the physical attractiveness of each person 
that they had interacted with over a period 
of 2 weeks. A second example of the one-
with-many design would be having patients 
rate their satisfaction with their primary 
care physician (so that there are multiple 
patients rating the same physician). In this 
design one person is linked to many others 
and the others are not linked to each other. 
In most cases, the one-with-many design is 
not reciprocal: Data are just from either the 
“one” or just from the “many.”

In a SRM design, each person is paired 
with multiple others and each of these others 
is also paired with multiple others. The pro-
totypical SRM design is a round-robin design 
in which a group of persons rate or interact 
with each other. As seen in Table 17.1, all pos-
sible dyads are formed for the SRM design. 
For example, in a four- person round-robin 
design (e.g., persons A, B, C, and D), each 
person interacts with or rates three partners, 
and so a four-person round-robin results in a 
total of six dyads (i.e., AB, AC, AD, BC, BD, 
and CD). Because round-robin designs are 
inherently reciprocal, these six dyads gener-
ate a total of 12 outcome scores (i.e., the AB 
dyad generates two scores—A’s score with B 
and B’s score with A).

17.1.3 types of variables

In multilevel data, variables are tradition-
ally denoted as varying at either the upper 

level (level 2) or the lower level (level 1), 
whereas in dyadic data, variables are typi-
cally denoted as between-dyads, within-
 dyads, or mixed. Not surprisingly, these 
two classification systems are related. 
Between-dyads variables vary from dyad to 
dyad, but do not vary within dyads, and so 
are upper-level variables. For example, in 
a study of the effects of stress on romantic 
relationship satisfaction, couples might be 
randomly assigned to a high stress condi-
tion in which they are asked to discuss a dif-
ficult problem in their relationship, or they 
could be assigned to a low stress condition 
in which they are asked to discuss a current 
event. For this example, the level of stress 
would be a between-dyads variable because 
both dyad members are at the same level of 
induced stress such that some dyads would 
be in the high stress condition and others 
would be in the low stress condition.

Alternatively, both within-dyads and 
mixed variables vary from person to per-
son within the dyad, and so both of these 
types of variables can be viewed as lower-
level variables from an MLM perspective. 
The two scores of a within-dyads variable 
differ between the two members within 
a dyad, but when averaged across the two 
dyad members, each dyad has an identical 
average score. A prototypical within-dyads 
variable is gender in heterosexual couples 
in that every couple is comprised of both a 
man and a woman. A less obvious example 
of a within-dyads variable is the propor-
tion of housework done by two roommates. 
With this variable, the average of the two 
proportions always equals .50, yet within 
each dyad the amount of housework varies 
across the two roommates.

Mixed variables vary both within-and 
between-dyads such that the two partners’ 
scores can differ from each other and there 
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are differences in the dyad averages from 
dyad to dyad. Age is an example of a mixed 
independent variable in marital research 
because the two spouses’ ages may differ 
from one another and some couples may be 
older on average than others. Because they 
can differ across the two dyad members, 
mixed variables fall into the lower-level 
classification for MLM.

17.2 standaRd desIgn

In Table 17.2, we present a fictitious data set 
based on 10 pairs of same-sex roommates 
that we use as an example. In this data set 
the outcome variable is a measure of the 
person’s college adjustment at the end of the 

first semester (i.e., Y; in the table and syntax 
denoted as adjust), and the key predictor is 
a mixed variable that is an estimate of the 
average number of days per week each per-
son drank during that semester (act_drink). 
Because the study includes only same-sex 
roommates, gender is a between-dyads vari-
able that is represented as Z in this example. 
Note that the data, syntax, and outputs can 
be downloaded from http://davidakenny.
net/dyadmlm/downloads.htm.

17.2.1 Indistinguishable dyads

In the standard design, each person is 
paired with only one other person, and both 
dyad members are measured on the same 
variables. As a running example, we use 
the data presented in Table 17.2 in which 

taBle 17.2

Data set for the Fictitious Dyadic Study of Roommates

Dyad Person
(Y)

Adjust
(X)

Act_Drink Part_Drink
(Z)

Gender citizen D1 D2
1 1 5.5 0.2 –0.8 1 1 1 0
1 2 7.0 –0.8 0.2 1 –1 0 1
2 1 3.5 –0.8 0.2 –1 1 1 0
2 2 5.5 0.2 –0.8 –1 –1 0 1
3 1 2.5 2.2 3.2 1 1 1 0
3 2 0.3 3.2 2.2 1 –1 0 1
4 1 5.0 –1.8 –0.8 –1 1 1 0
4 2 5.5 –0.8 –1.8 –1 –1 0 1
5 1 3.0 0.2 1.2 1 1 1 0
5 2 2.0 1.2 0.2 1 –1 0 1
6 1 6.5 –0.8 –0.8 1 1 1 0
6 2 0.0 –0.8 –0.8 1 –1 0 1
7 1 5.5 –1.8 –0.8 1 1 1 0
7 2 6.0 –0.8 –1.8 1 –1 0 1
8 1 7.0 –0.8 0.2 –1 1 1 0
8 2 4.8 0.2 –0.8 –1 –1 0 1
9 1 4.5 1.2 0.2 –1 1 1 0
9 2 5.8 0.2 1.2 –1 –1 0 1
10 1 6.8 –0.8 1.2 –1 1 1 0
10 2 7.5 1.2 –0.8 1 –1 0 1

Note: act_drink and part_drink have been grand-mean centered around their mean of 1.80.
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each person provides an outcome score, Y, 
a score on a lower-level predictor variable, X 
(note that X could be either mixed or with-
in-dyads but the X depicted in Table 17.2 is 
mixed), and a score on an upper-level (i.e., 
between-dyads) predictor variable, Z.

If one takes the two-step analysis perspec-
tive for MLM, the level-1 model for person i 
in dyad j with a single lower-level predictor 
variable, X, would be

 Yij = b0j + b1jXij + eij,

where b0j represents the predicted Y when 
X equals zero for person i in dyad j, and b1j 
represents the coefficient that estimates the 
relationship between X and Y for dyad j. In 
the example, assuming that X, the person’s 
drinking score (i.e., act_drink), has been 
grand-mean centered, b0j represents the 
predicted college adjustment when drink-
ing is average, and b1j represents the change 
in adjustment as drinking increases by one 
day.1 The second step of the analysis involves 
treating the slopes and intercepts from the 
first-step analyses as outcome variables in 
two regressions. For these level-2 analyses, 
the regression coefficients from the first step 
are assumed to be a function of a dyad-level 
predictor Z, and the equations would be

 b0j = a0 + a1Zj + d j

 b1j = c0 + c1Zj.

The first level-2 equation treats the first-
step intercepts as a function of the Z vari-
able, and its form is similar to the standard 
MLM case that specifies that the first-step 
intercepts are comprised of both fixed and 

1 Because the number of days drinking variable has a 
meaningful zero value, it is unnecessary to grand-mean 
center. Ordinarily, to have meaningful zero values, it is 
necessary to grand-mean center.

random effects components. Specifically, a0 
estimates the grand mean (assuming that 
X and Z were either effect coded or grand-
mean centered), a1 estimates the overall 
effect of Z on Y, and dj represents that part of 
the intercepts for dyad j that is not explained 
by Z (also called the residual). The variance 
of these residuals captures the nonindepen-
dence of the Y scores for the two dyad mem-
bers. The proportion of variance of these 
residuals, sd

2/(sd
2 + se

2), measures the level of 
nonindependence and is commonly called 
the intraclass correlation.

The second level-2 equation treats the 
first-step slopes as a function of the Z vari-
able. In this model c0 estimates the average 
effect of X on Y and c1 estimates the effect of 
Z on the X-Y relationship (i.e., the interac-
tion between X and Z). This equation reflects 
the one major restriction that is necessary to 
apply MLM to dyads that need not be made 
for groups with more than two members: 
The first-step slopes are not allowed to vary 
randomly from dyad to dyad, and therefore 
are comprised of only fixed effects. This is 
because dyads do not have enough lower-
level units (i.e., dyad members) to allow the 
slopes to vary randomly from dyad to dyad.

One additional modification of the stan-
dard MLM formulation is useful in dyadic 
data analysis. In the standard MLM for-
mulation, nonindependence is modeled 
as a variance, but an alternative is to treat 
the scores from the two dyad members 
as repeated measures such that each dyad 
member would have an error and the errors 
would be correlated. Such a formulation 
models the nonindependence between dyad 
members as a covariance rather than a vari-
ance. This is particularly important when 
the outcome measure is structured such 
that when one dyad member has a higher 
score, the other person’s score tends to be 
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lower (e.g., variables involving compensa-
tion, competition, division of a resource). 
Nonindependence in dyadic data is often 
negative and negative nonindependence can 
be captured by a covariance, but not by a vari-
ance. Thus, the standard formulation can be 
problematic and we strongly urge research-
ers to use the repeated measures formulation 
rather than the random intercept approach 
when analyzing dyadic data. Note that if the 
nonindependence is positive, then this cova-
riance in the residuals equals the variance of 
the intercepts (sd

2) described earlier.
The SAS syntax for a MLM that speci-

fies this basic dyadic model in which the 
outcome variable is adjustment, the lower-
level predictor is the person’s drinking, the 
upper-level predictor is gender, and negative 
nonindependence is possible, would be:

PROC MIXED COVTEST;
CLASS dyad;
MODEL adjust = act_drink  gender 

act_drink* gender/S 
DDFM = SATTERTH;

REPEATED/TYPE = CS SUBJECT = dyad;

The COVTEST option in the PROC 
MIXED statement requests that the random 
effects in the model be tested for statistical 
significance, thereby providing a test of the 
partial intraclass correlation for the outcome 
(partialling out the effects of the person’s 
X). The CLASS statement defines dyad as 
a classification variable. The MODEL state-
ment specifies that adjust is a function of 
the person’s X, act_drink, the person’s value 
on Z, gender, and the XZ interaction; the S 
(or SOLUTION) option requests that SAS 
print out the estimated fixed-effect coeffi-
cients, and the DDFM = SATTERTH option 
requests that the Satterwaithe approximation 
be used to compute the degrees of freedom. 

Finally, the REPEATED statement is used to 
model the residual variance and covariance, 
and the SUBJECT = dyad option specifies 
that individuals at the same level of dyad 
are related. The TYPE = CS option requests 
a residual structure known as compound 
symmetry, which constrains the residual 
variances to be equal across the dyad mem-
bers and specifies that there is a covariance 
between the residuals as well. The equal 
variance constraint is particularly impor-
tant because the dyad members are indistin-
guishable, and so their residuals are sampled 
from the same underlying population.

The comparable SPSS syntax is:

MIXED
adjust WITH act_drink gender
/FIXED = act_drink gender act_drink* 

gender
/PRINT = SOLUTION TESTCOV
/REPEATED = person | SUBJECT(dyad) 

COVTYPE(CS).

The person variable in the last syntax 
statement arbitrarily denotes the two dyad 
members as a “1” and “2.”

Using these models with the example data 
set (i.e., Y = adjust, X = grand-mean centered 
act_drink, and Z = gender), a0 = 5.24 and is 
an estimate of the grand mean for adjust-
ment, and a1 = –0.38 and estimates the effect 
of gender on adjustment. Given that gender 
is coded men = 1 and women = –1, this value 
suggests that women’s average college adjust-
ment scores are higher than men’s. The aver-
age effect that a person’s drinking has on his 
or her college adjustment is c0 = –0.51, indi-
cating that each one unit increase in average 
weekly drinking corresponds to a predicted 
decrease of 0.51 points on adjustment. The 
gender difference in the relationship between 
drinking and adjustment is c1 = –0.63. These 
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coefficients together suggest that the strong 
negative relationship between drinking 
and college adjustment is primarily true 
of men, because the coefficients predicting 
 adjustment from drinking would be –1.14 for 
men and 0.12 for women. Finally, the resid-
ual variance is se

2 = 1.653, and the residual 
covariance (which in this case would equal 
the variance of the intercepts) is estimated 
at 0.855. So the partial intraclass correla-
tion that estimates the similarity in the two 
roommates’ adjustment scores after control-
ling for the effects of drinking and gender is 
rI = .52, indicating that adjustment scores for 
roommates are quite similar.

In sum, the MLM model for the standard 
dyadic design with indistinguishable dyads, 
one X variable, and one Z variable has four 
fixed effects and two random effects (varia-
tion in the intercepts and error variance). 
Although it may seem that constraining the 
slope variance to zero might bias the other 
multilevel estimates, this is not the case. 
Instead, variance in the slopes is modeled as 
one component of the error variance. Tests 
of the null hypotheses are not biased when 
the slopes do in fact vary across dyads.

One common practice in MLM is to com-
pute the mean of the level-1 predictor vari-
able and use it as a level-2 predictor. This 
can only be done if the level-1 variable is a 
mixed variable, because within-dyads vari-
ables do not vary at level 2. For example, in 
addition to using a person’s drinking as an 
X variable to predict his or her adjustment, 
the average drinking score for the dyad can 
be used as a Z variable in the level-2 equa-
tions. This would result in an estimate of 
(a) whether a person who drinks more is 
lower in adjustment, and (b) whether living 
in a room in which both roommates drink 
more on average moderates the effect of a 
person’s drinking on his or her adjustment.

For dyadic data we recommend a some-
what different approach. Instead of using 
the dyad average of the X variable as a level-2 
predictor variable, we suggest including both 
the person’s X and his or her roommate’s X as 
level-1 predictors of the person’s adjustment. 
In the drinking example, this would allow us 
to estimate both the effect of a person’s own 
drinking on his or her college adjustment as 
well as the effect of the roommate’s drinking 
on the person’s adjustment. This approach 
of using one’s own and partner’s X as pre-
dictors has been called the Actor–Partner 
Interdependence Model (APIM; Kenny, 
Kashy, & Cook, 2006). Note that in Table 17.2 
each person’s drinking score variable appears 
twice in the data file, once in the person’s 
own record as an actor effect (i.e., act_drink, 
denoted in the following MLM equations as 
XA) and again in the partner’s record as a 
partner effect (i.e., part_drink denoted in the 
following MLM equations as XP). Data files 
of this format are sometimes called pairwise 
data sets. The lower-level model that depicts 
both actor and partner effects is:

 Yij = b0j + b1jXAij + b2jXPij + eij.

The upper-level models, assuming that 
there is one upper-level predictor variable, 
Z, would be:

 b0j = a0 + a1Zj + d j

 b1j = c0 + c1Zj

 b2j = h0 + h1Zj.

The new parameters in these upper-level 
models, h0 and h1, can be interpreted as the 
average effect that the partner’s X has on the 
person’s Y, and the degree to which Z mod-
erates the relationship between the partner’s 
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X and the person’s Y, respectively. Thus, the 
partner effect, h0, would estimate the effect 
of the roommate’s drinking on the person’s 
college adjustment, and h1 would estimate 
gender differences in the partner effect (e.g., 
having a roommate who drinks heavily may 
have more impact on men’s adjustment than 
on women’s). The SAS syntax for a basic 
actor–partner model that does not include a 
dyad-level (i.e., level 2) predictor would be:

PROC MIXED COVTEST;
CLASS dyad;
MODEL adjust = act_drink 

part_ drink /S DDFM = SATTERTH;
REPEATED/TYPE = CS SUBJECT = dyad;

and the corresponding SPSS syntax would 
be:

MIXED
adjust WITH act_drink part_drink
/FIXED = act_drink part_drink
/PRINT = SOLUTION TESTCOV
/REPEATED = person | SUBJECT(dyad) 

COVTYPE(CSR).

To extend these models so that they include 
a Z variable (e.g., gender), the MODEL state-
ment in SAS would be extended as follows:

MODEL adjust = act_drink part_drink 
gender gender*act_drink gender* 
part_drink/ S DDFM = SATTERTH;

and a similar change would be used for 
SPSS. The coefficients from these APIM 
models that include gender interactions 
using the example data set are a0 = 5.27, 
a1 = –0.39, c0 = –0.42, c1 = -0.60, h0 = –0.05, 
h1 = –0.18, and rI = .53. The effects for actor 
are quite similar to those already described. 
The new partner effect results suggest that 

having a roommate who drinks more often 
has a negative effect on men’s adjustment 
(combining h0 and h1 for men, the partner 
effect coefficient is –0.23), but not women’s 
(the coefficient is 0.13).

One additional feature of the actor– partner 
model is that actor and partner effects can 
interact to create a new level-2 variable. We 
can form the interaction in the usual way 
by computing a product; in the roommate 
example this interaction might suggest that 
when both roommates drink a great deal, 
their adjustment scores are especially low. 
Alternatively, it may be more appropriate to 
form the interaction by computing the abso-
lute difference between the person’s X and the 
partner’s X scores to create a measure of dis-
similarity. Such an interaction might indicate 
that dissimilarity (i.e., when one person drinks 
a great deal but the other person does not) has 
a particularly detrimental effect on the two 
roommates’ adjustment scores. We refer the 
reader to Chapter 7 of Kenny, Kashy & Cook 
(2006) for a discussion of these interactions.

17.2.2 distinguishable dyads

The standard MLM approach works well 
when dyad members are indistinguishable, 
and the model can be adapted to handle 
cases in which dyad members are distin-
guishable as well. We outline three differ-
ent strategies for handling distinguishable 
dyads. As a running illustration, we amend 
our example by noting that for each room-
mate pair, one person is an international 
student and the other is a U.S. citizen. Thus, 
citizen (or C) is a within-dyads variable that 
can be used to systematically distinguish 
between the two roommates. In the data set 
in Table 17.2, the citizen variable is coded 
such that U.S. students are coded as 1 and 
non-U.S. students are coded as –1.
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The first strategy is identical to the one 
presented above for handling indistin-
guishable dyads, but a coded variable (using 
either 1 and 0 dummy coding or 1 and –1 
effect coding as is the case for the citizen-
ship variable) is added to the model to code 
for the distinguishing variable. For the 
example, we would add the C variable into 
the level-1 equation with actor and partner 
effects (we initially do not include gender to 
simplify the model):

 Yij = b0j + b1jXAij + b2jXPij + b3jCij + eij.

Additionally, we would likely want to 
allow for interactions between the other 
variables in the model and the distinguish-
ing variable. For the example, such inter-
actions would specify that the actor and 
partner effects may differ as a function of 
citizenship, and are included by multiply-
ing the distinguishing variable times each 
level-1 variable in the model:

 Yij = b0j + b1jXAij + b2jXPij + b3jCij 

  + b4jXAijCij + b5jXPijCij + eij.

The level-2 equations that include a dyad-
level predictor, Z, would then be:

 b0j = a0 + a1Z1 j + d j

 b1j = c0 + c1Z1 j

 b2j = h0 + h1Z1 j

 b3j = k0 + k1Z1 j

 b4j = m0 + m1Z1 j

 b5j = p0 + p1Z1 j.

In these models, k0 estimates the average 
citizenship difference on Y or college adjust-
ment, k1 estimates the degree to which Z 

(gender of the two roommates) moderates 
the citizenship difference on Y, m0 estimates 
the degree to which actor effects differ as 
a function of the person’s citizenship, m1 
estimates whether the actor by citizenship 
interaction varies as a function of Z, and 
likewise, p0 estimates the degree to which 
partner effects differ by citizenship and p1 

estimates the degree to which the partner 
by citizenship interaction varies as a func-
tion of Z.

Our discussion of distinguishable dyads 
thus far presumes that the residual variances 
are the same for both types of members 
(this is akin to the homogeneity of variance 
assumption in ANOVA). However, because 
the dyads are distinguishable, we would 
probably want to allow for heterogeneity of 
variance across levels of the distinguishing 
variable. In the example, this would allow the 
residual variances in college adjustment to 
differ for United States versus international 
students (perhaps there would be more unex-
plained variance in adjustment for interna-
tional students relative to U.S. students).

The SAS syntax below specifies a model 
that includes actor and partner effects for 
the mixed predictor (i.e., act_drink and 
part_drink), a distinguishing variable, citi-
zen, and a between-dyads variable, gender. 
(Note that the distinguishing variable can 
equivalently be treated as a class variable 
or simply as a dichotomous predictor—the 
only difference is in the appearance of the 
output.) By including interactions between 
the distinguishing variable and the actor and 
partner effects, the model allows the actor 
and partner effects to differ as a function 
of the distinguishing variable. Moreover, 
by changing the TYPE to CSH (heteroge-
neous compound symmetry) this syntax 
also allows for heterogeneous variances as a 
function of the distinguishing variable. Note 
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finally that the model also includes interac-
tions with the upper-level or Z variable (i.e., 
dyad gender), and so there may be three-way 
interactions between gender, citizenship, 
and either actor or partner effects.

PROC MIXED COVTEST;
CLASS dyad;
MODEL adjust = citizen gender 

act_ drink part_drink citizen*gender 
citizen*act_drink citizen*part_ drink 
gender*act_drink gender* 
part_ drink citizen*gender*act_drink 
 citi zen*gender*part_drink / S DDFM 
= SATTERTH;

REPEATED/TYPE = CSH SUBJECT  = 
dyad;

The corresponding SPSS syntax is:

MIXED
adjust WITH citizen gender act_drink 

part_drink
/FIXED = citizen  gender act_drink 

part_drink citizen*gender 
citizen*act_drink citizen*part_drink 
gender*act_drink gender*part_ drink 
 citizen* gender*act_drink 
citizen*gender*part_drink

/PRINT = SOLUTION TESTCOV
/REPEATED = person | SUBJECT(dyad) 

COVTYPE(CSH).

A second strategy for the analysis of dis-
tinguishable dyads is the two-intercept 
model, which was originally suggested by 
Raudenbush, Brennan, and Barnett (1995). 
We presume again here that each dyad con-
tains one U.S. citizen and one international 
student. Consider the empty model for 
member i of dyad j:

 Yij = b1jD1ij + b2jD2ij,

where D1ij is 1 for the U.S. citizen and 0 
for the international student, whereas D2ij 
is 0 for a U.S. citizen and 1 for an inter-
national student. (The correlation between 
D1 and D2 is –1.) In this model there is no 
intercept, at least not in the usual sense, 
but rather there are two intercepts, b1 
and b2. The intercept for U.S. students 
is estimated as b1 and the intercept for 
international students is estimated as b2. 
In addition, there is no error term in the 
model, making this a very unusual model. 
Importantly, in this model both b1 and b2 
are random effects, and so the model has 
a variance–covariance matrix of b1 and b2 
with three elements: the variance of b1 or 
s1

2 (the error variance for U.S. students), 
the variance of b2 or s2

2 (the error variance 
for international students), and the cova-
riance between the two or s12 (the degree 
of nonindependence).

If there were any X or Z variables, they 
are added to the model, but any X variables 
need to be multiplied by each of the two D 
dummies. We add here an actor and a part-
ner effect for X:

 Yij = b1jD1ij + b2jD2ij + b3jD1ijXAij 

  + b4jD2ijXAij + b5jD1ijXPij 

  + b6jD2ijXPij.

Thus, the actor effects for U.S. students is 
given by b3j and the actor effects for interna-
tional students is given by b4j and likewise 
for the partner effects: b5j and b6j.

With SAS there are two ways to estimate 
the two-intercept model. The first method 
is relatively simple. In this method, the 
distinguishing variable is treated as a clas-
sification variable. It is then entered into 
the MODEL statement, and the NOINT 
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option is used to suppress the intercept. 
By suppressing the intercept and including 
the distinguishing variable as a categorical 
or classification variable, we force the pro-
gram to compute two intercepts, one for 
citizen = 1 and the other for citizen = –1. 
Similarly, we obtain estimates of separate 
actor and partner effects by including 
interactions between the distinguishing 
variable and the actor and partner vari-
ables. The syntax below estimates the two 
intercept model that also includes sepa-
rate actor and partner effects for United 
States versus international students. (Note 
that for simplicity, we have not included 
gender.)

PROC MIXED COVTEST;
CLASS dyad citizen;
MODEL adjust = citizen citizen* 

act_ drink citizen*part_drink/S 
DDFM = SATTERTH NOINT;

REPEATED / TYPE = CSH SUBJECT = 
dyad;

The comparable syntax is SPSS is:

MIXED
adjust BY citizen WITH act_drink 

part_drink
/FIXED = citizen citizen*act_drink 

citizen*part_drink | NOINT
/PRINT = SOLUTION TESTCOV
/REPEATED = person | SUBJECT(dyad) 

COVTYPE(CSH).

The more direct, but less simple way to 
estimate the two-intercept model with SAS 
is to actually create the two dummy vari-
ables and then use them in the syntax. For 
example, we could define d1 = 1 if citi-
zen = 1 and d1 = 0 otherwise and d2 = 1 if 

citizen = –1 and d2 = 0 otherwise. The SAS 
syntax would then be:

PROC MIXED COVTEST;
CLASS dyad;
MODEL adjust = d1 d2 d1*act_drink 

d2*act_drink d1*part_drink d2* 
part_drink

/S DDFM = SATTERTH NOINT;
RANDOM d1 d2 / SUBJECT = dyad 

TYPE = UN;
PARMS 2, 1, 2, 0.000001 / HOLD = 4;

The last statement sets the starting values 
for the random effects, and it is required 
because in the two-intercept model, the 
error variance must be constrained to zero. 
The specific values in the PARMS statement 
refer to the variables in the RANDOM 
statement, and because d1 and d2 have a 
UN or unstructured variance–covariance 
matrix, there are four random effects being 
estimated: UN(1,1), which is the variance 
of the U.S. students’ intercepts; UN(2,1), 
which is the covariance between the United 
States and international students’ intercepts; 
UN(2,2), which is the variance of the inter-
national students’ intercepts; and a residual 
variance. The first three numbers in the 
PARM statement can be almost any value, 
as long as the two variances are positive 
and the covariance is less than the absolute 
value of the product of the two standard 
deviations. The last value, 0.000001, speci-
fies that the residual or error variance has 
a starting value that is virtually, but not 
exactly, zero (i.e., it is 0.000001), and the 
HOLD = 4 instructs the program to fix the 
residual variance, the fourth parameter, to 
its starting value. So far as we know, there 
is no way within SPSS to fix the error vari-
ance to zero. MLwiN does allow zero error 
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variance whereas HLM allows the fixing of 
the error variance to a very small value.

Finally, it is sometimes useful to use two 
of the methods we have described to esti-
mate distinguishable models. In particular, 
the first method we described provides esti-
mates and tests of the interactions between 
X variables and the distinguishing factor 
(e.g., the test of whether the effect of one’s 
own drinking differs for U.S. students rela-
tive to international students). If such inter-
actions emerge, then estimating and testing 
the simple slopes separately for each level of 
the distinguishing variable (e.g., what is the 
effect of one’s own drinking for U.S. students, 
and what is the effect of one’s own drinking 
for international students) is a natural way 
to break down the interaction. These esti-
mates and tests of the simple slopes can be 
provided directly by either of the two-inter-
cept models we have described.

17.2.3 test of distinguishability

MLM can be used to test whether conceptually 
distinguishable dyads are actually  empirically 
distinguishable. Kenny, Kashy, & Cook (2006) 
present such a test using structural equation 
modeling. To conduct this test using MLM, 
two models must be estimated, and both of 
these models should use maximum likeli-
hood estimation (ML) rather than the typi-
cal program default of restricted maximum 
likelihood (REML). The ML option should 
be used because the distinguishable model 
generally differs from the indistinguish-
able model in its fixed effects. In SAS this is 
accomplished by adding METHOD = ML to 
the PROC MIXED statement.

In the first model, dyad members are 
treated as distinguishable both in terms of 
their fixed and random effects.

PROC MIXED COVTEST METHOD =  
ML;

CLASS dyad;
MODEL adjust = citizen act_drink 

part_drink citizen*act_drink 
citizen*part_drink / S 
DDFM = SATTERTH;

REPEATED/TYPE = CSH SUBJECT = 
dyad;

In the second model, dyad members are 
treated as indistinguishable.

PROC MIXED COVTEST METHOD = 
ML;

CLASS dyad;
MODEL adjust = act_drink part_drink 

/ S DDFM = SATTERTH;
REPEATED/TYPE = CS SUBJECT = 

dyad;

A chi-square difference test can then be 
computed by subtracting the deviances (i.e., 
the –2*log likelihood values). For example, 
if we want to compare the indistinguishable 
actor–partner model (dropping the between-
dyads, or Z, variable for simplicity) with the 
actor–partner model that treats the dyad 
members as distinguishable, there are three 
additional fixed effects (citizen, citizen*act_
drink, citizen*part_drink) and one addi-
tional random effect because heterogeneous 
compound symmetry (CSH rather than 
CS) allows the two variances to differ but 
homogeneous compound symmetry does 
not. If the χ2 difference with four degrees 
of freedom were not statistically significant, 
the data would be consistent with the null 
hypothesis that the dyad members are indis-
tinguishable. If, however, χ2 were statistically 
significant, then there would be support for 
the alternative hypothesis that dyad mem-
bers are distinguishable. In the example, 
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the distinguishable model has a deviance of 
60.920 and the indistinguishable model has 
a deviance of 64.507. Thus, the test of dis-
tinguishability is χ2(4) = 3.587, p = .46, and 
so in the example data set, there is not much 
evidence that the roommates are empirically 
distinguished by citizenship (the sample size 
is very small, resulting in low power for this 
test).

17.3  oveR-tIMe standaRd 
desIgn

Here, we consider the standard design with 
the complication that each member of the 
dyad is measured at multiple times. By mul-
tiple, we mean more than twice and prefer-
ably each dyad member is measured more 
than five times. In over-time data from 
dyads, there are three factors that define 
the structure of the data: time, person, and 
dyad. Researchers often make the mistake 
of considering these data to be a three-
level nested model in which time points 
are nested within persons and persons are 
nested within dyads. As pointed out by 
Laurenceau and Bolger (2005), the problem 
is that time and person are usually crossed, 
not nested. That is, for a given dyad, the 
time point is the same for the two persons 
at each time point.

There are two potentially undesirable con-
sequences if the three-level nested model is 
mistakenly assumed. First the correlation 
between the two partner’s intercepts, rcc, is 
constrained to be positive because it is esti-
mated as a variance. As we have described, 
there are several types of outcome mea-
sures for which this dyadic correlation 
would likely be negative. The second con-
sequence of mistakenly conceptualizing 

crossed over-time dyadic data as a three-
level nested structure is that the correlation 
between the two members’ errors at each 
time, ree, is assumed to be zero. This corre-
lation measures the time-specific similar-
ity (or dissimilarity) in that part of Y that 
is not explained by the predictors for the 
two partners. Such time-specific similarity 
might arise because of arguments or other 
events that occur immediately prior to an 
assessment occasion.

An additional issue with over-time data is 
the necessity of modeling the nonindepen-
dence that arises because variables are mea-
sured over time, which is commonly called 
autocorrelation (see e.g., Hillmer, 2001). 
There is probably no more reliable finding in 
the social and behavioral sciences than the 
fact that the best predictor of future behav-
ior is past behavior. Statistically, autocorre-
lation is the association between a measure 
taken at one point in time and the same 
measure taken at another point in time.

We can divide over-time models into 
two major types. First, there are stochastic 
models in which a person’s or dyad’s score 
is a function of past scores plus a random 
component. Second, there are determinis-
tic models in which the person or dyad is 
assumed to be on some sort of trajectory. In 
this chapter, we focus on linear determin-
istic growth models. In these models, the 
explanatory variable is time of measure-
ment, and each person has a slope that esti-
mates his or her rate of change, as well as an 
intercept that measures the person’s level at 
time zero. As discussed in many treatments 
of growth models (e.g., Biesanz, Deeb-Sossa, 
Papadakis, Bollen, & Curran, 2004), choice 
of time zero is an important one; however, 
in this chapter we simply assume that time 
zero is the initial observation. We begin by 
discussing distinguishable dyads. We then 
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turn our attention to the more complex case 
of indistinguishable dyads.

17.3.1 distinguishable dyads

Consider as a simple example, an over-
time study of marital satisfaction (satisf) 
in which satisfaction is measured yearly 
for 5 years. The data for two couples from 
this fictitious over-time study are presented 
in Table 17.3, and the distinguishing vari-
able, gender, is coded 1 for husbands and –1 
for wives. As can be seen in the table, there 
are 10 records for each dyad (five for each 
person) and so the data set is structured in 
a time-as-unit format, sometimes called a 
person-period data set. Thus if 60 married 
couples were measured at five times, there 
would be 600 records.

In this data set time is coded as zero at the 
initial assessment and then increases by one 
each year. On each data record, we recom-
mend creating one additional variable, what 
we call timeid, which simply equals time. 
We do so because we need two different time 
variables: one of which is continuous time 
(time) and the other is treated as categorical 
(timeid). One key idea in the analysis of data 
from the over-time standard design is to use 
the distinguishing variable (e.g., gender) to 
create two dummy variables that represent 
the two “classes” of individuals. One dummy 
variable, what we denote as H in the MLM 
equations (husband in Table 17.3), is set to 
one when the scores are from the husband 
and to zero otherwise. The other, what we call 
W (wife in Table 17.3) is set to one when the 
scores are from the wife and zero otherwise.

taBle 17.3

Data from Two Couples in a Fictitious Over-Time Study of Marital 
Satisfaction

Dyad time Person Husband Wife Satisf Gender
1 0 1 1 0 5 1
1 1 1 1 0 6 1
1 2 1 1 0 8 1
1 3 1 1 0 7 1
1 4 1 1 0 4 1
1 0 2 0 1 4 –1
1 1 2 0 1 5 –1
1 2 2 0 1 3 –1
1 3 2 0 1 6 –1
1 4 2 0 1 7 –1
2 0 1 1 0 8 1
2 1 1 1 0 6 1
2 2 1 1 0 4 1
2 3 1 1 0 7 1
2 4 1 1 0 6 1
2 0 2 0 1 6 –1
2 1 2 0 1 7 –1
2 2 2 0 1 8 –1
2 3 2 0 1 3 –1
2 4 2 0 1 6 –1
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The basic idea is that we create a two-level 
model in which level 1 is time or observa-
tion for both persons, and level 2 is the dyad. 
Through its use of the H and W dummy 
codes, this single model actually represents 
two growth curves, one for each member 
of the dyad. Having the two persons rep-
resented by one model allows us to model 
the nonindependence of the intercepts as 
a covariance and estimate a time-specific 
correlation between the residuals as well. 
The level-1 equation for person i in dyad j at 
time t would be

 Yijt = b01jH + b02jW + b11jHTt 

  + b12jWTt + He1jt + We2jt.

Note that the only predictor variable is 
time or Tt. There are four random variables 
at the level of the dyad: the two intercepts, 
b01j and b02j, and the two slopes, b11j and b12j. 
For the example, b01j estimates the hus-
band’s satisfaction at the beginning of the 
study (time = 0) and b02j estimates the wife’s 
initial satisfaction. The slopes estimate the 
degree to which the husband’s and wife’s 
satisfaction increases or decreases each year 
on average.

The variance–covariance matrix for these 
intercepts and slopes contains four vari-
ances and six covariances. Two key cova-
riance parameters for the dyadic growth 
model are the covariances between the two 
members’ intercepts and two slopes. For 
the example, the covariance between the 
intercepts estimates whether husbands and 
wives are similar in their level of satisfac-
tion at the initial assessment. The covari-
ance between the slopes measures whether 
the rate of change in a husband’s satisfac-
tion is similar to his wife’s. The four remain-
ing covariances concern correspondence 

between the intercepts and slopes, including 
two within-person covariances (e.g., when 
wives start the study with lower satisfac-
tion do they change more slowly?) as well as 
two between-person covariances (e.g., when 
wives start the study with lower satisfaction 
do their husbands change more slowly?)

There are also two residual variances, 
one for husbands and one for wives, and 
these two residuals may have a covariance. 
In the example, the correlation between 
the residuals, what we denoted as ree ear-
lier, measures the degree to which the 
husband’s and wife’s satisfaction scores 
are especially similar at a particular time 
point, after  taking the intercepts and slopes 
into account.

Dyadic growth models for distinguish-
able dyads can be estimated using either 
SAS or SPSS.

For distinguishable dyads, the SAS code is:

PROC MIXED COVTEST;
CLASS dyad timeid gender;
MODEL satisf = husband wife 

husband*time wife*time / NOINT S 
DDFM = SATTERTH ;

RANDOM husband wife husband*time 
wife*time / SUB = dyad TYPE = UN;

REPEATED gender / TYPE = CSH 
SUBJECT = timeid(dyad);

Because there is no intercept in the 
model (NOINT), the program estimates 
separate intercepts and separate slopes for 
husbands and wives. Using TYPE = UN 
in the RANDOM statement specifies that 
there are no equality constraints on the 
variance or covariance estimates, and so 
separate values are estimated across the dis-
tinguishing variable (e.g., across husbands 
and wives). The TYPE = CSH option in 
the repeated statement allows for different 
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residual variances across the distinguish-
ing variable, and it also specifies that there 
may be a time-specific correlation between 
the residuals. It is important to realize that 
although this specification of the error 
structure allows for different variances 
across the distinguishing variable, it does 
fix the error variances to be the same value 
at each time. Likewise, it estimates a single 
time-specific covariance rather than differ-
ent values for each time point.

The SPSS syntax is:

MIXED
satisf BY dyad timeid gender 

WITH husband wife time
/FIXED = husband wife husband*time 

wife*time | NOINT
/PRINT = SOLUTION TESTCOV
/RANDOM husband wife husband* 

time wife*time|SUBJECT(dyad) 
COVTYPE(UNR)

/REPEATED gender | SUBJECT(timeid* 
dyad) COVTYPE(CSH).

We did not achieve a solution with the 
SPSS but did with SAS.

We refer to this model as the fully satu-
rated model in the sense that we have treated 
all of the fixed effects (i.e., the two intercepts 
and two slopes) as random. In some cases, 
there can be difficulties in the estimation of 
 multilevel models when either one or more 
of the variances is small or two or more of 
the terms are highly collinear. The researcher 
may need to explore simpler models, for 
example, a model in which intercepts are ran-
dom and slopes are fixed or a model in which 
both dyad members share a common slope 
or intercept. The fixed and random effects 
can be constrained to the same value across 
the distinguishing variable by replacing the 
MODEL and RANDOM statements with

MODEL satisf = time/S DDFM = 
SATTERTH ;

RANDOM INTERCEPT time / SUB = 
dyad TYPE = UN;

This basic linear growth model is typi-
cally only the starting point of an over-time 
dyadic analysis. Researchers might want to 
see whether the levels or rates of change dif-
fer as a function of person-level predictors 
such as personality scores. For instance, we 
could include the actor’s and partner’s neu-
roticism in the analysis, and in our marital 
satisfaction example we would be able to 
determine whether the change in wife’s sat-
isfaction over time differs depending on the 
wife’s own neuroticism and her husband’s 
neuroticism. Dyad-level predictors such as 
length of relationship or experimental con-
dition can also be treated as moderators of 
the effect of time. Moreover, time-varying 
variables such as employment status at each 
data collection period can also be included 
as predictors. Finally, growth models need 
not be linear, and so nonlinear functions of 
time such as quadratic time variables can be 
included in the analysis.

17.3.2 Indistinguishable dyads

Although the fundamental principle with 
indistinguishable dyads is that they cannot 
be systematically distinguished, the analysis 
of data from an over-time standard design 
for indistinguishable dyads requires that we 
create a variable (which we call person) that 
distinguishes between the dyad members. 
Thus, for each dyad, one member is coded 
person as 1 and the other is coded person 
as 2. Using person, we create two dummy 
variables. One dummy, what we call P1, is 
set to one when the scores are from person 
1 and to zero otherwise; and the other, what 
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we call P2, is set to one when the scores are 
from person 2 and zero otherwise.

The level-1 model is very similar to that 
for distinguishable dyads,

 Yijt = b01jP1 + b02jP2 + b11jP1Tt 

  + b12jP2Tt + P1e1jt + P2e2jt.

However, when dyad members are indis-
tinguishable, a series of equality constraints 
need to be included for both the fixed and 
random effects. For example, the two inter-
cepts, b01j and b02j, should be equal, as should 
the two slopes, b11j and b12j. Indeed, the 
analysis becomes more complicated because 
we need to place similar constraints on the 
four-by-four variance-covariance matrix of 
slopes and intercepts.

This analysis can be conducted using SAS 
and MLwiN but not the current versions of 
SPSS and HLM. To accomplish this analy-
sis, a data set (referred to as the g data set) 
that defines the equality constraints on the 
variance–covariance matrix must be cre-
ated. The values in this data set refer spe-
cifically to the RANDOM statement in 
the PROC MIXED procedure. As shown 
below, the RANDOM statement in SAS 
syntax for this analysis defines four random 
effects: The two dummy variables, p1 and 
p2, represent the two persons’ intercepts, 
and p1*time and p2*time represent the two 
persons’ slopes. These random effects create 
a four-by-four variance–covariance matrix 
where the diagonal represents the variances 
of the random effects.

Because the dyad members are indistin-
guishable, a certain structure needs to be 
imposed on this matrix. Specifically, the 
intercept variances (p1 and p2) need to be 
fixed to the same value, and the slope vari-
ances (p1*time and p2*time) need to be 

fixed to the same value. In addition, the 
within-person intercept-slope covariances 
(p1 with p1*time and p2 with p2*time) 
need to be equated, as do the between-
person intercept-slope covariances (p2 
with p1*time and p1 with p2*time). There 
are two other elements in this matrix: the 
cross-person intercept covariance (p1 with 
p2) and the cross-person slope covariance 
(p1*time with p2*time). Thus, although 
there are potentially 10 elements in the 
variance–covariance matrix, there are only 
six unique parameter estimates due to the 
equality constraints.

The g data set has a very specific format and 
must include the following variables: PARM, 
ROW, COL, and VALUE. These variables 
are linked to the ordering of variables in the 
RANDOM statement in the PROC MIXED 
syntax. PARM represents parameter num-
ber. Thus, because we are specifying six 
 variance–covariance parameters between 
the intercepts and slopes (the intercept vari-
ance, the slope variance, the intercept covari-
ance, the slope covariance, the within-person 
intercept-slope covariance, and the between-
person intercept-slope covariance), PARM 
takes on six different values. The nature of 
the variance–covariance structure for the 
residuals is specified in the REPEATED 
statement, and does not play a role in g.

The ROW and COL values refer to the 
variables in the random statement, and so 
a 1 for ROW represents the effect of the 
p1 dummy code (the intercept for p1), and 
having ROW = COL = 1 implies that the 
estimated parameter is the variance of the 
intercepts for p1 (i.e., it is the covariance of 
p1’s intercept with itself). Although the sec-
ond line in this data set has a PARM value 
of 1, it also has ROW = COL = 2. This infor-
mation together specifies that the variance 
of the intercepts is based on the variance of 
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both the p1 intercept and the p2 intercept. 
The next line identifies the second parameter 
that is the covariance between the two per-
son’s intercepts. The third and fourth lines 
define the variance of the slopes, and the 
fifth line defines the covariance between the 
two slopes. The remaining two parameters 
are the within person intercept-slope cova-
riance (PARM = 5) and the between person 
intercept-slope covariance (PARM = 6).

The full SAS syntax for creating the G 
matrix would be

DATA g;
INPUT PARM ROW COL VALUE;
DATALINES;
1 1 1 1
1 2 2 1
2 3 3 1
2 4 4 1
3 1 2 1
4 3 4 1
5 1 3 1
5 2 4 1
6 1 4 1
6 2 3 1
;

The SAS syntax for the analysis is then:

PROC MIXED COVTEST;
CLASS dyad timeid person
MODEL y = time/ S 

DDFM = SATTERTH ;
RANDOM p1 p2 p1*time p2*time /G 

SUB = dyad TYPE = LIN(6) LDATA = g;
REPEATED person/TYPE = CS 

SUB = timeid(dyad);

Note on the REPEATED statement that 
TYPE is CS rather than CSH. This speci-
fies that the residual variances are the same 
both across time and across person.

To test for distinguishability we could esti-
mate two models using ML. One allows for 
full distinguishability and the other allows 
for indistinguishability. The difference in 
deviances is a chi-square test that, for the 
model presented, would have 7 degrees of 
freedom: the four constraints made in the g 
matrix (two sets of variances equal and two 
sets of covariances equal), the two equality 
constraints of the two intercepts and slopes, 
and the equality of the two error variances.

17.4 one-wIth-Many desIgn

In the one-with-many design, a person is 
in multiple dyadic relationships, but each 
of the person’s partners is in a relationship 
with only that one person. For instance, a 
doctor might interact with many patients. 
Alternatively, adolescents might provide 
information about their relationships with 
their mothers, fathers, romantic partners, 
and best friends. We refer to the person 
who has multiple partners (the “one”) as 
the focal person and to the multiple others 
(the “many”) as the partners. In the first 
example, doctors would be focal persons 
and the patients would be their partners; in 
the second example the adolescents would 
be the focal persons and their mothers, 
fathers, romantic partners, and best friends 
would be the partners. As is illustrated by 
these two examples, the partners in the one-
with-many design can be distinguishable or 
indistinguishable.

The one-with-many design is a blend of 
the standard dyadic and SRM designs; it is 
similar to the standard design in that each 
partner is paired with only one focal per-
son, and it is like an SRM design in that the 
focal person is paired with many partners. 
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The one-with-many design is nonreciprocal 
if only one of the two members of each dyad 
provides outcome scores. Thus, if the ado-
lescents rated their relationship closeness 
with their mothers, fathers, romantic part-
ners, and friends, but these partners did not 
rate their closeness with the adolescent, the 
design would be nonreciprocal. Similarly, if 
the partners rated their closeness with the 
adolescent, but the adolescent did not make 
ratings, it would again be nonreciprocal. 
On the other hand, if both the focal person 
and the partners are measured, the design 
would be reciprocal. We first consider the 
nonreciprocal design for indistinguishable 
and distinguishable partners, and then we 
discuss the reciprocal design.

17.4.1  nonreciprocal one-
with-Many designs: 
Indistinguishable Partners

As an example, we use the small data set pre-
sented in Table 17.4 from a fictitious study of 
intimacy in friendships. In this table we see 
that our data set contains nine focal persons 
(five women and four men; focalsex is coded 
1 = men and -1 = women), each of whom 
report on the intimacy of their friendships 
(1 = not at all intimate, 9 = very intimate) 
with varying numbers of male and female 
friends (partsex is also coded 1 = men and 
–1 = women). The data in Table 17.4 actually 
include two measures of intimacy: One vari-
able denotes the intimacy scores as rated by 
the focal person (f_intimacy), and the sec-
ond denotes the intimacy scores as rated by 
the partners (p_intimacy). Thus, the data 
set is actually reciprocal (although we do 
not treat it as such at this point in our dis-
cussion and so p_intimacy will be ignored). 
Say that one question to be addressed in the 
study is whether the partners’ relationship 

self-esteem (rsepart) predicts the focal per-
son’s perceptions of intimacy, and whether 
such a relationship is moderated by the focal 
person’s gender.

Two variables must be included in the data 
set to apply MLM to the one-with-many 
design. First, a variable that identifies the 
focal person that is involved in each dyad 
should be created. In this chapter, we use 
focalid to denote the focal person. Second, 
a variable that identifies the partner that is 
involved in the dyad must be created, and 
we use the variable partid for this purpose. 
We assume that both focalid and partid 
start at the number one and continue to 
as many as needed. For partid, we have a 
choice. We can either number them consec-
utively from 1 to the total number of part-
ners in the study, or for each focal person 
we use the same numbers. That is, if each 
focal person has three partners, they would 
be numbered 1, 2, and 3. When partners are 
distinguishable, the latter strategy is prefer-
able. When partners are indistinguishable, 
either method can be used, but as we show, 
the SAS syntax would need to change.

Data from the one-with-many design are 
hierarchically structured because partners 
are tied to a focal person. In some ways, 
the one-with-many design is more closely 
linked to standard MLM designs because 
partners are nested within “groups” that 
are defined by the focal person. Thus, in 
the one-with-many design, the upper-level 
or level 2 is the focal person and the lower-
level or level 1 is the partner. The variable 
X (e.g., partner’s relationship self-esteem) 
is a level-1 variable because it is assumed to 
vary across  partners within focal person. 
The level-1 equation for partner i with focal 
person j is:

 Yij = b0j + b1jXij + eij.
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To make the intercept, b0j, more interpre-
table, it is generally advised to center the X 
variables by subtracting the overall partner 
mean (i.e., the grand mean computed across 
all partners in the data set). For the exam-
ple data, this would involve subtracting the 
grand mean of the partner’s relationship 
self-esteem, (M = 10.062) from each part-
ner’s rsepart score. The term eij represents 

the error or residual for partner i with focal 
person j. The level-2 models are:

 b0j = a0 + a1Zj + dj

 b1j = c0 + c1Zj + fj,

where Zj is a level-2 variable (e.g., focal per-
son gender, or focalsex) such that it takes on 
the same value for all partners of the same 

taBle 17.4

Data Set for the Fictitious Indistinguishable One-With-Many Design

Focalid Partid F_Intimacy P_Intimacy Focalsex Partsex RSepart RSepartc
1 1 5 1 1 1 5 –5.06
1 2 8 6 1 1 4 –6.06
1 3 5 3 1 –1 5 –5.06
1 4 2 5 1 –1 13 2.94
2 1 7 6 –1 1 12 1.94
2 2 6 4 –1 –1 11 0.94
2 3 9 3 –1 –1 14 3.94
3 1 5 5 –1 1 8 –2.06
3 2 4 6 –1 1 12 1.94
3 3 2 7 –1 1 9 –1.06
3 4 6 6 –1 –1 15 4.94
3 5 5 7 –1 –1 17 6.94
4 1 7 3 1 –1 8 –2.06
4 2 5 2 1 –1 7 –3.06
4 3 8 4 1 –1 13 2.94
4 4 5 5 1 1 5 –5.06
5 1 1 6 1 1 12 1.94
5 2 2 6 1 1 16 5.94
5 3 5 7 1 –1 15 4.94
6 1 6 8 –1 –1 17 6.94
6 2 5 5 –1 –1 9 –1.06
6 3 8 5 –1 1 14 3.94
7 1 4 6 1 1 12 1.94
7 2 6 7 1 1 8 –2.06
7 3 7 4 1 1 4 –6.06
7 4 8 4 1 –1 3 –7.06
8 1 6 8 –1 –1 1 –9.06
8 2 7 7 –1 1 8 –2.06
8 3 9 8 –1 1 9 –1.06
9 1 7 7 –1 –1 15 4.94
9 2 5 4 –1 1 10 –0.06
9 3 7 4 –1 1 11 0.94

Note: focalsex and partsex is coded men = 1, women = –1.
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focal person. Unlike the standard design, 
there can be a random component for the 
slopes as well as for the intercepts. If there 
are relatively few partners per focal person, 
allowing such a variance may not be pos-
sible. If k refers to the number of partners 
per focal person (assumed to be equal only 
for the purposes of this calculation), to treat 
all the level-1 slopes as random for p lower-
level predictor variables, k must be at least 
p + 2. In the small example data set, each 
person reports on at least three friendships, 
and so we could (in principle, although we 
do not do so) include a random slope for 
one lower-level predictor variable.

Although the slopes can be constrained to 
be equal for all focal persons (i.e., the slopes 
would be modeled as a fixed effect compo-
nent only), it is almost always advisable to 
allow for the possibility that the intercepts 
vary across focal persons. As was true for the 
standard design, the variation of the inter-
cepts models the nonindependence in the 
data—but in this case the nonindependence 
refers to similarity in scores for individuals 
who are paired with the same focal person. 
We can compute the variance of the inter-
cepts or sd

2 and the error variance or se
2. The 

ratio of the variance due to the intercept to 
the total variance, or sd

2/(sd
2 + se

2), provides 
an estimate of the intraclass correlation, 
the measure of nonindependence. When 
there are lower-level predictor variables, or 
Xs, the intraclass correlation based on the 
intercepts is a partial intraclass that repre-
sents the proportion of variance due to the 
focal persons after controlling for the effects 
of the predictor variable(s).

The interpretation of this measure of non-
independence depends on whether the data 
come from the focal person or the part-
ners. If the data come from the focal person 
(e.g., f_intimacy), then the variance in the 

intercepts refers to the consistency in how 
the focal person sees or behaves with the 
partners. (It is analogous to the actor vari-
ance in an SRM design, see below.) In the 
example analysis of the focal person’s rat-
ings of intimacy, the variance in the inter-
cepts measures the degree to which focal 
persons tend to report similar levels of inti-
macy across all of their friends. If the data 
come from the partners, then the variance 
in the intercepts refers to the consistency 
in how the partners see or behave with the 
focal person. (It is analogous to the partner 
variance in an SRM design, see below.) If 
we treated the partner-rated intimacy as the 
outcome measure, the variance of the inter-
cepts would measure the degree to which 
friends experience similar levels of intimacy 
with the focal person.

For the example data, we estimated a 
model predicting the focal person’s inti-
macy ratings that allowed for random 
intercepts, random slopes for the effect of 
the partner’s relationship self-esteem, and 
a covariance between the intercepts and 
slopes. In this model we treated grand-
mean centered relationship self-esteem 
(rsepartc) as a lower-level predictor and 
focal-person gender as an upper-level pre-
dictor. The SAS syntax for this analysis is

PROC MIXED COVTEST;
CLASS focalid;
MODEL f_intimacy = rsepartc 

 focalsex rsepartc*focalsex/S 
DDFM = SATTERTH;

RANDOM INTERCEPT/SUBJECT  = 
focalid;

and the corresponding SPSS syntax is

MIXED
f_intimacy WITH rsepartc focalsex



Dyadic Data Analysis Using Multilevel Modeling  •  357

/FIXED = rsepartc focalsex focalsex* 
rsepartc

/PRINT = SOLUTION TESTCOV
/RANDOM INTERCEPT | SUBJECT 

(focalid) COVTYPE(VC).

Based on the data in Table 17.4, a0 = 5.45, 
indicating that average intimacy scores were 
somewhat above the scale midpoint. The 
effect of focal-person gender was a1 = –0.64, 
and given the coding scheme, this indicates 
that men reported lower average intimacy 
across friends than did women. The average 
effect of relationship self-esteem on inti-
macy was relatively small, c0 = –0.05, but 
there was evidence of a focal-person gen-
der difference for the effect of relationship 
self-esteem on intimacy, c1 = –0.21. Thus, 
women reported higher intimacy with 
friends who had higher relationship self-
esteem, and men reported lower intimacy 
with friends that had higher relationship 
self-esteem. The random effects yielded the 
intercept variance of sd

2 = 1.127, and a resid-
ual or error variance of se

2 = 2.500. Thus, 
the partial intraclass for intimacy ratings, 
controlling for the effects of self-esteem is 
.311, and so there is some evidence that focal 
persons reported similar levels of intimacy 
across their friends.

It is important to note that by definition 
a ratio of the variance of the intercepts to 
the total variance must be nonnegative, and 
so this method presumes that the intraclass 
correlation cannot be negative. Normally, 
we would not expect the intraclass correla-
tion to be negative for the one-with-many 
design. However negative intraclass corre-
lations could occur for variables requiring 
social comparison or compensation across 
partners; for example, if the outcome vari-
able is structured such that if one partner 
has a high score, other partners have lower 

scores, the intraclass might be negative. 
However, treating nonindependence as a 
variance precludes the possibility of any neg-
ative nonindependence. If a negative intra-
class correlation (Kenny, Mannetti, Pierro, 
Livi, & Kashy, 2002) is likely to occur (e.g., 
variables for which one partner having a 
high score constrains other partners to hav-
ing lower scores), we suggest that partners 
should be treated as a repeated measure so 
that nonindependence is modeled as a cor-
relation rather than a variance. This would 
be accomplished in SAS by substituting the 
RANDOM statement with a REPEATED 
statement as follows:

REPEATED/SUBJECT = 
focalid TYPE = CS;

and similarly for SPSS:

/REPEATED partid | SUBJECT(focalid) 
COVTYPE(CS).

It is possible to treat the mean of the X 
variable for each focal person, or MX, as a 
predictor in the second-stage of the multi-
level analysis. For instance, in the example 
where X is relationship self-esteem, then 
the effect of MX on a focal person’s intimacy 
would estimate whether individuals whose 
friends have higher self-esteem on average 
report higher levels of intimacy on average. 
For the standard design, we suggested using 
the partner’s X as a level-1 predictor (e.g., 
the partner’s drinking), but there is not a 
direct extension of this approach to the one-
with-many design. Nonetheless, as we have 
shown with the example of focal-person 
gender, characteristics of the focal person 
may be relevant predictors.

Perhaps the most interesting case occurs 
when the same predictor is measured for 
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the focal person as well as the partners. In 
the example this would mean that we have 
a measure of the focal-person’s relationship 
self-esteem (e.g., rsefocal) in addition to the 
partners’ scores on this variable. In this case 
the lower-level predictor, or X, would be the 
partner’s relationship self-esteem, and the 
upper-level predictor, Z, would be the focal-
person’s relationship self-esteem. In such a 
case, the effect of focal-person self-esteem 
on focal-person intimacy would be an actor 
effect (i.e., If my partners have higher self-
esteem on average, do I have higher aver-
age intimacy with them?), and the effect of 
partner self-esteem on focal-person inti-
macy would be a partner effect (i.e., If my 
partner has higher self-esteem, do I have 
higher intimacy scores with that partner?). 
In a parallel fashion, if the outcome mea-
sure is the partner-rated intimacy, then the 
effect of partner self-esteem on partner-
reported intimacy would be an actor effect, 
and the effect of focal-person self-esteem on 
partner-reported intimacy would be a part-
ner effect.

17.4.2  nonreciprocal one-
with-Many designs: 
distinguishable Partners

One major difference between the distin-
guishable and indistinguishable cases is that 
when partners are distinguishable, both the 
fixed and the random effects may vary by 
the distinguishing variable. Differential 
fixed effects are modeled by including part-
ner role as a predictor in the model. In cases 
in which the effects of other X or Z vari-
ables are examined, interactions between 
these variables and partner role should be 
included as well.

Differential random effects as a func-
tion of the distinguishing variable can take 

two forms. The most general format does 
not place any constraints on the variance– 
covariance matrix of the random effects. In 
this model (which we will term the uncon-
strained random effects model) separate 
variances are computed for each role and 
separate covariances are estimated for each 
combination of roles. Because the covari-
ances can differ across partners, this speci-
fication suggests that the focal-person effect 
may vary across partner roles. The alterna-
tive specification, which we refer to as the 
constrained random effects model, estimates 
a random focal-person effect in the form of 
an intercept variance, and then allows for 
differential residual variances for the differ-
ent partner roles. In effect, this model con-
strains all of the covariances across partner 
roles to the same value—which is the vari-
ance of the intercepts.

As an example, consider the data in 
Table 17.5 in which the focal person is 
an  adolescent child and the partners are 
the child’s mother (partrole = 1), father 
( partrole = 2), and home–room teacher 
( partrole = 3). The key outcome variable is a 
measure of the child’s cooperativeness, and 
each partner reports on this measure (cooper-
ate; 1 = not at all cooperative, 9 = very coop-
erative). The data set also includes the child’s 
gender (focalsex; boys = 1, girls = –1), which 
would be an upper-level predictor. Although 
for simplicity our example does not include 
any X variables, these could be easily added 
into the model as main effects and in inter-
actions with partner role or other predictors. 
Finally, to make the fixed effects results more 
readily interpretable, we create two dummy 
coded variables: teacher = 1 if partrole = 3, 
and teacher = 0 otherwise; father = 1 if 
 partrole = 2, and father = 0 otherwise. This 
coding scheme makes the mothers’ ratings 
serve as the comparison group.
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The following SAS syntax includes the 
child’s gender (focalsex) as an upper-level pre-
dictor, and partner role (partrole) is included 
as a categorical lower-level predictor. This 
approach provides overall F-tests that test 
whether there are mean differences as a func-
tion of partner role, and whether gender inter-
acts with partner role. In addition to allowing 
for differential fixed effects, this syntax speci-
fies the unconstrained random effects model 

in which all of the random effects may differ 
as a function of partner role:

PROC MIXED COVTEST;
CLASS focalid partrole;
MODEL cooperate = partrole  focalsex 

partrole*focalsex/S DDFM = 
SATTERTH;

REPEATED partrole/TYPE = UN 
SUBJECT = focalid RCORR;

taBle 17.5

Data Set From the Fictitious Distinguishable One-With-Many Study

Focalid Focalsex Partrole cooperate teacher Father
1 1 1 6 –1 –1
1 1 2 5 0 1
1 1 3 4 1 0
2 1 1 4 –1 –1
2 1 2 3 0 1
2 1 3 5 1 0
3 –1 1 6 –1 –1
3 –1 2 6 0 1
3 –1 3 3 1 0
4 –1 1 7 –1 –1
4 –1 2 6 0 1
4 –1 3 6 1 0
5 –1 1 8 –1 –1
5 –1 2 7 0 1
5 –1 3 6 1 0
6 1 1 5 –1 –1
6 1 2 3 0 1
6 1 3 3 1 0
7 1 1 6 –1 –1
7 1 2 4 0 1
7 1 3 5 1 0
8 –1 1 6 –1 –1
8 –1 2 5 0 1
8 –1 3 5 1 0
9 1 1 9 –1 –1
9 1 2 7 0 1
9 1 3 6 1 0
10 –1 1 5 –1 –1
10 –1 2 6 0 1
10 –1 3 4 1 0

Note: focalsex is coded boys = 1, girls = –1; partrole is coded 1 = mothers, 2 = 
fathers, 3 = teachers. 



360  •  David A. Kenny and Deborah A. Kashy

The REPEATED statement estimates the 
variance–covariance matrix for the differ-
ent partner roles, and because TYPE is set 
to UN (unspecified), there are no equality 
constraints on this matrix. Thus, the vari-
ances for each partner role can differ, as can 
the covariances between the different pairs 
of roles. Adding RCORR to the REPEATED 
line gives the correlation matrix across 
partner roles. The syntax for SPSS is:

MIXED
cooperate BY partrole WITH focalsex
/FIXED = partrole focalsex partrole* 

focalsex
 /PRINT = SOLUTION TESTCOV
/REPEATED = partrole|SUBJECT 

(focalid) COVTYPE(UNR).

The analysis using the small data set 
in Table 17.5 shows evidence of partner 
role differences in both the fixed and ran-
dom effects. For example, the F-test of the 
partner role main effect is F(2,8) = 13.46, 
p < .01, and the F-test for the interaction 
between partner role and child gender is 
F(2,8) = 3.62. The effect estimates from 
these sets of syntax can be difficult to inter-
pret because both SAS and SPSS create their 
own dummy codes for variables that are 
treated as categorical (or as factors in SPSS 
terms). As a result, it can be useful to esti-
mate a second model that uses our dummy 
coded variables for teachers and fathers. For 
SAS this would be:

PROC MIXED COVTEST;
CLASS focalid partrole;
MODEL cooperate = father teacher focal-

sex father*focalsex teacher*focalsex/S 
DDFM = SATTERTH;

REPEATED partrole/TYPE = UN 
SUBJECT = focalid RCORR;

This analysis indicates that both fathers and 
teachers rated the children’s cooperativeness 
lower than did mothers (i.e., the coefficient 
for fathers was b = –1.0, t(8) = 4.26, p < .01 
and for teachers was b = –1.5, t(8) = 3.81, 
p < .01). In addition, it appears that the 
interaction between partner role and child 
gender is largely due to fathers (b = –0.6, 
t(8) = 2.56, p = .03). Thus, given the coding 
for focalsex, this suggests that the fathers 
tended to see boys as more cooperative than 
they saw girls.

The random effects from this uncon-
strained model suggest that the variance for 
mothers was somewhat larger than those for 
fathers or teachers (mothers’ s2 = 2.4, fathers’ 
s2 = 1.65, teachers’ s2 = 1.5). The correlations 
suggest that the two parents’ perceptions 
were more similar to one another (r = .88) 
than they were to the teacher’s ratings (for 
mothers r = .62, and for fathers r = .46).

The SAS syntax for the constrained ran-
dom effects model that allows for a constant 
level-2 (i.e., focal person) effect, while speci-
fying heterogeneous error variances for the 
different partner roles would be:

PROC MIXED COVTEST;
CLASS focalid partrole;
MODEL cooperate = partrole  focalsex 

partrole*focalsex/S DDFM = 
SATTERTH;

RANDOM INTERCEPT/SUBJECT = 
focalid;

REPEATED partrole / TYPE = VC 
SUBJECT = focalid GRP = partrole;

This model in essence allows for heteroge-
neous error variances, but assumes that the 
covariances between partners are homoge-
neous, which is captured by the variance of 
the intercepts.

Finally, as was the case in the standard 
dyadic design, it is possible to test whether it 
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is statistically useful to distinguish the part-
ners. As before we would run two models, 
both of which will need to use ML rather 
than the program default of REML. The first 
model would be the indistinguishable model 
in which only X and Z variables predict the 
outcome, and the error structure is treated 
as compound symmetry. The second model 
would be the distinguishable model, and in 
addition to the effects of X and Z, this model 
would include the main effect of partner 
role as well as interactions between partner 
role and the other predictors. In addition, 
this second model specifies a heterogeneous 
variance–covariance matrix (either using 
the unconstrained random effects model 
or the constrained random effects model as 
described above). For the example data, we 
estimated the distinguishable model with 
unconstrained random effects and found a 
deviance of 76.1 based on a model estimating 
12 parameters (6 random effects and 6 fixed 
effects). We next estimated the model for 
indistinguishable partners and found a devi-
ance of 101.6 based on a model estimating 
4 parameters (2 random effects and 2 fixed 
effect). The χ2(8) = 25.5, p = .001, suggesting 
that the model treating dyad members as dis-
tinguishable provides a better fit to the data.

17.4.3  Reciprocal one-
with-Many designs: 
Indistinguishable Partners

In a reciprocal one-with-many design out-
come scores are obtained from both the 
focal person and the partners. For instance, 
we might ask doctors and their patients if 
they are each satisfied with one another. 
A unique and useful aspect of recipro-
cal one-with-many designs is that they 
allow estimation of both generalized and 
dyadic reciprocity. For the doctor–patient 

satisfaction study generalized reciprocity 
measures whether doctors who are on aver-
age more satisfied with their patients tend 
to have patients who are on average more 
satisfied with them. Dyadic reciprocity 
measures whether a patient with whom the 
doctor is especially satisfied is also espe-
cially satisfied with the doctor.

Table 17.6 shows the data layout required 
for the analysis of a reciprocal one-with-
many design in which the partners are indis-
tinguishable. This table is based on the data 
presented in Table 17.4, which was a fictitious 
study of friendship intimacy. To conduct a 
reciprocal one-with-many analysis using 
MLM, there would be two records for each 
focal person–partner dyad, one that contains 
the focal person’s dyad-specific rating (e.g., 
the score that was presented as f_intimacy 
in Table 17.4, which is the focal person’s rat-
ing of intimacy with a partner), and one that 
contains the partner’s dyad-specific rating 
(e.g., p_intimacy, which is the partner’s rat-
ing of intimacy with the focal person). Thus, 
there is now only one intimacy variable in 
Table 17.6. Three additional variables, which 
we call rater, focal, and partner, respectively 
must be created. These variables specify who 
generated the data—the focal person or 
the partner. The rater would equal 1 if the 
data are from the focal person, and it would 
equal –1 if the data are from the partner; 
the focal variable would be 1 if the outcome 
was generated by the focal person, and 0 if it 
was generated by the partner; and the part-
ner variable would be 0 if the outcome was 
generated by the focal person, and 1 if it was 
generated by the partner.

The MLM equations for a recipro-
cal design are based on the two-intercept 
approach in which two dummy variables 
are created to denote the person that pro-
vided the outcome score. Thus, we would 
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have R1, which is coded 1 if the data are pro-
vided by the focal person and 0 if the data 
came from the partner, and R2, which is 
coded 0 if the data are provided by the focal 
person and 1 if the data are provided by the 
partner. Using these two variables allows 
us to specify a model with separate effects 
for the focal persons and the partners and 
separate residuals for focal persons’ ratings 
of partners and partners’ ratings of the focal 
persons. The lower-level MLM equation is:

 Yijk = b01jR1 + b02jR2 + R1eij1 + R2eij2.

where i refers to the partner, j refers to the 
focal person, and k denotes whether the 

data was provided by the focal person (i.e., 
k = 1) or the partner (i.e., k = 2).

The basic level-2 models are:

 b01j = a01 + d1j

 b02j = a02 + d2j.

The two random variables at the level of 
the focal person are d1j and d2j, and they each 
have a variance. The variance in d1j mea-
sures the degree to which the focal person 
rates all partners in a similar way (i.e., the 
actor effect from the SRM, see below), and 
the variance in d2j measures the degree to 
which partners’ ratings of the focal person 
are similar (i.e., the partner effect from the 

taBle 17.6

Data Set for the Fictitious Reciprocal Indistinguishable One-With-Many Design

Focalid Partid Rater Focal Partner Intimacy RSepart Focalsex Partsex A_sex P_sex
1 1 1 1 0 5 5 1 1 1 1
1 1 –1 0 1 1 5 1 1 1 1
1 2 1 1 0 8 4 1 1 1 1
1 2 –1 0 1 6 4 1 1 1 1
1 3 1 1 0 5 5 1 –1 1 –1
1 3 –1 0 1 3 5 1 –1 –1 1
1 4 1 1 0 2 13 1 –1 1 –1
1 4 –1 0 1 5 13 1 –1 –1 1
2 1 1 1 0 7 12 –1 1 –1 1
2 1 –1 0 1 6 12 –1 1 1 –1
2 2 1 1 0 6 11 –1 –1 –1 –1
2 2 –1 0 1 4 11 –1 –1 –1 –1
2 3 1 1 0 9 14 –1 –1 –1 –1
2 3 –1 0 1 3 14 –1 –1 –1 –1
3 1 1 1 0 5 8 –1 1 –1 1
3 1 –1 0 1 5 8 –1 1 1 –1
3 2 1 1 0 4 12 –1 1 –1 1
3 2 –1 0 1 6 12 –1 1 1 –1
3 3 1 1 0 2 9 –1 1 –1 1
3 3 –1 0 1 7 9 –1 1 1 –1
3 4 1 1 0 6 15 –1 –1 –1 –1
3 4 –1 0 1 6 15 –1 –1 –1 –1
3 5 1 1 0 5 17 –1 –1 –1 –1
3 5 –1 0 1 7 17 –1 –1 –1 –1
Note: Rater = 1 if the score was provided by the focal person and rater = –1 if the score was provided by the partner.
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SRM, see below). These two random effects 
also have a covariance that measures gener-
alized reciprocity, or whether there is cor-
respondence between how the focal person 
generally sees his or her partners and how 
the partners generally see the focal person. 
In the intimacy example, this covariance 
would measure whether individuals who 
report higher intimacy scores across their 
friends, are rated as higher in intimacy 
by those friends. The two errors from the 
lower-level model also have variances and 
a covariance between them. Although the 
error variances may not be simply inter-
preted, the covariance between the two can 
address an interesting question concern-
ing dyadic reciprocity: If the focal person 
reports especially high intimacy with a par-
ticular friend, does that friend also report 
especially high intimacy?

Beyond the variance decomposition 
aspect, the reciprocal design can also incor-
porate predictor variables for either the 
focal person, the partners, or both. For 
example, if a partner-level variable, X, such 
as the relationship self-esteem measure, 
rsepart, were included, the model would be 
expanded to:

 Yijk = b01jR1 + b02jR2 + b11jXR1 

  + b12jXR2 + R1eij1 + R2eij2.

This model specifies that intimacy ratings 
are a function of who makes the rating (e.g., 
the focal person or the friend; b01j and b02j), 
and it also specifies that the partner’s level 
of relationship self-esteem may moderate 
both persons’ intimacy ratings (b11 and b12).

When the partners are indistinguishable, 
the SAS syntax to estimate the variance parti-
tioning and covariances (i.e., the model with 
no partner or focal person predictors) is

PROC MIXED COVTEST;
CLASS focalid partid rater;
MODEL intimacy = focal partner/ 

NOINT S DDFM = SATTERTH;
RANDOM focal partner / SUBJECT =  

focalid TYPE = UN;
REPEATED rater/SUBJECT = partid 

(focalid) TYPE = UN;

Here the coding of partid is important. If 
each partner had a unique identification 
number, we would just need partid for the 
SUBJECT in the REPEATED statement, 
but partid(focalid) also works. If partid is 
not unique, as is the case in Table 17.6, then 
partid(focalid) must be used. Note that 
the traditional intercept is suppressed (i.e., 
NOINT) and so there are two intercepts, 
one for data from the focal person and the 
other for data from the partners.

The RANDOM statement results in esti-
mates of the variance in the two intercepts, 
as well as their covariance. For the focal 
variable this variance estimates the degree 
to which focal persons differ in their average 
partner ratings (it is akin to the actor vari-
ance in the SRM, see below). The variance in 
the partner intercepts estimates the degree 
to which there are focal person differences 
in the average ratings they are given by their 
partners (this is akin to the partner variance 
in the SRM, see below). The generalized rec-
iprocity covariance is estimated as the cova-
riance between these two level-2 effects.

The REPEATED statement is necessary to 
specify the error variances and covariances. 
Again there are two error variances, one 
for the partners’ ratings of the focal person 
and another for the focal person’s ratings 
of the partners. This statement specifies 
that rater is repeated across partners, and 
because the covariance matrix is unspeci-
fied (TYPE = UN), it also estimates a 
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covariance that can be viewed as the dyadic 
or “error” reciprocity covariance.

The SPSS syntax to estimate the variance 
partitioning and covariances is

MIXED
intimacy BY rater focalid partid 

WITH focal partner
/FIXED = focal partner | NOINT
/PRINT = SOLUTION TESTCOV
/RANDOM focal partner | SUBJECT 

(focalid) COVTYPE(UN)
/REPEATED = rater|SUBJECT(focalid* 

partid) COVTYPE(UN).

When there are predictor variables mea-
sured for both the focal person and the 
partners, researchers have two options. In 
the intimacy example, we have both focal-
person and partner gender (see focalsex 
and partsex in Table 17.6). The first option 
would be to keep these two gender variables 
as they are currently coded, and we would 
allow each of these to predict data from the 
focal person and the partners. The model 
statement in SAS for this analysis would be

MODEL intimacy = focal partner focal* 
focalsex focal*partsex partner* 
focalsex partner*partsex / NOINT S 
DDFM = SATTERTH;

The second option would be to again 
code two gender variables, but in this case 
we would code gender of the actor (i.e., the 
person doing the rating; a_sex in Table 17.6) 
and gender of the partner (i.e., the person 
being rated; p_sex). Thus, when the data 
point is focal-person rated intimacy, a_sex 
refers to the focal person’s gender and p_sex 
refers to the partner’s gender. When the data 
point is the partner’s intimacy, a_sex refers 
to the partner and p_sex refers to the focal 

person. The model statement in SAS for this 
analysis would be

MODEL intimacy = focal partner focal* 
a_sex focal*p_sex partner*a_sex 
partner*p_sex/NOINT S DDFM = 
SATTERTH;

While mathematically equivalent, it is 
advisable to try out both ways of coding to 
determine the coding method that yields 
the simpler and more interpretable results. 
In either case, the researcher should allow 
the two gender variables to interact with the 
focal and partner dummy coded variables. 
The meanings of those interactions are very 
different for the two coding systems.

17.4.4  Reciprocal one-with-Many 
designs: distinguishable 
Partners

Recall that in the one-with-many design with 
distinguishable partners, the focal-person is 
paired with a set of partners who fall into dif-
ferent roles. As an example, we might have 
adolescents as the focal person, and the part-
ners might be their mother, father, romantic 
partner, and best friend. In the reciprocal 
design, the adolescents would rate their rela-
tionship closeness with each of these partners, 
and we would also have the mother, father, 
romantic partner, and best friend rate their 
relationship closeness with the adolescent, 
and so the outcome variable would be close. 
In this example the data set would include 
a partner role variable, partrole, which dif-
ferentiates these four types of partners (e.g., 
for mothers partrole = 1, for fathers par-
trole = 2, for romantic partners partrole = 3, 
and for best friends partrole = 4).

When partners are distinguishable, there 
are two ways to model the distinguishabil-
ity. We might just treat the data as if partners 
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were totally distinguishable. In this analysis, 
the number of “variables” would be the num-
ber of partners times two because the design 
is reciprocal. In this case we would allow for 
intercept differences for the different part-
ners (both from the focal person’s perspective 
and from the partner’s perspective), different 
variances, and different covariances between 
each pair of variables. In essence, this is the 
saturated model for treating the design as 
reciprocal. The SAS code for a model of com-
plete distinguishability is as follows:

PROC MIXED COVTEST;
CLASS focalid partrole rater;
MODEL close = focal*partrole 

partner*partrole/NOINT S 
DDFM = SATTERTH;

REPEATED partrole*rater /SUBJECT = 
focalid TYPE = UN;

The SPSS syntax is:

MIXED
close BY rater focalid partrole 

WITH focal partner
/FIXED = focal*partrole partner* 

 partrole | NOINT
/PRINT = SOLUTION TESTCOV
/REPEATED = partrole*rater| 

SUBJECT(focalid) COVTYPE(UN).

The other alternative is to estimate sepa-
rate fixed effects for the different roles, while 
including a general intercept random effect 
for the focal person (rather than allowing 
separate random focal-person intercepts for 
each role) and likewise including a general 
intercept random effect for partners. That 
is, rather than allowing for different inter-
cept random effects for the different types 
of partners, there is only one focal person 
intercept and only one partner intercept. 

Thus the focal person variance measures 
consistency in the adolescent’s ratings of 
his or her partners and the partner variance 
measures similarity in the partner’s ratings 
of the adolescent. In such a model, distin-
guishability would be specified by allowing 
the error variances and covariances to differ 
by partner role. The SAS syntax would be

PROC MIXED COVTEST;
CLASS focalid partrole rater;
MODEL close = focal*partrole 

partner*partrole/NOINT S 
DDFM = SATTERTH;

RANDOM focal partner/SUBJECT = 
focalid TYPE = UN;

REPEATED rater/SUBJECT = 
partrole(focalid) TYPE = CSH 
GRP = partrole;

These MLM have many parameters and 
they may be slow to converge.

Once again we could test for distinguish-
ability. As before we estimate two models 
using ML estimation, one of which treats 
the partners as distinguishable and the 
other treats the partners as indistinguish-
able. We would then subtract the deviances 
of the two models, and that difference has 
a chi-square distribution given the null 
hypothesis that dyad members are indistin-
guishable. The degrees of freedom for the 
test would be the extra number of param-
eters in the model when dyad members are 
treated as distinguishable.

17.5  socIal RelatIons 
Model desIgns

In SRM designs, each person is paired with 
more than one partner and each partner 
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is also paired with multiple others. A full 
discussion of how to analyze these com-
plex designs using multilevel modeling 
is beyond the scope of this chapter. For a 
more complete discussion of the models, we 
refer interested readers to Kenny (1994) or 
Kenny, Kashy, & Cook (2006), and for SAS 
syntax to use MLM to analyze SRM data, 
see Kenny and Livi (2009). Our discussion 
here is intended as a brief introduction to 
the designs.2 In addition, like the other 
dyadic models we have discussed, the SRM 
can be used for both indistinguishable and 
distinguishable dyads. Here we limit the 
discussion to the indistinguishable case 
and readers should consult Kenny  Kashy, & 
Cook (2006) or Kashy and Kenny (1990) for 
more detail on the distinguishable case.

The prototypical SRM design is a round-
robin design where a group of persons rate 
or interact with all the other persons in the 
group (e.g., Persons A, B, C, and D interact 
and then A rates B, A rates C, and A rates 
D. Similarly, B rates A, C, and D for a total 
of 12 dyadic scores). By convention, the per-
son who generates the measurement is called 
actor and the other person is called partner. 
For instance, if we ask people interacting in 
small groups how much they like one another, 
the person reporting on the liking is the actor 
and person being liked is the partner.

2 In addition to the round-robin design, the SRM can also 
be estimated using a block design. In a block design, the 
people are divided into two subgroups and members 
rate or interact with members of the other subgroup but 
not with members of their own group. In the symmetric 
block design the members of the two subgroups are indis-
tinguishable whereas in the asymmetric block design 
the members of the two subgroups are distinguishable 
(e.g., one subgroup is comprised of men and the other 
subgroup is comprised of women). Finally, in the half-
block design, we have data from one subgroup with one 
other subgroup (e.g., men with women but not women 
with men). The half-block design, unlike the other SRM 
designs, is not reciprocal: Each person is either an actor 
or a partner but not both.

17.5.1 the sRM components

The basic SRM equation is:

 Yijk = mk + aik + bjk + gijk,

where Yijk is the score for person i rating (or 
behaving with) person j in group k. In this 
equation mk is the group mean, aik is person 
i’s actor effect, bjk is person j’s partner effect, 
and gijk is the relationship or actor–partner 
interaction effect. The terms m, a, b, and g, 
are random variables and each has a variance: 
σm

2, σa
2, σb

2, and σg
2. The SRM also specifies 

two different correlations between the SRM 
components of a variable, both of which can 
be viewed as reciprocity correlations. At the 
individual level, a person’s actor effect can be 
correlated with that person’s partner effect; 
this covariance assesses generalized reciproc-
ity, and is denoted as σab. If the variable being 
rated is liking, then this covariance measures 
whether a person who likes everyone in the 
group is liked by everyone in the group. At 
the dyadic level, the two members’ relation-
ship effects can be correlated; this covariance 
assesses dyadic reciprocity and is denoted as 
σgg. In the example, this covariance measures 
whether a person who especially likes a partic-
ular partner, is especially liked by that partner. 
There are then seven SRM parameters, one 
mean, four variances, and two covariances.

As an example, we might have a group of 
people who rate one another’s intelligence. 
The meanings of the SRM parameters would 
be as follows:

μ: The overall mean of rated intelligence
σm

2: The variance in average ratings of 
intelligence across groups.

σa
2: The variance in how intelligent a per-
son generally sees others.

σb
2: The variance in how intelligent a per-
son is generally seen by others.
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σg
2: Unique variance in the way a par-
ticular individual sees a particular 
partner (i.e., the relationship variance 
or  actor–partner interaction variance 
plus error).

σab: The covariance between how intel-
ligent a person generally sees others 
with how intelligent other people gen-
erally see that person (i.e., generalized 
reciprocity).

σgg: The covariance between how one 
person uniquely sees another with 
how that other uniquely sees that per-
son (i.e., dyadic reciprocity).

17.5.2  analysis of Round-
Robin designs

Because of the complexity of the noninde-
pendence, estimating a MLM from round-
robin data is problematic. Sometimes 

researchers treat actor as level 2, and all 
of the observations within an actor are 
treated as level 1. Alternatively, researchers 
may treat partner as level 2, and all of the 
observations within a partner are treated as 
level 1. Ironically, both of these are right and 
wrong at the same time. Actor and partners 
are levels, but both need to be considered 
in one model. Moreover, actor and partner 
are crossed or cross-classified, not nested. 
Additionally, the analysis must take into 
account the correlation between the two 
scores from members of the same dyad.

To estimate the SRM with round-robin 
data, the structure of the data set is par-
ticularly important. For the analyses we 
present, the data set is structured such that 
each record is the response of one person 
in a dyad (e.g., Person A’s rating of Person 
B’s intelligence). As seen in Table 17.7, a 
data set for a round-robin that includes 

taBle 17.7

Data From Group 1 of a Fictitious SRM Round-Robin Study

Group Actor Partner Dyad Y Act_x Part_x
1 1 2 1 6 5 7
1 1 3 2 4 5 6
1 1 4 3 2 5 5
1 1 5 4 7 5 7
1 2 1 1 7 7 5
1 2 3 5 5 7 6
1 2 4 6 6 7 5
1 2 5 7 7 7 7
1 3 1 2 3 6 5
1 3 2 5 4 6 7
1 3 4 8 6 6 5
1 3 5 9 5 6 7
1 4 1 3 2 5 5
1 4 2 6 4 5 7
1 4 3 8 3 5 6
1 4 5 10 6 5 7
1 5 1 4 7 7 5
1 5 2 7 6 7 7
1 5 3 9 7 7 6
1 5 4 10 6 7 5
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five individuals in a group would therefore 
be comprised of 20 records for each group. 
(Note that this value is 20, not 25 because 
self-rating data are treated differently by the 
SRM.) On each record there would be three 
identification variables: a group identifica-
tion variable (e.g., group), an identification 
variable that designates the actor who made 
the rating (e.g., actor), and an identification 
variable that designates the target of the rat-
ing (e.g., partner). We shall see that some-
times other variables need to be included in 
the data set.

In this chapter we present a conventional 
MLM approach. A more complex approach 
involving dummy variables can be found 
in Snijders and Kenny (1999) and Kenny 
and Livi (2009). In this section because of 
space limitations, we do not explicitly con-
sider fixed variables (what we denoted as 
X and Z in prior sections). Such variables 
would be included in the MODEL state-
ment in SAS and the /FIXED statement in 
SPSS. Individual-level variables (e.g., the 
individual’s extroversion) would need to be 
included on all records for which that indi-
vidual is the rater. Moreover, the researcher 
should consider including both the actor’s 
variables (e.g., the actor’s extroversion) and 
the partner’s variables (e.g., the partner’s 
extroversion) as potential predictors. 

Increasingly, multilevel programs can 
estimate models with cross-classified vari-
ables. However, in these models the actor–
partner covariance is assumed to be zero, 
which is a major limitation of this method. 
This is particularly problematic when vari-
ables such as liking are under consideration 
because generalized reciprocity is a likely 
component for this variable (i.e., likeable 
people tend to like others). We describe 
this approach and detail how both SAS and 
SPSS can be used to estimate the model. We 

believe that HLM and MLwiN can also esti-
mate the models in this fashion.

To use the conventional MLM approach, 
identification numbers need to be assigned 
to each group, each actor, each partner, and 
each dyad. For SPSS these values must be 
unique. For example, if there are 15 five-per-
son groups, then the group variable would 
range from 1 to 15; the values for the actor 
variable would range from 1 to 5 for group 
1 and from 6 to 10 for group 2; the values for 
the partner variable would be 1–5 in group 
1 and 6 to 10 in group 2; and finally, because 
there are 10 dyads in a five-person round-
robin, the dyad variable will range from 1 to 
10 for group 1, 11 to 20 for group 2, and so 
on. Unique identification numbers are not 
required for SAS.

We first present the syntax for SAS and 
then for SPSS. Note again that the actor–
partner covariance is not modeled. The syn-
tax for SAS is

PROC MIXED COVTEST;
CLASS actor partner dyad group;

MODEL y = /S DDFM = SATTERTH 
NOTEST;

RANDOM INTERCEPT/TYPE = VC 
SUB = actor(group);

RANDOM INTERCEPT/TYPE = VC 
SUB = partner(group);

RANDOM INTERCEPT/TYPE = VC 
SUB = group;

REPEATED/TYPE = CS SUB = 
dyad (group);

The syntax for SPSS is as follows:

MIXED
y BY group
/PRINT = SOLUTION TESTCOV
/RANDOM INTERCEPT|SUBJECT 

(group ) COVTYPE(VC)
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/RANDOM INTERCEPT|SUBJECT 
(actor) COVTYPE(VC)

/RANDOM INTERCEPT|SUBJECT 
(partner) COVTYPE(VC)

/RANDOM INTERCEPT |SUBJECT 
(dyad) COVTYPE(VC).

In SPSS, the REPEATED statement cannot 
be used for dyad, and so one must presume 
that the dyadic covariance is positive.3 Note 
also that in SPSS the error variance equals 
the dyad variance plus the error variance, 
and the dyadic correlation equals the dyad 
variance divided by the sum of the dyad 
variance plus the error variance.

The results from SAS and the SPSS would 
be different if the reciprocity covariance 
were negative. In that case, it would be 
incorrectly estimated as zero by SPSS and 
properly estimated by SAS.

17.6 conclusIons

We have shown that MLM can be used to 
estimate a wide range of dyadic models. 
However, structural equation modeling 
can also be a useful tool for the analysis of 
dyadic data, especially when dyad members 
are distinguishable and when SRM and 
one-with-many designs are used.

We made a sharp distinction between dis-
tinguishable and indistinguish able dyads, 
but there are variants in-between. For 
instance, in the one-with-many design, part-
ner can be partly distinguishable and partly 
indistinguishable. Consider the example in 
which some partners are men and others 

3 For SPSS 16 and earlier, tests of variances are two-tailed 
when they should be one-tailed. Thus, p values should be 
divided by two.

are women. We could distinguish between 
gender, but within gender the partners 
would be indistinguishable. We limited our 
discussion to normally distributed outcome 
variables and we did not consider mod-
els for counts and proportions. Although 
MLM can now be used to estimate models 
with such outcome scores, these approaches 
often do not currently allow for correlated 
errors. In other words, the approaches do 
not allow for REPEATED statements, which 
were an important component of nearly 
every dyadic design that we discussed.

In some sense dyadic models are simple 
MLMs. Certainly, the basic model for the 
standard design is a very simple MLM 
model. However, as we saw, when we allow 
for distinguishability and more complex 
designs that are reciprocal, the analysis can 
become quite complicated. MLM offers the 
possibility of being able to estimate a wide 
range of dyadic models and is becoming an 
important tool for dyadic researchers.
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hypothesis testing, 264
errors in statistical test, 264
group size, calculation of, 265
power as function of number of groups and 

group size, 266
standardized treatment effect, use of, 265
type I error rate, 265
variance of treatment effect estimator, 265

Combined models
choosing between

autocorrelation model, 94–95
covariance structure, 94
four selected models, parameter 

estimates, 94
highly restricted models, 94

varying coefficient for job demands, 95
Complementary log-log function, 117
Complete case (CC) analysis, 186
Compound symmetry, 89

definition, 341
model, 91

Conditional conjugate priors, 141; see also Bayesian 
estimation

Conditional focus, see Cluster focus
Confirmatory factor model, 8
Constrained random effects model, 

definition, 358
Context coefficient, definition, 292; see also 

Random intercepts models
Contextual/compositional variable, definition, 292; 

see also Random intercepts models
Contextual effect, 16–17
Contextual variables, 4
Continuation ratio logit models, 116
Continuous factor, 19
Continuous-time proportional hazards model, 117
Covariates; see also Two-level regression

measurement error, 16–17
two-level multinomial logistic regression 

function, 19
Cox proportional hazards model, 117; see also 

Multilevel grouped-time survival analysis 
model

Cross-classification
of biology and chemistry classrooms, network 

graph, 319
and pure data structures, distinction between

pure three-level clustering, of students, 315
pure two-level clustering, network 

graph of, 314
of students, network graph, 317

Cross-classified (C-C) models, 313
dataset, 318

of biology and chemistry classrooms, 319
multiple-membership, 321–323
for students of middle and high 

school, 316
of students within middle school, 320

data structures
clustering variable, 315
definition, 317
modeling, 324–325
network graph, 314–317

purely clustered and, 314
Cross-classified multiple-membership models, 333; 

see also Multiple-membership model
Cross-classified random effects model 

(CCREM), 326
formulation

three-level CCREM, 329–331



Subject Index •  381

two-level CCREM and two C-C factors, 
326–329

two-level CCREM with cross-
classification, 331

Cross-level interactions
models with

covariance matrix, 302
cross-level interaction, 303–304
group mean, 303
independent variables, 301
recommendations, 305
variations, 302

term, 175
Cumulative failure probability, 117
Cumulative logit model, 126
Cumulative probability model, 46–47; see also 

Psychometric analyses, multilevel IRT 
modeling

Curran data, definition, 87
Curve-of-factors model, see Multiple-indicator 

growth model

d

Deterministic models, 348
Deviance information criterion (DIC), 231, 

242–243
based on Bayesian estimation, 242
derivation of, 243–245
expected loss, 242
expected posterior loss, equation for, 243
loss defined in, 242
optimism term, 243
pseudotrue parameter value, 242
use in MLM, 245–246

Dichotomous regression model, 119
Differential item functioning (DIF), 41

analysis for, 50
detection model, 50
for item, 52

mean and variance of, 53
magnitude for, 50–51
multilevel IRT model, 56
parameter, 50–51
random effect, variance of, 51–52

Differential random effects, 358; see also 
One-with-many design

Direct effect of family classes, 75
Disaggregation, 4
Disciplinary climate (DC), 295
Discrete-time proportional hazards 

survival model, 116
Distinguishable dyads; see also Over-time 

standard design
distinguishability and, 336–337

test for, 347–348
level-1 variable, 344
marital satisfaction, fictitious over-time 

study, 349
MLM approach, 343
predictor, 344
SAS code, 350
SAS syntax, 344–347
SPSS syntax, 351

Distinguishable partners; see also 
One-with-many design

in one-with-many design, 364–365
in reciprocal one-with-many designs, 364

SAS code, 365
SPSS syntax, 365

Double robust estimators, 180
Dutch EASYcare trial, 270
Dyads; see also One-with-many design

definition, 335
designs, typology, 337–338
dyadic reciprocity, role, 361
variables types, 338–339

e

EBE, see Empirical Bayes estimates (EBE)
Ecological Momentary Assessment 

(EMA) study
baseline measurement, 121
data set, 122
multi-method approach, 122
predictor variables, 122
proportional hazards model, 122–123
random effect variation, 123

EFA, see Exploratory factor analysis (EFA)
ELL, see English language learners (ELL)
EMA study, see Ecological Momentary Assessment 

(EMA) study
Empirical Bayes estimates (EBE), 159
Empirical distinguishability, 337
Endogeneity, 198
English language learners (ELL), 50, 54
Exogeneity, 198
EXP, see Exposure to deviant peers (EXP)
Expectation–maximization (EM) algorithm, 177
Explained variance, in multilevel models, 219

catalog of effect sizes
explained variance in mean square 

prediction error, 222–223
intraclass correlation, 220–221
pooling as measure of explained 

variance, 223
proportion reduction in variance, 221–222
whole model explained variance, 223–224

distance measures for calculation
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dependent and predictor variables, 
correlation between, 224

error variance for total model, equation 
for, 225

explained variance, computation of, 225
Gaussian probability density function, 

use of, 225–227
multilevel model and OLS regression, total 

variance in, 225
total amount of variance, computation 

of, 225
weighted least squares estimates, use of, 

227–229
effect sizes, utility of, 219

Exploratory factor analysis (EFA), 16, 24
Exposure to deviant peers (EXP), 306–307

f

Factor analysis (FA), 59
Fictitious dyadic study, data set, 339
Fictitious indistinguishable one-with-many design, 

data set, 355; see also One-with-many 
design

FIML, see Full-information maximum likelihood 
(FIML)

Fixed-effects (FE); see also Simple linear regression 
models

definition, 287
estimator, 200, 203
model, 288

ANCOVA model and, 289
depiction, 289

regression models, 116
transformation, 199

Flat-file imputation methods, 177
Focal person; see also One-with-many design

definition, 353
level-1 equation for partner, 354

Fox and Glas’s multilevel IRT modeling, 43–44
Frailty models, 116
Frequentist loss, 242
Frog-pond theory, 5
F-tests, role, 359–360; see also One-with-many 

design
Full-information maximum likelihood 

(FIML), 8, 183
Fully conditional specification (FCS), 190

g

GEE, see Generalized estimating equations (GEE)
Gender and condition subgroups, cigarette 

experimentation, 124
Generalized estimating equations (GEE), 116

Generalized Linear Latent And Mixed Models 
(GLLAMM) program, 99, 107–108

Generalized linear mixed models 
(GLMMs), 44

Generalized linear models (GLM), 44
Generalized method of moments (GMM), 

204–205
Gibbs sampler, 141–142

in credibility interval determination, 152
MCMC methods, 141
missing data, 144
steps in, 141
usage, 48

Gllamm program, role, 68
GLMMs, see Generalized linear mixed models 

(GLMMs)
Global variables, 4
GMM, see Growth mixture modeling (GMM)
Graded response model, usage, 42; see also 

Multilevel item response theory (IRT) 
modeling

Grand mean centering, 285; see also Simple linear 
regression models

and intercept estimation, 287
Grouped-time regression models, 115
Group level data matrix, 4
Group means; see also Random intercepts 

models
centered model, 293
centering, 285
and residual variance, Bayesian estimation, 

142–144
Growth curve analysis

data format, 103
SEM and MLR, 97–99

data format, 103
data missing, 105–106
difference between, 102
GLAMM, 107
measurement model, extensions, 103–105
model, 99–102
shape estimation, 105
software, 107–108
structural model, extensions, 106–107

Growth curve model, 152–154; see also Bayesian 
estimation, in multilevel modeling

essence of, 100
estimation, 100
example for, 100

maximum likelihood estimates, 101
MLR and SEM, 102

explanatory variables, 99
random deviations, 99

Growth mixture modeling (GMM), 36
estimator, 205–206
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Growth modeling, 15; see also Multilevel 
modeling (MLM)

path diagram, 88
three-level growth analysis

example for, 32–33
modeling extensions, 33–35
using Mplus, 31
within-and between-cluster variation, 31–32

two-level growth analysis, 27
heavy drinking example for, 27–30
using Mplus, 27

h

Hausman’s test, 199–201, 307–308
Heavy drinking

and distal outcome, two-part growth 
model, 30

histogram, 28
probability of alcohol dependence, 30–31
two-part growth model, 28

of frequency, 29–30
Hierarchical generalized linear models (HGLMs), 

44–45
flexible and efficient framework for, 44
GLM, analysis of, 44
GLMMs, 44
latent HGLM

Bayesian approach, 47–48
cumulative logit function, 46
cumulative probability model, 46
IGLS method, 48
level-1 model for, 46–47
level-2 model for, 47
logistic regression models, 47
logit link function, 45
multilevel logistic model, 45–46
PQL estimation, 47
probability response model, 46
two-level logistic regression, 45

link functions and probability 
distributions, 44

Hierarchical linear models, 5
level 1 and 2 model, 7
with random effects, 7

High School & Beyond (HSB) data, 17–18
HLM program, 92

in random intercepts model estimation
Screen shot of, 312

HLM 6, software usage, 47
HSB data, see High School & Beyond (HSB) data
Hsdrop logistic regression, 38
Huberty’s catalog, of effect sizes, 220
Huber–White sandwich standard 

errors, 206

I

ICC, see Intraclass correlation coefficient (ICC)
Ideal bootstrap estimate, 164
IGLS method, see Iterative generalized least squares 

(IGLS) method
Ignorability of missing data process, 180
IMPS, see Inpatient Multidimensional Psychiatric 

Scale (IMPS)
Indirect effect of family classes, 73

fit measures for models estimated with 
intelligence data, 74–75

Indistinguishable dyads, 339, 351–353; see also 
Over-time standard design

intraclass correlation, 340
lower-level predictor variable, 340
MLM formulation, 340
SAS syntax, 341–343, 353

Individual coefficient tests, 208
Individual-level error term, 6; see also Multilevel 

regression
An information criterion (AIC), 231, 237

calculation of, 92–93
conditional AIC, 240
derivation, 237–239
expression for, 237
hat matrix, 241–242
K-L criterion, use of, 237
marginal AIC, 240
relative K-L criterion

estimated and expected, 237
second-order Taylor series approximation, 

use of, 237–238
use in, 239–242

Inpatient Multidimensional Psychiatric Scale 
(IMPS), 125

Instruments, 205
Intercepts as outcomes model with group mean 

centering
coefficient for mean, 294
context effect, 294
cross-level interaction, 301–302
level-1 independent variable, 295
means and intercepts, 295
modification of

randomly varying slope, 299–300
random regression coefficients models, 

297–299
recommendations, 300–301
uncentered model with, 293
weighted average, 294

Internal instruments, 206
Intraclass correlation coefficient (ICC), 327, 340

and OLS regression, 220–221
for two-level model, 220
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Inverse probability weighting, 180
Inverse-Wishart distribution, 153, 156–157
Item response theory (IRT) models, 41–43; 

see also Psychometric analyses, 
multilevel IRT modeling

credit model, 42–43
Graded response model, 42
IRT applications, 42
and latent HGLM, 45–48
pseudo guessing parameter, 42
Rasch model, 42
two-parameter logistic model, 42
usage, 104

Iterative generalized least squares 
(IGLS) method, 48

J

Joint longitudinal and survival model
analysis of time to dropout, 126

crosstabulation of treatment group by, 127
separate and shared parameter 

models, 127
experimental design and weekly sample sizes 

across time, 125
IMPS, 125
longitudinal outcome, 125–126
MNAR models, 125–126
ordinal severity of illness outcome, 126
Web page with PROC NLMIXED 

syntax, 126
Joint modeling (JM), 190
JSP data, bootstrap procedures, 167
JSP 2 level variance components model parameter, 

estimation, 165, 168

k

Kullback-Leibler (K-L) criterion, 237

l

Laird-Ware linear mixed model, 234–235
Laplace6 approximation, HLM 6, 47; see also 

Psychometric analyses, multilevel IRT 
modeling

Laplace methods of integrals, 248
Last observation carries forward (LOCF), 182
Latent class (LC) model, 59

applications
multilevel mixture modeling, 72–77
three-level mixture regression analysis, 

69–72
estimation, model selection and sample size 

issues, 68–69

three-level data sets, 63, 68
continuous random effects, 66–67
discrete random effects, 64–66

in two-level data sets analysis, 60
assumptions of, 61
item responses, 61
latent classes, 61
multilevel analysis notation, 62
multinomial logit model, 62
predictors, 62
regression model, 62
standard LC model notations, 61
standard random-effects model, 62
unrestricted model, 61

usage, 105
Latent covariates, 16

estimation, 17
Latent GOLD Regression (Syntax module)

Syntax language
latent variables, 81
multilevel mixture factor model, 81
restricted models appearing in, 80
“variables” and “equations,” 80

Latent GOLD software, 68–69
Latent growth curve analysis, 86
Latent variable models

and HGLM usage, 44–48
ninefold classification, 67

LEP, see Limited English proficient (LEP)
Level-2 variables; see also Random intercepts 

models
bootstrap replications, normal score 

plot, 170
centering, 306
models with, 296–297
models without, 296

Likelihood-based methods, 182–184
Likelihood ratio (LR) test, 102, 307
Limited English proficient (LEP), 52
Linear mixed effects model, measures for predictive 

ability of, 223–224
Linear multilevel model formulations

columns of matrix, 175
imputation of covariates, complication in, 175
level-1 and level-2 equation, 174
linear mixed model, special case, 174–175
matrix for, 175
notation used, 174
random effects, 175
slopes-as-outcome model, 174
univariate linear mixed-effects model, 174

Listwise deletion, 182
Local independence assumption, 61
Logistic model, 49; see also Psychometric analyses, 

multilevel IRT modeling
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Logistic regression path analysis, model 
diagram, 21

Log-likelihood (LL), 70
Longitudinal models, 98
Longitudinal Survey of American Youth 

(LSAY), 32
math achievement

two-level GMM, 38
two-level growth modeling, 34

LSAY, see Longitudinal Survey of American Youth 
(LSAY)

M

MANOVA approach, 90
MAR, see Missing at random (MAR)
Marginal focus, see Population focus
Marital satisfaction, fictitious over-time 

study, 349
Markov Chain Monte Carlo (MCMC) methods, 

44, 47, 49, 100, 137, 184
Math achievement (MA), 285

statistics for, 286
Maximum likelihood (ML) methods, 9, 17

estimation
marginal and prior density, 121
multivariate distribution, 121
vector pattern, 120

in growth curve models estimation, 100–101
MCAR, see Missing completely at random 

(MCAR)
MCMC method, see Markov Chain Monte Carlo 

(MCMC) methods
Means and variances reading, observed and 

modeled, 89
Mean square prediction error use, for computing 

explained variance, 223
computation, level-1 and level-2, 222

Metropolis-Hastings algorithm, 141
Middle school

classrooms, data set of students, 318
and high school students, students cross-

classified, 323
network graph of students clustering, 318

Missing at random (MAR), 21, 106, 125, 128, 
144, 179

missing data in, 187–188, 191
Missing completely at random (MCAR), 106, 179
Missing not at random (MNAR) models, 125, 

128, 179
Mixed-effects regression models, 116
MIXOR, usage, 123
Mixture regression model, 62
MLM, see Multilevel modeling (MLM)
MLR, see Multilevel regression analysis (MLR)

MLwiN, dummy variables incorporation in, 276
MMM, see Multilevel measurement modeling 

(MMM)
MNAR models, see Missing not at random 

(MNAR) models
Models, 5, 15

cluster-level error term, 6
covariates, measurement error, 16–17

with cross-level interactions
covariance matrix, 302
cross-level interaction, 303–304
group mean, 303
independent variables, 301
recommendations, 305
variations, 302

design matrix for
fixed effects, 6
random effects, 6

estimation, fit measures, 71, 74, 76
individual-level error term, 6
matrix notation for, 6
multilevel ANOVA, 6
multilevel growth mixture modeling, 36–38
null model, 6
response vector for cluster, 6
with repeated measures

ATT and EXP, 306
between-subjects data, 307
combined model, 308
conceptualization of, 309–311
hierarchical linear modeling program, 

307–308
likelihood ratio test, 307
Mplus program for, 307
with repeated measures data, 307

SEM and two-level path analysis, 21–23
three-level growth analysis, 31–36
two-level exploratory factor analysis, 24–27
two-level growth analysis, 27–31
unobserved heterogeneity, 17–20
vector of unknown

fixed parameters, 6
random effects, 6

Model selection in MLM, 249, 254
illustration of, 253

estimates of parameters, 251–252
MLwiN, data in, 250–251
multiple nested and nonnested models, 232
results obtained with MLwiN, SPSS, Mplus 

and R, 251
software packages, use of, 250
WinBUGS results for DIC associated with 

cluster focus, 252
inferential focuses in MLM, 235–236
information criteria, 231, 236
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AIC, 237–242
advantages of, 232–233
BIC, 246–249
and determination of model weights, 234
DIC, 242–246
models of interest in, 233
and model uncertainty, 233
ratio of transformed criteria, for comparing 

models, 233–234
Laird–Ware model, for multilevel model, 

234–235
NHT approach, limitations of, 231

Monotone pattern, of missing data, 178
Mplus program, 27, 31, 50, 108

for data analysis, 56–57
in growth model, 31
estimation for heavy drinking, 29
in models analysis, 17
model selection in MLM, 251
multilevel item response theory (IRT) 

modelling, 50
for random intercepts model estimation, 312
syntax for data analysis illustrations

DIF detections with multilevel IRT 
model, 56

RDIF detection for item with multilevel 
2-PL IRT model, 56–57

two-level growth analysis, 27
two-level regression, 17
user’s guide, 16

Multi-center clinical trial, 258
Multilevel confirmatory factor analysis, 104
Multilevel data, 3

statistical modeling approaches for, 4
Multilevel data imputation, 173

formulations of linear multilevel model
columns of matrix, 175
imputation of covariates, complication 

in, 175
level-1 and level-2 equations, 174
linear mixed model, special case, 

174–175
matrix for, 175
notation used, 174
random effects, 175
slopes-as-outcome model, 174
univariate linear mixed-effects model, 174

multilevel incomplete data problem, 
classification of, 175

missing data mechanism, 179–180
missing data pattern, 178–179
role of variable in model, 176–178
scale, 180–181
study design, 181

multivariate missing data

general approaches to, 189–190
results, 190–192
simulation study, 190

strategies to deal with incomplete data
class mean imputation, 182
last observation carries forward, 182
likelihood-based methods, 182–184
listwise deletion, 182
multiple imputation, 184
prevention, 181–182

univariate missing data
multilevel imputation algorithm, 184–185
results of simulations, 186–189
simulation study, 185–186

Multilevel data sets, mixture models, 59–60
applications

multilevel mixture modeling, 72–77
three-level mixture regression analysis, 

69–72
estimation, model selection and sample size 

issues, 68–69
three-level data sets, 63–64, 67–68

continuous random effects, 66–67
discrete random effects, 64–66

two-level data sets, 60–63
Multilevel grouped-time survival analysis model

Cholesky decomposition, 118
complementary log-log function, 117
continuous-time proportional hazards 

model, 117
Cox proportional hazards model, 117
level-1 and level-2 units, 117
nonproportional hazards and pooling of 

repeated observations, 118
dichotomous treatment, 119
probability of survival, 119

probability of failure, 117
proportional hazards/odd assumption, 119

tests of, 120
proportional odds model, 118
random effects, 117–118
regression coefficients, 117

Multilevel growth mixture modeling; see also 
Multilevel regression

with distal outcome, 36–37
dropout probability, 38
example for, 36
latent class regression results, 38
model diagram for, 36
random intercepts, 36

Multilevel imputation algorithm, 184–185
Multilevel item response theory (IRT) 

modeling, 41
data analysis, 50–54

combined model, 52
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with covariate RDIF model, results, 53
and DIF, 50–55
ELL, 50, 54
LEP, 52–53
MIMIC approach, 50
Mplus syntax, 50
RDIF model, 50, 52
with three-level DIF detection model, 

results, 51
DIF detection, 56
Fox and Glas’s multilevel IRT modeling

latent variable, 44
two-level model, 43–44
three-level models, 44

MCMC method, 44
HGLMs approach

flexible and efficient framework for, 44
GLM, analysis of, 44
GLMMs, 44
latent HGLM, 45–48
link functions and probability 

distributions, 44
item response theory modeling, 42–43
multilevel SEM approach

covariance matrices, 49
dichotomous response, 48
intercepts and residuals, 49
MCMC, 49–50
nested data structure, 49
normal ogive model, 49
parameter estimation for, 49
polytomously scored items, 48–49
two-level factor model, 48
two-level SEM, structural model, 49

Multilevel LC model, 5, 63–64
applications

multilevel mixture modeling, 72–77
three-level mixture regression analysis, 69–72

continuous random effects, 66–67
discrete random effects, 64–66
regression equations, 64

Multilevel linear regression model, 4
Multilevel logistic model, 45; see also Psychometric 

analyses, multilevel IRT modeling
Multilevel measurement modeling (MMM), 41
Multilevel/mixed models, for data measurements

data collection, 85
latent growth curve analysis, 86
longitudinal data, multilevel regression 

model, 86
longitudinal designs

panel designs, 87
MANOVA approach, 85–86
multilevel models for, 86
resulting data, multilevel analysis of, 85–86

single equation model, 86
subject level coefficients, 86
time-varying covariate, 86

Multilevel mixture factor analysis, 75
fit measures for models estimated with 

intelligence data, 76–77
Multilevel mixture modeling, 72–77; see also 

Latent class (LC) model
between-family differences, 73
Hox’s analysis and, 73
“numeric” factor, 73
“perception” factor, 73
with set of continuous responses, 72
within-and between family covariance 

matrices, 73
Multilevel modeling (MLM), 4, 15, 335–336

Bayesian estimation, 148
growth curve model, 152–154
growth model with time-varying predictors, 

154–156
random intercept model, 149–152
variance components, 156–157

catalog of effect sizes, explained variance, 219
intraclass correlation, 220–221
in mean square prediction error, 222–223
pooling as measure of, 223
proportion reduction in variance, 

221–222
whole model, 223–224

cluster randomized and multi site trials, 258
design effect, 262–263
and loss of efficiency, 264
random effect in multi site trials model, 261
relative efficiency, 263
single-equation model, 261
total variance of outcome variable, 262
variance of treatment effect estimator, 263

distance measures for calculation
dependent and predictor variables, 

correlation between, 224
error variance for total model, equation 

for, 225
explained variance, computation of, 225
Gaussian probability density function, 

use of, 225–227
multilevel model and OLS regression, total 

variance in, 225
total amount of variance, computation 

of, 225
weighted least squares estimates, use of, 

227–229
and distinguishable dyads, 347
effect sizes, utility of, 219
equation, 362
multiple indicator, 35
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of random slope regressing growth rate on 
initial status, 34

in reciprocal one-with-many analysis, 361
role of variable in, 176

missing data, 177–178
SAS syntax, 341
for structured change over time

consecutive models for reading 
recognition, 88

Curran data, 87
growth model with four occasions, path 

diagram, 88
model with varying coefficients, 88
observed and modeled means and variances 

reading, 89
occasion fixed and occasion random 

model, 89
simple start model, 88
time invariant variables, 87–88
time-varying variables, 87–88

with unobserved variables
level-1 model, 201–202
level-2 model, 202
level-3 model, 202
linear-mixed effects model, 202
omitted variable problems in, 203
three-level random intercept model, 202

for unstructured change over time, 89–92
autoregressive model, path diagram, 92
compound symmetry model, 91
covariance matrix for, 91–92
dummy variables, 90
example data, 89–90
first-order autoregressive process, 91–92
F-ratio’s calculation, 90
MANOVA, 90
regression slopes, 90
SEM diagram, 90
simplex, 91
State anxiety (StateAnx) models, 90–91
State-Trait Anxiety Inventory, study, 90
time-varying predictors job models, 91
Trait anxiety (TraitAnx) models, 90

Multilevel ordinal logistic regression 
model, 126

Multilevel 2-PL IRT model and RDIF detection, 
56–57; see also Random differential item 
functioning (RDIF)

Multilevel regression analysis (MLR), 16, 97–99
advantage, 105–106
covariance estimation, 106
growth curve model, 99–102
models, 5, 15

cluster-level error term, 6
covariates, measurement error, 16–17

design matrix for fixed effects, 6
design matrix for random effects, 6
individual-level error term, 6
matrix notation for, 6
multilevel ANOVA, 6
multilevel growth mixture modeling, 36–38
null model, 6
response vector for cluster, 6
SEM and two-level path analysis, 21–23
three-level growth analysis, 31–36
two-level exploratory factor analysis, 

24–27
two-level growth analysis, 27–31
unobserved heterogeneity, 17–20
vector of unknown fixed parameters, 6
vector of unknown random effects, 6

SEM and MLR, 102–103
data format for growth curve analysis, 103
data missing, 105–106
difference between, 102
GLLAMM, 107
growth curve shape estimation, 105
measurement model, extensions, 103–105
software, 107–108
structural model, extensions, 106–107

Multilevel SEM approach, 48–50; see also 
Psychometric analyses, multilevel 
IRT modeling

Multilevel structural equation models, 5, 7
common group size, 8
confirmatory factor model, 8
covariance matrix, 8
FIML approach, 8–9
groups covariance matrix, 8
ML methods, 9
MUML approach, 8
scale factor, 8
SEM software, 8
two-level path diagram in, 9
WLS approach, 9

Multilevel theories, 5
Multinomial logit model, usage, 62
Multiple Imputation Flat File (FF), 186
Multiple Imputation (MI), 184, 186
Multiple Imputation Separate Classes (SC), 186
Multiple-indicator growth model, 103
Multiple indicator multilevel growth, 35
Multiple-membership model

formulation
cross-classified, 333
two-level, 331–333

multiple middle schools, data set students, 321
network graphs, 321

data set of students, 322
usage, 321
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MUML approach, 8–9; see also Multilevel 
structural equation models

n

National Education Longitudinal Study of 1988 
(NELS:88), 198, 208

omitted variable tests, 209–212
searching for optimal estimator, 212–214
selection of variables and multiple 

imputation, 209
National Longitudinal Survey of Youth 

(NLSY), 27, 87
Negative variance, 221

with addition of level-1 predictor, 221–222
Network graph; see also Cross-classification

of biology and chemistry classrooms, 
319–320

of middle school students, 318
of multiple-membership data set of 

students, 322
of students cross-classified by middle school 

and high school students, 323
of three-level multiple-membership data set, 323

NLMIXED code, 134
NLSY, see National Longitudinal Survey of Youth 

(NLSY)
No intercept in model (NOINT), 350
Nonmonotone missing data pattern, 178–179
Nonparametric multilevel bootstrap, 165–166
Nonreciprocal one-with-many designs, 354–361; 

see also One-with-many design
SAS syntax, 356
SPSS syntax, 356–357

Null hypothesis testing (NHT), 231
Null model; see also Multilevel regression

cluster-level variable, 6
matrix notation for single cluster, 6

o

Ogive model, 49
OLS, see Ordinary least squares (OLS)
Omitted variable bias in multilevel models 

handling, 197–198
econometric treatment and limitations, 199–201
endogeneity and omitted variable bias, 198–199
GMM inference, 204

estimator continuum, building of, 205–208
GMM tests for comparing multilevel model 

estimators, 208
NELS:88, example of (see National Education 

Longitudinal Study of 1988 (NELS:88))
omitted variables, 201

estimators used, 203
multilevel models with unobserved variables, 

201–203
tests, types of, 203–204

Omitted variable tests types
highest-level test, 204
intermediate-level test, 203–204
multiple-level test, 203

One-degree-of-freedom test, see Individual 
coefficient tests

One-level cross-classification, network 
graph, 321

One-with-many design, 353–354
data set

fictitious distinguishable, 359
fictitious indistinguishable, 355
fictitious reciprocal indistinguishable, 362

distinguishable partners and, 364–365
focal person, definition, 353
F-tests, 359–360
nonreciprocal one-with-many designs, 

354–361
reciprocal one-with-many designs, 361–364

Onset variable, 133
Optimal design, in multilevel experiments, 257

cluster randomized and multi site trials, 258
designs for, 259–261
multilevel model, 261–264
optimal sample sizes given budgetary 

constraint, 266–268
sample size and power, 264–266

pseudocluster randomized trials
design description, 268–270
multilevel model, 270–272
relative efficiency of cluster, 273
sample size and power given fixed group size, 

272–274
trials comparing group and individual 

treatments, 258–259
design description, 274–275
multilevel model, 276–277
power as function of sample sizes in 

treatment conditions, 277–278
sample size and fixed therapy group sizes, 

276–277
variance of treatment effect estimator, 

276–277
Ordinary least squares (OLS), 286

estimation
one-way, ANOVA of MA data, 296
single-level regression model, 296
standard error, 296

regression, 220, 288
Outcomes model, intercepts with group mean 

centering
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coefficient for mean, 294
context effect, 294
level-1 independent variable, 295
means and intercepts, 295
modification of

randomly varying slope, 299–300
random regression coefficients models, 

297–299
recommendations, 300–301
uncentered model with, 293
weighted average, 294

Over-time model, types, 348
Over-time standard design, 348

distinguishable dyads, 349–351
indistinguishable dyads, 351–353

P

Panel data model with omitted variables, 199
Panel Study of Income Dynamics (PSID), 142
Parallel measurement model, 103; see also 

Multilevel regression analysis (MLR)
Parametric bootstrap, 167
PARMS statement, 132
Path analysis, 21

model diagram
with between-level dependent 

variable, 22
with mediation and random slopes, 23

PC and MCMC methods, in Bayesian 
statistics, 137

Penalized quasi-likelihood (PQL) estimation, 47
Person-period data set, 349
Plong’s cumulative probabilities, 134–135
Pooling measures, 223

of repeated observations, 118–119
Population focus, 235
PQL estimation, see Penalized quasi-likelihood 

(PQL) estimation
Prevention of missing data, 181–182
Probability distributions, link 

functions, 44
PRO CALIS SEM models, 108
PROC FACTOR software, 108
PROC NLMIXED syntax, 126, 135–136
Program R, 108
Proportional hazards assumption, 119; see also 

Multilevel grouped-time survival 
analysis model

model, 122–123
tests, 120

Proportional odds model, 118; see also 
Multilevel grouped-time survival 
analysis model

Pseudocluster randomized trials, 258

Pseudo guessing parameter, definition, 42; 
see also Multilevel item response 
theory (IRT) modeling

PSID, see Panel Study of Income Dynamics 
(PSID)

Psurv probability for observation, 134
Psychometric analyses, multilevel IRT 

modeling, 41
data analysis, 50–54
item response theory, 42–43
multilevel SEM approach, 48–50
response modeling

Fox and Glas’s multilevel IRT modeling, 
43–44

HGLM approach, 44–48
Pure and cross-classified data structures, 

distinction
pure three-level clustering, of students, 315

network graph, 316
pure two-level clustering, network graph 

of, 314

R

Random-coefficient
model, 89

selection models, 126
two-level model, 168

Random differential item functioning (RDIF), 
50, 54

data analysis, 52–53
multilevel 2-PL IRT model, 56–57

Random effects (RE); see also Simple linear 
regression models

definition, 287
estimator, 200, 203
model, 289–290

depiction, 291
Random intercepts models, 149–152, 202; 

see also Bayesian estimation, in 
multilevel modeling

estimation
HLM program, 312
Mplus, 312

and group mean centering, 292–295
SES in, 293

modifying
intercepts and slopes, 299–300
random regression coefficients models, 

297–299
recommendations

level-2 variables, models with, 296–297
level-2 variables, models without, 296

two-level model, 291
Randomized controlled trial, 257
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Random regression coefficients
and intercepts, 300–301
models, 297–299

Random slope regressing growth rate, multilevel 
modeling, 34

Rasch model, 42; see also Multilevel item response 
theory (IRT) modeling

Raudenbush and Bryk (RB) model and HSB data, 
17–18; see also High School & Beyond 
(HSB) data

RDIF, see Random differential item functioning 
(RDIF)

Reading recognition, consecutive models, 88
Reciprocal one-with-many designs, 361–364; 

see also One-with-many design
Relational variables, 4
Repeated measures, models with

ATT and EXP, 306
between-subjects data, 307
combined model, 308
conceptualization of, 309–311
hierarchical linear modeling program, 

307–308
likelihood ratio test, 307
Mplus program for, 307
with repeated measures data, 307

Residuals bootstrap, 168–170
Response model, 107; see also Generalized 

Linear Latent And Mixed Models 
(GLLAMM)

Restricted maximum likelihood estimation 
(REML), 183

Restricted maximum likelihood (RML), 100, 347
R mice package, 190
RML, see Restricted Maximum Likelihood (RML)
Round-robin designs, analysis, 367; see also Social 

relations model (SRM) design
SAS syntax, 368
SPSS syntax, 368–369

s

SAS code, in distinguishable dyads, 350; see also 
Distinguishable dyads

SAS PROC NLMIXED code, 121, 128
SAS PROC PHREG, 132
SAS syntax; see also One-with-many design

in indistinguishable dyads, 353
for MLM, 341
in nonreciprocal one-with-many designs, 356

School-based smoking prevention intervention, 
258–260

Schwarz information criterion, see Bayesian 
information criterion (BIC)

Schwarz weights, 234

Schzrepo.dat file, 134
SEM, see Structural equation modeling (SEM)
Separate parameter models, 127
SES, see Socioeconomic status (SES)
Shared parameter models, 127
SHRIMP approach, 177
Simple linear regression models

depiction, 288
estimation, 286
fixed and random effects, 287
grand mean, 287–288
ordinary least squares (OLS) 

using, 286–287
regression equation, 287
scatter plots, 288
standard error, 287
variance components, 287

Simplex, role, 91
Skewed posterior distributions, 147
Slopes-as-outcome model, 174

approach, 4
Smk variable, 131
Smoking event across days 

frequencies, 122
Social relations model (SRM) design, 337–338, 

365–366
components, 366–367
round-robin designs, analysis, 367–369

Socioeconomic status (SES), 285–286
estimated coefficient, 290
statistics for, 286
types of centering, 285

Sociology
defined, 3
individuals, relationships study, 3
sociometric indices, 4
types of variables and levels, 3

SocIso, regressor
bSocIso regression coefficient, 131
response models, 132

Spline functions, 105
SPSS program, 92
SPSS syntax, 341; see also Distinguishable dyads; 

One-with-many design
in distinguishable dyads, 351
in nonreciprocal one-with-many designs, 

356–357
variance partitioning and covariances 

estimation, 364
SRM design, see Social relations model (SRM) 

design
Standard design

distinguishability test, 347–348
distinguishable dyads, 343–347
indistinguishable dyads, 339–343
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Standard LC model, 60–63; see also Latent class 
(LC) model

STATA for multilevel models, 108
State-anxiety data, models, 93
State-Trait Anxiety Inventory, role, 90
Statistical hypothesis testing, types of errors 

in, 264
Stochastic models, 348
Structural equation modeling (SEM), 5, 21–23, 

97–99
covariance estimation, 106–107
diagram and MANOVA, 90
growth curve model, 99–102
and MLR, 102

data format for growth curve analysis, 103
data missing, 105–106
difference between, 102
GLAMM, 107
growth curve shape estimation, 105
measurement model, extensions, 103–105
software, 107–108
structural model, extensions, 106–107

Structural variables, 4
Structures models

choosing between, 92–93
AIC and BIC, 92–93
chi-square variate, 93
full maximum likelihood estimation 

use, 93
job demands random slope for, 93
state-anxiety data, models 

comparision, 93
Trait Anxiety, 93

Students cross-classified
by middle school and high school 

students, 323
Study design, for incomplete data models

file matching, 181
longitudinal study

with fixed occasions, 181
varying occasions, 181

multistage sample, 181
planned missing data, 181
relational databases, 181

SuperMix program, 92

t

Television School and Family Smoking Prevention 
and Cessation Project (TVSFP) study

gender and condition subgroups, 124
interventions, 124
using SAS NLMIXED code, 123

Third International Mathematics and Science Study 
(TIMSS), 17

Three-level CCREM, 329–331; see also Cross 
classified random effects model 
(CCREM)

Three-level data sets, LC model, 63, 68; see also 
Latent class (LC) model

random effects
continuous, 66–67
discrete, 64–66

Three-level DIF detection model, data 
analysis, 51

Three-level growth analysis, 31–32; see also 
Multilevel regression

modeling extensions, 33–36
Three-level linear growth curve model, 

equation, 99; see also Growth curve 
analysis

Three-level mixture regression analysis, 69–72; 
see also Multilevel LC model

Three-level multiple-membership data 
set, 322

network graph, 323
Three-level nested model, consequences, 348
TIMSS, see Third International Mathematics and 

Science Study (TIMSS)
Trials comparing group and individual treatments, 

258–259
Two-level CCREM; see also Cross classified random 

effects model (CCREM)
with cross-classification, 331
and C-C factors, 326–329

Two-level data sets analysis, LC model, 60–63; 
see also Latent class (LC) model

Two-level exploratory factor analysis; see also 
Multilevel regression

aggressive-disruptive items
distributions for, 24
two-level EFA model test result for, 26
using WLSM and Geomin Rotation, 26

EFA example for, 24
ML computations, 24
two-level factor analysis model, 25
within-level factors, 26

Two-level growth; see also Growth modeling
analysis, 27–31
mixture modeling and distal outcome, 37
model, 33

Two-level logistic regression path analysis, 
model diagram, 22

Two-level multinomial logistic regression 
function, 19

Two-level multiple-membership model, 
331–333; see also Multiple-
membership model

Two-level nested designs, centering, 
285–286



Subject Index •  393

Two-level path analysis and SEM, 21–23; see also 
Multilevel regression

Two-level regression; see also Multilevel 
regression

covariates, measurement error
ANOVA decomposition, 17
cluster size, 17
contextual effect, 16–17
covariate intraclass correlation, 17
proxies for, 16
TIMSS data study, 17
use of Mplus, 17

model, path diagram, 10
unobserved heterogeneity, among level 1 

subjects
four-class model, 19–20
High School & Beyond (HSB) 

data, 17
individual-level latent class 

variable, 19
mixture analysis, model diagram, 19
probability of latent class membership, 

19–20
Two-level SEM

model diagram, 23
with random structural slope, model 

diagram, 23

u

Upward–downward algorithm, 68; see also Latent 
class (LC) model

v

Variables types, definition, 338–339
Variance components, 287; see also Simple linear 

regression models

w

Weighted Least Squares (WLS) approach, 9
Whole model explained variance, 223–224
WinBUGS, software usage, 108, 139, 145
WinMICE computer program, 177
WLSM and Geomin rotation and 

aggressive-disruptive items, 26

x

xtmixed STATA function, 108

z

Zsurv response model, 134
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