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 A modified bat algorithm with a new solution representation for both optimizing the weights and structure of ANNs is 

proposed. 

 To improve the exploration and exploitation capability of bat algorithm some modifications based on chaotic map on 

bat algorithm is studied. 

 The Taguchi method is used to tune the parameters of the algorithm. 

 Six classification and two time series benchmark datasets are used to test the performance of the proposed approach in 

terms of classification and prediction accuracy. 

 Statistical tests are applied to compare the performance of the methods. 

 Finally, our best method is applied to a real-world problem, namely to predict the future values of rainfall data in 

Selangor at Malaysia. 
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Abstract: The success of an artificial neural network (ANN) strongly depends on the variety of the connection weights and the 

network structure. Among many methods used in the literature to accurately select the network weights or structure in isolate; a 

few researchers have attempted to select both the weights and structure of ANN automatically by using metaheuristic algorithms.  

This paper proposes modified bat algorithm with a new solution representation for both optimizing the weights and structure of 

ANNs. The algorithm, which is based on the echolocation behaviour of bats, combines the advantages of population-based and 

local search algorithms. In this work, ability of the basic bat algorithm and some modified versions which are based on the 

consideration of the personal best solution in the velocity adjustment, the mean of personal best and global best solutions through 

velocity adjustment and the employment of three chaotic maps are investigated. These modifications are aimed to improve the 

exploration and exploitation capability of bat algorithm.   Different versions of the proposed bat algorithm are incorporated to 

handle the selection of the structure as well as weights and biases of the ANN during the training process. We then use the 

Taguchi method to tune the parameters of the algorithm that demonstrates the best ability compared to the other versions. Six 

classification and two time series benchmark datasets are used to test the performance of the proposed approach in terms of 

classification and prediction accuracy. Statistical tests demonstrate that the proposed method generates some of the best results in 

comparison with the latest methods in the literature. Finally, our best method is applied to a real-world problem, namely to 

predict the future values of rainfall data and the results show satisfactory of the method. 

Keywords: Bat-inspired algorithm; Artificial neural network; Chaotic map; Time series prediction; Classification; Real-world 

rainfall data 

 

1. Introduction 

An artificial neural network (ANN) is an imitation of a biological natural neural network. Each ANN is structured 

into several interconnections of simple processing units which are called nodes or neurons. An ANN can have one or 

more layers of nodes between the input layer and output layer. Each of these interlayers is called a hidden layer, and 

they can be completely or partially connected. Each connection between two nodes has a specified weight. An ANN 

can be taught by training it using on hand cases with inputs and expected outputs. Due to the learning ability and 

nonlinearity method of ANNs [1], they have been used extensively in many applications of data mining such as 

classification, associate rule mining and clustering [2, 3]. ANN is regarded as one of computational intelligence 

techniques and an effective machine learning tool capable of data mining applications. 
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Although many researches have been performed to generate an accurate ANN model in the literature, the 

automatic creation of a near-optimal structure for an ANN for a given task is still considered to have potential. 

Several researchers have used evolutionary algorithms in the design of ANNs. For example,  Palmes, Hayasaka, and 

Usui [4] applied a mutation-based genetic algorithm for neural network training, while Gepperth and Roth [5] 

proposed an evolutionary multiobjective procedure to optimize the feedforward neural network. Hung and Du [6] 

applied particle swarm optimization (PSO) to optimize an ANN. Hervás-Martínez, Martínez-Estudillo, and 

Carbonero-Ruz [7] designed the structure and weights of an ANN using an evolutionary algorithm and a backward 

stepwise procedure. Chi-Keong, Eu-Jin, and Kay Chen [8] proposed a hybrid multiobjective evolutionary approach 

in their design for an ANN. a Taguchi-based parameter designing of genetic algorithm for ANN training was 

proposed in [9]. However, most of these strategies need the chromosome length to be predefined. Since this user-

defined length is problem-dependent, it can affect the efficiency of the method. Besides this issue, the input 

variables are fixed (no feature selection), but the selection of features is important especially for the classification 

problem [10-13]. Even selecting all features as the input does not guarantee that the best accuracy in classification 

will be achieved [14]. 

 

The use of merging and growing algorithms in the design of ANNs was proposed by Islam, Amin, 

Ahmmed, and Murase [15] and later on in another approach by Islam, Sattar, Amin, Yao, and Murase [16]. Kaylani, 

Georgiopoulos, Mollaghasemi, and Anagnostopoulos [17] employed a prune operator for a genetic algorithm to 

design the ARTMAP architecture. Later on, they extended their study for multiobjective approach [18]. Carry and 

Morgan [19] used a modified and pruned neural network for seasonal data. Mantzaris, Anastassopoulos, and 

Adamopoulos [20] applied a pruned probabilistic neural network using a genetic algorithm to minimize the structure 

of an ANN. The important problem with merging and growing algorithms is that when to add or delete the nodes 

need to be carefully predefined.  

 

In an attempt to address designing ANN, a family of multi-layer self-organizing neural networks has been 

studied in recent years [21-24]. Their method starts with one hidden layer and then the next hidden layers are added 

until the stopping criteria are met. Masutti and de Castro [25] used a combination of self-organizing networks and an 

artificial immune system to minimize the neurons in an ANN. However, the main disadvantage of the self-

organizing method is that by growing the ANN during the process, the time will also incrementally grow so the 

stopping criteria need to be carefully predefined.  

Other metaheuristic algorithms have been applied for ANN model optimization in recent years. Ludermir, 

Yamazaki and Zanchettin [26] used the advantages of combined simulated annealing, tabu search and 

backpropagation to optimize an ANN model during the training process. Yu, Wang, and Xi [27] evaluated an ANN 

using modified PSO and discrete PSO (DPSO). A PSO-based single multiplicative neuron model for time series 

prediction was proposed by Zhao and Yang [28]. In 2011, a hybrid approach have been proposed to optimize the 

operation of the ANN in terms of weights and architecture [29].  
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In the literature a few number of methods [1, 26, 29] have been applied for optimizing both weights and 

structure of neural network simultaneously. It is the significance of the research in this area to find a superior 

solution for the neural network model. 

In our method presented in this paper, both the weights and the structure of ANN are varied during 

optimization procedure. The variation of weights and structure of ANN is provided using a solution representation 

proposed in this paper. With aid of this solution representation, the troubles with user-defined length and feature 

selection in evolutionary algorithms, time growing with self-organizing neural networks and predefined period for 

adding and deleting process in merging and growing algorithms are overcome. In order to have more accurate model 

compared to proposed methods in the literature, optimization technique in our method is provided derived from bat 

algorithm. The bat algorithm as recent and powerful algorithm has been proposed based on the echolocation 

behaviour of bats by Yang [30]. The advantage of bat algorithm is for gaining the combination of population based 

algorithm and local search. This combination initially provides the algorithm capability of global diverse exploration 

and local intensive exploitation which is the key point in metaheuristic algorithms.  This interesting metaheuristic 

optimization technique behaves as a group of bats looking for prey using their ability of echolocation [31-33]. This 

new metaheuristic algorithm very quickly revealed its superior ability in many areas of optimization. A work 

comparing the bat algorithm and many other algorithms was recently published [34]. Also, a solution for a 

scheduling problem using a bat algorithm was presented by Musikapun and Pongcharoen [35], while a fuzzy bat 

clustering method was proposed by Khan, Nikov, and Sahai [36], and many other applications of the bat algorithm 

have been put forward [37-40].  

In this paper, the basic bat algorithm and several modified versions which are toward enhancing 

exploration and exploitation capability of bat algorithm are evaluated and tested using six classification and two 

time series prediction problems. Among these, the ability of three versions using the chaotic map approach to 

generate a chaotic sequence instead of a random sequence is investigated. Chaos is a random-like procedure set up 

in nonlinear and dynamic systems. Most of the metaheuristic algorithms in the literature use uniform probability to 

generate random numbers. When a random number is needed by the algorithm, it can be produced by iterating one 

action of the selected chaotic map that is started from a random initial value in the first step. In recent years, new 

approaches using the chaotic map have been presented [41-43]. In some works, chaotic sequences have been 

assumed instead of random sequences and to some extent good results have been achieved in many applications [44-

46]. Following this same line of study in the literature, we combine three versions of chaotic maps with our method 

to improve the quality of the convergence in bat algorithm. The Taguchi method is then applied to the best method 

to adjust the parameters of the algorithm. Then statistical tests are undertaken to determine the efficacy of our 

proposed algorithm. 
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The rest of this paper is organized as follows. Section 2 provides a brief description of classification and 

time series prediction problems. Section 3 explains the proposed method in detail. Section 4 reports the experimental 

results and discusses the outcomes of the statistical tests, and finally, Section 5presents the conclusion of this work. 

2. Problem description 

In this work we solve two different data mining tasks: classification and time series prediction. Many algorithms 

have been widely applied to solve these kinds of problems which are significant in the field of data mining. 

2.1 Classification problem 

The task of assigning an object to a proper group (based on a number of attributes describing that object) is defined 

as a classification problem. The classification process is as follows: 

 

 Given a set of records called a training set, each record contains a set of attributes; one of the attributes is 

selected as the class attribute; 

 A proper model for the class attribute as a function of other attributes is sought; 

 Earlier unseen records are allocated to a class as accurately as possible and a testing set is employed to 

determine the accuracy of the model. 

 

Generally, the given dataset is divided into training and testing sets, where the training set is employed to 

build the model and the testing set is applied to validate the model. 

2.2 Time series prediction 

Time series prediction is the use of a specified model to forecast future values based on earlier values. The time 

series prediction procedure is as follows: 

 Given a set of points in the past as a training set, each point is considered as input for the model; 

 A proper model for the future values as a function of past values is sought; 

 For every point in the past, the model is trained using past data as the inputs and what follows is the desired 

output. 

The training is referred to when building the model and the model is then tested using test data. 

 

3. Methodology 

Several ANNs have been proposed in the literature. In this work, the optimization of the weights and structure of 

ANN is considered by applying a bat-inspired algorithm. Each solution in the population of the bat algorithm 
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contains both a structure and a weights solution. In this method, various weights, inputs, number of hidden layers 

and number of nodes in each hidden layer are measured based on a specified fitness function that is dependent on 

the structure of the ANN and the weights. Diversification of each solution in this method is achieved by adjusting 

the frequency, velocity and position of the bat population in the bat algorithm. The probability of applying the 

diversity function of the bat algorithm on the structure of the ANN and the weights and biases (W&B) are equal. 

The details of the method are given in the following subsections. 

  

3.1 Bat algorithm 

As mentioned above, the bat algorithm was first proposed by Yang [30] and is based on the echolocation activity of 

bats. Bats release a very loud sound pulse and pay attention to the echo that returns from objects. Bats fly randomly 

using frequency, velocity and position to search for prey. In the bat algorithm, the frequency, velocity and position 

of each bat in the population is updated for further movements. The algorithm is formulated to imitate the ability of 

bats to find their prey. The bat algorithm follows many simplifications and idealization rules of bat behaviour that 

were considered and proposed by Yang [30]. 

The bat algorithm has the advantage of combining a population-based algorithm with local search. This 

algorithm involves a sequence of iterations, where a collection of solutions changes through random modification of 

the signal bandwidth which is increased using harmonics. The pulse rate and loudness is updated only if the new 

solution is accepted. The frequency, velocity and position of the solutions are calculated based on following 

formulas: 

 

fi = fmin + (fmax- fmin)                             (1) 

vi
t
 = vi

t-1 
+ (xi

t-1 
– xgbest

t
)fi                            (2) 

xi
t
= xi

t-1
 +vi

t                            
(3) 

where the value of  is a random number within the range of [0,1], fi is the frequency of the i
th

 bat that controls the 

range and speed of movement of the bats, vi and xi denote the velocity and position of i
th 

bat, respectively, and xgbest
t
 

stands for the current global best position at time step t.  

In order to enhance the diversity of the possible solutions a local search approach is applied to those 

solutions that meet a certain condition in the bat algorithm. If the solution meets the condition, then random walk 

(Eq. 4) is employed to generate a new solution: 

xnew = xold + €A
t                            

(4) 
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in which €[-1,1] is a random number that efforts to the power and direction of the random walk and A
t
 denotes the 

average loudness of all bats so far. 

 

The loudness Ai and the pulse rate ri have to be updated in each iteration. The loudness typically decreases 

when a bat find its prey while the pulse rate increases. The loudness Ai and pulse rate ri are updated as follows: 

Ai
t+1 

= α Ai
t
                    (5) 

ri
t+1 

= ri
0
[1- exp(- γt)]                   (6) 

in which α and γ are constant values and both are equal to 0.9 as in [30]. The loudness and pulse rate are updated 

only if the new solution is accepted. Fig. 1 shows the flowchart of the bat algorithm. 

 

Fig. 1. Flowchart of bat algorithm 

 

 

 



Page 9 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

3.2 Modifications of bat algorithm for a dynamic neural network 

In this paper, several versions of bat algorithm are employed in order to optimize the ANN model. The bat algorithm 

and its modifications are: 

A. Basic bat for dynamic neural network(BatDNN) 

B. Modified bat for dynamic neural network(MBatDNN) 

C. Mean bat for dynamic neural network (MeanBatDNN) 

D. Piecewise map for bat dynamic neural network (PiecewiseBatDNN) 

E. Logistic map for bat dynamic neural network (LogisticBatDNN) 

F. Sinusoidal map for bat dynamic neural network (SinBatDNN) 

A. BatDNN: The standard version of the bat algorithm (described in Fig. 1) is applied for optimizing the ANN 

model. The solutions in the population consist of two parts. The first part encodes the structure of the ANN and the 

second part determines the W&B in the ANN structure. For the initial population, the structure of the solutions is 

randomly assigned, then the number of W&B is calculated to fit each structure and at the end the value of the W&B 

are randomly generated. In the do while loop of the bat algorithm there is a probability that the adjustment of 

frequency, velocity and position will be applied to the structure solution or W&B solution. This probability is the 

same for both cases. 

  As is evident from Fig.2 and relevant formulas, in this bat algorithm the movement of each bat in the search 

space is towards continuous valued places. In our study, when there is a chance for the structure solution to be 

adjusted by the new frequency, velocity and position, the search space is formed as a binary pattern [47]. In order to 

represent the bat’s position in the binary vector we use a sigmoid function: 

(7) 

 Eq. (7) is applied to the output of Eq. (3) when the adjustment procedure of the bat algorithm is applied to 

the structure of the ANN. If the output of )( t

ixf  is greater than a certain value within the range of (0, 1) then the 

value of t

ix  is set to one, otherwise this value is adjusted to 0. Therefore with the aid of this sigmoid function we 

provide only binary values for the structure of each bat candidate that is selected for the bat algorithm adjustment. 

Then the W&B solution is organized based on the new structure. If the adjustment procedure of the bat algorithm is 

affected by the W&B solution then the structure solution will remain the same as the previous structure. After 

generating a new solution, a random walk procedure is applied to the solutions under certain conditions. Then the 

solution is accepted if the required conditions are met. The loudness and the pulse rate are updated when the solution 

is accepted. This process is continued until the stopping criterion is met. The pseudo code of the proposed method is 

shown in Fig. 2. 
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        Set population size, popSize 100 

Set number of iterations, numOfIte 100 

Set minimum frequency, fmin 0 

Set maximum frequency, fmax 2 

Set loudness, Ai0.25 

Set pulse rate, ri 0.5 

Set probability of applying operators on structure or W&B, prob 0.5 

Set the initial population 

Set the best fit, f(xbest) 

Set iteration 0 

do while(iteration < numOfIte) 

for all bats in the population 

if (rand < prob) 

Generate new solution by adjusting frequency (fi), velocity (vi), and position (xi) on structure solution 

using binary bat, Eqs. (1),(2),(3),(7) 

                                        Add or delete the random cells in W&B based on new structure 

else 

Generate new solution by adjusting frequency (fi), velocity (vi), and position (xi) on W&B solution with 

the same structure, Eqs. (1),(2),(3) 

endif 

if(>ri) then generate a local solution around the solution, Eq. (4) 

endif 

Evaluate the solution 

if ( < Ai & (f(xi) < f(xbest)) then accept the new solution and increase ri and decrease Ai,Eqs. (5) and (6) 

Update the xbest and population 

endif 

endfor 

Increase the iteration 

endwhile 

Return the xbest 

Fig. 2. Pseudo code of proposed bat algorithm for ANN model optimization 

B. MBatDNN: The basic bat algorithm updates the velocity and position of each bat in a similar way to the 

procedure in standard PSO [48] while fi controls the movement of bats. In some respects, this bat algorithm is an 

integration of PSO and local search which uses control of loudness and pulse rate. The adjustment procedure in the 

basic bat algorithm is similar to PSO but the idea of adjusting velocity based on personal best (pbest) and global best 

(gbest) in PSO motivated us to continue our study to enhance the quality of the bat algorithm by improving the bat 

movement by incorporating the superiority of pbest. In the standard bat algorithm the bats are moved toward the 
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gbest which leads the algorithm to the exploration, while in the modified version, the effect of pbest is considered to 

improve the exploitation of the algorithm. In this case, we altered Eq. (3) into Eq. (8): 

vi
t
 = vi

t-1 
+ (xi

t-1
– xgbest

t
)fi + (xi

t-1
– xpbest

t
)fi                  (8) 

In this new version of the bat algorithm each bat keeps the history of its path in the search space which is 

linked with the best solution reached so far. This value is called pbest, while gbest is the best value gained so far by 

any bat among all the bats in the population. 

These two different kinds of neighbourhoods help the algorithm to achieve better convergence. In the gbest 

group, all the bats are neighbours of all the other bats; therefore, the gbest position is used in the public expression 

of the velocity update equation. It is assumed that gbest groups converge speedily, because all the bats are involved 

at the same time in the best fraction of the search space. However, it is possible that the global optimum is not close 

to the best bat; thus, it might be impossible for the group to discover other areas and this is where we know as local 

optima. In the pbest group a specific number of bats can affect the velocity of a given bat. This means that the group 

will converge more slowly but they will be able to find the global optimum with superior probability. Both gbest and 

pbest can be considered social neighbourhoods because the relations among the bats do not depend on their 

positions. The pseudo code of this modified bat algorithm is the same as in Fig. 2 with a small modification, that is, 

it uses Eq. (8) instead of Eq. (3) when it updates the velocity of the solution. 

C. MeanBatDNN: In this part of study we used a linear combination of pbest and gbest in the velocity update 

equation[49]. In this case, the current position of each bat is compared with the linear combination of the pbest and 

gbest positions instead of comparing gbest and pbest. We propose a new velocity update equation as follows: 

vi
t
 = vi

t-1 
+ (xi

t-1 
– (xgbest

t
 +xpbest

t
 ) / 2 ) fi + (xi

t-1 
– (xpbest

t
 – xgbest

t
 ) / 2 ) fi                 (9) 

In this experiment we used Eq. (9) in place of Eq. (2) to observe the effect of this modification. A 

comparison of the movements of a bat in the basic bat algorithm and in the two modified versions of the bat 

algorithm discussed thus far, namely MBatDNN and MeanBatDNN, is illustrated in Fig. 3. As can be seen from the 

figure, we attempt to direct the bat’s movement toward the gbest and pbest position by manipulating the velocity 

equation for each move. This may improve the convergence ability of the bat algorithm. 
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Fig. 3. Comparison of bat movement in the basic bat algorithm, MBatDNN and MeanBatDNN 

D. PiecewiseBatDNN: The concept of the piecewise linear chaotic map has been the subject of growing interest in 

chaos research due to the simplicity of its implementation. The simplest piecewise linear chaotic map is described as 

follows: 

(10) 

 

where y(0,1) is a variable. Let k = 1, 2, 3,... then
ky and

1ky are k
th

 and (k+1)
th

 values of y, respectively. P is a 

control parameter. Variable y performs chaotically between (0,1) when parameter p is in use in the range of (0,0.5)

 (0.5,1). 

E. LogisticBatDNN: The logistic map is a form of polynomial mapping. Mathematically, the logistic map is written 

as: 

)1(1 nkk yryy 
     (11) 

In the case of r = 4 the values finally leave the interval (0,1). Since we need a random number between [0,1] in the 

velocity equation, r=4 is used in this experiment. 
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F. SinBatDNN: The properties of the sinusoidal map are similar to those of the logistic map. The simplest form of 

sinusoidal map in Eq. (12) generates the chaotic sequence in interval [0, 1]. 

(12) 

3.3 Solution representation 

In this work, two one-dimensional vectors are considered for solution representation. One vector represents the 

structure solution which contains binary values 0 and 1. The second vector holds the W&B of the neural network. 

The first solution has three parts. Two parts are for the number of hidden layers and number of nodes in each hidden 

layer. These occupy three cells each. The binary values of the number of hidden layers and number of nodes are kept 

in these three cells. For the time series problem the input values and the number of inputs are set as in other work 

[21-23]. We have done this in order to make our work comparable with others. For classification, because the values 

of the inputs and number of inputs are important [11], the feature selection part is added to the structure solution 

representation. The length of this part is equal to the number of features in the dataset. If the i
th

 value in this part is 

equal to 1, this means that the i
th

 feature in the full feature set is contained in the subset of selected features. If the 

cell shows a 0 value, this means the subset of selected features does not hold this feature. The second vector holds 

the W&B in which the number of W&B is calculated based on the structure solution. The W&B vector represents 

the real values of the weights and biases. Figure 4 illustrates an example of solution representation along with the 

related network architecture scheme. 

 

 

 

Fig. 4. Example of solution representation 

)(1 kk xSinx 
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3.4 Cost function 

To evaluate the quality of the solution in consecutive iterations we need to use an effective cost function in order to 

select the solution that optimizes the objective function. 

 

For classification problems, the classification error, which represents the percentage of misclassified 

training examples, is considered as: 





tnxt

t x
n

pE )(
100

)(                      (13) 

Where nt is the number of examples and )(x is the number misclassified instances. The second part of the 

cost function evaluates the number of connections (weights) in the ANN. The percentage of the connections 

occupied by the network is specified by: 





cn

i

i

c

c w
n

p
1

100
                    (14) 

Where nc is the maximum number of connections that can be used by the network and wi is the number of weights or 

connections. Therefore for the classification problem the cost function f(s) of the solution s is calculated by the 

average of the classification error and the percentage of the number of connections in the network, as shown in Eq. 

(15). 

))((
2

1
)( ct ppEsf                     (15) 

For prediction problems, the fitness function f(s) of solution s is set by the average of the mean squared 

error (MSE) or root mean squared error (RMSE) and the percentage of the number of connections. This is 

represented by the same equation (15), where E (pt) is considered to be MSE or RMSE.

 

2

1

)ˆ(
1

i

N

i

i yy
N

MSE  


     (16) 





N

i

ii yy
N

RMSE
1

2)ˆ(
1

     (17) 

In these equations N is the number of instances and
iy and

iŷ  are the actual value and predicted value, respectively. 
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4. Experimental results 

4.1 Benchmark classification and time series prediction problems 

In this section, we show the performance of the proposed methods using six classification and two time series 

prediction problems. The classification problems are Iris, Diabetes diagnoses, Thyroid dysfunction, Breast cancer, 

Credit card, and Glass identification. The time series prediction problems are Mackey-Glass and Gas Furnace. The 

classification problems are taken from the UCI machine learning repository [50]. The Gas Furnace dataset is a 

multivariate dataset from http://datasets.connectmv.com/datasets/, while Mackey-Glass is a univariate dataset which 

was produced from Eq. (18), where td =17: 

)(1

)(
)(

)(
10

d

d

ttx

ttax
tbx

dt

tdx




     (18) 

A summary of the description of the datasets is presented in Table 1 and the initial parameters (Table 2) 

were selected based on other experiments in the literature [30]. 

Table 1.Characteristics of datasets 

Dataset Examples Features Classes 

Iris 150 4 3 

Diabetes 768 8 2 

Thyroid 7,200 21 3 

Cancer 699 10 2 

Card 690 15 2 

Glass 214 10 6 

Mackey-Glass 1,000 1 0 

Gas Furnace 296 2 0 

Table 2.Configuration of parameters 

Parameter Definition  Value  

popSize Size of population 100 

numOfIte Maximum number of iterations 100 

fmin Minimum frequency 0 

fmax Maximum frequency 2 

Ai Loudness of emission  0.25 

ri Pulse rate 0.5 

prob Probability of bat adjustments on structure or W&B solutions 0.5 

 

For the Mackey-Glass dataset, we considered the output of x(t+6) with the input variables of x(t), x(t-6), x(t-12) and 

x(t-18).For the Gas Furnace dataset the input variables were u(t-3), u(t-2), u(t-1), y(t-3), y(t-2), y(t-1) and the output 

variable was y(t), as used in earlier reported works (Oh, Pedrycz, & Park, 2003; Park, Park, Kim, & Oh, 2004; Oh & 
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Pedrycz, 2005; Oh, Pedrycz, & Roh, 2009). We programmed the proposed algorithm using Java. We used 30 two-

fold iterations [29]to estimate the performance of the model. The data were randomly divided into two parts for each 

run. One half was employed for the training set and the other half was used as the testing set to test the final model. 

The patterns in the datasets were normalized into the range of [-1, 1] using the min-max normalization method. The 

activation function chosen for this experiment was the hyperbolic tangent because it has higher performance 

compared to others [51]. We compare the results in the following two subsections. The first evaluates the proposed 

algorithms in comparison with each other and the second compares the best proposed method with the methods in 

the literature. 

4.1.1Results of comparison of proposed methods 

The performance of the six versions of the algorithm were evaluated and compared with each other based on two 

criteria: 

 

 The percentage of the error  (classification error, MSE / RMSE) 

 The percentage of the number of connections used by the model. 

 

 A summary of the results obtained by six versions of the algorithm is shown in Table 3. Note that in this 

work the best method found from first three versions (MeanBatDNN) has been used for the chaotic maps 

application. Another notation is that in this table the training and testing errors for the case of classification datasets 

(first six datasets) means classification error for training and testing while for Mackey-Glass dataset is RMSE and 

for Gas Furnace dataset is MSE. From Table 3 it can be seen that the LogisticBatDNN has slightly superior 

performance compared to the other proposed methods. An example of the performance of the LogisticBatDNN 

method in Mackey-Glass dataset is provided in Fig. 5, which shows the scatter plots and optimization progress for 

the Mackey-Glass dataset. The scatter plots show the correlation between the actual data and the predicted value. In 

addition, the simultaneous minimization progress of the RMSE and the number of connections in the ANN are 

illustrated in this figure. To prove the above finding we performed the average ranking test to find the first ranked 

algorithm. These results are calculated using the RANK function in Microsoft Excel and the average of the ranks are 

shown in Table 4. 
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Table 3.Results of proposed versions of bat algorithm 

 
    

MeanBatDNN 

Dataset Criteria BatDNN MBatDNN MeanBatDNN PiecewiseBatDNN LogisticBatDNN SinBatDNN 

Iris 

Training error % 2.5546 2.5466 2.5133 3.2488 2.5008 2.5775 

Std. Dev. 0.0114 0.0109 0.0111 0.0117 0.0113 0.0108 

Testing error% 3.6133 3.7733 3.8235 4.9666 2.4213 3.9187 

Std. Dev. 0.0013 0.0060 0.0117 1.7607 0.0088 0.0096 

Connection% 5.4812 4.5288 4.5491 4.6403 4.4680 4.4984 

D
iab

etes 

Training error % 21.824 21.718 21.730 27.592 21.648 22.008 

Std. Dev. 0.0061 0.0105 0.0105 0.0440 0.0104 0.0144 

Testing error% 22.391 22.472 22.427 28.238 21.824 22.412 

Std. Dev. 0.0097 0.0308 0.0309 0.0493 0.0061 0.0310 

Connection% 5.3642 5.1548 5.0819 4.7442 5.0455 4.9817 

T
h

y
ro

id
 

Training error % 7.2792 7.2465 7.2545 7.4407 7.0911 7.1585 

Std. Dev. 0.0041 0.0041 0.0041 0.0030 0.0049 0.0052 

Testing error% 7.2318 7.4796 7.7050 7.5963 7.2545 7.7657 

Std. Dev. 0.0077 0.0168 0.0213 0.0091 0.0041 0.0186 

Connection% 11.531 7.8020 7.4473 6.7541 6.0029 6.9219 

C
an

cer 

Training error % 3.1499 3.0880 3.0018 3.1614 2.9336 2.9693 

Std. Dev. 0.0042 0.0058 0.0639 0.0050 0.0058 0.0055 

Testing error% 4.2378 3.8844 3.8491 3.7268 3.1614 3.8574 

Std. Dev. 0.0155 0.0144 0.0135 0.0114 0.0050 0.0134 

Connection% 7.5087 7.4649 7.2105 8.7631 7.0000 6.9736 

C
ard

 

Training error % 13.700 13.227 13.140 13.536 12.872 13.439 

Std. Dev. 0.0124 0.0081 0.0084 0.0106 0.0063 0.0095 

Testing error% 14.586 14.561 14.557 14.708 14.471 14.572 

Std. Dev. 0.0049 0.0044 0.0044 0.0051 0.0059 0.0040 

Connection% 7.0197 6.7159 6.7816 7.1264 6.0098 6.6502 

G
lass 

Training error % 40.965 40.529 39.906 40.124 38.748 41.900 

Std. Dev. 0.0328 0.0345 0.0303 0.0352 0.0464 0.0366 

Testing error% 44.633 43.484 43.380 43.305 41.429 44.726 

Std. Dev. 0.0227 0.0166 0.0166 0.0141 0.0288 0.0195 

Connection% 7.0618 7.4366 6.6970 8.2776 7.3657 7.2069 

M
ack

ey
-

G
lass 

Training error % 0.0007 0.0672 0.0675 0.0213 0.0020 0.0211 

Std. Dev. 0.0001 0.0001 0.0001 2.6E-05 7.8E-06 2.0E-05 

Testing error% 0.0005 0.0525 0.0525 1.8E-02 0.0029 0.0180 

Std. Dev. 8.6E-05 0.0001 0.0001 3.6E-05 1.0E-05 3.9E-05 

Connection% 4.8021 4.3594 3.2930 3.5412 3.2930 3.3333 

G
as 

F
u

rn
ace 

Training error % 0.3335 0.3329 0.3321 0.3333 0.3289 0.3333 

Std. Dev. 8.0E-05 0.0001 0.0002 7.5E-05 0.0003 7.5E-05 

Testing error% 0.4861 0.4510 0.4512 0.4842 0.4476 0.4842 

Std. Dev. 0.0014 0.0013 0.0013 0.0011 0.0014 0.0011 

Connection% 4.9355 5.0140 4.9859 4.8739 4.6610 4.8739 
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Fig. 5. Relation between actual and model output value in: (a) the training data and (b) the testing data, along with 

optimization progress in: (c) RMSE and (d) the number of connections of ANN.    

Table 4. Average of the ranks for proposed algorithms 

Training error  Testing error  Number of connections 

Algorithm Rank  Algorithm Rank  Algorithm Rank 

LogisticBatDNN 1.25  LogisticBatDNN 1.125  LogisticBatDNN 1.875 

MeanBatDNN 2.75  MeanBatDNN 3.5  SinBatDNN 2.375 

MBatDNN 3.625  MBatDNN 3.75  MeanBatDNN 3.25 

PiecewiseBatDNN 3.75  PiecewiseBatDNN 4.125  PiecewiseBatDNN 4.125 

SinBatDNN 4.25  BatDNN 4.125  MBatDNN 4.375 

BatDNN 5.375  SinBatDNN 4.375  BatDNN 4.625 

  

 The results show that the LogisticBatDNN is ranked first in all cases for training error, testing error and 

number of connections. The box plot graphs in Fig. 6 and Fig.7 graphically depict the distribution of the results for 

all datasets from running the program 30 times. These graphs show the maximum and minimum observed values. 

The boxes represent the centre 50 percent of the data. The upper boundaries of the boxes place the 75th percentile of 

the data while the lower boundaries point to the 25th percentile. There is a line in the boxes that specifies the median 

of the data. This is an assessment of central tendency or in other words, the location of the centre of the data. From 

the graphs, it can be seen that LogisticBatDNN shows superior performance in most of the cases. This superiority of 

LogisticBatDNN is due to the incorporation of the advantage of the logistic map which is sensitive to the effects of a 

small change from the initial state. 

 

 

 



Page 19 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

 

Fig. 6. Box plots of training and testing errors for all datasets: (a) Iris dataset, (b) Diabetes dataset, (c) Thyroid 

dataset, (d) Breast cancer dataset, (e) Credit card dataset, (f) Glass dataset, (g) Mackey- Glass dataset, and 

(h) Gas Furnace dataset. 
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Fig. 7.  Box plots of number of connections for all datasets: (a) Iris dataset, (b) Diabetes dataset, (c) Thyroid dataset, 

(d) Breast cancer dataset, (e) Credit card dataset, (f) Glass dataset, (g) Mackey- Glass dataset, and (h) Gas 

Furnace dataset. 

 

To assess whether LogisticBatDNN is statistically different from the other proposed algorithms, next we 

calculated the p-values for all datasets, where the critical value α is equal to 0.05. This assessment was performed 

for testing error and number of connections. The p-values computed for LogisticBatDNNas compared with other 

algorithms are shown in Table 5. The values below the critical level (highlighted in bold) prove the ability of 

LogisticBatDNN. In the case of testing error, LogisticBatDNN showed better ability in a minimum of two and a 
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maximum of six out of the eight datasets. In the case of the number of connections, LogisticBatDNN outperforms in 

at least one and in a maximum in three datasets out of eight. Therefore we can conclude that LogisticBatDNN is able 

to train the ANN with more accuracy using less complex network model because it is able to obtain the best results 

in both of the examined problems, namely classification and time series prediction. 

Table 5. p-value results for pairwise comparison of LogisticBatDNN versus other proposed algorithms 

Dataset 

BatDNN MBatDNN MeanBatDNN PiecewiseBatDNN SinBatDNN 

Testing 

error 

Number of 

connections 

Testing 

error 

Number of 

connections 

Testing 

error 

Number of 

connections 

Testing 

error 

Number of 

connections 

Testing 

error 

Number of 

connections 

Iris 1.5E-07 0.0588 2.2E-07 0.2862 3.3E-05 0.2510 1.3E-05 0.3672 2.3E-06 0.1627 

Diabetes 0.0027 0.3269 0.1289 0.0803 0.1472 0.0803 0.1289 0.0803 0.1533 0.1627 

Thyroid 0.4442 0.0001 0.2638 0.0602 0.1465 0.1465 0.0307 0.4973 0.0842 0.0249 

Cancer 0.0002 0.1361 0.0073 0.0792 0.0082 0.0846 0.0236 0.0368 0.0071 0.1627 

Card 0.0931 0.0265 0.1209 0.080 0.1306 0.0173 0.0278 0.0028 0.1078 0.0118 

Glass 1.8E-05 0.2723 7.7E-05 0.4469 0.0001 0.1391 0.0001 0.0067 1.3E-06 0.1321 

Mackey-Glass 2.5E-25 0.0006 6.5E-17 2.04E-11 7.0E-17 0.1627 2.4E-19 0.2377 6.1E-19 0.4480 

Gas Furnace 0.1787 0.2812 0.1627 0.0238 0.1627 0.0238 0.1394 0.3144 0.1394 0.3144 

In order to further improve our method, we ran the LogisticBatDNN using the parameters selected by the 

Taguchi method. The Taguchi method permits the analysis of many diverse parameters using an orthogonal array 

without high amount of testing.  This enables the recognition of the key parameters that have the most effect on the 

performance value so that further testing of these parameters can be carried out and, conversely, the parameters that 

have little effect can be disregarded. 

Table 6 shows the parameters found by the Taguchi method using Minitab software. The parameters that 

are different from the parameters chosen without Taguchi method are shown in bold. From Table 7 it can be 

observed that there is a significant difference between LogisticBatDNN with the Taguchi method (T-

LogisticBatDNN). The results below the critical value (α = 0.05) are highlighted in bold. This shows that the results 

of the T-LogisticBatDNN, whose parameters were tuned using the Taguchi method, has better ability compared to 

LogisticBatDNN whose parameters were selected, based on other approaches in the literature. 

Table 6.Configuration of parameters with Taguchi method 

Parameter Definition  Value with Taguchi 

method 

popSize Size of population 100 

numOfIte Maximum number of iterations 100 

fmin Minimum frequency 0.25 

fmax Maximum frequency 2 

Ai Loudness of emission  0. 5 

ri Pulse rate 0.75 

prob Probability of bat adjustments on structure or W&B solutions 0.5 
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Table 7. p-value results comparison of T-LogisticBatDNN versus LogisticBatDNN 

Dataset 
LogisticBatDNN 

Testing error Number of connections 

Iris 0.00548 0.11175 

Diabetes 0.00996 0.21415 

Thyroid 0.00174 0.04950 

Cancer 0.00147 0.08504 

Card 0.00042 0.04644 

Glass 0.00071 0.04316 

Mackey-Glass 0.08103 0.08374 

Gas Furnace 0.00064 0.00582 

As it is mentioned before, the aim of modifications on the bat algorithm is to achieve higher quality of 

convergence by improving the trade-off of exploration and exploitation. Fig. 8 is given in order to perceive how this 

modifications assist the bat algorithm to balance the exploration and exploitation.  This figure shows the status of the 

initial and improved solutions in the population in different iteration number.  

 

Fig. 8.  Convergence action with exploration and exploitation illustration in the population: (a) initial stage, (b) 

iteration 5, (c) iteration 10, (d) iteration 30, (e) iteration 60, (f) iteration 90, (g) iteration 100. 
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4.1.2 Results of comparison of the best proposed method with other methods in the literature 

In order to improve our evaluation we also compared our best method (T-LogisticBatDNN) with other approaches in 

the literature. Since there are plenty of results available in the literature, especially in the case of classification, for 

the purposes of comparison we chose the latest and the most similar approaches to our method [29] which has 

optimized both weights and structure of ANN. Table 8 shows the details of this comparison in the case of testing 

error and number of connections for classification problems. Table 9 shows a comparison with other approaches [23, 

52] for time series prediction problems. The best results are shown in bold. 

Table 8.Comparison of T-LogisticBatDNN and other approaches in the literature for classification problem 

Dataset Criteria  T-LogisticBatDNN SA TS GA TSa GaTSa+BP 

Iris 
Testing error% 1.8313 12.649 12.478 2.5641 4.6154 5.2564 

Connection% 4.0729 26.072 25.937 22.979 24.260 31.853 

Diabetes 
Testing error% 20.139 27.156 27.404 25.994 25.876 27.061 

Connection% 5.2732 30.383 30.816 18.703 25.506 9.0975 

Thyroid 
Testing error% 6.7545 7.3813 7.3406 7.2850 7.3322 7.1509 

Connection% 5.8059 34.887 35.891 14.390 29.811 12.640 

Cancer 
Testing error% 2.8947 7.1729 7.2779 7.4220 6.2846 15.242 

Connection% 6.6578 35.727 33.454 57.606 34.363 27.337 

Card 
Testing error% 13.738 23.469 18.042 31.724 21.269 15.242 

Connection% 5.6321 41.745 44.512 55.122 43.410 38.441 

Glass 
Testing error% 38.429 58.381 56.412 58.031 57.777 55.142 

Connection% 6.7578 31.802 32.963 55.651 31.037 31.173 

Table 9.Comparison of T-LogisticBatDNN with other approaches in the literature for time series prediction problem 

Dataset Criteria 
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Mackey-

Glass 

Training error% 0.0018 0.0163 0.0152 0.0448 0.0229 0.1240 0.0453 - - 

Testing error% 0.0027 0.0315 0.0262 0.0441 0.0289 0.1180 0.0441 - - 

Gas 

Furnace 

Training error% 0.3020 0.8200 0.1330 - - 1.1000 1.0000 1.5000 1.6000 

Testing error% 0.3300 11.520 10.250 - - 11.200 10.300 10.300 10.000 

Note: The percentage of error has been calculated for the results in the literature. 

From Table 8 it can be seen that the results of T-LogisticBatDNN outperformed the other approaches in all 

cases. It is clear that there is a large difference in the number of connections in T-LogisticBatDNN compared with 

other approaches. We believe that this difference is due to the optimization strategy that attempts to minimize the 

structure of the ANN model as well as weights and biases. In the case of time series prediction, our approach was 
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better than the other approaches apart from the training error for the Gas Furnace dataset. Although the training error 

in the Gas Furnace dataset is inferior compared to others, our proposed model showed great ability in testing data 

(Table 9).  

In order further improve the comprehensiveness of our assessment, we also performed the Friedman test 

and Nemenyi test to find out whether there are significant differences between the performance of our proposed 

method and other approaches for classification error, number of connections for the classification problem and 

prediction error for the time series prediction problem. 

4.1.3 Friedman and post-hoc tests for classification error 

The value computed by the Friedman test was18.57143, which is greater than 10.57 (critical value) for the testing 

error of classification problems. Therefore we rejected the null hypothesis. This evaluation showed that there is a 

significant difference between the performances of the algorithms in the case of classification error. 

We also carried out a Nemenyi test as a post-hoc test to find the group of algorithms that are differ from the 

others. After calculating the standard error (SE) and its posterior computing the minimum significant difference 

(MSD) we needed to see where any differences in means went beyond the MSD. The MSD in our case was equal to 

7.53944 and the result highlighted in bold in Table 10 shows that T-LogisticBatDNN had statistically significant 

results in two cases. 

Table 10.Nemenyi test for classification error 

 
 T-LogisticBatDNN SA TS GA TSa GaTSa+BP 

 
Mean 13.96468 22.70167 21.49282 22.1704 20.52602 19.50763 

T-LogisticBatDNN 13.96468  - 8.7369 7.5281 8.2057 6.5613 5.5429 

SA 22.70167  -  - 1.2088 0.5312 2.1756 3.1940 

TS 21.49282  -  -  - 0.6775 0.9668 1.9851 

GA 22.1704  -  -  -  - 1.6443 2.6627 

TSa 20.52602  -  -  -  -  - 1.0183 

GaTSa+BP 19.50763  -  -  -  -  -  - 

4.1.4 Friedman and post-hoc tests for number of connections of classification problem 

We repeated the same process reported in the previous subsection for the number of connections achieved for the 

classification problem. The Friedman test result showed a value equal to 17.42857, which is greater than the critical 

level (10.57). Therefore the null hypothesis was rejected for the number of connections as well .Hence we can 

conclude that there is a significant difference between the performances of the compared algorithms. The Nemenyi 

 

 

 



Page 25 of 30

Acc
ep

te
d 

M
an

us
cr

ip
t

test result for MSD was equal to 7.53944. In Table 11, the bolded cases illustrate the higher score compared to other 

algorithms. The T-LogisticBatDNN algorithm achieved the highest difference in all the cases. 

Table 11.Nemenyi test for number of connections in classification problem 

Algorithm  T-LogisticBatDNN SA TS GA TSa GaTSa+BP 

 
Mean 5.700014 33.43645 33.92932 32.40878 31.39817 25.09068 

T-LogisticBatDNN 5.700014  - 27.736 28.229 26.708 25.698 19.390 

SA 33.43645  -  - 0.4928 1.0276 2.0382 8.3457 

TS 33.92932  -  -  - 1.5205 2.5311 8.8386 

GA 32.40878  -  -  -  - 1.0106 7.3181 

TSa 31.39817  -  -  -  -  - 6.3074 

GaTSa+BP 25.09068  -  -  -  -  -  - 

4.1.5 Friedman and post-hoc tests for prediction error of time series prediction 

In the case of time series prediction, due to the lack of availability of results in the literature for the number of 

connections, we performed the Friedman test on prediction error (test data) only. The Friedman test result was equal 

to 12.8. This value is greater than the critical level (7.6) so we rejected the null hypothesis and continued our study 

by performing the Nemenyi post-hoc test. From Table 12 it can be seen that the T-LogisticBatDNN algorithm 

performed better than the others, where the MSD is equal to 4.315611. 

Table 12.Nemenyi test of prediction error for time series prediction 

Algorithm  
 

T-LogisticBatDNN 
gHFSPNN 

(triangular) 

gHFSPNN 

(Gaussian) 

gFSPNN 

T(triangular) 

gFSPNN 

T(Gaussian) 

   Mean 0.16638 5.77577 5.138145 5.659 5.17205 

T-LogisticBatDNN 0.16638  - 5.6093 4.9717 5.4926 5.0056 

gHFSPNN(triangular) 5.77577  -  - 0.6376 0.1167 0.6037 

gHFSPNN(Gaussian) 5.138145  -  -  - 0.5208 0.0339 

gFSPNN T(triangular) 5.659  -  -  -  - 0.4869 

gFSPNN T(Gaussian) 5.17205  -  -  -  -  - 

4.2 Time series prediction for real-world data 

In the last part of our assessment, the best method (T-LogisticBatDNN) was applied to real-world rainfall data. 

Multi-step ahead prediction is the task of predicting a sequence of values in a time series. Rainfall time series data 

was gathered from the Institute of Climate Change, Universiti Kebangsaan Malaysia (UKM), Malaysia. Station1 is a 

daily rainfall data record from years 1975 to 2003 which was reported from 5R-Mardi Serdang-Sel station. Station2 
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is also a daily rainfall record, in this case from years 1989 to 2003, which was recorded from 8R-Ampang 

Semenyih-Sel station. 

Table 13.Results of T-LogisticBatDNN for real-world rainfall data 

Dataset Criteria  T-LogisticBatDNN 

Station1 

Training error % 0.28494 

Std. Dev. 0.09832 

Testing error% 0.36604 

Std. Dev. 0.02747 

Connection% 41.2348 

Station2 

Training error % 0.33593 

Std. Dev. 0.04812 

Testing error% 0.28925 

Std. Dev. 0.01392 

Connection% 36.9378 

 

Fig. 9.T-LogisticBatDNN for real data forecasting: (a) station1 and (b) station2. 

 

Monthly averages of the daily data were obtained. The first 24 corresponding averages were employed as 

the input for the ANN and the rest was divided into two parts; one part was used as a training set and the second as a 

testing set. The data were normalized into the range of [-1, 1]. The results for rainfall data using T-LogisticBatDNN 
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are shown in Table13. The details of these rainfall forecasts are given in Fig. 9. The model was used to predict three 

years of future rainfall changes based on previously observed values. This three years prediction as a sequence of 

values was performed to investigate the performance of the method for multistep-ahead prediction of real-world 

data.  To achieve this goal we built a model by optimizing the fitness of the model for the training data with aid of 

T-LogisticBatDNN. Then the best model thus found was used to evaluate the predicted data using the test data. The 

forecasting part consists of the values predicted by the model for future rainfall changes. These three steps of the 

forecasting procedure are shown in Fig. 9. Both the actual value and the model output were normalized into the 

interval [0, 1] in this figure. It is clear that, although the rainfall changes have an irregular pattern, the performance 

of the model shows that the proposed method has good ability to predict real-world data.  

 

5. Conclusion  

This paper investigated the ability of the bat algorithm to undertake simultaneous optimization of the structure and 

weights of an ANN in order to allow the creation of a more accurate and less complex neural network model. To 

achieve this major aim, the basic bat algorithm was applied to optimize the proposed method. Then two 

modifications (MBatDNN and MeanBatDNN) of the bat algorithm were proposed in order to improve the 

exploration and exploitation strategy of the algorithm in the population. For enhancement of the balancing 

exploration and exploitation, three types of chaotic maps were then included in the more accurate version 

(MeanBatDNN) in order to generate a sequence map instead of a random sequence. The efficacy of these three 

chaotic map versions were compared with each other where the algorithms were applied to classification and time 

series prediction problems. With the aid of statistical tests the best version among the six proposed bat algorithms 

was identified, namely LogisticBatDNN. Then the Taguchi method was used to tune the parameters of 

LogisticBatDNN and the result showed superior performance. This subsequent version, namely T-LogisticBatDNN, 

was compared statistically with other methods in the literature. Based on our extensive evaluations it was concluded 

that the T-LogisticBatDNN algorithm has the ability to outperform two of the compared algorithms (SA and GA) in 

the case of classification error. It also showed better performance for the number of connections of the ANN which 

has higher achievement for all cases. Moreover, this algorithm was able to obtain more accurate model for time 

series prediction. Finally, the proposed method was applied to a real-world time series prediction problem (rainfall 

data) and it was found that the proposed method is able to predict the future instances for rainfall data accurately. 

These promising results motivate us to find ways to extend our method as future work. This extension could be in 

the form of the incorporation of other chaotic maps in the method. Another research direction is that the method 

could be used in solving other real-world problems such as regression and pattern recognition. 
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