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Multi-layer NN

 Between the input and output layers there are hidden layers, 
as illustrated below. 
 Hidden nodes do not directly send outputs to the external 

environment.

 Multi-layer NN overcome the limitation of a single-layer NN
 They can handle non-linearly separable learning tasks. 
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XOR problem 
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Two classes, green and red, cannot be 
separated using one line, but two lines.
The NN below with two hidden nodes
realizes this non-linear separation, where
each hidden node represents one of the 
two blue lines.
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Types of decision regions 
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Structure
Types of

Decision Regions
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FFNN NEURON MODEL

 The classical learning algorithm of FFNN is based on the 
gradient descent method. 

 The activation function used in FFNN are continuous 
functions of the weights, differentiable everywhere. 
 A typical activation function is the Sigmoid Function
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FFNN NEURON MODEL

 Sigmoid Function:

 When a approaches to 0,  tends to a linear function

 When a tends to infinity then  tends to the step function
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The objective of multi-layer NN

 The error of output neuron j after the activation of the 
network on the n-th training example                           is:                     

 The network error is the sum of the squared errors of the 
output neurons:

 The total mean squared error is the average of the network 
errors over the training examples.
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Feed forward NN

 Idea: Credit assignment problem

 Problem of assigning credit or blame to 
individual elements involving in forming 
overall response of a learning system (hidden 
units)

 In neural networks, problem relates to 
distributing the network error to the weights.
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Multilayer Networks of Sigmoid Units
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Sigmoid Unit

(x) is the sigmoid function

Nice property:

We can derive gradient decent rules to train:

 One sigmoid unit

 Multilayer networks of sigmoid units  Backpropagation
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Error Gradient for a Sigmoid Unit

We know:

So:

Keep in mind 

for later use!
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Training: Backprop algorithm 

 Searches for weight values that minimize the total 
error of the network over the set of training 
examples.

 Repeated procedures of the following two passes:

 Forward pass: Compute the outputs of all units in the 
network, and the error of the output layers.

 Backward pass: The network error is used for updating the 
weights (credit assignment problem). 
 Starting at the output layer, the error is propagated backwards 

through the network, layer by layer. This is done by recursively 
computing the local gradient of each neuron.
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Backprop 

 Back-propagation training algorithm illustrated:

 Backprop adjusts the weights of the NN in order to 
minimize the network total mean squared error.

Network activation

Error computation

Forward Step

Error propagation

Backward Step
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BP for the case of sigmoid

Initialize all weights to small random numbers. 
 While Unsatisfied, Do

 For each training example, Do

 Feed Forward: Input the training example to the network and 
compute the network outputs

 Gradient Descent: For each output unit k : k k(1 - k) (tk - k)
 Backprop: For each hidden unit h

h h(1 - h) koutputs wh,kk

 Adjust Weights: Update each network weight wji

wji wji +wji

where wji =  j yi

yi is the output of neuron i in the previous layer:

 End For

 End While
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Nonlinear decision surfaces

One output

No hidden

One output

Two hidden
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BP Example

 XOR
 X0 X1 X2 Y

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0
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Neuron a Neuron b Neuron C

woa =0.34 va=0.34

oa=0.58

w0b =-0.12 vb= -0.12

ob=0.47

w0c =-0.99 vc=-0.54

oc=0.37
w1a =0.13 w1b =0.57 wac =0.16

w2a =-0.92 w2b =-0.33 wbc =0.75

a=oa(1-oa)kwakk

=0.58*(1-0.58)*0.16*(-0.085)

=-0.003

b=ob(1-ob)kwbkk

=0.47*(1-0.47)*0.75*(-

0.085)

=-0.016

c=oc(1-oc)(tc-oc)

=0.37*(1-0.37)*(0-0.37)

= -0.085

woa =ax0=0.5*(-0.003)*1

=-0.015

wob =bx0=0.5*(-

0.016)*1

=-0.008

woc =c1=0.5*(-0.085)*1

= -0.043

w1a =ax1=0.5*(-0.003)*0=0 w1b =bx1=0.5*(-

0.01)*0=0

wac = cOa = 0.5*(-

0.085)*0.58  = -0.025

w2a =ax2=0.5*(-0.003)*0=0 w2b =bx2=0.5*(-

0.01)*0=0

wbc =cOb=0.5*(-0.085)*0.47

= -0.020

Sigmoid A.F. ; =0.5; Sample{(1, 0, 0), 0}
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Weight updating

Neuron a Neuron b Neuron C

woa = woa+ woa=0.34-

0.015=0.325

w0b = w0b + wob =-0.12-

0.008

w0c = w0c + w0c =-0.99-0.043

w1a = w1a + w1a=0.13+0 w1b = w1b + w1b =0.57+0 wac = wac + wac =0.16-0.025

w2a = w2a+ w2a =-0.92+0 w2b = w2b + w2b =-0.33+0 wbc = wbc + wbc =0.75-0.02

woa =ax0=0.5*(-0.003)*1

=-0.015

wob =bx0=0.5*(-

0.016)*1

=-0.008

woc =c1=0.5*(-0.085)*1

=-0.043

w1a =aw1a=0.5*(-

0.003)*0=0

w1b =bw1b=0.5*(-

0.01)*0=0

wac =cwac=0.5*(-

0.085)*0.58   = -0.025

w2a =aw2a=0.5*(-

0.003)*0=0

w2b =bw2b=0.5*(-

0.01)*0=0

wbc =cwbc=0.5*(-

0.085)*0.47 = -0.020



Backpropagation: Properties

 Gradient descent over entire network weight 
vector.

 Easily generalized to arbitrary directed graphs.

 Will find a local, not necessarily global error 
minimum:
 In practice, often works well (can run multiple times 

with different initial weights).

 Minimizes error over training examples:
 Will it generalize well to subsequent examples?

 Training can take hundreds of iterations  slow

 Using the network after training is very fast.






