

Theory of Computer Science
Ali Shakiba

Vali-e-Asr University of Rafsanjan

ali.shakiba@vru.ac.ir

What we are going to discuss?

Theory of Computation

Complexity Theory

another topic …

Mining Massive Datasets

Computational Learning Theory

Parameterized Algorithms3

Theory of Computation

• Church-Turing thesis, Turing machine & its variations

• exploring the limits of algorithmic solvability

• reducibility as a key method to prove unsolvability

• recursive/partial recursive functions

• decidability in terms of recursion

• arriving at Turing machines

• decidability of logical theories

• Turing reducibilities

4

Theory of Computation

• Church-Turing thesis, Turing machine & its variations

• exploring the limits of algorithmic solvability

• reducibility as a key method to prove unsolvability

• recursive/partial recursive functions

• decidability in terms of recursion

• arriving at Turing machines

• decidability of logical theories

• Turing reducibilities
[S12] Sipser, Michael. Introduction to the Theory of Computation, 3rd edition. Cengage
Learning, 2012. (Chapters 3 to 6) 5

Theory of Computation

• Church-Turing thesis, Turing machine & its variations

• exploring the limits of algorithmic solvability

• reducibility as a key method to prove unsolvability

• recursive/partial recursive functions

• decidability in terms of recursion

• arriving at Turing machines

• decidability of logical theories

• Turing reducibilities
[DSW94] Davis, Martin, Ron Sigal, and Elaine J. Weyuker. Computability, Complexity, and
Languages: Fundamentals of Theoretical Computer Science. Newnes, 1994. (Chapters 2 to 6) 6

Preliminaries (1)
Programs and Computable Functions (2)

Theory of Computation
Course note based on Computability, Complexity, and Languages:

Fundamentals of Theoretical Computer Science, 2nd edition,

authored by Martin Davis, Ron Sigal, and Elaine J. Weyuker.

course note prepared by

Tyng–Ruey Chuang

Institute of Information Science, Academia Sinica

Department of Information Management, National Taiwan University

Week 1, Spring 2010

1 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Textbook

Martin Davis, Ron Sigal, and Elaine J. Weyuker. Computability,
Complexity, and Languages: Fundamentals of Theoretical
Computer Science, 2nd edition. February 1994, Morgan
Kaufmann. ISBN: 0122063821.

I Written for people who may know programming, but from a
mathematical view of the subjects. Enjoyably readable but
very rigorous.

I “It is our purpose . . . to provide an introduction to the various
aspects of theoretical computer science for undergraduate and
graduate students that is sufficiently comprehensive that
. . . research papers will become accessible to our readers.”
(the authors)

I We will cover just one half of the materials in the book.

5 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Outline of Today’s Lecture

I Review some preliminary materials.

I Define an abstract programming language S that is
extremely simple.

I Write some programs in S .

8 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Cartesian Product

I If S1, S2, . . . , Sn are given sets, then we write
S1 × S2,× · · · × Sn for the set of all n-tuples (a1, a2, . . . , an)
such that a1 ∈ S1, a2 ∈ S2, . . . , an ∈ Sn.

I S1 × S2,× · · · × Sn is called the Cartesian product of
S1, S2, . . . , Sn.

I In case S1 = S2 = · · · = Sn = S we write Sn for the Cartesian
product S1 × S2,× · · · × Sn.

9 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Functions

I A function f is a set whose members are ordered pairs (i.e.,
2-tuples) and has the special property

(a, b) ∈ f and (a, c) ∈ f implies b = c .

We write f (a) = b to mean that (a, b) ∈ f .

I The set of all a such that (a, b) ∈ f for some b is called the
domain of f . The set of all f (a) for a in the domain of f is
called the range of f .

I A partial function on a set S is a function whose domain is a
subset of S . If a partial function on S has the domain S , then
it is called a total function.

I We write f (a) ↓ and say that f (a) is defined if a is in the
domain of f ; if a is not in the domain of f , we write f (a) ↑
and say that f (a) is undefined.

10 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Functions

I A function f is a set whose members are ordered pairs (i.e.,
2-tuples) and has the special property

(a, b) ∈ f and (a, c) ∈ f implies b = c .

We write f (a) = b to mean that (a, b) ∈ f .

I The set of all a such that (a, b) ∈ f for some b is called the
domain of f . The set of all f (a) for a in the domain of f is
called the range of f .

I A partial function on a set S is a function whose domain is a
subset of S . If a partial function on S has the domain S , then
it is called a total function.

I We write f (a) ↓ and say that f (a) is defined if a is in the
domain of f ; if a is not in the domain of f , we write f (a) ↑
and say that f (a) is undefined.

10 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Functions

I A function f is a set whose members are ordered pairs (i.e.,
2-tuples) and has the special property

(a, b) ∈ f and (a, c) ∈ f implies b = c .

We write f (a) = b to mean that (a, b) ∈ f .

I The set of all a such that (a, b) ∈ f for some b is called the
domain of f . The set of all f (a) for a in the domain of f is
called the range of f .

I A partial function on a set S is a function whose domain is a
subset of S . If a partial function on S has the domain S , then
it is called a total function.

I We write f (a) ↓ and say that f (a) is defined if a is in the
domain of f ; if a is not in the domain of f , we write f (a) ↑
and say that f (a) is undefined.

10 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Functions

I A function f is a set whose members are ordered pairs (i.e.,
2-tuples) and has the special property

(a, b) ∈ f and (a, c) ∈ f implies b = c .

We write f (a) = b to mean that (a, b) ∈ f .

I The set of all a such that (a, b) ∈ f for some b is called the
domain of f . The set of all f (a) for a in the domain of f is
called the range of f .

I A partial function on a set S is a function whose domain is a
subset of S . If a partial function on S has the domain S , then
it is called a total function.

I We write f (a) ↓ and say that f (a) is defined if a is in the
domain of f ; if a is not in the domain of f , we write f (a) ↑
and say that f (a) is undefined.

10 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Examples of Functions

I Let f be the set of ordered pairs (n, n2) for n ∈ N. Then, for
each n ∈ N, f (n) = n2. The domain of f is N. The range of
f is the set of perfect squares. f is a total function.

I Assuming N is our universe, an example of a partial function
on N is given by g(n) =

√
n. The domain of g is the set of

perfect squares. The range of g is N. g is not a total function.

I For a partial function f on a Cartesian product
S1 × S2,× · · · × Sn , we write f (a1, . . . , an) rather than
f ((a1, . . . , an)).

I A partial function f on a set Sn is called an n-ary partial
function on S , or a function of n variables on S . We use
unary and binary for 1-ary and 2-ary, respectively.

11 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Examples of Functions

I Let f be the set of ordered pairs (n, n2) for n ∈ N. Then, for
each n ∈ N, f (n) = n2. The domain of f is N. The range of
f is the set of perfect squares. f is a total function.

I Assuming N is our universe, an example of a partial function
on N is given by g(n) =

√
n. The domain of g is the set of

perfect squares. The range of g is N. g is not a total function.

I For a partial function f on a Cartesian product
S1 × S2,× · · · × Sn , we write f (a1, . . . , an) rather than
f ((a1, . . . , an)).

I A partial function f on a set Sn is called an n-ary partial
function on S , or a function of n variables on S . We use
unary and binary for 1-ary and 2-ary, respectively.

11 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Examples of Functions

I Let f be the set of ordered pairs (n, n2) for n ∈ N. Then, for
each n ∈ N, f (n) = n2. The domain of f is N. The range of
f is the set of perfect squares. f is a total function.

I Assuming N is our universe, an example of a partial function
on N is given by g(n) =

√
n. The domain of g is the set of

perfect squares. The range of g is N. g is not a total function.

I For a partial function f on a Cartesian product
S1 × S2,× · · · × Sn , we write f (a1, . . . , an) rather than
f ((a1, . . . , an)).

I A partial function f on a set Sn is called an n-ary partial
function on S , or a function of n variables on S . We use
unary and binary for 1-ary and 2-ary, respectively.

11 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Examples of Functions

I Let f be the set of ordered pairs (n, n2) for n ∈ N. Then, for
each n ∈ N, f (n) = n2. The domain of f is N. The range of
f is the set of perfect squares. f is a total function.

I Assuming N is our universe, an example of a partial function
on N is given by g(n) =

√
n. The domain of g is the set of

perfect squares. The range of g is N. g is not a total function.

I For a partial function f on a Cartesian product
S1 × S2,× · · · × Sn , we write f (a1, . . . , an) rather than
f ((a1, . . . , an)).

I A partial function f on a set Sn is called an n-ary partial
function on S , or a function of n variables on S . We use
unary and binary for 1-ary and 2-ary, respectively.

11 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Predicate

A predicate, or a Boolean-valued function, on a set S is a total
function P on S such that for each a ∈ S , either

P(a) = TRUE or P(a) = FALSE

We also identify the truth value TRUE with number 1 and the
truth value FALSE with number 0.

12 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Logic Connectives

The three logic connectives, or propositional connectives, ∼,∨, &
are defined by the two tables below.

p ∼ p

0 1
1 0

p q p & q p ∨ q

1 1 1 1
0 1 0 1
1 0 0 1
0 0 0 0

13 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Characteristic Function
Given a predicate P on a set S , there is a corresponding subset R
of S consisting of all elements a ∈ S for which P(a) = 1. We write

R = {a ∈ S | P(a)}.

Conversely, given a subset R of a given set S , the expression x ∈ R
defines a predicate P on S:

P(x) =

{
1 if x ∈ R
0 if x 6∈ R.

The predicate P is called the characteristic function of the set R.
Note the easy translations between the two notations:

{x ∈ S | P(x) & Q(x)} = {x ∈ S | P(x)} ∩ {x ∈ S | Q(x)},
{x ∈ S | P(x) ∨ Q(x)} = {x ∈ S | P(x)} ∪ {x ∈ S | Q(x)},
{x ∈ S | ∼ P(x)} = S − {x ∈ S | P(x)}.

14 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Characteristic Function
Given a predicate P on a set S , there is a corresponding subset R
of S consisting of all elements a ∈ S for which P(a) = 1. We write

R = {a ∈ S | P(a)}.
Conversely, given a subset R of a given set S , the expression x ∈ R
defines a predicate P on S:

P(x) =

{
1 if x ∈ R
0 if x 6∈ R.

The predicate P is called the characteristic function of the set R.

Note the easy translations between the two notations:

{x ∈ S | P(x) & Q(x)} = {x ∈ S | P(x)} ∩ {x ∈ S | Q(x)},
{x ∈ S | P(x) ∨ Q(x)} = {x ∈ S | P(x)} ∪ {x ∈ S | Q(x)},
{x ∈ S | ∼ P(x)} = S − {x ∈ S | P(x)}.

14 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Characteristic Function
Given a predicate P on a set S , there is a corresponding subset R
of S consisting of all elements a ∈ S for which P(a) = 1. We write

R = {a ∈ S | P(a)}.
Conversely, given a subset R of a given set S , the expression x ∈ R
defines a predicate P on S:

P(x) =

{
1 if x ∈ R
0 if x 6∈ R.

The predicate P is called the characteristic function of the set R.
Note the easy translations between the two notations:

{x ∈ S | P(x) & Q(x)} = {x ∈ S | P(x)} ∩ {x ∈ S | Q(x)},
{x ∈ S | P(x) ∨ Q(x)} = {x ∈ S | P(x)} ∪ {x ∈ S | Q(x)},
{x ∈ S | ∼ P(x)} = S − {x ∈ S | P(x)}.

14 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Bounded Existential Quantifier

Let P(t, x1, . . . , xn) be a (n + 1)-ary predicate. Let predicate
Q(y , x1, . . . , xn) be defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)

∨ P(1, x1, . . . , xn)

∨ . . .

∨ P(y , x1, . . . , xn)

That is, Q(y , x1, . . . , xn) is true if there is a value t ≤ y such that
P(t, x1, . . . , xn) is true. We write this predicate Q as

(∃t)≤y P(t, x1, . . . , xn)

“(∃t)≤y ” is called a bounded existential quantifier.

15 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Bounded Existential Quantifier

Let P(t, x1, . . . , xn) be a (n + 1)-ary predicate. Let predicate
Q(y , x1, . . . , xn) be defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)

∨ P(1, x1, . . . , xn)

∨ . . .

∨ P(y , x1, . . . , xn)

That is, Q(y , x1, . . . , xn) is true if there is a value t ≤ y such that
P(t, x1, . . . , xn) is true. We write this predicate Q as

(∃t)≤y P(t, x1, . . . , xn)

“(∃t)≤y ” is called a bounded existential quantifier.

15 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Bounded Universal Quantifier

Let P(t, x1, . . . , xn) be a (n + 1)-ary predicate. Let predicate
Q(y , x1, . . . , xn) be defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)

& P(1, x1, . . . , xn)

& . . .

& P(y , x1, . . . , xn)

That is, Q(y , x1, . . . , xn) is true if for all value t ≤ y such that
P(t, x1, . . . , xn) is true. We write this predicate Q as

(∀t)≤y P(t, x1, . . . , xn)

“(∀t)≤y ” is called a bounded universal quantifier.

16 / 36

Preliminaries (1)
Programs and Computable Functions (2)

Sets, n-tuples, and functions (1.1, 1.2)
Predicates (1.4)
Quantifiers (1.5)
Proofs (1.6, 1.7)

Bounded Universal Quantifier

Let P(t, x1, . . . , xn) be a (n + 1)-ary predicate. Let predicate
Q(y , x1, . . . , xn) be defined by

Q(y , x1, . . . , xn) = P(0, x1, . . . , xn)

& P(1, x1, . . . , xn)

& . . .

& P(y , x1, . . . , xn)

That is, Q(y , x1, . . . , xn) is true if for all value t ≤ y such that
P(t, x1, . . . , xn) is true. We write this predicate Q as

(∀t)≤y P(t, x1, . . . , xn)

“(∀t)≤y ” is called a bounded universal quantifier.

16 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

The Programming Language S
I Values: natural numbers only, but of unlimited precision.

I Variables:
I Input variables X1, X1, X3, . . .
I An output variable Y
I Local variables Z1, Z1, Z3, . . .

I Instructions:

V ← V + 1 Increase by 1 the value of the variable V .
V ← V − 1 If the value of V is 0, leave it unchanged;

otherwise decrease by 1 the value of V .
IF V 6= 0 GOTO L If the value of V is nonzero, perform the

instruction with label L next; otherwise proceed
to the next instruction in the list.

I Labels: A1, B1, C1, D1, E1, A2, B2, C2, D2, E2, A3, . . .
I Exit label: E .
I All variables and labels are in the global scope.

21 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

The Programming Language S
I Values: natural numbers only, but of unlimited precision.
I Variables:

I Input variables X1, X1, X3, . . .
I An output variable Y
I Local variables Z1, Z1, Z3, . . .

I Instructions:

V ← V + 1 Increase by 1 the value of the variable V .
V ← V − 1 If the value of V is 0, leave it unchanged;

otherwise decrease by 1 the value of V .
IF V 6= 0 GOTO L If the value of V is nonzero, perform the

instruction with label L next; otherwise proceed
to the next instruction in the list.

I Labels: A1, B1, C1, D1, E1, A2, B2, C2, D2, E2, A3, . . .
I Exit label: E .
I All variables and labels are in the global scope.

21 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

The Programming Language S
I Values: natural numbers only, but of unlimited precision.
I Variables:

I Input variables X1, X1, X3, . . .
I An output variable Y
I Local variables Z1, Z1, Z3, . . .

I Instructions:

V ← V + 1 Increase by 1 the value of the variable V .
V ← V − 1 If the value of V is 0, leave it unchanged;

otherwise decrease by 1 the value of V .
IF V 6= 0 GOTO L If the value of V is nonzero, perform the

instruction with label L next; otherwise proceed
to the next instruction in the list.

I Labels: A1, B1, C1, D1, E1, A2, B2, C2, D2, E2, A3, . . .
I Exit label: E .
I All variables and labels are in the global scope.

21 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

The Programming Language S
I Values: natural numbers only, but of unlimited precision.
I Variables:

I Input variables X1, X1, X3, . . .
I An output variable Y
I Local variables Z1, Z1, Z3, . . .

I Instructions:

V ← V + 1 Increase by 1 the value of the variable V .
V ← V − 1 If the value of V is 0, leave it unchanged;

otherwise decrease by 1 the value of V .
IF V 6= 0 GOTO L If the value of V is nonzero, perform the

instruction with label L next; otherwise proceed
to the next instruction in the list.

I Labels: A1, B1, C1, D1, E1, A2, B2, C2, D2, E2, A3, . . .
I Exit label: E .

I All variables and labels are in the global scope.

21 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

The Programming Language S
I Values: natural numbers only, but of unlimited precision.
I Variables:

I Input variables X1, X1, X3, . . .
I An output variable Y
I Local variables Z1, Z1, Z3, . . .

I Instructions:

V ← V + 1 Increase by 1 the value of the variable V .
V ← V − 1 If the value of V is 0, leave it unchanged;

otherwise decrease by 1 the value of V .
IF V 6= 0 GOTO L If the value of V is nonzero, perform the

instruction with label L next; otherwise proceed
to the next instruction in the list.

I Labels: A1, B1, C1, D1, E1, A2, B2, C2, D2, E2, A3, . . .
I Exit label: E .
I All variables and labels are in the global scope.

21 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Programming in S

I A program is a list (i.e., a finite sequence) of instructions.

I The output variable Y and the local variables Zi initially have
the value 0.

I A program halts when there is no more instruction to execute.

I A program also halts if an instruction labeled L is to be
executed, but there is no instruction with that label.

I What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

22 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Programming in S

I A program is a list (i.e., a finite sequence) of instructions.

I The output variable Y and the local variables Zi initially have
the value 0.

I A program halts when there is no more instruction to execute.

I A program also halts if an instruction labeled L is to be
executed, but there is no instruction with that label.

I What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

22 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Bug?

I What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

I The above program computes the function

f (x) =

{
1 if x = 0
x otherwise.

23 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Bug?

I What does this program do?

[A] X ← X − 1
Y ← Y + 1
IF X 6= 0 GOTO A

I The above program computes the function

f (x) =

{
1 if x = 0
x otherwise.

23 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x) = x

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

I What does Z actually do?
I What does the following do?

Z ← Z + 1
IF Z 6= 0 GOTO L

I That is an unconditional goto!

GOTO L

24 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x) = x

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

I What does Z actually do?

I What does the following do?

Z ← Z + 1
IF Z 6= 0 GOTO L

I That is an unconditional goto!

GOTO L

24 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x) = x

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

I What does Z actually do?
I What does the following do?

Z ← Z + 1
IF Z 6= 0 GOTO L

I That is an unconditional goto!

GOTO L

24 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x) = x

[A] IF X 6= 0 GOTO B
Z ← Z + 1
IF Z 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
IF Z 6= 0 GOTO A

I What does Z actually do?
I What does the following do?

Z ← Z + 1
IF Z 6= 0 GOTO L

I That is an unconditional goto!

GOTO L

24 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for Unconditional GOTO
I Before macro expansion:

[A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I After macro expansion:

[A] IF X 6= 0 GOTO B
Z1 ← Z1 + 1
IF Z1 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z2 ← Z2 + 1
IF Z2 6= 0 GOTO A

I Fresh local variables are always used during macro expansions.

25 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for Unconditional GOTO
I Before macro expansion:

[A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I After macro expansion:

[A] IF X 6= 0 GOTO B
Z1 ← Z1 + 1
IF Z1 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z2 ← Z2 + 1
IF Z2 6= 0 GOTO A

I Fresh local variables are always used during macro expansions.

25 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for Unconditional GOTO
I Before macro expansion:

[A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I After macro expansion:

[A] IF X 6= 0 GOTO B
Z1 ← Z1 + 1
IF Z1 6= 0 GOTO E

[B] X ← X − 1
Y ← Y + 1
Z2 ← Z2 + 1
IF Z2 6= 0 GOTO A

I Fresh local variables are always used during macro expansions.
25 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y

I [A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I Anything wrong?

I The value of X is “destroyed” while copied to Y !

26 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y

I [A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I Anything wrong?

I The value of X is “destroyed” while copied to Y !

26 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y

I [A] IF X 6= 0 GOTO B
GOTO E

[B] X ← X − 1
Y ← Y + 1
GOTO A

I Anything wrong?

I The value of X is “destroyed” while copied to Y !

26 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y , Continued

I [A] IF X 6= 0 GOTO B
GOTO C

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
X ← X + 1
GOTO C

I Anything wrong?

I This program is correct only when Y and Z are initialized to
the value 0. It cannot be used as a macro.

27 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y , Continued

I [A] IF X 6= 0 GOTO B
GOTO C

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
X ← X + 1
GOTO C

I Anything wrong?

I This program is correct only when Y and Z are initialized to
the value 0. It cannot be used as a macro.

27 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

Copy The Value of Variable X to Variable Y , Continued

I [A] IF X 6= 0 GOTO B
GOTO C

[B] X ← X − 1
Y ← Y + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
X ← X + 1
GOTO C

I Anything wrong?

I This program is correct only when Y and Z are initialized to
the value 0. It cannot be used as a macro.

27 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for V ← V ′

I V ← 0
[A] IF V ′ 6= 0 GOTO B

GOTO C
[B] V ← V ′ − 1

V ← V + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
V ′ ← V ′ + 1
GOTO C

I Anything wrong?

I V ← 0 is not an instruction in S .

28 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for V ← V ′

I V ← 0
[A] IF V ′ 6= 0 GOTO B

GOTO C
[B] V ← V ′ − 1

V ← V + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
V ′ ← V ′ + 1
GOTO C

I Anything wrong?

I V ← 0 is not an instruction in S .

28 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for V ← V ′

I V ← 0
[A] IF V ′ 6= 0 GOTO B

GOTO C
[B] V ← V ′ − 1

V ← V + 1
Z ← Z + 1
GOTO A

[C] IF Z 6= 0 GOTO D
GOTO E

[D] Z ← Z − 1
V ′ ← V ′ + 1
GOTO C

I Anything wrong?

I V ← 0 is not an instruction in S .

28 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for V ← 0

[L] V ← V − 1
IF V 6= 0 GOTO L

29 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Macro for V ← 0

[L] V ← V − 1
IF V 6= 0 GOTO L

29 / 36

Preliminaries (1)
Programs and Computable Functions (2)

A Programming Language (2.1)
Some Examples of Programs (2.2)

A Program That Computes f (x1, x2) = x1 + x2

Y ← X1

Z ← X2

[B] IF Z 6= 0 GOTO A
GOTO E

[A] Z ← Z − 1
Y ← Y + 1
GOTO B

Note that Z is used to preserve the value of X2 so that it will not
be destroyed during the computation.

30 / 36

