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When a supplier announces an impending price increase due to take effect at a certain time in the future, it is important for
each retailer to decide whether to purchase additional stock to take advantage of the present lower price. This study explores
the possible effects of price increases on a retailer’s replenishment policy when the special order quantity is limited and the
rate of deterioration of the goods is assumed to be constant. The two situations discussed in this study are as follows: (1)
when the special order time coincides with the retailer’s replenishment time and (2) when the special order time occurs during
the retailer’s sales period. By analysing the total cost savings between special and regular orders during the depletion time
of the special order quantity, the optimal order policy for each situation can be determined. We provide several numerical
examples to illustrate the theories in practice. Additionally, we conduct a sensitivity analysis on the optimal solution with
respect to the main parameters.
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1. Introduction

Due to the recent increases in the prices of oil and raw
materials, the prices of commodities have continued to in-
crease worldwide. This has become a serious problem for
enterprises. In particular, when managers make decisions
relating to their inventory policy, it is essential for them to
consider increases in commodity prices. When a supplier
announces an impending price increase due to take effect at
a certain time in the future, it is important for each retailer
to decide whether to purchase additional stock before the
price increase, to take advantage of the present lower price.

In many of the existing studies in this area, the authors
have taken the announcement of a price increase problem
into account and have proposed various analytical models
to gain more insight into the inferences relating to inven-
tory policy. Naddor (1966) was one of the early researchers
who proposed an infinite horizon economic order quan-
tity (EOQ) model where the supplier announces a price
increase. Lev and Soyster (1979) developed a finite hori-
zon inventory model and determined optimal ordering poli-
cies based on known information about an imminent price
increase. Later, Goyal (1979) analysed Lev and Soyster’s
(1979) model and proposed an alternative method for de-
termining the optimal policy. Taylor and Bradley (1985)
extended Naddor’s (1966) model and obtained the optimal
ordering strategies for situations where the price increase

∗
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does not coincide with the end of an EOQ cycle. Lev and
Weiss (1990) subsequently developed a structure of optimal
policies and procedures for computing the optimal policy.
Goyal, Srinivasan, and Arcelus (1991) presented a review
of a study on inventory policies under one-time-only in-
centives. Tersine (1996) proposed an economic production
quantity (EPQ) model under an announced price increase.
Ghosh (2003) and Huang and Kulkarni (2003) presented
an infinite-horizon deterministic inventory model under an
announced price increase. In contrast to single price change
models, a small number of continuous price change models
exist within inventory management literature. Erel (1992)
and Khouja and Park (2003) considered EOQ models with
continuous price changes (price increases or reductions).
Recently, Sharma (2009a) has developed inventory mod-
els on price increases or temporary price reductions when
shortages are allowed and partial backordering.

Most of the above research reveals that retailers are in-
clined to adopt a special order, with the special order quan-
tity involved being unlimited, when suppliers announce a
price increase. In practice, to avoid the retailer hoarding
goods for later sale at a higher selling price, the supplier is
willing to offer a limited quantity at the current price prior
to the price increase. Therefore, the number of goods the
retailer can order is also limited. This situation is widely
seen in Taiwan. For example, when Taiwan joined the World

C© 2014 Taylor & Francis
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Trade Organization (WTO), most people expected that the
price of rice wine would subsequently increase. In this sit-
uation, the supplier limited the purchase quantity, while the
retailer was inclined to store large quantities of the wine.
Consequently, when the supplier announced the price in-
crease, it was reasonable for the retailer to consider this
fact when placing a special order.

The above inventory models account for the impact of
price changes and focus on the determination of the op-
timal special order quantity for the retailer. A weakness
with most of them is that they neglect the deterioration of
goods, which is a common phenomenon. It is well known
that certain products, such as medicine, volatile liquids,
fruits, and vegetables, will deteriorate when kept in storage
for a long period. For such products, losses due to dete-
rioration cannot be ignored when determining the optimal
order policy. Inventory problems relating to deteriorating
items have been studied widely in previous research. Ghare
and Schrader (1963) first developed an EOQ model for an
exponentially decaying item for which there is constant de-
mand. Later, Covert and Philip (1973) extended Ghare and
Schrader’s (1963) model and obtained an EOQ model for
a variable deterioration rate, by assuming a two-parameter
Weibull distribution. Philip (1974) then developed an in-
ventory model with a three-parameter Weibull distribution
deterioration rate. Goyal and Giri (2001) provided an ex-
cellent and detailed review of the literature on deteriorating
inventory since the early 1990s. Moon, Giri, and Ko (2005)
studied an effort to incorporate two opposite physical char-
acteristics of stored items into inventory model ameliorat-
ing (value or utility increase with time) and deteriorating.
Bakker, Riezebos, and Teunter (2012) have recently un-
dertaken an up-to-date review of the advances made in
the field of inventory control of perishable items (deteri-
orating inventory) since 2001. There is also a large body
of literature on deteriorating inventory. These cover issues
such as the type of demand (e.g., Begum, Sahoo, & Sahu,
2012; Deng, Lin, & Chu, 2007; Khanra, Sana, & Chaudhuri,
2010; Mishra & Shah, 2008; Skouri & Konstantaras, 2009);
accounting for the time-value of money (e.g., Wee & Law,
1999, 2001); allowing shortages and backordering (e.g.,
Shah, 1998; Sharma, 2006; Yang, 2011); considering mul-
tiple items (e.g., Sharma, 2007a, 2007b, 2009b); the EPQ
model (e.g., Min, Zhou, Liu, & Wang, 2012; Sharma,
2008a, 2008b, 2009c); and the two-warehouse problem
(e.g., Pakkala & Achary, 1992; Sarma, 1987; Yang, 2006).

Thus, in order to address the above economic issues, this
study investigates the possible effects of a price increase on
a retailer’s replenishment policies, where the special order
quantity is limited. The contribution of this paper, relative
to previous studies, is that we explore inventory decisions
and the three issues of the traditional EOQ model simulta-
neously. These comprise of the following: (1) the retailer
expects the price increase at a certain time in the future (as
announced by the supplier) and decides whether to place a

special order; (2) the goods deteriorate at a constant rate;
and (3) the quantity of the special order is limited. Further-
more, because the time for placing the special order may or
may not coincide with the replenishment time, we consider
two cases: (1) when the special order time coincides with
the retailer’s replenishment time and (2) when the special
order time occurs during the retailer’s sales period. In Case
1, the retailer’s optimal order policy is to decide whether
to place a larger order which is always larger than regular
EOQ. In Case 2, the retailer’s optimal order policy is to
decide whether to place an additional order which is not
necessary larger than regular EOQ. The purpose of this
study is to determine the retailer’s optimal order policies in
response to a price increase by maximising the total cost
saving between special and regular orders during the deple-
tion time of the special order quantity. We provide several
numerical examples to illustrate the theories in practical
use, and we conduct a sensitivity analysis of the optimal
solution by examining the main parameters.

2. Notations and assumptions

The following notations and assumptions are used in this
study.

2.1. Notations

D market demand rate.
v unit purchasing price.
k unit price increase.
A ordering cost per order.
r holding cost rate per dollar.
θ deterioration rate, where 0 ≤ θ < 1 and is a con-

stant.
Q economic order quantity before the price in-

crease.
T the length of replenishment cycle time before

price increase.
Qr economic order quantity after the price increase.
Tr the length of replenishment cycle time after the

price increase.
Qs special order quantity before the price increase,

a decision variable.
Ts depletion time for the special order quantity Qs ,

a decision variable.
W limited special order quantity at the present

price.
TW depletion time of the limited special order quan-

tity W .
q residual inventory level when the special order

is placed.
tq the length of time until the special order is placed

during the retailer’s regular replenishment
period.
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Tq depletion time for the inventory quantity Qs +
q.

I (t) inventory level at time t before the price in-
crease, 0 ≤ t ≤ T .

Is(t) inventory level at time t when the special order
is adopted, 0 ≤ t ≤ Ts .

Iq(t) inventory level at time t during the time interval
[0, Tq].

TC(T ) total cost per unit time during the replenishment
period T .

TCr (Tr ) total cost per unit time during the replenishment
period Tr .

gi(Ts) total cost saving between the special order and
regular order during the special cycle time for
Case i, i = 1, 2.

∗ the superscript represents optimal value.

2.2. Assumptions

(1) To reflect the increasing price of raw materials, the
supplier announces that the unit price of an item
will increase by a given amount k, at a certain future
date.

(2) The retailer has only one opportunity to replenish its
stock at the present price before the price increases.
In addition, to avoid a decrease in profit, the supplier
is willing to offer the retailer a limited quantity,
W, prior to the price increase. This is a common
industrial practice.

(3) The replenishment rate is infinite and the lead-time
is zero.

(4) Shortages are not allowed.
(5) There is no replacement or repair of deteriorated

units during the period under consideration.

3. Model formulation

This study explores the possible effects of price increases
on a retailer’s replenishment policy, when there is a limited
quantity of a special order item that deteriorates in quantity
over time. Depletion of the inventory occurs due to the com-
bined effects of demand and physical deterioration. Hence,
the change in inventory level before the price increase is
illustrated by the following differential equation:

dI (t)

dt
= −θ I (t) − D, 0 < t < T . (1)

Given the boundary condition I (T ) = 0, the solution of
Equation (1) is represented by

I (t) = D

θ

[
eθ(T −t) − 1

]
, 0 ≤ t ≤ T . (2)

Thus, the order quantity is given by

Q = I (0) = D

θ
(eθT − 1). (3)

Prior to the price increase, the purchasing cost v follows
that of the regular order, so the retailer follows the regular
economic order policy with a unit purchasing cost, v, the
total cost during the replenishment period T being the sum
of the ordering cost, purchasing cost and holding cost, i.e.,

A + vQ + rv

∫ T

0
I (t)dt

= A + vD

θ

(
eθT − 1

) + rvD

θ2

(
eθT − θT − 1

)
.

(4)

Therefore, the total cost per unit time is

T C(T ) = 1

T

[
A + vD

θ

(
eθT − 1

)
+ rvD

θ2

(
eθT − θT − 1

) ]
. (5)

It can easily be shown that T C(T ) is a convex function
of T . Hence, there is a unique value for T (say T ∗) that
minimises T C(T ). The value of T ∗ can be obtained by
solving the equation d T C(T )/d T = 0, i.e.,

A − (θ + r)vD

θ2
(θT eθT − eθT + 1) = 0. (6)

Once the optimal length of replenishment cycle time,
T ∗, is obtained, the optimal order quantity, Q∗, is obtained
as follows:

Q∗ = D

θ

(
eθT ∗ − 1

)
. (7)

Next, when the unit purchasing cost increases from v to
(v + k), the total cost per unit time becomes

T Cr (Tr ) = 1

Tr

[
A + (v + k)D

θ

(
eθTr − 1

)
+ r(v + k)D

θ2

(
eθTr − θTr − 1

) ]
. (8)

Similarly, there is a unique value for Tr (say T ∗
r ) that

minimises T Cr (Tr ). The value of T ∗
r is determined by solv-

ing the following equation:

A − (θ + r)(v + k)D

θ2
(θTre

θTr − eθTr + 1) = 0. (9)
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The corresponding optimal order quantity, Q∗
r , is

Q∗
r = D

θ

(
eθT ∗

r − 1
)
. (10)

Subsequently, when a supplier announces a price in-
crease that is effective from a particular future date, the
retailer may place a special order to take advantage of the
current lower price, v, before the price increases. Alterna-
tively, the retailer may ignore this notice and place a regular
order. To avoid a decrease in profit, the supplier is only
willing to offer the retailer a limited quantity, W , prior to
the price increase. The purpose of this study is to deter-
mine the optimal special order quantity by maximising the
total cost saving between special and regular orders during
the depletion time of the special order quantity. As stated
earlier, two specific situations arise, which we discuss in
this study: when the special order time (1) coincides with
the retailer’s replenishment time or (2) occurs during the
retailer’s sales period. Next, we will formulate the corre-
sponding total relevant inventory cost saving function for
these two cases.

3.1. Case 1: the special order time coincides with
the retailer’s replenishment time

In this case, if the retailer decides to adopt a special order
and orders Qs units, then the inventory level at time t is

Is(t) = D

θ

[
eθ(Ts−t) − 1

]
, 0 ≤ t ≤ Ts. (11)

The special order quantity at the original unit purchas-
ing price, v, is

Qs = Is(0) = D

θ

(
eθTs − 1

)
. (12)

In order to ensure that the special order quantity Qs is
less than or equal to the limited quantity W , and is always
larger than or equal to the optimal regular order quantity
Q∗ (i.e., Q∗ ≤ Qs ≤ W ), we substitute Equations (7) and
(12) into this inequality, and obtain

T ∗ ≤ Ts ≤ 1

θ
ln

[
θW + D

D

]
≡ TW . (13)

The total cost of the special order during the time inter-
val [0, Ts] (denoted by T CS1(Ts)) consists of the ordering
cost, purchasing cost and holding cost, and is expressed by

T CS1(Ts) = A + vD

θ
(eθTs − 1) + rvD

θ2
(eθTs − θTs − 1).

(14)

Figure 1. Special vs. regular order policies when the special
order time coincides with the retailer’s replenishment time.

If the retailer places its regular order, then the total cost
of a regular order during the time interval [0, Ts] will be
divided into two periods (see Figure 1). In the first period,
the retailer orders Q∗ units at the unit purchasing price v.
The corresponding total cost is similar to Equation (4), and
is represented by

A + vD

θ

(
eθT ∗ − 1

) + rvD

θ2

(
eθT ∗ − θT ∗ − 1

)
. (15)

As to the rest period, the retailer follows regular EOQ
policy for the unit purchasing price v + k. Thus, the total
cost during the rest period is given by

Ts − T ∗

T ∗
r

[
A + (v + k)

D

θ
(eθT ∗

r − 1)

+ r(v + k)D

θ2
(eθT ∗

r − θT ∗
r − 1)

]
. (16)

Consequently, the total cost of a regular order during
the time interval [0, Ts] (denoted by T CN1(Ts)) is

T CN1(Ts) = A + vD

θ

(
eθT ∗ − 1

) + rvD

θ2

(
eθT ∗ − θT ∗ − 1

)
+ Ts − T ∗

T ∗
r

[
A + (v + k)

D

θ
(eθT ∗

r − 1)

+ r(v + k)D

θ2
(eθT ∗

r − θT ∗
r − 1)

]
. (17)

Comparing Equation (14) with Equation (17), the total
cost saving when the special order time coincides with the
retailer’s replenishment time (i.e., Case 1) can be formulated
as follows:

g1(Ts) = T CN1(Ts) − T CS1(Ts)

= Ts − T ∗

T ∗
r

[
A + (v + k)D

θ
(eθT ∗

r − 1)
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+ r(v + k)D

θ2
(eθT ∗

r − θT ∗
r − 1)

]

− (θ + r)vD

θ2
(eθTs − eθT ∗

) + rvD

θ
(Ts − T ∗).

(18)

3.2. Case 2: the special order time occurs during
the retailer’s sales period

Sometimes, the time of the price increase occurs during the
retailer’s sales period. In this situation, if the retailer decides
to place a special order of quantity Qs at the present price
v, the inventory level will increase instantaneously from
q to Qs + q when the special order quantity is delivered
(see Figure 2). On the other hand, if the retailer ignores
the notification about the price increase, that retailer will
not place any orders until the next replenishment. We will
formulate the total cost functions for the special and regular
order policies and then compare the two.

When a special order is placed, the total cost during
the time interval [0, Tq] consists of the ordering cost A, the
purchasing cost v Qs = [vD(eθTs − 1)]/θ , and the holding
cost, which is presented as follows.

As the special order quantity arrives, the maximum in-
ventory is given by

Qs + q = D

θ

(
eθTs − 1

) + D

θ

[
eθ(T ∗−tq ) − 1

]
= D

θ

[
eθTs + eθ(T ∗−tq ) − 2

]
. (19)

Furthermore, the inventory level at time t during the
time interval [0, Tq] can be obtained by

Iq(t) = D

θ

[
eθ(Tq−t) − 1

]
, 0 ≤ t ≤ Tq. (20)

Figure 2. Special vs. regular order policies when the special
order time occurs during the retailer’s sales period.

Because Iq (0) = Qs + q, from Equations (19) and (20),
we have

D

θ

(
eθTq − 1

) = D

θ

[
eθTs + eθ(T ∗−tq ) − 2

]
. (21)

Thus,

Tq = 1

θ
ln

[
eθTs + eθ(T ∗−tq ) − 1

]
. (22)

Therefore, the total holding cost of the special order
is

r v

∫ Tq

0
Iq(t)dt = rvD

θ2

(
eθTq − θTq − 1

)
= rvD

θ2

{
eθTs + eθ(T ∗−tq ) − 2

− ln
[
eθTs + eθ(T ∗−tq ) − 1

]}
. (23)

Consequently, the total cost of the special order during
the time interval [0, Tq] (denoted by T CS2(Ts)) can be
formulated as follows:

T CS2(Ts) = A + vD

θ
(eθTs − 1) + r vD

θ2

{
eθTs + eθ(T ∗−tq )

− 2 − ln
[
eθTs + eθ(T ∗−tq ) − 1

]}
. (24)

On the other hand, if the retailer ignores notification
of the price increase and places its regular order, the total
cost during the time interval [0, Tq] will also be divided
into two periods. In the first period, the retailer only has the
cost during the depletion time of residual q, T ∗ − tq . We
use the average cost analysis approach, which gives us the
following:

T ∗ − tq

T ∗

[
A + vD

θ

(
eθT ∗ − 1

) + rvD

θ2

(
eθT ∗ − θT ∗ − 1

)]
.

Next, the retailer places the regular order with the unit
purchase cost v + k during the rest period. To obtain the
total cost in this period, we use the average cost analysis
approach, which is given by

Tq − (T ∗ − tq)

T ∗
r

[
A + (v + k)D

θ

(
eθT ∗

r − 1
)

+ r(v + k)D

θ2

(
eθT ∗

r − θT ∗
r − 1

) ]

= ln[eθTs + eθ(T ∗−tq ) − 1] − θ (T ∗ − tq)

θT ∗
r
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×
[
A + (v + k)D

θ

(
eθT ∗

r − 1
)

+ r(v + k)D

θ2

(
eθT ∗

r − θT ∗
r − 1

) ]
.

As a result, when the retailer ignores the notification
and places its regular order during the time interval [0, Tq],
the total cost (denoted by T CN2(Ts)) is

T CN2(Ts) = T ∗ − tq

T ∗

[
A + vD

θ

(
eθT ∗ − 1

)

+ rvD

θ2

(
eθT ∗ − θT ∗ − 1

) ]

+
{

ln[eθTs + eθ(T ∗−tq ) − 1]

θT ∗
r

− (T ∗ − tq)

T ∗
r

}

×
[
A + (v + k)D

θ

(
eθT ∗

r − 1
)

+ r(v + k)D

θ2

(
eθT ∗

r − θT ∗
r − 1

) ]
. (25)

Therefore, the total cost saving when the special order
time occurs during the retailer’s sales period can be formu-
lated as follows:

g2(Ts) = T CN2(Ts) − T CS2(Ts)

= T ∗ − tq

T ∗

[
A + vD

θ

(
eθT ∗ − 1

)

+ rvD

θ2

(
eθT ∗ − θT ∗ − 1

) ]

+
{

ln[eθTs + eθ(T ∗−tq ) − 1]

θT ∗
r

− (T ∗ − tq)

T ∗
r

}

×
[
A + (v + k)D

θ

(
eθT ∗

r − 1
)

+ r(v + k)D

θ2

(
eθT ∗

r − θT ∗
r − 1

) ]

−
{
A + vD

θ
(eθTs − 1) + r vD

θ2

{
eθTs + eθ(T ∗−tq )

− 2 − ln
[
eθTs + eθ(T ∗−tq ) − 1

]}}
. (26)

Remark 1: Note that it is worth placing a special order
only when the total cost saving is positive in the above two
cases. Otherwise, the retailer will ignore the opportunity to
place the special order.

4. Theoretical results

In this section, the optimal value of Ts , representing the
maximisation of the total cost saving is determined.

4.1. Case 1: the special order time coincides with
the retailer’s replenishment time

Taking the first and second order derivatives of g1(Ts) in
Equation (18) with respect to Ts leads to

dg1(Ts)

dTs

= 1

T ∗
r

[
A + (v + k)D

θ
(eθT ∗

r − 1)

+ r(v + k)D

θ2
(eθT ∗

r − θT ∗
r − 1)

]

− (θ + r)vD

θ
eθTs + rvD

θ
(27)

and

d2g1(Ts)

dT 2
s

= −(θ + r)vDeθTs < 0. (28)

Consequently, g1(Ts) is a concave function of Ts ; hence,
there exists a unique value of Ts (say Ts1 ) that maximises
g1(Ts). Ts1 can be obtained by computing dg1(Ts)/dTs = 0
and is given by

Ts1 = 1

θ
ln

[
rvD + θy

vD(θ + r)

]
, (29)

where y = 1
T ∗

r

[
A + (v+k)D

θ
(eθT ∗

r −1)+ r(v+k)D
θ2 (eθT ∗

r −θT ∗
r −

1)
]

> 0.
Next, substituting Equation (29) into Equation (18)

results in

g1(Ts1 ) = (θ + r)vD

θ2

[
θeθTs1 (Ts1 − T ∗) − eθTs1 + eθT ∗]

.

(30)

We can easily show that g1(Ts1 ) > 0 for Ts1 ≥ T ∗. It
means that the total cost saving function g1(T ) has a positive
value at the point Ts = Ts1 . Furthermore, if we let T ∗

s denote
the optimal solution of Case 1, we can obtain the following
result (details of the proof are shown in Appendix A):

T ∗
s =

⎧⎨
⎩

T ∗, if �2 < 0,

Ts1 , if �1 ≤ 0 ≤ �2,

TW , if �1 > 0,

where �1 ≡ y − vDeθTW − rvD
θ

(
eθTW − 1

)
and �2 ≡ y −

vDeθT ∗ − rvD
θ

(
eθT ∗ − 1

)
.

Remark 2: When the optimal depletion time for the spe-
cial order quantity T ∗

s = T ∗, it is not worthwhile for the
retailer to place a special order; instead, the retailer should
place its regular order.
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4.2. Case 2: the special order time occurs during
the retailer’s sales period

Taking the first order derivative of g2(Ts) in Equation (26)
with respect to Ts , we obtain

dg2(Ts)

dTs

=
(

y + rvD

θ

)
eθTs

eθTs + eθ(T ∗−tq ) − 1

− (θ + r)vDeθTs

θ
. (31)

If we let Equation (31) be equal to 0 and solve this
equation, we can obtain a unique solution for T (say Ts2 )
as

Ts2 = 1

θ
ln

[
θy + rvD − (θ + r)vD[eθ(T ∗−tq ) − 1]

(θ + r)vD

]
.

(32)

Substituting Equation (32) into Equation (26), we
obtain

g2(Ts2 ) = T ∗ − tq

T ∗

[
A + vD

θ

(
eθT ∗ − 1

)
+ rvD

θ2

(
eθT ∗ − θT ∗ − 1

) ]
+

{
ln[eθTs2 + eθ(T ∗−tq ) − 1]

θT ∗
r

− (T ∗ − tq)

T ∗
r

}

×
[
A + (v + k)D

θ

(
eθT ∗

r − 1
)

+ r(v + k)D

θ2

(
eθT ∗

r − θT ∗
r − 1

) ]

−
{
A + vD

θ
(eθTs2 − 1) + rvD

θ2

{
eθTs2 + eθ(T ∗−tq )

− 2 − ln
[
eθTs2 + eθ(T ∗−tq ) − 1

]}}
. (33)

It is worth noting that the value Ts2 in Equation (32) must
satisfy 0 ≤ Qs ≤ W (i.e., 0 ≤ Ts ≤ TW ) and g2(Ts2 ) > 0.
Now, let T ∗

s denote the optimal solution of Case 2, we can
obtain the following result (details of the proof are shown
in Appendix B):

T ∗
s =

⎧⎨
⎩

Ts2 , if �3 ≤ 0 ≤ �4 and �5 > 0,

TW , if �3 > 0 and �6 > 0,

0, otherwise,

where�3 ≡ y − vD[eθTW + eθ(T ∗−tq ) − 1] − rvD
θ

[eθTW +
eθ(T ∗−tq ) − 2], �4 ≡ y −vD eθ(T ∗−tq ) − rvD

θ
[eθ(T ∗−tq ) − 1],

�5 ≡ g2(Ts2 ) and �6 ≡ g2(TW ).

Remark 3: When the optimal depletion time for special
order quantity T ∗

s = 0, the retailer should not order until
the next replenishment time.

Summarising the above results, we can develop an al-
gorithm to obtain the optimal solution, T ∗

s , for the two
situations.

Algorithm:
Step 1. Determine T ∗, T ∗

r and TW from Equations (6), (9)
and (13), respectively. If q = 0, go to Step 2. Otherwise, go
to Step 3.
Step 2. Calculate �1 = y − vDeθTW − rvD

θ

(
eθTW − 1

)
and

�2 = y − vDeθT ∗ − rvD

θ

(
eθT ∗ − 1

)
.

(1) If �1 ≤ 0 ≤ �2, then find Ts1 from Equation (29),
and the optimal length of replenishment cycle time
T ∗

s = Ts1 . Go to Step 4.
(2) If �2 < 0, then the optimal length of replenishment

cycle time T ∗
s = T ∗. Go to Step 4.

(3) If �1 > 0, then the optimal length of replenishment
cycle time T ∗

s = TW . Go to Step 4.

Step 3. Calculate �3 = y − vD[ eθTW + eθ(T ∗−tq ) − 1] −
rvD
θ

[eθTW − eθ(T ∗−tq ) − 2], and �4 = y − vDeθ(T ∗−tq ) −
rvD
θ

[eθ(T ∗−tq ) − 1].

(1) For �3 ≤ 0 ≤ �4, find Ts2 from Equation (32),
and determine g2(Ts2 ) from Equation (33). If �5 =
g2(Ts2 ) > 0, the optimal length of replenishment
cycle time T ∗

s = Ts2 .
(2) For �3 > 0, substitute Ts = TW into Equation (26)

and obtain g2(TW ). If �6 = g2(TW ) > 0, then the
optimal length of replenishment cycle time T ∗

s =
TW .

(3) Otherwise, the optimal length of the replenishment
cycle time T ∗

s = 0.

Step 4. Stop.
Once the optimal solution T ∗

s is obtained, the optimal
special order quantity Q∗

s = D(eθT ∗
s − 1)/θ and the maxi-

mum total cost saving, g1(T ∗
s ) or g2(T ∗

s ), follow.

5. Numerical examples and sensitivity analysis

We present the following examples to illustrate the optimal
ordering policy for each of the two situations:

Example 1: We first consider that the special order
time coincides with the retailer’s replenishment time.
Given an inventory system with the following parameters,
D = 1000, v = 10, A = 30, θ = 0.1, r = 0.3, in appro-
priate units, it can be found for the regular order that
T ∗ = 0.12198 (i.e., Q∗ = 122.72). Furthermore, we set
W = {500, 1000, 1500} and k = {1, 2, 3, 4, 5}. From
the algorithm, the optimal ordering policies depend upon
whether the different above-noted parameters can be ob-
tained. The computational results are shown in Table 1.
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Table 1. Optimal solutions of Example 1 under the different values of W and k.

W k T ∗
s Q∗

s T CN∗
1 T CS∗

1 g∗
1

500 1 Ts1 = 0.372 378.70 4155.25 4026.86 128.39
2 TW = 0.488 500 5867.48 5392.95 474.53
3 TW = 0.488 500 6241.43 5392.95 848.48
4 TW = 0.488 500 6615.07 5392.95 1222.12
5 TW = 0.488 500 6988.44 5392.95 1595.49

1000 1 Ts1 = 0.372 378.70 4155.25 4026.86 128.39
2 Ts1 = 0.615 634.41 7462.28 6953.48 508.80
3 Ts1 = 0.852 889.89 11,185.20 10,050.70 1134.50
4 TW = 0.953 1000 13,398.00 11,436.90 1961.10
5 TW = 0.953 1000 14,246.00 11,436.90 2809.10

1500 1 Ts1 = 0.372 378.70 4155.25 4026.86 128.39
2 Ts1 = 0.615 634.41 7462.28 6953.48 508.80
3 Ts1 = 0.852 889.89 11,185.20 10,050.70 1134.51
4 Ts1 = 1.084 1145.16 15,309.60 13,310.40 1999.19
5 Ts1 = 1.311 1400.25 19,821.80 16,724.90 3096.90

Example 2: In this example, we consider another situa-
tion in which the special order time occurs during the re-
tailer’s sales period. The data used are the same as those
in Example 1, except that q = 50. Similarly, by using
the algorithm, the optimal ordering policies under vari-
ous limited quantities W = {500, 1000, 1500} and price
increases k = {1, 2, 3, 4, 5} are listed in Table 2.

From Tables 1 and 2, some observations may be made.
First, with the limited special order quantity, regardless of
when the special order time occurs, the retailer will place
a special order before the price increase to take advantage
of the lower price. Second, as the optimal value of Ts is
equal to TW , i.e., Q∗

s = W , it implies that the retailer will
place a special order for the maximum quantity the supplier
can provide. Finally, when the value of k increases, the
optimal special order quantity Q∗

s and the maximum total

cost saving between special and regular orders during the
depletion time period of the special order quantity g∗

i , i =
1, 2 will increase. This means that the higher the unit price
increases, the more likely the retailer is to place a special
order to take advantage of the present lower price.

Example 3: In this example, sensitivity analysis demon-
strates how the robustness of the model will be established.
That is, the effects of changes in the system parameters
like v, D, A, θ , r and q will be discussed, in terms of the
optimal special ordering quantity Q∗

s , T CN∗
2 , T CS∗

2 and
maximum total cost saving g∗

2 . The data used are the same
as in Example 2. For convenience, the case in which the
fixed W = 1000 and k = 3 is taken into account. Sensitivity
analysis is performed by changing each of the parameters by
−50%, −25%, +25% and +50%, one parameter at a time
while keeping all the remaining parameters unchanged. The
results are shown in Table 3.

Table 2. Optimal solutions of Example 2 under the different values of W and k.

W k T ∗
s Q∗

s T CN∗
2 T CS∗

2 g∗
2

500 1 Ts2 = 0.323 328.70 4229.07 3526.86 702.21
2 TW = 0.488 500 6610.67 5467.77 1142.90
3 TW = 0.488 500 7106.85 5467.77 1639.08
4 TW = 0.488 500 7602.62 5467.77 2134.85
5 TW = 0.488 500 8098.03 5467.77 2630.26

1000 1 Ts2 = 0.323 328.70 4229.07 3526.86 702.21
2 Ts2 = 0.568 584.41 7609.86 6453.48 1156.38
3 Ts2 = 0.806 839.89 10,406.5 9550.70 1855.77
4 TW = 0.953 1000 14,354.1 11,576.40 2777.73
5 TW = 0.953 1000 15,322.0 11,576.40 3745.60

1500 1 Ts2 = 0.323 328.70 4229.07 3526.86 702.21
2 Ts2 = 0.568 584.41 7609.86 6453.48 1156.38
3 Ts2 = 0.806 839.89 11,406.5 9550.70 1855.77
4 Ts2 = 1.039 1095.16 15,604.4 12,810.40 2794.07
5 Ts2 = 1.267 1350.25 20,190.3 16,224.90 3965.33
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Table 3. Effect of changes in various parameters of Example 3.

% change in

Parameter value % change Q∗
s T CN∗

2 T CS∗
2 g∗

2

v −50 19.1 −27.5 −39.2 33.0
−25 19.1 −5.0 −9.0 15.5
+ 25 −20.0 −2.9 −1.9 −7.5
+ 50 −33.4 −4.5 −3.4 −10.5

D −50 −49.5 −46.6 −48.7 −36.0
−25 −24.6 −23.1 −24.1 −17.7
+ 25 19.1 18.0 18.1 17.2
+ 50 19.1 18.4 16.1 30.4

A −50 −4.9 −5.7 −5.5 −6.5
−25 −2.2 −2.6 −2.5 −3.0
+ 25 2.0 2.3 2.2 2.6
+ 50 3.8 4.4 4.3 5.0

θ −50 13.9 15.1 15.9 11.1
−25 6.5 7.0 7.3 5.1
+ 25 −5.7 −6.1 −6.4 −4.5
+ 50 −10.9 −11.4 −12.0 −8.5

r −50 19.1 16.3 13.1 32.9
−25 19.1 16.9 17.2 15.4
+ 25 −15.5 −14.0 −14.6 −10.8
+ 50 −26.8 −24.3 −25.4 −18.9

q −50 3.0 0.7 2.6 -9.4
−25 1.5 0.3 1.3 -4.7
+ 25 −1.5 −0.3 −1.3 4.7
+ 50 −3.0 −0.6 −2.6 9.4

From the results shown in Table 3, the following obser-
vations can be made:

(1) When the purchase cost v decreases, both the op-
timal special order quantity Q∗

s and maximum to-
tal cost saving g∗

2 increases. The simple economic
explanation for this is that if the purchase cost is
lower, the retailer will place a special order for a
larger quantity, resulting in a higher total cost sav-
ing. Moreover, the optimal special order quantity
and total cost saving are sensitive to the purchase
cost.

(2) It is obvious that all the values of Q∗
s , T CN∗

2 , T CS∗
2

and g∗
2 increase as the parameter D or A increases.

That is, both demand rate and order cost have pos-
itive effects on special order quantity and the total
cost, whether the retailer makes an additional spe-
cial order or not. Furthermore, it is a benefit to the
retailer’s total cost saving when both the market
demand rate and order cost increase.

(3) It is evident that when θ or r increases, the values
of Q∗

s , T CN∗
2 , T CS∗

2 and g∗
2 all decrease. This im-

plies that the higher the deterioration rate or holding
cost rate, the lower the special order quantity, to-
tal costs (whether the retailer places an additional
special order or not) and total cost saving will be.
If the deterioration rate or holding cost rate can be

reduced by improving storage, it will contribute to
the special order quantity, total costs and the to-
tal cost saving. In addition, it can be found that
the deteriorating rate has few significant impacts
on the results. The reason is that the value of the
deteriorating rate is very small which implies the
deterioration cost has a little weight on the retailer’s
total cost saving in general. Still it is our belief that
taking the characteristic of the deterioration into the
model is reasonable and necessary.

(4) It can also be shown that the larger the level of
residual inventory (prior to the delivery of the spe-
cial order quantity q), the smaller the values of Q∗

s ,
T CN∗

2 , T CS∗
2 and the larger the values for g∗

2 will
be. This implies that it will be beneficial for total
costs and total cost saving if the residual inventory
is as large as possible when the special order time
occurs during the retailer’s sales period.

6. Conclusions

This study investigates the possible effects of a price
increase announced by a supplier on a retailer’s replen-
ishment policy, when the quantity of the item available
by special order is limited. The purpose of the study is to
determine the retailer’s optimal order policies when such
a special order item is limited in quantity. By analysing
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the total cost savings between special and regular order
policies, we develop several results that may be useful
for characterising the optimal solution, and providing an
algorithm with which to identify the optimal order quantity.
In addition, we present numerical examples to illustrate the
solution procedure and perform a sensitivity analysis of the
optimal solution. The results reveal that (1) given a limited
special order quantity, the retailer will place a special order
to take advantage of the lower price regardless of when the
special order time occurs; (2) the higher the unit price, the
more the retailer is likely to place a special order in order to
take advantage of the current lower price; (3) the higher the
deterioration rate or holding cost rate, the lower the optimal
special order, total costs (whether or not the retailer places
a special order) and total cost saving will be; and (4) when
the retailer’s special order time occurs during the sales
period, it will be beneficial for the total costs and total cost
saving if the residual inventory is as large as possible.

The proposed model could be extended in several ways.
For example, the proposed inventory model may deal with
the demand rate as a function of selling price, time, stock,
and so on. Furthermore, the special order time could be
treated as a decision variable. Finally, the model could be
generalised to allow for shortages, quantity discounts, in-
flation, and other circumstances.

Acknowledgements
The authors greatly appreciate the anonymous referees for their
valuable and helpful suggestions regarding the earlier version of
the paper.

Funding
This research was partially supported by the National Science
Council of the Republic of China [grant number NSC 100-2221-
E-231-014].

Notes on contributors
Liang-Yuh Ouyang is a professor in the
Department of Management Sciences at
Tamkang University in Taiwan. He earned
his MS in mathematics and PhD in man-
agement sciences from Tamkang Univer-
sity. His research interests are in the field
of production/inventory control, probability
and statistics. His research works have been
published in the following journals: Jour-

nal of the Operational Research Society, Computers & Operations
Research, European Journal of Operational Research, Computers
and Industrial Engineering, International Journal of Production
Economics, IEEE Transactions on Reliability, Production Plan-
ning & Control, Mathematical and Computer Modelling, Applied
Mathematical Modelling, Applied Mathematical and Computa-
tion, Journal of Global Optimization and International Journal of
Systems Science.

Kun-Shan Wu is a professor in the Depart-
ment of Business Department at Tamkang
University in Taiwan. He earned his PhD
from the Graduate Institute of Management
Sciences at Tamkang University in Taiwan.
His research interests are in the field of pro-
duction/inventory control, and supply chain
management. His articles have been pub-
lished in Computers & Industrial Engineer-

ing, Computers & Operations Research, European Journal of
Operational Research, International Journal of Information and
Management Sciences, International Journal of Information and
Optimization Sciences, International Journal of Production Eco-
nomics, International Journal of Systems Sciences, Journal of
Interdisciplinary Mathematics, Journal of the Operational Re-
search Society, Journal of Statistics & Management Systems,
OPSEARCH, Production Planning and Control, Quality & Quan-
tity, Yugoslav Journal of Operations Research and Asia-Pacific
Journal of Operational Research.

Chih-Te Yang is an associate professor in
the Department of Industrial Management
at Chien Hsin University of Science and
Technology in Taiwan. He earned his PhD
from the Graduate Institute of Management
Sciences at Tamkang University in Taiwan.
His research interests are in the field of pro-
duction/inventory control, and supply chain
management. His articles have been pub-

lished in International Journal of Production Economics, Euro-
pean Journal of Operational Research, Computers & Industrial
Engineering, International Journal of Information and Manage-
ment Sciences, Asia-Pacific Journal of Operational Research, In-
ternational Journal of Systems Science, Mathematical Problems
in Engineering, TOP, Journal of Scientific & Industrial Research,
Central European Journal of Operations Research and European
Journal of Industrial Engineering.

Hsiu-Feng Yen is an assistant professor in
the Department of Accounting and staff
in the College of Business and Manage-
ment at Tamkang University in Taiwan. Her
research interests are in the field of pro-
duction/inventory control, and supply chain
management.

References
Bakker, M., Riezebos, J., & Teunter, R.H. (2012). Review of inven-

tory systems with deterioration since 2001. European Journal
of Operational Research, 221(2), 275–284.

Begum, R., Sahoo, R.R., & Sahu, S.K. (2012). A replenish-
ment policy for items with price-dependent demand, time-
proportional deterioration and no shortages. International
Journal of Systems Science, 43(5), 903–910.

Covert, R.P., & Philip, G.C. (1973). An EOQ model for items with
Weibull distribution deterioration. AIIE transactions, 5(4),
323–326.

Deng, P.S., Lin, R.H., & Chu, P.A. (2007). A note on the inventory
models for deteriorating items with ramp type demand rate.
European Journal of Operational Research, 178(1), 112–120.

Erel, E. (1992). The effect of continuous price change in the EOQ.
Omega, 20(4), 523–527.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
L

et
hb

ri
dg

e]
 a

t 1
2:

19
 0

4 
O

ct
ob

er
 2

01
5 



728 L.-Y. Ouyang et al.

Ghare, P.M., & Schrader, G.H. (1963). A model for exponentially
decaying inventory system. Journal of Industrial Engineering,
163, 238–243.

Ghosh, A.K. (2003). On some inventory models involving short-
ages under an announced price increase. International Journal
of Systems Science, 34(2), 129–137.

Goyal, S.K. (1979). A note on the paper: An inventory model with
finite horizon and price changes. Journal of the Operational
Research Society, 30, 839–842.

Goyal, S.K., & Giri, B.C. (2001). Recent trends in modeling of
deteriorating inventory. European Journal of Operational Re-
search, 134(1), 1–6.

Goyal, S.K., Srinivasan, G.F., & Arcelus, F. (1991). One time
only incentives and inventory policies. European Journal of
Operational Research, 54(1), 1–6.

Huang, W., & Kulkarni, V.G. (2003). Optimal EOQ for an-
nounced price increases in infinite horizon. Operations Re-
search, 51(2), 336–339.

Khanra, S., Sana, S.S., & Chaudhuri, K. (2010). An EOQ model
for perishable item with stock and price dependent demand
rate. International Journal of Mathematics in Operational
Research, 2(3), 320–335.

Khouja, M., & Park, S. (2003). Optimal lot sizing under continu-
ous price decrease. Omega, 31(6), 539–545.

Lev, B., & Soyster, A.L. (1979). An inventory model with fi-
nite horizon and price changes. Journal of the Operational
Research Society, 30(1), 43–53.

Lev, B., & Weiss, H.J. (1990). Inventory models with cost changes.
Operations Research, 38(1), 53–63.

Min, J., Zhou, Y.W., Liu, G.Q., & Wang, S.D. (2012). An EPQ
model for deteriorating items with inventory-level-dependent
demand and permissible delay in payments. International
Journal of Systems Science, 43(6), 1039–1053.

Mishra, P., & Shah, N.H. (2008). Inventory management of time
dependent deteriorating items with salvage value. Applied
Mathematical Sciences, 2(16), 793–798.

Moon, I., Giri, B.C., & Ko, B. (2005). Economic order quantity
models for ameliorating/deteriorating items under inflation
and time discounting. European Journal of Operational Re-
search, 162(3), 773–785.

Naddor, E. (1966). Inventory systems. New York, NY: Wiley.
Pakkala, T.P.M., & Achary, K.K. (1992). Deterministic inven-

tory model for deteriorating items with two warehouses and
finite replenishment rate. European Journal of Operational
Research, 57(1), 71–76.

Philip, G.C., (1974). A generalized EOQ model for items with
Weibull distribution. AIIE Transactions, 6(2), 159–162.

Sarma, K.V.S. (1987). Deterministic order level inventory model
for deteriorating items with two storage facilities. European
Journal of Operational Research, 29(1), 70–73.

Shah, N.H. (1998). A discrete-time probabilistic inventory model
for deteriorating items under a known price increase. Interna-
tional Journal of Systems Science, 29(8), 823–827.

Sharma, S. (2006). Incorporating fractional backordering
in the multi-product manufacturing situation with shelf
lives. Journal of Engineering Manufacture, 220(7), 1151–
1156.

Sharma, S. (2007a). A procedure to optimize the constrained
multiple-item production system. Journal of Engineering
Manufacture, 221(3), 467–476.

Sharma, S. (2007b). A procedure for benchmarking in multi-
product manufacturing. Journal of Engineering Manufacture,
221(3), 541–546.

Sharma, S. (2008a). On the flexibility of demand and production
rate. European Journal of Operational Research, 190(2), 557–
561.

Sharma, S. (2008b). Effects of an increase in manufacturing
rate in the context of cyclic production. International Jour-
nal of Advanced Manufacturing Technology, 39(7–8), 821–
827.

Sharma, S. (2009a). On price increases and temporary price re-
ductions with partial backordering. European Journal of In-
dustrial Engineering, 3(1), 70–89.

Sharma, S. (2009b). Revisiting the shelf life constrained multi-
product manufacturing problem. European Journal of Oper-
ational Research, 193(1), 129–139.

Sharma, S. (2009c). A composite model in the context of
a production-inventory system. Optimization Letters, 3(2),
239–251.

Skouri, K., & Konstantaras, I. (2009). Order level inventory mod-
els for deteriorating seasonable/fashionable products with
time dependent demand and shortages. Mathematical Prob-
lems in Engineering, 1–24. doi:10.1155/2009/679736

Taylor, S.G., & Bradley, C.E. (1985). Optimal ordering strategies
for announced price increases. Operations Research, 33(2),
312–325.

Tersine, R.J. (1996). Economic replenishment strategies for an-
nounced price increases. European Journal of Operational
Research, 92, 266–280.

Wee, H.M., & Law, S.T. (1999). Economic production lot size
for deteriorating items taking account of the time-value of
money. Computers and Operations Research, 26(6), 545–
558.

Wee, H.M., & Law, S.T. (2001). Replenishment and pricing pol-
icy for deteriorating items taking into account the time-value
of money. International Journal of Production Economics,
71(1–3), 213–220.

Yang, H.L. (2006). Two-warehouse partial backlogging inventory
models for deteriorating items under inflation. International
Journal of Production Economics, 103(1), 362–370.

Yang, H.L. (2011). A partial backlogging production-inventory
lot-size model for deteriorating items with time-varying
production and demand rate over a finite time horizon.
International Journal of Systems Science, 42(8), 1397–
1407.

Appendix A

To ensure Q∗ ≤ Qs ≤ W (i.e., T ∗ ≤ Ts ≤ TW ), we substitute
Equation (29) into this inequality, and it results in

if �1 ≤ 0 ≤ �2, then T ∗ ≤ Ts1 ≤ TW , (A1)

where �1 ≡ y − vDeθTW − rvD
θ

(
eθTW − 1

)
and �2 ≡ y −

vDeθT ∗ − rvD
θ

(
eθT ∗ − 1

)
.

For the completeness of our theoretical results, we further dis-
cuss two situations where �2 < 0 and �1 > 0 as follows. When
�2 < 0, we have y < [(θ + r)vDeθT ∗

/θ ] − (rvD/θ), which im-
plies

dg1(Ts)

dTs

= y − (θ + r)vD

θ
eθTs + rvD

θ

<
(θ + r)vD

θ

(
eθT ∗ − eθTs

)
≤ 0 for Ts ≥ T ∗. (A2)
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Hence, g1(Ts) is a strictly decreasing function of Ts ∈
[T ∗, TW ], and therefore, g1(Ts) has a maximum value at the lower
boundary point Ts = T ∗.

On the other hand, if �1 > 0, we have y > [(θ +
r)vDeθTW /θ ] − (rvD/θ), which implies

dg1(Ts)

dTs

= y − (θ + r)vD

θ
eθTs

+ rvD

θ
>

(θ + r)vD

θ

(
eθTW − eθTs

)
≥ 0 for Ts ≤ TW . (A3)

Thus, g1(Ts) is a strictly increasing function of Ts ∈ [T ∗, TW ],
and therefore, g1(Ts) has a maximum value at the upper bound-
ary point Ts = TW . The results summarised above offer sufficient
evidence for the stated argument.

Appendix B

First, to ensure that 0 ≤ Qs ≤ W (i.e., 0 ≤ Ts ≤ TW ), we substi-
tute Equation (32) into this inequality, which results in

if �3 ≤ 0 ≤ �4, then 0 ≤ Ts2 ≤ TW , (B1)

where

�3 ≡ y − vD[eθTW + eθ(T ∗−tq ) − 1]

− rvD

θ
[eθTW + eθ(T ∗−tq ) − 2]

and

�4 ≡ y − vD eθ(T ∗−tq ) − rvD

θ
[eθ(T ∗−tq ) − 1].

It is noted that when �4 ≥ 0, we have y ≥ vDeθ(T ∗−tq ) +
rvD
θ

[eθ(T ∗−tq ) − 1], which implies

θy + rvD − (θ + r)vD[eθ(T ∗−tq ) − 1]

(θ + r)vD
≥ 1,

or equivalently,

ln

[
θy + rvD − (θ + r)vD[eθ(T ∗−tq ) − 1]

(θ + r)vD

]
≥ 0.

Thus, Ts2 in Equation (32) is well defined. Furthermore, we
can show that

d2g2(Ts)

dT 2
s

∣∣∣∣
Ts=Ts2

=
(

y + rvD

θ

)
θ eθTs2 [eθ(T ∗−tq ) − 1]

[eθTs2 + eθ(T ∗−tq ) − 1]2

− (θ + r)vDeθTs2 = − (θ + r)vDe2θTs2

eθTs2 + eθ(T ∗−tq ) − 1
< 0.

Next, let �5 ≡ g2(Ts2 ), and it is obvious that when �5 > 0, Ts2

in Equation (32) is the optimal solution for Ts , which maximises
g2(Ts).

Furthermore, we discuss two situations where �4 < 0 and
�3 > 0 as follows. If �4 < 0, then we have

dg2(Ts)

dTs

=
(

y + rvD

θ

)
eθTs

eθTs + eθ(T ∗−tq ) − 1
− (θ + r)vDeθTs

θ

<

{
vDeθ(T ∗−tq ) + rvD

θ
[eθ(T ∗−tq ) − 1] + rvD

θ

}

× eθTs

eθTs + eθ(T ∗−tq ) − 1
− (θ + r)vDeθTs

θ

= − (θ + r)vDeθTs

θ (eθTs + eθ(T ∗−tq ) − 1)

(
eθTs − 1

)
< 0. (B2)

Thus, g2(Ts) is a strictly decreasing function of Ts ∈ [0, TW ],
which implies that g2(Ts) has a maximum value at the lower bound-
ary point Ts = 0.

On the other hand, if �3 > 0, then we have

dg2(Ts)

dTs

>

{
vD[eθTW + eθ(T ∗−tq ) − 1]

+ rvD

θ
[eθTW + eθ(T ∗−tq ) − 2] + rvD

θ

}

× eθTs

eθTs + eθ(T ∗−tq ) − 1
− (θ + r)vDeθTs

θ

= (θ + r)vDeθTs

θ [eθTs + eθ(T ∗−tq ) − 1]

(
eθTW − eθTs

)
≥ 0, for Ts ≤ TW . (B3)

Thus, g2(Ts) is a strictly increasing function of Ts ∈ [0, TW ],
which implies that g2(Ts) has a maximum value at the upper
boundary point Ts = TW . Furthermore, substituting Ts = TW into
Equation (26), and let �6 ≡ g2(TW ). If �6 > 0, then Ts = TW is
the optimal solution which maximises g2(Ts). The results sum-
marised above offer sufficient evidence for the stated argument.
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