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Preface

This book is intended as an introduction to probability and statistical inference
for junior- or senior-level students in one- or two-semester courses offered by
departments of mathematics or statistics. It can also serve as the foundation text
for first-year graduate students in disciplines such as engineering, economics, and
the physical and life sciences, where considerable use of statistics is the norm.

No previous study of probability or statistical inference is assumed. The only
prerequisite is the standard introductory course in the calculus. Review sections
dealing with set algebra, functions, and basic combinatories are included for your
convenience.

A strength of this book is that it is highly readable. Great care has been
taken to fully develop statistical concepts and definitions. Detailed explanations
of theorems, tests, and results are offered without compromising the rigor and
integrity of the subject matter. An objective of this work is to get students to con-
centrate on the statistics without being overwhelmed by the calculations. Students
who have used this book should be well on their way to thinking like a statistician
when it comes to problem solving- and decision- making.

An important feature of this text is the considerable attention given to sam-
pling distributions, point and interval estimation, parametric and distributional
hypothesis testing, and linear regression and correlation. These topics typically
constitute the heart and soul of most statistics courses, and this book has been
written with this notion in mind.

This book can be used at a variety of levels. If theorem content but not theorem
proof is important, then the general flow of the various chapters can be followed
and the task-oriented/applications exercises found at the end of each chapter can
be selectively chosen. However, if proofs and derivations are an integral part
of the course, then the exercises that address the same can be attempted. The
motivation underlying the execution of each proof as well as step-by-step details
necessary for its completion are offered in the Instructor’s Manual. So although
the main text is certainly not devoid of proofs (it engages the reader in proofs
that are more or less constructive or that reinforce the conceptual notions and
definitions at hand), the more complex and mathematically challenging proofs

Xv



Preface

are available as standalone items and presented without impeding the continuity
of presentation of the basic material.

After a review in Chapter 2 of some basic descriptive concepts, Chapter 3
develops the rudiments of probability theory. The latter is a key chapter since it
sets the stage for the study of a broad range of inferential statistical techniques
that follow. Chapter 4 treats general univariate probability distributions in con-
siderable detail, and Chapter 5 does the same for general bivariate probability
distributions. Chapters 6 and 7 introduce you to a variety of important specific dis-
crete and continuous probability distributions, respectively. The bivariate normal
distribution is also introduced in Chapter 7.

Chapter 8 exposes you to the concept of random sampling and the sam-
pling distribution of a statistic (including those of the mean, proportion, and
variance). Laws of large numbers and a Central Limit Theorem are carefully
developed and explained. Chapter 9 deals with a set of derived distributions (chi-
square, ¢, and F) and revisits the sampling distribution of the variance under the
normality assumption.

Point estimation is the topic of Chapter 10. Small-sample as well as large-
sample properties of point estimators are covered along with a variety of
techniques for finding good point estimators. This is a critical chapter in that you
are introduced to the Cramér-Rao lower bound, the Fisher-Neyman Factorization
Theorem, and the theorems of Lechmann-Scheffé and Rao-Blackwell. The meth-
ods of least squares, maximum likelihood, and best linear unbiased estimation are
fully explored. The method of moments technique is also addressed in the chapter
exercises.

Chapter 11 introduces you to the construction of a variety of single-sample and
two-sample confidence intervals. Independent populations as well as paired com-
parisons are considered. In addition, the joint estimation of a family of population
parameters is conducted using the Bonferroni method.

Parametric statistical hypothesis testing is the topic of Chapter 12. Great care
is taken to develop the preliminaries. That is, issues such as statistical hypothesis
formulation, the research question, varieties of decision outcomes, errors in test-
ing, devising tests, types of tests, and so on, are treated in detail before any actual
testing is undertaken. Determining the best test for a statistical hypothesis, the
power of a test, and generalized likelihood ratio tests are included to complete the
hypothesis testing methodology. Various one-sample and two-sample hypothesis
tests are conducted, where the latter involve both independent and dependent
populations. Hypothesis tests for Spearman’s rank correlation coefficient round
out the chapter. Throughout all of the presentation, the appropriate reporting of
hypothesis testing results is emphasized.

Chapter 13 involves a collection of nonparametric hypothesis tests. Here,
both single-sample and two-sample tests are executed. Comparisons between
parametric and non-parametric tests are frequently made as successive tests are
developed.

Testing goodness of fit is the thrust of Chapters 14 and 15. Chapter 14 treats
distributional hypotheses (via chi-square Kolmogorov-Smirnov, Lilliefors, and
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Shapiro-Wilk procedures) and Chapter 15 employs contingency tables to test
for independence, homogeneity, and uniformity among a set of proportions.
Issues concerning strength of association are also explored.

Chapter 16 offers an extremely detailed discussion of bivariate regression
and correlation. Topics treated include the assumptions underlying the strong
vs. weak classical linear regression models, the Gauss-Markov Theorem, least
squares estimation, hypothesis test for the population parameters, confidence
bands, prediction, decomposition of the sample variation in the dependent vari-
able, the correlation model, and inferences about the population correlation
coefficient. Embellishments of the basic regression model (e.g., dummy variables,
nonlinearities, etc.) are found in the chapter exercises.

Many individuals have helped to make this work possible. A debt of gratitude
is owed to each of them. First and foremost is my wife, Paula, whose support,
patience, and encouragement helped sustain me throughout all the writing and
rewriting. I would also like to thank the Department of Economics, Finance
and Insurance, the Barney School, and the University’s Coffin Grant Commit-
tee for financial assistance. Additionally, I am grateful to Alice Schoenrock and
to a whole host of graduate assistants, particularly Amlan Datta, who helped
with many aspects of the preparation of the basic manuscript and accompanying
tables. Special accolades go to Marilyn Baleshiski who expertly typed the final
draft of the entire manuscript.

A special note of thanks is extended to the Editorial and Production
Departments at Elsevier. Acquisition Editors Barbara Holland and Tom Singer,
along with the Project Manager, Sarah Hajduk, made the entire publication pro-
cess quite painless. Their kindness and professionalism are deeply appreciated.
Furthermore, the following reviewers generously offered many valuable com-
ments about the manuscript: John Travis, Mississippi College; Laura McSweeney,
Fairfield University; Eric Slud, University of Maryland at College Park;
Tom Short, Indiana University of Pennsylvania; Cristopher Mechlin, Murray
State University; Pierre Grillet, Tulane University; and Mohammad Shakil,
Miami Dade University. I appreciate their insight and constructive suggestions.
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1.1

1.2

Introduction

Statistics Defined

Broadly defined, statistics encompasses the theory and methods of collecting,
organizing, presenting, analyzing, and interpreting data sets so as to determine
their essential characteristics. Although the collection, organization, and presen-
tation of data will be addressed frequently throughout the text, primary emphasis
will be placed upon the analysis of data and the interpretation of the results.
Underlying the analysis of data is the vast mathematical apparatus of abstract
concepts, theorems, formulae, algorithms, and so on that constitute the statis-
tical tools that we will employ to study a data set. In this regard, our goal is to
develop a kit of tools with which to analyze and interpret data. These tools will
then enable us to build a framework for good decision making.

Types of Statistics

There are essentially two major categories of statistics: descriptive and inductive.
Descriptive statistics includes any treatment of data designed to summarize their
essential features. Here we are interested in arranging data in a readable form;
for example, we may construct tables, charts, and graphs; and we can compute
percents, averages, rates of change, and so on. In this regard, we do not go beyond
the data at hand.

With inductive statistics, we are concerned with making estimates, predictions
or forecasts, and generalizations. Since induction is the process of reasoning from
the specific to the general, the essential characteristic of inductive statistics is
termed statistical inference—the process of inferring something about the whole
from an examination of only the part. Specifically, this process is carried out
through sampling; that is, a representative subgroup of items is subject to study
(the part) and the conclusions derived therefrom are assumed to characterize
the entire group (the whole). Moreover, since an exhaustive census (or complete
enumeration) of the whole is not being undertaken, so that our conclusions are
hostage to the characteristics of those items actually comprising the part, some

1
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level of error will most assuredly taint our conclusions about the whole. Hence
we must accompany any generalization about the whole by a measure of the
uncertainty of the inference made. Such measures can be calculated once the
rudiments of probability theory are covered.

For instance, suppose we want to gain some insight into the relative popularity
of a collection of candidates for the presidency of the United States. Can we
realistically poll each and every individual of voting age (the whole)? Certainly
not. But we can, using scientific polling techniques, elicit the preferences of only a
small segment of all potential voters (the part). Hence, we may possibly conclude
from this exercise that candidate A is the choice of 64% of all eligible voters. But
this conclusion is not couched in absolute certainty. Some margin of error emerges
since only a sample of individuals was taken. Hence we would accompany the
64% figure with a statement reading something like: the degree of precision of
our estimate is £3% with a 95% reliability level. The notions of precision and
reliability will play a key role in the development of our inferential techniques.

In sum, if we only want to summarize or present data or just catalog facts,
then we will use descriptive statistics. But if we want to make inferences based on
sample data or make decisions in the face of uncertainty, then we must rely on
inductive statistical methods.

Levels of Discourse: Sample vs. Population

Let us further elaborate on the concepts of the whole and the part. To set the
stage for this discussion let us define an experiment as any process of observation.
It may involve something like quality control inspection of electric motors or
simply monitoring the flow of various types of motor vehicles along a particular
street on a given day and over a given time interval. Next, a variable (denoted as
X) can be thought of as any observable or measurable magnitude. Here X may
depict an individual’s set of exam scores, height (in inches) of sixth graders in a
particular school system, weight (in pounds) of dressed turkeys, elapsed time (in
minutes) taken to perform a certain task, and so on.

In this regard, let us define the sample (the part) as those things or events
that both happened and were observed. It is drawn from the population (the
whole), which involves things or events that happened but were not necessarily
observed. Equivalently, we may think of the population as representing all con-
ceivable observations on some variable X, whereas a sample is simply a subset of
the population, that is, a given collection of observations taken from the popu-
lation (see Figure 1.1). By convention, for a finite population, let us depict the
population size by N and the sample size by n, where obviously n < N. More-
over, if X depicts a population variable, then the items within the population
can be listed as X : X1, X5, X3, ..., Xyoras X: X;, i=1, ..., N. And if X repre-
sents a sample variable, then the collection of sample items can be written as
X:Xl,Xz, ...,Xn OI‘XZXI‘, i= 1, RN (B

A sample is of finite size, but a population can be finite or infinite. That is, the
collection of all individuals who have read part or all of this book can be thought
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population

A sample as a subset of a population.

of as constituting a finite population, whereas an infinite population can easily be
generated by sampling with replacement. For instance, if a population consists of
N items and we sample without replacement, then the item obtained on any draw
is set aside before the next item is chosen. But if we sample with replacement (on
each draw we select an item from the population and then replace it before the
next one is chosen), then clearly we can effectively sample in this fashion forever;
that is, we can operate as if the population is infinite even though in reality it is
not. So under sampling with replacement, a member of the population can appear
more than once in the sample; in sampling without replacement, we disregard any
item that has already been chosen for inclusion in the sample.

A few additional points merit our attention. First, it is important to mention
that oftentimes inductive statistics is described as decision making under uncer-
tainty. For our immediate purposes, note that an important source of uncertainty
is the concept of randomness. That is, if the outcome of an experiment is not
predictable, then it is said to occur in a random fashion. Next, we stated earlier
that in sampling, a representative group of items is desired. In this regard, we may
deem a sample as representative if it is typical, that is, it adequately reflects the
attributes of the population. Moreover, we will frequently engage in the pro-
cess of random sampling. Specifically, a sample is random if each and every
item in the population has an equal (and known) chance of being included in
the sample.

It is important to remember that the process of random sampling does not
guarantee that a representative sample will be obtained. Randomization is likely
but by no means certain to generate a representative sample. This is because
randomization gives the same chance of selection to every sample of a given
size—representative ones as well as nonrepresentative ones.

We end this section by noting that the term parameter (denoted 6) is used to
represent any descriptive measure of a population, whereas a statistic (denoted 6)
is any descriptive measure of a sample. Here 6 serves as an estimator of (the
unknown) 0; that is, 6 is some function of the sample values used to discern the
level of 6. The 6 actually obtained by the estimation process will be called an
estimate of 0. If 6 represents a single numerical value, then it is termed a point
estimator of 6. An interval estimator of 6 enables us to state just how confident
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we are, in terms of probability, that 6 lies within some range of values. We shall
return to these notions in Chapters 10 and 11.

Levels of Discourse: Target vs. Sampled Population

The target population is defined as the population to be studied; it is the population
about which information is desired. This is in contrast to the sampled population—
the population from which the sample is actually obtained. This latter population
concept is alternatively called the sampling frame, or just frame for short. Based
upon these two population notions, consequently we can describe a sample (or
study for that matter) as being valid if the target and sampled populations have
similar characteristics. (Note that some items in the target population may not be
a member of the frame.)

Continuing in this vein, an elementary sampling unit is an item in the frame and
an observation is a piece of information possessed by an elementary sampling unit.
A sample, then, is that portion of the sampled population actually studied. (Note
also that a sample may be representative—it adequately reflects the attributes of
the frame—but not valid.) So under random sampling, each item in the frame has
the same chance of being chosen.

For example, suppose we want to develop a profile of the membership of
the local country club. This is the target population. The sampled population
or frame is the club’s membership list. If the list is up to date, then the target
and sampled populations coincide. However, if the list has not been updated
recently, then the target and sampled populations may be widely disparate and
thus the question of validity comes to the fore. Elementary sampling units are the
individual members, whereas an observation consists of a particular data point
or value of some characteristic of interest. In what follows we shall depict each
characteristic by a separate variable. Hence an observation is the value of the
variable representing a characteristic of an elementary sampling unit.

For instance, assume that a country club has 3000 (= N) members and that we
want a sample of size 100 (= n). If the membership list is arranged alphabetically
(which we can assume to be a random arrangement), then we can easily engage
in a sampling process called systematic random sampling, with a sampling cycle
of 30 = 3000/100 (= N/n). That is, we start at the beginning of the list, select one
member at random from the first 30 members listed, and then pick from that item
on every thirtieth number for inclusion in the sample.

Which characteristic of a member (our elementary sampling unit) might we
be interested in? We can possibly list them as sex, number of years as a member,
number of years service as a board member, type of membership (e.g., found-
ing, charter, regular), annual gift amount, major activity preferred (e.g., golf,
tennis, swimming, bridge), and so on. As indicated earlier, each characteristic is
represented by a variable and the value of the variable is an observation of the
characteristic, as listed in Table 1.1.
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Country Club Membership Characteristics

Characteristic Variable Observation Values

Sex X Male (1); Female (2)

Years X Number of years

Board X3 Number of years

Type X4 Founding (3); Charter (2); Regular (1)

Gift Xs $

Activity Xe Golf (1); Tennis (2); Swimming (3); Bridge (4)

Measurement Scales

What types or varieties of data have we defined in the preceding example on
country club membership characteristics? We may generally refer to data as a
collection of facts, values, observations, or measurements. So if our data consists
of observations that can be measured (i.e., classified, ordered, or quantified),
then at what level does the measurement take place? Here we are interested in
the forms in which data is found or the scales on which data is measured. These
scales, stated in terms of increasing information content, are classified as nominal,
ordinal, interval, and ratio.

Let us first consider the nominal scale. Here nominal should be associated with
the word name since this scale identifies categories. Observations on a nominal
scale possess neither numerical values nor order. However, observations on this
type of scale can be given numerical codes such as “0 or 1” or “1,2,3,....” Vari-
ables X7 and X in Table 1.1 are nominal in nature and are termed qualitative or
categorical variables. Note that when dealing with a nominal scale, the categories
defined must be mutually exclusive (each item falls into one and only one cate-
gory) and collectively exhaustive (the list of categories is complete in that each
item can be classified). Since X; has only two categories, it is called a binary or
dichotomous variable. Note also that a number code has been used to classify the
members as either 1 (male) or 2 (female). These numbers serve only as identifiers;
the magnitude of the differences between these numerical values is meaningless.
The only valid operations for variables represented by a nominal scale are the
determination of “=" or “#.”

The ordinal scale (think of the word order) includes all properties of the
nominal scale with the additional property that the observations can be ranked
from the smallest to the largest or from the least important to the most impor-
tant. (Note that nominal measurements cannot be ordered—all items are treated
equally.) If the country club mentioned earlier is a hierarchical organization
wherein founding members are more important or ranked higher (in terms of
privileges) than charter members, which are in turn ranked above regular mem-
bers, then X} is an ordinal (and thus qualitative) variable. (Although chartered is
in some sense better than regular, the ranking does not indicate how much better.)
That is, since the numerical values assigned to X4 are 3, 2, and 1, these numbers
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serve only to indicate a pecking order of levels of the variable—the differences
between these numerical values are meaningless (we could just as effectively use
100, 57, and 10). In this regard, the only valid operations for ordinally scaled
variables are “=, #, <, >.”

Both the nominal and ordinal scales are termed nonmetric scales since
differences among their values are of no consequence.

Next comes interval data. This scale includes all the properties of the ordinal
scale with the additional property that distance between observations is meaning-
ful. Here the numbers assigned to the observations indicate order and possess the
property that the difference between any two consecutive values is the same as the
difference between any other two consecutive values (the difference 10 — 9 =1
has the same meaning as 3 — 2 = 1). It is important to note that while an inter-
val scale has a zero point, its location may be arbitrary. Hence ratios of interval
scale values have no meaning. For example, at the country club golf course hole
number five is a par three hole. Member A completes the hole in four strokes
while member B does so in five strokes. The club pro takes only two strokes. How
do we describe the skill level of member A relative to member B? The answer
depends on our point of reference or zero point. If the zero point is taken to be
the performance of the club pro, then A is +2 above and B is +3 above. Can we
then say that member A is one and one-half times as good as member B? What
if the zero point is instead taken to be par itself? Now player A is one over par
while B is two over par. Do we now conclude that member A is twice as good
a golfer as B?

Other examples abound. For instance, since 0°C (zero degrees centigrade)
does not imply the absence of heat (it is simply the temperature at which water
freezes), 40°C is not twice as cold as 20°C. Likewise, a score of zero on a stan-
dardized national test does not imply lack of knowledge. In this regard, since the
zero point is again arbitrary, a student with a score of 700 is not twice as smart as
one with a score of 350.

The operations for handling variables measured on an interval scale are
“=, £ >, <, +, =7

Our final level of measurement is the ratio scale. It includes all the proper-
ties of the interval scale with the added property that ratios of observations are
meaningful. This is because absolute zero is uniquely defined. Clearly variable Xs
is a ratio variable in that $0 measures the absence of any gift and a gift of $2000
is twice as large as a gift of $1000 (the ratio is 2/1 = 2). Valid operations for vari-
ables measured on aratioscale are “=, #, >, <, +, —, X, +.” Both the interval
and the ratio scales are said to be metric scales (since differences between values
measured on these scales are meaningful), and variables measured on these scales
are said to be quantitative variables.

It should be evident from the preceding discussion that any variable measured
on one scale automatically satisfies all the properties of a less informative scale.

In addition to variables being qualitative or quantitative in nature, we may
also identify variables as being discrete or continuous. A discrete variable takes
on only a countable number of values (e.g., sex, makes of automobiles, residential
housing units in a particular area of a city, etc.), whereas a continuous variable
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can take on any value over some range—that is, fractional values are admitted
(e.g., time, liquid measures, interest rates, etc. are all continuous variables).

Sampling and Sampling Errors

If we undertake a complete census of some population, then we can readily
describe, in varying degrees of detail, many of its salient features or charac-
teristics. However, if we only sample from the population, then it should be
intuitively clear that the different possible samples obtained will exhibit differ-
ent sets of sample values (although some duplication in the sample values can
occur). Hence any conclusion reached about the population from any one sam-
ple may differ slightly from that reached on the basis of examining some other
sample. Again, this is because different samples typically possess different sam-
ple values. Given that none of the samples will look exactly like the population
at large, we will most assuredly find a difference between some true population
parameter (6) and the statistic (§) used to estimate it. Hence the degree of sam-
pling error is & — 6. It should be obvious the sampling error is inescapable—it
reflects the inherent natural variability among a parameter and a statistic used
to estimate it. For some samples the amount of sampling error will be large; for
others it may be quite small. (If the true 6 is known, then the difference between
6 and 6 reflects the degree of accuracy of our estimate of 8. Since 6 is usually
unknown, the best we can do is talk about a long-term degree of precision of
our estimate of ; i.e., we can determine an error bound on § as an estimate
of 6.)

This is in contrast to the notion of nonsampling error, which is due essentially
to unsound sampling or experimental techniques, and which can be controlled.
Here human or mechanical factors distort the observed values, thus contributing
to the difference between § and 6. Nonsampling error emerges when you have a
biased sample. For instance, some items in the population may be more likely to
be included in the sample than others or errors of observation or measurement
result in a systematic accumulation of inaccuracies in a single direction. When this
occurs 6 may be larger on the average (a positive bias) or smaller on the average
(anegative bias) than 6. If on the average  equals 6, then @ is said to be unbiased,
that is, the long-run average of the sampling error is zero.

Exercises

1-1. For the following variables, determine whether the data are best char-
acterized as categorical (nominal or ordinal) or numerical (continuous or
discrete).

(a) X:red, white, blue
(b) X:poor, fair, good, excellent

(c) X:below average, average, above average
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(d) X: African-American, Caucasian, Hispanic, Native American, Other
(e) X:birth weight (in ounces)

(f) X: private, private first class, . .., four star general

(g) X: monthly motor vehicle accidents in Boston, MA

(h) X:number of visits to the dentist per year

1-2. For the following variables, determine whether the data are measured on an
interval or ratio scale.

(a) X:attendance at last night’s concert

(b) X: cost of parking your car at the local civic center
(c) X: capacity of your vehicle’s gas tank

(d) X: melting point (in degrees Celsius) of a lead ingot
(e) X:national unemployment rate

(f) X:1Q scores of your age cohort

(g) X: LSAT scores for college seniors

(h) X:interest rate on new car loans at the local credit union
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Elementary Descriptive
Statistical Techniques

Summarizing Sets of Data Measured on a Ratio
or Interval Scale

In what follows we shall consider a variety of descriptive statistical techniques that
may be employed to conveniently summarize, for the most part, a set of ratio-
or interval-scale data. Unless otherwise stated, this data set will be assumed to
represent the entire population. Two basic approaches will be advanced. First,
we may summarize the data in a tabular (and, eventually, graphical) fashion.
Second, rather than work with the entire mass of data in, say, tabular form, we
may derive from it a set of concise quantitative summary characteristics (either
computed or positional values arrived at largely from a set of formulas), which
themselves describe the salient features of the data set. Once these summary
measures have been obtained, they may be used to assess the current status of a
particular population, measure differences between two or more populations, or
consider changesin a given population over time. These approaches are contrasted
in Figure 2.1.

With respect to our second approach regarding various sets of quantitative/
positional summary figures, we note briefly that:

(a) Measures of Central Location, broadly construed, are essentially averages
that describe the location of the center of the data set.

(b) Measures of Dispersion (typically taken about some point of central location)
describe the spread or scatter of the observations along the horizontal axis.

(c) Measures of Skewness indicate the degree of departure of the data distribution
from symmetry and thus serve as measures of asymmetry.

(d) Measures of Kurtosis indicate how flat or rounded the peak of the data
distribution happens to be.



Descriptive Techniques for Summarizing Sets of Ratio-, Interval-Scale Data

Il. Quantitative Summary Characteristics (grouped or ungrouped data)

I. Tabular Methods (grouped

or ungrouped data)

1. Absolute Frequency
Distribution

2. Relative Frequency
Distribution

3. Percent Distribution

4. Cumulative Frequency
Distribution

5. Joint, Marginal, and
Conditional Distributions
(for bivariate data)

(for ordinal data)

Measures of Central Measures of Measures of Measures of
Location Dispersion Skewness Kurtosis
1. Mean 1. Range 1. Pearsonian 1. Standard
a. unweighted 2. Standard Coefficient Kurtosis
b. weighted Deviation 2. Standard 2. Coefficient
2. Median 3. Quantiles Skewness of Kurtosis
3. Mode 4. Coefficient of 3. Bowley's
Variation Measure
Mea?“fes of Detection/Treatment Tests for Normality Tests for
Association (for of Outliers (Chapter 14) Randomness
bivariate data) (Chapter 13)
1. Pearson 1. Z-Scores 1. Chi-square 1. Runs Test
Correlation 2. Trimming 2. Kolmogorov- 2. Mean-Square
Coefficient 3. Winsorizing Smirnov Successive
2. Spearman Rank 3. Lilliefors Difference
Correlation 4. Shapiro-Wilk
Coefficient

Figure 2.1 Two approaches for summarizing data.
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(e) Tests of Randomness determine if the data set (typically a sample) can be
thought of as generated in a random or nonsystematic fashion.

(f) Tests of Normality are used to determine if the data set closely approximates
a bell-shaped symmetrical distribution.

(g) The Determination of Outliers or abnormally large or small extreme values
is important if we do not want the values of some of our other descriptive
measures to be distorted.

(h) Measures of Association are used to determine the strength of the (linear)
relationship between two variables or between two sets of ranked values.

Except for tests of normality and tests of randomness, all of the items indicated
in Figure 2.1 will be examined in this chapter. Moreover, most of these items
will be subject to further study when we make the transition from descriptive to
inferential statistics.

Tabular Methods

In this section we seek to determine at a glance a global picture of the entire
population data set so as to detect some underlying pattern of behavior; that is,
to make a quick and rough assessment of the characteristics of the population.
So, given an amorphous collection of data, how may we arrange it in a systematic
and easily readable form?

Let us assume that we have a set of N observations on a population variable
X :X1,X5,...,Xn. Forinstance, such a data set appears in Table 2.1. We first con-
struct the absolute frequency distribution, which shows the absolute frequencies
with which the various values of a variable X occur in a set of data.

Here absolute frequency represents the number of times a particular value
of X is recorded. This distribution is illustrated in Table 2.2. In the left-hand
column we have the different values of X listed (there is a total of 50 observations

X: Time Required to Perform a Given Production
Task (V = 50 Observations on Worker A) (Minutes)

10 9 13 9 13
8 13 12 15 14
13 19 17 18 17
13 14 13 16 13
10 12 15 14 12
15 13 11 12 11
13 12 11 11 16
16 17 14 13 6
20 12 13 7 12

15 16 19 18 14
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Table 2.2
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Absolute Frequency Distribution of
Performance Time for Worker A (Minutes)

X Absolute Frequency

H
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on X but only 15 different values presented) and in the right-hand column we have
their absolute frequencies recorded. Note that the sum of the absolute frequencies
must equal the total number of observations 