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Foreword
The. global. spatial. data. model. (GSDM). is. an. arrangement. of. time-honored. solid.
geometry.equations.and.proven.mathematical.procedures..In.that.respect,.it.contains.
nothing.new..But,.the.GSDM.is.built.on.the.assumption.of.a.single.origin.for.three-
dimensional.(3-D).geospatial.data.and.formally.defines.procedures.for.handling.spa-
tial. data. that. are. consistent. with. digital. technology. and. modern. practice.. In. that.
respect,.the.GSDM.is.a.new.model.

Why.another.spatial.data.model?.Compatibility.is.essential.when.persons.from.
disparate.disciplines.share.data..Success.is.assured.to.the.extent.fundamental.con-
cepts.are.clearly.defined.and.basic.procedures.for.data.exchange.are.formalized..Such.
standardization.and.centralization.provide.economies.of.scale.to.the.user.community..
Subsequently,.additional.benefits.are.derived.through.decentralization.in.which.inno-
vative.applications.expand.upon.the.capabilities.supported.by.the.underlying.standard..
Such.benefits,.in.turn,.spawn.new.markets.and.applications..As.the.cycle.continues,.
the.underlying.standards.and.the.assumptions.upon.which.they.were.established.need.
to.be.reexamined.and,.if.appropriate,.updated..The.telephone.is.an.example..A.cen-
tralized.regulated.monopoly.was.largely.responsible.for.placing.a.telephone.in.most.
homes.in.the.United.States..With.the.underlying.infrastructure.in.place,.additional.
benefits.were.realized.as.the.industry.was.deregulated.and.competition.between.pro-
viders.brought.the.consumer.more.options.relative.to.telecommunications.equipment.
and.services..The.twisted-pair.analog.standard.upon.which.the.telecommunications.
network.was.built.is.no.longer.adequate,.and.digital.technology.has.been.implemented.
to.support.significantly.greater.levels.of.service..Consumers.can.now.select.various.
(even.wireless).network.connections.for.data,.voice,.fax,.and.cable.

Geospatial.data.are.another.example..In.the.past,.analog.storage.of.geospatial.
data.on.a.map.was.standard.practice..Geographic.coordinates.provide.global.stan-
dardization,.and.derivative.uses.such.as.map.projection.(or.state.plane).coordinates.
are.commonplace..The.benefits.of. such.centralization.were.a.driving. force. in. the.
early.stages.of.building.geographic.information.systems.(GIS’s).as.users.and.agen-
cies. needed. to. pool. resources. to. achieve. desired. economies. of. scale.. But. spatial.
data. users. are. experiencing. the. same. analog-digital. transition. as. the. telecommu-
nications. industry,. and. the. underlying. model. needs. to. be. reexamined.. With. the.
advent.of.affordable.digital.technologies.(i.e.,.global.positioning.systems.[GPS].and.
related.computer.resources),.the.demand.for.spatial.data.products.is.growing.rapidly..
Enormous.gains.in.productivity.have.been.achieved.by.automating.procedures.for.
handling.spatial.data.and.by.switching.from.analog.to.digital.spatial.data.storage..
However,.traditional.(horizontal.and.vertical).spatial.data.models.fail.to.exploit.fully.
the.wealth.of.data.available..In.a.sense,.the.spatial.data.user.community.continues.
to.“put.new.(digital).wine.into.old.bottles.”.The.GSDM.is.a.new.bottle.model.that.
preserves.the.integrity.of.3-D.spatial.data.while.providing.additional.benefits.(i.e.,.
simpler.equations,.worldwide.standardization,.and.the.ability. to. track.spatial.data.
accuracy.with.greater.specificity.and.convenience).
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Computer.databases.are.digital..Analog.maps.are.still.used,.but,. increasingly,.
maps.and.data.visualizations.are.generated.upon.demand.from.a.digital.database..
Rarely.is.a.map.now.used.for.primary.spatial.data.storage..Spatial.data.are.3-D,.and.
maps.are.2-D..Modern.measurement.systems.collect.3-D.data,.yet.many.computer.
databases.store.spatial.data.as.2-D.horizontal.data.and.1-D.vertical.(elevation).data..
An. improved.practice. is. to.build. and. share. a.3-D.database. that. supports.both.2-.
and.3-D.applications. in.either.analog.or.digital.mode..Separately,. the. importance.
of. spatial. data. accuracy. has. come. to. the. fore. as. evidenced. by. efforts. to. develop.
meta-data. standards.and.specifications..These. issues.and.others.are.addressed.by.
reexamining. the.underlying.spatial.data.model.and.by.designing.spatial.data.col-
lection,.storage,.manipulation,.adjustment,.and.visualization.procedures.based.upon.
the.3-D.GSDM.

But,.perhaps.even.more.compelling.arguments.favoring.adoption.of.the.GSDM.
can.be.derived.from.two.documents.prepared.by.the.U.S..National.Academy.of.Pub-
lic.Administration.(NAPA):

“The.Global.Positioning.System:.Charting.the.Future”.was.prepared.for.the.
U.S..Congress.and.the.U.S..Department.of.Defense.(DOD),.and.was.pub-
lished.in.1995..It.describes.the.history,.performance,.and.future.of.GPS..This.
document.is.particularly.important.to.those.who.build,.operate,.and.utilize.
the.systems.that.generate.reliable.geospatial.data..The.executive.summary.
states,.in.part,.“GPS.is.much.more.than.a.satellite.system.for.positioning.
and.navigation..It.represents.a.stunning.technological.achievement.that.is.
becoming.a.global.utility.with.immense.benefits.for.the.U.S..military,.civil.
government,.and.commercial.users.and.consumers.worldwide.”
“Geographic.Information.for.the.21st.Century”.was.prepared.for.the.U.S..
Bureau. of. Land. Management,. U.S.. Forest. Service,. U.S.. Geological. Sur-
vey,.and.National.Ocean.Service,.and.was.published.in.1998..It.describes.
the.instrumental.roles.that.agencies.of.the.U.S..government.have.played.in.
“surveying,.mapping,.and.other.geographic.information.functions.since.the.
beginning.of.the.Republic.”.The.report.includes.various.excellent.recom-
mendations.based.upon.the.use.of.GIS’s.under.the.conceptual.umbrella.of.
the.National.Spatial.Data.Infrastructure.(NSDI).

Many.persons.in.various.professions.are.comfortable.with.both.reports..But,.by.
and. large,. the.GPS.group. includes.highly. technical. specialists. such. as. aerospace.
engineers,.electrical.engineers,.geodesists,.physicists,.and.photogrammetrists..The.
GIS.group.probably.involves.a.greater.number.of.people.and.includes.spatial.data.
users.whose.professional-technical.focus.tends.toward.administration,.local.govern-
ment.services,.information.technology.(IT),.civil.engineering,.surveying.and.map-
ping,. planning,. and. business.. In. addition. to. those. with. professional. interests,. the.
number.of.people.using.GPS.and/or.GIS.on.a.personal. level. is.growing.exponen-
tially,.a.trend.reasonably.expected.to.continue.

Interoperability. is. the. key.. The. GSDM. builds. a. conceptual. bridge. between.
the. two. NAPA. reports. by. providing. a. consistent. 3-D. geometrical. framework. for.
both.GPS.and.GIS..The.GSDM.serves. the.scientific.end.of. the.spectrum.without.

•

•
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sacrificing. technical. rigor.while. simultaneously.providing. local. spatial.data.users.
the.opportunities.to.work.with.local.flat-Earth.coordinate.differences.and.to.view.
the.(virtual).world.from.any.location..Examples.of.this.interoperability.bridge.are.
highlighted.at.various.places.throughout.the.book.
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Preface
“The.right.tool.for.the.job”.is.a.simple.phrase.with.profound.implications..The.prolif-
eration.of.tools.for.handling.spatial.data.is.somewhat.daunting,.as.benefits.associated.
with.their.use.spawn.the.development.of.even.better.tools..Although.we.are.where.
we.are.because.of.where.we.came. from,. the.path. to. the. future. should.be.viewed.
in.terms.of.the.analog-to-digital.revolution..Given.the.many.specializations.associ-
ated.with.developing.technology,.it.is.difficult.to.write.a.comprehensive.book.about.
an.umbrella.topic.like.spatial.data..Therefore,.acknowledging.that.others.will.add.
details.to.illuminate.the.path.ahead.even.better,.this.book.is.written.to.define.and.
describe.a.global.spatial.data.model.(GSDM).that

is.easy.to.use.because.it.is.based.upon.rules.of.solid.geometry.
is.standard.between.disciplines.and.can.be.used.all.over.the.world.
accommodates.modern.measurement.and.digital.data.storage.technologies.
supports.both.analog.map.plots.and.computer.visualization.of.digital.data.
preserves.geometrical.integrity.and.does.not.distort.physical.measurements.
combines.horizontal.and.vertical.data.into.a.single.3-D.database.
facilitates.rigorous.error.propagation.and.standard.deviation.computations.
provides. (and. defines. assumptions. associated. with). various. choices. with.
respect.to.spatial.data.accuracy.

In.a.way,.this.book.is.organized.backward..Chapter.1.contains.the.results,.and.chap-
ter.2.justifies.chapter.1..Fundamental.geometrical.concepts.are.developed.in.terms.
of.more.traditional.material.in.subsequent.chapters..That.is.done.to.accommodate.
readers.with.various.backgrounds..Managers.and.those.with.a.strong.technical.back-
ground.might.concentrate.only.on.the.beginning.chapters..Spatial.data.professionals.
at.various.levels.who.wish.to.gain.a.better.understanding.of.geometrical.relation-
ships.should.start.with.the.beginning.chapters.so.they.know.where.the.rest.of.the.
book.is.going..Given.that.chapters.1.and.2.are.not.easy.reading,.they.should.be.read.
first.as.an.overview..It.is.expected,.then,.as.the.reader.progresses.through.subsequent.
chapters,.that.chapters.1.and.2.will.be.revisited.as.required.to.help.refresh.the.focus.
on.the.overall.objective.of.defining.an.appropriate.spatial.data.model..For.those.just.
beginning.to.work.with.spatial.data,.serious.reading.and.study.should.begin.in.chap-
ter.3..With.that.said,.the.plan.for.building.a.comprehensive.spatial.data.model.is.to.
present.fundamental.mathematical.concepts.in.chapter.3.and.to.add.concepts.from.
surveying,.geodesy,.and.cartography.in.subsequent.chapters.

The.material.is.presented.as.simply.as.possible.without.compromising.technical.
rigor..Some.readers.will.find.the.review.of.mathematical.concepts.redundant,.and.
some.readers.may.never.have.occasion.to.use.linear.algebra,.matrix.manipulation,.
or.error.propagation..Acknowledging.the.certain.diversity.of.readers,.the.goals.are.
to.provide.a.logical.development.of.concepts.for.those.who.wish.to.follow.the.theory.

•
•
•
•
•
•
•
•
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and.to.provide.all.readers.a.collection.of.tools.that.can.be.used.to.handle.spatial.data.
more.efficiently.

Whether.the.reader.is.involved.in.technical.applications,.is.making.managerial.
and.administrative.decisions.with.regard.to.spatial.data,.or.is.a.programmer.writ-
ing. software. for.handling. spatial.data,. all. should.agree. that. the.most. appropriate.
tools.for.handling.spatial.data.are.those.that.are,.at.the.same.time,.both.simple.and.
appropriate..The.GSDM.is.simple.because.it.uses.existing.practice.and.rules.of.solid.
geometry.for.manipulating.spatial.data..And,.the.GSDM.is.appropriate.because.it.
is. built. on. local. coordinate. differences,. preserves. true. 3-D. geometrical. integrity.
on.a.global.scale,.accommodates.modern.digital. technology,.handles.error.propa-
gation.with.aplomb,.and.supports.subsequent.computation.of.complex.geometrical.
relationships. in.geodesy,.cartography,.and.other.sciences.. In. the.past,.spatial.data.
models.were.selected.by.default.as.people.(rightfully).focused.on.impressive.gains.
in.utility.and.productivity.made.possible.by.automating.existing.processes..But.the.
GSDM.is.a.result.of.examining.those.processes.in.terms.of.digital.technology.and.
fundamental.geometrical.concepts..With.features.of.the.various.models.described.
and.compared,.it.is.anticipated.that.spatial.data.analysts.in.various.fields.will,.as.a.
matter.of.conscious.choice,.begin.using.the.GSDM.because.it.establishes.a.common.
geometrical.link.between.spatial.data.sets,.applications,.and.disciplines,.and.because.
it.provides.an.efficient.method.of.defining,.tracking,.and.evaluating.the.accuracy.of.
spatial.data.

What.does.it.mean.to.“think.outside.the.box”?.Is.thinking.outside.the.box.some-
thing.beneficial.and.desirable?.Or.is.thinking.outside.the.box.to.be.avoided?.What.do.
elephant.jokes.have.to.do.with.boxes?.Without.answering.those.questions,.consider.
the.following.(to.whom.does.one.credit.elephant.jokes?):

. 1..How. does. one. determine. the. number. of. elephants. in. the. refrigerator?.
Answer:.Count.their.tracks.in.the.butter.

. 2..How.does.one.kill.a.blue.elephant?.Answer:.Shoot.it.with.a.blue.elephant.gun.

OK,.now. the.pattern. is. established,. and. the. reader. is. ready. for.whatever.else.
comes.along.

. 3..How.does.one.kill.a.red.elephant?.No,.you.don’t.shoot.it.with.a.red.elephant.
gun,.because.you.don’t.have.one..The.correct.answer.is.“Choke.it.until.it.
turns.blue,.then.shoot.it.with.your.blue.elephant.gun.”

Elephant.jokes.may.have.no.place.in.a.rigorous.technical.book.(except.maybe.
in.the.preface),.but.these.illustrate.a.very.important.point..Humans.are.very.good.
at.using.whatever. tools.are.available. to.do.what.needs. to.be.done..Without.being.
critical,.many.wonderful.accomplishments.have.involved.(figuratively).choking.the.
elephants.. But,. everyone. should. be. aware. that. sometimes. it. is. better,. easier,. and.
more.appropriate.to.look.for.a.red.elephant.gun.than.it.is.to.keep.choking.those.red.
elephants..Most.red.elephant.guns.are.found.outside.the.box.

The.GSDM.is.viewed.as.a.red.elephant.gun.for.handling.3-D.digital.geospa-
tial.data.

63014.indb   20 3/12/08   2:15:46 PM



xxi

Acknowledgments
I.am.indebted.to.many.persons.for.the.motivation.to.write.this.book..Writing.took.
far.longer.than.first.anticipated,.but.rushing.to.publication.was.not.my.goal..First,.I.
need.to.acknowledge.my.mother,.Brownie,.who.encouraged.me.to.be.curious,.and.
my.father,.Irvin,.who,.unlike.his.father.to.him,.avoided.prejudging.my.aspirations..I.
must.also.recognize.my.undergraduate.mentor.at.the.University.of.Michigan,.Profes-
sor.Ralph.Moore.Berry,.who.helped.me.gain.a.profound.appreciation.of.the.survey-
ing.profession;.Professor.Edward.Mikhail.at.Purdue.University,.who.emphasized.the.
importance.of.rigor.in.the.thought.process;.Professor.Alfred.Leick.at.the.University.
of.Maine,.who,.in.a.single.5-minute.conversation.during.my.1990–1991.sabbatical,.
identified.the.3-D.geodetic.model.as.an.appropriate.model.for.spatial.data;.and.Dr..
Kurt.W..Bauer,.emeritus.executive.director.of.the.Southeastern.Wisconsin.Regional.
Planning.Commission,.who.commissioned.preparation.of.the.1997.report.“Defini-
tion.of.a.Three-Dimensional.Spatial.Data.Model.for.Southeastern.Wisconsin.”.But.
I.owe. the. largest.debt.of.gratitude. to.my.wife,.Donna,. and.our. three. (now.adult).
children,.Franklin,.Valorie,.and.Barbara..None.of.them.ever.once.suggested.during.
the.last.10.years.that.I.should.give.up.writing.the.book,.even.though.none.of.us.knew.
(or.knows).where.this.series.of.many.small.steps.might.lead..The.journey.has.been.
long.and.challenging.at.times,.but.the.book.portion.of.my.life.journey.has.been.good.
because.innumerable.persons,.especially.students,.have.made.it.so..To.all.those.per-
sons,.both.named.and.unnamed,.I.offer.my.sincere.appreciation—thank.you.

Earl F. Burkholder, PS, PE

63014.indb   21 3/12/08   2:15:46 PM



63014.indb   22 3/12/08   2:15:47 PM



xxiii

List	of	Abbreviations
2-D two-dimensional
3-D three-dimensional
AASHTO American. Association. of. State. Highway. and. Transportation.

Officials
ACSM American.Congress.on.Surveying.and.Mapping
A-S anti-spoofing
ASCE American.Society.of.Civil.Engineers
ASCII American.Standard.Code.for.Information.Interchange
ASPRS American.Society.of.Photogrammetry.and.Remote.Sensing
BK1 through BK22 labels.assigned.to.routine.procedures.listed.in.Table.1.1.and.

identified.in.Figure.1.4
BLM U.S..Bureau.of.Land.Management
BURKORDTM trademark.for.3-D.software.and.database
C/A code course.acquisition.code
COGO coordinate.geometry
CORPSCON coordinate. conversion. software. by. the. U.S.. Army. Corps. of.

Engineers
CORS continuously.operating.reference.station
c+r correction.for.curvature.and.refraction
CTP Conventional.Terrestrial.Pole
Dº degree.of.curve
DGPS differential.GPS
DMA Defense.Mapping.Agency.(no.longer.used—see.NIMA)
DMD double-meridian-distance
DOD U.S..Department.of.Defense
DOT U.S..Department.of.Transportation
ECEF Earth-centered.Earth-fixed
EDM electronic.distance.meter
e/n/u local.perspective.right-handed.rectangular.coordinates
FAA Federal.Aviation.Administration
FOC full.operational.capability
GALILEO European. satellite. positioning. system. (similar. to. GPS,. which. is.

owned.by.the.United.States)
GIS Geographic.Information.System
GLONASS Russian.Global.Navigation.Satellite.System.(similar.to.GPS,.which.

is.owned.by.the.United.States)
GNSS global.navigation.satellite.systems
GPS Global.Positioning.System
GRS80 Geodetic.Reference.System.of.1980
GSDI Global.Spatial.Data.Infrastructure
GSDM global.spatial.data.model

63014.indb   23 3/12/08   2:15:47 PM



xxi�	 The	3-D	Global	Spatial	Data	Model

HARN high-accuracy.reference.network
HD(1) horizontal.distance.used.in.plane.surveying
HPGN high-precision.geodetic.network
HTDP horizontal.time-dependent.positioning
IAG International.Association.of.Geodesy
IERS International.Earth.Rotation.Service
IGLD, IGLD(xx) International.Great.Lakes.Datum.(year.realized)
IOC initial.operational.capability
IT information.technology
ITRF International.Terrestrial.Reference.Frame
LDP low.distortion.projection
LLR lunar.laser.ranging
MSL mean.sea.level
NAD27 North.American.Datum.of.1927
NAD83(CORS) North. American. Datum. of. 1983. based. upon. NGS. CORS.

stations
NAD83(2007) North.American.Datum.of.1983.based.upon.2007.adjustment.of.

the.NSRS
NAD83(xx) North.American.Datum.of.1983.(realized.in.19xx)
NADCON North.American.Datum.conversion.software
NAPA U.S..National.Academy.of.Public.Administration
NAVD88 North.American.Vertical.Datum.of.1988
NAVSTAR navigation.satellite.timing.and.ranging
NGA National.Geo-spatial.Intelligence.Agency.(formerly.NIMA)
NGS National.Geodetic.Survey
NGVD29 National.Geodetic.Vertical.Datum.of.1929
NIMA National.Imagery.and.Mapping.Agency.(formerly.DMA,.now.NGA)
NOAA National.Oceanic.and.Atmospheric.Administration
NRC National.Research.Council
NSDI National.Spatial.Data.Infrastructure
NSRS National.Spatial.Reference.System
OPUS On-line.Positioning.User.Service
OPUS-RS OPUS—rapid.static
PC personal.computer
P-code precision.code
P.O.B. point.of.beginning
PPS precise.positioning.service
RINEX Receiver.Independent.Exchange.format
RTK real-time-kinematic
RTN real-time.network
SA selective.availability.(discontinued.on.May.1,.2000)
SI international.system.for.units.of.measurement
SLR satellite.laser.ranging
SPC(S) state.plane.coordinate.(system)
SPS standard.positioning.service
TAI International.Atomic.Time

63014.indb   24 3/12/08   2:15:47 PM



List	of	Abbreviations	 xx�

TCT transcontinental.traverse
UAV unmanned.aerial.vehicle
USC&GS U.S..Coast.and.Geodetic.Survey.(now.NGS)
USPLSS U.S..Public.Land.Survey.System
UTC Coordinated.Universal.Time
UTM universal.transverse.Mercator
VERTCON vertical.datum.conversion.software
VLBI very.long.baseline.interferometry
WAAS wide.area.augmentation.system
WADGPS wide.area.differential.GPS
WGS84 (Gxxxx) World. Geodetic. System. of. 1984. (specifies. epoch. for. GPS.

operations)
WGSxx World.Geodetic.System.(realized.in.19xx)
WVDXX World.Vertical.Datum.of.20xx
X/Y/Z geocentric.rectangular.coordinates

63014.indb   25 3/12/08   2:15:47 PM



63014.indb   26 3/12/08   2:15:47 PM



�

1 The Global Spatial Data 
Model (GSDM) Defined

IntroductIon

Geospatial data representing real-world locations are three-dimensional (3-D), and 
modern measurement systems collect data in a physical 3-D environment. Time as 
the fourth dimension is acknowledged, but this book focuses on 3-D data. This chap-
ter defines and describes the global spatial data model (GSDM) as a collection of 
mathematical concepts and procedures that can be used to collect, organize, store, 
process, manipulate, evaluate, and use 3-D spatial data. Measurements of quantities 
such as angles, length, time, current, mass, and temperature are used with known 
physical and geometrical relationships to compute spatial data components that are 
stored for subsequent use and reuse.

In the past, records of such measurements were written in field books, logs, or 
journals, and the spatial information was compiled into an analog map that typically 
served two purposes. The map was simultaneously the primary storage medium for 
the spatial information and the end product of the data collection process. Spatial 
data are now collected, stored, and manipulated digitally in an electronic environ-
ment, and the primary storage medium is rarely the end product. Instead, the same 
digital data file can be duplicated repeatedly and used to generate and/or support 
many different spatial data products. In either case, whether developing an analog 
or digital spatial data product, algorithms are the mathematical rules used to manip-
ulate measurements and spatial data to obtain meaningful spatial information. In 
addition, the quality of spatial information is dependent upon the quality of the origi-
nal measurement, completeness of the required information, and appropriateness of 
the algorithms used to manipulate the data.

The GSDM includes both the algorithms for processing spatial data and the pro-
cedures that can be used to provide a defensible statistical description of spatial 
data quality. That means measurement professionals can focus on building and/or 
using systems that generate reliable spatial data components and spatial data users 
in various disciplines can devote attention to using and interpreting the data with the 
assurance that all parties generating and/or using the data are “on the same page” 
(i.e., using a common spatial data model).

This first chapter is a summary of the defining document for the GSDM (Burk-
holder 1997b). The intent is to cite primary works because other people developed 
most of the concepts described herein. For example, appendix C in Bomford (1971) 
is titled “Cartesian Coordinates in Three Dimensions.” Leick (2004) defines the 3-D 
geodetic model of which the GSDM is a part, Mikhail (1976) provides a comprehen-
sive discussion of functional and stochastic models, and, when discussing models, 
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Moritz (1978) comments on the simplicity of using the basic global rectangular X/Y/Z 
system without an ellipsoid. When the aforementioned concepts are combined in a 
systematic way with particular attention to the manner in which spatial data are used, 
the synergistic whole—the GSDM—appears to be greater than the sum of the parts.

Neither is the GSDM concept a new one. Seeber (1993) states that H. Burns 
proposed the concept of a global three-dimensional polyhedron network as early as 
1878. The differences now are that the Global Positioning System (GPS) and other 
modern technologies have made a global network practical and that the polyhedron 
need not be limited to Earth-based points. The GSDM might also be an appropriate 
model for describing the “best” instantaneous positions of a global network of con-
tinuously operating reference stations (CORS) computed in real time with respect to 
the International Terrestrial Reference Frame (ITRF). An adopted mean position for 
each CORS may serve the needs of most users, but corrections for short-term varia-
tions caused by the Earth’s tides, long-term continental drift velocities, and even 
catastrophic events such as earthquakes should be available to those needing them. 
It is readily acknowledged that such policies are already being used in the scientific 
community and that a space-fixed inertial reference system is more appropriate for 
describing the motion of Earth satellites. The GSDM should not be viewed as a pre-
scriptive model, but as an inclusive model that accommodates the diverse practice of 
many spatial data users and provides an efficient bridge between local “flat-Earth” 
uses and rigorous scientific applications.

the GSdM

The GSDM is a collection of mathematical concepts and procedures that can be used 
to manage spatial data both locally and globally. It consists of a functional model 
that describes the geometrical relationships and a stochastic model that describes the 
probabilistic characteristics—statistical qualities—of spatial data. The functional 
part of the model includes equations of geometrical geodesy and rules of solid geom-
etry as related to various coordinate systems and is intended to be consistent with 
the 3-D geodetic model described by Leick (2004) with the following exception: the 
GSDM, being strictly spatial, does not accommodate gravity measurements but pre-
sumes gravity effects are appropriately accommodated before data are entered into 
the spatial model. The stochastic portion of the GSDM is an application of concepts 
described by Mikhail (1976), Leick (2004), and Wolf and Ghilani (1997).

Although the GSDM makes no attempt to accommodate non-Euclidean space or 
concepts, it does provide a simple universal foundation for many disparate coordi-
nate systems used in various parts of the world and offers advantages of standardiza-
tion for spatial data users in disciplines such as those listed in Figure 1.1. As such, 
the GSDM should be viewed as the geometrical portion of a larger concept being 
promoted as the Global Spatial Data Infrastructure (GSDI) described by Holland 
et al. (1999) as “[t]he policies, organizational remits, data, technologies, standards, 
delivery mechanisms, and financial and human resources necessary to ensure that 
those working at the global and regional scales are not impeded in meeting their 
objective.” For more information on the GSDI, see http://www.gsdi.org.
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The FuncTional Model coMponenT

The functional model component of the GSDM is based upon a three-dimensional, 
right-handed rectangular Cartesian coordinate system with the origin located at the 
Earth’s center of mass. The X/Y plane lies in the equatorial plane, with the X-axis at 
the 0° (Greenwich) meridian. The Z-axis coincides with the mean spin axis of the 
Earth as defined by the Conventional Terrestrial Pole (Leick 2004). This geocen-
tric coordinate system is called an Earth-centered Earth-fixed (ECEF) coordinate 
system by the United States’ National Imagery and Mapping Agency (1997) and is 
widely used by many who work with GPS and related data. Rules of solid geometry 
and vector algebra are universally applicable when working with ECEF coordinates 
and coordinate differences.

As shown in Figure 1.2, the unique 3-D position of any point on Earth or near 
space is equivalently defined by traditional latitude/longitude/ellipsoid height  

Global Spatial Data Model - GSDM 
(A Universal 3-D Model for Spatial Data) 

3-D 
Core Concepts 

The Global Spatial Data Model (GSDM) provides a simple, universal 3-D 
mathematical foundation for the Global Spatial Data Infrastructure (GSDI) 
which supports Geographic Information System (GIS) database applications 
in disciplines such as: 
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coordinates or by a triplet of X/Y/Z coordinates expressed in meters. Due to the large 
distances involved, the X/Y/Z coordinate values can be quite large, but personal com-
puters (PC’s) operating in double precision routinely handle fifteen significant digits. 
Twelve significant digits will accommodate all ECEF coordinate values within the 
“birdcage” of GPS satellites down to 0.1 mm. Some users may object to working with 
such large coordinate values, but, as shown in Figure 1.3, such objections will likely 
become inconsequential to the extent that end-user applications are designed to uti-
lize coordinate differences (much smaller numbers and fewer digits).

Figure 1.4 is a schematic that illustrates relationships between the ECEF coordi-
nate system and various other coordinate systems commonly used in connection with 
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spatial data. A key feature on the diagram is a rotation matrix used to convert ∆X/∆Y/
∆Z coordinate differences to local ∆e/∆n/∆u coordinate differences at any point (local 
origin) specified by the user. Since a vector in 3-D space is not altered by moving 
the origin or by changing the orientation of the reference coordinate system, a vector 
defined by its geocentric ∆X/∆Y/∆Z components is equivalently defined by local com-
ponents, and the rotation matrix is the mechanism that efficiently transforms a global 
perspective into a local one. The transpose of the rotation matrix is used to transform 
local components of a space vector to corresponding geocentric components.
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computational designations

With regard to Figure 1.4, the functional model includes equations for transforming 
spatial data described by coordinates in one numbered box to equivalent expressions 
in a different coordinate system. The contents of the numbered boxes are as follows:

Box 1: Geocentric X/Y/Z coordinates are the basis for all other coordinate val-
ues obtained from the GSDM. These are the primary defining values stored 
for each point in a digital spatial data file. Coordinate values in other coor-
dinate systems are derived from the stored ECEF coordinates using algo-
rithms that have been tested and proven for mathematical “exactness” and 
computational precision. This part of the GSDM features meter units, a 
linear adjustment model, and vector algebra along with universal rules of 
solid geometry.

Box 2: Geodetic coordinates of latitude and longitude combined with ellipsoid 
height can define a three-dimensional position with the same precision and 
exactness as geocentric X/Y/Z coordinates. Equations are listed in a subse-
quent section by which coordinate values in one box can be converted to 
equivalent values in another. Using both angular sexagesimal units (degrees, 
minutes, and seconds) on the ellipsoid and length units of meters for height 
makes traditional 3-D geodetic computations more complicated than when 
using ECEF rectangular coordinates.

Box 3: GPS technology has been a driving force behind the use of 3-D spatial 
data and helps create demand for the GSDM. Although practice includes 
displaying coordinates in a defined system, the primary output of a GPS 
survey historically has been a 3-D vector defined by its ∆X/∆Y/∆Z compo-
nents. Because existing control stations were defined with geodetic coordi-
nates of latitude and longitude (and other reasons), it was natural to continue 
building a 2-D network using 3-D measurements. And there certainly are 
cases where that practice can still be justified. But, the GSDM defines an 
environment in which the full value of 3-D data can be used to build high-
quality 3-D networks without being encumbered by 2-D assumptions and 
complex equations found in classical geometrical geodesy. Another benefit 
of the GSDM is that the associated stochastic model lends itself to imple-
mentation in the rectangular 3-D environment more readily than in the lati-
tude/longitude/height system.

Box 4: In practice, geoid height is taken to be the difference between ellipsoid 
height and elevation. With any two of the three elements known, the third 
can be found. If a reliable ellipsoid height for a point (from GPS data) is 
combined with an appropriate geoid height (from geoid modeling), it is pos-
sible to obtain high-quality orthometric height (elevations). Appropriate use 
of standard deviations for the constituent components will provide a statis-
tical assessment of the quality of such elevations.

Box 5: Box 5 is the same as Box 4 except that the computations are performed 
using differences. As will be explained in chapter 7, modeled geoid height 
differences are often more reliable than modeled absolute geoid heights. 
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That means better elevations can be computed by starting with a known 
high-quality benchmark elevation and combining observed ellipsoid height 
differences with modeled geoid height differences to compute the ortho-
metric height difference.

Box 6: The ∆u component from Box 9 is the perpendicular distance of the fore-
point from the tangent plane through the standpoint. An elevation difference 
from the standpoint to the forepoint includes the ∆u component plus the 
curvature and refraction (c+r) correction. This c+r procedure is based on the 
modeled distance between the horizontal plane and a level surface and does 
not include any geoid modeling between the standpoint and forepoint.

Box 7: Given that the statistical qualities of a vector in space are independent of 
the perspective from which it is viewed, the rotation matrix is a very effi-
cient method for changing a global perspective (geocentric coordinate differ-
ences) into a local perspective (local “flat-Earth” components). Similarly, the 
transposed rotation matrix converts the local perspective into a global one.

Box 8: Historically, horizontal latitude and longitude coordinates have been 
combined with vertical elevations when mapping features on or near the 
Earth’s surface. The generic zero reference surface for elevation has been 
the geoid (or mean sea level), which admits to a physical definition but, as it 
turns out, is very difficult, if not impossible, to find. As a result, an arbitrary 
reference surface that approximates, but does not define, mean sea level was 
selected for the North American Vertical Datum of 1988 (Zilkoski, Rich-
ards, and Young 1992).

Box 9: The local geodetic horizon (Trimble 1990) is essentially the same as the 
local geodetic frame defined more precisely by Soler and Hothem (1988) 
and shares many similarities with local plane surveying practice. The pri-
mary difference is that “up” is defined by the ellipsoid normal instead of 
the plumb line. That difference is largely inconsequential except in cases 
where very high precision is required or where the slope of the geoid (with 
respect to the normal) is severe. Another difference with the GSDM is that 
the origin moves with the observer because one is working with local coor-
dinate differences with respect to the user-specified standpoint. See Box 10 
for working with a traditional (or fixed) origin.

The ∆u component in Box 9 can be used as an approximate elevation differ-
ence because it does not include the slope of the geoid, Earth curvature, or 
refraction (c+r)—all inconsequential for short lines. Although suggested 
as a secondary means for obtaining elevation differences, the standard c+r 
correction can be combined with the ∆u component to obtain elevation dif-
ferences between standpoint and forepoint. Understandably, the primary 
method for obtaining elevation differences still relies on differential level-
ing or accurate geoid heights and ellipsoid heights or their differences. See 
chapter 8 for more details.

Box 10: Point-of-beginning (P.O.B.) datum coordinates are a feature within the 
GSDM that accommodates long-established local plane surveying practices 
without compromising geometrical integrity. P.O.B. coordinates permit the 
user to select any point in the database as an origin. The 3-D location of 
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each additional point selected is listed with respect to the P.O.B. Admit-
tedly, this practice makes little sense for large distances, but these local 
coordinate differences can be treated in the same manner as local plane 
coordinates and used on survey plats. Horizontal distances are in the tan-
gent plane through the P.O.B., and azimuths are with respect to the meridian 
through the P.O.B. If surveys of adjacent tracts do not use the same P.O.B., 
there will be two azimuths for a common line (the difference is conver-
gence of the meridians between the two P.O.B.’s). However, if the P.O.B. is 
the same for both tracts, they will share a common basis of bearing—the 
geodetic meridian through the P.O.B.

Box 11: Map projections were invented to address the challenge of represent-
ing a curved Earth on a flat map. In particular, conformal projections have 
been used in surveying and mapping to define precisely a 2-D relation-
ship between latitude and longitude positions on the Earth and equivalent 
plane coordinate positions on a flat map. Systematic use of map projections 
includes state plane coordinate systems as implemented in the United States 
and worldwide use of universal transverse Mercator (UTM) coordinates. 
However, it is important to note that elevations combined with map projec-
tion x/y (or east/north) plane coordinates are not an appropriate 3-D rectan-
gular model for two reasons:

 A. Conformal projections are well defined in two dimensions only. There 
is no mathematical definition of elevation in conformal mapping.

 B. The zero reference surface for elevation (approximated by sea level) is 
a nonregular curved surface. Full 3-D integrity is preserved only to the 
extent that a flat Earth can be safely assumed. Therefore, map projection 
coordinates combined with elevations are referred to as “pseudo 3-D.”

Box 12: An important consideration when using state plane coordinates is the 
relationship of the grid inverse distance to actual ground-level horizontal 
distance. In applications such as highway centerline stationing, the dif-
ference between grid and ground distance quickly becomes too great to 
ignore. Project datum coordinate systems were invented to accommodate 
that difference. Lack of standardization is an issue when considering project 
datum coordinates. For a summary of comments from forty-six out of fifty 
state departments of transportation (DOT’s) on the grid-ground distance 
difference, see appendix 3 of Burkholder (1993a). On the other hand, states 
such as Wisconsin (1995) and Minnesota (Whitehorn 1997) have formally 
defined countywide coordinate systems for local use. A concise formula-
tion of local coordinate system algorithms is found in chapter 10.

When working with the ∆e/∆n components, the horizontal distance is in the 
tangent plane through the standpoint and is the same horizontal distance 
that plane surveyors have been using for generations. It is also the same as 
HD(1) (i.e., ground-level horizontal difference) as described in Burkholder 
(1991). Understandably, with a unique tangent plane at each standpoint, the 
tangent plane from point A to point B is slightly different than the tangent 
plane from point B to point A. But, geometrical integrity in three dimen-
sions is preserved by the GSDM and underlying X/Y/Z coordinates.
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The 3-D azimuth from standpoint to forepoint obtained from arctan (∆e/∆n) 
gives the correct azimuth between each pair of points. The forward azimuth 
of a line differs from the back azimuth of the same line due to convergence 
of the meridians between the two endpoints. The GSDM competently pro-
vides the correct answer in each case. The 3-D azimuth is defined simply 
and is easy to use. The azimuth of a geodetic line has a more complex defi-
nition and differs only slightly from the 3-D azimuth. The geodetic azimuth 
is “better” than the 3-D azimuth only in the most demanding cases. See 
Burkholder (1997a) and Chapter 6 for more details.

Box 13: Spatial data measurements with conventional total station surveying 
instruments include slope distances, vertical (or zenith) angles, and deter-
minations of bearings or azimuths. These measurements are used to com-
pute local geodetic horizon coordinate differences of ∆e/∆n/∆u. In reality, 
those measurements are referenced to the plumb line while the GSDM pre-
sumes the results are normal based. The difference is small, but important. 
Current procedures for making Laplace corrections are still applicable and 
should be used as will be described in chapter 8.

Equations for moving spatial data from one box to another have been given 
various names over the years. When used in context, there may be little confusion 
over what is a “forward” and what is an “inverse” computation. But, when brought 
together in a common collection, the duplication of conventional names can be con-
fusing and misleading. Therefore, as a matter of convenience and in the interest of 
promoting unambiguous communication, the designations shown in Table 1.1 are 
used to describe the various computations and transformations. Many of them are 
illustrated in Figure 1.4.

Algorithm for Functional Model

A more complete set of equations and derivations is provided in chapter 6, but the 
following symbols are defined and used in this summary as follows:

X/Y/Z: Geocentric right-handed rectangular coordinates
∆X/∆Y/∆Z: Geocentric coordinate differences
∆e/∆n/∆u: Local coordinate differences
φ/λ/h: Geodetic latitude/longitude (east) and ellipsoid height
a and b: Semimajor and semiminor axes of reference ellipsoid
f: Flattening of reference ellipsoid
e2: Eccentricity squared of reference ellipsoid; e2 = 2f – f 2

N: Length of ellipsoid normal; also used for geoid height
S: Spatial slope distance between standpoint and forepoint
α: Geodetic azimuth at standpoint to forepoint
z or V: Zenith direction or vertical angle to forepoint
H: Orthometric height (elevation)
HD(1) or D: Ground-level horizontal distance
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tAble �.�

designations for Spatial data computations and transformations
name conventional description See Page

BK1 Converting geodetic latitude/longitude/height coordinates to geocentric 
X/Y/Z coordinates

11

BK2 Converting geocentric X/Y/Z coordinates to geodetic latitude/longitude/
height coordinates

11

BK3 3-D geodetic forward computation using ∆X/∆Y/∆Z 12

BK4 3-D geodetic inverse computation using ∆X/∆Y/∆Z 12

BK5a Any combination of using ellipsoid height, orthometric height 
(elevation), and geoid height

12

BK6 Any combination of using differences for ellipsoid height, orthometric 
height (elevation), and geoid height

12

BK7 Using curvature and refraction corrections to refine elevation difference 
computations—especially trig heights

12

BK8 Converting geocentric coordinate differences to local coordinate 
differences

13

BK9 Converting local coordinate differences to geocentric coordinate 
differences

13

BK10 Converting geodetic latitude/longitude to state plane or map projection 
coordinates (also known as “forward computation”)

266

BK11 Converting state plane or map projection coordinates to latitude/
longitude (also known as “inverse computation”)

266

BK12 Using local coordinate differences to compute P.O.B. datum coordinates 
and vice versa

13

BK13 Using conventional total station observations to compute local 
coordinate differences (1-D, 2-D, or 3-D) and vice versa

13

BK14 Converting geodetic latitude/longitude to low-distortion, project datum, 
or surface coordinates

13

BK15 Converting low distortion, project datum, or surface coordinates to 
latitude/longitude

13

BK16 2-D COGO computations based upon named state plane coordinate 
system zone

 —

BK17 2-D COGO low-distortion, surface, or project datum computations of 
designated (countywide) system

—

BK18 2-D geodetic forward computation—not shown on Figure 1.4 162

BK19 2-D geodetic inverse computation—not shown on Figure 1.4 164

BK20 Generic 2-D COGO computations—not shown on Figure 1.4  —

BK21 Generic differential leveling—not shown on Figure 1.4 —

BK22 Generic trig height leveling—not shown on Figure 1.4 —
a BK5, BK6, and BK7 are quite similar, but having different designations will help avoid problems 

caused by the subtle differences.
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Notes:

 1. All distances are in units of meters.
 2. Where two points are concerned, the standpoint is indicated by the sub-

script 1, while the forepoint is indicated by the subscript 2.

The BK1 equations are as follows:

 

N  =  a
1 - e   22 sin φ

 (1.1)

 
X  =   N + h     ( ) cos cosφ λ  (1.2)

  Y  =   N + h     ( ) cos sinφ λ  (1.3)

 
Z  =   N [1 - e ] + h   2( )sinφ  (1.4)

The BK2 equations are more difficult to use because iteration is normally 
required to solve them. Equation 1.5 is quite straightforward, but equations 1.6 and 
1.7 need to be iterated, as will be explained in chapter 6. An alternate (noniterative) 
method for performing the BK2 transformation is also given in chapter 6.

 

λ  =    Y
X

 -1tan





  (1.5)

 

φ
φ  =    Z

X  + Y
  1 + e  N  

Z
 -1

2 2

2

tan
sin

























  (1.6)

 

h  =   X  + Y  
 

 - N
2 2

cosφ  (1.7)

The BK3 and BK4 equations are also called the 3-D “forward” and “inverse” as 
shown here:

BK3—Forward	 BK4—Inverse

X2 = X1 + ∆X ∆X = X2 – X1 (1.8) and (1.11)
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Y2 = Y1 + ∆Y ∆Y = Y2 – Y1 (1.9) and (1.12)

Z2 = Z1 + ∆Z ∆Z = Z2 – Z1 (1.10) and (1.13)

The BK5 computation handles any combination of orthometric height (H), ellip-
soid height (h), and geoid height (N) as follows:

 N = h – H (1.14)

 H = h – N (1.15)

 h = H + N (1.16)

The BK6 computation is the same as BK5 except that differences are used 
as follows:

 ∆N = ∆h – ∆H (1.17)

 ∆H = ∆h – ∆N (1.18)

 ∆h = ∆H + ∆N (1.19)

Differences are important because geoid modeling provides better answers when 
using relative geoid height differences rather than absolute geoid heights. See chap-
ter 8 for more details.

The BK7 computation relies on the combined curvature and refraction (c+r) cor-
rection for the difference between a level surface and tangent plane surface. For 
modest precision over short distances, the c+r correction can be used beneficially as 
follows (Davis et al. 1981, equation 5.7):

 
H H u D H u e

2 1
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0 0675
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∆ ∆
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 (1.20)

The BK8 and BK9 transformations involve using a rotation matrix to convert 
geocentric differences to local differences and local differences to geocentric differ-
ences. See appendix A at the end of this book for more details.

The BK8 transformation of geocentric differences to local differences is:
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63014_C001.indd   12 3/4/08   11:31:57 AM



The Global Spatial Data Model (GSDM) Defined ��

The BK9 transformation of local differences to geocentric differences is as follows:
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 (1.22)

Equations 1.23 and 1.24 are not BKX transformations, but they are used to obtain 
the local tangent plane horizontal distance and the true direction from the standpoint 
(PT1) to the forepoint (PT2):

 Distance= +∆ ∆e n2 2  (1.23)

 
tanα =










∆
∆

e
n

 with due regard to quadrant (1.24)

The BK10 and BK11 transformations are used to handle state plane coordinate 
transformations and are discussed in chapter 10.

BK12 computations are used to develop local tangent plane coordinates with 
respect to any P.O.B. selected by the user. See chapter 12 for more details.

BK13 transformations are used to convert terrestrial observations into local 
coordinate differences that can then be converted to geocentric differences using the 
BK9 transformation. Such observations may need to be corrected for instrument cal-
ibration, atmospheric conditions, polar motion, and local deflection-of-the-vertical.

 ∆e (1)   =  S  z    =  HD  sin sin sinα α  (1.25)

 ∆n S z HD= =sin cos ( )cosα α1  (1.26)

 ∆u S z= cos  (1.27)

There is no one correct set of equations for BK14 and BK15 computations. The 
primary force behind the use of project datum (or surface) coordinates is that an 
inverse between grid coordinates (grid distance) is not the same as the horizontal 
ground distance. Various methods for handling the grid-ground distance difference 
are described in Burkholder (1993a). Concise rigorous procedures for using local 
coordinate systems are provided in Burkholder (1993b), and some applications of 
project datum coordinates may continue to be justified. More recently, the concept of 
a low distortion projection (LDP) has been proposed, and the advantages of central 
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administration for LDPs certainly have merit. But the issue of using project datum 
coordinates becomes moot when using the GSDM.

Computations BK16 and BK17 are the same traditional coordinate geometry 
computation with the following exception: BK16 computations involve formal use 
of state plane coordinates, and BK17 computations involve use of project datum 
coordinates. Being specific between those two is very prudent and can help avoid 
frustration and wasted efforts as a result of unwittingly using one for the other.

BK18 through BK22 computations consist of traditional surveying practices and 
are not shown in Figure 1.4.

The STochaSTic Model coMponenT

The stochastic component of the GSDM is devoted to answering the question “Accu-
racy with respect to what?” The stochastic model is based upon storing the covari-
ance matrix associated with the geocentric X/Y/Z rectangular coordinates that define 
the location of each stored point. A user can compute the local east/north/up covari-
ance matrix of any point on an “as needed” basis using the standard covariance error 
propagation (this minimizes storage requirements). The same basic procedure is 
extended to other functional model computations and provides a statistically defen-
sible method for tracking the influence of random errors to any derived quantity. In 
particular, the user can look at the standard deviation of a coordinate position (by 
individual component) in either the geocentric or local reference frame. The stan-
dard deviation of other derived quantities such as distance, azimuth, slope, area, or 
volume can be obtained using the same error propagation procedure with the appro-
priate functional model equations.

the GSdM covariance Matrices

The functional component of the GSDM consists of geometrical equations that are 
used to manipulate X/Y/Z geocentric coordinates defining the spatial position of each 
point. The stochastic component of the GSDM is an application of the laws of vari-
ance-covariance error propagation and utilizes the following matrix formulation 
(Mikhail 1976; Burkholder 1999, 2004):

 YY YX XX XY
t= J JΣ Σ  (1.28)

where

ΣYY = covariance matrix of computed result,
ΣXX =  tcovariance matrix of variables used in computation, and
JYX = Jacobian matrix of partial derivatives of the result with respect to the 

variables.

The GSDM uses two covariance matrices for each point—the geocentric covariance 
matrix and the local covariance matrix. The geocentric covariance matrix is stored 
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and the local covariance matrix is computed on an “as needed” basis. In particular, 
the following symbols and matrices are used in the stochastic model:

 σX
2 σY

2 σZ
2: Variances of geocentric coordinates for a point

 σXY σXZ σYZ: Covariances of geocentric coordinates for a point
 σe

2 σn
2 σu

2: Variances of a point in the local reference frame
 σen σeu σnu: Covariances of a point in the local reference frame
 σ∆X

2 σ∆Y
2 σ∆Z

2: Variances of geocentric coordinate differences
 σ∆X∆Y σ∆X∆Z σ∆Y∆Z: Covariances of geocentric coordinate differences
 σ∆e

2 σ∆n
2 σ∆u

2: Variances of coordinate differences in the local frame
 σ∆e∆n σ∆e∆u σ∆n∆u: Covariances of coordinate differences in the local frame
 σS

2 σα
2: Variances of local horizontal distance and azimuth

 σSα: Covariance of local horizontal distance with azimuth
 σX1X2

 σY1Y2
: Elements of a point 1–point 2 submatrix

Geocentric Covariance Matrix  Local Covariance Matrix

 

XYZ

X XY XZ

XY Y YZ

XZ YZ Z

 =  Σ
2

2

2

σ σ σ
σ σ σ
σ σ σ





















 ;     = enu

e en eu

en n n       Σ
2

2

σ σ σ
σ σ uu

eu nu u  
σ

σ σ σ 2





















 
  (1.29 and 1.30)

Notes about the individual point covariance matrices:

 1. Each covariance matrix is 3 × 3 and symmetric. Six numbers are required 
to store upper (or lower) triangular values.

 2. The unit for each covariance matrix element is meters squared, the off-diag-
onal elements represent correlations, diagonal elements are called variances, 
and standard deviations are computed as the square root of the variances.

 3. Each covariance matrix (with its unique orientation) represents the accu-
racy of a point with respect to a defined reference frame (or to whatever 
control is held fixed by the user) and is designated datum	accuracy.

The local covariance matrix and the geocentric covariance matrix are related to 
each other mathematically by a rotation matrix for the latitude/longitude position of 
a point computed from its X/Y/Z coordinates (Burkholder 1999).
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λ φ
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 (1.31)

The relationship between the covariance matrices is as follows:
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 e/n/u X/Y /Z
t

X/Y /Z  =     ;     = Σ Σ ΣR R           t
e/n/uR RΣ   (1.32 and 1.33)

With regard to the rotation matrix in equation 1.31, longitude is counted 0° to 360° 
east from the Greenwich meridian, west longitude is a negative value, and latitude is 
counted positive north of the equator and negative south of the equator.

the GSdM �-d Inverse

Given that point 1 is defined by X1/Y1/Z1 and point 2 by X2/Y2/Z2, matrix formula-
tions of the 3-D geocentric coordinate inverse and covariance error propagation are 
as follows:
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     (1.34 and 1.35)

The Jacobian matrix from equation 1.34 and the general covariance error propaga-
tion procedure (equation 1.35) are used to find the overall geocentric inverse covari-
ance matrix as follows:

∆Σ =

-1 0 0 1 0 0

0 -1 0 0 1 0
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  (1.36)

Correlation between points 1 and 2 is described by the off-diagonal submatrices. 
Various accuracies are defined by a choice with regard to the use of the covariance 
matrix in equation 1.36. The matrix operation in equation 1.36 can be used to com-
pute the following:

 1.	Local	accuracy if the full covariance matrix is employed (relative accuracy 
based upon the quality of measurements connecting adjacent points)

 2.	Network	accuracy if the correlation between points 1 and 2 is zero (rela-
tive accuracy based upon the combined quality of each point with respect 
to the network)
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 3.	P.O.B.	accuracy if the covariance matrix of point 2 is the only one used 
(relative accuracy based solely on the network quality of point 2)

Equation 1.36 is really the heart of the stochastic model portion of the GSDM. 
Yes, equations 1.32 and 1.33 can be used to convert absolute datum accuracy from 
one reference frame to another (geocentric and local), but, when looking at one point 
with respect to another, equation 1.36 offers important choices in answering the 
question “Accuracy with respect to what?” If a connecting measurement between 
two points has a smaller standard deviation than would be computed given no cor-
relation between them, then the local accuracy of one point with respect to the other 
can be computed with statistical reliability. These tools give the spatial data user a 
number of choices and the option of computing the standard deviation of all sub-
sequently derived quantities such as distance, direction, height, volume, and area. 
More details on spatial data accuracy are included in chapter 11.

burKord™: SoFtwAre And dAtAbASe

The mathematical concepts and equations described and used in formulating the 
global spatial data model are all in the public domain. The phrase “global spatial 
data model (GSDM)” is generic. The term “BURKORD” has been trademarked (1) 
as the name of a software package that performs 3-D coordinate geometry and error 
propagation computations as described in this chapter, and (2) as the name of a 3-
D database used by the BURKORD software. The end user is free to use the term 
“BURKORDTM” as applied to the underlying database or to software obtained from 
Global COGO, Inc. However, anyone offering a product or services to others whose 
value relies upon or is enhanced by reference to or use of the BURKORD trademark 
will be expected to pay an appropriate licensing fee. Inquiries related to using the 
term “BURKORDTM” should be directed to Global COGO, Inc., P.O. Box 3162, Las 
Cruces, NM 88003.

SuMMAry

The GSDM gives each user both control and responsibility. If good or bad infor-
mation is used inappropriately, unreliable answers can be obtained. However, the 
opposite case is the important one. The GSDM defines a model and computational 
environment that can be used to manage spatial data efficiently. Each user has the 
option of establishing criteria that must be met before spatial data can be used for a 
given purpose. The concept of meta data is important in establishing and preserv-
ing the credibility of spatial data, but standard deviation (in any or all components) 
is a very efficient method for evaluating the quality of spatial data. Once the X/Y/Z 
position of a point is defined along with its variance-covariance matrix, the spatial 
data can be exchanged in a very compact format. The same solid geometry and 
error propagation equations for using such shared spatial data are equally applicable 
worldwide, and the mathematical procedures are already proven and individually 
implemented. Using the GSDM is primarily a matter of choosing to do so.
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2 Spatial Data and the 
Science of Measurement

IntroductIon

Many disciplines work with spatial data, and many people use a GIS to reference geo-
spatial data. Starting with a concise definition of spatial data, this chapter describes 
how spatial data and their accuracy are related to the measurement process and one’s 
choice of a measurement system. The goal is to describe how 3-D spatial data can 
be manipulated more efficiently and how spatial data accuracy can be established 
without ambiguity using the GSDM as the foundation for GIS’s and the GSDI.

Modern practice and instruments are used to collect and record spatial measure-
ments. These data are processed electronically, and digital results are stored in com-
puter files. Paper maps are inherently two-dimensional (they flatten the Earth), and 
humans traditionally view spatial relationships in terms of “horizontal” and “vertical.” 
Computer graphics and data visualization procedures offer an endless array of display 
options. Although not exhaustive, this chapter summarizes characteristics of pertinent 
coordinate systems, defines spatial data, and looks at measurement processes by which 
spatial data are generated. Today, 3-D digital spatial data are more appropriately stored 
in a database that combines horizontal and vertical into a single database. And, as 
discussed later in this chapter, differences between how spatial and geospatial data are 
used may become significant. The accuracy of spatial data is also considered, and an 
important distinction is made between primary and derived spatial data.

SpatIal data defIned

Use of the GSDM can foster greater insight into the relationships between coordinate 
systems and how they are used to handle spatial data. Spatial data are described as 
those numerical values that represent the location, size, and shape of objects found in 
the physical world. Examples include points, lines, directions, planes, surfaces, and 
objects. For the purposes of this book, spatial data are defined as the distance between 
endpoints of a line in Euclidean space (see the definition of a point in chapter 3). The 
endpoints may be nonphysical entities such as an origin or a specific location on the 
axis of a coordinate system. An endpoint may also represent the location of some 
physical feature such as a survey monument, building corner, benchmark, or other 
object. Geometrical elements such as planes, surfaces, and other objects formed by the 
movement and aggregation of distances also qualify as spatial data. Although straight-
line distances are generally presumed, the measure of a distance can also be along a 
curved line, in either linear or angular units, without violating the definition. As used 
here, the definition of spatial data also includes, but is not limited to, geospatial data.
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coordInate SyStemS GIve meanInG to SpatIal data

When working with spatial data, assumptions are made about the underlying coordi-
nate system. Since each reader deserves to know at all times “with respect to what,” 
an attempt is made to be very specific about the underlying coordinate system and 
whether the spatial data are absolute or relative. As a matter of convention, absolute 
spatial data are taken to be data with respect to a defined coordinate system, while 
relative spatial data are taken to be the difference between two absolute values in 
the same system. A coordinate is an absolute distance with respect to the defined 
coordinate system, and an azimuth is an absolute direction with respect to the zero 
reference. Spatial data components are coordinate differences (in the same system) 
and are used as relative values. An angle, defined as the difference between two 
directions, is also a relative value. Absolute data are often used to store spatial infor-
mation, while relative data are more often associated with measurements.

Admitting the use of undefined terms, relying upon prior knowledge, and 
acknowledging a difference between a reference system and a reference frame, the 
information presented in this chapter is intended to be consistent with current defini-
tions of coordinate systems, such as those described by Soler and Hothem (1988). 
Three coordinate systems are an integral part of the GSDM.

 1. ECEF: A functional 3-D geocentric coordinate system for spatial data is 
called the Earth-centered Earth-fixed (ECEF) rectangular Cartesian coor-
dinate system and defined by the National Imagery and Mapping Agency 
(NIMA; 1997). (See Figure 2.1.) With its origin at the Earth’s center of mass, 
the X/Y plane is coincident with the Earth’s equator, and the Z-axis is defined 
by the location of the Conventional Terrestrial Pole (CTP). The X-axis is 
defined by the arbitrarily fixed location of the Greenwich meridian, and the 
Y-axis is at longitude 90° east, giving a right-handed coordinate system.

 2. Geodetic: A geodetic coordinate system (Figure 2.2) is used to reference 
spatial data by geodetic positions on the ellipsoid, a mathematical approxi-
mation of the Earth’s surface. Position is defined in the north-south direc-
tion by angular units (degrees, minutes, and seconds) of latitude and in the 
east-west direction by angular units of longitude. Lines of equal latitude are 
called parallels, and lines of equal longitude are called meridians. The sign 
convention for latitude is positive north of the equator and negative south 
of the equator. The sign convention for longitude is positive eastward for a 
full circle from 0° on the Greenwich meridian to 360° (arriving again on the 
Greenwich meridian). A west longitude, as commonly used in the western 
hemisphere, is acceptable and mathematically compatible if used as a nega-
tive value.

Geodetic latitude and longitude are 2-D curvilinear coordinates given in angu-
lar units. The third dimension, ellipsoid height, in this worldwide coordi-
nate system is the distance above or below the mathematical ellipsoid and 
is measured in length units, meters being the international standard. With 
the conceptual separation of horizontal and vertical, this system of geodetic 
coordinates more closely matches physical reality in a global sense than 
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does the ECEF system and remains very useful for cartographic visualiza-
tions. But, the geodetic coordinate system is computationally more complex 
and more cumbersome to use than rectangular components when working 
with 3-D spatial data.

 3. Local: Local coordinate systems (Figure 2.3) portray the location of spatial 
data with respect to some user-specified reference and/or origin. A local 
coordinate system can be defined such that horizontal and vertical relation-
ships are both accurately portrayed and 3-D relationships are preserved. 
However, many local coordinate systems enjoy true 3-D geometrical integ-
rity only to the extent that a flat Earth can be assumed. If spatial data issues 
are addressed strictly on a local basis, the error caused by such flat-Earth 
assumptions can be negligible. However, as one works over larger areas, 
needs greater precision in small areas, or needs to establish compatibility 
between local coordinate systems, the flat-Earth model is not adequate for 
referencing spatial data. But, when used as a component of the GSDM, the 
local flat-Earth model can support visualization and use of 3-D data with-
out being adversely affected by the underlying curved-Earth distortions. 
That means local rectangular (flat-Earth) relationships can be utilized in 
a global environment without compromising the geometrical integrity of 
spatial data.

fIGure 2.1 Geocentric ECEF Coordinate System
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Spatial Data typeS

Given descriptions of the geocentric ECEF coordinate system, the geodetic coordinate 
system, and a local coordinate system, the following spatial data types are listed:

 1. Absolute geocentric X/Y/Z coordinates are perpendicular distances in meter 
units from the respective axes of an ECEF reference system.

 2. Absolute geodetic coordinates of latitude/longitude/height are derived and 
computed from ECEF coordinates with respect to some named model (geo-
detic datum).

 3. Relative geocentric coordinate differences, ΔX/ΔY/ΔZ, are obtained by dif-
ferencing compatible geocentric X/Y/Z coordinate values.

 4. Relative geodetic coordinate differences, Δφ/Δλ/Δh, are obtained as the dif-
ference of compatible (common datum) geodetic coordinates.

 5. Relative local coordinate differences, Δe/Δn/Δu, are local components of a 
space vector defined by relative geocentric coordinate differences.

 6. Absolute local coordinates, e/n/u, are distances from some origin whose 
definition may be mathematically sufficient in 3-D, 2-D, or 1-D. Examples 
are as follows:

Point-of-beginning (P.O.B.) datum coordinates, as defined in chapter 1. 
These derived coordinates enjoy full mathematical definition in 3-D, 

•

fIGure 2.2 Geodetic Coordinate System
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suffer no loss of geometrical integrity in the GSDM, and serve the local 
needs of many spatial data users.
Map projection (state plane) coordinates, which are well defined in 2-D 
with respect to some named origin and geodetic datum.
Elevations, which are 1-D distances above or below some named refer-
ence equipotential surface. In the past, mean sea level was assumed to 
be acceptable as a vertical reference, but, due to the difficulty of find-
ing mean sea level precisely, modern vertical datums are referenced to 
an arbitrary equipotential reference surface (Zilkoski, Richards, and 
Young 1992).

 7. Arbitrary local coordinates may be 1-D (assumed elevations), 2-D (assumed 
plane coordinates), or 3-D (spatial objects, rectangular coordinates, or 
assumed elevations and plane coordinates). Although useful in some appli-
cations, arbitrary local coordinates are generally not compatible with other 
local systems and have limited value in the broader context of georeferenc-
ing. Many computer graphics and data visualization programs use arbitrary 
local coordinates.

The GSDM efficiently handles spatial data that fall into categories 1, 3, and 
5 (absolute geocentric coordinates, relative geocentric coordinate differences, and 
relative local coordinate differences). Spatial information is stored most efficiently 

•

•

fIGure 2.3 Local Coordinate System
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using digital geocentric coordinates, manipulated most readily using geocentric 
coordinate differences, and displayed for human visualization and analysis using 
relative local coordinate differences. Spatial data consisting of geodetic coordinates 
and geodetic coordinate differences (categories 2 and 4) are useful for cartographic 
portrayal and, to the extent they can be competently related to category 1, gener-
ally are not a problem. Category 6 spatial data (local coordinate differences) can be 
incorporated into the GSDM if and only if they enjoy full 3-D mathematical defini-
tion. Without additional survey measurements, attempts to incorporate category 7 
data into the GSDM are not viewed as fruitful. This is where the difference between 
spatial and geospatial data definitions may become significant.

SpatIal data vISualIzatIon IS Well defIned

Spatial data are used extensively in computer graphics, visualization programs, com-
puter-aided design and drafting, and the manipulation of spatial objects. The GSDM 
provides for the connection of spatial data to the physical Earth, but otherwise makes 
no attempt to impose conditions on the use of spatial data. It is anticipated that the 
scope, utility, and value of many spatial data manipulation, visualization, and 3-D 
coordinate geometry (COGO) programs may be enhanced by taking advantage of 
the physical Earth connection as defined by the GSDM.

dIrect and IndIrect meaSurementS contaIn uncertaInty

Spatial data are created by measurement, and no measurement is perfect. In a simple 
case, a distance is determined by direct comparison of some unknown length with a 
standard such as a ruler, steel tape, or wavelength. Whether the distance is horizontal 
or vertical is a condition noted by the person recording the observation. More often, 
however, spatial data are obtained as the result of an indirect measurement in which 
one or more spatial data components are computed from the observations, as is the 
case when a slope distance is resolved into its horizontal and vertical components. 
In other cases, some physical quantity is observed and a distance is computed using 
known mathematical relationships (a model). An example is computing a distance 
from a voltage, which represents the phase shift of a sine wave signal in an electronic 
distance-measuring (EDM) instrument. Restating, spatial data measurements may 
be the result of a direct comparison, or, more often, they are computed indirectly 
from observations of various fundamental physical quantities.

FunDamental phySical conStantS are helD exact

Fundamental physical quantities as expressed in the International System (SI) are 
as follows:

Length: meter
Time: second
Mass: kilogram
Current: ampere
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Temperature: Kelvin
Luminous intensity: candela
Amount of substance: mole

Derived physical quantities include the following (there are others—see Nel-
son 1999):

Frequency: hertz
Force: newton
Pressure: pascal
Energy: joule
Power: watt
Electric charge: coulomb
Electric potential: volt
Plane angle: radian
Solid angle: steradian

meaSurementS contain errorS

Spatial data are created by measurement of some combination of physical quantities, 
and those measurements are used in models that relate the observed quantity to a 
physical distance (spatial data) relative to one of the three coordinate systems listed 
earlier. The accuracy of such spatial data is dependent upon (1) the quality and suf-
ficiency of the measurements, (2) the appropriateness of the models used to compute 
the spatial data components, and (3) error propagation computations. The GSDM 
accommodates all three considerations.

meaSurementS uSed to create SpatIal data Include …

taping

A calibrated tape is laid flat on a horizontal surface at some specified tension and tem-
perature. The measurement involves a visual comparison of the unknown length with 
uniform markings on the tape (a fundamental physical quantity). The observation is 
recorded as a measurement. If the temperature (another physical quantity) is different 
than the specified calibration temperature or if the tension (a derived physical quan-
tity) is not what it should be, these other measurement conditions must also be noted. 
Using this additional information and appropriate equations, corrections to the taped 
distance are computed and applied to this otherwise direct measurement. Whether 
the computed distance is a direct or an indirect measurement is left to the reader.

leveling

A level rod with graduations marked on it is held erect in the field of view of an 
observer looking through the telescope of an automatic (or tilting) level, and the 
distance from the bottom of the rod to the cross-hair intercept is read and recorded. 
Separate readings are made with the rod resting on other objects. In this case, the 
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difference of two direct readings provides an indirect determination of the relative 
heights of the two objects. Among others, the accuracy of such an indirect measure-
ment is affected by (1) whether the line of sight is perpendicular to the plumb line, (2) 
the presence of parallax, (3) whether or not a vernier was used to refine the reading, 
(4) the plumbness of the level rod when the readings were made, and (5) the distance 
from the instrument to the rod (curvature and refraction correction). Modern bar-
scale reading instruments are becoming commonplace.

electronic DiStance meaSurement

An electronic distance-measuring (EDM) instrument emits electromagnetic radia-
tion, which is modulated with a known frequency (giving a known wavelength). 
The signal is returned by a retro-reflector from the forepoint end of a line, and the 
phase of the returned waveform is electronically compared to that of the transmit-
ted signal. The measurement of phase differences on several modulated frequencies 
provides information used to compute the distance between the EDM and a reflector. 
Other quantities such as temperature and barometric pressure are also measured to 
determine corrections that account for the signal traveling through the atmosphere 
between the standpoint and forepoint at some speed slower than it would have trav-
eled through a vacuum. The point is that several physical quantities are measured 
and the physical environment is modeled with equations before a collection of obser-
vations can be converted into spatial data.

With later-generation pulse laser instruments and scanners, the physical dis-
tance between EDM and object is determined using the time interval required for a 
pulse to travel from EDM to object and back. Of course, atmospheric delay must be 
modeled and direction to the target must be known before a slope distance can be 
resolved into rectangular components.

angleS

Although not a fundamental physical quantity, angles are commonly measured and 
used in computing spatial data components. Two examples are (1) using a vertical 
angle to resolve a slope distance into horizontal and vertical rectangular compo-
nents, and (2) using the bearing of a line to find the latitudes and departures of a tra-
verse course. Looking beyond the obvious where an angle is measured directly with 
a protractor on paper or on the ground using a total station surveying instrument, 
angles are also measured indirectly as the difference of two directions such as might 
be observed with a compass, a gyroscope, or GPS. Whether an angle was measured 
in the horizontal, vertical, or some other plane is also an important consideration, 
especially when using angles to resolve the hypotenuse of a triangle into its rectan-
gular components. Two examples are resolving slope distances into horizontal and 
vertical and resolving traverse courses into latitudes and departures.

gpS

GPS is very versatile in that several kinds of fundamental observations can be used 
to determine spatial data quantities. An oversimplified view of GPS measurements 
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includes three concepts: (1) distance is the product of rate and a time interval obtained 
from code phase observations, (2) the Doppler shift of a frequency recorded on the 
ground as compared to the frequency transmitted by a satellite, and (3) interferomet-
ric interaction of the carrier phase signal as recorded simultaneously at two different 
antennas (carrier phase observations). Without going into detail, the point is that 
portable handheld code phase GPS equipment routinely determines absolute geo-
centric ECEF coordinates and converts them to absolute geodetic coordinates before 
displaying them. The accuracy of code phase instruments is typically less than that 
obtained using carrier phase instruments. GPS carrier phase data must be collected 
at two points simultaneously and can be processed to give a very precise 3-D space 
vector between two antennas in terms of relative geocentric coordinate differences. 
The relative accuracy of such GPS observed vectors (with operator care and dili-
gence) routinely exceeds one part in a million. If such a vector is attached to a known 
control point, a precise 3-D position of the second point can be easily computed.

This brief description implies that GPS positions determined using portable 
handheld equipment are not as accurate as those collected using a receiver mounted 
on a tripod. That may be, but is not necessarily, true because whether or not a GPS 
receiver collects code phase or carrier phase data is not determined by whether or 
not it is portable. For example, differential corrections (from a base station) may 
be used to improve upon the accuracy of code phase solutions, and radio connec-
tions between portable carrier phase receivers mean that relative differences may be 
obtained in real time (such as real-time kinematic, or RTK). Even though the two 
GPS technologies are quite different, in either case, once a GPS position is deter-
mined, answers can be viewed in a coordinate system of the user’s choice.

photogrammetric mapping

Relative spatial data, both local and geocentric, can be determined efficiently and 
precisely using geometrical relationships reconstructed from stereoscopic photo-
graphs of a common image. A photogrammetric measurement is the relative location 
of an identifiable feature on a photographic plate with respect to fiducial marks on 
the same plate as determined with a comparator. A more complex measurement of 3-
D spatial relationships based upon principles of photogrammetry requires mechani-
cal reconstruction of the stereoscopic image by achieving the proper relative and 
absolute orientation of the stereo photographs in a mechanical stereo plotter. A 3-D 
contour map of the ground surface is the end result of the plotting operation. That 
traditional photogrammetric mapping process has been computerized and automated 
and now comes under the banner of softcopy photogrammetry. The end result of the 
modern computerized process is a 3-D digital model of the terrain. Hardcopy maps, 
computer displays, and other products, both digital and analog, are made from a 
common digital spatial data file.

remote SenSing

The American Society of Photogrammetry and Remote Sensing (1984) describes 
remote sensing as the process of gathering information about an object without 
touching or disturbing it. Photogrammetry is an example of remote sensing, and 
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ray tracing based upon stereo photographs of a common image is very geometrical. 
Bethel (1995) also discusses remote sensing and describes interpretative (less metri-
cal) applications of remote sensing, which include use of nonvisible portions of the 
electromagnetic spectrum to record the response of an object or organism to stimuli 
from a distant source. Sensors include infrared film, digital cameras, radar, satel-
lite imagery, and so on, and information is stored pixel by pixel in a raster format. 
Determining the unique spatial location represented by each pixel can be a daunting 
challenge and typically requires enormous storage capacity.

Other measurement methods are also used to create spatial data. But, regard-
less of the technology used to measure fundamental physical quantities, the GSDM 
provides a common universal foundation for expressing fundamental spatial rela-
tionships. Various equations (models) are used to convert observations into spatial 
data components, which are then used as measurements in subsequent operations, 
for example traverse computations, network adjustments, and plotting maps. The 
GSDM also accommodates fundamental error propagation in all cases, and that 
information, if available, is stored in the covariance matrix for each point. From 
there, each user can make informed decisions about whether or not the spatial data 
accuracy is sufficient to support a given application.

errorleSS Spatial Data muSt alSo Be accommoDateD

Several cases exist in which spatial data are considered errorless. Examples include 
(1) spatial data created during the design process, (2) physical dimensions (such as 
the width of a street right-of-way) defined by ordinance or statute, and (3) spatial 
data whose standard deviations are small enough to be judged insignificant for a 
given application. In the case of a proposed development such as a highway, bridge, 
skyscraper, or other civil works project, the planned location of a feature and the 
numbers representing the size and shape of each feature qualify as spatial data. 
But, they are the result of a design decision instead of a measurement process. Such 
design dimensions are without error until they are laid out. After being laid out and 
constructed, the location of the feature or object is determined by measurement and 
typically recorded on as-built drawings or in project files. Considered that way, the 
perfection of a design dimension is transitory and ceases to exist when laid out dur-
ing construction.

An exception to the transitory nature of an errorless design dimension exists 
when a dimension is established by ordinance or statute. Such a dimension may 
be fixed by law, but the physical realization of that dimension is still subject to the 
procedures and quality of measurements used to create it. Under ideal conditions 
there will be no conflict between a statutory dimension and its subsequent remea-
surement if the layout process was more accurate or reliable than the measurements 
made to document its location. For example, a 100-foot right-of-way may have been 
monumented very carefully and current measurements between the monuments are 
all 100.00 feet, plus or minus 0.005 feet. In that case, the right-of-way width can 
be shown as 100.00 feet, measured and recorded. Under less-than-ideal conditions, 
several possible dilemmas are as follows:

63014_C002.indd   28 3/4/08   12:08:22 PM



Spatial Data and the Science of Measurement 29

 1. The right-of-way monuments really are separated by 100.00 feet, but the 
survey is based upon a state plane coordinate grid and the measured grid 
distance is 99.97 feet, plus or minus 0.005 feet (possible at elevations over 
4,200 feet). Understandably, the monuments are not to be moved, so they 
are separated by a grid distance of 100.00 feet, but some users may not be 
willing to accept the implication that a foot is not really a foot. The apparent 
discrepancy arises from the use of two different definitions for horizontal 
distance, local tangent plane distance or grid distance (Burkholder 1991).

 2. The right-of-way monuments appear stable and undisturbed, but the mea-
surement between them is consistently 99.96 feet, plus or minus 0.005 feet 
(it could happen if the monument locations were staked during cold weather 
and no temperature corrections were applied to the steel tape measurements 
at the time). The conflicting principles are that the statutory dimension (of 
100.00 feet) must be honored and that the original undisturbed monument 
controls, even if originally located with faulty measurements.

The intent here is not to solve those problems, but to acknowledge the potential 
for conflicting principles when working with so-called errorless spatial data. Other 
authors have written entire textbooks devoted to survey law, evaluation of evidence, 
and analysis of survey measurements. The point here is that the GSDM offers a 
consistent standard environment in which to make comparisons between conflicting 
data. The GSDM does not distort horizontal distances as does the use of map projec-
tions and/or state plane coordinates.

When the coordinates of any point are held “fixed,” the result is the same as 
assuming the standard deviations associated with the coordinates are very small or 
are zero. In many cases, such an assumption is reasonable and defensible because the 
standard deviations of a point are small enough to be insignificant and the implied 
statement “with respect to existing control” is acceptable. However, each spatial data 
user making decisions about which control points are held “fixed” should docu-
ment such decisions specifically so that subsequent users may always know “with 
respect to what.” With the accuracy of spatial data becoming ever more important, 
criteria for judging the quality of spatial data should be unambiguous and easy to 
understand. The stochastic model portion of the GSDM uses 3-D standard deviations 
to describe the accuracy of spatial data and accommodates errorless spatial data as 
those data having zero standard deviations (Burkholder 1999). An answer to the 
question “Accuracy with respect to what?” is determined by (1) the control points 
used as primary data, (2) the 3-D standard deviations of those control points, (3) the 
quality of measurements used to establish new positions, (4) competent determina-
tion of the covariance matrix of each new point, and (5) the manner in which equa-
tion 1.36 is used in subsequent computations.

prImary SpatIal data are BaSed upon 
meaSurementS and errorleSS QuantItIeS

Earlier, spatial data were defined as distances. Spatial data types were also listed 
as distances represented by coordinates or coordinate differences in one of several 
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coordinate systems. And, unless attempting to convert from one datum to another 
(see chapter 7), it should be understood that equations for converting spatial data 
from one coordinate system to another should have little or no mathematical uncer-
tainty associated with them. Any uncertainty should be the result of an imperfect 
measurement, not a defective model, equation, or algorithm. With that said, primary 
spatial data are defined as geocentric X/Y/Z coordinates, their associated covari-
ance matrices, and point-pair correlation matrices. Primary spatial data are created 
by a specific measurement process or determined on the basis of some prescribed 
geometry. Measurements have standard deviations and covariances associated with 
them, while errorless quantities have zero standard deviations. The GSDM accom-
modates both measurements and errorless quantities by using standard deviations of 
all three components at each point, covariances between components, and correla-
tions between points.

oBServationS anD meaSurementS

Mikhail (1976) describes how measurement and observation are very similar and, in 
fact, are used interchangeably. A mathematical distinction made here is that observa-
tions are independent, while measurements may be correlated. Stated differently, an 
observation (whether it is the process or the numerical outcome) is taken to be the 
actual comparison of some quantity with a standard, while a measurement is taken 
to be the same as either an observation or a subsequently computed quantity after 
corrections are applied as dictated by observation conditions. For example, a hori-
zontal distance is said to be measured by an EDM. Actually, an EDM uses (1) the 
observed phase difference of two electromagnetic signals on several frequencies (the 
transmitted and received signal, and an internal reference signal), (2) the estimation 
(observation) of air temperature and barometric pressure for the atmospheric correc-
tion, and (3) the measurement of the vertical (or zenith) angle. These observations 
are used to compute the horizontal distance, which is called a measurement, when, 
in fact, physical quantities other than length were observed. Also note that the same 
observations are used to compute the vertical component of the slope distance. If one 
of the observations is changed, it may affect both computed values. Hence, the hori-
zontal and vertical measurements are correlated and not independent. Slope distance 
and zenith directions are the independent observations.

Having made a distinction between observations and measurements, several 
other points also need to be made:

In the strictest sense, primary spatial data should include only errorless 
quantities and independent observations. However, given the multitude of 
sensors used to make observations and the number of steps often needed to 
convert observations into spatial data components (measurements), it would 
be onerous indeed for each spatial data user to assume responsibility for the 
integrity of his or her data all the way back to the observation. It is hereby 
suggested the GSDM will conveniently serve two distinct groups: those 
responsible for generating quality spatial data and those who use spatial 
data. The work of scientists, physicists, electrical engineers, and program-

•
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mers is completed upon delivering a measurement system that can be used 
to generate quality spatial data. If cartographers, geographers, planners, 
and other spatial data users know they can rely on the quality of data pro-
vided, they need not be so concerned with the science of measurement, 
computations, and adjustments but are free to focus their energies on spatial 
analysis and other chosen applications. The geomatician (geodesist, survey-
ing engineer, photogrammetrist, etc.) provides a valuable service to society 
by interacting with and serving both groups.
All primary spatial data have covariance matrices associated with them. In 
the case of errorless quantities, the covariance matrix is filled with zeros. 
Otherwise, the covariance matrices are obtained by formal error propaga-
tion from basic observations through a competent network adjustment.
Computation of measurements often results in correlation between com-
puted spatial data components. That correlation is defined and determined 
by the error propagation computation procedure applied to independent 
observations and the mathematical equations used to obtain the spatial data 
components. For that reason, it is necessary to store the full (3 × 3 symmet-
ric, six unique values) covariance matrix along with the X/Y/Z coordinates 
of each point.
As used here, errorless quantities and unadjusted measurements are the 
basis of primary spatial data. But, in reality, primary spatial data are the 
X/Y/Z coordinates and associated covariance values stored following rigor-
ous network adjustments and successful application of appropriate quality 
control measures.

A statement of the obvious is that primary spatial data having small standard 
deviations are more valuable than primary spatial data with large standard devia-
tions. Whether a standard deviation is large or small is dependent upon the measure-
ments made and the correct propagation of the measurement errors to the spatial 
data components. The GSDM handles 3-D spatial data the same way, component by 
component, regardless of the magnitude of the standard deviations, and each user 
has the option of deciding what level of uncertainty is acceptable for a given applica-
tion. Additionally, the GSDM is strictly 3-D and makes no mathematical distinction 
between horizontal and vertical data. But, the GSDM readily provides local Δe/Δn/Δu 
components that can be used locally as flat-Earth (local tangent plane) distances.

derIved SpatIal data are computed 
from prImary SpatIal data

Spatial data that owe their existence to mathematical manipulation of existing pri-
mary spatial data are considered to be derived spatial data. Derived spatial data 
include geodetic coordinates, UTM coordinates, state plane coordinates, proj-
ect datum coordinates, and coordinates in other mathematically defined systems. 
Derived spatial data also include inversed bearings and distances (as shown on sur-
vey plats and subdivision maps), areas, volumes, and elevations. In each case, the 

•

•

•
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accuracy of each derived quantity is computed from the standard deviations (and 
covariances) of the underlying primary spatial data on which they are based.

A clear distinction between primary spatial data and derived spatial data is criti-
cal to the efficient collection, storage, management, and use of spatial data. Primary 
spatial data require measurement of physical quantities and computation of spatial 
data components according to very specific procedures. For example, taping correc-
tions are needed to determine a precise horizontal distance measured with a steel 
tape, and an EDM measurement needs to be corrected for reflector offset, atmo-
spheric conditions, and slope if the endpoints are at different elevations. The cost of 
acquiring primary spatial data is still prohibitive in some cases, but, due to automa-
tion, computerization, and other technical developments (such as GPS), spatial data 
are much less expensive to obtain now than in the past. Even so, by comparison, 
derived spatial data are generally much less expensive than primary spatial data. 
Derived data can be computed, used, and discarded without detrimental economic 
consequence. Other than the effort required to assemble the needed primary spatial 
data and to make the computations, derived spatial data can be generated as often 
as needed based upon a prescribed algorithm. The challenge is to archive primary 
spatial data efficiently and to make sure other users know specifically what algo-
rithms were used in generating the derived quantities. The practice of storing derived 
spatial data is potentially wasteful.

eStaBlIShInG and preServInG the value of SpatIal data

Establishing the value and integrity of spatial data is not a trivial undertaking. An 
oversimplified statement is that the right measurement needs to be made with the 
correct equipment under well-documented conditions and that appropriate equations 
must be used to compute primary spatial data components. Once the components are 
run through an appropriate least squares network adjustment, they are attached to the 
chosen 3-D datum and the resulting geocentric X/Y/Z coordinates (and covariances) 
become the primary spatial data. A thorough treatise on the science of measurement 
and subsequent computation of spatial data components would fill an entire book. 
The goal in this chapter is to establish a connection between our measurements and 
spatial data components with the idea of showing how both can be handled more 
efficiently in the context of the GSDM.

But, in addition to the points made here about measurements and computations, 
another question also needs to be asked: “What makes spatial data lose their value?” 
Often attention is focused on doing whatever is necessary to get the most data for 
the least cost, but avoiding the cost of replacement or the inconvenience of not hav-
ing needed data also needs to be considered. Therefore, efforts made to preserve the 
value of spatial data may be efforts well spent. Although less directly, the GSDM 
also facilitates those efforts by providing a simple standard model that can be used 
worldwide by all spatial data disciplines and users. The key concepts are data com-
patibility and interoperability.
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Specifically, spatial data lose their value if

potential users do not know that they exist or are available.
these data are incomplete, incompatible, or of dubious quality.
they are in the wrong format or stored in the wrong location.
a user does not know what to do with them.
they are replaced by data having smaller standard deviations.

Summary

This chapter:

Defines spatial data as the distance between points on a line.
Describes three coordinate systems used to reference spatial data.
Lists spatial data types as coordinates and coordinate differences.
Acknowledges spatial data visualization is a solved problem.
Admits that spatial data created by measurements contain uncertainties.
Gives examples of nontrivial spatial data measurements.
Describes the role of errorless spatial data.
Defines primary spatial data and derived spatial data.
Suggests ways to preserve the value of spatial data.

The remainder of this book:

Reviews mathematical concepts needed for working with spatial data.
Describes existing geometrical models used for spatial data computations.
Develops geometrical relationships in the context of

geometrical geodesy.
physical geodesy.
satellite geodesy and GPS surveying.
geodetic datums.
map projections and state plane coordinate systems.
how spatial data are used.

Shows how the GSDM accommodates 3-D coordinate geometry and error 
propagation.
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3 Summary of 
Mathematical Concepts

IntroductIon

The term “mathematics” is difficult to define, in part because it includes so many 
concepts. Even so, the primary goal of this book is to organize mathematical con-
cepts and geometrical relationships for the convenience of spatial data users. The 
approach is to start with simple, well-defined ideas and add understandable pieces as 
needed to develop tools for handling spatial data more efficiently. Mathematics has 
been concisely defined as the study of quantities and relationships through the use of 
numbers and symbols. The terms “quantities” and “relationships” may be somewhat 
abstract, but their meaning should become clearer with use. “Numbers” includes the 
set of all real values from negative infinity to positive infinity, and “symbols” includes 
letters of the alphabet (English, Greek, or otherwise) used to represent numerical val-
ues. Symbols also include other markings to indicate mathematical operations such 
as addition, subtraction, multiplication, division, and square roots. As illustrated by 
the definition and the two following examples, the goals of presenting simple well-
defined concepts and keeping a focus on practical applications for spatial data will not 
be easy to achieve. Understandably, some readers will be distracted by temptations 
to pursue peripheral interests. Although that is acceptable and encouraged, space and 
print limitations do not permit joint excursions. The reader is always welcome back.

With respect to numbers, few people (certainly not the author) can com-
prehend the vastness of infinity, yet reference is made to negative infinity 
and positive infinity with the implication that they might somehow be the 
same size (but in opposite directions on the real number line). The point is 
not whether that implication is true, but to note instead that there are just as 
many numbers between zero and one (0 and 1) as there are numbers greater 
than one. That statement is proved by taking the reciprocal of any number 
greater than 1.
Symbols for mathematical operations such as +, –, ×, ÷, and √ are simple and 
are used the world over. Symbols also include letters that are used to represent 
certain numerical values. Perhaps the most common mathematical symbol is 
the Greek letter pi (π), used to represent the ratio of the circumference of a cir-
cle divided by its diameter. The definition is simple, and that ratio finds many 
applications when working with spatial data. However, mathematicians (in 
what could be called esoteric pursuits) have spent years chasing an increasing 
number of digits for pi (Beckman 1971). Access to millions of digits for π is 
now as simple as typing “pi” into a World Wide Web search engine.

•

•
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conventIons

If you went looking for π, welcome back. In an effort to be specific about concepts 
and to communicate clearly using unambiguous symbols, the following conventions 
are identified and used throughout the book as consistently as possible even though 
they may differ from one discipline to the next or from one culture to another.

Numbers

Whole numbers are integers, and numerical values between integers are called real 
numbers. A line such as that shown in Figure 3.1 can be used to represent all num-
bers—both integer and real. If some point on the line is assigned the value “zero,” 
points to the left of zero are negative numbers, and points to the right of zero are 
positive numbers. Numbers are composed of the Arabic digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 
and 9, and the Hindu-Arabic number system used in modern mathematics is deci-
mally constructed by decades where the column of a digit implies its value times 1, 
10, 100, 1,000, and so on.

FractioNs

A ratio of one integer divided by any other (except 0) is known as a fraction. Many 
examples exist, but successive division by 2 is an intuitive example that serves very 
well when cutting a pie or a pizza. Fractions of 1/2, 1/4, 1/8, and so on are familiar 
to everyone and are used, for example, when driving a car and judging the amount 
of fuel remaining in the tank. Successive division by 2 is also appropriate in other 
cases, but when carried too far it becomes cumbersome and using decimal equiva-
lents is easier. In the case of the U.S. Public Land Survey System (USPLSS), it is no 
coincidence that 1 square mile nominally contains 640 acres. Successive division 
of area by quarters (two divisions of length by two) is convenient down to a parcel 
of 10 acres. Although more could be said about repetitive division, it is noted that 
some disciplines in the United States still use fractions (e.g., architects, carpenters, 
millwrights, and ironworkers).

Decimal

Another prevalent practice for counting objects utilizes decades of 10, presumably 
based upon prehistoric humans having ten fingers. With the invention of “zero” by 
mathematicians in India about 600 a.d., the decimal system was developed in its 

Figure 3.1  The Real Number Line
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present form, borrowed by the Arabs about 700 a.d., and subsequently adopted by 
European merchants. The decimal form conveniently handles numbers (both posi-
tive and negative, and both integer and real) of any size from the very large to the 
very small, and is used worldwide.

Spatial data users are probably more interested in the development of the meter 
as a decimal standard of length. The goal of the French Academy of Science in the 
1790s was to devise a standard of length that could be duplicated in nature and that 
was decimally divided. The arc distance from the Earth’s equator to the North Pole 
was determined as accurately as possible by means of a geodetic survey, and the 
result—5,130,766 toises—was defined to be exactly 10 million meters (Smith 1986; 
Alder 2002).

The decimal system is used in the International System of units (SI) adopted 
by the Eleventh General Conference on Weights and Measures in 1960 (Chen 1995, 
2455). The SI system is a coherent system of units included in, or derived from, the 
seven independent SI base units of the meter, kilogram, second, ampere, degrees 
Kelvin, mole, and candela. One advantage of the decimal system is names for units 
that differ by a magnitude of 1,000, as shown in Table 3.1. Perhaps the names are 
best recognized when referring to computer speeds (megahertz), data storage (giga-
bytes), or very short periods of time (nanoseconds). While the SI system defines 
decimal subdivision for length (meters), time (seconds), and angles (radian), standard 
practice in many parts of the world still uses the sexagesimal division of angles 
(degrees, minutes, and seconds) and time (hours, minutes, and seconds).

sexagesimal system

About 5,000 years ago, the Babylonians related 360° in a circle to 365 days in a year. 
Given that six circles will fit exactly around a seventh, a subdivision of 360° into 
six sectors of 60° each is plausible. Tooley ([1949] 1990) credits the Babylonians 
with subdividing both the sky into degrees and the day into hours. The sexagesimal 
system of minutes and seconds was applied to each, allowing stars of the night sky 
to be plotted in a consistent proportional manner. Wilford (1981) credits Ptolemy 
with subdividing the degree into 60 minutes and each minute into 60 seconds, while 

table 3.1

Prefixes for numbers
1,000,000,000,000. tera- one trillion

1,000,000,000. giga- one billion

1,000,000. mega- one million

1,000. kilo- one thousand

1. unit one

0.001 milli- one thousandth

0.000 001 micro- one millionth

0.000 000 001 nano- one billionth

0.000 000 000 001 pico- one trillionth
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Smith (1986) credits the Chinese with first using zero and a circle sexagesimally 
divided into degrees, minutes, and seconds. Regardless of the origin of the practice, 
the second is now the defining unit of time, and the sexagesimal system (60 seconds 
= 1 minute, 60 minutes = 1 hour, and 24 hours = 1 day) is used worldwide. The sexa-
gesimal system is also widely used in angular measurement, but the radian (defined 
as an angle whose arc length equals its radius) is the defining unit for rotation in the 
SI system.

biNary system

Computer science professionals use combinations of zeros and ones (0’s and 1’s) to 
represent numbers, letters, and other symbols within a computer’s memory. A string 
of eight bits (0’s and 1’s) is called a byte and can be used to represent up to 256 dif-
ferent items. The American Standard Code for Information Interchange (ASCII) 
uses combinations of seven of the eight bits to represent uppercase and lowercase 
letters of the English alphabet, digits 0–9, and other symbols as text characters. If 
ASCII characters were used to represent real numbers in a computer, it would be 
quite costly in terms of memory requirements. Therefore, numeric data are stored 
using a base 2 (binary) system that accommodates real numbers and integers, both 
positive and negative. Rather than exploring the details of the binary system, the 
point here is to recognize that numerical values, whether integer or real, are coded 
differently than text. In most cases, the user need not be concerned with computer 
binary operations because numeric input in decimal form is immediately converted 
to binary, and numeric output, unless specified otherwise by the user, is displayed or 
printed in conventional decimal format. It is interesting to note, however, that there 
are similarities between fractions (dividing by two) and binary arithmetic. For an 
interesting tongue-in-cheek discussion of the advantages of binary computations for 
survey measurements, see Stanfel (1994).

coNversioNs

The ability to use numbers is important, but the real meaning of any mathematical 
operation comes from knowing what physical quantities (i.e., units) are associated 
with the numbers. And, it is important to understand the use of ratios where the 
units cancel out and the relative size of the number is really the issue. The value 
of π is one example; trigonometric ratios comprise another. The solution of most 
problems involves a reasonable number of something (units) that can be understood. 
Conversion is the process whereby equivalency is established between seemingly 
unrelated physical quantities. Mathematical operations also apply to the units. An 
easy example might be area (m2) = length (m) × width (m). Not as obvious, but not 
really that unusual, the volume of concrete in a hypothetical sidewalk is length (30 
meters) × width (5 feet) × thickness (4 inches). Unit conversions are “exact” and 
are used as ratios to find the desired answer. Note how units cancel in the separate 
computations and make it easy to find the volume of concrete in either cubic yards 
or cubic meters.
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coorDiNate systems

An origin and three mutually perpendicular axes that intersect at the origin define 
a generic Cartesian coordinate system, as shown in Figure 3.2. When studying 2-D 
phenomena, the X-axis and Y-axis are the ones most commonly used. In a three-
dimensional system, the direction of the positive Z-axis for a right-handed coordi-
nate system is given by the direction of the thumb on one’s right hand when rotating 
the positive X-axis (one’s index finger) toward the Y-axis (one’s palm). An example 
of a left-handed coordinate system is given as north/east/up. The convention in this 
book is to use a right-handed rectangular Cartesian coordinate system whenever pos-
sible. That includes both X/Y/Z and east/north/up. Note that while labeling the axes 
of a coordinate system is really the prerogative of the user, the GSDM uses X/Y/Z for 
geocentric ECEF coordinates and uses e/n/u for local perspective coordinates.

Figure 3.2  Three-Dimensional Rectangular Coordinate System

Origin (0, 0, 0)

Z (up) 

Y (north)

X (east) 
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sigNiFicaNt Figures

The rules of significant digits are not arbitrary, but are based upon the principles of 
error propagation. If the validity of an answer obtained using significant figures is in 
doubt, the uncertainty of any answer can be verified using the standard deviations of 
measured quantities and error propagation computations.

Integer values may have an infinite number of significant figures. For exam-
ple, when dividing the area of a rectangle in half, 2 is an exact number. But, 
physical operations are not so precise. If one of two siblings cuts a piece 
of candy in half, the astute parent permits the second sibling to have first 
choice of the two pieces (in case one piece is larger).
Conversions that are exact (12” = 1' or 27 ft3 = 1 yd3) contain an infinite 
number of significant figures when used as a ratio.
With regard to controlling round-off error, it is recommended to carry at 
least one more digit in the computations than can be justified by the original 
data. The final answer of any computation should reflect the user’s judg-
ment with respect to significant figures.

addition and subtraction

The column (decade) of the least accurate number in a sum (addition) or in a differ-
ence (subtraction) determines the number of significant digits in the answer. A zero 
listed after the decimal point is usually counted as significant. But, zeros that serve 
only to position the decimal point are generally not significant. Table 3.2 shows 
examples for addition and subtraction. For an exception, see the area computation in 
Figure 3.3 where 3,000 ft2 has four significant figures, not one. In such cases, some 
authors place a bar over the last significant digit.

Multiplication and division

The number of significant digits in the product or quotient is determined by the term 
used in the operation containing the least number of significant digits. A product or 
quotient does not contain more significant digits than either term used to compute 
it. A simple example is area computed as length (L = 94.87’) × width (W = 31.62’), 
which gives area = 2,999.7894 ft2. An appropriate answer to four significant digits 
is 3,000 ft 2.

•

•

•

table 3.2

significant Figure examples using addition and subtraction
addition addition subtraction subtraction

120. 0.0023 435 1.00000000 5.44536724 * 109

+ 13.42 + 0.101  – 0.00676865 – 5.43407673 * 109

130. 0.103 0.99323135 11,290,510.

 2 s.f. 3 s.f. 8 s.f. 7 s.f.
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Area for the same rectangle (Figure 3.3) can be computed using the area-by-
coordinates (cross multiplication) equation and the listed state plane coordinates of 
its corners. A common form of the area-by-coordinates equation is

 

A = 1
2

(Y X +Y X +Y X +Y X )

- (

1 2 2 3 3 4 4 1

1XX Y + X Y + X Y + X Y )2 2 3 3 4 4 1















  (3.1)

sum of negative Products sum of Positive Products

	 X1Y2 = 1.095308704 * 1012 ft2 	 Y1X2 = 1.095289533 * 1012 ft2

	 X2Y3 = 1.095289533 " 	 Y2X3 = 1.095359410 "

	 X3Y2 = 1.095229798 " 	 Y3X4 = 1.095248971 "

	 X4Y3 = 1.095248971 " 	 Y4X1 = 1.095179097 "

 Sum1 = 4.381077006 * 1012 ft2  Sum2 = 4.381077011 * 1012 ft2

Area is one-half the difference of the two sums:

Sum2 = 4,381,077,011,000 ft2

Sum1 = 4,381,077,006,000 ft2

Difference = 5,000 ft2

Difference/2 = 2,500 ft2 (Not Good! The correct answer is 3,000 ft2.)

What happened? The area equation is correct. The coordinates are good. A ten-digit 
calculator was used to compute the answer. But, the answer is obviously in error by 
500 ft2. The problem is one of significant figures. Two issues (innocent mistakes) are 
as follows:

The Y coordinate contains only eight significant figures, yet each XY prod-
uct lists ten significant figures. This is mistake number one and invalidates 
the computation.
But, a second mistake (and separate issue) is that significant figures are lost 
in taking the difference of two large numbers of similar magnitudes. In this 

•

•

Figure 3.3  Rectangle for Area Computation

1 

2 

3 

4 

94.87 ft. 

31.62 ft. 

PT #              X                              Y

1     2,160,107.36 ft.       507,032.16 ft. 
2     2,160,197.36 ft.       507,062.16 ft. 
3     2,160,207.36 ft.       507,032.16 ft. 
4     2,160,117.36 ft.       507,002.16 ft. 
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case, only one significant figure remains after computing the difference of 
the two sums of products.

Both mistakes can be avoided by working with coordinate differences. By 
finding a coordinate difference first, the problem of working with large coordinate 
values is avoided because the cross products are formed using much smaller num-
bers. A derivation of the improved area equation 3.2 is given in Burkholder (1982), 
but it can also be obtained from equation 3.1 by moving the coordinate system origin 
to the first point of the figure (a fair amount of algebraic manipulation is required). 
Another advantage of equation 3.2 is that it can be extended easily for any number 
of points. A minimum of three points is required in the first line of equation 3.2. 
Beyond that, point 4 is brought into line 2, point 5 is brought into line 3, and so on. 
Note that with the orderly progression of subscripts, a program need only be written 
for the first line and used in a loop with updated subscripts until all points around the 
figure are used. Points used must be in graphical sequence to form a closed figure, 
and no line crossovers are permitted.

 2A = (X2 – X1)(Y3 – Y1) – (Y2 – Y1)(X3 – X1) +

 (X3 – X1)(Y4 – Y1) – (Y3 – Y1)(X4 – X1) +

 (X4 – X1)(Y5 – Y1) – (Y4 – Y1)(X5 – X1) + …

 for any number of points. (3.2)

logIc

The following thirteen points on logic are adapted from Bumby and Klutch (1982, 
ch. 1).

 1. A statement, also called an assertion, is any sentence that is true or false, 
but not both. The truth or falsity of a statement is called its “truth value.”

 2. Placeholders in mathematical sentences are called variables. An open sen-
tence contains one or more placeholders. Variables are selected from a col-
lection of possibilities called the domain, and the collection of all variables 
from the domain that make an open sentence true is called the solution set.

 3. If a statement is represented by p, then not	p is the negation of that state-
ment. A negation of a negation is the same as the original: that is, p equals 
not	(not	p).

 4. A compound statement formed by joining two statements with the word 
“and” is called a conjunction. Each of the statements is called a conjunct.

 5. A compound statement formed by joining two statements with the word 
“or” is called a disjunction. Each statement is called a disjunct.

 6. A compound statement formed by joining two statements with the words 
“if … then” is called a conditional.
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 7. In logic, the symbol → is used to represent a conditional. Therefore, the 
conditional “if p then	q” can be written as “p	→	q.” Statement p is called the 
antecedent of the conditional, and statement q is called the consequent.

 8. A tautology is a compound statement that is true regardless of the truth 
values of the statements of which it is composed.

 9. The converse of a conditional is formed by switching the order of p and	q 
of the original conditional.

 10. The inverse of a conditional is formed by negating both the antecedent and 
the consequence.

 11. The contrapositive of a conditional is formed by the inverse of the con-
verse, that is, by negating both	p and q and reversing their order.

 12. A statement formed by the conjunction of the conditionals	p	→	q and q	→	p 
is a biconditional. The phrases “necessary and sufficient” and “if and only 
if” are biconditionals.

 13. Whenever two statements are always either both true or both false, the two 
statements are equivalent.

The following rules of logic, still applicable in problem solving and computer 
programming, were adopted by the French mathematician and philosopher René 
Descartes (Russell 1959):

 Never accept anything but clear distinct ideas.
 Divide each problem into as many parts as are required to solve it.
 Thoughts must follow an order from the simple to the complex. Where 
there is no order, one must be assumed.
 One should check thoroughly to assure no detail has been overlooked.

arIthMetIc

Arithmetic consists of the manipulation of numbers by addition, subtraction, multipli-
cation, division, and square roots to solve problems. Simple examples are as follows:

Addition: 8 + 4 = 12 and 8 + (–4) = 4
Subtraction: 8 – 4 = 4 and 8 – (–4) = 12
Multiplication: 8 × 4 = 32 and 8 × (–4) = –32
Division: 8 ÷ 4 = 2 and 8 ÷ (–4) = –2
Square root: √(64) = 8 and √(–64) = undefined

algebra

Algebra is an extension of arithmetic that includes the use of letters to represent 
unknown numerical values. This permits a problem to be solved in a general form 
and for the solution of a specific problem to be obtained more efficiently by substitut-
ing the variables into an algebraic solution as opposed to re-solving the problem with 
different numbers on every occasion.

•
•
•

•
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Rules associated with the properties and manipulation of algebraic quantities 
(Dolciani et al. 1967) are given below.

axioms oF equality (For real Numbers A, B, aND C)

Reflexive property: A = A.
Symmetric property: if A = B, then B = A.
Transitive property: if A = B and B = C, then A = C.

axioms oF aDDitioN (For real Numbers A, B, aND C)

Associative Rule: (A + B) + C = A + (B + C).
Existence of Identity: There is a unique number, zero, such that 0 + A = A and 

A + 0 = A.
Existence of Inverses: For each real number A, there is a number –A such that 

A + (–A) = 0 and (–A) + A = 0.
Commutativity: For all real numbers A and B, A + B = B + A.

axioms oF multiplicatioN (For real Numbers A, B, aND C)

Associative Rule: (A	* B) * C = A	* (B	* C)
Existence of Identity: There exists a unique number, 1, such that for every real 

number A, 1 * A = A and A	* 1 = A.
Existence of Inverse: For every real number A (except 0), there is an element 

1/A such that A	* (1 / A) = 1 and (1 / A) * A	= 1. 
 Note: This property is the basis of the rule that division by zero is 

undefined.
Commutativity: A * B = B * A.
Distributive: A	* (B + C) = (A	* B) + (B	* C) and (B + C) * A = (B	* A) + (C	* A).

booleaN algebra

Boolean algebra involves the use of logic conditions in which the result of some 
operation is assigned only one of two values, true or false. In terms of binary com-
puter code, the conditions equate to 1 for true and 0 for false. Computer program-
mers make extensive use of Boolean algebra in writing computer programs and 
testing for differing conditions that may exist at the time a given part of the program 
is executed. Boolean algebra is beyond the scope of this book.

geoMetry

This book is written to define a model for spatial data on a global scale. Geometry is 
fundamental to that mission and includes the study of points, lines, circles, curves, 
planes, triangles, rectangles, cubes, spheres, and other objects. In chapter 2, spatial 
data were defined as the distance between endpoints of a line in Euclidean space. In 
order to provide additional clarification, the following elements are described.
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poiNt

A point is a dimensionless quantity that occupies a unique location. The irony is that 
location cannot be defined without reference to (distance from) some other point. 
And, what does it mean? “A point has no dimension.”

DistaNce

Distance is defined as the spatial separation of two objects (points) and has length as 
an attribute—dimension. Note that this is an example of circular logic because the 
concept of a point is used to define distance and the concept of distance (reference to 
axes) is used to define a point.

DimeNsioN

Dimension, or the units of the quantity being measured, is another intuitive concept 
that seems to defy definition. A point has no dimension. A line has one dimension, 
surface area has two dimensions, volume has three dimensions, and space-time is 
generally considered to have four dimensions. According to Hawking (1988), any-
thing more than four dimensions is a part of science fiction. But, he also describes 
“string theories” that accommodate many dimensions.

liNe

As stated earlier, a line has length and can be described as the path of a moving point. 
Strictly speaking, a straight line is infinitely long but a line segment has two end-
points. A line can also be straight or curved. A straight line is the shortest distance 
between two points in Euclidian space, while a curved line has a radius associated 
with it. Understandably, a straight line can also be defined as a curve with an infinite 
radius. The slope-intercept form for the equation of a line is y = ax + b, where a	is the 
slope and b is the intercept on the Y-axis (that place where the x value is zero).

plaNe

A plane is two-dimensional, contains something called area, and is formed by the 
lateral movement of a straight line. More precisely, a plane is a flat surface defined by 
three noncollinear points. In three-dimensional space, a plane is also a flat surface 
that is perpendicular to a given straight line. Spatial data users should relate to the 
last definition because a horizontal plane is defined as perpendicular to the plumb 
line at a point. That is, humans stand erect and the perception is that we walk on a flat 
Earth. That is important because, in the GSDM, the origin moves with the observer 
and the model provides a view of all other points from that occupied or specified by 
the user.

aNgle

Given that straight lines are infinitely long, it is said for Euclidean geometry that two 
lines lying in the same plane are parallel if and only if they never intersect (i.e., the 
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distance between them never changes). If two lines in a plane are not parallel, they 
will intersect. An angle is defined as the geometrical shape formed by the intersec-
tion of two lines in a plane. Later, an angle will also be defined as the difference 
between two directions. If the four angles formed by the intersection of two lines are 
all the same size, it is said the two lines are perpendicular to each other and the four 
angles are all called right angles (i.e., one-fourth of a circle).

circle

A circle is a closed figure formed by a uniformly curved line lying in a two-dimen-
sional plane. Being uniformly curved, all points on the circle are the same radius 
distance from a common center point. The maximum distance from one side of the 
circle to the other is the diameter, or two radii. The angular measure of a full circle 
is one revolution, four right angles, 2π radians, or 360° (arbitrary units).

ellipse

An ellipse is a continuous closed plane curve having a major axis dimension longer 
than its minor axis dimension. A unique characteristic of an ellipse is that the sum 
of distances from any point on the ellipse to each of the two foci located on the 
major axis is a constant whose value is twice the length of the semimajor axis. The 
ellipse becomes more nearly a circle as separation of the two foci becomes smaller 
and smaller.

raDiaN

One radian is the angle formed by an arc whose length is the same as the radius of 
the circle. Since there are 2π radians in a full circle of 360°, it is also popular to say 
1 radian = 180°/π or 57° 17’44.”8062… Another useful relationship is derived from 
the fact that there are 1,296,000 seconds of arc in a full circle. Dividing that value by 
2π, there are 206,264.806247096355… seconds of arc per radian.

triaNgle

A triangle is a three-sided figure in a two-dimensional plane. Said differently, a 
triangle is a closed figure in a plane formed by three line segments. The sum of the 
interior angles of any plane triangle is always 180°.

 1. A right triangle has one right (90°) angle. In all seriousness, a student once 
asked, “What is a left triangle?” How should such a question be answered?

 2. An equilateral triangle has three 60° angles.
 3. An isosceles triangle has two equal angles. Sides opposite those angles are 

also equal. The third angle makes the sum of 180°.
 4. An acute triangle is a triangle having three angles each less than 90°.
 5. An obtuse triangle is a three-sided figure having one angle greater than 90°.
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quaDrilateral

A quadrilateral is any four-sided figure in a plane bounded by straight lines. If addi-
tional conditions are imposed (as noted following), special names can be used.

rectaNgle

A rectangle is a quadrilateral having four right (90°) angles. That means opposite 
sides are parallel and the same length. Any rectangle divided by a line through oppo-
site corners gives two right triangles.

square

A square is a rectangle with all sides being the same length.

trapezoiD

A trapezoid is any quadrilateral having at least two parallel sides.

polygoN

A polygon is a closed figure in a plane having many 
(i.e., any number of) sides. There is no restriction 
on lengths or angles except that the figure must be 
closed. A regular polygon is one in which all sides 
(regardless of the number) are of equal length and 
all deflection angles are equal. A regular polygon 
having an infinite number of sides is also the same 
as a circle.

pythagoreaN theorem

With regard to Figure 3.4, the area of the total fig-
ure is the product of two sides, c × c, or c2. If the 
area is also computed as the sum of four triangles 
plus the smaller square inside the figure, proof of 
the Pythagorean theorem can be written as shown 
in equation 3.3:

 

2c   =  4 a b
2

 + (a - b) (a - b)  =  2 a b +  a  - 2 a b + b   =  a  + b2 2 2 2  (3.3)

solId geoMetry

The rules of solid geometry apply to 3-D objects and to the position(s) of other geo-
metrical elements in 3-D space. Although an entire textbook could be written about 
solid geometry, only a brief summary is included here.

c

c

a

a

b
b

(a - b)

(a - b)

Figure 3.4  Theorem of 
Pythagoras
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sphere

A sphere, also known as a ball, is a closed, uniformly curving, three-dimensional sur-
face; all points on its surface are the same distance from an interior point, the center.

ellipsoiD

An ellipsoid is the solid figure formed by rotating an ellipse about one of its two 
axes. An ellipse rotated about its major axis looks rather like a football. An ellipse 
rotated about its minor axis is used to approximate the size and shape of the Earth.

polyheDroN

A polyhedron is a solid figure bounded by plane surfaces—usually more than six.

tetraheDroN

A tetrahedron is a regular solid whose sides consist of four equilateral triangles. It is 
a figure formed by the minimum number of plane sides.

pyramiD

A pyramid is a solid whose base is a polygon and whose triangular sides meet at a 
common point. Most pyramids are five-sided, having a square base and four trian-
gular sides.

cube

A cube is a polyhedron having six identically square faces (sides).

equatioN oF a plaNe iN space

A plane in space is described by a first-order (containing only powers of 1 for each 
variable) equation using variables X/Y/Z as

	 aX + bY + cZ + d = 0 (3.4)

The letters a, b, and c are coefficients of the variables and d is a constant; all of them 
are real numbers. Note that the entire equation could be divided by d, giving equa-
tion 3.5 having only three independent coefficients. That makes sense, because it 
takes three points in space to determine a plane.

 (a/d)X + (b/d)Y +(c/d)Z + 1 = 0 = a’X + b’Y + c’Z + 1 (3.5)

equatioN oF a sphere iN space

A sphere in space is described by a second-order (contains powers of 2 on one or 
more variables) equation using variables X/Y/Z as
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 (X – a)2 + (Y – b)2 + (Z – c)2 = R2 (3.6)

The letters a, b, and c are the X/Y/Z coordinates of the center of the sphere, and R is 
the radius of the sphere. If a, b, and c are all zero, the center of the sphere lies at the 
origin of the coordinate system.

equatioN oF aN ellipsoiD ceNtereD oN the origiN

A two-dimensional ellipse rotated about its major axis forms a football-shaped fig-
ure. A two-dimensional ellipse rotated about its minor axis is used to approximate 
the Earth’s size and shape. The North Pole and South Pole lie on the Earth’s spin 
axis, which is the minor axis of the ellipsoid.

 

X
a

Y
a

Z
b

2

2

2

2

2

2 1+ + =
 (3.7)

The letter a is used as the semimajor axis, and b is the semiminor axis of the ellipse. 
The equatorial plane goes through the origin and is 90° from each pole. The equator 
forms a circle having a as its radius. Each meridian section is perpendicular to the 
equator and forms an ellipse defined by the letters a and b.

coNic sectioNs

A cone is a triangular-shaped solid whose base is a closed curve. A right circular 
cone is one whose base is a circle that is perpendicular to the cone axis. Conic 
sections are two-dimensional shapes obtained by intersecting a cone with a plane at 
different orientations.

 1. A circle is formed by the intersection of a cone with a plane perpendicular 
to the axis of the cone. If the intersection occurs at the vertex, the circle is 
reduced to a point.

 2. An ellipse is formed by the intersection of a cone with a plane that is not 
perpendicular to the cone axis. The intersection is a closed figure.

 3. A parabola is formed by the intersection of a cone with a plane that is parallel 
with the opposite side of the cone. The intersection is not a closed figure.

 4. A hyperbola is formed by the intersection of a cone with a plane that is 
parallel with the axis of the cone. The intersection is not a closed figure.

Conic sections can all be derived from the general second-degree polynomial 
equation by the appropriate selection of coefficients, A,	B,	C,	D,	E, and F. It is to 
be understood that the X/Y coordinate system used in equation 3.8 lies in the plane 
intersecting the cone.

	 AX	2 + BXY + CY	2 + DX + EY + F = 0 (3.8)

 1. For a line: A = B = C =	0.
 2. For a circle: A	=	C and B = D = E = 0.
 3. For an ellipse: A ≠ C and B = D = E = 0.
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 4. For a parabola:	B = C = 0
 5. For a hyperbola: A = –C and B = D = E = 0.

vectors

A vector is a directed line segment in space. In terms of a right-handed coordinate 
system, a vector is composed of signed components in each of the i/j/k directions. 
The length of a vector is called its magnitude and is computed as the square root of 
the sum of the components squared (a three-dimensional hypotenuse). A unit vector 
has a length of 1.0 and is obtained by dividing each component by the vector magni-
tude. The resulting rectangular components of a unit vector are its direction cosines. 
The underlying i/j/k orientation of a vector can be rotated to any X/Y/Z coordinate 
system without changing the length or statistical qualities of the vector. The direc-
tion cosines do change.

Vectors can be added and subtracted component by component (subtraction is 
the same as addition given that the sign is changed for each component of the sec-
ond vector).

A vector can be multiplied by a scalar that has the effect of changing only the 
magnitude of the vector. The direction cosines remain the same.

Vector multiplication takes two forms: a dot (inner) product of two vectors is 
a number (scalar) that can be used to find the angle between two vectors in a plane 
and the cross product of two vectors that is a third vector perpendicular to the plane 
common to the first two.

trIgonoMetry

Trigonometry is the study of triangles and relationships between the various sides 
and angles. The trigonometric functions are defined as ratios of the sides of a right 
triangle. Once an angle is identified, the defining trigonometric ratio for angle θ are 
as given in Figure 3.5 (opp = opposite, adj = adjacent, hyp = hypotenuse).

Standard abbreviations for the six ratios are sin, cos, tan, sec, csc, and cot. The 
first three ratios are used extensively, and the second three, while just as valid, are 
used much less. Generic nomenclature for a triangle is to label each of the vertex 
angles with capital letters A, B, and C. The sides opposite the vertex angles are labeled 
with lowercase letters a, b, and c. Using the generic labeling and noting that the sum 
of angles A and B is 90°, the following relationships in Figure 3.6 are fundamental.

Full Function 
Name 

sine θ 
cosine θ 
tangent θ 
secant θ 
cosecant θ 
cotangent θ 

θ 

sin θ 
cos θ 
tan θ 
sec θ 
csc θ 
cot θ 

=   opp/hyp
=   adj/hyp
=   opp/adj
=   hyp/opp
=   hyp/adj
=   adj/oppadj = adjacent

hyp = hypotenuse

op
p 

= 
op

po
sit

e

Symbolic 
Name Definition 

Figure 3.5  Trigonometric Definitions
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trigoNometric iDeNtities

Referring to Figures 3.6, 3.7, and 3.8, the following trigonometric identities can be 
proved using the Pythagorean theorem and fundamental relationships.

sin2 θ + cos2	θ = 1 ⇒ sin2 θ = 1 – cos2	θ and cos2 θ = 1 – sin2 θ
sin	θ = –cos (θ	+ 90°) = cos (90° – θ) = cos (θ – 90°) = –sin (θ + 180°) = sin 

(180° – θ)
cos θ = sin (θ + 90°) = sin (90° – θ) = –sin (θ – 90°) = –cos (θ + 180°) = –cos 

(180° – θ)

law oF siNes

Figure 3.9 is a standard generic triangle with 
extension lines added to make two right triangles; 
note that sin A = y/c and that sin (180°–	C) = y/a, 
from which y = a sin (180° – C). Next, use the 
trigonometric identity, sin (180° – C) = sin C, to 
get y = a sin C. Substituting those in the original 
equation, sin A = (a sin C)/c, from which (sin A)/
a = (sin C)/c. Similarly, with regard to the same 
Figure 3.9, sin B = z/c and sin (180° – C) = z/b 
from which z = b sin (180° – C). Using the same 

A C

B

a 

b 

c 
sin A  =  a/c
cos A  =  b/c
tan A  =  a/b

sin B  =  b/c
cos B  =  a/c
tan B  =  b/a

Figure 3.6  Right Triangle Relationships

0º

90°

180°

270°

360°

90° + θ

Cosine Curve

Sine Curve

θ

180° – θ

90° – θ

180° + θ

Figure 3.7  Plot of Sine and Cosine Functions

Xx

Y

yR = 1

θ

Figure 3.8  Circular Trigono-
metric Functions
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trigonometric identity again, sin (180° 
–C) = sin C. Making substitution for these 
two equalities, the original equation now 
becomes sin B = (b sin C)/c, from which 
(sin B)/b = (sin C)/c. Since it’s been shown 
the two quantities are both equal to (sin C)/
c, they are equal to each other, and the law 
of sines is

 

sin sin sinA
a

= B
b

= C
c

 (3.9)

law oF cosiNes

The same Figure 3.9 is also used to write a relationship for the law of cosines. Using 
the Pythagorean theorem on the two right triangles, write c2 = (b + x)2 + y2 and 
a2 = x2 + y2 (or y2 = a2 – x2). Also note cos (180° – C) = x/a from which x = a cos 
(180° – C). But a useful trigonometric identity is cos (180° – C) = –cos C. Putting 
those together,

 

2 2 2 2 2c   =  ( b + x)  + a   x   =  b  + 2 b x + –   x  + a  - x  

 

=  a  + b  + 2 a b  (180

2 2 2

2 2 cos °°   C)                

 

=  a  + b   2 a b 2 2

–

– ccos C                                  (3.10)

An alternate version of the law of cosines giving an angle in terms of the sides is

 
cos C = a +b - c

2 a b

2 2 2

 (3.11)

sPherIcal trIgonoMetry

The rules of spherical trigonometry can be used to solve for the great circle arc 
distance between latitude/longitude points on the Earth or to solve triangles on the 
celestial sphere when determining the astronomical azimuth of a line on the ground. 
Two important considerations are as follows:

The Earth is slightly flattened at the poles so the spherical great circle 
distance will be somewhat longer than the actual ellipsoidal distance. For 

•

A

B

C
b 

c 

x 

y 

z 

a 

Figure 3.9  Generic Triangle
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example, the ellipsoidal (GRS80) distance between points in New Orleans 
and Chicago is 1,354 kilometers, and the great circle distance between the 
same two points is 1,359 kilometers. If accuracy to two or three significant 
figures is sufficient, the spherical triangle solution may be appropriate. The 
spherical triangle solution is certainly simpler and easier to find than the 
ellipsoidal distance using a geodetic inverse (BK19) computation.
The radius of the celestial sphere is considered to be infinitely large, which 
means there is no similar spherical/ellipsoidal approximation when spheri-
cal trigonometry is applied to solving the pole-zenith-star (PZS) triangle. 
The equations and procedures for determining an astronomical azimuth 
can be found in texts such as Moffitt and Bossler (1998), Davis et al. (1981), 
or Wolf and Ghilani (2005), and are not covered here.

As shown in Figure 3.10, a spherical 
triangle has three vertex angles and three 
sides. All six elements are given in terms 
of angles because changing the size of the 
sphere does not change the angular rela-
tionships. The three vertex angles are on 
the surface of the sphere and are labeled 
with capital letters A, B, and C, while 
the sides opposite each vertex angle are 
labeled with lowercase letters a, b, and c. 
Each side is the arc of an angle subtended 
at the center of the sphere, and the value 
listed for each side is really the value of the 
corresponding subtended angle.

Equations for solving a spherical trian-
gle include the spherical law of sines and 
two forms of the spherical law of cosines. 
In order to solve a spherical triangle, three 
of the six angles must be known. If two 
vertex angles and the side opposite one of them are known, or if two sides and the 
vertex angle opposite one of them are known, the spherical law of sines can be used. 
The spherical law of sines is

 

sin
sin

sin
sin

sin
sin

A
a

= B
b

= C
c

.  (3.12)

The spherical law of cosines has two forms: the first form solves for a vertex 
angle if the sides are all known, and the second form solves for a side if all the vertex 
angles are known. They are

•

A

B

C

a 

b 

c 

Center 

Figure 3.10  Spherical Triangle
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cos cos cos cos
sin sin

cos

A = a - b c
b c

a = A + B C
B C

cos cos cos
sin sin  (3.13) and (3.14)

Note that equations 3.13 and 3.14 are cyclic in that the symbols for the vertices and 
the sides can be relabeled on the diagram or that equations for vertex angles B and C 
can be found by rearranging the sides in equation 3.13. Similarly, equations for sides 
b and c can be found by rearranging vertex angles in equation 3.14. For example:

 
cos cos cos cos

sin sin
B = b - c a

c a
b = B + C Awhile cos cos cos cos

siin sinC A

Equation 3.13 is the form used to solve for great circle arc distances. Given that 
the Earth’s radius is 6,372 km and that the latitude and longitude for the two cities 
are as follows:

New Orleans: latitude = 30° 02’ 17”, longitude = 90° 09’ 56” W
Chicago: latitude = 42° 07’ 39”, longitude = 87° 55’ 12” W

Note that vertex angle A is the longitude difference at the North Pole, vertex angle B 
is at Chicago, and vertex angle C is at New Orleans.

Find the great circle distance between the two cities.

Side b = 90° – 30° 02’ 17” = 59° 57’ 43”
Side c = 90° – 42° 07’ 39” = 47° 52’ 21”
Angle A = 90° 09’ 56” – 87° 55’ 12” = 2° 14’ 44”

Rewriting equation 3.13 to solve for side a and using the values for b, c, and A,

 cos sin sin cos cos cosa = b c A + b c

 

cos a  =  sin (59°57'43") sin (47°52'21") coos (2°14'44") 
             + cos (59°57'43"") cos (47°52'21")

cos a = 0.9773288;		a = 12° 13’ 25” = 0.21334 radians (only 5 s.f.)

where distance = R a (in radians) = 1,359.4 km = 844.70 miles.
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Remember: this computation assumes the Earth is a sphere. Computing the ellipsoid 
arc distance between the same two points will be covered in chapter 6.

calculus

Calculus is a valuable mathematical tool that can be described as a study of rates of 
change or, said differently, cause and effect. Calculus has an undeserved reputation 
of being difficult to learn. That may be true for some, but consider that most people 
who receive a paycheck for wages are already experts at calculus. That is, upon 
being notified of a 5 percent increase in wages, they will quickly determine how 
the different pay rate affects their take-home pay. In a more formalized manner, the 
procedures of differential calculus apply known rules to smaller and smaller incre-
ments so that the instantaneous rate of change at any point can be computed. Called 
a derivative and given the symbol dy/dx, the graphical representation of dy/dx is the 
slope of a line in the X/Y plane.

convention

Three different ways of showing similar values are as follows:

Deltas: Δx, Δy, when using small or specific numerical values.
Derivative: dx, dy, infinitesimally small components of calculus.
Partial: ∂x, ∂y, same as a derivative, but the derivative of the computed result 

is taken with respect to one variable at a time.

In another application of calculus, small pieces of a quantity (such as arc length 
or area) are computed according to some equation. Integral calculus uses the anti-
derivative of	 dy/dx to perform an infinite number of summations in order to find 
the grand total result (see computation of the meridian arc in chapter 6). In cases 
where a given mathematical equation cannot be integrated, a fallback procedure is to 
use numerical integration to compute an approximation based upon intervals (ΔX’s) 
selected by the user. With a computer programmed to do the repetitive calculations, 
a numerical integration can be made to be as accurate as desired (within reason) by 
adding up more and more ever smaller pieces. Computing area under the standard 
error bell curve is an example of numerical integration.

Many students learn calculus by memorizing the rules of manipulation, and, 
with continued use, the concepts become more understandable. Therefore, the goal 
here is to include several simple examples along with a summary of the fundamen-
tal rules of manipulation. It is hoped, however, that the examples will lead toward 
greater understanding of specific applications involving spatial data manipulation.

example

The volume of a cylindrical storage tank (see Figure 3.11) is computed from the radius 
(R) and height (h) of the tank; see equation 3.15. Two questions are as follows:
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 1. If the height of the tank is 
changed, how will that affect 
the total volume?

 2. If the radius of the tank is 
changed, how will that affect 
the total volume?

 V  =   R hπ 2  (3.15)

Certainly, one could compute 
the volume for specific incremen-
tal values of radius and height. The 
change is then found by taking the 
difference of various answers. Cal-
culus is not needed for that. But, by looking at the rate of change given by the deriva-
tive of the equation used to compute the volume, extra calculations can be avoided. 
And, different answers are obtained depending upon whether the height changes or 
the radius changes. Using calculus, height and radius variables are handled sepa-
rately and the user has the option of using either, neither, or both depending upon the 
question to be answered.

The relationship between tank volume, height, and radius is illustrated in Fig-
ure 3.12. Note that volume increases linearly with height, but that the volume of the 
tank increases exponentially with radius. These changes are handled with partial 
derivatives, one variable at a time. Note too that when taking the volume partial 
derivative with respect to height, the answer is the slope of the line in the volume/
height plane. The radius is treated as a constant, and the slope (derivative) is con-
stant. In the radius/volume plane, the slope of the curve increases exponentially with 
radius and is not linear—the larger the radius, the larger the slope.

Partial derivative of volume with respect to height:	∂	V	/	∂	h = π R	2

Partial derivative of volume with respect to radius:	∂	V	/	∂	R = 2 π R	h

In order to find the combined impact of changing both radius and height, the two 
expressions are combined. The symbols are changed to the “delta” nomenclature to 
indicate that one is expected to use actual differences to compute a change.

	ΔV = π R	2 Δh + 2 π R	h ΔR (3.16)

Equation 3.16 is quite useful, but, because 
R is nonlinear, equation 3.16 is accurate only 
for “small” values of ΔR. As ΔR grows larger, 
the accuracy of equation 3.16 becomes unac-
ceptable. The problem will be addressed in the 
section on error propagation where Δh and ΔR 
are taken to be standard deviations of those 
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Figure 3.11  Volume of Tank
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Figure 3.12  Plot of Volume
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dimensions. Using standard deviations of R and h, partial derivatives of the vol-
ume with respect to	R and h, and formal error propagation procedures, the standard 
deviation of the volume can be determined with statistical reliability.

DiFFereNtial calculus equatioNs

Following is a brief list of derivatives. These rules presume x is the independent vari-
able, u and v are intermediate variables, y is the computed result, and the derivative 
is dy/dx. Appropriate substitutions for y are listed in each case.

 y = constant, a d(constant)/dx	=	0

 y = constant * variable, a * u d(au)/dx	=	a	du/dx

 y = sum of variables u and v d(u	+	v)/dx	=	du/dx	+	dv/dx

 y = product of variables u and v d(uv)/dx	=	u	dv/dx	+	v	du/dx

 y = quotient of variables u and v d(u/v)/dx	=	(v	du/dx	–	u	dv/dx)	/	v2	

 y = variable raised to power n d(un)/dx	=	n	un-1	du/dx

 y = sin u d(sin	u)/dx	=	cos	u	du/dx

 y = cos u d(cos	u)/dx	=	–sin	u	du/dx

 y = tan u = sin u / cos u d(tan	u)/dx	=	sec2	u	du/dx

iNtegral calculus equatioNs

Using the same conventions as in the previous section, the following is a brief sum-
mary of integrals. When evaluating integrals between stipulated limits, the constant 
of integration (C in the following equations) cancels out.

∫ du = u + C
∫ a	du = a ∫ du = a	u + C
∫ (du + dv) = ∫ du + ∫ dv = u + v + C
∫ un	du = [ un+1 / (n + 1) ] + C
∫ du/u = ln |u| + C
∫ cos u du = sin u + C
∫ sin u du = –cos u + C
∫ sec2 u du = tan u + C

ProbabIlIty and statIstIcs

iNtroDuctioN

The fields of probability and statistics are distinct disciplines each deserving more 
coverage than given here. Since knowledge of underlying mathematical principles is 
essential to understanding the importance of each discipline’s contribution to spa-
tial data, the reader is referred to a variety of sources for more information. Some 
books are written purposefully with a focus on mathematical theory and principles 
(e.g., Dwass [1970] was an undergraduate text for math majors), others were writ-
ten to highlight applications in various fields (e.g., Wine [1964] contains a focus 
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on mathematical, not behavioral, sciences), and others are written to explore spe-
cific applications to spatial data (e.g., (Cressie [1993] focuses specifically on spatial 
data applications). The goal in this book is to utilize fundamental principles from 
each discipline and to organize them as needed to describe efficient procedures by 
which 3-D spatial data accuracy (standard deviations) can be reliably established, 
stored, tracked, and used—component by component. Other more sophisticated 
tools such as krigging and hypothesis testing are also useful when analyzing spatial 
data. Although not included here, such tools are viewed as being compatible with the 
underlying GSDM.

Concepts of probability and statistics overlap each other when applied to spatial 
data, and, beyond the definitions, little effort is made here to preserve their distinc-
tion. Wolf and Ghilani (1997) say that probability is the ratio of the number of times 
that an event should occur to the total number of possibilities. Mikhail (1976) defines 
probability as the limit of the relative frequency of occurrences of a random event. A 
simple example of probability is the results one would expect when tossing a coin. It 
should come up heads half the time and tails the other half. If the coin is tossed seven 
times, the ratio of heads to the number of tosses will not be 0.5 for several reasons: (1) 
because of the odd number of tosses, and (2) because the outcome of a random event 
is never certain. It would be possible, but not probable, for eight persons to toss a coin 
seven times each and for each person to obtain different results ranging from zero 
heads to seven heads. However, if a very large number of tosses is used, the limit of 
relative frequency should be the same as the (expected) ratio of “heads up” to the total 
number of tosses. Two important characteristics of probability are that a zero proba-
bility is associated with an event that will not happen, while a 100 percent probability 
is associated with an event that is certain to happen. Therefore, a number between 0 
and 1 gives an estimate of uncertainty associated with some event or statement.

Wine (1964) calls statistics the science of decision making in the face of uncer-
tainty. He goes on to say statistics should be thought of as “both a pure and an 
applied science which is involved in creating, developing, and applying procedures 
in such a way that the uncertainty of inferences may be evaluated in terms of prob-
ability.” Cressie (1993) begins his book by saying that statistics, the science of uncer-
tainty, attempts to model order in disorder. Incorporating the definitions into the goal 
of this book, the GSDM defines an environment and computational procedures by 
which the standard deviation of each 3-D spatial data component can be determined, 
enabling better decisions to be made regarding use of the data.

staNDarD DeviatioN

The standard deviation of a distance is used to describe its uncertainty at some level 
of confidence. Procedures for computing standard deviation have been formalized, 
are well documented under the umbrella of error propagation, and are summarized 
later in this chapter. The confidence level at which decisions are made regarding the 
use of standard deviations is selected by the user. One standard deviation is associ-
ated with a confidence level of 68 percent, two standard deviations correspond to a 
95 percent confidence level, and virtual certainty (99.7 percent) is achieved at three 
standard deviations.
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Standard deviations are not all that exact. Although they can be computed by 
very specific equations, they are acknowledged to be approximations rarely having 
more than two significant figures. That means standard deviation can, at times, also 
be assigned on the basis of seasoned judgment. For example, the standard deviation 
of a GPS vector might be assigned a standard deviation of 5 mm, a distance mea-
sured by an electronic distance meter (EDM) may have a standard deviation of 0.01 
feet, and a single code phase GPS position may have a standard deviation of 100 
meters, 10 meters, 5 meters, 1 meter, or even less based upon circumstances of the 
measurement. Such assignments, while subjective, are based upon prior experience 
and can be quite valid. But, more specifically, standard deviations are determined 
from repetitious measurements made under known conditions and/or computed via 
error propagation of such measurements.

measuremeNt

In a sense, measurement and observation are both the result of comparing some 
unknown quantity with a standard. Accepting a graduated meter (yard) stick as a 
standard, the distance between points is measured by aligning graduations on the 
scale with the endpoints of the distance being measured. The process utilizes both 
the human eye and judgment. The measurement is the observation, and the observa-
tion is the measurement. If the same distance is measured by GPS, the result may be 
more precise, but the concept of observation is not so clear because the comparison 
was computed rather than viewed by the human eye. Admittedly, care and judgment 
are involved in positioning the GPS antenna precisely over the marks, but the point 
remains that the measurement involved computations rather than a direct scale com-
parison. Chapter 2 describes the difference between a direct measurement and an 
indirect one. Chapter 2 also notes that observation and measurement are essentially 
the same with one subtle distinction: observations are taken to be independent, while 
measurements may be correlated.

errors

Another fundamental principle is that no measurement is perfect. Here a distinction 
is made between a count and a measurement. An integer count of pencils can be 
exact, but repeated measurements of the length of a pencil, when compared care-
fully to a fine scale, will invariably yield different results. The standard deviation of 
a measurement is determined from those variations. Admitting that a true length can 
never be found, the goal in making a measurement is to find an acceptable estimate 
and to have some knowledge of the uncertainty of the estimate. The mean (or aver-
age) of a group of measurements is taken to be the estimate, and the standard devia-
tion of the mean provides a measure of confidence. Results of measuring the length 
of a pencil could be reported as 181.3 mm +/– 0.4 mm.

The word “error” is used when referring to the variability of results within a 
set of measurements. When associated with a mistake or blunder, the word “error” 
has a justifiably bad connotation. But, given the impossibility of making a perfect 
measurement, errors are not necessarily bad but regularly occur with predictable 
behavior and are categorized as systematic errors or random errors.
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blunders

Blunders are mistakes and are not considered legitimate observations. Any measure-
ment containing a blunder should be discarded and not used. A blunder is the respon-
sibility of the person making the measurement and is eliminated by exercising care, 
checking one’s work, and making redundant observations. There is no mathematical 
magic for accommodating blunders in a set of data.

systematic errors

Systematic errors arise from a mismatch between ideal (assumed) conditions and 
actual conditions of a measurement. A systematic error is characterized by its pre-
dictability and the fact that it always occurs with a given set of measurement con-
ditions. Bias is another word sometimes used to describe systematic errors. Two 
examples of systematic error are (1) measuring a distance with a steel tape that has 
been foreshortened by cold temperature, and (2) measuring a distance with an EDM 
without specifying the correct parts-per-million correction for given temperature 
and pressure conditions.

random errors

Random errors are the result of imperfect observations. Even though the goal is to 
use well-calibrated equipment according to proper procedures in order that random 
errors are kept as small as practical, they do occur and their predictable behavior has 
been well documented. The normal distribution curve shown in Figure 3.13 illus-
trates the collective characteristics of random errors.

The characteristics of random errors are:

 1. Small random errors occur more frequently than large ones.
 2. Positive and negative random errors occur with similar frequency.
 3. Very large random errors do not occur. If they do, they are taken to be blun-

ders and discarded.

+/– 2 sigma

+/– 1 sigma

+/– 3 sigma

Figure 3.13  Normal Distribution Curve
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error sources

Knowledge of possible error sources is important, both to those making measurements 
(collecting spatial data) and to those responsible for determining the circumstances 
under which data are collected (buying equipment and/or writing specifications). 
Three general error sources are:

Personal

All three types of errors can be attributed to a person making a measurement. A 
careless person will make mistakes and blunders. Even the most conscientious per-
son makes random errors and systematic errors can arise from choices made about 
how computations are made or how data are used. For example, choosing to show 
state plane grid area for a parcel instead of horizontal ground area is a systematic 
error. If the difference is small, the error may be inconsequential.

environmental

Environmental conditions give rise to both systematic errors and random errors. If 
one determines the temperature of a steel tape, it is possible to compute a tempera-
ture correction for a measured distance. By applying the temperature correction to 
the measurement, it is possible to eliminate that systematic error source. If a cold 
front moves through during GPS data collection, the results of a GPS survey may 
be affected by the changing weather conditions. Depending upon the severity of 
the weather changes and upon the availability of reliable meteorological data, the 
differences of a computed GPS position could be a combination of systematic and 
random errors.

Instrumental

If a piece of equipment malfunctions, one could call it a blunder. More often, instru-
mental errors are systematic and due to the physical construction of the instrument. 
An example is a steel tape whose length at standard temperature and tension differs 
from its nominal length. Random error for the same tape could be represented by 
scale graduations that are not perfectly spaced. And, gradual change of calibration 
parameters with respect to the performance of an EDM instrument gives rise to 
random errors until such time as the EDM is calibrated. With the calibration param-
eters known, that part of the error becomes systematic and an appropriate correction 
should be applied.

accuracy aND precisioN

Accuracy and precision are also related to errors. Blunders are mistakes related to 
one’s level of diligence and professionalism. Systematic errors are related to the con-
cept of accuracy, while random errors are related to the concept of precision.

Accuracy is a measure of absolute nearness of a measurement to the true value 
(the true value is never known, but an estimate is used in its place). A data set con-
taining little or no systematic error is said to be accurate. Due to random error, there 
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may be significant variation among different measurements of the same quantity, but 
the mean of the data set will be quite close to the true value.

Precision is a measure of consistency (or repeatability) within a given data set. A 
data set containing small random errors is said to be precise. However, if systematic 
error (a bias) is also present, it is possible to be precisely wrong.

Examples of accuracy and precision are often given as the result of shooting a 
gun at a target. Figure 3.14 shows four different results:

 1. Both accurate and precise: There is a small grouping of holes located near 
the center of the target. This represents the desired result.

 2. Precise, but not accurate: There is a small grouping of holes, but they are 
obviously not located near the center of the target. Such a result indicates 
the presence of systematic error and/or the need to remove a bias by adjust-
ing the crosshairs in the telescope of the rifle.

 3. Accurate, but not precise: There is a wide dispersion of holes over the target 
with no obvious grouping. Taken as a whole, the results can be said to be 
accurate, but the randomness in the grouping indicates the need for more 
practice, a steady rest, or some other factor to assure greater consistency.

 4. Neither accurate nor precise: When some of the shots obviously miss 
the target, the marksman is neither accurate nor precise. The first step to 
improvement might be to eliminate the blunders (misses), after which deci-
sions can be made as to the need for greater improvement.

Both accurate and precise Precise, but not accurate

Accurate, but not precise Neither accurate nor precise

Figure 3.14  Examples of Accuracy and Precision
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computiNg staNDarD DeviatioNs

What is the definition of “small” when dealing with random errors? The relative 
magnitude of a random error is defined mathematically by its standard deviation. 
Whether the standard deviation is large or small, the shape of the distribution is that 
given in Figure 3.13. However, whether the range covered by the random error is 
large or small is illustrated in Figure 3.14. In either case, the Greek letter sigma, σ, is 
used to denote standard deviation, which is computed using equation 3.17.

staNDarD DeviatioN oF the meaN

Equation 3.17 gives the standard deviation associated with an individual measure-
ment in the data set. That is an appropriate value to use when making comparisons 
between different methods of measurement or evaluating equipment. But, when using 
the mean of a set of observations in subsequent computations, the computed mean 
has a greater chance of being close to the true value than do any of the individual 
measurements. Specifically, in subsequent computations, the standard deviation of 
the mean (equation 3.18) is needed rather than the standard deviation of a measure-
ment. The standard deviation of the mean is the standard deviation of the measure-
ment divided by the square root of the number of measurements. In the example, 
the standard deviation of a single 1,000 meter measurement is 0.032 meters, but the 
standard deviation of the mean is 0.014 meters.

 

σi
i = 1

n
2

i

 =  
 mean x

 ∑( )–

n–1  (3.17)
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2

i
i  =  

 mean  x

n (n  1) n
σ

σ∑( )
=

–

–

 (3.18)

where

σi = Greek letter, sigma, for standard deviation of data set;
σmean = standard deviation of the mean;
mean	= average of data set;
xi = single measurement; and  
n = number of observations.
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number observation Mean difference
difference 
squared

1. 999.98 m 999.994 m 0.014 m 0.000196

2. 1,000.02 m 999.994 m –0.026 m 0.000676

3. 999.95 m 999.994 m 0.044 m 0.001936

4. 1,000.03 m 999.994 m –0.036 m 0.001296

5. 999.99 m 999.994 m 0.004 m 0.000016

Totals 4,999.97 m 0.004120

Results: σi = 0.032 meters and σmean = σi / √n = 0.014 meters.

coNFiDeNce iNtervals

The standard deviation as computed in the example corresponds to a confidence level 
of 68 percent. As applied to the computed mean, there is a 68 percent chance the 
true value of the distance, whatever it is, lies between 999.980 meters and 1,000.008 
meters. If one is not comfortable at the 68 percent level of confidence, it is routine to 
quote results at the 95 percent confidence level. For 95 percent confidence, the range 
quoted is the mean plus or minus two standard deviations. In this case, there is a 95 
percent probability that the true value lies between 999.996 meters and 1,000.022 
meters. The level of confidence is greater, but the quoted interval of uncertainty 
is also larger. Detail: two standard deviations correspond to 95.5 percent, and 95 
percent corresponds to 1.96 standard deviations. Common practice is to use two 
standard deviations with 95 percent.

A limit of three standard deviations is associated with a confidence level of 99.7 
percent. This criterion is often used to judge whether or not a given observation 
should be discarded as a blunder. As applied to the standard deviation of each obser-
vation, if the difference of an individual observation from the mean is greater than 
three standard deviations of the data set, standard practice is to eliminate that obser-
vation from the data set and re-compute	 the mean and standard deviations with a 
smaller data set. Strictly speaking, a difference could exceed three standard devia-
tions three times out of 1,000 observations and not be a blunder, but, generally, little 
harm is done by rejecting an observation that lies more than three standard devia-
tions from the mean of the data set.

hypothesis testiNg

Extending the concept of confidence intervals further gets into hypothesis testing. 
When comparing the results (statistics) of one data set with another, one question to 
ask is whether the data sets are compatible. Is it really proper to make the compari-
sons between them, and what is the likelihood of drawing conclusions based upon 
comparisons of unlike data (apples and oranges)? A discussion of hypothesis testing 
is beyond the scope of this book, but the principles are well formulated in books such 
as Wolf and Ghilani (1997) and constitute additional valuable tools for the spatial 
data analyst.
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matrix algebra

Matrix algebra is a compact way of representing and manipulating systems of linear 
equations. Compact representation helps humans grasp and discuss overall concepts 
without getting bogged down in details, and compact manipulation makes it pos-
sible to utilize standard programming procedures more efficiently in computerized 
solutions. Rules of matrix manipulation are developed in many math books and 
included, often as an appendix, in many texts devoted to survey computations or data 
adjustment.

A matrix is a rectangular array of rows and columns and is denoted by boldfaced 
type when written in text or in equations. Each subscripted position in the array is 
assigned a real number (as opposed to the cell of a spreadsheet, which may contain 
text or equations in addition to numbers). The number of rows and columns are 
the dimensions of a matrix and are, at times, written as subscripts to the boldfaced 
matrix symbol. Individual elements within a matrix are often given by lowercase 
subscripted variables. An example of a simple 2 rows by 3 columns matrix is

 
2,3A   =   a a a  

a a a
1,1 1,2 1,3

2,1 2,2 2,3











   =   

2 1 -1 
4 0 -2












 (3.19)

Several important matrix concepts are:

 1. A square matrix has the same number of rows and columns.
 2. The diagonal of a square matrix contains elements in those positions having 

identical row and column numbers. A diagonal matrix is one in which any 
nondiagonal element is zero.

 3. An identity matrix is a diagonal matrix with 1’s on the diagonal.
 4. A symmetrical matrix has a mirror image with respect to the diagonal.
 5. The transpose of a matrix (indicated by the superscript t) is obtained by 

switching the rows and columns of the parent matrix. The dimensions are 
switched accordingly. The transpose of A2,4 is At

4,2.
 6. A vector is a matrix having only one row or one column. A matrix with only 

one row and one column contains a single element, a real number.
 7. Matrix addition is defined, for matrices having compatible dimensions, as 

a matrix containing the sum of the corresponding elements in the two par-
ent matrices.

 8. Likewise, matrix subtraction is defined, for matrices having compatible dimen-
sions, as the difference of corresponding elements in the stipulated order.

 9. Matrix multiplication is defined for matrices having compatible dimen-
sions. That is, the number of rows in the second matrix must be the same 
as the number of columns in the first matrix. Each element in the product 
matrix is obtained as the sum of the products of row/column elements of the 
matrices being multiplied, as shown in equation 3.20.
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 (3.20)

 10. Matrix division is not defined. Instead, the matrix inverse is an alternate 
procedure that is used and produces the same result. Given matrix A, the 
inverse is A-1. In regular algebra, A * 1/A = 1. In matrix algebra. A * A-1 gives 
the identity matrix,	I. Details for computing a matrix inverse are somewhat 
involved and not included here. Wolf and Ghilani (1997) is an appropriate 
reference containing material on the theory and use of matrices.

Models

Models provide a connection between abstract concepts and human experience. In 
the context of spatial data, models give relevance and meaning to the concepts of 
location and geometrical relationships. Two kinds of models are used in this book: 
functional models and stochastic models.

FuNctioNal moDels

Functional models consist of physical, geometrical, mechanical, electrical, 
and other relationships that exist with respect to the cause and effect between 
observed fundamental quantities such as length, time, temperature, and current 
and computed results such as spatial data components. Using a model consists 
of writing and solving equations that describe the problem being considered and 
interpreting the results in terms of how well they agree with the original assump-
tions and observations.

stochastic moDels

A stochastic model describes the probabilistic characteristics of various elements of 
the functional model. Whether a quantity is fixed by law, determined by repeated 
measurements, or assigned on the basis of personal judgment, the stochastic model 
represents the “totality of the assumptions on the statistical properties of the vari-
ables involved” (Mikhail 1976). The standard deviation of any quantity is a statis-
tical measure of its quality. Statistical interaction between variables is known as 
correlation and, along with standard deviations, is captured in the appropriate vari-
ance/covariance matrix. With regard to 3-D coordinates representing spatial data, 
the following variance/covariance matrix represents the probabilistic characteristics 
of the defined point.
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  =  
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Σ
σ σ σ
σ σ σ
σ σ σ





















 (3.21)

Notes:

 1. The diagonal elements are called variances, and the off-diagonal elements 
are called covariances. It is proper to refer to the entire matrix as a covari-
ance matrix even though it contains both variances and covariances.

 2. The standard deviation of each respective	X/Y/Z coordinate is the square 
root of the variance.

 3. Correlation between variables (coordinates is a number between –1.0 and 
1.0 and is obtained from elements in the covariance matrix. Since the corre-
lation of X with respect to Y is the same as teh correlation of Y with respect 
to X, the covariance matrix is symmetric. Quantities that are statistically 
independent have zero correlation. Correlation is mathematically defined 
as:

 

ρX Y
X Y

X Y

,
cov( , )
=
σ σ

 (3.22)

where: 
cov(X,Y)  = covariance value for element X,Y.
σX and σY = standard deviations of X and X.

error ProPagatIon

The theory of error propagation is derived in books such as Mikhail (1976) and Wolf 
and Ghilani (1997), and is presented concisely in matrix form as

 
∑ ∑YY YX XX

t
YXJ J=  (3.23)

where

∑YY = covariance matrix of computed result,
∑XX	= covariance matrix of variables used in computation, and
JYX = Jacobian matrix of partial derivatives of the result with respect to the 

variables.

Error propagation involves calculus and is used to answer the question “If some-
thing is computed on the basis of a measurement and the measurement contains 
uncertainty, how is the computed quantity affected?” In a trivial case (Y	=	X), there 
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is a direct correspondence between the two, and the error in the result is the same 
as the error in the measurement. In another simple case—the volume of a tank and 
its height—the relationship between the measurement and the computed result is 
linear: volume = (area of base) * (height). Other cases—the volume of a tank and its 
radius—are more complex: volume = (π R2) * (height). Here the relationship between 
the volume and radius is exponential. However, even more complexity arises when 
several measurements contribute simultaneously to the quantity being computed. 
Equation 3.23 handles all cases from the trivial to the most complex.

Equation 3.16 could be used to compute approximate changes in volume based 
upon changes in radius and height, but that approach is somewhat limited. Equa-
tion 3.23 is used to answer the specific question “What is the standard deviation 
of the volume if the standard deviation of the radius and the standard deviation of 
the height are both known?” Admitting that standard deviations are estimates, the 
answer will still be an estimate. But, unlike equation 3.16 (which is accurate only for 
“small” values of	Δh and ΔR), equation 3.23 is a definitive procedure that is statisti-
cally reliable, and the approximation is in the standard deviation of the measure-
ments (the user’s responsibility) and not in the equation. A simplified list of steps for 
performing error propagation is as follows:

 1. Identify the variables (i.e., the measurements), and determine their standard 
deviations on the basis of repeated measurements, computations, or profes-
sional judgment.

Measurements and standard deviations in the tank example are as follows:
R = 50.0 meters +/– 0.07 meters
h = 10.00 meters +/– 0.02 meters

 2. Formulate the equations that will be used to compute the result.

	 V	=	πR2h = 78,539.82 meters3 (3.24)

 3. Take the partial derivatives, one variable at a time.

	 ∂V/∂h	=	πR2 = 7,853.98 meters2 (3.25)

	 ∂V/∂R	=	2πRh = 3,141.59 meters2 (3.26)

 4. Build the matrices as shown in equation 3.23.

 
XX RH

R Rh

Rh h

  =    =    =  
2

2Σ Σ
σ σ
σ σ













0.00049 0.0000
0.0000 0.0004










  (3.27)

 
YXJ   =   V

 R
 V
 h

   =  ∂
∂

∂
∂













 7, 853.98 33,141.59 [ ] (3.28)

 5. Perform the matrix operations. Computers make this task much easier.
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YY   =  Σ 7,853.98 3,141.59  

0.0049 0.0000
0.00

[ ]
000 0.0004






















 

7,853.98
3,141.59

 

 
YY   =  Variance of  volume  =   Σ 306,204.34 mm6  (3.28)

 6. Interpret the results.
 A. The standard deviation of the volume = square root of the variance = 

553.36 meters3. Realistically, this answer has no more than two signifi-
cant figures. At the 68 per-
cent confidence level the 
standard deviation of the 
volume is 550 m3, and at 
the 95 percent confidence 
level the standard devia-
tion of the tank volume 
is 1,106.7 meters3 (1,100 
meters3).

 B. The answer in step two 
really has only three sig-
nificant figures and could be 
reported as 78,500 meters3 
+/– 550 meters3 (or, at two 
sigma, +/– 1,100 meters3).

 C. In this case, there is no correlation between the measurements of height 
and radius. Had there been, the ΣXX matrix off-diagonals would be 
nonzero.

What happens if correlation is present? The following example may help. A total 
station surveying instrument was used to measure the size of the tank, as shown 
in Figure 3.15. Admittedly, this might not be the best way to measure a tank, but 
this procedure was chosen to show how correlation is included. Measurement of the 
radius and height is derived from independent observations of slope distances and 
zenith directions. This example assumes a standard deviation of 0.10 meters for each 
slope distance and 20 seconds of arc for each zenith direction. It could also be appro-
priate to make other assumptions about standard deviations for the observations.

SD1 = 101.119 m +/– 0.10 m  Z1 = 98° 31’ 51” +/– 20”
SD2 = 100.125 m +/– 0.10 m  Z2 = 92° 51’ 45” +/– 20”
SD3 = 200.062 m +/– 0.10 m  Z3 = 91° 25’ 55” +/– 20”

To find radius and height from the field measurements, the functional model 
equations are

 
R  =   SD Z SD Z0 5 3 3 3 3. ( sin – sin )  (3.30)

SD(3)

SD(1)

SD(2)

Figure 3.15  Survey Measurements of a 
Tank

63014.indb   69 3/12/08   2:21:41 PM



70 The 3-D Global Spatial Data Model

 H  = SD Z SD Z1 1 2 2cos – cos  (3.31)

The partial derivatives of the radius are

 ∂R/∂SD1 = 0 = 0.0 (3.32)

 ∂R/∂SD2 = –0.5 sin Z2 = –0.499376165 (3.33)

 ∂R/∂SD3 = 0.5 sin Z3 = 0.499843856 (3.34)

 ∂R/∂Z1 = 0 = 0.0 (3.35)

 ∂R/∂Z2 = –0.5 cos Z2 = 2.500011935 (3.36)

 ∂R/∂Z3 = 0.5 cos Z3 = –2.499971439 (3.37)

The partial derivatives of the height are

 ∂H/∂SD1 = cos Z1 = –0.148340663 (3.38)

 ∂H/∂SD2 = –cos Z2 = 0.049937816 (3.39)

 ∂H/∂SD3 = 0.0 = 0.0 (3.40)

 ∂H/∂Z1 = –SD1 sin Z1 = –100.0002519 (3.41)

 ∂H/∂Z2 = SD2 sin Z2 = 100.0000769 (3.42)

 ∂H/∂Z3 = 0.0 = 0.0 (3.43)

The Jacobian matrix (transposed for ease of printing) of partial derivatives is

 

TJ   =  

0 -0.148340663
-0.499376165 0.049937816
00.499843856 0

0 -100.0002519
2.500011935 100.00000769

-2.499971439 0
































 (3.44)

The covariance matrix of the observations is
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0 0 0 0 0  

1Z

2Z

3Z

σ

σ

σ

σ





































 (3.45)
Note that each slope distance was assumed to have a standard deviation of 0.10 

meters and that each zenith direction has a standard deviation of 20 seconds of arc. 
Given that 20 seconds squared in radians is 9.401755*10–9, the elements of the obser-
vation covariance matrix are

obsΣ   =  

0.01 0 0 0 0 0
0 0.01 0 0 0 0
0 0 0.01 0 0 0
0 0 0 9.4011755E-9 0 0
0 0 0 0 9.401755E-9 0
0 0 0 0 0 9.401755E-9

































  
  (3.46)

The covariance matrix of the derived radius and height is then computed as

 
RH obs  =  J  J   =  

0.0049923218667 -0.000TΣ Σ
2247027986

-0.000247027986 0.00043302309592










  (3.47)

Note that the covariance matrix in equation 3.47 is almost the same as in equa-
tion 3.27 except that equation 3.47 contains covariance data for the derived measure-
ments of radius and height. The standard deviation of the radius is 0.0707 m (not 
0.07 m), and the standard deviation of the height is 0.0208 m (not 0.02 m). In the first 
example, radius and height were independent measurements (observations). In the 
second example, radius and height were both computed from the independent slope 
distance and zenith direction observations. Radius and height are not independent, 
and the covariance matrix contains correlation. The variance of the computed vol-
ume is now computed (the same procedure as in equation 3.28) as

 
YYΣ   =  7, 853.98 3,141.59  

0.0049923219 -0.0
[ ]

000247027
-0.000247027 0.0004330231

 
7











,, 853.98
3,141.59

 










  

 YYΣ   =  Variance of  volume  =  300,034.86   mm6                     (3.48)

The correlated standard deviation of the computed volume is 547.75 m3.
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When the results in equation 3.47 are compared to those in equation 3.28, the 
correlated results are somewhat smaller. However, in this case, when significant fig-
ures are taken into account, the overall reported answer is the same in each case. The 
tank volume is 78,500 m3 +/– 550 m3.

When does correlation make a significant difference? Each user must answer 
that question for him or herself. As technology permits observations to be made 
with greater and greater precision and as smaller tolerances are imposed upon the 
computed result, correlated measurements will need to be considered. The impor-
tant point here is that the independent observations must be identified and that the 
equations (models) used to compute spatial data components will need to be used 
properly to compute the correlated covariance matrices.

As shown in the tank example, equation 3.23 is very powerful. Specifically, 
matrix tools were used to illustrate using both correlated and uncorrelated mea-
surements. Many surveying measurements are uncorrelated, and, as shown here, 
even correlated measurements may give the same answer. In the past, the nonmatrix 
form of equation 3.23 has been quoted as the special law of propagation of variance, 
which is used without correlations as

 
U X
2

2
2

2

  =  U
X

 + U
Y

σ σ
∂
∂







∂
∂







∂
∂





Y Z

2
2

2 + U
Z

 + ...σ σ  (3.49)

where U = f	(X,Y,Z…) and X/Y/Z are independent variables.
If the variables really are independent, equation 3.49 can be applied to simple 

equations to give error propagation equations listed in various textbooks and memo-
rized by many as

	 U = sum = A	+	B, σ σ σA B A B+ = +2 2  (3.50)

	 U	= difference = A – B,	 σ σ σA B A B− = +2 2  (3.51)

	 U	= product = A	*	B,	 σ σ σA B B AA B* = +2 2 2 2  (3.52)

	 U = quotient = A	/ B,	 σ
σ σ

A B
A B

B
A
B B/ = +









2

2

2 2

2
 (3.53)

Even when used without correlations, the error propagation equation is a power-
ful tool that has been underutilized. But, the matrix form of the error propagation, 
equation 3.23, is even more powerful in that it utilizes the power of matrices to 
handle systems of complex equations and it handles any and all correlations that may 
be part of a problem, simple or complex.
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error ellIPses

Error ellipses are a graphical tool used 
to illustrate the pair-wise correlation 
that exists between computed values. 
Using 2-D plane coordinates as an 
example, if the correlation between 
the computed coordinates is zero, then 
the orientation of the error ellipse cor-
responds to that of the host coordinate 
system. Special case: if the correlation 
is zero and the standard deviations are 
the same for both coordinates, then 
the error ellipse is a circle (and ori-
entation is immaterial). However, if 
the standard deviation is the same for 
both coordinates and the correlation 
is not zero, then the maximum and 
minimum standard deviations will occur with some other orientation.

The general case, illustrated in Figure 3.16, accommodates standard deviations 
of coordinates that are not the same with respect to the	X and	Y axes and in which 
correlation does exist. The respective x/y standard deviations and orientation of the 
ellipse major axis are obtained from the point covariance matrix. Additional material 
on error ellipses is given in Wolf and Ghilani (1997) and should be studied carefully 
in order to fully understand their usefulness. An incidental point is that error ellipses 
provide excellent visualization of correlation in two dimensions, typically in the hori-
zontal plane. Visualization of 3-D error ellipsoids needs more study and discussion.

least squares

The principle of least squares states that the sum of the squares of the residuals—
multiplied by their appropriate weights—will be a minimum for that set of answers 
(parameters) that has the greatest probability of being correct. The concept is simul-
taneously simple and complex because it applies with equal validity to computing a 
simple mean of two equally weighted measurements as well as adjustment of the most 
complex problem that can be described with functional model equations. Although 
it is correct to say that there is no known method proven to be better than a least 
squares solution, it is also true to say, within reason, that least squares can be used 
to obtain any desired answer. The difference lies in the selection of weights, and that 
is the responsibility of the user. The least squares procedure is specific and proven, 
but least squares can also be abused, sometimes unwittingly, to the point where a 
solution has questionable, marginal, little, or no value. The challenge in using least 
squares is to select the appropriate model, to write the equations (observation and/or 
condition) correctly, and to assign legitimate weights to the observations. Generating 
the solution could be a challenge (if done longhand), but computers are programmed 
to handle the matrices and to crunch the numbers needed to find the most probable 

Sigma X

Si
gm

a 
Y

Y

X

Figure 3.16  General Error Ellipse
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solution to the problem. Having done all that, one could still argue that the most 
challenging part of using least squares is interpreting the results—such as using the 
covariance matrices to track three-dimensional spatial data accuracy.

Given one measurement of a distance, there is no basis for adjustment. In order 
to use least squares, there must be “extra” measurements. When tying in sideshots to 
a survey traverse, there is no “extra” measurement to the radial point, and no adjust-
ment of that point is possible. But when computing around a closed loop traverse, the 
coordinates of the endpoint must be the same as those used for the beginning point. 
Once coordinates of each traverse point are computed, least squares is an appropri-
ate procedure by which to find the most probable coordinate values of the surveyed 
points. Of course, if the sideshot points are tied in a second time from a separate 
survey point, redundancy does then exist and an adjustment of such redundant posi-
tions is possible.

In order to use least squares competently, the user must decide upon the appro-
priate model (is the coordinate system local, state plane, UTM, or geodetic) and 
write equations for the computations that utilize the measurements. As stated 
above, if there is no redundancy in the measurements, no adjustment is possible. 
But, given a loop traverse and redundant measurements, the equations used in the 
computations must be consistent with the model being used. In most cases, a slope 
distance must be reduced to horizontal, and the horizontal distance must be reduced 
to the ellipsoid if using geodetic coordinates or to the state plane coordinate grid 
(in the appropriate zone) if using state plane coordinates. Least squares cannot be 
used to correct errors caused by using the wrong model. Often, the model is implicit 
and defined by the context. For example, when measuring a distance with a plumb 
bob and steel tape, the implied model is horizontal distance, and everyone knows 
what that is. But, if the distance is measured with EDM or with GPS, it becomes 
more important to be specific about the definition of horizontal. For example, Burk-
holder (1991) gives six different definitions of horizontal, each being more precise 
(specific) than the previous one. It is the user’s responsibility to assure compatibil-
ity between the measurements, the model, and the solution obtained from a least 
squares adjustment.

In addition to providing the best possible geometrical answer to a network 
of redundant observations, a least squares adjustment can also be used to deter-
mine the statistical properties (standard deviations) of the answers obtained from 
the adjustment. This provides the spatial data analyst with valuable tools (error 
propagation) for making decisions about how the answers are used or interpreted. 
For example, elevations of points on a building are determined very carefully 
and compared with elevations determined earlier (say, six months). Did the build-
ing move during that time interval? If the building did move, how much did it 
move? If the differences are small, does that mean the wall really did move? Or, 
is it possible that the observed difference is the result of accumulation of random 
errors in the measurements? Least squares, error propagation, error ellipses, and 
hypothesis testing are tools that can be used to make statements based upon infer-
ences having a rigorous statistical foundation at a level of confidence chosen by 
the user.
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liNearizatioN

Taken by itself, the concept of least squares represents too much computational 
effort to be practical. However, if the least squares process is combined with matri-
ces (for computational compactness) and with computers (for processing speed), a 
least squares solution becomes feasible for a greater variety of problems. A second 
drawback to using least squares is that matrices are valid only for systems of linear 
equations and many spatial data computations involve nonlinear geometrical rela-
tionships. That obstacle is overcome using a process called linearization in which 
nonlinear equations are replaced by their Taylor series approximation.

When using least squares to solve a linear problem, the solution is obtained on 
the basis of a single iteration. However, successive iteration is required when using 
least squares to solve nonlinear problems. Since only the first two terms of the Taylor 
series are used in the matrix formulation (point-slope form of a line), the solution (a 
set of corrections to the previously adopted values) of a set of equations will be only 
an approximation. Stated differently, a consequence of linearization is that the answer 
being sought changes from “the actual numerical value” to “What correction(s) to 
the previous approximate value(s) will provide a better solution?” (For linear prob-
lems, the correction is the value between zero and the correct answer.) The most 
important question is “What is an acceptable answer?” An acceptable answer is one 
that fulfills the original (nonlinear) conditions within some tolerance selected by the 
user. That puts the user in control.

A corollary to the previous question might be “How small must the corrections 
be to be acceptable?” Answering this question also keeps the user in control. But, 
achieving the goal of finding the right answer or making the corrections go to zero 
(within some tolerance) typically requires an enormous amount of number crunch-
ing—feasible only when done on a computer. Very briefly, the overall process for 
solving a nonlinear problem is as follows:

 1. Identify the geometry of the problem and write the appropriate equations.
 2. Linearize the equations and take partial derivatives to be used in the 

matrix formulation.
 3. Establish some initial value for each unknown parameter as being reason-

ably close to the final answer.
 4. Run the least squares adjustment to find corrections to the initial estimates.
 5. Look at the results. Are the corrections small enough to quit? If so, do. 

If not, update the previous estimate using current corrections and run the 
adjustment again. Are the corrections smaller, and are they small enough?

Two important concepts described above are iteration and convergence. Iteration 
is the process of using results from a previous solution to solve the problem again. 
Convergence is the desirable condition realized when each successive correction is 
smaller than the previous one. If a solution converges slowly, it may take many itera-
tions to solve a problem. Given that computers are programmed to do the number 
crunching, the time and effort required may or may not be an issue. If solutions are 
being generated in real time, rapid convergence is preferable and linear models that 
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do not require iteration are even more desirable. When using the GSDM, network 
adjustments can be formulated as a linear model.

aPPlIcatIons to the global sPatIal data Model (gsdM)

Given that this book is devoted to describing the global spatial data model (GSDM), 
it will be shown in later chapters how the various mathematical concepts in this 
chapter are combined in a single comprehensive model, the GSDM. Very briefly:

Observations are independent measurements of fundamental physical 
quantities.
Observations are manipulated in conformance with physical laws and geo-
metrical relationships to obtain spatial data components. For example, 
carrier phase GPS observations are processed to obtain geocentric compo-
nents, while total station survey measurements provide local components. 
Each can be used and/or combined with the other when using the GSDM.
The standard deviation of each observation is propagated to the correspond-
ing spatial data component. Correlation data are tracked in the associated 
covariance matrix. Correlation is largely responsible for the difference 
between network accuracy and local accuracy from one point to another 
(Burkholder 1999, 2004).
Spatial data components (indirect measurements) are combined into net-
works according to existing geometrical configurations and evaluated for 
statistical reliability.
Once spatial data components pass rigorous quality control criteria, they are 
combined with existing primary database points in a least squares adjustment.
Stored values include the geocentric X/Y/Z values of each point, the associ-
ated covariance values, and the point-correlation values.
When drawn from the 3-D database, the spatial accuracy of each point is 
given by its standard deviation, component by component. The value or 
utility of each database point is determined by whether it passes a tolerance 
filter (for each component) as selected by the user.
Standard deviations of any or all derived quantities are available using 
proven standard error propagation computations.
The local accuracy between (especially directly connected) points can be 
determined using the full covariance matrix in Burkholder (1999, equation 9).
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4 Geometrical Models for 
Spatial Data Computations

IntroductIon

As previously defined, a mathematical model is a set of rules used to make a concep-
tual connection between abstract concepts and human experience. A model is judged 
“good” to the extent it is both simple and appropriate. When working with spatial 
data, the simplest model is a one-dimensional (1-D) distance. Models of increas-
ing complexity include a 2-D plane coordinate system formed by the perpendicular 
intersection of the X and Y axes, a generic 3-D X/Y/Z rectangular Cartesian coor-
dinate system having three mutually perpendicular axes, a spherical Earth model, 
and, finally, the ellipsoidal Earth model. Figure 4.1a shows the standard 2-D X/Y 
coordinate system, Figure 4.1b shows a right-handed X/Y/Z coordinate system, and 
Figure 4.1c illustrates the sexagesimal coordinate system of latitude and longitude 
used to describe the geodetic location of points on the Earth’s ellipsoidal surface. 
Other choices will be discussed later, but the goal at this point is to identify a variety 
of geometrical model choices. With regard to working with spatial data, consider-
ations include, but are not necessarily limited to, the following:

Are the observations or subsequently computed measurements 1-D, 2-D, 
or 3-D?
Is a 1-D or 2-D model sufficient, or is a 3-D model required?
Is the extent of a given project small enough to use “flat-Earth” relationships, or 
is a different model needed to accommodate the Earth’s curvature? Is a spher-
ical-Earth model appropriate, or is the ellipsoidal Earth model required?
Is the project of such a nature that a local coordinate system is sufficient, or should 
the data be referenced to the National Spatial Reference System (NSRS)?
What issues of compatibility (e.g., units of feet or meters) must be addressed? 
What is required for new measurements to be compatible with and/or add to 
the value of existing data?
Is there a spatial data model that accommodates all computational con-
cerns? If so, what is it? That decision should be documented specifically for 
each project. Otherwise subsequent users are forced to infer the model from 
the way spatial data are used. For example, project datum coordinates (also 
called surface coordinates) often resemble state plane coordinates, and seri-
ous problems may result if project datum coordinates are used as if they 
were state plane coordinates.

•

•
•

•

•

•
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80 The 3-D Global Spatial Data Model

conventIons

With regard to the use of various models for handling spatial data, the following 
conventions are, although contradictory at times, commonly used.

Standard computational practice in the scientific, engineering, and mathemat-
ical disciplines employs the right-handed rectangular 3-D coordinate system 
described earlier and shown in Figure 4.1b. The conventional 2-D X/Y rectan-
gular coordinate system is a subset of the right-handed 3-D X/Y/Z system.
Conventional surveying and mapping practice includes use of latitudes and 
departures, northings and eastings, and x/y coordinates in the 2-D plane. 
The goal here is to accommodate existing practice to the extent possible. 
However, the convention of east/north/up (not north/east/up) will be used 
for local perspective coordinates because it is right-handed and compat-
ible with the underlying geocentric ECEF system described in chapter 2. 
Regretfully, clockwise azimuth is a left-handed convention.
Coordinate differences between points are denoted as “Δ” and computed as 
forepoint (point 2) minus standpoint (point 1). Given that computations are 
performed with respect to the standpoint and that another point of interest is 
the forepoint, rectangular spatial data (vector) components are computed as

 Δx = x2 – x1 (4.1)

 Δy = y2 – y1 (4.2)

 Δz = z2 – z1 (4.3)

Directions are given in sexagesimal units as bearings or azimuths. An azi-
muth is counted from north clockwise through a complete circle of 360°. 
Negative azimuths imply a counterclockwise (angle left) rotation. A nega-
tive azimuth can be changed to a positive azimuth by adding some multiple 
of 360°. Bearings are quadrant based and related to azimuths as follows:

Quadrant I: a northeast (NE) bearing has the same value as an azimuth.
Quadrant II: a southeast (SE) bearing is 180°– the azimuth of the line.

•

•

•

•

•
•

(a) (b)

Z

Y

X

Y

X

(c)

NP

Greenwich
Meridian Equator
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Latitude

Figure 4.1  2-D, 3-D, and the Geodetic Coordinate Systems
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Quadrant III: a southwest (SW) bearing is the azimuth of the line minus  
180°.
Quadrant IV: a northwest (NW) bearing is 360°minus  the azimuth of the 
line.

Bearings and azimuths are distinguished by the meridian to which they are 
referenced. Common examples are as follows:

Magnetic bearings are referenced to lines of the Earth’s magnetic field 
that converge at the magnetic poles. Given that the magnetic pole is not 
coincident with the true pole (as defined by the Earth’s spin axis), magnetic 
declination is the difference between magnetic north and true north.
An astronomic azimuth is determined by observing the sun and/or stars 
using a transit or theodolite leveled with respect to the local plumb line 
(vertical). An astronomical meridian goes to the Earth’s instantaneous 
spin axis. This pole position changes slowly and differs slightly from 
the Conventional Terrestrial Pole (CTP), the mathematical North Pole, 
adopted by international agreement.
Geodetic azimuth is referenced to the meridian to the CTP with respect 
to the ellipsoid normal (instead of the vertical) and is used in geodetic 
position computations. A geodetic azimuth differs from an astronomic 
azimuth due to (1) the difference between the direction of the ellipsoid 
normal and the direction of the vertical (deflection-of-the-vertical), and 
(2) the difference between the instantaneous North Pole and the CTP 
(polar wandering). See chapter 6 for more detail on each difference.
Grid azimuths are commonly encountered when working with state 
plane (or map projection) coordinates. All geodetic meridians converge 
to the CTP, but grid meridians are generally parallel on the projection 
surface. At the center of each map projection zone, the central meridian 
coincides with the true geodetic meridian. Convergence is the differ-
ence between a geodetic azimuth and its corresponding grid azimuth 
from one point to another. Convergence is zero on the central meridian 
of a map projection.
A 3-D azimuth is very nearly the same as a geodetic azimuth but is 
much easier to compute. The 3-D azimuth is computed as tan–1 (Δe/Δn), 
where Δe and Δn are the local tangent plane components of a 3-D (GPS) 
vector. See Burkholder (1997) and/or chapter 11 for more details.
An assumed azimuth, encountered in many places, is whatever the user 
declares it to be.

Most scientific calculators operate in the decimal degree mode when com-
puting trigonometric functions. It is important to convert sexagesimal 
degrees/minutes/seconds to decimal degrees before computing a trigono-
metric function. Time is also expressed in sexagesimal units, and some 
calculators provide a hardwired function for converting hours/minutes/sec-
onds to decimal hours. It is the same sexagesimal conversion. Look for 
D/M/S to DD or H/M/S to HR for converting sexagesimal to decimal. Or, 
it can be done easily on the keyboard as

•

•

•

•

•

•

•

•

•

•
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 D.D (decimal degrees) = degrees + minutes/60 + seconds/3600

The opposite computation is also important. When computing inverse trigono-
metric functions such as tan–1 (Δx/Δy) for azimuth, the answer is displayed by many 
calculators as decimal degrees. The function to convert decimal degrees to degrees/
minutes/seconds is hardwired in many calculators as HR to H/M/S (or DD to D/M/S). 
If not hardwired in the calculator, the conversion can also be done on the keyboard.

The keyboard procedure for converting decimal degrees to degrees/minutes/sec-
onds is as follows:

Degrees: integer portion of DD.DDDDDDDDD
Minutes: integer portion of ([DD.DDDDDDD – degrees] * 60)
Seconds: DD.DDDDDDDD*3600 – degrees*3600 – minutes*60

Some calculators will show symbols for degrees/minutes/seconds. An alternative 
formatting convention for showing angular units in a calculator display is as follows:

Decimal degrees: DD.DDDDDDDDDDDD
Degrees/minutes/seconds: DD.MMSSSSSSS (with an implied decimal point in 

the seconds as SS.SSSS)

Another practice used by some software packages includes the follow:

Decimal degrees: DD.DDDDDDDD
Degrees/minutes/seconds: DDMMSS.SSSSSSS

Standard degree/minute/second symbols, the use of zeros for placeholders, and 
the placement of the decimal point are illustrated as follows:

Azimuth = 038° 00’ 03.”44563, where the seconds symbol (") is either over or 
follows the decimal point in the seconds. Otherwise, the (") symbol might 
be interpreted as meaning inches.

Of course, a calculator may also be set to operate in radian units, in which case 
the conversions are (using π or SPR = 206,264.”806247096 per radian)

radians = DD * (π/180°) and DD = radians * (180°/π),
radians = DD * 3600/SPR and DD = radians * SPR/3600, or
radians = seconds/SPR and seconds = radians * SPR.

When geodetic latitude or longitude is given in sexagesimal units, it is cus-
tomary to show five decimal places of seconds for control point positions. 
If the Earth were a sphere with a radius of 6,372,000 meters, 1 second of 
arc would correspond to a distance of 30.89 meters in the north-south direc-
tion. So, 0.”00001 seconds of arc in the north-south direction correspond 
to 0.000309 meters (submillimeter accuracy). It is also understood that  

•
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latitude is used as a positive value (0° to 90°) in the northern hemisphere 
and as a negative value (0° to –90°) in the southern hemisphere; and
longitude starts with 0° at the Greenwich meridian and is used 0° to 360° 
eastward. However, at the October 1884 International Meridian Conference 
held in Washington, D.C., it was agreed that longitude would be counted 
both east and west from the Greenwich meridian up to 180° (Clarke 2000). 
Therefore, west longitude is the standard practice for geographic locations 
in the western hemisphere. Using a west longitude as a negative number is 
compatible with the mathematically unambiguous practice of using 0° to 
360° eastward.
For many spatial data applications, horizontal distance is computed from 
plane surveying latitudes and departures. As such, it is the hypotenuse of a 
plane right triangle. But, when working with different elevations, horizon-
tal distance is also taken to be the right-triangle component of a slope dis-
tance. Depending upon the coordinate system being used, other definitions 
of horizontal distance include the geodetic distance on the ellipsoid or the 
grid distance as used in the state plane coordinate systems.

Conventions used by the GSDM include horizontal distance as the local tan-
gent-plane right-triangle component of a GPS vector (the same as used in plane sur-
veying) and the 3-D azimuth (in degrees/minutes/seconds) as computed from the 
latitude/departure components of the same horizontal distance. To the extent pos-
sible, the GSDM includes relevant plane-surveying practices without sacrificing the 
advantages of a rigorous connection to a National Spatial Reference System.

two-dImensIonal cartesIan models

The standard 2-D rectangular coordinate system has an origin formed by the per-
pendicular intersection of the abscissa and the ordinate. Two systems, called the 
Math/Science Reference System and the Engineering/Surveying Reference System, 
are quite similar, but, from one system to the other, the reference axes are different 
and the direction of positive rotation is reversed (see Figure 4.2a and Figure 4.2b).

Math/Science RefeRence SySteM

The 2-D coordinate system commonly used by mathematicians and scientists labels 
the abscissa as the X-axis and the ordinate as the Y-axis. The positive X-axis is 
considered to be the reference for angles, and rotation is counted positive counter-
clockwise. In this system, the Δx and Δy components of any directed line segment 
(vector) are

 Δx = d cos θ (4.4)

 Δy = d sin θ (4.5)

where

•

•
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84 The 3-D Global Spatial Data Model

d = length (distance) of the directed line segment, and
θ = direction of the line segment as measured counterclockwise with respect 

to positive X-axis (consistent with right-handed rule).

engineeRing/SuRveying RefeRence SySteM

Surveyors, engineers, and others who work with mapping data often use a 2-D rect-
angular coordinate system, which is similar to the math/science system except that 
cardinal directions of north-south and east-west are superimposed upon the two axes 
and rotation is counted clockwise from north. In this system, the Δx (easting) and Δy 
(northing) components of any directed line segment are

 Δx = Δe = d sin α (4.6)

 Δy = Δn = d cos α (4.7)
where

d = length (distance) of the directed line segment, and
α = azimuth of the line segment as measured clockwise with respect to north, 

the positive Y-axis (contrary to right-handed rule).

The specific relationship between the math/science system and the engineering/
surveying system is that, in all cases, α + θ = 90°, which also means α = 90° – θ or θ = 
90° – α. Being aware of these similarities and differences helps spatial data users make 
greater use of the polar/rectangular conversions hardwired into many calculators.

For example, most scientific calculators are hardwired according to the math/sci-
ence system. To compute rectangular components of a line 100.00 meters long having 
an azimuth of 30°, the calculator will show 50.000 meters as being the north-south 
component when it is really the east-west component. Similarly, because it is using 
the math/science convention, the calculator will show 86.602 meters as being the 
east-west component when it really is the north-south component (in the engineer-
ing/surveying system). The only thing the user needs to do is switch the label of the 
computed components. A word of caution: each user should practice and work with 
known quantities to make sure the procedure being used is giving correct answers 
in the intended system.

P(x, y) P(e, n)

Dista
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θ 
∆Y
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α 
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E

Figure 4.2  Math/Science and Engineering/Surveying Coordinate Systems
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In each case, the 2-D math/science reference system and the 2-D engineering/
surveying reference system can be expanded into a 3-D system by adding a Z-axis. 
The convention adopted in this book is to use e/n/u for the local reference frame 
because it is right-handed and Δe/Δn/Δu can be conveniently rotated into the ECEF 
right-handed X/Y/Z reference frame. Regretfully, azimuth in the engineering/survey-
ing system is not consistent with the right-hand rule.

coordInate Geometry

Once rectangular components are obtained in either the math/science or engineer-
ing/surveying system, standard coordinate geometry (often referred to as COGO) 
operations are the same. Admittedly, it becomes a challenge to keep track of various 
conventions employing x/y coordinates and eastings/northings in the same rectangu-
lar system, but the COGO procedures are the same in each case. Burkholder (1984) 
gives a derivation for the following 2-D COGO operations listed as follows:

 1. Forward (traverse to new point)
 2. Inverse (find direction and distance from standpoint to forepoint)
 3. Line-line (also called bearing-bearing) intersection
 4. Line-circle (also called bearing-distance) intersection
 5. Circle-circle (also called distance-distance) intersection
 6. Perpendicular offset distance from a line to a point

foRwaRd

Given:

e1 and n1 = coordinates at standpoint  
d = distance from standpoint to forepoint
α = azimuth from standpoint to forepoint

Compute:

Δe and Δn = rectangular components
e2 and n2 = coordinates of forepoint

Solution:
 e2 = e1 + Δe = e1 + d sin α (4.8)

 n2 = n1 + Δn = n1 + d cos α (4.9)

inveRSe

Given:

e1 and n1 = coordinates at standpoint
e2 and n2 = coordinates at forepoint
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Compute:

Δe and Δn = rectangular components
d = distance between standpoint and forepoint
α = azimuth from standpoint to forepoint

Solution:
 Δe = e2 – e1 and Δn = n2 – n1 (4.1 and 4.2)

 d = √(Δe2 + Δn2) (4.10)

 tan α = Δe/Δn

(Use signs of Δe and Δn to determine the proper quadrant.)

 If Δn is –, α = 180° + arctan (Δe/Δn). (4.11)

 If Δn is + and Δe is –, α = 360° + arctan (Δe/Δn). (4.12)

 If Δn and Δe are both +,  α = arctan (Δe/Δn). (4.13)

inteRSectionS

When performing design or other COGO computations, it is often necessary to 
determine where lines intersect (see Figure 4.3). Three methods are as follows:

 1. Line-line: in this case, points 1 and 2 are given. The directions from point 
1 and the direction to point 2 are also given. The problem is to compute 
the coordinates of the intersection point. Line-line is also called a bearing-
bearing intersection.

 2. Line-circle: in this case, points 1 and 2 are given. The direction from point 
1 and the distance from the intersection point to point 2 are given. The 
problem is to compute the coordinates of the intersection point. Line-circle 
is also called a bearing-distance intersection.

Y 

X

Intersection Point (Xp, Yp) 

Standpoint (X1, Y1)

Forepoint
(X2, Y2)

α
α0

β 

D2

D0

D1

Figure 4.3  Geometry of Intersections
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 3. Circle-circle: in this case, points 1 and 2 are given. The distance from point 
1 to the intersection point and the distance from the intersection point to 
point 2 are given. The problem is to compute the coordinates for the inter-
section point. Circle-circle is also called a distance-distance intersection.

In each case, the computation starts at the standpoint and ends at the forepoint 
while establishing the location of an intermediate intersection point. The rules to be 
used in establishing the computed intersection point vary according to the type of 
intersection, but they fall into one of the three categories listed. Symbols and con-
ventions for the computations are follows:

(e1,n1) = coordinates of standpoint (given)
(e2,n2) = coordinates of forepoint (given)
(ep,np) = coordinates of intersection point (computed result)
d0 = distance from standpoint to forepoint
d1 = distance from standpoint to intersection point
d2 = distance from intersection point to forepoint
α0 = azimuth from standpoint to forepoint
α = azimuth from standpoint to intersection point
β = azimuth from intersection point to forepoint

In each case, the solution starts by computing Δe = e2 – e1 and Δn = n2 – n1. Also 
note that no solution exists if, in the first case, the lines are parallel; in the second 
case, the line does not intersect the circle; and, last, the circles do not intersect. A 
different mathematical impossibility is encountered in each case.

Line-line: if the lines are parallel, azimuths α and β are the same and the 
denominator of equation 4.14 goes to zero. As a result, the distance d1 is 
undefined. There is no intersection. See Figure 4.4a.

Line-circle: if the line does not intersect the circle, the perpendicular offset 
distance from the line to the circle is greater than the radius of the circle. 
If that happens, the quantity under the radical in equation 4.15 is negative. 
Since it is not possible to take the square root of a negative number, d1 is 
undefined and there is no intersection. See Figure 4.4b.

β 

α 
α 

R

Y Y 

X X 

Y 

X 

D0R1

R2

(a) (b) (c) 

D2

Figure 4.4  Examples of Intersections That Fail
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Circle-circle: if the two circles do not intersect, it is not possible to find the 
angle γ using equation 4.16 because, in one case, the value of cos γ is greater 
than 1.0 and, in the other case (one circle entirely within the other), the 
value of cos γ is less than –1.0. See Figure 4.4c.

Other than the nonintersection cases described, the following formulas provide 
very efficient procedures for computing intersections in a two-dimensional plane.

line-line: one solution or no solution if lines are Parallel

Given:

 e1, n1, e2, n2, α, and β (Δe = e2 – e1 and Δn = n2 – n1)

Compute:
 d1 = (Δe cos β – Δn sin β) / sin (α – β) (4.14)

(d1 may be either a positive or negative value.)
Solution:

 ep = e1 + d1 sin α (4.8)

 np = n1 + d1 cos α (4.9)

Check: inverse intersection point to forepoint, and compare computed direction 
β with given direction β. If they are not the same, a mistake was made.

line-circle: may Have two solutions, one solution, or no solution

Given:
 e1, n1, e2, n2, α, and d2

Compute:

 d e n e1 = sin + cos ± d2 – ( x cos  –∆ ∆ ∆α α α sin )2∆n α  (4.15)

(d1 normally has two values, one for each solution.)
Solution:

 ep = e1 + d1 sin α (4.8)

 np = n1 + d1 cos α (4.9)

Check: inverse intersection point to forepoint, and compare computed distance 
d2 with given distance d2. They should be the same. Also make sure the solution 
obtained is the one desired. Depending upon where the line intersects the circle, the 
values of d1 could both be positive, could be one positive and one negative, or could 
both be negative.
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circle-circle: may Have two solutions, one solution, or no solution

Given:
 e1, n1, e2, n2, d1, and d2

Compute:
 d0 = √(Δe2 + Δn2) (4.10)

 α0 = tan–1 (Δe/Δn) (4.11, 4.12, or 4.13)

 γ = cos–1 (d1
2 + d0

2 – d2
2) / (2 d1 d0) (4.16)

 α = α0 + γ and α = α0 – γ   (two solutions; 4.17 and 4.18)

Solution:
 ep = e1 + d1 sin α (4.8)

 np = n1 + d1 cos α (4.9)

Check: inverse intersection point to forepoint, and compare computed distance 
d2 with given distance d2. They should be the same. Also make sure the solution 
obtained is the one desired. Several solutions may exist. Also be aware that equation 
4.16 has no solution if the two circles do not intersect.

PeRPendiculaR offSet

In many situations, it is desirable to find the perpendicular distance from a line to a 
point. Given one is on a standpoint P(e1,n1) and looking in the direction of a line, α, 
the problem (as illustrated in Figure 4.5) is to find the perpendicular offset distance 
right (positive) or left (negative) from the line to the point specified as the forepoint 
P(e2,n2). Note that the azimuth, α, may be any azimuth from 0º to 360º. Using the 

P(X1, Y1)

Note: d2 will be positive for points right of line
 but negative for points left of the line.

P(X2A, Y2A)

P(X2B, Y2B)

Y 

X

d2A d2B
α 

Figure 4.5  Perpendicular Offset to a Line
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conventions given earlier, the perpendicular offset distance is the distance d2 com-
puted as

 Δe = e2 – e1 and Δn = n2 – n1

 d2 = Δe cos α – Δn sin α (4.19)

aRea by cooRdinateS

Area is the product of length times width and is generally presumed to be computed 
on a flat surface. Computing area on a spherical or ellipsoidal surface is more of a 
challenge and is addressed in chapter 6. The method generally used for computing 
the area of an irregular tract is area-by-coordinates, as used in chapter 3. Area by 
double-meridian-distance (DMD), useful if working with latitudes and departures, is 
described in many surveying texts and is not presented here. Development of the area 
(equation 3.1) involves adding and subtracting trapezoids, as shown in Figure 4.6.

Area = Trapezoid I + Trapezoid II – Trapezoid III – Trapezoid IV

Trapezoid I: A-1-2-B-A Area = 0.5(e1 + e2)(n1 – n2)

Trapezoid II: B-2-3-D-B Area = 0.5(e2 + e3)(n2 – n3)

Trapezoid III: C-4-3-D-C Area = 0.5(e3 + e4)(n3 – n4)

Trapezoid IV: A-1-4-C-A Area = 0.5(e4 + e1)(n4 – n1)

Combining the four trapezoids into one equation and multiplying by two gives

 2A = (e1 + e2)(n1 – n2) + (e2 + e3)(n2 – n3) – (e3 + e4)(n4 – n3) – (e4 + e1)(n1 – n4)

Considerable algebraic manipulation and combination of terms are needed to get

 2A = n1e2 + n2e3 + n3e4 + n4e1 – (e1n2 + e2n3 + e3n4 + e4n1) (4.20)

1
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4
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E

Figure 4.6  Area by Coordinates
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Comments about equation 4.20 are as follows:
The coordinates are often arranged in tabular form with the beginning values 
listed again at the end. The computation is then illustrated by showing accu-
mulation of cross products, and area is computed as half the difference of the 
two accumulated sums. See the example in chapter 3 using equation 3.1.
If points around a figure are chosen in a clockwise sequence, as was done in 
the derivation, a positive area is computed. If a counterclockwise sequence 
is used, a negative area will be the result. Although each user is free to “tra-
verse” a parcel in either direction, the convention is to use positive area.
Care must be exercised to assure that area is being computed for a legiti-
mate figure. If one line of the figure crosses another (e.g., due to errone-
ous point sequence input), the equation will provide an answer that reflects 
removal of the crossover area.
Significant figures may become an issue if equation 4.20 is used with large 
(i.e., state plane) coordinates. See the example in chapter 3. Equation 3.2 is 
recommended as the preferred area-by-coordinates formula.

cIrcular curves

Circular logic defines a curve as a line that is not straight and a straight line as one 
that is not curved. Separating circular geometry from circular logic, a circle is a 
curve that has completed one cycle, or, said differently, a curve is a portion of a 
circle. There are two fundamental definitions that relate a circle to the value of pi (π) 
and to the measure of an angle.

definitionS

 Definition 1: π ≡ circumference / diameter = C/2R (4.21)

 Definition 2: angle in radians ≡ arc length / radius = L/R (4.22)

Using the two definitions, it is quickly established that there are 2π radians in a 
complete circle (360°) and that any arc length is the product of the radius times the 
subtended angle in radians. One of the simplest, most powerful equations available 
to the spatial data user is

 L = R θ = R Δ° (π / 180°) (4.23)

where

L = arc length,
R = radius of curve,
θ = a subtended angle in radians,
Δ° = a subtended angle in decimal degrees, and
π = the value of pi.

•

•

•

•
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degRee of cuRve

Circular curves are frequently encountered when working with road, street, or high-
way data. Distance along a road centerline is often measured in stationing (incre-
ments of 100 feet or other units), and straight centerline segments between the angle 
points are called tangents. The angle points in a centerline are called points of inter-
section (PI’s). A curve is used at each Pi to provide for a gradual, rather than an 
abrupt, change in direction. Historically, the sharpness of a curve has been defined 
by degree-of-curvature (D°) according to one of two definitions: one definition for 
railroad work, and one for highway applications. The D° definitions and the equa-
tions for computing radius from each of them are as follows:

degree of curve (highway) ≡ central angle subtended by an arc of 100 feet

 radius = 100 / [D° (π / 180°)] = 5,729.57795 / D° (4.24)

 D° = 5,729.57795 / radius (4.24a)

degree of curve (railroad) ≡ central angle subtended by a chord of 100 feet

 radius = (100 / 2) / sin (D° / 2) = 50 / sin 0.5D° (4.25)

 D° = 2 sin–1 (50 / radius) (4.25a)

Table 4.1 compares values of radii for several values of D° by each of the two 
definitions. Note that values of radius decrease linearly for the highway definition, 
but not for the railroad definition.

table 4.1

comparison of degree of curve radii
degree of curve Highway definition railroad definition

1° 5,729.578’ 5,729.651’

2° 2,864.789’ 2,864.934’

5° 1,145.915’ 1,146.279’

10° 572.958’ 573.686’

20° 286.479’ 287.939’

30° 190.986’ 193.185’

45° 127.324’ 130.656’

90° 63.662’ 70.711’
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eleMentS and equationS

The degree-of-curve definitions are 
not compatible with the metric system 
(SI). For that and other reasons, mod-
ern practice tends to use the radius 
and another element to define a cir-
cular curve. As shown in Figure 4.7, 
there are five primary circular curve 
elements routinely encountered when 
working with spatial data involving 
circular curves. Of the ten possible 
combinations of five elements taken 
two at a time, the combinations of 
tangent/length and tangent/long chord 
are rarely used because of their weak 
geometry and computational complex-
ity (see, for example, Thompson 1974). 
Given any other pair of primary circu-
lar curve elements, the solution can be 
found using some combination of equa-
tions 4.26 to 4.31.

radius = R
tangent = T
long chord = LC
length = L
central angle = Δ°

Secondary curve elements also labeled in Figure 4.7 include the following:

point of intersection = PI = intersection of straight-line tangents
point of curvature = PC = centerline station at beginning of curve
point of tangency = PT = centerline station at end of curve
intersection angle = Δ° = same as the central angle of the curve
deflection angle = Δ°/2 = half the central angle
middle ordinate = M.O. = radial distance from chord to arc
external = E = radial distance from arc of curve to PI

With reference to Figure 4.7, note the following:
The word “tangent” is used twice. The straight centerline segment between 
PI’s is called a tangent. And, one of the curve elements, the distance from 
the PC to the PI, is called the tangent (of the curve). Added to those two uses, 
the word “tangent” is also associated with the use of a trigonometric func-
tion. The context of usage generally dictates which meaning is intended.
The radius of the curve meets the centerline (both tangents) at a right angle.

•

•

PTPI

∆

∆

∆/2

∆/2

T

M.O.

R

R

E

PC

T
LC

L

Figure 4.7  Elements of a Circular Curve
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The angle of intersection is the same as the central angle of the curve.

The deflection angle is half the central angle.

The diagram is symmetric. The distance PC to PI equals the distance PI to 

PT, and a radial line to the PI is perpendicular to the long chord. This right 

angle statement should not be accepted at face value, but each reader should 

prove it to him or herself.

Using L = Rθ, the definitions of trigonometric ratios, the labels assigned to the 

curve elements, and the diagram in Figure 4.7, it is possible to write the following 

relationships (⇒ means “implies that”):
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•

•

•
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Stationing

When designing and building a road (or other centerline-referenced project), hori-
zontal distance along the centerline is the basis of stationing. An arbitrary value such 
as 0+00 or 100+00 is assigned to a point near the beginning of a project, and points 
on the centerline are stationed as xx+xx.xx (the value of xx+xx.xx being the accu-
mulated centerline distance to the point). Difference in stationing is the horizontal 
distance along the centerline between stationing values—even along curved por-
tions of the centerline. For example, the distance from station 132+16.58 to station 
163+45.32 is 3,128.74 feet. Discontinuities in stationing (either gaps or overlaps) are 
handled with a station equation assigned to some centerline point. A common format 
for a station equation is “XXX+XX.XX Back = YYY+YY.YY Ahead.”

Station equation policies vary from one organization to another, but if changes 
are made to the centerline alignment or if curves are added after centerline station-
ing is assigned, stationing for the entire project might be reassigned. Since restation-
ing is often not practical, a station equation is used to account for gaps and overlaps. 
In the case of adding a curve, a station equation is used at the end of the curve (PT). 
The “ahead” station is found by adding the curve tangent distance to the PI station, 
and the “back” station for the same point is found by adding the curve length to the 
PC station. Used in reverse, distance along centerline is the difference in station-
ing—except when a station equation is encountered. Then, distance along centerline 
is computed separately on two sides of the station equation. For example, a station 
equation (175+48.92 BK = 175+50 AH) is used at the end of the curve shown in 
Figure 4.8. What is the centerline distance between station 170+00 on the curve and 
station 180+00 on the tangent?

Distance along curved portion = 175+48.92 – 170+00 = 548.92 feet
Distance along tangent portion = 180 + 00 – 175+50 = 450.00 feet
Total distance = 998.92 feet

Of course, other changes to the centerline alignment also require a station equa-
tion to accommodate the change in length along the revised route. Some changes will 
lengthen the centerline, causing an overlap at the station equation. Other changes 
will shorten the centerline and cause a gap between the “back” and “ahead” stations 
at a point.

PI

PTPC

Station Equation: 
Ah = 176+00 
Bk = 175+96.92 

PC

PI PT  

180+00 

170+00 

Figure 4.8  Station Equation Example
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MetRic conSideRationS

Stationing is used to identify cross-section locations on road or similar projects. 
Cross-section spacing of each station or half-station is common. There appears to 
be no set standard when using stationing on metric-based projects. Some use a 100 
meter station with cross-section intervals of 20 or 30 meters. Others use 1,000 meters 
(1 kilometer) as the station with cross-section intervals every 100 meters. Therefore, 
each user is encouraged to confirm and/or be specific about stationing policies on 
any metric project. Possible sources of information include any state department of 
transportation (DOT) office or the American Association of State Highway Trans-
portation Officials (AASHTO).

aRea foRMed by cuRveS

The area of a rectangular-shaped figure is length times width. The area of a circle 
is developed using small rectangles and tools of calculus. As shown in Figure 4.9, 
a differential element of area is the length (circumference at that radius distance 
from the center) times an infinitesimally small width (dR). Written in calculus as a 
summation of an infinite number of small rings, the area of a circle with radius R is 
computed as

 

dA  =  2  R dR  

 Area  =   2 R dR  = 
0

R

π

π π∫ RR2

 (4.34)

A sector of a curve is defined as the “pie-shaped portion” of a circle, and the 
segment of a curve is defined as that area between the arc and chord of the curve. 
Both are shown in Figure 4.10. Area of a curve sector is linearly proportional to the 
total curve area in the same manner as a central angle is proportional to a complete 
circle. If the central angle is 1/4 of 360°, then the area of the sector is 1/4 the area 
of the circle; or if the central angle is 0.4475 of 360°, then the area of the sector is 
0.4475 π R2. For any sector, the area of the sector is

C = 2πR 

R

dR

L = C = 2πR 

dR

Figure 4.9  Area of a Circle
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Sector area  =   R∆
360






π

2

 (4.35)

where Δ = central angle in decimal 
degrees.

The area of a segment is com-
puted as the remainder left when 
the area of the inscribed triangle 
is subtracted from the area of the 
corresponding sector, as shown in 
Figure 4.10. The area of a triangle 
is 1/2 base times height. Using the 
radius as the base and the radius 
times sin of central angle as the 
height of the inscribed triangle, the segment area is computed as

 
Area of  segment  =  

360
 R 1

2
R∆

∆π 2 2– sin

And, with a bit of algebraic manipulation,

 

Area of  segment  =  R     -  
2

2 180
π
∆ ∆sin








 (4.36)

Note that the last expression in equation 4.36 is really Δ in radians minus the sin of Δ.

aRea of unit ciRcle

What is the area of a unit circle (R = 1)? The answer is π. If the area of a unit circle is 
computed as the sum of a large number of small triangles, the answer will be in error 
by the accumulated segment area between the arc and the chord. As a larger num-
ber of triangles is used, the error becomes very small. As illustrated in Figure 4.10, 
equation 4.37 approximates the area of a unit circle and permits the user to choose 
any large value of N, the number of triangles.

 

Area  =      N   
N

   for π ≈






2

360sin llarge values of  N.
 (4.37)

Table 4.2 shows a summary of answers for various values of N. The last two 
lines are the value of pi computed using a spreadsheet, π = 4 arctan(1.0), and the first 
twenty digits of π (Beckmann 1971).

h

b = R

∆

N 
360° 

Sector 

Segment 

R

Figure 4.10  Area of a Sector and Area of a 
Segment
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Comment: mathematicians have devised better ways of computing π, but this 
technique shows an interesting connection between the value of π and the area of a 
unit circle while illustrating the concept of limits.

sPIral curves

A spiral is defined as a curve whose radius is inversely proportional to its length. 
Various kinds of spirals can be developed from the same definition. Mathematicians 
often view spirals from the perspective of an origin located at that point where the 
radius approaches zero. Spirals used in geomatics applications share the definition, 
but are viewed from a different perspective (i.e., beginning at that point where the 
spiral length is zero and the radius is infinitely long). This origin is selected because 
spirals are used to provide a rigorous gradual transition from traveling in a straight 
line along the tangent to traveling along a circular curve having a constant radius. 
Spirals are used extensively on railroad layout, but they are also used in some high-
way applications.

Typically, spirals are used in pairs. Starting on a straight-line tangent, a spiral is 
used to make the transition from traveling in a straight line to traversing a circular 
curve. At the end of the circular curve, another spiral is used to transition back to 
traveling in a straight line on the next tangent. Although the entrance spiral and exit 
spiral could have different lengths, standard practice is for them to be symmetri-
cal. Therefore, the discussion here will focus only on the geometry of the entrance 
spiral.

SPiRal geoMetRy

In some cases, spirals have been avoided because of their computational complex-
ity. But, even though the equations have not changed, modern computers, coordi-
nate geometry routines, and radial surveying techniques have eased the burden of 
using spirals. It is intended for the following to provide a comprehensive compu-
tational algorithm that can be completed using only a simple scientific calculator.  

table 4.2

approximations for π based on area of unit circle

value of n
area of corresponding unit circle  
(to 15 significant digits)

100 3.13952597646567

1,000 3.14157198277948

10,000 3.14159244688129

100,000 3.14159265152271

1,000,000 3.14159265356913

10,000,000 3.14159265358959

Note: Spreadsheet computation: 4 * atan(1) = 3.14159265358979.  
First 20 digits of π: 3.1415926535897932385.
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Admittedly, the formulas given here do not lend themselves to easy longhand solu-
tions but will find ready applications in a spreadsheet solution or computer pro-
gram. The equations presented here will likely be most useful to those writing 
coordinate geometry routines (for computers and/or data collectors).

Symbols for the spiral illustrated in Figure 4.11 are as follows:

α = azimuth of beginning tangent.
TS = station at transition tangent to spiral.
SC = station at transition spiral to circular curve.
L = total length of spiral (L also = SC-TS).
R = radius of circular curve at end of the spiral. 
K = spiral constant = 1 / (2RL).
s = distance along spiral from TS to specified point on spiral.
r = instantaneous radius of spiral at location defined by s.
θ = angular difference between spiral radius vectors at two points. Typically 

one point is at the beginning of the spiral, and the second is any point on the 
spiral at a distance s from the beginning.

x = tangent component of the distance from TS to any point on the spiral.
y = perpendicular distance from the tangent to any point on the spiral. An 

appropriate sign convention is for y to be positive if the spiral curves to the 
right and negative if the spiral curves to the left when standing at TS and 
looking along the tangent adjacent to the spiral.

Equations for computing coordinates of a point on a spiral are given below.
Given:

e1,n1 = local plane coordinates of tangent to spiral, TS

α

E 

N 

R 
= 

in
fin

ity

s

r

s = L
SC

θ 

P(e1, n1)

TS
x y 

R

X 

Y 

Figure 4.11  Spiral Elements and Geometry
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α = local azimuth of straight-line tangent at TS
R = radius of circular curve at the end of the spiral
L = total length of the spiral
s = centerline distance from TS to point on the spiral

Store: constants common to spiral solutions (Libby and Booth, 1973, 8–9).

C1 = 1/3
C2 = –1/10
C3 = –1/42
C4 = 1/216
C5 = 1/1,320
C6 = –1/9,360
C7 = –1/75,600
C8 = 1/685,440

Compute:

 θ = s2 / (2RL) = K s2 (4.38)

 x = s (1 + C2 θ2 + C4 θ4 + C6 θ6 + C8 θ8 + ...)

 = s (1 + θ2 (C2 + θ2 (C4 + θ2 (C6 + C8θ2 )))) (4.39)

 Y = s (C1 θ + C3 θ3 + C5 θ5 + C7 θ7 + ...)

 = s θ (C1 + θ2 (C3 + θ2 (C5 + C7 θ2 ))) (4.40)

Solution: coordinates for a point on a spiral are computed using the COGO for-
ward computation equations 4.8 and 4.9 as follows (sign convention: y is negative for 
spiral to left):

 e2 = e1 + x sin α + y sin (α + 90°)

 = e1 + x sin α + y cos α (4.41)

 n2 = n1 + x cos α + y cos (α + 90°)

 = n1 + x cos α – y sin α  (4.42)

A line parallel to a spiral is not a spiral. But, points on an offset to a spiral, 
(e3, n3), can be computed using equations 4.43 and 4.44. To compute coordinates of 
points lying to the right of the spiral, use a plus offset distance. Points to the left of 
the spiral are computed using the offset distance as a negative value. The azimuth 
of the line (radius vector) perpendicular to the line tangent to the spiral at a point is 
(α + 90° + θ).
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 e3 = e2 ± offset distance * sin (α + 90° + θ) (4.43)

 n3 = n2 ± offset distance * cos (α + 90° + θ) (4.44)

With spiral points and offset line points computed according to equations 4.41, 
4.42, 4.43, and 4.44, those points can be used along with other project points accord-
ing to radial surveying techniques and standard coordinate geometry procedures 
available in most field computers and/or data collectors.

inteRSecting a line with a SPiRal

Computing the intersection of a straight line with a spiral is not encountered very 
often, but there are times it needs to be done. Possible combinations include no 
intersection (trivial), one intersection (covered here), or, in extremely rare cases, two 
intersections. This section, as mentioned, looks at the single intersection case. As 
shown in Figure 4.12, the key to finding the solution is determining a correct value 
of s, the distance from the TS along the spiral centerline to the intersection. Once 
the value of s is known, the x and y spiral components are computed according to 
equations 4.39 and 4.40. Then the e and n coordinates of the intersection point are 
computed using equations 4.41 and 4.42. The value of s is determined using an itera-
tive process.

Given:

e1,n1 = local plane coordinates of tangent to spiral, TS
α = local azimuth of straight-line tangent at TS
e2,n2 = local plane coordinates of any point on line
β = local azimuth from point on line to spiral intersection
R = radius of circular curve at the end of the spiral
L = total length of the spiral
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Figure 4.12  Spiral Intersection Elements and Geometry
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Compute:

K = 1 / (2RL).
M = line-line intersection distance along original tangent. Use equation 4.14 

and distance d1 as M. M does not change.
s1 = value of M. The value of s will be improved.

Iterate: Start with i = 1, and continue incrementing i by 1 until tolerance is met.

θi = angle (in radians) to initial trial point on spiral = Ksi
2.

xi = trial distance along spiral tangent—see equation 4.30.
yi = trial distance perpendicular to spiral tangent—see equation 4.31.
Ni = check distance; Ni = xi + yi cot (α – β).
Tol = absolute value |M – N|. Is it small enough? If yes, quit.

If not:

 Δsi = correction to Δs s
M N

i

=
− −

− +

( )sin( )
sin( )

α β

α β θ

 si+1 = si + Δsi (Δ si should get smaller and smaller.)

Increment i by 1.
Return to beginning of iteration using new value of i.

Solution: When the tolerance is met, si is the correct value.

The values of xi and yi have already been computed.
Use equations 4.41 and 4.42 to compute e and n at intersection.

As a final check, inverse from e2 and n2 to e and y. The computed direction 
should be the same as β.

coMPuting aRea adjacent to a SPiRal

If a spiral is part of a boundary, computing the area adjacent to a spiral becomes 
an issue. The method presented here allows the user to compute the area between 
the original tangent and the spiral to any precision desired by choosing smaller and 
smaller increments of Δs and accumulating the area by numerical integration. With-
out a computer programmed to perform the repetitive calculations, the method loses 
its practicality. As shown in Figure 4.13, the area is accumulated from numerous 
trapezoids formed by the original tangent and perpendicular lines to the spiral. The 
separation of construction lines perpendicular to the tangent is not constant, but is 
determined by equal values of Δs on the spiral centerline.

Given:
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R = radius of circular curve 
at end of spiral
L = total length of spiral
s = L or some portion 
thereof

Find: area bounded by 
original tangent and spiral up to 
distance s.

Solution:

K = 1/(2RL). Spiral 
constant.

Δs = increment chosen by user. Δs = s/n. User chooses n.
s0 = 0.0.
x0 = 0.0.
y0 = 0.0.

Loop: for i = 1 to n:

si = distance to point i. si = si–1 + Δs.
θi = Ksi

2. Angle in radians to point on spiral.
xi = tangent component distance to point on spiral. See equation 4.39.
yi = perpendicular distance tangent to spiral. See equation 4.40.

End of loop.
Area by trapezoids:

 2 area = (x1 – x0)(y1 + y0) + (x2 – x1)(y2 + y1) …

 + (xn – xn–1)(yn + yn–1)

which, after considerable algebraic manipulation, reduces to

2 area = x y x y x y x y x y xn n n2 1 1 2 3 2 2 3 1 1− + − + −− −....        yy x yn n n+  (4.45)

Or, the area adjacent to a spiral can also be written as

 

2 1
2

1
2

A x y x y x yi i
i

n

i i n n
i

n

= − +−

=

−

=
∑ ∑  (4.46)
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Figure 4.13  Area Adjacent to a Spiral
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radIal surveyInG

The following discussion relates specifically to conventional total station surveying 
procedures, but it is also somewhat applicable to using GPS equipment and proce-
dures. Radial surveying is a term used to describe the practice of measuring an angle 
and distance from a known point to tie in another point (determine coordinates for 
its location) or for setting out a point at a predetermined location. The procedures 
are well defined and simple to perform, but they have the disadvantage of no redun-
dancy. If a blunder is made in measuring the angle, reading the distance, or setting 
up over the wrong point, there is no built-in check. One way to check the position 
of such open sideshots is to set up over a different point, tie in all sideshot points 
a second time, and compare the results. Another method is to measure (say, with a 
steel tape) distances between the surveyed points. The inverse distance in each case 
should compare favorably with the taped distance. Lack of expected consistency in 
the results using either technique is an indication of a blunder or uncontrolled errors. 
A high degree of consistency in such checks is an indication, but not a guarantee, 
that there are no blunders and that random and systematic errors have been con-
trolled at an acceptable level. Given that many production measurements may be 
checked in this manner, it must be understood that such checks are a poor substitute 
for carefully designed redundant measurements.

Radial surveying methods can be accomplished using various equipment combi-
nations, but they are ideally suited for the modern total station instrument connected 
with a data collector. Radial surveying techniques are also suited for the one-person 
crew using a robotic total station. Each point is identified by number in the data file, 
and instructions are given to the instrument in terms of commands, point numbers, 
and, in some cases, attributes. If collecting data for a topographic site plan, the point 
numbers may be assigned sequentially by default. In the layout mode, the operator 
specifies the points to be used or staked in any order desired. In either case (col-
lecting data or laying out points), both the point occupied by the instrument and the 
backsight point must be specified by the user.

Radial surveying has two primary advantages:
The geometry of points to be staked may involve curves, spirals, offsets, or other 
complex geometrical relationships, but, in the field, the solution boils down to 
an angle from a known backsight and a distance from the instrument.
Decisions about which point to occupy with the instrument and which point 
to use as a backsight can be deferred to the responsible person in the field. 
Intervisibility between points is essential for line-of-sight equipment, but, 
whether tying in points or staking locations, the logistical operations are 
made easier by the flexibility of the method.

When performing radial stakeout, the computations are performed by computer, 
and details are rarely of concern to the end user. However, should it be necessary, 
for whatever reason, to perform the angle-right/distance computations by hand, the 
following procedure as illustrated in Figure 4.14 may be helpful. The conventional 
procedure is to perform two separate inverse computations and to use the two com-

•

•
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puted azimuths to find the appropriate angle-right. Using a trigonometric identity, 
the procedure can be shortened and done directly on any scientific calculator.

The following procedure is moot if using GPS to stake out points. If using a total 
station for layout, three points are required to perform an angle-right/distance lay-
out computation: the standpoint, a backsight, and the forepoint. The solution is the 
angle-right (at the standpoint) from the backsight to the forepoint and the distance 
from the standpoint to the forepoint.

Symbols:

eB, nB = backsight coordinates
e1, n1 = standpoint coordinates
e2, n2 = foresight coordinates
α = azimuth from backsight to standpoint
β = azimuth from standpoint to forepoint
γ = deflection angle, β – α
θ = angle-right, γ + 180°
D1 = distance backsight to standpoint
D2 = distance standpoint to forepoint

Trigonometric identity:

 
tan tan tan

tan tan
(B - A) = B - A

1+ A BB
 (4.47)

Compute:
 Δe1 = e1 – eB, Δe2 = e2 – e1

 Δn1 = n1 – nB, Δn2 = n2 – n1

 tan α = Δe1/Δn1, tan β = Δe2/Δn2

 D1 = √(Δe1² + Δn1²), D2 = √(Δe2² + Δn2²)

N 

E

P(eb, nb)

P (e1, n1)

P(e2, n2)

α 

β γ 

θ 

D1 D2

Figure 4.14  Angle-Right on a Radial Stakeout
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Solution (first find deflection angle, then angle-right):

 
tan tan
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 (4.48)

Angle right = θ = γ + 180° (subtract 360° if required) (4.49)

Notes:

 1. The distance D1 is not needed, but can be used to check distance to backsight.
 2. Equation 4.48 can be solved using the rectangular/polar key of a scientific 

calculator by inputting the numerator and denominator separately. The result 
will be the deflection angle (add 180° for angle-right) and distance D2.

 3. If programming equation 4.48, include provision for a zero denominator. 
(Most arctan2 functions will accommodate a zero denominator.) If the 
denominator is zero, the angle-right is 90° or –90° (270°).

 4. Angle-right can also be computed by taking the difference of two azimuths 
as obtained from separate coordinate inverse computations; see equations 
4.11, 4.12, and 4.13.

vertIcal curves

The coordinate geometry tools discussed so far have looked at lines, curves, and 
spirals in the horizontal plane. This section looks at the use of a parabolic equation 
in the vertical plane (profile) as used to provide gradual changes in grade on a road, 
street, or highway. Commonly called a vertical curve, the parabolic equation is one 
of the conic sections and is obtained from the general polynomial equation (equation 
3.8) by setting the B and C coefficients equal to zero. The result is an equation of the 
general form

 y = ax2 + bx + c (4.50)

The grade (slope) of most highways is gradual and expressed in percent. A 2 
percent grade means a uniform rise of 2 feet vertically for each station (100 feet). A 
–4 percent slope means a uniform drop of 4 feet per station. Sight distances across 
the crest of a hill and passenger comfort for those traveling on high-speed interstate 
roadways are related to the rate of change of grade when making a transition from 
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one grade to another. This rate of change of grade per station is a design parameter 
that varies according to intended use of the travel way.

Symbols used in equation 4.52 and Figure 4.15 are as follows:

PVI = point of vertical intersection.
PVC = point of vertical curvature (also called the BVC, or beginning of verti-

cal curve).
PVT = point of vertical tangency (also called the EVC, or end of vertical curve).
L = length of vertical curve computed as difference in stationing (station at 

EVC – station at BVC; L is a horizontal distance).
G1 = grade of roadway along the centerline coming into the vertical curve.
G2 = grade of roadway along the centerline leaving the vertical curve.
y = elevation of point on the vertical curve at station XXX+XX.
x = distance of station XXX+XX from PVC. 0 ≤ x ≤ L.
r = rate of grade per station = (G2 – G1) / L, grade in percentage and L in stations.

Notes about derivation and the solution of vertical curve problems:

 1. The first derivative of the parabolic equation is the slope of the tangent to 
the curve at that point.

 2. The slope of the curve is zero at the high point (summit) or low point (sag) 
of the curve.

 3. The slope of the curve is G1 at BVC (@ x = 0) and G2 at EVC (x = L).
 4. The vertical curve is symmetrical with respect to length. That is, the PVI 

is halfway between the BVC and the EVC. That’s why it is called an equal 
tangent length vertical curve. Note: unequal tangent length vertical curves 
are solved by establishing secondary PVI’s at the midpoints of the BVC to 
PVI and PVI to EVC and treating the result as two abutting equal tangent 
length vertical curves.

 5. Units: two consistent practices will each give good results. Mixing the two 
conventions may result in bad answers and lots of frustration. And, be care-
ful with using metric stationing.

L
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Elevation
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Figure 4.15  Vertical Curve Geometry
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108 The 3-D Global Spatial Data Model

 A. Grade expressed as slope (2 percent = 0.02) is consistent with the x 
distance used as feet or meters.

 B. Grade expressed as a percentage is consistent with x used in stations.

The a, b, and c coefficients must be found before equation 4.50 can be used to 
solve for elevations at each station. Note that at x = 0, the first two terms of equation 
4.50 drop out, leaving c = elevation of vertical curve at BVC (x = 0). To find coef-
ficients a and b, we need to take the derivative of equation 4.50 as

 dy/dx = 2ax + b

At x = 0, the slope is G1 and dy/dx = b. Therefore, b = G1.
At x = L, the slope is G2 and dy/dx = 2ax + G1. Therefore, a = (G2 – G1)/(2L).

And, finally, if the first derivative is set to 0, we have an expression that can be 
solved for x, the distance from the BVC to the high point or low point of the vertical 
curve. Using the values of a and b, as found above.

 

0 2
2

2 1
1

1

1 2

=
−

+ → =
−

* *x
G G

L
G x

G L
G G  (4.51)

Note that if equation 4.51 gives a value of x less than zero or greater than L, it 
means there is no sag or summit between the BVC and EVC. That will happen if both 
grades are positive or if both grades are negative. In that case, the highest point or the 
lowest point (not the sag or the summit) will be at either the BVC or EVC.

The vertical curve equation is

 
y  =  (G  - G )

 L
 x  + G  x + Elev@BVC2 1 2

12
 (4.52)

Example: compute elevations at each station and half-station (every 50 feet) for 
the following vertical curve. Find the station and elevation at the low point (sag).

PVI station = 172+00
elevation @ PVI = 2,300.00 feet
length of curve = 400.00 feet
G1 and G2 = –4 percent and 1 percent, respectively

Solution:

 1. Find BVC station and elevation:

 station at BVC = station at PVI – L/2  = 170+00

 elevation at BVC = elevation @ PVI – L/2 * G1 = 2,308.00 feet
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 2. Find EVC station and elevation:

 station at EVC = station at PVI + L/2 = 174+00 (also same as BVC + L)

 elevation at EVC = elevation at PVI + L/2 * G2 = 2,302.00 feet

 3. Find station of low point:

x (low) = G1*L/(G1 – G2) = 320 feet; station = 173+20

 4. Find coefficients a and b:

 a = (G22 – G1) / (2L) = (0.01 – 0.04) / 800 = 0.000062500

b = G1 = –0.04

 5. Use equation 4.43 to find each elevation as follows:

station x Elevation station x Elevation

170+00 0 2,308.00’ 170+50 50’ 2,306.16’

171+00 100’ 2,304.63’ 171+50 150’ 2,303.41’

172+00 200’ 2,302.50’ 172+50 250’ 2,301.91’

173+00 300’ 2,301.63’ 173+50 350’ 2,301.66’

174+00 400’ 2,302.00’

173+20 320’ 2,301.60’

low point of vertical curve

tHree-dImensIonal models for sPatIal data

So far, this chapter has looked specifically at COGO models used for routine 2-D 
computations. More complex models include three dimensions (3-D) and are needed 
to compute volumes. Several fundamental examples are given below.

voluMe of RectangulaR Solid

Perhaps the easiest volume to find is that of a rectangular solid computed as length * 
width * height. The same concept will be used along with tools of integral calculus 
to compute the volume of other shapes.

voluMe of a SPheRe

To compute the volume of a sphere, an elemental surface area (length * width) is 
multiplied by an elemental increment of radius (height). The elemental surface area, 
as shown in Figure 4.16, is R dφ in the north-south direction and R cos φ dλ in the 
east-west direction. The surface area of a sphere in terms of the radius is obtained by 
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performing a double integration on variables of longitude, 0 to 2π, and latitude, –π to 
π (radian units). Surface area on a sphere bounded by latitude/longitude limits is

 dA R d R d=     φ φ λcos

 

Surface area on a sphere        = R d d2 cosφ φ λ
φφ

φ

λ

λ

1

2

1

2

∫∫
 (4.53)

To obtain total surface area, choose limits (in radians) of λ = 0 to 2π and φ = –π 
to π. Then total surface area is computed as

A R d d R d RSphere = = = − −2 2 22 2 2cos cos (φ φ λ π φ φ π ππ π

π
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R R2 2
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Building on that, the volume of a sphere as illustrated in Figure 4.16 is computed as

 dV dA dR R d d dR= =* cos2 φ λ φ   

Volume of a Sphere    
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R d dR2
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π

π
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 (4.54)

voluMe of a cone

The (truncated) cone is another fundamental shape for which volume needs to be 
computed. For surveyors and engineers, it often comes disguised as the prismoidal 
formula for computing earthwork volumes. Referring to Figure 4.17a, calculus is 

dA

R cos     dλ

R 
d

dR

Figure 4.16  Volume of a Sphere
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also used to compute the volume of the cone shown as a cross-section area (a circle) 
times a differential height. For the cone shown, there is a linear relationship between 
the height and the radius at that height. Note: at h = 0, R = 0; and at h = h, R = kh. The 
volume of the cone is computed as

 

d V = area* d h = R

V =

dh k h dh

k h

π π

π

2 2 2

2

=

22

0
3 3

2

dh
b

= k h =
R h∫ π π2 3

 (4.55)

Note that there is no requirement that the cone axis be at a right angle to the base. 
In Figure 4.17b, the volume of the cone is still computed as the area of the base times 
the height measured perpendicular to the base.

PRiSMoidal foRMula

Often earthwork volumes on road or highway construction are computed using the 
average-end-area method, where volume of a given section is computed as the sec-
tion length times the mean of the cross-sectional areas at the two ends. It is a good 
approximation, but based on a false assumption. The average-end-area method 
assumes that area varies linearly from one cross section to another. As will be 
shown using the example of the cone, the radius may vary linearly, but the cross-
sectional area varies exponentially. Consider the two-station length, as illustrated in 
Figure 4.18. The shape is that of a cone for which volume can be computed without 
approximation. The volume contained between sections C and E in Figure 4.18 is the 
difference of the cone AE minus the cone AC. Given that the radius varies linearly 
from A to E, the area at each cross section is computed accordingly.

R

h

R

h

(a) (b) 

Figure 4.17  Volume of a Cone
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The total AE cone volume is

 
V =

R L
=

R L(π 2 2
3

8
3

2 2)
 (4.56)

The volume of the small AC cone is

 
V =

R Lπ 2

3

The volume of the remaining CE interval is the difference and is computed as

 
V =

R L
-

R L
=

L
R

28
3 3 6

14
π π

π
2 2

( )  (4.57)

But, note that the cross-sectional areas at sections C, D, and E are as follows:

Cross-sectional area at C = π R2

Cross-sectional area at D = π (3R/2)2 = 9 π R2 / 4
Cross-sectional area at E = π (2R)2 = 4 π R2

For the volume CE, consider section C to be the beginning, section D to be the 
middle, and section E to be the end. The prismoidal formula as derived by others 
computes prism volume as L/6 * (beginning cross-sectional area + 4 * cross-sec-
tional area at midpoint + ending cross-sectional area) or, using the labeling on our 
example:

2R
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2 

Figure 4.18  Derivation of Prismoidal Formula
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Note that the results of equations 4.57 and 4.58 are identical. In a backhanded 
way, we have just derived the prismoidal formula.

The average-end-area method remains an excellent approximation in many 
cases. Most of the time, “fluffing” will increase the volume of excavated material, 
or loss of volume by subsequent compaction will far exceed the error caused by 
not using the prismoidal method. Lack of good cross-sectional data may also be a 
contributing factor to inaccuracies in computed earthwork volumes. But, the fact 
remains that the average-end-area method is based upon a false assumption, and it is 
left up to the user to judge if or when the prismoidal formula should be used instead 
of the average-end-area method.

tRaditional 3-d SPatial data ModelS

The volume computations just considered are 3-D, but they really don’t address the 
larger (global) issues facing spatial data users. Expanding attention from the local 
2-D and 3-D considerations, traditional spatial data models include a variety of 2-D 
and 3-D options. Some are more complex than others. Examples along with various 
measurement units include the following:

Flat-Earth model used for local mapping, site development, and plane 
surveying

 1. Units as selected by the user.
 2. Two-dimensional X/Y (or northing/easting) tangent plane coordinates.
 3. In the third dimension:
 A. Surveyors and engineers use profiles to show grades in terms of 

centerline stationing and elevation.
 B. Architects show elevation perspectives.
 C. Mappers use hachures and contour lines.

Spherical Earth model used in geography and navigation
 1. Mixed-mode units: sexagesimal for horizontal, length for vertical
 2. Two-dimensional curvilinear spherical Earth latitude/longitude 

positions
 3. Third dimension is elevation or altitude in terms of length units

Ellipsoidal Earth model used in geodesy, cartography, and geophysics
 1. Mixed-mode units: sexagesimal for horizontal, meters for vertical
 2. Two-dimensional curvilinear ellipsoidal Earth latitude/longitude 

positions
 3. Third dimension based upon
 A. distance from geoid, orthometric height
 B. distance from ellipsoid, ellipsoid height

Map projection (state plane) spatial data model

•

•

•

•
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114 The 3-D Global Spatial Data Model

 1. Units are 2-D grid distances; true distances are distorted.
 2. North American Datum—1927: X/Y coordinates are U.S. Survey Feet.
 3. North American Datum—1983: N/E coordinates, units vary by state.
 A. NGS publishes meters in all state plane coordinate zones.
 B. Plus, some state statutes specify use of U.S. Survey Feet.
 C. Also, some state statutes specify use of International Feet.
  4. Elevation, although referenced to a curved surface (approximately mean 

sea level), is typically given by the Z coordinate value.

the 3-d gSdM

Of the models listed, the state plane coordinate system model is called pseudo 3-D 
because the third dimension is referenced to a nonregular curved surface. In spite of 
that deficiency, state plane coordinates combined with elevation data have been ben-
eficially used in many applications. But, the fact remains that when performing 3-D 
computations using state plane coordinates and elevation, equations of solid geom-
etry and vector algebra are valid only to the extent one can assume a flat Earth.

The most appropriate model is often taken to be a rectangular Cartesian coor-
dinate system that defines location of a point as being the perpendicular distances 
from mutually orthogonal axes. Such a model is simple and, to the extent the Earth 
is flat, appropriate. This chapter includes extensive discussions of 2-D COGO in the 
contexts encountered by many spatial data users. But spatial data are 3-D, and spatial 
data users need simple, standard, and reliable tools and methodology for handling 
3-D spatial data. This last section identifies the standard historical methods and 
coordinate systems that have been used for 3-D data.

Many will choose to use spherical geographic coordinates of latitude/longitude. 
Others will choose to use the more precise geodetic version of latitude/longitude 
based upon an ellipsoidal Earth. That choice is related to whether or not one antici-
pates that a spherical model is sufficiently accurate or whether one needs to use the 
ellipsoidal Earth model to preserve the geometrical integrity of the data being used. 
In either case, a study of geodesy supports an understanding of the underlying foun-
dation of each model.

The goal of this book is to highlight features and characteristics of the 3-D 
GSDM that accommodate existing models, modern measurement technology, digital 
data storage, and spatial data manipulation practices common to various disciplines. 
But, before the 2-D concepts as discussed here are extended to 3-D, it is appropriate 
to consider geodesy and other 3-D relationships of spatial data.
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5 Overview of Geodesy

IntroductIon

Geodesy is geomatics and geomatics is geodesy. Well, not really. Geomatics is a 
fairly new umbrella term being used to describe both a body of knowledge and the 
scope of professional activities having to do with the generation, manipulation, stor-
age, and use of spatial data. In a nonexclusive way, geomatics includes traditional 
disciplines such as surveying, mapping, geodesy, and photogrammetry. It also over-
laps with other newer disciplines such as remote sensing, imaging, and information 
sciences. Of all such disciplines, geodesy provides the geometrical foundation for 
the rest. A literal meaning of the word geodesy is “dividing the Earth,” and geodesy, 
as a discipline of inquiry, has been concerned with learning more about the size and 
shape of the Earth since the dawn of civilization.

The scope of geodesy includes both science and art and involves much more 
content than is summarized here. Without being restricted to either category, the 
science of geodesy includes issues such as (1) determining the size and shape of the 
Earth, (2) defining and quantifying the Earth’s gravity field, and (3) defining refer-
ence systems and coordinate frames. The art and practice of geodesy include using 
scientific data and various measuring systems to determine the location of points 
with respect to a defined geodetic framework. The point here is less about classifying 
an activity as being science or art but more about recognizing a mutual interdepen-
dence between the two.

FIelds oF Geodesy

Distinctions between the fields of geodesy are largely artificial and should not limit 
one’s consideration. But historically the following categories have been used:

Geometrical geodesy encompasses the 3-D geometrical elements of the ellip-
soidal model of the Earth and the location of points relative to that model. 
Traditional geometrical geodesy includes separate horizontal and vertical 
datums, while modern practice combines them into a single 3-D database.
Physical geodesy involves the study of gravity and considers issues such as 
the distribution of mass within the Earth, the Earth’s external gravity field, 
equipotential surfaces, and the cause-and-effect relationships between 
them (as evidenced for example by the behavior of a pendulum, the path of 
artificial satellites, and the shape of the geoid).
Satellite geodesy deals with the trajectory of missiles in flight and satellites 
orbiting the Earth. It also includes processing signals received from various 
orbiting satellites for the purpose of determining the location and/or move-
ment of the receiver.

•

•

•

63014_C005.indd   117 3/4/08   12:12:25 PM



118 The 3-D Global Spatial Data Model

Geodetic astronomy has been used extensively to compute positions and 
directions on the Earth based upon optical (and radio) observations of stars 
in the sky. With the advent of GPS surveying, geodetic astronomy has lost 
much of the relevance it once enjoyed.

Given the development of computers and the convergence of other electronic 
technologies, this book considers how geometrical geodesy supports GIS and spatial 
data referencing, how physical geodesy relates to geoid modeling and computation 
of elevations, and how satellite geodesy contributes to an understanding of GPS 
surveying and the use of GPS data. The GSDM incorporates concepts from various 
fields of geodesy as needed to support development of a comprehensive model for 
location and spatial referencing.

Goals oF Geodesy

Traditional goals of geodesy include determining the size and shape of the Earth, 
describing the gravity field associated with the Earth, and providing a means of 
locating points on or near the Earth’s surface. Geodetic scientists have defined refer-
ence frames and coordinate systems used for referencing spatial data and have deter-
mined both the size and shape of the Earth within impressive tolerances. They have 
also developed sophisticated geoid modeling procedures that can be used to compute 
both the shape of the geoid and, to a lesser extent, its precise location. Given those 
definitions and tools, geodetic surveyors and others, using GPS and other positioning 
technologies, are busy collecting, processing, and using spatial data to determine the 
location of points and to document the movement of objects on or near the Earth. 
Based upon what is being accomplished, it could be argued that the traditional goals 
of geodesy have been met.

The goals of modern geodesy are certainly more comprehensive than the tradi-
tional ones summarized here. Two publications by the National Research Council 
(NRC; 1978, 1990) contain an informative overview of the field of geodesy and 
a description of future challenges and applications. With the advent of computers, 
satellites, and other modern technology, the fundamental goals of geodesy are being 
extended to the oceans, the moon, and the planets. With respect to geodetic net-
works, the 1978 NRC report states, “The ultimate goal is a global geodetic system 
providing horizontal and vertical, or three dimensional, coordinates for national and 
international mapping and charting programs with the confidence that there will be 
no inconsistencies between the networks produced by individual countries.” The 
ECEF system implemented by the DOD for the GPS lays the foundation for meeting 
that goal. The GSDM described in this book builds on that foundation.

Although the overall perspective of the 1978 NRC report is excellent, its “crys-
tal-ball” view didn’t really anticipate the enormous impact of the digital revolution 
and makes little mention of the challenges associated with systematically describing 
spatial data accuracy. The final chapter of the 1978 report discusses future commit-
tee activities and includes seven specific important questions. Even though today’s 
view enjoys the luxury of twenty-plus years of hindsight, those questions remain 

•
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pertinent and should be considered carefully by anyone attempting to articulate the 
goals of modern geodesy.

The National Research Council also published a follow-up study (NRC 1990) 
entitled Geodesy in the Year 2000. Published only twelve years after the previous 
study, the 1990 report is much more upbeat about the role of geodesy and begins by 
noting, “We stand on the threshold of a technological revolution in geodesy. With 
the introduction of space-based observational techniques over the past two decades, 
geodesy has undergone and continues to undergo profound changes.” The preface 
of the 1990 report declares, “Geodesy is becoming a truly global science.… And, 
since the earth’s topography and gravity field are continuous across all political and 
geographic boundaries, mapping them requires careful integration of data collected 
by various survey techniques in different countries and physiographic regions.”

The 1990 NRC report also discusses, among others, how geodesy will use gravity 
and precise measurements to provide a broader understanding of earthquakes with 
the idea of better predicting their occurrence and helping to mitigate their impact. 
And, it discusses the importance of oceanographic research with particular focus on 
the need for accurate measurements of the geoid and sea-level surface. But, the report 
also details the need for measurements to show space-time departures from average 
plate motions predicted by the global rigid-body motion models. The importance of 
spatial data accuracy is not ignored, but the report fails to anticipate the need for and 
benefits of using a universal, concise, rigorous stochastic model for spatial data. The 
report does include five specific recommendations for priorities to “be established in 
support of scientific and technological opportunities in geodesy for the year 2000.” 
Of the five recommendations, number 3 states, “A global topographic data set should 
be acquired with a vertical accuracy of about 1 m, at a horizontal resolution of about 
100 m.” The “Overview and Recommendations” section closes with the statement, 
“These data [measurements] would also support establishment and maintenance of 
a conventional terrestrial coordinate system, which is necessary for comparison of 
results obtained by different space geodetic technologies.”

Since 1990, various agencies and organizations have collected an enormous 
amount of geospatial data, and former Vice President Al Gore (1998) noted in a 
speech given in January 1998 at the California Science Center in Los Angeles, “The 
hard part of taking advantage of this flood of geospatial information will be mak-
ing sense of it—turning raw data into understandable information.” The National 
Spatial Data Infrastructure (NSDI) concept was developed to meet that challenge, 
and conceptualizers of the NSDI deserve credit for the help it provides. However, at 
a more fundamental level, the GSDM provides an underlying definition of spatial 
data and its accuracy. While the NSDI provides technical, organizational, and opera-
tional guidelines for using spatial data, the GSDM provides a specific definition of 
3-D geometrical relationships and spatial data accuracy. In the rectangular ECEF 
environment, the rules of solid geometry and vector algebra are universal through-
out, and the rules of error propagation can be applied without ambiguity. Issues of 
data compatibility and interoperability are handled efficiently in the context of the 
GSDM. From there, derived uses of spatial data are the prerogative of each user. 
Using the NSDI and GSDM in concert will be more efficient than using them sepa-
rately. Implementation of an integrated model will not occur immediately, but, in the 
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long run, their combined use will help address the challenge of making sense of the 
enormous quantities of spatial data being collected.

In the meantime, various initiatives (federal and otherwise) are addressing those 
challenges in, shall we say, a fragmented manner. Of the many that could be cited, a 
partial list of organizations, efforts, and relevant web addresses follows.

 1. Former President Bill Clinton’s 1994 Executive Order establishing the 
National Spatial Data Infrastructure (NSDI). See http://www.presidency.
ucsb.edu/ws/index.php?pid=49945.

 2. Former Vice President Al Gore’s 1998 speech “The Digital Earth: Under-
standing Our Planet in the 21st Century.” See http://www.isde5.org/al_
gore_speech.htm.

 3. Federal Geographic Data Committee: Coordinates the development of 
NSDI and develops standards for meta data (data about data). See http://
www.fgdc.gov/metadata/—follow links to “standards” and “publications.”

 4. The Bureau of Land Management (BLM) and U.S. Forest Service, “National 
Integrated Land System (NILS),” is an effort to establish a common data 
model and software tools for collecting, processing, managing, and using 
spatial data. See http://www.blm.gov/wo/st/en/prog/more/nils.html

 5. The Global Spatial Data Infrastructure (GSDI) “is an advocacy group pro-
moting standards and policies for globally-compatible geo-spatial informa-
tion standards and policies.” See http://www.gsdi.org.

 6. The Open GIS Consortium is a not-for-profit membership organization 
founded in 1994 to address the lack of interoperability among systems 
that process georeferenced data. Their motto is “Spatial connectivity for a 
changing world.” See http://www.opengeospatial.org.

Note that the links listed were valid prior to publication of this book. If a link fails, use a 
search engine and relevant key words to find the web page containing the information.

Modern geodesy will certainly continue making contributions to the challenges 
of making sense of spatial data. But, the scope of geodesy includes much more than 
that. A statement of the goals for modern geodesy is left to the geodesists and other 
scientists. For example, the International Association of Geodesy (http://www.iag-
aig.org) meets periodically and publishes proceedings of their meetings. The current 
series of publications includes volumes 101–128, the latter entitled, “A Window on 
the Future of Geodesy,” the proceedings of the IAG General Assembly meeting in 
Sapporo, Japan, 30 June–11 July 2003.

Recent research and development activities have produced efficient reliable posi-
tioning tools that can be used to solve almost any location problem. And, it is a 
self-feeding cycle in that more tools and better tools are used by people who dream 
up even more applications. In turn, they develop even more elaborate tools. Modern 
society owes much to geodesy, including both the geodetic scientists and the practi-
tioners. But, the collective appetite of modern society for technical miracles contin-
ues. For example, spatial data users ask for GPS that works under heavy canopy, and 
everyone wants a geoid model that can be used to convert ellipsoid height to reliable 
orthometric heights on a worldwide basis. Although progress and developments are 
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both apparent, it is beyond the vision of this author to articulate goals for such a 
diverse discipline.

Prior to the twenty-first century, geometrical geodesy activities were generally 
separated into considerations of horizontal and vertical. The primary reference for 
horizontal location was a geodetic datum of latitude/longitude positions monumented 
at points on the Earth’s surface. Elevation, the third dimension, was referenced to the 
geoid (or to an arbitrary level surface) according to a named vertical datum. Although 
horizontal and vertical datums both enjoy concise physical definition, they are incom-
patible in that there is no unambiguous geometrical relationship between mean sea 
level and the center of mass of the Earth. So, before goals of defining the size and 
shape of the Earth and locating points on or near the Earth’s surface can be mutually 
fulfilled, the incompatibility of horizontal and vertical datums must be resolved. In 
place of two datums having separate reference points, a combined 3-D datum having 
a single origin is required. The implication of a single origin is that elevation will be a 
derived quantity instead of an observed quantity. If spatial data are attached to a well-
defined reference frame such as the North American Datum of 1983 (NAD83) or a 
named epoch of the ITRF, the GSDM provides a computational environment that has 
geometrical consistency for any and all points within the birdcage of orbiting GPS 
satellites. More details are given in chapter 7, “Geodetic Datums.”

The shift to using a 3-D datum and a single origin for spatial data may be analo-
gous to the way time is measured and the need for the equation-of-time. John Flam-
steed was the first royal astronomer of the Greenwich Observatory, which was built 
in 1675. The Greeks recognized the existence of the equation-of-time nearly 2,000 
years earlier, but it was not until reliable clocks were available and Flamsteed made 
the necessary observations that the equation-of-time was quantified. Even with the 
equation-of-time known, most people still reckoned time from the sun’s meridian 
transit at noon each day, and each railroad station had its own version of the correct 
time. In the United States the problem was solved in 1883 by adopting a system of 
standard time zones as devised by Charles F. Dowd of Saratoga Springs, New York 
(Howse 1980). The system was adopted for use worldwide at the International Merid-
ian Conference in Washington, D.C., in 1884, and Greenwich Mean Time became 
the world standard. Now, most peoples of the world take standard time for granted, 
but, for scientific purposes, the equation-of-time and other time-scale differences are 
known, documented, and used by those for whom the difference matters.

Sea level is an intuitive physical reference for elevation and locally serves very 
well. But, on a global basis, locating the geoid precisely remains a challenge and will 
be the subject of research for years to come. Even in the United States, where geoid 
modeling has progressed dramatically in the past twenty years, spatial data users 
remain dissatisfied when absolute geoid heights are not reliable at the millimeter or 
centimeter level. Are elevations being done backward? Using time as an analogy, 
the way elevations are currently determined is like observing the instant the sun 
crosses the local meridian and re-setting the watch to 12:00:00 noon. Standard time 
is then found by applying an equation-of-time model to the recently observed solar 
time. No, current practice is to use standard time routinely, and the fact that the sun 
crosses the meridian before or after noon is of little consequence to most persons. 
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Formal arguments for using ellipsoid height for elevation are given in Burkholder 
(2002, 2006).

Reversing the process with regard to elevations means that ellipsoid height will 
be used routinely and that geoid height will be used to find orthometric height when 
needed (this part is already being done—see Meyer, Roman, and Zilkoski 2004). 
Making that change will involve some or all of the following:

 1. The word “elevation” connotes a meaning for most people that should not 
be taken away. World Vertical Datum of XX (WVDXX) is a designation 
that could satisfy most spatial data users. In the United States it could be the 
vertical component of a 3-D datum to be published in 20xx.

 2. Most people will remain oblivious to a change in definition that WVDXX 
elevation is the distance from the reference ellipsoid instead of mean sea 
level. In fact, a change in definition similar to that occurred in 1973, when 
mean sea level datum was renamed as the National Geodetic Vertical 
Datum (NGVD). Admittedly, switching from mean sea level to NGVD was 
a change of name only and did not involve changing any numbers published 
for a benchmark (Zilkoski 1992).

 3. But, to make a clean break, a specific word or phrase is needed. It will be 
similar to switching from the National Geodetic Vertical Datum of 1929 
(NGVD29) to the North American Vertical Datum of 1988 (NAVD88; see 
chapter 7). In that case, the change in datums did involve different numbers 
on each benchmark—due to readjustment. This time, however, the change 
will be due to redefinition of the reference surface to be compatible with using 
a single origin for 3-D spatial data. It will also provide an opportunity to 
update elevations based upon data obtained from recent surveying activities.

 4. With adoption of the WVDXX, elevation will be the distance in meters 
from the reference ellipsoid. Elevation differences obtained from GPS will 
be used without the need for geoid modeling. Elevation differences from 
differential leveling (gravity based) will be used as WVDXX elevation 
differences except in those cases where deflection-of-the-vertical is large 
enough to make a difference at the level of accuracy required on the project. 
Examples include those persons using dynamic heights to compute hydrau-
lic head in the Great Lakes System and physicists who deal with beam 
alignments in particle accelerators. Trigonometric height computations will 
no longer involve curvature of the Earth because that is handled implicitly 
by the GSDM. Vertical refraction of line of sight is still critical and will 
need to be considered where the required accuracy warrants it.

HIstorIcal PersPectIve

Many authors generalize about our collective sense of wonder and our asking ques-
tions about things observed in nature. When did people first question the shape of the 
Earth? Hasn’t it always been flat? Did Columbus (or was it just his crew) really believe 
that they would fall off the edge of the world if they sailed too far west? Civiliza-
tions develop as subsequent generations build on the body of knowledge developed 

63014_C005.indd   122 3/4/08   12:12:28 PM



Overview of Geodesy 123

by their ancestors. Books, libraries, the Internet, and interaction with living profes-
sionals are all revered as storehouses of knowledge, and education is the process of 
drawing from that storehouse to gain a greater understanding of our physical world 
and the actions of humankind.

Religion, Science, and geodeSy

Scholars and philosophers certainly have much more to say about the interaction of 
science and religion, but, for the purposes here, consider the following.

religion

Truth is something that can’t be refuted.
Faith is accepting as true something that can’t be proved.
Perception is an understanding based upon experience and evidence available. 
A person with normal eyesight perceives an elephant differently than those 
blind persons who base their perception only on touching various parts.
Reality is based upon a collective evaluation of all the evidence, at least all 
that shared by others. An unsettling realization is that one can never be sure 
one has all the evidence. None of us really knows what it is we don’t know.
Belief is a conviction one holds based upon experience, training, education, 
inquiry, and insight. One of the fundamental tenets of democracy is that 
each person is individually responsible for what he or she believes as well as 
subsequent decisions and actions. It is impossible to force anyone to believe 
something. He or she can only be invited to consider the evidence.
Dogma is characterized by a refusal to consider new or additional evidence: 
“My mind is made up. Do not confuse me with the facts.”

science

Science can be defined as the systematic arrangement of knowledge in a 
logical order in which conclusions are consistent with beginning assump-
tions and subsequent observations.

 1. Physical science is concerned with physical matter, forces, and 
objects.

 2. Social science deals with the reasons for and consequences of decisions 
and actions made by humans (and other life forms).

Whether physical or social, science is also categorized according to method 
of inquiry: theoretical or applied.

 1. Theoretical (also called pure) scientific research is conducted for the 
expressed purpose of gaining a better understanding of the matter, 
objects, or process of inquiry.

 2. Applied science (also called engineering) is conducted for the purpose 
of finding or documenting that arrangement of elements or sequence of 
events that will produce a desired outcome.

•
•
•

•

•

•

•

•
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The historical development of geodesy could be written as a story of the devel-
opment of science. Over the centuries many learned persons have contributed to 
a better understanding of the size and shape of the world, and people living today 
have the luxury of sharing innumerable triumphs of the human spirit. Measurements 
were made in the physical world and dutifully recorded. Observations were checked 
against prevailing thought and accepted, challenged, or ignored. Where warranted, 
old models were cast aside and new models were proposed and tested. In hindsight 
we can see where progress was made and where progress was thwarted for various 
reasons (often having to do with prevailing religious attitudes). Russell (1959) states 
that one of the most difficult accomplishments for a person is to hold an idea with 
conviction and detachment at the same time. With regard to the development of sci-
ence, that story undoubtedly has a thousand variations. Alder (2002), Bell (1937),  
Berthon and Robinson (1991), Carta (1962), Sobel (1999), Smith (1986, 1999), and 
Wilford (1981) relate some of them. Many such stories are related to geodesy, and 
only a few of them are summarized here.

Learned persons have known since before the time of Christ that the Earth is 
spherical. Pythagoras (born 582 b.c.) declared the Earth to be a globe. Aristotle 
(384–322 b.c.), upon viewing the Earth’s shadow cast upon the moon during an 
eclipse, concluded the Earth must be spherical. Others pointed out that a curved 
Earth is apparent from watching the arrival of a ship at port because the top of the 
sail is readily visible before the ship itself. Admittedly, the local perspective is that 
the Earth is flat, and that perspective is appropriate for many activities. But, when 
warranted, the Earth’s curvature must be accommodated.

degRee MeaSuReMent

At a fundamental level, the process of determining the Earth’s size requires two 
pieces of information from which the third is inferred using the well-known equation 
L = Rθ. Although not always the same, the process has been called degree measure-
ment and consists of measuring an arc on the surface of the Earth along with the 
corresponding subtended angle. From that length-per-degree, the circumference or 
radius is readily computed. For example, if L = 500 miles and the subtended angle is 
1/50 of a circle, the circumference is immediately computed as 25,000 miles and the 
Earth’s radius is found to be about 4,000 miles.

eRatoStheneS

Eratosthenes lived approximately 276–195 b.c. in the Mediterranean port city of 
Alexandria near the mouth of the Nile River in Egypt. He is given credit for first deter-
mining the size of the world using the degree measurement method just described. 
He measured the length of a shadow cast by an obelisk at noon on the longest day 
of the year in Alexandria. He also knew that on the longest day of the year, the sun 
shown directly to the bottom of a well located on the Tropic of Cancer near the city 
of Syene (not far from the present site of the Aswan Dam). From that, he deduced 
the angle subtended at the center of the Earth to be 1/50 of a circle (see Figure 5.1). 
Researchers do not agree on how the distance between Alexandria and Syene was 
measured, but the consensus is that the distance was 5,000 stadia and that there are 
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about 185 meters per stadia. That being the case, the computed circumference is 
46,250,000 meters—only about 16 percent larger than the currently known size of 
the Earth. It is conceded there may have been some compensating errors because 
Alexandria is not directly north of Syene, as assumed by Eratosthenes; the quality 
of his arc distance is questionable; and the well was probably not located directly on 
the Tropic of Cancer (Tompkins 1971). But, his results are a good approximation and 
show that humans have known for several millennia that the Earth is not flat.

PoSeidoniuS

Poseidonius (135–150 b.c.) was a Greek astronomer who also determined the Earth’s size 
using degree measurements. Alexandria, on the south shore of the Mediterranean, was 
the south end of his line. The north end was at Rhodes, on an island on the north side of 
the Mediterranean Sea about twenty kilometers from Turkey. The arc distance was based 
upon the sailing time of a ship, and the angle subtended at the center of the Earth was 
deduced from the difference in vertical angle at the two ends of the line to the constella-
tion Canopus as it crossed the meridian. His results were about 10 percent too big.

caliPh abdullah al MaMun

Arabian efforts included a measurement on the plains near Baghdad by the Caliph 
Abdullah al Mamun about 827 a.d. that yielded an answer only about 3.6 percent too 
big. Subsequent reevaluation (Carta 1962) of the unit conversions from ells to barley-
corns and Rhineland feet gave another value that was about 10 percent too big. Lack 
of length standardization still plagues modern interpretation of early work.

geRaRduS MeRcatoR

Navigation from the European continent flourished during the thirteenth and four-
teenth centuries, and mapmaking became a valuable occupational talent. The per-

Equator 

Circumference = (500 miles) (50) = 25,000 miles 

Tropic of Cancer 

Parallel rays 
from Sun  

1/50 of a 
circle  

1/50 of a 
circle  

L = 500 mi.

FIGure 5.1 Erathosthenes’ Measurement of the Earth
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son, shipping company, or sovereign possessing the better map enjoyed an enormous 
advantage. Stories of intrigue abound. Gerardus Mercator (1512–1594) was one of 
the most famous mapmakers because he published a map of the world in 1569 hav-
ing parallels of latitude on the map spaced so that one could sail from one port to 
another on a constant bearing. Later, Mercator’s map was shown to be what is now 
called a conformal projection—the scale distortion at a given point is the same in 
all directions.

WillebRoRd SnelliuS

In 1615 a.d. a Dutchman, Willebrord Snellius (1580–1626), measured an arc more 
than eighty miles long using a series of thirty-three triangles. His computation of the 
size of the Earth was too small by about 3.4 percent—not bad for using a telescope 
with no crosshairs in it and measuring baseline distances with an odometer con-
nected to his carriage wheel. Galileo Galilei (1564–1642) had invented the telescope 
in 1611, but the Gunter’s chain (used in land surveying for several hundred years) was 
not invented until about 1620.

Jean PicaRd

The French Academy of Science was founded in 1666 and sponsored, among others, 
geodetic surveying activities designed to answer questions about the size and shape 
of the Earth. During 1669–1670, Jean Picard (1620–1682) measured an arc of tri-
angulation from Paris to Amiens using a telescope containing crosshairs and “well 
seasoned varnished wooden rods” for measuring baseline lengths. Conventional wis-
dom at the time presumed the Earth to be spherical.

iSaac neWton

Following up on Galileo’s work on the pendulum, Isaac Newton (1642–1727) formu-
lated his theory of universal gravitation during the mid-1660s. Using the commonly 
accepted values for the size of the Earth, Newton was frustrated that the evidence 
was not consistent with his theory and laid the work aside. It wasn’t until after he 
incorporated Picard’s results that Newton’s theories were validated and published in 
his Principia Mathematica in 1687.

While his universal gravitational theory was laid aside, Newton became con-
vinced the Earth is flattened at the poles due to the vector sum of two forces, as 
shown in Figure 5.2. Gravitational attraction pulls an object toward the Earth’s 
center of mass, and centrifugal force acts on the same object perpendicular to the 
Earth’s spin axis. An object can’t differentiate between the two forces but responds 
only to the vector sum of the two forces. Newton also noted that a level surface (sea 
level) is always perpendicular to the plumb line and that the plumb line will point 
to the Earth’s center only if one is at the equator or at one of the poles. At the equa-
tor, gravitational attraction and centrifugal force are colinear and centrifugal force 
counteracts (reduces) gravitational attraction. At the pole, centrifugal force is zero. 
Newton argued that an Earth flattened at the poles is the only shape that is consis-
tent with those conditions. The irony is that Newton needed Picard’s work to verify 
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the correctness of his own theories, but Picard and the French Academy refused to 
accept Newton’s theory of a flattened Earth.

Jean-doMinique and JacqueS caSSini

Jean-Dominique Cassini (1625–1712) was a brilliant scientist who was lured away 
from Italy and service to the pope to become the first director of the Paris Observa-
tory, built between 1667 and 1672. In the early 1680s King Louis XIV of France 
announced Picard’s work would be extended from Dunkirk on the north to Col-
lioure in the south. Since Picard had died, Jean-Dominique Cassini directed the 
survey work. As the work progressed, it became apparent, based upon computations 
performed separately on that part north of Paris and that part south of Paris, that 
the radius of the Earth for the northern portion was shorter than the radius for the 
southern portion. The implication was that the Earth is elongated at the poles, not 
spherical as had been believed, and not oblate (flattened at the poles) as postulated 
by Newton.

It became an international debate, with Newton (British) and Christiaan Huy-
gens (1629–1695; Dutch) arguing the Earth is oblate or flattened at the poles and 
the Cassinis (French) arguing the Earth is prolate or elongated at the poles. After 
Jean’s death in 1718, his son, Jacques Cassini (1677–1756), carried on the work and 
insisted that the only way to settle the argument was to conduct decisive tests near 
the equator and near the Arctic Circle. Incidentally, the post of director of the Paris 
Observatory was held by four generations of Cassinis (Smith 1986).

FRench acadeMy oF Science

In 1734 King Louis XV directed more geodetic measurements be taken in France. 
When those measurements failed to settle the argument, the French Academy of 
Science sponsored two geodetic surveying expeditions as recommended by Jacques 
Cassini. In 1735 one expedition left for Peru, and another left for Lapland in 1736. 

Equator

Centrifugal force

Gravitational attraction

Gravity

FIGure 5.2 Newton’s Logic for a Flattened Earth
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Details of those two expeditions are included in Smith (1986). When the leader of the 
Lapland expedition returned in 1637 with conclusive proof that Newton was right, 
Voltaire, a French philosopher and social critic, wrote, “You have flattened the earth 
and the Cassinis.” When the more strenuous Peru expedition returned in 1741, Vol-
taire commented, “You have found by prolonged toil what Newton learned without 
leaving home.” Whitaker (2004) writes about peripheral challenges encountered 
during the Peru expedition.

MeteR

An idea promoted by Picard was the need for a decimally divided standard of length 
based upon some natural quantity or simple physical observation. He proposed using 
the length of a pendulum having a period of 1 second as being the standard of length. 
His idea was not accepted, in part because the period of a pendulum changes with 
both latitude and altitude. But, by 1790 the idea of a decimal length standard had 
caught on to the point that the French Academy of Science sponsored yet another 
geodetic survey in France, the purpose of which was to determine as precisely as 
possible the arc distance from the equator to the pole. The French Revolution not-
withstanding, the work was completed during the 1790s by Jean Baptiste Joseph, 
Chevalier Delambre (1749–1822), and Pierre Méchain (1744–1804), and the distance 
from the equator to the pole, 5,130,740 toises, was set to be exactly 10,000,000 
meters. Given further that 1 toise = 864 Paris lines, one can compute 1 meter = 
443.296 Paris lines. “The Measure of All Things” (Alder 2002) is a postscript to 
this section and includes a fascinating account of the measurement of the meter by 
Delambre and Méchain.

develoPments durInG tHe nIneteentH 
and twentIetH centurIes

By the end of the eighteenth century, the United States had won its independence, 
Thomas Jefferson had served as minister to France, the French revolution was over, 
and the decimal meter was defined. A brief summary of geodetic developments dur-
ing the next 200 years includes the following:

Least squares: Given various determinations for the size and shape of the 
Earth, the theory of least squares, published in 1806, was developed by 
Adrien-Marie Legendre (1752–1833) to give proper weight to the various 
determinations for the size and shape of the Earth. Credit for inventing 
least squares is also shared with Carl Friedrich Gauss (1777–1855), who, at 
the age of eighteen, independently invented the technique of least squares 
in 1795.
The United States purchased the Louisiana Territory from France in 1803, 
and during most of the nineteenth century the rectangular U.S. Public Land 
Survey System was systematically and permanently etched on the curved 
surface of the North American continent.

•

•
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In 1807 President Thomas Jefferson established the Survey of the Coast, 
and Ferdinand Hassler was hired as the first director. Ferdinand Hassler 
(1770–1843) was a Swiss scientist who was well versed in making geodetic 
surveys and brought an impressive technical library and scientific instru-
ments with him to the United States (including a standard meter bar and 
three standard toise bars). One of his first tasks as director of the Survey of 
the Coast was to make a trip to Europe to acquire (additional) appropriate 
instruments for the task. Over the next 150 years, the Survey of the Coast 
and its successor, the U.S. Coast and Geodetic Survey, observed arcs of 
high-order triangulation over the entire United States.
In 1799 Captain William Lambton (1756–1823) “drew up a project for a 
mathematical and geographical survey that would extend … from the 
southern tip to the northern extreme” of India. Formal orders for the survey 
were issued in 1800, and work commenced with measurement of a base in 
1802. George Everest (1790–1866) joined the Great Trigonometric Survey 
(GTS) in 1819 and quickly established himself as a capable assistant to 
Superintendent Lambton, who died in 1823. Everest carried on the work 
until he returned to England in November 1825 on sick leave. In 1829 Ever-
est was named surveyor general of India. He returned to India in October 
1830, where he supervised the work until he retired in December 1843 on 
the pension of a full colonel. Everest then returned to England, where, at 
the age of fifty-six, he married a twenty-three-year-old woman whose father 
was six years younger than himself. In all his years in India, George Everest 
never laid eyes on the highest mountain in the world that was named in his 
honor in August 1856 (Smith 1999).
The U.S. Coast and Geodetic Survey (now known as the National Geodetic 
Survey) completed triangulation arcs and computed massive network adjust-
ments in 1927 and again in 1986 that provide local users reliable geodetic 
positions for monumented points on the surface of the Earth. These net-
work adjustments were known respectively as the North American Datum 
of 1927 (NAD27) and the North American Datum of 1983 (NAD83). Lev-
eling networks were also observed and adjusted, and vertical datum eleva-
tions were published.
In October 1957, the Russians launched the first artificial satellite to orbit 
the Earth, and by 1964 the United States had developed the Transit Doppler 
satellite positioning system that was used by the U.S. military for position-
ing Polaris submarines anywhere on the oceans, twenty-four hours a day, 
rain or shine. The first navigation satellite timing and ranging (NAVSTAR) 
GPS satellites were launched in 1978, and by 1985 GPS was recognized 
worldwide as the premier satellite-positioning system. The full constella-
tion of satellites was subsequently completed, and the GPS was declared 
fully operational in July 1995.
The transistor and electronic computer were invented in the middle of the 
twentieth century, and, with regard to surveying and mapping, the elec-
tronic distance meter, photogrammetry, GPS, and remote sensing revolu-
tionized the use of spatial data. These developments are all considered part 

•

•

•

•

•
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of the digital revolution. The ubiquitous personal computer (PC), the Inter-
net, and cellular telephone technologies are currently riding the wave of the 
digital revolution.
The global spatial data model (GSDM) was first proposed by Earl F. Burk-
holder in 1997 and is described in a report prepared for the Southeast Wis-
consin Regional Planning Commission (Burkholder 1997). The GSDM is 
intended to be compatible with the use of digital spatial data; the technolo-
gies employed for the generation, storage, manipulation, and use of spatial 
data; and the way humans perceive the world and use spatial relationships.

Forecast For tHe twenty-FIrst century

With the dawn of the new millennium, the planet Earth and civilization stand at the 
threshold of innumerable opportunities. With regard to spatial data and the evolution 
of geomatics as an umbrella discipline, a few forecasts include the following:

A 3-D global datum will emerge as a global standard for data exchange.
Compatibility issues related to horizontal and vertical datums will be 
addressed in terms of how each is related to the standard global model.
Spatial data accuracy with respect to a datum will be assessed two ways:

 A. A collection of points or features (a spatial data set) will have one accu-
racy ranking based upon the meta data describing the modes of collec-
tion and the models used in processing.

 B. Each point location will have a covariance matrix associated with it that 
provides statistically reliable standard deviations in three dimensions. 
Some data sets will also include time as the fourth dimension.

Statistical correlation between points will be obtained from the stored 
covariance values. Network accuracy and local accuracy will be computed 
from the same stored covariance values.
At the conceptual level, solid geometry, matrices, and vector algebra will 
be emphasized as appropriate tools for handling spatial data. In the applica-
tions arena, spatial data users will be able to work with simple local rect-
angular coordinate differences that reflect a local perception of a flat Earth. 
True geometrical integrity over the curved Earth will be preserved as a 
consequence of using the 3-D GSDM.
WVDXX elevation (or some other name) will be a derived quantity com-
puted as the distance above or below a named reference ellipsoid. Geodetic 
scientists will still be concerned about the difference between the ellipsoid 
and geoid and provide that information to researchers who need to find the 
geoid. But in local practice, except for specialized applications, the ellip-
soid height difference will be used as if it were elevation difference. Before 
adopting such a practice, the impact of making the change will need to be 
studied carefully, especially in areas where the deflection-of-the-vertical is 
large or changes rapidly. Otherwise, the need for elaborate geoid modeling 
will be drastically reduced.

•

•
•

•

•

•

•
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Persons using cellular telephones and the Internet for communication along 
with GPS (and other technology) for position will provide a wide range of 
location-based services for an increasing segment of the population on a 
global basis. Data compatibility and interoperability between disciplines 
are critical.
A global 3-D spatial database provides the framework within which spatial 
data from any source can be freely exchanged. Decentralized use of spatial 
data is supported in that each user is free to manipulate data according to 
local practice and specifications. Rules for decentralized data manipulation 
are the responsibility of each user. At the foundation level, the functional 
and stochastic components of the GSDM stipulate the requirements for 
meeting any level of accuracy specified by the user.
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6 Geometrical Geodesy

IntroductIon

Geometrical geodesy is the branch of science that deals with the Earth’s size and 
shape. Viewed from a large distance, the Earth appears to be nearly spherical, and, 
by comparison, the Earth is smoother than an orange—even when counting the 
highest mountains. If our planet Earth were reduced to a globe having a diameter 
of 1.0000 meter at the equator, the length of the spin axis would be 0.99665 meters, 
only 3.35 millimeters less. As postulated by Newton, this flattening at the poles is 
due primarily to the Earth spinning on its axis. The sea-level shape of the Earth is 
a continuous surface called the geoid. As such, it could be viewed as the surface of 
the ocean at rest (no tides) and extending coast to coast in a large transcontinental 
canal. An ellipse rotated about its minor axis—giving a three-dimensional math-
ematical surface called the ellipsoid—approximates this geoid shape of the world. 
The distance between the ellipsoid and geoid is called geoid height and varies, plus 
or minus, up to about 100 meters worldwide. Figure 6.1 is a meridian section of the 
Earth showing the poles, the equator, the spin axis, the mathematical ellipsoid, the 
geoid, the normal, and the vertical. Note that the ellipsoid-geoid separation and the 
Earth’s flattening are both exaggerated in Figure 6.1.

An important concept in physical geodesy is that a level surface is perpendicular 
to the plumb line at every point. The plumb line in Figure 6.1 defines the vertical. 
In geometrical geodesy, the ellipsoid normal is always perpendicular to the tangent 
to the ellipse. The angular difference between the normal and the vertical at a point 
is called the deflection-of-the-vertical and is discussed more in chapter 8, “Physical 
Geodesy.” In this chapter, the deflection-of-the-vertical is taken to be zero.

As described by Newton and discussed in chapter 5, the physical shape of the 
geoid is determined primarily by gravitational attraction and centrifugal force. The 
centrifugal force at a point is constant and can be computed with a high degree of 
certainty. But, due to the irregular distribution of mass and variations of density 
within the Earth, the force of gravity is not so uniform. Variations in the shape of the 
geoid caused by gravity anomalies are discussed in chapter 8.

An ellipsoid is the mathematical basis of geometrical geodesy and is an approxi-
mation of the sea-level shape of the Earth. From a local perspective, and for many 
uses, it can be said that the Earth is flat. In that context, horizontal dimensions are 
flat and vertical dimensions are up. In many ways, such a flat-Earth model is easier 
to use than is the ellipsoid model, and many spatial data users prefer working with 
plane rectangular coordinates. But, as has been known for centuries, the Earth is not 
flat, and numerous applications arise in which the flat-Earth model is not adequate. 
A more complex model for specifying location on the Earth is needed. One could 
say that the spatial data (location) model has evolved from saying the Earth is flat, to 
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using a sphere to approximate the Earth’s size and shape, to using an ellipsoid chosen 
for a regional best fit, to using an ellipsoid selected for a global best fit.

So, even though the spatial data community may prefer using a flat-Earth model 
that accommodates a local perspective, a better understanding of basic spatial data 
concepts comes from learning the geometry of a rotational ellipsoid that

has its origin at (or near) the Earth’s center of mass.
shares its minor axis with the spin axis of the Earth.
has its major axis in the plane of the Earth’s equator.
has its zero meridian coincident with the Greenwich meridian.
uses sexagesimal latitude and longitude coordinates on the ellipsoid surface.
uses elevation (and/or height) in meters for the third dimension.

Esoteric issues (such as polar wandering and the aforementioned deflection-of-
the-vertical) need more explanation than is offered in this chapter. But the point made 
here is that the GSDM is a mechanism that permits spatial data users to work with 
local rectangular (flat-Earth) differences while the underlying model appropriately 
accommodates the ellipsoidal shape of the Earth. Not only that, but with careful 
planning, those esoteric issues, which are still a legitimate concern to geodesists, will 
have little or no impact on the local spatial data user. Additionally, the GSDM offers 
well-defined mathematical procedures by which the 3-D accuracy of spatial data can 
be established, tracked, and utilized—even from a local flat-Earth perspective.

the two-dImensIonal ellIpse

The 3-D geometry of the ellipsoid begins with the meridian section of a 2-D ellipse. 
Figure 6.2 shows a meridian section in which the ellipse major axis is coincident 
with the Earth’s equator and the minor axis is coincident with the Earth’s spin axis. 

•
•
•
•
•
•
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Figure 6.1  Ellipsoid and Geoid
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The length of the semimajor axis is denoted as a, and the length of the semiminor 
axis is denoted as b. Equation 6.1 is the equation of a 2-D ellipse in the X/Z plane 
whose size and shape are defined by parameters a and b.
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  +  Z
b

   =    (6.1)

Note that, for the Earth, a is greater than b and the flattening of the ellipse is expressed 
several ways.

Flattening is defined as
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Second eccentricity squared is
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The polar radius of curvature is useful when making comparisons between ellip-
soids. The polar radius of curvature is
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Figure 6.2  Two-Dimensional Ellipse
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Additional geometrical relationships derived from the definitions above include

	
λe f f b a f2 22 1= − = −;                ( )  (6.6 and 6.7)

 

b
a

e e
2

2
2 21= − =; ' ee

e

2

21−
 (6.8 and 6.9)

Several observations with regard to the Earth ellipsoid, a, b, f, e2, and e’2 are 
as follows:

 1. If b = a, the meridian ellipse is really a circle and the ellipsoid is a sphere. 
The flattening, the eccentricity, and the second eccentricity are all zero.

 2. As b approaches 0, the ellipse degenerates into a line and the ellipsoid 
becomes a flat plane. In that case, the values of f, e2, and e’2 are all exactly 1.

 3. For the Earth, values of f, e2, and e’2 are all near zero and the ellipsoid is 
nearly spherical.

 4. Some derivations in geodesy are accomplished more efficiently using the 
second eccentricity instead of the eccentricity. Although equally legitimate, 
the second eccentricity is used in this book only as required to be consistent 
with referenced material.

It takes two geometrical elements to define an ellipse. The most obvious pair of 
elements is the semimajor and semiminor axes. However, over the years the follow-
ing conventions have been adopted and are used as noted. In each case, the ellipsoid 
is obtained by rotating the 2-D ellipse about its minor axis.

a and b: The semimajor axis and the semiminor axis. The Clarke Spheroid 
of 1866 is defined by a and b and used in North America for the North 
American Datum of 1927 (NAD27). See Table 6.1.

•

table 6.1

selected Geometrical Geodesy ellipsoids
ellipsoid defined by derived Values

Clarke Spheroid of 1866 
 (used for NAD27)

a = 6,378,206.4 m 1/f = 294.978698214

b = 6,356,583.8 m e2 = 0.006865799729

c = 6,399,902.5516 m 

Geodetic Reference System of 
1980 (used for NAD83)

a = 6,378,137.000 m b = 6,356,752.3141 m

1/f = 298.257222101 e2 = 0.0066943800229

c = 6,399,593.6259 m

World Geodetic System of 1984 
(used in GPS positioning)

a = 6,378,137.000 m b = 6,356,752.3142 m

1/f = 298.257223563 e2 = 0.0066943799902

c = 3,399,593.6258 m
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a and 1/f: The semimajor axis and the reciprocal flattening. The Geodetic 
Reference System of 1980 (GRS80) and the World Geodetic System of 1984 
(WGS84) as used in geometrical geodesy are both defined by a and 1/f.
a and e2: The semimajor axis and the eccentricity squared. Most geodetic 
computations are arranged with the goal of preserving computational 
strength and efficiency. Although eccentricity squared is not a defining 
parameter, the quantity (1 – e2) is used in many geodesy equations and con-
tains two more significant digits than does e2 by itself.

Note that values of c, the radii of curvature at the poles, for the GRS80 and the 
WGS84 are within 0.1 mm of being identical even though the 1/f (and e2) values are 
significantly different. That agreement supports the statement that the GRS80 and 
WGS84 ellipsoids can be used interchangeably. An important distinction is that, 
while they may be interchangeable as ellipsoids, WGS84 datum coordinates are not 
interchangeable with the North American Datum of 1983 (NAD83) datum coordi-
nates if agreement between datums is expected at about the 1 meter level. See chap-
ter 7 on geodetic datums for more details.

An ellipsoid was defined previously as that figure generated by rotating an 
ellipse about its minor axis. That same definition was used in the past to describe 
a spheroid, and the Clarke Spheroid of 1866 still carries the word “spheroid” in its 
name. Although “ellipsoid” and “spheroid” have essentially the same definition in 
geometrical geodesy and are often used interchangeably, a distinction can be made. 
A spheroid is generically defined as a body that is nearly spherical, but not quite. 
That definition permits, but does not require, that the surface be rigorously defined 
mathematically. The ellipsoid enjoys rigorous mathematical definition in all cases. 
The convention in this book is to use the word “ellipsoid” when referring to a math-
ematical approximation of the size and shape of the Earth.

The ellipse shown in Figure 6.2 is taken through the Greenwich meridian and 
shows the ellipse in terms of the X/Z plane. Figure 6.3 shows the rectangular X/Y/Z 
geocentric ECEF coordinate system superimposed upon the ellipsoid. The X and Y 
distances are in the plane of the equator; the Greenwich meridian is in the X/Z plane; 
the Z-axis is coincident with Earth’s spin axis; and the X-axis pierces the equator at 
the Greenwich meridian. Figure 6.2 also shows a line tangent to the meridian ellipse. 
The line perpendicular to the tangent is the ellipsoid normal (N) and goes from the 
ellipse tangent to the spin axis. Geodetic latitude is the angle the normal makes with 
the equator and is denoted by the Greek letter phi (φ). The geodetic latitude ranges 
from –90° at the South Pole to 0° on the equator to +90° at the North Pole.

With respect to equation 6.1 and Figure 6.2, expressions for X and Z (in terms 
of a, e2, and ϕ) are found by equating the slope of the tangent to the ellipse with 
the first derivative of equation 6.1 at the same point. The slope of the tangent to the 
ellipse is given by the trigonometric tangent of the angle (90º + ϕ). Using trigonomet-
ric identities,
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 (6.10)

•

•
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By algebraic manipulation, the derivative of equation 6.1 is
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Equating equations 6.10 and 6.11, substituting for b2/a2, and solving for Z, we get
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Next, solve equation 6.1 for Z2, 
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Now, equate Z2 in equation 6.12 to Z2 in equation 6.13, and solve for X.
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Figure 6.3  Three-Dimensional Ellipsoid
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Use algebraic manipulation on the last two terms in equation 6.13 to solve for X as
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Now substitute equation 6.14 into equation 6.12 to solve for Z:
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Note further in Figure 6.2 that the normal is the hypotenuse of a right triangle 
whose base is X. However, the usual statement, also apparent from Figure 6.2, is that

 N Xcosφ=  from which N a
e

=
−1 2 2sin φ

 (6.16)

Because the Earth is flattened at the poles, the instantaneous radius of curvature 
in the north-south direction increases as one moves from the equator toward either 
pole. This is consistent with Newton’s oblate Earth theory that was proven conclu-
sively in the mid-eighteenth century by geodetic surveying expeditions to Lapland 
and Peru (modern-day Finland and Ecuador). The instantaneous radius of curvature 
in the north-south direction on the ellipsoid at a specified latitude is given by the 
general mathematical equation for curvature of a function as
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Starting with equation 6.1, taking the first and second derivatives, and substitut-
ing them into equation 6.17 is tedious and involves much algebraic manipulation. But 
the result is stated concisely (the negative sign is dropped by convention) as
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the three-dImensIonal ellIpsoId

Equations 6.1 to 6.18 are presented in terms of the Greenwich meridian section. Now, 
consider that the ellipse is rotated about the minor (Z) axis and that the foregoing 
equations are applicable in any meridian. And, since we are no longer restricted 
to the meridian ellipse, it is appropriate to speak in terms of the 3-D ellipsoid as 
depicted in Figure 6.3.

Ellipsoid Radii of CuRvatuRE

Parallels of latitude are circles on the ellipsoid in planes parallel to the equator. The 
location of any parallel on the ellipsoid is measured in degrees, minutes, and seconds 
north or south from the equator. At each parallel of latitude, the underlying ellipsoid 
has a radius of curvature in the north-south direction (that is, M, as discussed previ-
ously). At the same location, the underlying ellipsoid also has a radius of curvature 
in the east-west direction (perpendicular to the meridian). The plane perpendicular 
to the meridian is called the prime vertical and contains the ellipsoid normal. At 
any point, the radius of curvature in the plane of the prime vertical is N, the length 
of the ellipsoid normal. Remember, if the Earth were perfectly spherical, the radius 
would be the same at all points. And, at any given point, the radius of curvature of 
the underlying sphere would be the same in any direction. But, the Earth is flattened 
at the poles, and the ellipsoid radius of curvature changes with latitude and with the 
direction of a line. At any point on a given parallel of latitude, M is the radius of 
curvature of the underlying ellipsoid in the north-south direction and N is the radius 
of curvature at the same point in the east-west direction. M and N are collinear, but 
are not the same length (except at the poles).

Table 6.2 shows the results of tabulating values for both M and N at the equator 
and at the poles. Note that the value of N at the equator is a, the semimajor axis. 
The value of M at the equator is somewhat shorter. Except at the poles, the ellipsoid 
radius of curvature at any point is shorter in the N-S direction than in the E-W direc-
tion. At the poles, values for M and N are identical and called c, the polar radius of 
curvature (see equation 6.5). The reason is that the prime vertical at the pole (90° to 
a meridian) is itself another meridian.
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NoRmal sECtioN Radius of CuRvatuRE

The normal section is defined as the intersection of a plane containing the ellipsoid 
normal and the ellipsoid surface. Given that the deflection-of-the-vertical is zero, the 
normal section lies in the plane shown by the vertical crosshair of a carefully leveled 
transit, theodolite, or total station. There are an infinite number of normal sections 
radiating from a point, and each one has a unique azimuth with respect to the merid-
ian through that point.

Previously the values of M and N were given as radii of curvature in the north-
south and east-west directions. The radius of curvature, Rα, in the plane of a normal 
section at any azimuth, α, is given by Euler’s equation as

 

R MN
M Nα =

+sin cos2 2α α
 or 

1 2 2

R M Nα
= +

cos sinα α
 (6.19)

GEomEtRiCal mEaN Radius

Equation 6.19 is as good as it gets and can be used to compute the ellipsoid radius 
of curvature at a given latitude in a particular direction. But, in some cases, such 
as reducing horizontal distance to sea level, it is common to use an approximate 
spherical Earth radius of 6,372,000 m (or 20,906,000 feet). If, for whatever reason, 
a spherical radius is not good enough, then equation 6.19 could be used. But there 
are also times when a spherical radius is not good enough, and equation 6.19 rep-
resents overkill. A radius of intermediate accuracy is the geometrical mean radius, 
Rmean, which is computed for a given ellipsoid at a given latitude. The azimuth of the 
normal section at the point is not needed or used. Rapp (1991) calls Rmean the Gauss 
mean radius and derives it as

table 6.2

comparisons of radii of curvature: M and N
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rotatIonal ellIpsoId

EquatioN of Ellipsoid

Given that the Greenwich meridian ellipse is rotated about its minor axis, the result-
ing figure is an ellipsoid used to approximate the size and shape of the Earth. In 
terms of the geocentric ECEF rectangular coordinate system, the equation of the 
ellipsoid is given by
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Note that if Z = 0, equation 6.21 reduces to a circle in the plane of the equator, 
and, separately, if Y = 0, equation 6.21 reduces to an ellipse as given in equation 6.1. 
Geodetic latitude and longitude are 2-D coordinates used to represent location on the 
3-D ellipsoid surface. Ellipsoid height, the third dimension, is used to specify the 
distance of a point above or below the ellipsoid.

GEoCENtRiC aNd GEodEtiC CooRdiNatEs

Geodetic coordinates of latitude, longitude, and height have been the computational 
standard for many years. However, with the advent of GPS technology, the use of 
the ECEF rectangular geocentric coordinates has much to offer with respect to mod-
ern technology and working with digital spatial data. This section first looks at the 
equations used to convert latitude, longitude, and height to ECEF geocentric X/Y/Z 
coordinates. Then, the inverse computation of starting with X/Y/Z and computing 
latitude, longitude, and height coordinates is considered. With reference to the 3-D 
GSDM diagram shown in Figure 1.4 and strictly as a matter of convenience, the 
transformation of latitude, longitude, and height to X/Y/Z coordinates is called a 
BK1 transformation, and transforming X/Y/Z coordinates to latitude, longitude, and 
height is called a BK2 transformation.

Figure 6.4 shows three views of the Earth. Figure 6.4a shows the meridian sec-
tion quadrant, Figure 6.4b shows the plane of the equator, and Figure 6.4c shows a 
3-D view of the ellipsoid.

The following symbols are used as appropriate in the three views.

X/Y/Z = geocentric ECEF rectangular coordinates—meters
φ and λ = geodetic latitude and longitude—sexagesimal units
h = ellipsoid height—meters
N = length of the ellipsoid normal—meters
P = projected distance of point from spin axis in equatorial plane
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r = spatial distance from coordinate origin to point
a and b = parameters of underlying ellipsoid

Symbols used in the Vincenty BK2 transformation, but not appearing in Fig-
ure 6.4, include the following:

a’ & b’ = parameters of an auxiliary ellipsoid
h’ = approximate ellipsoid height
φ’ = approximate intermediate geodetic latitude
T & U = intermediate values used for computational convenience

bK1 transformatIon

A BK1 transformation uses equations 6.22, 6.23, and 6.24. The relationships for 
those equations are illustrated in Figure 6.4a and Figure 6.4b. The distance Z in 
Figure 6.4a is given by equation 6.25, but it is not obvious from the diagram that 
the factor (1 – e2) is responsible for removing that part of the normal lying below 
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Figure 6.4  Geometry and Symbols Used in BK1 and BK2 Transformations
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the equator. The equation for Z was derived previously and given as equation 6.15. 
Note too that equations 6.23, 6.24, and 6.25 give X, Y, and Z values for any point at 
ellipsoid height, h, but that equations 6.14 and 6.15 are specifically for X and Z on the 
ellipsoid surface in the Greenwich meridian.

 P N h= +( ) cosφ  (6.22)

 X P N h= = +cos ( )cos cosλ φ λ  (6.23)

 Y P N h= = +sin ( )cos sinλ φ λ  (6.24)

 Z N e h= − +[ ( ) ]sin1 2 φ  (6.25)

These BK1 equations are used to compute the ECEF geocentric coordinates for 
any point whose position is defined by latitude, longitude, and height on a specified 
datum or ellipsoid—typically, NAD83 geodetic coordinates or some other datum 
such as the WGS84 or ITRF reference frame.

bK2 transformatIon

The BK2 transformation uses geocentric X/Y/Z coordinates to compute latitude, lon-
gitude, and height referenced to a named Earth-centered ellipsoid. Although a BK2 
transformation is not as easy as a BK1 transformation, there are several ways it can 
be done. The longitude part of a BK2 computation is straightforward and, with refer-
ence to Figure 6.4b, uses equation 6.26 with due regard to the quadrant as described in 
equations 4.11, 4.12, and 4.13. Note, however, the sign convention for longitude in the 
plane of the equator is consistent with the math/science convention. As such, Y is in the 
numerator while X is in the denominator when using the inverse tangent function.

 
tanλ= Y

X
 (6.26)

itERatioN

Possibly the best approach to a BK2 transformation is to iterate on the geodetic lati-
tude. Once latitude is computed, the ellipsoid height computation is routine. Leick 
(2004) recommends using equation 6.27 for the iteration. An initial approximation 
for geodetic latitude is given by equation 6.28. Equation 6.29 is used to compute the 
ellipsoid normal for the first iteration. Equation 6.30 is used to compute the next 
latitude approximation based upon previous values of latitude and ellipsoid normal. 
Values of geodetic latitude and ellipsoid normal are computed repeatedly until the 
change in successive values is negligible. After the geodetic latitude is found, equa-
tion 6.32 can be used to compute the ellipsoid height. Given that the iteration is 
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programmed into a computer; the effort expended in the solution is minimal. A long-
hand iteration solution can become rather tedious.

 

tan sin
φ

φ
= +










Z
P

e N
Z

1
2

 where P X Y= +2 2  (6.27)

 

φ 0 21
=

−









arctan

( )
Z

P e
 (6.28)

 

N a
e

0 2 2
01

=
− sin φ 

 (6.29)

 

φ 
φ 

i
i iZ

P
e N

Z
= +















− −arctan sin1
2

1 1









 (6.30)

 

N a
e

i
i

=
−1 2 2sin φ 

 (6.31)

 
h P N= −

cosφ
 (6.32)

oNCE-thRouGh viNCENty mEthod

Another approach to the BK2 transformation is to use a “once-through” procedure 
devised by Vincenty (1980). In his method, the iteration is built in and once through 
the computation will give an answer tested to be within 0.2 mm for any point within 
the birdcage of orbiting GPS satellites. No attempt is made to explain all the terms, 
but it can be inferred from equations 6.37 and 6.38 that the solution is developed with 
respect to an auxiliary ellipsoid passing through the point at elevation h’.

 b a f= −( )1  (6.33)

 P X Y2 2 2= +  and P X Y= +2 2  (6.34)

 r P Z2 2 2= +  and r P Z= +2 2  (6.35)
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h r a a b Z

r
' ( )
= − +

− 2

2
 (6.36)

 a a h' '= +  and b b h' '= +  (6.37 and 6.38)

 

φ ' arctan '
'

'
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 +

a
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Z
P

e h a2 4
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Z P
a

2 2

44
−

























 (6.39)

 
T P h

a
=

−( ' cos ')φ 2

2  and U Z h
b

=
−( ' sin ')φ 2

2  (6.40 and 6.41)

 
h h T U

T a U b
= +

+ −
+













'
/ /

1
2

1
 (6.42)

 

φ
φ

=







−







arctan sin 'a

b
Z e h

P

2 2



















 (6.43)

 

λ=





arctan Y

X
 (6.44)

Notes about the BK1 and BK2 transformations:

 1. The BK1 and BK2 transformations are critical, and BK2 is probably the 
most difficult part of the GSDM. But, the rotation matrix in equation 1.29 
requires the latitude and the longitude of the standpoint. They are deter-
mined from the geocentric X/Y/Z coordinates of the standpoint using the 
BK2 transformation.

 2. The BK2 transformation is also described by others. See, for example, Soler 
and Hothem (1988); Hoffman-Wellenhof, Lichtenegger, and Collins (1992); 
Wolf and Ghilani (1997); You (2000); and Hooijberg (1997).

 3. The integrity of any BK2 solution can be checked by using the computed 
latitude, longitude, and height in the BK1 equations. It should be possible 
to duplicate the X/Y/Z values used in the BK2 transformation. There is no 
approximation in the BK1 equations.

 4. The accuracy of results may also depend upon the significant digit capacity 
of the computer being used or by the way the software is written.

example of bK1 transformatIon

Ellipsoid: GRS 1980, a = 6,378,137.000 m, and e2 = 0.006694380023.
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Given: Station “Reilly,” an “A” order high-accuracy reference network (HARN) 
station located on the campus of New Mexico State University in Las Cruces (NMSU). 
Note that equations presume positive latitude north of the equator and negative lati-
tude south of the equator. Longitude east of Greenwich is used as a positive value. If 
west longitude is used as a negative number, the results will be the same.

Latitude: φ = 32° 16’ 55.”92906 N
Longitude: λ = 106° 45’ 15.”16070 W = 253° 14’ 44.”83930 E
Ellipsoid height: h = 1,166.57 meters

Compute:

 

N a
e

=
−1 2 2sin φ

 = 6,384,235.5313 m

 P N h= +( ) cosφ  = 5,398,396.2940 m

 X P= cosλ  = –1,556,177.6148 m

 Y P= sinλ  = –5,169,235.3185 m

 Z N e h= − +[ ( ) ]sin1 2 φ  = 3,387,551.7093 m

example of bK2 transformatIon—IteratIon

Ellipsoid: GRS 1980, a = 6,378,137.000 m, and e2 = 0.006694380023.
Given: Station “K 785,” a first-order GPS station located on the campus of the 

Oregon Institute of Technology in Klamath Falls.

X = –2,490,977.042 m
Y = –4,019,738.192 m
Z = 4,267,460.404 m

Compute:

 

λ=





arctan Y

X
; λ = 238° 12’ 50.”646096 E

 = 121° 47’ 09.”353904 W

 P X Y= +2 2 ; P = 4,728,981.0484 m

63014_C006.indd   147 3/4/08   12:14:09 PM



148 The 3-D Global Spatial Data Model

 

φ 0 21
=

−









arctan

( )
Z

P e
; φ0 = 42° 15’ 17.”133952 N

 

N a
e

0 2 2
01

=
− sin φ 

; N0 = 6,387,812.0556 m

 

φ 
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1

2
0 01= +



















arctan sinZ

P
e N

Z 




; ϕ1 = 42° 15’ 16.”993923 N

Values for subsequent iterations are shown in Table 6.3.
Once the geodetic latitude is found, the ellipsoid height is computed as

 
h P N= −

cosφ
; h = 1,297.8797 m

example of bK2 transformatIon—
VIncenty’s method (same poInt)

Ellipsoid: GRS 1980, a = 6,378,137.000 m, and e2 = 0.006694380023.
Given: Station “K 785,” a first-order GPS station located on the campus of the 

Oregon Institute of Technology in Klamath Falls.

X = –2,490,977.042 m
Y = –4,019,738.192 m
Z = 4,267,460.404 m

Compute:

 

λ=





arctan Y

X
; λ = 238° 12’ 50.”646096 E

 = 121° 47’ 09.”353904 W

table 6.3

summary of bK2 Iterations
Iteration latitude difference normal  difference

0  42° 15’ 17.”133952 — 6,387,812.0556 m

1  42° 15’ 16.”993923 –0.”140029 6,387,812.0412 m –0.0144 m

2  42° 15’ 16.”993408 –0.”000515 6,387,812.0411 m –0.0001 m

3  42° 15’ 16.”993405 –0.”000003 6,387,812.0411 m –0.0000 m
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 P X Y2 2 2= +  and P X Y= +2 2 ; P = 4,728.981.0484 m

 r P Z2 2 2= +  and r P Z= +2 2 ; r = 6,369,810.0486 m

 
h r a a b Z

r
' ( )
= − +

− 2

2
; h’ = 1,271.2291 m

 a a h' '= + ; a’ = 6,379,408.2291 m

 b b h' '= + ; b’ = 6,358,023.5433 m

 

φ ' arctan '
'

'
=












 +

a
b

Z
P

e h a2 4

1 (( )Z P
a

2 2

44
−

























; ϕ’ = 42° 15’ 16.”996289 N

 
T P h

a
=

−( ' cos ')φ 2

2 ; T = 0.54950876168

 
U Z h

b
=

−( ' sin ')φ 2

2 ; U = 0.45049960785

 

h h T U
T
a

U
b

= +
+ −

+













' 1
2

1
; h = 1,297.8795 m

 

φ
φ

=







−







arctan sin 'a

b
Z e h

P

2 2



















; φ = 42° 15’ 16.”993406

The advantage of Vincenty’s method is that one need go through it only once. 
Although his method is an approximation, representative tests (even for very large 
values of h) confirm agreement within 0.2 mm. If that is not precise enough, an itera-
tion solution is recommended.

mERidiaN aRC lENGth

Throughout history, the size of the Earth has been determined by measuring a portion 
of a meridian arc and comparing that length to the corresponding angle subtended at 
the Earth’s center (this procedure was described as “degree measurement” in chapter 
5). If one knows any two of the three—arc length, central angle, or radius—the third 
is readily computed. Different values of arc-length-per-degree-of-latitude at various 
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latitudes implied that the Earth is flat-
tened at the poles. But, having selected 
an ellipsoid model for the Earth, differ-
ential geometry elements are integrated 
to compute meridian arc length or por-
tions thereof; see Figure 6.5. Arc length 
of a differential element, ds, equals the 
instantaneous radius of curvature, M, 
times the differential increment in geo-
detic latitude, dφ.

                     dS = M dφ (6.45)

S, the meridian arc distance from 
one latitude to another, is obtained by 
integrating equation 6.46 from one lati-
tude to another. The meridian quadrant 
limits are 0° and 90° (in radian mea-
sure, 0 and π/2).

  

S Mdφ φ 

φ 

φ 

φ1 2

1

2

→ =∫
 (6.46)

The expression for M, equation 6.18, is substituted into equation 6.46, and the 
constant portion moved outside the integral to get

 

S a e e dφ φ 

φ 

φ 

φ φ1 2

1

2

1 12 2 2 3 2
→

−= − −∫( ) ( sin ) /

 (6.47)

Equation 6.47 contains an elliptical integral and cannot be integrated in closed 
form. That is, the expression inside the integral must be expressed in a series expan-
sion containing ever smaller terms that can be integrated individually. A solution 
is obtained by including all those terms that make a difference in the answer to the 
accuracy desired. Either a binomial series expansion or the MacLaurin series can 
be used with identical results (Rapp 1991). The result, equation 6.48, can be used 
within any specified limits. Computational convention is to start at the southerly of 
two latitudes and end at the northerly limit. If the convention is switched, the result 
will be a negative arc distance. Latitude south of the equator should be used as a 
negative value.

The meridian arc distance (in meters, given that a is in meters) between latitude 
limits selected by the user is

d

dS

Equator 
M

S

Figure 6.5  Meridian Arc Length
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S a e A B
φ φ φ φ φ φ1 2 1

2
2 22

2 1 2→ = − − − −( )[ ( ) sin sin   1( )+

 

C D
4

4 4
6

6 62 1 2 1sin sin sin sinφ φ φ φ −( )− −( )+

 

E F
8

8 8
10

10 102 1 2 1sin sin sin sin ]φ φ φ φ −( )− −( )  (6.48)

where the coefficients A through F are as given in equations 6.49 to 6.54.

 
A e e e e= + + + + +1 3

4
45
64

175
256

11 025
16 384

432 4 6 8,
,

, 6659
65 536

10

,
e  (6.49)

 
B e e e e= + + + +

3
4

15
16

525
512

2 205
2 048

72 765
6

2 4 6 8,
,

,
55 536

10

,
e  (6.50)

 
C e e e= + + +

15
64

105
256

2 205
4 096

10 395
16 384

4 6 8,
,

,
,

ee10  (6.51)

 
D e e e= + +

35
512

315
2 048

31 185
131 072

6 8 10

,
,
,

 (6.52)

 
E e e= +

315
16 384

3 465
65 536

8 10

,
,
,

 (6.53)

 
F e=

693
131 072

10

,
 (6.54)

Notes for equation 6.48:

 1. The terms within the brackets are all unitless. That means, for example, that 
the latitude difference given by φ2 – φ1 must be in radians. The trigonomet-
ric ratios in the other terms are already unitless.

 2. The coefficients need to be computed only once for each ellipsoid if they are 
stored (see Table 6.4). Depending upon the computational environment, it may 
be more efficient to compute and store them or to compute them as needed.

 3. The meridian quadrant is computed by choosing limits of 0° and 90° (0 and 
2π in radians). In that case, equation 6.48 reduces to equation 6.55 because 
the trigonometric sines of the multiple angles are all zero. The meridian 
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quadrant arc length for any Earth-model ellipsoid should be approximately 
10,000,000 meters.

 
S a e A0 90

21 2° → ° = −( )[ ( / )]π
 (6.55)

lENGth of a paRallEl

A parallel of latitude on the ellipsoid describes a circle whose plane is parallel to the 
equatorial plane and whose radius is N cos φ. If the Earth were spherical with radius 
r, the radius of a parallel of latitude would be r cos φ. Since each parallel is a circle, 
its circumference is simply 2π N cos φ. Partial length of a parallel is computed as 
the proportionate part of the total circumference, or, as illustrated in Figure 6.6, arc 
length is computed directly using L = Rθ with the longitude difference expressed in 
radians:

 

L N a
e

p = − =
−

( ) cos cos
sin

λ λ φ λ φ

φ
2 1 2 21

∆  

 (6.56)

suRfaCE aREa of a sphERE

Surface area in a plane is length times width. Area on a curved surface can also be 
computed, but care must be taken because the distances are no longer “flat.” Area 
of the uniformly curved surface of a sphere is computed using tools of differential 

table 6.4

meridian coefficients and Quadrant arc length for selected ellipsoids
clarke 1866 Grs 1980 wGs 1984

f 0.00339007530393 0.0033528106812 0.0033528106647

e2 0.00676865799729 0.0066943800229 0.0066943799901

e4 0.00004581473108 0.0000448147239 0.0000448147234

e6 0.00000031010425 0.0000003000068 0.0000003000068

e8 0.00000000209899 0.0000000020084 0.0000000020084

e10 0.00000000001421 0.0000000000134 0.0000000000134

A 1.00510892038799 1.0050525018131 1.0050525017882

B 0.00511976506202 0.0050631086222 0.0050631085972

C 0.00001086615776 0.0000106275903 0.0000106275902

D 2.1524755323E-08 2.082037857E-08 2.082037826E-08

E 4.1106495949E-11 3.932371371E-11 3.932371294E-11

F 7.5116641593E-14 7.108453403E-14 7.108453229E-14

Quadrant 
arc

10,001,888.0430 m 10,001,965.7292 m 10,001,965.7293 m
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geometry and integral calculus, as shown in Figure 6.7. For illustration purposes, the 
sphere is cut into two equal pieces nominally called northern and southern hemi-
spheres. The equator is the dividing plane and, using equation 6.56, is a circle having 
a circumference of 2πR (∆λ = 2π, N = R, and cos 0° = 1). The circumference of the 
sphere is taken to be the length of a plane rectangle. The width of the rectangle is an 
infinitesimally small differential element in the north-south direction. Referring to 
Figure 6.7, the differential north-south distance is R dφ. If the small ring around the 
sphere is then cut and rolled out flat, the differential area of that ring is computed as 

d

R cos R cos 

R

R 
d 

R 
d

2π R cos 

Figure 6.7  Surface Area of a Sphere

Equator 

North Pole 

N cos

λ2 – λ1 

LP

Figure 6.6  Length of a Parallel
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length (2πR cos φ) times width (R dφ). The surface area of the entire sphere is found 
by adding up an infinite number of infinitely thin adjacent rings (integration). The 
surface area of the entire sphere is found by integrating equation 6.58 from the South 
Pole to the North Pole, (φ1 = –90° and φ2 = +90°).

 dA R R d= ( cos )*( )2π φ φ  ; surface area of thin ring (6.57)

 

A R d R= = −∫ 2 22 2
2 1

1

2

π φ φ π φ φ

φ

φ

cos [sin sin ]

 (6.58)

 Surface area of entire sphere = 4πR2 (6.59)

Ellipsoid suRfaCE aREa

Surface area on the ellipsoid is computed much the same way as surface area on a 
sphere. A differential surface area element on the ellipsoid is written (see equation 
6.60) as the product of an elemental parallel distance and an elemental meridian 
distance, as shown in Figure 6.8. A double integration is used to compute first the 
area of a ring using longitude limits of 0 and 2π radians, then the ring areas between 
latitude limits selected by the user are computed and accumulated using equation 
6.62. Equation 6.63 can be used to compute the area of any rectangular block on the 
ellipsoid surface bounded by parallels and meridians as selected by the user. If limits 
of 0 to 2π for longitude and limits of –90° to + 90° for latitude are used in equation 
6.63, the result (omitting much algebraic manipulation) is equation 6.64, which is 
used to compute total ellipsoid surface area.

 
dA N d M d a e

e
= =

−
−

( cos ) ) ( )cos
( si

φ λ φ φ    (   
2 2

2
1

1 nn )2φ
φ λ    d d  (6.60)

N cos      dλ

M
 d

2

λ1 λ2

1

Figure 6.8  Ellipsoid Surface Area
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  (6.64)

An interesting side note is that the equation for the surface area of a sphere 
should be identical to that of the surface area of an ellipsoid whose eccentricity is 
zero (a = R). If one attempts to insert e = 0 into equation 6.64, an impasse is reached 
when working with the second term within the brackets. First, it is never permis-
sible to divide by zero. As e goes to 0, 1/2e becomes infinitely large. The next term 
involves taking the natural log of a term that goes to 1 as e goes to 0. The second 
part of the second term goes to zero if one takes the natural log of 1. The interest-
ing part is that l’Hopital’s rule can be used to compare the rates of each part of the 
second term as e goes to zero. The ratio reduces to 1 over 1. Since the first term in 
the brackets goes to one, one plus one is two (for terms within the brackets). Two 
times the first part of equation 6.64 gives an identical expression as equation 6.59 
for a sphere for e = 0.

the GeodetIc lIne

dEsCRiptioN

A geodetic line, also known the geodesic, is defined as the shortest distance between 
two points on the surface of the ellipsoid. The geodetic line on the ellipsoid is analo-
gous to a great circle on a sphere. When drawn on a Mercator projection, as shown in 
Figure 6.9, a geodetic line appears to be curved even though on the ellipsoid it bends 
neither to the right nor to the left.
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If one were to start at any point on the equator and travel a geodetic line to a 
point on the opposite side of the world, the path would cross either the north pole 
or the south pole before ending up at the antipole (also on the equator). If one were 
to leave a point on the equator with a beginning azimuth of, say, 00° 01’, and travel 
a geodetic line, the path would miss the North Pole and the final destination on the 
opposite side of the world would be between the antipole and the “liftoff point.” 
Several comments about the geodetic line:

 1. Beginning with an initial azimuth of 00° 01’ on the equator, the geodetic 
line will miss the North Pole by less than 2 kilometers. Increase the azimuth 
at the equator to 1°, and the geodetic line misses the pole by something over 
111 kilometers.

 2. In all cases, there is some point along a geodetic line at which the distance 
to the pole is a minimum. At that point, the latitude is a maximum and the 
azimuth of the geodetic line is 90° (see Figure 6.9).

 3. The geodetic line has no lateral curvature, but the underlying meridians are 
not parallel. Therefore, it should be apparent that the azimuth of the geo-
detic line changes continuously as it traverses the globe. One disadvantage of 
using a Mercator projection of the world to illustrate the behavior of the geo-
detic line is that meridians on a Mercator projection are parallel, meaning 
the geodetic line (which does not curve) must be shown as a curved line.

 4. If one starts on the equator and travels east or west along the equator, the 
path of travel is a geodetic line only until reaching the liftoff point. Beyond 
that, the equator is not a geodetic line. No other parallel of latitude is a geo-
detic line.

 5. Every point on the ellipsoid has an infinite number of geodetic lines going 
through it. The azimuth of a geodetic line through a point can have any 
value between 0° and 360°.

0° 90° 180° 270° 360°

Equator

Lift-off
Point

Approx. 34 km.

Figure 6.9  Geodetic Lines around the Earth
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ClaiRaut’s CoNstaNt

An important feature of a geodetic line is that each different line has its own unique 
number. The number, known as Clairaut’s constant, is defined as

 
K N N= =1 1 1 2 2 2cos sin cos sin   φ α φ α  (6.65)

where

N is the ellipsoid normal,
φ is geodetic latitude of the point, and
α is the azimuth of the geodetic line at the point.

Note that the value of Clairaut’s constant will be negative for geodetic line azimuths 
between 180° and 360°. Also note that while each geodetic line has its own unique 
constant, the value of Clairaut’s constant does not change as one travels a parallel 
of latitude. Hence, an unchanging value of Clairaut’s constant is not an exclusive 
property of a geodetic line.

But, a useful feature of Clairaut’s constant is that one can use it to determine 
the azimuth of a geodetic line at any latitude and, subsequently, the convergence 
between points. For example, if the azimuth of a line on the GRS80 ellipsoid is 91° 
16’ 28” at point C in Figure 6.10 (latitude = 38° 48’ 05.”3342 N), what is the azimuth 
of the same line at point D (latitude = 38° 12’ 22.”5464 N)? Relating the problem 
to Figure 6.10 is important because the inverse sine function has two answers. The 
first answer (typically given by a calculator or computer) will be less than 90°. That 
would be a correct answer at point A (at the same latitude as point D), as shown in 
Figure 6.10, but the second correct answer is the supplement (180º – x) of the first.

Solution: first compute Clairaut’s constant using equation 6.65. Then rewrite 
equation 6.65 to solve for sin α2, as shown in equation 6.66. The inverse sin function 
will provide two legitimate answers—each is correct at some point on the geodetic 
line. The user is expected to choose the correct answer of the two.

A
B C

D

αBαA αD = ??

αC = 91°16'28"

α = 90°

Figure 6.10  Geodetic Line Azimuth Using Clairaut’s Constant
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sin sin sin , , .

, , .
α α α2

4 969 560 178
5 011 871 75

= = =A D 44
0 9915577296491= .

 
α αA = ° = °82  32' 59"    and       97  27' 01"D

Convergence of the meridians is defined as the difference in azimuth between 
two points on the same geodetic line.

 Conv1 2 2 1→ ≡ −α α  (6.67)

In the current example, the convergence from C to D is

 
ConvC D D C→ = − = ° − ° =α α 97 16 27  01   91   28    ' " ' " 0006°  10  33' "

Knowing that a geodetic line azimuth is 90° (sin 90° = 1) at the maximum lati-
tude, it is also possible to use equation 6.65 to determine the maximum latitude 
reached by a geodetic line. The solution involves considerable algebraic manipula-
tion, but equation 6.68 is derived by using 1.0 for sin α2.

 
N Kmax cos sinαmax 90° =

 

cos max
2

2 2

2 2 2

1
φ =

−( )
−

K e
a K e

 (6.68)

Finally, the azimuth at which a geodetic line crosses the equator is found from 
equation 6.65 by using φ2 = 0°, which gives

 
sinαeq

K
a

=  (6.69)

GEodEtiC azimuths

An azimuth is the angle a line on the surface of the Earth makes with the meridian 
through the same point. The geodetic azimuth on the ellipsoid is the azimuth of the 
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geodetic line, but, when working with 3-D spatial data, it is often more convenient 
to work with the 3-D azimuth. The two are very nearly identical and, except for very 
precise applications, can be used interchangeably. Various azimuths are summarized 
here, but a detailed analysis of the differences is given in Burkholder (1997):

 1. If the angle is measured in the horizontal plane defined as perpendicular to 
the local plumb line, a Laplace correction is required to obtain an equiva-
lent angle in the tangent plane to the ellipsoid at that point. As discussed 
in chapter 8, if the deflection-of-the-vertical is zero or insignificant, the 
Laplace correction need not be applied.

 2. If the angle is referenced to the physical spin axis of the Earth instead of 
the adopted mean geodetic position of the North Pole, a correction for polar 
motion is required. The polar motion correction is quite small and beyond 
the scope of this text. Additional information on polar motion can be found 
in texts such as Bomford (1971), Vaníček and Krakiwsky (1986), or Leick 
(2004), or on an appropriate web site.

 3. When looking through the telescope of a carefully leveled surveying instru-
ment to a target at the other end of the line, there is a common line in 3-D 
space between point A and point B. A normal section is a line on the ellip-
soid from point to point formed by the intersection of a plane containing 
the normal at the standpoint and the target at the forepoint. Interestingly 
enough, the normal section from point A to point B on the ellipsoid is not 
the same as the normal section from point B to point A because the direc-
tions of the ellipsoid normals at different latitudes are not parallel. The 
spatial vector between telescope and target (each way) is common to both 
planes. But, when the vertical plane at each end of the line is projected to 
the ellipsoid, the line (normal section) on the ellipsoid from point A to point 
B will be slightly different than the line from point B to point A. The differ-
ence between normal sections is exaggerated and shown in Figure 6.11.

  But, a geodetic line is defined as the shortest distance between two 
points on the ellipsoid surface. Several observations are: first, the geodetic 
line has no lateral curvature but curves only in the plane containing the 

A 

B 
Normal section 
B to A 

Normal section 
A to B 

Geodetic line 

αN 

αG 

Figure 6.11  Normal Sections and the Geodetic Line
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instantaneous normal section. Figure 6.11 gives the mistaken impression 
that a geodetic line has a double curvature. Second, the underlying merid-
ians are not parallel on a globe, but, on a Mercator map, the meridians 
appear as parallel lines. This explanation for the wrong impression is that 
a three-dimensional phenomenon is portrayed on a two-dimensional dia-
gram. The important point is that the geodetic line is one line between 
points on the ellipsoid surface and that the normal sections between points 
are slightly different depending on whether they are going from point A to 
point B or from point B to point A.

 4. If the angle is measured to a target some distance above or below the ellip-
soid, a target height correction may be required. As shown in Figure 6.12, 
the target height correction is required because the normal through the 
target (forepoint) is not parallel with the normal through the standpoint 
(instrument station). The elevation of the theodolite or total station above or 
below the ellipsoid is immaterial because the vertical axis of instrument is 
coincident with the vertex of the dihedral angle being measured.

 5. The 3-D azimuth (Burkholder 1997) lies in the tangent plane at the stand-
point and is computed as the inverse tangent of (∆e/∆n), the local geodetic 
horizon components of a 3-D vector defined by ∆X/∆Y/∆Z.

In summary, the following three azimuths are all very close to being identical 
and are often used interchangeably as a geodetic azimuth. The size of each correc-
tion can be used to decide whether the difference is significant or not.

The geodetic line azimuth is the traditional standard as it is used in geodetic 
computations on the ellipsoid surface.
The normal section azimuth is the azimuth of the line on the ellipsoid from 
standpoint to forepoint (on the ellipsoid) as observed from the standpoint.

•

•

Target 

S

αN

α3D

∆α1 

h

Figure 6.12  Target Height Correction
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The 3-D azimuth is the spatial direction from the standpoint to the fore-
point projected into the tangent plane at the standpoint. The 3-D azimuth is 
readily obtained from GPS data and is the azimuth utilized in the GSDM.

There are two corrections that relate these three azimuths to each other. One is 
the target height correction. The other is called the geodesic correction from the nor-
mal section to the geodetic line. In many cases, the 3-D azimuth is the one routinely 
used. If and when a true geodetic line azimuth is required, the logical sequence 
would be to make the target height correction to obtain the normal section azimuth 
from the 3-D azimuth, then the geodesic correction is applied to get the geodetic line 
azimuth from the normal section azimuth.

target height correction

The azimuth of the normal section is computed from the 3-D azimuth by adding the 
target height correction, as shown in Figure 6.12.

 α α αN D= +3 1∆  (6.70)

 

∆α
ρ

α α1

2 2
1

1
2 3

1
32 1

2=
−

−
  h e

N e
S
ND D

cos
( )

sin sin tφ aan φ 1








 (6.71)

where

ρ = 206,264.806247096355156 seconds per radian,
h = height of target in meters above or below the ellipsoid,
e2 = eccentricity squared of the ellipsoid,
φ1 = geodetic latitude of the standpoint,
N1 = length of the ellipsoid normal in meters at the standpoint,
S = distance from the standpoint to the forepoint in meters, and
α3D = 3-D azimuth from the standpoint to the forepoint.   

Notes related to using the target height correction:

 1. Rarely will the target height correction be greater than 0.5 arc seconds.
 2. The correction is always added (subtraction is adding a negative number). 

Whether the correction is positive or negative is determined by sin (2α3D).
 3. If using equation 6.70 backwards to compute the 3-D azimuth from the 

azimuth of the normal section, the normal section azimuth can be used in 
computing the correction instead of the 3-D azimuth.

Geodesic correction

Given the azimuth of a normal section, the azimuth of a geodetic line is found by 
adding a correction, as shown in equation 6.72:

•
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α α ∆αg N= + 2  (6.72)

 

∆α φ α2

2 2

1
2

2

12
2=−

ρ e S
N m Ncos sin

 (6.73)
where

ρ = 206,264.806247096355 seconds per radian,
e2 = eccentricity squared of the ellipsoid,
S = distance from standpoint to forepoint,
N1 = ellipsoid normal at standpoint,
φm = mean latitude between standpoint and forepoint, and
αN = azimuth of normal section from standpoint to forepoint.

Notes regarding use of the geodesic correction:

 1. The magnitude of the geodesic correction is quite small and can be ignored 
in most cases. For example, regardless of standpoint location or azimuth of 
line, the geodesic correction will never exceed 0.0003 seconds of arc on a 
10 kilometer line or 0.03 seconds of arc on a 100 kilometer line.

 2. As written, the geodesic correction is a negative value. Depending upon the 
azimuth of the normal section, the correction may be positive or negative.

 3. If equation 6.72 is rewritten to find the azimuth of the normal section given 
the azimuth of the geodetic line, it is permissible to use the azimuth of the 
geodetic line in equation 6.73 instead of the normal section azimuth.

GeodetIc posItIon computatIon: forward and InVerse

Geometrical geodesy relationships are used extensively when computing geodetic 
traverses and inverses on the ellipsoid. A two-dimensional (2-D) geodetic traverse 
is typically called the geodetic forward (or direct) computation, and computing the 
2-D direction and distance between points is called the geodetic inverse. In order 
to avoid confusion with other similarly named computations (such as state plane 
coordinate forward and inverse transformations), the 2-D geodetic forward is hence-
forth referred to as a BK18 computation, and the 2-D geodetic inverse is called a 
BK19 computation. Other BK-designated computations are listed in Table 1.1 in the 
description of the GSDM.

puissaNt foRwaRd (BK18)

The geodetic forward (or BK18) computation computes the latitude and longitude 
of an unknown point based upon the known latitude and longitude of the beginning 
point and measured (or given) direction and distance from the known point to the 
unknown point. The direction is the geodetic line azimuth at the beginning point, 
and the distance is the geodetic line distance along the ellipsoid surface. Due to 
ellipsoid flattening, there is no closed-form equation that can be used without some 
approximation. Over the years, geodesists have devised numerous methods whereby 
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the effect of required approximations is minimized and BK18 computations are per-
formed according to specific procedures. One of the most popular procedures is the 
Puissant method, which is quite accurate for lines up to about 60 miles in length. The 
Puissant method is illustrated in Figure 6.13 and summarized as

 
φ φ ∆φ2 1= +  (6.74)

 
∆φ α α ∆φ α" cos sin ( ") sin  = − − −SB S C D hS E1

2 2
1

2 2 2
1  (6.75)
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B
M

=
ρ

1
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h SB= cosα1  seconds,
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2 1

2
1 1

2 2
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( sin )
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ρ φ 
 per second, and

E e
a

=
+ −( tan )( sin )1 3 1

6

2
1

2 2
1

2
φ φ 

 per meter.

The constants h, B, C, D, and E are computed using ρ = 206,264.8062470964 sec-
onds per radian, S = the ellipsoidal distance, α1 = the geodetic line azimuth, M = the 
radius of curvature in the meridian (see equation 6.18), N = the ellipsoid normal (see 
equation 6.16), a = the ellipsoid semimajor axis, and e2 = the eccentricity squared. 
Note that ∆φ” appears on both sides of equation 6.75, requiring an iterative solution. 
Use ∆φ” = 0 for the first iteration, and pay close attention to the units of each term.

The longitude of point 2 is computed as

 
λ λ ∆λ2 1= +

 (east longitude) (6.76)

2 
λ2 

λ1 

∆ 

∆λ 

α1–2 

S

1 

Figure 6.13  Geodetic Forward (BK18) and Inverse (BK19) Computations
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Note that the latitude of point 2 must be computed before the longitude at point 
2 because φ2 is used in equation 6.77. The azimuth from point 2 to point 1 (the back 
azimuth) can be computed using Clairaut’s constant, but the Puissant method uses 
the following solution based upon convergence, ∆α:

 
α α ∆α2 1 1 180→ = + + °  (6.78)
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 (6.79)

puissaNt iNvERsE (BK19)

The geodetic inverse, BK19, begins with the latitude and longitude of two points and 
computes the geodetic direction and distance between them. The Puissant method 
for BK19 uses the same B, C, D, and E coefficients as defined in BK18 and computes 
intermediate x and y values from which direction and distance are computed.

 
∆φ φ φ = −2 1  (6.80)

 ∆λ λ λ= −2 1  (east longitude) (6.81)
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S x y(distance) = +2 2 ; in meters (6.85)

63014_C006.indd   164 3/4/08   12:15:26 PM



Geometrical Geodesy 165

Advantages of the Puissant method include (1) it is quite accurate for distances 
up to about 100 kilometers (62 miles), and (2) it is a well-defined procedure that can 
be done by hand or by computer. Disadvantages of the Puissant method are (1) the 
uncertainty of really knowing how accurate it is, (2) it is not obvious how various 
pieces fit in the solution, and (3) distance wise, it is limited in scope. Other tradi-
tional methods have similar advantages and disadvantages.

NumERiCal iNtEGRatioN

Jank and Kivioja (1980) published a numerical integration procedure for BK18 and 
BK19, which is summarized here and recommended for use as appropriate. The 
method is quite tedious if used for longhand computations, but, by user choice, the 
results can be as accurate as desired over any length of line. If the procedure is pro-
grammed, even on a small handheld computer, the tediousness objection becomes 
moot. The Jank-Kivioja method utilizes differential geometry relationships for ellip-
soidal triangles that are small enough to be treated as plane triangles. The key to pre-
serving computational accuracy is maintaining the correct azimuth for each geodetic 
line element. That is done by using Clairaut’s constant.

bK18 by Integration

Figure 6.14 shows a diagram of the BK18 computation in which the computation 
begins at point 1 and ends at point 2. The overall geodetic distance is broken into 
as many increments as needed to preserve computational accuracy at the endpoint. 
Clairaut’s constant is used to update the geodetic line azimuth at the midpoint of 
each computational element. Conceptually, the process begins by getting on the geo-
detic line at point 1, moving up to the approximate midpoint of the element, using 
Clairaut’s constant to find an average azimuth for the entire element, computing lati-
tude and longitude increments based upon midpoint values, adding the latitude and 
longitude increments to the beginning element values to get latitude and longitude at 
the end of the element, using Clairaut’s constant to update the azimuth at the element 
endpoint, then using the ending values of one element as beginning values for the 
next element, and repeating for the number of elements chosen by the user. Special 
considerations are required to compute across the meridian through the point of 
maximum latitude.

The following equations are written from the diagram in Figure 6.14, using the 
assumption that each element is small enough to be treated as a plane triangle.

 

M S S
Mm m

m

m
( ) cos cos∆φ ∆ α ∆φ α

= ⇒ =
∆

 (6.86)

 

N S S
Nm m m

m

m m
cos sin sin

cos
φ ∆ ∆ φ ∆ ∆ α

φ
λ λ= ⇒ =  (6.87)

Steps for performing a geodetic line BK18 numerical integration are as follows:
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 1. ∆S = S divided by the number of increments chosen by the user.
 2. Compute values of M and N at point 1 (point A for first element; see equa-

tions 6.18 and 6.16).
 3. Compute Clairaut’s constant for the line (see equation 6.65).
 4. Compute the approximate change in latitude for the element using equation 

6.86 and the azimuth, radius of curvature M, and latitude at the beginning 
of the element.

 5. Find the latitude of the element midpoint by adding half of approximate ∆φ 
to the latitude of the beginning of the element.

 6. Compute M and N at the element midpoint.
 7. Use Clairaut’s constant to update the geodetic line azimuth at midpoint.
 8. Use equations 6.86 and 6.87 to compute latitude and longitude increments.
 9. Add latitude and longitude elements to the latitude and longitude of the 

beginning of the element.
 10. Compute Mm and Nn at the element midpoint.
 11. Use Clairaut’s constant to update the azimuth at the endpoint.
 12. Use endpoint values as beginning values for the next element.
 13. Repeat for the number of elements chosen by the user.

Jank and Kivioja (1980) claim that millimeter accuracy can be realized for 20,000 
km lines (halfway around the world) if elements are limited to a length of 200 meters. 
For shorter lines, longer elements can be used while maintaining millimeter accu-
racy. Practically, increasing the number of increments and noting any change in the 
final computed position can be used to check the accuracy of a computed position for 
any line length. For example, geodetic latitude and longitude to five decimal places 
of seconds correspond to about 0.0003 meters on the ellipsoid and are often used 
as a computational standard. If increasing (say, doubling) the number of increments 
gives the same answer to five decimal places of seconds, enough elements were used 
the first time. The BK18 integration printout in Figure 6.15 shows a 2,000.000 meter 
line broken into four elements (∆S = 500.000 meters) with individual values printed 
out for each element. At the bottom of the printout, the results obtained using ten ele-
ments (sections) show the final results without the intermediate printouts. No change 
to six decimal places of seconds is noted. Conclusion: results shown at the end of 

∆ 

∆λ 

λ1 

α1 

∆S 
∆S ∆S ∆S 

1 

λ1 

λ2 

A 

B αm 

m 

1 

2 

∆S

Figure 6.14  Geodetic Line Numerical Integration
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Figure 6.15  BK18 Numerical Integration Printout

63014_C006.indd   167 3/4/08   12:15:31 PM



168 The 3-D Global Spatial Data Model

section 4 in Figure 6.15 are accurate at least within 0.00003 meters (one magnitude 
better than the “standard”).

bK19: numerical Integration

The BK19 numerical integration is really a misnomer in that numerical integration 
is only part of the procedure. Essentially the BK19 computation utilizes a conven-
tional geodetic inverse computation to obtain approximate answers (direction and 
distance). Those answers are then used in the BK18 computation to see how close 
the computed endpoint position is to the given values of latitude and longitude. Cor-
rections to the approximate direction and distance are computed based upon the 
misclosure. With corrections applied, a second BK18 computation is performed and 
another misclosure is computed. The procedure (iteration) terminates when the user 
is satisfied that the computed position is acceptably close to the given latitude/longi-
tude position. The direction and distance used in such a final BK18 computation are 
taken to be the BK19 solution.

Given two geometrical parameters for an ellipsoid and the latitude and longitude 
of two points, a listing of the steps given by Jank and Kivioja (1980) to find the direc-
tion and distance from one point to another (a BK19 solution) is as follows:

 1. Find the azimuth of the normal section from point 1 to point 2. This is an 
approximation of the final geodetic line azimuth.
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 2. Compute Clairaut’s constant for the normal section azimuth.
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e
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−

cos sin
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 (6.89)

 3. Use Clairaut’s constant to compute the azimuth at the midlatitude between 
points 1 and 2.
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m
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 (6.90)
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 4. Compute radii of curvature for prime vertical and meridian sections at 
midlatitude.

           

M a e
e

N a
m

m
m=

−
−

=
−

( )
( sin ) /

1
1 1

2

2 2 3 2φ
     and    

ee m
2 2sin φ

      (6.18) and (6.16)

 5. Use Euler’s formula (equation 6.19) to compute the ellipsoid radius of cur-
vature for the line (specific azimuth at given latitude).

 
R M N

M A N AA
m m

m m m m
m
=

+sin cos2 2
 (6.91)

 6. Use the spherical law of cosines to compute the angle subtended at the 
center of the Earth by points 1 and 2 on the ellipsoid surface. Use this angle 
and radius from step 5 to compute the preliminary distance between points 
1 and 2.

 
P P1 2 1 2 (in radians)  = +arccos [sin sin cosφ φ φ  φ 1 2cos cos( )]∆λ  (6.92)

 
S Dist P P R P Pc A radm
= =( ) ( )1 2 1 2  (6.93)

 7. With the approximate distance known, compute the difference in azimuths 
of the geodetic line and the normal section. Apply the difference to the 
previously known normal section azimuth to get the azimuth of the geo-
detic line from point 1 to point 2. Update the value of Clairaut’s constant to 
reflect traversing the geodetic line instead of the ellipsoid normal. Units in 
equation 6.94 are seconds of arc.

 
∆A A A V V b

a
S An g c m" ( ) * * sin( )= − =
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A A Ag n= −∆ "  (6.95)
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11

 (6.96)

  Although the difference is quite small, the value of K in equation 6.96 rep-
resents an improvement over the value in equation 6.89 because the BK18 
check computation follows the geodetic line, not the normal section.

 8. Start from point 1 and use the preliminary distance along with the azimuth 
of the geodetic line in a BK18 computation to compute the latitude and 
longitude of point 2. The computed position of point 2 should be very close 
to given values, as illustrated in Figure 6.16. The azimuth at the computed 
point is computed using Clairaut’s constant as
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 A K
Nc =










arcsin
cos

;
2 2φ

 note approximation of N2 and φ2 for Nc and φc.

 9. If the approximation of azimuth from step 7 and the approximate distance 
from step 6 are good enough, the latitude/longitude position computed in 
step 8 will be close to the given position. In that case, the computation 
is done. Otherwise, corrections to the preliminary direction and distance 
need to be computed, and the BK18 computation needs to be used again.

 10. Specific steps for computing the corrections to direction and distance are 
given in Jank and Kivioja (1980) and only summarized here. With reference 
to Figure 6.16, the corrections are

 
∆φ φ φc c= −2 ;  misclosure in north-south direction (6.97)

 
∆λ λ λc = −2 1;  misclosure in east-west direction, positive east λ (6.98)
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 γ β= −Ac ; this equation is correct for the case shown. Others exist. (6.101)

From Figure 6.17, it is readily seen that

 
∆ γS P Pc= 2 sin ;  this is a correction to the distance. (6.102)
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ρ γ 2  this is a correction to the geodetic line azimuth. (6.103)
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Figure 6.16  Misclosures in the Trial BK18 Computation
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 11. With the corrections determined above, the BK18 computation is used 
again with new (better) values for distance and azimuth. Figure 6.17 shows 
only one of many possible combinations for applying the computed correc-
tions. The user will need to assure that correct signs are used in applying 
the corrections. The misclosure should be much smaller at the end of the 
second BK18 computation. If the agreement of the computed position with 
the given position is acceptable, the following direction and distance are the 
inverse (BK19) solution. If not, steps 7, 8, 9, 10, and 11 are repeated.

 
A A Ag2 = + −/ ;∆  (6.104)

 
S S sc2 = + −/ ;∆  (6.105)

Comments on the Jank-Kivioja BK19 procedure:

 1. The Jank-Kivioja numerical integration procedure is tedious to perform, 
but it does a good job of “choking the elephant” (see the preface) and puts 
computational control in the hands of the user.

 2. Ultimate accuracy of the Jank-Kivioja method is limited only by the signifi-
cant digit capacity of the computer being used. But computational procedures 
and equations are arranged such that only modest significant digit capacity is 
required to achieve impressive results for both BK18 and BK19 computations.

 3. The Jank-Kivioja procedure is included to show how “classical” geodesy 
approaches the BK19 computation. The 2-D computation is performed 
strictly on the ellipsoid surface.

 4. The GSDM can be used in place of equations 6.88 through 6.96. If needed, 
equations 6.97 through 6.105 can be used to improve the GSDM solution. See 
the subsequent section in this chapter on GSDM 3-D geodetic computations.

1 

C 
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∆A

PC P2
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Figure 6.17  Corrections to Previous Direction and Distance
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GEodEtiC positioN ComputatioNs usiNG statE plaNE CooRdiNatEs

State plane coordinates can also be used to perform geodetic direct and geodetic 
inverse computations. The use of state plane coordinates is described in chapter 10, 
“Map Projections.” In the context of a map projection, the geodetic forward and 
inverse computations are performed using simple 2-D COGO relationships. The 
complex part is converting latitude and longitude to plane coordinates and plane 
coordinates to latitude and longitude (BK10 and BK11 computations). Computers 
have been programmed to perform those transformations, and users are largely 
oblivious to the complexity involved. The advantage of using state plane coordinates 
for geodetic computations is the ease with which traverse and inverse computations 
are performed with plane coordinates. The disadvantage to using state plane coordi-
nates to perform a geodetic direct computation is that local directions and distances 
must first be converted to grid azimuths and grid distances before performing the 
simple 2-D COGO computations. Similarly, the disadvantage to using state plane 
coordinates for the geodetic inverse computation is that the answer comes out in grid 
azimuth and grid distance. Many users desire local tangent plane distances and true 
bearings. That means grid azimuth and grid distance obtained from a state plane 
coordinate inverse must be converted to local tangent plane direction and distance 
or to ellipsoid direction and distance.

Procedures for using state plane coordinates and for computing a state plane 
traverse are included in chapter 10. Steps for performing a single-course geodetic 
traverse using state plane coordinates include the following:

 1. Start with latitude/longitude of point 1 (state and zone must be named).
 2. Convert latitude/longitude to state plane coordinates (use reliable software).
 3. Reduce measured slope distance to grid distance. Steps include the following:
 A. Slope to horizontal (include curvature and refraction if needed).
 B. Horizontal to sea level or ellipsoid (ellipsoid is more elegant).
 C. Ellipsoid distance to grid distance (use the Simpson 1/6 rule for long 

lines).
 D. (Steps B and C are often done together using a combined factor.)
 4. Compute the grid azimuth of line from point 1 to point 2:
 A. Use field-measured angle from known grid azimuth of reference line.
 B. Use solar/Polaris observation at point 1 and, as appropriate, apply
 1. Laplace correction to convert astronomic azimuth to geodetic 

azimuth.
 2. convergence at point 1 to convert geodetic azimuth to grid 

azimuth.
 5. Compute state plane grid coordinates of point 2 using grid distance and 

grid azimuth (BK16).

 E2 = E1 + (grid distance) sin (grid azimuth) (6.106)

 N2 = N1 + (grid distance) cos (grid azimuth) (6.107)
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 6. Convert E/N state plane coordinates of point 2 to latitude/longitude (BK11).
Steps for performing a geodetic inverse using state plane coordinates include 

the following:

 1. Start with latitude/longitude of point 1 and point 2 (state and zone must be 
named).

 2. Convert latitude/longitude of each point to state plane coordinates.
 3. Compute grid distance and grid azimuth between points (BK16).

 A. Dist E E N N= − + −( ) ( )2 1
2

2 1
2  (grid distance)

 B. tanα = −
−

=
E E
N N

e
n

2 1

2 1

∆
∆

 (grid azimuth—see equations 4.11 to 4.13)

 7. Convert (see chapter 10): 
 A.  grid distance to sea level (or ellipsoid) distance.
 B.  sea level (or ellipsoid) distance to horizontal ground distance.
 8. Convert grid azimuth to geodetic azimuth using convergence:
 A.  At point 1 to find geodetic azimuth point 1 to point 2
 B.  At point 2 to find geodetic azimuth point 2 to point 1

Note: the geodetic azimuth point 1 to point 2 will not be the same (+/– 180°) as the 
geodetic azimuth point 2 to point 1 because meridians on the Earth are not parallel.

Gsdm 3-d GEodEtiC positioN ComputatioNs

With the exception of state plane coordinate computations, the geodetic position 
computations described so far are part of classical geometrical geodesy computa-
tions and are conducted only on the ellipsoid surface (e.g., 2-D). And, the argument 
could be made that since a map projection is strictly a 2-D model, the state plane 
coordinate exception is moot. The GSDM provides an alternative to classical geod-
esy methods and can be used to obtain results to any accuracy desired. The first 
solution is generally sufficient, but, if needed, refinement of the solution uses the 
same misclosure and correction methods as the Jank-Kivioja method—see equations 
6.97 to 6.105.

Geodetic position computations using the GSDM require extensive use of BK1 
and BK2 computations. BK1 is very straightforward and uses equations 6.22 through 
6.25. BK2 is more complex and uses either an iteration procedure (equations 6.26 
through 6.32) or a lengthier “recipe” procedure given by equations 6.33 through 
6.44. Given the procedures and equations described, the GSDM geodetic forward 
and inverse computations are given below.

forward (bK3)

The steps for performing a GSDM geodetic forward computation are as follows:
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 1. Given: latitude and longitude for point 1. Ellipsoid height may also be given, 
but for a strict comparison with other examples, point 1 should be on the 
ellipsoid, h = 0.00 m.

 2. Use BK1 to convert latitude/longitude/height coordinates of point 1 to geo-
centric X/Y/Z ECEF coordinates.

 3. The position of point 2 is computed as

 X X X2 1= +∆  (6.108)

 Y Y Y2 1= +∆  (6.109)

 Z Z Z2 1= +∆  (6.110)

 where ∆X/∆Y/∆Z are components from a GPS vector or ∆e/∆n/∆u compo-
nents from total station observations rotated from the local geodetic hori-
zon perspective to the geocentric perspective using the BK9 rotation matrix 
(equation 1.22).

 4. The geodetic latitude and longitude of point 2 are computed by transform-
ing the X/Y/Z coordinates of point 2 to latitude/longitude/height using a 
BK2 transformation. Of course, the ellipsoid height, whether zero or not, is 
also a product of the BK2 computation.

Inverse (bK4)

Given the latitude and longitude (ellipsoid height must be zero) of points A and B, the 
objective is to find the geodetic azimuth and ellipsoid distance between them using 
the GSDM. Steps in the GSDM geodetic inverse computation are as follows:

 1. First, the latitude, longitude, and height of each point are used to compute 
the ECEF geocentric coordinates for point A and point B.

 2. Then, the geocentric inverse is computed as

 ∆X X X= −2 1  (6.111)

 ∆Y Y Y= −2 1  (6.112)

 ∆Z Z Z= −2 1;  (6.113)

 3. The local ∆e/∆n/∆u components are computed using the BK8 rotation 
matrix as described in equation 1.21.

 4. Various azimuths and distances are computed depending upon the choice 
of the user.

 A. The 3-D azimuth is computed as
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	 α3D = arctan(∆e/∆n). (6.114)

 If warranted, the geodetic azimuth is computed from the 3-D azimuth 
by applying the correction given in equation 6.73. The target height cor-
rection is zero because h = 0.0 at the forepoint.

 B.  Given h = 0.0 m at both ends of the line, the mark-to-mark chord distance 
is either

 D X Y ZM M− = + +∆ ∆ ∆2 2 2  or D e n uM M− = + +∆ ∆ ∆2 2 2  (6.115)

 C.  The local tangent plane distance [HD(1)], from Point A to Point B is not 
really part of the geodetic inverse, but can be easily computed as: 

 HD e n( )1 2 2= +∆ ∆   (6.116)

 D. Using the concept of L = Rθ (θ in radians), the geodetic arc distance 
is obtained from the chord distance between point A and point B and 
the “best” radius of the ellipsoid between the two points. Use equation 
6.115 for the chord distance and equation 6.19 for the radius. If the line 
is not very long, equation 6.20 may suffice for the radius.

 

D R D
Rgeod

M M
. * arcsin=











−
α

α

2
2

 (6.117)

   where

  Rα = radius from equation 6.19 or 6.20, and
  DM-M = chord distance from equation 6.115.

Note that for long lines, the midpoint latitude geodetic line azimuth should be 
computed using Clairaut’s constant. This midpoint azimuth will give a better value 
of Rα.

Gsdm Inverse example: new orleans to chicago

The great circle arc distance between New Orleans and Chicago was given as in chap-
ter 3 with promise of this similar ellipsoid computation in chapter 6. Using the GRS80 
ellipsoid and the latitude/longitude positions (remember h = 0.0 m) listed in chapter 3, 
the geocentric X/Y/Z coordinates of the two points are computed using BK1:

 GRS80: a = 6,378,137.000 m and e2 = 0.006694380023
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new orleans (1) chicago (2)

φ = 30º 02’ 17” N φ = 42º 07’ 39” N

λ = 90º 09’ 56” W λ = 87º 55’ 12” W

 269º 50’ 04” E  272º 04’ 48” E

h = 0.0 m h = 0.0 m

 N = 6,383,493.2334 m  N = 6,387,764.6511 m

 X = –15,967.7193 m  X = 171,947.3712 m

 Y = –5,526,123.0752 m  Y = –4,734,389.6050 m

 Z = 3,174,026.4177 m  Z = 4,256,117.7017 m

Using equations 6.111 through 6.113, the geocentric components are

 ∆X = X2 – X1 = 187,915.0905 m
 ∆Y = Y2 – Y1 = 791,733.4702 m
 ∆Z = Z2 – Z1 = 1,082,091.2840 m

Using the rotation matrix in equation 1.21 at New Orleans, the local perspective 
components are as follows:

∆e = 185,626.6036 m
∆n = 1,333,351.1820 m
∆u = –144,197.4535 m

The mark-to-mark chord distance (both points are on the ellipsoid) is computed 
using either geocentric components or local (New Orleans) perspective components as

D X Y Z e n uM M− = + + = + + =∆ ∆ ∆ ∆ ∆ ∆2 2 2 2 2 2 1 353 911 192, , .  mm  (6.115)

 

α3
1

D
e
n

=





=

−tan ∆
∆

 7º 55’ 32.”4001 (6.114)

Equations 6.72 and 6.73 are used to compute the azimuth of the geodetic line at 
the standpoint (New Orleans).

 

α α φ αg D
M M

m D
e D

N
= − −

3

2 2

1
2

2
312

2ρ cos sin( )    (φm = 36º 04’ 58”)

 αg = 7º 55’ 32.”40016 – 0.”92344 = 7º 55’ 31.”47666 (6.118)
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In order to convert the chord distance to the equivalent ellipsoid arc distance 
using equation 6.117, we need the azimuth of the line and the Rα radius of curvature 
at the midlatitude. Use Clairaut’s constant (computed at New Orleans) to get the mid-
point azimuth and equations 6.16, 6.18, and 6.19 to get the ellipsoid distance.

K N= 1 1 1cos sinφ α  = 6,383,493.232 m cos (30º 02’ 17”) sin (7º 55’ 31.”4767) 
= 761,966.1120 m

 
M a e

em
m

=
−

−
=

( )
( sin ) /

1
1

2

2 2 3 2φ  6,357,570.4002 m

 

N a

e
m

m

=
−

=
1 2 2sin φ  6,385,555.1108 m

The geodetic line azimuth at the midpoint latitude is found using equation 6.66 as

sin
cos

, .
, , .

α
φm

m m

K
N

= =
761 966 113

5 160 594 603
 m
 m
== 0 1476508371. ; αm = 8º 29’ 26.”92885

The “best” radius of curvature at the midpoint of the line is found using equation 
6.19 as

 

R M N
M N

m m

m m m m
α =

+
=

sin cos2 2α α
 

6,358,177.8727 m

 D R D
Rellipsoid

M M=










− −
α

α
* sin2

2 180
1 π

==  1,356,482.2905 m (6.117)

As geodetic inverse computations go, New Orleans to Chicago is a long line. For 
shorter lines, the direction in equation 6.114 and the distance in equation 6.117 may 
be good enough, but whether the line is long or short, the results should be checked 
using the BK18 forward computation. Remember that the Earth is ellipsoidal, not 
spherical as was assumed in equation 6.117. To check how good the answers are, we 
need to perform a numerical integration forward (BK18) computation using equations 
6.86 and 6.87. The BK18 printout shown in Figure 6.18 uses the latitude/longitude at 
New Orleans, the geodetic azimuth at New Orleans, and the ellipsoid distance from 
New Orleans to Chicago. Note that the line was broken into twenty pieces, each 
67,824.1145 meters long. Those elements are not short enough for a good answer—
but it puts us in the ballpark, as shown at the end of element 20. In the same computa-
tion the total distance was broken into 10,000 pieces (each 135.64829 meters long), 
but the intermediate results were not printed. A comparison of the results at the end 
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Figure 6.18  Trial Geodetic Line: New Orleans to Chicago—BK18
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of element 20 and the “final” solution shows very good agreement. But, the com-
puted position in Chicago falls slightly south of the given latitude of 42º 07’ 39.”000 
N. Also note that the computed longitude is slightly east of the given value of 272º 
04’ 48.”000 E. Yes, the solution is close, but a better inverse solution is available if 
we use that information to compute corrections to both the approximate azimuth and 
distance. With the corrected values, the numerical integration BK18 computation 
will be performed again with better results.

At this point, the 3-D inverse has done as well as it can do. From here onward, 
the method of computing misclosures and corrections is taken from the Jank and 
Kivioja (1980) inverse algorithm.

The misclosures and corrections are computed using equations 6.97 through 
6.105, as follows:

∆φ φ φc c= − =2  42º 07’ 39.”00000 – 42º 07’ 38.”997194 = 0.”002806  (6.97)

∆λ λ λc c= − =2  272º 04’ 48.”00000 – 272º 04’ 48.”034168 = –0.”034168 (6.98)

 
M a e

e2

2

2 2
2

3 2

1
1

=
−

−
=

( )
( sin ) /φ

 6,364,172.255 m (6.18)

 

N a

e
2 2 2

21
=

−
=

sin φ
 6,387,764.651 m (6.16)

P P N Mc c c2 2 2
2

2
2= + =( cos ) ( )φ ∆λ ∆φ  0.7895 m (∆φ and ∆λ in radians) (6.99)

 
tan

cos
.
.

β ∆φ
∆ φ 

= = ⇒
M

N
c

c

2

2 2

0 08658
0 7848λ

 m
 m

        17  44β = 6 ' "
 (6.100)

From the printout at the end of Figure 6.18, we get αc = 9º 15’ 20”.

 
γ β= −Ac  = 9º 15’ 20” – 6º 17’ 44” = 002º 57’ 36” (6.101)

 Correction to distance: ∆ γS P Pc= 2 sin  = 0.0408 m (6.102)

 Correction to azimuth: ∆α
γ

=
P P

S
c

c

2 cos
 = 0.”120 (6.103)
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Using these corrections, the corrected direction and distance are

 Trial 2: azimuth = 7º 55’ 31.4766 – 0.”120 = 7º 55’ 31.”3567 (6.104)

 distance = 1,356,482.2905 – 0.0408 m = 1,356,482.2497 m (6.105)

These corrected values were used in the (BK18) iteration software again, and 
the final answer came within 1 cm of the latitude/longitude position given in chapter 
3. Another iteration could have been used to make the agreement even better. This 
method is tedious, but it puts the user in control and provides tools that can be used 
to obtain the best answer possible.

Notes about the GSDM geodetic inverse:

 1. The 3-D azimuth as computed by equation 6.114 contains no approxima-
tion. But, especially for long lines, the geodesic correction should be used 
to find the azimuth of the geodetic line. The BK18 computation provides a 
way to check the solution.

 2. Since the Earth is ellipsoidal and not spherical, the geodetic distance com-
puted with equation 6.117 is an approximation—albeit a very good one. The 
integrity of the GSDM geodetic inverse can be checked the same way as the 
Jank-Kivioja iteration method. Once an approximate direction and distance 
(equations 6.114 and 6.117) are obtained, the geodetic forward (BK18) is used 
to compute the latitude and longitude of point 2. If the misclosure is significant, 
corrections are computed and applied as outlined in equations 6.97 through 
6.105. As in the iteration inverse, subsequent corrections are computed and 
applied as often as required to obtain a sufficiently precise answer.

 3. The GSDM geodetic inverse is valid in true 3-D space and not limited to 
the 2-D example given above. Although the GSDM inverse can be used to 
duplicate a 2-D inverse on the ellipsoid, the GSDM inverse is more versatile 
and can be used to find any of the several horizontal distances described by 
Burkholder (1991).
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7 Geodetic Datums

IntroductIon

A datum is a reference to which other values are related. In surveying, a vertical 
datum could be as simple as an arbitrary benchmark assigned an orthometric height 
of 100.000 meters (or feet, etc.). A horizontal datum could be defined by a stake 
pounded in the ground for a point of beginning (P.O.B.) and assigned arbitrary coor-
dinates such as east = 5,000.000 meters, north = 10,000.000 meters. If both hori-
zontal and vertical values are assigned to the same point, the result could be called 
a 3-D datum. The definition of units of measurement, orientation of azimuth, and 
coordinate system are all implicit in such a definition. Another important implicit 
assumption is that horizontal is perpendicular to the plumb line, or, as is the case 
with the GSDM, horizontal is taken to be perpendicular to the ellipsoid normal 
through the standpoint or through the P.O.B. as defined in chapter 1. Presumably 
rectangular Cartesian coordinates, either 2-D or 3-D, are used to describe the loca-
tion of all points with respect to the datum origin and with respect to each other. The 
permanence and value of such an assumed datum depend upon the stability of monu-
mented points, the quality of coordinates on those points, and the extent to which 
assumptions associated with establishment of the origin are documented, followed, 
and made available to others. When using the GSDM, the user selects the P.O.B. and 
works with local flat-Earth components in a well-documented system.

In the larger view, a datum must accommodate more than a flat-Earth perspec-
tive. It has been known since before the birth of Christ that the Earth is not flat. Era-
tosthenes determined the size of the Earth several hundred years b.c., and the value 
he obtained (Carta 1962) was within about 16 percent of today’s accepted value. 
Locally, it still makes sense to reference the horizontal location of an object with 
plane rectangular coordinates, but, when describing the location of a point on the 
globe, it is more convenient to use the latitude/longitude graticule. Latitude is reck-
oned in angular (sexagesimal) units north or south from the equator, and longitude 
is similarly reckoned east and west from the arbitrary meridian through Greenwich, 
England. And, mean sea level has been used as a reference for vertical datums for 
many years. An observation here is that the use of mixed units—angular sexagesi-
mal units for horizontal and length units for vertical—introduces a level of computa-
tional complexity for 3-D data that many users would like to avoid.

On one hand, the goal is to keep the datum definition as simple as possible. A 
simple 2-D or 3-D flat-Earth coordinate system is used successfully in many local 
applications to describe the location of points and/or objects. On the other hand, 
the definition of a datum should be sufficiently comprehensive to accommodate the 
entire world with geometrical integrity. According to Taylor (2004), Eratosthenes 
devised a rudimentary grid of latitude/longitude about 250 b.c., and several hun-
dred years later Claudius Ptolemy’s (c. 100–170) Geographica “included a catalog of 
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some eight thousand place-names, rivers, mountains, and peninsulas, each of them 
with its position defined by degrees of latitude and longitude.” Presumably the rela-
tive location of those positions was more valid than an absolute location due, in part, 
to uncertainties associated with a formal definition of a datum. Modern geodetic 
practice includes very detailed datum definitions, and the location of points any-
where within the birdcage of orbiting GPS satellites can be determined within very 
small tolerances—either relative or absolute.

A datum and the GSDM are similar in that each is used to define a compu-
tational environment for handling geospatial data. But, there is also an important 
distinction—the GSDM provides a set of rules, equations, and relationships that can 
be used with various 3-D datums. It is also specifically noted that the GSDM should 
only be used on one datum at a time. The GSDM is not a tool for combining data 
from two separate datums. It is the users’ responsibility to know at all times what the 
underlying datum is for the data being manipulated. If a user is faced with combining 
data from several different 3-D datums, a separate transformation (such as a seven-
parameter transformation, described later in this chapter) should be employed.

Sometimes the exception can also be instructive. While it is true that the GSDM 
should not be used as a tool for combining datums, the stochastic model portion of 
the GSDM allows the user great latitude with regard to working with spatial data. If 
the datum differences are at the 1 meter level and the data being used have a larger 
standard deviation (say, 5 meters), then the datum difference becomes insignificant 
by comparison and both data sets can be used along with their standard deviations. 
But the user must take responsibility for how the tool is used—in this case, lumping 
systematic error with larger random errors.

HorIzontal datums

Brief History

Reviewing some of the history associated with horizontal and vertical datums pro-
vides additional perspective and promotes a better understanding of the GSDM. The 
following quote is found in the section “U.S. Horizontal Datums” written by Joseph 
Dracup, a former geodesist for the U.S. Coast & Geodetic Survey, now the National 
Geodetic Survey (NGS), http://www.ngs.noaa.gov/PUBS_LIB/geodetic_survey_
1807.html:

In 1879 the first national datum was established and identified as the New England 
Datum. Station PRINCIPIO in Maryland, about midway between Maine and Georgia, 
the extent of the contiguous triangulation[,] was selected as the initial point with its 
position and azimuth to TURKEY POINT determined from all available astronomical 
data, i.e. 56 determinations of latitude, 7 of longitude, and 72 for azimuth.

Later its position was transferred to station MEADES RANCH in Kansas and the 
azimuth to WALDO by computation through the triangulation. The Clarke Spheroid 
of 1866 was selected as the computational surface for the datum in 1880, replacing the 
Bessel spheroid of 1841 used after 1843. Prior to 1843, there is some evidence that the 
Walbeck 1819 spheroid was employed.
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The datum was renamed the U.S. Standard Datum in 1901 and in 1913 the North 
American Datum (NAD) as Canada and Mexico adopted the system. In 1927 an adjust-
ment of the first-order triangulation of the U.S., Canada and Mexico was began and com-
pleted about 1931. The end result was the North American Datum of 1927 (NAD27).

More recent information is provided by Schwarz (1989) in connection with the 
readjustment of the horizontal network in the United States. He describes the devel-
opment of the North American Datum of 1983 (NAD83) as being based upon the 
Geodetic Reference System of 1980 (GRS80) ellipsoid and includes other significant 
historical details as well.

The Geodetic Glossary (National Geodetic Survey [NGS] 1986) and the Glos-
sary of the Mapping Sciences (American Society of Civil Engineers, American 
Congress on Surveying & Mapping, and American Society of Photogrammetry & 
Remote Sensing 1994) each contain descriptions and definitions for various datums 
used in the United States. For example, a number of new datums were established in 
various parts of Alaska when it was not convenient or possible to tie a new project to 
previously existing survey control. In each case, the goal was to define a mathemati-
cal model appropriate for that portion of the Earth being surveyed. 

With regards to development of horizontal datums, a conflicting goal was to 
avoid making “unnecessary” changes. Consider that the Clarke Spheroid of 1866 
was adopted by the U.S. Coast and Geodetic Survey (USC&GS) in 1880 and used 
for projects throughout the United States. The International Ellipsoid was derived 
in 1909 by John Hayford of the USC&GS and adopted in 1924 by the International 
Association of Geodesy, which recommended it for use by all member countries. 
But, the USC&GS continued using the Clarke Spheroid of 1866 for the NAD27 
adjustment because the coordinates of many stations were already based upon the 
Clarke spheroid, because computational tables for the Clarke spheroid were already 
published, and because the newer ellipsoid differed only slightly from the older one 
(Schwarz 1989, ch. 4).

NortH AmericAN DAtum of 1927 (NAD27)

Prior to the satellite era, it was impossible to establish accurate intercontinental ties. 
Consequently, effective application and extension of a datum were limited to a spe-
cific region or to one of the continental land masses. Datums lacking global extent 
are called regional geodetic datums. With the advent of the space age, the tools 
of satellite geodesy made it possible to survey the world as a whole, and regional 
datums were no longer able to accommodate “big-picture” observations adequately. 
The solution was to develop a best-fitting mathematical model for the whole Earth 
with the origin located at the Earth’s center of mass. Such a model is called a global 
geodetic datum. By contrast, a regional geodetic datum has its origin located at some 
point on or near the surface of the Earth. The NAD83 is a global geodetic datum, 
and the NAD27 is a regional geodetic datum with the origin located at triangulation 
station “Meades Ranch” in Kansas. Parameters that define the NAD27 are as follows 
(NGS 1986):
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a = semimajor axis, Clarke 1866 spheroid = 6,378,206.4 m
b = semiminor axis, Clarke 1866 spheroid = 6,356,583.8 m
φ = geodetic latitude of station = 39° 13’ 26.”686 N
λ = geodetic latitude of station = 98° 32’ 30.”506 W
α = geodetic south azimuth to Station Waldo = 75° 28’ 09.”64
N = geoid height = 0.00 m

An implied condition is that the minor ellipsoid axis is parallel with the spin 
axis of the Earth. It was also intended that deflection-of-the-vertical be zero at Sta-
tion Meades Ranch, but subsequent refinements in the geoid model indicate residual 
deflection components at the initial point. The NAD27 is a 2-D datum.

NortH AmericAN DAtum of 1983 (NAD83)

Adjustment of the national horizontal network and publication of the NAD27 
were enormous accomplishments, and that network served the control needs of a 
growing nation for more than half a century. But, the NAD27 was not without its 
problems. Some problems were associated with the sparseness of the data, some 
problems were associated with the accumulation of newer high-quality data that 
were expected to “fit” the 1927 adjustment, and some problems were associated 
with the lack of computing “horsepower.” Localized readjustments were used dur-
ing the intervening decades to fix problems in various parts of the network. Such 
stopgap measures accumulated to a point where the decision was made to readjust 
the entire North American network and, in the process, to define a new datum. 
The North American Datum (Committee on the North American Datum 1971) is 
a report prepared for the U.S. Congress by the National Academy of Sciences that 
justifies allocating resources for performing the readjustment. The NAD83 project 
began on July 1, 1974, and was completed on July 31, 1986, at a cost of approxi-
mately $37 million.

The NAD83 is a global geodetic datum defined as follows:

 1. The datum origin was located at the Earth’s center of mass as best deter-
mined at the time. As discussed later in this chapter, subsequent observa-
tions have yielded slightly different results.

 2. The Z-axis is in the direction of the Conventional Terrestrial Pole as defined 
by the International Earth Rotation Service (IERS).

 3. The X-axis coincides with the Greenwich meridian.
 4. A reference ellipsoid is defined by four physical geodesy parameters:
 A. a = semimajor axis of Geodetic Reference System of 1980
 B. GM = the Geocentric Gravitational Constant
 C. J2 = zonal spherical harmonic coefficient of second degree
 D. ω = rotational velocity of the Earth

A mathematical ellipse is defined by two geometrical parameters. In the case 
of an ellipsoid for the Earth, the two parameters are typically a and b, a and 1/
f, or a and e2 as noted in chapter 6. The geometrical parameters for the Geodetic  
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Reference System of 1980 (GRS80) are derived from four physical geodesy param-
eters as adopted by the International Union of Geodesy and Geophysicists meeting 
in Canberra, Australia, in December 1979 and reported by Moritz (1980). The four 
parameters are used in an iterative algorithm to compute a value of e2, which, in turn, 
is used to compute the value of 1/f for the GRS 1980. The following derived value of 
1/f  was computed to sixteen significant digits (Burkholder 1984).

a = semimajor axis (exact) = 6,378,137.000 meters
1/f = reciprocal flattening (derived) = 298.2572221008827

Although angle and distance observations were reduced to the geoid for the 
NAD27 adjustment, angle and distance observations used in the NAD83 adjustment 
were reduced to the GRS80 ellipsoid. Scale and orientation for the overall NAD83 
network were provided by a combination of a precise transcontinental traverse 
(TCT), Doppler data, lunar laser ranging (LLR), very long baseline interferometry 
(VLBI), satellite laser ranging (SLR), and astronomical azimuths. Gravity data were 
used to compute geoid heights and deflections-of-the-vertical at all occupied control 
points. The end product of the NAD83 adjustment was the two-dimensional latitude 
and longitude coordinates for each station. But, the NAD83 is called a 3-D datum 
because it is ultimately based upon the underlying ECEF coordinate system defined 
by the DOD (see chapter 1). Ellipsoid height is the third dimension.

WorlD GeoDetic system 1984 (WGs84)

The DOD has been engaged in navigation and mapping activities all over the world 
for many years. They were among the first to develop geodetic models for the entire 
world and have continued to refine early efforts. The initial World Geodetic System 
was dated 1960 (WGS60). Since then, the DOD has variously used WGS66, WGS72, 
and WGS84, and practice has evolved to the point that WGS84 is used both as an 
ellipsoid and as a datum. Given the high level of DOD implementation, the spatial 
data user should also understand that there are differences between a datum defini-
tion, a reference frame, and the realization of the datum in the form of coordinates. 
The WGS84 as a datum also incorporates gravity, equipotential surfaces, and other 
physical geodesy concepts. However, the summary here is limited to describing how 
the WGS84 relates to the collection and manipulation of spatial data primarily via 
GPS equipment and observations. Materials for additional study include a compre-
hensive report by the National Imagery and Mapping Agency (NIMA 1997) and 
other standard geodesy texts. A web search can also be very productive.

The geometrical parameters for the WGS84 ellipsoid were originally intended 
to be the same as for the GRS80 ellipsoid, but at one point in the computational pro-
cess the DOD truncated an intermediate value prematurely and the resulting value 
of 1/f  is noticeably different. Although the numbers in the 1/f  value for WGS84 are 
different, the impact of that difference is very small. For example, in Table 6.1, the 
computed value of c, the polar radius of curvature, is a large number and differs by 
only 0.0001 meters between the GRS80 and WGS84 ellipsoids. The geometrical 
parameters for the WGS84 ellipsoid are as follows:
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a = semimajor axis (exact) = 6,378,137.000 meters
1/f  = reciprocal flattening (derived) = 298.257223563

There is no practical difference between GRS80 and WSG84 so far as ellipsoids 
are concerned. But, NAD83 coordinates and WSG84 coordinates may differ up to 
a meter or more—not because the ellipsoids are different but because the datum 
origins are at different locations and/or the coordinates were derived from disparate 
survey operations (Schwarz 1989, ch. 22).

iNterNAtioNAl terrestriAl refereNce frAme (itrf)

The IERS provides the International Terrestrial Reference Service (ITRS) as one 
of several services and defines a reference frame for scientific uses the world over. 
A quote from the IERS web site (http://www.iers.org/MainDisp.csl?pid=97-108) is 
as follows: “The ITRS is realized by estimates of the coordinates and velocities of 
a set of stations observed by VLBI, GPS, SRL, and DORIS [Doppler orbitography 
and radio positioning integrated by satellite]. Its name is the International Terres-
trial Reference Frame (ITRF).” The ITRF uses the meter as the unit of length and 
shares the center of mass of the Earth as its origin with other 3-D datums. Initially 
the orientation of the ITRF was the same as that of WGS84, but the “time evolu-
tion of orientation” for the ITRF is chosen such that there is a net zero rotation with 
regard to horizontal tectonic plate movements over the entire Earth. The ITRF uses 
the same ECEF rectangular coordinate system as other 3-D datums, and, although 
ECEF coordinates are the defining values, the GRS80 ellipsoid should be used when 
expressing ITRF positions in latitude/longitude/height.

The point is that the NAD83, WGS84, and ITRF are all 3-D datums having their 
origin at the Earth’s center of mass. They all use the meter as the unit of length and 
all employ the ECEF rectangular coordinate system. With those characteristics, the 
GSDM can be used equally well with any of them—one at a time. The difference 
between the datums lies in the location of the center of mass, the orientation of the 
coordinate system, and the realization of coordinates within the respective systems.

Miscellaneous comments are:

 1. The GPS satellites orbit the Earth’s physical center of mass. The NAD83 
origin was positioned quite well with publication of the NAD83 adjust-
ment, but, since then, better data for the position of the Earth’s center of 
mass are consistent at the centimeter level and different from the NAD83 
origin by about two meters. The NAD83 is realized by the coordinates of 
“fixed” points on the North American tectonic plate. Earthquake zones 
being an exception, that means the NAD83 coordinates for monumented 
points throughout North America change very little, if at all, over time. 
New NAD83 coordinates are best determined by adding precise relative 
∆X/∆Y/∆Z baseline components to higher-accuracy control points.

 2. The WGS84 datum is updated periodically so that GPS satellite orbits are 
computed with respect to the current approximation of the Earth’s center 
of mass. A WGS84 datum update consists of computing and using revised 
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coordinates for the DOD GPS tracking network. The updates are identified 
by WGS84(G730), WGS84(G873), and WGS84(G1150), where “G” means 
the update is based upon GPS observations and the number following is 
the GPS week since January 5, 1980. In general, absolute WGS84 coordi-
nates are obtained from code-phase GPS observations and referenced to the 
broadcast ephemeris of the satellites. See chapter 9 for more details.

 3. The ITRF is developed by collaborators in the international community 
who compute yearly updates to the coordinates of a larger network of GPS 
tracking stations. The ITRF solution is quite close to the WGS84 realiza-
tion, and comparisons are made between the ephemerides of WGS84 and 
ITRF on a daily basis. Although the differences between WGS84 and ITRF 
do exist, they are small and statistically insignificant. A general statement 
is that ITRF utilizes both absolute and relative positioning data, whereas 
NAD83 is based primarily on relative GPS data and WGS84 primarily uses 
absolute GPS data.

 4. NAD83, WGS84, and ITRF are similar (they are all 3-D datums), but they 
are also quite different. Each exists for specific reasons, and applications 
vary accordingly. Points to be remembered:

 A. The NAD83 is “fixed” to the North American plate and is very stable. 
Typically, if newer coordinates for a control monument as published 
by the NGS are different than previous ones, the changes really reflect 
greater consistency in the network. The changes are most likely due to 
improved observations and readjustments by the NGS. The possibility 
of tectonic movement exists—especially in earthquake-prone areas.

 B. The WGS84 is “native” to the NAVSTAR satellite system and is main-
tained and updated by the DOD. The quality is very high, but modifica-
tions are strictly the prerogative of the DOD. Absolute positioning (as 
opposed to relative positioning) is the primary goal.

 C. The ITRF is a collaborative product of the international community and 
serves a greater user base than either the NAD83 or the WGS84. The 
ITRF uses the “best” technology available irrespective of the source 
and is updated on a yearly basis to reflect the best current solution for 
coordinates of tracking stations and computation of precise orbits. Like 
the Internet, it lacks the commitment of a sovereign to guarantee per-
manence. It could be argued that commitment of the user community is 
a better guarantee.

 5. Relative geocentric differences are determined by carrier-phase GPS obser-
vations and define a vector from one point to another. For short lines (say, 
less than 20 km), these ∆X/∆Y/∆Z components are very nearly identical in 
each of the three datums, ITRF, WGS84, and NAD83. A careful evaluation 
would need to be made for very precise applications and/or long lines.

 6. If the measurement system is operational at the 1 ppm level (e.g., code-
phase GPS) and determines absolute ECEF coordinates for a point on or 
near the Earth’s surface, there is still an allowable uncertainty of about 6.38 
meters at the antenna due to the distance from the Earth’s center of mass. 
A 0.1 ppm system would still have an error budget of 0.64 meters. But, that 
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is not the whole story. Such autonomous positions are often improved or 
augmented by the application of “corrections” determined from data col-
lected at a nearby base station or by wide area differential GPS (WADGPS) 
procedures—see chapter 9.

 7. In the past, standard geodetic surveying practice included building a net-
work of precise vectors and attaching such a network to fixed points of 
greater accuracy. With the development of real-time-kinematic (RTK) GPS 
surveying procedures, radial configurations are becoming more popular. 
Issues of redundancy notwithstanding, the GSDM accommodates either 
well-formulated network adjustments or “unchecked” data collected in the 
radial mode and affords many options for the spatial data analyst. Admit-
tedly, the GSDM permits reckless use (such as mixing datums or using 
unchecked data). But the GSDM supports many beneficial uses, and the 
intent is that the GSDM will be used responsibly and competently. If a proj-
ect is based upon appropriate control information and if observed spatial 
data components are entered with their appropriate standard deviations (and 
covariances), subsequently derived answers will reflect legitimate statistical 
properties of those data. Issues of local accuracy and network accuracy also 
need to be examined carefully (Burkholder 1999; Pearson 2004).

HiGH AccurAcy refereNce NetWork (HArN)

During the twelve years that the NAD83 was being computed, GPS became a viable 
positioning tool embraced by the user community. One justification for readjust-
ing the NAD27 was that, over a period of decades, people in the user community 
gained access to better equipment and were able to survey more precisely than the 
network to which they were expected to attach their results. Ironically, GPS position-
ing technology was not used in the NAD83 readjustment, and, by the late 1980s, that 
justification repeated itself. Immediately following publication of the NAD83, the 
NGS came under pressure to support the control needs of GPS-equipped persons 
and organizations in the user community. To forestall creation of local or proprietary 
networks, the NGS adopted a policy of upgrading portions of the network—state by 
state—based upon GPS control surveys. These upgrades were known as High Pre-
cision Geodetic Networks (HPGN). Those GPS surveys were conducted primarily 
to improve the horizontal latitude/longitude position of the GPS control points and 
to establish new control points in places more accessible to the user public (Bodnar 
1990). But, this time there was a big difference: the datum did not change; only the 
coordinates for the reobserved control points were improved. Although many parts 
of the national network have been readjusted and HPGN values have been published 
since 1990, it is still the NAD83. It is not a new datum. The counterargument is “If 
the coordinates for the same point are different, it is a new datum.” Education helps 
spatial data users understand those differences.

Subsequently, the HPGN acronym gave way to the High Accuracy Reference 
Network (HARN), which is essentially the same as a HPGN. D’Onofrio (1991), 
Strange and Love (1991), and Doyle (1992) use the HARN acronym and describe the 
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technical, logistical, and political considerations for upgrading the NAD83 to sup-
port modern GPS positioning capabilities.

Much could be said (see, e.g., Doyle 1994) about the evolving character and qual-
ity of the National Geodetic Reference System (NGRS)—also called the National 
Spatial Reference System (NSRS). An oversimplification is that the NAD83 datum 
evolved from a 2-D datum to a 3-D datum (hence the name NGRS) and that the 
name was revised to NSRS in an attempt to avoid the more intimidating use of 
the word “geodetic.” The original NAD83 coordinates were simply called NAD83 
coordinates (as opposed to NAD27 coordinates). The newly adjusted GPS-derived 
HARN coordinates in a state are referred to as NAD83 (19xx), where “xx” is the 
year in which the GPS-derived values were published. In time, the original NAD83 
coordinates came to be known as NAD83(86) values. Two considerations for using 
NAD83 coordinates are (1) to be clear as to the (epoch) version of the coordinates 
being used and (2) to avoid mixing coordinates from two different adjustments. Of 
course, there are times when coordinates from different adjustments can be used 
without detrimental consequences, but a user should not attempt to start a survey 
on a NAD83(19xx) control point, close on a NAD83(86) point, and expect reliable 
results—it is like mixing apples and oranges or using different datums.

Another issue to be addressed was the boundary of adjustments between states. 
Although the newer adjustment results were typically within 0.5 meters of the previ-
ously published values, that level of difference needed to be “feathered” into the posi-
tions of adjoining states so that users could continue to enjoy consistent results even 
if starting a control survey in one state and closing it on control points in an adjacent 
state. With publication and use of the NAD83(2007), the boundaries between previ-
ous HARN, adjustments have disappeared.

coNtiNuously operAtiNG refereNce stAtioN (cors)

A GPS receiver connected to a permanently mounted antenna and collecting data 
continuously is called a continuously operating reference station, or CORS. Depend-
ing upon the capabilities of the receiver, the design of the antenna, and associated 
software, a CORS station may be a sophisticated high-end automated installation that 
collects meteorological data as well as satellite signals and that posts collected data 
to the Internet in real time. Some CORS stations (in the United States) are owned 
and operated by the NGS, some are owned and operated by the U.S. military, and 
many others are owned and operated by federal, state, and local agencies, corpora-
tions, businesses, or individuals. The NGS maintains a clearinghouse of CORS data 
that meet standards established for operation and maintenance of a national CORS 
network. CORS data collected by the NGS are available via the Internet from the 
NGS archives to users worldwide. The precise positions of the fundamental CORS 
network stations are computed daily with respect to the ITRF, and modifications are 
made to the published positions as warranted. The point here is that CORS positions 
published by NGS are very high quality and are the “best” available to users in the 
United States. Using appropriate datum transformation software, the same ITRF 
CORS positions, standard deviations, and velocities may also be published on other 
datums such as the NAD83 or WGS84.
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At the other end of the spectrum, a GPS receiver running continuously and 
broadcasting raw data to remote receivers operating within local radio range of the 
“base” station is also referred to as a CORS station. Such an installation typically 
serves a small area and maybe even only one user. The reference position of the base 
station may have been established with respect to the NAD83, WGS84, or ITRF 
at the prerogative of the owner, and the position of the remote receiver(s) is deter-
mined during a survey with respect to the CORS within the guidelines (proven or 
unproven) chosen by the user/owner. Proving the quality or integrity of such results 
is the responsibility of the owner/user. It is not uncommon for local RTK surveying 
activities to be served by a local GPS CORS or, more recently, a network of CORS 
operating in concert and known as a real-time GPS CORS network (RTN). The 
value of such RTN’s is enhanced to the extent that the integrity and quality of the 
results are proven to be consistent and compatible with the NSRS, maintained by 
the NGS.

In the late 1990s the NGS embarked upon a program known as “height mod-
ernization” in which state-by-state projects were implemented with the idea of 
improving the height component of the NSRS. Height modernization observations 
are typically referenced to a network of CORS whose positions are determined rig-
orously by the NGS with respect to the ITRF datum. Those ITRF coordinates are 
converted to NAD83(CORS) coordinates using a fourteen-parameter transformation 
as documented in HTDP—see the “Datum Transformations” section, below. CORS 
data are available to anyone via the Internet.

More recently, the NGS has completed a project to readjust the entire collec-
tion of HARN networks to the CORS stations. The project was similar to the mas-
sive readjustment performed for the NAD83 but was accomplished with many fewer 
people over a much shorter time frame. The datum did not change, but the read-
justed values are referred to as NAD83(2007). Completion of the readjustment was 
announced on February 10, 2007, to coincide with the 200th anniversary of the 
establishment of the Survey of the Coast, the predecessor of the NGS.

VertIcal datums

As stated at the beginning of this chapter, a simple vertical datum can be defined 
by assigning an arbitrary elevation to a specified benchmark and referencing other 
elevations to that assumed value. That practice may be legitimate for local relative 
elevation differences, but it is not pursued here. More formally, a vertical datum is 
an equipotential surface used as a reference for elevation. In this sense, elevation is 
an absolute term associated with the third dimension. Other terms associated with 
elevation include “altitude” and “height.” The goal here is to retain the rigor of the 
formal definitions while acknowledging and building on the intuitive understanding 
of the reader.

Mean sea level (MSL) is widely understood as being a reference for elevation. 
Most humans stand erect and have some concept of oceans and sea level. “Up” goes 
higher, and sea level seems to be a good place from which to start. But sea level 
moves up and down according to the tides, changing barometric pressure, ocean 
currents, and other factors. As discussed more in chapter 8, “Physical Geodesy,” the 
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geoid is the formal reference surface for elevation and is approximated by the ideal-
ized mean sea level at rest. Although finding the precise geoid is quite difficult, the 
geoid (or MSL) has been used worldwide as a reference for elevation.

meAN seA level DAtum of 1929 (NoW NGvD29)

The Mean Sea Level Datum of 1929 was established in the United States on the basis 
of extensive readings of twenty-six tide gauges scattered along the North American 
coast—twenty-one of them in the United States and five of them in Canada. Zero 
elevation as determined by the mean readings at each tide gauge was held in the 
adjustment, and elevations were computed for thousands of benchmarks on the dif-
ferential level loops that had been run throughout the United States.

In the decades following publication of the 1929 mean sea level elevations, it 
became apparent, based upon precise level loops throughout North America, that 
mean sea level as determined by the tide gauge readings was less accurate than that 
carried through the leveling network. That means that a zero elevation is not exactly 
the same as mean sea level. As a consequence, the name of the datum was changed 
from the Mean Sea Level Datum of 1929 to the National Geodetic Vertical Datum of 
1929 (NGVD29) in May 1973. No published elevations were changed; only the name 
of the datum was changed (Berry 1976).

iNterNAtioNAl GreAt lAkes DAtum

When attempting to compute accurate hydraulic head for water stored in the Great 
Lakes system, scientists in the United States and Canada realized that a system of 
geopotential numbers and dynamic heights would provide a better model for their 
computations than does the concept of elevation. As described in more detail in 
chapter 8, equipotential surfaces are separated by units of work (force × distance), 
where gravity is the force variable and elevation difference is the distance vari-
able. The geopotential number for an undisturbed water surface is a constant and is 
computed as the infinite summation of the product of a force times distance accu-
mulated along the path of the maximum gradient. A dynamic height is computed 
as the geopotential number divided by normal gravity. A dynamic height consists 
of numbers that look like an elevation, but dynamic height is not the distance from 
the geoid. Dynamic heights are everywhere the same for the surface of a body of 
water at rest (e.g., one of the Great Lakes) and can be used for accurate hydraulic 
head computations.

Understanding the need for dynamic heights and recognizing that the Hudson 
Bay region is still rebounding from the glacial burden of 10,000 years ago, the 
International Great Lakes Datum (IGLD55) was established jointly by U.S. and 
Canadian scientists in 1955 for the Great Lakes region of North America. It was 
also anticipated that the IGLD would need to be readjusted every thirty years or 
so due to continuing crustal rebound. The current version is IGLD85 (see, e.g., 
IGLD85 2006).
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NortH AmericAN verticAl DAtum of 1988

Following readjustment of the horizontal network, the NGS also performed a read-
justment of the vertical network (Zilkoski, Richards, and Young 1992) and published 
the results as the North American Vertical Datum of 1988 (NAVD88). Several sig-
nificant differences between the NGVD29 and the NAVD88 include (1) the internal 
consistency of the loops covering the nation is better and (2) while the NGVD29 
adjustment was constrained to the tide gauge readings around the coast of North 
America, the NAVD88 elevations are computed with respect to a single tide gauge 
elevation at Father’s Point/Rimouski, Quebec, Canada.

Several notes:

 1. The single benchmark at Father’s Point had already been selected as the 
initial benchmark for the IGLD85 by the Coordinating Committee on Great 
Lakes Basic Hydraulic and Hydrologic Data.

 2. Using the Father’s Point benchmark also met the requirement that the datum 
shift from NGVD29 to NAVD88 would, to the extent possible, minimize recom-
pilation of the national mapping products by the U.S. Geological Survey.

 3. Both the IGLD85 and the NAVD88 datums have the same geopotential 
numbers on each published benchmark. From those geopotential numbers, 
the IGLD85 dynamic heights are obtained by dividing the geopotential 
number by normal gravity at latitude 45º (980.6199 gals), and the NAVD88 
Helmert orthometric heights are obtained from the same geopotential num-
bers by dividing by the value of gravity at the station.

3-d datums

A formal definition of a 3-D datum will include physical geodesy concepts and is 
left to the scientists. But, for the purposes of spatial data and using the GSDM, a 3-D 
datum consists of the following:

An Earth-centered Earth-fixed (ECEF) right-handed rectangular coordi-
nate system.
An origin located at the Earth’s center of mass.
The Z-axis is directed to the Conventional Terrestrial Pole as defined by 
the IERS.
The X/Y plane is the plane of the equator, and the X-axis is directed to zero 
longitude. The Y-axis completes the right-handed system.
The meter (or metre) is the unit of length.

Subject to choices of the user with respect to datums, derived quantities include 
the following:

Latitude, longitude, and ellipsoid height based upon some chosen ellipsoid
Orthometric height based upon ellipsoid height and geoid height
State plane, UTM, or map projection coordinates based upon the user’s choice

•

•
•

•

•

•
•
•
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Direction, distance, and rectangular components between points in
 1. local tangent plane through standpoint, or
 2. tangent plane through P.O.B. selected by the user

datum transformatIons

The topic of datum conversions is very important and deserves more discussion than 
is provided here. The GSDM provides an efficient environment for working on a 
given datum, but the GSDM is not a tool for transforming data from one datum to 
another. However, as a convenience to the reader, the following is a summary of spe-
cific bidirectional datum transformations that the spatial data user may encounter:

 1. NAD27 to NAD83: 2-D problem, use the CORPSCON Windows-based 
program developed by the U.S. Army Corps of Engineers.

 2. NAD83 to HPGN: 2-D/3-D problem, use CORPSCON.
 3. NGVD29 to NAVD88: 1-D problem, use CORPSCON.
 4. NAD83(xx) to ITRF 3-D: 3-D problem, use HTDP program from NGS.
 5. NAD(83) and numerous other datums to WGS84: 3-D problem, see NIMA 

(1997, appendices B, C).
 6. From one epoch to another: Use HTDP from NGS for 3-D data.
 7. Write your own 3-D datum conversion: Use seven- (or fourteen-) param-

eter transformation.
 8. NAD83 or NAD83(xx) to NAD83(2007): 3-D problem. Tools are still being 

developed. For example, see number 7, above.

The following transformation procedures are all bidirectional, meaning there is 
a unique set of range and domain values in each case. Any transformation procedure 
should be checked by performing the reverse computation to confirm the integrity 
of the software and the process. The user should also be aware that most datum 
transformation procedures are approximations (although most are very good) and 
should not be used for critical or very precise applications unless done so under the 
responsible supervision of a knowledgeable professional.

NAD27 to NAD83(86)

This 2-D datum transformation can be performed using the NADCON program 
available from the NGS. The NADCON program was incorporated into the overall 
CORPSCON Windows-based program developed by the U.S Army Corps of Engi-
neers and is available free of charge.

NAD83(86) to HpGN

This is a separate process. To complete the transformation of NAD27 values to the 
NAD83(xx) in each state, the NGS provided an additional set of transformation 
parameters for each state and region as required to transform between the original 
NAD83(86) adjustment and the GPS statewide upgrades. The CORPSCON com-
bines the two-step process into a single operation. However, the user should confirm 

•
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that the CORPSCON version being used contains the current HPGN files for the 
specific region needed.

NGvD29 to NAvD88

This 1-D datum transformation can be performed using the VERTCON program 
available from the NGS. The VERTCON program was also incorporated into the 
overall CORPSCON Windows-based program developed by the U.S. Army Corps 
of Engineers and is available free of charge.

HtDp

The horizontal time dependent positioning (HTDP) program is available gratis from 
the NGS web site either as a download or to use interactively. Based upon observed 
tectonic movements, the program permits the user to interpolate positions for any 
recent epoch anywhere within the United States and its territories. The HTDP soft-
ware can also be used to convert between NAD83 and ITRF.

softWAre sources

The following web sites can be used to find free software.

CORPSCON: http://crunch.tec.army.mil/software/corpscon/corpscon.html
NADCON: http://www.ngs.noaa.gov (follow link to software)
VERTCON: http://www.ngs.noaa.gov (follow link to software)
HTDP: http://www.ngs.noaa.gov (follow link to software)

seveN- (or fourteeN-) pArAmeter trANsformAtioN

A seven-parameter transformation is often used when converting 3-D coordinates 
from one reference frame to another. There are three translation parameters, three 
rotation parameters, and one scale parameter. A generalized form of the seven-
parameter transformation in matrix form is:

	 X2 = K + S R	X1 (7.1)

where

K = translation vector,
S = scalar—often close to 1.0,
R	=	rotation matrix frame 1 to frame 2,
X1 = vector of frame 1 coordinates, and
X2 = vector of frame 2 coordinates.

The seven-parameter transformation algorithm as stated contains no approxima-
tion. In a perfect world, the equations are exact, and data in one reference frame can 
be converted perfectly to another. But in the real world, coordinates are obtained 
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from measurements and measurements contain errors. Therefore, the stochastic 
properties of the data must be evaluated to determine what is good enough and 
what isn’t in a transformation. The stochastic features of the GSDM accommodate 
those issues as well—see chapter 11. Note that a fourteen-parameter transformation 
accommodates velocities on the seven parameters.

references

American Society of Civil Engineers, American Congress on Surveying & Mapping, and 
American Society of Photogrammetry & Remote Sensing. 1994. Glossary of the map-
ping sciences. New York and Bethesda, MD: American Society of Civil Engineers, 
American Congress on Surveying & Mapping, and American Society of Photogram-
metry & Remote Sensing.

Berry, R. M. 1976. History of geodetic leveling in the United States. Surveying and Mapping 
36 (2): 137–53.

Bodnar, A. Nicholas. 1990. National Geodetic Reference System statewide upgrade policy. In Pro-
ceedings of the ACSM GIS/LIS 1990 Fall Convention, Anaheim, CA, 7–10 November.

Burkholder, Earl F. 1984. Geometrical parameters of the Geodetic Reference System 1980. 
Survey and Mapping 44 (4): 339–40.

———. 1999. Spatial data accuracy as defined by the GSDM. Surveying and Land Informa-
tion Systems 59 (1): 26–30.

Carta, Martha, trans. 1962. Jordan’s handbook of geodesy, vol. 3. Washington, DC: U.S. 
Army Corps of Engineers, Army Map Service.

Committee on the North American Datum. 1971. North American Datum. Washington, DC: 
National Academy of Sciences.

D’Onofrio, Joseph D. 1991. High precision geodetic network for California. Paper presented 
at ASCE Specialty Conference, Sacramento, CA, 18–21 September.

Doyle, David R. 1992. High accuracy reference networks: Development, adjustment, and 
coordinate transformation. Paper presented at ACSM Annual Convention, New 
Orleans, LA, 15–18 February.

———. 1994. Development of the National Spatial Reference System. http://www.ngs.noaa.
gov/PUBS_LIB/develop_NSRS.html.

Dracup, Joseph F. 2006. Geodetic surveys in the United States: The beginning and the next 
one hundred years; U.S. horizontal datums. http://www.ngs.noaa.gov/PUBS_LIB/geo-
detic_survey_1807.html.

IGLD85. 2006. International Great Lakes Datum. http://www.ngs.noaa.gov/TOOLS/IGLD85/
igld85.html.

Moritz, Helmut. 1980. Geodetic Reference System 1980. Bulletin Geodesique 54 (3). http://
www.gfy.ku.dk/~iag/handbook/geodeti.htm.

National Geodetic Survey (NGS). 1986. Geodetic glossary. Rockville, MD: National Geodetic 
Survey, National Ocean Service, National Oceanic and Atmospheric Administration.

National Imagery and Mapping Agency (NIMA). 1997. Department of Defense World Geo-
detic System 1984: Its definition and relationships with local geodetic systems. Techni-
cal Report 8350.2, 3rd ed. Bethesda, MD: National Imagery and Mapping Agency.

Pearson, Chris. 2004. National spatial reference systems readjustment of NAD83.  
http://www.ngs.noaa.gov/NationalReadjustment/Items/CFP.The%20national% 
20readjustment-1.html.

Schwarz, Charles R., ed. 1989. North American Datum of 1983. Rockville, MD: National 
Geodetic Survey, National Ocean Service, National Oceanic and Atmospheric Admin-
istration, U.S. Department of Commerce.

63014_C007.indd   197 3/4/08   12:17:57 PM



198 The 3-D Global Spatial Data Model

Strange, William E., and John D. Love. 1991. High accuracy reference networks: A 
national perspective. Paper presented at ASCE Specialty Conference, Sacramento, 
CA, 18–21 September.

Taylor, Andrew. 2004. The world of Gerard Mercator: The mapmaker who revolutionized 
geography. New York: Walker.

Zilkoski, D., Richards, J., and Young, G. 1992. Results of the general adjustment of the North 
American Vertical Datum of 1988. Surveying & Land Information Systems 52 (3): 
133–49.

63014_C007.indd   198 3/4/08   12:17:57 PM



199

8 Physical Geodesy

IntroductIon

Physical geodesy is the branch of science that relates the internal distribution of 
mass within the Earth to its corresponding gravity field. Under ideal circumstances, 
there would be no hills, valleys, mountains, or oceans on the Earth, and the distribu-
tion of mass within the Earth would be uniform. Given those conditions, the plumb 
line (the vertical) would be coincident with the ellipsoid normal and there would be 
no difference between the ellipsoid and the geoid. But, the geoid is an equipoten-
tial surface that is always perpendicular to the local plumb line and the direction 
of the plumb line is dictated by the vector sum of forces acting on the plumb bob; 
for example, gravity is the sum of gravitational attraction and centrifugal force, as 
shown in Figure 8.1. The centrifugal force component is very predictable and can be 
computed. But, due to the Earth’s topography and due to variations of density within 
the Earth, gravitational attraction varies from point to point and, although the dif-
ference is generally quite small, the resulting vertical is rarely coincident with the 
ellipsoid normal. That being the case, the geoid is not parallel to the ellipsoid, and 
separation between the two surfaces varies with location. Ongoing geodetic research 
continues to improve knowledge of the relationship between the ellipsoid and the 
geoid. Evidence of continuing progress and improvement in geoid modeling in the 
United States is seen in the publication of various geoid models (dated 1990, 1993, 
1996, 1999, 2003, and so on).

Physical geodesy is also of concern to the geophysicist who studies gravity 
anomalies in search of patterns that indicate the presence of substrata oil deposits 
and to the geodesist who computes the trajectory of missiles and satellites flying 
above the Earth. Inferring the characteristics of underground strata and being able to 
predict how objects move are both important concepts, but they are beyond the scope 
of this book. The focus of this book is documenting where things are in terms of 
geometrical geodesy and the GSDM. Historically, physical geodesy and geometrical 
geodesy have shared the challenge of finding the elusive geoid and using it as a refer-
ence for elevation. The approach in this book is different in that elevation is viewed 
as a derived quantity computed from GPS ellipsoid height and the ever improving 
knowledge of geoid height.� Therefore, while a fundamental description of physical 
geodesy is viewed as useful in understanding the broader context of geospatial data 
and how they are used, the reader is encouraged to consult other sources for addi-
tional information on physical geodesy.

� Of course, the time-honored practice of starting on a benchmark of known elevation and taking sim-
ple backsight and foresight readings is still a legitimate method for determining the elevation of an 
unknown point.
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GravIty

Gravity is a vector quantity composed of the sum of gravitational attraction and cen-
trifugal force due to the Earth’s rotation. Centrifugal force is always parallel to, and 
is greatest at, the equator. Centrifugal force is zero at the poles, and gravity at the 
poles is the same as gravitational attraction. But, at the equator, centrifugal force is 
colinear with gravitational attraction, and, because it acts in the opposite direction, 
the force of gravity is smaller at the equator than is gravitational attraction. There-
fore, on the same equipotential surface, the force of gravity at the pole is greater than 
the force of gravity at the equator. The global implication is that level surfaces are 
not parallel. See Figure 8.2.

As described by Newton, gravitational attraction is the mutual attractive force 
between each and every particle in the universe.

 
F kM M

D
= 1 2

2
 (8.1)

where

k = universal gravitational constant,
M1 and M2 = masses of the particles, and
D = the distance between particles.

The magnitude of attraction between respective paired centers of mass decreases 
by the square of the increasing distance between them. Particle-pairs with a large 
separation react minimally, and attractions at very large distances tend to be ignored. 
But, taken as a large collection of particles (a large body such as the Earth or sun can 
be treated as a point mass located at its center), the gravitational attractions interact to 
keep the planets in orbit about the sun in addition to keeping the moon and satellites 
in orbit about the Earth. Conventional practice on Earth is to express gravity as the 
force per unit mass with respect to the mass of the Earth concentrated at its center.

Equator

Centrifugal force

Gravitational attraction

Gravity

Figure 8.1  Vector Components of Gravity
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Two important consequences of the gravity vector are:

 1. As postulated by Newton and shown in Figure 8.1, the Earth is flattened at the 
poles because the gravity vector does not point directly to the Earth’s center 
of mass and because the geoid is always perpendicular to the plumb line.

 2. On a global scale, equipotential surfaces are not parallel, and, as illustrated 
in Figure 8.2, the distance between level surfaces is not constant. That 
means the definitions of elevation, level surfaces, orthometric heights, and 
other terms need to be very specific.

The intuitive equipotential surface most commonly understood is sea level. Sea 
level is physical, readily visible, and observed worldwide. Due to the influence of 
tides and other factors, the term “mean sea level” has long been associated with the 
geoid and served as the reference surface for the Mean Sea Level Datum of 1929 in 
the United States. As described in chapter 7, the name of the datum was changed to 
NGVD29 in 1973.

defInItIons

The topic of units deserves particular attention when discussing concepts of physi-
cal geodesy. Spatial data users are primarily concerned with distance units (meters, 
feet, etc.) as related to location and elevation. However, when building on fundamen-
tal physical concepts, the physical separation between two equipotential surfaces is 
defined in terms of work (i.e., force × distance). The following definitions presume 
an understanding that gravity is the force part of “work” and that elevation differ-
ence is the distance part. The following definitions are intended to be consistent with 

Equator

Equipotential
(level) surfaces

Figure 8.2  Level Surfaces Are Not Parallel
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common usage, recent publications, and standard references such as the National 
Geodetic Survey (NGS; 1986); American Society of Civil Engineers, American 
Congress on Surveying & Mapping, and American Society of Photogrammetry & 
Remote Sensing (1994); and Meyer, Roman, and Zilkoski (2004).

ElEvation (GEnEric)

Elevation is the distance above or below a reference surface. The geoid is an equi-
potential reference surface that has been widely used and is closely approximated 
by mean sea level. Unless specifically stated otherwise, a mean sea level elevation 
should probably be viewed as a generic elevation.

EquipotEntial SurfacE

An equipotential surface is a continuous surface defined in terms of work units with 
regard to its physical environment. Although not perfect, mean sea level is often 
given as an example. Two objects at rest, having the same mass, and located on 
the same equipotential surface store the same amount of potential energy. Work is 
required to move any objects to a higher elevation. If the strength of gravity at point 
A is greater than at point B, then, for identical objects and for expenditure of the 
same work, the distance moved by the object at point B will be greater than at point 
A. The implication is that equipotential surfaces are parallel if and only if gravity 
is the same at both points on each respective surface. Although defined differently, 
a level surface and an equipotential surface are very nearly identical and, for most 
purposes, can be used interchangeably.

lEvEl SurfacE

A level surface is a continuous surface that is always perpendicular to the local 
plumb line. A level surface can be at any elevation. Due to the Earth’s curvature and 
variations of density within the Earth, the direction of the plumb line changes as one 
moves from point to point on or near the surface of the Earth. Consequently, a level 
surface (which is always perpendicular to the plumb line) is said to be “lumpy” due 
to these random changes in direction of the plumb line. But, in most cases, changes 
in the direction of the plumb line are gradual and “lumps” in the geoid are gradual 
as well.

GEoid

The geoid is an equipotential surface most closely represented by mean sea level in 
equilibrium all over the world (i.e., constant barometric pressure at the surface, no 
winds, no currents, uniform density layers of water, etc.). The “ideal” conditions do not 
exist, and locating the geoid precisely on a global scale is an enormous challenge.

GEopotEntial numbEr

A geopotential number is a relative value computed as the infinite summation of the 
product of force times distance accumulated along a path of maximum gradient. A 
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geopotential number has units of work and is rarely used in surveying and mapping 
applications. Dynamic heights are often used instead—see the next subsection.

dynamic HEiGHt

Dynamic height is the geopotential number at a point divided by a constant reference 
gravity. Often, normal gravity at latitude 45º is used. Dynamic heights and geopo-
tential numbers are useful when working with precise hydraulic grade lines over a 
large area. Standard geodesy texts contain additional information on these topics 
and their applications.

ortHomEtric HEiGHt

Orthometric height is the curved distance along the plumb line from the geoid to a 
point or surface in question. Few users make the distinction between the curved-line 
distance and the straight-line distance between the plumb line endpoints. In the past, 
orthometric height has been computed as the geopotential number of the equipoten-
tial surface divided by gravity at the point (Zilkoski, Richards, and Young 1992). 
More recently (Meyer, Roman, and Zilkoski 2004), orthometric height is more spe-
cifically called a Helmert orthometric height and is computed using ellipsoid heights 
(from GPS) and geoid-modeling procedures. The accuracy of such a derived height 
is dependent upon both the quality of the GPS data and the integrity of the geoid 
modeling. Although elevation and orthometric height can often be used interchange-
ably, elevation is considered generic while orthometric height is specific.

EllipSoid HEiGHt

Ellipsoid height is the distance as measured along the ellipsoid normal above or 
below the mathematical ellipsoid.

GEoid HEiGHt

Discounting curvature of the plumb line, geoid height is taken to be the distance 
along the ellipsoid normal between the ellipsoid and the geoid. Geoid height is com-
puted as the ellipsoid height minus orthometric height. Within the conterminous 
United States, the orthometric height is always greater than the ellipsoid height, 
which means the geoid height is a negative number. But, on a worldwide basis, the 
simple relationship is

 h H N= +  (8.2)

where

h = ellipsoid height,
H = orthometric height, and
N = geoid height.
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GravIty and the shape of the GeoId

Everyone knows that the Earth is flat. At least, that is our experience until we become 
convinced otherwise. That happens as we look at the bigger picture and watch ships 
sailing beyond the horizon or view the curved shadow of the Earth on the moon dur-
ing an eclipse. Learning that the Earth is round and rotating on its axis also helps 
us to understand the sunrise and sunset each day and the traverse of stars across the 
night sky. Furthermore, coming to understand that the Earth also revolves yearly 
around the sun helps explain why the sun and the stars appear to traverse the heavens 
at different rates. In considering observable physical phenomena and studying the 
definitions in the previous section, everyone should agree that a flat-Earth view of 
the world is misleading.

On a global scale, Newton rationalized that the Earth must be flattened at the 
poles because a level surface is always perpendicular to the plumb line and, due to the 
addition of force vectors, the plumb line does not point directly to the center of the 
Earth—unless one is on the equator or at one of the poles. But, that level of analysis 
does not differentiate between the various land masses of the continents or include 
the fact that some parts of the Earth are denser than others. For example, the land 
mass and ice loading at the south pole give rise to an identifiable bulge in the geoid 
in the southern hemisphere. Therefore, the geoid is referred to as pear shaped.

Understanding that gravity is a vector having both direction and magnitude and 
realizing that the gravity vector is the sum of all external forces acting on a given 
mass at a given location, it should be understandable that the scope of physical geod-
esy encompasses much more material than is presented here. The magnitude of grav-
ity affects the spacing of equipotential surfaces, and variations in the direction of 
gravity affect the shape of an equipotential surface. That means that the geoid is not 
a regularly curved surface. Since the resultant geoid is related to both the magnitude 
and direction of gravity, investigation of cause-effect relationships must include con-
siderations of both. Stated differently, it is said that the magnitude of gravity affects 
where the geoid is located and that the direction of gravity determines the shape of 
the geoid. On a global scale, a stronger value of gravity will tend to pull the geoid in 
closer to the Earth’s center, but the shape of the geoid, both globally and locally, is 
always perpendicular to the direction of gravity.

Figure 8.3 illustrates an apparent paradox. While it is true that a stronger 
value of gravity tends to pull the geoid in closer to the Earth’s center, a local mass 
concentration lying next to a mass deficiency (mountains and oceans) will deflect 
the plumb bob toward the mass excess, and, contrary to statements in the previous 
paragraph, the geoid will rise under the mountains while dipping over the ocean. 
It remains a challenge to determine the location of the geoid precisely because the 
actual location of the geoid is the physical realization of many factors.

LapLace correctIon

The Laplace correction is used to relate a geodetic azimuth to an astronomical 
azimuth. Such a correction is made at a point called a Laplace Station, where the 
deflection-of-the-vertical components are known. In a broader sense, the Laplace 
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equations are used to connect the physical world with a mathematical representation. 
The mathematical ellipsoid normal is a computational standard and is perpendicular 
to the tangent to the ellipsoid at that point. In the physical world, the direction of the 
plumb line is the result of physical forces acting on an object at a point. Although 
the difference is not significant for many applications, the two are different and 
must be considered in geodetic applications. The direction of the normal at a point 
is well defined and computable in the ECEF environment, but, given the nonuni-
form distribution of mass within the Earth, the precise direction of the plumb line is 
less predictable. The irony of human experience is that we, standing erect, view the 
plumb line as being vertical. That is, we reference our view of the world to a chang-
ing feature that appears constant. In our view, up is always up. But, when we speak 
of the plumb bob being deflected by the mass of a mountain range, we are, in fact, 
referencing our perspective to the ellipsoid normal.

The difference between the ellipsoid normal and the vertical plumb line is called 
deflection-of-the-vertical and is realized in several ways. First, the ellipsoid surface 
is not necessarily parallel with the level surface—the geoid. Given the two surfaces 
are not coincident, except for where they cross, there must be a physical distance 
between them. That difference is called geoid height and is studied under the name 
of geoid modeling. Second, the angular amount by which the two surfaces are not 
parallel is given by the deflection-of-the-vertical and expressed in terms of a north/
south component and an east/west component. Any measurement or observation 
made with an instrument having a level bubble on it (whether a carpenter’s level, a 
surveyor’s total station, a differential level, a telescope in an observatory, or an iner-
tial measuring unit) is physically referenced to the local vertical. On the other hand, 
vectors obtained from GPS observations are referenced to the ellipsoid normal.

Specifically, astronomical observations of directions to stars are gravity based 
and yield astronomical positions, while GPS-derived positions are normal based and 

Ellipsoid normal
Plumbline
(vertical)

Ocean - mass
deficiency

Mountain - mass
excess

Deflection-of-vertical

Ellipsoid

Geoid

Figure 8.3  Deflection-of-the-Vertical
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provide geodetic positions. The two systems are related by the Laplace equations 
based upon the deflection-of-the-vertical components at a point that, using Greek 
letters, are called

north/south: xi = ξ, and
east/west: eta = η.

The relationships between astronomical latitude, longitude, and azimuth and 
geodetic latitude, longitude, and azimuth are

 φ Φ ξ= −  latitude (8.3)

 
λ Λ

η
φ

= −
cos

 longitude (8.4)

 
α Α

η
φ

= −
tan

 azimuth (8.5)

where

φ = geodetic latitude,
λ = geodetic longitude,
α = geodetic azimuth,
Φ = astronomic latitude,
Λ = astronomic longitude, and
Α = astronomic azimuth.

Equations 8.3–8.5 can be used two ways—if the geodetic latitude and longitude 
and the astronomic latitude and longitude are known, then deflections-of-the-verti-
cal can be computed at that point. If the deflection-of-the-vertical components are 
known, then geodetic latitude, longitude, and azimuth can be computed from astro-
nomic latitude, longitude, and azimuth and vice versa. Probably equation 8.5 is the 
most commonly used, where the astronomic azimuth (observed from sun shot or 
Polaris observation) is converted to the equivalent geodetic azimuth.

In the United States, deflection-of-the-vertical components are readily obtained 
from the NGS web site (http://www.ngs.noaa.gov) using the “deflect” program.

MeasureMents and coMputatIons

One way to understand physical geodesy and the geoid better is to look at some of 
the physical quantities that can be measured and to describe the quantities that might 
be derived from those observations. Given recent advances in technology, there are 
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changes in the combinations of what is measured and what can be reliably computed 
from those measurements. The goal is that, as technology and procedures evolve, the 
geoid can be located with greater certainty than in the past and the computational 
burden for spatial data users will be reduced.

intErpolation and Extrapolation

The following discussion should also be viewed in terms of estimating and the dif-
ference between interpolation and extrapolation. Ideally, a reliable observation is 
available at every point where such a measurement is needed. That is, however, 
rarely the case. Representative measurements are made, and other values are esti-
mated—either by interpolation (often acceptable) or by extrapolation (often used as 
a last resort). The validity of any estimation hinges on factors such as:

 1. What is the accuracy (uncertainty) of the available measurements?
 2. Are the number and spacing (density) of the measurements consistent with 

observed rates of change? Would a greater density of measurements merely 
confirm what can be obtained by interpolation, or are more measurements 
needed to provide a better picture of the quantity being estimated?

 3. What is the rate of change of the quantity being measured? Is the observed 
rate of change reasonable and/or consistent with anticipated changes based 
upon current theories and the models being applied?

 4. How sensitive are the indirect values being computed to changes in the 
quantity being measured?

Geoid height cannot be measured directly but must be inferred or computed from 
other quantities. With regard to locating the geoid or determining geoid heights, the 
list of measurable physical quantities includes:

Gravity:
 1. Magnitude
 A. Absolute
 B. Relative
 2. Direction (deflection-of-the-vertical)

Tide levels (location of mean sea level)
Differential levels (changes in orthometric height)
Ellipsoid heights (distance from ellipsoid)
Time—related to gravity and location of geoid (Kleppner 2006)

There is a direct correlation between deflection-of-the-vertical and changes in 
geoid height. Deflection-of-the-vertical values express the “slope” of the geoid at 
a given point with respect to the ellipsoid normal. In the past, geoid heights were 
computed from an accumulation of deflection-of-the-vertical determinations at sta-
tions in the national triangulation network where the observed astronomical position 
was compared to the computed geodetic position. Such dual-value stations are called 
Laplace stations.

•

•
•
•
•
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Gravity

If a precise value of the magnitude of gravity were known at all points, the location 
and shape of the geoid could be computed without ambiguity. But gravity values 
are not known everywhere, and, because the value of gravity changes from place 
to place, obtaining sufficient high-quality gravity measurements for precise geoid 
computations is not feasible. Absolute gravity measurements at the one-part-per-
billion level (of gravitational acceleration at the Earth’s surface) are possible (NGS 
2005), but they require expensive equipment and rigorous observing procedures. 
Relative gravity measurements are more popular because they are easier to make 
and less expensive to obtain. A network of relative gravity measurements needs to be 
attached to an absolute gravity network in order to obtain information that is useful 
for geodetic computations.

In addition to ground-based measurements, gravity measurements are made at 
sea (both on the surface and underwater) and in the air (in balloons, airplanes, and 
spacecraft). High-quality, land-based gravity measurements are typically more accu-
rate because, while the measurement is being made, the gravity meter is motionless 
with respect to the Earth. Gravity measurements in a moving environment must be 
corrected for the location and motion of the platform—ship, airplane, and so on. 
There is a trade-off between more costly high-quality land-based gravity measure-
ments (access to private property may also be an issue) and mobile gravity measure-
ments obtained from a moving vehicle or platform.

Measuring the direction of gravity is distinctly different than measuring the 
strength (magnitude) of gravity. A simple plumb bob is probably the best example of 
determining the direction of gravity—no matter where you go, the plumb bob always 
points down! Other devices for measuring the direction of gravity include the level 
vial as used on a carpenter’s level, the bull’s-eye bubble as used on many surveying 
instruments, striding levels as used on precision theodolites, and, for high-accuracy 
applications, the undisturbed surface of a pool of mercury in a vacuum (precisely 
perpendicular to the local plumb line). Sensors in modern inertial measuring sys-
tems also detect the direction of gravity.

With regard to the direction of gravity, a challenge is to answer the question 
“With respect to what?” Ironically, the direction of gravity is always vertical! After 
all, that is the definition. But, due to land masses and the nonuniform distribution of 
density within the Earth, the direction of gravity changes from point to point, and 
ultimately the question is “What is the direction of gravity at a point with respect to 
the ellipsoid normal at the same point?” That difference is called the deflection-of-
the-vertical and is not measured directly but is inferred from other measurements 
and computations. During the era of triangulation, it was commonplace to com-
pute the difference between the astronomic position observed at a point and the 
computed geodetic position for the same point based upon some datum and initial 
point. Deflection-of-the-vertical components were derived from those differences 
and defined the slope of the geoid at that point. With a sufficient number of dual-
value Laplace stations and associated deflections, the shape of the geoid in that area 
could be inferred. Given that the shape of the geoid is attached to some initial point 
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where the geoid height is zero, then absolute geoid heights can be determined in 
other locations throughout the country.

The U.S. Army Map Service (1967) published a three-sheet map, “Geoid Con-
tours in North American,” based upon astrogeodetic deflections. The map shows 1 
m contours throughout North America on the North American Datum of 1927. The 
geoid height was held to be zero (N = 0.0 meters) at the Initial Point, Meades Ranch, 
Kansas. Although the map is based upon astrogeodetic deflections, gravity data can 
be used to verify and/or augment the deflection-of-the-vertical computations.

tidE rEadinGS

Tide gauge data have been collected at numerous locations by various organizations 
for many years. The First General Adjustment of geodetic leveling in the United 
States was published in 1900 and based upon mean sea level as determined by tide 
gauges in five locations. Subsequent leveling network adjustments (in 1903, 1907, 
and 1912) connected to more tide gauges, and, as discussed in chapter 7, the 1929 
General Adjustment (which became known as the Mean Sea Level Datum of 1929) 
was based upon mean sea level as determined at twenty-six tide gauge locations—
twenty-one in the United States and five in Canada (Berry 1976).

diffErEntial lEvElS

As described by Zilkoski, Richards, and Young (1992), loops of precise levels 
(orthometric height differences) within the United States were observed in sup-
port of the readjustment and definition of the North American Vertical Datum of 
1988 (NAVD88). The loop results are very good, but, because the tide gauges do not 
define the same geoid surface, the relative loop differences could not be attached to 
absolute tide gauge elevations without distorting the observed relative differences. 
Therefore, one station—Rimouski at Fathers Point, Quebec—was selected as the 
datum point, and all NAVD88 orthometric heights are stated with respect to that 
one arbitrary point. That being the case, it can be said that all NAVD88 orthometric 
heights are relative and that there is no basis for absolute vertical accuracy statements 
with respect to the geoid. Such a statement is consistent with conventional leveling 
standards (Bossler 1984) that are given in terms of relative differences. Admittedly, 
NAVD88 orthometric heights, being consistent with the definition of “absolute” in 
chapter 2 and being on the same datum, are often used as absolute values.

EllipSoid HEiGHtS

With the advent of GPS and through the combined efforts of many people, the loca-
tion� of the center of mass of the Earth is known within 1 cm (Schwarz 2005). Holding 
the center of mass as the origin and using the rectangular ECEF coordinate system 

� By definition, the location of the center of mass of the Earth is fixed and does not move—
land masses and points on the surface of the Earth move with respect to the center of mass. 
The computed relative location of points on the surface of the Earth and orbit of satellites 
are consistent within 1 cm.
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as defined by the DOD, all spatial data computations within the birdcage of orbit-
ing GPS satellites follow the time-honored rules and equations of solid geometry. 
In that computational environment, ellipsoid heights are a derived quantity based 
upon the geocentric X/Y/Z position of the point and the ellipsoid parameters chosen 
by the user. Several relevant issues are that spatial data components (coordinate dif-
ferences) are derived from a variety of sensors and those relativistic effects should 
be modeled in the process of determining those spatial data components. Of course, 
the user must take responsibility for choosing and working on an appropriate datum 
such as NAD83, WGS84, or ITRF.

A related issue here is that GPS-derived ellipsoid heights are typically quoted 
as less precise than the horizontal position. One reason is that those results are 
based only on signals from satellites visible from one side of the world. More data 
are available. Taken as a whole, GPS is, among other things, a huge interpola-
tion system for spatial data. Given that signals from orbiting satellites are trans-
mitted to the Earth from all sides, it is conceivable, if data from all satellites are 
used simultaneously and if the worldwide GPS network is treated as a deformable 
solid, that the observed vertical (radial) dimension could turn out to be the strongest 
component of a GPS-derived position. That being the case, ellipsoid height can be 
determined very precisely for many points around the world (Burkholder 2003). 
The hypothesis is that absolute ellipsoid height can be determined routinely within 
a centimeter or less with respect to the Earth’s center of mass. Of course, with the 
Earth’s tides, a monumented point (or CORS position) on the Earth’s surface will 
rise and fall twice a day as our moon goes around the Earth. A mean value of ellip-
soid height for a point will be adopted and used for most purposes, but, much like 
polar motion components, the daily differences should be available to those need-
ing them. Many local spatial data applications will continue using relative ellipsoid 
height differences attached to a network of precisely determined absolute ellipsoid 
height points. Tectonic uplift and subsidence are nonregular movements monitored 
by those having responsibility for maintaining and updating the National Spatial 
Reference System.

Comparing ellipsoid height with orthometric height at a point is one of the best 
ways to find the geoid height. The problem is that, although obtaining a reliable 
ellipsoid height at a point is fairly routine, rarely are there enough reliable high-
order benchmarks available for making the comparison. Consider two extremes: if 
high-quality gravity values were known at a sufficient number of points in an area, 
it would be possible to compute geoid heights using gravity data. On the other hand, 
if sufficient high-quality orthometric heights were available in an area, it would be 
possible to compute geoid heights using equation 8.2 rewritten as N = h – H. The 
challenge is to find and use the best (most efficient, reasonable, and practical) combi-
nation of observations and procedures to determine acceptable geoid height values. 
Once primary reliable values for the geoid height are determined in a given area, 
other geoid heights in the same area can be interpolated using standard modeling 
techniques.

63014.indb   210 3/13/08   10:11:50 AM



Physical Geodesy 211

timE

Although this author will leave it to others, a recent hypothesis is that the absolute 
location of the geoid can be inferred from precise time measurement. In discussing 
“the great geoid search,” Kleppner (2006, 11) states,

In the not-too-distant future, our ability to compare atomic frequency standards and 
clocks at different laboratories will be limited by our knowledge of the geoid.

The obvious way to deal with the geoid problem is to reverse the argument and 
employ the gravitational redshift to explore the geoid. If, for instance, one had a por-
table atomic frequency standard accurate to 1 part in 1018 and if it could be compared 
to a primary standard with the same accuracy, the position of the geoid could be inde-
pendently and relatively quickly determined to 1 cm.

The point of discussing the measurements and computations related to the geoid 
height is to focus on the quantities that can be determined with the greatest certainty. 
From a geometrical geodesy perspective, it appears that the combination of precise 
ellipsoid heights and high-order orthometric heights is the best way to determine 
geoid heights. Gravity measurements are used as collaborating data to verify results. 
But, from a physical geodesy perspective, a worldwide gravimetrically derived geoid 
is used as the basis for developing geoid models such as Geoid03. Many more details 
are available from the NGS (2006a) web site. And, if using atomic clocks to locate 
the geoid independently ever comes to fruition, current geoid-modeling procedures 
may be significantly modified.

use of eLLIpsoId heIGhts In pLace 
of orthoMetrIc heIGhts

Given the elusive nature of the geoid (Kleppner 2006) and given that ellipsoid heights 
are readily available in the user community, it has been proposed (Burkholder 2002, 
2006; Kumar 2005) that ellipsoid heights be used in place of orthometric height for 
routine 3-D spatial data applications. Selling that change will be difficult because 
most people are comfortable with using sea level as a vertical reference. Sea level 
is a physical reference surface that people can see and understand. But, starting in 
1973 with the change in the name of the vertical datum, the association of mean sea 
level with the zero elevation was broken, and with publication of the NAVD88 the 
zero elevation is no longer “connected” to the tide gauges. Technically, the change 
to using ellipsoid heights for orthometric heights can be managed effectively in the 
same way as any other datum upgrade. But, although selling that change may be dif-
ficult, there are several precedent-setting examples to be considered—including the 
definition of the North Pole and the definition of time.

The difference between the physical position of the North Pole (it moves) and the 
mathematically adopted Conventional Terrestrial Pole (CTP) is an important con-
cept but used only by a relatively small number of people. However, polar motion is 
routinely factored into those computations needed to reconcile the physical position 
of the spin axis with the CTP, and GPS users the world over confidently use GPS-
derived positions without needing to model polar wandering (Leick 2004). The fact 
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that few people actually use polar motion coordinates does not diminish the scien-
tific importance of determining those quantities with exactitude.

Time is another analogy. In years past, noon was defined as the instant the sun 
crossed one’s local meridian and the beginning of each day was defined as mid-
night, the instant the sun crosses one’s meridian on the other side of the world. This 
definition is simple, physical, and easily understood, and relies on the apparent 
motion of the sun across the sky. Two problems—the sun-meridian definition of 
noon is location dependent, and, throughout the year, the time interval from noon 
to noon varies. Using the noon definition of time, each railroad train station in the 
1800s had its own version of correct time, and developing reliable train schedules 
was a real problem. The problem was solved (Howse 1980) by adopting a system 
of standard time zones in the United States in 1883. The worldwide system of time 
zones was adopted by the International Meridian Conference in Washington, D.C., 
in 1884. Yes, selling standard time zones to the public was an enormous task but, in 
hindsight, apparently well worth the effort.

The second time problem is measuring the uniformity with which time pro-
gresses. The equation-of-time is the difference between time as determined by the 
motion of the Earth and the uniform progression of atomic time. The ancient Greeks 
recognized the existence of the equation-of-time, but it was not until the late 1600s 
that John Flamsteed, the first royal astronomer of the Greenwich Observatory, quan-
tified the equation-of-time. Since then, measurement of the uniform progression of 
time has evolved from the pendulum clock to the quartz crystal clock to atomic 
clocks capable of accuracies in the range of one part in 1014 (Jones 2000). Now most 
people take time zones for granted, and the fact that the sun crosses the local merid-
ian before or after 12:00:00 noon is of little consequence. But, for scientific and 
other purposes, the equation-of-time and other time scale differences are known, 
documented, and used by those for whom the difference matters.

Similarly, the location of the center of mass of the Earth is easier to locate, is 
more stable than the geoid, and offers obvious advantages when used as a single 
reference for terrestrial 3-D spatial data. Making such a change would in no way 
diminish the importance of geoid-modeling research, but it would relieve the spatial 
data user community of a significant computational burden imposed by the contin-
ued use of separate origins for horizontal and vertical data. Issues associated with 
such a change include:

 1. Water flows downhill. In most cases, ellipsoid height differences are suf-
ficiently accurate to establish grades for highway alignments and gravity 
sewer flows. As an example, typical storm sewer manholes are spaced about 
100 meters apart. If one assumes an acceptable as-built tolerance of 0.005  
m for the invert orthometric height at each manhole (0.005’ � √2 = .007 m), 
the tolerance for slope is arctan (.007 m / 100 m), or about 15 seconds of 
arc (deflection-of-the-vertical is less than 15 seconds of arc in most places). 
Given that engineering involves finding, documenting, and using acceptable 
approximations, a study needs to be conducted and published to identify the 
severity of slope for other conditions and to identify acceptable tolerances 
for other assumptions. Of course, more critical applications need to model 
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and accommodate differences between gravity-based measurements (e.g., 
differential leveling) and normal-based measurements (e.g., GPS). Exam-
ples include hydraulic grade lines (dynamic heights) over large areas, tun-
neling through a mountain from two ends, and establishing a true plane for 
atomic particle colliders. In such cases, geoid modeling should still be used 
by those for whom the difference matters.

 2. In the continental United States, the geoid lies below the ellipsoid. If ellip-
soid heights are used in place of orthometric heights, there are many places 
along the coast where one is clearly standing on dry ground but the ellipsoid 
height for the point is a negative number. We’ve learned to accept negative 
orthometric heights in places like Death Valley, California, but negative 
elevations on dry land along the coast are rather dramatic reminder that 
zero elevation is not the same as mean sea level.

the need for GeoId ModeLInG

Before getting into the details of geoid modeling, it may be beneficial to look at sev-
eral assumptions associated with using or choosing not to use geoid height.

 1. For the first approximation, the difference between the ellipsoid and the 
geoid can be assumed to be zero—that is, ignoring geoid heights altogether. 
On a global basis, the error of such an assumption could be as much as 100 
meters. In the United States the error of ignoring the geoid height is limited 
to about 50 meters. If the orthometric heights being used have a standard 
deviation of 100 meters or more, the noise of the data is greater than the 
feature being modeled, and it makes little or no difference whether one uses 
ellipsoid height or orthometric height.

 2. Two other assumptions are that the world is flat (for a small area) and that the 
ellipsoid and the geoid are two parallel planes. Under this assumption, if the 
geoid height at one place is known, the geoid height at nearby locations is the 
same. For some applications this assumption may be appropriate, but there is 
a real danger that limits of the assumption may not be recognized. The user 
should be aware of unintended, possibly even severe, consequences.

 3. A better assumption (but still assuming a flat Earth) is that the ellipsoid and 
geoid are nonparallel plane surfaces—that is, one is tilted with respect to 
the other. If geoid heights are known at three points (required to define a 
plane) in a specified area, other geoid heights in the same general area can 
be obtained by linear interpolation techniques. Extrapolation may provide 
reasonable answers in the same general area, but uncontrolled extrapolation 
is to be avoided. If geoid heights are known for more than three points scat-
tered throughout the project area, a local “best-fit” geoid model may be the 
appropriate choice.

 4. The best assumption underlying geoid modeling is that the two surfaces are 
both curved and not concentric. Curvature of the ellipsoid is mathemati-
cally well defined and can be computed. But, even though the geoid is a 
continuous surface, the geoid curves in an irregular manner, and writing a 
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mathematical function for the separation between the two curved surfaces 
involves complex modeling. The reader is referred to the NGS (2006a) web 
site for additional information on geoid modeling and the latest geoid model 
available to the user community.

In spite of the advantages of using ellipsoid heights for orthometric heights, that 
change may never occur. We need to recognize that current practices evolved to be what 
they are for specific reasons (we are where we are because of where we came from), 
and the prudent user needs to be familiar with current geoid-modeling practices.

In spatial data applications, geoid modeling is used primarily to relate ellipsoid 
height to orthometric height. As noted in the previous section, that application may 
be significantly reduced if ellipsoid heights are adopted and used in place of ortho-
metric heights. A secondary application using geoid heights is reducing a horizontal 
distance at some elevation to either the geoid or the ellipsoid. Whether using the 
ellipsoid or the geoid as the computational surface, demand for geoid modeling is 
driven by the desire for physical measurements to be modeled at a level that pre-
serves their geometrical integrity. The next section considers the impact of geoid 
height on reducing horizontal distance to the ellipsoid.

Typically, a slope distance is measured between a standpoint and a forepoint, 
reduced to an equivalent horizontal distance, and further reduced to the ellipsoid for 
use in geodetic computations (Burkholder 1991). One could say that geoid modeling 
is not required if it makes no significant difference whether orthometric height or 
ellipsoid height is used for the elevation reduction computation. But, we also need 
to acknowledge practices of the past as we make decisions about current standards, 
specifications, and procedures. For example, triangles and quadrilaterals in the 
national horizontal network defining the North American Datum of 1927 (NAD27) 
were computed on the geoid as if it were the Clarke Spheroid of 1866. Of course, 
both the shape of the ellipsoid and the location of the datum origin at Meades Ranch, 
Kansas, were selected so that, in the United States, the geoid and the ellipsoid were 
close to each other. That proximity mitigated the consequences of performing the 
computations on the geoid instead of the ellipsoid.

However, the North American Datum of 1983 (NAD83) was computed on the 
ellipsoid, not on the geoid. The shape and location of the GRS 1980 ellipsoid were 
chosen for a global best fit rather than a continental best fit as was done for the 
NAD27. The origin of the NAD83 was located at the Earth’s center of mass (as 
determined at the time), and the shape of the GRS 1980 ellipsoid approximates the 
global shape of the geoid. An unintended consequence of a global best fit for the 
geoid is that differences between the ellipsoid and the geoid in North America are 
greater on NAD83 than they are on NAD27. Separately, the intended internal consis-
tency of the NAD83 was to be at least one magnitude better than for NAD27. These 
factors, both singularly and collectively, mean that geoid height is an important con-
sideration in distance reduction and should not be ignored in the geodetic computa-
tion of positions on the NAD83.

In an attempt to quantify the severity of using an orthometric height instead of 
ellipsoid height in the distance reduction, Burkholder (2004) examines the accuracy 
of the elevation reduction factor. Equation 8.6 (from that article) can be used to 
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compute the elevation reduction factor standard deviation for any combination of 
values and is given as
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where

h = ellipsoid height used in reduction,
r = radius of the Earth,
σh = uncertainty of ellipsoid height, and
σr = uncertainty of the Earth’s radius.

The four examples in Table 8.1 were computed using equation 8.6 and are 
intended to show the following:

 1. The uncertainty in ellipsoid height is a prominent factor in the reduction of 
a horizontal distance to the ellipsoid.

 2. Ellipsoid height and the uncertainty in the Earth’s radius both contribute to 
the uncertainty in the elevation reduction factor, but not much.

 3. Using ellipsoid height instead of orthometric height or vice versa (ignoring 
a geoid height of fifty meters) may be acceptable at the 1:100,000 level.

 4. Ignoring a geoid height of ten meters will affect results at the 1 ppm level.

But, the real question to be addressed is whether geoid modeling is needed at 
all. Because the presumed answer is “yes,” the question deserves careful consider-
ation. When looking at computation and use of spatial data components, the GSDM 
stores geocentric X/Y/Z coordinates and covariance values as the primary record of a 
point. A new point is established from an existing point using the 3-D forward (BK3) 
computation—either on the basis of GPS-derived ∆X/∆Y/∆Z or on the basis of local 
normal-based ∆e/∆n/∆u components rotated to ∆X/∆Y/∆Z. The computation takes 
place in 3-D space, not on the geoid and not on the ellipsoid. No geoid modeling is 
required. The exception is if the slope of the geoid with respect to the ellipsoid normal 
is needed to correct vertical-based measurements to normal-based measurements. In 

tabLe 8.1

four examples of elevation reduction factor uncertainty
uncertainty of 

height
height of standpoint uncertainty in earth’s 

radius
resulting uncertainty 

elevation factor 

1. 50 meters 500 meters 1,000 meters 1:127,460

2. 50 meters 2,000 meters 5,000 meters 1:127,457

3. 10 meters 500 meters 1,000 meters 1:637,267

4. 10 meters 2,000 meters 5,000 meters 1:629,882
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that case, deflection-of-the-vertical data are needed, not the precise geoid height. If 
the geodetic line distance on the ellipsoid between the standpoint and the forepoint 
is desired, it can be computed from a geodetic inverse (BK19)—geoid height is not 
an issue.

As described in chapter 2, rectangular spatial data components are computed as 
coordinate differences in the geocentric rectangular coordinate system and rotated 
(without distortion or loss of integrity) to the local perspective for use as 3-D rect-
angular flat-Earth components. In that environment, horizontal distance from the 
standpoint to the forepoint lies in the local tangent plane through the standpoint. The 
3-D azimuth (Burkholder 1997) from standpoint to forepoint is computed simply as 
arctan (∆e/∆n), and ellipsoid height is derived directly from the X/Y/Z coordinates 
(see equation 1.7). Geoid modeling is not an issue unless one needs to relate the third 
dimension to orthometrics heights on existing benchmarks. Two points:

 1. Yes, orthometric heights are still used, and geoid modeling is important 
as a way to find orthometric height from ellipsoid height. But for many 
flat-Earth applications (e.g., RTK construction layout staking over limited 
distances), the ∆u component of a local vector can be used as an ortho-
metric height difference. If a curved-Earth height difference is needed, the 
ellipsoid height difference (∆h) of the vector will suffice unless the slope of 
the geoid in that area is quite severe and/or very high precision is required 
for vertical. In that case, geoid modeling will be needed.

 2. Reducing a horizontal distance to the ellipsoid for geodetic computation 
is no longer needed. Instead, a geodetic 3-D forward computation (BK3) 
based upon slope distance, zenith direction, and azimuth of the line is used 
to compute X/Y/Z coordinates of the forepoint. Latitude/longitude/height of 
the forepoint are computed from the forepoint X/Y/Z values.

GeoId ModeLInG and the GsdM

An important concept is that the simplest model that supports the integrity of the data 
is the most appropriate model to use. The 1-D flat-Earth model for leveling is proba-
bly the simplest spatial data model and is used extensively. The 2-D flat-Earth model 
of rectangular plane coordinates is used all over the world for simple local applica-
tions. A local 3-D rectangular model is also used for applications such as describing 
condominium space, local area topographic maps, and construction stakeout. But, 
geographers quickly find themselves beyond the range of an acceptable flat-Earth 
model, and they utilize spherical latitude/longitude coordinates to express horizontal 
location. Orthometric height (or altitude) is used to describe vertical location. At 
an even higher level of complexity, geodesists, geophysicists, and other scientists 
need to use the flattened ellipsoid model in order to preserve geometrical integrity of 
measurements made all over the Earth. As noted earlier, the spherical and ellipsoidal 
Earth models involve the use of mixed units, that is, angular units for horizontal and 
length units for vertical. Map projections (see chapter 10) were invented as a way 
to represent a portion of the curved Earth on a flat map. That essentially solves the 
mixed-unit problem but map projections are severely limited by, among other rea-
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sons, the fact that a map projection is strictly 2-D. Spatial data are 3-D, and modern 
practice needs to combine horizontal and vertical into the same database.

Whether using the NAD83, WGS84, or ITRF datum, the GSDM defines any 
point within the birdcage of orbiting GPS satellites by a triplet of geocentric rect-
angular X/Y/Z coordinates. Furthermore, each stored point has a covariance matrix 
associated with it and interdependencies between point-pairs are obtained from the 
appropriate covariance submatrix. From these values stored in a BURKORDTM data-
base, the user can select and compute derived quantities. In some cases, the assump-
tions are contained within the definition of the GSDM, while in other cases the 
user must specify additional assumptions about the derived quantities. And, in all 
cases, the computations are bidirectional, meaning data can be transformed either 
way without loss of geometrical integrity.

Examples include:

 1. Quantities computed directly from the X/Y/Z coordinates and covariance 
matrix for a point are latitude, longitude, ellipsoid height, and standard 
deviations for the point in either the geocentric reference frame or the local 
reference frame. The local “up” standard deviation is the standard devia-
tion of the ellipsoid height. The implicit assumptions are that the user has 
selected the datum and the ellipsoid parameters.

 2. Other quantities that can be computed from the latitude and longitude of 
a point include UTM coordinates, state plane coordinates, or user-defined 
projection coordinates. The implicit assumptions are that the user is respon-
sible for using appropriate transformation equations, using the correct units, 
and staying on the same datum. The local reference frame (e/n/u) standard 
deviations are not changed by such a transformation.

 3. Orthometric height can be computed from the ellipsoid height using geoid 
modeling and a rearrangement of equation 8.2 as H = h – N. The geoid mod-
eling program Geoid03 (and other versions) is described in the next section. 
The standard deviation of the computed orthometric height is based upon 
the standard deviation of the ellipsoid height and the standard deviation of 
the geoid height. It can be done either way, but this is one place where the 
user must exercise caution—the standard deviation of an absolute geoid 
height at a point is typically inferior to the standard deviation of the geoid 
height difference between points, as described later.

 4. Other derived quantities are listed here for the sake of completeness but 
are discussed in more detail in chapter 10. Given that a user selects a pair 
of points, the derived quantities include the mark-to-mark distance, the 3-
D azimuth from standpoint to forepoint, the zenith (or vertical) direction 
from standpoint to forepoint, the local tangent plane horizontal distance 
from standpoint to forepoint, and the standard deviation of each quantity. 
Furthermore, if appropriate covariance submatrices have been stored, both 
the network and local accuracies can be computed for these derived quanti-
ties. The explicit condition here is that all quantities are with respect to the 
ellipsoid normal at the standpoint.
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 5. Finally, if the user selects a P.O.B. datum point (see chapter 1), then any 
and all other points in the database can be viewed from that perspective, 
and those local coordinate differences can be used as local flat-Earth coor-
dinates with respect to the origin selected by the user. Standard deviations 
of all derived quantities (direction, distance, area, volume, etc.) are avail-
able and routinely reported. The implicit assumptions are that all horizon-
tal distances are within the tangent plane through the P.O.B. and that all 
directions are grid directions with respect to the true meridian through the 
P.O.B. A further assumption is that, unless modified by the user (see chapter 
10), the “up” component is the perpendicular distance from the forepoint 
to the tangent plane through the P.O.B. As will be described in chapter 10, 
these derived values will see extensive use throughout the spatial data user 
community in a wide variety of applications.

usInG a GeoId ModeL

The following procedures for determining orthometric heights via GPS and geoid 
modeling are similar, but not identical, to those procedures given by NGS in the 
draft publication “Guidelines for Establishing GPS-Derived Orthometric Heights 
Version 1.4” (NGS 2006b). Given that one is to fulfill the requirements of the NGS 
specification, those criteria supercede the suggestions offered here and should be 
followed. For purposes of local practical application, the following procedures have 
been proven to provide excellent results.

As implemented in Geoid03 and other geoid-modeling programs, the printout 
typically gives the geoid height to three decimal places of meters. The geoid height 
at that point is not necessarily within 1 mm, as implied by the printout, but the 
difference in geoid heights between two neighboring points does need that many 
decimal places. Stated differently, the relative accuracy is better than the absolute 
accuracy. That means the shape of the geoid is known better than the location of the 
geoid. The following procedure is recommended to take advantage of that character-
istic of geoid modeling.

Given:

Known orthometric height at point A = HA

GPS-based ellipsoid heights at points A and B = hA and hB

Geoid03 geoid heights at points A and B = NA and NB

Fundamental relationships: h = H + N, H = h – N, and ∆H = ∆h – ∆N

Problem: As illustrated in Figure 8.4, determine the orthometric height of point 
B using the orthometric height at point A, Geoid03 (or another geoid model), and the 
GPS vector from point A to point B.

Solution:

 1. Determine the latitude, longitude, and ellipsoid height of point A and point 
B from the geocentric X/Y/Z coordinates of the points. If the covariance 
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matrix of each point is also stored, a program such as BURKORDTM will also 
provide, among others, the standard deviation of the height component.

 2. Use Geoid03 and the latitude/longitude of each point to compute the geoid 
height for each point, NA and NB. Note that in the continental United States, 
the geoid lies below the ellipsoid and values of N, geoid height, are negative. 
The sign conventions for ellipsoid height, geoid height, and orthometric 
height are pretty much standard the world over, and the equations used 
herein are consistent with Figure 8.4, but the negative sign of N must be 
handled properly in the algebraic sense.

 3. Combine the various components as follows:

  ∆h = hB – hA (from GPS and/or geocentric X/Y/Z)

  ∆N = NB – NA (from Geoid03 or similar model)

  ∆H = ∆h – ∆N

  HB = HA + ∆H = HA + (hB – hA) – (NB – NA) (8.7)

Computing the standard deviation of the orthometric height at point B is a natu-
ral extension of this discussion. A detailed example of using GPS to establish a reli-
able NADV88 elevation on a HARN station, along with standard deviation, is posted 
at http://www.globalcogo.com/ReilElev.pdf.

Geoid03 is available gratis from the National Geodetic Survey (NGS) web 
site, http://www.ngs.noaa.gov.

Surface of Earth 

Geoid 

Ellipsoid 

Point 
B Point 

A 

HB

NB

hBhA
HA

NA

Figure 8.4  Determining Orthometric Height Using GPS and Geoid Modeling
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9 Satellite Geodesy and 
Global Navigation 
Satellite Systems (GNSS)

IntroductIon

Goals of satellite geodesy include using Earth-orbiting satellites to determine the 
size and shape of the Earth, to obtain a greater understanding of the Earth’s grav-
ity field, and to define the position or movement of points on the Earth or in near 
space. The first two goals are primarily scientific in nature, but the third goal is more 
applications oriented and of interest to many more people. The utility of position 
fostered by the pervasive use of Global Positioning System (GPS) technology in vari-
ous applications means that many spatial data users are interested in learning more 
about fundamental concepts of satellite positioning. Many principles and systems 
are involved in meeting those goals, and, because there are so many details, this 
chapter should be considered as an overview.

Satellite-positioning technology evolved during the Cold War—primarily fol-
lowing the launch of Sputnik I by the Russians in 1957. Since then, various satel-
lite systems have been used for positioning—the TRANSIT Satellite System, the 
NAVSTAR system of GPS satellites, the Russian Global Navigation Satellite System 
(GLONASS) system, and, finally, the GALILEO satellite-positioning system being 
developed by the Europeans. The purpose of including a chapter on global naviga-
tion satellite systems (GNSS) in this book is to make the point that the GSDM pro-
vides an appropriate bridge between the exacting rigor of the methods used by the 
“rocket scientists” and the much simpler flat-Earth methods typically employed in 
the spatial data user community.

Spatial data were defined in chapter 2 as distances between the endpoints of 
a line in 3-D space. As such, the definition is rather meaningless until such data 
are expressed with respect to a coordinate system—local, geodetic, or geocentric. 
The GSDM includes each of those coordinate systems and defines a common geo-
metrical computational environment for all geospatial data users, including those 
who develop satellite-positioning systems, those who collect and process physical 
measurements to obtain coordinates, those who use spatial data for an endless array 
of applications, and those who manage the collection, storage, manipulation, and use 
of geospatial data.

“The Global Positioning System: Charting the Future” (National Academy of 
Public Administration [NAPA] 1995) is a report prepared by the National Academy 
of Public Administration for the U.S. Congress and the U.S. Department of Defense 
that documents the development, applications, and future of GPS. In the executive 
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summary, the report predicts worldwide revenue for GPS-related products and ser-
vices to exceed $30 billion by 2005. Current estimates of global economic impact for 
GPS and spatial data are difficult to find, but Navteq, a firm devoted to building and 
marketing a global geospatial database was purchased in October 2007 by Nokia for 
$8.1 billion and a GPS World (2007, 34) information item states that GPS purchases 
are expected to generate $4.1 billion in sales in 2007. The geospatial data arena 
includes GIS, GPS, and various other technologies. The same arena includes many 
talented persons who are experts at building measurement systems and generating 
quality 3-D spatial data.

“Geographic Information for the 21st Century” (NAPA 1998) is a report also 
prepared by the National Academy of Public Administration—in this case, for the 
U.S. Bureau of Land Management, U.S. Forest Service, U.S. Geological Survey, and 
National Ocean Service—that is a formal study of the civilian federal surveying and 
mapping activities. This arena includes many talented persons who use the measure-
ment systems and related technology to generate and manipulate 3-D spatial data. 
But, perhaps more significantly, this arena also includes countless applications of 
spatial data used within the context of the modern Geographic Information System 
(GIS).

Even though one could say the focus of those two publications is very differ-
ent, there is an enormous overlap in that both rely on a shared foundation of 3-D 
spatial data. Given the impact of the digital revolution (Burkholder 2003), spatial 
data are now characterized as digital and three-dimensional (3-D) and modeled by 
the GSDM. Built on the premise of a single origin for 3-D data, the GSDM simul-
taneously accommodates the rigorous methods of the GPS arena and the flat-Earth 
practicality of GIS applications. Establishing and tracking spatial data accuracy effi-
ciently comprise an added bonus for all users.

Entire books are written on satellite geodesy and the processes used to convert 
physical measurements into spatial data components. The interested reader is referred 
to comprehensive texts such as Leick (2004), Seeber (1993), or Hoffman-Wellenhof, 
Lichtenegger, and Collins (1994) for more details. Current magazines such as GPS 
World, Inside GNSS, and Geospatial Solutions provide additional information, and 
web searches on GNSS will reveal other sources—especially for information on the 
newer satellite-positioning systems. While not exhaustive, material in this chapter is 
intended to provide context for spatial data users who wish to gain a better under-
standing of GNSS satellite data and how they are collected and used. When physical 
observations are reliably processed to the point of being included in the GSDM as 
geocentric X/Y/Z coordinates on a specific datum, then others should be able to use 
those spatial data with confidence.

Although the Russian GLONASS system and the European GALILEO system 
both deserve consideration, GPS is the primary satellite system discussed here. Cov-
erage of GLONASS and GALILEO is included by extension of GPS concepts. That 
is done because the focus of this book is on the fundamental geometrical model for 
spatial data, and the objective of this chapter is to describe how spatial elements 
and components are obtained from satellite data. As related to satellite geodesy and 
GNSS positioning, the following points are important:
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As stated in chapter 7 on datums, spatial data users encounter both absolute 
positions as represented by X/Y/Z coordinates and networks of relative posi-
tions built from observed GPS baselines. Absolute and relative concepts are 
both considered in this chapter.
Unlike traditional ground-based measurements, spatial data components 
derived from satellite data are computed indirectly from measurements of 
physical quantities such as voltage, current, time, and phase shifts. Direct 
measurements of angles and distances are not made by satellite geodesy or 
GNSS surveying. Instead, by modeling the physical and geometrical cir-
cumstance of each measurement, coordinates and spatial data components 
are computed from the raw data. Those components are analyzed for qual-
ity, adjusted as needed for geometrical consistency, and attached to previ-
ously “fixed” points, and the new points are either used immediately or 
stored as coordinates in a database. Information from the database is then 
used to derive other quantities such as the distance and direction between 
points, areas, volumes, velocities, and so on.
When discussing layout for construction projects, the traditional procedure 
is to lay out angles and distances relative to control points previously estab-
lished on-site. GPS may have been used to establish those control points, and 
construction drawings may show new features located with respect to such 
points. Those traditional layout procedures may be used for years to come, 
but with the newer technology of GPS base station networks and real-time-
kinematic (RTK) surveying procedures, the control monuments are effec-
tively taken to be the satellites in the sky, and, using satellite orbits as the 
control points, stakes are established according to construction drawings. 
Carried further, the construction stake is eliminated entirely because the 
design feature is defined in an electronic file, the file is loaded into a com-
puter carried on board the construction scrapper or bulldozer, a GPS unit 
receives signals from the satellites, and the current position of the cutting 
blade is relayed to the onboard computer, which computes the difference 
between “actual” and “design” locations. The equipment operator, guided 
by an electronic display, cuts or fills according to the instructions shown on 
the display—all in the comfort of the heated or air-conditioned cab.
Each spatial data component, whether measured directly or indirectly, has 
a standard deviation associated with it. And, if correlation exists between 
components, the appropriate covariance matrix should be part of the record 
for that point. Given that covariance information for each point and between 
points is stored in a 3-D database, the standard deviation of any derived quan-
tity is readily available via the stochastic model component of the GSDM.
The quality of spatial data is not established just because it came from satel-
lites, GPS, or other measuring systems. Meta data, statistical verification, 
quality control, or personal testimony may be needed to “prove” the qual-
ity of spatial data. However, once the quality of spatial data is established, 
reliable information management procedures are essential for preserving 
the value of that information. The GSDM provides for efficient numerical 
storage of stochastic information for each point in the database.

•

•

•

•

•
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The GSDM provides a standard interface between two categories of activi-
ties: those efforts devoted to generating reliable spatial data and those 
efforts associated with using spatial data. Although some people undoubt-
edly operate in both categories, the goal in developing the GSDM was for 
the designers and builders of measurement systems to know specifically 
how far the processing needs to go until the spatial data can be stored and/
or turned over to the user. By the same token, spatial data users deserve to 
know with assurance that data from a given measurement system and/or 
database conform to an underlying standard and that reliable information 
on spatial data accuracy is readily available.

BrIef HIstory of satellIte PosItIonIng

It is generally agreed that the space age dawned in October 1957 with the launch 
of the Russian Sputnik satellite—the first to achieve Earth orbit. Scientists at Johns 
Hopkins University were able to track the signal broadcast by the satellite and, not-
ing the Doppler effect, were able to reconstruct the orbit of the satellite. The process 
was then inverted, making it possible to compute the position of a receiver on the 
ground by knowing the satellite orbit and observing the Doppler shift of the signals 
received from the satellites passing overhead. That was the basis for development 
of the U.S. TRANSIT satellite system, which was first funded in December 1958, 
operational in 1964, and released for commercial use in July 1967—all within a 10-
year time frame.

Since the launch of Sputnik I in 1957, many spacecraft have been launched for 
various purposes: research, experimentation, communication, navigation, mapping, 
exploration, and, yes, even sending humans to the moon. An early tabulation of 
objects in orbit and decayed objects gives dates and other details of launch and decay 
for several hundred satellites between 1957 and 1963 (Mueller 1964, sec. 2.64).

With regard to geodesy, passive satellites and active satellites have both been 
used beneficially. The Echo 1 and Echo 2 satellites were large metallic balloons that 
could be seen from the Earth on clear nights in the early 1960s. Multiple precisely 
timed photographic exposures generated images (small dots) of the satellite moving 
across a background of stars. By synchronizing exposures recorded on glass plates 
at widely separated locations, it was possible to work out the geometrical separation 
of the observing stations. This ability to compute a geometrical connection from 
one continent to another represented significant progress for geodesy. Such use of 
satellites for positioning was sufficiently successful to justify the launch of a dedi-
cated geodetic balloon satellite in 1966 called PAGEOS (PAssive GEOdetic Satel-
lite) that was used to establish a geometrical worldwide network of forty-five stations 
observed with BC4 cameras over a period of about 6 years.

Geodetic research has both contributed to and benefited from various satellite 
programs. But geometrical geodesy has probably benefited most from two satellite 
systems that were designed and built for navigation purposes—the TRANSIT system 
and the NAVSTAR GPS. In the early 1960s, the U.S. Polaris submarine fleet relied 
heavily upon inertial navigation instruments that needed periodic position updates, 
typically based upon astronomical observations. Such an update could be done only 

•
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during clear weather and not if the vessel was submerged. After the TRANSIT navi-
gational system became operational in 1964, a position update could be obtained 24 
hours a day, rain or shine, and, in the case of a submarine, only required exposure of 
a radio antenna instead of the vessel.

Decommissioned in 1996, the TRANSIT system was released for commer-
cial use in July 1967 and, in addition to military applications, was used extensively 
worldwide for both sea and land navigation until replaced by GPS. Recognizing 
that high-quality geodetic positions could be obtained from Doppler measurements, 
a number of companies developed instruments designed for land-based surveying 
applications. In addition to private sector use of Doppler positioning, the BLM made 
extensive use of the Magnavox MX 1502 Doppler receiver during the 1970s and 
1980s; and, from 1973 to 1978, the U.S. National Geodetic Survey (Schwarz 1989) 
collected Doppler data at approximately 600 stations in all fifty states in support 
of the readjustment of the North American Datum of 1983 (NAD83). Additional 
information on development and use of the TRANSIT system can be found in Hoar 
(1982) and Stansell (1978). 

The DOD first started development on the NAVigation Satellite Timing And 
Ranging (NAVSTAR) satellite system in 1973 and called it the Global Positioning 
System, or GPS. GPS was developed for the purpose of providing timely, reliable 
positioning and navigation support for military activities all over the world. The first 
GPS satellite was launched in 1978, and, after completing a constellation of satellites 
that provided global coverage 24 hours per day, initial operational capability (IOC) 
for GPS was declared on December 8, 1993. Full operational capability (FOC) was 
declared on July 17, 1995.

GPS consists of three segments—the space segment, the control segment, and 
the user segment. The space segment consists minimally of twenty-four satellites 
in six different planes, with each plane inclined 55º to the equator. Each satellite 
orbits the Earth twice a day at an altitude of 20,183 km and broadcasts information 
on two frequencies, L1 and L2. The L1 carrier frequency is 1575.42 MHz and has 
a wavelength of 19 cm, while the L2 carrier frequency is 1227.60 MHz and has a 
wavelength of 24 cm. Information about the satellite clock performance, data on the 
health and status of each satellite, and a prediction of (ephemeris for) each satellite 
orbit are modulated onto the carrier frequencies broadcast by each satellite. Addi-
tional information and operational details on the GPS can be accessed from http://
www.navcen.uscg.gov/gps/ and other sites.

The control segment is wholly owned, controlled, and operated by the DOD, and 
includes six tracking stations located around the world—Cape Canaveral, Florida; 
Hawaii in the Pacific Ocean; Ascension Island in the South Atlantic Ocean; Diego 
Garcia in the Indian Ocean; Kwajalein in the North Pacific Ocean; and Colorado 
Springs, Colorado. Data from all tracking stations are transmitted to the Master 
Control Station in Colorado Springs, where the data are processed and the predicted 
orbit (ephemeris) for each satellite is computed. Ephemerides, clock corrections, and 
other messages are then transmitted back to each GPS satellite once a day (optionally 
more often) from one of three upload stations located at Ascension, Diego Garcia, 
and Kwajalein.
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The WGS84 ECEF coordinates of the electrical center of each antenna for the 
six tracking stations as determined for the epoch G1150 are as shown in Table 9.1 
(National Imagery and Mapping Agency 1997).

The user segment consists of all those persons and organizations that collect the 
GPS signal from the satellites and use it for an increasing variety of applications. 
From the user perspective, GPS is a passive system in that the end user only receives 
signals from the satellite. However, with the evolution of technology, it could be said 
that some GPS receivers are active because the signal received at a given location is 
immediately rebroadcast to other GPS units operating in the same local area for pur-
poses of performing RTK surveys. At some continuously operating stations (CORS), 
the GPS signal is collected and retransmitted via radio, cell phone, or the Internet. 
Even so, GPS is still considered a passive navigation, timing, and positioning system. 
The end user does not transmit signals to the GPS satellites.

During the 1980s, while the GPS constellation was still being developed, manu-
facturers began building GPS receivers for civilian use. Two modes of operation 
were developed: one based upon the coarse acquisition (C/A) code modulated onto 
the L1 frequency and the other based upon observing the phase shift of the funda-
mental L1 carrier frequency as received at two separate locations. Using information 
broadcast by the GPS satellites, the autonomous location of a C/A code GPS unit 
could be determined within about 100 meters worldwide. In the early years of GPS, 
the DOD purposefully degraded the C/A code signal to deny ultimate accuracy to 
nonmilitary users. That policy of selective availability (SA) was discontinued May 1, 
2000, and since then, the autonomous accuracy of a C/A code receiver worldwide is 
within about 10 meters. With enhancements such as augmentation or using differen-
tial corrections, submeter accuracy can be achieved using C/A code receivers.

On the other hand, it might seem that the carrier phase mode of GPS operation 
was developed specifically for surveying and mapping because, using GPS, it is now 
possible to determine the location of an unknown point with respect to a known 
point very precisely (within mm or cm) even though the stations may be separated by 
20, 50, or even 100 or more kilometers. Since 1985, the use of GPS has completely 
revolutionized the surveying and mapping professions. Using GPS, the surveyor no 
longer needs intervisibility between ground points and no longer needs to travel to 
a remote mountaintop to gain access to the NSRS. In fact, if a modern surveyor is 
working in an area covered by a GPS CORS network (see chapter 11), he or she takes 

taBle 9.1

ecef coordinates of dod global control stations
station X y Z (meters)

Colorado Springs  –1,248,597.295  –4,819,433.239  3,976,500.175

Ascensión  6,118,524.122  –1,572,350.853  –876,463.990

Diego García  1,916,197.142   6,029,999.007  –801,737.366

Kwajalein  –6,160,884.370  1,339,851.965   960,843.071

Hawaii  –5,511,980.484  –2,200,247.093  2,329,480.952

Cape Canaveral  918,988.120  –5,534,552.966  3,023,721.377
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a portable pole-mounted unit to any point having sky visibility and determines the 
position of a point within centimeters (or less) in real time. The overall point of this 
discussion is that by the time GPS was declared operational in 1993, civilian uses for 
the GPS signal had effectively outstripped military applications, and now the utility 
of GPS is taken for granted by many users. Depending upon the application, GPS 
receivers (code phase, carrier phase, or both) are now relatively inexpensive and are 
being used beneficially worldwide by novice and expert alike.

The Russians (formerly, the Soviet Union) have also built a satellite-positioning 
system called the GLONASS that is very similar to GPS but with specific differ-
ences. For example, the GLONASS satellites are closer to the Earth, and their orbit 
period is slightly shorter than the GPS orbit period. GPS satellites all broadcast 
on the same two frequencies, and each satellite is identified by a unique code. The 
GLONASS satellites broadcast on different frequencies. The first GLONASS sat-
ellite was launched n October 1982, and the system was declared operational on 
September 24, 1993. Various manufacturers either build or plan to build equipment 
capable of using signals from GPS, GLONASS, and/or GALILEO satellites.

More recently, the European Space Agency has committed to building, launch-
ing, and operating a satellite-positioning system called GALILEO, which will 
both complement and provide competition for the two existing systems. The first 
GALILEO satellite was launched in December 2005. Following testing and addi-
tional development, initial operational capability is optimistically speculated to 
occur about 2010. Many details are yet to be determined, but the GALILEO system 
is being developed as a subscription-based system, whereas the GPS and GLONASS 
systems are supported respectively by the U.S. and Russian governments with no 
charges made for using the signals.

Modes of PosItIonIng

Many variables need to be considered in using satellites for positioning. Some of the 
most obvious variables are the instantaneous location of each satellite, the time each 
signal is broadcast or received, the number of satellites broadcasting signals, the 
frequencies of signals being broadcast, the location of each receiver, the number of 
receivers collecting data, and the atmosphere through which the signals travel. Even 
with all those variables, GNSS positioning is ultimately based upon some combina-
tion of three physical concepts: elapsed time, Doppler shift, and interferometry.

ElapsEd TimE

Distance is the product of rate and time. The time interval for the transit of a signal 
from a satellite to the receiver is measured very precisely. The speed of light (radio 
signal) is modeled for the intervening atmosphere and the distance from satellite to 
receiver is computed as the product of time interval and rate. Distances from a mini-
mum of three satellites are needed to compute an intersection in three-dimensional 
space on or near the Earth. But, since a small correction to the receiver clock is also 
required, a minimum of four satellites must be observed—three for position and one 
for a clock correction. If signals from additional satellites are available, a position 
may be determined quicker and with greater accuracy.
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dopplEr shifT

As described by Christian Doppler (1803–1853) in the 1840s, the frequency received 
at a given place depends upon the frequency transmitted and whether the source 
and receiver are stationary with respect to each other, moving closer together, or 
moving farther apart. Standing at a train station and listening to the whistle of a 
train going by is often used as an example. To a person riding on the train while the 
whistle sounds, the pitch heard is uniform and continuous (no movement between 
the source and the receiver). That is the trivial case. The sound heard by a person 
standing on the platform is of more interest. If the train is approaching the station, 
the frequency heard is higher than the frequency broadcast because the distance 
between the source and receiver is decreasing while the sound is traveling. On the 
other hand, if the train is going away from the station, the frequency heard is lower 
than the frequency broadcast. That is because the distance is growing larger while 
the sound is traveling from the source to the receiver.

GPS satellites broadcast a steady precise frequency. As illustrated in Figure 9.1, 
the frequency received on the ground is higher or lower than the transmitted fre-
quency depending upon the location of the observer and whether the distance 
between the satellite and observer is decreasing or increasing. Not surprisingly, 
the instant at which the two frequencies match—the minimum distance between 
satellite and receiver—can be identified very precisely. That instant figures promi-
nently in the calculations of the observer’s position using Doppler data. But, it 
takes many passes of a TRANSIT Doppler satellite to determine an unknown 
position precisely. It is far easier to use Doppler data to verify the integrity of a 
computed solution than it is to compute an unknown position solely using Doppler 
data. Elapsed time and Doppler data are often used in combination to determine 
an autonomous position.

Frequency

Frequency Transmitted

Received

Satellite

Receiver

fIgure 9.1 Example of Doppler Shift for Signal Received
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inTErfEromETry

Using the concept that light (or radio signals) can be represented by a sine wave, 
interferometry is the term used to describe both the constructive and destructive 
interaction of two waves arriving simultaneously at a single location. When the sig-
nals are in phase, a double “high” is recorded. On the other extreme, when the phase 
of one signal is shifted 180º with respect to the other, the high of one signal cancels 
out the low of the other. The pattern of the changing phase shift, double-high-to-
zero-and-back, is driven by a difference in the distance traveled by the signals and is 
itself a sine wave. Figure 9.2 illustrates the interference of light waves after passing 
through two slots in a barrier.

Interferometry concepts are used in processing GPS carrier frequency measure-
ments. In general, the L1 signal is broadcast from a satellite and collected by a GPS 
receiver. The distance from the satellite to the receiver is a huge number of 19 cen-
timeter wavelengths plus a fractional part of a wavelength. The large number of 
integer wavelength is not known when the observations start, and it is called the 
integer ambiguity. However, as time progresses, the receiver keeps track of (counts) 
the wavelengths received and, at specified intervals (1 second, 5 seconds, 15 sec-
onds, etc.), records the phase shift (fractional wavelength) of the incoming signal. 
If the signal is interrupted, it is said the receiver “loses lock” and the count of full 
wavelengths must start over. Such an interruption is called a cycle slip in the data. 
Uninterrupted signals collected simultaneously at two GPS carrier phase receivers 
over a period of time (e.g., 5 to 60 minutes) from four or more satellites are used to 
compute a three-dimensional space vector between receivers in terms of ∆X/∆Y/∆Z 
components in the ECEF geocentric coordinate system. And, because each 19 centi-
meter wavelength can be resolved into one hundred fractional parts, it is said that the 
ultimate resolution of a carrier phase GPS measurement is about 1.9 mm.

As described in the next section, a C/A code (elapsed time) observation typically 
provides an economical autonomous absolute position with respect to a specific 
datum using one receiver. On the other hand, interferometric carrier phase process-
ing requires data from two receivers, and the resulting vector between points is a 
relative measurement of one point with respect to another. Carrier phase GPS instru-
ments are often referred to as survey grade instruments and typically cost more than 
C/A code receivers.
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satellIte sIgnals

Development of the NAVSTAR GPS grew out of a concept known as Very Long 
Baseline Interferometry (VLBI), which consists of collecting random pattern radio 
signals from distant quasars. Quasars are located extremely far from our solar sys-
tem and emit radio waves that are received here on Earth. Two characteristics of 
interest are the pattern of signals received and the direction to the quasar. In order 
to determine the precise direction to a quasar, the same pattern must be received 
at widely separated locations and correlated according to their respective arrival 
times (as determined by very precise atomic clocks). Once the direction to a quasar 
is known, the process can be inverted to determine the 3-D space vector between 
receivers (Earth-based radio telescopes). Seeber (1993) reports a standard deviation 
of 1.7 cm on a 5,998 km baseline between the United States and Germany on data 
collected between 1984 and 1991.

The GPS is different from VLBI in that

the source of the GPS signal is not from a fixed direction in deep space but 
from one of many satellites orbiting the Earth, and
the GPS signal is not a random radio noise pattern but consists of very 
stable frequencies that are coded with important data related to the orbit, 
performance, and health of each satellite.

Accurate timing is the heart of GPS positioning. Jones (2000) describes the devel-
opment of atomic clocks: hydrogen maser (stable to 1:1015), cesium (stable to 1:1014), 
and rubidium (stable to 1:1013). Although hydrogen maser clocks demonstrate supe-
rior performance, cesium clocks are preferred over hydrogen maser clocks for their 
longer term stability, and rubidium atomic clocks are preferred for GPS satellites due 
to their adequate performance, compact size, and comparatively lower cost.

The NAVSTAR satellite system also provides an enormous benefit to everyone 
by providing continuous access to accurate atomic time all over the world. GPS time 
began at 0h Coordinated Universal Time (UTC) on January 6, 1980, and progresses 
at the same rate as the International Atomic Time (TAI) scale. UTC is the time scale 
used all over the world by the general population and runs at the same TAI rate. 
Earth’s rotation on its axis is quite regular and was used as a time standard before 
the era of atomic clocks. Now, however, because the rate of atomic clocks is more 
uniform than the rotation of the Earth, UTC is modified by a leap second from time 
to time to keep midnight at midnight. Therefore, GPS time differs from UTC by an 
integer number of seconds—14 seconds as of January 1, 2006 (http://tycho.usno.
navy.mil/gpstt.html). Additional information on atomic time and time scales is also 
available from Leick (2004), Kleppner (2006), or a web search.

Details of the electromagnetic spectrum are listed in Table 9.2 and include 
gamma rays, X-rays, ultraviolet light, visible light, infrared rays, microwaves, 
and radio waves. The GPS signal is located in the radio wave portion of the spec-
trum. During World War II, the radar band portion of the spectrum was assigned 
capital-letter designators for various wavelengths. The range of frequencies from 
1,000 MHz to 2,000 MHz was called the L-band and includes both the GPS L1 and 
L2 frequencies. The GPS signal structure is based upon a fundamental oscillator  

•

•
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frequency of 10.23 MHz. The L1 frequency of 1,575.42 MHz (wavelength = 19.0 
cm) is obtained as 154 times the fundamental frequency, and the L2 frequency of 
1,227.60 MHz (wavelength = 24.0 cm) is 120 times the fundamental frequency. Given 
the underlying carrier frequencies, the C/A code is modulated onto the L1 frequency 
at 1.023 MHz, and the precision (P) code is modulated onto both the L1 and L2 car-
rier frequencies without alteration (i.e., at the original 10.23 MHz). The navigation 
message containing the broadcast ephemeris for each satellite, GPS time, and other 
system parameters (health, etc.) is modulated onto both L1 and L2 frequencies at a 
rate of 50 bits per second (bps).

The original intent was for all users to have access to the standard positioning 
service (SPS) based upon the C/A code on L1. The P-code is modulated onto both 
L1 and L2 frequencies and supports what is known as the precise positioning service 
(PPS). But, access to the P-code is reserved for military users. In addition to civilian 
users not having access to the P-code, the L1 signal was purposefully degraded so 
that C/A code users could not count on autonomous stand-alone positioning accuracy 
any better than about 100 meters. This policy of SA was intended to provide the U.S. 
military access to the full capability of the GPS system while denying ultimate func-
tionality to others—especially users hostile to interests of the United States. As it 
turns out, that intent of SA was thwarted by the invention and adoption of differential 
positioning techniques that obviated the impact of SA. Therefore, SA was formally 
discontinued on May 1, 2000, at the direction of the president of the United States.

A second security measure is known as anti-spoofing (A-S), which “guards 
against fake transmissions of satellite data by encrypting the P-code to form the Y-
code.” A-S was exercised intermittently through 1993 and implemented on January 
31, 1994 (http://tycho.usno.navy.mil/gpsinfo.html, May 2006).

Enhancements have been made to both the hardware and the signal structure since 
the first GPS satellites were built and launched. For example, Leick (2004) describes 
A-S and the P(Y)-code as related to military uses and notes that manufacturers have 
developed proprietary methods that make the P(Y)-code a nonissue for civilian uses. 
Some changes have to do with policy issues (e.g., S/A), and others are related to sys-
tem performance. Changes of note for civilian users also include the planned addition 
of a new civil code on L2 (to be known as L2C) and a third civil frequency known as 
L5, which will enhance robustness by mitigating effects of interference and support-
ing increased availability of precision navigation. Not surprisingly, some improve-
ments have also come about in response to competition from the two newer systems, 
GLONASS and GALILEO (Lavrakas 2007). A wealth of current information and the 
status of all three GNSS systems are available via a web search.
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C/a CodE

The observable for a C/A code phase receiver is the time delay of the signal to travel 
from the satellite to the receiver. The C/A code is time-tagged as it leaves the sat-
ellite and matched to a duplicate of the same code in the receiver by shifting the 
unique pattern on the receiver clock time scale. As illustrated in Figure 9.3, the shift 
required for the best match is a measure of the time interval of the signal from satel-
lite to receiver. The distance from the satellite to the receiver is the product of the 
speed of light and the observed time interval. Theoretically, three such distances 
can be used to solve for the 3-D location of the unknown receiver. Regretfully, the 
signal does not travel in a vacuum and the clock in the receiver is not as precise as the 
atomic clocks in the satellites. Relativity is also a consideration. The time delay of 
the signal through the atmosphere is modeled to a close approximation (such details 
are beyond the scope of this book), but the receiver clock error must be observed and 
treated as an unknown. Therefore, four satellites must be observed to solve for four 
unknowns—the geocentric X/Y/Z coordinates of the antenna and a correction to the 
receiver clock. Note in equations 9.2 to 9.5 that the receiver clock correction shows 
up as a correction to the distance to each satellite and is the same regardless of the 
satellite from which the signal originated.

The C/A code phase solution can be described as a three-dimensional applica-
tion of the Pythagorean theorem, which states,

 Dist X Y Z= + +∆ ∆ ∆2 2 2  (9.1)

Using that form and writing an equation for the distance from the single receiver to 
each of four satellites gives the following:

To satellite A: D t c X X Y Y Z ZA A R A R A R+ = − + − + −∆ * ( ) ( ) ( )2 2 2  (9.2)

To satellite B: D t c X X Y Y Z ZB B R B R B R+ = − + − + −∆ * ( ) ( ) ( )2 2 2  (9.3)

Reference signal in receiver

Signal from satellite

Time delay interval

fIgure 9.3 Matching Signals from Receiver and Satellite

63014_C009.indd   232 3/4/08   12:20:20 PM



Satellite Geodesy and Global Navigation Satellite Systems (GNSS) 233

To satellite C: D t c X X Y Y Z ZC C R C R C R+ = − + − + −∆ * ( ) ( ) ( )2 2 2  (9.4)

To satellite D: D t c X X Y Y Z ZD D R D R D R+ = − + − + −∆ * ( ) ( ) ( )2 2 2  (9.5)

where

DA,DB,DC,DD = observed distance to satellites A, B, C, and D, respectively;
XA,YA,ZA = known coordinates of satellite A;
XB,YB,ZB = known coordinates of satellite B;
XC,YC,ZC = known coordinates of satellite C;
XD,YD,ZD = known coordinates of satellite D;
XR,YR,ZR = unknown geocentric coordinates of receiver;
∆t = correction to receiver clock;
c = speed of light in a vacuum; and
∆t * c = distance correction to each satellite (small).

With the observed distance to each satellite and the known X/Y/Z coordinates 
of each satellite, there are only four unknowns in the four equations—∆t, XR, YR, 
and ZR. Equations 9.2 to 9.5 look innocent enough, but using them to solve for the 
position as displayed by a GPS receiver is no trivial task. The GPS receiver initially 
solves for geocentric X/Y/Z coordinates, then converts those values to latitude/longi-
tude/height using the BK2 transformation equations.

Finding the autonomous position of a point with a small handheld receiver (or a 
chip in your cell phone) to the nearest 10 meters with respect to the equator and the 
Greenwich meridian is an incredible feat. But scientists and manufacturers are con-
tinually working to find ways to improve that performance. Differential corrections 
and augmentation are discussed in a subsequent section.

CarriEr phasE

The observable for a survey grade carrier phase GPS receiver is the fractional part of 
the 19 cm wavelength received at a specific time. The fractional parts (or phase shifts) 
recorded at two separate receivers from four or more satellites over time are used 
to compute a precise vector from one antenna to the other. The material discussed 
here is conceptual, and the actual algorithms used by the various vendors involve 
many more details. Also, be aware that GPS equipment designers do not restrict 
themselves to using just one principle or concept, but draw upon various techniques 
to build equipment that customers will purchase. For example, a vector (as used in 
surveying) from one point to another is determined using carrier phase observations, 
but that is not to say that interferometry is the only concept used in the processing 
algorithm. Likewise, neither is it correct to say that carrier phase observations are 
never used in determining the autonomous position of a handheld receiver.
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The fundamental concept exploited in carrier frequency processing is that the 
distance between two points is represented by a sine wave. No matter the distance 
or the wavelength, there is always an integer number of waves and a fractional por-
tion of the same wave as shown in Figure 9.4. When a GPS measurement starts (a 
receiver “locks” onto a satellite), the observation is the fractional part of the wave-
length. The integer number of wavelengths is unknown. But the receiver keeps track 
of (counts) the number of wavelengths as long as it maintains lock on the satellite and 
records the phase shift at specified time instants.

So long as a receiver maintains lock on a given satellite, the change in distance 
between the satellite and receiver is directly observed. But, if the signal is inter-
rupted, a cycle slip is said to have occurred and the integer count for that satellite 
must begin again. When observing numerous satellites, a cycle slip on a given satel-
lite may be inconsequential and may have little impact on the solution. But, in the 
early years of baseline processing, especially when attempting to get a good solu-
tion using a limited number of satellites, the process of fixing cycle slips typically 
involved user intervention and could be tedious and time-consuming. In some cases, 
fixing cycle slips was not possible, and no solution could be obtained. In that case, 
the baseline had to be reobserved or eliminated from the solution. With the current 
full constellation of satellites and more robust automated baseline processing soft-
ware, cycle slips are not the nuisance they once were. In fact, the modern user is 
often unaware of their occurrence.

dIfferencIng

The comment has been made that electrical engineers rule the world because nearly 
every aspect of modern life, in one way or another, relies upon electronic signal 
processing. That appears to be especially true with GPS data. A common procedure 
when processing GPS signals is to subtract one (sine wave) signal from the other. 
Various advantages are realized depending upon how the differences are formed and 
used. While details can be found in references such as Leick (2004); Seeber (1993); 
Hoffman-Wellenhoff, Lichtenegger, and Collins (2001); and U.S. Army Corps of 
Engineers (1990), here is a summary of differencing options.

Transmitter ReceiverN wavelengths + Fractional part

1 Wavelength 1 Wavelength 1 Wavelength

Fractional
part

fIgure 9.4 Fundamental Wave Measurement
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singlE diffErEnCing

Three kinds of single differences are possible. First, and probably the most com-
monly used, the signal from one satellite is collected at a common time (epoch) by 
two different receivers. When these data are merged and differenced, the satellite 
clock error, orbit errors, and atmospheric delays cancel out because they are com-
mon to the signals received at both locations. Second, a single difference can be 
formed from the data collected at one receiver from two separate satellites. This 
difference combination effectively eliminates the impact of the receiver clock error. 
Third, a single difference can be formed between epochs by a given satellite-receiver 
pair. The Doppler effect shows up in these data and is modeled accordingly.

doublE diffErEnCing

A double difference is obtained as the difference between the single differences of a 
given type. Other double differences can be used, but when processing GPS carrier 
phase data, the most common double-differencing procedure involves finding the 
differences between two receivers observing two satellites at the same epoch. This 
procedure effectively eliminates both the receiver clock errors and the satellite clock 
errors from the baseline solution.

A characteristic of such a double difference solution is that the resulting wavelength 
ambiguity is an integer. That is, a baseline solution may be found quicker if, during the 
solution, the integer variable is allowed to take on a real number (known as a float solu-
tion). However, the unknown number of wavelengths in physical three-dimensional 
space is an integer, and a stronger solution (known as a fixed solution) is obtained by 
constraining the solution to integer values for the number of wavelengths.

TriplE diffErEnCing

Triple differencing involves a difference of the double differences over time and 
is useful because the integer ambiguity cancels out of the observation equations. 
But, because of the time interval involved, the triple difference solution must also 
accommodate the Doppler effect. In the early days of GPS vector processing, triple 
difference solutions were sometimes used, especially for longer lines where fixing 
the integers was problematic. However, with the development of more robust pro-
cessing algorithms for fixing integers and with the use of data from more than four 
satellites, triple difference solutions are seldom the final solution. But triple differ-
encing remains a valuable tool for preliminary (or intermediate) solutions.

rIneX

Of many things that could be said about the GNSS signals, this section includes a 
short description of the Receiver INdependent EXchange (RINEX) format. Given 
more than one way to manipulate the signals received from the GPS (and other) sat-
ellites, it is not surprising that data from one brand receiver are not necessarily com-
patible with data collected by other brands. Computing a baseline vector from data 
collected by Brand X receiver on one point and Brand Y receiver on another point 
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is impossible without having the data in a common format. Therefore, the RINEX 
format was proposed as a convenience for both the manufacturers and GPS users 
so that data collected by any of various brands of equipment could be combined in 
computing either baselines or networks.

At a minimum, the RINEX format includes definitions for (there are more)

observation file,
meteorological file, and
navigation file.

A RINEX observation file uses ASCII characters and includes the basic observ-
ables, the phase measurement on both L1 and L2 (in cycles), and the range (in meters) 
to each satellite referenced to the receiver clock according to GPS (not UTC) time. 
The observation file header also contains information on the antenna type and the 
field-measured antenna height as determined by the user.

A Google search on “rinex” provides several hundred thousand hits, but not all 
sites involve the use of satellite data. http://gps.wva.net/html.common/rinex.html is a 
site containing excellent information on RINEX details, format, and history.

ProcessIng gPs data

Processing GPS data involves a number of “flavors.” In the early years of GPS, two 
primary modes of processing were code phase (autonomous) processing and carrier 
phase (vector) processing. Given the evolution of technology and practice, each “fla-
vor” begins to look more like the other and exclusive descriptions become meaning-
less. The purpose here is to describe the two basic procedures and acknowledge the 
evolution of practices. Current literature (theoretical, technical, and promotional) is 
rich with detail. The point, as described below, is that the GSDM supports all geo-
spatial data processing, including GNSS-derived data.

In years past, processing GPS data involved a lot more user interaction than it 
does now. The computational load for the spatial data user has been significantly 
reduced and, in some cases, eliminated entirely. In the not-too-distant future, if not 
already being done, the collected data will be processed according to options and 
tolerances input by the user and the “final” answer will be available and used in 
real time. That is already happening with aircraft landing approaches, GPS-enabled 
earth-moving equipment, wide-area augmentation for navigation, and, to some 
extent, RTK surveying practices and procedures. Irrespective of the “flavor” and 
with regard to answers, two issues are involved: (1) getting an instant answer in the 
units and datum expected, and (2) being assured of the quality of the answer, that 
is, spatial data accuracy. In terms of answers, the user must be knowledgeable of the 
options, must know specifically what kind of spatial data are expected, and must 
know what constitutes a finished task, job, or project. In the case of an aircraft land-
ing, the job is complete once the plane has landed and the tolerance for unacceptable 
results is very small. There are many other applications for real-time positioning—
each with its own spatial data accuracy criterion. In each case, the GSDM provides 

•
•
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for comparison of “actual” and “desired” differences and provides an efficient proce-
dure for assessing the accuracy of such comparisons (Burkholder 1999).

spaTial daTa TypEs

Spatial data types are listed in chapter 2, and most of them relate to geospatial data 
as obtained from GNSS. Several important points of which each user should be 
aware are the following:

 1. The data types are independent of whether the observations were collected 
with GPS, GLONASS, or GALILEO.

 2. The underlying spatial data types are also independent of the mode (code 
phase or carrier phase) by which the data were collected and processed. But, 
the covariance matrix associated with each point is greatly influenced by the 
mode of collection and processing. Generally the carrier phase-based data 
will have a smaller standard deviation than the code phase-derived data.

 3. The GSDM handles all spatial data the same—independent of the mode of 
collection (code phase or carrier phase) or whether the data were collected 
and processed on the NAD83, WGS84, or ITRF.

 4. The GSDM does not move data from one datum to another. But neither 
does the GSDM discriminate. For example, a user could input point A as 
defined on the NAD83 and point B as being on the WGS84. Clearly, that is 
not appropriate. But, if the standard deviation of either (or both) points is 
significantly larger than the known datum difference, then the 3-D inverse 
between point A and point B is legitimate at the level of uncertainty derived 
from the 3-D inverse. Used that way, the GSDM can be a dangerous tool.

It is presumed that position coordinates are associated with a named datum and 
represent the GPS antenna location. Of course, known offsets may also be involved. 
Such an offset may be from the antenna to the cutting edge of a bulldozer or earthmover, 
or, in the case of surveying, the offset is to the mark on the ground determined via the 
antenna height measurement. Offset measurements are the user’s responsibility.

The seven spatial data types from chapter 2 are as follows:

 1. Absolute geocentric X/Y/Z coordinates: primary values stored in a 3-D 
database.

 2. Absolute geodetic coordinates of latitude/longitude/height: derived from 
the stored X/Y/Z primary values.

 3. Relative geocentric coordinate differences: this is the primary result of 
GPS baseline vector processing. Relative geocentric coordinates are also 
obtained from local geodetic horizon coordinate differences that have been 
rotated into the geocentric reference frame.

 4. Relative geodetic coordinate and ellipsoid height differences: obtained as 
the difference of compatible (common datum) geodetic coordinates.

 5. Relative local coordinate differences: these are the local components of a 
GPS vector rotated to the local e/n/u perspective. These local components 

63014_C009.indd   237 3/4/08   12:20:24 PM



238 The 3-D Global Spatial Data Model

are also the product of surveying total station observations and can often be 
used as flat-Earth components in the local tangent plane with an origin as 
selected by the user.

 6. Absolute local coordinates: e/n/u are distances from some origin whose 
definition may be mathematically sufficient in three dimensions, two 
dimensions, or one dimension. Examples (see comments in chapter 2) are 
as follows:

Point-of-beginning (P.O.B.) datum coordinates as defined by the GSDM
Map projection (state plane) coordinates
Elevations on some named datum

 7. Arbitrary local coordinates: may be 1-D (assumed elevations), 2-D (assumed 
plane coordinates), or 3-D (spatial objects). Although useful in some applica-
tions, arbitrary local coordinates are generally not compatible with geospa-
tial data and have limited value in the broader context of georeferencing.

Often, the type of spatial data expected will be dictated by the context. For 
example, a graphical display of local coordinate differences may be used to navigate 
to a point. It is one thing to return to camp following a hike in the woods (based 
upon code phase observations) and something completely different to navigate to a 
point to be staked for construction or to find a fire hydrant buried under a snow bank 
(based upon RTK surveying procedures). Of course, the user may select a different 
type of data to be displayed (e.g., latitude/longitude/height or plane coordinates). In 
any case, the spatial data user is responsible for knowing specifically what to expect 
and verifying that the data being obtained are those expected.

Back to those automated aircraft landings—a Google search on “GPS aircraft 
landings” returns over 1 million hits. One of the more informative web site hits is 
http://waas.stanford.edu/pubs/phd_pubs.html, which lists approximately fifty Ph.D. 
dissertations on GPS-related positioning completed since 1993. Innovative applica-
tions and research opportunities involving spatial data abound.

Admittedly, the following descriptions of “autonomous” and “vector” process-
ing are oversimplified, but they can be useful for learning more about underlying 
concepts of how GPS data are processed and used.

auTonomous proCEssing

This GPS processing option typically includes handheld C/A code receivers used for 
a variety of applications—recreation, navigation, tracking, and GIS. Once turned 
“on” and receiving data from a minimum number of satellites, an autonomous posi-
tion is obtained from a single GPS receiver with little or no input by the user. The 
results will be displayed in the coordinate system, datum, and units as specified 
by the user. Internally, the GPS signals are processed to find the geocentric X/Y/Z 
coordinates of the antenna (spatial data type number 1). But, since those rectangular 
X/Y/Z values are difficult to visualize, the results are converted into the coordinate 
system as selected by the user (typically, spatial data type number 2—latitude/lon-
gitude/height). Other options may be available such as specifying a datum, a state 
plane coordinate zone, UTM coordinates, a national grid designation, or another 

•
•
•
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user-defined system. User-selectable options for handheld C/A receivers typically 
include the following.

datum

World Geodetic System 1984 (WGS84)
North American Datum of 1983 (NAD83)
International Terrestrial Reference Frame (ITRF), epoch XX
Other

units

Meters (standard)
International feet
U.S. Survey feet
Statute miles
Nautical miles
Other

display

Geocentric Earth-centered Earth-fixed (ECEF) X/Y/Z
Degrees, minutes, and seconds (decimal)
Degrees and minutes (decimal)
Decimal degrees

time

Universal Time Coordinated (UTC)
Time zone offset
24-hour or a.m./p.m. (12-hour) mode

With SA enabled, routine accuracy expected from a C/A code receiver was 
originally +/– about 100 meters. But, SA was discontinued in May 2000, and the 
expected autonomous accuracy dropped to about 10 meters. That is impressive, but, 
using advanced processing techniques, vendors routinely claim submeter accuracy 
for nonsurvey grade GPS receivers.

VECTor proCEssing

When processing carrier phase GPS data, two separate receivers are needed to col-
lect data from common satellites. The simplest form of vector processing uses GPS 
signals recorded simultaneously in two receivers located at two different points. The 
data file and station message file from each receiver and an ephemeris file from 
one of the receivers are transferred to a computer having the appropriate processing 
software. Using those data, the baseline between stations is computed and reported 
in terms of ∆X/∆Y/∆Z between stations (spatial data type number 3). The covariance 
matrix for the baseline is also computed and reported. The ECEF coordinate differ-
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ences and their covariances are the primary answers obtained from baseline pro-
cessing. Other pieces of information such as local component differences (∆e/∆n/∆u), 
slope distance, ellipsoid height difference, forward geodetic azimuth, back geodetic 
azimuth, and standard deviations of the various answers are derived from those pri-
mary answers.

Depending upon which of several options are used, various results can be 
obtained when computing GPS baselines. Typically, a preliminary triple difference 
solution is computed first, even for shorter baselines, because the integer ambigu-
ity value cancels out of the observation equation. If the baseline is quite long, cycle 
slips may be more of a problem and a triple difference solution may be an important 
intermediate step in determining a preliminary solution. However, once cycle slips 
are identified and fixed, a double difference solution is typically better than a triple 
difference solution. But, there are two levels of double difference solutions. The first 
double difference solution solves for the integer ambiguities as a real number. That is 
called a float solution because the values found for the integer wavelength numbers 
are allowed to “float” and to be something other than an integer. There are cases 
where the float solution may be the strongest solution available for a given set of data. 
But, the preferred solution is obtained when the integer ambiguities are “fixed” and 
forced to be integers—because, physically, the path of the signal contains an integer 
number of wavelengths plus a remainder. Modern baseline processing software is 
quite robust, and, unlike the early days of GPS baseline processing, the user rarely 
needs to interject decisions as the processing proceeds. However, once baseline pro-
cessing is complete, networks are formed, adjustments are performed, and statistics 
of the results are developed, the judgment of the user is still important in deciding 
upon the ultimate acceptability of the results. If the results are not acceptable, correc-
tive measures may include actions like changing the elevation mask, eliminating sig-
nals from (turning off) a particular satellite, or reobserving a given baseline. Vendor 
manuals and other GPS users offer many suggestions for various corrective actions.

mulTiplE VECTors

Added complexity in carrier phase processing arises if data are collected simultane-
ously with three or more receivers. Although the underlying algorithm for computing 
∆X/∆Y/∆Z components for each baseline may be the same, when processing multiple 
baselines, two additional considerations are (1) avoiding the use of trivial vectors and 
(2) handling the correlation between baselines sharing a common station. A nonex-
clusive definition of a trivial baseline is any vector computed using two data sets that 
have already been used in computing another baseline. There are different ways of 
determining a trivial baseline, but perhaps the easiest way is to look specifically at 
nontrivial vectors. A nontrivial vector is a baseline computed using, at least in part, 
data not used previously. If data collected at both ends of a line have been used previ-
ously, the result may be a trivial vector. If data at one end have been used but data at 
the other end have not been used, it is a nontrivial vector. Many baseline-processing 
packages permit the user to choose the nontrivial baselines, but default choices built 
into most processing software are also popular.
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Figure 9.5 shows two views of a network of four points to be surveyed using 
GPS. The points are labeled A, B, C, and D, and GPS baselines between all points 
are represented by the six connecting lines. Scenario 1 is not illustrated, but view 
(a) illustrates using three GPS receivers and three observing sessions for the six 
nontrivial vectors, while view (b) illustrates using four receivers and two observing 
sessions for the same six vectors.

Scenario 1: Two GPS receivers are used to occupy each baseline in six separate 
sessions. It is a tedious and time-consuming method of GPS data collection, but each 
observed baseline is a nontrivial vector.

Scenario 2: Three GPS receivers are used simultaneously, and two nontrivial 
vectors are obtained in each of three sessions. For example, in session 1, receivers 
occupy stations A, B, and C. Nontrivial vectors are AB (two new data sets) and 
AC (one new data set at C). For session 2, receivers occupy stations A, C, and D. 
Nontrivial vectors are CA and CD. In session 3, receivers occupy stations D, B, and 
A, and the nontrivial vectors are DB and DA. Other combinations could also be used 
so long as each new vector includes station data not used previously.

Scenario 3: Four GPS receivers are used simultaneously, and three nontrivial 
vectors are obtained in each of two sessions. For example, in session 1, nontrivial 
vectors could be AB (two new data sets), BC (one new data set at C), and AD (one 
new data set at D). For session 2, the nontrivial vectors are CD (two new data sets), 
CA (one new data set at A), and DB (one new data set at B).

TradiTional nETworks

The simplest network scenario is to build a GPS network of independent vectors. That 
would be the case if a network was built using independent baseline data collected 
from just two receivers. When combining vectors and computing such a multisession 
network adjustment, it is standard practice to anchor the network to a single fixed 3-D 
(X/Y/Z) point and to compute a minimally constrained least squares adjustment. The 
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purpose of computing a minimally constrained network is to confirm the absence of 
blunders. If blunders exist, the offending baseline is reprocessed sans the blunder, reob-
served, or eliminated entirely. Once the observed baselines are verified blunder-free, 
the network is constrained to the X/Y/Z values of two or more existing high- (or higher-) 
order stations and the network is recomputed. A successful least squares adjustment 
provides the adjusted X/Y/Z coordinates (and covariance matrices) for each new station 
established during the survey. Such a network is both practically and statistically legiti-
mate. A well-documented least squares network adjustment of independent vectors is 
posted at http://www.globalcogo.com/nmsunet1.pdf.

This is not a book on adjustments. However, as illustrated in Figure 9.5, where 
three or more GPS receivers collect data simultaneously, there is correlation between 
those nontrivial vectors sharing a common station. When developing the weight 
matrix for a multistation session, the correlation between baselines should also be 
included in the covariance matrix of the observations. The network adjustment then 
becomes a multistation multisession solution, which is described in more detail by 
Seeber (1993). Examples include the adjustment of a statewide HARN network, the 
national readjustment of the NAD83 datum network, or, ultimately, even a global 
network of GPS stations.

Whether building a network of independent vectors or building a multistation 
multisession network, the GSDM provides a “natural” computational environment 
for performing those computations. The final coordinates (spatial data type number 
1) from a least squares adjustment are absolute values based upon the fixed abso-
lute control selected by the user (also spatial data type number 1) and the observed 
relative baseline vectors (spatial data type number 3). The least squares adjustment 
also provides the covariance matrix for each point and the covariance submatrix 
from which correlation between points can be obtained. A BURKORDTM database 
stores the X/Y/Z coordinates for each point, the covariance matrix for each point, and 
(optionally) the covariance submatrix representing correlation between point pairs.

adVanCEd proCEssing

The concepts presented here are advanced in that they move beyond the fundamen-
tal procedures described earlier. But they are not advanced in that GPS profession-
als routinely work with many of these “advanced” concepts. First, there are several 
issues deserving consideration that are omitted. It is well-known and understood that 
the quality of long baselines can be enhanced by using a precise ephemeris instead 
of the (default) broadcast ephemeris. Fine-tuning the baseline computational process 
is left to others. And, in some cases, GPS data are commingled with inertial data. 
That discussion is also very relevant but beyond the scope of this book. However, a 
closing thought is that once inertial data are “corrected” for deflection-of-the-verti-
cal (see chapter 8), even gravity-based measurements (total stations, levels, or an 
inertial measuring unit) can be used along with appropriate standard deviations in 
the GSDM.

Issues of absolute and relative spatial data need to be considered in moving from 
traditional network adjustments to procedures such as differential positioning, aug-
mentation, RTK positioning, and using the NGS On-line User Positioning Service 
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(OPUS). It would be nice if absolute and relative issues could be considered sepa-
rately, but as technology and operational procedures evolve, the simple categories are 
no longer applicable. Admittedly, it doesn’t matter for many because, in all honesty, 
many end users are really interested in obtaining a reliable position with appropriate 
statistics without needing to worry about how it was obtained.

Differential GPS positioning (DGPS) involves observing an autonomous position 
at two locations—one known, and the other unknown. The difference of “known” 
minus “observed” at the known location is called a correction. That correction is 
applied at the unknown location to give a differentially corrected position. The pro-
cess of applying the correction can take any of various forms. Here is an abridged 
list of possible scenarios (some give better results than the others):

 1. One (simple handheld) receiver is used by one person at multiple locations. 
One of the locations visited is the known point. The correction is computed 
and applied manually. The assumption is that the correction does not vary 
over (short periods of) time or with location.

 2. Two GPS receivers are used in the field. One receiver remains on the known 
location (base), while a second (rover) is taken to various points. The correc-
tion as determined at the base is applied (manually) for each point visited. 
This procedure documents whether the correction is “fixed” or whether the 
correction varies with time. This procedure is better than the first but not 
very efficient, especially if security considerations mandate that a person 
stay with the base receiver.

 3. The location of a permanent (secure) base station is surveyed precisely, 
and the base station receiver records data continuously. A second (remote) 
receiver is used by one person to collect data at various points. Back at the 
office, data from the base station are retrieved and the correction is applied 
to points collected with the roving receiver. Software for automated pro-
cessing increases efficiency.

 4. The correction is computed automatically at the base station and trans-
mitted via radio or cell phone from the base to the remote receiver. The 
“corrected” position at the rover is determined in real time and used imme-
diately or stored for use elsewhere or by others.

 5. The correction at the base is determined, not as a location difference but 
as a time-delay modification to the signal received from each satellite. The 
correction sent to the remote is not a location difference but a time-delay 
correction from each observed satellite. The DGPS position observed at 
the remote station is better than that obtained with other methods and is 
achieved with greater computational efficiency.

General statements are that DGPS provides an improved absolute position 
obtained from a C/A code receiver. The quality of such an observed position is 
enhanced by observing more than four satellites, by using the strongest geometry 
afforded by the existing satellite constellation, by observing for a longer time period, 
by using more than one receiver (for redundancy), and by observing the same point 
on several different days.
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Augmentation can be described as DGPS on a big scale. The Federal Aviation 
Administration (FAA) has established a wide-area augmentation system (WAAS) 
for determining differential corrections at ground-based locations and transmitting 
that information to geosynchronous communications satellites that retransmit the 
signals over a large area—most of the United States. WAAS provides absolute posi-
tion in real time and was designed primarily to support civil aviation.

A summary of approximate absolute positions based upon code phase receiv-
ers is:

 1. Original C/A code position with selective availability imposed: 100 m
 2. C/A code position without selective availability imposed: 10 m
 3. Typical DGPS: 3 to 5 m
 4. Typical WAAS positional accuracy: < 3 m

The reader should also be aware that some manufacturers claim submeter accu-
racy for their autonomous GPS receivers. Such accuracy may be obtained by exploit-
ing information on the carrier frequency in addition to the code phase data. Those 
claims, equipment, and observational processes should be discussed with the manu-
facturer. Tests can be conducted to establish the veracity of such claims.

RTK surveying procedures are based upon processing carrier phase data 
received at two separate locations and provide a relative baseline vector between 
the two points. Data must be collected simultaneously and combined to compute 
a vector. One scenario is to collect data with two or more receivers (one receiver 
on a known point) and bring the data back to the office for processing. But, if the 
raw carrier phase data at the base station are transmitted to the remote unit, then 
the processing can take place at the remote unit in real time. Given further that the 
base station occupies a precisely surveyed point, then the position of the remote unit 
can be computed with mm or cm in real time. Here, too, the answer is an absolute 
value (coordinates), but those coordinates are based upon a relative vector tied to 
the known base station position. One drawback of RTK surveying is lack of redun-
dancy. That can be overcome by occupying the unknown point a second time or by 
computing a baseline from a second base station. Many localities either have or are 
in the process of establishing GPS base station networks to cover specific regional 
areas such that precise RTK surveying can be conducted with one unit and one 
person.

Another processing option is the OPUS available via the Internet from the NGS. 
At least 2 hours of dual frequency data are collected on an unknown point. The 
data are submitted via the Internet to NGS along with antenna type and measured 
antenna height. Shortly, often within a matter of minutes, an e-mail is returned to the 
sender and contains the position of the point computed on the basis of continuously 
operating reference stations (CORS) in the general region. The answer is reported in 
both geocentric X/Y/Z and conventional latitude/longitude/height coordinates and in 
both NAD83 and ITRF coordinates. An estimate of the accuracy is also provided.

The NGS also supports a service called OPUS-RS (rapid static), which will pro-
vide a solution with as little as 15 minutes of static GPS data. Details are available at 
the NGS web site—see http://www.ngs.noaa.gov/OPUS/OPUS-RS.html.
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The GSDM fundamentally supports all varieties of GPS processing including 
both absolute and relative considerations, NAD83 or ITRF (not at the same time), 
and any GNSS system (GPS, GLONASS, or GALILEO). Furthermore, the GSDM 
handles spatial data accuracy for all types of spatial data. See chapter 11 for a discus-
sion of spatial data accuracy.

tHe future of surVey control netWorks

This section contains certain speculative predictions about GNSS technology and 
the use of spatial data. Some parts of the speculation are already possible though 
not necessarily commonly realized in practice. However, even modest extrapolation  
exposes exciting possibilities for many spatial data users.

At the risk of rubbing the crystal ball too hard, the future of monumented control 
points is bleak and limited. Using existing technology, it is possible, and becom-
ing ever more practical, to determine a position anywhere in the world based upon 
signals received from satellites in the sky. Under that scenario, it is said the satellite 
orbits become the permanent reference monuments—see items 1 and 2 in the fol-
lowing list. Of course, old habits die hard, and, to some extent, there will always 
be a demand for a reliable physical P.O.B. Even so, the following issues need to be 
considered when evaluating access to the NSRS:

 1. Satellite visibility (or lack thereof) will obviate some of the following points.
 2. Traditional relative positioning methods will serve as a backup if and when 

GNSS technology is not available or appropriate.
 3. However, GNSS technology and equipment are already being used to estab-

lish locations all over the world within impressive levels of tolerance. Yes, 
it takes more sophisticated equipment and more exacting observing proce-
dures to position a point within 1 cm than it does to position a point within 
1 meter. Are smaller tolerances feasible? Yes.

 4. Realized (surveyed) positions may be absolute or relative. In some cases, 
they may need to be both.

 A. An absolute position is given by the coordinates of the surveyed loca-
tion. Many applications are satisfied with absolute data. Examples 
include answering questions such as “Where is the point source pollu-
tion?” “Where did that accident occur?” “Where is the defective trans-
former?” and other inventory-related questions.

 B. A relative position is important in other applications where the user 
needs to know a location with respect to other points. How far is it to 
my destination? How far have I traveled today? How far is the back of 
the curb from the right-of-way line? What is the direction or distance 
from one property corner to the next? How far is it from the airplane to 
the runway (automated landings)?

 5. The results of a survey may be consumed instantaneously or archived for 
future use. The value of an instantaneous position may be the comfort of 
knowing where I am—no one with a GPS unit ever needs to admit to not 
knowing where they are. On the other hand, information archived for future 
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use may involve storing the waypoint of the trailhead so I can return to my 
vehicle at the end of a hike. I may need to go back to a specific location so 
I can capture accurate “before” and “after” photographs. Or, I may need 
to return to the site of a recently discovered petroglyph or an underwater 
wreck that has been there for many years.

 6. In order for a coordinate position to be meaningful, it needs to be compared 
with a previous value. Whether one is a hiker, photographer, anthropologist, 
or maritime archeologist (as noted above), the comparison may be casual, 
time-delayed, or approximate. However, when using GPS to land an airplane 
or to fly an unmanned aerial vehicle (UAV), the stakes are higher. The loca-
tion (3-D representation) of the runway must be in the database (computer 
memory), and the instantaneous position of the aircraft must be compared 
with values in the database to determine the separation between the aircraft 
and the runway. Whether one is landing an aircraft or engaging in other 
intelligent vehicle navigation application, accuracy is critical and spatial 
separation changes rapidly. Three important considerations are as follows:

 A. The accuracy of data in the database must be of proven quality—see 
number 7, following.

 B. The accuracy of the observed instantaneous position must be realized 
within an acceptable tolerance.

 C. The comparison needs to occur instantly, and answers must be avail-
able in real time.

   Understandably, all three issues become moot once the aircraft is 
safely on the ground.

 7. In surveying and other related applications, real-time considerations may be 
less critical than when landing an airplane, but relative/absolute and spatial data 
accuracy issues still need to be considered. Of course, as technological improve-
ments keep coming, the tolerances will become smaller, the comparisons will 
become more economical, and there will be many more applications.

 8. Especially with regard to high-end applications and comparisons, data in 
the database must be compatible with the position derived from satellites 
orbiting the Earth’s center of mass. Scientists, engineers, and manufacturers 
build equipment that determines the location of the receiver and antenna. 
That is only half of the solution. The quality of a relative location depends 
heavily upon the quality of information in the database. Three possible 
kinds of information in the database include the following:

 A. Design locations (virtual) are stored in the database and represent error-
less quantities.

 B. Staked positions (intended) are marked on the ground in accordance 
with design locations using equipment and procedures capable of 
providing answers within a given tolerance. The error (spatial data 
accuracy) of such locations is determined by the equipment and the 
procedures used during the layout process.

 C. Surveyed location (actual) is a measurement of the position of a marked 
point. In this case, the quality of the information in the database reflects 
both the integrity with which the point (monument) was established 
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and the quality with which it was reobserved. Ideally those two error 
sources should both be controlled and “small.” However, it could be 
that either the staked location of the point or the surveyed location of 
the point as stored in the database contains a large error. In either case, 
regardless of how good the current instantaneous position might be, a 
subsequent comparison with the value stored in the database will be 
bogus.

A huge caveat to this entire discussion is the understanding that all data, regard-
less of their quality, must be on the same datum. If database positions are not 
expressed in the same datum as the currently observed satellite position, then com-
puted relative positions may contain unacceptable error.

The overall point of this chapter is that GNSS computations expressing location, 
whether conducted on ITRF, WGS84, or NAD83, can and should be accomplished 
in the ECEF environment of the GSDM. Two compelling justifications are that both 
high-level scientists and “flat-Earth” end users can use the same rectangular solid 
geometry equations and that spatial data accuracy is easily established, tracked, and 
made available in terms of the GSDM.
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10 Map Projections and 
State Plane Coordinates

IntroductIon: round Earth—Flat Map

A map projection is a 2-D model whereby the curved surface of the Earth is por-
trayed on a flat map. If one looks only at a small portion of the Earth’s surface such 
as a city map, it appears that local features on the map correctly portray the same 
features as viewed by a person walking or driving in that area. However, when deal-
ing with larger and larger portions of the Earth’s surface, distortion and the challenge 
of true map representation grow exponentially. An extreme example of distortion is 
recognized by many elementary schoolchildren who look at a comparison of Alaska 
and Brazil—first on the globe, then on a Mercator world map. On the globe, Alaska 
appears noticeably smaller than Brazil, but on a Mercator map projection of the 
world, Alaska appears much larger than Brazil. The problem is that, on the globe, all 
meridians converge at the North Pole and South Pole. On the projection at the equa-
tor, the spacing of the meridians is identical to the meridian spacing on the globe. 
But the meridians remain parallel on the projection, and features nearer the poles 
appear grossly exaggerated in size. In fact, neither the North Pole nor the South Pole 
can be shown on a Mercator map, which touches the Earth at the equator as shown 
in Figure 10.1a.

A spherical Earth is shown in Figure 10.1a with rays originating at the center 
and piercing the globe at each 15º degrees of latitude before striking the cylindrical 
surface of the Mercator projection. Following such graphical projection, the cylinder 
is cut down the back and rolled out flat to give the appearance of the graticule shown 
in Figure 10.1b. Notice that the 15º blocks of latitude and longitude near the equator 
are nearly square but that the same 15º blocks become elongated further from the 
equator. An area lying near either pole is grossly exaggerated in size when shown on 
such a Mercator projection.

Cartography is the science of making maps and includes various graphical por-
trayals of spatial data. Using cartographic definitions, a graticule is the grid-like 
appearance of parallels and meridians covering the Earth, and a map projection is 
defined as a systematic arrangement of the graticule on a flat surface. The challenge 
is going from a curved surface to a flat map without distorting any geometric ele-
ment. It can’t be done. Most people know that when you peel an orange (even chil-
dren enjoy making those pieces as big as possible), the curved peel will not lay flat 
on a table unless one presses it flat. In so doing, the peel is distorted. Either the peel 
tears or other parts of the peel are artificially compressed in the process of being flat-
tened. However, if one considers only a small portion of the orange peel, it appears 
to be smooth and flat—even though it originated from a spherical “whole.” So it is 
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with the Earth. Small portions of the surface can be represented very well using the 
assumption that the Earth is flat. But, when dealing with larger and larger areas on 
the Earth, the inevitable distortions that occur between the curved surface and the 
flat map must be accommodated.

Maps range from simple to complex and serve many purposes. In some cases, a 
map communicates best by grossly distorting geometrical detail. In other cases, the 
geometrical detail of a map is the basis of its value to the user. Given that most spatial 
data are now digital and given further the proliferation of computerized data visual-
ization tools, the opportunities for cartographers to develop creative and innovative 
representations of spatial data have become innumerable. The GSDM provides a 
concise set of rules equally applicable worldwide for generating, storing, manipulat-
ing, viewing, and otherwise using digital geospatial data. Although beneficial uses 
still exist, map projections have lost some of their utility because a map shows only 
2-D relationships from a fixed perspective. Modern practice must accommodate 3-D 
digital spatial data, and many users prefer the option of choosing a perspective. The 
GSDM allows flat-Earth relationships (including 2-D ones) to be computed, viewed, 
and used as local coordinate differences while the underlying ECEF coordinates 
retain their geometrical integrity and global uniqueness.

projEctIon crItErIa

Use of the GSDM notwithstanding, concepts of map construction are still important 
and are summarized herein. It is impossible to generate a flat map that depicts the 
curved surface of the Earth accurately without distorting two or more of the fol-
lowing geometrical elements: angles, distances, or area. In the past, questions to be 
answered included “What elements will be distorted and by how much?” Another 
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part of the same question is “What element can be preserved in the projection without 
being distorted?” Various answers dictate a particular class of projection, and maps 
are made accordingly. But, the digital revolution has changed much of that because 
computers, equations, and talented cartographers can now manipulate digital spatial 
data in creative ways not previously feasible. Therefore, a basic understanding of 
map projections is still important.

Mathematical set theory includes the concept of range and domain. Bringing 
that analogy to map projections, the location of a point on the curved Earth is con-
sidered to be the domain, while an equivalent expression for the same point on a flat 
map is the range. A map projection is the function (set of rules) whereby a discrete 
point in the domain is given equivalent expression in the range. And, the transforma-
tion rules must be bidirectional in order to preserve the unique point-to-point match 
between the range and the domain.

Given the impossibility of portraying a curved Earth on a flat map with true geo-
metrical integrity, the “rules” used in the transformation function will distort some 
combination of angles, distances, and area. Of course, the reader should realize that 
if the area being mapped is relatively small, the distortion of a given geometrical 
element may be small enough to be of no consequence (the magnitude of permissible 
distortion will be discussed later). But, when considering larger and larger areas, 
a cartographer has the option of designing a map projection such that one of the 
elements—angles, distances, or area—can be preserved on the map. That choice 
provides the mathematical basis for three important classes of map projections:

Conformal: A conformal map projection is one in which a horizontal angle 
on the Earth is unchanged in its representation on the flat map. Distances 
and areas are distorted on a conformal projection, but the distortion is con-
trolled by limiting the area of the Earth being projected. Conformal map 
projections are used extensively in surveying and mapping applications and 
are discussed later in this chapter.

Equidistant: An equidistant map projection is one in which the distances on the 
Earth are faithfully represented on the map. Angles and areas are distorted.

Equivalent: An equivalent map projection is one in which the area of a given 
portion of the Earth’s surface is truthfully represented on the map. In geog-
raphy, the equal-area map is used beneficially in many applications.

Another important issue is that map projections can be developed by graphical 
construction (often used for illustration purposes) or mathematical equations. Graph-
ical projections are categorized by the origin of the imaginary light ray. A gnomonic 
projection is one where the light ray originates at the center of the Earth—see Fig-
ure 10.2a. A stereographic projection is one in which the light rays originate on the 
opposite side of the world, as shown in Figure 10.2b. And, an orthographic projec-
tion is one in which the rays all arrive perpendicular to the surface—in other words, 
the rays originate from a point source at an infinite distance (see Figure 10.2c).

When using the P.O.B. option of the GSDM, the relative position of each point 
is plotted with respect to the P.O.B. according to their local latitudes and departures. 
The result is an orthographic projection of a point cloud to the tangent plane through 
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the P.O.B. selected by the user. If the point cloud is a scanned ortho photo image 
stored pixel by pixel in a BURKORDTM database, the resulting image is a rectified 
map of all the pixels in the cloud. The impact of this feature will be significant for 
softcopy photogrammetry, use of scanned images, and photogrammetric mapping. 
Although the orthographic projection is not conformal over large areas, the distor-
tion of angles and distances for small areas is inconsequential, and each user has the 
option of selecting successive P.O.B.’s such that the spacing between P.O.B.’s will 
control distortion at an acceptable level. This feature of the GSDM needs additional 
study and further clarification.

The conformal map projections discussed in the remainder of this chapter are math-
ematical projections even though the graphical mode is used for illustration purposes.

projEctIon FIgurEs

Map projections are also categorized according to whether the projection surface is 
a plane, a cone, or a cylinder, as illustrated in Figure 10.3. Conceptually, the basic 
difference between all three cases is the location of the apex of the cone. In one 
extreme, the apex of the cone is on the curved surface, resulting in a tangent plane 
projection (see Figure 10.3a). The cylinder illustrates the other extreme in which 
the apex of the cone is infinitely distant from the Earth (see Figure 10.3c). Between 
those extremes, the cone contacts the Earth along a standard parallel of latitude as 
determined by the distance between the curved surface and the apex of the cone. As 
the distance to the apex becomes larger and larger, the standard parallel of latitude 
moves closer and closer to the equator. Gerard Mercator (1512–1594) is credited 
with devising the cylindrical conformal Mercator projection, while Johann Heinrich 
Lambert (1728–1777) is credited with developing the transverse Mercator projection 
and the conic conformal projection as an extension of Mercator’s work.

The word “zone” is often used to describe a specific portion of the Earth’s 
surface that can be mapped with a single projection without exceeding some limit 
of distance distortion. For the state plane coordinate system (SPCS), the distor-
tion limit in a zone is 1 part in 10,000; and for the Universal Transverse Mercator 

Projection surfaceProjection surfaceProjection surface

(a) Gnomonic (b) Stereographic (c) Orthographic

Figure 10.2  Location of Light Sources for Projection
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(UTM) projections, the distortion limit in a zone is 1 part in 2,500. Of course, the 
goal is to include as much area in a zone as may be practical without exceeding 
the specified distortion limit. That means the zone must be as wide as possible 
and as long as practical. Two choices are typical when looking at zone length. The 
cartographic designer can choose either a Lambert conic conformal projection, 
as shown in Figure 10.4a, or a transverse Mercator projection, as illustrated in 
Figure 10.4b. If a state to be covered has a long east-west extent (e.g., Tennessee), 
then a conic projection is appropriate. If the state to be covered has a long north-
south extent (e.g., Illinois), then a transverse Mercator projection is better. In the 
case of the UTM projections, each zone is 6º wide and extends from latitude 80º 
S to 84º N.

When attempting to maximize the width of a zone without exceeding a given 
distortion limit, a further consideration is that the projection surface may be tan-
gent to the Earth, as shown in Figure 10.5a, or secant, as shown in Figure 10.5b. 
Distortion on a tangent projection stretches the distance from the curved surface 
to the mapping plane—the distortion is one-sided. A wider zone is possible if a 
secant projection is used and the distortion is two-sided—that is, if the distortion 
includes both compression and expansion. On a secant projection, the distortion 
near the center of the projection compresses a distance element. Moving away 
from the center of the projection, the distortion diminishes, goes to zero where 
the two surfaces intersect, then increases without limit as one moves further and 
further away from the center of the zone. That means the nominal width of a zone 
is determined by a (arbitrary) choice of the designer regarding maximum allow-
able distortion.

(a) Tangent Plane (b) Cone

Equator Equator Equator

NP NPNP

SPSP SP

Standard parallel

(c) Cylinder

Figure 10.3  Map Projection Surfaces: Three Apex Locations
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Equator
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(a) Lambert Conic Conformal (b) Transverse Mercator

Figure 10.4  Lambert Conic Conformal and Transverse Mercator Projections
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Figure 10.5  Projection Types
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pErMIssIblE dIstortIon and arEa covErEd

The grid scale factor is used to describe distance distortion. The grid scale factor is 
represented by the letter k and defined as the distance on the flat map grid divided by 
the curved distance on the ellipsoid.

 
k≡ distance on the grid

distance on the ellipsoid
For example:

 
k= =

99 990
100 00

0 99990.
.

.meters
meters

 (10.1)

Grid scale factor distortion can also be expressed as a ratio or as parts per mil-
lion (ppm). A distortion limit of 1 part in 10,000 is often used in the state plane 
coordinate system projections. The following are three equivalent expressions of the 
same grid scale factor.

	 k = 0.99990
	 k = 1 part in 10,000
	 k = 100 ppm

When the 1 in 10,000 limit is applied to the state plane coordinate projections, the 
range of grid scale factors is as summarized in Table 10.1.

Using a radius of a spherical Earth as 6,372,000 meters (approximately 
20,906,000 feet) and the grid scale factors above, the maximum zone widths in Fig-
ure 10.5 are computed as

Tangent projection: Zone Width 180 km 112 m
2

=
−

= ≈
( . )

*
1 0001

1000
2

2R R
iiles   

  (10.2)

tablE 10.1

comparison of grid scale Factors
tangent projection

Center of the zone k	= 1.0000

Edge of the zone (imposed by 1/10,000 criterion) k	= 1.0001

secant projection

Center of zone k = 0.9999

Intersection of curved surface and mapping plane k	= 1.0000

Edge of the zone (imposed by limit of 1 in 10,000) k	= 1.0001
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Secant projection:    

 Zone Width   25=
−

=
( . ) ( . )

*
1 0001 0 9999

1000
2

2 2R R
55 km  miles≈158  (10.3)

When making decisions about what projection to use on the NAD83 datum, 
mapping professionals in several states chose to relax the 1:10,000 distance distortion 
criterion so that the entire state could be covered by a single zone. On NAD83, the 
State of South Carolina uses a single zone with a grid scale factor of 0.999793656965 
(1:4,846), the State of Montana uses 0.999392636277 (1:1,646), and the State of 
Nebraska uses 0.999658595062 (1:2,938). All three are Lambert conic conformal 
projectsions and the effective zone widths are

South Carolina:

 
Zone Width=

−( . ) .1 000206343 0 9997936570
10

2 2R R
000

2 366* = ≈km 227 miles

Montana:

 
Zone Width= −( . ) .1 00060736 0 999392636

1000

2 2R R ** 2 628 390= ≈km  miles

Nebraska:    

 Zone Width= −( . ) .1 000341405 0 999658595
100

2 2R R
00

2 471 293* = ≈km  miles

thE u.s. statE planE coordInatE systEM (spcs)

The SPCS zones in the United States were designed in the 1930s for use on the 
NAD27. Although other projection options were considered for use on the NAD83, 
the defining SPCS zone parameters were largely unchanged for implementation on 
the NAD83. The SPCS on the NAD83 consists of fifty-four transverse Mercator pro-
jections, sixty-eight Lambert conic conformal projections, and one oblique Mercator 
projection. Some states are covered by a single zone, but most states require more 
than one zone due to the limiting width of 158 miles and due to choosing SPCS 
zone boundaries to follow county boundaries. Other incidental changes were made 
during the transition from NAD27 SPCS to NAD83 SPCS and can be gleaned from 
two important publications. Claire (1968) is the “bible” for working with SPC on the 
NAD27, and Stem (1989) is the “bible” for working with SPC on the NAD83. Each 
booklet contains a description of the underlying map projections, a listing of the 
defining parameters for each zone, and a list of equations that can be used to perform 
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bidirectional transformations between latitude/longitude positions and plane coordi-
nates on the respective datum.

History

The following quote is found in a section entitled “SPCS—UTM and Oscar S. 
Adams” by Joseph Dracup, former geodesist for the U.S. Coast & Geodetic Sur-
vey (USC&GS), now the National Geodetic Survey (NGS), http://www.ngs.noaa.
gov/PUBS_LIB/geodetic_survey_1807.html (accessed 12 June 2007).

In 1933–34, Oscar S. Adams ably assisted by Charles N. Claire developed the State 
Plane Coordinate System (SPCS) at the request of George F. Syme a North Carolina 
Highway engineer. Syme died shortly after the North Carolina system was developed 
being succeeded by O.B. Bestor to carry on the cause. Bestor was in charge of the 
State local control project established in 1933, later identified as the North Carolina 
Geodetic Survey. Most State and the few county projects involved in this program 
also were so named. Colonel C. H. Birdseye of the USGS, with a strong interest in 
Statewide coordinate grids[,] also participated in the several conferences leading to the 
decision to honor Syme’s request.

The first tables for computing Lambert coordinates were developed for North Caro-
lina and the first tables for the transverse Mercator grid were for New Jersey. Tables 
were prepared for all States early in 1934. For the first time all horizontal control sta-
tions previously defined only by latitudes and longitudes would be available in easy to 
use plane coordinates.

Features

“Special Publication 235” (Mitchell and Simmons [1945] 1977) is a booklet that 
describes details of the state plane coordinate system. It is of both practical and 
significant historical value because it documents surveying policies and practices 
prior to the electronic revolution. Several important features of the SPCS described 
in “Special Publication 235” include the following:

The state plane coordinate system provides a method by which the latitude/
longitude positions of the national triangulation network can be represented 
by plane coordinates. That meant local surveyors and/or engineers could 
continue using plane surveying procedures yet realize the benefits of basing 
their work on the national network of geodetic control points established by 
the federal agencies. This item is still valid in the 2-D arena (a subset of the 
3-D arena). But, spatial data are 3-D and the GSDM does for 3-D data what 
the SPCS does for 2-D data.
Normal land-surveying measurements in the 1930s were made with a tran-
sit and steel tape. Expected accuracies were often in the range of 1:5,000 to 
1:8,000 or better. Under those circumstances, a routine distance distortion 
of 1:10,000 could be tolerated without making a scale factor correction and 
without significant detrimental impact on the quality of the survey. With 
newer technology, this assumption is no longer valid because measurement 
accuracies today routinely exceed those of eighty years ago. Better accuracy 

•

•
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is not a problem because high-quality computational results are obtained by 
applying the grid scale factor correction. With the corrections applied, the 
SPCS is fundamentally sound for 2-D applications. Elevation is typically 
used to handle the third dimension.
There are two distance “corrections” to be made when working with the 
SPCS (Burkholder 1993a): (1) the grid scale factor is used to correct for the 
distortion between the ellipsoid and the grid, and (2) the elevation factor is 
needed to reduce a ground-level horizontal distance to the ellipsoid. These 
two corrections are often combined into one “combination factor” (the 
product of the grid scale factor and the elevation factor). The grid distance 
between the plumb lines through two points is the product of the horizon-
tal ground distance and the combination factor. “Special Publication 235” 
explains both factors quite well, but, as discussed later, this is the primary 
disadvantage of using the SPCS. Regretfully, when using the SPCS, a foot 
on the grid is not necessarily a foot on the ground. In many cases, such as 
centerline stationing on a highway project, the difference between grid and 
ground distances becomes intolerable (see Burkholder 1993b, app. 3).
Although the NGS has always performed and computed its geodetic surveys 
in meter units, the NAD27 state plane coordinates were published in foot 
units—see the sidebar discussion of the U.S. Survey Foot on page 259.

It is not true, as some have said, that the state plane coordinate systems distort 
distances by 1:10,000. It is true to say that, when compared to a distance on the map, 
the equivalent distance on the ellipsoid may be distorted by up to 1:10,000. On a 
secant projection, the distortion is zero along the lines of exact scale where the two 
surfaces intersect and the distance on the map is the same as the distance on the 
ellipsoid. At the center of the zone, the distance is compressed by 1:10,000 or by 
whatever distortion value was selected by the zone designer. In some cases, a zone 
width of 158 miles was not quite sufficient to cover the area required, and the dis-
tance distortion at the center of the zone is greater than 1:10,000 (i.e., the grid scale 
factor at the zone center is less than 0.9999)—see constants for California Zone 1, 
both Oregon zones, Zone 10 in Alaska, North Carolina, South Carolina, four of the 
five Texas zones, Utah Central Zone, and the offshore zone for Louisiana.

The grid scale factor is only part of the distortion. The elevation factor also 
contributes to the difference between a horizontal ground distance and the state 
plane grid distance. Modern practice looks more closely at the grid-ground distance 
difference (as a result of using the combination factor), and many resort to using sur-
face coordinates or project datums as a way to avoid the mismatch between grid and 
ground distances. More recently, the use of “low-distortion projections” has been 
discussed as being a way to minimize the grid-ground distance distortion. The dis-
tance distortion issue is largely moot when using the GSDM.

NaD27 aND NaD83

The NAD27 was the only logical datum choice available when the state plane coor-
dinate zones were developed during the 1930s. The zones were selected by matching 
the projection type with the state’s general configuration. Lambert conic projections 

•

•
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were selected for states long in the east-west dimension, while transverse Mercator 
projections were selected for states oriented primarily north-south. Some states have 
only one projection, other states require more than one zone to cover the needed 
width, and some states have more than one projection type. For example, the State of 
Florida utilizes two transverse Mercator projections and one conic projection, New 
York employs three transverse Mercator projections and one conic projection, and 
the State of Alaska uses nine transverse Mercator projections, one conic projection, 
and one oblique Mercator projection.

In the 1930s, the USC&GS developed a “model law,” which was promoted by the 
Council of State Governments for several decades. By 1971 the SPC model law was 
adopted in one form or another by twenty-six states (Mitchell and Simmons [1945] 
1977). However, the Michigan Legislature adopted a different projection than that 
proposed by the USC&GS. Originally, Michigan was to be covered by three trans-
verse Mercator projections, but when the state plane coordinate law was written, pro-
fessionals within the state opted instead for three conic conformal projections based 
upon an elevated reference surface selected to minimize the need for the elevation 
reduction. The elevated system worked as intended and was deemed very benefi-
cial, but, because it was “nonstandard,” there was confusion both in practice and in 
the published literature about computing the correct combination factor for a line 
(Burkholder 1980). The Michigan state plane coordinate law for NAD83 returned 
the reference surface to the ellipsoid.

 relationship between the Meter, the International 
Foot, and the u.s. survey Foot

 1. The length of the meter was established in the 1790s as 1/10,000,000 of the 
distance from the equator to the North Pole as determined by a geodetic 
survey in France. 

 2. In the early 1800s, prototype meter bars were made and distributed to the 
nations of the world.

 3. Although the meter has been used as the standard of length for geodetic 
surveys in the United States since the establishment of the Coast Survey 
(predecessor to the NGS) in 1807, the meter length unit was declared legal 
for trade in the United States in 1866. The relationship between the foot and 
meter was stated in 1866 to be 39.37 feet = 12.00 meters exactly.

 4. Leading up to and during World War II, Canada, the United States, and 
Great Britain each used a slightly different relationship between the foot 
and meter.
United States: 1.00 meter = 39.37 inches, or 1 inch = 2.540005 cm
England: 1 inch = 2.539997 cm
Canada: 1 inch = 2.540000 cm

 5. Following World War II, machinists and aircraft mechanics, working under 
the auspices of NATO, discovered that parts of aircraft engines built accord-
ing to the same blueprints were not interchangeable due to differences in 
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unit definitions. A compromise was reached that adopted the Canadian 
relationship (1 inch = 2.54 centimeters) as the International Foot (1 foot = 
0.3048 meters).

 6. However, to avoid recomputing and republishing thousands of existing state 
plane coordinates, the United States retained use of 12 meters = 39.37 feet 
and gave that long-standing relationship a name—the U.S. Survey Foot. A 
1959 Federal	Register notice (“Federal	Register Notice” 1959) stated that 
the U.S. Survey Foot should be used “until such time as it becomes desir-
able to readjust the basic geodetic networks in the United States, after	which	
the	ratio	of	a	yard,	equal	to	0.9144	meter,	shall	apply” (emphasis added).

 7. In 1960 the Eleventh General Conference of Weights and Measures rede-
fined the meter, but not the length. The redefinition made it possible to 
duplicate the 1.00 meter distance in terms of wavelengths of Krypton 86 gas 
instead of relying upon the distance between two marks on a prototype bar.

 8. The definition of the length of the meter was changed again in 1983—this 
time in terms of the distance light would travel in a vacuum in 1/299,792,458 
seconds. The new definition is the equivalent to saying that light travels 
299,792,458 meters in one second.

Although the definition used for duplicating the length of the meter has 
evolved over the years, the fundamental unit of length has not changed. The 
relationship of 12.00 meters = 39.37 feet has existed in the United States for 
over one hundred years. The name “U.S. Survey Foot” was developed in 1959 to 
describe the relationship already in existence. “International Foot” is the name 
given to the relationship used before 1959 by Canada (1 foot = 0.3048 meters) 
and adopted for use around the world (except for surveying and mapping in the 
United States). Neither the U.S. Survey Foot nor the International Foot is part of 
the International System of Units (SI) adopted by the Eleventh General Confer-
ence on Weights and Measures in 1960.

When the NAD27 datum was readjusted and published as the NAD83, the 
legislative intent was for the International Foot to be used as an alternate to 
meters. Recognizing that, a number of states included the International Foot in 
the state plane coordinate legislation written and adopted to accommodate the 
NAD83. Other states objected and ultimately won. A notice published in the Fed-
eral	Register on May 16, 1998, closes by saying, “The effect of this notice is to 
allow the U.S. Survey Foot to be used indefinitely for surveying and mapping in 
the United States. No other part of the 1959 notice is in any way affected by this 
notice.” The NGS still uses meter units for all geodetic surveying operations.

The upshot is that NAD83 state plane coordinates in the United States may 
be meters, U.S. Survey Feet, or International Feet. Although the GSDM is based 
exclusively on metric units, each user has the option of specifying different lin-
ear units when displaying or printing P.O.B. results. That is, provision is made 
for other derived units in the P.O.B. datum option. However, it is intended that 
the underlying ECEF coordinates will always be metric when using the GSDM.
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CurreNt status: NaD83 state PlaNe CoorDiNate systems

Although developed for use on the NAD27, design of the SPCS was revisited prior to 
publication of the readjusted NAD83 in North America. Arguments were advanced 
for taking advantage of the standardization offered by the UTM system, and using 
2º UTM zones on the NAD83 was considered. After many discussions and consid-
eration of various alternatives, the decision was to adopt parameters of a different 
ellipsoid (the GRS 1980 in place of Clarke 1866) and to move the datum origin from 
“Meade’s Ranch,” Kansas, to the Earth’s center of mass. But, with exceptions, the 
existing SPCS projections and zone parameters were retained for use on the NAD83. 
Notable exceptions include the following:

The reference surface for Michigan was returned to the ellipsoid instead of 
being computed at an elevation of 800 feet.
Zone 7 in California was eliminated. Zone 5 now covers that area.
The states of Montana, Nebraska, and South Carolina elected to relax the arbi-
trary 1:10,000 criteria and to cover each state respectively with one zone.

aDvaNtages

The advantages of using the SPCS today are largely the same as when the SPCS was 
first implemented. A map projection flattens a portion of the Earth and allows one to 
perform 2-D rectangular surveying computations within a defined zone using plane 
Euclidean geometry. Standardization and wide acceptance are two huge benefits. 
An incidental benefit of the SPC is that the back azimuth of a line is the same as the 
forward azimuth + 180º. This feature could also be called a disadvantage because it 
belies the fact that meridians are not parallel, but converge at the poles.

DisaDvaNtages

A disadvantage of the SPCS for the GIS community is the absence of uniqueness. For 
inventory, and other purposes, it is highly desirable for the description of any point 
location to be globally unique. State plane coordinates are unique within a zone but 
not globally. In addition to knowing the state plane coordinate values for a point, the 
spatial data user must also know what zone or map projection is associated with the 
point. Two points having the same (or nearly so) coordinate values may appear to be 
the same or very close together although they are, in fact, many kilometers apart. A 
triplet of ECEF rectangular X/Y/Z metric coordinates used in the GSDM is unique 
within the “birdcage” of orbiting GPS satellites.

In the surveying, mapping, and engineering communities, the biggest disadvan-
tage of using map projections and the SPCS is that they are strictly 2-D mathematical 
models and spatial data users work with 3-D data. The GSDM is a rigorous 3-D model. 
Specific drawbacks to using the SPCS are listed by Burkholder (1993a) as follows:

Lack of accessibility: control points are not easy to visit, permission, and 
so on.
Lack of proximity: control points are too far away.

•

•
•

•

•
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Lack of quality: the published positions are not of sufficiently high quality.
Lack of understanding: spatial data users need to learn more about the SPCS.
Mapping distortion: ground distance may differ too much from grid distance.

With the advent of GPS, continued densification of the control network, higher 
levels of support from NGS, and greater awareness within the spatial data user com-
munity, the first four disadvantages have been significantly mitigated. But, the grid-
ground difference is more of a problem than ever because more and more people are 
using equipment and computational processes in which that systematic difference can-
not be tolerated. An argument is that more education and better enforcement of mini-
mum standards could overcome those disadvantages. Without discounting the benefits 
of more education, it is suggested that using the GSDM is another alternative in which 
spatial data users can fully exploit the three-dimensional characteristics of their data 
and in which 2-D applications are still supported as a subset of the 3-D model.

procEdurEs

Recognizing that full implementation of the GSDM will take some time; this section 
is included to help readers become more comfortable with the transition. Although 
a competent 3-D least squares network adjustment can more fully utilize the 3-D 
characteristics of GPS measurements, current practices involving 1-D or 2-D data 
will not be replaced instantaneously. Therefore, this section provides a summary of 
procedures commonly used when working with state plane coordinates. The overall 
point to remember is that computing a state plane coordinate traverse is the same 
as computing a regular plane surveying traverse with the following exception—one 
must use grid azimuths and grid distances. There are many sources of information 
and software available for instructions on how to compute and adjust a traverse. 
Those points are only summarized here.

griD azimutH

Conformal projections are used for all the state plane coordinate systems in the United 
States. That means that an angle measured on the ground is the same as the angle on 
the map and that a field-measured angle added to or subtracted from a known grid 
azimuth will give a grid azimuth. The implication is that one should always start with 
a grid azimuth. Two common methods for beginning with a grid azimuth are:

 1. Backsight another point having known state plane coordinates. Doing that, 
the grid azimuth from standpoint to the backsight is computed using the 
plane coordinate inverse, tan	α =	∆e/∆n, as used in equation 4.11, 4.12, or 
4.13, depending upon the quadrant.

 2. Perform an astronomical observation using a star or the sun as the backsight 
to determine the astronomical azimuth to the foresight. Depending upon the 
quality of the grid azimuth required, two corrections are needed. A Laplace 
correction (equation 8.5) is used to convert the observed and/or computed 
astronomical azimuth to a geodetic azimuth, and the convergence (between 

•
•
•
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geodetic north and grid north at the station) is used in equation 10.4 to con-
vert the geodetic azimuth to a grid azimuth. A generic diagram is shown in 
Figure 10.6 and shows that geodetic azimuth = grid azimuth + convergence.

 grid azimuth = geodetic azimuth – convergence (10.4)

Note that if the point lies west of the central meridian, the convergence is a nega-
tive quantity but equation 10.4 remains valid. Another point is that for lines over 
about 2 kilometers long, an arc-to-chord (known as the “t-T”) correction may be 
needed to preserve high-quality results. See Stem (1989).

griD DistaNCe

An important design feature of the state plane coordinate systems is that the grid 
distance will approximate the ellipsoid distance within 1 part in 10,000. The grid 
scale factor is used to convert an ellipsoid distance to a grid distance. Regretfully, 
most surveys are conducted at some elevation and not on the ellipsoid. Therefore, 
an additional reduction is required to convert a ground-level horizontal distance to 
an ellipsoid distance. And, going back one step further, there are several options for 
computing a precise horizontal distance from observed slope distance and verti-
cal (zenith) angles. For surveys of nominal accuracy, horizontal distance, HD(1), 
is computed as the right triangle component of slope distance and vertical angle. 
For surveys of higher accuracy and distances over about 2 km, horizontal distance 
is taken to be HD(2), the tangent plane distance between plumb lines, and involves 
computing a correction due to the plumb lines not being parallel. Such details are 
beyond the scope of this book but can be found in Burkholder (1991).
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Figure 10.6  Convergence of Meridians

63014_C010.indd   263 3/4/08   12:21:17 PM



264 The 3-D Global Spatial Data Model

Reliable horizontal distance is critical when using state plane coordinates 
because it is reduced from horizontal to ellipsoid, then from the ellipsoid to the state 
plane grid. A high-quality grid distance relies upon the integrity of each part of the 
computational process. By contrast, the slope distance in 3-D space is used by the 
GSDM, and the underlying model obviates reduction of slope distance to grid. How-
ever, once a geocentric X/Y/Z position at the standpoint is computed, various defini-
tions of horizontal distance between points can still be computed from traditional 
inverse computations.

When reducing a horizontal distance to the ellipsoid, the user often is faced with 
the choice of reducing horizontal distance to the ellipsoid or to sea level (the geoid). 
The “best” choice is to use ellipsoid height at the station and reduce horizontal dis-
tance to the ellipsoid rather than the geoid. The difference is whether or not one uses 
the geoid height portion of the elevation reduction equation. The summary below 
includes both.

Finally, the ellipsoid distance must be reduced to the state plane grid. For lines 
less than 1 km long, one can use the grid scale factor at either end of the line or at the 
middle. For lines longer than 1 km and less than about 4 km, it is acceptable to use 
the average grid scale factor. For lines longer than 4 km, the grid scale factor should 
be computed using the Simpson 1/6 Rule—see Stem (1989, 50). Figure 10.7 shows a 
diagram illustrating the distance reductions.

As a summary, traditional state plane grid distances are computed as follows:

 1. Slope distance to horizontal:

 HD(1) = (slope distance) * sin (zenith direction) (10.5)
 HD(2) = A more precise option—see Burkholder (1991).

Horizontal distance 
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Note - Within continental United States N is a negative value. 
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Figure 10.7  Horizontal, Sea Level, Ellipsoid, and Grid Distance
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 2. Horizontal to ellipsoid and/or sea level

 a. ellipsoid	distance = horizontal	distance	* 
R

R h+










 (10.6)

 b. sea	level	distance = horizontal	distance * 
R

R h N+ −











 (10.7)

where

R = radius of Earth,
h = ellipsoid height, and
N = geoid height.

Equation 10.6 is recommended and should be used. However, it can be argued 
that it makes little or no difference which is used—equation 10.6 or 10.7. For an 
analysis of the difference, see Burkholder (2004).

 3. Ellipsoid to grid: equation 10.8 is valid for all except very long lines. The 
difference is in computation of the appropriate grid scale factor.

 grid distance = ellipsoid distance * grid scale factor (10.8)

 A. For “short” lines, the grid scale factor for any part of the line can be 
used.

 B. For lines 2 to 4 km, the average grid scale factor for the line gives good 
results.

 C. For lines over 4 km long, use the Simpson 1/6 Rule to compute the grid 
scale factor for a long line. 

Steps 2 and 3 above are often combined into a single step by using the combined 
factor for a line. The combined factor is the product of the grid scale factor and the 
elevation factor at a point and makes converting grid distance to ground distance 
(and vice versa) more efficient. But the temptation is to use a single combined factor 
for an entire project without investigating how it changes from point to point. It is 
true the same combined factor can be used for a given elevation over a specified area, 
but each user should be aware of how the factor changes.

 combined factor = grid scale factor * elevation factor (10.9)
 grid distance = horizontal distance * combined factor (10.10)
 horizontal distance = grid distance / combined factor (10.11)

traverses

The primary advantage of using a state plane coordinate traverse is that one can 
use simple plane surveying procedures to establish a “big picture” position on each 
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traverse point—be it latitude/longitude or state plane coordinates. Two other huge 
benefits of using state plane coordinates are that the procedures are long adopted 
(standard) and that a state plane traverse can begin on one point and close on another, 
even distant, point. Otherwise, a traverse must return to the beginning point in order 
to determine the traverse misclosure as a check on possible blunders.

loop traverse

A loop traverse is one that begins and ends at the same point, forming a closed loop. 
If one begins with state plane coordinates at the point of beginning and uses grid 
azimuths and grid distances, then it is a state plane coordinate traverse. The sum of 
the latitudes (north/south components of each course) and the sum of the departures 
(east/west components of each course) should each add up to zero. Any difference is 
the traverse misclosure and provides the basis of a traverse adjustment. Typically a 
loop traverse is adjusted by the Compass Rule. Other methods exist, but the Compass 
Rule is quite simple to apply and, if used properly, delivers good results. Although 
a loop traverse may be quite useful, a point-to-point traverse is preferred because it 
provides better azimuth control and helps prevent possible scaling problems.

point-to-point traverse

A point-to-point traverse is a mathematically closed traverse that starts on one known 
point and ends on another. The traverse misclosure is determined as the difference 
of observed (computed) value minus the published (known) value, and the traverse 
is typically adjusted by the Compass Rule. When using a point-to-point traverse, an 
angular misclosure and adjustment should be completed before the latitude/depar-
ture misclosures are computed. The purist will argue that a least squares adjustment 
is better than a Compass Rule adjustment, and that may be true. But, by comparison, 
a Compass Rule adjustment is very easy to perform and achieves most of the benefits 
of a least squares adjustment.

algorIthMs For tradItIonal Map projEctIons

Although the focus of this book is the 3-D GSDM, the topic of map projections 
remains vital for many applications—especially for data visualization. Three excel-
lent sources of information on the broad topic of map projections include Pearson 
(1990), Richardus and Alder (1972), and Snyder (1987). However, since various geo-
matics applications make extensive use of the state plane coordinate systems, the state 
plane coordinate map projection algorithms are included for the benefit of those read-
ing them. The algorithms for the BK10 (forward) and BK11 (inverse) computations, 
described in chapter 1, are given (as used in the northern hemisphere) for the Lambert 
conic conformal projection, the transverse Mercator projection, and the oblique Mer-
cator projection. A subsequent section references Burkholder (1993a) and describes 
how those same equations can be modified to accommodate low-distortion projec-
tions, project datums, or the use of surface coordinates as described in chapter 1. 
Specific rigorous equations for the BK14 and BK15 transformations (there are others) 
are described at the end of this chapter.
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Although not technically prohibited from being used on the WGS84 datum or 
the ITRF datum, the following algorithms are specifically intended to be used with 
the NAD83 on the GRS 1980 ellipsoid. Except where noted, the equations and sym-
bols are intended to be consistent with those used in “NOAA Manual NOS NGS 
5, State Plane Coordinate System of 1983” (Stem 1989). Within a very small toler-
ance, the results obtained using these equations should be identical to those obtained 
using the equations and procedures given in said manual. State plane coordinate 
zone parameters are listed in appendix A. The following algorithm is included in a 
paper presented by Burkholder (1985), which contains a description, the algorithm, 
a flowchart, and a FORTRAN listing of a computer program to compute zone con-
stants and perform transformations (BK10 and BK11) on all three projections.

lambert CoNiC CoNFormal ProjeCtioN

Any reference ellipsoid could be used, but state plane coordinates are based upon the 
GRS 1980 ellipsoid as listed here.

	 a	= semimajor axis = 6,378,137.000 m (10.12)

	 1/f = reciprocal flattening = 298.2572221008827 (10.13)

Compute ellipsoid constants:

   e f f e e2 2 22= − =and  eccentricity squared and eccentricity (10.14)

 
c e e e e e

2

2 4 6 8 10

2
5
24 12

13
360

3
160

= + + + +  (10.15)

 
c e e e e

4

4 6 8 107
48

29
240

811
11 520

81
2 240

= + + +
, ,

 (10.16)

 
c e e e

6

6 8 107
120

81
1 120

3 029
53 760

= + +
,

,
,

 (10.17)

 
c e e

8

8 104 279
161 280

883
20 160

= +
,

, ,
 (10.18)

 
c e

10

102 087
161 280

=
,

,
 (10.19)

Equations 10.15 through 10.19 are used to compute the following F coefficients.

 
F c c c c c0 2 4 6 8 102 2 3 4 5= − + − +( )  (10.20)
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F c c c c2 4 6 8 108 4 10 20= − + −( )  (10.21)

 
F c c c4 6 8 1032 6 21= − +( )  (10.22)

 
F c c6 8 10128 8= −( )  (10.23)

 F c8 10512=  (10.24)

The	F coefficients are in radian units and are used in the BK11 and BK15 trans-
formations to compute geodetic latitude without iterating.

Input the defining parameters for the Lambert projection zone of the user’s choice:

φn = latitude of north standard parallel.
φs = latitude of south standard parallel.
φb = latitude of false origin (usually where northing = 0.0 meters).
λ0 = longitude of central meridian; east is +, and west is –.
E0 = false easting on central meridian (meters).
Nb = northing on false origin (usually 0.0 meters).

Compute projection constants:

ln = natural logarithm
exp(x) = εx where ε = 2.71828… (base of natural logarithms)
Qi	= isometric latitude for corresponding geodetic latitude
Wi	= intermediate computational value at φn and φs

 

Q e e
n

n

n
=

+
−










−

+1
2

1
1

1ln sin
sin

ln sinϕ
ϕ

ϕϕ
ϕ

n

ne1−




















sin

 (10.25)

 

Q e e
s

s

s
=

+
−










−

+1
2

1
1

1ln sin
sin

ln sinϕ
ϕ

ϕϕ
ϕ

s

se1−




















sin

 (10.26)

 

Q e e
b

b

b
=

+
−










−

+1
2

1
1

1ln sin
sin

ln sinϕ
ϕ

ϕϕ
ϕ

b

be1−




















sin

 (10.27)
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W e W en n s s= − = −1 12 2 2 2sin sinϕ ϕ      and       (10.28 and 10.29)

      

ϕ
φ φ

0
1=
( )− ( )

−










−sin

cos ln cosln Wn s s n

n s

W
Q Q      latitude of central parallel (10.30)

 

K
a Q

W
a Qs s

s

n=
( )

=
cos exp sin

sin
cos expϕ ϕ

ϕ
ϕ0

0
     nn

nW
sin

sin
ϕ

ϕ
0

0

( )
  

 

 mapping radius of equator (10.31)

  

Q e e
0

0

0

1
2

1
1

1
=

+
−










−

+ln sin
sin

ln sinϕ
ϕ

ϕϕ
ϕ

0

01−




















esin

 

                                                  isometric latitude of φ0 (10.32)

 

R K
Qb

b
=

( )exp sinϕ0
 mapping radius of latitude of origin (10.33)

 

R K
Q0

0 0
=

( )exp sinϕ
 mapping radius of central parallel (10.34)

 
k

R e
a0

0 0
2 2

01
=

−tan sinϕ ϕ
 grid scale factor at center of zone (10.35)

The preceding zone constants need be computed only once for a given pro-

jection, but they are used repeatedly in the following BK10 (forward) and BK11 

(inverse) computations.

bK10 (Forward) transformation on lambert conic conformal projection

Input:

φ = geodetic latitude (positive north)

λ = geodetic longitude (positive east)
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Compute:

Q e e
ϕ

ϕ
ϕ

ϕ
=

+
−










−

+
−

1
2

1
1

1
1

ln sin
sin

ln sin
ee sin ϕ






















 isometric latitude of point (φ,	λ) (10.36)

 

R K
Qϕ

ϕ
=

( )exp sinϕ 0
 mapping radius of point (φ,	λ) (10.37)

 
γ λ λ ϕ= −( )0 0sin  convergence at point (φ,	λ) (10.38)

 
k

R e
a

=
−ϕ ϕ ϕ
ϕ

sin sin
cos

0
2 21

 grid scale factor at point (φ,	λ) (10.39)

 
E E R= +0 ϕ γsin  easting for point (φ,	λ) (10.40)

 
N R N Rb b= + − φ γcos  northing for point (φ,	λ) (10.41)

bK11 (Inverse) transformation on lambert conic conformal projection

Input:

E = easting of point within defined map projection
N	= northing of point within defined map projection

Compute:

 R R N Nb b'= − +  intermediate value (10.42)

 E E E'= − 0  intermediate value (10.43)

 

γ =







−tan '
'

1 E
R

 convergence at point (E,	N) (10.44)
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R R Eϕ = +' '2 2  mapping radius at point (E,	N) (10.45)

 

Q
K R

ϕ =
−ln ln

sin
ϕ

ϕ0
 isometric latitude at point (E,	N) (10.46)

 

χ ϕ

ϕ
=

( )−
( )+











−2

1
1

1tan
exp
exp

Q
Q

 conformal latitude at point (E,	N) (10.47)

ϕ χ χ χ χ χ χ= + + + + +sin cos cos cos cos coF F F F F0
2

2
2

4
2

6 8 ss2 χ( )( )( )( )
 

 
 

 geodetic latitude at point (E,	N) (10.48)

 

λ λ
γ
ϕ

= +0
0sin

 east longitude at point (E,	N) (10.49)

 
k R

e
ab=
−

sin
sin

cos
ϕ

ϕ
ϕ

0

2 21
 grid scale factor at point (E,	N) (10.50)

The State of Oregon uses a Lambert projection for its state plane coordinate sys-
tem. Figure 10.8 is a computer printout showing example Lambert conic conformal 
BK10 and BK11 transformations at Station “Median 2” on the campus of the Oregon 
Institute of Technology, located in Klamath Falls. The transformations were com-
puted using the equations in this section, and numerical values match those shown 
on the NGS data sheet for the same station.

traNsverse merCator ProjeCtioN

Any reference ellipsoid could be used, but state plane coordinates are based upon the 
GRS 1980 ellipsoid as listed here.

	 a	= semimajor axis = 6,378,137.000 m (10.51)

	 1/f = reciprocal flattening = 298.2572221008827 (10.52)

Compute ellipsoid constants:
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            PROGRAM: LOCALCOR 
                    COPYRIGHT 2001 BY GLOBAL COGO, INC. 
                        LAS CRUCES, NEW MEXICO 88003 
                            WWW.GLOBALCOGO.COM 

     USER: Earl F. Burkholder
     DATE: 12 June 2007

     LAMBERT CONIC CONFORMAL COORDINATE TRANSFORMATIONS 
     PROJECTION NAME: Oregon South Zone - 3602

     REFERENCE ELLIPSOID: GEODETIC REFERENCE SYSTEM 1980 
                            A =  6378137.0000 METERS 
                          1/F =  298.2572221008827 

     ZONE PARAMETERS: 
          NORTH STANDARD PARALLEL              44  0   .000000 
          SOUTH STANDARD PARALLEL              42 20   .000000 
          FALSE ORIGIN LATITUDE                41 40   .000000 
          CENTRAL MERIDIAN (W)                120 30   .000000 
          FALSE EASTING ON CM                     1500000.0000 METERS 
          NORTHING AT FALSE ORIGIN                       .0000 METERS 

     ZONE CONSTANTS: 
          CENTRAL PARALLEL                     43 10  6.919559 
          SCALE FACTOR ON CENTRAL PARALLEL    .999894607592090 
          MAPPING RADIUS OF EQUATOR             12033772.69836 METERS 
          MAPPING RADIUS OF FALSE ORIGIN         6976289.23822 METERS 
          NORTHING OF CENTRAL PARALLEL ON CM      166836.95660 METERS
          CONFORMAL LATITUDE CONSTANTS:  F(0) =  .006686920927 
               F(2) =  .000052014583     F(4) =  .000000554458 
               F(6) =  .000000006718     F(8) =  .000000000089 

     TRANSFORMATIONS:

     NAME OF STATION: Median 2 - PID NY0996              FORWARD (BK10) 

          LATITUDE:    42 15 15.611960   NORTHING     66102.3042 METERS
          LONGITUDE:  121 47 25.985950   EASTING    1393505.6444 METERS
          CONVERGENCE:      0-52 58.54   SCALE FACTOR:   1.000020826193 

     NAME OF STATION: Median 2 - PID NY0996              INVERSE (BK11) 

          LATITUDE:    42 15 15.611959   NORTHING     66102.3042 METERS
          LONGITUDE:  121 47 25.985950   EASTING    1393505.6444 METERS
          CONVERGENCE:      0-52 58.54   SCALE FACTOR:   1.000020826194 

Figure 10.8  Example BK10 and BK11 Transformations for Lambert Projection
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    e f f e e2 2 22= − =and  eccentricity squared and eccentricity (10.53)

 

n f
f

=
−( )2

 intermediate value (10.54)

 

r a n n n n
= −( ) −( ) + +











1 1 1 9
4

225
64

2
2

4  intermediate value (10.55)

 
u n n

2

33
2

9
16

=
−

+  (10.56)

 
u n n

4

2 415
16

15
32

= −  (10.57)

 
u n

6

335
48

=
−

 (10.58)

 
u n

8

4315
512

=  (10.59)

These intermediate values of u are used only in the equations that follow.

 
U u u u u0 2 4 6 82 2 3 4= − + −( )  (10.60)

 
U u u u2 4 6 88 4 10= − +( )  (10.61)

 
U u u4 6 832 6= −( )  (10.62)

 U u6 8128=  (10.63)

These values of U are used to compute zone constants and in the BK10 

transformation.
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v n n

2

33
2

27
32

= −  (10.64)

 
v n n

4

2 421
16

55
32

= −  (10.65)

 
v n

6

3151
96

=  (10.66)

 
v n

8

41097
512

=  (10.67)

These values of v are used only in the equations that follow.

 
V v v v v0 2 4 6 82 2 3 4= − + −( )  (10.68)

 
V v v v2 4 6 88 4 10= − +( )  (10.69)

 
V v v4 6 832 6= −( )  (10.70)

 V v6 8128=  (10.71)

These values of V are used in the BK11 transformation.
Input the defining parameters for a transverse Mercator projection of the 

user’s choice:

λ0 = longitude of central meridian; east longitude is +, and west is –.
E0 = false easting on central meridian (meters).
k0	= grid scale factor on central meridian.
φ0	= latitude of false origin, usually where northing = 0.0 meters.
N0	= false northing at false origin (usually 0.0 meters).

Compute coordinate system projection constants:
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ω ϕ ϕ ϕ ϕ ϕ0 0 0 0 0
2

0 2
2

0 4 6
2= + + + +sin cos cos cos cosU U U U ϕϕ0( )( )( )   

 
 rectifying latitude of origin (10.72)

 S rk0 0 0= ω  distance on grid from equator to origin (10.73)

These constants are computed only once for each zone. After that, they are used 
in computing the BK10 and BK11 transformations. The nominal grid scale factor 
used on the central meridian for the state plane coordinate systems is 0.9999. Spe-
cific values are given in appendix A. Other values are chosen when designing a 
custom system.

bK10 (Forward) transformation for transverse Mercator projection

Input:

φ = geodetic latitude (positive north)
λ	= geodetic longitude (positive east)

Compute:

 
L = −( )λ λ ϕ0 cos  , L in radians and positive east of central meridian (10.74)

 t = tanϕ  (10.75)

 
η

ϕ2
2 2

21
=

−
e

e
cos

 (10.76)

ω ϕ ϕ ϕ ϕ ϕ ϕ= + + + +( )( )(sin cos cos cos cosU U U U0
2

2
2

4 6
2 ))   

 
 rectifying latitude (10.77)

 S rk= 0ω  arc distance on grid to parallel through point (φ,	λ) (10.78)

 

R ak
e

=
−

0

2 21 sin ϕ
 (10.79)
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 A R1 =−  (10.80)

 
A R t2

1
2

=  (10.81)

 
A t3

2 21
6

1= − +( )  η  (10.82)

 
A t4

2 2 21
12

5 9 4= − + +( )( ) η η  (10.83)

 
A t t t5

2 4 2 21
120

5 18 14 58= − + + −( )( ) η  (10.84)

 
A t t t6

2 4 2 21
360

61 58 270 330= − + + −( )( ) η  (10.85)

 
A t t t7

2 4 61
5 040

61 479 179= − + −( ),
 (10.86)

      
E E A L L A L L A L= + + + +( )( )( )0 1

2
3

2
5 7

21  easting of point (φ,	λ) (10.87)

       
N N S S A L L A A L= + − + + +( )( )0 0 2

2 2
4 6

21  northing of point (φ,	λ) (10.88)

 C t1 =−  (10.89)

 
C2

21
2

1= +( )η  (10.90)
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C3

2 41
3

1 3 2= + +( ) η η  (10.91)

 
C t t4

2 2 21
12

5 4 9 24= − + −( )( ) η  (10.92)

 
C t5

21
15

2= −( )  (10.93)

 
γ = + +( )( )C L L C C L1

2
3 5

21  convergence at point (φ,	λ) (10.94)

 
k k C L C L= + +( )( )0 2

2
4

21 1  grid scale factor at point (φ,	λ) (10.95)

bK11 (Inverse) transformation for transverse Mercator

Input:

E = easting of point within defined map projection
N	= northing of point within defined map projection

Compute:

 

ω =
− +N N S

k r
0 0

0
 (10.96)

      
φ ω ω ω ω ω ωf V V V V= + + + +( )( )sin cos cos cos cos0

2
2

2
4 6

2(( )  (10.97)

 
η f

fe
e

2
2 2

21
=

−
cos φ

 (10.98)

 

R ak
e

f
f

=
−

0

2 21 sin φ
 (10.99)
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Q E E
R f

=
− 0  radian units (10.100)

 
B

t f f
2

21
2

=
− +( )η

 (10.101)

 
B

t f f
3

2 21 2

6
=
− + +( )η

 (10.102)

 
B

t tf f f f
4

2 2 2 45 3 1 9 4

12
=
− + + −( )−( )η η

 (10.103)

 
B

t t tf f f f
5

2 4 2 25 28 24 6 8

120
=

+ + + +( )( )η
 (10.104)

 
B

t t t tf f f f f

6

2 4 2 2 461 90 45 46 252 90

360
=

+ + + − −( )( )η
 (10.105)

 
B

t t tf f f
7

2 4 661 662 1320 720

5040
=
− + + +( )

 (10.106)

 
L Q Q B Q B B Q= + + +( )( )( )1 2

3
2

5 7
2  (10.107)

   
φ φ= + + +( )( )f B Q Q B B Q2

2 2
4 6

21  geodetic latitude of point (E,	N) (10.108)

 

λ λ
φ

= +0
L

fcos
 geodetic longitude (east) of point (E,	N) (10.109)
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D t f f1 = = tanφ  (10.110)

 
D f

2

21
2

=
+ η

 G2 in “Manual NOS NGS 5” (10.111)

 
D

t f f f
3

2 2 41 2
3

=
− + − −( )η η

 (10.112)

 
D f

4

21 5
12

=
+ η

 G4 in “Manual NOS NGS 5” (10.113)

 
D

t tf f
5

2 42 5 3
15

=
+ +

 (10.114)

 
γ = + +( )( )D Q Q D D Q1

2
3 5

21  , convergence at point (N,	E) (10.115)

 
k k D Q D Q= + +( )( )0 2

2
4

21 1  , grid scale factor at point (N,	E) (10.116)

The State of New Mexico uses a transverse Mercator projection for its state plane 
coordinate system. Figure 10.9 is a computer printout showing example transverse 
Mercator BK10 and BK11 transformations at Station “Reilly” on the New Mexico 
State University campus. The transformations were computed using the equations in 
this section, and numerical values match those shown on the NGS data sheet for the 
same station.

oblique merCator ProjeCtioN

Any reference ellipsoid could be used, but NAD83 state plane coordinates in Alaska 
Zone 1 are based upon the GRS 1980 ellipsoid as listed here.

	 a	= semimajor axis = 6,378,137.000 m (10.117)

 1/f = reciprocal flattening = 298.2572221008827 (10.118)
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                             PROGRAM: LOCALCOR 
                    COPYRIGHT 2001 BY GLOBAL COGO, INC. 
                        LAS CRUCES, NEW MEXICO 88003 
                            WWW.GLOBALCOGO.COM 

     USER: Earl F. Burkholder
     DATE: 12 June 2007

     TRANSVERSE MERCATOR PROJECTION TRANSFORMATIONS
     PROJECTION NAME: New Mexico Central Zone - 3002

     REFERENCE ELLIPSOID: GEODETIC REFERENCE SYSTEM 1980 
                            A = 6378137.0000 METERS 
                          1/F = 298.2572221008827 

     ZONE PARAMETERS:

          CENTRAL MERIDIAN (W)                106 15   .000000 
          LATITUDE OF FALSE ORIGIN             31  0   .000000 
          FALSE NORTHING AT FALSE ORIGIN                 .0000 METERS 
          FALSE EASTING ON CENTRAL MERIDIAN        500000.0000 METERS 
          SCALE FACTOR ON CENTRAL MERIDIAN       .999900000000 

     ZONE CONSTANTS:

          RECTIFYING SPHERE RADIUS              6367449.1458 METERS 
          RECTIFYING LATITUDE CONSTANTS: 
               U(0) =   -.005048250776    V(0) =    .005022893948 
               U(2) =    .000021259204    V(2) =    .000029370625 
               U(4) =   -.000000111423    V(4) =    .000000235059 
               U(6) =    .000000000626    V(6) =    .000000002181 

          RECTIFYING LATITUDE OF FALSE ORIGIN     30 52 21.720626 
          GRID MERIDIAN ARC TO FALSE ORIGIN   3430631.2260 METERS 

     TRANSFORMATIONS:

     NAME OF STATION: Reilly – PID AI5445                FORWARD (BK10) 

          LATITUDE:    32 16 55.929060   NORTHING    142268.7414 METERS
          LONGITUDE:  106 45 15.160700   EASTING     452506.4804 METERS
          CONVERGENCE:      0-16  9.48   SCALE FACTOR:    .999927806946 

     NAME OF STATION: Reilly – PID AI5445                INVERSE (BK11) 

          LATITUDE:    32 16 55.929059   NORTHING    142268.7414 METERS
          LONGITUDE:  106 45 15.160700   EASTING     452506.4804 METERS
          CONVERGENCE:      0-16  9.48   SCALE FACTOR:    .999927806946 

Figure 10.9  Example BK10 and BK11 Transformations for Transverse Mercator 
Projection
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Compute ellipsoid constants:

     e f f e e2 2 22= − =and  eccentricity squared and eccentricity (10.119)

 
e e
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2

21
=
−

 second eccentricity squared (10.120)
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,
 (10.125)

Equation 10.119 and equations 10.121 through 10.125 are used once in comput-
ing the	F	coefficients. These are the same F coefficients as used in equations 10.20 
through 10.24.

 
F c c c c c0 2 4 6 8 102 2 3 4 5= − + − +( )  (10.126)

 
F c c c c2 4 6 8 108 4 10 20= − + −( )  (10.127)

 
F c c c4 6 8 1032 6 21= − +( )  (10.128)
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F c c6 8 10128 8= −( )  (10.129)

 F c8 10512=  (10.130)

The	F coefficients are radian units and are used in the BK11 and BK15 transfor-
mations to compute geodetic latitude without iterating.

Input the defining parameters for the oblique Mercator projection of the 
user’s choice:

φc = latitude of local origin
λc = longitude (east) of local origin
k0 = grid scale factor along projection axis
N0 = false northing at (u, v) origin
E0 = false easting at (u, v) origin
αc = positive skew axis (u axis) azimuth at local origin

Compute zone constants:

 
B e c= +1 2 4' cos φ  (10.131)

 
W ec c= −1 2 2sin φ  (10.132)
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Note: cosh ln− = + −( )1 2 1x x x .
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G = cosα0  (10.138)
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Note: sinh exp( ) exp(– )x x x
=

 – 
2

,	where exp(x) = εx and ε = base of 2.71828….

bK10 (Forward) transformation for oblique Mercator projection

Input:

φ = geodetic latitude (positive north)
λ = geodetic longitude (positive east)

Compute:

 
L B= −( )λ λ0  (10.141)
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 (10.142)

 
J BQ C= +( )sinh  (10.143)
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K BQ C= +( )cosh  (10.144)

Note: cosh exp( ) exp(– )x x x
=

 + 
2

,	where exp(x) = εx and ε = base of 2.71828…..
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 (10.146)

 E E u vc c= + +0 sin cosα α  easting of point (φ,	λ) (10.147)

 N N u vc c= + −0 cos sinα α  northing of point (φ,	λ) (10.148)
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−−tan sin
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1 F JG L

KG L c  convergence at point (φ,	λ) (10.149)
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φ
 grid scale factor at point (φ,	λ) (10.150) 

bK11 (Inverse) transformation for oblique Mercator projection

Input:

E = easting of point within defined map projection
N	= northing of point within defined map projection

Compute:

 
u E E N Nc c= −( ) + −( )0 0sin cosα α  (10.151)
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v E E N Nc c= −( ) − −( )0 0cos sinα α  (10.152)
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 east geodetic longitude of point (E,	N) (10.159)

 
L B= −( )λ λ0  (10.160)

 
J BQ C= +( )sinh  (10.161)
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K BQ C= +( )cosh  (10.162)
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 , grid scale factor at point (E,	N) (10.164)

Alaska Zone 1 is the only state plane coordinate system zone in the United States 
that uses the oblique Mercator projection. Figure 10.10 is a computer printout show-
ing example oblique Mercator BK10 and BK11 transformations at Station “JNU C” 
(PID AI4906) near Juneau, Alaska. The transformations were computed using the 
equations in this section, and numerical values match those shown on the NGS data 
sheet for the same station.

low-DistortioN ProjeCtioNs

The nuisance of working with grid distance and ground distance (and their differ-
ences) can be avoided when using the GSDM. However, until the GSDM becomes a 
part of mainstream professional practice, many see and have used a low-distortion 
projection (LDP) as a way of solving that problem. Several issues with using an LDP 
in the context of the 3-D GSDM are discussed in chapter 12. The discussion here 
looks at 2-D issues in the context of the standard map projection. Various methods 
have been used to compute what some call “surface coordinates” and some call 
“project datum coordinates.” The corresponding lack of standardization is a draw-
back to using an LDP, and that issue is also addressed in chapter 12. The method 
described here is rigorous and simple, but implementation suffers for various rea-
sons. Very simply, all the equations listed in this chapter are applicable to an LDP 
with one modification—the value of the ellipsoid semimajor axis is increased by a 
value (elevation) chosen by the user (Burkholder 1993a). Whether working with a 
Lambert conic conformal projection, a transverse Mercator projection, or an oblique 
Mercator projection, the substitution is the same—replace the semimajor axis value	
a with (a	+	href), where href = value selected by the user. Specific occurrences are 
as follows:

lambert conic conformal projection

Equation 10.12: in place of a, use aref	=	a	+	href.
Equation 10.31: in place of a, use aref	=	a	+	href.
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Figure 10.10  Example BK10 and BK11 Transformations for Oblique Mercator 
Projection
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transverse Mercator projection

Equation 10.51: in place of a, use aref	=	a	+	href.
Equation 10.55: in place of a, use aref	=	a	+	href.
Equation 10.79: in place of a, use aref	=	a	+	href.
Equation 10.99: in place of a, use aref	=	a	+	href.

oblique Mercator projection

Equation 10.117: in place of a, use aref	=	a	+	href.
Equation 10.133: in place of a, use aref	=	a	+	href.
Equation 10.137: in place of a, use aref	=	a	+	href.
Equation 10.139: in place of a, use aref	=	a	+	href.

With these modifications and with reference to Figure 1.4, the map projection 
“forward” and “inverse” transformations for low-distortion projections are referred 
to as BK14 and BK15 computations. The intent for that naming distinction is to avoid 
computational confusion and to reinforce the fact that LDP and state plane computa-
tions (although very similar) may provide very different results.

Restatement: adoption and use of the GSDM will provide the same benefits as an 
LDP while avoiding the possible confusion caused by not knowing specifically what 
coordinate system is being used.
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11 Using Spatial Data

IntroductIon

This book attempts to:

 1. Provide spatial data users a concise source of information with respect to 
the mathematical and geometrical characteristics of geospatial data.

 2. View the transition from the past to the future in terms of the digital revolution.
 3. Identify a common spatial data model equally useful to those who build, 

operate, or use measuring systems and those who use spatial data.
 4. Highlight the importance of spatial data quality while providing well-defined 

procedures for establishing, tracking, storing, and using spatial data accuracy.

Following comments related to the first three objectives, this chapter� focuses on 
objective number four, spatial data accuracy.

Forces drIvIng change

The digital revolution is characterized by using the electronic computer and related 
devices to collect, store, analyze, and report information about the world and human 
activities—from the cradle to the grave. Using computers to keep track of spatial 
data is only a small part of the digital revolution—but it is an important part. Sci-
entists, mathematicians, cartographers, and others have been observing, recording, 
and describing our world for generations. Although many others also deserve credit, 
two persons are recognized for specific contributions—Gerardus Mercator is widely 
acclaimed as the mapmaker who revolutionized cartography, and René Descartes 
(1596–1650), perhaps better known as a philosopher, was a mathematician who sys-
tematized analytical geometry and gave us the Cartesian coordinate system. The 
profound impact of their combined legacy has permeated mapping and the use of 
spatial data for the past 400 years. Without making light of their work, the digital 
revolution justifies a new look at fundamental assumptions, and the GSDM identifies 
additional innovative tools available for working with 3-D spatial data.

Although others can also be identified, forces driving the digital revolution 
include:

The transistor
Miniaturization of circuits and physical devices
Development of information technology, science, and management

� This chapter makes extensive use of material from an article “Fundamentals of Spatial Data Accuracy 
and the Global Spatial Data Model” by the author and filed with the U.S. Copyright Office, Washing-
ton, DC, 2004 (Burkholder 2004). Used with permission.

•
•
•
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Electronic signal processing
Satellite positioning
Enhanced spatial literacy

Other factors may be identified as consequences of the digital revolution.

Reduction in privacy
Better knowledge of where things are
More efficient movement of people, products, and resources
Greater access to information
Nanotechnology

Recognizing the impossibility of identifying mutually exclusive cause-and-
effect properties of the various factors, the focus of this book is on spatial data. 
With that qualifier, the assumption is that electronic measurements (GNSS and oth-
ers), computer databases, information management, and the exponentially growing 
demand for reliable spatial data are the forces driving this reevaluation of spatial 
data models.

transItIon

This book may not be an easy read for those with a low tolerance for detail. The 
attitude of some students is “Just tell me what I need to know and let’s move on.” An 
observation is that just-in-time learning is preferred to not learning. We buy a piece 
of new equipment or software and learn how to use it. With practice, we can become 
proficient, productive, and profitable. Given the rapid pace of technological develop-
ments, we all do it. However, whether learned in a formal classroom setting or in 
individual study, an understanding of fundamental concepts provides a foundation 
for such just-in-time learning. Building that foundation is the goal of this book. The 
first two chapters identify details and concepts of the GSDM. But, starting in chap-
ter 3, fundamental mathematical concepts are summarized, and a careful logical 
building process is included in subsequent chapters. While not all things to all users, 
the goal is to focus on developing an understanding of the concepts. With an ever 
increasing number of persons using GPS and with the GSDM providing a context for 
better understanding of spatial data, our collective passion for spatial literacy will be 
enhanced and a multitude of readers will be able to apply innovative 3-D concepts to 
an exponentially expanding array of spatial data applications.

One could say society has been complacent in applying analytical geometry to 
mapping and geospatial data. The fundamental theorems of solid geometry and vec-
tor algebra have been long proven, and a map is a map is a map. Prior to the digital 
revolution and burgeoning use of 3-D data, there was little to get excited about. Oh 
yes, geodesists have developed complex mathematical expressions for describing the 
size and shape of the world, and cartographers have developed an endless array 
of map projections. Their work is truly impressive. But, for many, the most useful 
map projections are those that make it possible to perform “flat-Earth” computa-
tions using simple rules of plane 2-D Euclidean geometry. Because few of us really 

•
•
•

•
•
•
•
•
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understand what it takes to make a good map, we take such beneficial features for 
granted, and, in part because we walk erect, we view the world in terms of horizontal 
and vertical—separately. Again, without complaining, we grow up learning those 
concepts, and the spatial data user community largely accepts the traditional 1-D/2-
D view. It has been only recently, if at all, that high-level policy professionals have 
given serious consideration to using an integrated 3-D database. With implementa-
tion of the GSDM, spatial data disciplines all over the world will enjoy the luxury of 
working with a better set of rules with regard to the exchange and use of 3-D spatial 
data.

Of course, the digital revolution has already had an enormous impact on tradi-
tional mapping and the way spatial data are used. Existing processes were computer-
ized and automated so that better work could be done more efficiently. Maps are now 
stored in a digital format in electronic files instead of flat files, and a new map can be 
plotted from the database at any time. Furthermore, the same database can support a 
wide range of map products having different themes and/or scales. This added flex-
ibility is very beneficial and has had a significant impact on the use of maps. That is 
very important, but not the point.

The point is that digital spatial data have replaced the map as the primary stor-
age medium. In August 2007, a web search of “digital earth” returned over 250,000 
hits, and it seems that each organization has a preferred answer for the best format 
for digital spatial data. The process of formulating the GSDM was to back up and 
consider the underlying characteristics of digital 3-D spatial data. Starting with a 
single origin for 3-D data, rules of solid geometry and vector algebra were followed 
carefully in building a simple consistent logical 3-D model. Of course, the historic 
value of maps as a record of the development of civilization remains enormously sig-
nificant and should be accommodated (Harvey 2000). But, so far, it appears that the 
transition to using digital maps is evolving in a fragmented manner and begs careful 
evaluation. A concise summary of three evolutionary stages is:

In the past, spatial data were analog and separated into horizontal and vertical 
components. Maps or photographs were used as the primary storage medium.
In the interim, spatial data are digital with separate horizontal and vertical 
components. Digitizing existing maps became an important professional 
and technical activity. Datums, projections, units, and coordinate systems 
all affect interoperability.
In the future, the 3-D characteristics of spatial data measurements are pre-
served in the computational processes and spatial data are stored in an inte-
grated 3-D database. Yes, interoperability details are still important, but 
meta data and/or covariances of all spatial data going into the database are 
the responsibility of the “owner” of the database. Then each user is able to 
retrieve spatial data from the database and is able to rely upon the proven 
quality of those data. From there, each user has the freedom of manipulating 
the spatial data bidirectionally according to specifications of the application 
at hand. The GSDM provides an efficient link between rigorous scientific 
uses and local “flat-Earth” applications.

•

•

•
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A transition from the past to the future is both a challenge and an opportunity for 
spatial data users. Thomas Kuhn (1996) describes the processes involved in such a 
transition in “The Structure of Scientific Revolutions.” Several quotes are:

Page 67: “[T]he awareness of anomaly had lasted so long and penetrated so 
deep that one can appropriately describe the fields affected by it as being in 
a state of growing crisis.”

Page 84: “[A] crisis may end with the emergence of a new candidate for para-
digm and with the ensuing battle over its acceptance.”

Page 153: “Probably the single most prevalent claim advanced by proponents 
of a new paradigm is that they can solve problems that have led the old one 
to a crisis.”

Page 158: “Because scientists are reasonable men [sic], one or another argu-
ment will ultimately persuade many of them. But there is no single argu-
ment that can or should persuade them all.”

This author is encouraged by the adaptability of the younger generation and 
their capacity for visualizing spatial relationships. Yes, adapting to policies con-
sistent with the efficient use of 3-D spatial data is more difficult for those having a 
1-D/2-D mind-set, but, somehow, the younger generation seems to be saddled with 
fewer conceptual obstacles. In time, using the GSDM will be as comfortable for 
the spatial data user as is the automatic transmission for automobile drivers. Yes, 
there are still those who, for whatever reason, prefer to use the clutch and standard 
shift. Such 1-D/2-D derivative uses of spatial data remain fully supported by the 3-
D GSDM. Understandably, while 1-D and 2-D applications are fully supported by a 
3-D database, attempting to build a 3-D database from 1-D/2-D data is not recom-
mended. The recommended procedure is to add competent 3-D observations to an 
existing 3-D database.

consequences

There will be many consequences of using the GSDM. Some have already occurred 
and are accepted as routine, some are a matter of recognizing the impact of using 
existing technologies and policies, and others will involve the realization of benefits 
due to careful planning and implementation. It is impossible to identify all the con-
sequences, but several of the more obvious ones are as follows:

All spatial data measurements going into the GSDM will need to be 3-D (or 
even time-stamped, making them 4-D).
Spatial data are processed and stored under the assumption that there is 
a single origin for geospatial data. Elevation becomes a derived quantity. 
Local observed differential elevation differences remain valid subject to 
deflection-of-the-vertical considerations.
A World Vertical Datum (xx) will be adopted in which ellipsoid height is 
used as the third dimension. Arguments in favor of such adoption are given 
by Burkholder (2002, 2006), Kumar (2005, 2007), and Soler (2007). The 

•

•

•
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need for geoid modeling will be enormously reduced, but the importance 
of geoid modeling remains. Geoid heights will continue to be used by those 
for whom the difference matters, e.g., those needing to relate current mea-
surements to legacy data.
Spatial data users all over the world will be able to work with local flat-
Earth differences while enjoying specific, reliable connectivity to the world 
at large via the ECEF coordinates stored by the GSDM.
Two groups of spatial data professionals are equally well served by infor-
mation stored in a common 3-D database:

 1. Surveying, engineering, mapping, and navigation: The relative differ-
ence of one point with respect to another is critical and relied upon. 
The P.O.B. feature in Box 10 of Figure 1.4 means that flat-Earth plane 
surveying components can be used to obtain ground-level tangent plane 
direction and distance between points. Consequently, the grid-ground 
distance difference issue becomes moot, and the need for low-distor-
tion projection coordinates goes away. Furthermore, the GSDM defines 
a mathematical process by which the local accuracy and network accu-
racy of such inversed quantities can be reliably determined.

 2. GIS, planning, inventory, and navigation: The absolute unique location 
of a point is of primary consideration and is preserved via the ECEF 
geocentric coordinates. Of course, a point defined by ECEF coordi-
nates can be equivalently expressed by 2-D map projections such as 
state plane, UTM, or other map projection coordinates.

The alert reader will note that “navigation” appears in both categories.

spatIal data accuracy

IntroductIon

The stochastic model portion of the GSDM is described in chapter 1 and addresses 
issues of spatial data accuracy. Additional information on stochastic models is given 
by Mikhail (1976), Ghilani and Wolf (2006), and Burkholder (1999, 2004). “Spa-
tial data accuracy” is an umbrella term that includes concepts such as uncertainty, 
standard deviation, positional tolerance, confidence intervals, and error ellipses. Of 
those, standard deviation is used as the underlying concept in the GSDM.

The stochastic model is used to answer the question “Accuracy with respect to 
what?” Two obvious possibilities are:

What is the absolute accuracy of a point with respect to the datum?
What is the relative accuracy of a point with respect to another identi-
fied point?

Although both answers are readily available, they are somewhat different. Abso-
lute datum accuracy is given in terms of standard deviations at each point—one in 
each of three orthogonal directions—either in the ECEF reference frame or (easier 

•

•

•
•
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for humans to visualize) in the local east/north/up reference frame. The relationship 
between the ECEF perspective and the local perspective is given by matrix equations 
1.32 and 1.33.

Relative accuracy is the standard deviation of the computed distance and/or the 
direction from the standpoint to the forepoint. Relative accuracy between any two 
points can be computed using matrix equation 1.36. Depending upon user choices 
and available covariance information, matrix equation 1.36 can be used to obtain 
either network accuracy (the two points are statistically independent) or local accu-
racy (reflecting the correlation given by the covariance information) between the 
two points.

The stochastic model portion of the GSDM is optional. In some cases, the stan-
dard deviation information may be readily available, but is not needed or used. In 
other cases, no standard deviations are known or given. That means the default value 
of zero is used for the standard deviation and the associated spatial data element is 
used as an exact value. In either case, functional model computations can still be 
performed whether standard deviations are available or not. The GSDM can accom-
modate whatever stochastic information the user provides, but providing reliable 
stochastic data is ultimately the responsibility of each user. Like fire, competent use 
of the GSDM can provide enormous benefits but misuse can also be very harmful. 
Responsible use is essential and consists of inputting or using a reasonable estimate 
of the standard deviation of each observation.

Not restricted to any one discipline, the GSDM facilitates collection, storage, 
manipulation, exchange, and use of spatial data worldwide because the same 3-
D model accommodates both those activities that generate spatial data and those 
activities that use spatial data, whether in high-level scientific research or in local 
“flat-Earth” applications. And, regardless of application, questions regarding spatial 
data accuracy can be handled with a common set of stochastic model equations. The 
spatial data accuracy discriminator is the magnitude of the standard deviation, com-
ponent by component, and can be judged against FGDC (Federal Geographic Data 
Committee 1998, Table 2.1) standards for spatial data accuracy.

defInItIons

While the intent is to use standard definitions and conventions, the following are 
used for the purposes of this chapter.

Spatial data uncertainty is given by its standard deviation in each of three 
dimensions. One standard deviation (1 sigma) provides a 68 percent confidence level. 
Many spatial data users routinely use a 95 percent (2 sigma) confidence level as the 
basis for making comparisons and/or inferences.

As stated in chapter 2, spatial data are defined as the distance between end-
points of a line in Euclidean space. Even though a line is the path of a moving point, 
a distance (not a point) is viewed as the spatial data primitive because the location of 
a point is meaningless unless or until described with coordinates (distances).

Physical geodesists use a definition of a geodetic datum that also includes the 
gravity field (National Imagery and Mapping Agency 1997). But, for purposes of 
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describing location and spatial data accuracy, a 3-D GSDM datum is taken to be an 
ECEF right-handed rectangular X/Y/Z coordinate system whose

 1. origin is at the Earth’s center of mass.
 2. Z-axis coincides with the Earth’s mean spin axis. That means X/Y coordi-

nates are in the plane of the equator.
 3. X-axis is coincident with zero degrees longitude (the Greenwich meridian). 

That means the Y-axis lies at 90° east longitude.
 4. distance unit is meters.
 5. ellipsoid is defined by two parameters that permit computation of equivalent 

latitude/longitude/height coordinates from geocentric X/Y/Z coordinates.

As discussed in chapter 7, the GSDM and error propagation concepts described 
herein work equally well with the NAD83, the WGS84, or the ITRF. It is not appro-
priate to mix coordinate values from different datums. See datum transformations 
in chapter 7.

Recognizing that the origin of any system is relative to some “larger” system 
(e.g., the center of mass of the Earth is relative to the center of mass of our solar sys-
tem), absolute quantities are expressed by a numerical value in a defined system.

A relative value is the difference between two absolute quantities expressed in the 
same system. The value assigned to a well-defined origin may be an absolute quantity.

Comments on absolute and relative relationships:

ECEF coordinate values are absolute, and the standard deviations of those 
absolute values are referred to as datum accuracy.
Coordinate differences (in any given system) are relative.
An angle, being the difference between two directions, is relative.
It is possible for an absolute quantity to be treated as a relative quantity. 
This could happen if the origin has units of zero. If zero is subtracted from 
an absolute quantity, the result can be considered a relative value because it 
represents the difference of two absolute quantities.
The accuracy of relative spatial data can be expressed in either of two ways. 
One expression, network accuracy, represents the uncertainty (standard 
deviation) of the difference between two statistically independent points in 
the same system. Another expression, local accuracy, uses statistical cor-
relation between two points to represent the uncertainty of one point with 
respect to another.
Elevations and time are similar in that each may look like an absolute value. 
But, in reality, both are used as relative values due to the ambiguity of their 
physical origins.

 1. Traditional vertical datums are referenced to an arbitrary zero elevation 
surface, which implies datum elevations are all relative.

 2. Time is counted from the “big bang” (Hawking 1988), from the birth of 
Christ (b.c. and a.d.), from the vernal equinox (the instant of the sun’s 
zero declination), from the daily transit of the sun over a stated meridian 
(a.m. or p.m.), or from some arbitrary zero computed from the readings 

•

•
•
•

•

•
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of a group of atomic clocks. Whether in years, months, days, hours, or 
seconds, time is an interval between two specified events—a relative 
quantity.

Mean sea level, the geoid, enjoys a simple physical definition as a “zero” equi-
potential surface. But, as yet, that origin has not been precisely located world-
wide. Therefore, it can be said that precise absolute elevations do not exist.
Time differences and elevation differences can each be measured quite pre-
cisely, and that information can be quite useful. But, accuracy statements 
regarding time and elevation should be limited to relative accuracy state-
ments. In terms of absolute accuracy, there is nothing to be gained from 
adding a precise interval to an absolute quantity of dubious value.
Ellipsoid height is a derived quantity with respect to the ellipsoid (and ulti-
mately with respect to the Earth’s center of mass). Because the origin is 
well defined and measurable, ellipsoid height can be considered an absolute 
quantity. Ellipsoid height differences are relative quantities.

spatIal data components and theIr accuracy

Spatial data components were listed in chapter 2 and have been subsequently used 
throughout the book. That list is repeated here with reference to the boxes identified 
in Figure 1.4.

 1. Absolute X/Y/Z geocentric coordinates (Box 1) are perpendicular distances 
in meter units from the respective axes of the ECEF coordinate system.

 2. Absolute geodetic coordinates (Box 2) of latitude/longitude/height are com-
puted from ECEF coordinates with respect to some named datum or ellipsoid.

 3. Relative geocentric coordinate differences (Box 3) are obtained by dif-
ferencing compatible geocentric X/Y/Z coordinate values, or they can be 
obtained by rotating relative local coordinate differences into the X/Y/Z ref-
erence frame. Relative geocentric coordinate differences are also obtained 
directly as the ∆X/∆Y/∆Z components of a GPS vector.

 4. Relative geodetic coordinate differences, ∆φ/∆λ/∆h (not shown in Fig-
ure 1.4), are obtained as the difference of compatible (common datum) geo-
detic coordinates.

 5. Relative local coordinate differences (Box 9) are the local tangent plane 
components of conventional total station surveying measurements. If deflec-
tion-of-the-vertical is severe and if project requirements warrant same (e.g., 
establishing traditional geodetic control for a multi-discipline project cover-
ing a large site in a mountainous area), the vertical-based measurements of 
a total station instrument should be converted to normal-based measure-
ments before calling them local geodetic horizon components. Relative local 
coordinate differences are also components of a geocentric ∆X/∆Y/∆Z vector 
rotated into the local geodetic horizon.

•

•

•
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 6. Local coordinates, e/n/u, are distances from some origin whose local 
definition may be sufficient in three dimensions, two dimensions, or 
one dimension. Burkholder (2001) calls these absolute coordinates, but, 
depending upon how they are viewed, they could also be considered rela-
tive values. Elevations are particularly difficult to categorize. The real 
underlying issue is how the local system is defined. Examples include the 
following:

 A. Point-of-beginning (P.O.B.) datum coordinates (Box 10) are defined 
by Burkholder (1997) as the local tangent plane components from any 
point (origin) selected by the user to any other point. These derived 
coordinates enjoy full mathematical definition in three dimensions and 
suffer no loss of geometrical integrity in the GSDM.

 B. Map projection (or state plane) coordinates (Box 11) are well defined 
in two dimensions with respect to some named origin and geodetic 
datum.

 C. Ellipsoid heights (Box 2) and orthometric heights (Boxes 8 and 11) 
are one-dimensional distances above or below some named surface. 
Ellipsoid heights can be considered absolute, but other elevations are 
considered relative.

 7. Arbitrary local coordinates (not shown in Figure 1.4) may be 1-D, 2-D, 
or 3-D based upon some assumed origin. Although useful in some applica-
tions, arbitrary local coordinates are generally not compatible with other 
local coordinate systems and have limited value in the broader context of 
georeferencing. Many computer graphics and data visualization programs 
use arbitrary local coordinates.

With regard to all spatial data components, both absolute and relative, each 
one can have a standard deviation associated with it. If the standard deviation 
of any component is zero, either the quantity is known very precisely and/or 
the value (e.g., a control point) is being used as a “fixed” quantity. Standard 
deviations of subsequently computed spatial data components are based upon 
propagation of the measurement error, and standard deviations of the computed 
points are determined through the network adjustment process. Given a success-
ful network adjustment and computation of coordinates, the implied accuracy 
statement is “with respect to the points held fixed by the user.” Maybe the begin-
ning point was a hub pounded in the ground. Maybe it was a section corner of 
the U.S. Public Land Survey System. Maybe it was a HARN point or a CORS 
point published by the NGS. Or maybe it was the orbit parameters of the GPS 
satellites. Understandably, the value of a completed project is greatly enhanced 
if explicit accuracy statements are made. But, making or not making an explicit 
statement is not the real issue.

The real issue is being able to make one of the following statements related to the 
FGDC standards (1998, Table 2.1) and supported by appropriate statistics.
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 1. “The absolute datum [choose one—NAD83, WGS84, or ITRF] accuracy 
of point X in three dimensions is σX = ________, σY = ________, and σZ 
= ________.” An equivalent statement, derived from the first, gives the 
standard deviations in the local reference frame as σe = ________, σn = 
________, and σu = ________. The absolute accuracy statement involves 
only one point and is with respect to the datum selected or named by the 
user. If the project were a 2-D survey (i.e., state plane coordinates), only two 
components would be named.

 2. “The relative network accuracy of the direction and distance from point 1 
to point 2 is σAZ = ________ and σDIST = ________.” Relative accuracy 
applies to the difference between two independent points having absolute 
accuracy values in the same datum.

 3. From point 1 to point 2, “the relative network accuracy of the height differ-
ence (∆h) or perpendicular distance from the local tangent plane (∆u) is σ∆h 
= ________ or σ∆u = ________.”

 4. “The relative local accuracy of point 2 with respect to point 1 is σAZ = ___
_____, σDIST = ________, σ∆h = ________, or σ∆u = ________.” Relative 
local accuracy exploits and is largely governed by the statistical correlation 
that exists between two directly connected points in the same datum. The 
procedure for computing each of the listed accuracies is given in equation 
1.36.

But everythIng moves

Most spatial data activities involve using a database such as a GIS. The importance 
of the basic geodetic control in a GIS is well documented by the National Research 
Council (NRC; 1983) and others. Ideally, the geodetic control information upon 
which the database is built should be of such quality that it could be held “fixed,” 
that is, having a zero standard deviation. Here again, the question “With respect to 
what?” becomes relevant. A monumented point that is stable in one system (e.g., 
NAD83) may, in fact, be moving in another (WGS84 or ITRF). With the advent of 
GPS positioning, it is now possible to determine the location of control points much 
more accurately than before, and the scientific community now has conclusive evi-
dence that points once thought to be permanent are, in fact, moving. With respect to 
what? An oversimplified answer is that “everything moves.”

A better answer is required. More specifically, the administrators and users of 
a database (whether local, regional, national, or global) deserve explicit information 
as to the stability and accuracy for the various categories of points in the database. 
And, if they are moving, what is the velocity vector of the point? This chapter is 
primarily about 3-D uncertainties, but, given that points move, time must be added 
as the fourth dimension and the epoch must enjoy equal standing with the coordi-
nates. Software for converting X/Y/Z coordinates from one epoch to another is called 
HTDP (horizontal time time-dependent positioning) and is available gratis from the 
U.S. National Geodetic Survey (NGS) at http://www.ngs.noaa.gov. HTDP can also 
be used to convert X/Y/Z coordinates from one 3-D datum to another (Snay 1999).
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With respect to movement, a simple question must be asked: “Are we standing 
on the train watching the station go by, or are we standing at the station watching the 
train go by?” The Earth’s center of mass is the location reference for the entire globe. 
Points on the Earth’s surface or anywhere within the Earth may move with respect 
to the Earth’s center of mass, but the reference is fixed by definition—it does not 
move. Admittedly, with respect to where we stand or with respect to monumented 
points, statements are made that the center of mass of the Earth moves. The implied 
perspective is considered subordinate to the explicit statement, “The Earth’s center 
of mass does not move.”

The ITRF is defined such that the net tectonic movement of all the Earth’s 
continental plates is zero (Snay and Soler 1999). But, points on the Earth’s surface 
still move with respect to the Earth’s center of mass and with respect to each other. 
Therefore, the locations of the ITRF monuments are defined with both coordinates 
and velocities. Spatial data users in North America will be reassured to know that 
the NAD83 datum is the one to use because, except for areas of tectonic activ-
ity, points on the NAD83 remain “fixed” to the North American plate and move 
together. Such oversimplification is dangerous. The NAD83 monumented control 
points on the ground may be stable, but the GPS satellite orbits are expressed in 
(and the NGS CORS coordinates are published in) the ITRF reference frame. (NGS 
also publishes NAD83 coordinates for the CORS stations.) The issue of which to 
be aware is that the absolute coordinates (for points on the ground) may be in one 
reference frame and the relative coordinate differences (obtained from GPS) may 
be in a different reference frame. Since the NAD83 and ITRF relative coordinate 
differences are nearly identical, it is generally permissible to attach ITRF relative 
coordinate differences to absolute NAD83 datum coordinates, but mixing absolute 
datum coordinates in the same solution should be avoided.

The point here is that most spatial data users should be aware of three competing 
3-D geodetic datums—NAD83, WGS84, and ITRF. Each has a reason for existing, 
and each has a role to fill. At a gross level of accuracy, it does not matter which of the 
three datums is used. But, as the tolerance for uncertainty gets smaller and smaller, it 
does matter which datum is used. The GSDM can be used with each datum individu-
ally and provides a systematic method for identifying and tracking the uncertainties 
in a given datum—whatever they are. Comparing uncertainties (standard deviations) 
between datums is beyond the scope of this book. Those larger issues are being 
addressed by others, such as Han, J. Y., et al (2008).

oBservatIons, measurements, and error propagatIon

In many ways, observations and measurements are very similar, and the terms are 
used interchangeably. But, a mathematical distinction is that observations are always 
independent quantities and measurements may be either independent or correlated. 
Stated differently, any observation may be called a measurement, but a measurement 
can be called an observation only if it is an independent quantity. As listed in chapter 
2, there are only a limited number of quantities that can be directly measured. But, 
whether the measurement is length, time, voltage, temperature, or the like, spatial 
data components are determined indirectly from those measurements using appro-
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priate models and computations. The standard deviation of each component is deter-
mined by propagating the measurement uncertainty through the variance/covariance 
equation given by the following matrix formulation:

 
∑ ∑YY YX XX XY

tJ= J  (11.1)

where

ΣYY = covariance matrix of computed result,
JYX = Jacobean matrix of partial derivatives of the result with respect to the 

variables (measurements), and
ΣXX = covariance matrix of the variables (measurements) used in the 

computations.

To reiterate, the variables in the measurement covariance matrix are indepen-
dent and considered to be observations if and only if there is no correlation in the 
measurement covariance matrix.

fIndIng the uncertaInty of spatIal data elements

In the process of establishing the spatial data uncertainty of each point, the user must 
first decide which datum will be used. Mixing datum values is permissible only if 
the datum differences are smaller than the resolution of data added to the database. 
For example, if 10 m data are being used and if the datum differences are at the 1 
m level, it makes no difference which datum is used. On the other hand, if 10 mm 
data are being used and datum differences are at the 1 m level, the choice of datum 
does matter.

Second, each project should be based upon reliable control points having X/Y/Z 
geocentric coordinates in the appropriate datum. One control point may be sufficient 
to put a new project on the chosen datum, but making a connection to two or more 
points is standard practice. If the basic control points are assigned a zero standard 
deviation, then that means subsequent accuracy statements should be made “with 
respect to the control points selected and held fixed by the user.” Better statements 
regarding datum accuracy can be made if realistic standard deviations are assigned 
to the points used to control the project. The covariance matrix for each new point 
and the correlation between points in the network are a standard by-product of a least 
squares adjustment. When the network adjustment is done in terms of geocentric 
coordinates and coordinate differences, the resulting covariance matrix is in terms 
of the geocentric reference frame. The geocentric environment is more efficient for 
storage and computer operations, but, because of the human perspective, the local 
covariance matrix is preferred as being more intuitive—giving sigma east, sigma 
north, and sigma up as the square root of the diagonal elements.

The GSDM includes both the geocentric and local covariance matrices for each 
point, but, since one can be derived from the other, a BURKORD™ database stores 
only the geocentric covariance matrix. The local covariance matrix is computed 
upon demand. Both covariance matrices contain the same datum accuracy of each 
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point component by component, but, because of perspective, the numbers are differ-
ent. Each of the two covariance matrices is a 3 × 3 symmetrical matrix containing 
the following elements:

Geocentric Covariance Matrix
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                  Local Covariance Matrix  (11.2 and 11.3)

where

σX
2, σY

2,	σZ
2 = variances for geocentric coordinates for the point,

σXY, σXZ, σYZ = covariance elements for geocentric coordinates,
σe

2, σn
2, σu

2 = local perspective variances for the point, and
σen, σeu, σnu = local perspective covariance elements for the point.

The two covariance matrices are related by the following rotation matrix evalu-
ated at the latitude/longitude of the standpoint (local origin).
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 (11.4)

The matrix expression for the relationship between the two covariance matrices is

 
∑ ∑enu XYZ

tR R=  (11.5)

 
∑ ∑XYZ enuR R= t  (11.6)

Points that are part of a network adjustment enjoy an interrelationship described by 
correlation. The correlation is especially significant for adjacent points that have been 
connected by a direct measurement. Correlation exists between points not directly 
connected, but the influence drops rapidly as the number of courses between points 
increases (correlation is the reason why cross-ties serve to strengthen a network). If 
the significant correlations between points are stored along with the covariance matrix 
for each point, the local accuracy of one point with respect to the other is readily com-
puted along with the inverse direction and distance. If correlations are not stored (or if 
they are assumed to be zero), an inverse computation will readily provide the direction 
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and distance between points, and the two endpoint covariance matrices will provide 
the basis of the network accuracy associated with the relative differences.

usIng poInts stored In the X/Y/Z dataBase

Each stored X/Y/Z location is unique within the birdcage of orbiting GPS satellites. 
Three application modes for using the stored X/Y/Z locations are as follows:

Single point (e.g., a unique location for an inventory tag).
Point-pair (used to create lines, surfaces, and objects).
“Cloud” (mapping). Even though stored as X/Y/Z, the location of any point 
can also be readily expressed in 2-D latitude/longitude, UTM, or state plane 
coordinates along with 1-D ellipsoid height.

The uncertainty of a single point is given by the datum accuracy as computed 
from the geocentric covariance matrix. These uncertainties (standard deviations, 
variances, and other covariance elements) can be viewed in either the geocentric 
reference frame or the local reference frame. The geocentric reference frame is more 
efficient for data storage and computerized manipulation, but the local reference 
frame is more convenient for viewing because horizontal and vertical comprise the 
human perspective. A benchmark will have a small standard deviation on the ver-
tical component. By contrast, a horizontal control point will have small standard 
deviations on the east and/or north components. A 3-D control point will have small 
standard deviations on all three components.

The point-pair application provides the relative location of one point with respect 
to another. A map is generated by extensive successive use of the point-pair mode, and 
an accuracy statement as applied to such a “cloud” of points is not addressed here.

Specifically, in the point-pair mode, point 1 is defined by X1/Y1/Z1 and point 2 
is defined by X2/Y2/Z2. The matrix formulation of the 3-D geocentric inverse from 
point 1 to point 2 is
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 (11.7)

The matrix of coefficients to the variables is called the Jacobian matrix, and the 
general error propagation formulation in the form of equation 11.1 is

 
∑ ∑∆ →= J J t

1 2  (11.8)

•
•
•
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Using the Jacobian matrix of 1’s and 0’s from equation 11.7, having the geocen-
tric covariance matrix of both point 1 and point 2 available, and using the correlation 
between point 1 and point 2, the covariance matrix of the inverse is computed using 
equation 11.8 as

∑∆ =

−1  0  0  1  0  0

  0 -1  0  0  1  0

  0  00 -1  0  0  1

  

  

  1























σ σX X1
2

YY X

X Y Y Y Z

X Z Y Z

1 1

1 1 1

1 1 1

  

    

    

1

1 1

1

2

σ

σ σ σ

σ σ σ

Z

ZZ1

1 1

2

   

     























σ σ σX X X Y X1 2 2 ZZ

Y X Y Y Z

Z X Y Z

2

1 2 2 2

1 2 2 2

σ σ σ

σ σ σ

     

    

Y

Z

1 1

1 1Z























σ σ σ

σ σ

X X Y X X

X Y

1 2 2 2

1 2

    

  

1 1Z

YY Y Y

X Y Z

1 1

1 1

  

    

2 2

1 2 2 2

σ

σ σ σ

Z

Z Z Z























  

    

    

2 2

2 2
2

σ σ σ

σ σ σ

X X Y X Z

Y X Y Y Z

2 2 2

2 2 2

2

σσ σ σZ Z Z2 2 2X Y    2 2
2





































































−

  

  0  01

00  -1   0

0  0   -1

 1  0  0

 0  1  0

 0  0  1







































  
  (11.9)

The off-diagonal submatrices reflect the correlation between point 1 and point 
2. The datum accuracy of point 1 and point 2 is included in equation 11.9 as their 
respective covariance submatrices.

The following concise mathematical statements comprise the basis for the defi-
nitions of local accuracy and network accuracy given earlier.

Local accuracy of the inverse between point 1 and point 2 is obtained by 
using the full covariance matrix in equation 11.9. Correlation between point 
1 and point 2 is included.

Network accuracy of the inverse between point 1 and point 2 is obtained if 
the correlation between point 1 and point 2 is either nonexistent or taken 
to be zero.

example

The following example is a summary of a fully documented least squares network 
solution posted at http://www.globalcogo.com/nmsunet1.pdf. The GPS network 
includes seven GPS vectors and is based upon two A-order HARN points: station 
“Reilly,” located in the central horseshoe of the NMSU campus; and station “Cruc-
esair,” located at the Las Cruces, New Mexico, airport some 16 kilometers west of 
the campus. The network consists of seven independent baselines connecting four 
additional points to the existing HARN stations, as shown in Figure 11.1.

The GPS baselines shown and used were collected on four different dates over 
a period of five years. These are not the only baselines on campus, nor are they 
the only observations between the points in question. These baselines were selected 
because they show excellent consistency, are independent, and include often used 
points. The network is included here to illustrate use of the GSDM and computation 
of both network accuracy and local accuracy.
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control values and observed vectors

The NAD83 geocentric X/Y/Z coordinates for A-order HARN stations “Reilly” and 
“Crucesair” are as published by the National Geodetic Survey (NGS) and were held 
fixed in this exercise. They are as follows:

station reilly station crucesair
X = –1,556,177.615 m X = –1,571,430.672 m

Y = –5,169,235.319 m Y = –5,164,782.312 m

Z = 3,387,551.709 m Z = 3,387,603.188 m

Single-frequency Trimble GPS receivers were used to collect static data, 57 min-
utes being the shortest common observation time for any of the seven baselines. The 
baseline components and the covariance matrix for each observed baseline as deter-
mined by Trimble software using default processing parameters are as follows:

Baseline 1, crucesair to uspa, observed 28 March 2002 (use subscript ca)

sxx  syy  szz

∆Xca = 15,752.080 m Sxx 6.321492E-06

∆Yca = –5,179.102 m Syy 1.545948E-05 4.739877E-05

∆Zca = –903.089 m Szz –1.061303E-05 –3.184780E-05 2.388036E-05

Baseline 2, uspa to uspB, observed 12 november 2003 (use subscript aB)

sxx  syy  szz

∆XAB = 14.964 m Sxx  1.412453E-06

∆YAB = –15.365 m Syy  1.285418E-06 4.653209E-06

∆ZAB = –16.664 m Szz –5.669127E-07 –1.658118E-06 1.872469E-06

A-Order HARN Point
Crucesair A-Order HARN Point

Reilly

Bromilow

USPA USPB

Pseudo
1

2

3

4

5

6
7

Diagram only - no scale

Figure 11.1  GPS Survey Network on NMSU Campus
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Baseline 3, uspa to pseudo, observed 28 March 2002 (use subscript ap)

sxx  syy  szz

∆XAP = –528.036 m Sxx  9.505016E-08

∆YAP = 560.657 m Syy  8.957064E-08 3.729339E-07

∆ZAP = 585.897 m Szz –5.022282E-08 –2.221975E-07 3.363763E-07

Baseline 4, uspB to reilly, observed 28 March 2002 (use subscript Br)

sxx  syy  szz

∆XBR = –514.003 m Sxx  3.650165E-07

∆YBR = 741.438 m Syy  9.024127E-07 2.796189E-06

∆ZBR = 868.293 m Szz –6.189027E-07 –1.881145E-06 1.410196E-06

Baseline 5, Bromilow to reilly, observed 10 december 1998 (use subscript Mr)

sxx  syy  szz

∆XMR = 32.134 m Sxx  2.762550E-07

∆YMR = 51.175 m Syy  3.200312E-07 6.870545E-07

∆ZMR = 94.198 m Szz –2.008940E-07 –4.006259E-07 4.661596E-07

Baseline 6, pseudo to reilly, observed 23 January 2002 (use subscript pr)

sxx  syy  szz

∆XPR = 29.000 m Sxx  1.325760E-07

∆YPR = 165.422 m Syy  1.317165E-07 5.265054E-07

∆ZPR = 265.719 m Szz –7.253348E-08 –3.020965E-07 5.006575E-07

Baseline 7, Bromilow to pseudo, observed 23 January 2002 (use subscript Mp)

 sxx  syy  szz

∆XMP = 3.136 m Sxx  3.367818E-07

∆YMP = –114.242 m Syy  3.937476E-07 8.766570E-07

∆ZMP = –171.527 m Szz –5.186521E-07 –8.977932E-07 1.446501E-06

Blunder checks

In order to verify the absence of blunders in the baselines, misclosures were com-

puted for each component (X/Y/Z) as follows.

Traverse including baselines 1, 2, and 4 (from “Crucesair” to “Reilly”):

X Y Z

Station Crucesair –1,571,430.672 m –5,164,782.312 m 3,387,603.188 m

Baseline 1 15,752.080 m –5,179.102 m –903.089 m

Baseline 2 14.964 m –15.365 m –16.664 m

Baseline 4 –514.003 m 741.438 m 868.293 m

Computed value –1,556,177.631 m –5,169,235.341 m 3,387,551.728 m

Station Reilly –1,556,177.615 m –5,169,235.319 m 3,387,551.709 m

Misclosures –0.016 m –0.022 m 0.019 m
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The loop including baselines 2-3-7-5-4 (being careful to preserve sign convention):

Baseline 2 –14.964 m 15.365 m 16.664 m

Baseline 3 –528.036 m 560.657 m 585.897 m

Baseline 7 –3.136 m 114.242 m 171.527 m

Baseline 5 32.134 m 51.175 m 94.198 m

Baseline 4 514.003 m –741.438 m –868.293 m

Misclosures 0.001 m 0.001 m –0.007 m

The loop including baselines 5-6-7 (being careful to preserve sign convention):

Baseline 5 32.134 m 51.175 m 94.198 m

Baseline 6 –29.000 m –165.422 m –265.719 m

Baseline 7 –3.136 m 114.242 m 171.527 m

Misclosures –0.002 m –0.005 m 0.006 m

All baselines have been included in the checks, and all misclosures are acceptable. 
Therefore, it is legitimate to perform a least squares adjustment of the seven base-
lines to determine the “best” adjusted position for points USPA, USPB, Pseudo, 
and Bromilow. Any adjustment should also provide information on the quality of 
the answers (i.e., “What is the standard deviation of the computed position?”) in 
both the geocentric (X/Y/Z) reference frame and the local (east/north/up) reference 
frame. The full posted paper includes three different weighting schemes and shows 
a comparison of the various answers. The example here only shows the least squares 
results obtained using the full covariance matrix of each observed baseline in the 
“indirect observations” least squares model using one equation for each observation 
(3 observations per baseline × 7 baselines = 21 observations). The weight matrix was 
computed as the inverse of the covariance matrix of the observations with an a priori 
reference variance of 1.0.

 v + B∆ = f (11.10)

 W = (1.0) Σ –1 (11.11)

The posted paper shows a formulation of the matrices used in the solution for 
all three weighting possibilities. Those details are not included here, but the solu-
tion shown below was formulated as a linear problem and the matrix solution was 
obtained as

 ∆ = (Bt W B)–1 Bt W f, or, stated differently, ∆ = N–1 Bt W f (11.12)
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where

∆	= vector of parameters (answers),
N	 = matrix of normal equations (BtWB) (N–1 contains statistics for the 

answers),
W	= weight matrix obtained from baseline covariance matrices,
B = matrix of coefficients for the unknown parameters,
f = vector of constants computed from known values and observations, and
v = vector of residuals.

N–1 is a normal part of a least squares adjustment and is shown in Figure 11.2.
The estimated (a posteriori) reference variance was computed as

 
σ0

2 =
v Wvt

r
 = 12.8006 m2 (11.13)

where

v = vector of residuals,
W = weight matrix,
r = the redundancy,

and the covariance matrix of the computed parameters is the product of the reference 
variance and the N–1 matrix, as shown in Figure 11.3.

results

The geocentric X/Y/Z coordinates of the four unknown points as shown in Fig-
ure 11.4 were computed directly in the least squares adjustment, while the geodetic 
latitude, geodetic longitude, and ellipsoid height were computed from the X/Y/Z val-
ues using the BK2 transformation. The covariance matrix of each new point is the 
3 × 3 submatrix shown in Figure 11.3, and the standard deviations of the geocentric 
X/Y/Z coordinates were computed as the square root of the variances as found in 
Figure 11.3. The standard deviations at each point in the local reference frame (e/n/
u) were computed using equation 11.5 and the computed latitude/longitude at each 
station.

network accuracy and local accuracy

Datum accuracy, network accuracy, and local accuracy are defined mathematically 
in equation 11.9. Datum accuracy is a statement of how well the position of a single 
point is known with respect to the published datum. Network accuracy can be intui-
tively understood to be a statement of accuracy between points based upon how well 
the positions are known with respect to the control held by the user. It is presumed 
the points are independent—that is, there is no correlation of one with respect to 
the other as might be determined by a direct tie between them. Alternatively, local 
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accuracy can be understood to be a statement of accuracy between points based upon 
a direct measurement between the points. The following paragraphs describe the 
results of computing both network accuracy and local accuracy from point USPA to 
point Pseudo. The Excel spreadsheet shown in appendix C (the file is called “3-D 
Inverse with statistics.xls”) was used to generate the values in Table 11.1 and can be 
obtained gratis from the author at http://www.globalcogo.com.

When using the Excel spreadsheet, the user keys information into the spreadsheet 
and answers appear instantaneously. Input includes the names of the two stations, 
the geocentric X/Y/Z coordinates of the two points, and the covariance information. 
When computing the inverse, the direction and distance will remain the same but 
the standard deviations will be different depending upon the covariance information 
input by the user. Four choices (cases) for entering covariance information are:

 1. All standard deviations are entered as zeros. That means there is no stan-
dard deviation available and the X/Y/Z coordinate data are used as being 
“fixed.” The spreadsheet will still compute the local tangent plane direction 
and distance between points, but there will be no standard deviations asso-
ciated with the inverse direction and distance.

 2. The user can enter the standard deviations of the geocentric X/Y/Z coordi-
nates as variances (standard deviations squared). These covariance data are 
entered on the diagonal of the geocentric covariance matrix for each point. 
The spreadsheet computes the local reference frame covariance matrix 

 λ 

 λ

 λ

 λ 

FIgure 11.4 Geocentric and Local Reference Frames Positions and Standard Deviations
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(showing the local component e/n/u standard deviations of each point), the 
inverse direction and distance standpoint to forepoint, and the standard 
deviation of the direction and the distance. Local and network accuracy 
will be identical because no correlation data were entered.

 3. The user can enter the full covariance matrix for each point. This is the 
“best” inverse one can get without also providing correlation information. 
This answer is “network” accuracy and presumes that the coordinates of the 
two points are statistically independent of one another. Local accuracy will 
compute as being identical to network accuracy because no correlation data 
are provided.

 4. Or, the user may enter the full covariance matrix at each point as well as the 
correlation matrices between points. The correlation of the forepoint with 
respect to the standpoint is the transpose of the correlation of the standpoint 

taBle 11.1

comparison of network and local accuracies
uspa (standpoint) pseudo (forepoint)

X = –1,555,678.579 m X = –1,556,206.615 m

Y = –5,169,961.396 m Y = –5,169,400.740 m

Z = 3,386,700.089 m Z = 3,387,285.987 m

coordinate differences from standpoint to forepoint are:

∆X = –528.036 m ∆e = –667.190 m

∆Y = 560.656 m ∆n = 700.811 m

Z∆ = 585.898 m ∆u = –12.448 m

Note: Dist e n= +∆ ∆2 2  and tanα = ∆
∆

e
n

 (same for each case following).

network 
accuracy local accuracy

1. No standard deviations Distance = 967.615 m +/– 0.0000 m 0.0000 m

Direction = 316º 24’ 28.”2 +/– 0.00 sec. 0.00 sec.

2. Standard deviations of X/Y/
Z values only

Distance = 967.615 m +/– 0.0031 m 0.0031 m

Direction = 316º 24’ 28.”2 +/– 0.53 sec 0.53 sec.

3. Full covariance matrix of 
each X/Y/Z point 

Distance = 967.615 m +/– 0.0018 m 0.0018 m

Direction = 316º 24’ 28.”2 +/– 0.40 sec. 0.40 sec.

4. Full covariance matrix and 
correlation submatrix 

Distance = 967.615 m +/– 0.0018 m 0.0011 m

Direction = 316º 24’ 28.”2 +/– 0.40 sec. 0.24 sec.
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with respect to the forepoint. It is redundant, but both correlation matrices 
need to be entered (the astute Excel user will quickly rekey the appropriate 
cells so that correlation data need to be entered only once).
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12 Using the GSDM

IntroductIon

Using the GSDM is primarily a matter of choosing to do so. The technology is already 
in place, and all equations and procedures are in the public domain. Although the 
GSDM contains no new science, it does represent a different way of organizing and 
storing spatial data. The intent in defining the GSDM was to begin with the assump-
tion of a single origin for 3-D data and, from that, to build a collection of procedures 
that can be used to handle 3-D spatial data more efficiently. Due to overlaps with 
existing practice, the decision to use the GSDM need not be “all or nothing.” For 
many, the transition to using the GSDM will lie between two extremes.

Start with a small project, and build a 3-D database while using the GSDM. 
Anyone can input autonomous latitude, longitude, ellipsoid height, and point 
names or descriptors as obtained from a simple handheld GPS receiver. 
Standard deviations are optional—the default value is 0.0. But provable 
values or reasonable estimates for standard deviations are appropriate. Each 
point record includes a point number, ECEF coordinates, an associated 
covariance matrix, and a descriptor.

  If using GPS vector data, the beginning control points are defined with 
ECEF coordinates as obtained from a reliable source and entered into the 
database. Subsequent field observations are processed to obtain ECEF 
coordinate differences (a baseline vector), and new points are defined by 
adding those differences to points already in the 3-D database. The X/Y/Z 
(ECEF) coordinates of any project (large or small) are compatible with all 
other ECEF coordinates on the same datum the world over. If included, 
the positional quality (standard deviation) of each point is described by its 
covariance matrix.
Build a 3-D database before using it. Points in existing horizontal and verti-
cal databases are systematically converted to ECEF coordinate values and 
stored in an integrated 3-D database. The challenge will be to make sure that 
each point has a legitimate ECEF 3-D definition. It may be possible to build 
a reliable 3-D database with few (or no new) field ties, but the mathematical 
conversion of existing data will need to be done with great care. For example, 
datum compatibility will be a huge issue, and the orthometric height of each 
vertical point will need to be converted to ellipsoid height using a proven 
(acceptable) geoid model. But the saving grace is that the GSDM accommo-
dates the standard deviation of each point—whatever it is. So long as a stan-
dard deviation reliably reflects the quality of the newly defined point in the 
3-D database, there is no need for datum conversions to be “perfect.” Well-
documented professional judgment and consistent application of adopted 

•

•
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policies will serve to protect the reputation of a named 3-D database. Each 
subsequent person who uses information from a given database must be able 
to rely on the statistical quality of data obtained therefrom.

Regardless of how the 3-D database is started or established, once information 
is stored as ECEF coordinates and covariances, then interoperability has been estab-
lished and any or all users have the option of using that information in a multitude of 
applications. The user is responsible for subsequent manipulation of the data. Ideally, 
the rules of such manipulation will be easy to understand and will be bidirectional 
so that new data can be added to the 3-D database. (In this context, there needs to be 
a careful discussion of administrative responsibility for databases—master, global, 
national, regional, agency, discipline, project, task, local, and temporary. That dis-
cussion is beyond the scope of this book.) Of course, any data added to the database 
will be done under appropriate authority and will meet established quality control 
criteria. However, it should be understood that a reliable standard deviation of any 
quantity is more important than how big it is. The GSDM competently handles 3-D 
data with large standard deviations just as well as it handles data with small standard 
deviations. The difference lies in the quality of the answer obtained when using 
those data. Data with large standard deviations will provide answers with large stan-
dard deviations.

The actual transition to using the GSDM will vary among persons and organiza-
tions. Many will begin using the GSDM only when they see it as being in their self-
interest to do so. Arriving at that conclusion or developing such a consensus will take 
time. At the beginning of a new project or on a given date, it could be decreed that 
GSDM policies and procedures will henceforth be used. That approach would be the 
most efficient way to implement the GSDM—given a compatible database has been 
developed. But, developing a 3-D database will also take time and resources. The 
presumption is that each user or organization will explore and discover what is best 
for the circumstance. Many of the individual procedures described in this book are 
already being used and will continue to be useful. However, as users become more 
comfortable with how the individual pieces relate to the whole, resistance to using 
the GSDM will be reduced. The goal is that spatial data practices will evolve in such 
a manner that the underlying features of the GSDM will be recognized as common 
ground for practice worldwide. It is conceivable and anticipated that the GSDM will 
eventually become the global standard for handling geospatial data.

Once we get beyond the “magic” of electronic signal processing and have access 
to the spatial data components from our GPS receivers (or other sensors), all we 
need are the rules of solid geometry to keep track of where we are or where we’ve 
been. No, it is not quite that easy, as we still need to deal with issues of datums, 
coordinate systems, units, and whether the data are relative or absolute. But, the 
GSDM provides a unique bridge between the builders and operators of measure-
ment systems and spatial data users in many disciplines all over the world. Using 
the same GSDM and 3-D database, rocket scientists, engineers, photogrammetrists, 
surveyors, and others can continue working in a rigorous global environment while 
local users simultaneously enjoy the luxury of working with flat-Earth rectangular 
components. The GSDM will be useful to novice and expert alike.
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Features

The GSDM has two primary features—the functional model and the stochastic 
model. The functional model is a collection of equations and geometrical relation-
ships that can be used to describe a unique position anywhere within the birdcage of 
orbiting GNSS (global navigation satellite systems) satellites. The optional stochas-
tic model is a set of rules or procedures that can be used to keep track of standard 
deviations of the observations, the derived measurements, the computed or stored 
coordinates, and any quantity computed from them.

The FuncTional Model

Because geospatial data are connected to the Earth and because spatial data are 3-D, 
the “big-picture” geometrical relationships included in the GSDM involve a lot of 
geometrical geodesy. Given previous use of 2-D latitude and longitude on the ellip-
soid surface, rules of classical geodesy are still very useful and need to be included. 
However, given that local users view a “flat Earth” from a given point, the underlying 
model needs to provide simple rectangular plane surveying answers with the same 
integrity as when providing answers on the ellipsoid. The GSDM does both. Func-
tional model equations are listed in chapter 1 and derived in chapter 6—except for 
the rotation matrix, which is derived in appendix A.

The following is an oversimplified summary of models. In the first approxima-
tion, the world is considered flat. That assumption is appropriate for many local 
applications. A spherical Earth is a better model and is useful for many “big-picture” 
applications in geography and navigation. An ellipsoidal Earth model has been used 
for triangulation computations (and other applications requiring a high level of geo-
metrical integrity) for over 200 years. The GSDM goes one step beyond those to 
model geospatial data in 3-D space. Given the digital revolution and enormous data 
storage capability, each user now has the option of viewing geospatial data from 
any origin or perspective. With simple solid geometry relationships at our disposal, 
each user can enjoy the luxury of unique ECEF absolute X/Y/Z coordinates while 
simultaneously working with local relative coordinate differences (in any previous 
model)—all without sacrificing the geometrical integrity of the observations, the 
measurements, or the data.

The STochaSTic Model

The stochastic model can be used to assign standard deviations to the position of any 
point in any direction—that is, standard deviation in the north-south direction, in the 
east-west direction, and in the up-down direction or in the ECEF reference frame. 
With practice and appropriate software, determining those standard deviations can 
be fairly straightforward. Even so, spatial data users need to be specific when quot-
ing standard deviations by stating the context (i.e., “with respect to what”). Possible 
options include the following:

With respect to the NAD83
With respect to the ITRF

•
•
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With respect to the WGS84
With respect to the geoid
With respect to the control held by the user
With respect to an implied or unstated datum

Given the sheer volume of spatial data being generated and used, and given the 
possible consequences of bad answers, the issue of spatial data accuracy is becoming 
increasingly important, and statements of spatial data accuracy need to be unambig-
uous. In the past, the quality of geodetic surveys was often described with adjectives 
such as “first-order,” “second-order,” and so on. Such categories worked for those 
familiar with geodetic surveying, but the standards were largely distance dependent 
and were expressed as ratios—for example, one part in 100,000 is first-order. While 
that criterion was appropriate for long triangulation lines, it is very difficult to meet 
first-order specifications when measuring short lines. One part in 100,000 translates 
to 0.0001 meters in 10 meters.

In the 1990s, the Federal Geographic Data Committee (FGDC; 1998) developed 
“Geospatial Positioning Accuracy Standards, Part 2: Standards for Geodetic Net-
works.” Several comments are as follows:

The new standards are part of a larger effort to quantify spatial data accu-
racy in many categories, not just those used in geodetic surveying.
The new standards have a better theoretical basis and use a positional toler-
ance criterion rather than a ratio of precision to describe spatial data quality.
The first-order, second-order, and so on categories have been replaced with 
names that are more intuitive.
The standards are more closely aligned with modern positioning (GNSS) 
technology and provide a more intuitive “meter stick” against which to 
make comparisons.
The FGDC standards are quoted at the 95 percent confidence level and are 
applicable to 3-D data as well as 2-D data.
The FGDC standards discuss local accuracy and network accuracy with-
out providing a specific mathematical definition. While mostly compatible, 
the mathematical definition for network accuracy and local accuracy as 
provided by equation 1.36 in chapter 1 (and repeated in chapter 11) goes 
beyond that provided by the FGDC.

Table 12.1 is a portion of the accuracy standards taken from the FGDC (1998) 
web site.

Meta data are data about data. Concepts of meta data were developed in paral-
lel with GIS, and meta data are a very important part of working with spatial data. 
One reason for the popularity of meta data is that meta data contain more than just 
metrical characteristics. For images and photogrammetric data, for example, meta 
data include information such as the name of the organization collecting the data, 
the equipment used to record the observations, the flying height of aircraft, the time 
of day, and other details. Given appropriate meta data, equipment calibration details, 
and knowledgeability of the data reduction overall process, reasonable professionals 

•
•
•
•

•

•

•

•

•

•
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place justifiable reliance on the quality of the resulting information. Typically, meta 
data apply to a particular data set—often a very large data set. The accuracy of an 
individual point is stated as being representative of many points in the same data 
set sharing similar characteristics. Although not exclusive, meta data are often con-
sidered to be more appropriate when working with raster data as opposed to vector 
data.

Certainly meta data will continue to be important, but, when working with vec-
tor data, the GSDM provides some very powerful advantages. The GSDM contains 
algorithms for determining the standard deviation of each point in all three direc-
tions. Without knowing any of the meta data associated with points in the GSDM 
database, a numerical filter can be imposed to screen out any data not meeting a 
positional tolerance criterion selected by the user.

The following statements include some crystal ball speculation. As storage 
capacity becomes more affordable, it will be feasible to convert more raster data 
to vector data. At some point in the future, it will be possible (and sometimes war-
ranted) for each pixel in a raster image file to have its geospatial location defined by 
ECEF coordinates and to have the associated point covariance matrix stored for each 
point. Since raster data are already stored, an alternative would be to develop, store, 
and use an algorithm for converting raster data to ECEF vector data (ECEF coordi-
nates and covariances) on an “as needed” basis. That would avoid duplicate storage 
requirements while permitting raster data to be converted and used in a vector envi-
ronment. With that capability in place, many silos of existing electronic imagery can 
be readily accessible to spatial data users for a multitude of applications.

table 12.1

summary of FGdc accuracy standards
Horizontal, ellipsoid Height, and orthometric Height

accuracy classification 95% confidence

less than or equal to

1 millimeter 0.001 meters

2 millimeters 0.002 meters

5 millimeters 0.005 meters

1 centimeter 0.010 meters

2 centimeters 0.020 meters

5 centimeters 0.050 meters

1 decimeter 0.100 meters

2 decimeters 0.200 meters

5 decimeters 0.500 meters

1 meter 1.000 meters

2 meters 2.000 meters

5 meters 5.000 meters

10 meters 10.00 meters
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database Issues

A statement of the obvious is “Don’t mix datums in a 3-D database.” One of the chal-
lenges of using GNSS data is knowing what datum to choose. In the United States, 
there are three obvious choices—the NAD83, the WGS84, and the ITRF. At the 
gross level, it does not matter which datum is used. As computed in chapter 3 using 
spherical trigonometry, the distance from New Orleans to Chicago is 1,359.4 kilo-
meters. Later, in chapter 6, the GSDM was used to find the distance as 1,356.5 kilo-
meters. That difference is primarily the effect of using an ellipsoidal Earth in place 
of a spherical Earth. Furthermore, the latitude-longitude positions in each city were 
listed only to the nearest 1 second of arc, giving an implied tolerance of about 30 
meters at each end of the line. The GSDM inverse in chapter 6 assumed the latitude-
longitude positions were “exact” and achieved a proven answer within a centimeter 
on the same line. Now, if the only difference is to recompute the inverse using the 
WGS84 as the ellipsoid (on the WGS84 datum) instead of the GRS80 ellipsoid (on 
the NAD83 datum), the GSDM answer is still within 1 cm (left as an exercise for the 
reader). So, why does the datum make a difference? The datum makes a difference 
because the origins of the two datums are not at the same place. The relative dif-
ferences on the two datums are very nearly identical, but the absolute positions are 
different. In the New Orleans to Chicago example just cited, the latitude/longitude 
values were taken to be the same, but the same latitude/longitude values represent 
two different points on the ground in New Orleans and two different points on the 
ground in Chicago. The egregious mistake would be to inverse from New Orleans on 
one datum to Chicago on another datum. Of course, even a discrepancy of a meter or 
two in the distance from New Orleans to Chicago would hardly be significant if the 
comparison were being made to the nearest kilometer. The rule may be conservative 
but still stands: don’t mix datums in a 3-D database.

Other database issues are related to records, fields, and format. A BURKORDTM 
database contains two kinds of records—a point record and a correlation record. There 
is no specified order for records in the database, but the first field in each record is 
reserved for flexibility and future use. Any refinements to the generic format listed here 
will be identified on the Global COGO, Inc., web site, http://www.globalcogo.com.

Additional uses may be defined in the future, but any such changes are intended 
to preserve compatibility with the following format. Any record beginning with a 
“p” is a point record, and any record beginning with a “c” is a correlation record. The 
specified format for each type is as follows:

A point record contains the following fields, space or comma delimited.
Attribute field—string characters (no blanks):

 1. First character (required) is reserved.
 A. “p” is a point record.
 B. “c” is a correlation record—see below.
 2. Next three characters (optional) are project identifiers.
 3. Characters 5 to n (also optional) are the prerogative of the user.

Point number must be an integer.
X/Y/Z coordinate values—three double precision fields.

•

•
•
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Variances of X/Y/Z—three double precision fields.
Covariances XY, XZ, and YZ—three double precision fields.
Station name—string characters (blanks OK prior to end of record).

A point-to-point correlation record contains the following fields, space or 
comma delimited.
Attribute field—string characters (no blanks):

 1. First character (required) is reserved.
 A. “p” is a point record—see above.
 B. “c” is a correlation record.
 2. Next three characters (optional) are project identifiers.
 3. Characters 5 to n (also optional) are the prerogative of the user.

Two point numbers—two integer fields.
X1X2, X1Y2, and X1Z2 covariances—three double precision fields.
Y1X2, Y1Y2, and Y1Z2 covariances—three double precision fields.
Z1X2, Z1Y2, and Z1Z2 covariances—three double precision fields.

An example of the BURKORDTM database file format is given in Table 12.2.

•
•
•

•

•
•
•
•

table 12.2

example of a burKordtM database File
New Mexico State University (NMSU)—Las Cruces, New Mexico

GPS Network for Control Points on NMSU Campus—EFB 2005

p, 1001, –1571430.672, –5164782.312, 3387603.188, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, Crucesair 

p, 1002, –1556177.615, –5169235.319, 3387551.709, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, Reilly

p, 1003, –1555678.579, –5169961.396, 3386700.089, 2.161E-6, 8.474E-6, 6.812E-6, 2.347E-6, –
1.496E-6, –5.017E-6, USPA

p, 1004, –1555663.613, –5169976.761, 3386683.419, 3.114E-6, 2.182E-5, 1.094E-5, 6.968E-6, –
4.671E-6, –1.420E-5, USPB

p, 1005, –1555206.615, –5169400.740, 3387285.987, 1.242E-6, 4.506E-6, 4.182E-6, 1.343E-6, –
9.212E-7, –2.775E-6, Pseudo

p, 1006, –1556209.750, –5169286.496, 3387457.512, 2.081E-6, 5.554E-6, 4.668E-6, 2.367E-6, –
1.768E-6, –3.609E-6, Bromilow

c, 1003, 1005, 1.141E-6, 1.285E-6, –8.927E-7, 1.293E-6, 4.240E-6, –2.576E-6, –8.829E-7, –2.568E-
6, 3.603E-6

Note: The first two lines are headers—string data of user’s choice. Only one correlation record is shown. 
Numbers for other point-pair combinations are in the matrix shown in Figure 11.3.
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IMpleMentatIon Issues

This section looks specifically at characteristics of the GSDM and discusses some of 
the implications associated with implementation. Issues include, but are not limited 
to, the following:

The GSDM accommodates modern measurement procedures and digital data.
The GSDM uses proven rules of solid geometry and vector algebra in a 
global rectangular environment.
The 3-D database is simple and equally applicable the world over.
While the underlying standard insures interoperability, geospatial data 
users in any discipline have complete freedom to be innovative in derivative 
applications. Traditional 2-D applications are fully supported.
Orthometric heights are referenced to the elusive geoid, while ellipsoid 
heights are referenced to the Earth’s center of mass. Full adoption of the 
GSDM presumes ellipsoid heights will be used to describe the third dimen-
sion. Geoid modeling will still be needed and used by those requiring pre-
cise hydraulic grade lines.
The stochastic feature provides tools by which spatial data accuracy can be 
established, tracked, and used.
The GSDM provides a concise mathematical definition of network accu-
racy and local accuracy.
Absolute X/Y/Z coordinates for any point in the “birdcage” of satellites are 
globally unique. As appropriate, any user is free to convert those coordi-
nates to other systems such as latitude/longitude/height, UTM, and state 
plane or other coordinate systems.
The GSDM does not provide for transformations between datums. But, 
datum-to-datum relationships are best modeled in terms of ECEF coordi-
nates using the standard seven-parameter transformation.
Relative coordinate differences of ∆X/∆Y/∆Z are not very intuitive for 
humans. But, given the ease with which geocentric differences can be 
rotated to local tangent plane differences, the local flat-Earth user has 
immediate access to plane surveying rectangular components.
Distances from standpoint to forepoint are in the local tangent plane and 
are identical to the HD(1) distance defined in Burkholder (1991). Other dis-
tances can be computed, if needed, without disturbing the coordinates in 
the database.
Important point! The tangent plane from “here” to “there” is not the same 
as the tangent plane from “there” to “here.” Within a very small tolerance, 
the 3-D azimuth (Burkholder 1997) is the true geodetic azimuth from 
standpoint to forepoint. To the geodesist, this is as it should be. However, 
for plane surveying applications, the P.O.B. datum feature should be used.
When using the P.O.B. datum, all distances between points are in the same 
tangent plane through the P.O.B., and the azimuths are grid azimuths with 
respect to the true meridian through the P.O.B. The implication of this 
feature is that two surveys referenced to separate P.O.B.’s and sharing a 

•
•

•
•

•

•

•

•

•

•

•

•

•
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common line will have two azimuths for the same line. That difference of 
the two azimuths is the convergence of the meridian between the respective 
P.O.B.’s. That “problem” is resolved by identifying the P.O.B. for the sur-
vey on each plat. The underlying ECEF coordinates and their covariances 
remain unchanged in each case.
With these features of the GSDM already defined, in place, and universally 
available, there is no need for a “low-distortion projection.”
Ellipsoid heights and their standard deviations are obtained directly from 
ECEF coordinates in the 3-D database. Geoid modeling procedures will 
be used to obtain orthometric heights if needed. The broader question is 
“Why are orthometric heights needed?” Unless grades are very critical for 
hydraulic grade lines (in which case dynamic heights and height differ-
ences should be used), an ellipsoid height difference readily approximates 
an orthometric height difference. Geoid modeling will still be used by those 
for whom the difference matters.
Comments and rhetorical questions:

 1. Satellites orbit the physical center of mass of the Earth.
 2. The center of mass of the Earth is quite stable, whereas the geoid moves 

up and down during the Earth’s daily rotation.
 3. CORS stations fixed to bedrock also go up and down during the day—

Earth tides.
 4. Do CORS stations and the underlying geoid go up and down together?
 5. GPS data can be used to monitor the daily motion of a precisely sur-

veyed CORS station.
 6. Is the mean ellipsoid height of a CORS station preferred to the instan-

taneous ellipsoid height? How precisely can an instantaneous ellipsoid 
height be determined?

 7. What difference, if any, does it make that ellipsoid heights are absolute 
(they move up and down daily relative to the center of mass) while 
orthometric heights are relative (benchmarks move up and down during 
the day along with the geoid)?

applIcatIons and exaMples

Examples of using the GSDM are posted on the Global COGO web site. Three of 
them are as follows:

http://www.globalcogo.com/nmsunet1.pdf
http://www.globalcogo.com/gpselev1.pdf
http://www.globalcogo.com/3Dgps2Dplat.pdf

The first example is highlighted in chapter 11, but more details are included 
on the web site posting. This project illustrates the process of collecting GPS data, 
processing the baselines, checking the misclosures, performing a least squares 
adjustment (using three different weighting options), developing the statistics for the 

•

•

•

•
•
•
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computed points, and using the GSDM to output results complete with a computa-
tion of network accuracy and local accuracy between two points.

The second example shows how GPS data were used in the context of the GSDM 
along with geoid modeling to determine the NAVD88 orthometric height of the A-
order HARN station on the NMSU campus. The procedure used is not that sanctioned 
by the NGS, but all steps are documented and the final elevation relies on, among 
other criteria, the quality of GEOID03. Although more rigorous procedures (such as 
dual-frequency GPS, longer sessions, and more first-order benchmarks) could have 
been used, the observed or computed elevation has a standard deviation of 3 mm and 
the computed elevation is consistent with other methods of observation. Questions 
about the stability of the existing first-order benchmarks may be legitimate.

The third example noted above illustrates the direct connection between 3-D 
GPS-derived positions and a 2-D plat of the survey. The direct connection lies in the 
use of the rotation matrix and the P.O.B. datum feature of the GSDM. Very briefly, 
the project consists of two HARN stations and Section 31, T23S-R1E, New Mexico 
Principal Meridian—all in the Las Cruces area. Section 31 is BLM property, con-
veniently lies between the two HARN stations, and, although strictly vacant desert 
land, enjoys convenient vehicular access. Details are posted on the web site and 
summarized here.

GPS data were collected on three separate days, and trivial vectors were care-
fully avoided. The NAD83 geocentric X/Y/Z coordinates as published by the NGS 
were held fixed for the two HARN points, and a least squares adjustment of the inter-
connected baselines provided the geocentric coordinates and standard deviations 
as shown in Table 12.3. The latitude, longitude, and ellipsoid heights and standard 
deviations were computed using the GSDM.

Using the points in Table 12.3, the southwest corner of Section 31 was chosen as 
the P.O.B., and local tangent plane coordinates (eastings and northings) were com-
puted for all points in the survey with respect to the SW corner. Those values are 
shown in Table 12.4 in meters.

Table 12.5 shows local tangent plane inverses around Section 31 referenced to 
the true meridian through the SW corner. Although meter units are the international 

table 12.3

3-d Gps points for 2-d survey
crucesair (Harn pt)

X = –1,571,430.6720 m fixed Lat. 32º 16’ 54.”63123 N fixed

Y = –5,164,782.3120 m fixed Long. 106º 55’ 22.”24784 W fixed

Z = 3,387,603.1880 m fixed El Hgt h = 1,326.250 m fixed

reilly (Harn pt)

X = –1,556,177.6150 m fixed Lat. 32º 16’ 55.92906 N fixed

Y = –5,169,235.3190 m fixed Long. 106º 45’ 15.16070 W fixed

Z = 3,387,551.7090 m fixed El Hgt h = 1,166.570 m fixed
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nW cor 31

eceF Frame local Frame

X = –1,568,446.9652 m +/– 0.0033 m Lat. 32º 16’ 16.51587 N +/– 0.0054 m

Y = –5,166,282.9266 m +/– 0.0077 m Long. 106º 53’ 16.50858 W +/– 0.0039 m

Z = 3,386,573.0861 m +/– 0.0044 m El Hgt h = 1,256.511 m +/– 0.0067 m

ne cor 31

eceF Frame local Frame

X = –1,566,906.8273 m +/– 0.0034 m Lat. 32º 16’ 16.50308 N +/– 0.0057 m

Y = –5,166,748.4577 m +/– 0.0080 m Long. 106º 52’ 15.04095 W +/– 0.0040 m

Z = 3,386,571.5363 m +/– 0.0046 m El Hgt h = 1,254.233 m +/– 0.0070 m

sW cor 31

eceF Frame local Frame

X = –1,568,698.0864 m +/– 0.0035 m Lat. 32º 15’ 24.28753 N +/– 0.0058 m

Y = –5,167,107.1198 m +/– 0.0083 m Long. 106º 53’ 16.54155 W +/– 0.0041 m

Z = 3,385,214.0743 m +/– 0.0047 m El Hgt h = 1,259.609 m +/– 0.0072 m

se cor 31

eceF Frame local Frame

X = –1,567,157.4899 m +/– 0.0035 m Lat. 32º 15’ 24.26696 N +/– 0.0058 m

Y = –5,167,571.1861 m +/– 0.0081 m Long. 106º 52’ 15.08320 W +/– 0.0041 m

Z = 3,385,211.2732 m +/– 0.0047 m El Hgt h = 1,255.365 m +/– 0.0071 m

n 1⁄4 cor 31

eceF Frame local Frame

X = –1,567,682.4363 m +/– 0.0036 m Lat. 32º 16’ 16.72241 N +/– 0.0058 m

Y = –5,166,510.8119 m +/– 0.0080 m Long. 106º 52’46.03144 W +/– 0.0042 m

Z = 3,386,578.0990 m +/– 0.0048 m El Hgt h = 1,255.823 m +/– 0.0070 m

W 1⁄4 cor 31

eceF Frame local Frame

X = –1,568,572.7788 m +/– 0.0035 m Lat. 32º 15’ 50.39908 N +/– 0.0058 m

Y = –5,166,694.9985 m +/– 0.0080 m Long. 106º 53’ 16.53459 W +/– 0.0041 m

Z = 3,385,893.5160 m +/– 0.0048 m El Hgt h = 1,258.017 m +/– 0.0070 m

s 1⁄4 cor 31

eceF Frame local Frame

X = –1,567,928.0513 m +/– 0.0038 m Lat. 32º 15’ 24.28747 N +/– 0.0060 m

Y = –5,167,339.5732 m +/– 0.0083 m Long. 106º 52’ 45.81734 W +/– 0.0044 m

Z = 3,385,213.3104 m +/– 0.0050 m El Hgt h = 1,258.181 m +/– 0.0073 m

e 1⁄4 cor 31

eceF Frame local Frame

X = –1,567,032.6554 m +/– 0.0038 m Lat. 32º 15’ 50.37719 N +/– 0.0059 m

Y = –5,167,160.8706 m +/– 0.0082 m Long. 106º 52’ 15.06861 W +/– 0.0043 m

Z = 3,385,891.8435 m +/– 0.0048 m El Hgt h = 1,255.952 m +/– 0.0072 m
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standard, the distances were converted to feet to illustrate the flexibility of the 
GSDM with respect to units. When displaying the data, the user is free to use units 
of choice. A note here is that because coordinate differences were used and because 
none of those differences on the plat is more than 2 kilometers, it does not matter 
whether the U.S. Survey Foot definition or the International Foot is used. Chains or 
other units could also be used. Figure 12.1 is a plat of the survey.

WbK soFtWare

As stated in chapter 1, the term BURKORDTM has been trademarked to cover soft-
ware developed and marketed by Global COGO, Inc. The original BURKORD  

table 12.4

local p.o.b. coordinate differences

point description
p.o.b. east 
(meters)

p.o.b. north 
(meters)

p.o.b. up  
(meters)

1001 Crucesair –3,290.100 2,783.992 65.183

1002 Reilly 12,598.767 2,831.217 –106.099

1013 NW Cor Sec 31 0.863 1,609.117 –3.302

1014 NE Cor Sec 31 1,609.819 1,608.850 –5.783

1015 SW Cor Sec 31 0.000 0.000 0.000

1016 SE Cor Sec 31 1,608.970 –0.506 –4.447

1017 N Quarter Cor Sec 31 798.622 1,615.512 –4.041

1018 W Quarter Cor Sec 31 0.182 804.478 –1.643

1019 S Quarter Cor Sec 31 804.355 0.030 –1.479

1020 E Quarter Cor Sec 31 1,609.224 803.931 –3.910

table 12.5

Inverse directions and distances based on p.o.b. Values
azimuth

From point to point dMs distance

SW Cor W Quarter Cor 0 00 46.7 2,639.357 ft

W Quarter Cor NW Cor 0 02 54.5 2,639.889 ft

NW Cor N Quarter Cor 89 32 26.7 2,617.399 ft

N Quarter Cor NE Cor 90 28 13.7 2,661.492 ft

NE Cor E Quarter Cor 180 02 32.6 2,640.808 ft

E Quarter Cor SE Cor 180 01 05.2 2,639.222 ft

SE Cor S Quarter Cor 270 02 17.4 2,639.807 ft

S Quarter Cor SW Cor 269 59 52.3 2,638.955 ft
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FIGure 12.1  2-D Plat of 3-D Survey
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program was DOS based, was menu driven, and served very well as a prototype for 
proof of concept. The Windows version of BURKORD is called WBK and will even-
tually be available as a commercial product. In the meantime, a fifty-point version is 
called WBK-Basic and is available free upon request. Follow the appropriate link on 
the Global COGO, Inc., web page, http://www.globalcogo.com.
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Appendix A: Rotation 
Matrix Derivation
A rotation matrix is a collection of equations expressed in matrix form and used to 
change the perspective associated with spatial data. In the case of the GSDM, the 
perspective changes from looking at points in the geocentric ECEF reference frame 
to viewing the same data from the perspective of one occupying a given point (called 
the point of beginning, or P.O.B.) and viewing all other points as if standing at the 
selected origin.

One way of applying the rotation matrix is to recompute the coordinates of each 
point with respect to the original origin. Another approach is to apply the rotation 
matrix to the vector from the P.O.B. to any other point in the database. The GSDM 
uses the second approach. That means the geocentric coordinate differences are 
found first. Then the rotation matrix is applied to the ECEF vector components, 
and the result is local “flat-Earth” components from the P.O.B. to the selected point. 
Although it could be argued that the requirement to compute values of the rotation 
matrix for each P.O.B. is a disadvantage, several advantages are as follows:

 1. The underlying primary data (ECEF coordinates) are not modified and 
remain available for immediate recomputation—such as selecting a differ-
ent P.O.B.

 2. After using the rotation matrix, the local components of any vector appear 
to the user as rectangular flat-Earth plane-surveying components. These 
components can be used in a variety of operations as selected by the user.

 3. The process is reversible in that local perspective components can also be 
rotated into the ECEF perspective, making such differences compatible with 
X/Y/Z points already stored in the database. The X/Y/Z coordinates of new 
points are established using simple addition and subtraction operations.

 4. If the spatial data user needs more traditional values for a point, such as lati-
tude-longitude or state plane coordinates, those values are also immediately 
available by rigorous computation (though not involving a rotation matrix) 
from the geocentric ECEF values stored in the database.

Admittedly, the derivation of the rotation matrix is tedious, but it really is not 
that difficult. The convention is that a positive rotation is counterclockwise as viewed 
looking at the origin from the positive direction along the axis being rotated (Leick 
2004). This rule needs to be applied once for each of the three possible axes. That 
process yields three separate matrices—one for each rotation. This part is generic 
without regard to being attached to the Earth, and each rotation is illustrated in a 
separate diagram. Figure A.1 shows a positive rotation (R1) about the X axis. Figure 
A.2 shows a positive rotation (R2) about the Y axis. And, Figure A.3 shows a positive 
rotation (R3) about the Z axis.
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Y 

Y' 

Z 
Z' 

X 

X' = X
Y' = Y cos θ + Z sin θ
Z' = –Y sin θ + Z cos θ

θ 

In matrix form,  

X'
Y'
Z'

1 
= 0 

0 

0 0 
cos θ sin θ 
–sin θ cos θ 

X
Y
Z

(A.1) 

Figure A.1 R1 Rotation about the X Axis

Y

Z
Z'

X

θ 

X'

Y' = Y
X' = X cos θ + Z sin θ

Z' = X sin θ + Z cos θ

In matrix form,  

X'
Y'
Z'

= 0 
0 
1 

cos θ 
0 

0 sin θ 

–sin θ 

cos θ 

X
Y
Z

(A.2) 

Figure A.2 R2 Rotation about the Y Axis

Y 
Y' 

Z 

X 

θ 

X' 

Z'  =  Z

X' = X cos θ + Y sin θ
Y' = –X sin θ + Y cos θ

In matrix form,  

X'
Y'
Z'

= –sin θ cos θ 
cos θ 

0 
0 0 

sin θ 0 

1 

X
Y
Z

(A.3) 

Figure A.3 R3 Rotation about the Z Axis
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With each rotation quantified, the process is applied to vectors (coordinate dif-
ferences) attached to the Earth. Starting with the X/Y/Z axes of the ECEF reference 
frame, the first rotation is a positive rotation about the Z axis (R3) to bring the Y axis 
into the vertical plane of the local meridian. The angular amount is determined by 
the longitude of the selected P.O.B. and is computed as east longitude + 90º. A full 
circle can be subtracted if the sum goes over 360º. The second rotation is also a posi-
tive rotation about the X axis (R1) to bring the Y axis into the local geodetic horizon. 
The two rotations describe movement of the original Y axis in two rotations—first 
is a positive rotation about the Z axis, then a second positive rotation about the X 
axis. Other rotation sequences could be used to obtain the same result. The original 
∆X/∆Y/∆Z vector is right-handed, and the rotated differences are also right-handed 
if used as ∆e/∆n/∆u. 

Multiplication of the two matrices is shown below. The rules of matrix multi-
plication require the sequence to be as shown in equation A.1. In equation A.2, the 
actual latitude and longitude of the selected P.O.B. are used, and equation A.3 is a 
simplification based upon making substitutions for trigonometric identities. Finally, 
equation A.4 is the form of the rotation matrix given in chapter 1, equation 1.21.

It is stated without proof here that equation 1.22 uses the transpose of the rota-
tion matrix to convert the local geodetic horizon perspective to the ECEF perspec-
tive. Being able to use the transpose for the reverse computation is a consequence of 
the two right-handed systems both being orthogonal—see chapter 3 (Vanicek and 
Krakiwsky 1986).

Now, using the matrices in Figure A.1 and Figure A.3, the process is attached to 
the Earth in the following matrix statement.
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334 The 3-D Global Spatial Data Model

Abbreviations for projection types: (T.M.) = transverse Mercator

(O.M.) = oblique Mercator

(L.) = Lambert conic conformal

Latitudes and longitudes are given as DD MM, and all longitudes are given as west longitudes.

   

Zone Projection Latitude Easting 

Code Type Longtitude Northing

Alabama:

AL East 0101 T.M. 85 50 85 50 200,000 m

30 30 0.0 m

AL West 0102 T.M. 87 30 87 30 600,000 m

  30 30 0.0 m

Alaska:

AK Zone 1 5001 O.M. 133 40 5,000,000.0 m

57 00 -5,000,000.0 m

AK Zone 2 5002 T.M. 142 00 142 00 500,000.0 m

 54 00 0.0 m

AK Zone 3 5003 T.M. 146 00 146 00 500,000.0 m

54 00 0.0 m

AK Zone 4 5004 T.M. 150 00 150 00 500,000.0 m

54 00 0.0 m

AK Zone 5 5005 T.M. 154 00 154 00 500,000.0 m

54 00 0.0 m

AK Zone 6 5006 T.M. 158 00 158 00 500,000.0 m

54 00 0.0 m

AK Zone 7 5007 T.M. 162 00 162 00 500,000.0 m

54 00 0.0 m

AK Zone 8 5008 T.M. 166 00 166 00 500,000.0 m

54 00 0.0 m

AK Zone 9 5009 T.M. 170 00 170 00 500,000.0 m

54 00 0.0 m

AK Zone 10 5010 L. 51 50 176 00 1,000,000.0 m

53 50 51 00 0.0 m

Arizona:

AZ East 0201 T.M. 110 10 110 10 213,360.0 m

31 00 0.0 m

AZ Central 0202 T.M. 111 55 111 55 212,360.0 m

31 00 0.0 m

AZ West 0203 T.M. 113 45 113 45 213,360.0 m

31 00 0.0 m

Note: State defines origin in International Feet. 213,360 m = 700,000 International Feet.

Arkansas:

AR North 0301 L. 34 56 92 00 400,000.0 m

36 14 34 20 0.0 m

AR South 0302 L. 33 18 92 00 400,000.0 m

34 46 32 40 400,000.0 m

1:10,000

1:10,000

1:15,000

1:10,000

1:10,000

1:10,000

1:10,000

1:10,000

Defining Constants for the 1983 State Plane Coordinate System

Source: NOAA Manual NOS NGS 5, State Plane Coordinate System of 1983.

1:10,000

State and

Zone Name Standard Parallels (L.)

1:25,000

1:15,000

Axis azimuth = atan (–3/4)

1:10,000

Grid OriginCentral Meridian

and Scale Factor (T.M.) or

1:10,000

1:10,000

Earl F. Burkholder 1 '14 August 2007

63014_A002.indd   334 3/4/08   11:15:09 AM



Appendix B: 1983 Plane Coordinate System Constants 335

   

Zone Projection Latitude Easting 

Code Type Longtitude Northing

California:

CA Zone 1 0401 L. 40 00 122 00 2,000,000.0 m

41 40 39 20 500,000.0 m

CA Zone 2 0402 L. 38 20 122 00 2,000,000.0 m

39 50 37 40 500,000.0 m

CA Zone 3 0403 L. 37 04 120 30 2,000,000.0 m

38 26 36 30 500,000.0 m

CA Zone 4 0404 L. 36 00 119 00 2,000,000.0 m

37 15 35 20 500,000.0 m

CA Zone 5 0405 L. 34 02 118 00 2,000,000.0 m

35 28 33 30 500,000.0 m

CA Zone 6 0406 L. 32 47 116 15 2,000,000.0 m

33 53 32 10 500,000.0 m

Colorado:

CO North 0501 L. 39 43 105 30 914,401.8289 m

40 47 39 20 304,800.6096 m

CO Central 0502 L. 38 27 105 30 914,401.8289 m

39 45 37 50 304,800.6096 m

CO South 0503 L. 37 14 105 30 914,401.8289 m

38 26 36 40 304,800.6096 m

Connecticut:

CT 0600 L. 41 12 72 45 304,800.6096 m

41 52 40 50 152,400.3048 m

Delware:

DE 0700 T.M. 75 25 75 25 200,000.0 m

38 00 0.0 m

Florida:

FL East 0901 T.M. 81 00 81 00 200,000.0 m

24 20 0.0 m

FL West 0902 T.M. 82 00 82 00 200,000.0 m

24 20 0.0 m

FL North 0903 L. 29 35 84 30 600,000.0 m

30 45 29 00 0.0 m

Georgia:

GA East 1001 T.M. 82 10 82 10 200,000.0 m

30 00 0.0 m

GA West 1002 T.M. 84 10 84 10 700,000.0 m

30 00 0.0 m

Hawaii:

HI Zone 1 5101 T.M. 155 30 155 30 500,000.0 m

 18 50 0.0 m

HI Zone 2 5102 T.M. 156 40 156 40 500,000.0 m

 20 20 0.0 m

HI Zone 3 5103 T.M. 158 00 158 00 500,000.0 m

21 10 0.0 m

HI Zone 4 5104 T.M. 159 30 159 30 500,000.0 m

21 50 0.0 m

HI Zone 5 5105 T.M. 160 10 160 10 500,000.0 m

21 40 0.0 m

1:30,000

1:100,000

1:100,000

1:infinity

1:200,000

1:17,000

1:17,000

1:10,000

1:10,000

1:30,000

Zone Name Standard Parallels (L.)

and Scale Factor (T.M.) orState and

Grid OriginCentral Meridian

Earl F. Burkholder 2 '14 August 2007
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Zone Projection Latitude Easting 

Code Type Longtitude Northing

Idaho:

ID East 1101 T.M. 112 10 112 10 200,000.0 m

41 40 0.0 m

ID Central 1102 T.M. 114 00 114 00 500,000.0 m

41 40 0.0 m

ID West 1103 T.M. 115 45 115 45 800,000.0 m

41 40 0.0 m

Illinois:

IL East 1201 T.M. 88 20 88 20 300,000.0 m

36 40 0.0 m

IL West 1202 T.M. 90 10 90 10 700,000.0 m

36 40 0.0 m

Indiana:

IN East 1301 T.M. 85 40 85 40 100,000.0 m

37 30 250,000.0 m

IN West 1302 T.M. 87 05 87 05 900,000.0 m

37 30 250,000.0 m

Iowa:

IA North 1401 L. 42 04 93 30 1,500,000.0 m

43 16 41 30 1,000,000.0 m

IA South 1402 L. 40 37 93 30 500,000.0 m

41 47 40 00 0.0 m

Kansas:

KS North 1501 L. 38 43 98 00 400,000.0 m

39 47 38 20 0.0 m

KS South 1502 L. 37 16 98 30 400,000.0 m

38 34 36 40 400,000.0 m

Kentucky:

KY North 1601 L. 37 58 84 15 500,000.0 m

38 58 37 30 0.0 m

KY South 1602 L. 36 44 85 45 500,000.0 m

37 56 36 20 500,000.0 m

KY 1600 L. 37 05 85 45 1,000,000.0 m

Note: Zone 1600 38 40 36 20 1,500,000.0 m

is a single new zone.

Louisiana:

LA North 1701 L. 31 10 92 30 1,000,000.0 m

 32 40 30 30 0.0 m

LA South 1702 L. 29 18 91 20 1,000,000.0 m

30 42 28 30 0.0 m

LA Offshore 1703 L. 26 10 91 20 1,000,000.0 m

27 50 25 30 0.0 m

Maine:

ME East 1801 T.M. 68 30 68 30 300,000.0 m

43 40 0.0 m

ME West 1802 T.M. 70 10 70 10 900,000.0 m

42 50 0.0 m

1:15,000

1:40,000

1:17,000

1:30,000

1:30,000

1:10,000

1:30,000

State and and Scale Factor (T.M.) or

Zone Name Standard Parallels (L.)

1:19,000

1:19,000

Central Meridian Grid Origin

Earl F. Burkholder 3 '14 August 2007

63014_A002.indd   336 3/4/08   11:15:10 AM



Appendix B: 1983 Plane Coordinate System Constants 337

   

Zone Projection Latitude Easting 

Code Type Longtitude Northing

Maryland:

MD 1900 L. 38 18 77 00 400,000.0 m

39 27 37 40 0.0 m

Massachusetts:

MA Mainland 2001 L. 41 43 71 30 200,000.00 m

42 41 41 00 750,000.00 m

MA Island 2002 L. 41 17 70 30 500,000.00 m

41 29 41 00 0.0 m

Michigan:

MI North 2111 L. 45 29 87 00 8,000,000.0 m

47 05 44 47 0.0 m

MI Central 2112 L. 44 11 84 22 6,000,000.0 m

45 42 43 19 0.0 m

MI South 2113 L. 42 06 84 22 4,000,000.0 m

43 40 41 30 0.0 m

Minnesota:

MN North 2201 L. 47 02 93 06 800,000.0 m

48 38 46 30 100,000.0 m

MN Central 2202 L. 45 37 94 15 800,000.0 m

47 03 45 00 100,000.0 m

MN South 2203 L. 43 47 94 00 800,000.0 m

45 13 43 00 100,000.0 m

Mississippi:

MS East 2301 T.M. 88 50 88 50 300,000.0 m

29 30 0.0 m

MS West 2302 T. M. 90 20 90 20 700,000.0 m

29 30 0.0 m

Missouri:

MO East 2401 T.M. 90 30 90 30 250,000.0 m

35 50 0.0 m

MO Central 2402 T.M. 92 30 92 30 500,000.0 m

35 50 0.0 m

MO West 2403 T.M. 94 30 94 30 850,000.0 m

36 10 0.0 m

Montana:

MT 2500 L. 45 00 109 30 600,000.0 m

49 00 44 15 0.0 m

Nebraska:   

NE 2600 L. 40 00 100 00 500,000.0 m

43 00 39 50 0.0 m

Nevada:

NV East 2701 T.M. 115 35 115 35 200,000.0 m

34 45 8,000,000.0 m

NV Central 2702 T.M. 116 40 116 40 500,000.0 m

34 45 6,000,000.0 m

NV West 2703 T.M. 118 35 118 35 800,000.0 m

34 45 4,000,000.0 m

Grid Origin

State and and Scale Factor (T.M.) or

Zone Name Standard Parallels (L.)

Central Meridian

1:17,000

1:10,000

1:10,000

1:10,000

1:20,000

1:20,000

1:15,000

1:15,000

Earl F. Burkholder 4 '14 August 2007
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Zone Projection Latitude Easting 

Code Type Longtitude Northing

New Hampshire:

NH 2800 T.M. 71 40 71 40 300,000.0 m

42 30 0.0 m

New Jersey:

NJ (NY East) 2900 T.M. 74 30 74 30 150,000.0 m

38 50 0.0 m

New Mexico:

NM East 3001 T.M. 104 20 104 20 165,000.0 m

31 00 0.0 m

NM Central 3002 T.M. 106 15 106 15 500,000.0 m

31 00 0.0 m

NM West 3003 T.M. 107 50 107 50 830,000.0 m

31 00 0.0 m

New York:

NY East 3101 T.M. 74 30 74 30 150,000.0 m

(New Jersey) 38 50 0.0 m

NY Central 3102 T.M. 76 35 76 35 250,000.0 m

40 00 0.0 m

NY West 3103 T.M. 78 35 78 35 350,000.0 m

40 00 0.0 m

NY Long Island 3104 L. 40 40  74 00 300,000.0 m

41 02  40 10 0.0 m

North Carolina:

NC 3200 L. 34 20 79 00 609,601.22 m

36 10 33 45 0.00 m

North Dakota:

ND North 3301 L. 47 26 100 30 600,000.0 m

48 44 47 00 0.0 m

ND South 3302 L. 46 11 100 30 600,000.0 m

47 29 45 40 0.0 m

Ohio:

OH North 3401 L. 40 26 82 30 600,000.0 m

41 42 39 40 0.0 m

OH South 3402 L. 38 44 82 30 600,000.0 m

40 02 38 00 0.0 m

Oklahoma:

OK North 3501 L. 35 34 98 00 600,000.0 m

36 46 35 00 0.0 m

OK South 3502 L. 33 56 98 00 600,000.0 m

35 14 33 20 0.0 m

Oregon:

OR North 3601 L. 44 20 120 30 2,500,000.0 m

46 00 43 40 0.0 m

OR South 3602 L. 42 20 120 30 1,500,000.0 m

44 00 41 40 0.0 m

Pennsylvania:

PA North 3701 L. 40 53 77 45 600,000.0 m

41 57 40 10 0.0 m

PA South 3702 L. 39 56 77 45 600,000.0 m

40 58 39 20 0.0 m

Zone Name Standard Parallels (L.)

1:30,000

1:10,000

Central Meridian Grid Origin

State and and Scale Factor (T.M.) or

1:11,000

1:10,000

1:12,000

1:10,000

1:16,000

1:16,000

Earl F. Burkholder 5 '14 August 2007
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Zone Projection Latitude Easting 

Code Type Longtitude Northing

Rhode Island:

RI 3800 T.M. 71 30 71 30 100,000.0 m

41 05 0.0 m

South Carolina:

SC 3900 L. 32 30 81 00 609,600.0 m

34 50 31 50 0.0 m

South Dakota:

SD North 4001 L. 44 25 100 00 600,000.0 m

45 41 43 50 0.0 m

SD South 4002 L. 42 50 100 20 600,000.0 m

44 24 42 20 0.0 m

Tennessee:

TN 4100 L. 35 15 86 00 600,000.0 m

36 25 34 20 0.0 m

Texas:

TX North 4201 L. 34 39 101 30 200,000.0 m

36 11 34 00 1,000,000.0 m

TX North Centra 4202 L. 32 08 98 30 600,000.0 m

33 58 31 40 2,000,000.0 m

TX Central 4203 L. 30 07 100 20 700,000.0 m

31 53 29 40 3,000,000.0 m

TX South Centra 4204 L. 28 23 99 00 600,000.0 m

30 17 27 50 4,000,000.0 m

TX South 4205 L. 26 10 98 30 300,000.0 m

27 50 25 40 5,000,000.0 m

Utah:

UT North 4301 L. 40 43 111 30 500,000.0 m

41 47 40 20 1,000,000.0 m

UT Central 4302 L. 39 01 111 30 500,000.0 m

40 39 38 20 2,000,000.0 m

UT South 4303 L. 37 13 111 30 500,000.0 m

38 21 36 40 3,000,000.0 m

Vermont:

VT 4400 T.M. 72 30 72 30 500,000.0 m

42 30 0.0 m

Virginia:

VA North 4501 L. 38 02 78 30 3,500,000.0 m

39 12 37 40 2,000,000.0 m

VA South 4502 L. 36 46 78 30 3,500,000.0 m

37 58 36 20 1,000,000.0 m

Washington:

WA North 4601 L. 47 30 120 50 500,000.0 m

48 44 47 00 0.0 m

WA South 4602 L. 45 50 120 30 500,000.0 m

47 20 45 20 0.0 m

1:28,000

Grid Origin

1:160,000

State and and Scale Factor (T.M.) or

Zone Name Standard Parallels (L.)

Central Meridian

Earl F. Burkholder 6 '14 August 2007
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Zone Projection Latitude Easting 

Code Type Longtitude Northing

West Virginia:

WV North 4701 L. 39 00 79 30 600,000.0 m

40 15 38 30 0.0 m

WV South 4702 L. 37 29 81 00 600,000.0 m

38 53 37 00 0.0 m

Wisconsin:

WI North 4801 L. 45 34 90 00 600,000.0 m

46 46 45 10 0.0 m

WI Central 4802 L. 44 15 90 00 600,000.0 m

45 30 43 50 0.0 m

WI South 4803 L. 42 44 90 00 600,000.0 m

44 04 42 00 0.0 m

Wyoming:

WY East 4901 T.M. 105 10 105 10 200,000.0 m

40 30 0.0 m

WY East Central 4902 T.M. 107 20 107 20 400,000.0 m

40 30 100,000.0 m

WY West Central 4903 T.M. 108 45 108 45 600,000.0 m

40 30 0.0 m

WY West 4904 T.M. 110 05 110 05 800,000.0 m

40 30 100,000.0 m

Puerto Rico and Virgin Islands:

PR 5200 L. 18 02 66 26 200,000.0 m

18 26 17 50 200,000.0 m

1:16,000

Zone Name Standard Parallels (L.)

1:16,000

1:16,000

1:16,000

Central Meridian Grid Origin

State and and Scale Factor (T.M.) or

Earl F. Burkholder 7 '14 August 2007
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980 ellipsoid: a = m ccentricity squared =

1/f = econds per radian =

andpoint:

X = m +/- m

Y= m +/- m

Z= m + - m

orepoint:  

X = m +/- m

Y= m +/- m

Z= m +/- m

s zero and implies the point positions are independent.

are present. Correlation of the standpoint with respect to

tion of the forepoint with respect to the standpoint.

D M Sec.

= 32 16 N +/- m

= 253 14 E +/- m

 106 45 W +/- m

h = m +/- m

D M Sec.

= 32 16 N +/- m latitude and height.

= 253 15 E +/- m

 106 44 W +/- m

h = m +/- m

Local covariance =

R = R =

R(t) = R(rt) =

3-D Inverse with Statistics

Standpoint Forepoint

-0.243630161 -0.809652164

0.511308090.845454141

0.000000000

0.845513029

0.533954790

Page 2

0.153946349

0.957551239

-0.80956566

0.511378351

-0.288263117

0.153856283-0.53395479

0.000000000 -0.53395479

0.153856283

-0.288144775

0.957551239 0.153946349 -0.243713246

-0.243713246 0.534048028

0.8454541410.000000000

-0.8096521640.511308090-0.2881447750.511378351-0.288263117

0.5339547900.845513029

1,178.0154 0.0036

48.908170 0.0014

-2.5759E-06

-2.5676E-06 3.6030E-06

Appendix C: 3-D Inverse with Statistics
Used to compute values in Table 11.1.

11.091830 0.0014

0.00271,165.6411

Must iterate to find

0.0009

0.0009

4.2401E-06

Forepoint:

23.000192 0.0017

Standpoint: Pseudo

USPA

45.746506

45.600250

14.399750

1.2848E-06 4.2401E-06 -2.5676E-06 1.2934E-06

-8.9269E-07 -2.5759E-06 3.6030E-06 -8.8294E-07

(Default values = zero implies point is held fixed.)

-8.9269E-071.2848E-061.1405E-06

Correlation of Standpoint wrt Forepoint

1.2934E-061.1405E-06

Correlation of Forepoint wrt Standpoint

3,386,700.0890

-8.8294E-07

(user inputs these values)

0.000006810.0026

-5,169,961.3960 0.00000235 0.00000847 -0.000005020.0029

-0.00000150 -0.00000502

-0.00000278

0.00000418

(user inputs these values)

ECEF Covariance Matrix for Forepoint

(Default values = zero implies point is held fixed.)

-1,555,678.5790 0.00000216 0.00000235 -0.000001500.0015

0.00000134 0.00000451

-0.00000092 -0.00000278

0.0011

USPA

-5,169,400.7400

3,387,285.9870

0.0021

0.0020

6,378,137.000

298.257222100883

0.006694380022903

206,264.806247096

From local co-

variance matrix

0.0013

0.0000000000.534048028

-0.80956566

-0.243630161

Pseudo ECEF Covariance Matrix for Standpoint

-1,556,206.6150 0.00000124 0.00000134 -0.00000092
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Appendix C: Example Computation—Network Accuracy and Local Accuracy 343

Local Tangent Plane Inverse from Standpoint to Forepoint: to

X =

R = Y =

Z =

e = m m

n = m

u = m 136 24

Use ATAN2 function: Azi =   

Equation 1.36 from chapter 1 and repeated as equation 11.9 in chapter 11 is used as  

the basis for computing both network accuracy and local accuracy standard deviations.

If the submatrices on the upper right and lower left are zero, the computed answer will be 

network accuracy.  Local accuracy is obtained if the full covariance matrix is used.

Network accuracy standpoint to forepoint is computed assuming no correlation between points.

Local accuracy is computed using the full covariance matrix (including correlation input by user).

to

Tangent Plane Distance = m +/- m +/- m  

3-D Azimuth  = 136 24  +/- sec +/- sec

2.380699743 radians

Distance =

Azimuth =

667.238 967.6168

-700.768

12.301

USPA

0.957551239 -0.288263117 0.000000000 528.036

14.57

0.0000008970-0.0000002289

Pseudo

0.153946349 0.511378351 0.845454141

0.0000132790.0000011510.0000046360.0000073896

0.0000008970 -0.000000273 0.000002778

0.0000007718

0.0000000474 0.0000017695

0.000004636-0.0000002730.000002042-0.0000002289

0.000001151

0.0000000474

Local Reference Frame Covariance:

Standpoint Forepoint

-0.243713246 -0.80956566 0.534048028

-560.656

-585.898

14.57 0.40 0.24

0.0018 0.0011

Pseudo USPA

967.6168
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A
AASHTO (American Association of State 

Highway Transportation Officials), 96
accuracy

absolute, 295
errors and, 61–62
precision and, 62
relative, 295, 296

ACSM (American Congress on Surveying and 
Mapping), 185

Adams, Oscar S., 257
addition, 40
advanced processing, 242
aircraft landings, automated, 238
al Mamun, Caliph Abdullah, 125
Alaska, 249, 279, 280–281

Juneau, 286
Lambert conic conformal projection, 259
oblique Mercator projection, 259, 286
transverse Mercator projection, 259
zones and, 258

Alexandria, 125
distance to Syene, 124

algebra, 43–44
boolean, 44

algorithm for traditional model, 9–14
algorithms for traditional map projections, 

266–288
Lambert conic conformal projection, 267–270
low-distortion projections, 286–288
oblique Mercator projection, 279–285
transverse Mercator projection, 271–278

altitude, 192
American Association of State Highway 

Transportation Officials, see 
AASHTO (American Association 
of State Highway Transportation 
Officials)

American Congress on Surveying and Mapping, 
see ACSM (American Congress on 
Surveying and Mapping)

American Society of Civil Engineers, see ASCE 
(American Society of Civil Engineers)

American Society of Photogrammetry 
and Remote Sensing, see 
ASPRS (American Society of 
Photogrammetry and Remote 
Sensing)

American Standard Code for Information 
Interchange, see ASCII (American 
Standard Code for Information 
Interchange)

angle-right on a radial stakeout, 105
angles, 26, 45–46

Euclidean geometry and, 45
geometry of, 45

anti-spoofing (A-S), see A-S (anti-spoofing)
approximations for π based on area of unit circle, 

98
Arabs, 125

decimal system, 36–37
architects, 113
Arctic Circle, 127
arc-to-cord correction, 263
area

adjacent to a spiral, 102–103
of a circle, 96, 97
by coordinates, 90, 90
formed by curves, 96
of a sector and a segment, 97

Aristotle, 124
arithmetic, 43
arithmetic, mathematical concepts of, 43
A-S (anti-spoofing), 231
ASCE (American Society of Civil Engineers), 

185, 202
Ascension Island, South Atlantic, 225
ASCII (American Standard Code for Information 

Interchange), 38
characters, 236

ASPRS (American Society of Photogrammetry 
and Remote Sensing), 27, 202

ASPRS (American Society of Photogrammetry 
and Remote Sensing) 1994, 185

astronomy, geodetic, 117
Aswan Dam, 124
atomic clocks, 230
augmentation, 244
Australia, 186–187
autonomous processing, 238–239
axioms of addition (for real numbers A, B, and 

C), 44
axioms of equality (for real numbers A, B, and 

C), 44
axioms of multiplication (for real numbers A, B, 

and C), 44
azimuth, 80, 81
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B
Babylonians, 37
Bagdad, 125
Bestor, O. B., 257
binary system, 38

mathematical concepts of, 38
Birdseye, Colonel C. H., 257
BK1 transformation, 143, 144, 145

example of, 146–147
BK10 (Forward) transformation

algorithms for, 277–279
for Lambert conic conformal projection, 

269–271
for oblique Mercator projection, 284–286
for transverse Mercator projection, 275–276

BK10 and BK11 Transformations for Lambert 
Projections, example of, 272, 280

BK10 and BK11 Transformations for Oblique 
Mercator Projection, example of, 287

BK11 (Inverse) transformation
for oblique Mercator projection, 284–285
for transverse Mercator projection, 275–276

BK18 by integration, 165
BK18 Numerical Integration Printout, 167
BK19 Numerical Integration, 168
BK2 transformation, 144–145, 146

example of, 147
iterations, 144, 147, 148
once-through Vincenty method, 145

BK2 transformation, Vincenty’s method (same 
point), 147

ellipsoid surface area, 154
example of, 148
length of a parallel, 152
meridian arc length, 149–151
surface area of a sphere, 152–153

BLM (U.S. Bureau of Land Management), 222, 
225

“National Integrated Land System (NILS),” 
120

property, 324
blunder checks, 307, 308–309
blunders, 60
boolean algebra, 44
Brazil, 249
Bureau of Land Management, see BLM (U.S. 

Bureau of Land Management)
Burkholder, Earl F., 130
BURKORD database, 219, 320, 326

example of file, 321, 321
geocentric covariance matrix and, 302
GSDM computational environment and, 242
images and, 252
software and, 17
types of records and, 217
WBK software (WIndows version of 

BURKFORD), 327

C
calculus, 55, 55–57

differential, 55, 57
example, 55–57
integral, 55, 57
mathematical concepts of, 55–57

California, 258, 261
California Science Center in Los Angeles, 119
Canada, 185, 193, 209
Canberra, Australia, 187
Canopus (constellation), 125
Cape Canaveral, Florida, 225
carrier phase, 233
Cartesian coordinate system, see coordinate 

system, Cartesian
Cartesian models, two-dimensional, 83–85

engineering/surveying reference system, 84
math/science reference system, 83

cartography, 249
Cassini, Jacques, 127–128
Cassini, Jean Dominique, 127–128
cellular telephones, GPS (Global Positioning 

System) and, 131
Chicago, 53, 54, 175, 177, 179, 320
China, 38
circle, 46
circular curves, 91–97

area formed by curves, 96
area of unit circle, 96
degree of curve, 92
elements and, 93, 93–94
equations and, 93–94
metric considerations, 96
stationing, 95

circular trigonometric functions, 51
Clairaut’s constant, 157, 164–166, 168, 169, 177
Claire, Charles N., 257
Clarke Spheroid of 1866, 137, 184–186, 214

used in North America, 136
Clinton, Bill, 120
coarse acquisition (C/A) code, 226, 231, 232, 243

elapsed time and, 229
receivers, 229

coarse acquisition (C/A) code handheld receivers
datum for, 238–239
display, 239
time and, 239
units and, 239

Coast Survey, 259
COGO (coordinate geometry), 85–90

area by coordinates, 90
forward, 85
forward computation equations, 100
intersections, 86–89
inverse, 85
operations, 85, 109
perpendicular offset, 89
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procedures, 85
relationships, 172
three-dimensional programs, 24
two-dimensional, 114

Cold War, satellite-positioning technology and, 
221

Collioure, 127
Colorado, 225
Colorado Springs, Colorado, 225
Columbus, Christopher, 122
combined factor for a line, 265
Committee on the North American Datum 1971, 

186
Compass Rule, 266
computation network accuracy and local 

accuracy, example, 341–344
computational designations, 6–9
computations, 301

three-dimensional, 109
two-dimensional, 109

computer science, 38
computers, development of, 129
confidence intervals, 64
conformal projections, state plane coordinate 

system (SPCS), 262
conic sections, 49–50
constants (1983), SPCS (state plane coordinate 

system), 334–340
continuously operating reference station, see 

CORS (continuously operating 
reference station)

control values and observed vectors, 306
Conventional Terrestrial Pole, see CTP 

(Conventional Terrestrial Pole)
conventions, 36, 55

decimal, 36
fractions, 36
numbers, 36

convergence, 75–76
of meridians, 263

conversions, 38–39
mathematical concepts of, 38

coordinate geometry, see COGO (coordinate 
geometry)

coordinate systems, 39, 74
Cartesian, 3, 20, 39, 79, 183, 291
diagram showing relationship of, 5
geodetic, 20, 22
latitude/longitude/height, 322
spatial data and, 20
three-dimensional rectangular, 39
two-dimensional, three-dimensional, and 

geodetic, 80
Coordinated Universal Time, see UTC 

(Coordinated Universal Time)
coordinates, arbitrary local, 299
coordinates, geodetic

absolute, 298
Coordinating Committee on Great Lakes Basic 

Hydraulic and Hydrologic Data, 194
Corpscon Windows-based program, 195, 196
corrections to previous direction and distance, 

171
CORS (Continuously Operating Reference 

Station), 191, 192, 244
data transformations, 191
position, 210, 299
stations, 301, 323

Council of State Governments, 259
Crucesair, 307
CTP (Conventional Terrestrial Pole), 20, 81, 186, 

194, 211
ECEF (Earth-centered Earth-fixed) 

coordinates and, 3
cube, 48
current status: NAD83 State Plane Coordinate 

Systems, 261

D
data, geospatial

Earth and, 317
three-dimensional (3-D), 253

data base, three-dimensional, 76, 315, 316
data transformations, 195

HTDP (horizontal time-dependent 
positioning), 196

NAD27 to NAD83 (86), 195
NAD83(86) to HPGN (high-precision 

geodetic network), 195
NGVD29 to NAVD88, 196
seven- or (fourteen-) parameter 

transformation, 196–197
software sources, 196

database records, formats of, 320–321
point record, 320
point-to-point correlation record, 321

datum
absolute, 300
accuracy, 297, 305
autonomous processing, 239

datums, geodetic, 183–198, 296
data transformations, 194–196
horizontal, 184–191
three-dimensional, 194
vertical, 192–194

Death Valley, California, 213
decimal, 36
decimal degrees, coarse acquisition (C/A) code 

handheld receivers and, 239
decimal meter, 128
deflection-of-the-vertical, 133–134, 141, 205, 

205, 207
direction of gravity and, 208
Laplace correction and, 204

63014_Index.indd   347 3/4/08   11:02:10 AM



348	 Index

Laplace equations and, 206
degree measurement, 124
degree of curve, 92
degree of curve radii, comparison of, 92
degrees, minutes, and seconds (decimal)

coarse acquisition (C/A) code handheld 
receivers and, 239

Delambre, Chevalier, 128
Department of Defense, see DOD (U.S. 

Department of Defense)
Department of Transportation, see DOT (U.S. 

Department of Transportation)
derived physical quantities, 25
Descartes, René

Cartesian coordinate system, 291
rules of logic and, 43

designations for spatial data computations and 
transformations, 10

DGPS (differential GPS positioning), 243
augmentation and, 244

Diego Garcia, Indian Ocean, 225
differences

relative geocentric coordinate, 298
relative local coordinate, 298

differencing
double, 235
options, 233
single, 235
triple, 235

differential GPS positioning, see DGPS 
(differential GPS positioning)

digital maps, 251
transition to, 293

digital revolution, consequences of, 292
increased knowledge of location, 292
more access to information, 292
more efficient movement of people, products, 

and resources, 292
nanotechnology, 292
reduction in privacy, 292

digital revolution, forces driving, 291
development of information technology, 

science, and management, 291
electronic signal processing, 291–292
enhanced spatial literacy, 292
miniaturization of circuits and physical 

devices, 291
satellite positioning, 292
transistors, 291

digits, Arabic, 36
dimension, geometry and, 45
display, autonomous processing, 239
distance, geometry and, 45
distance distortion, grid scale factor, 255
distortion, zones and, 258
division, 40–41
DMD (double-meridian-distance), 90

DOD (U.S. Department of Defense), 118, 187, 
221

Global Positioning System (GPS), 225
GPS tracking network, 189
Navigation Satellite TIming And Ranging 

(NAVSTAR) satellite system, 225
updates for GPS tracking network, 189

Doppler, Christian, 228
Doppler data, 187

use of with elapsed time, 228
Doppler effect, 224, 234, 235
Doppler measurements, 225
Doppler positioning, 225
Doppler shift, 228

GNSS positioning and, 227
for signal received (example), 228

DORIS (Doppler orbitography and radio 
positioning integrated by satellite), 
188

DOT (U.S. Department of Transportation), 96, 
210

double differencing, 235
double-meridian-distance, see DMD 

(double-meridian-distance)
Dowd, Charles F.

Saratoga Springs, N.Y., 121
standard time zones and, 121

Dracup, Joseph
U.S. Coast and Geodetic Survey, 257
“U.S. Horizontal Datums,” 184

Dunkirk, 127
dynamic height, 193, 203

E
Earth, 118, 152, 199, 227

center of mass, 3, 186, 189, 194, 209–210, 
212, 296, 301

curvature of, 7, 79
elevation, 121
ellipsoidal model of, 48, 113, 136, 317, 320
equator and, 20, 37, 134, 137, 142
as flat, 124, 204, 250
flattening of at the poles, 133, 139, 201
gravity and, 117, 118, 126, 208
history of, 122
latitude, 121
longitude, 121
magnetic field of, 81
measuring, 117, 118, 125, 149
meridian section quadrant, 142
North Pole and, 37
projection figures and, 252, 253
radius of, 54, 141
rotation of, 200
shape of, 122, 133, 137, 183
size of, 124, 133, 137
spherical model of, 55, 113, 124, 249, 317, 320
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spin axis of, 49, 134, 137, 158, 296
surface and, 20
tides of, 2, 323
view of satellites from, 224
view of the ellipsoid, 142

Earth-centered Earth-fixed coordinates, see 
ECEF (Earth-centered Earth-fixed) 
coordinates

Earthquake zones, 188
east/northings, 85
ECEF (Earth-centered Earth-fixed) coordinates, 

3, 119, 189, 205, 295, 296
absolute values and, 297
absolute X/Y/Z coordinates, 298, 317
baseline processing and, 240
coarse acquisition (C/A) code handheld 

receivers and, 239
datum to datum relationships and, 322
digital technology and, 142
of DOD Global Control Stations, 226
geocentric system, 21, 174, 298
GPS satellites and, 4
GSDM and, 20, 247, 250, 295, 315
handheld GPS equipment and, 27
image files and, 319
interferometry and, 229
metric in GSDM, 260
rectangular, 142, 188, 209, 261
spatial data and, 6, 80, 142
system, 118, 142
three-dimensional datum and, 194, 316
vector data and, 319

ECEF covariances, vector data and, 319
ECHO I satellite, 224
ECHO II satellite, 224
EDM (electronic distance meter), 24, 26, 30, 59, 

61, 74
Egypt, 124
elapsed time, GNSS positioning and, 227
electromagnetic spectrum, 230, 231
electronic distance meter, see EDM (electronic 

distance meter)
electronic imagery, spatial data users and, 319
elements and equations, 93
elevation, 238

generic, 202
as relative value, 297

elevation reduction factor, 214–215
uncertainty and, 215

Eleventh General Conference on Weights and 
Measures (1960)

redefinition of meter and, 260
(SI) International System of Units and, 37, 

260
ellipse, 46, 134–139, 135

eccentricity of, 135
flattening of, 135

geometry of, 46
semimajor and semiminor axes, 136

ellipsoid, 48, 133, 138, 140–142
ellipsoid radii of curvature, 140
equation of, 142
geoid and, 134
geometrical mean radius, 141
model of Earth and, 113
normal section radius of curvature, 141

ellipsoid, rotational, 142–143
equation of ellipsoid, 142
geocentric and geodetic coordinates, 142

ellipsoid heights, 203, 209, 299
as absolute, 323
as derived quantity, 298
GPS-derived, 210
as measurable physical quantity, 207
measurements and computations, 209
orthometric heights and, 211
referenced to Earth’s center of mass, 322
standard deviations and, 323

ellipsoid radii of curvature, 140
equator and, 140
poles and, 140

ellipsoid surface area, 154, 154
engineering/surveying reference system, 83, 

84–85
engineers, 113
England, 129, 144, 183
equation of a plane in space, 48
equation of a sphere in space, 48–49
equation of an ellipsoid centered on the origin, 49
equation-of-time (motion of earth vs. atomic 

time), 121, 212
equations of an ellipsoid centered on the origin, 

49
equator

determining distance from pole, 128
maps and, 249

equipotential surface, 202
Eratosthenes, 124

measurement of the Earth, 125
size of the Earth and, 183

error ellipses, 73
2-D plane coordinates and, 73
mathematical concepts of, 73

error propagation, 67–72, 301
equation, 72
mathematical concepts of, 67–72
theory of, 67

errors, 59–60, 61
bias and, 60
blunders, 60
environmental sources of, 61
instrumental sources of, 61
personal sources of, 61
precision and, 61–62
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random, 60
systematic, 60

Euclidean geometry, 261, 292
Euclidean space, 44, 45
Euler’s formula, 141, 169
Europe, navigation from, 125
European merchants, decimal system and, 37
European Space Agency, 227
Everest, George, 129
Excel spreadsheet, 312

F
FAA (Federal Aviation Administration), 244

WAAS (wide-area augmentation system), 244
Father’s Point/Rimouski

benchmark for IGLD85, 194
Quebec, Canada, 194, 209

Federal Aviation Administration, see FAA 
(Federal Aviation Administration)

Federal Geographic Data Committee, see FGDC 
(Federal Geographic Data Committee)

Federal Register, 260
FGDC (Federal Geographic Data Committee), 

318
NSDI (National Spatial Data Infrastructure) 

and, 120
standards, 296, 299, 318, 319

First General Adjustment of geodetic leveling in 
the US, 209

Flamsteed, John, 212
flat-Earth model, 183, 247, 295, 317

applications of, 296
computations, 292
GSDM and, 221–222
relationships, 79
uses of, 113, 133–134, 216

Florida, 255, 259
foot, 259
FORTRAN, 267
forward, 85
Forward (BK3), 173
fractions, 36
France, 128, 259
French Academy of Science, 37, 127

arc of triangulation from Paris to Amiens, 
126

geodetic surveying expeditions in Peru and 
Lapland, 127

standardized measurement and, 128
French Revolution, 128
functional model component of GSDM, 3–9, 317

algorithm for functional model, 9–13
computational designations, 6–8

Fundamental Wave Measurement, 234

G
Galilei, Galileo, 126
GALILEO (European satellite-position system), 

221, 222, 227, 231, 237
GALILEO satellite-position system, 227
gamma rays, 230
Gauss, Carl Friedrich, 128
Gauss mean radius, 141–142
general error ellipse, 73
generic triangle, 52
geocentric and geodetic coordinates, 4, 142
geocentric and local reference frames positions 

and standard deviations, 312
geocentric covariance matrix, 302–304
Geocentric Gravitational Constant, 186
geocentric X/Y/Z coordinates, 309
geodesic correction, 161–162
geodesy, 117–132

earthquakes and, 119
fields of, 117
forecast for the twenty-first century, 130
goals of, 118–121
historical perspective of, 123
nineteenth and twentieth century 

developments in, 128–129
religion and, 123
science and, 123

geodesy, geometrical, 117, 133–182, 224
BK1 transformation, 143
BK2 transformation, 144
ellipse, 134–139
ellipsoid, 140–142
geodetic line, 155–161
geodetic position computation: forward and 

inverse, 162–180
GSDM, 317
rotational ellipsoid, 142–143

geodesy, historical perspective of, 122–127
degree measurement, 124
religion, science and geodesy, 123

geodesy, physical, 197–220
definitions, 201–203
geoid modeling and, 213–219
GSDM (global spatial data model) and, 

216–217
interpolation and extrapolation, 207
measurements and computations, 206–211
processing GPS data, 236–241
time, 209

geodesy, satellite, 117, 221–223
differencing, 234–235
the future of survey control networks, 

245–246
GNSS (global navigation satellite systems) 

and, 221–248
history of satellite positioning, 224–226
modes of positioning, 227–229
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RINEX (Receiver Independent Exchange 
format), 235

satellite signals, 230–233
Geodesy in the Year 2000, 119
geodetic azimuths, 158–161

geodesic correction, 161
target height correction, 161

geodetic forward (BK18) and Inverse (BK19) 
computations, 163

Geodetic Glossary, 185
geodetic inverse (BK19 computation), 53
geodetic line azimuth using Clairaut’s constant, 

157
geodetic line numerical integration, 166
geodetic lines, 155–161

around the Earth, 156
Clairaut’s constant, 157
geodetic azimuths, 158–161

geodetic position computation: forward and 
inverse, 162–180

geodetic position computations using state 
plane coordinates, 172

GSDM 3-D geodetic position computations, 
173–179

numerical integration, 165–171
Puissant Forward (BK18), 162–163
Puissant Inverse (BK 19), 164

geodetic position computations using state plane 
coordinates, 172, 174

Geodetic Reference System of 1980, see GRS80 
(Geodetic Reference System of 1980)

“Geographic Information for the 21st Century” 
(NAPA 1998), 222

Geographic Information System, see GIS 
(Geographic Information System)

geoid, 133, 202, 298, 318
ellipsoid and, 134
movement of, 323

“Geoid Contours in North America,” U.S. Army 
Map Service, 209

geoid heights, 203, 207
difference in, 218

geoid modeling, 213
GSDM (global spatial data model) and, 216, 

322, 323
using, 218

geomatics, 117
geometrical means radius, 141
geometrical models for spatial data 

computations, 79–116
circular curves, 91–97
conventions, 80–82
coordinate geometry, 85–90
radical surveying, 104–105
spiral curves, 98–103
three-dimensional models for spatial data, 

109–114

two-dimensional Cartesian models, 83–84
vertical curves, 106–108

geometry, 44–47
coordinate, see COGO (coordinate geometry)
of intersections, 86, 184
solid, 48–50

geopotential number, 202–203
“Geospatial Positioning Accuracy Standards, 

Part 2: Standards for Geodetic 
Networks”

Federal Geographic Data Committee 
(FGDC), 318

Geospatial Solutions, 222
Germany, 230
GIS (Geographic Information System), 19, 118, 

222, 238
applications, 222
basic geodetic control and, 300
community, 261
databases and, 300
meta data and, 318

Global COGO, Inc., 320, 326, 328
Web site, 323

global navigation satellite systems, see GNSS 
(global navigation satellite systems)

Global Positioning System, see GPS (Global 
Positioning System)

Global Spatial Data Infrastructure, see GSDI 
(Global Spatial Data Infrastructure)

Global Spatial Data Infrastructure (GSDI), 2, 120
global spatial data model, see GSDM (global 

spatial data model)
globe and mercator grid, 250
GLONASS (Russian Global Navigation Satellite 

System), 221, 222, 231, 237
compared to GPS, 227

Glossary of the Mapping Sciences, 185
gnomonic projection, 251
GNSS (global navigation satellite systems), 221, 

222, 237, 317
computations, 247
surveying, 223
technology, 244, 245

GNSS data
choices in the United States, 320
ITRF, 320
North American Datum of 1983 (NAD83), 

320
WGS84, 320

GNSS positioning, 222, 227, 231, 292, 318
Doppler shift, 227
elapsed time, 227
interferometry, 227

Google, 236, 238
Gore, Al
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1998 speech “The Digital Earth: 
Understanding Our Planet in the 21st 
Century,” 120

speech at California Science Center in Los 
Angeles, 119

GPS (Global Positioning System), 105, 118, 
120, 211, 218, 237, 292; See also 
NAVSTAR satellite system

accuracy, 236–237, 246
aircraft landings and, 236, 238, 245
angles and, 26
antenna, 59
baselines, 223, 240, 305
base-station networks, 223
carrier phase data, 235
cellular telephones, 131
coarse acquisition (C/A) code, 226
concept, 222
control segment, 225
CORS network, 226
data and, 61, 161
earth-moving equipment and, 236
equipment, 27, 104
global recognition of, 129
as interpolation system for spatial data, 210
ITRF (International Terrestrial Reference 

Frame) and, 188–189
mapping, 226
measurement of distance and, 74
military purposes of, 225
navigation, 236
network, 210
observations, 205
operation of, 225
as passive system, 226
positioning, 59, 61, 230
procedures, 104
RTK surveying practices, 236
satellite geodesy and, 221–222
space segment, 225
spatial data and, 222, 236–237
surveys, 61, 118, 190, 226
unmanned aerial vehicle (UAV), 246
U.S. government and, 227
user segment, 225
vector processing, 237
very long baseline interferometry (VLBI) 

and, 230
WADGPS (wide area differential GPS) 

procedures, 190
GPS (Global Positioning System) data

monitor daily motion of CORS station, 323
GPS (Global Positioning System) data, 

processing, 203, 236–241, 239
autonomous processing, 238–239
collection of, 323
spatial data types and, 237

vector processing, 239–244
GPS (Global Positioning System) networks, 305

traditional, 241
GPS (Global Positioning System) processing, 244

absolute and relative considerations, 244
applications to, 238
Galileo and, 244
GLONASS (Russian Global Navigation 

Satellite System), 244
GNSS (global navigation satellite systems), 

244
GSDM (global spatial data model), 244
ITRF (International Terrestrial Reference 

Frame), 244
NAD83 (North American Datum of 1983), 

244
GPS (Global Positioning System) receivers, 191, 

192, 227, 233, 244
for civilian use, 226
handheld, 315
observing sessions for nontrivial vectors and, 

241, 316
GPS (Global Positioning System) satellites, 4, 

121, 145, 184, 209, 217, 227–228, 231
Earth’s center of mass and, 188
orbit parameters and, 299
orbits express in ITRF reference frame, 301
spatial data computations, 210
stored X/Y/Z locations and, 304

GPS (Global Positioning System) signal, 226, 
227, 230

L1 frequency, 230
L2 frequency, 230
radio waves and, 230
structure of, 230–231

GPS (Global Positioning System) technology, 6, 
142, 221

precise X ∆/Y∆/Z∆ components, 4
GPS (Global Positioning System) time, 230, 236

Coordinated Universal Time (UTC), 230
GPS (Global Positioning System), tracking 

stations, 225
Ascension Island, South Atlantic, 225
Cape Canaveral, Florida, 225
Colorado Springs, Colorado, 225
Diego Garcia, Indian Ocean, 225
Hawaii, Pacific Ocean, 225
Kwajalein, North Pacific Ocean, 225
Master Control Station of GPS system, 225

GPS (Global Positioning System) vector, 59, 237
data, 315

GPS Survey Network on NMSU Campus, 306
GPS World, 222
grade, 108
gravity, 296

absolute, 208
computations and, 208
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measurement of, 207, 208
physical geodesy and, 200
shape of the geoid and, 204

Great Lakes, 193
Great Lakes System, 122
Great Trigonometric Survey, see GTS (Great 

Trigonometric Survey)
Greeks, ancient, 121, 212
Greenwich, England, 144
Greenwich Mean Time, 121
Greenwich meridian, 83, 137, 183, 186, 297

ECEF (Earth-centered Earth-fixed) 
coordinates, 20

functional model component and, 3
geometry of rotational ellipsoid and, 134
section, 140

Greenwich Observatory, 121, 212
grid azimuth, 262
grid distance, 263–264

ellipsoid distance and, 265
grid scale factors, 265

comparison of, 255
distortion and, 255, 258

grid-ground distance difference, 258
GRS80 (Geodetic Reference System of 1980), 

137, 214, 267, 271, 320
ellipsoid, 188
NAD83 (North American Datum of 1983) 

and, 185, 186–187
WGS84 (World Geodetic System of 1984) 

and, 188
GRS89 (Geodetic Reference System of 1989) 

ellipsoid, 267
GSDI (Global Spatial Data Infrastructure), 19
GSDM (global spatial data model), 1–20, 3, 29, 

130, 221, 247, 324
accuracy, 19, 322
algorithms for determining standard 

deviation of each point in three 
directions, 319

applications and, 76, 323
assumptions and, 217
Burkholder, Earl F. and, 129
BURKORD software and database, 17
as a computational environment, 242
conventions used by, 83
coordinate systems and, 39
covariance matrices, 14, 302
database issues, 320
digital geospatial data and, 250
digital revolution and, 291–292
distance distortion and, 258
engineering and, 295, 316
error propagation concepts and, 297
errorless spatial data and, 30
flat-Earth differences and, 134
flat-Earth rectangular components, 316

functional model, 3–14, 317
geocentric matrices and, 302
geocentric X/Y/Z coordinates and, 215
geodesy and, 118, 199
geodetic inverse, 180
geometrical consistency of computational 

environment, 121
geospatial data and, 236, 317
GIS (Geographic Information System) and, 

295
GNSS-derived data, 236
GPS (Global Positioning System) and, 244, 

261, 324
implementation and, 262, 322
inventory, 295
low-distortion projections and, 286, 288, 323
mapping, 295
mathematical concepts and, 76
metric units and, 260
navigation, 295
networks and, 190, 322
photogrammetrists, 316
planning, 295
point-of-beginning (P.O.B.) datum 

coordinates, 299
policies and procedures, 315–316
spatial data and, 19, 24, 32, 58, 184, 222, 224, 

237, 292, 322
spatial relationships and, 28
standard deviation, 295–296, 319
stochastic model and, 6, 14–17, 197, 223, 

295–296, 317, 322
support for traditional 2-D applications, 322
surveying, 295, 316
three-dimensional azimuth and, 161
three-dimensional datums and, 188, 194–195, 

315, 316
three-dimensional geometrical relationships 

and, 119
three-dimensional model and, 114, 261, 296
three-dimensional spatial data and, 1, 291, 

293
transformations between datums not 

supported, 322
uncertainty and, 237, 301
using points stored in the X/Y/Z database, 313
vector data and, 319
world-wide sharing and use of spatial data 

and, 296
GSDM (global spatial data model), consequences 

of using, 294
data measurements must be three-

dimensional, 294
elevation as derived quantity, 294
single origin assumed for geospatial data, 294
World Vertical Datum of XX (WVDXX), 294
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GSDM (global spatial data model), features, 
317–319

functional model, 317
stochastic model, 317–319

GSDM (global spatial data model) inverse, 
example: New Orleans to Chicago, 
175

GSDM (global spatial data model), using, 294, 
295, 315–328, 316

applications and examples, 323
database issues, 320–321
implementation issues, 322
network accuracy and local accuracy, 

309–314
WBK software, 326–327

GSDM 3-D geodetic position computations, 171, 
173–179

forward (BK3), 173
GSDM Inverse example: New Orleans to 

Chicago, 175
inverse (BK4), 174

GSDM 3-D inverse, 16
GSDM datum, three-dimensional

defined, 296
ECEF (Earth-centered Earth-fixed) 

coordinates, 296
GTS (Great Trigonometric Survey), 129
“Guidelines for Establishing GPS-Derived 

Orthometric Heights Version 1.4” 
(NGS 2006b), 218

Gunter’s chain, 126

H
HARN (high-accuracy reference network), 

190–191, 219, 299, 305–306, 324
CORS stations and, 192

Hassler, Ferdinand, 129
Hawaii, 225
Hayford, John, 185
height, 192
“height modernization,” 192
Helmert orthometric heights, 194, 203
high-accuracy reference network, see HARN 

(high-accuracy reference network)
high-precision geodetic networks, see HPGN 

(high-precision geodetic networks)
Hindu-Arabic number system, 36
history

geodesy and, 122
maps and, 256

horizontal datums, 184–191
brief history of, 184
CORS (Continuously Operating Reference 

Station) stations, 191
HARN (high-accuracy reference network), 

190

ITRF (International Terrestrial Reference 
Frame), 188–189

NAD27 (North American Datum of 1927), 
185

NAD83 (North American Datum of 1983), 
186

WGS84 (World Geodetic System of 1984), 
187

horizontal distance, 265
ellipsoid and, 264, 265
reliable, 264
sea level distance and, 265

horizontal time-dependent positioning, see 
HTDP (horizontal time-dependent 
positioning)

HPGN (high-precision geodetic networks)
HARN (high-accuracy reference network) 

and, 190
HTDP (horizontal time-dependent positioning), 

192
converting X/Y/Z coordinates from one 3-D 

datum to another, 300
program, 195, 196
WGS85 (World Geodetic System of 1985), 

300
Hudson Bay Region, 193
Huygens, Christian, 127
hydraulic head computations, 193
hypothesis testing, 64

I
IAG (International Association of Geodesy), 185

“A Window on the Future of Geodesy,” 120
IERS (International Earth Rotation Service), 186, 

188, 194
IGLD (International Great Lakes Datum) 1955, 

193
IGLD85 (International Great Lakes Datum) of 

1985, 193
image files, 318, 319

geospatial location and, 319
India, 36, 129
infrared rays, 230
initial operational capability, see IOC (initial 

operational capability)
initial point, 209
Inside GNSS, 222
interference of light waves, 229
interferometry, 229

GNSS positioning and, 227
GPS (Global Positioning System) carrier 

frequency, 229
International Association of Geodesy, see 

IAG (International Association of 
Geodesy)

International Atomic Time, see TAI 
(International Atomic Time)
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International Earth Rotation Service, see IERS 
(International Earth Rotation Service)

International Ellipsoid, 185
International Foot, 259, 260, 326

coarse acquisition (C/A) code handheld 
receivers and, 239

NATO and, 260
International Great Lakes Datum, see IGLD 

(International Great Lakes Datum)
International Meridian Conference, 83, 121, 212
international system for units of measure, see 

SI (international system for units of 
measure)

International Terrestrial Reference Frame, 
see ITRF (International Terrestrial 
Reference Frame)

International Union of Geodesy and Geophysics, 
meeting in Canberra, Australia, 
186–187

Internet, development of, 129
interpolation and extrapolation, 207

measurements and computations, 207
intersections, 86–89

circle-circle, 89
failed, 87
line-circle, 45, 88
line-line, 88
line-spiral, 101–102

inverse, 85–86
Inverse (BK4), 174
inverse directions and distances based on P.O.B. 

values, 326
IOC (initial operational capability), 225
iteration, 75, 144
ITRF (International Terrestrial Reference 

Frame), 144, 188–190, 210, 217, 297, 
300

coarse acquisition (C/A) code handheld 
receivers and, 239

CORS stations and, 191–192
datum, 267
Earth’s continental plates and, 301
GNSS computations and, 247
GSDM and, 121, 237
HTDP (horizontal time-dependent 

positioning) software and, 196
monuments, 301
option for handheld C/A receivers, 239
standard deviations and, 317
updates for, 189

ITRS (International Terrestrial Reference 
Service), 188

J
Jank-Kivioja method, 165, 171, 173
Japan, 120
Jefferson, Thomas, 128–129

Johns Hopkins University, tracking of Sputnik 
I, 224

Joseph, Jean Baptist, 128
Juneau, Alaska, 184–186, 286

K
Kansas, 209, 214, 261
King Louis XIV of France, 127
Klamath Falls, Oregon, 271
Krypton 86 gas, 260
Kuhn, Thomas, 294
Kwajalein, North Pacific Ocean, 225

L
L1 frequency, 231, 236
L2 frequency, 231, 236
L5 frequency (civilian frequency), 231
Lambert, Johann Heinrich, 252
Lambert conic conformal projection, 254, 258, 

267–270, 286–287
algorithms for, 267
algorithms for traditional map projections 

and, 266
BK10 (Forward) transformation on, 269
BK11 (Inverse) transformation on, 270
SPCS (state plane coordinate system) and, 

256
zone length and, 253

Lambert coordinates, 257
Lambton, Captain William, 129
Laplace correction, 204–205

Laplace station and, 204
Laplace equations, 206
Laplace stations, 204, 207, 208
Lapland (modern-day Finland), 128, 139

geodetic surveying expeditions in, 127
latitude, geodetic, 20
latitude/longitude/height coordinate systems, 

322
law of cosines, 52
law of sines, 51
L-Band radio frequencies, 230
LDP (low-distortion projection), 13–14, 286–288, 

323
Lambert Conic Conformal projection, 

286–287
oblique Mercator projection, 288
transverse Mercator projection, 288

least squares, 73–76
adjustment, 307
linearization, 75
network solution, 305

Legendre, Adrien-Marie, 128
length of a parallel, 152, 153
level surfaces, 202

as not parallel, 201
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leveling, 25
l’Hopital’s rule, 155
line, 45
linearization, 75
local (east/north/up) reference frame, 308
local accuracy, 16, 297, 305, 318, 322

example computation, 341–343
local coordinate systems, 21, 23, 298
local covariance matrix, 302–304
local P.O.B. coordinate differences, 326
location of light sources for projection, 252
logic, 42–43

René Descartes and, 43
rules of, 43

longitude, geodetic, 20
loop traverse, 266
Louis XIV, King of France, 127
Louisiana, 258
Louisiana Territory, 128
lunar laser ranging (LLR), 187

M
Magnavox MX 1502 Doppler receiver, 225
Maine, 184
map projection (state plane) spatial data model, 

113
map projection surfaces: three apex locations, 

253
map projections, 216, 251, 261

equidistant, 251
equivalent, 251
graphical construction of, 251
imaginary light ray and, 251
mathematical equations and, 251
projection surface and, 252
range and domain, 251
stereographic, 251
as two-dimensional models, 261

map projections and state plane coordinates, 238, 
249–290, 299

algorithms for traditional map projections, 
266–288

permissible distortion and area covered, 255
procedures, 262–266
projection criteria, 250–251
projection figures, 252–254
U.S. State Plan Coordinate System (SPCS), 

256–261
map projections, conformal, 251

mathematical projections, 252
maps, 113

concepts of construction, 251
digitizing, 293
flat portrayal of spherical Earth, 249
photogrammetric, 27
storage in digital format, 293

Maryland, Station Principio, 184

Master Control Station of GPS system in 
Colorado Springs CO, 225

matching signals from receiver and satellite, 232
mathematical concepts, 35–78

applications to the global spatial data model 
(GSDM), 76

conventions, 36–41
of geometry, 44–47
set theory, 251

math/science and engineering/surveying 
coordinate systems, 84

math/science reference system, 83–84
matrix, 65–66
matrix algebra, 65
Meades Ranch, Kansas, 184–186, 209, 214, 261
measurement covariance matrix, variables as 

independent, 302
measurements and computations, 59, 206–211, 

301
ellipsoid heights, 209
GPS and, 59
gravity, 208
interpolation and extrapolation, 207
physical geodesy and, 206
tide readings, 209
time, 209

Méchain, Pierre, 128
Mercator, Gerardus, 125, 126, 252, 291
Mercator BK10 and BK11 transformations, 279
Mercator projection, 249, 256

cylindrical, 252
geodetic line and, 155

Mercator projection, oblique, 256, 279–285, 286, 
288

BK10 (Forward) transformation for, 283
BK11 (Inverse) transformation for, 284–285

Mercator projection, transverse, 254, 259, 266, 
271–278, 286, 288

algorithms for, 271
BK10 (Forward) transformation for, 275–276
BK11 (Inverse) transformation for, 275–276
first tables for in New Jersey, 257
Lambert, Johann Heinrich and, 252
zone length and, 253

Mercator world map, 249
meridian

arc length, 149, 150
maps and, 249

meridian coefficients and quadrant arc length for 
selected ellipsoids, 152

meta data, 318–319
meter, 128, 259

Canada, 259
coarse acquisition (C/A) code handheld 

receivers and, 239
England, 259
geodetic surveys in U.S. and, 259
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Krypton 86 gas, 260
length of determined, 259
redefinition of, 260
speed of light and, 260
United States, 259

meter 130, 127
geodesy, historical perspective of, 127

Mexico, 185
Michigan, 261
Michigan Legislature, 259

state plane coordinate law, 259
microwaves, 230
military users, access to precision (P) code, 231
Minnesota, 8
misclosures in the trial BK18 computation, 170
missiles, satellite geodesy and, 117
models, 66–67

functional, 66
mathematical concepts of, 66–67
stochastic, 66

modes of positioning, 227
doppler shift, 228
elapsed time, 227
interferometry, 229

Montana, 256
zones and, 261

MSL (mean sea level), 213, 298
as reference for elevation, 193

MSL Mean Sea Level datum of 1929 (now 
NGVD29), 193, 201, 209

multiple vectors, 240
multiplication, 40–41

N
N Inverse Matrix from Least Squares 

Adjustment, 310–311
NAD (North American Datum), 185, 186
NAD27 (North American Datum of 1927), 

185–186
Clarke Spheroid of 1866 and, 136, 185, 214
datum transformations and, 195
geoid and, 214
“Geoid Contours in North America” (map) 

and, 209
network adjustments, 129
North American Datum of 1983 (NAD83) 

and, 191, 258
readjustment of, 260
SPCS zones and, 256, 261
traditional three-D spatial data models and, 

114
NAD83 (North American Datum of 1983), 

186–187, 188, 196
adjustment of NAD27 datum and, 260
coarse acquisition (C/A) code handheld 

receivers and, 239
datum transformations and, 195

development of, 185
ellipsoid and, 214
ellipsoid heights and, 210
error propagation concepts, 297
as fixed to North American plate, 189, 301
as a global geodetic datum, 186
GNSS (global navigation satellite systems) 

computations and, 247
GPS data and, 324
GRS 1980 ellipsoid and, 267
GSDM (global spatial data model) and, 217, 

237, 297
HARN (high-accuracy reference network) 

coordinates and, 191
Michigan state plane coordinate law, 259
movement and, 300
NAD27 (North American Datum of 1927) 

and, 258
network adjustments, 129
readjustment of, 190, 225, 242, 261
reference position of CORS station and, 192
spatial data and, 121
SPCS (state plane coordinate system) zones 

and, 256
standard deviations and, 317
state plane coordinates in Alaska, 279
Station “Reilly” and Station “Crucesair,” 306
traditional three-D spatial data models and, 

114
user/selected option for handheld C/A 

receivers, 239
WGS84 (World Geodetic System of 1984) 

datum coordinates and, 137
NAD83(2007) (North American Datum of 1983 

based on 2007 adjustment of the 
NSRS), 192

NAD83(86), 188
HPGN (high-precision geodetic networks) 

and, 144, 195
NAD83(CORS) coordinates, 192
NADCON (North American Datum conversion 

software), 196
NAPA (U.S. National Academy of Public 

Administration), 221, 222
National Academy of Public Administration, see 

NAPA (U.S. National Academy of 
Public Administration)

National Geodetic Reference System, see NGRS 
(National Geodetic Reference System)

National Geodetic Survey, see NGS (National 
Geodetic Survey); NGS (U.S. National 
Geodetic Survey)

National Geodetic Vertical Datum, see NGVD 
(National Geodetic Vertical Datum)

National Geodetic Vertical Datum of 1928, see 
NGVD29 (National Geodetic Vertical 
Datum of 1928)
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National Imagery and Mapping Agency, see 
NIMA (National Imagery and 
Mapping Agency)

“National Integrated Land System (NILS)”
Bureau of Land Management (BLM) and, 

120
U.S. Forest Service, 120

National Ocean Service, 222
National Research Council, see NCR (National 

Research Council)
National Spatial Reference System, see NSRS 

(National Spatial Reference System)
NATO, 259–260
nautical miles, 239
NAVD88 (North American Vertical Datum of 

1988), 7, 122, 194, 209, 324
Helmert orthometric heights, 194

Navigation Satellite Timing And Ranging 
system, see NAVSTAR (Navigation 
Satellite Timing And Ranging) system

NAVSTAR (Navigation Satellite Timing And 
Ranging) system, 189, 230

Global Positioning System (GPS) and, 129, 
221, 224, 225, 230

Navteq, 222
NCR (National Research Council), 118, 300

Geodesy in the Year 2000, 119
Nebraska, 256

zones and, 261
network accuracy, 16, 305, 318, 322

defined, 297
example computation, 341–343
local accuracy and, 309, 313

networks, traditional, 241
New England Datum, 184
New Jersey, 257
New Mexico, 279, 324

Las Cruces, 305, 324
Principal Meridian, 324
transverse Mercator projection, 279

New Mexico State University Campus (NMSU), 
279, 324

New Orleans, 53, 54, 175, 177, 320
New York, 259
Newton, Isaac, 126, 128, 133, 139, 201

flattening of Earth at the poles, 204
Galileo and, 126
gravitational attraction and, 200
Picard, Jean and, 126
Principia Mathematica, 126
shape of the Earth and, 127
theory of universal gravitation, 126

Newton’s logic for a flattened Earth, 127
NGRS (National Geodetic Reference System)

NSRS (National Spatial Reference System) 
and, 191

NGS (National Geodetic Survey), 129, 202, 206, 
242, 244, 262, 299, 300

CORS (continuously operating reference 
station) and, 191

Doppler data and, 225
height modernization and, 192
HPGN (high-precision geodetic networks) 

and, 190
NAD83 (North American Datum of 1983), 

301
observations and adjustments by, 189
stations “Reilly” and “Crucesair,” 306
USC&GS (U.S. Coast and Geodetic Survey) 

and, 184, 257, 259
Web site, 219

NGS (National Geodetic Survey) 1986, 185
NGVD (National Geodetic Vertical Datum), sea 

level and, 122
NGVD29 (National Geodetic Vertical Datum of 

1929), 122, 194
NGVD29 to NAVD88, 196
Nile River, 124
NIMA (National Imagery and Mapping Agency), 

20, 187, 195
“NOAA Manual NOS NGS 5, State Plane 

Coordinate System of 1983” (Stem 
1989), 267

Nokia, 222
nonlinear problem, process for solving, 75
normal distribution curve, 60, 60
normal section radius of curvature, 141
normal sections and the geodetic line, 159
North America, 136, 193, 209

coast of, 194
Great Lakes region, 193
techtonic plate, 188

North American Datum, see NAD (North 
American Datum)

North American Datum conversion software, see 
NADCON (North American Datum 
conversion software)

North American Datum of 1927, see NAD27 
(North American Datum of 1927)

North American Datum of 1983, see NAD83 
(North American Datum of 1983)

North American Vertical Datum of 1988, see 
NAVD88 (North American Vertical 
Datum of 1988)

North Carolina, 257
Lambert coordinates and, 257
zones and, 258

North Carolina Geodetic Survey, 257
North Pole, 54, 158, 211, 249, 259

CTP (Conventional Terrestrial Pole) and, 81
Earth’s spin axis and, 49
geodetic latitude and, 137
surface area of Earth and, 154
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NSDI (National Spatial Data Infrastructure), 119
Bill Clinton and, 120
Executive Order establishing (1994), 120

NSRS (National Spatial Reference System), 79, 
83, 191, 211, 226, 244

height component of, 192
numbers, 36

mathematical concepts of, 36
prefixes for, 37

numerical integration, 165–171
BK18 by integration, 165–171

O
observations, 301
once-through Vincenty method, 145
On-line User Positioning Service, see OPUS (On-

line User Positioning Service)
Open GIS Consortium, 120
OPUS (On-line User Positioning Service), 244

NGS and, 242
OPUS-RS (rapid static), 244
Oregon, 271
Oregon Institute of Technology, 271
orthographic projection, 252
orthometric height, 203, 299, 322, 323

determining using GPS and Geoid modeling, 
219

P
Pacific Ocean, 225
PAGEOS (Passive Geodetic Satellite), 224
Paris, 127–128
Paris lines, 128
Paris Observatory, 127
Passive Geodetic Satellite, see PAGEOS (Passive 

Geodetic Satellite)
P-code (precision code), 231
permissible distortion and area covered, 255
perpendicular offset, 89

to a line, 89
Peru (modern-day Ecuador), 128, 139

geodetic surveying expeditions in, 127
photogrammetric mapping, 27
physical quantities, fundamental, 24
physical quantities, measurable, 207
PI (points of intersection), 92
Picard, Jean, 126, 127

standardized measurement and, 128
plane, 45

Earth and, 45
GSDM and, 45

plat of the survey, 326
plot of sine and cosine functions, 51
plot of volume, 56
P.O.B. (point-of-beginning) datum coordinates, 

7–8, 183, 195, 299, 322, 324

absolute local coordinates and, 238
accuracy and, 17
flat-Earth plane surveying components and, 

295
GSDM and, 251, 252–253, 260

point, 45
point-of-beginning datum coordinates, see 

P.O.B. (point-of-beginning) datum 
coordinates

point-pair application, 304
points of intersection, see PI (points of 

intersection)
points stored in the X/Y/Z database, using, 304
polar motion, corrections for, 158
polar radius of curvature, 135, 187
polar wandering, 134, 211
pole-zenith-star triangle, see PZS (pole-zenith-

star) triangle
polygon, 47
polyhedron, 48
Poseidonius, 125
position, GPS-derived, 210, 324
precision code, see P-code (precision code)
prismoidal formula, 111–112

derivation of, 112
probability and statistics, 57–65

accuracy and precision, 61–62
computing standard deviations, 63
confidence intervals, 64
error sources, 61
errors, 59–60
hypothesis testing, 64
matrix algebra, 66
measurement, 58
standard deviation, 58, 63

procedures, 262
grid azimuth, 262
grid distance, 263–264
traverses, 265–267

projection criteria, 250
projection figures, 252
projection types, 254
Ptolemy, Claudius

degrees and, 37
Geographica, 183

Public Land Survey System, see USPLSS (U.S. 
Public Land Survey System)

Puissant Forward (BK18), 162
Puissant Inverse (BK 19), 164
pyramid, 48
Pythagoras, 124
Pythagorean Theorem, 47, 47, 51, 232
PZS (pole-zenith-star) triangle, 53

Q
quadrilateral, 47
quantities, absolute, 297
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R
R1 Rotation about the X Axis, 330
R2 Rotation about the Y Axis, 330
R3 Rotation about the Z Axis, 330
radian, 46
radii of curvature: M and N, comparisons of, 141
radio waves, 230
raster data, conversion to vector data, 319
real number line, 36
real-time GPS CORS network (RTN), 192
Receiver Independent Exchange format, see 

RINEX (Receiver Independent 
Exchange) format

rectangle, 47
for area computation, 41

“Reilly” station, 307
relative value, definition of, 297
religion, geodesy and, 123
remote sensing, 27
Rhodes, 125
right triangle relationships, 51
RINEX (Receiver Independent Exchange) 

format, 235–236
meteorological file, 236
navigation file, 236
observation file, 236

rotation matrix derivation, 253, 329–332
ECEF (Earth-centered Earth-fixed) 

coordinates and, 329, 331
“flat-Earth” components and, 329
GSDM (global spatial data model) and, 329
P.O.B. (point-of-beginning) datum 

coordinates and, 329, 331
X/Y/Z coordinates and, 329

rotational ellipsoid, 142
equation of ellipsoid, 142

round earth, flat map, 249
RTK (real-time-kinematic) GPS surveying 

procedures, 27, 190, 192, 223, 226, 
242, 244

Russia (Soviet Union), 221, 227
launch of first artificial satellite to orbit earth, 

129
Russian Global Navigation Satellite System, 

see GLONASS (Russian Global 
Navigation Satellite System)

S
SA (selective availability), 231

enabled, 239
satellite laser ranging, see SLR (satellite laser 

ranging)
satellite positioning, brief history of, 224
satellite programs, geodetic research and, 224
satellite signals, 229, 230–233

C/A code, 232

carrier phase, 233
satellite systems

NAVSTAR satellite system, 221
TRANSIT satellite System, 221

satellite-positioning technology, Cold War and, 
221

satellites, 2
Earth-orbiting, 221
Earth’s center of mass and, 323

science, geodesy and, 123
sea level, 121
secant projection, 255–256
sector, curves and, 96
segment, curves and, 96
selected geometrical geodesy ellipsoids, 136
selective availability, see SA (selective 

availability)
seven- or (fourteen-) parameter transformation, 

196
sexagesimal system, 37, 38

mathematical concepts of, 37
SI (international system for units of measure), 37, 

38, 260
fundamental physical quantities, 24

significant figures, 40
examples using addition and subtraction, 40
mathematical concepts of, 40

single differencing, 235
Doppler effect, 235

single-frequency Trimble GSP receivers, 306
SLR (satellite laser ranging), 187, 188
Snellius, Willebrord, 126

measurement of the Earth and, 126
“SOCS—UTM and Oscar S. Adams”

Joseph Dracup and, 257
software sources, 196
solid geometry, 47–48

mathematical concepts of, 47–50
South Carolina, 256

zones and, 258, 261
South Pole, 137, 154, 249

Earth’s spin axis and, 49
Southeast Wisconsin Regional Planning 

Commission, 130
spatial data, 19, 32, 296

absolute, 20
computers and, 291
coordinate systems and, 20–23, 221
digital revolution and, 291, 293
increased demand for, 292
measurement and, 19–34
movement and, 300, 301
quality of, 223
relative, 20
three-dimensional, 222, 261, 294, 317
types of, 22–23
visualization as well-defined, 24

63014_Index.indd   360 3/4/08   11:02:20 AM



Index	 361

spatial data accuracy, 291, 295–315, 318, 322
blunder checks, 308–309
confidence intervals, 295
control values and observed vectors 

(example), 305–306
definitions, 296–297
error ellipses, 295
error propagation
FGDC (Federal Geographic Data 

Committee), 296
measurements, 301
movement and, 300
observations, 301
positional tolerance, 295
spatial data elements, 298, 302–303
stochastic model and, 295
uncertainty and, 295, 302–303
using points stored in the X/Y/Z database, 304

spatial data activities, databases and, 300
spatial data components

absolute geodetic coordinates, 298
absolute X/Y/Z geocentric coordinates, 298
accuracy of, 298
arbitrary local coordinates, 299
ellipsoid heights, 299
local coordinates, 298
map project or state plane coordinates, 299
measurements and, 301
orthometric height, 299
relative geocentric coordinate differences, 

298
relative geodetic coordinate differences, 298
relative local coordinate differences, 298
standard deviation and, 299, 302

spatial data, derived
by computation from primary spatial data, 

31–32
spatial data elements, uncertainty of, 302
spatial data, errorless, 29–30
spatial data measurements, 25–28

angles, 26
electronic distance measurement, 26
errorless spatial data and, 29
leveling, 25
photogrammetric mapping, 27
remote sensing, 27
taping, 25
three-dimensional, 293

spatial data, primary
based on measurements and errorless 

qualities, 29–30
computation of derived spatial data and, 32
observations and measurements, 30

spatial data types, 237–238
absolute geocentric X/Y/Z coordinates, 237
absolute geodetic coordinates of latitude/

longitude/height, 237

absolute local coordinates, 238
arbitrary local coordinates, 238
relative geocentric coordinate differences, 

237
relative geodetic coordinate and ellipsoid 

height differences, 237
relative local coordinate differences, 237

spatial data uncertainty, 296
spatial data users, North American, 301
spatial data, using, 244, 291–314

accuracy of, 295–315
consequences, 294
forces driving change, 291
transition, 292–293

SPCS (state plane coordinate system), 252, 256, 
257, 262, 322

advantages of, 261
algorithms, 266
constants (1983), 333–340
disadvantages of, 261–262
distortion and, 258
features of, 257–258
grid distance and ellipsoid distance, 263
law, 259
NAD27 (North American Datum of 1927) 

and, 258
NGS (National Geodetic Survey) and, 258
procedures used with, 262
projections, 261
“Special Publication 235” (MItchell and 

SImmons), 257
zone parameters, 261

sphere, 48
spherical law of sines, 53–54
spheroid, ellipsoid and, 137
spiral curves, 98–103

computing area adjacent to a spiral, 102
intersecting a line with a spiral, 101
spiral geometry, 98–100

spiral elements and geometry, 99
spiral geometry, 98

symbols, 99
spiral intersection elements and geometry, 101
SPS (standard positioning service), 231
Sputnik I, 221, 224

Earth orbit of, 224
Russia and, 224

square, 47
standard deviation, 58–59

computing, 63
computing area adjacent to a spiral, 62
reliable, 316
X/Y/Z geocentric coordinates, 312

standard positioning service, see SPS (standard 
positioning service)

standard time zones, in United States, 121, 212
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state plane coordinate system, see SPCS (state 
plane coordinate system)

state plane coordinate traverse, 265
station “Crucesair,” 306

Las Cruces, New Mexico airport and, 305
station equation example, 95
station equation policies, 95
Station Principio

Maryland, 184
station “Reilly,” 306

NMSU (New Mexico State University) 
Campus, 279, 305

stationing, 95
statute miles, coarse acquisition (C/A) code 

handheld receivers and, 239
stochastic model component, 14

GSDM 3-D inverse, 16
GSDM covariance matrices, 9–13

stochastic model of GSDM, 295
geoid and, 318
ITRF (International Terrestrial Reference 

Frame) and, 317
NAD83 (North American Datum of 1983) 

and, 317
standard deviations and, 317
WGS84 (World Geodetic System of 1984), 

318
stochastic properties of the data, 197
stored X/Y/Z locations

application modes for using, 304
“cloud” (mapping), 304
point-pair, 304
single point, 304

“string theories,” 45
subtraction, 40
surface area of a sphere, 152, 153
survey control networks, 244, 245–246
survey measurements of a tank, 69
Survey of the Coast, 129, 192
surveying, radial, 104–106
surveyors, 113
Syene, 125
Syme, George F., 257

T
TAI (International Atomic Time), 230
tangent projection, 255
taping, 25
target heights correction, 160, 161
Taylor series approximation, 75
TCT (transcontinental traverse), 187
Tennessee, 253
tetrahedron, 48
Texas, 258
“The Global Positioning System: Charting the 

Future” (NAPA), 221

“The Structure of Scientific Revolutions” 
(Thomas Kuhn 1996), 294

theory of least squares, 128
three-dimensional datums, 194
three-dimensional datums with origin at Earth’s 

center of mass
ITRF (International Terrestrial Reference 

Frame), 188
NAD83 (North American Datum of 1983), 

188
WGS84 (World Geodetic System of 1984), 

188
three-dimensional geodetic datums

ITRF (International Terrestrial Reference 
Frame), 301

North American Datum of 1983 (NAD83), 
301

WGS84 (World Geodetic System of 1984), 
301

three-dimensional GPS points for two-
dimensional survey, 324–325

three-dimensional inverse with statistics, used 
to compute values in Table 11.2, 
342–343

three-dimensional models for spatial data, 
109–114

prismoidal formula, 111–112
the three-D GSDM, 114
traditional three-D spatial data models, 113
uncertainty and, 300
volume of a cone, 110
volume of a rectangular solid, 109
volume of a sphere, 109

tide readings, 193, 207, 209
coast of North America, 194
measurements and computations, 209

time
absolute location of the geoid and, 211
autonomous processing, 239
definition of, 211
as measurable physical quantity, 207
measurements and computations, 209
as relative value, 297
standard time zones, 212

time elapsed, distance and, 227
time zone offset, 239
traditional state plane grid distances, 

computation of, 264–265
transcontinental traverse, see TCT 

(transcontinental traverse)
TRANSIT Doppler satellite positioning system, 

129, 221, 224, 225
Doppler data, 228
U.S. Polaris submarine fleet, 225

transition, 292
transverse Mercator projection, 252
trapezoid, 47
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traverses, 265–267
loop, 266
point-to-point, 266

trial geodetic line: New Orleans to Chicago 
(BK18), 178

triangles, 46
spherical, 53

trigonometry, 16, 50–52
definitions, 50
identities, 51
law of cosines, 52
law of sines, 51

trigonometry, spherical, 52, 320
Earth and, 52

triple differencing, 235
Doppler effect and, 235

Tropic of Cancer, 124, 125
Turkey, 125
Turkey Point, 184
two-dimensional plat of 3-D survey, 327

U
ultraviolet light, 230
uncertainty

covariance elements, 304
direct and indirect measurements and, 24–25
Earth’s radius, 215
ellipsoid height and, 215
errors in measurement, 25
fundamental physical constants held exact, 24
of a single point, 304
standard deviations, 304
time and, 300
variances, 304

United States, 36, 122, 227, 231, 244; See also 
U.S.

arcs of high-order triangulation and, 129
baseline to Germany, 230
datums used in, 185
eighteenth century in, 128
elevation and, 121
ellipsoid height and orthometric height, 203
first-order triangulation of, 185
geoid and ellipsoid, 213, 214
geoid height and, 213
mean sea level datum of 1928, 193
standard time, 121, 212
tide gauge readings, 209
Transit Doppler satellite positioning system, 

129
units, autonomous processing, 239
Universal Transverse Mercator (UTM) 

projections, 252–253
U.S. Army Corps of Engineers, 195, 196
U.S. Army Map Service, 209
U.S. Bureau of Land Management, see BLM 

(U.S. Bureau of Land Management)

U.S. Coast and Geodetic Survey, see USC&GS 
(U.S. Coast and Geodetic Survey)

U.S. Congress, 221
U.S. Department of Defense, see DOD (U.S. 

Department of Defense)
U.S. Department of Transportation, see DOT 

(U.S. Department of Transportation)
U.S. Forest Service, 222

“National Integrated Land System (NILS),” 
120

U.S. Geological Survey, 194, 222
U.S. military, Transit Doppler satellite 

positioning system and, 129
U.S. National Academy of Public Administration, 

see NAPA (U.S. National Academy of 
Public Administration)

U.S. National Geodetic Survey, see NGS (U.S. 
National Geodetic Survey)

U.S. National Imagery and Mapping Agency, 3
U.S. Polaris submarine fleet, 224–225

TRANSIT satellite System, 225
U.S. Public Land Survey System, see USPLSS 

(U.S. Public Land Survey System)
U.S. Standard Datum, 185
U.S. State Plan Coordinate System (SPCS), 

256–261
current status: NAD83 State Plane 

Coordinate Systems, 261
features, 257
history, 257
NAD27 and NAD83, 258–260
zones in U.S., 256

U.S. Survey Foot, 259, 260, 326
coarse acquisition (C/A) code handheld 

receivers and, 239
U.S. TRANSIT satellite system, 224
USC&GS (U.S. Coast and Geodetic Survey), 184, 

185, 257
Michigan Legislature and, 259
“model law,” 259
National Geodetic Survey and, 129
Survey of the Coast and, 129

USPLSS (U.S. Public Land Survey System), 36, 
128, 299

Utah, 258
UTC (Coordinated Universal Time), 230, 236, 

239
coarse acquisition (C/A) code handheld 

receivers and, 239
UTM (Universal Transverse Mercator) 

coordinates
system, 261, 322

UTM (Universal Transverse Mercator) 
projections, 8

V
vector components of gravity, 200
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vector processing, 239–244
advanced processing, 242
multiple vectors, 240
traditional networks, 241

vectors, 50
VERTCON (vertical datum conversion software), 

196
vertical curves, 106–108

geometry, 107
notes about derivation and solution of 

problems, 107
vertical datums, 192–194

international great lakes datum, 193
mean sea level datum of 1929 (now 

NGVD29), 193
NAVD88 (North American Vertical Datum of 

1988), 194
very long baseline interferometry, see VLBI 

(very long baseline interferometry)
Vincenty, 145
Vincenty’s method (same point), 148
visible light, 230
VLBI (very long baseline interferometry), 187, 

188, 230
Voltaire, 128
volume

of a cone, 110, 111
of a rectangular solid, 109
of a sphere, 109–110, 110
of tank, 56

W
WAAS (wide area augmentation system), 244

civil aviation and, 244
Walbeck 1819 spheroid, 184
Waldo, 184
WBK software, 326; See also BURKORD 

database
WGS60 (World Geodetic System), 187
WGS60 (World Geodetic System of 1960), 187
WGS72 (World Geodetic System of 1972), 187
WGS84 (World Geodetic System of 1984), 137, 

144, 187–188, 300

coarse acquisition (C/A) code handheld 
receivers and, 239

CORS (continuously operating reference 
station) and, 192

datum, 267
Earth’s center of mass and, 188
ECEF (Earth-centered Earth-fixed) 

coordinates, 226
ellipsoid heights and, 210
error propagation concepts and, 297
FGDC (Federal Geographic Data Committee) 

standards and, 300
GNSS computations expressing location and, 

247
GSDM (global spatial data model) and, 217, 

237
handheld C/A receivers and, 239
ITRF CORS positions and, 191
NAVSTAR satellite system and, 189
standard deviations and, 318

wide area augmentation system, see WAAS (wide 
area augmentation system)

Wisconsin, 8
World Geodetic System, see WGS (World 

Geodetic System)
World Vertical Datum, see WVD (World Vertical 

Datum)
World War II, 259

radar band portion of spectrum, 230
WVD (World Vertical Datum), 122, 130, 294

X
X-rays, 230
x/y coordinates, 85
X/Y/Z  coordinates, 223

absolute, 322
X/Y/Z geocentric coordinates, 302

absolute, 298

Z
zero, invention of, 36, 38
zone, 252, 253
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