
1

Outline

 Multi-layer Neural Networks

 Feed forward Neural Networks

 FF NN model

 Back Propagation (BP) Algorithm

 Practical Issues of FFNN

 FFNN Examples

Neural Networks - Shahrood University - Hossein Khosravi

2

Multi-layer NN

 Between the input and output layers there are hidden layers,
as illustrated below.
 Hidden nodes do not directly send outputs to the external

environment.

 Multi-layer NN overcome the limitation of a single-layer NN
 They can handle non-linearly separable learning tasks.

Input
Layer

Output
Layer

Hidden Layer
Neural Networks - Shahrood University - Hossein Khosravi

3

XOR problem

1

1

-1

-1

x2

x1

x1

x2

-1

+1

+1

w1-1

-1

-1

w0

Two classes, green and red, cannot be
separated using one line, but two lines.
The NN below with two hidden nodes
realizes this non-linear separation, where
each hidden node represents one of the
two blue lines.

y1

y2
w3

z

Neural Networks - Shahrood University - Hossein Khosravi

4

Types of decision regions

022110  xwxww

022110  xwxww

Convex

region

L1
L2

L3
L4 -3.5

Network

with a single

node

One-hidden layer network that

realizes the convex region:

Each hidden node realizes one

of the lines bounding the

convex region

P1
P2

P3
1.5

Two-hidden layer network that

realizes the union of three

convex regions: each box

represents a one hidden layer

network realizing one convex

region

x1

1

x2 w2

w1

w0

1

1

1

1

1

x1

x2

1

1

1

1

1

x1

x2

1

Neural Networks - Shahrood University - Hossein Khosravi

5

Structure
Types of

Decision Regions

Exclusive-OR

Problem

Class

Separation
Most General

Region Shapes

Single-Layer

Two-Layer

Three-Layer

Half Plane

Bounded By

Hyperplane

Convex Open

Or

Closed Regions

Arbitrary

(Complexity

Limited by No.

of Nodes)

A

AB

B

A

AB

B

A

AB

B

B
A

B
A

B
A

Different Non-Linearly Separable Problems

Neural Networks - Shahrood University - Hossein Khosravi

6

Outline

 Multi-layer Neural Networks

 Feedforward Neural Networks

 FF NN model

 Backpropogation (BP) Algorithm

 BP rules derivation

 Practical Issues of FFNN

 FFNN Examples

Neural Networks - Shahrood University - Hossein Khosravi

7

FFNN NEURON MODEL

 The classical learning algorithm of FFNN is based on the
gradient descent method.

 The activation function used in FFNN are continuous
functions of the weights, differentiable everywhere.
 A typical activation function is the Sigmoid Function

Neural Networks - Shahrood University - Hossein Khosravi

8

FFNN NEURON MODEL

 Sigmoid Function:

 When a approaches to 0,  tends to a linear function

 When a tends to infinity then  tends to the step function

0 with)(v
1

1

j 




a
e jav



-10 -8 -6 -4 -2 2 4 6 8 10

jv

)(jv
1

Increasing a

iyj

iw

yw
i

 node ofoutput and node to

 node fromlink of weight with

 vwhere

i

ji

ijij 

Neural Networks - Shahrood University - Hossein Khosravi

9

The objective of multi-layer NN

 The error of output neuron j after the activation of the
network on the n-th training example is:

 The network error is the sum of the squared errors of the
output neurons:

 The total mean squared error is the average of the network
errors over the training examples.

(n)o-(n)(n)e jjj d

(n)eE(n)
j

2

j2

1



  


n j jj nond
N

EWE 2
N

1n
N

1
))()((

2

1
 (n))(

))(),((ndnx

Neural Networks - Shahrood University - Hossein Khosravi

10

Feed forward NN

 Idea: Credit assignment problem

 Problem of assigning credit or blame to
individual elements involving in forming
overall response of a learning system (hidden
units)

 In neural networks, problem relates to
distributing the network error to the weights.

Neural Networks - Shahrood University - Hossein Khosravi

11

Multilayer Networks of Sigmoid Units

Neural Networks - Shahrood University - Hossein Khosravi

12

Sigmoid Unit

(x) is the sigmoid function

Nice property:

We can derive gradient decent rules to train:

 One sigmoid unit

 Multilayer networks of sigmoid units  Backpropagation

Neural Networks - Shahrood University - Hossein Khosravi

13

Error Gradient for a Sigmoid Unit

We know:

So:

Keep in mind

for later use!

Neural Networks - Shahrood University - Hossein Khosravi

14

Outline

 Multi-layer Neural Networks

 Feed forward Neural Networks

 FF NN model

 Backpropagation (BP) Algorithm

 Practical Issues of FFNN

 FFNN Examples

Neural Networks - Shahrood University - Hossein Khosravi

15

Training: Backprop algorithm

 Searches for weight values that minimize the total
error of the network over the set of training
examples.

 Repeated procedures of the following two passes:

 Forward pass: Compute the outputs of all units in the
network, and the error of the output layers.

 Backward pass: The network error is used for updating the
weights (credit assignment problem).
 Starting at the output layer, the error is propagated backwards

through the network, layer by layer. This is done by recursively
computing the local gradient of each neuron.

Neural Networks - Shahrood University - Hossein Khosravi

16

Backprop

 Back-propagation training algorithm illustrated:

 Backprop adjusts the weights of the NN in order to
minimize the network total mean squared error.

Network activation

Error computation

Forward Step

Error propagation

Backward Step

Neural Networks - Shahrood University - Hossein Khosravi

17

BP for the case of sigmoid

Initialize all weights to small random numbers.
 While Unsatisfied, Do

 For each training example, Do

 Feed Forward: Input the training example to the network and
compute the network outputs

 Gradient Descent: For each output unit k : k k(1 - k) (tk - k)
 Backprop: For each hidden unit h

h h(1 - h) koutputs wh,kk

 Adjust Weights: Update each network weight wji

wji wji +wji

where wji =  j yi

yi is the output of neuron i in the previous layer:

 End For

 End While

i

j

Wji

 j

Neural Networks - Shahrood University - Hossein Khosravi

18

Nonlinear decision surfaces

One output

No hidden

One output

Two hidden

Neural Networks - Shahrood University - Hossein Khosravi

19

BP Example

 XOR
 X0 X1 X2 Y

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

X0

X1

X2

1

wac

w0c

a

b

c

wbc

w0a

w1a

w2a

w0b

w1b

w2b

Neural Networks - Shahrood University - Hossein Khosravi

20

21

Neural Networks - Shahrood University - H. Khosravi – Spring 2011

Neuron a Neuron b Neuron C

woa =0.34 va=0.34

oa=0.58

w0b =-0.12 vb= -0.12

ob=0.47

w0c =-0.99 vc=-0.54

oc=0.37
w1a =0.13 w1b =0.57 wac =0.16

w2a =-0.92 w2b =-0.33 wbc =0.75

a=oa(1-oa)kwakk

=0.58*(1-0.58)*0.16*(-0.085)

=-0.003

b=ob(1-ob)kwbkk

=0.47*(1-0.47)*0.75*(-

0.085)

=-0.016

c=oc(1-oc)(tc-oc)

=0.37*(1-0.37)*(0-0.37)

= -0.085

woa =ax0=0.5*(-0.003)*1

=-0.015

wob =bx0=0.5*(-

0.016)*1

=-0.008

woc =c1=0.5*(-0.085)*1

= -0.043

w1a =ax1=0.5*(-0.003)*0=0 w1b =bx1=0.5*(-

0.01)*0=0

wac = cOa = 0.5*(-

0.085)*0.58 = -0.025

w2a =ax2=0.5*(-0.003)*0=0 w2b =bx2=0.5*(-

0.01)*0=0

wbc =cOb=0.5*(-0.085)*0.47

= -0.020

Sigmoid A.F. ; =0.5; Sample{(1, 0, 0), 0}

22

Neural Networks - Shahrood University - H. Khosravi – Spring 2011

Weight updating

Neuron a Neuron b Neuron C

woa = woa+ woa=0.34-

0.015=0.325

w0b = w0b + wob =-0.12-

0.008

w0c = w0c + w0c =-0.99-0.043

w1a = w1a + w1a=0.13+0 w1b = w1b + w1b =0.57+0 wac = wac + wac =0.16-0.025

w2a = w2a+ w2a =-0.92+0 w2b = w2b + w2b =-0.33+0 wbc = wbc + wbc =0.75-0.02

woa =ax0=0.5*(-0.003)*1

=-0.015

wob =bx0=0.5*(-

0.016)*1

=-0.008

woc =c1=0.5*(-0.085)*1

=-0.043

w1a =aw1a=0.5*(-

0.003)*0=0

w1b =bw1b=0.5*(-

0.01)*0=0

wac =cwac=0.5*(-

0.085)*0.58 = -0.025

w2a =aw2a=0.5*(-

0.003)*0=0

w2b =bw2b=0.5*(-

0.01)*0=0

wbc =cwbc=0.5*(-

0.085)*0.47 = -0.020

Backpropagation: Properties

 Gradient descent over entire network weight
vector.

 Easily generalized to arbitrary directed graphs.

 Will find a local, not necessarily global error
minimum:
 In practice, often works well (can run multiple times

with different initial weights).

 Minimizes error over training examples:
 Will it generalize well to subsequent examples?

 Training can take hundreds of iterations  slow

 Using the network after training is very fast.

