Data Mining:

Concepts and Techniques

(3rd ed.)

Ali Shakiba

Vali-e-Asr University of Rafsanjan

based on slides by Jiawei Han, Micheline Kamber, and Jian Pei University of Illinois at Urbana-Champaign Simon Fraser University ©2011 Han, Kamber, and Pei. All rights reserved.

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern
 - **Evaluation Methods**

What Is Frequent Pattern Analysis?

- Frequent pattern: a pattern (a set of items, subsequences, substructures, etc.) that occurs frequently in a data set
- First proposed by Agrawal, Imielinski, and Swami [AIS93] in the context of frequent itemsets and association rule mining
- Motivation: Finding inherent regularities in data
 - What products were often purchased together?— Beer and diapers?!
 - What are the subsequent purchases after buying a PC?
 - What kinds of DNA are sensitive to this new drug?
 - Can we automatically classify web documents?
- Applications
 - Basket data analysis, cross-marketing, catalog design, sale campaign analysis, Web log (click stream) analysis, and DNA sequence analysis.

Why Is Freq. Pattern Mining Important?

- Freq. pattern: An intrinsic and important property of datasets
- Foundation for many essential data mining tasks
 - Association, correlation, and causality analysis
 - Sequential, structural (e.g., sub-graph) patterns
 - Pattern analysis in spatiotemporal, multimedia, timeseries, and stream data
 - Classification: discriminative, frequent pattern analysis
 - Cluster analysis: frequent pattern-based clustering
 - Data warehousing: iceberg cube and cube-gradient
 - Semantic data compression: fascicles
 - Broad applications

Basic Concepts: Frequent Patterns

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- itemset: A set of one or more items
- **k-itemset** $X = \{x_1, ..., x_k\}$
- (absolute) support, or, support count of X: Frequency or occurrence of an itemset X
- (relative) support, s, is the fraction of transactions that contains X (i.e., the probability that a transaction contains X)
- An itemset X is *frequent* if X's support is no less than a *minsup* threshold

Basic Concepts: Association Rules

Tid	Items bought
10	Beer, Nuts, Diaper
20	Beer, Coffee, Diaper
30	Beer, Diaper, Eggs
40	Nuts, Eggs, Milk
50	Nuts, Coffee, Diaper, Eggs, Milk

- Find all the rules $X \rightarrow Y$ with minimum support and confidence
 - support, *s*, probability that a transaction contains $X \cup Y$
- confidence, c, conditional probability that a transaction having X also contains Y

Let minsup = 50%, minconf = 50%

Freq. Pat.: Beer:3, Nuts:3, Diaper:4, Eggs:3, {Beer, Diaper}:3

- Association rules: (many more!)
 - Beer \rightarrow Diaper (60%, 100%)
 - Diaper \rightarrow Beer (60%, 75%)

Closed Patterns and Max-Patterns

- A long pattern contains a combinatorial number of subpatterns, e.g., $\{a_1, ..., a_{100}\}$ contains $({}_{100}{}^1) + ({}_{100}{}^2) + ... + ({}_{1}{}_{0}{}^0{}_{0}{}^0) = 2^{100} - 1 = 1.27*10^{30}$ sub-patterns!
- Solution: Mine closed patterns and max-patterns instead
- An itemset X is closed if X is *frequent* and there exists *no* super-pattern Y > X, with the same support as X (proposed by Pasquier, et al. @ ICDT'99)
- An itemset X is a max-pattern if X is frequent and there exists no frequent super-pattern Y > X (proposed by Bayardo @ SIGMOD'98)
- Closed pattern is a lossless compression of freq. patterns
 - Reducing the # of patterns and rules

Closed Patterns and Max-Patterns

- Exercise. $DB = \{ \langle a_1, ..., a_{100} \rangle, \langle a_1, ..., a_{50} \rangle \}$
 - Min_sup = 1.
- What is the set of closed itemset?

- < a₁, ..., a₅₀>: 2
- What is the set of max-pattern?

<a₁, ..., a₁₀₀>: 1

What is the set of all patterns?

• !!

Computational Complexity of Frequent Itemset Mining

- How many itemsets are potentially to be generated in the worst case?
 - The number of frequent itemsets to be generated is sensitive to the minsup threshold
 - When minsup is low, there exist potentially an exponential number of frequent itemsets
 - The worst case: M^N where M: # distinct items, and N: max length of transactions
- The worst case complexty vs. the expected probability
 - Ex. Suppose Walmart has 10⁴ kinds of products
 - The chance to pick up one product 10⁻⁴
 - The chance to pick up a particular set of 10 products: $\sim 10^{-40}$
 - What is the chance this particular set of 10 products to be frequent 10³ times in 10⁹ transactions? ~ 2.48 x 10⁻³³⁵⁶⁸

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern
 - **Evaluation Methods**

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test
 Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical
 Data Format

The Downward Closure Property and Scalable Mining Methods

- The downward closure property of frequent patterns
 - Any subset of a frequent itemset must be frequent
 - If {beer, diaper, nuts} is frequent, so is {beer, diaper}
 - i.e., every transaction having {beer, diaper, nuts} also contains {beer, diaper}
- Scalable mining methods: Three major approaches
 - Apriori (Agrawal & Srikant@VLDB'94)
 - Freq. pattern growth (FPgrowth—Han, Pei & Yin @SIGMOD'00)
 - Vertical data format approach (Charm—Zaki & Hsiao @SDM'02)

Apriori: A Candidate Generation & Test Approach

- <u>Apriori pruning principle</u>: If there is any itemset which is infrequent, its superset should not be generated/tested! (Agrawal & Srikant @VLDB'94, Mannila, et al. @ KDD' 94)
- Method:
 - Initially, scan DB once to get frequent 1-itemset
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Test the candidates against DB
 - Terminate when no frequent or candidate set can be generated

The Apriori Algorithm—An Example

The Apriori Algorithm (Pseudo-Code)

- *C_k*: Candidate itemset of size k
- L_k : frequent itemset of size k

 $L_{1} = \{ \text{frequent items} \}; \\ \text{for } (k = 1; L_{k} \mid = \emptyset; k++) \text{ do begin} \\ C_{k+1} = \text{candidates generated from } L_{k}; \\ \text{for each transaction } t \text{ in database do} \\ \text{increment the count of all candidates in } C_{k+1} \text{ that} \\ \text{are contained in } t \\ L_{k+1} = \text{candidates in } C_{k+1} \text{ with min_support} \end{cases}$

end

return $\cup_k L_k$;

Implementation of Apriori

- How to generate candidates?
 - Step 1: self-joining L_k
 - Step 2: pruning
- Example of Candidate-generation
 - L₃={abc, abd, acd, ace, bcd}
 - Self-joining: L₃*L₃
 - *abcd* from *abc* and *abd*
 - acde from acd and ace
 - Pruning:
 - acde is removed because ade is not in L₃
 - *C*₄ = {*abcd*}

Candidate Generation: An SQL Implementation

- SQL Implementation of candidate generation
 - Suppose the items in *L*_{*k*-1} are listed in an order
 - Step 1: self-joining L_{k-1}
 insert into C_k
 select p.item₁, p.item₂, ..., p.item_{k-1}, q.item_{k-1}
 from L_{k-1} p, L_{k-1} q
 where p.item₁=q.item₁, ..., p.item_{k-2}=q.item_{k-2}, p.item_{k-1} <
 q.item_{k-1}
 - Step 2: pruning

forall *itemsets c in C_k* do

forall (k-1)-subsets s of c do

if (s is not in L_{k-1}) then delete c from C_k

 Use object-relational extensions like UDFs, BLOBs, and Table functions for efficient implementation [See: S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with relational database systems: Alternatives and implications. SIGMOD'98]

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori

- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns

Further Improvement of the Apriori Method

- Major computational challenges
 - Multiple scans of transaction database
 - Huge number of candidates
 - Tedious workload of support counting for candidates
- Improving Apriori: general ideas
 - Reduce passes of transaction database scans
 - Shrink number of candidates
 - Facilitate support counting of candidates

Partition: Scan Database Only Twice

- Any itemset that is potentially frequent in DB must be frequent in at least one of the partitions of DB
 - Scan 1: partition database and find local frequent patterns
 - Scan 2: consolidate global frequent patterns
- A. Savasere, E. Omiecinski and S. Navathe, *VLDB'95*

DHP: Reduce the Number of Candidates

(Direct Hashing and Pruning)

- A k-itemset whose corresponding hashing bucket count is below the threshold cannot be frequent
 - Candidates: a, b, c, d, e
 - Hash entries
 - {ab, ad, ae}
 - {bd, be, de}
 - • • •

count	itemsets				
35	{ab, ad, ae}				
88	{bd, be, de}				
	•				
	· .				
102	102 {yz, qs, wt}				
Hash Table					

- Frequent 1-itemset: a, b, d, e
- ab is not a candidate 2-itemset if the sum of count of {ab, ad, ae} is below support threshold
- Jong Soo Park, Ming-Syan Chen, and Philip S. Yu. 1995. An effective hash-based algorithm for mining association rules. In *Proceedings of the 1995 ACM SIGMOD international conference on Management of data* (SIGMOD '95), Michael Carey and Donovan Schneider (Eds.). ACM, New York, NY, USA, 175-186. DOI=http://dx.doi.org/10.1145/223784.223813

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach

- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns

Pattern-Growth Approach: Mining Frequent Patterns Without Candidate Generation

- Bottlenecks of the Apriori approach
 - Breadth-first (i.e., level-wise) search
 - Candidate generation and test
 - Often generates a huge number of candidates
- The FPGrowth Approach (J. Han, J. Pei, and Y. Yin, SIGMOD' 00)
 - Depth-first search
 - Avoid explicit candidate generation
- Major philosophy: Grow long patterns from short ones using local frequent items only
 - "abc" is a frequent pattern
 - Get all transactions having "abc", i.e., project DB on abc: DB|abc
 - "d" is a local frequent item in DB|abc \rightarrow abcd is a frequent pattern

Construct FP-tree from a Transaction Database

<u>TID</u>	Items bought	(ordered	l) frequent ite	e <u>ms</u>	
100	{ <i>f</i> , <i>a</i> , <i>c</i> , <i>d</i> , <i>g</i> , <i>i</i> , <i>m</i> ,	<i>p</i> } {	<i>f</i> , <i>c</i> , <i>a</i> , <i>m</i> , <i>p</i> }		
200	$\{a, b, c, f, l, m, o\}$	{	<i>f</i> , <i>c</i> , <i>a</i> , <i>b</i> , <i>m</i> }		• • •
300	{ <i>b</i> , <i>f</i> , <i>h</i> , <i>j</i> , <i>o</i> , <i>w</i> }	{	[f, b]		min_support = 3
400	$\{b, c, k, s, p\}$	{	$\{c, b, p\}$		
500	{ <i>a</i> , <i>f</i> , <i>c</i> , <i>e</i> , <i>l</i> , <i>p</i> , <i>m</i> ,	<i>n</i> }{	<i>f, c, a, m, p</i> }		. {}
		Hea	der Table		
Scan DB frequent	once, find 1-itemset (sinale	<u>Item</u>	frequency	head	f:4> c:1
item pat	tern)	\overline{f}	4		
		C	4		$\rightarrow c:3/ b:1 \rightarrow b:1 $
Sort free	quent items in	a	3		
frequence	cy descending	b	3		> a:3 p:1
order, f-l	list	m	3	-~	
Scan DB	again, construct	p	3		m:2 b:1
FP-tree					
	F	-list =	f-c-a-b-m-	р `	<i>p:2 / m:1</i>

1.

2.

3.

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of *transformed prefix paths* of item *p* to form *p*'s conditional pattern base

Conditional pattern basesitemcond. pattern basecf:3afc:3bfca:1, f:1, c:1

- m fca:2, fcab:1
- *p fcam:2, cb:1*

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3) $\begin{cases} \\ \\ \\ f:3 \end{cases}$

cam-conditional FP-tree

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts

 $\{\}$

- Reduction of the single prefix path into one node
- $a_1:n_1$ Concatenation of the mining results of the two $a_2:n_2$ parts

Benefits of the FP-tree Structure

- Completeness
 - Preserve complete information for frequent pattern mining
 - Never break a long pattern of any transaction
- Compactness
 - Reduce irrelevant info—infrequent items are gone
 - Items in frequency descending order: the more frequently occurring, the more likely to be shared
 - Never be larger than the original database (not count node-links and the *count* field)

The Frequent Pattern Growth Mining Method

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional pattern-base, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FP-tree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

Performance of FPGrowth in Large Datasets

FP-Growth vs. Apriori

Advantages of the Pattern Growth Approach

- Divide-and-conquer:
 - Decompose both the mining task and DB according to the frequent patterns obtained so far
 - Lead to focused search of smaller databases
- Other factors
 - No candidate generation, no candidate test
 - Compressed database: FP-tree structure
 - No repeated scan of entire database
 - Basic ops: counting local freq items and building sub FP-tree, no pattern search and matching
- A good open-source implementation and refinement of FPGrowth
 - FPGrowth+ (Grahne and J. Zhu, FIMI'03)

Further Improvements of Mining Methods

- AFOPT (Liu, et al. @ KDD'03)
 - A "push-right" method for mining condensed frequent pattern (CFP) tree
- Carpenter (Pan, et al. @ KDD'03)
 - Mine data sets with small rows but numerous columns
 - Construct a row-enumeration tree for efficient mining
- FPgrowth+ (Grahne and Zhu, FIMI'03)
 - Efficiently Using Prefix-Trees in Mining Frequent Itemsets, Proc. ICDM'03 Int. Workshop on Frequent Itemset Mining Implementations (FIMI'03), Melbourne, FL, Nov. 2003
- TD-Close (Liu, et al, SDM'06)

Extension of Pattern Growth Mining Methodology

- Mining closed frequent itemsets and max-patterns
 - CLOSET (DMKD'00), FPclose, and FPMax (Grahne & Zhu, Fimi'03)
- Mining sequential patterns
 - PrefixSpan (ICDE'01), CloSpan (SDM'03), BIDE (ICDE'04)
- Mining graph patterns
 - gSpan (ICDM'02), CloseGraph (KDD'03)
- Constraint-based mining of frequent patterns
 - Convertible constraints (ICDE'01), gPrune (PAKDD'03)
- Computing iceberg data cubes with complex measures
 - H-tree, H-cubing, and Star-cubing (SIGMOD'01, VLDB'03)
- Pattern-growth-based Clustering
 - MaPle (Pei, et al., ICDM'03)
- Pattern-Growth-Based Classification
 - Mining frequent and discriminative patterns (Cheng, et al, ICDE'07)

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns

ECLAT: Mining by Exploring Vertical Data Format

- Vertical format: $t(AB) = \{T_{11}, T_{25}, ...\}$
 - tid-list: list of trans.-ids containing an itemset
- Deriving frequent patterns based on vertical intersections
 - t(X) = t(Y): X and Y always happen together
 - $t(X) \subset t(Y)$: transaction having X always has Y
- Using diffset to accelerate mining
 - Only keep track of differences of tids
 - $t(X) = \{T_1, T_2, T_3\}, t(XY) = \{T_1, T_3\}$
 - Diffset (XY, X) = {T₂}
- Eclat (Zaki et al. @KDD'97)
- Mining Closed patterns using vertical format: CHARM (Zaki & Hsiao@SDM'02)

Scalable Frequent Itemset Mining Methods

- Apriori: A Candidate Generation-and-Test Approach
- Improving the Efficiency of Apriori
- FPGrowth: A Frequent Pattern-Growth Approach
- ECLAT: Frequent Pattern Mining with Vertical Data Format
- Mining Close Frequent Patterns and Maxpatterns

Mining Frequent Closed Patterns: CLOSET

- Flist: list of all frequent items in support ascending order
 - Flist: d-a-f-e-c
- Divide search space
 - Patterns having d
 - Patterns having d but no a, etc.
- Find frequent closed pattern recursively
 - Every transaction having d also has cfa → cfad is a frequent closed pattern
- J. Pei, J. Han & R. Mao. "CLOSET: An Efficient Algorithm for Mining Frequent Closed Itemsets", DMKD'00.

Min_sup=2				
TID	Items			
10	a, c, d, e, f			
20	a, b, e			
30	c, e, f			
40	a, c, d, f			
50	c, e, f			

CLOSET+: Mining Closed Itemsets by Pattern-Growth

Efficient, direct mining of closed itemsets	TID	Items
Ex. Itemset merging: If Y appears in every occurrence of X. then Y	1	acdef
is merged with X	2	abe
d-proj db: lacef acfl -> acfd-proj db: lel thus we get: acfd: 2	3	cefg
u-proj. ub. <u>(acei</u> , <u>aci</u>) v aciu-proj. ub. (ej, titus we get. aciu.2	4	acdf
Many other tricks (but not detailed here), such as	Let m	insupport = 2
Hybrid tree projection	a:3, c:3,	d:2, e:3, f:3
Bottom-up physical tree-projection	F-List	: a-c-e-f-d
Top-down pseudo tree-projection		
Sub-itemset pruning		
Item skipping		
Efficient subset checking		
For details, see J. Wang, et al., "CLOSET+:", KDD'03		

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern

Evaluation Methods

How to Judge if a Rule/Pattern Is Interesting?

- Pattern-mining will generate a large set of patterns/rules
 - Not all the generated patterns/rules are interesting
- Interestingness measures: Objective vs. subjective
 - Objective interestingness measures
 - □ Support, confidence, correlation, ...
 - Subjective interestingness measures: One man's trash could be another man's treasure
 - Query-based: Relevant to a user's particular request
 - Against one's knowledge-base: unexpected, freshness, timeliness
 - Visualization tools: Multi-dimensional, interactive examination

Limitation of the Support-Confidence Framework

- □ Are *s* and *c* interesting in association rules: "A \Rightarrow B" [*s*, *c*]? Be careful!
- Example: Suppose one school may have the following statistics on # of students who may play basketball and/or eat cereal:

	play-basketball	not play-basketball	sum (row)	
eat-cereal	400	350	750 2-	Way cont
not eat-cereal	200	50	250	y contingency table
sum(col.)	600	400	1000	-ie

- Association rule mining may generate the following:
 - □ play-basketball ⇒ eat-cereal [40%, 66.7%] (higher s & c)
- But this strong association rule is misleading: The overall % of students eating cereal is 75% > 66.7%, a more telling rule:
 - □ ¬ play-basketball \Rightarrow eat-cereal [35%, 87.5%] (high s & c)

Interestingness Measure: Lift

■ Measure of dependent/correlated events: lift $lift(B,C) = \frac{c(B \rightarrow C)}{s(C)} = \frac{s(B \cup C)}{s(B) \times s(C)}$

Lift(B, C) may tell how B and C are correlated

- Lift(B, C) = 1: B and C are independent
- □ > 1: positively correlated
- < 1: negatively correlated</p>

□ For our example, $lift(B,C) = \frac{400/1000}{600/1000 \times 750/1000} = 0.89$ $lift(B,\neg C) = \frac{200/1000}{600/1000 \times 250/1000} = 1.33$

Thus, B and C are negatively correlated since lift(B, C) < 1;</p>

□ B and ¬C are positively correlated since lift(B, ¬C) > 1

Lift is more telling than s & c

	В	٦B	Σ _{row}
С	400	350	750
٦C	200	50	250
Σ _{col} .	600	400	1000

Interestingness Measure: χ^2

Lift and χ^2 : Are They Always Good Measures?

- Null transactions: Transactions that contain neither B nor C
- Let's examine the dataset D
 - BC (100) is much rarer than B¬C (1000) and ¬BC (1000), but there are many ¬B¬C (100000)
 - Unlikely B & C will happen together!
- But, Lift(B, C) = 8.44 >> 1 (Lift shows B and C are strongly positively correlated!)
- χ² = 670: Observed(BC) >> expected value (11.85)
- Too many null transactions may "spoil the soup"!

	В	٦B	Σ _{row}
С	100	1000	1100
٦C	1000	100000	101000
Σ _{col.}	1100	101000	102100
		🔰 null tr	ansactions

Contingency table with expected values added

	В	⊐B	Σ _{row}
С	100 (11.85)	1000	1100
٦C	1000 (988.15)	100000	101000
Σ _{col} .	1100	101000	102100

Interestingness Measures & Null-Invariance

□ *Null invariance*: Value does not change with the # of null-transactions

□ A few interestingness measures: Some are null invariant

Measure	Definition	Range	Null-Invariant	
$\chi^2(A,B)$	$\sum_{i,j=0,1} \frac{(e(a_i b_j) - o(a_i b_j))^2}{e(a_i b_j)}$	$[0,\infty]$	No	X² and lift are not
Lift(A, B)	$\frac{s(A \cup B)}{s(A) \times s(B)}$	$[0,\infty]$	No	null-invariant
AllConf(A, B)	$\frac{s(A \cup B)}{m \exp\{c(A), c(B)\}}$	[0, 1]	Yes	
Jaccard(A, B)	$\frac{max\{s(A), s(B)\}}{s(A\cup B)}$ $\frac{s(A\cup B)}{s(A)+s(B)-s(A\cup B)}$	[0,1]	Yes	Jaccard, consine, AllConf, MaxConf,
Cosine(A, B)	$\frac{s(A \cup B)}{\sqrt{s(A) \times s(B)}}$	[0, 1]	Yes	and Kulczynski
Kulczynski(A, B)	$\frac{1}{2}\left(\frac{s(A\cup B)}{s(A)} + \frac{s(A\cup B)}{s(B)}\right)$	[0, 1]	Yes	measures
MaxConf(A, B)	$max\{\frac{s(A)}{s(A\cup B)}, \frac{s(B)}{s(A\cup B)}\}$	[0, 1]	Yes	

Null Invariance: An Important Property

- Why is null invariance crucial for the analysis of massive transaction data?
 - Many transactions may contain neither milk nor coffee!

	milk	$\neg milk$	Σ_{row}
coff ee	mc	$\neg mc$	c
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	m	$\neg m$	Σ

milk vs. coffee contingency table

- Lift and χ² are not null-invariant: not good to evaluate data that contain too many or too few null transactions!
- Many measures are not null-invariant!

Null-transactions w.r.t. m and c

Data set	mc	$\neg mc$	$m \neg c$	$m \neg c$	χ^2	Lift
D_1	10,000	1,000	1,000	100,000	90557	9.26
D_2	10,000	1,000	1,000	(100	0	1
D_3	100	1,000	1,000	100,000	670	8.44
D_4	1,000	1,000	1,000	100,000	24740	25.75
D_5	1,000	100	10,000	100,000	8173	9.18
D_6	1,000	10	100,000	100,000	965	1.97

Comparison of Null-Invariant Measures

- Not all null-invariant measures are created equal
- Which one is better?
 - D₄—D₆ differentiate the null-invariant measures
 - Kulc (Kulcyzynski 1927) holds firm and is in balance of both directional implications

2-variable contingency table

	milk	$\neg milk$	Σ_{row}
coff ee	mc	$\neg mc$	с
$\neg coffee$	$m \neg c$	$\neg m \neg c$	$\neg c$
Σ_{col}	\overline{m}	$\neg m$	Σ

					~ ~					
Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	AllConf	Jaccard	Cosine	Kulc	MaxConf	
D_1	10,000	1,000	1,000	100,000	0.91	0.83	0.91	0.91	0.91	
D_2	10,000	1,000	1,000	100	0.91	0.83	0.91	0.91	0.91	
D_3	100	1,000	1,000	100,000	0.09	0.05	0.09	0.09	0.09	
D_4	1,000	1,000	1,000	100,000	0.5	0.33	0.5	0.5	0.5	
D_5	1,000	100	10,000	100,000	0.09	0.09	0.29	0.5	0.91	
D_6	1,000	10	100,000	100,000	0.01	0.01	0.10	0.5	0.99	

All 5 are null-invariant

Subtle: They disagree on those cases

Imbalance Ratio with Kulczynski Measure

IR (Imbalance Ratio): measure the imbalance of two itemsets A and B in rule implications:
ID(A B) = |s(A)-s(B)|

$$IR(A,B) = \frac{|s(A) - s(B)|}{s(A) + s(B) - s(A \cup B)}$$

- Kulczynski and Imbalance Ratio (IR) together present a clear picture for all the three datasets D₄ through D₆
 - D₄ is neutral & balanced; D₅ is neutral but imbalanced
 - D₆ is neutral but very imbalanced

Data set	mc	$\neg mc$	$m \neg c$	$\neg m \neg c$	Jaccard	Cosine	Kulc	IR
D_1	10,000	1,000	1,000	100,000	0.83	0.91	0.91	0
D_2	10,000	1,000	1,000	100	0.83	0.91	0.91	0
D_3	100	1,000	1,000	100,000	0.05	0.09	0.09	0
D_4	1,000	1,000	1,000	100,000	0.33	< 0.5	0.5	0 >
D_5	1,000	100	10,000	100,000	0.09	< 0.29	0.5	0.89>
D_6	1,000	10	100,000	100,000	0.01	<0.10	0.5	0.99

Analysis of DBLP Coauthor Relationships

ID	Author A	Author B	$s(A \cup B)$	s(A)	s(B)	Jaccard	Cosine	Kulc
1	Hans-Peter Kriegel	Martin Ester	28	146	54	0.163(2)	0.315(7)	0.355(9)
2	Michael Carey	Miron Livny	26	104	58	0.191(1)	0.335(4)	0.349(10)
3	Hans-Peter Kriegel	Joerg Sander	24	146	36	0.152(3)	0.331(5)	0.416(8)
4	Christos Faloutsos	Spiros Papadimitriou	20	162	26	0.119(7)	0.308(10)	0.446(7)
5	Hans-Peter Kriegel	Martin Pfeifle	<28	146	18 0	0.123(6)	0.351(2)	0.562(2)
6	Hector Garcia-Molina	Wilburt Labio	16	144	18	0.110(9)	0.314(8)	0.500(4)
7	Divyakant Agrawal	Wang Hsiung	$\triangleleft 6$	120	16	$\bigcirc 0.133(5)$	0.365(1)	0.567(1)
8	Elke Rundensteiner	Murali Mani	16	104	20	0.148(4)	0.351(3)	0.477(6)
9	Divyakant Agrawal	Oliver Po	$\triangleleft 2$	120	12	0.100(10)	0.316(6)	0.550(3)
10	Gerhard Weikum	Martin Theobald	12	106	14	0.111 (8)	0.312 (9)	0.485(5)
			Advisor-advisee relation: Kulc: high, Jaccard: low,					

cosine: middle

Recent DB conferences, removing balanced associations, low sup, etc.

□ Which pairs of authors are strongly related?

Use Kulc to find Advisor-advisee, close collaborators

Chapter 5: Mining Frequent Patterns, Association and Correlations: Basic Concepts and Methods

- Basic Concepts
- Frequent Itemset Mining Methods
- Which Patterns Are Interesting?—Pattern
 - **Evaluation Methods**

Summary

- Basic concepts: association rules, supportconfident framework, closed and max-patterns
- Scalable frequent pattern mining methods
 - Apriori (Candidate generation & test)
 - Projection-based (FPgrowth, CLOSET+, ...)
 - Vertical format approach (ECLAT, CHARM, ...)
- Which patterns are interesting?
 - Pattern evaluation methods

Ref: Basic Concepts of Frequent Pattern Mining

- (Association Rules) R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. SIGMOD'93
- (Max-pattern) R. J. Bayardo. Efficiently mining long patterns from databases. SIGMOD'98
- (Closed-pattern) N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal.
 Discovering frequent closed itemsets for association rules. ICDT'99
- (Sequential pattern) R. Agrawal and R. Srikant. Mining sequential patterns. ICDE'95