Data Mining:

Concepts and Techniques

(3" ed.)

— Chapter 6 —

Ali Shakiba
Vali-e-Asr University of Rafsanjan

based on slides by
Jiawei Han, Micheline Kamber, and Jian Pei
University of Illinois at Urbana-Champaign
Simon Fraser University
©2011 Han, Kamber, and Pei. All rights reserved.

Chapter 5: Mining Frequent Patterns, Association
and Correlations: Basic Concepts and Methods

B Basic Concepts &=
B Frequent Itemset Mining Methods

B Which Patterns Are Interesting?—Pattern

Evaluation Methods

B Summary

What Is Frequent Pattern Analysis?

Frequent pattern: a pattern (a set of items, subsequences, substructures,
etc.) that occurs frequently in a data set

m First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context
of frequent itemsets and association rule mining

Motivation: Finding inherent regularities in data
= What products were often purchased together?— Beer and diapers?!
=« What are the subsequent purchases after buying a PC?
= What kinds of DNA are sensitive to this new drug?
= Can we automatically classify web documents?
m Applications

m Basket data analysis, cross-marketing, catalog design, sale campaign
analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

= Freq. pattern: An intrinsic and important property of
datasets

= Foundation for many essential data mining tasks
= Association, correlation, and causality analysis
= Sequential, structural (e.g., sub-graph) patterns

= Pattern analysis in spatiotemporal, multimedia, time-
series, and stream data

» Classification: discriminative, frequent pattern analysis
= Cluster analysis: frequent pattern-based clustering

»« Data warehousing: iceberg cube and cube-gradient

= Semantic data compression: fascicles

= Broad applications

Basic Concepts: Frequent Patterns

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

Customer

Customer
buys diaper

Customer
buys beer

itemset: A set of one or more
items

k-itemset X = {Xq, ..., Xc
(absolute) support, or, support

count of X: Frequency or
occurrence of an itemset X

(relative) support, s, is the
fraction of transactions that
contains X (i.e., the probability
that a transaction contains X)

An itemset X is frequent if X’s
support is no less than a minsup
threshold

Basic Concepts: Association Rules

Tid Items bought

10 Beer, Nuts, Diaper

20 Beer, Coffee, Diaper

30 Beer, Diaper, Eggs

40 Nuts, Eggs, Milk

50 Nuts, Coffee, Diaper, Eggs, Milk

Customer

Customer

Customer
buys beer

= Find all the rules X > Y with
minimum support and confidence

= support, s, probability that a
transaction contains X U Y

= confidence, ¢, conditional
probability that a transaction
having X also contains Y
Let minsup = 50%, minconf = 50%
Freqg. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3,
{Beer, Diaper}:3
= Association rules: (many more!)
= Beer > Diaper (60%, 100%)
« Diaper > Beer (60%, 75%)

Closed Patterns and Max-Patterns

= A long pattern contains a combinatorial number of sub-
patterns, e.g., {ay, ..., @190} CONtains (;po!) + (1002) + .- +
(1109,9) = 2100— 1 = 1.27*103% sub-patterns!

= Solution: Mine closed patterns and max-patterns instead

= An itemset X is closed if X is frequent and there exists no
super-pattern Y > X, with the same support as X
(proposed by Pasquier, et al. @ ICDT'99)

= An itemset X is a max-pattern if X is frequent and there
exists no frequent super-pattern Y > X (proposed by
Bayardo @ SIGMOD98)

= Closed pattern is a lossless compression of freq. patterns
= Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

s Exercise. DB = {<a;y, ..., 399>, < @y, ..., Q5>+
= Min_sup = 1.

= What is the set of closed itemset?
s <ay, ..., Qo> 1
s <3y, ..., Agp>: 2

= What is the set of max-pattern?
= <a1, .y a100>: 1

= What is the set of all patterns?
n !l

Computational Complexity of Frequent Itemset
Mining

= How many itemsets are potentially to be generated in the worst case?

= The number of frequent itemsets to be generated is senstive to the
minsup threshold

= When minsup is low, there exist potentially an exponential number of
frequent itemsets

= The worst case: MN where M: # distinct items, and N: max length of
transactions

= The worst case complexty vs. the expected probability
= EX. Suppose Walmart has 10% kinds of products
= The chance to pick up one product 104
= The chance to pick up a particular set of 10 products: ~10-40

= What is the chance this particular set of 10 products to be frequent
103 times in 10° transactions? ~ 2.48 x 10-33>68

Chapter 5: Mining Frequent Patterns, Association

B Basic Concepts

=

B Frequent Itemset Mining Methods

B Which Patterns Are Interesting?—Pattern

Evaluation Methods

B Summary

10

Scalable Frequent Iltemset Mining Methods

= Apriori: A Candidate Generation-and-Test

(3

Approach
= Improving the Efficiency of Apriori
= FPGrowth: A Frequent Pattern-Growth Approach

= ECLAT: Frequent Pattern Mining with Vertical

Data Format

11

The Downward Closure Property and $Scalable
hod

= The downward closure property of frequent patterns
= Any subset of a frequent itemset must be frequent

« If {beer, diaper, nuts} is frequent, so is {beer,
diaper}

= i.e., every transaction having {beer, diaper, nuts} also
contains {beer, diaper}
= Scalable mining methods: Three major approaches
= Apriori (Agrawal & Srikant@VLDB'94)

« Freqg. pattern growth (FPgrowth—Han, Pei & Yin
@SIGMOD'00)

= Vertical data format approach (Charm—Zaki & Hsiao
@SDM'02)

12

= Apriori pruning principle: If there is any itemset which is

infrequent, its superset should not be generated/tested!
(Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)

s Method:
= Initially, scan DB once to get frequent 1-itemset

=« Generate length (k+1) candidate itemsets from length k
frequent itemsets

= Test the candidates against DB

= Terminate when no frequent or candidate set can be
generated

13

The Apriori Algorithm—An Example

min Itemset | sup Tt t
Database TDB (A} > emset | sup
- L, {A} 2
Tid Items C; {B} 3) 3
10 A, C, D
o | ece | s pm—— O
30 | ABCE {(E} 3 {E} 3
40 B, E
Itemset | su
., [
nd
bo [deemest 1500 o 2| 2scan [Ta
' | ae | 1] (A C
g, g g — | ¢,C | 2 {A, E}
: {B, E} 3 {B, C}
{C, E} 2
: {C, E} 2 {B, E}
{C, E}
C3 Itemset 31d goan L 3 Itemset | sup
{B, C, E} > | {BLCGE}| 2

14

The Apriori Algorithm (Pseudo-Code)

C,. Candidate itemset of size k
L, : frequent itemset of size k

L, = {frequent items};
for(k=1; L, '=J; k++) do begin
C.,; = candidates generated from L,;
for each transaction tin database do
increment the count of all candidates in C,,, that
are contained in ¢t
L,.; = candidates in C,,; with min_support
end
return v, L

15

Implementation of Apriori

= How to generate candidates?
= Step 1: self-joining L,
= Step 2: pruning
= Example of Candidate-generation
« L;={abc, abd, acd, ace, bcd}
= Self-joining: L;%*L;
= abcd from abc and abd
= acde from acd and ace

= Pruning:
= acde is removed because adeis not in L;

« C,= {abcd}

16

Candidate Generation: An SQL Implementation

SQL Implementation of candidate generation
= Suppose the items in L,_; are listed in an order
= Step 1: self-joining L,
insert into C,,
select p.item,, p.item,, ..., p.item,_,, q.item,_,
from Ly; Py Ly G
where p.item,=q.item,, ..., p.item,_,=q.item,_,, p.item,_, <
q.item,_,
= Step 2: pruning
forall itemsets c in C, do
forall (k-1)-subsets s of ¢ do
if (sis not in L, ;) then delete c from C,

Use object-relational extensions like UDFs, BLOBs, and Table functions for
efficient implementation [See: S. Sarawagi, S. Thomas, and R. Agrawal.
Integrating association rule mining with relational database systems:
Alternatives and implications. SIGMOD98]

17

Scalable Frequent Iltemset Mining Methods

= Apriori: A Candidate Generation-and-Test Approach

= Improving the Efficiency of Apriori @
= FPGrowth: A Frequent Pattern-Growth Approach
= ECLAT: Frequent Pattern Mining with Vertical Data Format

= Mining Close Frequent Patterns and Maxpatterns

Further Improvement of the Apriori Method

= Major computational challenges

= Multiple scans of transaction database

= Huge number of candidates

= Tedious workload of support counting for candidates
= Improving Apriori: general ideas

» Reduce passes of transaction database scans

= Shrink number of candidates

« Facilitate support counting of candidates

19

Partition: $can Database Only Twice

= Any itemset that is potentially frequent in DB must be
frequent in at least one of the partitions of DB

= Scan 1: partition database and find local frequent
patterns

= Scan 2: consolidate global frequent patterns
= A. Savasere, E. Omiecinski and S. Navathe, VL.DB95

DB, + DB, + + DB, = DB
sup4(i) < oDB; sup,(i) < oDB, sup,(i) < oDB, sup(i) < oDB

DHP: Reduce the Number of Candidates

(Direct Hashing and Pruning)

= A k-itemset whose corresponding hashing bucket count is below the

threshold cannot be frequent .
count| Itemsets

=« Candidates: a, b, ¢, d, e 35 | {ab, ad, ae}
88 | {bd, be, de}

= Hash entries
« {ab, ad, ae}
« {bd, be, de}

L. 102 | {yz, gs, wt}
= Frequent 1-itemset: a, b, d, e Hash Table

= ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae}
is below support threshold

n Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. 1995. An effective hash-based algorithm for mining association rules.
In Proceedings of the 1995 ACM SIGMOD international conference on Management of data (SIGMOD '95), Michael Carey and
Donovan Schneider (Eds.). ACM, New York, NY, USA, 175-186. DOI=http://dx.doi.org/10.1145/223784.223813

21

Scalable Frequent Iltemset Mining Methods

= Apriori: A Candidate Generation-and-Test Approach

= Improving the Efficiency of Apriori
= FPGrowth: A Frequent Pattern-Growth Approach &
= ECLAT: Frequent Pattern Mining with Vertical Data Format

= Mining Close Frequent Patterns and Maxpatterns

Pattern-Growth Approach: Mining Frequent
Patterns Without Candidate Generation

= Bottlenecks of the Apriori approach
= Breadth-first (i.e., level-wise) search
= Candidate generation and test
= Often generates a huge number of candidates
= The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD’ 00)
= Depth-first search
= Avoid explicit candidate generation

= Major philosophy: Grow long patterns from short ones using local
frequent items only

=« abc” is a frequent pattern
= Get all transactions having “abc”, i.e., project DB on abc: DB|abc
=« 'd”is a local frequent item in DB|abc = abcd is a frequent pattern

23

Construct FP-tree from a Transaction Database

TID Items bought (ordered) frequent items

100 {f, a, ¢, d, g, i, m, p} {f, ¢, a, m, p}
200 {a) b) C,f; l) m, 0} {f; ¢ a, b, m} .
300 {b, f, h, j, 0, w} {f, b} min_support =3
400 {b, ¢ ks, p} fc, b, p}
500 {a, f, c, e, |, p, m, n} {f, ¢, a, m, p} 0
Header Table
1. Scan DB once, find N
frequent 1-itemset (single | Item_frequency head | ~—t/4| .~ ¢
item pattern) f 4 T A
c 4 ———=>c:31| b:13 b:1
2. Sort frequent items in a 3 . T
frequency descending b 3 —~Jla3| 1| pe
order, f-list m ; AN /l 7
3. Scan DB again, construct £ \\ pm:2\ §19.-1///
FP-tree \ |-

F-list = f-c-a-b-m-p “Mp:2fim:1

24

Partition Patterns and Databases

= Frequent patterns can be partitioned into subsets
according to f-list

« F-list = f-c-a-b-m-p
» Patterns containing p
« Patterns having m but no p
= Patterns having cbut noanorb, m, p
« Pattern f
= Completeness and non-redundency

25

Find Patterns Having P From P-conditional Database

= Starting at the frequent item header table in the FP-tree
= Traverse the FP-tree by following the link of each frequent item p
= Accumulate all of transformed prefix paths of item p to form ps

conditional pattern base

$
Header Table
ltem frequency head //}f..4 el Conditional pattern bases
f 4 S T p: | item cond. pattern base
c 4 ——+=>{c:3| b:13 b:1
c :3
a 3 -~ | i | s
b 3 NP | p:l a fe:3
m ; | ST ;' 7 b fea:l, f:1, c:1
2 Th.

P N \:>mi2\ b. : ./ m fea:2, feab:1

\ 2 J(ln; ; p feam:2, cb:1

26

From Conditional Pattern-bases to Conditional FP-trees

= For each pattern-base
= Accumulate the count for each item in the base
= Construct the FP-tree for the frequent items of the

pattern base

m-conditional pattern base:

Header Table j"L Jea:2, feab:1

1, . All frequent
?‘em L reztuencv head T)47 C-ll 0 patterl(lls relate to m
C 4 T c.;3’/ b:17| b:1 > | "
a 3 s N ! ' f 3 = fm, cm, am,
b 3 . \\Aa.'S ,']?4"1 fem, fam, cam,
mo 3 M] &3 foam
p 3 \ | J - |

‘\,\p..Z X m] a.'3

m-conditional FP-tree
27

Recursion: Mining Each Conditional FP-tree

{}
|
0 Cond. pattern base of "am™: (fc:3) f-‘l3
|
c:3
ﬁ|3 am-conditional FP-tree
c:3 {}
| Cond. pattern base of "cm”: (f:3) |

m-conditional FP-tree
cm-conditional FP-tree

U

Cond. pattern base of “cam”: (f:3) f.|3

cam-conditional FP-tree

28

A Special Case: Single Prefix Path in FP-tree

= Suppose a (conditional) FP-tree T has a shared
single prefix-path P

= Mining can be decomposed into two parts

{|} = Reduction of the single prefix path into one node

“r’i - a Concatenation of the mining results of the two

alz-'”z parts

a3 n;

/ \ {|} r 1
) C.:k an / \
o / 1\1 -> I = Y + b;:m, Criky
a,.n
273 / \
Cz:kz C3:k3

a;n; G, K, C;'K;3

29

Benefits of the FP-tree Structure

= Completeness

= Preserve complete information for frequent pattern
mining
= Never break a long pattern of any transaction
= Compactness
= Reduce irrelevant info—infrequent items are gone

« Items in frequency descending order: the more
frequently occurring, the more likely to be shared

= Never be larger than the original database (not count
node-links and the count field)

30

The Frequent Pattern Growth Mining Method

= Idea: Frequent pattern growth
= Recursively grow frequent patterns by pattern and
database partition
= Method
= For each frequent item, construct its conditional
pattern-base, and then its conditional FP-tree
= Repeat the process on each newly created conditional
FP-tree

= Until the resulting FP-tree is empty, or it contains only
one path—single path will generate all the
combinations of its sub-paths, each of which is a
frequent pattern

31

Performance of FPGrowth in Large Datasets

100 - !
90 - : ——— D1 FP-grow th runtime
80 - \I — =% — D1 Apriori runtime
|
70 A \
35 X
g 60 \
Y \
E 50 - \ Data set T25120D10K
n§: 40 - \\
30 - \
20 - *\\
AN
10 A N
0 T - v\ J\ - - ‘\F S — __ — ?_-*\
0 0.5 1 1.5 2 2.5 3

Support threshold(%)

FP-Growth vs. Apriori

32

Advantages of the Pattern Growth Approach

= Divide-and-conquer:

= Decompose both the mining task and DB according to the
frequent patterns obtained so far

= Lead to focused search of smaller databases
= Other factors

= No candidate generation, no candidate test

= Compressed database: FP-tree structure

= No repeated scan of entire database

= Basic ops: counting local freq items and building sub FP-tree, no
pattern search and matching

= A good open-source implementation and refinement of FPGrowth
=« FPGrowth+ (Grahne and J. Zhu, FIMI'03)

33

Further Improvements of Mining Methods

= AFOPT (Liu, et al. @ KDD'03)

= A “push-right” method for mining condensed frequent pattern
(CFP) tree

= Carpenter (Pan, et al. @ KDD'03)
= Mine data sets with small rows but numerous columns
= Construct a row-enumeration tree for efficient mining
= FPgrowth+ (Grahne and Zhu, FIMI'03)

« Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc.
ICDM'03 Int. Workshop on Frequent Itemset Mining
Implementations (FIMI'03), Melbourne, FL, Nov. 2003

= TD-Close (Liu, et al, SDM'06)

34

Extension of Pattern Growth Mining Methodology

= Mining closed frequent itemsets and max-patterns
= CLOSET (DMKD'00), FPclose, and FPMax (Grahne & Zhu, Fimi'03)
= Mining sequential patterns
= PrefixSpan (ICDE'01), CloSpan (SDM’03), BIDE (ICDE'04)
= Mining graph patterns
= gSpan (ICDM'02), CloseGraph (KDD'03)
= Constraint-based mining of frequent patterns
= Convertible constraints (ICDE'01), gPrune (PAKDD'03)
= Computing iceberg data cubes with complex measures
=« H-tree, H-cubing, and Star-cubing (SIGMOD’01, VLDB'03)
= Pattern-growth-based Clustering
= MaPle (Pei, et al., ICDM'03)
= Pattern-Growth-Based Classification
= Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)

35

Scalable Frequent Iltemset Mining Methods

= Apriori: A Candidate Generation-and-Test Approach

= Improving the Efficiency of Apriori
= FPGrowth: A Frequent Pattern-Growth Approach
= ECLAT: Frequent Pattern Mining with Vertical Data Format

=

= Mining Close Frequent Patterns and Maxpatterns

ECLAT: Mining by Exploring Vertical Data
Format

= Vertical format: t(AB) = {T4, Ty, ...}
» tid-list: list of trans.-ids containing an itemset
= Deriving frequent patterns based on vertical intersections
= t(X) = t(Y): Xand Y always happen together
= t(X) < t(Y): transaction having X always has Y
= Using diffset to accelerate mining
= Only keep track of differences of tids
= t(X) = {Ty, Ty, T3}, WXY) ={Ty, T3}
« Diffset (XY, X) = {T,}
= Eclat (Zaki et al. @KDD'97)
= Mining Closed patterns using vertical format: CHARM (Zaki &
Hsiao@SDM'02)

37

Scalable Frequent Iltemset Mining Methods

= Apriori: A Candidate Generation-and-Test Approach

= Improving the Efficiency of Apriori
= FPGrowth: A Frequent Pattern-Growth Approach
= ECLAT: Frequent Pattern Mining with Vertical Data Format

= Mining Close Frequent Patterns and Maxpatterns

=

Mining Frequent Closed Patterns: CLOSET

Flist: list of all frequent items in support ascending order

= Flist: d-a-f-e-C
Divide search space
= Patterns having ¢

= Patterns having d but no a, etc.

Find frequent closed pattern recursively

Min_sup=2

TID

Items

10

a,¢cd e f

20

a, b, e

30

c, e f

40

a, cd,f

50

c, e f

= Every transaction having d also has cfa > cfadis a

frequent closed pattern

J. Pei, J. Han & R. Mao. "CLOSET: An Efficient Algorithm for

Mining Frequent Closed Itemsets”, DMKD'00.

CLOSET+: Mining Closed Itemsets by Pattern-Growth

Q Efficient, direct mining of closed itemsets _

O Ex. Itemset merging: If Y appears in every occurrence of X, then Y ! ageg!
is merged with X 2 abe

3 f
2 d-proj. db: {acef, acf} = acfd-proj. db: {e}, thus we get: acfd:2 . :idgf

Q Many other tricks (but not detailed here), such as TpEe—
d Hybrid tree projection a:3, ¢:3, d:2, e:3, :3
3O Bottom-up physical tree-projection o T

ad Top-down pseudo tree-projection
3 Sub-itemset pruning
3 Item skipping
2 Efficient subset checking

Q For details, see J. Wang, et al., “CLOSET+:”, KDD'03

Chapter 5: Mining Frequent Patterns, Association

B Basic Concepts

B Frequent Itemset Mining Methods

B Which Patterns Are Interesting?—Pattern &

Evaluation Methods

B Summary

41

How to Judge if a Rule/Pattern Is Interesting?

Q Pattern-mining will generate a large set of patterns/rules
2 Not all the generated patterns/rules are interesting
Q Interestingness measures: Objective vs. subjective
2 Objective interestingness measures
2 Support, confidence, correlation, ...

J Subjective interestingness measures: One man’s trash could be
another man’s treasure

2 Query-based: Relevant to a user’s particular request
2 Against one’s knowledge-base: unexpected, freshness, timeliness

3 Visualization tools: Multi-dimensional, interactive examination

Limitation of the Support-Confidence Framework

Q Are s and c interesting in association rules: “A = B” [s, c]? Be careful!

Q Example: Suppose one school may have the following statistics on #
of students who may play basketball and/or eat cereal:

play-basketball not play-basketball sum (row* |
eat-cereal 400 350 750 2~ Way cong;
not eat-cereal 200 50 250 tingen, CY tap)
sum(col.) 600 400 1000 <

Q Association rule mining may generate the following:
3 play-basketball = eat-cereal [40%, 66.7%) (higher s & ¢)

Q But this strong association rule is misleading: The overall % of
students eating cereal is 75% > 66.7%, a more telling rule:

a - play-basketball = eat-cereal [35%, 87.5%] (high s & ¢)

Interestingness Measure: Lift

Q Measure of dependent/correlated events: lift Lift is more telling thans & ¢
c(B— C s(BuC 5

lift (B.C) = <) __s() B | B | S

.S'(C‘) S(B) > 5((*) C 400 350 750

~C 200 | 50 250

Q Lift(B, C) may tell how B and C are correlated 3 600 | 400 1000

Q Lift(B, C) = 1: B and C are independent
Q > 1: positively correlated

Q < 1: negatively correlated
400/1000

600/1000<750/1000

200/1000
lift (B.—C) = , — =1.33
600/1000 = 250 /1000

Q Forourexample, Jifi(B.C)= 0.89

Q Thus, B and C are negatively correlated since lift(B, C) < 1;
2 Band -C are positively correlated since lift(B, -C) > 1

Interestingness Measure: y 2

2 Another measure to test correlated events: x? X’ tells also better thans & ¢
2 (Observed — Expecred)2 B -B % o

= = Z Expecred C | ,400 (450) | 350 (300) 750

5 Eomcel vales ~C [//200 (150) | 50 (100) | 250
2q U 6)0 400 1000

2 x2=0: ind dent |
X independen . Expected value

2 x? > 0: correlated, either positive or negative, so it

needs additional test Observed value

, (400—450) (350—300)> (200—150)° (50—100)°
Y= + —+ += '
Q Now, » 400 350 200 50

Q x? shows B and C are negatively correlated since the

= 75.89

N

expected value is 450 but the observed is only 400

Lift and y ?: Are They Always Good Measures?

3 Null transactions: Transactions that contain

neither B nor C
3 Let’s examine the dataset D

2 BC(100) is much rarer than B-C (1000) and -BC
(1000), but there are many -B-C (100000)

3 Unlikely B & C will happen together!
Q But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are

strongly positively correlated!)
Q x2=670: Observed(BC) >> expected value (11.85)

Q Too many null transactions may “spoil the soup”!

B -B 2 row
C 100 1000 1100
= 1000 | 100000 101000
7
Y 1100 |,("mmun 102100

&1 null transactions

Contingency table with expected values added

B -B

E 100 (11.85) 1000 1100
-C | 1000 (988.15) | 100000 | 101000
2 col, 1100 101000 | 102100

Interestingness Measures & Null-Invariance

Q Null invariance: Value does not change with the # of null-transactions

Q A few interestingness measures: Some are null invariant

—

Measure Definition Range | Null-Invariant

XQ(A- B) Zz‘.j:{l.l e bz()a_:;(ia)ibj))j [0, <] No /

Lift(A, B) et [0, o0 No l
AllConf (A, B) T TET 0,1] Yes
Jaccard(A, B) AR :ng_j’i}(yYSIE) [0,1] Yes

Cosine(A, B) ;((.:;Lji()B) [0,1] Yes <
Kulczynski(A, B) %(- (ii?) T R(.:J(*,Lé?)) [0,1] Yes
MazxConf (A, B) max{ \(ASJ)B) . 5(151)8) } [0, 1] Yes

X2 and lift are not
null-invariant

Jaccard, consine,
AllConf, MaxConf,
and Kulczynski
are null-invariant
measures

Null Invariance: An Important Property

Q Why is null invariance crucial for the analysis of massive transaction data?

2 Many transactions may contain neither milk nor coffee!

milk vs. coffee contingency table

Q Lift and 2 are not null-invariant: not good to
evaluate data that contain too many or too

Wil | —mite | Beew few null transactions!
L - 0 Many measures are not null-invariant!
—coffee m-c —m-c le
- . : - Null-transactions
i m m - w.r.t. m and ¢
Data set mec —mc m—c X - Laft
D+ 10,000 [1,000 1,000 [A00,000N]] 90557 9.26
Do 10.000 1,000 1.000 (100 O)|
Ds 100 1,000 1.000 \{O0.000/ 670 8.44
D4 1.000 1.000 1,000 100660 24740 25.T9
D5 1.000 100 10,000 100,000 8173 9.18
Dg 1.000 10 100,000 100,000 965 1.97

Comparison of Null-Invariant Measures

Q Not all null-invariant measures are created equal

2 Which one is better?

2 D,—D, differentiate the null-invariant measures

2 Kulc (Kuleyzynski 1927) holds firm and is in balance of
both directional implications

All 5 are null-invariant

2-variable contingency table

milk

il k

~ITow

coffee

meoc

=mc C

—(‘(}.ﬁ-’-‘

n=c

=m=c

-

b N

ol

r

—mn =

Dataset [mec | —-mc [m—-c | -m—c || AllCS ccard | Cosine | Kulc | MazConf |
D, 10,000 [1,000 | 1,000 [,100,000N] /0.917 [/0.83°\ [~ 0.91\[/0.9T \,~ 0.91 ~
Da 10,000 | 1,000 1,000 |[_100 _ \0.91 / 0.83_/ [\0.91 “\0.91 /_091 “
Ds | —t00 | 1,000 1,000 30000 0.09_—4—0105 0.09 0.00 | —600
Dy~ 1,000 1,000 1,000 100,000 ~0.5 0.33 0.5 0.5 0.5
Da_ 1,000 100 10,000 100,000 _H{ __0.09 0.09 0.29 0.5 0.91
Dg 11,000 | 10 100,000 | 1 03— 0.01 0.10 0.5 g

T TSS——

Subtle: They disagree on those cases

Imbalance Ratio with Kulczynski Measure

Q IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in
rule implications:

IR(A, B) =

O Kulczynski and Imbalance Ratio (IR) together present a clear picture for all
the three datasets D, through D,

5(A)—s(B)|

s(A)+s(B)—s(AUB)

a D, is neutral & balanced; D is neutral but imbalanced

a D¢ is neutral but very imbalanced

| Data set] meae { —me [m—c I —m-ec \ I Jaccard [Cosine [Kule IR
14 10,000 1.000 1.000 100,000 0.83 0.91 0.91 0
Do 10,000 | 1.000 1.000 100 0.83 D.01 0.01 i)
Ds 100 1.000 1.000 100,000 0.05 0.09 0.09 0
14 1,000 1,000 1,000 100,000 0.33 ol . 0.5 M
D 1,000 100 10.000 | 100,000 0.00 ~0.29 0.5 0.80
Dg 1.000 10 100,000 100,000 0.01 __CEIUf 0.5 - 0.99—~

Analysis of DBLP Coauthor Relationships

Recent DB conferences, removing balanced associations, low sup, etc.

ID | Author A | Author B | s(AuB) | s(A) | s(B) || Jaccard | Cosine | Kule |

1 Hans-Peter Kriegel Martin Ester 28 146 54 0.163 (2) 0.315 (7) 0.355 (9)

2 Michael Carey Miron Livny 26 104 58 0.191 (1) 0.335 (4) 0.349 (10)

3 Hans-Peter Kriegel Joerg Sander 24 146 36 0.152 (3) 0.331 (5) 0.416 (R)

4 Christos Faloutsos Spiros Papadimitrion 20 162 26 0.119 (7) 0.308 (10) 0.446 (T)

5 Hans-Peter Kriegel Martin Pfeifle I8 146 18> 4170.123 (6) 0.351 (2) 0.562 (2>

6 Hector Garcia-Molina Wilburt Labio 16 114 18 0.110 (9) 0314 (8) | 0.500 (4)

7 Divyakant Agrawal Wang Hsiung S 120 16__$—0.133 (5) 0.365 (1) 0.567 (1) =

8 Elke Rundensteiner Murali Mani 16 104 20 0.148 (4) | 02351 (3) 0.477 (6)

9 Divyakant Agrawal Oliver Po & i 120 1 0100 (10) [0.316 (6) 0.550 (&

10 Cerhard Weikum Martin Theobald 12 106 14 0.111 (8) 0.312 (99T J0.485 (5)
—

3 Which pairs of authors are strongly related?

[

cosine: middle

Advisor-advisee relation: Kulc: high, Jaccard: low, I

a Use Kulc to find Advisor-advisee, close collaborators

Chapter 5: Mining Frequent Patterns, Association

B Basic Concepts

B Frequent Itemset Mining Methods

B Which Patterns Are Interesting?—Pattern

Evaluation Methods

B Summary &

52

Summary

= Basic concepts: association rules, support-
confident framework, closed and max-patterns

= Scalable frequent pattern mining methods

= Apriori (Candidate generation & test)

» Projection-based (FPgrowth, CLOSET+, ...)

« Vertical format approach (ECLAT, CHARM, ...)
= Which patterns are interesting?

= Pattern evaluation methods

53

Ref: Basic Concepts of Frequent Pattern Mining

(Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining

association rules between sets of items in large databases. SIGMOD'93

(Max-pattern) R. J. Bayardo. Efficiently mining long patterns from
databases. SIGMOD'98

(Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
Discovering frequent closed itemsets for association rules. ICDT'99

(Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns.
ICDE'95

54

