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What we are going to discuss?

Theory of Computation

Complexity Theory

another topic …

Mining Massive Datasets

Computational Learning Theory

Parameterized Algorithms3



Theory of Computation

• Church-Turing thesis, Turing machine & its variations

• exploring the limits of algorithmic solvability

• reducibility as a key method to prove unsolvability

• recursive/partial recursive functions

• decidability in terms of recursion

• arriving at Turing machines

• decidability of logical theories

• Turing reducibilities
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Textbook

Martin Davis, Ron Sigal, and Elaine J. Weyuker. Computability,
Complexity, and Languages: Fundamentals of Theoretical
Computer Science, 2nd edition. February 1994, Morgan
Kaufmann. ISBN: 0122063821.

I Written for people who may know programming, but from a
mathematical view of the subjects. Enjoyably readable but
very rigorous.

I “It is our purpose . . . to provide an introduction to the various
aspects of theoretical computer science for undergraduate and
graduate students that is sufficiently comprehensive that
. . . research papers will become accessible to our readers.”
(the authors)

I We will cover just one half of the materials in the book.
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Outline of Today’s Lecture

I Review some preliminary materials.

I Define an abstract programming language S that is
extremely simple.

I Write some programs in S .
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Cartesian Product

I If S1, S2, . . . , Sn are given sets, then we write
S1 × S2,× · · · × Sn for the set of all n-tuples (a1, a2, . . . , an)
such that a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn.

I S1 × S2,× · · · × Sn is called the Cartesian product of
S1, S2, . . . , Sn.

I In case S1 = S2 = · · · = Sn = S we write Sn for the Cartesian
product S1 × S2,× · · · × Sn.
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Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Functions

I A function f is a set whose members are ordered pairs (i.e.,
2-tuples) and has the special property

(a, b) ∈ f and (a, c) ∈ f implies b = c .

We write f (a) = b to mean that (a, b) ∈ f .

I The set of all a such that (a, b) ∈ f for some b is called the
domain of f . The set of all f (a) for a in the domain of f is
called the range of f .

I A partial function on a set S is a function whose domain is a
subset of S . If a partial function on S has the domain S , then
it is called a total function.

I We write f (a) ↓ and say that f (a) is defined if a is in the
domain of f ; if a is not in the domain of f , we write f (a) ↑
and say that f (a) is undefined.
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Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Examples of Functions

I Let f be the set of ordered pairs (n, n2) for n ∈ N. Then, for
each n ∈ N, f (n) = n2. The domain of f is N. The range of
f is the set of perfect squares. f is a total function.

I Assuming N is our universe, an example of a partial function
on N is given by g(n) =

√
n. The domain of g is the set of

perfect squares. The range of g is N. g is not a total function.

I For a partial function f on a Cartesian product
S1 × S2,× · · · × Sn , we write f (a1, . . . , an) rather than
f ((a1, . . . , an)).

I A partial function f on a set Sn is called an n-ary partial
function on S , or a function of n variables on S . We use
unary and binary for 1-ary and 2-ary, respectively.
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Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Predicate

A predicate, or a Boolean-valued function, on a set S is a total
function P on S such that for each a ∈ S , either

P(a) = TRUE or P(a) = FALSE

We also identify the truth value TRUE with number 1 and the
truth value FALSE with number 0.
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Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Logic Connectives

The three logic connectives, or propositional connectives, ∼,∨, &
are defined by the two tables below.

p ∼ p

0 1
1 0

p q p & q p ∨ q

1 1 1 1
0 1 0 1
1 0 0 1
0 0 0 0
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Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Characteristic Function
Given a predicate P on a set S , there is a corresponding subset R
of S consisting of all elements a ∈ S for which P(a) = 1. We write

R = {a ∈ S | P(a)}.

Conversely, given a subset R of a given set S , the expression x ∈ R
defines a predicate P on S:

P(x) =

{
1 if x ∈ R
0 if x 6∈ R.

The predicate P is called the characteristic function of the set R.
Note the easy translations between the two notations:

{x ∈ S | P(x) & Q(x)} = {x ∈ S | P(x)} ∩ {x ∈ S | Q(x)},
{x ∈ S | P(x) ∨ Q(x)} = {x ∈ S | P(x)} ∪ {x ∈ S | Q(x)},
{x ∈ S | ∼ P(x)} = S − {x ∈ S | P(x)}.
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Bounded Existential Quantifier

Let P(t, x1, . . . , xn) be a (n + 1)-ary predicate. Let predicate
Q(y , x1, . . . , xn) be defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)

∨ P(1, x1, . . . , xn)

∨ . . .

∨ P(y , x1, . . . , xn)

That is, Q(y , x1, . . . , xn) is true if there is a value t ≤ y such that
P(t, x1, . . . , xn) is true. We write this predicate Q as

(∃t)≤y P(t, x1, . . . , xn)

“(∃t)≤y ” is called a bounded existential quantifier.
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Bounded Universal Quantifier

Let P(t, x1, . . . , xn) be a (n + 1)-ary predicate. Let predicate
Q(y , x1, . . . , xn) be defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)
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(∀t)≤y P(t, x1, . . . , xn)
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

The Programming Language S
I Values: natural numbers only, but of unlimited precision.

I Variables:
I Input variables X1, X1, X3, . . .
I An output variable Y
I Local variables Z1, Z1, Z3, . . .

I Instructions:

V ← V + 1 Increase by 1 the value of the variable V .
V ← V − 1 If the value of V is 0, leave it unchanged;

otherwise decrease by 1 the value of V .
IF V 6= 0 GOTO L If the value of V is nonzero, perform the

instruction with label L next; otherwise proceed
to the next instruction in the list.

I Labels: A1, B1, C1, D1, E1, A2, B2, C2, D2, E2, A3, . . .
I Exit label: E .
I All variables and labels are in the global scope.
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Programming in S

I A program is a list (i.e., a finite sequence) of instructions.

I The output variable Y and the local variables Zi initially have
the value 0.

I A program halts when there is no more instruction to execute.

I A program also halts if an instruction labeled L is to be
executed, but there is no instruction with that label.

I What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Bug?

I What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

I The above program computes the function

f (x) =

{
1 if x = 0
x otherwise.
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Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x) = x

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

I What does Z actually do?
I What does the following do?

Z ← Z + 1
IF Z 6= 0 GOTO L

I That is an unconditional goto!

GOTO L
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A Macro for Unconditional GOTO
I Before macro expansion:

[A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I After macro expansion:

[A] IF X 6= 0 GOTO B
Z1 ← Z1 + 1
IF Z1 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z2 ← Z2 + 1
IF Z2 6= 0 GOTO A

I Fresh local variables are always used during macro expansions.
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Copy The Value of Variable X to Variable Y

I [A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I Anything wrong?

I The value of X is “destroyed” while copied to Y !
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Copy The Value of Variable X to Variable Y , Continued

I [A] IF X 6= 0 GOTO B
GOTO C

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
GOTO A

[C ] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
X ← X + 1
GOTO C

I Anything wrong?

I This program is correct only when Y and Z are initialized to
the value 0. It cannot be used as a macro.
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A Macro for V ← V ′

I V ← 0
[A] IF V ′ 6= 0 GOTO B

GOTO C
[B] V ← V ′ − 1

V ← V + 1
Z ← Z + 1
GOTO A

[C ] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
V ′ ← V ′ + 1
GOTO C

I Anything wrong?

I V ← 0 is not an instruction in S .
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A Macro for V ← 0

[L] V ← V − 1
IF V 6= 0 GOTO L
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A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

Note that Z is used to preserve the value of X2 so that it will not
be destroyed during the computation.
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