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Preface

This book is intended as an introduction to probability and statistical inference
for junior- or senior-level students in one- or two-semester courses offered by
departments of mathematics or statistics. It can also serve as the foundation text
for first-year graduate students in disciplines such as engineering, economics, and
the physical and life sciences, where considerable use of statistics is the norm.

No previous study of probability or statistical inference is assumed. The only
prerequisite is the standard introductory course in the calculus. Review sections
dealing with set algebra, functions, and basic combinatories are included for your
convenience.

A strength of this book is that it is highly readable. Great care has been
taken to fully develop statistical concepts and definitions. Detailed explanations
of theorems, tests, and results are offered without compromising the rigor and
integrity of the subject matter. An objective of this work is to get students to con-
centrate on the statistics without being overwhelmed by the calculations. Students
who have used this book should be well on their way to thinking like a statistician
when it comes to problem solving- and decision- making.

An important feature of this text is the considerable attention given to sam-
pling distributions, point and interval estimation, parametric and distributional
hypothesis testing, and linear regression and correlation. These topics typically
constitute the heart and soul of most statistics courses, and this book has been
written with this notion in mind.

This book can be used at a variety of levels. If theorem content but not theorem
proof is important, then the general flow of the various chapters can be followed
and the task-oriented/applications exercises found at the end of each chapter can
be selectively chosen. However, if proofs and derivations are an integral part
of the course, then the exercises that address the same can be attempted. The
motivation underlying the execution of each proof as well as step-by-step details
necessary for its completion are offered in the Instructor’s Manual. So although
the main text is certainly not devoid of proofs (it engages the reader in proofs
that are more or less constructive or that reinforce the conceptual notions and
definitions at hand), the more complex and mathematically challenging proofs

xv
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are available as standalone items and presented without impeding the continuity
of presentation of the basic material.

After a review in Chapter 2 of some basic descriptive concepts, Chapter 3
develops the rudiments of probability theory. The latter is a key chapter since it
sets the stage for the study of a broad range of inferential statistical techniques
that follow. Chapter 4 treats general univariate probability distributions in con-
siderable detail, and Chapter 5 does the same for general bivariate probability
distributions. Chapters 6 and 7 introduce you to a variety of important specific dis-
crete and continuous probability distributions, respectively. The bivariate normal
distribution is also introduced in Chapter 7.

Chapter 8 exposes you to the concept of random sampling and the sam-
pling distribution of a statistic (including those of the mean, proportion, and
variance). Laws of large numbers and a Central Limit Theorem are carefully
developed and explained. Chapter 9 deals with a set of derived distributions (chi-
square, t, and F) and revisits the sampling distribution of the variance under the
normality assumption.

Point estimation is the topic of Chapter 10. Small-sample as well as large-
sample properties of point estimators are covered along with a variety of
techniques for finding good point estimators. This is a critical chapter in that you
are introduced to the Cramér-Rao lower bound, the Fisher-Neyman Factorization
Theorem, and the theorems of Lechmann-Scheffé and Rao-Blackwell. The meth-
ods of least squares, maximum likelihood, and best linear unbiased estimation are
fully explored. The method of moments technique is also addressed in the chapter
exercises.

Chapter 11 introduces you to the construction of a variety of single-sample and
two-sample confidence intervals. Independent populations as well as paired com-
parisons are considered. In addition, the joint estimation of a family of population
parameters is conducted using the Bonferroni method.

Parametric statistical hypothesis testing is the topic of Chapter 12. Great care
is taken to develop the preliminaries. That is, issues such as statistical hypothesis
formulation, the research question, varieties of decision outcomes, errors in test-
ing, devising tests, types of tests, and so on, are treated in detail before any actual
testing is undertaken. Determining the best test for a statistical hypothesis, the
power of a test, and generalized likelihood ratio tests are included to complete the
hypothesis testing methodology. Various one-sample and two-sample hypothesis
tests are conducted, where the latter involve both independent and dependent
populations. Hypothesis tests for Spearman’s rank correlation coefficient round
out the chapter. Throughout all of the presentation, the appropriate reporting of
hypothesis testing results is emphasized.

Chapter 13 involves a collection of nonparametric hypothesis tests. Here,
both single-sample and two-sample tests are executed. Comparisons between
parametric and non-parametric tests are frequently made as successive tests are
developed.

Testing goodness of fit is the thrust of Chapters 14 and 15. Chapter 14 treats
distributional hypotheses (via chi-square Kolmogorov-Smirnov, Lilliefors, and
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Shapiro-Wilk procedures) and Chapter 15 employs contingency tables to test
for independence, homogeneity, and uniformity among a set of proportions.
Issues concerning strength of association are also explored.

Chapter 16 offers an extremely detailed discussion of bivariate regression
and correlation. Topics treated include the assumptions underlying the strong
vs. weak classical linear regression models, the Gauss-Markov Theorem, least
squares estimation, hypothesis test for the population parameters, confidence
bands, prediction, decomposition of the sample variation in the dependent vari-
able, the correlation model, and inferences about the population correlation
coefficient. Embellishments of the basic regression model (e.g., dummy variables,
nonlinearities, etc.) are found in the chapter exercises.

Many individuals have helped to make this work possible. A debt of gratitude
is owed to each of them. First and foremost is my wife, Paula, whose support,
patience, and encouragement helped sustain me throughout all the writing and
rewriting. I would also like to thank the Department of Economics, Finance
and Insurance, the Barney School, and the University’s Coffin Grant Commit-
tee for financial assistance. Additionally, I am grateful to Alice Schoenrock and
to a whole host of graduate assistants, particularly Amlan Datta, who helped
with many aspects of the preparation of the basic manuscript and accompanying
tables. Special accolades go to Marilyn Baleshiski who expertly typed the final
draft of the entire manuscript.

A special note of thanks is extended to the Editorial and Production
Departments at Elsevier. Acquisition Editors Barbara Holland and Tom Singer,
along with the Project Manager, Sarah Hajduk, made the entire publication pro-
cess quite painless. Their kindness and professionalism are deeply appreciated.
Furthermore, the following reviewers generously offered many valuable com-
ments about the manuscript: John Travis, Mississippi College; Laura McSweeney,
Fairfield University; Eric Slud, University of Maryland at College Park;
Tom Short, Indiana University of Pennsylvania; Cristopher Mechlin, Murray
State University; Pierre Grillet, Tulane University; and Mohammad Shakil,
Miami Dade University. I appreciate their insight and constructive suggestions.
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11
Introduction

1.1 Statistics Defined

Broadly defined, statistics encompasses the theory and methods of collecting,
organizing, presenting, analyzing, and interpreting data sets so as to determine
their essential characteristics. Although the collection, organization, and presen-
tation of data will be addressed frequently throughout the text, primary emphasis
will be placed upon the analysis of data and the interpretation of the results.
Underlying the analysis of data is the vast mathematical apparatus of abstract
concepts, theorems, formulae, algorithms, and so on that constitute the statis-
tical tools that we will employ to study a data set. In this regard, our goal is to
develop a kit of tools with which to analyze and interpret data. These tools will
then enable us to build a framework for good decision making.

1.2 Types of Statistics

There are essentially two major categories of statistics: descriptive and inductive.
Descriptive statistics includes any treatment of data designed to summarize their
essential features. Here we are interested in arranging data in a readable form;
for example, we may construct tables, charts, and graphs; and we can compute
percents, averages, rates of change, and so on. In this regard, we do not go beyond
the data at hand.

With inductive statistics, we are concerned with making estimates, predictions
or forecasts, and generalizations. Since induction is the process of reasoning from
the specific to the general, the essential characteristic of inductive statistics is
termed statistical inference—the process of inferring something about the whole
from an examination of only the part. Specifically, this process is carried out
through sampling; that is, a representative subgroup of items is subject to study
(the part) and the conclusions derived therefrom are assumed to characterize
the entire group (the whole). Moreover, since an exhaustive census (or complete
enumeration) of the whole is not being undertaken, so that our conclusions are
hostage to the characteristics of those items actually comprising the part, some

1



2 Chapter 1 Introduction

level of error will most assuredly taint our conclusions about the whole. Hence
we must accompany any generalization about the whole by a measure of the
uncertainty of the inference made. Such measures can be calculated once the
rudiments of probability theory are covered.

For instance, suppose we want to gain some insight into the relative popularity
of a collection of candidates for the presidency of the United States. Can we
realistically poll each and every individual of voting age (the whole)? Certainly
not. But we can, using scientific polling techniques, elicit the preferences of only a
small segment of all potential voters (the part). Hence, we may possibly conclude
from this exercise that candidate A is the choice of 64% of all eligible voters. But
this conclusion is not couched in absolute certainty. Some margin of error emerges
since only a sample of individuals was taken. Hence we would accompany the
64% figure with a statement reading something like: the degree of precision of
our estimate is ±3% with a 95% reliability level. The notions of precision and
reliability will play a key role in the development of our inferential techniques.

In sum, if we only want to summarize or present data or just catalog facts,
then we will use descriptive statistics. But if we want to make inferences based on
sample data or make decisions in the face of uncertainty, then we must rely on
inductive statistical methods.

1.3 Levels of Discourse: Sample vs. Population

Let us further elaborate on the concepts of the whole and the part. To set the
stage for this discussion let us define an experiment as any process of observation.
It may involve something like quality control inspection of electric motors or
simply monitoring the flow of various types of motor vehicles along a particular
street on a given day and over a given time interval. Next, a variable (denoted as
X) can be thought of as any observable or measurable magnitude. Here X may
depict an individual’s set of exam scores, height (in inches) of sixth graders in a
particular school system, weight (in pounds) of dressed turkeys, elapsed time (in
minutes) taken to perform a certain task, and so on.

In this regard, let us define the sample (the part) as those things or events
that both happened and were observed. It is drawn from the population (the
whole), which involves things or events that happened but were not necessarily
observed. Equivalently, we may think of the population as representing all con-
ceivable observations on some variable X, whereas a sample is simply a subset of
the population, that is, a given collection of observations taken from the popu-
lation (see Figure 1.1). By convention, for a finite population, let us depict the
population size by N and the sample size by n, where obviously n ≤ N . More-
over, if X depicts a population variable, then the items within the population
can be listed as X : X1, X2, X3, . . . , XN or as X : Xi, i = 1, . . . , N . And if X repre-
sents a sample variable, then the collection of sample items can be written as
X : X1, X2, . . . , Xn or X : Xi, i = 1, . . . , n.

A sample is of finite size, but a population can be finite or infinite. That is, the
collection of all individuals who have read part or all of this book can be thought
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population

sample

Figure 1.1 A sample as a subset of a population.

of as constituting a finite population, whereas an infinite population can easily be
generated by sampling with replacement. For instance, if a population consists of
N items and we sample without replacement, then the item obtained on any draw
is set aside before the next item is chosen. But if we sample with replacement (on
each draw we select an item from the population and then replace it before the
next one is chosen), then clearly we can effectively sample in this fashion forever;
that is, we can operate as if the population is infinite even though in reality it is
not. So under sampling with replacement, a member of the population can appear
more than once in the sample; in sampling without replacement, we disregard any
item that has already been chosen for inclusion in the sample.

A few additional points merit our attention. First, it is important to mention
that oftentimes inductive statistics is described as decision making under uncer-
tainty. For our immediate purposes, note that an important source of uncertainty
is the concept of randomness. That is, if the outcome of an experiment is not
predictable, then it is said to occur in a random fashion. Next, we stated earlier
that in sampling, a representative group of items is desired. In this regard, we may
deem a sample as representative if it is typical, that is, it adequately reflects the
attributes of the population. Moreover, we will frequently engage in the pro-
cess of random sampling. Specifically, a sample is random if each and every
item in the population has an equal (and known) chance of being included in
the sample.

It is important to remember that the process of random sampling does not
guarantee that a representative sample will be obtained. Randomization is likely
but by no means certain to generate a representative sample. This is because
randomization gives the same chance of selection to every sample of a given
size—representative ones as well as nonrepresentative ones.

We end this section by noting that the term parameter (denoted θ) is used to
represent any descriptive measure of a population, whereas a statistic (denoted θ̂)
is any descriptive measure of a sample. Here θ̂ serves as an estimator of (the
unknown) θ ; that is, θ̂ is some function of the sample values used to discern the
level of θ . The θ̂ actually obtained by the estimation process will be called an
estimate of θ . If θ̂ represents a single numerical value, then it is termed a point
estimator of θ . An interval estimator of θ enables us to state just how confident
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we are, in terms of probability, that θ lies within some range of values. We shall
return to these notions in Chapters 10 and 11.

1.4 Levels of Discourse: Target vs. Sampled Population

The target population is defined as the population to be studied; it is the population
about which information is desired. This is in contrast to the sampled population—
the population from which the sample is actually obtained. This latter population
concept is alternatively called the sampling frame, or just frame for short. Based
upon these two population notions, consequently we can describe a sample (or
study for that matter) as being valid if the target and sampled populations have
similar characteristics. (Note that some items in the target population may not be
a member of the frame.)

Continuing in this vein, an elementary sampling unit is an item in the frame and
an observation is a piece of information possessed by an elementary sampling unit.
A sample, then, is that portion of the sampled population actually studied. (Note
also that a sample may be representative—it adequately reflects the attributes of
the frame—but not valid.) So under random sampling, each item in the frame has
the same chance of being chosen.

For example, suppose we want to develop a profile of the membership of
the local country club. This is the target population. The sampled population
or frame is the club’s membership list. If the list is up to date, then the target
and sampled populations coincide. However, if the list has not been updated
recently, then the target and sampled populations may be widely disparate and
thus the question of validity comes to the fore. Elementary sampling units are the
individual members, whereas an observation consists of a particular data point
or value of some characteristic of interest. In what follows we shall depict each
characteristic by a separate variable. Hence an observation is the value of the
variable representing a characteristic of an elementary sampling unit.

For instance, assume that a country club has 3000 (= N) members and that we
want a sample of size 100 (= n). If the membership list is arranged alphabetically
(which we can assume to be a random arrangement), then we can easily engage
in a sampling process called systematic random sampling, with a sampling cycle
of 30 = 3000/100 (= N/n). That is, we start at the beginning of the list, select one
member at random from the first 30 members listed, and then pick from that item
on every thirtieth number for inclusion in the sample.

Which characteristic of a member (our elementary sampling unit) might we
be interested in? We can possibly list them as sex, number of years as a member,
number of years service as a board member, type of membership (e.g., found-
ing, charter, regular), annual gift amount, major activity preferred (e.g., golf,
tennis, swimming, bridge), and so on. As indicated earlier, each characteristic is
represented by a variable and the value of the variable is an observation of the
characteristic, as listed in Table 1.1.
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Table 1.1

Country Club Membership Characteristics

Characteristic Variable Observation Values

Sex X1 Male (1); Female (2)
Years X2 Number of years
Board X3 Number of years
Type X4 Founding (3); Charter (2); Regular (1)
Gift X5 $
Activity X6 Golf (1); Tennis (2); Swimming (3); Bridge (4)

1.5 Measurement Scales

What types or varieties of data have we defined in the preceding example on
country club membership characteristics? We may generally refer to data as a
collection of facts, values, observations, or measurements. So if our data consists
of observations that can be measured (i.e., classified, ordered, or quantified),
then at what level does the measurement take place? Here we are interested in
the forms in which data is found or the scales on which data is measured. These
scales, stated in terms of increasing information content, are classified as nominal,
ordinal, interval, and ratio.

Let us first consider the nominal scale. Here nominal should be associated with
the word name since this scale identifies categories. Observations on a nominal
scale possess neither numerical values nor order. However, observations on this
type of scale can be given numerical codes such as “0 or 1” or “1, 2, 3, . . . .” Vari-
ables X1 and X6 in Table 1.1 are nominal in nature and are termed qualitative or
categorical variables. Note that when dealing with a nominal scale, the categories
defined must be mutually exclusive (each item falls into one and only one cate-
gory) and collectively exhaustive (the list of categories is complete in that each
item can be classified). Since X1 has only two categories, it is called a binary or
dichotomous variable. Note also that a number code has been used to classify the
members as either 1 (male) or 2 (female). These numbers serve only as identifiers;
the magnitude of the differences between these numerical values is meaningless.
The only valid operations for variables represented by a nominal scale are the
determination of “=” or “ �=.”

The ordinal scale (think of the word order) includes all properties of the
nominal scale with the additional property that the observations can be ranked
from the smallest to the largest or from the least important to the most impor-
tant. (Note that nominal measurements cannot be ordered—all items are treated
equally.) If the country club mentioned earlier is a hierarchical organization
wherein founding members are more important or ranked higher (in terms of
privileges) than charter members, which are in turn ranked above regular mem-
bers, then X4 is an ordinal (and thus qualitative) variable. (Although chartered is
in some sense better than regular, the ranking does not indicate how much better.)
That is, since the numerical values assigned to X4 are 3, 2, and 1, these numbers
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serve only to indicate a pecking order of levels of the variable—the differences
between these numerical values are meaningless (we could just as effectively use
100, 57, and 10). In this regard, the only valid operations for ordinally scaled
variables are “=, �=, <, >.”

Both the nominal and ordinal scales are termed nonmetric scales since
differences among their values are of no consequence.

Next comes interval data. This scale includes all the properties of the ordinal
scale with the additional property that distance between observations is meaning-
ful. Here the numbers assigned to the observations indicate order and possess the
property that the difference between any two consecutive values is the same as the
difference between any other two consecutive values (the difference 10 − 9 = 1
has the same meaning as 3 − 2 = 1). It is important to note that while an inter-
val scale has a zero point, its location may be arbitrary. Hence ratios of interval
scale values have no meaning. For example, at the country club golf course hole
number five is a par three hole. Member A completes the hole in four strokes
while member B does so in five strokes. The club pro takes only two strokes. How
do we describe the skill level of member A relative to member B? The answer
depends on our point of reference or zero point. If the zero point is taken to be
the performance of the club pro, then A is +2 above and B is +3 above. Can we
then say that member A is one and one-half times as good as member B? What
if the zero point is instead taken to be par itself? Now player A is one over par
while B is two over par. Do we now conclude that member A is twice as good
a golfer as B?

Other examples abound. For instance, since 0◦C (zero degrees centigrade)
does not imply the absence of heat (it is simply the temperature at which water
freezes), 40◦C is not twice as cold as 20◦C. Likewise, a score of zero on a stan-
dardized national test does not imply lack of knowledge. In this regard, since the
zero point is again arbitrary, a student with a score of 700 is not twice as smart as
one with a score of 350.

The operations for handling variables measured on an interval scale are
“=, �=, >, <, +, −.”

Our final level of measurement is the ratio scale. It includes all the proper-
ties of the interval scale with the added property that ratios of observations are
meaningful. This is because absolute zero is uniquely defined. Clearly variable X5

is a ratio variable in that $0 measures the absence of any gift and a gift of $2000
is twice as large as a gift of $1000 (the ratio is 2/1 = 2). Valid operations for vari-
ables measured on a ratio scale are “=, �=, >, <, +, −, ×, ÷.” Both the interval
and the ratio scales are said to be metric scales (since differences between values
measured on these scales are meaningful), and variables measured on these scales
are said to be quantitative variables.

It should be evident from the preceding discussion that any variable measured
on one scale automatically satisfies all the properties of a less informative scale.

In addition to variables being qualitative or quantitative in nature, we may
also identify variables as being discrete or continuous. A discrete variable takes
on only a countable number of values (e.g., sex, makes of automobiles, residential
housing units in a particular area of a city, etc.), whereas a continuous variable
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can take on any value over some range—that is, fractional values are admitted
(e.g., time, liquid measures, interest rates, etc. are all continuous variables).

1.6 Sampling and Sampling Errors

If we undertake a complete census of some population, then we can readily
describe, in varying degrees of detail, many of its salient features or charac-
teristics. However, if we only sample from the population, then it should be
intuitively clear that the different possible samples obtained will exhibit differ-
ent sets of sample values (although some duplication in the sample values can
occur). Hence any conclusion reached about the population from any one sam-
ple may differ slightly from that reached on the basis of examining some other
sample. Again, this is because different samples typically possess different sam-
ple values. Given that none of the samples will look exactly like the population
at large, we will most assuredly find a difference between some true population
parameter (θ) and the statistic (θ̂) used to estimate it. Hence the degree of sam-
pling error is θ̂ − θ . It should be obvious the sampling error is inescapable—it
reflects the inherent natural variability among a parameter and a statistic used
to estimate it. For some samples the amount of sampling error will be large; for
others it may be quite small. (If the true θ is known, then the difference between
θ̂ and θ reflects the degree of accuracy of our estimate of θ . Since θ is usually
unknown, the best we can do is talk about a long-term degree of precision of
our estimate of θ ; i.e., we can determine an error bound on θ̂ as an estimate
of θ .)

This is in contrast to the notion of nonsampling error, which is due essentially
to unsound sampling or experimental techniques, and which can be controlled.
Here human or mechanical factors distort the observed values, thus contributing
to the difference between θ̂ and θ . Nonsampling error emerges when you have a
biased sample. For instance, some items in the population may be more likely to
be included in the sample than others or errors of observation or measurement
result in a systematic accumulation of inaccuracies in a single direction. When this
occurs θ̂ may be larger on the average (a positive bias) or smaller on the average
(a negative bias) than θ . If on the average θ̂ equals θ , then θ̂ is said to be unbiased;
that is, the long-run average of the sampling error is zero.

1.7 Exercises

1-1. For the following variables, determine whether the data are best char-
acterized as categorical (nominal or ordinal) or numerical (continuous or
discrete).

(a) X: red, white, blue

(b) X: poor, fair, good, excellent

(c) X: below average, average, above average
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(d) X: African–American, Caucasian, Hispanic, Native American, Other

(e) X: birth weight (in ounces)

(f) X: private, private first class, . . ., four star general

(g) X: monthly motor vehicle accidents in Boston, MA

(h) X: number of visits to the dentist per year

1-2. For the following variables, determine whether the data are measured on an
interval or ratio scale.

(a) X: attendance at last night’s concert

(b) X: cost of parking your car at the local civic center

(c) X: capacity of your vehicle’s gas tank

(d) X: melting point (in degrees Celsius) of a lead ingot

(e) X: national unemployment rate

(f) X: IQ scores of your age cohort

(g) X: LSAT scores for college seniors

(h) X: interest rate on new car loans at the local credit union
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Elementary Descriptive
Statistical Techniques

2.1 Summarizing Sets of Data Measured on a Ratio
or Interval Scale

In what follows we shall consider a variety of descriptive statistical techniques that
may be employed to conveniently summarize, for the most part, a set of ratio-
or interval-scale data. Unless otherwise stated, this data set will be assumed to
represent the entire population. Two basic approaches will be advanced. First,
we may summarize the data in a tabular (and, eventually, graphical) fashion.
Second, rather than work with the entire mass of data in, say, tabular form, we
may derive from it a set of concise quantitative summary characteristics (either
computed or positional values arrived at largely from a set of formulas), which
themselves describe the salient features of the data set. Once these summary
measures have been obtained, they may be used to assess the current status of a
particular population, measure differences between two or more populations, or
consider changes in a given population over time. These approaches are contrasted
in Figure 2.1.

With respect to our second approach regarding various sets of quantitative/
positional summary figures, we note briefly that:

(a) Measures of Central Location, broadly construed, are essentially averages
that describe the location of the center of the data set.

(b) Measures of Dispersion (typically taken about some point of central location)
describe the spread or scatter of the observations along the horizontal axis.

(c) Measures of Skewness indicate the degree of departure of the data distribution
from symmetry and thus serve as measures of asymmetry.

(d) Measures of Kurtosis indicate how flat or rounded the peak of the data
distribution happens to be.

9



1
0

C
hap

ter
2

Elem
entary

D
escrip

tive
StatisticalTechniq

ues

Descriptive Techniques for Summarizing Sets of Ratio-, Interval-Scale Data

I.  Tabular Methods (grouped
or  ungrouped data)
1. Absolute Frequency
 Distribution 
2. Relative Frequency
 Distribution  
3. Percent Distribution 
4. Cumulative Frequency
 Distribution
5. Joint, Marginal, and
 Conditional  Distributions
 (for bivariate data)

II.  Quantitative Summary Characteristics (grouped or ungrouped data)

Measures of Central
Location 

Measures of
Association (for
bivariate data)

Detection/Treatment
of Outliers

Tests for Normality
(Chapter 14)

Tests for
Randomness
(Chapter 13)

Measures of
Dispersion

Measures of
Kurtosis

Measures of
Skewness 

1. Mean
 a. unweighted
 b. weighted
2. Median
3. Mode

1. Range
2. Standard
 Deviation
3. Quantiles
4. Coefficient of
 Variation

1. Pearson
 Correlation
 Coefficient
2. Spearman Rank
 Correlation
 Coefficient
 (for ordinal data)

1. Z-Scores
2. Trimming
3. Winsorizing

1. Chi-square
2. Kolmogorov-
 Smirnov
3. Lilliefors
4. Shapiro-Wilk

1. Runs Test
2. Mean-Square
 Successive
 Difference

1. Pearsonian
 Coefficient
2. Standard
 Skewness
3. Bowley's
 Measure

1. Standard
 Kurtosis
2. Coefficient
 of Kurtosis

Figure 2.1 Two approaches for summarizing data.
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(e) Tests of Randomness determine if the data set (typically a sample) can be
thought of as generated in a random or nonsystematic fashion.

(f) Tests of Normality are used to determine if the data set closely approximates
a bell-shaped symmetrical distribution.

(g) The Determination of Outliers or abnormally large or small extreme values
is important if we do not want the values of some of our other descriptive
measures to be distorted.

(h) Measures of Association are used to determine the strength of the (linear)
relationship between two variables or between two sets of ranked values.

Except for tests of normality and tests of randomness, all of the items indicated
in Figure 2.1 will be examined in this chapter. Moreover, most of these items
will be subject to further study when we make the transition from descriptive to
inferential statistics.

2.2 Tabular Methods

In this section we seek to determine at a glance a global picture of the entire
population data set so as to detect some underlying pattern of behavior; that is,
to make a quick and rough assessment of the characteristics of the population.
So, given an amorphous collection of data, how may we arrange it in a systematic
and easily readable form?

Let us assume that we have a set of N observations on a population variable
X : X1, X2, . . . , XN . For instance, such a data set appears in Table 2.1. We first con-
struct the absolute frequency distribution, which shows the absolute frequencies
with which the various values of a variable X occur in a set of data.

Here absolute frequency represents the number of times a particular value
of X is recorded. This distribution is illustrated in Table 2.2. In the left-hand
column we have the different values of X listed (there is a total of 50 observations

Table 2.1

X: Time Required to Perform a Given Production
Task (N = 50 Observations on Worker A) (Minutes)

10 9 13 9 13
8 13 12 15 14

13 19 17 18 17
13 14 13 16 13
10 12 15 14 12
15 13 11 12 11
13 12 11 11 16
16 17 14 13 6
20 12 13 7 12
15 16 19 18 14
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Table 2.2

Absolute Frequency Distribution of
Performance Time for Worker A (Minutes)

X Absolute Frequency

6 1
7 1
8 1
9 2

10 2
11 4
12 7
13 11
14 5
15 4
16 4
17 3
18 2
19 2
20 1

50

on X but only 15 different values presented) and in the right-hand column we have
their absolute frequencies recorded. Note that the sum of the absolute frequencies
must equal the total number of observations N = 50. The graphical description
of the absolute frequency distribution is the absolute frequency function (see
Figure 2.2).

Next, we may transform an absolute frequency distribution into a relative fre-
quency distribution by expressing the absolute frequencies as a fraction of the total
number of observations N (as Table 2.3 reveals, relative frequency = (absolute
frequency)/N). For instance, X = 14 occurs 1

10 of the time. Note that the sum
of the relative frequencies must be 1. The graphical description of the relative
frequency distribution is the relative frequency function (see Figure 2.3).

Furthermore, the preceding relative frequency distribution may be trans-
formed into a percent distribution by multiplying the relative frequencies in
Table 2.3 by 100 so as to convert them to percentages (see Table 2.4). Here
X = 11 occurs 8% of the time. Clearly the percent column must sum to 100%.
The accompanying percent distribution function appears as Figure 2.4.

Finally, you can construct a less than or equal to cumulative frequency distri-
bution. To do so, cumulate the absolute frequencies as X increases from its lowest
to its highest value (see Table 2.5). That is, one observation is less than or equal
to 6; two observations are less than or equal to 7; three observations are less than
or equal to 8; and so on.

The purpose of this distribution is to answer questions such as: out of the
50 observations presented, how many times did worker A take no more than
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Absolute Frequency

12

10

8

6

4

2

X
2 4 6 8 10 12 14 16 18 20

Figure 2.2 Absolute frequency function for performance time for worker A (minutes).

Table 2.3

Relative Frequency Distribution of
Performance Time for Worker A (Minutes)

X Relative Frequency

6 1/50
7 1/50
8 1/50
9 2/50

10 2/50
11 4/50
12 7/50
13 11/50
14 5/50
15 4/50
16 4/50
17 3/50
18 2/50
19 2/50
20 1/50

1

16 minutes to perform the given task? (Answer: 42 times) The graphical descrip-
tion of the less than or equal to cumulative distribution appears in Figure 2.5. Note
that since X is made up of a set of discrete values, the graph is a step function (e.g.,
at X = 6, the less than or equal to cumulative frequency is 1; and it remains at



14 Chapter 2 Elementary Descriptive Statistical Techniques

Relative Frequency

12/50

10/50

8/50

6/50

4/50

2/50

X 
2 4 6 8 10 12 14 16 18 20

Figure 2.3 Relative frequency function for performance time for worker A (minutes).

Table 2.4

Percent Distribution of Performance
Time for Worker A (Minutes)

X Percent of N

6 2
7 2
8 2
9 4

10 4
11 8
12 14
13 22
14 10
15 8
16 8
17 6
18 4
19 4
20 2

100
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Percent of N

20

18

16

12

8

4

2 4 6 8 10 12 14 16 18 20

X 

Figure 2.4 Percent distribution function for performance time for worker A (minutes).

Table 2.5

Cumulative Frequency Distributions of
Performance Time for Worker A (Minutes)

X Absolute Less Than or Equal to Greater Than
Frequency Cumulative Frequency Cumulative Frequency

6 1 1 50 − 1 = 49
7 1 2 50 − 2 = 48
8 1 3 50 − 3 = 47
9 2 5 50 − 5 = 45

10 2 7 50 − 7 = 43
11 4 11 50 − 11 = 39
12 7 18 50 − 18 = 32
13 11 29 50 − 29 = 21
14 5 34 50 − 34 = 16
15 4 38 50 − 38 = 12
16 4 42 50 − 42 = 8
17 3 45 50 − 45 = 5
18 2 47 50 − 47 = 3
19 2 49 50 − 49 = 1
20 1 50 50 − 50 = 0

50
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Cumulative Frequency

55 > ≤
50
45
40
35
30
25
20
15
10
5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 2.5 Cumulative frequency functions for performance time for worker A (minutes).

1 until X increases to 7, at which point the cumulative frequency takes an abrupt
jump to 2).

2.3 Quantitative Summary Characteristics

Our goal is now to describe the characteristics of a set of data by an assortment
of numerical measures. These measures then serve as an alternative to simply
obtaining a global picture of the population data set in the form of, say, an absolute
frequency distribution. So again, given an amorphous collection of data, what
sort of quantitative summary measures best describe the properties of the set
of observations? As we shall now see, these characteristics of interest may be
classified as measures of central location, measures of dispersion, measures of
skewness, measures of kurtosis, and detectors of outliers.

2.3.1 Measures of Central Location

These descriptive measures (which are either of a computed or positional nature)
serve to locate the center of X’s absolute frequency distribution on the horizontal
axis.

Arithmetic Mean. Given a variable X : X1, . . . , XN , the arithmetic mean of X
(or of X’s absolute frequency distribution) is

µ = 1
N

N∑

i=1

Xi. (2.1)
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For instance, if X assumes the values 1, 4, 7, 8, 10, the arithmetic mean of X
is, from (2.1), 30/5 = 6. Geometrically, the mean of X is its center of gravity,
that is, X’s frequency distribution will balance at the mean (see Figures 2.6a, b).
In addition to this physical interpretation of the mean, we may view the word
balance in a purely statistical sense. That is to say, if we define the ith devia-
tion from the mean as Xi − µ, then clearly the sum of the positive and negative
deviations from the mean must be zero (see Table 2.6).

As far as the properties of the mean are concerned, the mean always exists,
is unique, is relatively reliable (i.e., it does not vary considerably under repeated
sampling from the same population), and is affected by extreme values.

Weighted Mean. In (2.1), each observation Xi had the same relative impor-
tance. But what if some observations are in some sense more important
than others? Given that the observed Xi values have a different relative

Absolute Frequency

X 

1 4 7 8 10
(m = 6)

(b)

X

(m)

(a)

Figure 2.6 X ’s frequency distribution balances at the mean.

Table 2.6

Xi Xi − µ

1 −5
4 −2
7 1
8 2

10 4
0
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importance, we must form their average by using a weighted mean

µw =

N∑
i=1

wiXi

N∑
i=1

wi

, (2.2)

where wi represents the weight attached to Xi, i = 1, . . . , N .

Example 2.3.1.1 Let us assume that an individual earns the following set of
scores on three separate exams: X1 = 90, X2 = 70, and X3 = 65. Clearly
the average score is µ = 225/3 = 75. However, what if the exams were timed: the
first took 15 minutes to complete; the second took one hour to complete; and the
third took an hour and a half to complete. Since it is intuitively clear that those
tests that took one hour and one and one-half hours to finish should be relatively
more important in calculating the average score than the exam that took only
15 minutes to finish, we may assign relative importance according to time length.
If we set w1 = 1, then, since the second exam took four times longer to finish
than the first one, w2 = 4; and since the third exam took six times longer to finish
than the first one, w3 = 6. Then from (2.2) and Table 2.7, µw = 760/11 = 69.1.

Here µw < µ since the exams with the lower scores had relatively more
weight than the exam with the higher score. �

Arithmetic Mean of a Frequency Distribution. When a set of data is arranged
in the form of an absolute frequency distribution, we may compute the mean
of the same by relying upon the concept of a weighted mean, where the weights
of the different values of X are their absolute frequencies fj; that is,

µ =

k∑
j=1

fjXj

k∑
j=1

fj

= 1
N

k∑

j=1

fjXj, (2.3)

where k represents the number of different (net of any duplication) values of X.

Table 2.7

Xi wi Xiwi

90 1 90
70 4 280
65 6 390

11 760
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Table 2.8

Xj fj fjXj

10 3 30
15 2 30
17 1 17
20 3 60

9 137

Example 2.3.1.2 Given X: 10, 15, 20, 10, 17, 20, 10, 15, 10, Table 2.8 and (2.3)
provide us with the value µ = 137/9 = 15.22. (Note that although N = 9, there
are only k = 4 different values of X.) �

Median. The median of a variable X (or of X’s absolute frequency distribu-
tion) is the value that divides the observations on X (or the total area under the
absolute frequency distribution of X) into two equal parts, given that the said
observations are arranged in order of increasing magnitude. In this regard, the
median is a positional value and not a computed value for a set of data. Looking to
Figure 2.7, panel (a) shows the absolute frequency distribution of X; immediately
below in panel (b) we have X’s less than or equal to cumulative frequency distribu-
tion. If we find the 50% point (C) on the less than or equal to cumulative frequency
distribution in panel (b) and project it downward to the X-axis, the resulting X
value represents the median—half of the observations on X are above the median
and half of them are below the median. In addition, as mentioned earlier, the
median also divides the total area under X’s absolute frequency distribution into
two equal parts (area A = area B).

To actually determine the median from a set of observations on X, let us mirror
the salient features of this graphical location of the median. The steps involved in
arriving at the median are as follows:

(1) Arrange the observations on X in an increasing sequence.

(2) (a) For an odd number of observations, there is always a middle term
whose value is the median. In this instance the median corresponds to
the value of X that occupies the N+1

2
nd

position; that is, the median =
X((N+1)/2).

(b) For an even number of observations, there is never a specific middle
term. In this regard, interpolate the median as the average of the two
middle terms; that is, it is midway between the N

2
nd

and the ( N
2 + 1)nd

terms or the

median = XN/2 + X(N/2)+1

2
.



20 Chapter 2 Elementary Descriptive Statistical Techniques

Absolute Frequency

(a)

(b)

≤

Cumulative Frequency

Median

Q1 Q2

E

C

D

Q3

N = 100%

3N /4 = 75%

N /2 = 50%

N /4 = 25%

A B

X

X

Figure 2.7 Half of the observations on X lie above the median and half lie below the median.

Example 2.3.1.3 Find the median for each of the following sets of obser-
vations:

(a) X: 8, 7, 11, 7, 2, 4, 3, 10, 8

(b) X: 4, 9, 1, 6, 7, 2

From (a), let us arrange the observations on X in an increasing sequence or 2, 3,
4, 7, 7, 8, 8, 10, 11. Since N = 9, the median is the N+1

2 = 5th term or median = 7.
And from (b), when the N = 6 observations are rearranged to yield 1, 2, 4, 6,
7, 9, we know that the median lies between the N

2 = 3rd and N
2 + 1 = 4th terms or

median = 4+6
2 = 5. �
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Absolute Frequency

X 
Mode

Figure 2.8 The mode occurs at the peak of the absolute frequency distribution.

As far as the properties of the median are concerned, the median always exists,
is unique, may or may not equal the mean, and is not affected by extreme values.

Mode. The mode of a variable X (or of X’s absolute frequency distribution) is
the value that occurs with the highest absolute frequency; that is, it is the most
common or most probable value in a set of data. As Figure 2.8 reveals, the mode
occurs at the peak of the absolute frequency distribution.

Example 2.3.1.4 Given X: 1, 2, 4, 4, 5, 6, the mode is 4 (it has the highest
frequency of occurrence, namely 2). Given X: 3, 3, 4, 5, 5, 6, there are two modes,
namely 3 and 5. And for X: 1, 2, 3, 6, 9, there is no mode (since each value of X
occurs with an absolute frequency of 1). �

Turning to the properties of the mode, the mode may not exist, may not be
unique, may or may not equal the mean and median, is not affected by extreme
values, and always corresponds to one of the actual observations (unlike the mean
and median).

2.3.2 Measures of Dispersion

These descriptive measures serve to characterize the extent of the scatter or spread
of the X values along the horizontal axis. Here we typically determine the disper-
sion of the data around some measure of central location, where the latter usually
is taken to be the arithmetic mean.
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Range. The range of a variable X (or of X’s absolute frequency distribution) is
the largest value of X less its smallest value or

range = max Xi − min Xi. (2.4)

Clearly the range is a positional measure of the total spread of the data. For
instance, given X: 3, 10, 18, 20, 30, the range = 30 − 3 = 27.

Turning to the properties of the range, note that the range is obviously sensitive
to the extreme values in the data set. It indicates nothing about the behavior of
the X values within the bounds max Xi and min Xi; for example, are the X values
evenly distributed between max Xi and min Xi or are they all concentrated at one
end of the data set? Since this latter property of the range is a definite drawback
in most statistical applications, we shall now turn to a measure of dispersion that
reflects variability about the mean.

Standard Deviation. The standard deviation of the variable X (or of X’s abso-
lute frequency distribution) is the positive square root of the variance of X, where
the latter is defined as the average of the squared deviations from the mean.
That is, if the variance of X is denoted as

σ 2 = 1
N

N∑

i=1

(Xi − µ)2, (2.5)

then the standard deviation is

σ =
√√√√ 1

N

N∑

i=1

(Xi − µ)2 =
√√√√ 1

N

N∑

i=1

X2
i − µ2. (2.6)

(Note that σ 2 is measured in units of X squared and σ is expressed in the same
units as X.)

Example 2.3.2.1 The standard deviation of the data set presented in Table 2.9

is, from (2.6), σ =
√

230
5 − 36 = √

10 = 3.16; that is, on the average, the individual
values of X are approximately 3.16 units away from the mean, lying either above
or below the mean. �

As far as the properties of the standard deviation are concerned, the standard
deviation:

(1) Is a measure of average spread or dispersion about the mean.

(2) Serves as an index of distance from the mean; that is, the distance between
any observation Xi and µ may be expressed in terms of standard deviation
units. For example, if for some variable X we find that µ = 30 and σ = 10,
then if X1 = 25 and X2 = 50 are two individual observations on X, it is evident



2.3 Quantitative Summary Characteristics 23

Table 2.9

Xi X2
i

1 1
4 16
7 49
8 64

10 100
30 230

that X1 is 5 units or 1
2 a standard deviation (denoted σ

2 ) below µ and X2 lies
20 units or 2 standard deviations (denoted 2σ ) above µ.

(3) (Chebyshev’s Theorem) for any variable X and any constant k > 1, at least
1− 1

k2 of the N observations on X lie within k standard deviations of the mean
(see Figure 2.9). For instance, if µ = 10, σ = 12.5, and k = 2, at least 3

4 of all
the observations on X lie within the interval µ ± 2σ or within 10 ± 5. Hence
the interval is (5, 15). (Note: as a rule of thumb, about two-thirds of all X
values lie within one standard deviation of the mean.) Let us now get a bit
more specific.

(4) (Empirical Rule) if the variable X follows a normal distribution (i.e., a contin-
uous bell-shaped distribution that is symmetrical about its mean and whose
tails are asymptotic to the horizontal axis),1 the interval:

(a) µ ± σ contains 68.26% of the observations on X

(b) µ ± 2σ contains 95.46% of the observations on X

(c) µ ± 3σ contains 99.73% of the observations on X (see Figure 2.10)

Conversely:

(a′) 50% of the observations on X fall between µ ± 0.674σ

(b′) 95% of the observations on X fall between µ ± 1.960σ

(c′) 99% of the observations on X fall between µ ± 2.576σ

In view of 4c, it is evident that for a normal distribution, we may approxi-
mate σ as range

6 .

Standard Deviation of a Frequency Distribution. When a set of data is
arranged in the form of an absolute frequency distribution, we may compute

1 A distribution is symmetrical if, when creased at its mean and folded in half, the right-hand side fits
exactly over the left-hand side and conversely; i.e., the right-hand side is the mirror image of the left-
hand side. The tails of a distribution are asymptotic to the horizontal axis if, as they extend away from
the center of the distribution to −∞ and +∞, they gradually approach, but never touch, the horizontal
axis.
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X 
m − ks m m + ks

This interval contains at least
11−
k2 of all N observations on X.

Figure 2.9 Chebyshev’s theorem.

2s

m − s m + smm - 2s m + 2sm - 3s m + 3s

4s

6s

Absolute Frequency

X 

Figure 2.10 The empirical rule for a normal distribution.

the standard deviation of the same by weighting the squares of the deviations of
the different values of X from the mean by their absolute frequencies; that is,

σ =
√√√√

k∑

j=1

(Xj − µ)2fj/N =

√√√√√√√√√

k∑
j=1

fjX2
j

N
−

⎛

⎜⎜⎜⎝

k∑
j=1

fjXj

N

⎞

⎟⎟⎟⎠

2

, (2.7)

where k represents the number of different (net of duplication) values of X.
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Table 2.10

Xj fj X2
j fjXj fjX2

j

1 1 1 1 1
4 2 16 8 32
6 5 36 30 180
9 3 81 27 243

10 1 100 10 100
12 556

Example 2.3.2.2 Given X: 1, 6, 6, 4, 6, 4, 9, 9, 6, 9, 10, 6, Table 2.10 and (2.7),

with k = 5, provides us with the value σ =
√

556
12 − ( 76

12

)2 = 2.65. �

Quantiles. The quantiles of a variable X (or of X’s absolute frequency distribu-
tion) are positional measures that divide the observations on X (or the total area
under the absolute frequency distribution of X) into a number of equal portions,
given that the said observations have been ordered in an increasing sequence.
Such measures are:

● The median—splits an absolute frequency distribution into two equal parts

● Quartiles—split an absolute frequency distribution into four equal parts

● Deciles—split an absolute frequency distribution into 10 equal parts

● Percentiles—split an absolute frequency distribution into 100 equal parts

The three quartiles Q1, Q2, and Q3 divide the absolute frequency distribution
into four equal parts. In particular, the first quartile Q1 corresponds to the point
below which 25% of the observations on X lie; the second quartile Q2 is the
median, the point below which 50% of the observations on X are found; and the
third quartile Q3 is the point below which 75% of the values of X lie.

In this regard, two additional (positional) measures of dispersion may be
introduced. First, if we are interested in the location of the middle 50% of
the observations on X, then we may determine the interquartile range (I .Q.) =
Q3 −Q1. (Here the interquartile range is a limited type of range in that it excludes
extreme values from its computation.) Then the quartile deviation Q.D. = Q3−Q1

2
measures half the distance between the first and third quartiles. For a normal dis-
tribution, since the quartile deviation considers half the range of the middle 50%
of the values of X, it serves as a measure of dispersion about the median = Q1+Q3

2 .
Given that the quartile deviation describes dispersion in the central half of the
distribution of X values, it clearly has the advantage of being able to be used with
an absolute frequency distribution possessing outliers. And since it is not affected
by any observation on X lying below Q1 and above Q3 (i.e., lying in the tails of
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the absolute frequency distribution), it suffers from a defect opposite to that of
the range, where the latter is determined only by values below Q1 and above Q3.

Next, nine deciles D1, . . . , D9 divided the absolute frequency distribution into
10 equal parts. Thus the first decile D1 corresponds to the point below which 10%
of the observations on X lie; D2 is the point below which 20% of the observations
on X are found, and so on. In general, the decile Dj, j = 1, . . . , 9, corresponds to
the data point below which 10j% of the observations on X lie and above which
(100 − 10j%) of the data points are found.

Finally, 99 percentiles P1, . . . , P99 divide the absolute frequency distribution
into 100 equal parts. Here the first percentile P1 corresponds to the point below
which 1% of the observations on X lie, the second percentile P2 is the value below
which 2% of the observations on X lie, and so on. In general, the percentile
Pj, j = 1, . . . , 99, corresponds to the point below which j% of the observations
on X are found and above which (100 − j)% of the data points lie.

If the values of X are arranged in an increasing sequence, then by an appro-
priate choice of j, we may easily specify a given percentile, quartile, or decile.
That is:

(a) The positional locations of the various quartiles are: Q1 at N+1
4 , Q2 at N+1

2 ,
and Q3 at 3(N+1)

4

(b) The positional locations of the deciles are: Dj at j(N+1)

10 , j = 1, . . . , 9

(c) The positional locations of the percentiles are: Pj at j(N+1)

100 , j = 1, . . . , 99

Example 2.3.2.3 Let us find P20 given X : 3, 8, 8, 6, 7, 9, 5, 10, 11, 20, 19,
15, 11, 16. Upon rearranging the N = 14 observations in an increasing sequence
we have

3, 5, 6, 7, 8, 8, 9, 10, 11, 11, 15, 16, 19, 20.

Since 20% of the observations on X lie at or below P20, we may determine
j(N+1)

100 = 20(15)
100 = 3; that is, the twentieth percentile of X is found at the third obser-

vation in the previous increasing sequence or P20 = 6. Similarly, Q3 is located at
a position that is one fourth the distance between the eleventh and twelfth obser-
vation in the increasing sequence (i.e., 3(N+1)

4 = 11.25) or Q3 = 15.25, and D6 is

located at the ninth observation in the same (since 6(N+1)
10 = 9) or D6 = 11. �

2.3.3 Standardized Variables

Let the variable X : X1, . . . , XN have a mean µ and a standard deviation σ �= 0. If
we form a new variable Z = X−µ

σ
with values

Z1 = X1 − µ

σ
, . . . , ZN = XN − µ

σ
, (2.8)
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Figure 2.11 Distance from the mean expressed in standard deviation units.

then Z has a mean of zero and a standard deviation of one. The set of data depicted
in (2.8) is termed a unit distribution or set of Z-scores.

Example 2.3.3.1 Given X : 2, 3, 4, 11, 15, it follows that µ = 7, σ = √
26 = 5.1.

To derive (2.8) we first shift the origin to the mean by subtracting µ from each Xi

to obtain the sequence of values −5, −4, −3, 4, 8. Each of these adjusted values
is then divided by σ to yield the unit distribution

Z : − 5
5.1

, − 4
5.1

, − 3
5.1

,
4

5.1
,

8
5.1

,

or − 0.98, −0.78, −0.59, 0.78, 1.57.

How may we interpret these Z-scores? First, a positive (respectively, negative)
Zi value indicates that the original Xi value lies above (respectively, below) the
mean. Second, the size of Zi indicates how many standard deviations separate Xi

and µ (i.e., distance from the mean is put in terms of standard deviations). In this
regard, from panels a and b of Figure 2.11, Z1 = − 0.98 tells us that X1 = 2 lies
approximately 1 standard deviation below the mean, and Z5 = 1.57 informs us
that X5 = 15 lies about 1.6 standard deviations above the mean. �

For large N, the distribution of Z values in (2.8) typically will range in size
from −3 to 3. In view of this observation, we can posit a simple test for the
detection of outliers (or inordinately large or small extreme values) in a data set:
any Xi with a |Zi| > 3 is termed an outlier.

We may note further that:

(1) Z-scores are dimensionless (independent of units).

(2) If Zi > 0, Xi lies above µ; if Zi < 0, Xi lies below µ; and if Zi = 0, Xi = µ.

(3) The size of the Z-score indicates the number of standard deviations separat-
ing Xi and µ.

(4) Z-scores are used to place one observation relative to others in a data set.
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(5) The mean and standard deviation of a set of Z-scores are zero and one,
respectively.

(6) For a normal distribution (bell-shaped and symmetrical), it can be shown
(see Chapter 7) that the Z-scores corresponding to the first and third quar-
tiles are (Q1 −µ)

σ
= −0.67 and (Q3 −µ)

σ
= 0.67, respectively. Since the standard

deviation of a set of Z-scores is 1, it follows that the standardized interquar-
tile range = I .Q./σ = (0.67 − (−0.67))/1 = 1.34 can be used to test for
the normality of a data set; that is, if I.Q./σ ≈ 1.34, then the data are
approximately normal.

For N small, the range of Z-scores typically will be smaller than that for large
data sets.

To account for the sensitivity of the arithmetic mean µ to outliers in a data
set, we can determine the α-trimmed mean, 0 < α < 1

2 , and use it in place of µ. In
this regard, for a set of data points X1, . . . , XN arranged in an increasing sequence,
the α-trimmed mean µα

N is computed by deleting the αN smallest observations
and the αN largest observations, and then taking the arithmetic mean of the
remaining data points.

Example 2.3.3.2 Suppose we have a variable X with the N = 30 values:

2 25 26 28 29 30

15 25 26 28 29 30

21 25 26 28 29 30

25 25 27 28 29 39

25 25 28 28 30 55

Here the extreme values for this data set are 2 and 55. But are they outliers?
Let us first find

µ = 1
N

N∑

i=1

Xi = 816
30

= 27.2

and

σ =
[(

1
N

N∑

i=1

X2
i

)
− µ2

]1/2

=
[(

24,018
30

)
− 739.84

]1/2

= 7.79.

Then the Z-scores for 2 and 55 are, respectively,

2 − 27.2
7.79

= −3.23,
55 − 27.2

7.79
= 3.56.
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Since each of these Z-scores exceeds 3 (in absolute value), both of these values
of X are deemed outliers. Since the presence of outliers might distort the value of
the mean µ, let us replace µ by, say, µ0.10

30 , the 10% trimmed mean. Hence we must
delete the αN = 3 smallest and largest data values (which are 2,15,21; and 30,39,55,
respectively) and use the remaining 24 data points to obtain µ0.10

30 = 27.3. Clearly
this process has not appreciably changed the average obtained for this data set.
However, for other data sets, the trimming process might yield a marked change
in the average. �

A second technique for handling outliers is called Winsorization. Here,
too, we seek to minimize the effect of extraneous values in a data set on the
value of the mean. In this regard, for k-level Winsorization, the k smallest and
largest observations are given the values of their nearest neighbors; in first-level
Winsorization, the smallest and largest data points are given the values of their
nearest neighbors; in second-level Winsorization, the two smallest and largest
observations are replaced by their nearest neighbors, and so on. In general,
the k-level Winsorized mean (determined under k-level Winsorization) will be
denoted as µw,k.

Example 2.3.3.3 Given the preceding data set involving N = 30 observations,
first-level Winsorization replaces 2 and 55 by 15 and 39, respectively. Second-
level Winsorization replaces 2 and 15 by 21 and 39 and 55 by 30. It is easily shown
that the second-level Winsorized mean is µw,2 = 807

30 = 26.9 and the third-level
Winsorized mean is µw,3 = 819

30 = 27.3. �

2.3.4 Moments

The hth moment about the origin is represented as

mh =

N∑
i=1

Xh
i

N
, h = 1, 2, 3, . . . . (2.9)

Moreover, the hth moment about the mean or the hth central moment is

vh =

N∑
i=1

(Xi − µ)h

N
, h = 1, 2, 3, . . . . (2.10)

And if Zi = (Xi − µ)/σ , i = 1, . . . , N , then the hth standard moment is

ah =

N∑
i=1

Zh
i

N
=

N∑
i=1

[
Xi−µ

σ

]h

N
= vh

σ h
, h = 1, 2, 3, . . . . (2.11)
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For computational expediency, we may write the first few moments about the
mean in terms of moments about the origin as

v1 = m1 − m1 = 0,

v2 = m2 − m2
1,

v3 = m3 − 3m1m2 + 2m3
1, (2.12)

v4 = m4 − 4m1m3 + 6m2
1m2 − 3m4

1.

It is evident that the first moment about the origin is the mean µ = m1 = ∑N
i=1

Xi
N

and the second moment about the mean is the variance σ 2 = v2 = ∑N
i=1

(Xi−µ)2

N ,
and thus the standard deviation is σ = √

v2.

Example 2.3.4.1 Given X : 2, 3, 5, 7, 8, 11, find a3 and a4. From Table 2.11,
m1 = 36

6 = 6, m2 = 272
6 = 45.33, m3 = 2,346

6 = 391, and m4 = 21,860
6 = 3, 643.33.

Then from (2.12),

v2 = 45.33 − 36 = 9.33,

v3 = 391 − 3(6)(45.33) + 2(216) = 7.06,

v4 = 3,643.33 − 4(6)(391) + 6(36)(45.33) − 3(1,296) = 162.61.

Since σ = √
v2 = 3.055, it follows that σ 3 = 28.512, σ 4 = 87.105. Then a3 = v3

σ 3 =
0.2476, a4 = v4

σ 4 = 1.8668. �

If the data set happens to be arranged in the form of an absolute frequency
distribution, then the hth central moment is

mh =

k∑
j=1

fjXh
j

N
, h = 1, 2, 3, . . . ; (2.9.1)

Table 2.11

Xi X2
i X3

i X4
i

2 4 8 16
3 9 27 81
5 25 125 625
7 49 343 2,401
8 64 512 4,096

11 121 1,331 14,641
36 272 2,346 21,860
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and the hth moment about the mean is

vh =

k∑
j=1

fj(Xj − µ)h

N
, h = 1, 2, 3 . . . , (2.10.1)

where k represents the number of different (net of duplication) values of X.
The hth standard moment is again vh

σh , h = 1, 2, 3, . . . .

2.3.5 Skewness and Kurtosis

An absolute frequency distribution is said to be skewed if it lacks symmetry;
kurtosis refers to how flat or sharp the peak of the absolute frequency distribution
happens to be. In particular, measures of skewness and kurtosis are shape param-
eters and essentially reflect departures from normality. Looking at Figure 2.12,
panel (a) indicates that X’s absolute frequency distribution is symmetrical (about
the mean) and panel (b) (respectively, (c)) indicates that the said distribution
is skewed to the right (respectively, left). Alternatively, the absolute frequency
distribution in panel (b) (respectively, (c)) of Figure 2.12 is said to be positively
(respectively, negatively) skewed. For positive (respectively, negative) skewness,
there are some relatively large (respectively, small) values of X for which there
are no comparable or offsetting small (respectively, large) ones.

As far as the measurement of skewness is concerned, we may utilize the
Pearsonian coefficient of skewness

SKp = µ − mode
σ

. (2.13)

Note that this quantity is a pure number and thus expressed as a percent (i.e., it is
dimensionless or independent of units). If the mode cannot readily be determined,

Absolute Frequency Absolute Frequency Absolute Frequency

(symmetrical)

(a)

X X

(b)

(positively skewed) (negatively skewed)

X 

(c)

Figure 2.12 Symmetrical versus skewed absolute frequency functions.
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then we may employ a relationship among the mean, median, and mode that holds
approximately for moderately skewed unimodal distributions, namely

µ − mode ≈ 3(µ − median), (2.14)

to obtain

SKp ≈ 3(µ − median)
σ

. (2.13.1)

Another option is to use as our measure of skewness the third standard
moment a3 = v3

σ 3 (called standard skewness). Here, too, we have a dimensionless
figure expressed as a percent. Clearly all three of these measures of skewness are
zero when X’s absolute frequency distribution is symmetrical, positive when the
distribution is skewed to the right, and negative when the distribution is skewed
to the left. Moreover, the magnitude of each indicates the degree of skewness so
that each is a relative measure of skewness. By convention, if |a3| > 0.5 or, if,
using (2.13.1),

∣∣SKp
∣∣ > 1, an absolute frequency distribution is said to possess a

substantial amount of skewness.
Sometimes the quartiles of an absolute frequency distribution are used to

depict skewness. As a point of reference, if the distance between Q1 and Q2 is
the same as the distance between Q2 and Q3—Q2 − Q1 = Q3 − Q2—then the
distribution is symmetrical. (Looked at in another fashion, for a symmetrical
absolute frequency distribution, if the quartile deviation is subtracted from and
added to the median (Q2), we obtain the first and third quartiles or Q1 = Q2−Q.D.
and Q3 = Q2 + Q.D.) However, if Q2 − Q1 > Q3 − Q2, the absolute frequency
distribution is positively skewed or skewed to the right; if Q2 − Q1 < Q3 − Q2,
the said distribution is skewed to the left or negatively skewed. In view of these
observations we may also introduce Bowley’s coefficient of skewness

SKb = (Q3 − Q2)(Q2 − Q1)
Q3 − Q1

(2.15)

Clearly this expression is positive (respectively, negative) if X’s absolute frequency
distribution is skewed to the right (respectively, left).

Looking next to a measure of kurtosis, we may employ the fourth standard
moment a4 = v4

σ 4 (termed standard kurtosis). This quantity is independent of units
(or expressed as a percent). As a benchmark, let us employ the notion that for a
normal distribution a4 = 3. Then our estimate of the degree of kurtosis is a4 − 3
(called the excess). So if a4 − 3 > 0 (respectively, <0), an absolute frequency
distribution has a peak that is sharper (respectively, flatter) than that of a normal
distribution and thus is said to exhibit positive (respectively, negative) kurtosis.
These cases are depicted in Figure 2.13.
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a4 > 3

a4 < 3

a2 = 3

X 

Figure 2.13 Standard kurtosis as a measure of kurtosis.

Another measure of kurtosis is the coefficient of kurtosis, which consists of the
quartile deviation divided by the range between the 10th and 90th percentiles or

K = Q.D.
P90 − P10

. (2.16)

For a sharply peaked curve, K ≈ 0.5 (since Q3 − Q1 ≈ P90 − P10); for a very flat
curve, K ≈ 0 (since P90 − P10 exceeds Q3 − Q1 considerably); and for a normal
curve, K = 0.263.

2.3.6 Relative Variation

How may we compare the dispersions of two (or more) absolute frequency dis-
tributions? For convenience sake, let us limit ourselves to the discussion of
distributions A and B. Our approach is the following:

(1) If they have the same (or nearly the same) mean and are expressed in the
same units, then we can simply compare their standard deviations. (Here the
standard deviation serves as a measure of absolute variation or dispersion.)

(2) If they have different means or are expressed in different units, then we need
to convert the standard deviation of each distribution to a measure of relative
variation.

Why is the conversion mentioned in step two necessary? The difficulty of com-
paring items measured in different units should be obvious (e.g., if the data for
distribution A is in miles per hour and that for distribution B is in metric tons,
then clearly no reasonable comparison of absolute dispersion can be made). What
about the different means issue? Even though units may not be a problem, it is
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the case that a set of very large numbers invariably has a large standard deviation
relative to a set of very small numbers, even though there may be more variability
associated with the values within the latter.

For instance, we may address the question: Is there more variation among
weights of mice relative to that of elephants? It should be clear that the stan-
dard deviation computed from the elephants (converted to grams) will always be
larger than the comparable figure for mice (also in grams) even though there may
be more uniformity among the weights of the elephants.

To carry out the procedure hinted at in step two, earlier, consider the follow-
ing: to achieve comparability, the measures of absolute variation must be changed
to relative forms; that is, express the standard deviation as a fraction of the aver-
age about which the deviations are taken (remember that within σ we have the
term �

N
i=1(Xi − µ)2). This leads us to define the coefficient of variation as

V = σ

µ
× 100. (2.17)

Here V is a pure number (independent of units) expressed as a percent. Once
V has been obtained, we may conclude that the standard deviation is V% of the
mean. For example, if V = 0.25 × 100, we may say that “the standard deviation is
25% of the mean.”

So, given distributions A and B, we compute V for each. Then the distribution
with the smaller V value has a greater degree of uniformity or homogeneity among
its values (or the distribution with the larger V has a greater degree of variability
or heterogeneity among its values).

Example 2.3.6.1 Is there more variation among incomes received by nurses
affiliated with a certain large urban hospital (distribution A) or a group of private
practice nurses (distribution B)? For each group we compute

A : µA = $45,000, σA = $2,500;

B : µB = $39,000, σB = $2,000.

Since VA = σA
µA

× 100 = 0.05 × 100 and VB = σB
µB

× 100 = 0.06 × 100, we conclude
that the standard deviation of the incomes received by nurses in distribution B are
6% of the mean, whereas the standard deviation of the incomes received by nurses
in distribution A are 5% of the mean. Hence there is slightly more variability in
distribution B incomes relative to those in distribution A. �

2.3.7 Comparison of the Mean, Median, and Mode

When an absolute frequency distribution is normal or bell-shaped and symmet-
rical, its mean = median = mode (see Figure 2.14a). For a distribution that is
skewed to the right (respectively, left), mean > median > mode (respectively,
mean < median < mode) (see Figures 2.14b, c).
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Figure 2.14 The relative positions of the mean, median, and mode.

In fact, for a moderately skewed unimodal absolute frequency distribution,
(2.14) indicates that the distance between the mean and the mode (3d) is three
times the distance between the mean and the median (d).

2.3.8 The Sample Variance and Standard Deviation

Up to this point in our data analysis we have assumed that the data set under
discussion represents a population of size N. But if the set of observations
is actually a sample of size n extracted from some population, then we must
modify our calculation of the variance and standard deviation slightly to take into
account what may be called a correction for degrees of freedom. Given a variable
X : X1, X2, . . . , Xn, we may think of degrees of freedom as the number of indepen-
dent observations in the sample; that is, it is calculated as the sample size less the
number of prior estimates made. For instance, to compute the sample variance S2

we correct
∑n

i=1

(
Xi − �X)2

for degrees of freedom by dividing this expression by
n − 1 to obtain

S2 =

n∑
i=1

(
Xi − �X)2

n − 1
, (2.18)

where the sample mean

�X =

n∑
i=1

Xi

n
(2.19)
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is the single prior estimate made. Then the sample standard deviation appears as

S =

√√√√√
n∑

i=1
(Xi − �X)2

n − 1
. (2.20)

Looked at in another fashion, we may view degrees of freedom as a property
of a sum of squares under the linear restriction

∑n
i=1 (Xi − �X) = 0. That is, if∑n

i=1 (Xi − �X) = 0 must hold and �X is given, then once we select any n − 1 of the
observations Xi, i = 1, . . . , n, the nth is uniquely determined. For instance, if

(
X1 − �X)+ (

X2 − �X)+ (
X3 − �X) = 0

and X1 = 2, X2 = 7, and �X = 5, then we are not free to choose the value of
X3—X3 must equal 6. And if �X is changed to 9, then we are free to arbitrarily
select the values of only two of these data points. Once any two of them are
chosen, the third is uniquely determined by virtue of the requirement (X1 − 9) +
(X2 − 9) + (X3 − 9) = 0.

There is another compelling reason to divide by n − 1 in (2.18) rather than
by n. As will be discussed in greater detail later, dividing

∑n
i=1 (Xi − �X)2 by

n − 1 produces an unbiased estimate of the population variance σ 2.
For a sample of size n, the equivalent of (2.3) is

�X =

k∑
j=1

fjXj

n
(2.19.1)

and the computational equivalents of (2.6) and (2.7) are, respectively,

S =

√√√√√
n∑

i=1
X2

i

n − 1
−

(
n∑

i=1
Xi

)2

n (n − 1)
; (2.21)

S =

√√√√√√
k∑

j=1
fjX2

j

n − 1
−

(
k∑

j=1
fjXj

)2

n (n − 1)
, (2.22)

where k is the number of different (net of duplication) values of a variable X and
the fj’s are their absolute frequencies.
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Example 2.3.8.1 If the data in Table 2.9 depicts a sample of size n = 5, then
(2.21) yields

S =
√

230
4

− (30)2

5(4)
= 3.535.

And if the data in Table 2.10 represents a sample of size n = 12, then (2.22)
renders

S =
√

556
11

− (76)2

12(11)
= 2.61.

We close this section by offering formulae useful for updating the sample mean
and variance when additional sample information becomes available. To this end
we first examine a recursion formula for the sample mean of a variable X. This
expression allows us to efficiently determine the mean of n + 1 data points from
the average of the first n of them (2.19). That is, suppose we know �Xn (the average
of the values X1, . . . , Xn) and another observation Xn+1 becomes available. What
is the average of all n + 1 observations? From the definition of the mean �Xn it is
easily demonstrated that

�Xn+1 = Xn+1 + n�Xn

n + 1
(2.19.2)

Based upon this notation, we immediately can see how a recursion relationship
works: the result for the (n + 1)st term is obtained from the value of the nth term.

Example 2.3.8.2 Suppose that the mean of a set of n = 50 values of some
variable X is �Xn = �X50 = 63.76. Let us now assume that a fifty-first observation
Xn+1 = X51 = 22 becomes available. What is the average of all 51 data points?
From (2.19.1) it is readily found that

�Xn+1 = �X51 = 22 + 50(63.76)
51

= 62.94. �

Next, to establish a recursion formula for the sample variance of a variable X
(we seek to find the variance of n + 1 data points from the variance of the first n
of them), let us suppose we know S2

n (the variance of the values X1, . . . , Xn) and
another observation Xn+1 becomes available. What is the variance of all n + 1
observations? Given S2

n = ∑n
i=1 (Xi − �Xn)2/(n − 1) and (2.19.1), we can find

S2
n+1 =

(
n − 1

n

)
S2

n + 1
n

(Xn+1 − �Xn)2. (2.18.1)
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Example 2.3.8.3 Suppose that the mean and variance of a set of 25 values of
some variable X are �Xn = �X25 = 10 and S2

n = S2
25 = 8.72, respectively. Let us now

assume that a twenty-sixth observation Xn+1 = X26 = 14 is obtained. What is the
variance of all 26 data points? Using (2.18.1) we have

S2
n+1 = S2

26 =
(

24
25

)
(8.72) + 1

25
(14 − 10)2 = 9.0112. �

2.4 Correlation between Variables X and Y

For a set of N ordered pairs of observations (Xi, Yi), i = 1, . . . , N , a measure that
depicts the joint variation of Xi and Yi is the covariance of X and Y,

COV(X , Y) = σXY =

N∑
i=1

(Xi − µX )(Yi − µY )

N
, (2.23)

or, as it is alternatively represented,

σXY =

N∑
i=1

XiYi

N
− µXµY (2.23.1)

In this regard:

(a) If higher values of X are associated with higher values of Y, then σXY > 0

(b) If higher values of X are associated with lower values of Y, then σXY < 0

(c) If X is neither higher nor lower for higher values of Y, then σXY = 0

There are a couple of pitfalls connected with using the covariance as a mea-
sure of association: (1) its magnitude can be arbitrarily increased by increasing the
number of data points; and (2) it is arbitrarily influenced by the units in which X
and Y are measured. However, these two defects can be corrected by simply stan-
dardizing the product of the deviations from the mean in (2.23), that is, we divide
σXY by the product of the standardized deviations of the X and Y variables to
obtain the Pearson product moment correlation coefficient

ρXY = COV(X , Y)
σXσY

= σXY

σXσY
. (2.24)
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Here ρXY serves as a measure of linear association between X and Y, is inde-
pendent of units, and varies between ±1, inclusively. That is, −1 ≤ ρXY < 1, with
the sign of ρXY determined by the sign of σXY . Specifically:

(1) If σXY �= 0, then ρXY �= 0 and X and Y are said to be linearly related or
correlated.

(a) If σXY > 0, then 0 < ρXY < 1 and X and Y are said to be directly related
or positively correlated (panel a of Figure 2.15).

(b) If σXY < 0, then −1 < ρXY < 0 and X and Y are said to be inversely
related or negatively correlated (panel b of Figure 2.15).

Y

Y

 Y Y

 Y −1 < rXY  < 0

rXY  = 1

rXY  = 0 rXY = 0

rXY  = −1

0 < rXY  < 1

Y

X X

(a) (b)

X X

(c) (d)

X X 

(e) (f)

Figure 2.15 The range of values of the Pearson product moment correlation coefficient.
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(c) If σXY = σXσY , then ρXY = 1 and we have the case of perfect positive
association between X and Y (panel c of Figure 2.15).

(d) If σXY = −σXσY , then ρXY = −1 and we have the case of perfect negative
association between X and Y (panel d of Figure 2.15).

(2) If σXY = 0, then ρXY = 0 and we say that there is no linear relationship
between X and Y or that X and Y are uncorrelated (panel e of Figure 2.15).

(3) The correlation coefficient ρXY is invariant under a linear transformation.
That is, if we define new variables U = a + bX and V = c + dY , then
ρUV = ±ρXY , where the sign attached to ρXY depends upon the signs of b
and d.

It is important to remember that if X and Y are found to be uncorrelated
(ρXY = 0), then it does not necessarily follow that X and Y are independent.
This is because the correlation coefficient only detects linear association between
these variables—the true underlying relationship may actually be highly nonlinear
(panel f of Figure 2.15). So if X and Y are independent, then there is no relationship
of any sort (linear or otherwise) between these variables so that X and Y must also
be uncorrelated. But if X and Y are uncorrelated, we cannot generally conclude
that they are also independent.

It is also important to note that correlation does not imply causation. That is,
finding that ρXY �= 0 does not imply that movement in X causes movement in Y or
vice versa. In fact, some other unobserved variable Z may be causing movements
in both X and Y.

Example 2.4.1 Given the N = 10 observations presented in Table 2.12, deter-
mine if the variables X and Y are positively correlated. We first find µX = 5 and

µY = 4 and thus σXY = 42
10 = 4.2, σX =

√
54
10 = 2.324, and σY =

√
44
10 = 2.097.

Table 2.12

X Y Xi − µX Yi − µY (Xi − µX)(Yi − µY ) (Xi − µX)2 (Yi − µY )2

4 2 −1 −2 2 1 4
5 5 0 1 0 0 1
2 3 −3 −1 3 9 1
4 3 −1 −1 1 1 1
7 4 2 0 0 4 0
2 2 −3 −2 6 9 4
9 8 4 4 16 16 16
6 6 1 2 2 1 4
8 6 3 2 6 9 4
3 1 −2 −3 6 4 9

50 40 0 0 42 54 44
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Then from (2.24), ρXY = σXY
σX σY

= 4.2
(2.324)(2.097) = 0.86. We may thus conclude that

there is a fairly strong degree of positive linear association between X and Y. �

A broader view of the covariance concept emerges when we are interested in
determining the variance of a variable Y that is defined as the sum of a collection
of p other variables X1, . . . , Xp or Y = ∑p

j=1 Xj. As we shall now see, the variance
of Y not only depends upon the variances of the individual Xj’s, j = 1, . . . , p, it also
depends upon the covariances among all pairs of variables Xj and Xk (with j < k)
as both j, k = 1, . . . , p. Let us express the ith observation on Y as Yi = ∑p

j=1 Xji,
i = 1, . . . , N . Then

σ 2
Y =

p∑

j=1

σ 2
j + 2

p∑

j<k

σjk, (2.25)

where σ 2
j is the variance of Xj and σjk denotes the covariance between Xj and Xk.

For instance, if Y = X1 + X2 + X3, then, according to (2.25),

σ 2
Y = σ 2

1 + σ 2
2 + σ 2

3 + 2σ12 + 2σ13 + 2σ23.

It is instructive to derive (2.25) for the case where Yi = X1i + X2i, i = 1, . . . , N .
Since

N∑

i=1

Yi =
N∑

i=1

X1i +
N∑

i=1

X2i,

it follows, after dividing both sides of this expression by N, that µY = µ1 + µ2.
Then

Yi − µY = (X1i + X2i) − (µ1 + µ2) = (X1i − µ1) + (X2i − µ2)

and thus

n∑

i=1

(Yi − µY )2 =
N∑

i=1

(X1i − µ1)2 +
N∑

i=1

(X2i − µ2)2 + 2
N∑

i=1

(X1i − µ1)(X2i − µ2).

Upon dividing by N we have

σ 2
Y = σ 2

1 + σ 2
2 + 2σ12. (2.26)

You should now be able to easily demonstrate that:

(1) If Yi = X1i − X2i, i = 1, . . . , N , then µY = µ1 − µ2 and

σ 2
Y = σ 2

1 + σ 2
2 − 2σ12. (2.27)
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(2) If Yi = X1iX2i, i = 1, . . . , N , then µY = µ1µ2 + σ12 and

σ 2
Y =

N∑
i=1

(X1iX2i)2

N
− µ2

Y . (2.28)

Note that if X1 and X2 are independent variables, then σ12 = 0 and, for
Yi = X1i ± X2i, i = 1, . . . , N , it follows that σ 2

Y = σ 2
1 + σ 2

2 ; and for Yi = X1iX2i,
i = 1, . . . , N , we have µY = µ1µ2 and

σ 2
Y =

N∑
i=1

(X1iX2i)2

N
− (µ1µ2)

2 . (2.29)

2.5 Rank Correlation between Variables X and Y

We noted in the preceding section that the Pearson correlation coefficient ρXY

serves as an index of linear association between two variables X and Y; that is, it
measures the strength of the linear relationship between X and Y. Although the
observations on X and Y used to determine ρXY are numerical scores measured
on an interval or ratio scale, it may be the case that the X and Y values are
ordinal in nature and thus represent numerical values that depict ranks. In this
latter instance the Pearson correlation coefficient can be transformed into what
will be termed a rank-order correlation coefficient, namely the Spearman rank
correlation coefficient ρS, where −1 ≤ ρS ≤ 1.

The magnitude of the Spearman coefficient suggests a tendency for the X and
Y variables to relate in a monotone fashion. That is to say, if ρS is positive and
near 1, then the relationship between X and Y is monotone-increasing (there exists
a direct relationship between X and Y); and if ρS is negative and near −1, then
the relationship between X and Y is monotone-decreasing (X and Y are inversely
related). If |ρS| happens to be small, then this is an indication that the relationship
between X and Y is nonmonotone. Finally, if ρS = 0, then clearly these variables
exhibit no relationship at all.

Since the Spearman coefficient only measures the degree of monotone associ-
ation between X and Y over rank values, its characterization of the relationship
between X and Y is not as narrowly focused as that of ρXY ; that is, ρS measures
the tendency toward monotonicity and ρXY measures the tendency toward linear-
ity, with the tendency toward linearity emerging as a special case of the tendency
toward monotonicity. (However, ρS can be thought of as an index of the strength
of the linear relationship between the rank of X and the rank of Y.) Since the X
and Y values are simply ranks, it should be evident that any outliers present in a
data set will distort the value of ρXY but will not affect the magnitude of ρS since
the latter measure treats all observations equally.

Let us assume that we have a data set involving N ordered pairs (Xi, Yi),
i = 1, . . . , N , where Xi is the ith observation on the variable X and Yi is the
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ith observation on the variable Y. Suppose that Xi is an ordinal value that
depicts the rank associated with the ith observation on some variable W (i.e.,
Xi = rank (Wi), i = 1, . . . , N), where the ranks are specified from low to high
or from 1 through N. Additionally, let the Yi’s constitute a second ranking of
the Wi’s, i = 1, . . . , N . The question that now emerges is: How much agreement
is there between the two sets of rankings depicted by the X and Y variables? It
should be intuitively clear that if the rank orders agree, then the ranks appearing
in the sets of X and Y values should be positively associated or positively corre-
lated. And if the rank orders disagree, then the said ranks should be negatively
correlated. Note that if no association exists between the ranks described by the
X and Y variables, then a zero correlation should emerge.

As previously indicated, a descriptive measure of the association or agree-
ment between ranks is the Spearman rank correlation coefficient that applies the
ordinary or Pearson correlation coefficient for interval or ratio scale data (2.24)
to compute the correlation over ranks. To obtain this rank correlation coefficient,
let us rewrite (2.24) as

ρS = σXY

σXσY
=

N∑
i=1

XiYi

N
− µXµY

√√√√√
N∑

i=1
X2

i

N
− µ2

X

√√√√√
N∑

i=1
Y2

i

N
− µ2

Y

. (2.24.1)

Given that we are dealing with sets of rank values {X1, . . . , XN} and {Y1, . . . , YN},
it can be shown, in the absence of any ties in ranks, that

N∑

i=1

Xi =
N∑

i=1

Yi = N(N + 1)
2

, (2.30)

N∑

i=1

X2
i =

N∑

i=1

Y2
i = N(N + 1)(2N + 1)

6
. (2.31)

If we let Di = Xi − Yi represent the difference between the ranks associated with
the ordered pair (Xi, Yi), i = 1, . . . , N , then

N∑

i=1

D2
i =

N∑

i=1

X2
i +

N∑

i=1

Y2
i − 2

N∑

i=1

XiYi
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and thus

N∑

i=1

XiYi =

N∑
i=1

X2
i +

N∑
i=1

Y2
i −

N∑
i=1

D2
i

2
(2.32)

Upon substituting (2.30)–(2.32) into (2.24.1) and simplifying ultimately yields

ρS = 1 −

⎡

⎢⎢⎢⎣

6
N∑

i=1
D2

i

N(N2 − 1)

⎤

⎥⎥⎥⎦ , (2.33)

Spearman’s index of correlation over ranks.
Equation (2.33) cannot be used if there are ties in either or both rankings.

In the presence of ties, convention dictates that we assign mean ranks to sets of
tied observations. Once this is done, (2.33) is then used to determine the rank
correlation over a set of ranks corrected for ties.

A few additional points concerning (2.33) are in order. First, as was the case
for ρXY , ρS is dimensionless with |ρS| ≤ 1. Second, since D = ∑N

i=1 D2
i measures

deviation from complete agreement, it follows that if the rank orders are in perfect
or complete agreement, D = 0 (each Di = 0, i = 1, . . . , N) so that ρS = 1. And if
the ranks assigned to one set of observations are exactly the opposite of the ranks
assigned to the other set (the two rankings are in complete disagreement), then
D = N N2−1

3 and thus ρS = −1. (In this latter case of perfect disagreement, let
Xi = i. Then Yi = N − i + 1 so that Di = 2i − (N + 1).)

Example 2.5.1 To see exactly how (2.33) is utilized, let us assume that two well-
known celebrities were asked to rate N = 10 different brands of bottled sparkling
water on the basis of overall product quality. Their rankings are presented in
Table 2.13. What is the extent of their agreement based upon their individual
rankings of the various brands of sparkling water? From (2.33),

ρS = 1 −
[

6(12)
10(99)

]
= 1 − 0.07 = 0.93.

Clearly there is a considerable amount of agreement in their rankings.
Table 2.13 indicates that the celebrities placed the various brands in rank order,

with 10 being the highest rank assigned and 1 being the lowest. However, let us
now assume that they were asked to rate each brand on a scale from 0 to 100,
with 100 being the highest rating (see Table 2.14). Clearly there are ties present
in this alternative ranking scheme. As previously indicated, ties are handled by
assigning mean ranks to the tied observations. That is, we assign to each tied value
the average of the ranks that would have been assigned had there been no ties.
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Table 2.13

Rankings of Bottled Sparkling Water

Celebrity1 Celebrity2
Brand Rankings Xi Rankings Yi Di = Xi − Yi D2

i

1 4 5 −1 1
2 3 4 −1 1
3 8 8 0 0
4 7 6 1 1
5 10 9 1 1
6 5 3 2 4
7 9 10 −1 −1
8 6 7 −1 1
9 1 2 −1 1

10 2 1 1 1
10

Table 2.14

Rankings of Bottled Sparkling Water

Celebrity 1 Celebrity 2 Celebrity 1 Celebrity 2
Brand Scores Scores Rankings Xi Rankings Yi Di = Xi − Yi D2

i

1 85 88 3 3 0 0
2 86 88 4 3 1 1
3 90 93 8.5 7.5 1 1
4 88 91 7 5.5 1.5 2.25
5 95 95 10 9 1 1
6 87 88 5.5 3 2.5 6.25
7 90 98 8.5 10 −1.5 2.25
8 87 93 5.5 7.5 2 4
9 81 91 2 5.5 −3.5 12.25

10 80 85 1 1 0 0
30

In this regard, a second application of (2.33) yields

ρS = 1 −
[

6(30)
10(99)

]
= 1 − 0.18 = 0.82.

Based upon this revised rating system, there still exists a substantial amount of
agreement between the two rankings. �

The Pearson and Spearman coefficients of correlation have been presented
as purely descriptive measures of association/agreement; tests of their statistical
significance will be offered in later chapters, where these indexes will be treated
as statistics computed from sample data.
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2.6 Exercises

2-1. Given the following set of n = 35 observations:

10 19 18 21 20 20 18

18 18 16 11 12 16 12

18 19 19 13 15 17 17

16 17 14 15 14 18 19

16 14 15 19 17 17 18

construct an absolute frequency distribution, the relative frequency distri-
bution, and the less than or equal to cumulative frequency distribution.

2-2. For each of the following sample data sets, find the mean, median, mode,
and standard deviation:

(A) 7, 8, 10, 7, 3, 11, 13, 10, 4, 14

(B) 6, 2, 1, 3, 0, 10, 5, 12, 10

2-3. Which data set in Exercise 2-2 has more variability associated with it?

2-4. Use Chebyshev’s theorem to determine the amount of data lying within 2.5
standard deviations of the mean. What is implied interval for data set (A)
in Exercise 2-2?

2-5. For each of the data sets appearing in Exercise 2-2, find Q1, Q2, P10, P20, D4,
and D8. What is the quartile deviation for each of these data sets?

2-6. Transform the following collection of sample observations into a set of
Z-scores: 2, 11, 22, 25, 26, 22, 25, 27, 32, 40. Are any of the data values
outliers? Find the 20% trimmed mean. What are the second and third level
Winsorized means?

2-7. For data set (B) in Exercise 2-2, find v3 and v4. What are the third and fourth
standard moments? Interpret their values.

2-8. Given the following N = 10 data points of the form (Xi, Yi):

(1, 1), (2, 3), (3, 1), (4, 3), (6, 3), (6, 5), (6, 6), (8, 6), (8, 8), (9, 10),

find ρXY .

2-9. If Y = X /SX , where SX is the standard deviation of X, prove that �Y = �X /SX

and SY = 1. Also verify that for Z = (X − �X)/SX , �Z = 0 and SZ = 1.

2-10. Two judges were asked to rate N = 10 different perfumes on a scale from
1 (poor) to 10 (excellent). Given the following rating outcomes, determine
if there exists a reasonably strong degree of agreement between the two
judges.
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Perfume Judge 1 Rankings Judge 2 Rankings

1 3 5
2 4 2
3 7 8
4 6 9
5 9 10
6 10 7
7 5 1
8 2 6
9 8 4

10 1 3

2-11. Two middle-school teachers were asked to rate N = 10 different essays
on the basis of clarity of presentation. They were asked to assign grades
of A, B, C, D, or F to each essay, with A being the highest grade and F
considered failing. Is there a substantial amount of agreement between the
grading standards of these teachers?

Judge 1 Grades Judge 2 Grades
Essay Xi Yi

1 D C
2 D D
3 F D
4 D F
5 A B
6 B A
7 A B
8 C B
9 B C
10 C C

2-12. Absolute/Relative Frequency Distribution (Grouped Data)
An absolute frequency distribution shows the absolute frequencies with
which the various values of a variable X are distributed among chosen
classes. Here the absolute frequency of class j, fj, is the number of items
falling into the jth class. For instance, an example of a typical absolute
frequency distribution is:

Classes of X fj
fj

N
mj Class Boundaries

0–9 2 0.058 4.5 −0.5–9.5
10–19 7 0.205 14.5 9.5–19.5
20–29 10 0.294 24.5 19.5–29.5
30–39 8 0.235 34.5 29.5–39.5
40–49 6 0.176 44.5 39.5–49.5
50–59 1 0.029 54.5 49.5–59.5

34 1.000
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The absolute frequency distribution consists of columns one and two,
whereas a relative frequency distribution involves columns one and three,
where the relative frequency of class j is

fj
N . For k classes,

∑k
j=1 fj = N and∑k

j=1
fj

N = 1. (If the data set is a sample of size n, then N is replaced by n
in the preceding discussion.) In addition, the class mark of the jth class, mj,
is the midpoint of the jth class and thus serves as a representative or typi-
cal value from the class; it is determined as the average of the class limits.
Next, class boundaries (sometimes called real class limits) are “impossible”
values and serve to avoid gaps between the classes. Finally, the class inter-
val (denoted as c) is the length of a class and is computed as the difference
between the upper and lower boundaries of the class. (Note that if the classes
are of equal length, then the class interval can be determined by taking the
difference between two successive class marks.) Thus the common class
interval for this distribution is, using the second class, 19.5–9.5 = 10 = c
(which also equals m2 − m1 = 14.5 − 4.5 = 10). Given the n = 25 obser-
vations that follow, determine an absolute frequency distribution using the
classes: 30–39, 40–49, . . . , 90–99. What are the relative frequencies, class
marks, class boundaries, and the class interval?

33 87 39 40 44 44 97 48 53 50

67 37 51 66 94 55 55 68 71 76

83 87 70 89 90

2-13. Descriptive Statistical Measures (Grouped Data)
Given an absolute frequency distribution involving k classes (as defined in
the preceding exercise), we may define the following descriptive statistical
measures:

a. Mean

µ ≈

k∑
j=1

mjfj

N
(population)

; �X ≈

k∑
j=1

mjfj

n
(sample)

. (2.E.1)

b. Standard Deviation

σ ≈

√√√√√√√

k∑
j=1

fj(mj − µ)2

N
(population)

; S ≈

√√√√√√√

k∑
j=1

fj(mj − �X)2

n − 1
(sample)

. (2.E.2)
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c. Median

median ≈ L +
(

N
2 − CF

fmed

)
c

(population)

; median ≈ L +
( n

2 − CF

fmed

)

(sample)

c, (2.E.3)

where L is the lower boundary of the class containing the median,
CF is the cumulative frequency of the preceding classes, fmed is the
frequency of the class containing the median, and c is the length of the
class containing the median.

d. Mode

mode ≈ L +
(

�1

�1 + �2

)
c

(population or sample)

, (2.E.4)

where L is the lower boundary of the class containing the mode, �1

is the difference between the frequency of the modal classes and the
premodal class, �2 is the difference between the frequency of the
modal classes and the postmodal class, and c is the length of the modal
class. Given the data set appearing in Exercise 2-12, find �X , S, the
median, and the mode.

2-14. Given the sample values X1, . . . , Xn, let us define:

a. Geometric Mean (G.M.)

G.M. = n
√

X1 X2, · · · , Xn. (2.E.5)

(Note that log(G.M.) = 1
n

∑n
i=1 log Xi.)

b. Harmonic Mean (H.M.)

H.M. = n
n∑

i=1

1
Xi

. (2.E.6)

Given the following n = 5 sample values, demonstrate that H.M. ≤
G.M. ≤ �X . X : 1, 4, 5, 7, 10. Under what circumstance does strict
equality hold?

2-15. Measures of dispersion, stated in either absolute or relative terms (e.g., the
standard deviation or coefficient of variation, respectively) are standard
fare when it comes to analyzing interval scale data. However, if a variable is
measured on, say, a nominal or categorical scale, then these measures can-
not be employed to assess variation in a data set. In this instance a so-called
“measure of diversity” is used to analyze the distribution of observations
over categories. That is to say, observations evenly distributed over a set of
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mutually exclusive and collectively exhaustive categories are said to exhibit
“high diversity,” and observations distributed in a fashion such that most
of the data points occur in only a few of the said categories reflect “low
diversity.”

In what follows we shall employ an information-theoretic measure of
diversity.

To this end, suppose we have a finite population of size N containing k
distinct and nonoverlapping groups with Nj elements belonging to the jth

group, j = 1, . . . , k , where N = ∑k
j=1 Nj. Then an appropriate measure of

diversity (see Brillouin (1962) and Pielou (1966)) in this circumstance is

H = 1
N

ln
N!

N1!N2! . . . Nk! = 1
N

⎛

⎝ln N! −
k∑

j=1

ln Nj!
⎞

⎠ , (2.E.7)

where, via Stirling’s formula,

ln N! ≈ N(ln N − 1) + 1
2

ln(2πN). (2.E.8)

Equation (2.E.7) is based upon the use of information content as a mea-
sure of diversity and thus is related to the notion of uncertainty. That is,
in a population exhibiting low diversity, we can be relatively certain of the
identity of an item chosen at random. But in a high diversity population, it
is much more difficult to predict the identity of an item selected at random.
Hence, from an information theoretic viewpoint, low diversity is associated
with low uncertainty and high diversity is associated with high uncertainty.

A moment’s reflection about the nature of (2.E.7) reveals that this index
takes into account both group richness (the number of distinct groups) and
the evenness of the distribution of items among the k groups. Then for
a given N and k, the notion of evenness considers how closely a set of
observed group frequencies align with those from a collection of groups
having maximum possible diversity. To obtain an index of evenness or rel-
ative diversity, let us first note that the maximum possible value of H for a
set of N observations distributed among k groups is when Nj = N

k or

Hmax = 1
N

[ln N! − (k − d)c! − d ln(c + 1)!] , (2.E.9)

where c is the integer portion of N
k and d is the remainder. Then the evenness

of the distribution of N observations among the k categories is expressi-
ble as

E = H
Hmax

(2.E.10)
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while

J = I − E (2.E.11)

serves as an index of dominance or heterogeneity.

Suppose we have three populations A, B, and C, with each population
made up of n = 100 items distributed over k = 10 categories, where Nj

is the number of items in category j. Compare these populations:

Populations

Category Abundance A B C

N1 10 1 90
N2 10 2 2
N3 10 3 1
N4 10 5 1
N5 10 7 1
N6 10 9 1
N7 10 12 1
N8 10 16 1
N9 10 22 1
N10 10 23 1

100 100 100

with respect to their indices of diversity, evenness, and dominance.
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33
Probability Theory

In the introductory chapter, we mentioned that the application of the process of
statistical inference involves determining one or more characteristics of a popula-
tion by examining only a small subset of the same called a sample. In addition, an
important component of this process has us offer a measure of the uncertainty or
reliability of the inference made. To measure the magnitude of this uncertainty,
we need to apply the basics of probability theory.

As we shall soon see, only events have probabilities associated with them. And
since events are best described using set notation, the following section reviews the
rudiments of set algebra. If you feel comfortable with set notation and operations
(including functions), proceed directly to Section 3.2.

3.1 Mathematical Foundations: Sets, Set Relations,
and Functions

In this chapter we shall see exactly how probabilities are assigned to events. Since
events are basically outcomes of either real or conceptual experiments, they may
occur individually or in some collective fashion. That is, once an experiment is
performed:

● Event A may occur by itself

● Event A and event B may occur together

● Event A or event B or both events A and B may result

● Event A does not occur when event B does occur

● And so on

If we are to describe outcomes such as these in a concise and efficient fashion,
then we need to develop the appropriate logical apparatus for structuring events.
In this regard, as will be exhibited later on, we may conveniently represent events
as sets. Thus this foundation section is designed to introduce you to the essentials

53
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of set algebra. Once this material is reviewed and the chapter proper is started, it
should become clear that set notation is the appropriate descriptive vehicle to be
employed in the specification of events and the calculation of their probabilities.

Consider a set as a well-defined collection or grouping of objects called
elements. Sets will be denoted by uppercase letters and elements typically will
be written as lowercase letters. The set A is said to be well-defined if there is a rule
that determines whether or not a particular element is in A. When x is an element
of A we write x ∈ A (read “x is in A”); if x is not a member of A, then the element
inclusion symbol ∈ is negated or x /∈ A (read “x is not in A”).

Sets may be defined by listing their elements or by indicating some unique
feature that their elements possess. For the latter, we shall use the notation

X = {x| a rule for specifying x ∈ X is given},

where X is the set under discussion, x is a representative element, and the vertical
bar is read “such that.” For instance, one way of denoting the set N of all odd
numbers is N = {n|n + 1 is even}.

When set A is a member of set B we write A ⊆ B (read “A is a subset of B”);
if A is not a member of B, then the subset inclusion symbol ⊆ is negated or A �⊆ B
(read “A is not a subset of B”). We note further that if A ⊆ B, then either

1. A ⊂ B (read “A is a proper subset of B”).

2. A = B (both A and B possess the same elements).

Here A ⊂ B means that B contains the same elements that A does along with
some additional elements that are not in A, that is, B is a larger set.

The universal set U is the set containing all elements under a particular discus-
sion and the null set φ is the empty set. Also, the complement of set A, A, is the
collection of elements within U that lie outside of A. The relationship between U,
A and A can very conveniently be exhibited by the Venn diagram in Figure 3.1

Note that U = φ, φ = U , and A = A.

U 

A

A

Figure 3.1 Set A and the complement of A.
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U U
B 

A B 

A

A ∪ B A ∩ B

(a) (b)

Figure 3.2 (a) The union of sets A and B; (b) The intersection of sets A and B.

Next, the union of sets A and B, denoted A ∪ B, is the collection of elements
in A or in B or in both A and B (see Figure 3.2a); the intersection of sets A and
B, denoted A ∩ B, is the collection of elements common to both A and B (see
Figure 3.2b).

Example 3.1.1 If A = {1, 3, 6, 8, 9, 15} and B = {1, 3, 7, 10}, then

A ∪ B = {1, 3, 6, 7, 8, 9, 10, 15}; A ∩ B = {1, 3}. �

Note that

A ∪ φ = A A ∩ A = φ

A ∩ φ = φ A ∪ A = A

A ∪ U = U A ∩ A = A

A ∩ U = A
A ∪ A = U

A ∪ B = A ∩ B
A ∩ B = A ∪ B

}
De Morgan’s Laws

The difference of sets A and B, A − B, is the set containing those elements of A
which are not in B—that is, A − B = A ∩ B (see Figure 3.3). Moreover, sets A
and B are mutually exclusive or disjoint if they have no elements in common; that
is, A ∩ B = φ.

The sets A1, . . . , An form a partition of U if they are pairwise disjoint (intersect-
ing any two of them yields the null set) and their union is U; that is, Ai ∩ Aj = φ

for i �= j and U = A1 ∪ · · · ∪ An.
For example, the following Venn diagram (see Figure 3.4) indicates that U has

been partitioned by sets A1, . . . , A4.
How might a diverse assortment of facts and figures be organized into a concise

information set, which subsequently can serve as a valuable aid in decision making?
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U 
B

A 

A − B = A ∩ B

Figure 3.3 The difference of sets A and B.

U = A1 ∪ A2 ∪  A3 ∪ A4;

A1 ∩ A2 = f, A1 ∩ A3 = f, etc.

A1 A3

A2 A4

Figure 3.4 Sets A1, . . . , A4 form a partition of the universal set.

Two examples are offered to illustrate the versatility of set notation. The approach
that follows also serves as a general guide to the structuring of events so that their
probabilities can easily be determined.

Example 3.1.2 Consider a group of 100 managers having the following work
habits: 50 work overtime during the regular work week, 30 work weekends, and 10
of those who work weekends also put in overtime during the week. If we define sets

A: managers working overtime

B: managers working weekends
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40         10        20 

30

B

A

U

Figure 3.5 Distribution of work habits for 100 managers.

then Figure 3.5 summarizes this information. Let us describe the following state-
ments (a)–(f) in terms of sets and then determine the number of managers
appearing in each of the resulting sets.

(a) Managers who work overtime and on weekends—A ∩ B = {10}
(b) Managers who work overtime or on weekends—A∪B = {40+20+10} = {70}
(c) Managers who do work overtime but do not work on weekends—

A − B = {40}
(d) Managers who do not work overtime—A = {30 + 20} = {50}
(e) Managers who neither work overtime nor work weekends—A ∩ B =

A ∪ B = {30}
(f) Managers who do not work weekends or do not work overtime—A ∪ B =

A ∩ B = {30 + 40 + 20} = {90} �

Example 3.1.3 Out of a group of 30 people traveling together on a bus tour,
10 speak English, 12 speak French, and 16 speak Italian. Five of those who speak
English also speak French; six of those who speak French know Italian; six of
those fluent in Italian are also fluent in English; and three members of the group
speak all three languages. Let us illustrate the distribution of language proficiency
by constructing a Venn diagram (see Figure 3.6) using sets

A: individuals who speak English

B: individuals who speak French

C: individuals who speak Italian

Let us again describe the following statements in terms of sets and then count
the number of persons in each. (Hint: Avoid the trap of counting certain elements
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U
6 A

B C

2

2

4

3    3

3 7
(Hint: Start with A ∩ B ∩ C.
Then consider A ∩ B, A ∩ C,
and B ∩ C.  Finally,
complete A, B, and C.)

Figure 3.6 Distribution of language proficiency for 30 travelers.

more than once or eliminating elements completely.) To this end we have:

(a) Individuals who speak English or French or Italian—A ∪ B ∪ C = {2 + 2 +
3 + 3 + 4 + 3 + 7} = {24}

(b) Individuals who speak English or Italian—A∪C = {2+2+3+3+3+7} = {20}
(c) Individuals who do not speak any of the three languages mentioned—

A ∪ B ∪ C = {6}
(d) Individuals who speak English or Italian but not French—A ∪ C − (A ∩ B) −

(B ∩ C) + (A ∩ B ∩ C) = {20 − 5 − 6 + 3} = {12}
(e) Individuals who speak at least two languages—(A ∩ B) ∪ (A ∩ C) ∪

(B ∩ C) − 2(A ∩ B ∩ C) = {5 + 6 + 6 − 2(3)} = {11}
(f) Individuals who speak only French—B − (A ∩ B) − (B ∩ C) + (A ∩ B ∩ C) =

{12 − 5 − 6 + 3} = {4}. �

We end this section with the definition of some important mathematical concepts
that will prove useful in conceptualizing the meaning of a random variable and
the probability of an event. Random variables and event probabilities are defined
in subsequent sections of this chapter.

First, let X and Y be two nonempty sets of real numbers. Then a single-valued
function or point-to-point mapping f : X → Y is a rule or law of correspon-
dence that associates with each element x ∈ X a unique element y ∈ Y . Here
y = f (x), the image of x under rule f, is termed the dependent variable and x
is the independent variable. Set X is called the domain of f (see Figure 3.7a) and
denoted Df ; the collection of those y’s in Y that are the image of at least one x ∈ X
is called the range of f and denoted Rf . Clearly Rf is a subset of Y. If Rf = Y , then
f is termed an onto mapping; if Rf ⊂ Y , then f is called an into mapping. Also, f is
termed one-to-one if no y ∈ Y is the image of more than one x ∈ X .
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f

X = Dr

Y
(a)

y

9

1

Rf

x
1         3

Df (b)

•
x

Rf
• y(=f(x))

Figure 3.7 (a) f is a point-to-point mapping; (b) The point-to-point mapping y = f (x) = x2.

Example 3.1.4 Let y = f (x) = x2, x ∈ X = Df = [1, 3] with Y = [0, 14] (see
Figure 3.7b). Clearly Rf = [1, 9] ⊂ Y . What is the rule that tells us how to get a y
value from an x value? �

Next, let X be a class or collection of sets and Y a set of nonnegative real
numbers. Then a measure (set) function or set-to-point mapping M : X → Y is
a rule or law of correspondence that associates with each set A ⊆ X a unique
element 0 ≤ y ∈ Y . This time y is the image of A under rule M (see Figure 3.8).

Examples of measure or set functions are length, area, volume, and so on. That
is, as Figure 3.9a reveals, length of A = M(A) = b − a ≥ 0. Here the rule is b − a.
From Figure 3.9b, area of A = M(A) = b × h ≥ 0.

3.2 The Random Experiment, Events, Sample Space,
and the Random Variable

We may think of a random experiment as a class of occurrences that can hap-
pen repeatedly, for an unlimited number of times, under essentially unchanged
conditions. Here we require that, in the long run, the circumstances under which



60 Chapter 3 Probability Theory

M

+∞

0 y ( = M(A))

X

A

Figure 3.8 M is a set-to-point mapping.

A

h = height

b  = base 

(a)

a b

(b)

A

Figure 3.9 (a) Length is a measure function; (b) Area is a measure function.

the various trials of a random experiment are performed are virtually the same.
Relative to this definition, we have the concept of a random phenomenon—a
phenomenon such that, on any given trial of a random experiment, the outcome
is unpredictable. It is important to note that all random experiments generate
a collection of potential outcomes. If the actual or realized outcome on any given
trial cannot be ascertained with complete certainty, then it is characterized as
a random phenomenon. That is, as the trials of the random experiment progress,
it is assumed that the results of the same do not exhibit any systematic favoring
of one outcome relative to any other possible outcome. Here the outcome of a
random experiment will be termed an event. In particular, an event may be simple
(denoted Ei) or compound (denoted A, B, C, . . .). In the former case, we have a
possible outcome of a random experiment that cannot be decomposed into a com-
bination of other events; in the latter, we have an event that can be decomposed
into a collection of simple events.

Next, we may view the sample space (denoted S) as the collection or record
of all possible outcomes of a random experiment. Here S serves as the universal
set of outcomes. As Figure 3.10 indicates, S is a collection of n points or sim-
ple events; that is, there exists a one-to-one correspondence between the simple
events Ei and the points of the sample space S. In fact, S = ∪n

i=1Ei. A compound
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S 

• • A

Ei • •
•
•

 • •

• Er
• Es

• Et

Figure 3.10 A compound event is the union of simple events.

S X 

{x1,x2,...,xj,...,xl}

(set of real numbers)
Ei

Figure 3.11 A random variable X is a point-to-point mapping.

event A is thus the union of its constituent simple events in S or, as Figure 3.10
reveals, A = Er ∪ Es ∪ Et ⊂ S. Thus simple events serve as the basic building
blocks of compound events. In general, when we speak of an event (simple or
compound) we are speaking of some subset of S. How are the possible outcomes
of a random experiment defined? The answer involves the specification of a ran-
dom variable (denoted X). Specifically, X is a chance variable or a variable whose
values have probabilities associated with them. More formally, it is a real-valued
function defined on the elements of a sample space; that is, it is a rule or law
of correspondence that associates with each Ei ∈ S some (unique) real number
X(Ei) = xj, j = 1, . . . , l.

What is the connection between Ei, S, and X? Looking to Figure 3.11, the
random variable X takes a simple event Ei ∈ S and associates with it a real
number xj.

Example 3.2.1 Let us define as our random experiment the rolling of a pair
of six-sided dice. If the pair of dice is fair, each possible outcome is a random
phenomenon. For the sample space (see Figure 3.12), S = ∪36

i=1Ei. How may we
specify the random variable X? Since its role is to define the possible outcomes of
the random experiment, it may be specified by the experimenter. In this regard, let
us define X as the sum of the faces showing. We could have just as easily defined X
as the product of the faces showing or, if one die is, say, red and the other blue, we
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Outcome on die 2

A

E6 E12 E18 E24 E30 E36
6 • • • • • • 

E11
5 •  • • • • • 

E16
4 • • • • • • 

    E21 X
3 • • • • • • 

   E26 {2,3,4,5,6,7,8,9,10,11,12}
(Values of X)2 • • • • • • 

1 • • • • • • 
E1 E7 E13 E19 E25 E31

Outcome on die 1
1 2 3 4 5 6

Figure 3.12 The sample space S = ⋃36
i=1 Ei.

could let X be the outcome showing on the red die divided by the outcome showing
on the blue one. The point being made is that, within the confines of the physical
structure of the random experiment, the random variable may be whatever we
want it to be. (However, it is important to keep in mind that for some random
experiments, the specification of the random variable may be uniquely dictated
by the physical structure of the experiment itself. For instance, if the random
experiment involves the tossing of a single die, the random variable X is typically
the face showing.) With X specified as the sum of the faces showing, X has 11
values: x1 = 2, x2 = 3, . . . , x11 = 12. Then X takes a point such as E26 ∈ S and
associates with it the real number 7. To form the compound event A = {getting
a sum of 7}, we simply form the union A = E6 ∪ E11 ∪ E16 ∪ E21 ∪ E26 ∪ E31. It
is evident from Figure 3.12 that there are more simple events in S than there are
values of X; that is, i = 1, . . . , 36 and j = 1, . . . , 11. This is because there is more
than one way of getting the sum of, say, 6. However, this need not always be true.
Looking back to the case where the random experiment involves the tossing of
a single die, it is clear that S contains six simple events and the random variable
assumes exactly six values, namely 1, 2, 3, 4, 5, 6. �

3.3 Axiomatic Development of Probability Theory

What general properties must the probability of an event possess? Once these
properties are stated for any idealized event, we can then employ them as an aid
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S
P

0 P(A) 1

P is a set function that maps events
in S onto the unit interval [0,1].

A

Figure 3.13 A probability measure P on S is a set-to-point mapping.

in assigning probabilities to simple events and ultimately to the specification of
probabilities of compound events.

Let us begin with the concept of a probability measure on S. Specifically, a
probability measure is a special type of set-to-point function. That is, it is a set
function P from the sample space to the unit interval [0, 1]. As Figure 3.13 reveals,
P is a rule that ascribes to each event A ⊆ S a real number between 0 and 1
inclusive, called its probability of occurrence. In this regard, if event A never
occurs, P(A) = 0; if event A is the certain event (i.e., it always occurs), P(A) = 1.
Note that P(A) is larger in value the greater the likelihood of the occurrence of
event A.

We are now ready to state the usual minimal set of probability axioms (an
axiom is an accepted or established principle—it is simply taken as given and
needs no formal proof of its legitimacy). In this regard, let A be any event in S. If
P is a probability measure on S, then:

AXIOM 1. P(A) is defined for every A ⊆ S.

AXIOM 2. P(A) ≥ 0 for all A ⊆ S.

AXIOM 3. P(S) = 1.

AXIOM 4. If A1, . . . , Ak is a sequence of mutually exclusive events in S(Ai ∩Aj =
φ, i �= j), then

P
(∪k

i=1Ai
) =

k∑

i=1

P(Ai),

that is, the probability of the union of a set of mutually exclusive events is the sum
of their individual probabilities.

Note that by virtue of axiom 3, S is the certain event; that is, an outcome in S
must occur when a random experiment is performed. Next come the corollaries
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to the axiom system (a corollary is a consequence—it is something that naturally
follows). Then for any events A, B ⊆ S and P a probability measure on S:

COROLLARY 1. The probability that event A does not occur is one minus the
probability that it does occur or P(A) = 1 − P(A).

COROLLARY 2. 0 ≤ P(A) ≤ 1.

COROLLARY 3. P(φ) = 0.

COROLLARY 4. If A ⊂ B, then P(A) < P(B).

COROLLARY 5. If A ⊂ B, then P(B − A) = P(B) − P(A).

COROLLARY 6. P(A) = P(A ∩ B) + P(A ∩ B).

COROLLARY 7. P(A − B) = P(A ∩ B) = P(A) − P(A ∩ B).

Clearly these axioms and corollaries are applicable to the simple events Ei, i =
1, . . . , n, of S. In the next section we shall see that they can actually be used to
readily determine the probability of any compound event A ⊆ S.

3.4 The Occurrence and Probability of an Event

When can we say that some compound event A has occurred? Since A is a
subset of points or simple events in S, event A occurs if any one of the simple
events comprising A occurs when a random experiment is conducted. That is, in
Figure 3.10, event A occurs if on any given trial of a random experiment, either Er

or Es or Et occurs. Although we shall leave to a subsequent section the sources or
alternative interpretations of probabilities, we shall specify, within the context of
the preceding example problem involving the rolling of a pair of dice, the proba-
bility of an event A as the sum of the probabilities of the individual simple events
comprising A. Since S = ∪36

i=1Ei contains n = 36 simple events, the probability of
any Ei is P(Ei) = 1

n = 1
36 . Then by axiom 3,

P(A) = P(getting a sum of 7)

= P (E6 ∪ E11 ∪ E16 ∪ E21 ∪ E26 ∪ E31)

= P (E6) + P (E11) + P (E16) + P (E21) + P (E26) + P (E31)

= 1
36

+ 1
36

+ 1
36

+ 1
36

+ 1
36

+ 1
36

= 6
36

.

In general, if a random experiment has n equiprobable outcomes (i.e., P(Ei) =
1
n for all i) and if nA of these outcomes constitute event A, then P(A) = nA

N .
Here nA

n is termed the relative frequency of event A on S. So with A made up of
nA = 6 simple events and with S containing n = 36 simple events, P(A) = 6

36 = 1
6 .

(Note that this relative frequency concept circumvents the direct application of
axiom 3.)
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3.5 General Addition Rule for Probabilities

For events A, B ⊆ S, P(A ∪ B) ≤ P(A) + P(B) (Boole’s inequality). That is, if
A ∩ B = φ, axiom 3 informs us that P(A ∪ B) = P(A) + P(B); and if A ∩ B �= φ,
P(A ∪ B) < P(A) + P(B). In this latter instance we must determine how much
less than? Since A ∩ B (the shaded portion of Figure 3.14) is contained in A as
well as in B, the sum P(A)+P(B) counts the probability of the intersection twice.
To avoid double counting this portion of A ∪ B, P(A ∩ B) is netted out once.

Thus the general addition rule appears as

P(A ∪ B) = P(A) + P(B) − P(A ∩ B). (3.1)

For sets A, B, C ⊆ S,

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A ∩ B) − P(A ∩ C)

− P(B ∩ C) + P(A ∩ B ∩ C).

In general, for events A1, A2, . . . , An within S,

P (A1 ∪ A2 ∪ · · · ∪ An) =
n∑

i=1

P(Ai) −
∑∑

i<j

P(Ai ∩ Aj)

+
∑∑∑

i<j<k

P(Ai ∩ Aj ∩ Ak)

− · · · + (−1)n+1 P(A1 ∩ A2 ∩ · · · ∩ An). (3.2)

The total number of items in each individual summation (double summation,
etc.) term may be computed from the combinational expression n!

r!(n−r)! as r =
1, 2, . . . , n.

S

A  B

Figure 3.14 A ∩ B �= φ.
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Example 3.5.1 To see exactly how (3.2) is applied, it is easily verified that

P(A1 ∪ A2 ∪ A3 ∪ A4) = P(A1) + P(A2) + P(A3) + P(A4)

− [P(A1 ∩ A2) + P(A1 ∩ A3) + P(A1 ∩ A4)

+ P(A2 ∩ A3) + P(A2 ∩ A4) + P(A3 ∩ A4)]
+ [P(A1 ∩ A2 ∩ A3) + P(A1 ∩ A2 ∩ A4)

+ P(A1 ∩ A3 ∩ A4) + P(A2 ∩ A3 ∩ A4)]
− P(A1 ∩ A2 ∩ A3 ∩ A4).

Clearly the number of terms of the form P(Ai) is 4!
1!3! = 4; there are 4!

2!2! = 6
terms of the form P(Ai ∩ Aj); we have 4!

3!1! = 4 terms of the form P(Ai ∩ Aj ∩
Ak); and there is 4!

4!0! = 1 term involving the probability of the intersection of all
four sets. �

3.6 Joint, Marginal, and Conditional Probability

Assume that the sample space S consists of the n simple events Ei, each with
probability P (Ei) = 1

n , i = 1, . . . , n. Let the events A1, A2, . . . , Ar represent a
partition of S (here Aj ⊆ S, Ap ∩ Aq = φ, p �= q, and ∪r

j=1Aj = S). In addition,
let a second collection of events B1, B2, . . . , Bs form a second partition of S(Bk ⊆
S, Bp ∩ Bq = φ, p �= q, and ∪s

k=1 Bk = S). Hence the n simple events of S may be
classified in a two-way table, Table 3.1. Here njk depicts the number of points or
simple events in S having attributes Aj and Bk.

Based upon this partitioning of S, we may first define the notion of joint
probability as the probability of the simultaneous occurrence of two (or more)

Table 3.1

Partition B

S B1 B2 · · · Bs

P
ar

ti
ti

on
A A1 n11 n12 · · · n1s n1·

n2·
...

nr·

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
Row Totals

A2 n21 n22 · · · n2s
...

...
... . . .

...
Ar nr1 nr2 · · · nrs

n·1 n·2 · · · n·s
n =

r∑

j=1

nj· =
s∑

k=1

n·k
︸ ︷︷ ︸

Column Totals



3.6 Joint, Marginal, and Conditional Probability 67

events. For instance, the probability that events A2 and B1 occur together is
P(A2 ∩ B1) = n21

n . In general,

P(Aj ∩ Bk) = njk

n
. (3.3)

Next, a marginal probability is computed whenever one or more criteria of classi-
fication are ignored. For instance, we may be interested only in the probability of
a single event A1 occurring (here we ignore the B partition) or in the probability
of the event B2 occurring alone (we now ignore the A partition). In the former
case P(A1) = n1·

n ; in the latter, P(B2) = n·2
n . Generally,

P(Aj) =
s∑

k=1

P(Aj ∩ Bk) =nj·
n

; P(Bk) =
r∑

j=1

P(Aj ∩ Bk) = n·k
n

. (3.4)

Finally, we have the concept of a conditional probability, where we are interested
in the probability of occurrence of one event given that another event has definitely
occurred. For example, if the event B1 has occurred, what is the probability that
A2 has also occurred? To answer this we need to consider the concept of the
effective sample space. That is, since B1 has definitely occurred, we can simply
ignore the last s − 1 columns in Table 3.1 and take as our effective sample space
only the first column of this table. Then the probability of A2 given B1 (denoted
as P(A2|B1) and read “the probability of A2 given B1”) is the number of elements
common to both A2 and B1 divided by the number of elements in B1 (the effective
sample space) or n21

n·1
. In general,

P(Aj|Bk) = P(Aj ∩ Bk)
P(Bk)

= njk/n
n.k/n

= njk

n.k
;

P(Bk|Aj) = P(Aj ∩ Bk)
P(Aj)

= njk/n
nj./n

= njk

nj.
.

(3.5)

Since the notion of a conditional probability is extremely important in its own
right, let us redefine this concept for any general sample space S. To this end, let
events A, B ⊆ S with P(B) �= 0. Then

P(A|B) = P(A ∩ B)
P(B)

. (3.6)

And if P(A) �= 0,

P(B|A) = P(A ∩ B)
P(A)

. (3.7)
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Since P(A ∩ B) appears in the numerator of each of these conditional probabilities,
it follows that

P (A ∩ B) = P(A/B) · P(B) = P(B/A) · P(A). (3.8)

Here (3.8) is often referred to as the multiplication law for probabilities.
We noted earlier that, by virtue of equation (3.4), P(Aj) = ∑s

k=1 P(Aj ∩ Bk);
that is, a marginal probability can be calculated as the sum of a set of joint prob-
abilities. Moreover, since each of these joint probabilities can be written, via the
multiplication law (3.8), as the product between a conditional probability and an
appropriate marginal probability (P(Aj ∩Bk) = P(Bk) ·P(Aj/Bk)), it then follows
that the preceding expression for P(Aj) can be rewritten as

P(Aj) =
s∑

k=1

P(Bk) · P(Aj/Bk). (3.4.1)

Equation (3.4.1) is termed the law of total probability (of event Aj on the partition
B1, . . . , Bs of S). In general, for events B1, . . . , B4 ⊆ S given in Figure 3.15 with
S = B1 ∪ B2 ∪ B3 ∪ B4, and B1 ∩ B2 ∩ B3 ∩ B4 = φ, we have, for event A ⊆ S,

P (A) =
4∑

i=1

P(A ∩ Bi) =
4∑

i=1

P(Bi) · P(A/Bi). (3.4.2)

B1 B2

B1 ∩ A B4 ∩ A B2 ∩ A

B3 ∩ A A

B4

B3

S

Figure 3.15 Law of total probability of A on the partition B1, . . . , B4 of S: P(A) = ∑4
i=1 P(A ∩ Bi).
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For nonempty events A, B, C ⊆ S, the following conditional probability rules hold
under the assumption that the indicated conditional probabilities exist:

P(A/A) = 1;

P(φ/A) = 0
(
Note: P(A/φ) is undefined.

)
;

if A ⊂ B, then P(A/C) < P(B/C);

P(A/B) = 1 − P(A/B);

P(A/B) = P(A) − P(A ∩ B)
1 − P(B)

;

P(A ∪ B/C) = P(A/C) + P(B/C) − P(A ∩ B/C);

if A ∩ B = φ, then P(A/B) = P(B/A) = 0;

P(A/S) = P(A).

Moreover, for events A1, A2, . . . , An within S, P
(∪n

i=1Ai/B
) ≤ ∑n

i=1 P (Ai/B). If
this sequence of events is mutually exclusive, then the expression holds as a strict
equality.

Example 3.6.1 Given the partition of S in Table 3.2, find P(A2 ∩ B3), P(A1 ∪
B2), P(B1), P(A2), and P(A1/B3). Based upon the preceding discussion:

P(A2 ∩ B3) = 8
20

,

P(A1 ∪ B2) = P(A1) + P(B2) − P(A1 ∩ B2) = 8
20

+ 3
20

− 1
20

= 10
20

,

P(B1) = 5
20

,

P(A2) = 1 − P(A2) = 1 − 12
20

= 8
20

,

P(A1/B3) = P(A1 ∩ B3)
P(B3)

= 4/20
12/20

= 4
12

. �

If the events C1, C2, . . . , Ct constitute a third partition of S(Cl ⊆ S, Cp ∩ Cq =
φ, p �= q, and ∪t

l=1Cl = S), then njkl represents the number of simple events within

Table 3.2

B1 B2 B3

A1 3 1 4 8

A2 2 2 8 12

5 3 12 20
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S possessing the attributes Aj, Bk, and Cl . Hence the joint probability that events
Aj, Bk, and Cl occur together is

P(Aj ∩ Bk ∩ Cl) = njkl

n
. (3.9)

The associated set of marginal probabilities for any pair of events is

P(Aj ∩ Bk) =
t∑

l=1

P(Aj ∩ Bk ∩ Cl) = njk.

n
,

P(Aj ∩ Cl) =
s∑

k=1

P(Aj ∩ Bk ∩ Cl) = nj.l

n
,

P(Bk ∩ Cl) =
r∑

j=1

P(Aj ∩ Bk ∩ Cl) = n.kl

n
,

(3.10)

and the set of marginal probabilities involving each event individually is, by virtue
of (3.10),

P(Aj) =
s∑

k=1

t∑

l=1

P(Aj ∩ Bk ∩ Cl) =
s∑

k=1

P(Aj ∩ Bk) =nj..

n
,

P(Bk) =
r∑

j=1

t∑

l=1

P(Aj ∩ Bk ∩ Cl) =
r∑

j=1

P(Aj ∩ Bk) =n.k.

n
,

P(Cl) =
r∑

j=1

s∑

k=1

P(Aj ∩ Bk ∩ Cl) =
r∑

j=1

P(Aj ∩ Cl) = n..l

n
.

(3.11)

If we combine (3.5) and (3.11), then we may alternatively express these marginal
probabilities of individual events in terms of conditional probabilities as

P(Aj) =
s∑

k=1

P(Aj ∩ Bk) =
s∑

k=1

P(Aj/Bk)P(Bk),

P(Bk) =
r∑

j=1

P(Aj ∩ Bk) =
r∑

j=1

P(Bk/Aj)P(Aj), (3.11.1)

P(Cl) =
r∑

j=1

P(Aj ∩ Cl) =
r∑

j=1

P(Cl/Aj)P(Aj).
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As far as conditional probabilities are concerned, we may, for instance, start with

P(Aj/Bk ∩ Cl) = P(Aj ∩ Bk ∩ Cl)
P(Bk ∩ Cl)

; P(Aj ∩ Bk/Cl) = P(Aj ∩ Bk ∩ Cl)
P(Cl)

. (3.12)

Clearly other conditional probabilities may be determined by reordering the
events Aj, Bk, and Cl . In addition, (3.12) may be used to determine a set of
equivalent representations for P(Aj ∩ Bk ∩ Cl), for example,

P(Aj ∩ Bk ∩ Cl) = P(Aj/Bk ∩ Cl) · P(Bk ∩ Cl)

= P(Aj/Bk ∩ Cl) · P(Bk/Cl) · P(Cl) (3.13)

by an application of (3.8).
Since the use of expressions such as (3.8) and (3.13) are quite common in prac-

tice (especially when repeated sampling from the same population is undertaken
or when decisions are sequential in nature), the generalization of these expres-
sions appears as follows: if n(≥ 2) is any integer and A1, A2, . . . , An represents a
sequence of events in S for which P(A1 ∩ A2 ∩ · · · ∩ An−1) �= 0, then

P(A1 ∩ A2 ∩ · · · ∩ An) = P(A1) · (A2/A1) · P(A3/A1 ∩ A2) · · ·
P(An/A1 ∩ A2 ∩ · · · ∩ An−1). (3.14)

Example 3.6.2 Suppose a jar contains 10 black and six white marbles. What
is the probability of selecting four black ones under repeated drawings without
replacement. If Bj denotes getting a black marble on the jth draw, then from (3.14),

P (B1 ∩ B2 ∩ B3 ∩ B4) = P(B1) · P(B2/B1) · P(B3/B1 ∩ B2) · P(B4/B1 ∩ B2 ∩ B3)

= 10
16

· 9
15

· 8
14

· 7
13

= 0.1153.

Letting Wi denote getting a white marble on the jth draw, the decision tree implied
by this experiment appears as Figure 3.16. You can readily demonstrate that:

P(B1 ∩ W2 ∩ W3 ∩ B4) = 10
16

· 6
15

· 5
14

· 9
13

= 0.0618,

P(W1 ∩ W2 ∩ B3 ∩ W4) = 6
16

· 5
15

· 10
14

· 4
13

= 0.0275,

and so on. �
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B4

B4

B4
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W4
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W3

W2

B2

8/13

9/14 B3

B3

B3

B2

W2

W1

W3

W3

W3

5/13

5/14 9/13

4/13

8/13

9/14

5/13

9/13

5/14

4/13

9/13

10/14 4/13

10/13

4/14 

Draw 3 

Draw 1

Draw 2

3/13
Draw 4

Source

10 9 8 7

16 15 14 13
P(B)1∩B2∩B3∩B4 = ⋅ ⋅ ⋅ = 0.1153

Figure 3.16 Decision tree under four repeated draws without replacement.

3.7 Classification of Events

First, events A, B ⊆ S are mutually exclusive if, on any given trial of a random
experiment, they cannot occur together. Here A ∩ B = φ so that P(A ∩ B) = 0.
For instance, if our random experiment involves the daily observation of the price
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of a given stock and we define events A = {the price of the stock increases},
B = {the price of the stock decreases}, then clearly these events cannot occur
simultaneously on any given day so that they are indeed mutually exclusive. We
may next classify events as collectively exhaustive if, on any given trial of a random
experiment, at least one of them must occur. The events A and B just defined
are not collectively exhaustive since, in structuring these events, we have not
accounted for all possible outcomes concerning the stock’s behavior. However, if
we introduce a third event C = {the price is unchanged}, then clearly the events
A, B, and C taken together are collectively exhaustive.

It is evident from the preceding discussion that events may be mutually
exclusive but not collectively exhaustive. Likewise, events may be collectively
exhaustive but not mutually exclusive. For instance, if we decide to observe the
daily prices of two stocks, then we may specify two additional events: D = {the
price of at least one increases}, E = {the price of at least one decreases}. Clearly
all possible outcomes are subsumed by these events and they can occur together.
Finally, it may be the case that events are simultaneously mutually exclusive and
collectively exhaustive, in which case exactly one of them occurs; for example, A,
B, C defined earlier satisfy this criterion. (See Figure 3.17 for a summary of these
characterizations.)

An additional classification scheme for a collection of events is that of inde-
pendence. In this regard, events A, B ⊆ S are independent if, on any given
trial of random experiment, the occurrence of one of them in no way affects
the probability of occurrence of the other. That is, A is independent of B if and
only if

P(A/B) = P(A), provided P(B) > 0; (3.15)

and B is independent of A if and only if

P(B/A) = P(B), provided P(A) > 0. (3.16)

It is evident that if A is independent of B, then B is independent of A. In this light,
the notion of independence is sometimes referred to as mutual independence.
From (3.8), we may form the multiplication rule for probabilities

P(A ∩ B) = P(B/A) · P(A) = P(A/B) · P(B).

Under independence, this expression becomes, using (3.15) and (3.16),

P(A ∩ B) = P (B) · P(A) = P(A) · P(B).

In short, events A and B are independent if and only if

P(A ∩ B) = P(A) · P(B). (3.17)

If inequality holds in (3.17), then A and B are said to be dependent events.
In general, events A, B ⊆ S are independent if and only if any one of the
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B

A ∩ B = φ

A ∪ B ⊂ S

Events A, B mutually exclusive
but not collectively exhaustive.

(a)

A ∩ B ≠ φ

A ∪ B = S

A ∩ B = φ

A ∪ B = S

Events A, B collectively exhaustive
but not mutually exclusive.

(b)

Events A, B mutually exclusive
and collectively exhaustive.

(c)

A

A 

A B

B

Figure 3.17 (a) Events A, B mutually exclusive but not collectively exhaustive; (b) Events A, B col-
lectively exhaustive but not mutually exclusive; (c) Events A, B mutually exclusive and
collectively exhaustive.

expressions (3.15) through (3.17) holds. We may note further that if A and B
are independent, then so are the pairs of events A, B; B, A; and A, B.

Can events be simultaneously mutually exclusive and independent? The
answer is, typically, no. If A ∩ B = φ (i.e., A and B are mutually exclusive),
the occurrence of A on a particular trial of a random experiment precludes the
occurrence of B (and conversely) so that the independence of these events should
be anticipated. In a sense, mutually exclusive events are actually dependent upon
each other; that is, the occurrence of one depends on the other not occurring.
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Events A and B

IndependentMutually Exclusive

A, B cannot occur
together, i.e., A ∩ B does
not exist or  A ∩ B = f so
that P(A ∩ B) = 0.

A, B can occur together,
i.e., A ∩ B ≠ f so that

P (A ∩ B) = P(A).P(B) ≠ 0.

Figure 3.18 Mutually exclusive versus independent events.

In general, P(A ∩ B) = 0 �= P(A) · P(B) unless one or both P(A) and P(B) are
zero. Thus two mutually exclusive events are independent if and only if either
P(A) = 0 or P(B) = 0 or both P(A) and P(B) equal zero. So if both P(A) and
P(B) are different from zero, then A and B mutually exclusive implies that they
are not independent; and the dependence of A and B implies that they are not
mutually exclusive. These remarks are summarized in Figure 3.18.

Looking to some special cases, if A ⊂ B, then B occurs if A does so that A
and B are dependent; that is, P(A ∩ B) = P(A) �= P(A) · P(B) unless B = S or
P(A) = 0. In addition, A and S are independent for any A ⊂ S (since P(A ∩ S) =
P(A) = P(A) · P(S)) as are A and φ (since P(A ∩ φ) = P(φ) = 0 = P(A) · P(φ)).

The events A, B, C ⊆ S are independent if and only if

(a) A, B, and C are pairwise independent; that is,

P(A ∩ B) = P(A) · P(B),

P(A ∩ C) = P(A) · P(C),

P(B ∩ C) = P(B) · P(C), and

(b) P(A ∩ B ∩ C) = P(A) · P(B) · P(C)

More generally, the events A1, A2, . . . , An within S are independent if and only if

P(Ai ∩ Aj) = P(Ai) · P(Aj), i �= j,

P(Ai ∩ Aj ∩ Ak) = P(Ai) · P(Aj) · P(Ak), i �= j, i �= k, j �= k, . . . , (3.18)

P(∩n
i=1Ai) =

n∏

i=1

P(Ai).

Let us now consider two particular types of dependence that may exist between
events A, B ⊆ S. These events are termed supplements if event B is more



76 Chapter 3 Probability Theory

likely to occur if event A has occurred; that is, A and B are supplements
when P(B/A) > P(B). Since from (3.8) P(A ∩ B) = P(B/A) · P(A), it follows
that A and B are supplements if P(A ∩ B) > P(B) · P(A). Next, events A and B
are substitutes if event B is less likely to occur when event A has occurred; that is,
P(B/A) < P(B). Thus, by an argument similar to that used earlier, A and B are
substitutes if P(A ∩ B) < P(B) · P(A). If A and B are mutually exclusive and if
both P(A), P(B) �= 0, then P(A) · P(A) > 0 so that mutually exclusive events are
by nature substitutes.

Example 3.7.1 Let us define a random experiment as the drawing of a card
from an ordinary deck of 52 playing cards. Based upon this simple experiment,
let us define the following set of events:

A = {a black card is drawn}

B = {a club is drawn}

C = {a red card is drawn}

It is easily seen that A and C are mutually exclusive but A and B as well as B
and C are not. Moreover, events A and C are collectively exhaustive but A and
B and B and C are not. Furthermore, since P(A) = 26

52 , P(B) = 4
52 , P(C) = 26

52 ,
P(A ∩ B) = 2

52 , P(B ∩ C) = 2
52 , and P(A ∩ C) = 0, it follows that

P(A ∩ B)
(1/26)

= P(A) · P(B)
(1/26)

,

P(A ∩ C)
(0)

�= P(A) · P(C)
(1/4)

,

P(B ∩ C)
(1/26)

= P(B) · P(C)
(1/26)

.

Thus the pairs of events A and B and B and C are independent, and A and C are
substitutes (and thus dependent). Looking at these results from another perspec-
tive, since P(A/B) = P(A∩B)

P(B) = 2
4 = P(A) and P(B/C) = P(B∩C)

P(C) = 2
26 = P(B),

the pairs of events A and B and B and C are neither supplements nor substi-
tutes (i.e., not dependent); in fact, they are independent as verified earlier. Also,
P(A/C) = P(A∩C)

P(C) = 0 < P(A) so that, as verified, A and C are substitutes. �

Finally, let us combine the notion of conditional probability with that of inde-
pendence of events in order to develop the concept of conditional independence.
Specifically, events A, B ⊆ S are conditionally independent given event C ⊆ S
if P(A ∩ B ∩ C) = P(A/C) · P(B/C). Given the presence of C, the occurrence
of, say, B does not affect the probability of occurrence of A. However, in the
absence of C, the occurrence of B may or may not influence the probability of A.
In this regard, events can be conditionally independent without being independent(
P(A ∩ B) �= P(A) · P(B)

)
and vice versa.
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Example 3.7.2 Suppose a student is selected at random from a statistics class
and let the following events be defined on S:

A: the student scored a 95 on the latest statistics exam

B: the student completes all of the assigned statistics homework problems

C: the student drinks root beer

Although we can safely assume that events A and B are probably not independent
or that P(A∩B) �= P(A)·P(B), it may be true that P(A∩B/C) = P(A/C)·P(B/C);
that is, studying has no effect on the student’s test score given that he or she likes
root beer. �

3.8 Sources of Probabilities

In this section we shall consider what may be called the sources or alternative
interpretations of probabilities. That is, how are probabilities determined?

First, we have what is termed the classical or a priori interpretation of probabil-
ity. Here we compute a theoretical probability without having to actually perform
a random experiment. In this regard, the classical approach exploits the physi-
cal structure of an implied experiment. The argument goes something like this.
If a random experiment has n mutually exclusive and equiprobable outcomes,
and if nA of them possess attribute A, then the probability of event A is its
relative frequency nA/n. For instance, we may ask: “What is the probability of
obtaining an odd number on the roll of a single die?” Obviously there are six
possible outcomes. Moreover, they are mutually exclusive and, if the die is prop-
erly balanced, the six outcomes are equiprobable; that is, for the random variable
X : X1 = 1, X2 = 2, . . . , X6 = 6, and P(X = Xi) = 1

6 , i = 1, . . . , 6. Thus we
can anticipate that each face would have the same relative frequency if this ran-
dom experiment were to be repeated a large number of times. In this regard,
the probability of obtaining an odd number on the roll of a die is nA

n = 3
6 . Note

that to calculate this probability we did not have to actually perform a random
experiment. If we are not familiar with the physical properties of the die, we could
argue via the principle of insufficient reason that we have no reason or evidence to
suppose that the die is biased in a particular direction. Thus, given our ignorance
about the die, we may impute equal probabilities to the outcomes given that the
outcomes are still mutually exclusive. These probabilities can then be modified
through experimentation if we collect empirical evidence to the contrary.

The second major source of probabilities is that of the subjectivist (or intuitivist)
approach. Here we are relying upon a best guess probability—a quantified degree
of belief. Such probabilities often relate to experiments that cannot be repeated
(e.g., the portfolio manager thinks that there is a 30% chance that the price of a
given stock will increase by 6% tomorrow).
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Finally, the third interpretation of probability involves the empirical-frequency
(or a posteriori ) approach. Here we determine an objective or empirical prob-
ability. The typical approach employed in determining empirical probabilities
is to compute the relative frequency of an event by actually performing a ran-
dom experiment. (Hence we do not obtain a theoretical relative frequency but
an empirical one.) To this end, if A is an event for a random experiment and if
that experiment is repeated n times and A is observed in nA of the n trials, then
the relative frequency of an event A is nA

n . Since this ratio varies from trial to trial,
what number is assigned to A as its probability? The answer lies in the frequency
limit principle: if in a large number n of repetitions of a random experiment the
relative frequencies nA

n of event A approach some number P(A), then this number
is ascribed to A as its probability,

lim
n→∞

nA

n
= P(A), (3.19)

where P(A) is to be interpreted as the expected limit of the relative frequencies.
Thus P(A) is some long-run stable value to which the relative frequencies converge
(see Figure 3.19).

Are these various interpretations of probability mutually exclusive? The
answer is, no. As Figure 3.20 reveals, there is considerable overlapping among
these three approaches to the determination of probabilities.

As a practical matter, there is really no need to strictly or formally interpret the
concept of probability at all. Each of these interpretative approaches to probability
theory can be viewed as a special subcase of a noninterpretative or axiomatic
approach to the calculation of probabilities. In fact, this is the approach that we
actually have been employing throughout this chapter. As we noted earlier, all we
need in order to determine the probability of some event is a probability measure
(set-to-point function) defined on S. The probability axioms 1–4 then specify the
general properties that the measure possesses. If we now consider this axiomatic

nA  n

1

0

A
n

n
→P(A) as n → ∞

P(A)

n

Figure 3.19 The frequency limit principle: P(A) is the expected limit of nA/n as n → ∞.
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Interpretation of Probabilities

Classical vs.   Subjectivist vs. Empirical-Frequency

Probabilities can be Probabilities can be determined
by observing reality and by the
processing of information, be it
historical or empirical.

determined a priori.

Probabilities can be specified objectively on purely
theoretical grounds—no need for intuition or personal belief.

Figure 3.20 Sources of probabilities.

approach as a fourth interpretation of probability, then it is evident that all four
approaches have the following in common:

(a) They enumerate events; that is, each possible outcome of some process under
study must be identified.

(b) This identification in (a) leads to the specification of S.

(c) Probability is simply the relative frequency of A in S.

3.9 Bayes’ Rule

Let the events A1, A2, . . . , An form a partition of the sample space S(S =
∪n

i=1Ai, Ai ∩ Aj = φ for i �= j and i, j = 1, . . . , n) with P(Ai) > 0 for all i. Let
event B ⊂ S with P(B) > 0 and suppose that B can occur only if one of the events
Ai, i = 1, . . . , n, occurs (see Figure 3.21).

A1

S 

B
A2

A3

A4 A5

Figure 3.21 Events A1, . . . , A5 partition S.
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The set of relationships that we have described can now be viewed in the
following light. Suppose we have certain factors (causes, inducements, stimuli, or
attributes) A1, A2, . . . , An with prior probabilities P(A1), P(A2), . . . , P(An), respec-
tively, that can each produce an outcome (effect, response, or consequence) B with
likelihood probabilities P(B/Ai), i = 1, . . . , n. The probabilities P(Ai), i = 1, . . . , n,
are established prior to any sampling or experimentation or gathering of empir-
ical evidence; the probabilities P(B/Ai), i = 1, . . . , n, are termed likelihoods in
that they indicate how likely the outcome B is given each of the possible factors
Ai, i = 1, . . . , n. Furthermore, we are interested in determining the posterior prob-
abilities P(Ai/B), i = 1, . . . , n, of the factors once the outcome B has been observed.
In general, a posterior probability is essentially a revised prior probability that is
based upon additional (sample or empirical) information; it is calculated after
some experimental outcome is observed.

In sum, for a fixed i, given the prior probability P(Ai) and the likelihood
P(B/Ai), we seek to determine the posterior probability P(Ai/B), i = 1, . . . , n.
Hence we want the probability of factor Ai given that we have observed
the experimental result of B. So after a trial of some random experiment
is performed, the prior probabilities are adjusted to reflect the experimental
response and thus subsequently replaced by the posterior probabilities. As we
shall now see, the posterior probabilities can be expressed in terms of prior
probabilities and the likelihoods of the sample outcome B given the factors
Ai, i = 1, . . . , n. To demonstrate this assertion we have Bayes’ Theorem.

BAYES’ THEOREM 3.9.1. Let the events A1, A2, . . . , An form a partition of
the sample space S with P(Ai) > 0, i = 1, . . . , n. For any event B ⊂ S with
P(B) > 0,

P(Ai/B) = P(Ai)P(B/Ai)
n∑

i=1
P(Ai)P(B/Ai)

, i = 1, . . . , n. (3.20)

Expression (3.20) is known as Bayes’ Rule. We may rationalize this result as
follows. Given B ⊂ S = ∪n

i=1Ai, it follows that B = ∪n
i=1(B ∩ Ai). If the Ai’s are

mutually exclusive, then so are the events B ∩ Ai, i = 1, . . . , n, and thus, from
axiom 4,

P(B) = P
(∪n

i=1(B ∩ Ai)
) =

n∑

i=1

P(B ∩ Ai). (3.21)

From the multiplication rule (3.8),

P(B ∩ Ai) = P(Ai)P(B/Ai), i = 1, . . . , n. (3.22)
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Then from (3.21) and (3.22),

P(Ai/B) = P(B ∩ Ai)
P(B)

= P(B ∩ Ai)
n∑

i=1
P(B ∩ Ai)

= P(Ai)P(B/Ai)
n∑

i=1
P(Ai)P(B/Ai)

, i = 1, . . . , n.

(3.23)

Example 3.9.1 Given events A1 = {an attribute is present} and A2 = {an
attribute is not present}, it is readily seen that S = A1 ∪ A2 and A1 ∩ A2 = φ.
Suppose that within some population there is a 5% chance that the attribute is
present and a 95% chance that it is not present. The implied prior probability
distribution is thus provided by Table 3.3a.

Let event B represent the occurrence of a positive outcome on a test performed
to detect the presence of the attribute. Experience dictates that: (a) if the attribute
is present, the test gives a positive result 90% of the time; (b) if the attribute is
not present, the test gives a false positive result 3% of the time. Suppose we
now randomly select an item from the population and test for the presence of the
attribute. Given a positive test result, what is the probability that the item actually
selected has the attribute? Here we are interested in the posterior probability
(see(3.20))

P(A1/B) = P(A1)P(B/A1)
P(A1)P(B/A1) + P(A2)P(B/A2)

= 0.05(0.90)
0.05(0.90) + 0.95(0.03)

= 0.6122.

Hence there is about a 61% chance that the item selected actually has the attribute
given that it tested positively for it. Similarly,

P(A2/B) = P(A2)P(B/A2)
P(A1)P(B/A1) + P(A2)P(B/A2)

= 0.95(0.03)
0.05(0.90) + 0.95(0.03)

= 0.3878.

Table 3.3

a. b. c.

Ai P(Ai) B/Ai P(B/Ai) Ai/B P(Ai/B)

A1 P(A1) = 0.05 B/A1 P(B/A1) = 0.90 A1/B P(A1/B) = 0.6122

A2 P(A2) = 0.95
1

B/A2 P(B/A2) = 0.03 A2/B P(A2/B) = 0.3878
1
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That is, there is about a 39% chance that the item selected does not have the
attribute even though it tested positively for it. The complete posterior probability
distribution is given in Table 3.3c. �

Example 3.9.2 Suppose that three vendors (call them A1, A2 , and A3) each
supply the XYZ Corp. with a miniature electronic component for its new DVD
player. Records indicate that vendorA1 supplies 45% of the gross shipment, ven-
dor A2 supplies 20% of the total shipment, and vendor A3 supplies the remaining
35%, with each vendor’s shipment to XYZ arriving at 7:00 a.m. each Monday. Fur-
thermore, it has been determined that, on average, 8% of vendor A’s components
are defective, and the percents defective for vendors A2 and A3 are 5% and 3%,
respectively. If one component is chosen at random from the week’s combined
shipment and it is found to be defective (event D), what is the probability that it
was supplied by vendor A2 ? Given the previous information sets, the prior and
likelihood distributions are provided by Tables 3.4a and b. Then from (3.20), the
posterior probability

P(A2/D) = P(A2)P(D/A2)
P(A1)P(D/A1) + P(A2)P(D/A2) + P(A3)P(D/A3)

= 0.20(0.05)
0.45(0.08) + 0.20(0.05) + 0.35(0.03)

= 0.1754.

Table 3.4

a. b. c.

Ai P(Ai) D/Ai P(D/Ai) Ai/D P(Ai/D)

A1 P(A1) = 0.45 D/A1 P(D/A1) = 0.08 A1/D P(A1/D) = 0.6316

A2 P(A2) = 0.20 D/A2 P(D/A2) = 0.05 A2/D P(A2/D) = 0.1754

A3 P(A3) = 0.35
1

D/A3 P(D/A3) = 0.03 A3/D P(A3/D) = 0.1842
1

So given that a defective item was randomly obtained, there is about an 18%
chance that it was supplied by vendor A2. The remaining posterior probabilities
are given in Table 3.4c. �

3.10 Exercises

3-1. The nonmanagerial employees of ABC Corp. are classified into the fol-
lowing mutually exclusive groups: production, development, sales, and
handling. The results of a recent union poll pertaining to the issue of
expanded health benefits in lieu of wage increases are presented in the
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accompanying table. Given that an employee is to be chosen at random,
determine each of the following probabilities.

Yes (Y) No (N ) Indifferent (I )

Production (P) 57 49 5
Development (D) 22 10 1
Sales (S) 37 55 2
Handling (H) 14 38 5

(Hint: First obtain the marginal totals and then convert this table into
a relative frequency table.)

(a) P(D ∩ N)

(b) P(D ∪ N)

(c) P(Y ∩ I)

(d) P(H ∩ Y)

(e) P(S ∪ N)

(f) P(D|Y)

(g) P(S|Y)

(h) Are employment status and poll result statistically independent?

3-2. For events A and B within a sample space S, let P(A) = 0.4, P(B) = 0.3,
and P(A ∩ B) = 0.1. Are events A and B mutually exclusive? Are they
collectively exhaustive? Are they independent events? Also, find:

(a) P(A)

(b) P(A ∪ B)

(c) P(A|B)

(d) P(B|A)

(e) P(B|A)

(f) P(A ∩ B)

(g) P(B|A ∪ B)

(h) P(B|A ∩ B)

(i) P(A ∩ B|A ∪ B)

3-3. Verify that for S a sample space and A ⊆ S, P(A) �= 0:

(a) P(S |A ) = 1

(b) P(φ |A ) = 0

3-4. A fair pair of (six-sided) dice is tossed and the values of the faces showing
are observed. List the points or simple events with coordinates (I, II) in the
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sample space S, where “I” denotes the outcomes on the first die and “II”
denotes the outcome on the second die. Let us define four subsets of S as:

A: the second die shows odd

B: the first die shows even

C: at least one number in the pair is odd

D: the sum of the faces is at least 8

Then list the simple events in

(a) B

(b) A ∪ C

(c) B ∪ D

(d) A ∩ C

(e) B ∩ D

(f) A ∪ C

(g) B ∪ D

(h) A ∩ B

Are B and C mutually exclusive?

3-5. At a particular university students have either undergraduate (U) or grad-
uate (G) status and either live in a dorm (D) or live off campus (O). One
hundred students were chosen at random: 77 were undergraduates, 80 lived
in the dorms, and 70 undergraduates lived in the dorms. Find:

(a) P(U ∪ D)

(b) P(U ∩ D)

(c) P(G|D)

(d) P(D|U)

(e) P(D|U)

3-6. Two ointments (call them A and B) for a particular type of skin disorder are
being tested. Ten percent of patients did not show any improvement after
one week. Half of them used ointment A. If (under randomization) it was
determined that 40% of the patients were assigned ointment A, find:

(a) The probability that a patient will not improve if he or she is assigned
ointment A.

(b) The probability that the patient will improve, given that he/she was
treated with ointment A.

3-7. For events A, B ⊆ S , the set difference A − B is the set of elements in A
that are not in B. Does A−B = A∩B ? Verify that P(A−B) = P(A∩B) =
P(A) − P(A ∩ B).
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3-8. If A and B are independent events with P(A) = 0.4 and P(B) = 0.3, find:

(a) P(A ∪ B)

(b) P(A ∩ B)

(c) P(A ∪ B)

(d) P(A|B)

(e) P(B|A)

3-9. In a lot of 200 manufactured items, 35 are defective. Two are drawn at
random without replacement. Find the probability that both are defective.

3-10. Given the following partitioning of the sample space S, find:

S A A

B 3 4
C 1 5
D 1 1
E 2 3

(a) P(A ∩ B)

(b) P(A ∪ C)

(c) P(B ∪ D)

(d) P(C ∩ E)

(e) P(A|D)

(f) P(D|C)

(g) P(A|C)

(h) P(A|B)

(i) P(E|C)

(j) P(E|A)

3-11. A vessel contains six blue and four red marbles. Three random draws are
to be made from the vessel in the following fashion: for each draw a marble
is selected and its color is recorded. It is then returned to the vessel along
with an additional marble of the same color. Determine the probability that
a red marble is selected on each of the three draws.

3-12. Forty percent of the subscribers to the Dear Hearts dating service are men
(M ) and 60% are women (W ). Among the men, 70% indicate that they
enjoy travel (T ) and 80% of the women state that travel is one of their
favorite activities. If a member is selected at random, what is the probability
that he or she enjoys travel? (Hint: T = (M ∩ T) ∪ (W ∩ T).)

3-13. For events A, B ⊆ S, prove that P(A ∪ B) = P(A) + P(B) − P(A ∩ B).
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3-14. A jar contains six red marbles and four blue ones. Three are drawn at
random without replacement. What is the probability that all are blue?
What is the probability of a blue on the first draw and red on the second
and third draws?

3-15. Suppose A and B are events within the sample space S and that P(A) =
P(B) = 1

2 .
Answer the following:

(a) If P(B |A ) = 1
2 , are A and B independent? Are A and B mutually

exclusive?

(b) If A and B are independent, what is the probability that “A occurs and
B does not occur or B occurs and A does not occur”?

(c) If event C ⊂ S and P(C
∣∣A ∩ B) = 1

2 , find P(A ∩ B ∩ C).

(d) If A and B are independent and P(B |A ) = 1
2 , find P(A ∪ B).

3-16. A fair coin is tossed twice in succession. Find:

(a) The probability of two heads given a head on the first toss.

(b) The probability of two heads given at least one head.

3-17. Suppose A, B, and C are events within the sample space S. Demonstrate
that P(A∩B∩C) = P(A) ·P(B |A ) ·P(C

∣∣A ∩ B), given that P(A∩B) �= 0.

3-18. A red and a blue die (each fair) are tossed simultaneously. Given the events:

A = {the sum of the faces is odd}

B = {the blue die shows 1}

C = {the sum of the faces is 7}

determine if:

(a) A and B are independent

(b) A and C are independent

(c) B and C are independent

3-19. For events A, B ⊆ S, demonstrate that:

(a) if B ⊆ A, then P(B) ≤ P(A)

(b) P(A ∩ B) ≥ 1 − P(A) − P(B)

3-20. A red and a blue die (both fair) are tossed simultaneously. Given the events:

A1 = {the red die shows odd}

A2 = {the blue die shows odd}

A3 = {the sum of the faces is odd}
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determine if A1, A2, and A3 are pairwise independent. Are A1, A2, and A3

all taken together independent?

3-21. Suppose we toss a fair six-sided blue die and a fair six-sided red die
simultaneously. What is the probability that:

(a) The sum of the faces showing is nine, given that the outcome on the
red die is five?

(b) A five occurs on the red die given that the sum of the faces showing is
nine?

3-22. A fair single six-sided die is tossed. For the events A1 = {the face shows
even}; A2 = {the face shows odd}; A3 = {3 or 4 shows}; A4 = {at least a 3
shows}; A5 = {5 or 6 shows}; and A6 = {at most a 4 shows}, determine which
events are mutually exclusive, collectively exhaustive, and simultaneously
mutually exclusive and collectively exhaustive.

3-23. Let the proportion of the women in the population with at least one college
degree be wc and the proportion of men in the population with at least
one college degree be mc. If the proportion of women in the population
is w, what is the probability that an individual chosen at random from the
population at large holds at least one college degree?

3-24. Two cards are to be randomly selected from an ordinary deck of 52 playing
cards. Determine the probability of drawing two aces if: (a) the first card is
not replaced; and (b) the first card is replaced before the second is drawn.

3-25. Suppose we toss a fair coin twice in succession (or we toss two fair coins
simultaneously). Define H1 as “heads on the first toss” and H2 as “heads on
the second toss.” Verify that H1 and H2 are independent events.

3-26. A coin and a die (each fair) are tossed simultaneously. Determine the simple
events within the sample space. Find:

(a) P(at least a 4 on the die)

(b) P(the coin shows heads)

(c) P(not more than 3 on the die and the coin shows tails)

3-27. If a theorem is specified in terms of n and involves a statement that some
relationship holds when n is any positive integer, then a proof of the theorem
by mathematical induction proceeds as follows:

1. Verify the theorem for n = 1 (usually).

2. Assume that the theorem holds for n = p.

3. Prove that the theorem holds for n = p + 1 .

Use mathematical induction to prove that for the finite sequence of events
A1, A2, . . . , An within S, P(∪n

i=1Ai) ≤ ∑n
i=1 P(Ai) . (Hint: Start with n = 2.)

3-28. A jar contains three white and seven black marbles. Two are drawn at ran-
dom without replacement. What is the probability that they are both white?
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What is the probability that they are of a different color? Represent the out-
comes of this experiment by a decision tree and determine all terminal node
probabilities.

3-29. Demonstrate that for a finite sequence of mutually exclusive events
A1, A2, . . . , An within S, P(∪n

i=1Ai |B ) = ∑n
i=1 P(Ai |B ).

3-30. Demonstrate that if A, B ⊆ S are independent events, then so are:

(a) A and B

(b) A and B

(c) A and B

3-31. Four aces are removed from an ordinary deck of 52 playing cards. The
remaining 48 cards are put aside and the four aces are shuffled and laid face
down on a table. Let us define the events:

C: the ace of clubs;

D: the ace of diamonds;

H: the ace of hearts; and

S: the ace of spades.

One card is to be selected at random. Determine if the events R =
{C, D}, Q = {C, H}, and T = {C, S} are independent.

3-32. Let A1, . . . , An be a set of events defined on S. Suppose S = ∪n
i=1Ai, P(Ai) >

0 for all i and Ai ∩ Aj = φ, i �= j. Then for any event B, verify that
P(B) = ∑n

i=1 P(B |Ai ) · P(Ai). (Hint: Use the distributive law A∩(B∪C) =
(A ∩ B) ∪ (A ∩ C).)

3-33. Suppose A and B are independent events in S. Does P(A∩B) = P(A)·P(B)?
(Hint: Apply the general addition rule, corollary 1, and DeMorgan’s law.)

3-34. A manufacturer of automatic garage door openers buys circuit boards from
three different suppliers: 40% of the total supply comes from Vendor A,
10% comes from Vendor B, and 50% comes from Vendor C. Since the
quality control standards of the vendors vary somewhat, experience indi-
cates that 2% of Vendor A’s shipments are defective, Vendor B ships 3%
defective, and 1% of Vendor C’s shipments have proven to be defective.
The manufacturer wants to determine the proportion of circuit boards in
the latest shipments that are defective.

3-35. Suppose we toss a single fair six-sided die and we observe the face showing.
Given the following events:

A: an even number occurs;

B: an odd number occurs; and

C: a 3 or 4 occurs,
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determine if:

(a) A and B are independent

(b) A and C are independent

(c) B and C are independent

(d) A and B are mutually exclusive

(e) B and C are mutually exclusive

3-36. Applicants at the ABC employment agency were asked if they had grad-
uated high school. The following table displays their responses to this
question.

High School Gender

Graduate (HSG) Male (M) Female (F)

Yes (Y) 40 30
No (N) 20 10

What is the probability that an individual chosen at random will be:

(a) Male and a HSG

(b) Either female or a HSG

(c) A HSG

(d) Male, given that the person chosen is a HSG

(e) Not a HSG, given that the person chosen is female

Are the categories HSG and Gender independent?

3-37. Twenty percent of the students in the freshman class of a certain college
have decided on a major and 80% have not. Among those who have already
chosen a major, 20% are planning to attend graduate school and only 2%
of those not having chosen a major are planning to go to graduate school. If
a freshman student is chosen at random, what is the probability that he or
she will be planning to attend graduate school? (As a solution aid, construct
a Venn diagram for this problem.)

3-38. Experience dictates that at a particular clinic, about 80% of those attempt-
ing to quit smoking by undergoing hypnosis actually have stopped smoking
for at least six months. If those patients are given this treatment in an inde-
pendent fashion, what is the probability that at least one will be successful
and stop smoking for at least six months?

3-39. Suppose we select two balls at random without replacement from a vessel
containing four red and six blue balls. Find the probability that:

(a) Both are red

(b) The second ball is red
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3-40. Prove that for events A, B, and C within S,

P(A ∪ B |C ) = P(A |C ) + P(B |C ) − P(A ∩ B |C ).

(Hint: Use the distributive law A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C). )

3-41. Prove that for events A, B ⊆ S, P(A ∩ B) = P(B) − P(A ∩ B).
(Hint: Let B = (A ∩ B) ∪ (A ∩ B). )

3-42. Bayes’ law has often been characterized as involving a reverse process of
reasoning; that is, reasoning from effect to cause. Comment.

3-43. Suppose events A1, . . . , An are contained within the sample space S. For
r = 3 and 4, verify that 2r − r − 1 equalities must hold for these events to
be independent.

3-44. Suppose A, B, and C are events in the sample space S. If events A and B
are independent, they might not be independent given C. Comment.

3-45. Sunflower seeds purchased from vendor A1 have an 85% germination rate.
Those purchased from vendor A2 have a 90% germination rate, and such
seeds purchased from vendor A3 have a 75% germination rate. A garden
center obtains 60% of its sunflower seeds from vendor A1, 10% from vendor
A2, and 30% from vendorA3 and mixes them together to form what it calls its
Sunshine Blend. Find:

(a) The probability that a seed selected at random from the blend will
germinate. Given that a seed has germinated, find:

(b) The probability that the seed was supplied by vendor A1

(c) By vendor A2

(d) By vendor A3

3-46. Passenger cars account for about 25% of all vehicles on the road. If a pas-
senger car is in an accident, there is about a 10% chance of a fatality; the
chance of a fatality is only 3% if an accident does not involve a passen-
ger car. Suppose an accident involving a fatality has occurred. What is the
probability that a passenger car was involved?

3-47. ACE Metal Products Corp. produces steel pins of a specific diameter. It
uses three machines (denoted as A, B, and C) in the initial grinding phase
of production. Machines A, B, and C have a history of producing 3%, 1%,
and 2.5% defective pins, respectively. Machine A produces 45% of total
production and machines B and C contribute 35% and 20%, respectively,
to total production. If a pin is randomly chosen from the total amount
produced for a given grinding phase production run, what is the probability
that it was produced by machine A, given that the pin was found to conform
to specifications?

3-48. A&E Opticians provide free adult screening for glaucoma with the pur-
chase of a pair of glasses. Let G be the event that the customer actually
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exhibits the early stages of glaucoma and let event T occur when the test
detects glaucoma. Suppose P(G) = 0.001. Determine the probability that
a customer actually has glaucoma given that the test result is positive.

3-49. Suppose a gem dealer has a 90% chance of correctly discriminating between
natural versus color-enhanced gemstones. If the dealer does appraisals and
75% of the gems that he or she examines are actually natural, what is the
probability that a gemstone is really color-enhanced, given that the dealer
classifies it as such?

3-50. Vessel A1 contains four white (W ) marbles, vessel A2 contains two red (R )
and two white marbles, and vessel A3 contains four red marbles. Suppose
P(A1) = 0.5, P(A2) = 0.4, and P(A3) = 0.1 . If a vessel is selected using
these probabilities and a marble is drawn at random, find:

(a) The probability of drawing a white marble P(W)

(b) The probability of selecting a red marble P(R)

(c) P(A1|W)

(d) P(A2|R)

(e) P(A1|R)
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44
Random Variables and
Probability Distributions

4.1 Random Variables

It was mentioned in the preceding chapter that a random variable X is a real-
valued function defined on a sample space S. In this regard, its role is to specify
the possible outcomes of a random experiment by relating the result of any such
experiment to a single numerical value. Furthermore, random variables may be
termed discrete or continuous.

A random variable is discrete if the number of values it can assume forms a
countable set; that is, this set has either a finite number of elements or its elements
are countably infinite in that they can be put into a one-to-one correspondence
with the positive integers. For instance, if the random variable X represents the
number of points obtained in the roll of a single six-sided die, then X takes on
a finite set of possible outcomes {1, 2, 3, 4, 5, 6}. But if the random variable X
is defined according to the rule “roll a single six-sided die repeatedly until a 4
appears for the first time,” then this could happen on the first roll (X = 1), on
the second roll (X = 2), on the third roll (X = 3), and so on. Clearly there are
infinitely many possibilities and thus X assumes the countably infinite set of values
{1, 2, 3, . . .}.

A random variable X is continuous if it can assume an infinite or uncountable
number of values over some interval. For instance, if on a line segment of length L
two points A and B are chosen at random, then a random variable can be defined
as X = |A − B| or the distance between A and B. Clearly X assumes an infinite
number of values on the interval 0 ≤ X ≤ L. In fact, variables measured in terms
of temperature, ounces, pints, and so on, can take on essentially any real value
over some appropriate interval.

93
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4.2 Discrete Probability Distributions

Let a sample space S consist of a finite or countable collection of simple events
Ei, i = 1, 2, . . ., each with a known probability P(Ei), i = 1, 2, . . .. In addition,
for X a discrete random variable defined on the simple events in S, let the range
of X be the set values R = {Xi, i = 1, 2, . . .}. Let f be a function that associates
with each Xi ∈ R a number f (Xi) ∈ [0, 1] representing the probability that
X = Xi; that is, P(X = Xi) = f (Xi), i = 1, 2, . . .. Here f (Xi) is termed the
probability mass at Xi. In general, a function f (X), which assigns a probability
f (Xi) to each number Xi within the range of a discrete random variable X, is called
a probability mass function if:

(a) f (Xi) ≥ 0 for all i;

(b)
∑

i

f (Xi) = 1; and

(c) f (Xi) = 0 for all Xi �∈ R.

(4.1)

Note that the value of the probability mass function is zero at all points other
than the Xi’s in R. The connection between S, X, and f is illustrated in Figure 4.1.
Typically f is represented by a table, a graph, or a mathematical equation.

To construct a discrete probability distribution we need two specific pieces of
information: (1) we need to specify the random experiment; and (2) we need to
define the random variable. Once this is done, the discrete probability distribution
will be completely specified once the sequence of probabilities f (X), i = 1, 2, . . .,
is given; that is, the discrete probability distribution is completely described by the
probability mass function taken over all values of the discrete random variable X .
Hence it can be represented as the set of all possible pairs

(
Xi, f (Xi)

)
, i = 1, 2, . . ..

Once a discrete probability distribution is determined, we may compute, for

S
X 

Ei •

(domain of X ) {X1, X2,..., Xi,...} {range of X = domain of f )

f

(range of f )

0 f (Xi) 1

Figure 4.1 The probability mass function f assigns a probability to each value of a discrete random
variable X .
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instance, probabilities such as:

(a) P(a ≤ X ≤ b) =
∑

a≤Xi≤b

f (Xi),

(b) P(X ≥ a) =
∑

Xi≥a

f (Xi),

(c) P(X < a) = 1 − P(X ≥ a) =
∑

Xi<a

f (Xi).

(4.2)

Example 4.2.1 Let a random experiment involve the rolling of a pair of fair
six-sided dice and let the random variable X be defined as the sum of the faces
showing. The sample space S (the domain of X) and the range of X are depicted
in Figure 3.12. If we place the sequence of Xi’s in the first column of Table 4.1,
we can easily determine the f (Xi)’s, i = 1, . . . , 11, given that P(Ej) = 1

36 for
all j = 1, . . . , 36. The probabilities associated with the Xi’s are given in column
two of Table 4.1. Hence the discrete probability distribution consists of the Xi’s
and their associated probabilities P(X = Xi) = f (Xi), i = 1, . . . , 11. In addition,
the graph of the discrete probability distribution or the probability mass function
f (X) appears in Figure 4.2. �

If in the preceding example our random experiment had consisted of rolling a
single fair six-sided die, then the resulting discrete probability distribution would
have f (Xi) = 1

6 , i = 1, . . . , 6. Any discrete probability distribution that has all prob-
ability masses equal to 1

n for each Xi, i = 1, . . . , n, is called a uniform probability
distribution.

It should be apparent that a discrete probability distribution is essentially a
theoretical frequency distribution in that it describes how the outcomes Xi, i =
1, 2, . . ., are expected to vary (or how we would expect our random experiment to

Table 4.1

X f (X) F (X)

X1 = 2 f (X1) = 1/36 F(X1) = 1/36
X2 = 3 f (X2) = 2/36 F(X2) = 3/36
X3 = 4 f (X3) = 3/36 F(X3) = 6/36
X4 = 5 f (X4) = 4/36 F(X4) = 10/36
X5 = 6 f (X5) = 5/36 F(X5) = 15/36
X6 = 7 f (X6) = 6/36 F(X6) = 21/36
X7 = 8 f (X7) = 5/36 F(X7) = 26/36
X8 = 9 f (X8) = 4/36 F(X8) = 30/36
X9 = 10 f (X9) = 3/36 F(X9) = 33/36

X10 = 11 f (X10) = 2/36 F(X10) = 35/36
X11 = 12 f (X11) = 1/36 F(X11) = 1

1
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7/36

6/36

5/36

4/36

3/36

2/36

1/36

1 2 3 4 5 6 7 8 9 10 11 12
X 

f(X)

Figure 4.2 The probability mass function for X equal to the sum of faces showing on the roll of a pair
of dice.

perform) under repeated sampling or trials in the long run. What is the connection
between a discrete probability distribution and the concept of a relative frequency
distribution introduced in Chapter 2? A relative frequency distribution for a vari-
able X is a discrete probability distribution if the total number of observations
or sum of the absolute frequencies corresponds to the population size N and the
observations are chosen at random.

Example 4.2.2 For the discrete probability distribution exhibited in Table 4.1,
it is easily demonstrated, using (4.2), that:

P(4 ≤ X ≤ 7) = f (X3) + f (X4) + f (X5) + f (X6) = 18
36

,

P(4 ≤ X < 7) = f (X3) + f (X4) + f (X5) = 12
36

,

P(X ≥ 9) = f (X8) + f (X9) + f (X10) + f (X11) = 10
36

,

P(X > 9) = f (X9) + f (X10) + f (X11) = 6
36

,

P(X < 9) = 1 − P(X ≥ 9) = 26
36

,

P(X < 4) = f (X1) + f (X2) = 3
36

. �
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At times we may find that a second random variable Y is defined on the same
sample space S and, in this circumstance, we may inquire as to whether or not
X and Y follow the same distribution. To determine this we need only note that
the random variables X and Y are identically distributed if for every event A ⊆ S,
P(X ∈ A) = P(Y ∈ A). Here it is not necessarily the case that X = Y .

Although f (Xi) gives the probability that the discrete random variable X
equals Xi exactly, we may consider a related function (derived from the f
values) that renders the probability that X assumes a value less than or equal
to Xi. In this regard, the cumulative distribution function (also called the cumula-
tive mass function) of a discrete random variable X, F(Xi), gives the probability
that X ≤ Xi or

F(Xi) = P(X ≤ Xi) =
∑

j≤i

f (Xj), (4.3)

with the Xi’s placed in increasing order.
Here the cumulative distribution function serves as an alternative representa-

tion of a discrete probability distribution.

Example 4.2.3 For the discrete random variable X depicted in Table 4.1, its
cumulative distribution function is displayed in column three of the same. Note
that, as required by (4.3),

F(X1) =
∑

j≤1

f (Xj) = f (X1) = 1
36

,

F(X2) =
∑

j≤2

f (Xj) = f (X1) + f (X2) = 3
36

,

F(X3) =
∑

j≤3

f (Xj) = f (X1) + f (X2) + f (X3) = 6
36

,

...

F(X11) =
∑

j≤11

f (Xj) = f (X1) + · · · + f (X11) = 1. �

As far as the properties of F(Xi) are concerned:

(a) 0 ≤ F(Xi) ≤ 1 for any Xi

(b) F(Xs) ≤ F(Xt) when Xs ≤ Xt (F is a monotone nondecreasing function of Xi)

(c) P(X > Xi) = 1 − P(X ≤ Xi) = 1 − F(Xi)

(d) P(X = Xi) = F(Xi) − F(Xi − 1) (Xi an integer)



98 Chapter 4 Random Variables and Probability Distributions

F(X )

F(Xi + 2)

F(Xi + 1)

F(Xi)

f (Xi ) = F(Xi ) − 0

f (Xi + 1) = F(Xi + 1) − F(Xi )

f (Xi + 2) = F (Xi + 2) − F(Xi  − 1) 

X

Xi Xi + 2Xi + 1

Figure 4.3 The cumulative distribution function for a discrete random variable X .

(e) P(Xs ≤ X ≤ Xt) = F(Xt) − F(Xs − 1) (X integer valued)

(f) P(Xs < X ≤ Xt) = F(Xt) − F(Xs)

(g) F(−∞) = lim
Xi→−∞

F(Xi) = 0, F(+∞) = lim
Xi→+∞

F(Xi) = 1

(h) F is continuous from the right, that is, lim
h→0
h>0

F(Xi + h) = F(Xi)

(4.4)

Two additional characteristics of (4.3) merit our attention. First, the domain of
the cumulative distribution function F is the set of all real values of X, not just
those within the range of X(R). Second, based upon (4.4h), the graph of F is a step
function that assumes the upper value at each jump; that is, F has a finite step or
discontinuity at any point Xi such that f (Xi) > 0, where the step size is f (Xi) itself.
In fact, if X assumes r distinct values and each has a positive probability, then F
displays r distinct steps (see Figure 4.3). In this regard, if we know X’s probability
mass function f, then we can easily find X’s cumulative distribution function F
via (4.3). Conversely, if we are given X’s cumulative distribution function, we can
just as easily find the associated probability mass function since each f value is the
finite step size occurring at each point within the range of X.

Example 4.2.4 Let us define a random experiment as the tossing of a fair coin
three times in succession and the associated random variable X as the number of
heads obtained in the three tosses. Then each outcome point or simple event in S
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Toss 3

T

E3

H

H T
Toss 2

H

T

Toss 1

Figure 4.4 Sample space when tossing a fair coin three times in succession.

is a triple of the form

(outcome on toss 1, outcome on toss 2, outcome on toss 3).

Hence the collection of all possible outcomes involves the eight simple events:

E1 = (H , H , H), E2 = (H , H , T), E3 = (H , T , T), E4 = (T , T , T),

E5 = (T , H , H), E6 = (T , T , H), E7 = (H , T , H), E8 = (T , H , T).

Each is a point in a three-dimensional sample space. (For instance, E3 = (H , T , T)
is plotted in S in Figure 4.4.)

Based upon the structure of S, the derived discrete probability distribution,
as characterized by its probability mass function, is presented in Table 4.2 along
with its cumulative distribution function. Alternatively, these two functions may

Table 4.2

X P (X = Xi) = f (Xi) P (X ≤ Xi) = F (Xi)

0 1/8 1/8
1 3/8 4/8
2 3/8 7/8
3 1/8 1—–

1
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F(X )

F(3) = 1

f(3) = F(3) − F(2)

f(2) = F(2) − F(1)

f(1) = F(1) − F(0)

f(0) = F(0) − 0

F(2) = 7/8

F(1) = 4/8

F(0) = 1/8

X 
0 1 2 3

Figure 4.5 Cumulative distribution function for X equal to the number of heads obtained in three
tosses of a fair coin.

be expressed mathematically as

f (X) =
{ 1

8 for X = 0, 3;
3
8 for X = 1, 2

and

F(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for X < 0;
1
8 for 0 ≤ X < 1;
4
8 for 1 ≤ X < 2;
7
8 for 2 ≤ X < 3;

1 for X ≥ 3

respectively. Finally, Figure 4.5 illustrates the cumulative distribution function
and exhibits its connection to the probability mass function. Note that by virtue of
(4.4d), the size of each vertical jump at Xi amounts to the probability mass there
or f (Xi) = P(X = Xi) = F(Xi) − F(Xi − 1). �
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4.3 Continuous Probability Distributions

Let a sample space S consist of a class of events representable by all open
and closed intervals (as well as by all half-open intervals and the rays [a, +∞),
(−∞, b]). Hence any random variable X defined on S must be continuous since
it can assume any value within some event A ⊆ S.1 In addition, let P be a prob-
ability measure or set function that associates with each event A ⊆ S a number
P(A) representing the probability that event A occurs. In general, a function f (x),
that defines the probability measure

P(A) = P(X ∈ A) =
∫

A
f (x)dx for every A ⊆ S (4.5)

is called a probability density function if

(a) f (x) ≥ 0 for all real x ∈ (−∞, +∞) and f (x) > 0 for x ∈ A

(b)
∫

A
f (x)dx exists for every A ⊆ S (e.g., f (x) has at most a finite

number of discontinuities over A ⊆ S)

(c)
∫

S
f (x)dx =

∫ +∞

−∞
f (x)dx = 1

(4.6)

So if the collection of all open and closed intervals constitutes the sample space
for a random variable X and if P(A) is determined by a probability density func-
tion f (x) as in (4.5), then X has a continuous probability distribution. In fact, a
continuous probability distribution is completely determined once the probability
density function f (x) is given.

If X is a continuous random variable with probability density f (x), then for
A = {x|a ≤ x ≤ b},

P(A) = P(a ≤ X ≤ b) =
∫ b

a
f (x)dx, (4.7)

that is, the probability that a continuous random variable X assumes a value
between a and b (inclusive) is the area under X’s probability density function
f (x) from a to b (see Figure 4.6a). Note that for X = a,

P(X = a) =
∫ a

a
f (x)dx = 0 (4.7.1)

1 If event A is an open interval, then A = {x|a < x < b}; if A is a closed interval, then A = {x|a ≤ x ≤ b}.
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f(x)

P(A)

(a, f (a))

f
f (a)

x a b x a b = a + Dx

A Dx

(a) (b)

f(x)

Figure 4.6 (a) Probability as area under the probability density function; (b) f (a) is the probability
density of X at point x = a.

since the area under f (x) at a single point is zero. (The probability assigned to any
finite set of points is also zero.) Hence it is immaterial whether A is specified as
an open or closed interval; that is,

P(a ≤ X ≤ b) = P(X = a) + P(a < X < b) + P(X = b) = P(a < X < b).

In view of (4.7.1) it is important to remember that for a continuous random
variable X , f (a) �= P(X = a). For X = a, f (a) is termed the probability density of
X at a. How shall we interpret f (a)? If we consider only a small section of f and
the rectangle formed under a slight increase in the value of x from a to b, then, as
Figure 4.6b indicates,

P(a ≤ X ≤ b) = P(a ≤ x ≤ a + �x) ≈ f (a)�x

for �x small. Then for a fixed,

lim
�x→0

P(a ≤ x ≤ a + �x)
�x

= f (a), (4.8)

the probability density of X at a. In general, the probability density at any fixed
x = a is the limiting value of the incremental change in the probability that a ≤
x ≤ a + �x per unit change in x as �x → 0. It is not P(X = a).
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f (x)

1/5

P(A)

2 3 5 7
x

Figure 4.7 The probability of event A given a uniform probability density function.

Example 4.3.1 Let f (x) be a uniform probability density function defined by

f (x) =
{

1
β−α

, α < x < β;

0 elsewhere.

For α = 2 and β = 7,

f (x) =

⎧
⎪⎨

⎪⎩

0, x ≤ 2;
1
5 , 2 < x < 7;
0, x ≥ 7

(see Figure 4.7). Find P(A) = P(3 ≤ X ≤ 5). From (4.7),

P(A) = 1
5

∫ 5

3
dx = 1

5
x
]5

3
= 2

5
. �

Under what circumstances can a function g(x) be used to obtain a probability
density function for a continuous random variable X? In general, any function
g(x) that satisfies:

(a) g(x) ≥ 0, x ∈ (−∞, +∞) (4.6.a)
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(b)
∫ +∞

−∞
g(x)dx exists (4.6.b)

(c)
∫ +∞

−∞
g(x)dx = K �= 0 (4.6.c)

may be used to obtain a probability density function of the form

f (x) = kg(x),

where k = 1
K is termed the normalizing constant, which renders

∫ +∞

−∞
f (x)dx = k

∫ +∞

−∞
g(x)dx = 1

K

∫ +∞

−∞
g(x)dx = 1

as required by (4.6c).

Example 4.3.2 Can

g(x) =
{

e−2x, x > 0;
0, x ≤ 0

be used to obtain a probability density function? Clearly g(x) ≥ 0 while

K =
∫ +∞

−∞
e−2xdx = lim

a→∞

∫ a

0
e−2xdx = lim

a→∞

(
−1

2
e−2x]a

0

)
= 1

2
.

Then k = 1
K = 2 and thus

f (x) = kg(x) =
{

2e−2x, x > 0;
0, x < 0.

If we choose A = {1 ≤ X ≤ 4}, then

P(A) =
∫ 4

1
f (x)dx = 2

∫ 4

1
e−2xdx = − e−2x]4

1 = 0.13496. �

Although (4.7) gives the probability that a continuous random variable
X with probability density function f (x) assumes a value within the interval
{x|a ≤ x ≤ b}, we may define a related function (derived from f ) that
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F(t )

1

F(a) = P(X ≤ a)

t 

a

Figure 4.8 Cumulative distribution function for a continuous random variable X .

yields the probability that X takes on a value less than or equal to some real
number t. This is the cumulative distribution function for a continuous random
variable X , or

F(t) = P(X ≤ t) =
∫ t

−∞
f (x)dx

(
= lim

a→+∞

∫ t

−a
f (x)dx

)
(4.9)

(see Figure 4.8). F(t) is a continuous function of t, its derivatives exist at every
point of continuity of f (x), and, at each such point, dF(t)/dt = f (t). (Hence the
integrand f (x) in (4.9) must be the value of the derivative of F at x.) Clearly
the cumulative distribution function serves as an alternative representation of a
continuous probability distribution. In fact, if we know X’s probability density
function f (x), then we can determine its cumulative distribution function using
(4.9). Conversely, if the cumulative distribution function F(t) is given, then we
can determine the probability density f (t) at each of its points of continuity by
dF(t)/dt = f (t).

Additional properties of the cumulative distribution function are:

(a) 0 ≤ F(t) ≤ 1

(b) F(a) ≤ F(b) when a < b (F is a nondecreasing function of t)

(c) F(−∞) = lim
t→−∞ F(t) = 0 and F(+∞) = lim

t→+∞ F(t) = 1

(d) F is everywhere continuous from the right at each t
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(e) for a < b, P(a ≤ X ≤ b) = P(a < X ≤ b)

= F(b) − F(a) =
∫ b

a
f (x)dx (or (4.7))

(f) if F has a point of discontinuity at t, then P(X = t) is the size of the
jump which F exhibits at t; and if F is continuous at t, then P(X = t) = 0

(4.10)

By virtue of (4.10e), we may rewrite (4.8) as

lim
�x→0

F(b) − F(a)
�x

= lim
�x→0

�F
�x

= F ′ = f (a)

as required at each point of continuity of f.

Example 4.3.3 For the uniform probability density function

f (x) =

⎧
⎪⎨

⎪⎩

0, x ≤ 2;
1
5 , 2 < x < 7;
0, x ≥ 7

we may obtain, from (4.9),

F(t) =
∫ 2

−∞
(0)dx + 1

5

∫ t

2
dx = 1

5
x]t

2 = t − 2
5

.

Then the cumulative distribution function may be expressed as

F(t) =

⎧
⎪⎨

⎪⎩

0, t < 2;
t−2

5 , 2 ≤ t ≤ 7;
1, t > 7

(see Figure 4.9). Since F(3) = 1
5 and F(5) = 3

5 , P(A) = P(3 ≤ X ≤ 5) =
F(5) − F(3) = 2

5 as determined earlier (see Figure 4.9). �

4.4 Mean and Variance of a Random Variable

Given a discrete probability distribution (Xi, f (Xi)), i = 1, 2, . . ., let us define
the mean of the discrete random variable X (or of X’s discrete probability



4.4 Mean and Variance of a Random Variable 107

F(t )

1

t 
2 7

Figure 4.9 Cumulative distribution function for a uniform probability density function.

distribution) as

E(X) =
∑

i

Xif (Xi)(= µ).2 (4.11)

Here E(X) denotes what is termed the mathematical expectation or simply the
expected value of X. Why does the mean of a discrete random variable have
this form? It should be intuitively clear that those values of X with relatively
high probabilities should carry relatively more weight in the calculation of the
mean of X. Hence (4.11) is actually a weighted mean of X, where the weights (or
probabilities) sum to one.

We may also note that E(X) is actually the long-run average value of the
discrete random variable X. That is, if we repeat (either actually or conceptually)
a random experiment over and over for an indefinitely large number of trials, then
E(X) is the value that we would expect to observe in the long run. On any given
trial the outcome E(X) may not occur and, in fact, E(X) might not even be an
actual value of X. In this regard, E(X) measures central tendency in that it is the
quantity around which the values of X tend to cluster. For instance, given the
following discrete probability distribution (see Table 4.3), it is evident that

E(X) = 30(06.) + 45(0.4) = 36.

2 E(X) exists if the sum
∑

i Xif (Xi) is absolutely convergent; that is, if
∑

i |Xi|f (Xi) converges and is
finite. For the vast majority of random variables absolute convergence of the sum in (4.11) occurs and
thus

∑
i Xif (Xi) itself converges or is finite as well. In what follows then we shall assume that all of

the given expectations exist.
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Table 4.3

X f (X)

30 0.60
45 0.40——

1

Hence in the long run, since 30 occurs 60% of the time and 45 occurs 40% of the
time, we expect the average value of X to be 36.

In general, if g(X) is a single-valued real function of the discrete random
variable X, then the expected value of g(X) is

E[g(X)] =
∑

i

g(Xi)f (Xi).3 (4.12)

Some important properties of the expectation (linear) operator are:

(a) E(a) = a (a is constant)

(b) E(a ± bX) = a ± bE(X) (a, b constants)

(c) E [(a + bX)n] =
n∑

i=0

(n
i

)
aibn−iE(Xn−i) (a, b constants)

(d) E

(
n∑

i=1

Xi

)
=

n∑

i=1

E(Xi)

(e) E [g(X) ± h(X)] = E [g(X)] ± E [h(X)] (for g, h functions of X)

(f) in general, for E(X) �= 0, E
(

1
X

)
�= 1

E(X)

(4.13)

The variance of a discrete random variable X (or of X’s discrete probability dis-
tribution) is defined as the expected value of the squared deviations from the
expectation or

V(X) = E
[
X − E(X)2] =

∑

i

(
Xi − E(X)

)2
f (Xi)(= σ 2). (4.14)

Example 4.4.1 Given the discrete probability distribution presented in Ta-
ble 4.4, it is easily demonstrated that

E(X) = 1(0.10) + 3(0.60) + 8(0.30) = 4.3

3 In general, if the discrete sum
∑

i |g(Xi)| f (Xi) is finite, then E[g(X)] exists.
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and thus, from (4.14),

V(X) = 10.89(0.10) + 1.69(0.60) + 13.69(0.30) = 6.21. �

If we perform the indicated squaring in (4.14) and employ the properties of expec-
tations given in (4.13) (remembering that E(X) is a constant), then we can derive
an alternative (computational) formula for calculating the variance of a discrete
random variable X,

V(X) = E(X2) − E(X)2 =
∑

i

X2
i f (Xi) − E(X)2. (4.14.1)

Employing the preceding probability distribution (see Table 4.4) we have, from
(4.14.1),

V(X) = 1(0.10) + 9(0.60) + 64(0.30) − (4.3)2 = 6.21.

If we take the positive square root of V(X), then we obtain the standard deviation
of our discrete random variable X or S(X) = √

V(X) (= σ ). Here S(X) serves as
a measure of dispersion of the Xi’s around the mean or expectation of X.

A few of the key properties of the variance of a discrete random variable X
are:

(a) V(a) = 0 (a is constant)

(b) V(aX) = a2V(X)

(c) the variance of a random variable need not always exist

(d) if E(X2) exists, then E(X) exists and thus V(X) exists. Hence the

existence of V(X) implies that E(X) exists

(4.15)

Given a discrete random variable X, we may express distance from the mean
of X in terms of standard deviation units by forming the standardized variable
Z = X−µ

σ
, where E(Z) = 0, S(Z) = 1. For any value Xi of X , Zi = Xi−µ

σ
tells

us how many standard deviations Xi is from the mean µ; that is, for any Xi,
Zi describes the relative location of Xi in the discrete probability distribution.

Table 4.4

X f (X) X − E(X)
(
X − E(X)

)2
X2

1 0.10 −3.3 10.89 1
3 0.60 −1.3 1.69 9
8 0.30 3.7 13.69 64—–

1.00
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If X represents a continuous random variable with probability density
function f (x), then the mean of X or the expectation of a continuous probability
distribution is written as

E(X) =
∫ +∞

−∞
xf (x)dx (4.16)

(provided, of course, that the integral in (4.16) converges to a finite value). In
general, if g(X) is a single-valued real function of a continuous random variable
X, then

E[g(X)] =
∫ +∞

−∞
g(x)f (x)dx (4.17)

provided
∫ +∞
−∞

∣∣g(x)
∣∣ f (x)dx exists.

It is interesting to note that if X is a continuous random variable with
probability density function

f (x)

{
> 0 for 0 < x < a < +∞;
= 0 elsewhere

and cumulative distribution function F(x), then

E(X) =
∫ a

0
[1 − F(x)] dx. (4.16.1)

Example 4.4.2 For instance, let

f (x) =

⎧
⎪⎨

⎪⎩

0, x ≤ 2;
1
5 , 2 < x < 7;
0, x ≥ 7

with

F(x) =

⎧
⎪⎨

⎪⎩

0, x < 2;
x−2

5 , 2 ≤ x ≤ 7;
1, x > 7.

Then from (4.11.1),

E(X) =
∫ 2

0
dx +

∫ 7

2

(
1 − x − 2

5

)
dx = x]2

0 +
∫ 7

2

(
7
5

− x
5

)
dx

= 2 + 7
5

x
]7

2
− 1

10
x2
]7

2
= 4.5 �



4.5 Chebyshev’s Theorem for Random Variables 111

To obtain the variance of a continuous probability distribution we may calculate

V(X) =
∫ +∞

−∞

(
(x − E(X)

)2
f (x)dx (4.18)

or

V(X) = E(X2) − E(X)2 =
∫ +∞

−∞
x2f (x)dx − E(X)2. (4.18.1)

Note that properties (4.13) and (4.15), as stated previously in terms of a discrete
random variable, carry over to continuous random variables as well.

4.5 Chebyshev’s Theorem for Random Variables

For X a discrete or continuous random variable with a finite expectation
(E(X) = µ) and variance (V(X) = σ 2), Chebyshev’s Theorem provides us with
limits, which are independent of the form of the distribution of X, to the probabil-
ities associated with events described in terms of a random variable and its mean
and variance (or standard deviation). Specifically,

CHEBYSHEV’S THEOREM. The probability that a random variable X will
differ absolutely from µ by at least ε is always less than or equal to σ 2

ε2 ; that is,

P(|X − µ| ≥ ε) ≤ σ 2

ε2
. (4.19)

Hence any deviation from µ by ε or more units can be no more probable
than σ 2

ε2 .

If ε = kσ , then (4.19) can be rewritten as

P(|X − µ| ≥ kσ) ≤ 1
k2

. (4.19.1)

or, alternatively,

P(|X − µ| < kσ) ≥ 1 − 1
k2

. (4.19.2)

A slightly more transparent way to view (4.19.2) is to rewrite it as

(µ − kσ < X < µ + kσ ) ≥ 1 − 1
k2

, (4.19.3)

that is, the probability that X lies within k standard deviations of µ is at least
1 − 1

k2.
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Let us rewrite (4.19.1) as

P
(∣∣∣∣

X − µ

σ

∣∣∣∣ ≥ k
)

= P(|Z| ≥ k) ≤ 1
k2

(4.20)

or

P(|Z| < k) ≥ 1 − 1
k2

. (4.20.1)

But this latter expression is equivalent to

P(−k < Z < k) ≥ 1 − 1
k2

. (4.20.2)

Hence the probability that the standardized random variable Z assumes a value
within k standard deviations of its mean is at least 1 − 1

k2 . (Remember that
the mean of Z is zero and its standard deviation is one.) By virtue of (4.20),
the probability of obtaining an X whose associated Z is at least 2 is at most 1

4 ;
and from (4.20.1), the probability of obtaining an X with a corresponding Z less
than 2 is at least 3

4 .

Example 4.5.1 Suppose that a random variable X has a mean of 50 and a stan-
dard deviation of 10. According to (4.19.1), the probability that an X value will
be at least 2.5 standard deviations from the mean or at least kσ = 25 units from
the mean is no greater than 1/(2.5)2 = 0.16. But from (4.20), this is equivalent to
the probability bound that Z will lie at least 2.5 units away from zero (in either
direction). Next, what is the probability limit on X lying within ±15 units of the
mean or within the interval 35 < X < 65? Setting X = X0 = 65, Z0 = 65−50

10 = 1.5.
Then from (4.20.1), P(|Z| < Z0) ≥ 1 − 1/Z2

0 or P(|Z| < 1.5) ≥ 1 − 0.444 = 0.556.
Hence the probability is at least 0.556. �

Although the probabilities determined by Chebyshev’s Theorem are distribu-
tion free, the bounds offered by these inequalities can be strengthened somewhat
if we assume that X’s probability distribution is both symmetrical and unimodal.
For instance, under these restrictions, (4.20) becomes

P(|Z| ≥ k) ≤ 4
9

(
1
k2

)
. (4.20.3)

Clearly this inequality provides a tighter bound on the indicated probability than
(4.20) itself.

A generalization of Chebyshev’s Theorem can be stated as follows: if g(X)
is a single-valued nonnegative real function of a random variable X and E[g(X)]
exists, then, for any positive constant ε,

P[g(X) ≥ ε] ≤ E [g(X)]
ε

.

For g(X) = (X − µ)2 and ε = k2σ 2, we obtain (4.19.1).
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In addition, we may examine an asymmetric variant of Chebyshev’s Theorem,
which applies to intervals containing E(X) = µ, but not necessarily as their
midpoint; that is, for a random variable X with E(X) = µ < +∞ and

√
V(X) =

σ < +∞ and for real constants t1, t2 > 0,

P(µ − t1σ < X < µ + t2σ) ≥ 1 − 4 + (t2 − t1)2

(t2 + t1)2
. (4.19.4)

4.6 Moments of a Random Variable

A moment of a random variable X is defined as the expected value of some partic-
ular function of X. In general, the moments of a probability distribution amount to
a collection of descriptive measures that can be used to characterize the location
and shape of the distribution. Hence a probability distribution can be completely
specified in terms of its moments. As we shall now see, moments of a random
variable typically are defined in terms of having either zero or the expectation of
X as the reference point.

For X a discrete random variable, the rth moment about zero is

µ′
r = E(Xr) =

∑

i

Xr
i f (Xi) (4.21)

(note that the first moment about zero is the mean of X or µ′
1 = E(X) = µ) and

the rth central moment of X or the rth moment about the mean of X is

µr = E [(X − µ)r] =
∑

i

(Xi − µ)rf (Xi). (4.22)

If X is a continuous random variable with probability density f (x), then, provided
the following integrals exist, we may correspondingly define

µ′
r = E(Xr) =

∫ +∞

−∞
xrf (x)dx; (4.23)

and

µr = E [(X − µ)r] =
∫ +∞

−∞
(x − µ)rf (x)dx. (4.24)
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It is easily verified that:

(a) the zeroth central moment of X is one (µ0 = E(X − µ)0 = E(1) = 1)

(b) the first central moment of X is zero (µ1 = E(X − µ) = E(X) − µ = 0)

(c) the second central moment of X is the variance of X or
µ2 = [

E(X − µ)2] = V(X) (4.25)

The first moment about zero locates the mean or measures central tendency of
a probability distribution and the second moment about the mean describes its
shape in terms of variation or dispersion about the mean. Additional information
about the shape of a probability distribution, as characterized by measures of
skewness and kurtosis, are provided by the third and fourth central moments of
X, respectively. In particular, we shall develop standardized (independent of units
and taken relative to σ ) measures of skewness and kurtosis.

In this regard, the third central moment of X is

µ3 = E
[
(X − µ)3] (4.26)

and the standardized third moment or the coefficient of skewness is

α3 = µ3

σ 3
= µ3

(µ2)3/2 , (4.27)

where the sign of α3 is determined by that of µ3; that is, for unimodal probability
distributions:

(a) If µ3 > 0, then α3 > 0 and thus X’s probability distribution is positively
skewed or skewed to the right.

(b) If µ3 < 0, then α3 < 0 and thus X’s probability distribution is negatively
skewed or skewed to the left.

(c) If µ3 = 0, then α3 = 0 and thus X’s probability distribution is symmetrical
(about the mean).

Next, the fourth central moment of X is

µ4 = E
[
(X − µ)4]

and the standardized fourth moment or the coefficient of kurtosis is

α4 = µ4

σ 4
= µ4

(µ2)2
. (4.29)
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If the peak of X’s probability distribution mirrors that of a normal distribution,
then α4 = 3. If α4 > 3 (respectively, < 3), then the peak of the probability
distribution is sharper (respectively, flatter) than that of a normal distribution.

For purposes of computational expedience, we may express any central
moment of a random variable X in terms of its moments about zero. Specifically,
since

(X − µ)r =
r∑

j=0

(−1)j
(

r
j

)
µjXr−j,

it follows that,

µr = E [(X − µ)r] =
r∑

j=0

(−1)j
(

r
j

)
µjE(Xr−j) =

r∑

j=0

(−1)j
(

r
j

)
µjµ′

r−j (4.30)

by virtue of (4.21) and the properties of the expectation operator depicted in
(4.13). So according to (4.30), we can readily demonstrate that:

µ2 = µ′
2 − µ2; (4.25.1)

µ3 = µ′
3 − 3µµ′

2 + 2µ3; (4.26.1)

µ4 = µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4. (4.28.1)

If we standardize the random variable X to obtain Z = X−µ

σ
, then, since E(Z) = 0,

the rth central moment of Z can be expressed in terms of the rth central moment
of X as

µr(Z) = E(Zr) = E
[(

X − µ

σ

)r]
= 1

σ r

[
E(X − µ)r = µr(X)

σ r

]
= µr(X)
(
µ2(X)

)r/2 .

(4.31)

Also, V(Z) = µ2(Z) = 1 and α3(Z) = α3(X) and α4(Z) = α4(X). Hence
standardizing a random variable X affects its mean and variance but not its
standardized third and fourth moments.
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Table 4.5

X f (X)

1 0.2
2 0.3
3 0.4
5 0.1—–

1.0

Example 4.6.1 Given the discrete probability distribution in Table 4.5, deter-
mine and interpret its standardized third and fourth moments or the coefficients
of skewness and kurtosis. From (4.21):

µ = E (X) =
∑

Xif (Xi) = 1(0.2) + 2(0.3) + 3(0.4) + 5(0.1) = 2.50,

µ′
2 = E(X2) =

∑
X2

i f (Xi) = 1(0.2) + 4(0.3) + 9(0.4) + 25(0.1) = 7.50,

µ′
3 = E(X3) =

∑
X3

i f (Xi) = 1(0.2) + 8(0.3) + 27(0.4) + 125(0.1) = 25.90,

µ′
4 = E(X4) =

∑
X4

i f (Xi) = 1(0.2) + 16(0.3) + 81(0.4) + 625(0.1) = 99.9.

Then from (4.25.1), (4.26.1), and (4.28.1), respectively,

µ2 = V(X) = µ′
2 − µ2 = 7.5 − (2.5)

2 = 1.25,

µ3 = µ′
3 − 3µµ′

2 + 2µ3 = 0.90,

µ4 = µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4 = 4.96.

Based upon this latter set of values we have, from (4.27) and (4.29), respectively,

α3 = µ3

µ3/2
2

= 0.64, α4 = µ4

µ2
2

= 3.17.

Since α3 > 0, this discrete probability distribution is slightly skewed to the right.
And with α4 > 3, the distribution has a peak that is slightly sharper than that of a
normal distribution. �

Example 4.6.2 Let the probability density function for a continuous random
variable X be

f (x) =
{

2x, 0 < x < 1;
0 elsewhere.
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Then from (4.23):

µ = E(X) =
∫ +∞

−∞
xf (x)dx = 2

∫ 1

0
x2dx = 2

3
x3]1

0 = 0.666,

µ′
2 = E(X2) =

∫ +∞

−∞
x2f (x)dx = 2

∫ 1

0
x3dx = 1

2
x4]1

0 = 0.500,

µ′
3 = E(X3) =

∫ +∞

−∞
x3f (x)dx = 2

∫ 1

0
x4dx = 2

5
x5
]1

0
= 0.400,

µ′
4 = E(X4) =

∫ +∞

−∞
x4f (x)dx = 2

∫ 1

0
x5dx = 1

3
x6
]1

0
= 0.333

and thus, from ( 4.25.1), (4.26.1), and (4.28.1), respectively,

µ2 = V(X) = µ′
2 − µ2 = 0.055,

µ3 = µ′
3 − 3µµ′

2 + 2µ3 = −0.007,

µ4 = µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4 = 0.007.

Finally, (4.27) and (4.29), respectively, yield

α3 = µ3

µ3/2
2

= −0.534, α4 = µ4

µ2
2

= 2.333.

With α3 < 0 we see that this continuous probability distribution is moderately
skewed to the left, and a4 < 3 indicates that its peak is a bit flatter than that of a
normal distribution. �

4.7 Quantiles of a Probability Distribution

The quantiles of a probability distribution (or of a random variable X) are posi-
tional values that divide the probability distribution (or the total area under X’s
probability density function) into a number of equal portions. In this regard,
the quantile of order p, 0 < p < 1, of a discrete probability distribution is a
value γp such that P(X < γp) ≤ p and P(X ≤ γp) ≥ p. If X is a continuous
random variable, then γp is the value such that P(X ≤ γp) = p. Note that if
p = 0.04, then we are interested in finding the fourth percentile; if p = 0.3, we
seek the thirtieth percentile or third decile; and if p = 0.5, we are looking for
the median (equivalently, the fiftieth percentile or fifth decile) of X’s probability
distribution.
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So for p = 0.5, the median of a discrete random variable X is the value γ0.5 such
that P(X < γ0.5) ≤ 0.5 and P(X ≤ γ0.5) ≥ 0.5. If X is a continuous random vari-
able, then the median is the value γ0.5 such that P(X ≤ γ0.5) = 0.5. Alternatively,
in the continuous case, γ0.5 is the value that satisfies

∫ γ0.5

−∞
f (x)dx =

∫ +∞

γ0.5

f (x)dx = 0.5.

Hence γ0.5 divides the probability distribution (or the area under the probability
density function) into two equal parts. Although γ0.5 is unique for a continuous
random variable, this may not be true for the discrete case.

Quantiles of a probability distribution can also be determined by directly
employing the cumulative distribution function of a random variable X. In this
regard, for the discrete case, the quantile of order p, γp, is the smallest number γ

satisfying F(γ ) ≥ p. For a continuous random variable, γp is the smallest number
γ satisfying F(γ ) = p.

Example 4.7.1 For the discrete probability distribution in Table 4.6, find the
fifteenth percentile or γ0.15 and the median or γ0.5. Since γ0.15 must satisfy P(X <

γ0.15) ≤ 0.15 and P(X ≤ γ0.15) ≥ 0.15, it is readily seen from Table 4.6 that
P(X < 4) = 0.0834 < 0.15 and P(X ≤ 4) ≥ 0.1668 > 0.15. Hence γ0.15 = 4.
Note also that X = 4 is the smallest number satisfying F(4) ≥ 0.15. To find the
median of this discrete probability distribution, let us consider the requirement
that P(X < γ0.5) ≤ 0.5 and P(X ≤ γ0.5) ≥ 0.5. Since P(X < 7) = 0.4170 < 0.5
and P(X ≤ 7) = 0.5838 > 0.5, we shall take γ0.5 = 7. Additionally, X = 7 is the
smallest value for which F(7) ≥ 0.5. �

Table 4.6

X f (X) F (X)

2 0.0278 0.0278
3 0.0556 0.0834
4 0.0834 0.1668
5 0.1112 0.2780
6 0.1390 0.4170
7 0.1668 0.5838
8 0.1390 0.7228
9 0.1112 0.8340

10 0.0834 0.9174
11 0.0556 0.9730
12 0.0278 1——–

1
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Example 4.7.2 Given that the probability density function for a continuous
random variable X appears as

f (x) =
{

2x, 0 < x < 1;
0 elsewhere

let us find the fortieth percentile of the associated continuous probability
distribution. Since generally P(X ≤ γp) = p, we have

P(X ≤ γ 0.4) =
∫ γ 0.4

−∞
f (x)dx = 2

∫ γ 0.4

0
x dx = x2]γ0.4

0 = γ 2
0.4.

Setting γ 2
0.4 = 0.4 renders γ 0.4 = +√

0.4 = 0.16. Hence 40% of the area beneath
f (x) lies below γ 0.4 = 0.16. Alternatively, since X’s cumulative distribution
function is

F (t) =
∫ t

−∞
f (x)dx or F(t) =

⎧
⎪⎨

⎪⎩

0, t < 0;
t2, 0 ≤ t ≤ 1;
1, t > 1

it is easily demonstrated that for F(γ ) = 0.4 or γ 2 = 0.4, we again get γ = γ0.4 =
+√

0.4 = 0.16. To also find the median of this probability distribution, let us
calculate

∫ +∞

γ 0.5

f (x)dx = 2
∫ 1

γ 0.5

xdx = x2]1
γ 0.5

= 1 − γ 2
0.5.

Then, since we require that 1 − γ 2
0.5 = 0.5, γ 2

0.5 = 0.5 or γ 0.5 = +√
0.5 = 0.7071.

And since F(γ ) = 0.5 or γ 2 = 0.5, we again obtain γ = γ 0.5 = 0.7071. �

4.8 Moment-Generating Function

In this section we shall consider a convenient alternative to the direct computation
of moments of a random variable X. Specifically, we shall examine what is called
the moment-generating function of X. Although this function is a useful device for
determining moments about zero as well as central moments of a random variable,
it can also be used to easily derive the distribution of a sum of independent random
variables. Moreover, once the moment-generating function of a random variable
X has been determined, it can be compared to the moment-generating functions
of some well-known random variables. If it turns out that the moment-generating
function of X is identical to that of a well-known random variable Y, then X and
Y must have identical probability distributions.
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Let X be a discrete or continuous random variable. The moment-generating
function of X, denoted mX (t), is defined as E(etX ) provided that the expectation
exists for every t satisfying |t| < t0, t0 > 0. That is, mX (t) exists if there exists a
positive constant t0 such that E(e tX ) is finite for all −t0 < t < t0. Hence E(e tX )
must exist near or within some suitably restricted neighborhood of t = 0. In this
regard, either

mX (t) = E(e tX ) =
∑

i

e tXi f (Xi) [Xdiscrete] (4.32)

or

mX (t) = E(e tX ) =
∫ +∞

−∞
e txf (x)dx. [Xcontinuous] (4.33)

(If t = 0, then mX (0) = E(e0) = 1.)
We note briefly that:

(a) mX (t) is a function of the dummy real variable t; that is, the parameter t has
no real meaning save that it is a purely mathematical device which, as we shall
soon see, serves as the moment generator.

(b) If mX (t) exists, then it is unique and completely specifies the probability
distribution of X.

(c) If two random variables have the same moment-generating function, then
they have the same probability distribution.

(d) If mX (t) exists, then it is continuously differentiable in some neighborhood
of the origin; that is, the derivatives of all orders of mX (t) will exist at
t = 0. Hence mX (t) will generate all moments of X about zero under suitable
differentiation. In this regard, if mX (t) exists, then for any positive integer r,

m(r)
X (0) = dr

dtr
mX (t) |t=0 = E(Xr) = µ′

r . (4.34)

If µ′
r exists, then all moments µ′

k exist for k ≤ r.

(Note that if X is a continuous random variable, then we are implicitly assuming
that we can differentiate under the integral sign.)

To see exactly how (4.34) is applied, let us assume that the derivative operator
distributes over the expectation operator. In fact, interchanging the operations of
differentiation and expectation is permissible if the sum or integral defining the
moment-generating function converges uniformly. Then

m(1)
X (t) = d

dt
E(etX ) = E

(
d
dt

etX
)

= E(XetX )
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so that

m(1)
X (0) = E(X) = µ′

1;

m(2)
X (t) = d2

dt2
E(etX ) = E

(
d2

dt2
etX
)

= E
(

d
dt

XetX
)

= E(X2etX )

and thus

m(2)
X (0) = E(X2) = µ′

2.

In general,

m(r)
X (t) = dr

dtr
E(etX ) = E

(
dr

dtr
etX
)

= E(XretX )

with

m(r)
X (0) = E(Xr) = µ′

r .

It is instructive to obtain (4.34) in an alternative fashion by replacing etX by its
Maclaurin’s series expansion

etX = 1 + tX + (tX)2

2! + (tX)3

3! + · · · . (4.35)

(In general, eg(t) = 1 + g(t) + g(t)2/2! + g(t)3/3! + · · · .) Under this representation
mX (t) is expressible as a function of all moments about zero. That is, for X discrete
and µ′

i finite, i = 1, 2, 3, . . .,

mX (t) = E(etX ) =
∑

i

etXi f (Xi)

=
∑

i

[
1 + tXi + (tXi)2

2! + (tXi)3

3! + · · ·
]

f (Xi)

=
∑

i

f (Xi) + t
∑

i

Xi f (Xi)

+ t2

2!
∑

i

X2
i f (Xi) + t3

3!
∑

i

X3
i f (Xi) + · · ·

= 1 + tµ′
1 + t2

2!µ
′
2 + t3

3!µ
′
3 + t4

4!µ
′
4 + · · · .

(4.36)

Thus the coefficient on tk

k! is µ′
k = E(Xk), k = 1, 2, 3, . . . .
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Given (4.36), the rth derivative of mX (t) with respect to t evaluated at t = 0
yields µ′

r . That is, for, say,

m(1)
X (t) = µ′

1 + µ′
2t + µ′

3
t2

2! + µ′
4

t3

3! + · · · ,

m(2)
X (t) = µ′

2 + µ′
3t + µ′

4
t2

2! + · · · , and

m(3)
X (t) = µ′

3 + µ′
4t + · · · ,

it follows that m(1)
X (0) = µ′

1, m(2)
X (0) = µ′

2, and m(3)
X (0) = µ′

3 as required by (4.34).
So if we can determine E(etX ), then we can find any of the moments about zero
for X.

In a similar fashion we can determine that if X is continuous and mX (t) exists,
then, via (4.35),

mX (t) = E(etX ) =
∫ +∞

−∞
etxf (x)dx

=
∫ +∞

−∞
(1 + tx + (tx)2

2! + (tx)3

3! + · · · )f (x)dx

=
∫ +∞

−∞
f (x)dx + t

∫ +∞

−∞
xf (x)dx

+ t2

2!
∫ +∞

−∞
x2f (x)dx + t3

3!
∫ +∞

−∞
x3f (x)dx + · · ·

= 1 + tµ′
1 + t2

2!µ
′
2 + t3

3!µ
′
3 + t4

4!µ
′
4 + · · ·

(4.37)

for µ′
i finite, i = 1, 2, 3, . . . . Here too it is easily demonstrated via the successive

differentiation of (4.37) that (4.34) holds.

Example 4.8.1 A fair coin is tossed three times in succession, with a suc-
cess defined as getting heads on any individual toss. If the random variable X
depicts the number of heads obtained, then X’s probability distribution appears in
Table 4.7.

From (4.32), the moment-generating function for X is

mX (t) = E(etX ) =
∑

i

etXi f (Xi)

= 1
8

et(0) + 3
8

et(1) + 3
8

et(2) + 1
8

et(3)

= 1
8

+ 3
8

et + 3
8

e2t + 1
8

e3t .
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Table 4.7

X P (X = Xi) = f (Xi)

0 1/8
1 3/8
2 3/8
3 1/8——

1

Then

m(1)
X = 3

8
et + 6

8
e2t + 3

8
e3t , m(2)

X = 3
8

et + 12
8

e2t + 9
8

e3t ,

and thus

m(1)
X (0) = µ′

1 = 1.5, m(2)
X (0) = µ′

2 = 3.

Hence for this discrete probability distribution µ = 1.5 and σ 2 = µ′
2 − (µ′

1)2 =
0.75. �

Example 4.8.2 Let the (exponential) probability density function for the
continuous random variable X appear as

f (x) =
{

θe−θx, x > 0, θ > 0;
0 elsewhere.

From (4.33) and for t < θ ,

mX (t) = E(etX ) = θ

∫ +∞

−∞
etxe−θxdx

= θ

∫ +∞

0
e(t−θ)xdx = θ lim

a→∞

∫ a

0
e(t−θ)xdx

= θ

t − θ
lim

a→∞ e(t−θ)x
]a

0
= θ

θ − t
.

Then

m(1)
X (t) = θ

(θ − t)2
, m(2)

X (t) = 2θ

(θ − t)3
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and thus

m(1)
X (0) = µ′

1 = 1
θ

, m(2)
X (0) = µ′

2 = 2
θ2

.

Again µ = 1
θ

while σ 2 = µ′
2 − (µ′

1)2 = 1
θ2 . �

Example 4.8.3 Suppose that a continuous random variable X exhibits a uniform
distribution with probability density function

f (x) =
{

1, 0 < x < 1;
0 elsewhere.

From (4.34),

µ′
k =

∫ 1

0
xkdx = 1

k + 1
xk+1

]1

0
= 1

k + 1
.

And from (4.33), for t �= 0,

mX (t) = E(etX ) =
∫ 1

0
etxdx = 1

t
etx
]1

0
= 1

t
(et − 1).

To get µ′
k from mX (t), let us employ (4.35) so as to obtain

mx(t) = 1
t

(1 + t + t2

2! + t3

3! + · · · + tk+1

(k + 1)! + · · · − 1)

= 1 + t
2! + t2

3! + · · · + tk

(k + 1)k! + · · · .

Since µ′
k is the coefficient on tk

k! , it follows from the preceding expression that
µ′

k = 1
k+1 . �

Next, let g(X) be a single-valued function of the random variable X. The
moment-generating function of g(X), denoted mg(X)(t), is defined as E(eg(X)t)
provided that the expectation exists (is finite) for every t satisfying |t| < t0, t0 > 0.
In this regard, either

mg(X)(t) = E(eg(X)t) =
∑

i

etg(Xi)f (Xi) [X discrete] (4.38)

or

mg(X)(t) = E(eg(X)t) =
∫ +∞

−∞
etg(x)f (x)dx. [X continuous] (4.39)
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To generate central moments of a random variable X, let us set g(X) = X − µ in
either (4.38) or (4.39). Then the moment-generating function of X-µ or the central
moment-generating function, denoted mX−µ(t), is defined as E(et(X−µ)) provided
that the expectation exists for every t satisfying |t| < t0, t0 > 0. Hence either

mX−µ(t) = E(et(X−µ)) =
∑

i

et(Xi−µ)f (Xi) [X discrete] (4.38.1)

or

mX−µ(t) = E(et(X−µ)) =
∫ +∞

−∞
et(x−µ)f (x)dx. [X continuous] (4.39.1)

If mX−µ(t) exists, then it is continuously differentiable in some neighborhood of
t = 0. Hence successively differentiating mX−µ(t) with respect to t and evaluating
the resulting derivatives at t = 0 enables us to obtain the central moments of
X (provided that the derivative operator again distributes over the expectation
operator). That is, if mX−µ(t) is finite, then for any positive integer r,

m(r)
X−µ(0) = dr

dtr
mX−µ(t)

∣∣∣∣
t=0

= E[(X − µ)r] = µr . (4.40)

To see exactly how the central moments of X are derived using the central moment-
generating function, let us find

m(1)
X−µ(t) = d

dt
E(et(X−µ)) = E

(
d
dt

et(X−µ)
)

= E
[
(X − µ)et(X−µ)

]

so that

m(1)
X−µ(0) = E(X − µ) = µ1 = 0;

m(2)
X−µ(t) = d2

dt2
E(et(X−µ)) = E

(
d2

dt2
et(X−µ)

)

= E
[

d
dt

(X − µ)et(X−µ)
]

= E
[
(X − µ)2et(X−µ)

]

and thus

m(2)
X−µ(0) = E

[
(X − µ)2] = µ2.

In general,

m(r)
X−µ(t) = dr

dtr
E
(

et(X−µ)
)

= E
(

dr

dtr
et(X−µ)

)
= E

[
(X − µ)ret(X−µ)

]
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with

m(r)
X−µ(0) = E [(X − µ)r] = µr .

We may obtain the central moments of X in an alternative fashion by replacing
et(X−µ) by its Maclaurin’s series expansion

et(X−µ) = 1 + t(X − µ) + t2(X − µ)2

2! + t3(X − µ)3

3! + · · · . (4.41)

Then for X discrete or continuous and for µi finite, i = 1, 2, 3, . . .,

mX−µ(t) = E
(

et(X−µ)
)

= 1 + tµ1 + t2

2!µ2 + t3

3!µ3 + t4

4!µ4 + · · · . (4.42)

Thus the coefficient on tk

k! is E
[
(X − µ)k

] = µk, k = 1, 2, 3, . . . . If we now take the
derivatives of (4.42) with respect to t and evaluate the same at t = 0, then (4.40)
holds for positive integer values of r. So if we can determine E

(
et(X−µ)

)
, then we

can find any of the central moments of X.

Example 4.8.4 Given the probability density function appearing in example
4.8.3 above, let us directly determine the central moment-generating function of
X for t �= 0 as

mX−µ(t) = E
(

et(X−µ)
)

=
∫ 1

0
et(x−µ)dx = e−tµ

∫ 1

0
etxdx = 1

t
e−tµ(et − 1).

Then

mX−µ(t) = 1
t

e−µt(et − 1), t �= 0.

Using (4.35) we may rewrite mX−µ(t), t �= 0, as

mX−µ(t) = e−tµ
(

1 + t
2! + t2

3! + · · · + tk

(k + 1)! + · · ·
)

.

You should verify that (4.40) holds for r = 1, 2; that is, m(1)
X−µ(0) = 0 and

m(2)
X−µ(0) = 1

12 . �
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What is the connection between the moment-generating function of X and the
moment-generating function of X − µ? It is readily seen that

mX−µ(t) = E
(

et(X−µ)
)

= e−tµE(etX ) = e−tµmX (t). (4.43)

So if mX−µ(t) is known and we desire to find moments of X about zero, (4.43)
renders

mX (t) = etµmX−µ(t); (4.43.1)

and if mX (t) is known, central moments of X directly follow from (4.43). (Note
that the connection between mX (t) and mX−µ(t) as given by (4.43) was anticipated
from the form of the solution offered in the preceding example problem.)

In what follows we shall assume that for each of the functional forms specified
for g(X), E(etg(X)) exists in some neighborhood of t = 0. Then for X discrete or
continuous and b > 0:

(a) if g(X) = a + bX , then mg(X)(t) = etamX (tb), − t0
b

< t <
t0
b

;

(b) if g(X) = a + bh(X), then mg(X)(t) = etamh(X)(tb), − t0
b

< t <
t0
b

; and

(4.44)

(c) if g(X) = X + a
b

, then mg(X)(t) = eta/bmX

(
t
b

)
, −bt0 < t < bt0.

(What adjustment in the neighborhood of t must be made if b < 0?)

Example 4.8.5 Suppose X is a continuous random variable with mean µ and
variance σ 2. Let Z = (X −µ)/σ . Clearly the first and second moments of Z about
zero are E(Z) = 0 and E(Z2) = 1 respectively and, from (4.44.c),

mZ(t) = E(etZ) = e−tµ/σ mX

(
t
σ

)
, −σ t0 < t < σ t0. �

4.9 Probability-Generating Function

In what follows we shall consider a convenient computational device for gener-
ating: (1) the probabilities associated with a certain class of discrete probability
distributions; and (2) the factorial moments of the same. Specifically, suppose that
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a discrete random variable X serves to index a count of items and thus assumes
only nonnegative integer values; that is, X = 0, 1, 2, . . . . (Examples of such distri-
butions are the uniform, Bernoulli, binomial, negative binomial, hypergeometric,
geometric, and Poisson, among others.)

Our usual notation for depicting the probability mass function for a discrete
random variable X is to list the various values of X as X1, X2, . . . , Xn and their
respective probabilities as f (X1), f (X2), . . . , f (Xn), where f (Xi) = P(X = Xi),
i = 1, . . . , n. However, since X is a count random variable, let us set Xi = i with
f (i) = P(X = i), i = 0, 1, 2, . . . . Armed with these considerations, the probability-
generating (factorial-generating) function of X, denoted φX (t), is defined as E(tX ),
with t serving as a dummy parameter, provided that the expectation exists; that
is, φX (t) is finite over some range of values containing both t = 0 and t = 1.
(As we shall now see, t has a dual role—factorial moments may be obtained
from the derivatives of E(tX ) as the factorial generator t → 1, and probabili-
ties may be obtained from the same as the probability generator t → 0.) In this
regard,

φX (t) = E(tX ) =
∑

i

tif (i). (4.45)

(If t = 0, φX (0) = f (0); if t = 1, φX (1) = 1.)
We note briefly that:

(a) φX (t), if it exists, is unique and completely determines the probability
distribution of the discrete random variable X.

(b) If two discrete random variables have the same probability-generating
function, then they have the same probability distribution.

(c) If φX (t) exists, then it is continuously differentiable near t = 0 and t = 1.
Hence φX (t) will generate all factorial moments of X near t = 1 and all
probabilities of X near t = 0 under suitable differentiation; that is, if φX (t)
exists, then for a positive integer r, the rth factorial moment of X is

φ
(r)
X = dr

dtr
φX (t)

∣∣
t=1 = E [X(X − 1) · · · (X − r + 1)] = fr (4.46)

(notice the factorial structure to (4.46)) while the probability that X = r is

φ
(r)
X (0) = 1

r!
dr

dtr
φX (t)

∣∣
t=0 = f (r). (4.47)
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To generate the factorial moments of X, let us first successively differentiate
(4.45) with respect to t so as to obtain:

φ
(1)
X (t) = d

dt
E(tX ) = E

(
d
dt

tX
)

= E
(
XtX−1) ;

φ
(2)
X (t) = d2

dt2
E(tX ) = E

(
d
dt

XtX−1
)

= E
[
X(X − 1)tX−2] ; and

...

φ
(r)
X (t) = dr

dtr
E(tX ) = E

(
dr

dtr
tX
)

= E
[
X(X − 1) · · · (X − r + 1)tX−r] ,

where r is a positive integer. (Here we are implicitly assuming that the derivative
operator distributes over the expectation operator.) Then at t = 1:

φ
(1)
X (1) = E(X) = f1;

φ
(2)
X (1) = E [X(X − 1)] = E(X2) − E(X) = f2; and

...

φ
(r)
X (1) = E [X(X − 1) · · · (X − r + 1)] = fr .

Note that f1 = µ while σ 2 = f2 + f1 − f 2
1 = f2 + µ − µ2.

Example 4.9.1 For r = 1, 2, 3, 4, let us express (4.46) as a finite sum when
i = 1, 2, 3, 4. To this end:

φ
(1)
X (t) =

4∑

i=1

iti−1f (i) = f (1) + 2tf (2) + 3t2f (3) + 4t3f (4);

φ
(2)
X (t) =

4∑

i=2

i(i − 1)ti−2f (i) = 2f (2) + 6tf (3) + 12t2f (4);

φ
(3)
X (t) =

4∑

i=3

i(i − 1)(i − 2)ti−3f (i) = 6f (3) + 24tf (4); and

φ
(4)
X (t) =

4∑

i=4

i(i − 1)(i − 2)(i − 3)ti−4f (i) = 24f (4).
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Then for t = 1:

φ
(1)
X (1) = f (1) + 2f (2) + 3f (3) + 4f (4);

φ
(2)
X (1) = 2f (2) + 6f (3) + 12f (4);

φ
(3)
X (1) = 6f (3) + 24f (4); and

φ
(4)
X (1) = 24f (4).

In general, for X = 0, 1, . . . , n and 1 ≤ r ≤ n,

φ
(r)
X (t) =

n∑

i=r

i(i − 1)(i − 2) · · · (i − r + 1)ti−rf (i). � (4.48)

What is the connection between the moment-generating function mX (t) and the
factorial-generating function φX (t)? A moments reflection reveals that knowledge
of fk, k = 1, 2, . . ., is equivalent to knowledge of the moments of a discrete random
variable X about zero and conversely. So if we are able to determine the factorial
moments of X, then we should be able to determine X ’s moments about zero.
More precisely, since tX = eX loge t , it follows that

φX (t) = mX (loge t) = E
(

eX loge t
)

(4.49)

so that

mX (t) = φX (et) = E(etX ). (4.50)

Next, to generate probabilities associated with the values of a discrete random
variable X, let us again assume that X is a count variable and that the range of X
is the set of integers X = 0, 1, . . . . Then from (4.45),

φX (t) =
n∑

i=0

tif (i) = f (0) + tf (1) + t2f (2) + t3f (3) + · · · + tnf (n).

(Note again that φX (0) = f (0).) Hence for, say i = 0, 1, . . . , n,

φ
(1)
X (t) = f (1) + 2tf (2) + 3t2f (3) + · · · + ntn−1f (n);

φ
(2)
X (t) = 2f (2) + 6tf (3) + · · · + n(n − 1)tn−2f (n);

...

φ
(n−1)
X (t) = (n − 1)! f (n − 1) + n! tf (n); and

φ
(n)
X (t) = n! f (n).



4.9 Probability-Generating Function 131

At t = 0: φ
(1)
X (0) = f (1), φ

(2)
X (0) = 2! f (2), . . . , φ(n−1)

X (0) = (n − 1)! f (n − 1), and
φ

(n)
X (0) = n! f (n). Hence, as anticipated from (4.47): f (1) = φ

(1)
X (0),

f (2) = 1
2!φ

(2)
X (0), . . . , f (n − 1) = 1

(n − 1)!φ
(n−1)
X (0), and f (n) = 1

n!φ
(n)
X (0).

Example 4.9.2 Given the discrete probability distribution appearing in Ta-
ble 4.7, determine the probability-generating function as well as the factorial
moments f1 and f2. What is the value of σ 2? Also, we shall demonstrate that
φX (t) does indeed generate the requisite probabilities. From (4.45),

φX (t) = E(tX ) =
3∑

i=0

tif (i) = 1
8

+ 3
8

t + 3
8

t2 + 1
8

t3

with

φ
(1)
X (t) = 3

8
+ 6

8
t + 3

8
t2, φ(2)

X (t) = 6
8

+ 6
8

t, and φ
(3)
X (t) = 6

8
.

Then f1 = φ
(1)
X (1) = 1.5 = µ, f2 = φ

(2)
X (1) = 1.5 = E(X 2) − 1.5, and thus σ 2 =

f2 + µ − µ2 = 0.75. Also, φX (0) = 1
8 = f (0), φ(1)

X (0) = 3
8 = f (1), φ

(2)
X (0) = 6

8 =
2! f (2) (so that f (2) = 3/8), and φ

(3)
X (0) = 6

8 = 3! f (3) (and thus f (3) = 1
8 ). �

Example 4.9.3 Suppose that a discrete random variable X has a probability
mass function of the form f (X ; k) = 2−k, k = 1, 2, 3, . . . . Then the probability
generating function for X appears as

φX (t) =
∞∑

i=1

ti2−i =
∞∑

i=1

(
t
2

)i

= 1
1 − ( t

2

) − 1 = t
2 − t

, |t| < 2.

Also, since

φ
(1)
X (t) = 2

(2 − t)2
, φ(2)

X (t) = 4
(2 − t)3

, and φ
(3)
X (t) = 12

(2 − t)4
,

it follows that f1 = φ
(1)
X (1) = 2, f2 = φ

(2)
X (1) = 4, and f3 = φ

(3)
X (1) = 12. (For

this discrete probability distribution µ = f1 = 2 and σ 2 = f2 + f1 − f 2
1 = 2.)

In addition, f (1) = φ
(1)
X (0) = 1

2 , f (2) = 1
2!φ

(2)
X (0) = 1

4 , and f (3) = 1
3!φ

(3)
X (0) = 1

8 .

In general, f (k) = 1
k!φ

(k)
X (0) = 2−k, k = 1, 2, 3, . . . . �
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4.10 Exercises

4-1. A random variable X has a probability density function of the form

f (x) =
{

ke−x/3 x > 0;
0 elsewhere

for a specific constant k. Determine:

(a) the value of k

(b) the cumulative distribution function

(c) P(X ≤ 6)

(d) P(1 ≤ X ≤ 4)

4-2. For a discrete random variable X, determine the constant k such that f (X) =
k/X , X = 1, 2, 3, 4, 5, is a probability mass function. Then determine:

(a) The cumulative distribution function

(b) P(X ≤ 3)

(c) P(X < 3)

(d) P(1 ≤ X ≤ 4)

4-3. Determine the constant k such that

f (x) =
{

kx2, −2 ≤ x ≤ 2;
0 elsewhere

is a probability density function. Then find:

(a) The cumulative distribution function

(b) P(X > 1/2)

(c) P(X ≤ 1)

(d) P(−1 ≤ X ≤ 1)

4-4. Let the cumulative distribution function for a random variable X appear as

F(t) =

⎧
⎪⎨

⎪⎩

0, t < 0;
2t − t2 0 ≤ t ≤ 1;
1, t > 0.

Find:

(a) P(X ≤ 1/4)

(b) P(X ≥ 1/4)
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(c) P(1/3 ≤ X ≤ 3/4)

(d) The probability density function f (x)

4-5. Determine the cumulative distribution function F(X) associated with the
following probability mass function.

X f(X)

0 0.215
1 0.433
2 0.288
3 0.064

1.000

4-6. Determine the cumulative distribution function F(X) given the following
probability mass function. Use F(X) to determine:

(a) P(0 < X ≤ 2)

(b) P(X ≤ 1)

(c) P(−1 < X ≤ 2)

(d) P(−1 < X ≤ 0)

X f(X)

−1 0.5787
1 0.3472
2 0.0694
3 0.0046

1.0000

4-7. Given the following cumulative distribution function, find:

(a) f (0)

(b) f (2)

(c) f (3)

(Hint: f (Xi) = F(Xi) − F(Xi − 1).)

F(X) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, X < 0;
1
2 , 0 ≤ X ≤ 2;
5
6 , 2 ≤ X ≤ 3;

1, X ≥ 3.
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4-8. Does F(t) given below satisfy the properties of a cumulative distribution
function? Find the associated probability density function and use it to find
P(0.30 < X < 0.80).

F(t) =

⎧
⎪⎨

⎪⎩

0, t < 0;
t, 0 ≤ t ≤ 1;
1, t > 1.

4-9. Is the expression F(t) = (1 + e−t)−1 a legitimate (continuous) cumulative
distribution function?

4-10. For 0 < p < 1, is the expression F(X) = 1 − (1 − p)X , X = 1, 2, . . ., a
legitimate (discrete) cumulative distribution function?

4-11. Suppose f (x) =
{

k(3 − x), 0 ≤ x ≤ 3;
0 elsewhere.

What value of k makes f (x) a legitimate probability density function? Find
the cumulative distribution function F(t). Using f (x), find P(1 ≤ X ≤ 2).
Using F(t), also find P(1 ≤ X ≤ 2).

4-12. Let a random variable X be defined as the number of heads obtained in
two flips of a fair coin. Determine the sample space S and the associated
(discrete) probability distribution. Verify that the sequence of probabilities
can be determined from the probability mass function

f (X) =

⎧
⎪⎪⎨

⎪⎪⎩

(
2

X

)

4 , X = 0, 1, 2;

0 elsewhere.

Given f (X) find the cumulative distribution function.

4-13. Given the cumulative distribution function

F(X) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, X < 0;
1
2 , 0 ≤ X < 1;

3
4 , 1 ≤ X < 4;

1, X ≥ 4,

determine the associated probability mass function. (Hint: Find the points
of discontinuity. At such points f (x) > 0.)

4-14. Let the random variable X have the probability density function

f (x) =
{

x−2, 1 < x < +∞;
0 elsewhere.
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For events A = {x|1 < x < 2} and B = {x|4 < x < 5}, find the probability
that A or B occurs.

4-15. Can the expression

F(t) =
{

0, t < 0;
1 − e−t , t ≥ 0

serve as a cumulative distribution function for a continuous random variable
X? Find the associated probability density function and use it to determine:

(a) P(2 < X < 5)

(b) P(X < 3)

(c) P(X > 6)

4-16. Comment on the following statement: The probability mass function of a
discrete random variable X has 1 as an upper bound but the probability
density function of a continuous random variable X need not be bounded.
Is the function

f (x) =
{

3
2 x1/2, 0 < x < 1;

0 elsewhere

bounded over its domain? Is it a probability density function?

4-17. Comment on the following statement: If X is a continuous random variable,
then its probability density function need not be continuous; however, its
cumulative distribution function will be continuous. Let

f (x) =
{

1
3 , x ∈ {0 < x < 1} ∪ {4 < x < 6};
0 elsewhere.

Is f discontinuous over its domain? If so, where? Can f serve as a probability
density function?
(Hint:

∫
xεA∪B f (x)dx = ∫

xεA f (x)dx + ∫
xεB f (x)dx.)

4-18. Can the expression

f (x) =
{

6−|X−7|
36 , x = 2, 3, . . . , 12;

0 elsewhere

serve as a probability mass function? How is the random variable X defined?
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4-19. Verify that the cumulative distribution function given by (4.3):

(a) has values restricted to [0, 1]

(b) is monotone nondecreasing

(c) is continuous from the right

(d) defines P(Xs < X ≤ Xt) = F(Xt) − F(Xs)

(e) requires at points of discontinuity X = Xi, i = 1, 2, . . . , that F(Xi +0)−
F(Xi − 0) = F(Xi) − F(Xi − 0) = f (Xi)

(f) requires limXi→−∞ F(Xi) = 0 and limXi→+∞ F(Xi) = 1

4-20. Verify that the cumulative distribution function given by (4.9):

(a) has values restricted to [0,1]

(b) is monotone nondecreasing and continuous in t, with its derivatives
existing at every point of continuity of f, and at each such point
dF(t)/dt = f (t)

(c) is continuous from the right

(d) for every pair of real numbers a ≤ b, defines P(a < X ≤ b) =
F(b) − F(a)

(e) requires limt→−∞ F(t) = 0 and limt→+∞ F(t) = 1

4-21. Do you agree or disagree with statements (a)–(f)? Given that the indicated
limits exist:

(a)
∫ +∞

a f (x)dx = limb→+∞
∫ b

a f (x)dx

(b)
∫ b
−a f (x)dx = lima→+∞

∫ b
−a f (x)dx

(c)
∫ +∞
−∞ f (x)dx = lima→+∞

∫ a
−a f (x)dx

(d)
∫ +∞
−∞ f (x)dx = ∫ 0

−∞ f (x)dx + ∫ +∞
0 f (x)dx (provided that the integrals

on the right-hand side of this equation exist).
Moreover, if f (x) is unbounded on [a, b] but bounded on [a+ε, b], ε > 0
and small, then, provided that the indicated limit exists,

(e)
∫ b

a f (x)dx = lim ε→0
ε>0

∫ b
a+ε

f (x)dx

If f (x) is unbounded on [a, b] though bounded on [a, b − ε], ε > 0 and
small, then, provided that the indicated limit exists,

(f)
∫ b

a f (x)dx; = lim
ε→0
ε>0

∫ b−ε

a f (x)dx

In addition, find:

(g)
∫ 2

0 x−1/2dx

(h)
∫ +∞

0 e−1/2xdx

(i)
∫ +∞
−∞ e−|x|dx
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4-22. Suppose a probability density function has the form

f (x) =

⎧
⎪⎪⎨

⎪⎪⎩

40+x
1600 , −40 < x < 0;
40−x
1600 0 ≤ x < 40;

0 elsewhere.

For A = {−10 ≤ X ≤ 10}, find P(A). (Hint: Write P(A) as the sum of two
separate integrals for A = {x |−10 ≤ X ≤ 0 } ∪ {0 ≤ X ≤ 10}.)

4-23. For the probability density function

f (x) =
{

1
200 e−x/200, x > 0;

0 elsewhere.

find the associated cumulative distribution function. Use the latter to
determine:

(a) P(X > 80)

(b) P(50 < X ≤ 90)

4-24. Suppose a continuous random variable has a probability density function
of the form

f (x) =
{

e−x, x > 0;
0 elsewhere.

Find P(X2 < θ), θ > 0.

4-25. Given the following discrete probability distribution, find:

(a) E(X)

(b) V(X)

X 1 5 7 9
f (X) 1/6 2/6 2/6 1/6

4-26. Given the probability density function

f (x) =
{

2(1 − x), 0 ≤ x ≤ 1;
0 elsewhere

find:

(a) E(X)

(b) V(X)
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4-27. A fair coin is tossed three times in succession (or three fair coins are tossed
once). List the points or simple events in the sample space S. Determine
the associated probability distribution. Find its mean and variance.

4-28. For the probability density function f (x) = λ−1e−x/λ, λ > 0, 0 ≤ x < ∞,
demonstrate that E(X) = λ and V(X) = λ2.

4-29. Suppose f (x) =
{

x−2, 1 ≤ x < +∞;
0 elsewhere.

Does E(x) exist?

4-30. Comment on the following statement: For X a continuous random variable
with probability density function f (x), the existence of E(X) implies that

∫ 0

−∞
xf (x)dx,

∫ +∞

0
xf (x)dx,

∫ +∞

−∞
|x|f (x)dx

all converge.

4-31. Evaluate the expression E [(aX + b)
n] =

n∑
i=0

(
n
i

)
an−ibiE(Xn−i) for n = 1, 2.

4-32. The cumulative distribution function for a continuous random variable
X is

F(t) =
{

1 − e−t/θ , θ > 0, t ≥ 0;
0 t < 0.

Demonstrate that θ is the mean of X.

4-33. Suppose that the lifetime (in hours) of a particular piece of electrical
equipment can be characterized by the probability density function

f (x) =
{

1
200 e−x/200, x > 0;

0 elsewhere.

Verify that the average life of this electrical component is 200 hours.
Suppose that an event A is defined as “the component fails in 60 or fewer
hours.” Find P(A).
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4-34. Given the probability mass function

X f (X)

1 1/4
3 1/2
9 1/4—–

1

let g(X) = X2 − 1. Find E
(
g(X)

)
.

4-35. The probability density function for a continuous random variable X is

f (x) =
{

1
5 5 < x < 10;

0 elsewhere.

Find E(X) and E(X2). What is V(X)?

4-36. Verify that if X is a discrete or continuous random variable whose
expectation exists, then, for a and b constants:

(a) E(a) = a

(b) E(a ± bX) = a ± bE(X)
For finite k, demonstrate that:

(c) E
(∑k

j=1 gj(X)
)

= ∑k
j=1 E(gj(X)), where gj(X) is a function of the

random variable X.

4-37. Verify that if X is a discrete or continuous random variable whose variance
exists, then, for a and b constants:

(a) V(a) = 0

(b) v(a + X) = V(X)

(c) V(a + bX) = b2V(X)

(d) V(X) = E(X2) − E(X)2

4-38. Let X be a random variable such that P(X < 0) = 0. If E(X) = α ≥ 0
exists, then, for t ≥ 1, P(X < αt) ≥ 1 − 1

t . Establish this result for:

(a) X discrete

(b) X continuous

4-39. Use the preceding result to derive the (4.19.2) form of Chebyshev’s
Theorem.

4-40. Let X be a continuous random variable whose mean E(X) = µ and vari-
ance V(X) = σ 2 exist. For any ε > 0 and small, verify that the (4.19) version
of Chebyshev’s Theorem holds.
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(Hint: start with V(X) = ∫ +∞
−∞ (x − µ)2f (x)dx and let

{X |−∞ < X < +∞} = {X |−∞ < X < µ − ε } ∪ {X |µ + ε < X < +∞} .)

4-41. Over the long run the daily price/barrel (denoted X) of a certain grade
of crude oil has averaged about $17.23 with a standard deviation of $1.26.
Given that the probability distribution of X is unknown, determine a lower
bound estimate of the probability that X will fall between $14.23 and $20.23.

4-42. If X is a random variable with E(X) = 3 and V(X) = 4, use Chebyshev’s
Theorem to determine a lower-bound for P(−2 < X < 8).

4-43. Given that a continuous random variable X has a cumulative distribution
function of the form

F(t) =

⎧
⎪⎨

⎪⎩

0 t < 0;
t0.5 0 ≤ t ≤ 1;
1 t > 1,

find the quartiles of X. That is, find:

(a) γ0.25

(b) γ0.50

(c) γ0.75

What is the quartile deviation of X?

4-44. Suppose that the probability density function for a continuous random
variable X is

f (x) =
{

1
2 x−1/2 0 < x < 1;

0 elsewhere.

Does X have a symmetrical probability density function? (Hint: Com-
pare E(X) and γ0.5, with the latter determined from P(X ≤ γ0.5) =∫ γ0.5
−∞ f (x)dx = 0.5.)

4-45. Let the probability mass function for a discrete random variable X be

f (X) =

⎧
⎪⎨

⎪⎩

0.3 for X = 0;
0.7 for X = 1;
0 elsewhere.

Find µ′
r , r = 1, 2, . . . .

4-46. For the discrete probability distribution appearing in Exercise 4-25,
find:
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(a) µ′
3

(b) µ3

(c) α3

(d) α4

(e) γ0.5

(f) γ0.3

4-47. For the probability density function

f (x) =
{

1
10 e−x/10, x > 0;

0 elsewhere

find:

(a) E(X)

(b) V(X)

(c) µ′
3

(d) µ3

(e) α3

(f) α4

(g) γ0.50

(h) γ0.75

4-48. Given that the random variable X has the probability density function

f (x) =
{

1
5 , 5 < x < 10;

0 elsewhere

find:

(a) F(t)

(b) E(X)

(c) V(X)

(d) the median

(e) the interquartile range

4-49. Given the probability density function

f (x) =
{

1
2 x2e−x, 0 < x < +∞;

0 elsewhere,

for the random variable X, find the mode of X.
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4-50. If a random variable X has the probability density function

f (x) =
{

4x3, 0 < x < 1;

0 elsewhere,

find its median. Also determine γ0.3.

4-51. Suppose a continuous random variable X has a probability density function
of the form

f (x) =
{

1
5 20 < x < 25;

0 elsewhere.

Find µ′
r . Then determine µ′

1, µ′
2, µ′

3, and µ′
4. Also find µ2, µ3, and µ4.

Finally, determine α3 and α4.

4-52. Let X be a continuous random variable with probability mass function f (x).
If a random variable Y = a + bX , b �= 0, then the probability density
function of Y is

g(y) = 1
|b| f

(
y − a

b

)
.

Verify this result (two separate ways) when

f (x) =
{

3(1 − x)2, 0 < ∞ < 1;
0 elsewhere

and Y = 4 + 2X . What if Y = 4 − 2X? (Hint: One approach is to use
this expression for g(y) directly. Another is to determine the cumulative
distribution function G( f ) and then use dG

dt = g( f ).)

4-53. For X a continuous random variable, use the transformation employed in
the preceding problem to verify that E(cX) = cE(X), c a constant. (Hint:
Let f (y) be the probability density function for Y = cX .)

4-54. Let X be a discrete random variable with probability mass function f (X).
If a random variable Y = a+bX , b �= 0, then the probability mass function
of Y is

g(y) = f
(

y − a
b

)
.

Verify this result when

f (x) =
{

pX (1 − p)1−X , X = 0 or 1, 0 ≤ p ≤ 1;
0 elsewhere

and Y = 1 + 3X .
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4-55. Suppose X is a continuous random variable with probability density function

f (x) =
{

1
2 x, 0 < x < 2;

0 elsewhere.

Find mX (t), µ′
1, µ′

2, and σ 2.

4-56. Let the continuous random variable X have a probability density function
of the form

f (x) =
{

100e−100x, x > 0;

0 elsewhere.

Find mX (t). What is the restriction on t? Also determine m(1)
X (0), m(2)

X (0),
and σ 2. Next, use (4.43) to determine mX−µ(t) along with m(1)

X−µ(0),

m(2)
X−µ(1), and σ .

4-57. Suppose the continuous random variable X has a probability density
function of the exponential variety or

f (x) =
{

1
λ

e−x/λ, x ≥ 0, λ > 0;

0 elsewhere.

Verify that the moment-generating function of X is mX (t) = (1 − λt)−1,
t < λ−1.

4-58. Let the continuous random variable X be uniformly distributed with
probability density function

f (x) =
{

1
β−α

x, α < x < β;

0 elsewhere.

Show that the moment-generating function for X is

mX (t) = etβ − etα

t(β − α)
, t �= 0.

4-59. Let X be a discrete random variable with probability mass function

f (X) =
{

p(1 − p)X−1, X = 1, 2, . . . ;

0 elsewhere.

Determine mX (t).
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4-60. For X a continuous random variable with probability density function

f (x) =
{

1
3 , −1 < x < 2;

0 elsewhere,

demonstrate that

mX (t) = e2t − e−t

3t
, t �= 0.

4-61. Suppose a fair coin is tossed twice. Let the random variable X depict the
number of heads obtained. Determine the probability mass function for
X. Also, find the moment-generating function for X and use it to obtain µ

and σ .

4-62. For the discrete random variable X defined in the preceding exercise, find
X’s probability generating function. Then determine φX (0), φ(1)

X (0), φ(2)
X (0)

along with φ
(1)
X (1) and φ

(2)
X (1).

4-63. For a continuous random variable X with probability density function

f (x) =
{

10e−10x, x > 0;
0 elsewhere,

find X’s moment generating function. Verify that µ = σ = 1
10 . Then find

the moment-generating function of X − µ. Demonstrate that m(1)
X−µ(0) =

µ1 = 0, m(2)
X−µ(0) = µ2.

4-64. For each of the following moment-generating functions, find the associated
probability density function:

(a) mX (t) = e7t−e3t

4t , t �= 0

(b) mX (t) = (1 − 0.8t)−1, t ≤ 1.25

(c) mX (t) = 2
2−t , t < 2

4-65. For the probability mass function utilized in Example 4.8.1, determine
φX (et). What is its interpretation? What restriction is placed on t? Use
φX (et) to determine the mean of X.

4-66. Suppose X is a continuous random variable with mean µ and standard
deviation σ . Let Z = (X − µ)/σ . Demonstrate that:

(a) E(Z) = 0

(b) V(Z) = 1
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4-67. Consider the problem of obtaining the probability distribution of a random
variable Y from information about the probability distribution of a random
variable X, where y = g(x) is a functional relationship between the values
X and Y. To perform the indicated change of variable or transformation we
shall utilize the following

THEOREM. Let the probability density function of the random vari-
able X be given by f (x) and let the function y = g(x) define a one-to-one
transformation between X and Y. (A one-to-one transformation implies
that g is either an increasing or decreasing function for all admissible x.)
In addition, let the unique inverse transformation of g be denoted as
x = w(y) and let dx/dy = w′(y) be continuous and not vanish for all
admissible y’s. Then the probability density function of Y is given by

h(y) = ∣∣dw(y)/dy
∣∣ f
(
w(y)

)
, dw(y)/dy �= 0.

Here
∣∣dw(y)/dy

∣∣ denotes the absolute value of dw(y)/dy. If f (x) = e−x,
x ≥ 0, and y = g(x) = 3x, find h(y).
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55
Bivariate Probability
Distributions

5.1 Bivariate Random Variables

The previous chapter focused on the determination of probabilities involving a
single discrete or continuous random variable X. Such models reflect only a single
characteristic of some random phenomenon. However, if a second attribute of a
random phenomenon is also of interest and is observed along with values of X,
then it can be represented as a separate set of values of an additional random
variable Y. Hence the two random variables X and Y are jointly measured when
defining the outcomes of a random experiment. In this regard, we form what
is termed a bivariate probability distribution. Such distributions can be discrete
or continuous. Moreover, they can be depicted as a listing or table, a graph, or
written as a specific function or equation.

5.2 Discrete Bivariate Probability Distributions

Suppose (X , Y) is a pair of real-valued functions defined on a sample space S.
The pair (X , Y) is a bivariate random variable if both X and Y map elements in S
into real numbers. Hence (X , Y) defines the possible outcomes of some random
experiment. In addition, if the range of (X , Y) is a discrete ordered set of points
Rx,y = {(Xi, Yj), i = 1, . . . , n; j = 1, . . . , m} in the Cartesian plane, then (X , Y)
is termed a discrete bivariate random variable. Clearly X and Y must be discrete
random variables when considered individually. (Note that although a discrete
random variable can actually assume a countable infinite set of values, we have
assumed, for convenience, that both X and Y take on only a finite number of
values.)

Given a random variable X : X1, X2, . . . , Xn (with X1 < X2 < · · · < Xn) and
a second random variable Y : Y1, Y2, . . . , Ym (with Y1 < Y2 < · · · < Ym), let us

147
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denote the joint probability that X = Xi and Y = Yj as P(X = Xi, Y = Yj) =
f (Xi, Yj), i = 1, . . . , n; j = 1, . . . , m. Here f (Xi, Yj) is termed the probability mass
at the point (Xi, Yj ). In general, a function f (X , Y), which assigns a probability
f (Xi, Yj) within the ranges Rx = {Xi, i = 1, . . . , n} and Ry = {Yj, j = 1, . . . , m}
of the discrete random variables X and Y, respectively, is called a bivariate
probability mass function if:

(a) f (Xi, Yj) ≥ 0 for all i, j; and

(b)
∑

i

∑

j

f (Xi, Yj) = 1.
(5.1)

To completely specify a discrete joint or bivariate probability distribution it is
sufficient to list the set of probabilities f (Xi, Yj), i = 1, . . . , n; j = 1, . . . , m.
Hence the set of nm events (Xi, Yj) together with their associated probabilities
f (Xi, Yj), i = 1, . . . , n; j = 1, . . . , m, constitutes the discrete bivariate probability
distribution of the random variables X and Y.

Example 5.2.1 Let us assume that a total of 2405 students currently are
enrolled at a local college. For each student, two attributes immediately present
themselves: gender and year or class. Let us represent class by a random variable
X and gender by the random variable Y ; that is,

X(Class) Y (Gender)

X1—freshman Y1—male
X2—sophomore Y2—female
X3—junior
X4—senior
X5—other

The joint classification of the values of these random variables, expressed in terms
of number of students, is depicted in the two-way table, Table 5.1.

Table 5.1

Classification of Students by Class and Gender

Y
Y1 Y2X

X1 300 200 500
X2 280 215 495
X3 275 215 490
X4 250 230 480
X5 200 240 440

1305 1100 2405
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To convert Table 5.1 into a discrete bivariate probability distribution, let us
divide each item therein by 2405 (assuming, of course, that the individual outcomes
are equiprobable). Hence we ultimately obtain Table 5.2.

Table 5.2

Bivariate Probability Mass Function f (X, Y )

Y
Y1 Y2X

X1 0.125 0.083 0.208
X2 0.116 0.089 0.205
X3 0.115 0.089 0.204
X4 0.104 0.095 0.200
X5 0.083 0.100 0.183

0.543 0.456 1.000

As this table reveals, the probability that a randomly selected student is a male
and a junior is P(X = X3, Y = Y1) = f (X3, Y1) = 0.115. Other combinations
of events for X and Y and their joint probabilities are interpreted in a similar
fashion. �

Given a bivariate probability mass function f (X , Y), the joint probability that
X ≤ Xr and Y ≤ Ys is provided by the bivariate cumulative distribution function

F (Xr , Ys) = P (X ≤ Xr , Y ≤ Ys) =
∑

i≤r

∑

j≤s

f (Xi, Yj). (5.2)

Example 5.2.2 Given the bivariate probability mass function provided by
Table 5.3, we may easily determine that

F (X3, Y2) = P (X ≤ X3, Y ≤ Y2)

=
∑

i≤3

∑

j≤2

f (Xi, Yj)

=
∑

i≤3

[f (Xi, Y1) + f (Xi, Y2)]

= f (X1, Y1) + f (X1, Y2) + f (X2, Y1)

+ f (X2, Y2) + f (X3, Y1) + f (X3, Y2)

= 0.07 + 0.11 + 0.05 + 0.09 + 0.10 + 0.01 = 0.43. �

Bivariate probability distributions tell us something about the joint behav-
ior of the random variables X and Y. However, if we want information about
each of these two random variables taken individually, then we need to examine
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Table 5.3

Bivariate Probability Mass Function f (X, Y )

Y
Y1 Y2 Y3 g(Xi)X

X1 0.07 0.11 0.03 0.21
X2 0.05 0.09 0.16 0.30
X3 0.10 0.01 0.02 0.13
X4 0.11 0.18 0.07 0.36

h(Y j) 0.33 0.39 0.28 1.00

their marginal probabilities. In this regard, for X and Y discrete random vari-
ables, the summation of the bivariate probability mass function f (X , Y) over all
Y ∈ Ry yields the univariate probability mass function g(X) called the marginal
probability mass function of X

g(X) =
∑

j

f (X , Yj). (5.3)

Similarly, taking the summation of f (X , Y) over all X ∈ Rx produces the uni-
variate marginal probability mass function of Y

h(Y) =
∑

i

f (Xi, Y). (5.4)

Using (5.3), we may readily determine the (marginal) probability that X = Xr

irrespective of the value of Y as

P(X = Xr) = g(Xr) =
∑

j

f (Xr , Yj). (5.5)

And from (5.4), the marginal probability that Y = Ys irrespective of the value of
X is

P(Y = Ys) = h(Ys) =
∑

i

f (Xi, Ys). (5.6)

Moreover, once the marginal probability mass functions (5.3) and (5.4) are
available, we can also find probabilities such as

P(Xa ≤ X ≤ Xb) =
∑

a≤i≤b

g(Xi); (5.7)

P(Yc ≤ Y ≤ Yd) =
∑

c≤j≤d

h(Yj). (5.8)
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Example 5.2.3 Using the bivariate probability mass function depicted in
Table 5.3 we can easily find, via (5.5),

P(X = X2) = g(X2) =
∑

j

f (X2, Yj)

= f (X2, Y1) + f (X2, Y2) + f (X2, Y3)

= 0.05 + 0.09 + 0.16 = 0.30;

from (5.6),

P(Y = Y1) = h(Y1) =
∑

i

f (Xi, Y1)

= f (X1, Y1) + f (X2, Y1) + f (X3, Y1) + f (X4, Y1)

= 0.07 + 0.05 + 0.10 + 0.11 = 0.33;

from (5.7),

P (X2 ≤ X ≤ X4) =
∑

2≤i≤4

g(Xi) = g(X2) + g(X3) + g(X4)

= 0.30 + 0.13 + 0.36 = 0.79;

and from (5.8),

P(Y2 ≤ Y ≤ Y3) =
∑

2≤j≤3

h(Yj) = h(Y2) + h(Y3) = 0.39 + 0.28 = 0.67.

Based upon these calculations it should be evident that the marginal probabilities
of the Xj’s are the row totals and the marginal probabilities of the Yj’s are the
column totals in Table 5.3. Hence we may label the set of row totals as g(Xi) and
the set of column totals as h(Yj). �

Using (5.3) (or (5.5)) we can define the set of all Xi’s together with their
marginal probabilities g(Xi), i = 1, . . . , n, as the marginal probability distribution
of X. This distribution depicts the probability distribution of a single discrete ran-
dom variable X when the levels of the random variable Y are ignored. Moreover,
we require that: (a) g(Xi) ≥ 0 for all i; and (b) �i g(Xi) = 1. (Table 5.4a depicts
X’s marginal probability distribution derived from Table 5.3.) Similarly, from
(5.4) (or (5.6)), the set of all Yj’s together with their set of marginal probabilities
h(Yj), j = 1, . . . , m, is the marginal probability distribution of Y—the probability
distribution of the single random variable Y when the levels of the random variable
X are ignored. Here, too: (a) h(Yj) ≥ 0 for all j; and (b) �j h(Yj) = 1. (Table 5.4b
portrays Y’s marginal probability distribution calculated from Table 5.3.)
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Table 5.4

a. b.

Marginal Probability Distribution of X Marginal Probability Distribution of Y

X g(X) Y h(Y )

X1 g(X1) = 0.21 Y1 h(Y1) = 0.33
X2 g(X2) = 0.30 Y2 h(Y2) = 0.39
X3 g(X3) = 0.13 Y3 h(Y3) = 0.28

1.00X4 g(X4) = 0.36
1.00

Next, let X and Y be discrete random variables with bivariate probability
mass function f (X , Y) and marginal probability mass functions g(X) and h(Y),
respectively. Given these relationships, we may now pose the following problem.
What if, on some trial of a random experiment, we specify the level of Y but we
allow the values of X to be determined by chance? Then we may determine, for
instance, the probability that X = Xi given Y = Yj for fixed j. In like fashion, we
may be interested in finding the probability that Y = Yj given that X = Xi when
i is held fixed. In this regard, if (X , Y) is any point at which h(Y) > 0, then the
conditional probability mass function of X given Y is

g(X |Y) = f (X , Y)
h(Y)

. (5.9)

Here g(X |Y) is a function of X alone and, for each Xi given Y = Ys, the probability
that X = Xi given Y = Ys is

P(X = Xi|Y = Ys) = g(Xi|Ys) = f (Xi, Ys)
h(Ys)

, h(Ys) > 0, i = 1, . . . , n. (5.10)

Similarly, at any point (X , Y) at which g(X) > 0, the conditional probability mass
function of Y given X (a function of Y alone) is

h(Y |X) = f (X , Y)
g(X)

. (5.11)

So for any Yj given X = Xr , the probability Y = Yj given X = Xr is

P(Y = Yj|X = Xr) = h(Yj|Xr) = f (Xr , Yj)
g(Xr)

, g(Xr) > 0, j = 1, . . . , m. (5.12)
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Example 5.2.4 Using equations (5.10) and (5.12) we may determine, from
Table 5.3, that

P(X = X3|Y = Y1) = g(X3|Y1) = f (X3, Y1)
h(Y1)

= 0.10
0.33

= 0.303;

P(Y = Y2|X = X1) = h(Y2|X1) = f (X1, Y2)
g(X1)

= 0.11
0.21

= 0.523,

and so on. �

Note that if we solve for f (X , Y) from both (5.9) and (5.11), then we may state
the multiplication theorem for probability mass functions:

f (X , Y) = g(X) · h(Y |X) = g(X |Y) · h(Y). (5.13)

From (5.10) we can define the set of all Xi’s together with their conditional proba-
bilities g(Xi|Yj), i = 1, . . . , n, as the conditional probability distribution of X given
Y = Yj. This distribution depicts the probability distribution of a single discrete
random variable X when the level of Y is fixed at Yj. For this distribution it must be
true that: (a) g(Xi|Yj) ≥ 0 for all i; and (b)

∑
i g(Xi|Yj) = 1. And from (5.12), the

set of all Yj’s along with their conditional probabilities h(Yj|Xi), j = 1, . . . , m, rep-
resents the conditional probability distribution of Y given X = Xi. It portrays the
univariate probability distribution of the random variable Y when the level of X is
set at Xi. It is also the case that: (a) h(Yj|Xi) ≥ 0 for all j; and (b) �j h(Yj|Xi) = 1.

Example 5.2.5 Using the bivariate probability mass function given in Table 5.3,
we may easily derive the conditional probability distribution of X given Y = Y2

(see Table 5.5a) as well as the conditional probability distribution of Y given
X = X4 (see Table 5.5b). �

Let X and Y be discrete random variables with bivariate probability mass func-
tion f (X , Y) and marginal probability mass functions g(X) and h(Y) , respectively.
Then the random variable X is independent of the random variable Y if

g(X |Y) = g(X) (5.14)

for all values of X and Y for which both of these functions are defined. Similarly,
the random variable Y is independent of the random variable X if

h(Y |X) = h(Y) (5.15)

for all X and Y at which these functions exist. It should be evident that if X
is independent of Y, then Y is independent of X; that is, X and Y are mutually
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Table 5.5

a. b.

Conditional Probability Conditional Probability
Distribution of X Given Distribution of Y Given

Y = Y2 (g(Xi|Y2) = f (Xi ,Y2)
h(Y2) , i = 1, 2, 3, 4) X = X4 (h(Yj |X4) = f (X4 ,Yj )

g(X4) , j = 1, 2, 3)

X g(X|Y2) Y h(Y |X4)

X1 g(X1|Y2) = 0.282 Y1 h(Y1|X4) = 0.306
X2 g(X2|Y2) = 0.231 Y2 h(Y2|X4) = 0.500
X3 g(X3|Y2) = 0.025 Y3 h(Y3|X4) = 0.194

1.000X4 g(X4|Y2) = 0.462
1.000

independent random variables. Let (5.14) (or (5.15)) hold. Then the multiplication
theorem for probability mass functions (5.13) renders

f (X , Y) = g(X) · h(Y). (5.16)

As this expression reveals, X and Y are independent random variables if and only
if their joint probability mass function f (X , Y) can be written as the product of
their individual marginal probability mass functions g(X) and h(Y), respectively.
Hence, under independence,

P(X = Xi, Y = Yj) = P(X = Xi) · P(Y = Yj) (5.16.1)

for all points (X,Y). In fact, the equalities in (5.16) and (5.16.1) must hold for
all possible pairs of X and Y values. If inequality obtains for at least one point
(X , Y), then the random variables X and Y are said to be dependent.

5.3 Continuous Bivariate Probability Distributions

Let the two-dimensional sample space S consist of a class of events representable
by all open and closed rectangles. Hence the random variables X and Y defined
on S are continuous since they can assume any values within some event A =
{(X , Y)|a ≤ X ≤ b, c ≤ Y ≤ d} ⊆ S. In addition, let P be a (joint) probability
measure or set function that associates with each A ⊆ S a number P(A). In general,
a function f (X , Y), which defines the probability measure

P(A) = P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b

a

∫ d

c
f (x, y) dy dx, (5.17)
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is called a bivariate probability density function if

(a) f (x, y) ≥ 0 for all real x and y such that −∞ < x, y < +∞
and f (x, y) > 0 for (x, y) ∈ A; and

(b)
∫ +∞

−∞

∫ +∞

−∞
f (x, y) dy dx = 1.

(5.18)

So if the collection of all open and closed rectangles in two dimensions constitutes
the sample space S and if P(A) is determined by the bivariate probability density
f (x, y) as in (5.17), then the random variables X and Y follow a continuous bivariate
probability distribution.

Example 5.3.1 Given the probability density function

f (x, y) =
{

x + y, 0 < x < 1 and 0 < y < 1;
0 elsewhere,

find P( 1
3 < X < 1

2 , 1
2 < Y < 1). From (5.17),

P
(

1
3

< X <
1
2

,
1
2

< Y < 1
)

=
∫ 1/2

1/3

∫ 1

1/2
(x + y) dy dx

=
∫ 1/2

1/3

{(
xy + 1

2
y2
)] 1

1/2

}
dx =

∫ 1/2

1/3

(
1
2

x + 3
8

)
dx

=
(

1
4

x2 + 3
8

x
)]1/2

1/3
= 7

72
.

Here 7
72 is the amount of volume between the three-dimensional surface f (x, y)

and the rectangle A = {(X , Y)| 1
3 < X < 1

2 , 1
2 < Y < 1} within the XY-plane. �

It must be remembered that event A involves a rectangle defined by letting
both X and Y vary over intervals. Probabilities involving events containing a single
point are always zero; for example, P(X = a , Y = c) = 0.

Let us now consider the circumstances under which a function g(x, y) can be
used to obtain a bivariate probability density function for the continuous random
variables X and Y. Specifically, any function g(x, y) for which:

(a) g(x, y) ≥ 0, −∞ < x, y < +∞;

(b)
∫ +∞

−∞

∫ +∞

−∞
g(x, y) dy dx exists; and

(c)
∫ +∞

−∞

∫ +∞

−∞
g(x, y) dy dx = K �= 0
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may be used to determine a bivariate probability density function of the form

f (x, y) = kg(x, y),

where k = 1
K is the normalizing constant, which ensures that

∫ +∞

−∞

∫ +∞

−∞
f (x, y) dy dx = k

∫ +∞

−∞

∫ +∞

−∞
g(x, y) dy dx

= 1
K

∫ +∞

−∞

∫ +∞

−∞
g(x, y) dy dx = 1

per (5.18b).

Example 5.3.2 Can the function

g(x, y) =
{

12xy, 0 < x < 1 and 0 < y < 1;

0 elsewhere

be used to generate a bivariate probability density function? It is easily demon-
strated that g(x, y) ≥ 0 while

∫ +∞

−∞

∫ +∞

−∞
g(x, y) dy dx = 12

∫ 1

0

∫ 1

0
xy dy dx

= 12
∫ 1

0

{
1
2

xy2
]1

0

}
dx = 6

∫ 1

0
x dx = 3x2]1

0 = 3 = K.

Then k = 1/K = 1/3 and thus

f (x, y) = kg(x, y) =
{

4xy, 0 < x < 1 and 0 < y < 1;
0 elsewhere.

Next, does

f (x, y) =
{

e−x−y, 0 < x, y < +∞;

0 elsewhere
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represent a probability density function? Since f (x, y) ≥ 0 and

∫ +∞

−∞

∫ +∞

−∞
f (x, y) dy dx =

∫ +∞

0

∫ +∞

0
e−x−ydy dx

=
∫ +∞

0

{
lim

a→+∞

∫ a

0
e−x−y dy

}
dx

=
∫ +∞

0

{
e−x} dx = lim

a→+∞

∫ a

0
e−xdx = 1,

the answer is yes. �

Whereas (5.17) defines the probability that the continuous random variables X
and Y with bivariate probability density f (x, y) assume a value within the rectangle
A = {(X , Y)|a ≤ X ≤ b, c ≤ Y ≤ d}, we may introduce a related function
(derived from f ) that yields the (joint) probability that the random variable X
assumes a value less than or equal to some number t and the random variable Y
takes on a value less than or equal to the number s. This is the bivariate cumulative
distribution function for continuous random variables X and Y or

F(t, s) = P(X ≤ t, Y ≤ s) =
∫ t

−∞

∫ s

−∞
f (x, y) dy dx. (5.19)

F(t, s) is a continuous function of t and s and, at every point of continuity

of f (x, y), ∂2F(t,s)
∂s∂t = f (t, s). Hence knowing the bivariate probability density

function f (x, y) enables us to determine its bivariate cumulative distribution func-
tion F(t, s) via (5.19). Conversely, if F(t, s) is known, we can determine the
probability density f (t, s) at each of its points of continuity by finding ∂2F

∂s∂t .

Example 5.3.3 From the bivariate probability density function

f (x, y) =
{

4xy, 0 < x < 1 and 0 < y < 1;

0 elsewhere

we have

F(t, s) = 4
∫ t

−∞

∫ s

−∞
xy dy dx = 4

∫ t

0

∫ s

0
xy dy dx

= 4
∫ t

0

{
1
2

xy2
]s

0

}
dx = 2s2

∫ t

0
x dx = s2t2
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or

F(t, s) =

⎧
⎪⎨

⎪⎩

0, t < 0 and s < 0;

s2t2, 0 ≤ t ≤ 1 and 0 ≤ s ≤ 1;

1, t > 1 and s > 1.

And, as required, ∂2F
∂s∂t = 4st. �

Example 5.3.4 Given a bivariate cumulative distribution function F(t, s) we
can readily determine the joint probability P(A) = P(a < X ≤ b, c < Y ≤ d) as

P(A) = F(b, d) − F(a, d) − F(b, c) + F(a, c) (5.20)

See Figure 5.1a.
For instance, using the preceding bivariate probability density function f (x, y)

and its associated cumulative distribution function F(t, s), let us find P(A), where
A = {(X , Y)| 1

2 < X ≤ 1, 0 < Y ≤ 1
3 }. Calculating P(A) directly using the

probability density function yields

P(A) = 4
∫ 1

1/2

∫ 1/3

0
xy dy dx = 1

12
.

Y Y

d (a, d ) A (b, d )

A
C 1

3

1
2

(a, c) (b, c)

X X
a b

(a) (b)
1

Figure 5.1 (a) Determining the joint probability P(A) = P(a < X ≤ b, c < Y ≤ d); (b) Determining
the joint probability P(A) = P( 1

2 < X ≤ 1, 0 < Y ≤ 1
3 ).
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However, according to (5.20),

P (A) = F
(

1,
1
3

)
− F

(
1
2

,
1
3

)
− F (1, 0) + F

(
1
2

, 0
)

= (1)
(

1
9

)
−
(

1
4

)(
1
9

)
− 0 + 0 = 1

12

as required (see Figure 5.1b). �

Given the continuous random variables X and Y with bivariate probability
density f (x, y), the marginal probability density function of X is

g(x) =
∫ +∞

−∞
f (x, y) dy (5.21)

and is a function of x alone with: (a) g(x) ≥ 0; and (b) ∫+∞
−∞ g(x) dx = 1. In addition,

the marginal probability density function of Y is

h(y) =
∫ +∞

−∞
f (x, y) dx (5.22)

and is a function of y alone with: (a) h(y) ≥ 0; and (b) ∫+∞
−∞ h(y) dy = 1.

Given the joint cumulative distribution function F(t, s) from (5.19), the
marginal cumulative distribution functions of X and Y are

P(X ≤ t) = F(t) =
∫ t

−∞

∫ +∞

−∞
f (x, y) dy dx =

∫ t

−∞
g(x) dx

and

P(Y ≤ s) = F(s) =
∫ s

−∞

∫ +∞

−∞
f (x, y) dx dy =

∫ s

−∞
h(y) dy

respectively, where g(x) is the marginal probability density of X and h(y) is the
marginal probability density of Y.

If f (x, y) is the bivariate probability density function for the random variables
X and Y and the marginal probability density functions g(x) and h(y) are known,
then we may define, for Y fixed at y, the conditional probability density function
for X given Y as

g(x|y) = f (x, y)
h(y)

, h(y) > 0; (5.23)
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and for X fixed at x, the conditional probability density function for Y given X is

h(y|x) = f (x, y)

g (x)
, g (x) > 0. (5.24)

Here g(x|y) is a function of x alone with properties: g(x|y) > 0; and (b)∫ +∞
−∞ g(x|y) dx = 1. Similarly, h(y|x) depends upon y alone and: (a) h(y|x) ≥ 0;

and (b)
∫ +∞

−∞ h(y|x) dy = 1.
How may we interpret (5.23) and (5.24)? If y is the observed level of Y but the

value of X is not known, then the function g(x|y) gives the probability density of
X along a fixed line Y = y in the XY-plane. And if X is observed at the level x but
the Y value is unknown, then the function h(y|x) yields the probability density of
Y along a fixed line X = x in the XY-plane.

Once the conditional probabilities g(x|y) and h(y|x) are determined, we may
calculate probabilities such as

P(a ≤ X ≤ b|y) =
∫ b

a
g(x|y) dx (5.25)

and

P(c ≤ Y ≤ d|x) =
∫ d

c
h(y|x) dy. (5.26)

In this regard, (5.25) addresses the question: given that Y is set at y, what is the
probability that X varies between a and b inclusive? Equation (5.26) is interpreted
in a similar fashion.

Example 5.3.5 For the bivariate probability density function

f (x, y) =
{

x + y, 0 < x < 1 and 0 < y < 1;

0 elsewhere

we have, from (5.21) and (5.22), respectively,

g(x) =
∫ +∞

−∞
(x + y) dy =

∫ 1

0
(x + y) dy =

(
xy + 1

2
y2
)]1

0
= x + 1

2
;

h(y) =
∫ +∞

−∞
(x + y) dx =

∫ 1

0
(x + y) dx =

(
1
2

x2 + xy
)]1

0
= 1

2
+ y.

And from (5.23) and (5.24), respectively,

g(x|y) = x + y
1
2 + y

; h(y|x) = x + y

x + 1
2

.
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Then for, say, X = x = 2, h(y|2) = 4
5 + 2

5 y and thus

P
(

1
3

≤ Y ≤ 1
2

|x = 2
)

=
∫ 1/2

1/3

(
4
5

+ 2
5

y
)

dy =
(

4
5

y + 1
5

y2
)]1/2

1/3
= 29

180
. �

Let X and Y be continuous random variables with bivariate probability density
function f (x, y) and marginal probability densities g(x) and h(y), respectively.
Then the random variable X is independent of the random variable Y if

g(x|y) = g(x) (5.27)

for all values of X and Y for which both of these functions exist. In like fashion we
may state that the random variable Y is independent of the random variable X if

h(y|x) = h(y) (5.28)

for all X and Y for which both of these functions are defined. Using either (5.27)
or (5.28) we have

f (x, y) = g(x) · h(y); (5.29)

that is, X and Y are independent random variables if and only if their joint
probability density function f (x, y) can be written as the product of their indi-
vidual marginal probability densities g(x) and h(y), respectively. So under
independence,

P (a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b

a

∫ d

c
f (x, y) dy dx

=
∫ b

a

∫ d

c
g(x)h(y) dy dx

=
(∫ b

a
g(x)dx

)(∫ d

c
h(y)dy

)

= P(a ≤ X ≤ b) · P(c ≤ Y ≤ d). (5.29.1)

Example 5.3.6 The random variables X and Y with bivariate probability
density function

f (x, y) =
{

x + y, 0 < x < 1 and 0 < y < 1;

0 elsewhere
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are not (mutually) independent since the product of their marginal probability
densities g(x) = x + 1

2 and h(y) = 1
2 + y does not equal f (x, y). However, if

f (x, y) =
{

e−x−y, 0 < x < +∞ and 0 < y < +∞;

0 elsewhere

then clearly the random variables X and Y are independent since (5.29) holds.
In fact, f (x, y) = e−x−y = (e−x)(e−y) = g(x) · h(y) as required. �

5.4 Expectations and Moments of Bivariate
Probability Distributions

In what follows it is assumed that all relevant expectations exist. For X and Y
discrete random variables with bivariate probability mass function f (X , Y), the
expectation of a function of X and Y, ϕ(X , Y), is

E [ϕ(X , Y)] =
∑

i

∑

j

ϕ(Xi, Yj)f (Xi, Yj). (5.30)

In view of this specification, we may define the rth moment of the random variable
X about zero as

E(Xr) =
∑

i

∑

j

Xr
i f (Xi, Yj) =

∑

i

Xr
i g(Xi) (5.31)

and the sth moment of the random variable Y about zero is

E(Ys) =
∑

i

∑

j

Ys
j f (Xi, Yj) =

∑

j

Ys
j h(Yj). (5.32)

Furthermore, the rth and sth product or joint moment of X and Y about the origin
(0,0) is

E(XrYs) =
∑

i

∑

j

Xr
i Ys

j f (Xi, Yj) (5.33)

and, for r and s nonnegative integers, the rth and sth product or joint moment of
X and Y about the mean is

E
[
(X − µX )r(Y − µY )s

]
=
∑

i

∑

j

(Xi − µX )r(Yj − µY )sf (Xi, Yj), (5.34)

where µX = E(X) and µY = E(Y) are the means of the random variables X and
Y, respectively.
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If X and Y are continuous random variables with joint probability density
function f (x, y), then the expectation of a function of X and Y, ϕ(X , Y), is

E [ϕ(X , Y)] =
∫ +∞

−∞

∫ +∞

−∞
ϕ(x, y)f (x, y) dy dx (5.35)

and thus the rth moment of X about zero is

E(Xr) =
∫ +∞

−∞

∫ +∞

−∞
xrf (x, y) dy dx =

∫ +∞

−∞
xrg(x) dx (5.36)

and the sth moment of Y about zero is

E(Ys) =
∫ +∞

−∞

∫ +∞

−∞
ysf (x, y) dy dx =

∫ +∞

−∞
ysh(y) dy. (5.37)

In addition, the rth and sth product or joint moment of X and Y about the origin is

E(XrYs) =
∫ +∞

−∞

∫ +∞

−∞
xrysf (x, y)dy dx (5.38)

and, for r and s nonnegative integers, the rth and sth product or joint moment of
X and Y about the mean is

E
[
(X − µX )r(Y − µY )s

]
=
∫ +∞

−∞

∫ +∞

−∞
(x − µX )r(y − µY )sf (x, y) dy dx.

(5.39)

Example 5.4.1 If ϕ(X , Y) is a linear function of the random variables X and
Y or ϕ = aX ± bY , where a and b are constants, then, for either the discrete or
continuous case,

E(aX ± bY) = aE(X) ± bE(Y). (5.40)

In general, if Xi, i = 1, . . . , k, are discrete or continuous random variables and ϕ

is expressible as a linear combination of the Xi or ϕ = ∑k
i=1 aiXi, ai constant for

all i, then, since E is a linear operator,

E

(
k∑

i=1

aiXi

)
=

k∑

i=1

aiE(Xi). � (5.40.1)
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In (5.34) and (5.39) let r = s = 1. Then the expression

E
[
(X − µX )(Y − µY )

]
= E(XY) − µXµY = COV(X , Y) = σXY (5.41)

is called the covariance of the random variables X and Y. Note that

COV(aX , bY) = ab σXY . (5.42)

As mentioned in Chapter 2, σXY depicts the joint variability of the random
variables X and Y. That is:

(a) If the probability is high that large values of X −µX are associated with large
values of Y −µY and small values of X −µX are associated with small values
of Y − µY , then X and Y are positively related and σXY > 0.

(b) If the probability is high that large values of X −µX are associated with small
values of Y −µY and small values of X −µX are associated with large values
of Y − µY , then X and Y are negatively related and σXY < 0.

Whereas the sign of σXY indicates the direction of the relationship between the
discrete or continuous random variables X and Y, its magnitude depends upon
the units in which X and Y are measured. To correct for the scaling of X and Y,
let us divide σXY by σXσY , where σX (respectively, σY ) is the standard deviation of
X (respectively, Y). This yields the coefficient of correlation between the random
variables X and Y or

ρXY = σXY

σXσY
, −1 ≤ ρXY ≤ 1 (5.43)

or

|σXY | ≤ σX σY . (5.43.1)

As also indicated in Chapter 2, ρXY measures the strength as well as the direction
of the linear relationship between X and Y. At the extremes, when ρXY = 1,
we have perfect positive association between X and Y. And when ρXY = −1,
the case of perfect negative association emerges.

Example 5.4.2 If we standardize the discrete or continuous random variables
X and Y so as to obtain

ZX = X − µX

σX
and ZY = Y − µY

σY
,

respectively (where σX is the standard deviation of X and σY is the standard
deviation of Y), then

ρZX ZY = σZX ZY

σZX σZY

= σZX ZY ;
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that is, since σZX = σZY = 1, the correlation coefficient of two standardized
random variables ZX and ZY is just their covariance itself. �

If X and Y are independent discrete or continuous random variables, then
σXY = 0 and thus:

(a) from (5.41), E(XY) = µXµY

(b) X and Y are uncorrelated or ρXY = 0 (but if σXY = 0, it does not necessarily
follow that X and Y are independent random variables)

If ϕ is a real-valued function of the discrete or continuous random variables X
and Y, then the variance of a function of X and Y, ϕ(X , Y), is

V [ϕ(X , Y)] = E
{[

ϕ(X , Y) − E
(
ϕ(X , Y)

)]2} = σ 2
ϕ . (5.44)

Based upon this definition it can be shown that:

(a) If ϕ(X , Y) = aX + bY , then

V(aX + bY) = a2σ 2
X + b2σ 2

Y + 2abσXY , (5.45)

where a and b are constants and σ 2
X = V(X) and σ 2

Y = V(Y) are the
variances of the random variables X and Y, respectively.

(b) If ϕ(X , Y) = aX − bY , then

V(aX − bY) = a2σ 2
X + b2σ 2

Y − 2abσXY , (5.46)

with a and b constants.

(c) If ϕ(X , Y) = aX ± bY and X and Y are independent random variables, then

V(aX ± bY) = a2σ 2
X + b2σ 2

Y , (5.47)

with a and b constants.

(d) In general, if Xi, i = 1, . . . , k, are random variables and ϕ is a linear com-
bination of the Xi or ϕ = ∑k

i=1 aiXi, with ai constant for all i = 1, . . . , k,
then

V

(
k∑

i=1

aiXi

)
=

k∑

i=1

a2
i σ

2
i + 2

k∑

i=1

k∑

j=1
i<j

aiajσij, (5.48)

where σ 2
i = V(Xi) and σij = COV(Xi, Xj), i �= j.
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If the Xi, i = 1, . . . , k, are independent random variables, then

V

(
k∑

i=1

aiXi

)
=

k∑

i=1

a2
i σ

2
i . (5.48.1)

(e) For random variables X and Y,

E(XY) = µXµY + σXY . (5.49)

If X and Y are independent,

E(XY) = µXµY (5.49.1)

as indicated earlier.

(f) If ϕ(X , Y) = XY , then, from (e),

V(XY) = E
{

[XY − E(XY)]2
}

= E
{

[XY − (µXµY + σXY )]2
}

= µ2
Yσ 2

X + µ2
Xσ 2

Y + 2µXµYσXY − σ 2
XY

+ E
[
(X − µX )2(Y − µY )2]

+ 2µY E
[
(X − µX )2(Y − µY )

]

+ 2µX E
[
(X − µX )(Y − µY )2] . (5.50)

If X and Y are independent random variables, then

V(XY) = µ2
Yσ 2

X + µ2
Xσ 2

Y + σ 2
Xσ 2

Y . (5.50.1)

(g) In general, if Xi, i = 1, . . . , k, are random variables and both ϕ1 and ϕ2 are
linear combinations of the Xi or ϕ1 = ∑k

i=1 aiXi and ϕ2 = ∑k
i=1 biXi, where

ai and bi are constants, i = 1, . . . , k, then

σϕ1ϕ2 = COV(ϕ1, ϕ2) =
k∑

i=1

aibiσ
2
i +

k∑

i=1

k∑

j=1

(aibj + ajbi)σij.

i<j

(5.51)

If the Xi, i = 1, . . . , k, are independent random variables, then

σϕ1ϕ2 = COV (ϕ1, ϕ2) =
k∑

i=1

aibiσ
2
i . (5.51.1)
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(h) For random variables X and Y ,

E
(

X
Y

)
≈
(

µX

µY

)
−
(

σXY

µ2
Y

)
+
(

µXσ 2
Y

µ3
Y

)
; (5.52)

V
(

X
Y

)
≈
(

µX

µY

)2
[(

σ 2
X

µ2
X

)
+
(

σ 2
y

µ2
y

)
−
(

2σxy

µxµy

)]
. (5.53)

If X and Y are independent random variables,

E
(

X
Y

)
≈
(

µX

µY

)
+
(

µXσ 2
Y

µ3
Y

)
; (5.52.1)

V
(

X
Y

)
≈
(

µX

µY

)2
[(

σ 2
X

µ2
X

)
+
(

σ 2
y

µ2
y

)]
. (5.53.1)

Let X and Y be discrete random variables with g(X |Y) the conditional probability
mass function of X given Y and h(Y |X) the conditional probability mass function
of Y given X. Then the conditional expectation (mean) of X given Y = Ys is
defined as

E(X |Ys ) =
∑

i

Xig(Xi |Ys ); (5.54)

and the conditional variance of X given Y = Ys is

V(X |Ys) = E
{

[X − E(X |Ys)]2 |Ys

}
= E(X2 |Ys ) − E(X |Ys )2, (5.55)

where

E(X2|Ys) =
∑

i

X2
i g(Xi|Ys). (5.56)

In general, both E(X |Ys) and V(X |Ys) are functions of the chosen Y value.
Similarly, the conditional expectation (mean) of Y given X = Xr is

E(Y |Xr) =
∑

j

Yjh(Yj|Xr); (5.57)

and the conditional variance of Y given X = Xr is

V(Y |Xr) = E
{

[Y − E(Y |Xr)]2 |Xr

}
= E(Y2|Xr) − E(Y |Xr)2, (5.58)
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with

E(Y2|Xr) =
∑

j

Y2
j h(Yj|Xr). (5.59)

Here both E(Y |X) and V(Y |X) generally depend upon the given value of X.
If X and Y are continuous random variables with g(x|y) and h(y|x) representing

conditional probability density functions for X given Y and Y given X, respectively,
then the conditional expectation (mean) of X given Y = y is

E(X |y) =
∫ +∞

−∞
x g(x|y) dx; (5.60)

and the conditional variance of X given Y = y is

V(X |y) = E
{

[X − E(X |y)]2 |y
}

= E(X2|y) − E(X |y)2, (5.61)

where

E(X2|y) =
∫ +∞

−∞
x2 g(x|y) dx. (5.62)

Both E(X |y) and V(X |y) are functions of y and give the mean and variance of the
random variable X, respectively, along the line Y = y in the XY-plane. In like
fashion we may define the conditional expectation (mean) of Y given X = x as

E(Y |x) =
∫ +∞

−∞
y h(y|x) dy; (5.63)

and the conditional variance of Y given X = x is

V(Y |x) = E
{

[Y − E(Y |x)]2 |x
}

= E(Y2|x) − E(Y |x)2, (5.64)

where

E(Y2|x) =
∫ +∞

−∞
y2 h(y|x) dy. (5.65)

Here E(Y |x) and V(Y |x) depend upon x and give the mean and variance of the
random variable Y, respectively, along the line X = x in the XY-plane.

If X and Y are independent discrete or continuous random variables, then
the preceding (four) sets of conditional means and variances equal their uncon-
ditional counterparts. For instance, from (5.60) and (5.61), under independence,
E(X |y) = E(X) and V(X |y) = V(X).
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Finally, for X and Y any two random variables (discrete or continuous), it can
be demonstrated that:

(a) E(X) = E [E(X |Y)]

(b) V(X) = E [V(X |Y)] + V [E(X |Y)]
(5.66)

given that the indicated expectations exist.

5.5 Chebyshev’s Theorem for Bivariate Probability
Distributions

Let X and Y be jointly distributed discrete or continuous random variables with
individual means and variances: E(X) = µX , V(X) = σ 2

X ; and E(Y) = µY ,
V(Y) = σ 2

Y , respectively. Let us define the events:

AX =
{

X | |X − µX | <
√

2 kσX

}
; AY =

{
Y | |Y − µY | <

√
2 kσY

}
,

where k > 0. Then

P(AX ∩ AY ) ≥ 1 − 1
k2

;

that is, the probability that X lies within
√

2 k standard deviations of µX and Y
lies within

√
2 k standard deviations of µY is at least 1 − 1

k2 .

5.6 Joint Moment–Generating Function

Let X and Y be discrete or continuous random variables. The joint moment-
generating function of X and Y, denoted mX ,Y (t1, t2), is defined as E(et1X+t2Y )
provided that the expectation exists for values of the moment-generators t1 and t2
such that −t0 < ti < t0, i = 1, 2. In this regard, either

mX ,Y (t1, t2) = E(et1X+t2Y )

=
∑

i

∑

j

et1Xi+t2Yj f (Xi, Yj) [X , Y discrete] (5.67)

or

mX ,Y (t1, t2) = E(et1X+t2Y )

=
∫ +∞

−∞

∫ +∞

−∞
et1x+t2yf (x, y) dy dx. [X , Y continuous] (5.68)

(If t1 = t2 = 0, then mX ,Y (0, 0) = E(e0) = 1.)
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Since either (5.67) or (5.68) completely specifies the joint distribution of X and
Y, the marginal distributions of X and Y can be determined from the marginal
moment-generating functions as mX (t1) = mX ,Y (t1, 0) = E(et1X ), mY (t2) =
mX ,Y (0, t2) = E(et2Y ).

If mX ,Y (t1, t2) exists, then it is continuously differentiable in some neighbor-
hood of the origin (0,0). Hence mX ,Y (t1, t2) will generate all moments of X and Y
under suitable differentiation. That is, for X and Y discrete random variables, we
may employ (5.67) to obtain

∂r+smX ,Y (t1, t2)
∂tr

t1∂ts
t2

=
∑

i

∑

j

Xr
i Ys

j et1Xi+t2Yj f (Xi, Yj)

(provided a uniform convergence criterion holds for infinite sums) so that the rth

and sth joint moment of X and Y about the origin (0,0) is

E(XrYs) = ∂r+smX ,Y (t1, t2)
∂tr

1∂ts
2

∣∣∣∣
t1=t2=0

=
∑

i

∑

j

Xr
i Ys

j f (Xi, Yj) (5.69)

(given that r and s are not simultaneously zero).
And for X and Y continuous random variables, we may use (5.68) to find

∂r+smX ,Y (t1, t2)
∂tr

t1∂ts
t2

=
∫ +∞

−∞

∫ +∞

−∞
xryset1x+t2yf (x, y) dy dx

(provided that the operations of integration and differentiation can be inter-
changed). Then the rth and sth joint moment of X and Y about the origin (0,0)
(with r and s not simultaneously zero) is

E(XrYs) = ∂r+smX ,Y (t1, t2)
∂tr

1∂ts
2

∣∣∣∣
t1=t2=0

=
∫ +∞

−∞

∫ +∞

−∞
xrysf (x, y) dy dx. (5.70)

Given either (5.69) or (5.70), it should be obvious that:

∂mX ,Y (0, 0)
∂t1

= E(X) = µX ,
∂mX ,Y (0, 0)

∂t2
= E(Y) = µY ,

σ 2
X = E(X2) − µ2

X = ∂2mX ,Y (0, 0)
∂t2

1

− µ2
X ,

σ 2
Y = E(Y2) − µ2

Y = ∂2mX ,Y (0, 0)
∂t2

2

− µ2
Y , and

σXY = E(XY) − µXµY = ∂2mX ,Y (0, 0)
∂t1∂t2

− µXµY .
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Let us replace et1X+t2Y by its Maclaurin’s series expansion

et1X+t2Y = 1 + t1X + t2Y + 1
2! (t2

1X2 + 2t1t2XY + t2
2Y2) + · · · . (5.71)

Then if X and Y are, say, continuous random variables and mX ,Y (t1, t2) exists,
(5.68) can be expressed as

mX ,Y (t1, t2) = E(et1X+t2Y )

=
∫ +∞

−∞

∫ +∞

−∞

(
1 + t1x + t2y + 1

2! t2
1x2 + t1t2xy + 1

2! t2
2y2 + · · ·

)
f (x, y)dy dx

= 1 + t1µX + t2µY + t2
1

2!E(X2) + t1t2E(XY) + t2
2

2!E(Y2) + · · · . (5.72)

So given (5.72), the partial derivatives of various orders of mX ,Y (t1, t2) with
respect to the generators t1 and t2, evaluated at t1 = t2 = 0, yield the various
moments of X and Y about the origin. That this is indeed the case is left to you
as an exercise.

Example 5.6.1 Suppose X and Y are continuous random variables with bivari-
ate probability density function

f (x, y) =
{

e−x−y, x > 0, y > 0;

0 elsewhere.

From (5.68), the joint moment-generating function of X and Y is

mX ,Y (t1, t2) = E(et1X+t2Y )

=
∫ +∞

−∞

∫ +∞

−∞
et1x+t2ye−x−ydy dx

=
∫ +∞

0
e−x(1−t1)dx

∫ +∞

0
e−y(1−t2)dy = (1 − t1)−1(1 − t2)−1.
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Then by direct computation we see, via (5.70), that

∂mX ,Y (t1, t2)
∂t1

= (1 − t1)−2(1 − t2)−1,
∂mX ,Y (t1, t2)

∂t2
= (1 − t1)−1(1 − t2)−2,

∂2mX ,Y (t1, t2)
∂t2

1

= 2(1 − t1)−3(1 − t2)−1,

∂2mX ,Y (t1, t2)
∂t2

2

= 2(1 − t1)−1(1 − t2)−3, and

∂2mX ,Y (t1, t2)
∂t1∂t2

= (1 − t1)−2(1 − t2)−2.

Then

∂mX ,Y (0, 0)
∂t1

= ∂mX ,Y (0, 0)
∂t2

= ∂2mX ,Y (0, 0)
∂t1∂t2

= 1,

∂2mX ,Y (0, 0)
∂t2

1

= ∂2mX ,Y (0, 0)
∂t2

2

= 2,

and thus µX = µY = 1, σ 2
X = σ 2

Y = 1, and σXY = 0.
Looking at (5.72), let us write

mX ,Y (t1, t2) =
∫ +∞

0

∫ +∞

0

(
1 + t1x + t2y + 1

2! t2
1x2 +t1t2xy + 1

2! t2
2y2 + · · ·

)
e−x−y dy dx

= 1 + t1 + t2 + t2
1 + t1t2 + t2

2 + · · · .

Then

∂mX ,Y (t1, t2)
∂t1

= 1 + 2t1 + t2 + · · · ,

∂mX ,Y (t1, t2)
∂t2

= 1 + t1 + 2t2 + · · · ,

∂2mX ,Y (t1, t2)
∂t2

1

= 2 + higher order terms involving t1and t2,

∂2mX ,Y (t1, t2)
∂t2

2

= 2 + higher order terms involving t1and t2,

∂2mX ,Y (t1, t2)
∂t1∂t2

= 1 + higher order terms involving t1 and t2.

Upon evaluating all these partial derivatives at (0,0) renders the exact same set
of moments about the origin that we just determined above. �
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Example 5.6.2 Let X and Y be discrete random variables with the bivariate
probability mass function depicted in Table 5.6. Then the joint moment-generating
function of X and Y is, from (5.67),

m(t1, t2)
X ,Y = et1X1+t2Y1f (X1, Y1) + et1X2+t2Y1f (X2, Y1)

+ et1X1+t2Y2 f (X1, Y2) + et1X2+t2Y2 f (X2, Y2)

= 0.25 + 0.25et1 + 0.25et2 + 0.25et1+t2 .

Table 5.6

Y
Y1 = 0 Y2 = 1

X

X1 = 0 0.25 0.25
X2 = 1 0.25 0.25

Then from (5.69),

∂mX ,Y (0, 0)
∂t1

= ∂mX ,Y (0, 0)
∂t2

= 0.50,

∂2mX ,Y (0, 0)
∂t2

1

= ∂2mX ,Y (0, 0)
∂t2

2

= 0.50, and

∂2mX ,Y (0, 0)
∂t1∂t2

= 0.25. �

Next, suppose that X and Y are independent discrete or continuous random
variables and let U = X + Y . Then the moment-generating function for U is

mU (t) = E(etU ) = E(et(X+Y))

= E(etX etY ) = E(etX ) · E(etY ) = mX (t) · mY (t) (5.73)

under independence (provided that the individual expectations exist). Obvi-
ously this result is readily generalized for the case where we have n mutu-
ally independent random variables X1, . . . , Xnwith moment-generating functions
mX1(t), . . . , mXn(t), respectively. If U1 = ∑n

i=1 Xi, then

mU1(t) =
n∏

i=1

mXi (t). (5.73.1)
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And if U2 = ∑n
i=1 aiXi, then, under the mutual independence of the Xi, i =

1, . . . , n,

mU2 (t) =
n∏

i=1

mXi (ait). (5.73.2)

Finally, if, in addition to being mutually independent random variables, the Xi

have the same probability density function f (x) for all i = 1, . . . , n, more then
(5.73.1) and (5.73.2) become, respectively,

mU1(t) = [mX (t)]n , (5.73.3)

mU2 (t) = [mX (ait)]n . (5.73.4)

Note that if in (5.73.4) we set ai = 1
n for all i, then the resulting expression depicts

the moment-generating function for the sample mean �X or

m�X (t) =
[

mX

(
t
n

)]n

. (5.73.5)

5.7 Exercises

5-1. Given the following bivariate probability distribution, determine the sets
of marginal probabilities for the X and Y random variables. Find:

Y
0 1 2 3

X

0
3
87

3
87

5
87

5
87

1
4
87

6
87

8
87

10
87

2
7

87
9

87
12
87

15
87

(a) F(1, 2)

(b) P(1 ≤ Y ≤ 3)

(c) The marginal probability distributions of X and Y

(d) P(X = 1|Y = 1)

(e) P(Y = 2|X = 0)

(f) The conditional distribution of X given Y = 3

(g) The conditional distribution of Y given X = 2. Are X and Y in-
dependent?
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5-2. Let a random experiment consist of tossing a fair coin twice. Define the
random variable X to be the number of heads obtained in the two tosses
and let the random variable Y be the opposite face outcome. Determine
the points within the sample space S and the values of X and Y on S. Next,
specify the bivariate probability distribution between X and Y. Find:

(a) P(X = 2|Y = 1)

(b) The marginal distribution of Y

(c) The conditional distribution of X given Y = 0. Are X and Y in-
dependent?

5-3. Let a random experiment consist of rolling a fair pair of six-sided dice. Let
the random variable X (respectively, Y) be defined as the face value of die
1 (respectively, die 2). Determine the sample space S and find:

(a) P(3 ≤ X ≤ 5, 2 ≤ Y ≤ 4)

(b) P(3, 3)

(c) The marginal probability distributions of X and of Y

(d) The conditional probability distribution of X given Y = Y4

5-4. Given the following bivariate probability distribution, find:

Y −1 2 3
X

1
1

14
1

14
2
14

2
2
14

3
14

1
14

3
1

14
0

3
14

(a) E(X) and E(Y)

(b) V(X) and V(Y)

(c) ρXY

(d) E(X |Y = 2) and E(Y |X = 3)

(e) V(X |Y = −1) and V(Y |X = 3)

5-5. Let a random experiment consist of rolling a fair pair of six-sided dice.
Let the random variable X = |difference of the faces| and let the random
variable Y = sum of the faces. Determine the points in S and find:

(a) P(4 ≤ X ≤ 6, 0 ≤ Y ≤ 4)

(b) P(X ≥ 4, Y = 3)

(c) The marginal probability distribution of Y
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(d) The conditional probability distribution of X given Y = 3

(e) E(Y) and V(Y)

(f) E(X |Y = 1)

(g) V(Y |X = 4)

5-6. Let the bivariate probability mass function of the discrete random variables
X and Y be given as

f (X , Y) =
{

X+Y
36 , X = 1, 2, 3 and Y = 1, 2, 3;

0 elsewhere.

Find:

(a) P(X = 2, Y ≤ 2)

(b) F(2, 2)

(c) The marginal probability mass functions of X and Y

(d) The marginal probability distribution of X

(e) The conditional probability distribution of Y given X = 1

Are the X and Y random variables independent?

5-7. Let the bivariate probability mass function for the discrete random variables
X and Y appear as

f (X , Y) =
{

1
9 , X = 1, 2, 3 and Y = 1, 2, 3;
0 elsewhere.

Are X and Y independent?

5-8. A jar contains three balls numbered 1,2, and 3, respectively. Two balls are
drawn at random with replacement. Let X be the number of the ball on
the first draw and let Y be the number on the second ball drawn. Deter-
mine the resulting bivariate probability distribution between X and Y. What
would the said distribution look like if the draws were made without replace-
ment? For which of these two bivariate distributions is E(X) highest?
Are the random variables for either/both of the two bivariate distributions
independent?

5-9. For X , Y discrete random variables with bivariate probability mass function
f (X , Y) , demonstrate that the marginal probability mass functions have the
form:

g(X) =
∑

j

f (X , Yj); h(Y) =
∑

i

f (Xi, Y).
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5-10. Given the following bivariate probability mass function for the discrete
random variables X and Y, find E(Z), where Z = X − XY + 2Y .

Y
0 1 2 3

X

0 0.05 0.30 0.20 0.05
1 0.05 0.10 0.20 0.05

5-11. Suppose a fair pair of six-sided dice is tossed and (X , Y) is a bivariate random
variable defined on the sample space S = {Ei, i = 1, . . . , 36} . Here each
simple event Ei is a point (X = j, Y = j), j = 1, . . . , 6, where X is the outcome
on the first die and Y is the outcome on the second die. If the random variable
Z = X + Y is the sum of the faces showing, find the probability that X = 3
given Z = 7. What is E (X |Z = 7)?

5-12. Comment on the following statement: Knowledge of the marginal probabil-
ity mass functions g(X) and h(Y) is generally not equivalent to knowledge of
the bivariate probability mass function f (X , Y) . Under what circumstance
can f (X , Y) be obtained from knowledge about g(X) and h(Y)?

5-13. Given the bivariate probability density function

f (x, y) =
{

3x(1 − xy), 0 < x < 1 and 0 < y < 1;
0 elsewhere,

find:

(a) P
(
X ≤ 1

2 , Y ≤ 1
2

)

(b) the marginal densities of X and Y

(c) P
( 1

4 < X < 1
3 , 1

3 < Y < 1
2

)

(d) The conditional density function of X given Y

(e) The conditional density function of Y given X

Are the random variables X and Y independent?

5-14. For random variables X and Y, find the value of k that makes

f (x, y) =
{

kxy2, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1;
0 elsewhere,

a bivariate probability density function. Then find:

(a) The cumulative distributive function

(b) P
( 1

2 ≤ X ≤ 3
4 , 1

4 ≤ Y ≤ 1
2

)

(c) F
( 1

2 , 1
3

)
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(d) The marginal density functions of X and Y

(e) The conditional density function for Y given X

5-15. Given the bivariate probability density function

f (x, y) =
{

2y, 0 < x ≤ 1 and 0 < y ≤ 1;
0 elsewhere,

find the marginal density functions for X and Y. Are X and Y independent
random variables?

5-16. Suppose a bivariate random variable (X , Y) has a probability density
function of the form

f (x, y) =
{

θ2e−θ(x+y), θ > 0, x ≥ 0, y ≥ 0;
0 elsewhere.

Find P(0 ≤ X ≤ 100, 0 ≤ Y ≤ 100).

5-17. For the bivariate probability density function appearing in Exercise 5–13,
find:

(a) E(X) and E(Y)

(b) E(XY)

(c) V(X) and V(Y)

(d) COV(X , Y)

5-18. Given the bivariate probability density function for the continuous random
variables X and Y,

f (x, y) =
{

λ, 0 < x < 1 and 0 < y < 2
0 elsewhere.

Find:

(a) λ

(b) P
(
0 < X < 1

2 , 1
2 < Y < 3

4

)

5-19. Given the bivariate probability density function specified in the preceding
exercise, define event

A = {(X , Y) |X + Y ≤ 1 } .

Find P(A).



5.7 Exercises 179

5-20. Let X1, X2, and X3 be random variables, where:

E(X1) = 1 V(X1) = 1 COV(X1, X2) = 2

E(X2) = −1 V(X2) = 5 COV(X1, X3) = −1

E(X3) = 3 V(X3) = 2 COV(X2, X3) = 0.5

For U = X1 − 2X2 + 3X3, find:

(a) E(U)

(b) V(U)

(c) E
(

U
X1

)

(d) V
(

U
X2

)

(e) E(U · X3)

5-21. Let X , Y be independent random variables with respective probability
density functions

f (x) =
{

1
2 e−x/10 x > 0;
0 elsewhere

g(y) =
{

1
2 e−y/10 y > 0;
0 elsewhere.

If Z = X + Y , find h(z), the probability density function of Z, from Z’s
cumulative distribution function.

5-22. Given the joint probability density function

f (x, y) =
{

k(x + 2y), 0 < x ≤ 2 and 0 < y ≤ 1;
0 elsewhere,

find:

(a) The value of k

(b) The marginal distribution of X

(c) The cumulative distribution function

(d) P
(
1 ≤ X ≤ 2, 1

4 ≤ Y ≤ 1
2

)

(e) The conditional density function of Y given X

5-23. Find the value of k that makes

f (x, y) =
{

k
( x

y

)
, 0 < x < 2 and 1 < y < 3;

0 elsewhere

a bivariate probability density function.
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5-24. If F(t, s) = ts(t + s)/2, 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, find the joint probability
density function f (t, s).

5-25. Given the bivariate cumulative distribution function F(t, s), the joint prob-
ability P(a < X ≤ b, Y ≤ d) = F(b, d) − F(a, d). Using this expression,
find P

( 1
3 < X ≤ 1, Y ≤ 2

3

)
when

f (x, y) =
{

4xy, 0 < x < 1 and 0 < y < 1;
0 elsewhere.

5-26. Can the expression

f (x, y) =
{

xe−x−xy, x > 0 and y > 0;
0 elsewhere

serve as a joint probability density function?

5-27. Suppose f (x, y) is a bivariate probability density function and we want to
find

P(a < X < b) = P(a < X < b, −∞ < Y < +∞) =
∫ b

a

[∫ +∞

−∞
f (x, y)dy

]
dx.

How is the term within the square brackets interpreted?

5-28. Suppose that the random variables X and Y have the following joint
probability density function

f (x, y) =
{

2, 0 < x < y < 1;
0 elsewhere.

Find:

(a) The marginal distributions of X and Y

(b) The cumulative distribution function

(c) The conditional density function of Y given X

(d) E(X)

(e) V(Y)

(f) E(XY)

(g) E(X /Y)

(h) V(Y /X)
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5-29. Suppose the bivariate cumulative distribution function for the continuous
random variables X and Y appears as

F(t, s) =
{

0, t < 0 and s < 0;
1 − e−2t − e−2s + e−2(t+s), t ≥ 0 and s ≥ 0.

What is the associated probability density function?

5-30. Are the random variables X and Y with probability density function

f (x, y) =
{

12(xy − xy2), 0 < x < 1 and 1 < y < 1;
0 elsewhere

independent?

5-31. For the joint probability density function

f (x, y) =
{

x + y, 0 < x < 1 and 0 < y < 1;
0 elsewhere

find ρxy.

5-32. What is the value of the k that will make

f (x, y) =
{

kxy−1, 0 < x < 1 and 1 < y < 2;
0 elsewhere

a valid probability density function?

5-33. Let X , Y be independent random variables with probability mass func-
tions f (X), g(Y), respectively (or probability density functions f (x), g(y),
respectively). Let Z = X + Y with probability density function h(z).
Then:

(a) If X , Y are discrete, h(Z) = ∑
X f (X)g(Z − X)

(b) If X , Y are continuous, h(z) = ∫ +∞
−∞ f (x)g(z − x) dx

Suppose we have the following two independent probability density func-
tions for the continuous random variables X and Y, respectively;

f (x) =
{

e−x, x > 0;
0 elsewhere;

g(y) =
{

e−y, y > 0;
0 elsewhere.

Let Z = X + Y . Use part (b) to determine h(z).

5-34. Suppose α ≤ X ≤ β and α ≤ Y ≤ β. What is the form of the uniform
probability density function for the bivariate random variable (X , Y)?
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5-35. Suppose a bivariate random variable (X , Y) has a probability density
function of the form

f (x, y) =
{

e−x−y, x > 0 and y > 0;
0 elsewhere.

Find P(X + Y > 10).

5-36. Suppose that (X , Y) is a bivariate random variable with probability density
function

f (x, y) =
{

k(x + y), 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1;
0 elsewhere.

Find:

(a) The constant k

(b) The bivariate cumulative distribution function F(t, s)

(c) Demonstrate that F
( 1

2 , 1
2

) = P
(
0 ≤ X ≤ 1

2 , 0 ≤ Y ≤ 1
2

)

5-37. Suppose a bivariate probability density function has the form

f (x, y) =
{

2 − x − y, 0 < x < 1 and 0 < y < 1;
0 elsewhere.

Determine:

(a) The marginal probability density functions of the continuous random
variables X and Y

(b) The marginal cumulative distribution functions for X and Y

(c) The conditional probability density functions for X given Y (respec-
tively, for Y given X)

5-38. What is the justification for using equation (5.20) for finding P(a < X ≤ b,
c < Y ≤ d)? Can (5.20) simply be replaced by F(b, d) − F(a, c)?

5-39. Suppose (X , Y) is a bivariate random variable and X and Y are discrete
(or continuous). If X and Y are independent random variables, which of
the following is a valid equality?

(a) E
(X

Y

) = E(X) · E
( 1

Y

)

(b) E
(X

Y

) = E(X)
E(Y)

Verify your choice via the following random experiment. Vessel A contains
three identical chips numbered 1, 2, 3; vessel B also contains three iden-
tical chips numbered 1, 2, 3. A chip is drawn at random from each vessel
simultaneously. Construct the sample space S (there are nine simple events
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in S) by plotting the outcome obtained from vessel A (the random variable
X ) on the horizontal axis and the outcome obtained from vessel B (the
random variable Y ) on the vertical axis. Construct the discrete probability
distribution for X, Y, 1/Y, and X/Y. Find E(X), E(Y), E(1/Y), and E(X /Y).

5-40. For the bivariate random variable (X , Y), demonstrate that ρXY = 0 when
the probability density function is of the form

f (x, y) =
{

e−x−y, x > 0 and y > 0;
0 elsewhere.

5-41. Suppose the bivariate random variable (X , Y) has a probability density
function of the form

f (x, y) =
{

2, 0 < x < 1 and x < y < 1;
0 elsewhere.

Find:

(a) E(X)

(b) E(Y)

(c) V(X)

(d) V(Y)

5-42. Verify that for X , Y independent random variables, V(X + Y) = V(X) +
V(Y). (Hint: Use V(X + Y) = E

[
(X + Y)2]− [(E(X + Y

)]2 , with E(X +
Y) = E(X) + E(Y) and E(XY) = E(X) · E(Y) .)

5-43. Verify that for the bivariate random variable (X , Y), E [α(X) + β(Y)] =
E
(
α(X)

)+ E
(
β(Y)

)
. Consider both the discrete and continuous cases.

5-44. For (X , Y) a bivariate random variable, suppose that V(X) and V(Y)
exist. Then V(aX + bY) exists and V(aX + bY) = a2V(X) + b2V(Y) +
2abCOV(X , Y). Verify this result for X , Y continuous random variables.

5-45. For (X , Y) a bivariate random variable, suppose X and Y are independent
random variables whose individual expectations exist. Then E(XY) exists
and E(XY) = E(X) · E(Y). Verify this result for X,Y continuous. (Hint:
For X, Y independent, f (x, y) = g(x) · h(y).)

5-46. For (X , Y) a bivariate random variable, suppose that V(X) and V(Y) both
exist. Then COV(X , Y) exists. Comment on this assertion.
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5-47. For the bivariate random variable (X , Y) having the probability density
function

f (x, y) =
{

x−1, 0 < x < 1 and 0 < y < x;
0 elsewhere,

find the marginal probability density functions g(x) and h(y).

5-48. For (X , Y) a bivariate random variable, suppose X and Y are inde-
pendent random variables whose individual expectations exist. Then
COV(X , Y) = 0. Verify this result.

5-49. Verify that for (X , Y) a bivariate random variable, V(Y) = E [V (Y |X )] +
V [E (Y |X )] . (Hint: Begin with the expression E [V(Y |X )] =
E
{
E(Y2 |X ) − [E(Y |X )]2

}
.)

5-50. Verify that for (X , Y) a bivariate random variable, COV(X , Y) = E(XY)−
E(X)E(Y).

5-51. Demonstrate that if (X , Y) is a bivariate random variable with σX and σY

finite, then −1 ≤ ρXY ≤ 1 . (Hint: (a) For X, Y continuous, apply Schwarz’s
Inequality for two variables; and (b) for X, Y discrete, apply Cauchy’s
Inequality for a finite double sum.)
Note:

(1) For real-valued functions α(x, y) and β(x, y) such that the integrals

∫ b

a

∫ d

c
[α(x, y)]2 dy dx and

∫ b

a

∫ d

c
[β(x, y)]2 dy dx

exist (−∞ ≤ a < b ≤ +∞, −∞ ≤ c < d ≤ +∞) , it follows that

(∫ b

a

∫ d

c
α(x,y)β(x,y)dydx

)2

≤
(∫ b

a

∫ d

c
[α(x,y)]2 dydx

)(∫ b

a

∫ d

c
[β(x,y)]2 dydx

)
.

[Schwarz’s Inequality]

(2) For finite double sums
∑

i

∑
j a2

ij and
∑

i

∑
j b2

ij (having the same number
of terms in each subscript), it follows that

⎛

⎝
∑

i

∑

j

aijbij

⎞

⎠
2

≤
⎛

⎝
∑

i

∑

j

a2
ij

⎞

⎠

⎛

⎝
∑

i

∑

j

b2
ij

⎞

⎠ .

[Cauchy’s Inequality]
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5-52. Given the following bivariate probability density functions, find the joint
moment-generating functions for the random variables X and Y:

(a) f (x, y) =
{

4xy, 0 < x < 1, 0 < y < 1
0 elsewhere

(b) f (x, y) =
{

x + y, 0 < x < 1, 0 < y < 1
0 elsewhere

5-53. Suppose that X and Y are independent continuous random variables with
bivariate probability density function f (x, y). Verify that for U = X + Y ,
mU (t) = mX (t) · mY (t). (Hint: Use equation (5.29).)

5-54. Suppose that X1, . . . , Xn are independent continuous random variables,
where the probability density function of each Xi appears as

f i(x) =
{

1
λ

e−xi /λ, xi > 0, λ > 0, i = 1, . . . , n;
0 elsewhere.

For U = ∑n
i=1 Xi, verify that the moment-generating function for U has the

form

mU (t) = (1 − λt)−n, t < λ−1.

5-55. Suppose that (X , Y) is a bivariate random variable and that X and Y are
independent continuous random variables with moment-generating func-
tions mX (t) and mY (t), respectively. Verify that for real numbers a, b, and
c, maX+bY+c(t) = ectmX (at) · mY (bt).

5-56. (Bayes’ Rule for discrete random variables) Using (5.4) and (5.13), express
(5.9) as

g(X |Y) = g(X)h(Y |X)∑
i g(X)h(Y |X)

.

Similarly, show that (5.11) can be written, via (5.3) and (5.13), as

h(Y |X) = h(Y)g(X |Y)∑
i h(Y)g(X |Y)

.

Let vessel A1 contain one red (R) marble and two white (W) marbles and
let vessel A2 contain three red marbles and one white marble.

Suppose a marble is randomly drawn from vessel A1 and placed into vessel
A2. Call its color the value of the random variable Y. Then a marble is
randomly selected from vessel A2. Call its color the value of random variable
X. If X = W , what is the probability that Y = R? (Hint: Find h(R|W). )
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5-57. (Bayes’ Rule for continuous random variables) We may posit the multipli-
cation theorem for probability density functions as f (x, y) = g(x)h(y|x) =
h(y)g(x|y). Then using this expression, along with (5.22), demonstrate that
(5.23) can be written as

g(x|y) = g(x)h(y|x)
∫ +∞
−∞ g(x)h(y|x)dx

.

Similarly, using the preceding multiplication theorem along with (5.21),
verify that (5.24) can be expressed as

h(y|x) = h(y)g(x|y)
∫ +∞
−∞ h(y)g(x|y)dy

.

Given the probability density function

f (x, y) =
{

x + y, 0 < x < 1 and 0 < y < 1;
0 elsewhere,

use Bayes’ Rule to find g(x|y) and h(y|x).
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Discrete Parametric
Probability Distributions

6.1 Introduction

In this chapter we shall examine a variety of important discrete (univariate) para-
metric probability distributions that have been found useful for modeling many
types of real-life random phenomena often encountered in the actual practice of
statistics. These are not empirical distributions arising from the repeated perfor-
mance of some random experiment, but rather, theoretical distributions derived
mathematically under a particular set of assumptions concerning a hypotheti-
cal sampling process; for example, assumptions about sampling with or without
replacement, the types of events that may occur, the nature of the random variable
involved, and so on.

These theoretical distributions are expressed formally by a set of rules that
describe a family of probability mass functions in terms of certain parameters.
In this regard:

1. The members of a parametric family of discrete theoretical distributions share
the same generic rule for determining a probability mass function.

2. A parameter is an unspecified mathematical constant that enters into the rule
that determines the theoretical probability mass function. It can assume any
value within some range of possible values.

So by assigning specific values to the parameters in a theoretical probability mass
function, we obtain a particular probability mass function that is a member of
some parametric family of probability mass functions, and as we vary the value of
the parameter, we generate a whole collection of different probability mass func-
tions, each one corresponding to an admissible parameter value. For instance,
given a random variable X and a single parameter α, let f (X ; α) represent a rule
that depicts some discrete theoretical probability mass function. If α is deemed

187
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a positive integer, then it serves to index a whole collection of different probabil-
ity mass functions: f (X ; 1), f (X ; 2), f (X ; 3), . . .. So as α ranges over the positive
integers, we obtain the various members of the parametric family of discrete
distributions F = { f (X ; α)|α is a positive integer}.

What types of parameters are useful in characterizing a family of discrete
probability mass functions for a random variable X? The following list typifies the
types of parameters used to structure probability mass functions:

count parameter—records the number of times a particular outcome occurs in a
random experiment

proportion parameter—records the number of times a particular outcome occurs
relative to the total number of trials of a random experiment

location parameter—specifies the position (relative to the origin) of the probability
mass function on the X-axis

scale parameter—specifies the physical units in which a random variable is
measured, thus influencing the dispersion of a probability mass function by
compressing or elongating its graph

shape parameter—influences the form of a probability mass function (e.g.,
symmetry)

rate parameter—specifies the intensity of occurrence of the outcomes of some
random process over time, space, or volume (e.g., the number of occurrences of
an event in a given time period)

6.2 Counting Rules

This section is designed to develop a set of mathematical tools (generally called
combinatorial formulas) that are useful for solving so-called problems in counting.
For instance, these types of problems arise when we ask questions such as:

● Among a given set of alternatives, how many ways can a choice be made?
(e.g., how many committees of three people can be chosen from a group of
eight people?)

● How many ways are there of doing something? (e.g., how many ways are there
of labeling four items with four different labels?)

● How many different ways can some event occur? (e.g., how many ways are
there of getting three tails in ten flips of a fair coin?)
And so on

Our first general counting technique is called the Multiplication Principle:
If sets A1, A2, . . . , Ar have, respectively, n1, n2, . . . , nr elements, then the total

number of different ways in which one can sequentially choose an element
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from A1, then an element from A2, . . ., and finally an element from Ar is

n1 · n2 · · · nr =
r∏

i=1

ni. (6.1)

(Stated alternatively, if a process has steps S1, S2, . . . , Sr of which the first can be
performed in any of n1 ways, the second in any of n2 ways, . . ., and finally the rth

in any of nr ways, then all r steps can be performed sequentially in n1 · n2 · · · nr

different ways.)
Intuitively, we can establish the validity of the multiplication principle by

visualizing a tree diagram representing all the different ways in which the sequence
of steps can be undertaken. There would be n1 branches emanating from the
starting node. From the nodes at the ends of these n1 branches there would be n2

new branches, each ending at a node from which n3 new branches now emanate,
and so on. The total number of different paths through the tree diagram would
correspond to the product in (6.1).

Example 6.2.1 If A1 has n1 = 2 elements {a11, a12}, A2 has n2 = 3 elements
{a21, a22, a23}, and A3 has n3 = 2 elements {a31, a32}, then Figure 6.1 illustrates the
implied tree diagram, which exhibits a total of n1 · n2 · n3 = 2 · 3 · 2 = 12 different
possible paths. �

Let us now apply this multiplication principle to the situation in which repeated
selections are made from the same set of elements and the order in which the
elements are selected is important. Specifically, let r items be selected from a
set of n distinct items (r ≤ n) and arranged in a definite order. In general, any
particular arrangement of these r items is called a permutation. (If any two of the
r items have their respective positions interchanged, then we obtain a completely
different permutation.) How many different permutations of n different items
taken r at a time are there? The answer is provided by Theorem 6.1.

THEOREM 6.1. The number of different permutations of r items selected
from a set of n distinct items (r ≤ n) is

nPr = n(n − 1)(n − 2) · · · (n − r + 1). (6.2)

The symbol nPr is read “the number of permutations of n distinct items taken
r at a time.”

The rationalization of (6.2) is straightforward. That is, there are n ways to
make the first selection, n − 1 ways to make the second selection, n − 2 ways
to make the third selection, and so on. Finally, there are n − (r − 1) = n −
r + 1 items to choose from to fill the rth position after the first r − 1 selections
have been made. Then by virtue of (6.1), (6.2) immediately follows given that
n1 = n, n2 = n − 1, n3 = n − 2, . . . , nr = n − r + 1.
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a31

a21 a32

a31a22

a23 a32

a31

a11

a32

a31

a12 a21 a32

a22
a31

a32

a23
a31

a32

Figure 6.1 Determining the total number of paths through a tree diagram when n1 = 2, n2 = 3,
and n3 = 2.

Let

n! = n(n − 1)(n − 2) · · · 2 · 1 (6.3)

(the symbol n! is read “n factorial”), where 0! ≡ 1.1 Then if (6.2) is multiplied
by (n−r)!

(n−r)! , we obtain an alternative formula for nPr or

nPr = n!
(n − r)! , (6.2.1)

1 When n is large, n! can be approximated by Stirling’s formula:

n! ≈ (n/e)n
√

2πn,

where e ≈ 2.718282 and π = 3.1416, As n increases in value, the error of this approximation
approaches zero.



6.2 Counting Rules 191

where n is a positive integer and r = 0, 1, . . . , n. If n = r, then we seek to
determine the total number of permutations of n distinct items taken all
together or

nPn = n! (6.2.2)

Example 6.2.2 Given the set of letters {a,b,c,d,e}, the number of per-
mutations of these five letters taken three at a time is 5P3 = 5!

(5−3)! = 60.
And the number of permutations of these five letters taken all together is
5P5 = 5! = 120. �

Up to this point in our discussion of permutations we have been assuming that
the n items are all distinct. However, it may be the case that a number of items may
display certain similarities. In this regard, let us assume that within the collection
of n items there are k distinct types of items, of which there are r1 of the first type,
r2 of the second type, . . ., and finally rk of the kth type, where r1 + r2 + . . .+ rk = n.
We then have Theorem 6.2:

The total number of permutations of n items of which r1 are alike, r2 are
alike, . . ., and rk are alike is

(
n

r1, r2, . . . , rk

)
= n!

r1!r2!...rk! = n!
k∏

i=1
ri!

, (6.4)

where the ri, i = 1, . . . , k, are nonnegative integers and
∑k

i=1 ri = n.

Example 6.2.3 Let us determine the total number of permutations of the letters
in the word potato. Here there is one p, one a, two o’s, and two t’s. Setting
r1 = 1, r2 = 1, r3 = 2, and r4 = 2 in (6.4) yields

(
6

1, 1, 2, 2

)
= 6!

1! 1! 2! 2! = 180. �

A permutation is an ordered arrangement of items, whereas a combination
is an arrangement of objects without regard to order; that is, we are interested
in what items are selected irrespective of the order in which their actual selection
occurs. (So although abc and bac are different permutations of the three letters
a, b, and c, they represent the same combination of these three letters.) Based
upon this definition we may now address the question, how many combinations
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of n distinct items taken r at a time are there? To answer this we look to
Theorem 6.3.

THEOREM 6.3. The number of different combinations of r items selected
from a set of n distinct items (r ≤ n) is

(
n
r

)
= n!

r!(n − r)! , (6.5)

where n is a positive integer and r = 0, 1, . . . , n.

The symbol
(

n
r

)
is read “the number of combinations of n distinct items taken

r at a time.” If n = r, then we are interested in the total number of combinations
of n items taken all together or

(
n
n

) = 1. And since
(

n
r

) = nPr
r! , it is evident that the

number of combinations of n distinct items taken r at a time is smaller than the
number of permutations of the n items taken r at a time.

To verify (6.5) we need to remember only that a permutation is obtained by
first selecting r of the n distinct objects and then arranging them in a given order,
and a combination is obtained by performing only the first step of this process.
Hence the total number of permutations is obtained by taking every possible
combination and arranging them in all possible ways. Since the total number of
arrangements of r items taken all together is r!, it follows that nPr = (

n
r

)
r!, from

which (6.5) immediately obtains.

Example 6.2.4 How many committees of r = 5 people each can be selected
from a group of n = 10 people? Since the order of selection for membership on a
committee is irrelevant, our answer is provided by

(
10
5

)
= 10!

5! 5! = 252. �

It is instructive to view (6.5) in a slightly different light. Since a combination of
r items selected from n distinct items is just a subset of r elements (since the ele-
ments within a set or subset represent an amorphous collection of items and they
do not display any particular structure or order), we may note that the number of
subsets of size r that a set of n distinct items has is just the number of combinations
of n things taken r at a time and thus given by (6.5).

As a practical consideration in solving certain types of counting problems,
we may wonder whether the number of permutations or combinations should be
computed for a given n and r. The choice is clear: If order is important, compute
permutations; if order is not important, find combinations.

A few additional comments pertaining to these counting issues merit our atten-
tion. First, the combinatorial expression

(
n
r

)
often is termed a binomial coefficient

since it is the coefficient on the term xryn−r in the binomial expansion of (x + y)n;
that is, for x and y any two real numbers and n a positive integer, it can be shown
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that

(x + y)n =
n∑

r=0

(
n
r

)
xryn−r . (6.6)

To expedite the calculation of these binomial coefficients we may employ the
recursion formula

(
n

r + 1

)
= n − r

r + 1

(
n
r

)
, r = 0, 1, . . . , n. (6.7)

Example 6.2.5 To see how (6.7) is applied, let us select n = 5 with r = 0, 1, . . . , 5.
Since

(
5
0

) = 1, we have:

(
5
1

)
= 5 − 0

0 + 1

(
5
0

)
= 5 · 1 = 5;

(
5
2

)
= 5 − 1

1 + 1

(
5
1

)
= 2 · 5 = 10;

(
5
3

)
= 5 − 2

2 + 1

(
5
2

)
= 1 · 10 = 10;

(
5
4

)
= 5 − 3

3 + 1

(
5
3

)
= 1

2
· 10 = 5;

(
5
5

)
= 5 − 4

4 + 1

(
5
4

)
= 1

5
· 5 = 1. �

As an alternative to (6.7) we may construct Pascal’s triangle (see Figure 6.2)
to determine binomial coefficients. Here we first write 1’s down along the sides of
the triangle. Then any number in the triangle is simply the sum of the two adjacent
numbers in the row immediately above. So to find the binomial coefficients (5

r ),
r = 0, 1, . . . , 5, we look in the row corresponding to n = 5 and determine where
the diagonal line corresponding to r = 0, then to r = 1, . . ., and finally to r = 5
intersects this row.

Finally, the combinatorial expression (6.4) is oftentimes termed a multinomial
coefficient since it is the coefficient on the term xr1

1 xr2
2 · · · xrk

k , where the ri’s, i =
1, . . . , k, are nonnegative integers that sum to n in the multinomial expansion
of (x1 + x2 + · · · + xk)

n ; that is, for the xj’s, j = 1, . . . , k, real numbers and n a
positive integer, it can be shown that

⎛

⎝
k∑

j=1

xj

⎞

⎠
n

=
∑

r1+r2+···+rk=n

(
n

r1, r2, . . . , rk

) k∏

i=1

xri
i . (6.8)

Here (6.8) serves as a generalization of the binomial expansion (6.6).
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r = 0

n = 0 1 r = 1

n = 1 1 1 r = 2

n = 2 1 2 1 r = 3

n = 3 1 3  3 1 r = 4 

n = 4 1 4 6 4 1 r = 5

n = 5  1 5 10 10 5 1

• • • • • • •

• • • • • • • •

Figure 6.2 Binomial coefficients determined via Pascal’s triangle.

Armed with the preceding set of counting rules, we may now examine an
assortment of important discrete parametric probability distributions. By far the
simplest such distribution is the discrete uniform distribution.

6.3 Discrete Uniform Distribution

Let a discrete random variable X take on k different values X = 1, 2, . . . , k,
with each value of X having the same probability 1

k . Then the probability mass
function for the discrete uniform distribution appears as

f (X ; k) =
{

1/k, X = 1, 2, . . . , k;

0 elsewhere
(6.9)

where the parameter k ranges over the positive integers (see Figure 6.3). And for
each different value of k, we obtain a whole family of individual discrete uniform
distributions. For instance, if k = 6, the resulting distribution is provided by
Table 6.1.

For the discrete uniform distribution the mean and standard deviation are,
respectively,

µ = E(X) = k + 1
2

, σ =
√

V(X) =
(

k2 − 1
12

)1/2

. (6.10)

At times a discrete uniform distribution may be represented in a slightly different
but equivalent fashion. To this end let a and b be positive or negative integers
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f (X ; k)

1/k

X
1 2 k...

Figure 6.3 Probability mass function for a discrete uniform distribution.

Table 6.1

X f (X; 6)

1 1/6
2 1/6
3 1/6
4 1/6
5 1/6
6 1/6

1

such that a ≤ X ≤ b. Then an alternative version of the probability mass function
(6.9) is

f (X ; k) =
{

1
b−a+1 , X = a, a + 1, . . . , b − 1, b;

0 elsewhere
(6.9.1)

where now both a and b serve as parameters. Given (6.9.1) we now have

µ = E(X) = a + b
2

, σ =
√

V(X) =
[

(b − a + 1)2 − 1
12

]1/2

. (6.10.1)

6.4 The Bernoulli Distribution

Let us define a simple alternative experiment (or a Bernoulli experiment) as one
that admits only two possible outcomes, success or failure; for example, some
event either occurs (we record a success) or does not occur (we record a failure).



196 Chapter 6 Discrete Parametric Probability Distributions

Here the sample space S consists of only the two simple events: E1 = success;
E2 = failure. Then the associated discrete random variable X (called a Bernoulli
variable) takes on only two possible values: If a success occurs, we set X = 1;
if a failure occurs, we set X = 0. In addition, let the probability of a success
(or Bernoulli probability) be denoted as p. Then, with only two possible simple
events in S, the probability of a failure must be 1 − p.

Based upon these considerations, let a random experiment consist of a single
trial of a simple alternative (called a Bernoulli trial). Then the random variable X
follows a Bernoulli probability distribution with probability mass function

b (X ; p) =
{

pX (1 − p)1−X , X = 0 or 1, 0 ≤ p ≤ 1;

0 elsewhere
(6.11)

where p serves as a parameter that defines a family of Bernoulli probability dis-
tributions. An alternative representation of a Bernoulli distribution is provided
by Table 6.2; its accompanying graph (for p > 1

2 ) is illustrated by Figure 6.4.

Table 6.2

X b(X; p)

0 1 − p
1 p

1

b(X ;p)

1 

p

½

1 − p

X

0 1

Figure 6.4 Bernoulli probability mass function, p > 1
2 .
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For X a Bernoulli random variable, its mean and standard deviation are,
respectively,

µ = E(X) = p, σ =
√

V(X) =
√

p(1 − p); (6.12)

and its coefficients of skewness and kurtosis are

α3 = 1 − 2p
√

p(1 − p)
, α4 = 1 − 3p(1 − p)

p(1 − p)
, (6.13)

respectively.
It is easily verified that:

(a) for p = 1
2 , α3 = 0 and α4 = 1 (the minimum value of α4)

(b) for p < 1
2 , α3 > 0 and α4 > 1

(c) for p > 1
2 , α3 < 0 and α4 > 1

6.5 The Binomial Distribution

As indicated in the preceding section, the Bernoulli probability distribution arises
from a single trial of a Bernoulli or simple alternative experiment. Let us general-
ize this experiment to n separate Bernoulli trials while sampling with replacement.
What results then is a Bernoulli process—a series of repeated or identical inde-
pendent Bernoulli trials. If the trials are identical, then the probability of a success
p must be constant from trial to trial. In this regard, we may think of the binomial
probability distribution as arising from a Bernoulli process with p constant from
trial to trial. To summarize, the essential characteristics of a binomial experiment
are:

● X is a discrete random variable

● We have a simple alternative experiment

● The trials are identical and independent

● p is constant from trial to trial

Let the random variable X depict the number of successes obtained in n inde-
pendent trials of a Bernoulli experiment. In particular, we are interested in the
probability of getting X = k(≤ n) successes in the n trials. To simplify our analy-
sis, let us assume that we get all k successes on the first k trials. Then we must have
n − k failures on the last n − k trials. As was the case for the Benoulli experiment,
when a success occurs we set X = 1 with P(success)= p; when a failure occurs,
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X = 0 and P(failure)= 1 − p. Hence, under the independence of these events,

P(k successes on the first k trials ∩ n − k failures on the last n − k trials)

= P(k 1’s) · P(n − k 0’s)

= (pp · · · p)︸ ︷︷ ︸
taken k times

· ((1 − p)(1 − p) · · · (1 − p)
)

︸ ︷︷ ︸
taken n−k times

= pk(1 − p)n−k. (6.14)

But this is only one way to get k successes in n independent trials. (In fact, the
probability of any given sequence of outcomes in n independent Bernoulli trials
depends only on the number of successes k and p. Hence the probability of k
successes and n−k failures in any other order is exactly the same as that provided
by (6.14).) Since we are interested in getting k successes irrespective of the order
in which they occur, the total number of ways or orders in which k successes can
occur is

(
n
k

)
. Hence the probability of k successes and n − k failures in any order

in n independent trials is

b(X = k; n, p) =
(

n
k

)
pk(1 − p)n−k. (6.14.1)

In light of this discussion, let us define the random variable X as the number of
successes obtained in the n outcomes of a Bernoulli process. Then X follows a
binomial probability distribution with probability mass function

b(X ; n, p) =

⎧
⎪⎪⎨

⎪⎪⎩

(
n
X

)
pX (1 − p)n−X , X = 0, 1, . . . , n,

0 ≤ p ≤ 1, n is a positive integer;

0 elsewhere

(6.15)

where the parameters n and p serve to define an entire family of binomial prob-
ability distributions. Based upon our rationalization of the form of a binomial
probability distribution in (6.15), it should be evident that

b(X ; n, p) = b(n − X ; n, 1 − p). (6.15.1)

(Note that this transformation has us essentially interchange the labels success
and failure.) An alternative representation of a binomial distribution is provided
by Table 6.3.

The binomial probability distribution is so named because the probabilities
given in (6.15) are the successive terms in the binomial expansion (6.6)

(
p + (1 − p)

)n =
n∑

X=0

(
n
X

)
pX (1 − p)n−X =

n∑

X=0

b(X ; n, p) = 1.

A few additional comments pertaining to the binomial distribution are in order.
First, note that for n = 1, the binomial probability mass function (6.15) reduces
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Table 6.3

X b(X; n, p)

0 b(0; n, p)
1 b(1; n, p)
...

...
n b(n; n, p)

1

to (6.11), the Bernoulli probability mass function. Also, to expedite the calcula-
tion of successive binomial probabilities, we may employ the binomial recursion
formula

b(X + 1; n, p) = (n − X)p
(X + 1)(1 − p)

b(X ; n, p), X = 0, 1, . . . , n − 1. (6.16)

Next, the probability that a binomial random variable X assumes a value less than
or equal to some given integer level x, 0 ≤ x ≤ n, is provided by the binomial
cumulative distribution function

P(X ≤ x) = B(x; n, p) =
∑

i≤x

(
n
i

)
pi(1 − p)n−i =

∑

i≤x

b(i; n, p). (6.17)

Given this expression, we can also find

P(X > x) = P(X ≥ x + 1) = 1 − P(X ≤ x) = 1 − B(x; n, p). (6.18)

Finally, with X integer valued, we may employ (6.17) to calculate the binomial
probabilities given by (6.15); that is,

b(X = x; n, p) = B(x; n, p) − B(x − 1; n, p). (6.15.1)

Example 6.5.1 Let a random experiment consist of rolling a pair of fair six-
sided dice five times in succession and let a success be defined as getting an eight
as the sum of the faces showing. What is the probability of obtaining two eights
in the five rolls? Since P(the sum is eight)= 5/36, we have, from (6.15),

b
(

2; 5,
5

36

)
=
(

5
2

)(
5

36

)2 (31
36

)3

= 0.1232.
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Table 6.4

X b(X; 5, 5/36)

0 0.4735
1 0.3818
2 0.1232
3 0.0199
4 0.0016
5 0.0000

1.0000

To determine the entire binomial probability distribution associated with this
experiment let us calculate

b
(

X ; 5,
5

36

)
=
(

5
X

)(
5

36

)X (31
36

)5−X

, X = 0, 1, . . . , 5.

Our results are depicted in Table 6.4. For instance, when X = 0 we have

b
(

0; 5,
5

36

)
=
(

5
0

)(
5

36

)0 (31
36

)5

= 0.4735;

and for X = 1 we obtain

b
(

1; 5,
5

36

)
=
(

5
1

)(
5

36

)1 (31
36

)4

= 0.3818.

To determine the binomial probabilities when X = 3, 4, and 5, let us use the
recursion formula (6.16). Hence

b
(

3; 5,
5

36

)
= (5 − 2)

( 5
36

)

(2 + 1)
( 31

36

) b
(

2; 5,
5

36

)
= 0.0199;

b
(

4; 5,
5

36

)
= (5 − 3)

( 5
36

)

(3 + 1)
( 31

36

) b
(

3; 5,
5

36

)
= 0.0016;

b
(

5; 5,
5

36

)
= (5 − 4)

( 5
36

)

(4 + 1)
( 31

36

) b
(

4; 5,
5

36

)
= 0.0000.

What is the probability of no more than two eights in the five rolls? Here we
want P(X ≤ 2) or, from (6.17),

B
(

2; 5,
5

36

)
=
∑

i≤2

b
(

i; 5,
5

36

)

= b
(

0; 5,
5

36

)
+ b

(
1; 5,

5
36

)
+ b

(
2; 5,

5
36

)
= 0.9785.
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Moreover, the probability of at least three eights in the five rolls is, from (6.18),

P(X > 2) = P(X ≥ 3) = 1 − P(X ≤ 2) = 1 − B
(

2; 5,
5

36

)
= 0.0215.

Finally, from (6.15.2), we can easily determine, for instance, that

b
(

3; 5,
5

36

)
= B

(
3; 5,

5
36

)
− B

(
2; 5,

5
36

)
= 0.9984 − 0.9785 = 0.0199

as expected. �

To offer expressions for the mean and standard deviation of a binomial random
variable X we need only note that since a binomial variable can be represented as
a sum of identical and independent Bernoulli random variables Xi, i = 1, . . . , n,
each with mean p and variance p(1 − p), it follows that for X = ∑n

i=1 Xi,

(a) µ = E(X) =
n∑

i=1

E(Xi) = np;

(b) σ 2 = V(X) =
n∑

i=1

V(Xi) = np(1 − p)

(6.19)

and thus

σ =
√

V(X) =
√

np(1 − p). (6.20)

(For n = 1 in (6.19) and (6.20), the Bernoulli subcases obtain as in (6.12).) More-
over, the coefficients of skewness and kurtosis for a binomial distribution are,
respectively,

α3 = 1 − 2p
(
np(1 − p)

)1/2 , (6.21)

α4 = 3 +
(
1 − 6p(1 − p)

)

np(1 − p)
. (6.22)

Based upon the preceding discussion we can now examine some of the important
properties of the binomial probability distribution:

1. For a binomial random variable X, E(X) > V(X).

2. A binomial distribution is symmetrical (α3 = 0) if p = 1
2 ; otherwise it is skewed.

In this regard, it is:

(a) Positively skewed (α3 > 0) if p < 1
2

(b) Negatively skewed (α3 < 0) if p > 1
2
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3. The binomial distribution is relatively flat-topped when p = 1
2 since α4

attains its minimum value at p = 1
2 . For any other value at p, the binomial dis-

tribution has a relatively high peak. And as n → ∞, α4 → 3 (the benchmark
value of α4 for the normal distribution) for any p.

4. As the binomial random variable X takes on values from 0 to n, the terms
b(X ; n, p) first increase monotonically if X < (n + 1)p; they then decrease
monotonically if X > (n + 1)p. The binomial terms b(X ; n, p) attain their
maximum value when X = m = (n + 1)p. (In this instance m is termed the
“most probable number of successes.”) If m turns out to be an integer, then
b(m; n, p) = b(m − 1; n, p) and the largest binomial probability is not unique.
In fact, there exists exactly one such integer m for which (n + 1)p − 1 ≤ m ≤
(n + 1)p.

5. For p = 1
2 , the binomial probability mass function has a unique maximum at

X = n
2 when n is even; when n is odd, this function has maxima at X = (n−1)

2

and X = (n+1)
2 .

Example 6.5.2 Turning back to the binomial probability distribution provided
by Table 6.4, it is readily verified that

µ = 5
(

5
36

)
= 0.6944, σ =

(
5
(

5
36

)(
31
36

))1/2

= 0.7733,

α3 = 1 − 2
( 5

36

)

0.7733
= 0.9339, and

α4 = 3 +
(
1 − 6

( 5
36

) ( 31
36

))

5
( 5

36

) ( 31
36

) = 3.4722.

Hence this particular binomial distribution is positively skewed and its peak is a
bit sharper than that of a normal distribution. And since X = 0 < (n + 1)p =
6
( 5

36

) = 0.8333 and X > (n + 1)p = 0.8333 for X = 1, . . . , 5, it is evident that
the sequence of binomial values b(X ; 5, 5

36 ) is monotonically decreasing for
X = 0, 1, . . . , 5. �

For many binomial experiments the determination of binomial probabilities
b(k; n, p) for various values of n and p can easily be determined by appealing
to Table A.6 of the Appendix. For instance, from the first page of this table
we can easily find b(3; 6, 0.20) = 0.0819. Note that the largest value of p in
this table is 0.50. If p > 0.50, we may use equation (6.15.1) (or b(X ; n, p) =
b(n − X ; n, 1 − p)) to readily calculate the desired binomial probability. For
instance, to find b(k; n, p) = (3; 8, 0.70) we simply find instead b(n − k; n, p) =
b(5; 8, 0.30) = 0.0467.
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6.6 The Multinomial Distribution

This particular probability distribution is a generalization of the binomial dis-
tribution to the case where the n identical and independent trials of a random
experiment give rise to more than two possible outcomes whose associated prob-
abilities are constant from trial to trial (we again sample with replacement or
from an infinite population). In this regard, let each of the n trials represent
a k-fold alternative; that is, each trial results in any one of k mutually exclu-
sive and collectively exhaustive outcomes E1, . . . , Ek with respective probabilities

P(E1) = p1, . . . , P(Ek) = pk and
k∑

i=1
pi = 1. In addition, let the random variable

Xi, i = 1, . . . , k, depict the number of times the ith type of outcome (call it the ith

success) Ei occurs in the n trials. To summarize, the essential characteristics of a
multinomial experiment are:

● Each trial gives rise to a k-fold alternative

● The random variables Xi, i = 1, . . . , k, associated with the k outcomes are
discrete

● The trials are identical and independent

● The probabilities pi, i = 1, . . . , k, associated with the k outcomes are constant
from trial to trial

Based upon these considerations, we now seek to answer the following question.
What is the probability of getting X1 = x1 outcomes of the first type, X2 = x2

outcomes of the second type, . . ., and Xk = xk outcomes of the kth type in the
n trials? Here the xi, i = 1, . . . , k, are arbitary nonnegative integers such that∑k

i=1 xk = n. To offer an answer let us assume that we get x1 outcomes of type
one on the first x1 trials, x2 outcomes of type two on the next x2 trials, . . ., and
finally xk outcomes of type k on the last xk trials. Then by virtue of an argument
similar to the one underlying the derivation of (6.14), we can readily see that for
this specific assortment of outcomes,

P(x1 outcomes of type 1 ∩ x2 outcomes of type

2 ∩ · · · ∩ xk outcomes of type k)

=
k∏

i=1

P(xi outcomes of type i)

=
k∏

i=1

(pi pi · · · pi)︸ ︷︷ ︸
taken xi times

= px1
1 px2

2 · · · pxk
k . (6.23)

But this expression, in general, applies to any particular sequence of n trials yield-
ing x1 outcomes of the first kind, x2 outcomes of the second kind, . . ., and xk
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outcomes of the kth kind. Since ultimately we are interested in getting this assort-
ment of outcomes irrespective of the order in which they occur, the total number
of ways or orders in which this collection of outcomes can occur is given by the
multinomial coefficient n!

x1!x2!···xk ! . Hence the desired probability is the product of
this coefficient and (6.23) or

m(X1 = x1, . . . , Xk = xk; n, p1, . . . , pk) =
(

n
x1, x2, . . . , xk

)
px1

1 px2
2 . . . pxk

k .

(6.23.1)

On the basis of the preceding discussion let us define the random variable Xi,
i = 1, . . . , k, as the number of times the ith outcome type occurs in n identical
and independent trials of a k-fold alternative experiment. Then the Xi follow a
multinomial probability distribution with probability mass function

m (X1, . . . , Xk; n, p1, . . . , pk) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
n

X1, X2, . . . , Xk

)
pX1

1 pX2
2 . . . pXk

k ,

Xi = 0, 1, . . . , n,
k∑

i=1
Xi = n,

0 ≤ pi ≤ 1 for each i,
n a positive integer;

0 elsewhere.

(6.24)

Here the parameters n, p1, . . . , pk define an entire family of multinomial probabil-
ity distributions. This distribution gets its name from the fact that the probabilities
provided by (6.24) are the successive terms of the multinomial expansion (6.8)

(
k∑

i=1

pi

)n

=
∑

X1+X2+···+Xk=n

(
n

X1, X2, . . . , Xk

) k∏

i=1

pXi
i

=
∑

X1+X2+···+Xk=n

m(X1, . . . , Xk; n, p1, . . . , pk) = 1. (6.25)

Note also that the binomial probability distribution (6.15) is a special case of (6.24)
for k = 2, X1 = X , X2 = n − X , p1 = p, and p2 = 1 − p.

Example 6.6.1 Let us assume that in a particular city 50% of the registered
voters are Democrats, 30% are Republicans, 15% are Independents, and 5%
are Libertarians. Given a random sample of 20 individuals taken as an exit
poll during the last local election, what is the probability that of those polled,



6.6 The Multinomial Distribution 205

eight are Democrats, six are Republicans, three are Independents, and three are
Libertarians? Here n = 20 and

x1 = 8 p1 = 0.50

x2 = 6 p2 = 0.30

x3 = 3 p3 = 0.15

x4 = 3
20

p4 = 0.05
1.00

Then from (6.23.1),

m(x1 =8, x2 =6, x3 =3, x4 =3; n=20, p1 =0.50, p2 =0.30, p3 =0.15,p4 =0.05)

= 20!
8!6!3!3! (0.50)8(0.30)6(0.15)3(0.05)3 =0.0028. �

At times, we may be interested only in the occurrence of some proper subset of
the k possible outcomes of a multinomial experiment. For instance, let us assume
that we are interested in, say, only the first j < k outcomes of the original k-fold
alternative experiment. That is, we choose to focus only on the probability of
occurrence of X1 = x1 outcomes of type 1, X2 = x2 outcomes of type 2, . . . ,
and Xj = xj outcomes of type j. Since the last k − j possible outcomes are of
no interest to us, we can formulate a new ( j + 1)-fold alternative experiment
with outcomes E1, E2, . . . , Ej, E′

j+1 = {Ej+1, Ej+2, . . . , Ek}, where E′
j+1 collectively

contains the last k − j outcomes or events of the original multinomial experiment.
In this regard, we seek to find the probability of occurrence of X1 = x1 outcomes
of type 1, X2 = x2 outcomes of type 2, . . . , Xj = xj outcomes of type j and X ′

j+1 =
x′

j+1 = n −∑j
r=1 xj outcomes of type j + 1.

Clearly the probabilities associated with these j + 1 mutually exclusive and
collectively exhaustive events are P(E1) = p1, P(E2) = p2, . . . , P(Ej) = pj, and
P(E′

j+1) = p′
j+1 = ∑k

r=j+1 pr = pj+1 + · · · + pk with
∑j

r=1 pr + p′
j+1 = 1. Then by

virtue of (6.23.1), the desired probability is

m
(

x1, . . . , x′
j+1; n, p1, . . . , pj, p′

j+1

)
=
(

n
x1, . . . , xj, x′

j+1

)
px1

1 · · · p
xj
j

(
p′

j+1

)x′
j+1

.

(6.23.2)

Example 6.6.2 What if in the preceding example problem we are now inter-
ested in the probability that, of those polled, five are registered Republicans and
one is a registered Independent.
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For n = 20 we now have

X2 = 5 p2 = 0.30

X3 = 1 p3 = 0.15

X ′ = 20 − 6 = 14 p′ = p1 + p4 = 0.55

Then from (6.23.2),

m(X2 = 5, X3 = 1, X ′ = 14; n = 20, p2 = 0.30, p3 = 0.15, p′ = 0.55)

= 20!
5!1!4! (0.30)5(0.15)(0.55)14 = 1.88E − 11. �

6.7 The Geometric Distribution

As was the case for the binomial probability distribution, let the outcomes of a
random experiment be generated by a Bernoulli process; that is, by a series of
repeated independent trials of a Bernoulli (simple alternative) experiment with p
(the probability of a success) constant from trial to trial. But unlike the binomial
case in which the random variable X depicts the number of successes obtained in
a fixed number (n) of independent trials, let us now consider the random variable
X to be the number of the trial on which the first success is obtained. In this
instance the trials, although not fixed in number, are still independent and thus
the probability of a success p is again constant from trial to trial. To summarize,
the basic characteristics of this so-called geometric experiment are:

● The number of the trial X on which the first success is observed is a discrete
random variable

● We have a simple alternative experiment

● The trials are identical and independent

● p is constant from trial to trial

Now, the probability of x − 1 failures in a row is (1 − p)x−1 and the probability of
actually obtaining a success on trial X = x is p. Hence the probability of getting the
first success on the xth trial after x−1 consecutive failures is, under independence,

P(a success on trial x ∩ x − 1 failures on the first x − 1 trials)

= g(X = x; p) = p(1 − p)x−1. (6.26)

Based upon these considerations, let us define the random variable X as the trial
on which the first success is observed in a Bernoulli process. Then X follows a
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geometric probability distribution with probability mass function

g(X ; p) =
{

p(1 − p)X−1, X = 1, 2, 3, . . . , 0 ≤ p ≤ 1;

0 elsewhere.
(6.27)

And as the parameter p is varied, we generate an entire family of geometric
probability distributions. Note that the calculation of geometric probabilities can
be expedited by employing the identity

g(X ; p) = 1
X

b(1; X , p), (6.28)

where b(1; X , p) is the (tabular) value of the binomial probability mass function.
Here the usual binomial random variable (the number of successes) is set at one
and X varies over binomial trials.

For the geometric probability distribution, we may define the geometric
cumulative distribution function as

P(X ≤ x) = G(i; p) =
∑

i≤x

g(i; p) =
∑

i≤x

p(1 − p)i−1, x = 1, 2, 3, . . . , (6.29)

or

P(X ≤ x) = 1 − (1 − p)x, x = 1, 2, 3, . . . . (6.30)

In addition, it can be shown that
∑∞

i=1 g(i; p) = 1 as required.
Expressions for the mean and standard deviation of a geometric random

variable are, respectively,

µ = E(X) = 1
p

; σ =
√

V(X) =
√

1 − p
p

. (6.31)

Moreover, the coefficients of skewness and kurtosis are, respectively,

α3 = (2 − p)
√

1 − p
; (6.32)

α4 = 3 + p2 + 6(1 − p)
1 − p

. (6.33)

Some of the important properties of the geometric probability distribution are:

1. The geometric distribution is always skewed to the right (α3 > 0).

2. There is a considerable amount of variability associated with the geometric
distribution when p is small.
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3. The mode always occurs at X = 1 since g(1; p) = p and for X = 2, 3, . . ., the
geometric probabilities decrease monotonically since (1−p)X−1 does likewise.

4. E(X) < V(X).

5. The peak of a geometric distribution is flatter than that of a normal distribution
(α4 < 3) and, as p increases in value, the distribution becomes flatter.

6. The geometric distribution is so named because, for successive values of X, the
probabilities constitute a geometric progression (i.e., p, p(1−p), p(1−p)2, . . .).

7. Unlike the binomial probability distribution, the geometric distribution does
not specify a fixed sample size n since sampling continues until the first success
occurs on the Xth trial.

8. Since sampling continues until the desired outcome occurs for the first time,
there is no effective upper limit to the number of trials performed and thus we
may view the sample values as being extracted from an infinite population.

Example 6.7.1 Suppose our random experiment consists of rolling a fair pair
of six-sided dice until a success occurs, where the latter is taken to be the sum
of the faces equaling eight. Here p = 5

36 . What is the probability that it will take
X = 5 rolls for the first eight to occur? From (6.26) we have

g
(

X = 5;
5

36

)
=
(

5
36

)(
1 − 5

36

)5−1

= 0.0763.

And from (6.30), the probability that it will take at most x = 5 rolls to get the first
eight is

P(X ≤ 5) = 1 −
(

1 − 5
36

)5

= 0.5296. �

6.8 The Negative Binomial Distribution

The sampling (Bernoulli) process underlying the determination of binomial
probabilities admits a sequence of a specific number (n) of independent trials
of a simple alternative experiment with p constant from trial to trial. Instead of
fixing n and counting the number of successes X(= 0, 1, 2, . . . , n), suppose we
count the trials until a fixed number of successes (k) is obtained. Now the random
variable is the number of trials Y(= k, k + 1, k + 2, . . .) necessary to observe
exactly k successes. In this regard, for the binomial case, we seek the probability
of exactly X = k successes in n trials; in the negative binomial case, since sampling
continues until a fixed number (k) of successes is obtained, we seek the probability
of getting the kth success on the Yth trial, where Y = k, k + 1, k + 2, . . . . Clearly
the number of trials in a negative binomial experiment may become infinite.
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In sum, the salient features of the negative binomial experiment are:

1. The number of the trial on which the kth success occurs is a discrete random
variable.

2. We have a simple alternative experiment.

3. The trials are identical and independent.

4. p is constant from trial to trial.

Let the random variable Y associated with the Bernoulli process depict the trial
on which the kth success occurs. The event Y = y can occur only if we observe
k − 1 successes in the first y − 1 trials, and a success on the yth trial. From the
binomial probability mass function (6.15), the probability of k − 1 successes in
y − 1 trials is

(
y − 1

k − 1

)
pk−1 (1 − p)y−k .

Now, the probability of a success on the yth trial is simply p. Hence, under
independence,

P(k − 1 successes in y − 1 trials ∩ a successes on trial y)

= n(Y = y; k, p) =
[(

y − 1

k − 1

)
pk−1(1 − p)y−k

]
· p

=
(

y − 1

k − 1

)
pk(1 − p)y−k, k ≤ y. (6.34)

Let us view this negative binomial process in a slightly different light. Specifically,
let us define a new random variable X as the number of failures observed before
exactly k successes occur. Then for the yth trial:

● If Y = k, no failures are observed on the first k trials and thus X = 0

● If Y = k + 1, exactly X = 1 failure occurs before k successes are obtained

● If Y = k + 2, exactly X = 2 failures are observed before k successes occur,
and so on

Hence we may write Y = k + X , where X = 0, 1, 2, . . . .
Now, consider again this Bernoulli process, but this time let the random vari-

able X = x depict the total number of failures in this process before the kth success
occurs. Then k +X is the number of trials necessary to render exactly k successes.
And since the last trial must result in a success, we must have k − 1 successes and
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x failures among the first k + x − 1 trials. Then by an argument similar to the one
supporting the derivation of (6.26), we may respecify the same as

n (X = x; k, p) =
(

k + x − 1
x

)
pk(1 − p)x, x ≥ 0. (6.34.1)

Based upon the preceding developments, let us define the random variable X as
the number of failures observed before exactly k successes occur in a Bernoulli
process and let the number of trials required to achieve exactly k successes be
k + X . Then X follows a negative binomial distribution with probability mass
function

n(X ; k, p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
k+X−1

X

)
pk(1 − p)X , X = 0, 1, 2, . . . ,

k is a positive integer, 0 ≤ p ≤ 1;

0 elsewhere.

(6.35)

And as the parameters k and p are varied, we obtain an entire family of negative
binomial distributions.

In addition, the negative binomial cumulative distribution function appears as

P(X ≤ x) = N(X ; k, p) =
∑

i ≤ x

n(i; k, p) =
∑

i ≤ x

(
k + i − 1

i

)
pk(1 − p)i (6.36)

with
∑∞

i=0 n(i; k, p) = 1 (a verification of this latter equality is provided in [Feller
(1968), pp. 155–156]).

A few important features of the negative binomial distribution merit our con-
sideration. First, the negative binomial distribution can be viewed as an extension
of the geometric probability distribution to k > 1 successes; that is, we are inter-
ested in the kth success rather than the first. In fact, if in the geometric distribution
we define the random variable X as the number of failures observed before the
first success occurs, then (6.27) may be rewritten as

g(X ; p) =
{

p(1 − p)X , X = 0, 1, 2, . . . , 0 ≤ p ≤ 1;

0 elsewhere.
(6.27.1)

Then when k = 1 in (6.35), we obtain this version of the geometric distribution as
a special case.

Second, since the binomial coefficients with negative integers may be
defined as

(−k
X

)
= (−1)X

(
k + X − 1

X

)
, k > 0, (6.37)
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(on all this see [Feller (1968), pp. 61,155]) we can easily rewrite (6.35) as

n(X ; k, p) = (−1)X
(−k

X

)
pk(1 − p)X

=
(−k

X

)
pk [−(1 − p)]X , X = 0, 1, 2, . . . . (6.35.1)

Hence the negative binomial distribution gets its name from (6.37), and the
sequence of probabilities (6.35.1) corresponds to the successive terms of the
binomial expansion of pk [1 − (1 − p)]−k.

Next, we may conveniently represent negative binomial probabilities in terms
of binomial probabilities by utilizing the relationship

n(X ; k, p) = k
k + X

b (k; k + X , p) , X = 0, 1, 2, . . . , (6.38)

where obviously the number of Bernoulli trials is n = k + X . Alternatively, a
negative binomial probability can also be expressed in terms of successive values
of its cumulative distribution function as

n(X ; k, p) = N(X ; k, p) − N(X − 1 : k, p). (6.39)

But since the probability of at most x failures in k + x trials equals the probability
of at least k successes in k + x trials or

N(X ; k, p) = 1 − B(k − 1; k + X , p), (6.40)

we also have

n(X ; k, p) = B(k − 1; k + X − 1, p) − B(k − 1; k + X , p). (6.41)

Example 6.8.1 Let us use (6.35) to calculate the probability that k + X = 10
flips of a fair coin will need to be performed to obtain exactly k = 4 heads, where
the fourth head is obtained on the tenth flip. Then

n
(

X = 6; 4,
1
2

)
=
(

9
6

)(
1
2

)4 (1
2

)6

= 0.0820.

Alternatively, using (6.38), we also have

n
(

X = 6; 4,
1
2

)
= 4

10
b
(

4; 10,
1
2

)
= 4

10

(
10
4

)(
1
2

)4 (1
2

)6

= 0.0820. �
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For the negative binomial random variable X, we may express its mean and
variance as

µ = E(X) = k(1 − p)
p

(6.42)

and

σ 2 = V(X) = k(1 − p)
p2

= µ + 1
k

µ2 (6.43)

(or σ = √
V(X) = √

k(1 − p)/p) respectively. In addition, its coefficients of
skewness and kurtosis are respectively,

α3 = 2 − p

[k (1 − p)]1/2 ; (6.44)

α4 = 3 + p2 − 6p + 6
k(1 − p)

. (6.45)

Some key properties of the negative binomial distribution are:

1. E(X) < V(X).

2. It is positively skewed (α3 > 0).

3. Its peak is sharper than that of a normal distribution (α4 > 3) and α4 → 3 as
k → ∞.

4. As p → 0 (it takes more failures to observe k successes) the dispersion of this
distribution increases and its peak becomes flatter.

6.9 The Poisson Distribution

For some random experiments we are not able to actually perform a finite number
of trials or observe a finite sequence of outcomes. What happens instead is that
observations occur at random over a continuum (such as time, length, space, or
volume).2 Suppose we are interested in the number of occurrences (k) of some
event over an interval of unit length. If we divide this interval into n equal subin-
tervals, each of length 1

n , and n is large enough to preclude multiple occurrences
in any single subinterval (or at least the probability of multiple occurrences in any

2 Examples of such occurrences are the number of vehicles per minute arriving at a toll booth, the number
of deaths per year attributed to a specific disease, the number of customers per minute arriving at a
store checkout counter, the number of defects on a length of cable, the number of machines that break
down per day on a production line, the number of typographic errors per page in a volume of printed
material, and so on.



6.9 The Poisson Distribution 213

single subinterval is approximately equal to zero), then these subintervals can be
thought of as n identical and independent trials of a Bernoulli process.

Now, either a particular subinterval is empty, or it contains at least one random
occurrence of the event. We shall refer to these two possibilities as the outcomes
of a Bernoulli or simple alternative experiment; that is, the former depicts failure
and the latter represents success. Since the subintervals are all of the same length,
the probability of success (p) is the same for all n subintervals. Then the assumed
independence of these disjoint subintervals implies that we have n Bernoulli trials
and the probability of exactly k successes is given by the binomial probability
b(k; n, p).

To summarize, the essential characteristics of a Poisson experiment are:

● The discrete random variable X represents the number of occurrences of
independent events that take place at a constant rate over a continuous
interval.

● The number (n) of independent trials is very large.

● Only one outcome occurs on each trial, or the probability of more than one
occurrence per trial is negligible.

● The probability of occurrence of the event on each trial is small and is
proportional to the length of the subinterval.

To approximate the previously mentioned binomial probability, let us assume
that the probability of two or more random occurrences within any subinterval
is, in the limit, approximately zero so that we experience a set of isolated random
outcomes. Then the probability of finding exactly k such outcomes in the unit
interval is the limiting value of b(k; n, p) as n → ∞. If np → λ = constant, then
b(k; n, p) ≈ b(k; n, λ

n ) → p(k; λ), where

p(k; λ) = e−λ

(
λk

k!
)

(6.46)

denotes a Poisson probability.3

A couple of observations pertaining to the limiting process underlying (6.46)
are in order. First, (6.46) is the limiting form of a binomial probability when
n → ∞ and p = λ

n for some constant λ > 0. Then

lim
n→∞
p→0

b
(

k; n,
λ

n

)
= e−λλk

k! .

3 By definition, e = lim
n→∞

(
1 + 1

n

)n ≈ 2.71828, or, expressed as an exponential series, e = 1 + 1
1! + 1

2! +
1
3! + · · · ; and ex = 1 + x + x2

2! + x3

3! + · · · .
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Stated alternatively, (6.46) is the limiting form of a binomial probability when
n → ∞ and p → 0 in a fashion such that np = constant. Then

lim
n→∞
p→0

np=constant

b(k; n, p) = e−np(np)k

k! .

Second, if this unit interval is replaced by an arbitrary interval of length T, then
this interval may be divided into nT subintervals, each of length 1

n . If these sub-
intervals are viewed as nT identical and independent trials of a Bernoulli process,
then the probability of k successes in the interval is given by the limit of b(k; nT , p)
as n → ∞. And if nTp → λT , then, as we pass to the said limit, (6.46) is
replaced by

p(k; λT) = e−λT (λT)k

k! . (6.46.1)

Based upon the preceding discussion, let us define the random variable X as
the number of independent random occurrences of some event that takes place
at a constant rate over a given continuous interval. Then X follows a Poisson
probability distribution with probability mass function

p(X ; λ) =
{

e−λλX

X ! , X = 0, 1, 2, . . . , λ > 0;

0 elsewhere.
(6.47)

And as the parameter λ is varied over a set of positive values, we generate a whole
family of Poisson probability distributions. Here λ represents the average number
of occurrences (or expected rate of occurrence) of some random event over a unit
interval. In this regard, λ can be thought of as the intensity of the random process
per standardized unit ( or λT is the intensity per period of arbitrary length T); it
determines the density of the outcomes on the unit interval.

A few additional comments pertaining to the Poisson probability distribution
are in order. First, to expedite the calculation of Poisson probabilities we may use
the Poisson recursion formula

p(X + 1; λ) = λ

X + 1
p(X ; λ). (6.48)

Next, the probability that a Poisson random variable X assumes a value less
than or equal to some given nonnegative integer level x is provided by the Poisson
cumulative distribution function

P(X ≤ x) = P(x; λ) =
∑

i ≤ x

e−λλi

i! =
∑

i ≤ x

p(i; λ). (6.49)
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Based upon this expression, individual Poisson probabilities may be calculated as

p(x; λ) = P(x; λ) − P(x − 1; λ). (6.50)

Moreover,

P(X < x) = P(X ≤ x − 1) = P(x − 1; λ) (6.51)

and

P(X ≥ x) = 1 − P(X ≤ x − 1) = 1 − P(x − 1; λ). (6.52)

And given (6.47), it must be the case that
∑∞

X=0 p(X ; λ) = 1 while p(X ; λ) → 0
as X → ∞.

Example 6.9.1 To show exactly how Poisson probabilities are calculated, let
us consider how events can occur over, say, time. For concreteness, suppose a
secretary is monitoring incoming telephone calls at a clinic. Here the number of
calls occurring in a fixed interval of time T (clearly T can be a minute, five minutes,
an hour, day, etc.) is a Poisson random variable X. In this regard, although the
time between calls is a continuous random variable, the number of calls over T
assumes only integer values (X = 0, 1, 2, . . .) and thus represents a discrete random
variable.

Now, suppose we choose a time interval of 60 minutes, which is then subdivided
into 12 subintervals of T = 5 minutes each. Assume that over this one hour
period the clinic receives 20 telephone calls. Since there are 20 occurrences in
the 12 subperiods, the average number of calls per subperiod of T = 5 minutes
is λT = 20

12 ≈ 1.66 calls per 5 minutes. (If the initial time interval of one hour
were divided into 60 subperiods of T = 1 minute each, then λT = λ = 20

60 ≈ 0.33
calls per minute; and if we had six subperiods of T = 10 minutes each, then
λT = 20

6 ≈ 3.33 calls per 10 minutes.)
Under the assumptions of randomness and the independence of the occurrence

of calls in these subintervals, these occurrences depict a Poisson process and, from
(6.46.1), are distributed as

p(X ; 1.66) = e−1.66 (1.66)X

X ! , X = 0, 1, 2, . . . . (6.53)

What is the probability that the clinic gets exactly two telephone calls in a five-
minute period? From the preceding equation,

p(X = 2; 1.66) = e−1.66 (1.66)2

2! = 0.26197.

To complete the Poisson probability distribution associated with this experiment,
let us vary X in (6.53) over the set of nonnegative integer values. Our results are



216 Chapter 6 Discrete Parametric Probability Distributions

Table 6.5

X B(X; 5, 5/36)

0 0.4735
1 0.3818
2 0.1232
3 0.0199
4 0.0016
5 0.0000

1.0000

depicted in Table 6.5. For X = 0,

p(0; 1.66) = e−1.66 = 0.19014;

and for X = 1,

p(1; 1.66) = e−1.661.66 = 0.31563.

To determine the Poisson probabilities when X = 3, 4, . . ., let us employ the
recursion formula

p(X + 1; λT) = λT
X + 1

p(X ; λT). (6.48.1)

Thus

p(3; 1.66) = 1.66
3

p(2; 1.66) = 0.14496;

p(4; 1.66) = 1.66
4

p(3; 1.66) = 0.06015;

p(5; 1.66) = 1.66
5

p(4; 1.66) = 0.01997,

and so on. In addition, it is easily demonstrated that the probability of no more
than three telephone calls per five minutes is, from Table 6.5 and (6.49),

P(X = 2; 1.66) =
∑

i≤2

p(i; 1.66)

= p(0; 1.66) + p(1; 1.66) + p(2; 1.66) = 0.7677;

and the probability of at least five calls per five minutes is

P(X ≥ 5) = 1 − P(X ≤ 4) = 1 − P(4; 1.66) = 1 − 0.97285 = 0.0272.
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Finally, from (6.50), it is readily verified that, for instance,

p(3; 1.66) = P(3; 1.66) − P(2; 1.66) = 0.91270 − 0.76774 = 0.14496

as expected. �

As was the case for binomial probabilities, there are certain parameter values
for which it is easier to read Poisson probabilities from a table than to calculate
them directly. A table of Poisson probabilities is provided in the Appendix (see
Table A.8). Here the table renders Poisson probabilities for selected λT values
and appropriate nonnegative integer values of X = k. For instance, we can easily
find the Poisson probability p(9; 3.2) = 0.0040.

For a Poisson random variable X, it can be shown that the mean and variance
are equal; that is

µ = E(X) = λ; σ 2 = V(X) = λ (6.54)

and thus

σ =
√

V(X) = √
λ. (6.55)

Also, the coefficients of skewness and kurtosis are, respectively,

α3 = 1√
λ

; (6.56)

α4 = 3 + 1
λ

, (6.57)

where λ > 0.
Some of the key aspects/properties of the Poisson probability distribution are:

1. The Poisson distribution is used to calculate the probabilities of independent
random events that occur at a constant average rate over some continuous
standardized unit or interval. The distribution is completely determined by
its mean λ, which changes proportionately whenever the standardized unit
changes. So while λ is the intensity of the random process per unit interval,
λT is the intensity in an interval of length T. Then for this latter case, E(X) =
V(X) = λT .

2. The Poisson distribution is positively skewed for any λ > 0 (i.e., α3 > 0) with
the degree of skewness inversely related to λ.

3. The Poisson distribution has a peak that is sharper than that of a normal distri-
bution (α4 > 3); this distribution approaches normality as λ increases without
bound.
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4. The Poisson distribution is bimodal if λ (or λT) is an integer: the two modes
are located at k = λ−1 and k = λ; if λ is not an integer, there is a unique mode
which corresponds to the integer value between λ − 1 and λ.

5. When n is large and p is small, binomial probabilities are extremely tedious
to calculate. But since the limiting form of the binomial distribution when
n → ∞, p = λ

n → 0, and np = λ = constant is the Poisson distribution, we
can use the latter to approximate binomial probabilities. The approximation
is appropriate when n ≥ 20 and np ≤ 1. Moreover, if n ≥ 50 and np ≤ 5, or if
n ≥ 100 and np ≤ 10, then the Poisson approximation to binomial probabilities
is excellent.

6. By virtue of the preceding comment, it must be the case that the limiting forms
of, for instance, the mean and variance of the binomial distribution must be
the mean and variance of the Poisson distribution, respectively; that is,

lim
p→0

np = lim
p→0

λ = λ;

lim
p→0

np(1 − p) = lim
p→0

(np − np2) = lim
p→0

(λ − λp) = λ.

Example 6.9.2 For the Poisson distribution given in Table 6.5, it is easily
verified that µ = 1.66, σ 2 = 1.66, α3 = 1√

1.66
= 0.7762, and α4 = 3+ 1√

1.66
= 3.602.

Clearly the peak of this distribution is sharper than that of a normal distribution
since α4 > 3 and, since λT = 1.66 is not an integer, the distribution has a unique
mode at the integer value between λT − 1 = 0.66 and λT = 1.66 or at k = 1. �

As mentioned in item 5, earlier, the Poisson distribution is the limiting form
of the binomial distribution if n → ∞, p → 0, and np = constant. So when p is
close to zero and n is large, a Poisson probability with λT = np should provide a
fairly good approximation to a binomial probability.

Example 6.9.3 Let p = 0.05 and n = 50. Then the binomial probability that
k = 5 is

b (5; 50, 0.05) =
(

50
5

)
(0.05)

5
(0.95)

45 = 0.0656.

However, it is easily verified from Table A.8 that, for λT = np = 2.5 and k = 5,
p(5; 2.5) = 0.0668. Clearly this is an excellent approximation to the preceding
binomial probability value. �

6.10 The Hypergeometric Distribution

For a finite population of size N, let us assume (as in binomial case) that each
element belongs to only one of two mutually exclusive and collectively exhaustive
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classes—success or failure, where k of the N items are labeled success and N − k
items are labeled failure. Suppose we extract a random sample of size n without
replacement (or, equivalently, we select all n items at the same time). Unlike the
binomial experiment involving sampling with replacement (or from an infinite
population), the probability of a success does not remain constant over successive
draws since, in this instance, the outcomes (draws) are not independent; that is,
the probability of a success or failure on, say, the rth draw is conditional on the
number of successes or failures obtained on the preceding r − 1 draws. Given
this sampling scheme, we seek to determine the probability of obtaining exactly
x successes and n − x failures in a random sample of size n, where x ≤ k and
n − x ≤ N − k (see Figure 6.5).

To summarize, the essential characteristics of a hypergeometric experi-
ment are:

● The number of successes obtained (X) is a discrete random variable.

● Each draw results in a simple alternative (success or failure).

● The n draws from a finite population of size N(n ≤ N) are not independent
under sampling without replacement.

● The actual number of successes in the population is known.

Based upon the preceding discussion, it is evident that the x successes can be
chosen in a total of

(
k
x

)
different ways and the n − x failures can be selected in a

total of
(

N−k
n−x

)
different ways. Then the total number of ways to draw x successes

Population (N )

Sample (n)

Failures (N−k)

Successes (k)

n − k (< N − k)

x(< k)

Figure 6.5 Sampling scheme for a hypergeometric experiment.
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and n − x failures is

(
k
x

)(
N − k
n − x

)
(6.58)

Now, the total number of distinct ways in which a sample of n items can be
selected from a population of N items is

(
N
n

)
. Hence the probability of choosing

any particular sample of size n is 1(
N
n

) and thus the probability of observing exactly

x successes and n − x failures in a sample size n is, from (6.58),

P(x successes ∩ n − x failures) =

(
total number of samples exhibiting x

successes ∩ n − x failures

)

(total number of samples)

or

h(X = x; N , n, k) =

(
k
x

)(
N − k
n − x

)

(
N
n

) . (6.59)

Let us generalize this development by defining a random variable X as the num-
ber of successes obtained in a sample of size n that is drawn without replacement
from a finite simple alternative population of size N in which the number of suc-
cesses k is known. Then X follows a hypergeometric probability distribution with
probability mass function

h(X ; N , n, k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
K
X

)(
N−k
n−X

)

(
N
n

) , X = 0, 1, . . . , n, N is a positive integer,
k(≤ N) is a nonnegative integer,
n(≤ N) is a positive integer,
X ≤ k, and n − X ≤ N − k;

0 elsewhere

(6.60)

where the parameters N, n, and k define an entire family of hypergeometric dis-
tributions. (Note that if k < n, then X = 0, 1, . . . , k in (6.60). Hence we ultimately
require X = 0, 1, . . . , min{n, k}.)

To streamline somewhat the calculation of hypergeometric probabilities, we
may employ the hypergeometric recursion formula

h(X + 1; N , n, k) = (n − X)(k − X)
(X + 1)(N − k − n + X + 1)

h(X ; N , n, k). (6.61)

Next, the probability that a hypergeometric random variable X takes on a value
less than or equal to some given integer level x, 0 ≤ x ≤ n, is provided by the
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hypergeometric cumulative distribution function

P(X ≤ x) = H(x; N , n, k) =
∑

i≤x

h(i; N , n, k) =
∑

i≤x

(
k
i

) (N−k
n−i

)

(
N
n

) . (6.62)

Then from this expression we can also find

P(X > x) = 1 − H(x; N , n, k). (6.63)

Example 6.10.1 To calculate a set of hypergeometric probabilities, let us con-
sider a vessel containing N = 20 balls of which eight are white and 12 are black.
If we extract a sample of size n = 5 without replacement, what is the probability
of obtaining x = 3 white balls? Here the acquisition of a white ball is considered
to be a success (see Figure 6.6). From (6.59) it is readily seen that

h(3; 20, 5, 8) =
(

8
3

) (
12
2

)
(

20
5

) = 0.2379.

To derive the complete hypergeometric probability distribution associated with
this experiment, let us determine

h(X ; 20, 5, 8) =
(

8
X

) (
12

5−X

)
(

20
5

) , X = 0, 1, . . . , 5.

The implied distribution appears in Table 6.6. In this regard, for X = 0 we have

h(0; 20, 5, 8) =
(

8
0

) (
12
5

)
(

20
5

) = 0.0511.

Table 6.6

X h(X; 20, 5, 8)

0 0.0511
1 0.2555
2 0.3974
3 0.2379
4 0.0541
5 0.0037

≈ 1.0000



222 Chapter 6 Discrete Parametric Probability Distributions

N = 20

n = 5

Failures
n − x = 2

n − k = 12

x = 3 Successes

k = 8

Figure 6.6 Sampling scheme for a hypergeometric experiment involving x = 3 successes and 5−x = 2
failures.

From recursion formula (6.61) we may calculate the remaining hypergeometric
probabilities as:

h(1; 20, 5, 8) = (5 − 0)(8 − 0)
(0 + 1)(12 − 5 + 0 + 1)

h (0; 20, 5, 8) = 0.2555;

h(2; 20, 5, 8) = (5 − 1)(8 − 1)
(1 + 1)(12 − 5 + 1 + 1)

h (1; 20, 5, 8) = 0.3974;

h(4; 20, 5, 8) = (5 − 3)(8 − 3)
(0 + 3)(12 − 5 + 3 + 1)

h(3; 20, 5, 8) = 0.0541;

h(5; 20, 5, 8) = (5 − 4)(8 − 4)
(4 + 1)(12 − 5 + 4 + 1)

h(4; 20, 5, 8) = 0.0037.

Finally, an application of equation (6.62) reveals that the probability of selecting
no more than three white balls or P(X ≤ 3) is

H(3;20,5,8)=
∑

i≤3

h(i; 20,5,8)

=h(0;20,5,8)+h(1;20,5,8)+h(2;20,5,8)+h(3;20,5,8)=0.9419. �
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We next turn to the specification of the mean and variance of a hypergeometric
random variable X. Here

µ = E(X) = nk
N

(6.64)

and

V(X) = nk(N − k)
N2

(
N − n
N − 1

)
. (6.65)

Moreover, the coefficients of skewness and kurtosis for a hypergeometric
distribution are respectively

α3 = (N − 2k)(N − 2n)
√

N − 1

(N − 2)
√

nk(N − k)(N − n)
(6.66)

and

α4 = (N −1){N3(N +1)−6nN2(N −n)+3k(N −k)[N2(n−2)−Nn2+6n(N −n)]}
nk(N −n)(N −2)(N −3)(N −k)

.

(6.67)

Some of the important properties of the hypergeometric distribution are:

1. If we represent the proportion of successes in the finite population as p=k/N,
then we may rewrite (6.60) as

h(X ; N , n, p) =
(

Np
X

) (
N(1−p)
n−X

)

(
N
n

) , 0 ≤ p ≤ 1.

If n and p are held fixed and N increases without limit, then this hypergeometric
distribution with parameters N, n, and p approaches the binomial distribution
with parameters n and p; that is,

lim
N→∞

h(X ; N , n, p) = b(X ; n, p).

So when n
N is small (say n

N < 0.05), the binomial probability mass function
provides an excellent approximation to the hypergeometric probability mass
function. Hence the distinction between the binomial and the hypergeometric
probability distributions is important only when the sample of units chosen
without replacement represents a sizeable proportion of the finite population;
that is, when n is large relative to N the binomial distribution does not provide
us with a satisfactory approximation to the true distribution of successes; in
this instance there is no substitute for the hypergeometric distribution.
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2. If we again express the proportion of successes in the finite population as
p = k

N , then the hypergeometric mean (6.64) becomes E(X) = np and thus
corresponds to the mean of the binomial distribution.

3. If we set p = k
N and 1 − p = N−k

N , then the hypergeometric variance (6.65)
becomes

V(X) = np(1 − p)
(

N − n
N − 1

)
; (6.55.1)

that is, the variance of the hypergeometric distribution equals the variance of
the binomial distribution times the finite population correction factor N−n

N−1 . If
N is large relative to n, then the correction factor is approximately one and
thus the hypergeometric and binomial distributions have virtually the same
variance. Otherwise the variance of the hypergeometric distribution is smaller
than that of the binomial distribution.

4. Looking to (6.66), it is evident that, for N > 2, the hypergeometric distribution
is symmetrical (α3 = 0) if N = 2k or N = 2n; it is positively skewed (α3 > 0) if
N > 2k and N > 2n; and it is negatively skewed (α3 < 0) if N < 2k or N < 2n.

Example 6.10.2 If we consider the hypergeometric distribution derived earlier
(see Table 6.6) for N = 20, n = 5, and k = 8, then it is easily seen that:

µ = E(X) = 5(8)
20

= 2;

V(X) = (5)(8)(12)
400

(
20 − 5
20 − 1

)
= 0.947

and thus

σ =
√

V(X) = 0.973;

α3 = (4)(10)
√

19

18
√

40(12)(15)
= 0.114;

and

α4 = 19{8000(21) − 30(400)(15) + (24)(12)[400(3) − 500 + 30(15)]}
40(15)(18)(17)(12)

= 2.753.

Hence this hypergeometric distribution is positively skewed (since we have N =
20 > 2k = 16 and N = 20 > 2n = 10) and, with α4 < 3, its peak is somewhat
flatter than that of a normal distribution. �
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6.11 The Generalized Hypergeometric Distribution

The probability distribution considered in this section is essentially a generaliza-
tion of the hypergeometric distribution to more than two categories of outcomes.
In fact, it can also be viewed as a variant of the multinomial probability distri-
bution introduced earlier. In this regard, let us assume that we sample without
replacement from a population containing a finite number of elements N, the
totality of which are divided into r mutually exclusive and collectively exhaustive
categories of types of events E1, . . . , Er . Additionally, we posit that there are k1

items of first type, k2 items of second type, . . ., and kr items of the rth type within
the population, where

∑r
i=1 ki = N .

To summarize, the salient features of this generalized hypergeometric exper-
iment are:

● Each trial gives rise to an r-fold alternative.

● The random variables Xi, i = 1, . . . , r, associated with the r outcomes are
discrete.

● The n draws from a finite population of size N(n ≤ N) are not independent.

● The actual number of items of each type ki, i = 1, . . . , r, within the population
is known.

Suppose a sample of n items is randomly selected from this finite population.
Since sampling is done without replacement, the n trials are not independent and
thus the probabilities associated with the events Ei, i = 1, . . . , r, are not constant
from trial to trial. Additionally, let us assume that the sample contains x1 items
of type one, x2 items of type two, . . ., and xr items of type r, where

∑r
i=1 xi = n.

Then by an argument similar to the one underlying the derivation of (6.59), the
probability of obtaining this collection of outcomes is

g(X1 = x1, . . . , Xr = xr ; N , n, k1, . . . , kr) =
(

k1
x1

) (
k2
x2

)
. . .
(

kr
xr

)

(
N
n

) , (6.67)

where N = ∑r
i=1 ki and n = ∑r

i=1 xi.
On the basis of the preceding arguments, let us define the random variables

Xi, i = 1, . . . , r, as the number of items of type i obtained in a random sample
of size n that is drawn without replacement from an r-fold alternative population
of size N in which the number of items of type i or ki, i = 1, . . . , r, is known and∑r

i=1 ki = N . Then the Xi follow a generalized hypergeometric distribution with
probability mass function

g(X1, . . . ,Xr ; N ,
n,k1, . . . ,kr)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
k1
X1

)(
k2
X2

)
···
(

kr
Xr

)

(
N
n

) , Xi =0,1, . . . ,n,
r∑

i=1
Xi =n is a positive integer,

N is a positive integer, ki(≤N) is a
nonnegative integer, and Xi ≤ki for all i;

0 elsewhere.
(6.68)
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Here the parameters N, n, and ki, i = 1, . . . , r, define a whole family of generalized
hypergeometric distributions.

Example 6.11.1 To apply these notions, let us assume that we have a population
containing N = 30 items that can be partitioned into four distinct groups: I, II, III,
and IV. Suppose group I contains k1 = 10 items, group II contains k2 = 5 items,
group III has k3 = 7 items, and group IV has k4 = 8 items (all labeled accordingly),
with

∑4
i=1 ki = 30. What is the probability that a sample of size n = 8 will contain

two items from each group? Here xi = 2 for all i and
∑4

i=1 xi = 8. From (6.67) we
seek to find

g(X1 = 2, X2 = 2, X3 = 2, X4 = 2; 30, 8, k1 = 10, k2 = 5, k3 = 7, k4 = 8)

=
(

10
2

) (
5
2

) (
7
2

) (
8
2

)
(

30
8

) = 0.452. �

It was mentioned earlier that the generalized hypergeometric distribution is a
variant of the multinomial distribution. The distinction between these two distri-
butions is important only when the population size is small. If the population is
large, sampling without replacement has a negligible effect on the probabilities of
the various outcomes for successive samplings. So in this latter instance of large N,
the generalized hypergeometric probabilities are closely approximated by multi-
nomial probabilities and the distinction between the generalized hypergeometric
and multinomial distribution blurs.

6.12 Exercises

Uniform Distribution

6-1. For a particular variety of electronic bulletin board the number of com-
ponents having unacceptable reliability coefficients was evenly distributed
between 7 and 30. Determine the probability of finding at least 15 un-
acceptable components. What is the average number of unacceptable
components? What is the standard deviation?

6-2. Let a random variable X follow a discrete uniform distribution with prob-
ability mass function given by (6.9). Determine X’s probability-generating
function.

6-3. Let a random variable X follow a discrete uniform distribution with
probability mass function given by (6.9). Find X’s moment-generating
function.
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6-4. Verify that if a random variable X follows a discrete uniform distri-
bution with probability mass function given by (6.9), then E(X) = k+1

2 ,

V(X) = k2−1
12 .

Binomial Distribution

6-5. Suppose a vessel contains 10 identical marbles of which four are red and six
are blue. For each of four random draws from the vessel a marble’s color is
recorded and the marble is returned to the vessel. If the random variable X
is the number of red marbles drawn, find the probability that X = 3. What
is the probability of drawing no more than two red marbles?

6-6. Suppose that for a Bernoulli process p = 0.15. Also, suppose that n = 10
items are drawn from this process and we find that the first, third, and
eighth items have the same particular characteristics of interest. What is
the probability of obtaining this specific sequence of items? What is the
probability that no items in the sequence have the characteristic? What is
the probability that the characteristic in question appears on the first five
items?

6-7. Suppose a dart player has a probability of 8/9 of hitting the bullseye and
that his throws are independent. If the player is given three darts, what is
the probability that:

(a) he hits the bullseye all three times

(b) he misses the bullseye all three times

6-8. We toss a fair coin n = 10 times. What is the probability of observing four
heads followed by six tails?

6-9. A student takes a multiple choice exam that contains 15 questions, each with
four possible answers. If a student guesses at the answer to each question,
what is the probability that he or she passes the exam, given that 10 or more
correct answers are required to pass?

6-10. A fair coin is tossed five times. Using the binomial formula, what is the prob-
ability of X successes in the five trials? Determine the resulting probability
distribution. Find E(X) and V(X). Then find:

(a) The probability of at least two heads

(b) The probability of at most one head

(c) P(2 < X ≤ 4)

6-11. Let the proportion of successes in a sample of size n be Y = X /n. Since
Y = y and X = nY = ny are equivalent events (there exists a one-to-one
correspondence between X and Y), it follows that P(Y = y) = P(X = ny).
Hence the distribution of Y can be determined from the (binomial) distri-
bution of X. So for n = 5 trials of the random experiment in Exercise 6-10,
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determine the probability distribution of Y. Then find E(Y) and V(Y) in
terms of E(X) and V(X).

6-12. A true or false exam has 20 questions. If a student guesses at the answer to
each question, what is the probability that he or she guesses correctly on
more than half of the questions?

6-13. A fair pair of dice is rolled n = 4 times. Define a success as the sum of the
faces is nine. Determine the implied probability distribution. What is the
probability of at least two nines? What is the probability of at most one
nine? Find E(X) and V(X).

6-14. Suppose a fair coin is tossed 10 times in succession. What is the probability
of obtaining at least seven heads?

6-15. Suppose that 30% of all persons taking a particular driver’s education course
fail the written exam for a driver’s license. If the written exam is given to
five randomly chosen individuals, what is the probability that three of them
will fail? What is the implied probability distribution?

6-16. Experience dictates that a certain basketball player makes 80% of his free
throws and that those free throws are independent. If he gets eight free
throws in a particular game, what is the probability that he misses them
all? What is the probability that he makes them all? What is the probability
that he makes more than half of them? What is his expected number of free
throws for this game?

6-17. Let the random variable X be binomially distributed with probability mass

function b(X ; 3, p) =
(

3
X

)
pX (1 − p)3−X , X = 0, 1, 2, 3. Determine the

cumulative distribution function P(X ≤ t) = B(t; 3, p).

6-18. Verify that the probability-generating function for the Bernoulli random
variable X is φX (t) = (1 − p) + pt. Use it to find E(X), V(X).

6-19. Verify that (6.15) is a legitimate probability mass function.

6-20. Verify that the probability generating function for a binomial random vari-
able X is φX (t) = [(1 − p) + pt]n. Use it to determine the mean and variance
of X.

6-21. Let X be a binomial random variable with probability mass function pro-
vided by equation (6.15). Determine the moment-generating function for X.

6-22. For X a binomial random variable with probability mass function given by
equation (6.15), find E(X), V(X) using equation (6.15).

6-23. Suppose that a random variable X follows a binomial distribution with
E(X) = np, V(X) = np(1−p) . Here X is the number of successes obtained
in n independent trials of a simple alternative experiment. Now, consider
the random variable X/n. How is this variable defined? What are its values?
Find E(X /n) and V(X /n).
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Multinomial Distribution

6-24. Suppose that in a certain locale 30% of the households purchase Brand
A soap powder, 50% purchase Brand B soap powder, and 20% of the
households use Brand C soap powder. For a random sample of n = 10
households selected with replacement, what is the probability that six use
Brand A, three use Brand B, and one uses Brand C?

6-25. Suppose that in a particular game a play renders 1, 2, 3 or 4 points with
associated probabilities p1 = 0.60, p2 = 0.30, p3 = 0.08, and p4 = 0.02.
Under the assumption that these probabilities are the same for all plays and
that the plays are independent, determine the probability of having four
plays yielding 1 point, four plays resulting in 2 points, two plays yielding
3 points, and two plays resulting in 4 points in a sequence of 12 plays.

6-26. Twelve six-sided fair dice are tossed simultaneously. What is the probability
that each odd number appears exactly two times and that each even number
appears exactly two times?

6-27. Customers at the Big Deal Outlet Store pay for their purchases by check
(10%), cash (5%), major credit card (70%), or store credit card (15%).
What is the probability that among the next eight customers passing through
the checkout line, exactly two will pay by each mode of payment?

Geometric Distribution

6-28. Suppose an individual is going to roll a bowling ball until he or she get a
strike. If, under independent rolls, this person has a probability of 0.20 of
making a strike and if X is the number of rolls it takes to make the first
strike, determine the probability that fewer than five rolls will be needed to
make the first strike. What is the average number of rolls that the person
needs to make to get the first strike?

6-29. Suppose an individual stands at the free throw line on a basketball court
and shoots until she makes a basket. Let the free throws be independent. If
experience dictates that this person has an 80% chance of making each free
throw, find the probability that it takes five shots to make the first basket.
What is the probability that it takes fewer than five throws? What is the
probability that it takes at least six shots? What is the average number of
shots made?

6-30. Suppose that 1 in 1000 bottle cups of Zesty Cola contains the letter Z printed
on its underside. This special bottle cap is redeemable at any store selling
this cola for a special prize. If X is the number of bottles of Zesty you need
to purchase to obtain a Z-cap, determine the probability that fewer than 10
bottles will need to be purchased. What is the average number of bottles
needed to be purchased to get a Z-cap?
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6-31. A major candy company markets 35 different products. Past experience dic-
tates that there is a 2% chance that in any given year a dissatisfied customer
will file a complaint with his or her consumer protection agency against
the company concerning any one of its products. A new product is to be
distributed to the company’s retail outlets. What is the probability of the
first complaint in the second year of sales? In the fifth year? What is the
mean and variance for the random variable X (the year in which the first
complaint is filed)?

6-32. The caps on soda bottles are examined with a scanning device in order to
determine if they are properly set. Experience dictates the probability of
detecting an improperly set cap is 0.01. What is the probability that the
first improperly set cap will be detected on the tenth bottle? On the two
hundredth bottle? Find the mean and the variance of the number of bottles
examined until the next improperly set cap is found.

6-33. Given that a random variable X follows a geometric probability distribution,
verify that (6.27) is a legitimate probability mass function.

6-34. Given that a random variable X follows a geometric probability distribution,
find X’s probability-generating function. Use it to obtain E(X), V(X).

6-35. Given that a random variable X follows a geometric probability distribution,
find X’s moment-generating function.

Negative Binomial Distribution

6-36. Suppose that for a large number of red and blue marbles within a jar the
probability of obtaining a red marble is 1

4 and the probability of getting a
blue one is 3

4 on any given draw. Marbles are selected from the jar until
the fourth red marble is observed. What is the probability of observing the
fourth red marble on the tenth draw? What is the probability that at most
nine marbles have to be drawn in order to find the fourth red one?

6-37. Suppose that a basketball player has a 75% of chance of making a free-
throw shot. The player shoots free throws until a total of 10 are made. What
is the probability that 12 shots will be required in order to sink 10 of them?
What is the probability that it will take 15 shots in order to sink 10 of them?
If X is the minimum number of free throws needed to sink 10 of them, find
E(X) and V(X).

6-38. A fair coin is tossed a larger number of times. What is the probability that
the seventh head is obtained on the tenth toss? What is the probability that
it is obtained on the fifteenth toss?

6-39. A girl scout is selling American flags door to door and has a quota of 10
flags to be sold. Let the probability of a sale be 0.25. What is the probability
that her quota will be made at the fourteenth house?
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6-40. Given that a random variable X follows a negative binomial probability
distribution, determine X’s moment-generating function.

6-41. Suppose a random variable X follows a negative binomial distribution. Find
E(X), V(X), using the moment-generating function.

Poisson Distribution

6-42. Suppose that the number of moving violations captured by a traffic camera
at a given traffic light is Poisson distributed with three moving violations
recorded per day. Let the random variable X be the number of moving
violations captured by the camera during a five-day work week. What is
the probability of capturing exactly 10 moving violations over the five-day
period? What is the probability of detecting at least six moving violations
over this period?

6-43. Suppose that the intensity of the process generating incoming calls at a
switching station is two per minute. What is the probability that the station
receives exactly 12 calls in a 5-minute period? What is the probability of
exactly 13 calls over this period?

6-44. Suppose that the 911 emergency facility of a particular metropolitan area
experiences 300 calls per hour. Let X be the number of calls that arrive in
a one-minute period. Then X is Poisson distributed with λ = 5. What is
the probability of more than four calls but no more than 10 calls during a
one-minute period?

6-45. Suppose the number of suicides in a certain locale is Poisson distributed
with parameter λ = 2 per day, where X is the number of suicides per week.
What is the probability of exactly 10 suicides during this period? What is
the probability of no more than eight suicides during this period? Find the
probability of at least 10 suicides during this week. What is the probability
of less than five suicides within this period? What is the expected number
of suicides in the one-week period? What is the variance of this Poisson
random variable?

6-46. Suppose that the average number of incoming telephone requests for emer-
gency service received by staff members of the regional auto club office is 30
per hour. What is the probability that at least five calls will arrive in a five-
minute period? What is the probability of no calls arriving in a five-minute
period?

6-47. Suppose that in a wooded area the airborne particles of a certain type of
pollen occur at an average rate of six per cubic foot of air and that the number
of particles X found in a cubic foot sample of air is Poisson distributed with
parameter λ = 6. Determine the Poisson probability mass function. What
is the probability of finding four particles of pollen in our air sample? What
is the probability of finding none?
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6-48. A night watchman (based on his past experience) estimates that there is
only about a 1% chance of completing his rounds early and having to wait
to punch in his code on the hour at a security station. Suppose that being
early on any given patrol of the facility does not affect his being early or not
on any other patrol. Let X be the number of times he will be early on his
next 100 arrivals at the security station. Then X is binomially distributed
with p = 0.01 and n = 100. Compare the binomial and Poisson probabilities
for X = 0, 1 and 2; that is, how would you rate the Poisson approximation
to the binomial probabilities?

6-49. Verify that equation (6.47) is a legitimate probability mass function.

6-50. Given that a random variable X is Poisson distributed, find X’s probability-
generating function. What is E(X), V(X)?

6-51. Given that a random variable X follows a Poisson probability distribution,
determine X’s moment-generating function.

6-52. For a Poisson random variable X with probability mass function given by
equation (6.47), find E(X), V(X) using equation (6.47).

Hypergeometric Distribution

6-53. Suppose that out of 50 property owners from a given city it is known that
30 support a bond issue for the addition of a new wing to the public library
but 20 do not. If five property owners are selected at random at a town
meeting, what is the probability that more than one of them will favor the
bond issue?

6-54. Suppose that out of 120 applicants for a particular job only 80 of them have
prior experience at operating a certain piece of milling machinery. If 10
applicants are randomly chosen for an interview, and an inventory of their
skills is made, what is the probability that exactly four of the 10 will list
experience on the milling machine as a skill?

6-55. A vessel contains 10 chips of which six are red and four are blue. Three are
drawn at random without replacement. If X represents the number of red
chips drawn, find E(X), V(X) .

6-56. Seated at a table are five individuals, four of which are registered Demo-
crats. If two individuals are selected at random without replacement, what
is the probability that the non-Democrat will be one of those selected? (Let
the random variable X be the number of non-Democrats selected.) What
is the probability that two Democrats will be selected?

6-57. Suppose that in a group of 20 consumers, five prefer brand A espresso,
six prefer brand B espresso, and six prefer brand C espresso. A sample
of 10 consumers is selected at random without replacement. What is the
probability that six of them will prefer brand A, two will prefer brand B,
and two will prefer brand C?
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6-58. Verify that (6.60) is a legitimate probability mass function.

6-59. For each of the following moment-generating functions, find the associated
probability mass function:

(a) mX (t) = 0.0156(1 − 0.75et)−3, t < 0.2877

(b) mX (t) = 0.45et(1 − 0.55et)−1, −∞ < t < +∞
(c) mX (t) = [0.60et + 0.04]10, −∞ < t < +∞
(d) mX (t) = e−2e2et

, −∞ < t < +∞
(e) mX (t) = 0.70et + 0.30, −∞ < t < +∞
(f) mX (t) = et(1 − e4t) [4(1 − et)]−1 , t �= 0
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77
Continuous Parametric
Probability Distributions

7.1 Introduction

This chapter focuses on a set of important continuous parametric probability dis-
tributions that are commonly employed in many areas of theoretical as well as
applied statistics. Such distributions are essentially idealized models or mathemat-
ical constructs that can closely approximate the patterns of behavior of random
phenomena observed in many diverse settings. Their forms are specified by a
function or rule that tells us how to obtain probability density values from the
values assumed by a continuous random variable X. Moreover, these probability
density functions are described in terms of certain parameters that allow us to
generate or index a whole family of density functions as we change the value(s)
of the parameter(s) over some admissible range.

For the most part, the parameters of interest herein fall within the two broad
categories of location and scale. In this regard, for a random variable X, let the
associated probability density function appear as f (x). If the probability density
function f (x; α) = f (x − α), −∞ < α < +∞, α a parameter, has the same shape
as f (x) but is shifted or translated a distance α along the x-axis, then α is termed a
location parameter. If α > 0(< 0), f shifts a distance α to the left (right). So if the
original origin is x = 0, then the new origin is x = α since now x − α = α − α = 0.

Next, let the probability density function for a random variable X again appear
as f (x). If the probability density function f (x; β) = 1

β
f ( x

β
), β > 0, β a parameter,

has the same location and general shape as f (x) but its graph is either stretched
(β > 1) or contracted (β < 1) a bit, then β is termed a scale parameter.

If f (x) is a probability density function for a random variable X and a loca-
tion and/or scale parameter is introduced into f, then the resulting expression
is also a legitimate probability density function. That is, if f (x) is a probability

235
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1
1

x t 
0 0

(a) (b)

u (x ;  a, b) F ( t ;  a, b)

b ba a

b − a

Figure 7.1 (a) A uniform probability density function; (b) Cumulative distribution function for X
uniformly distributed.

density function and α(−∞ < α < +∞) and β (>0) are location and scale parame-

ters, respectively, then the function f (x; α, β) = 1
β

f
(

x−α
β

)
is a probability density

function.

7.2 The Uniform Distribution

The uniform (or rectangular) probability distribution is one whose probability
densities are constant over some subinterval of the real line. That is, the ran-
dom variable X is said to be uniformly distributed over the interval (α, β) if its
probability density function is given by

u(x; α, β) =

⎧
⎪⎨

⎪⎩

1
β−α

, α < x < β,

α and β real numbers;
0 elsewhere

(7.1)

(see Figure 7.1a). Here the parameters α and β may be varied so as to generate
a whole family of uniform distributions. Moreover, X’s cumulative distribution
function appears as

P(X ≤ t) = F(t; α, β) = 1
β − α

∫ t

−∞
dx =

⎛

⎜⎜⎝

0, t < α;
t−α
β−α

, α ≤ t ≤ β;

1, t > β

(7.2)

(see Figure 7.1b).
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To find P(a ≤ X ≤ b), where α ≤ a ≤ b ≤ β, we may either integrate (7.1)
directly between the limits a and b or use the relation

P(a ≤ X ≤ b) = F(b) − F(a) = b − a
β − α

. (7.3)

For a uniformly distributed random variable X:

µ = E(X) = α + β

2
; (7.4)

σ =
√

V(X) = β − α√
12

; (7.5)

the coefficient of skewness is α3 = 0; and the coefficient of kurtosis is α4 = 9
5 .

In addition, the quantile γp, the value for which P(X ≤ γp) = p, is determined
by setting F(γp) = p. Then from (7.2),

γp = α + (β − α)p. (7.6)

As far as its essential properties are concerned, the uniform probability
distribution:

● Is symmetrical (since α3 = 0)

● Has no mode

● Has a peak that is flatter than that of a normal distribution (since α4 < 3)

● Has its median equal to its mean (since γ0.50 = α + (β − α)0.5 =
0.5α + 0.5β = µ)

Example 7.2.1 Let the random variable X be uniformly distributed over the
interval (3, 9). Then

u(x; 3, 9) =
{

1
6 , 3 < x < 9;
0 elsewhere.

Also,

F(t; 3, 9) =

⎧
⎪⎨

⎪⎩

0, t < 3;
t−3

6 , 3 ≤ t ≤ 9;
1, t > 9.
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What is the probability that the uniform random variable X takes on a value
between 4 and 6? Using (7.3),

P(4 ≤ X ≤ 6) = 6 − 4
6

= 1
3

;

and

P(X > 6) = 1 − P(X ≤ 6) = 1 − F(6) = 1 − 6 − 3
6

= 1
2

.

In addition, it is easily verified that: E(X) = 6,
√

V(X) = 6√
12

; and the fortieth
percentile is γ0.40 = 3 + 6(0.4) = 5.40. �

7.3 The Normal Distribution

7.3.1 Introduction to Normality

The normal (or Gaussian) distribution is a continuous bell-shaped distribution
that is symmetrical about its mean and asymptotic to the horizontal axis. In this
regard, a random variable X has a normal probability density function if

f (x; µ, σ ) = 1

σ
√

2π
e− 1

2

(
x−µ
σ

)2

, −∞ < x, µ < +∞, σ > 0, (7.7)

where µ and σ are, respectively, the mean and standard deviation of X and
e denotes the base of the natural logarithm. Here (7.7) depicts the equation of
the so-called normal curve. It can be shown that f (x; µ, σ ) > 0 for all x and

∫ +∞

−∞
f (x; µ, σ )dx = 1.

In general, if X follows a normal distribution with mean µ and standard deviation
σ , then we shall describe this situation by simply saying that “X is N(µ, σ ).”
Clearly this notation underscores the fact that (7.7) can admit a whole family of
probability density functions because the parameters µ and σ are varied. Here µ

is termed a location parameter and σ a scale parameter; that is, as we vary µ with
σ held constant (see Figure 7.2a), we obtain a translation of the graph of f along
the x-axis; and as we vary σ with µ held constant (see Figure 7.2b), the dispersion
of f changes in a fashion such that the total area under the graph of f remains
equal to one.

Some of the key properties of the normal distribution are as follows.

1. The normal probability density function (7.7) attains its (global) maximum or
modal value of 1

σ
√

2π
at x = µ; and since the normal distribution is symmetrical,

it follows that µ = median = mode.



7.3 The Normal Distribution 239

f (x ;  m, s) f (x ;  m, s) 

 

x x 

(a) (b) 

F (t; m, s) f (x; m, s)  

1 P(X ≤ t) = F(t)

0.5 

 t x
−t 0 t 

(c) (d)

(m is constant)
s1 < s2 < s3m1 < m2 < m3

(s is constant)

m1 m2 m3 µ

s = s1

s = s2

s = s3  

m m

Figure 7.2 (a) Varying µ with σ constant; (b) Varying σ with µ constant; (c) The normal cumulative
distribution function F(t); (d) The value of F at t is the area under f from −∞ to t.

2. f has (nonhorizontal) points of inflection at µ ± σ .

3. The mean and variance of the normal random variable are defined as

µ = E(X) =
∫ +∞

−∞
x f (x; µ, σ )dx (7.8)

and

σ 2 = V(X) =
∫ +∞

−∞
(x − µ)2f (x; µ, σ )dx

(
=
∫ +∞

−∞
x2fdx − 2µ

∫ +∞

−∞
xfdx + µ2

∫ +∞

−∞
fdx

= E(X2) − 2µ(µ) + µ2(1) = E(X2) − µ
2
)

, (7.9)

respectively.
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4. The coefficient of skewness is α3 = 0.

5. The coefficient of kurtosis is α4 = 3.

If X is N(µ, σ ), the probability that X assumes a value less than or equal to some
number t is given by X’s cumulative distribution function

P(X ≤ t) = F(t; µ, σ ) = 1

σ
√

2π

∫ t

−∞
e− 1

2

(
x−µ
σ

)2

dx (7.10)

(see Figure 7.2c). Clearly F is nondecreasing as required and exhibits a (nonhori-
zontal) point of inflection at t = µ. In addition, Figure 7.2d relates the value of F
at t to the area under f from −∞ to t.

Since the total area under the normal probability density function is one, (7.7)
and (7.10) may be used to determine probabilities such as

P(a ≤ X ≤ b) =
∫ b

a
f (x; µ, σ )dx =

∫ b

−∞
fdx −

∫ a

−∞
fdx = F(b) − F(a) (7.11)

as illustrated in Figures 7.3a, b, respectively.

7.3.2 The Z Transformation

How may we calculate (7.11)? Direct integration of (7.7) between the (numerical)
limits a and b is extremely cumbersome and (7.10) does not even have a closed
form. Fortunately, tables of areas under (7.7) and cumulative probabilities up
to and including various values of t in (7.10) have been constructed to expedite
the determination of probabilities such as (7.11). But since we get a different
normal probability density and cumulative distribution function for each possible

f (x; m,s) F (t; m, s)

P(a ≤ X ≤ b) = F(b) − F(a) 1

F(b)

0.5
F(a)

0
t

a b a b

(a) (b)

m m

Figure 7.3 (a), (b)
(
P(a ≤ X ≤ b) = P(X ≤ b) − P(X ≤ a) = F(b) − F(a)

)
.
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combination of µ and σ values, we might be tempted to surmise that a rather
large (indeed infinite) number of tables would be needed. In fact, only one table
is required, and it is called the Table of Cumulative Distribution Function Values
for the Standard Normal Distribution (Table A.2 of the Appendix). To use this
table, let us employ the following:

Transformation of Variable: If the random variable X is N(µ, σ ), then
the random variable

Z = X − µ

σ
(7.12)

is N(0, 1); that is, Z is a normally distributed random variable with a mean of
zero and a standard deviation of one and will be termed a standard normal
random variable.
Hence any normal X, irrespective of the values of its mean µ and standard

deviation σ (�= 0), can be transformed into a standard normal or N(0, 1) random
variable Z.

Applying this transformation to (7.7) enables us to express the standard
normal probability density function for the N(0, 1) random variable Z as

f (z; 0, 1) = 1√
2π

e− 1
2 z2
(
≈ 0.3989(0.6065)z2

)
(7.13)

(see Figure 7.4a). Here, too, f (z; 0, 1) > 0 for all z and

∫ +∞

−∞
f (z; 0, 1)dz = 1.

f (z; 0,1) F (t ; 0,1)

0.5

1

z t  

0 0 

(a) (b)

Figure 7.4 (a) The standard normal probability density function; (b) The standard normal cumula-
tive distribution function.
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Note that this density function depends only on |z|, which is conveniently
measured in standard deviation units.

A second application of the Z-transformation, this time to (7.10), renders
(for dx = σdz) the standard normal cumulative distribution function

P(X ≤ t) = P
(

Z ≤ t − µ

σ

)
= F

(
t − µ

σ
; 0, 1

)
= 1√

2π

∫ t−µ
σ

−∞
e− 1

2 z2
dz (7.14)

(see Figure 7.4b). So under this transformation, the cumulative normal probabil-
ities are unchanged and equal the cumulative standard normal probabilities for
each t; that is,

F(t; µ, σ ) = F
(

t − µ

σ
; 0, 1

)
.

Based upon this discussion, we see that to calculate probabilities involving a
N(µ, σ ) random variable X, we need only use the Z-transformation to calculate
equivalent probabilities involving a N(0, 1) random variable Z. In this regard, if
X is N(µ, σ ), then

P(a ≤ X ≤ b) =
∫ b

a
f (x; µ, σ )dx

=
∫ (b−µ)/σ

(a−µ)/σ
f (z; 0, 1)dz = P

(
a − µ

σ
≤ Z ≤ b − µ

σ

)
, (7.15)

where again Z is N(0, 1). Hence the probability that the normal random variable X
assumes a value between a and b is equal to the probability that the standard
normal random variable Z takes on a value between (a−µ)

σ
and (b−µ)

σ
. The

equivalence of these two probability calculations is illustrated in Figure 7.5.
In terms of (7.14), (7.15) can be rewritten as

P(a ≤ X ≤ b) = F
(

b − µ

σ
; 0, 1

)
− F

(
a − µ

σ
; 0, 1

)
(7.15.1)

Additionally,

P(X ≤ a) = P
(

Z ≤ a − µ

σ

)
= F

(
a − µ

σ
; 0, 1

)
; (7.16)
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f (x; m , s)

P(a ≤ X ≤ b)

X is N (m, s)

Z is N (0, 1) 

a b

f (z; 0, 1)

0
a − m

( )a − m
≤ Z ≤P

b − m

b − m

m

s s

s s

Figure 7.5 If X is N(µ, σ ) and Z is N(0, 1), then P(a ≤ X ≤ b) = P
(

a−µ

σ
≤ Z ≤ b−µ

σ

)
.

and

P(X > a) = 1 − P(X ≤ a)

= P
(

Z >
a − µ

σ

)
= 1 − P

(
Z ≤ a − µ

σ

)
= 1 − F

(
a − µ

σ
; 0, 1

)
.

(7.17)

Armed with these considerations, let us now turn to the table of N(0, 1) cumulative
distribution function values (see Table A.2). As the accompanying figure indicates
(replicated here as Figure7.6a), the table gives values of the standard normal
cumulative distribution function F from −∞ to any point a on the nonnegative
z-axis or P(Z ≤ a) = F(a). For −a < 0, we may use the expression

P(Z ≤ −a) = F(−a) = 1 − F(a) (7.18)

since the N(0, 1) probability density is symmetrical about zero (see Figure 7.6b).
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P(Z ≤ a) = F (a) P(Z ≤ – a) = F( – a) = 1 – F(a)

z z
0 a −a 0
(a) (b)

Figure 7.6 (a), (b) Probability determined via the standard normal cumulative distribution function.

Example 7.3.1 It is easily seen that:

1. P(Z ≤ 0) = F(0) = 0.5.

0.5

z  
0

2. P(Z ≤ 1.2) = F(1.2) = 0.8849.

0.8849

z  
0 1.2
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3. P(Z ≤ −0.34) = F(−0.34) = 1 − F(0.34) = 1 − 0.6331 = 0.3669.

0.3669

z  
−0.34 0

4. P(0.42 ≤ Z ≤ 1.35) = F(1.35) − F(0.42) = 0.9115 − 0.6628 = 0.2487.

0.2487

z  
0 0.42 1.35

5. P(−0.30 ≤ Z ≤ 2.16) = F(2.16) − F(−0.30) = F(2.16) − (
1 − F(0.30)

)

= 0.9846 − (1 − 0.6179) = 0.6025. �

0.6025

z  
−0.30 0 2.16

Now that we have Table A.2 at our disposal, the probability calculations implied
by (7.15) and (7.15.1) are straightforward.
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f (x; 50, 10) f (z; 0, 1)

x z  
48 50 55 −0.20 0 0.5

Z =X – 50
10

Figure 7.7 P(48 ≤ X ≤ 55) and P(−0.2 ≤ Z ≤ 0.5) are equivalent probability statements.

Example 7.3.2 Given that the random variable X is N(50, 10), find P(48 ≤
X ≤ 55). Proceeding as just shown, let us transform this given probability
statement into an equivalent statement involving the N(0, 1) random variable
Z as follows (see Figure 7.7):

P(48 ≤ X ≤ 55) = P
(

48 − 50
10

≤ X − µ

σ
≤ 55 − 50

10

)

= P(−0.2 ≤ Z ≤ 0.5)

= F(0.5) − F(−0.2)

= F(0.5) − (
1 − F(0.2)

) = 0.6914 − (1 − 0.5793) = 0.2707.

Also, it is easily shown that

P(X ≤ 45) = P
(

X − µ

σ
≤ 45 − 50

10

)
= P(Z ≤ −0.5) = F(−0.5) = 1 − F(0.5)

= 1 − 0.6914 = 0.3086;

and

P(X > 60) = 1 − P(X ≤ 60) = 1 − P
(

X − µ

σ
≤ 60 − 50

10

)

= 1 − P(Z ≤ 1) = 1 − F(1) = 1 − 0.8413 = 0.1587. �

To reinforce our understanding of the use of the Z-transformation, let us
examine a set of important (and equivalent) probability statements connecting
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the N(µ, σ ) random variable X and the N(0, 1) random variable Z. In this regard,

P(X ≤ a) = P
(

Z ≤ a − µ

σ

)
; (7.19)

and

P(Z ≤ z) = P(X ≤ µ + zσ ). (7.20)

Additionally,

P(a ≤ X ≤ b) = P
(

a − µ

σ
≤ Z ≤ b − µ

σ

)
; (7.21)

P(c ≤ Z ≤ d) = P(µ + cσ ≤ X ≤ µ + dσ ); (7.22)

P(|X | ≤ a) = P(−a ≤ X ≤ a) = P
(−a − µ

σ
≤ Z ≤ a − µ

σ

)
;
1

(7.23)

P(|Z| ≤ z) = P(−z ≤ Z ≤ z) = P(µ − zσ ≤ X ≤ µ + zσ ); (7.24)

P(|X | > a) = P(X < −a) + P(X > a)

= P
(

Z <
−a − µ

σ

)
+ P

(
Z >

a − µ

σ

)
;

(7.25)

and

P(|Z| > z) = P(Z < −z) + P(Z > z)

= P(X < µ − zσ ) + P(X > µ + zσ ).
(7.26)

If we take z = 1, 2, and 3 in (7.24), then we may use this expression to directly
compare the X and Z scales (see Figure 7.8). So for Z = X−µ

σ
:

if X = µ, then Z = 0;

if X = µ + σ , then Z = 1;

if X = µ − 2σ , then Z = −2; and so on.

1 Here the absolute value function is defined as |x| =
{

x, x ≥ 0;

−x, x < 0.
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X is N(m, s)

Z is N(0,1)

−3 −2 −1 0 1 2 3

Contains 68.26%
of the area 

Contains 95.46%
of the area 

Contains 99.73%
of the area 

m − 3s m − s m m + s m + 3sm + 2sm − 2s

Figure 7.8 Comparing the X and Z scales illustrates the Empirical Rule.

Moreover, this discussion highlights the notion that although the tails of the nor-
mal (or standard normal) probability density function extend from −∞ to +∞,
there is a negligible amount of area under this function once we depart more
than three standard deviations from the mean µ of X (or from the mean 0 of Z).
To verify this let us again consider (7.24) for z = 1, 2, and 3. Then the N(0, 1)
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cumulative distribution function values table (see Table A.2) allows us to easily
determine the following probabilities:

1.

P(µ − σ ≤ X ≤ µ + σ ) = P(−1 ≤ Z ≤ 1)

= F(1) − F(−1) = F(1) − (
1 − F(1)

)

= 2F(1) − 1 = 0.6826;

(68.26% of the area under N(µ, σ ) lies within the interval µ ± σ or within one
standard deviation of the mean)

2.

P(µ − 2σ ≤ X ≤ µ + 2σ ) = P(−2 ≤ Z ≤ 2)

= F(2) − F(−2) = F(2) − (
1 − F(2)

)

= 2F(2) − 1 = 0.9546;

(95.46% of the area under N(µ, σ ) lies within the interval µ ± 2σ or within
two standard deviations of the mean)

3.

P(µ − 3σ ≤ X ≤ µ + 3σ ) = P(−3 ≤ Z ≤ 3)

= F(3) − F(−3) = F(3) − (
1 − F(3)

)

= 2F(3) − 1 = 0.9973.

(99.73% of the area under N(µ, σ ) lies within the interval µ ± 3σ or within
three standard deviations of the mean)

The preceding set of three probability statements (typically referred to as
one-sigma, two-sigma, and three-sigma probabilities) constitute the so-called
Empirical Rule introduced earlier in Chapter 2 when we first encountered the
concept of dispersion.

7.3.3 Moments, Quantiles, and Percentage Points

A few additional items pertaining to the use of the normal distribution are in
order. First, if Z = X−µ

σ
is standard normal or N(0, 1), then the rth order moments

of Z are

µr = µ′
r = E(Zr) = 1√

2π

∫ +∞

−∞
zre− 1

2 z2
dz.
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z z
0 z0.60 = 0.255 z0.25 = − 0.6750 0 z0.75 = 0.6750 

(a) (b)

Figure 7.9 (a) The 60th percentile γ0.60 satisfies F(z0.60; 0, 1) = 0.60; (b) The 25th percentile γ0.25

satisfies F(z0.25; 0, 1) = 0.25.

If r is even, it can be shown that µr = (r − 1)(r − 3) · · · 3 · 1; if r is odd, µr = 0.
(See Appendix 7.A for details pertaining to the moment-generating functions for
N(0, 1) and N(µ, σ ) random variables.)

Second, if X is N(µ, σ ), then we may readily determine a quantile of N(µ, σ )
by remembering (from Chapter 4) that a quantile of order p(0 < p < 1) is a value
γp such that P(X ≤ γp) = p or, for our purposes, a value that satisfies

F(γp; µ, σ ) =
∫ γp

−∞
f (x; µ, σ )dx = p, (7.27)

where f (x; µ, σ ) is a normal probability density function. So if X is N(µ, σ ), then

P(X ≤ γp) = P
(

Z ≤ γp − µ

σ
= zp

)

= F
(
zp; 0, 1

) =
∫ zp

−∞
f (z; 0, 1) dz = p. (7.27.1)

Example 7.3.3 If X is N(30, 5), then the sixtieth percentile of this distribution
is the value γ0.60, which satisfies F(z0.60; 0, 1) = 0.60 or

z0.60 = γ0.60 − 30
5

= 0.255

(note that we start with an F value and then read Table A.2 in reverse so as to
obtain a z value). From this equality we obtain γ0.60 = 30 + 5(0.255) = 31.275.

Hence we conclude that 60% of the area under N(30, 5) lies below 31.275 (see
Figure 7.9a). Similarly,the twenty-fifth percentile is the value γ0.25, which satisfies
F(z0.25; 0, 1) = 0.25 or

z0.25 = γ0.25 − 30
5

.
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Since N(0, 1) is symmetric about zero, it must be true that z0.25 = −z0.75 = −0.675
(see Figure 7.9b). Hence

z0.25 = γ0.25 − 30
5

= −0.675

or γ 0.25 = 30 + 5(−0.675) = 26.625. Thus 25% of the area under N(30, 5) lies
below 26.625. In general, since |zp| = |z1−p|, take

zp = −z1−p, p < 0.50. � (7.28)

Third, for Z a N(0, 1) random variable, the quantity zα , defined by the expression

P(Z > zα) = α, (7.29)

is termed an upper α–percentage point of the standard normal distribution. It is
the point on the (positive) z-axis such that the probability of a larger value is α

(see Figure 7.10a).
Similarly, the quantity −zα , defined by the relationship

P(Z < −zα) = α, (7.30)

is called a lower α-percentage point of the standard normal distribution. Now it
is the point on the (negative) z-axis such that the probability of a smaller value is
α (see Figure 7.10b). And if α is divided equally between both tails of the N(0, 1)

z z 
0 zα zα− 0

(a) (b)

2
α

2
α

z
/2zα− 0 /2zα

(c)

P(Z > za) = a

P(−za/2 < Z < za/2) = 1− a

P(Z < −za) = a

Figure 7.10 Locating α and α/2 percentage points for the N(0, 1) distribution.
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0.95

0.05
0.01

z z  
0 z0.05 = 1.645 −z0.01 = −2.33 0

(a) (b)

0.975

0.025

z
0 z0.025 = 1.96

(c)

Figure 7.11 (a) Finding the upper α = 0.05 percentage point; (b) Finding the lower α = 0.01 percentage
point; (c) Finding the upper α/2 = 0.025 percentage point.

distribution (thus α/2 is the area in each tail), then the remaining area of 1 − α is
located under the N(0, 1) curve between −zα/2 and zα/2; that is,

P (|Z| < zα/2) = 1 − α

or
P(−zα/2 < Z < zα/2) = 1 − α.

This latter area appears in Figure 7.10c. Hence the lower and upper α/2-percentage
points of the standard normal distribution are, respectively, −zα/2 and zα/2.

Example 7.3.4 To find these N(0, 1) percentage points in actual practice, let us
note that α is always chosen in advance; that is, any given α implies a zα or zα/2

value. If α = 0.05, then zα = z0.05 = 1.645 since F(1.645; 0, 1) = 0.95 via Table A.2
(see Figure 7.11a). If α = 0.01, −zα = −z0.01 = −2.33 since F(2.33; 0, 1) = 0.99
and |zα| = |z1−α| by virtue of the symmetry (about zero) of the standard normal
distribution (see Figure 7.11b). And if α = 0.05, then zα/2 = z0.025 = 1.96 since
F(1.96; 0, 1) = 0.975 (see Figure 7.11c). �

Next, if X1 and X2 are independent normally distributed random variables,
then:

● Any linear function of X1 and X2 is also normally distributed

● If E(X1) = E(X2) = 0, then X1X2(X2
1 + X2

2 )−1/2 is normally distributed
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● If E(X1) = E(X2) = 0 and V(X1) = V(X2), then (X2
1 − X2

2 )(X2
1 + X2

2 )−1 is
normally distributed

● If X1 and X2 are each N(µ, σ ), then X = 1
2 (X1 + X2) is N(µ, σ√

2
)

7.3.4 The Normal Curve of Error

Let us address the question of the source of the normal distribution: How may
we rationalize the form of the normal distribution? What we find more often
than not is that the type of experiment that produces a random variable X that
is approximately normally distributed is one in which the various values of X are
actual measurements that tend to cluster symmetrically about some central value,
or measurement errors that tend to cluster symmetrically about zero. For instance,
the distribution of traits such as height, weight, IQ, and so on tend to more or less
follow a normal distribution.

Let us consider the so-called normal curve of error in greater detail. Whereas
the notion of error generally involves any deviation from systematic behavior, we
shall get a bit more specific and consider a situation in which a large number of
individuals are asked to measure the length of an object. It should be intuitively
clear that each measurement reported may be subject to an error that depicts the
resolution of essentially an infinite number of diverse (albeit minute) factors that
operate on one individual independently of other individuals. Moreover, we shall
assume that for each individual these factors produce small errors or departures
from the true length and that positive and negative deviations are equally likely
and no one factor can be expected to predominate. Thus we expect that the actual
measurements are normally distributed about the true length or the errors are
normally distributed about zero. That is, small errors are likely to occur more
frequently than large ones and very large errors are highly unlikely.

So although we cannot predict the exact type of measurement error that a
single individual will make, we can predict, with a reasonable degree of certainty,
how the errors resulting from measurements made by a large number of indi-
viduals will behave: more people will make small errors rather than large ones;
the larger the error, the fewer the number of people making it; approximately
the same number of individuals will overestimate as will underestimate the true
length; and the average error, taken over all individuals, will be zero. Hence
this random error, which results from many like or repeated measurements actu-
ally made, may be viewed as a sample drawn from an infinitely large normal
population.

7.4 The Normal Approximation to Binomial Probabilities

In this section we shall see exactly how and under what circumstances normal
probabilities can serve as useful approximations to binomial probabilities. The
reason why such approximations are legitimate is that the normal distribution
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is the limiting form of the binomial distribution when n is very large and p, the
probability of a success on any given trial of a simple alternative or Bernoulli
experiment, is not too close to either 0 or 1.

Let the binomial random variable S represent the number of successes in n
independent trials of a Bernoulli experiment. Then from the binomial probability
mass function (6.15), the probability that S = s is

b(s; n, p) = n!
s!(n − s)!ps(1 − p)n−s.

Moreover, E(S) = np and σ = √
V(S) = √

np(1 − p). Now, the binomial variable
S is a discrete random variable and the normal random variable X is continuous.
Hence b(s; n, p) �= 0 but P(X = s) = 0. However, we may approximate b(s; n, p)
as follows. Let us standardize S as X = S−np√

np(1−p)
with x = s−np√

np(1−p)
. Then

b(s; n, p) ≈ 1√
2π

1
√

np(1 − p)
e−1/2x2 = 1√

2π

1
√

np(1 − p)
e
− 1

2
(s−np)2

np(1−p) , (7.32)

where s is assumed close to np but not too close to either 0 or n.
The justification for this approximation (7.32) is Theorem 7.4.1, the DeMoivre-

Laplace-Gauss Limit Theorem (1718, 1812).

THEOREM 7.4.1. Let S depict a binomial random variable with mean np
and standard deviation

√
np(1 − p). Then for fixed p, as the number of inde-

pendent Bernoulli trials increases without bound, the standardized random
variable

X = S − np
√

np(1 − p)
→ Z ∼ N(0, 1)

(where “∼” means “is distributed as”).
Stated alternatively: given p, the cumulative distribution function of X =

S−np√
np(1−p)

approaches the standard normal cumulative distribution function

F(z; 0, 1) asymptotically as n → ∞ or

lim
n→∞

p=constant

F(x) =
∫ x

−∞
f (z; 0, 1) dz = F(x; 0, 1).

So given p, the limiting distribution as n → ∞ of the standardized binomial vari-
able S is the standard normal distribution (or the limiting distribution as n → ∞
of the binomial variable S is, for fixed p, a normal distribution with mean np and
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standard deviation
√

np(1 − p). This approximation works well provided np > 5
when p ≤ 0.5; or n(1 − p) > 5 when p > 0.5.

If S is again taken to be a binomial random variable with mean np and
standard deviation

√
np(1 − p), then for a and b integers, the preceding limit

theorem is also the basis for the probability calculation

P(a ≤ S ≤ b) → 1√
2π

∫ b−np√
np(1−p)

a−np√
np(1−p)

e− 1
2 z2

dz

= P

(
a − np

√
np (1 − p)

≤ Z ≤ b − np
√

np (1 − p)

)

= F

(
b − np

√
np (1 − p)

; 0, 1

)
− F

(
a − np

√
np (1 − p)

; 0, 1

)
(7.33)

as n → ∞; or

P
(

np + a
√

np(1 − p) ≤ S ≤ np + b
√

np(1 − p)
)

→ 1√
2π

∫ b

a
e− 1

2 z2
dz

= P(a ≤ Z ≤ b) = F(b; 0, 1) − F(a; 0, 1) (7.34)

as n → ∞.
To improve the approximations provided by (7.32) to (7.34), let us intro-

duce what is commonly called the continuity correction (since we are using a
continuous distribution to approximate a discrete one). Consider integers a, b,
and c, where a < b < c. Since the binomial random variable S is discrete, it
has no probability mass between a and b and between b and c. In contrast
to this situation, the standard normal variable Z has nonzero probability only
over intervals. For s = a, the binomial probability is b(a; n, p). But from the
standard normal cumulative distribution function, the probability that Z takes
on a value less than or equal to a is F(a; 0, 1). Clearly the binomial probabi-
lity does not equal F(a; 0, 1). But if we employ the continuity correction and
calculate the standard normal probability over the interval a ± 0.5, we get
P(a − 0.5 ≤ Z ≤ a + 0.5) = F(a + 0.5; 0, 1) − F(a − 0.5; 0, 1) ≈ b(a; n, p).
Similarly, the binomial probability P(a ≤ S ≤ c) = b(a; n, p) + b(b; n, p) +
b(c; n, p). In terms of the standard normal cumulative distribution function,
P(a ≤ Z ≤ c) = F(c; 0, 1) − F(a; 0, 1), which understates the preceding bino-
mial probability. But if we again employ the continuity correction and calculate
instead P(a − 0.5 ≤ Z ≤ c + 0.5) = F(c + 0.5; 0, 1) − F(c − 0.5; 0, 1), then an
improved approximation to P(a ≤ S ≤ c) obtains.

In sum, if we assume that the binomial probability b(s; n, p) is the probability
associated with an interval of length one and centered on s, then, via the continuity
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correction,

b(s; n, p) ≈ P(s − 0.5 ≤ S ≤ s + 0.5)

= P

(
s − 0.5 − np
√

np(1 − p)
≤ Z ≤ s + 0.5 − np

√
np(1 − p)

)
(7.32.1)

= F

(
s + 0.5 − np
√

np(1 − p)
; 0, 1

)
− F

(
s − 0.5 − np
√

np(1 − p)
; 0, 1

)
.

Thus adding and subtracting 0.5 (the continuity correction) accounts for the gaps
between integer values where the binomial probability mass function is undefined.

Next, incorporating the continuity correction in the calculation of (7.33) yields

P(a ≤ S ≤ b) ≈ P

(
a − 0.5 − np
√

np(1 − p)
≤ Z ≤ b + 0.5 − np

√
np(1 − p)

)

= F

(
b + 0.5 − np
√

np(1 − p)
; 0, 1

)
− F

(
a − 0.5 − np
√

np(1 − p)
; 0, 1

)
. (7.33.1)

We note briefly that for any finite n, the standard normal probability approxi-
mations to binomial probabilities will be very accurate when p = 0.5 (the bino-
mial distribution is symmetrical). When p �= 0.5 (the binomial distribution is
skewed), the standard normal probability approximations to binomial probabili-
ties will not be as accurate as in the preceding case. In this instance, the greater the
difference between p and 0.5, the larger n must be in order to ensure an adequate
approximation. For n sufficiently large, the standard normal probabilities will
always provide a satisfactory approximation to binomial probabilities for any p
not too close to 0 or 1. In general, the standard normal approximation to binomial
probabilities is warranted if n is large enough to satisfy min

{
np, n(1 − p)

} ≥ 5.

Example 7.4.1 To see exactly how these approximations are made, let a random
experiment consist of tossing a fair pair of dice 1000 times and let the random
variable X represent the number of times the event the sum of the faces showing
equals 7 occurs. Clearly X is binomially distributed with n = 1, 000, p = 1

6 , E(x) =
np = 166.66, and σ = √

np(1 − p) = 11.78. Find P(100 ≤ X ≤ 150). Under the
direct calculation of binomial probabilities we have

P(100 ≤ X ≤ 150) =
150∑

i=100

(
1000

i

)(
1
6

)i (5
6

)1000−i

.
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Since the amount of effort required to execute these numerical computations is
prohibitive, let us approximate this probability using (7.33.1) (and Table A.2) or

P(100 ≤ X ≤ 150) ≈ F
(

150 + 0.5 − 166.66
11.78

; 0, 1
)

− F
(

100 − 0.5 − 166.66
11.78

; 0, 1
)

= F(−1.37) − F(−5.70) = 1 − F(1.37) − (
1 − F(5.70)

)

= 1 − F(1.37) = 0.0854.

In addition, from (7.32.1),

P(X = 180) ≈ F
(

180 + 0.5 − 166.66
11.78

; 0, 1
)

− F
(

180 − 0.5 − 166.66
11.78

; 0, 1
)

= F(1.17) − F(1.09) = 0.0169. �

7.5 The Normal Approximation to Poisson Probabilities

The purpose of this section is to briefly mention that the De Moivre-Laplace-Gauss
Limit Theorem (Section 7.4) applied to the approximation of binomial probabili-
ties also applies to the approximation of Poisson probabilities. That is, there exists
an asymptotic relationship between the discrete Poisson probability distribution
and the continuous standard normal probability distribution. Specifically, if X is a
Poisson random variable with parameter λ = µ = σ 2, then the cumulative distri-
bution function of the standardized variable Y = X−λ√

λ
approaches the standard

normal cumulative distribution function as λ increases without bound; that is,

lim
λ→∞ F(y) =

∫ y

−∞
f (z; 0, 1)dz = F(y; 0, 1).

This result may be utilized to find probabilities such as:

P(a ≤ X ≤ b) → F
(

b − λ√
λ

; 0, 1
)

− F
(

a − λ√
λ

; 0, 1
)

(7.35)

as λ → ∞; or

P(λ + a
√

λ ≤ X ≤ λ + b
√

λ) → F(b; 0, 1) − F(a; 0, 1) (7.36)

as λ → ∞.
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7.6 The Exponential Distribution

7.6.1 Source of the Exponential Distribution

The exponential probability distribution has its origins in the Poisson probability
model. To see this let us return briefly to Chapter 6 wherein we found that a
(discrete) Poisson random variable R can be considered as the number of inde-
pendent random occurrences of some event A, which takes place at a constant
(average) rate over a given continuous interval of length T. For convenience, let
T depict a fixed interval of time. Then R’s probability mass function appears as
p(R = r; λT) = e−λT (λT)r

r! , r = 1, 2, . . .. If the parameter λ depicts the intensity or
constant rate of occurrence of the Poisson random process per standard unit or
specified time period, then the parameter λT is the intensity of this process over
T time periods. Moreover, we also found that E(R) = λT = V(R).

Let the occurrence of an event A follow a Poisson probability distribution.
If the underlying Poisson process operates at a rate of λ occurrences per unit of
time, then, as we shall now see, the length of time we have to wait before the first
occurrence of this event follows an exponential probability distribution.

For a Poisson random variable R, the probability of no occurrence of A prior
to T or over the time interval [0,T) is p(R = 0; λT) = e−λT . If we define a new
random variable X as the time taken for the first occurrence of event A (clearly
X is a continuous random variable), then the probability of the first occurrence
of A at or after T is P(X > T) = p(0; λT) = e−λT . (Note that since the Poisson
process describing R is independent, the random variable X, the time until the
first occurrence of A, may be defined equivalently as the time between successive
occurrences of A).

So for this new random variable X, its cumulative distribution function can be
written as

F(T) = P(X ≤ T) = 1 − P(X > T) = 1 − e−λT , T > 0. (7.37)

Hence its associated probability density function is

f (T ; λ) = F ′(T) =
{

λe−λT , λ > 0, T > 0;
0 elsewhere.

(7.38)

In general, if the random variable R, depicting the number of occurrences of
some event A, follows a discrete Poisson probability distribution with parameter
λ, then the random variable X, representing the length of time between successive
occurrences of A, follows a continuous exponential probability distribution with
parameter λ and probability density function

f (x; λ) =
{

λe−λx, λ > 0, x ≥ 0;
0 elsewhere.

(7.39)



7.6 The Exponential Distribution 259

f (x ; λ) F (t ; λ)

f (0; λ) = λ 1

x t
0 0

(a) (b)

Figure 7.12 (a) Exponential probability density function; (b) Exponential cumulative distribution
function.

(see Figure 7.12a). And as we vary the parameter λ, we obtain an entire family
of exponential probability distributions and, as required, it is easily demonstrated
that for each such distribution

∫ +∞

−∞
f (x; λ)dx =

∫ +∞

0
f (x; λ)dx = 1.

Note that since (7.39) is negatively sloped for all x ≥ 0 (for this reason it is some-
times called the negative exponential distribution), it follows that the probability
of experiencing a long time interval until the first occurrence of A should be less
than the probability of a short time interval. So if, for instance, the number of tele-
phone calls arriving at a switchboard is Poisson distributed, then the time between
each arrival is exponentially distributed (since time starts over at zero after each
arrival and thus the rate of arrival is constant).

Given that the instantaneous rate of occurrence of some event A is a constant
λ, the probability density function (7.39) gives the instantaneous probability of
occurrence of A at any given (time) x > 0. Moreover, the exponential cumulative
distribution function yields the probability of occurrence of A prior to t or

P(X ≤ t) = F(t; λ) =
{

1 − e−λt , t > 0;
0, t ≤ 0

(7.40)

(see Figure 7.12b).
From (7.39) and (7.40):

P(X ≤ a) = 1 − e−λa;

P(X > a) = 1 − P(X ≤ a) = e−λa;
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and for a < b,

P(a ≤ X ≤ b) = P(X > a) − P(X > b) = e−λa − e−λb.

The mean and variance of the exponential probability distribution can be shown
to be

E(X) = 1
λ

, V(X) = 1
λ2

,

respectively. Since λ is the mean number of occurrences per unit time of the
Poisson process, the exponential mean or reciprocal of λ may be thought of as
the mean length of time between successive Poisson occurrences of event A or
the expected time until the first occurrence of a Poisson event.

7.6.2 Features/Uses of the Exponential Distribution

An assortment of key properties of the exponential probability distribution are:

1. As Figure 7.12a indicates, the exponential distribution is highly skewed to the
right with its median equal to 1

λ
ln 2 and its mode located at zero.

2. The coefficients of skewness and kurtosis are, respectively, α3 = 2 and α4 = 9.

3. The pth quantile γp, the value of x which satisfies P(X ≤ γp) = p, is γp =
1
λ

ln
(

1
1−p

)
.

4. If a nonzero location parameter θ is introduced into the exponential distribu-
tion, then (7.39) is replaced by

f (x; λ, θ) =
{

λe−λ(x−θ), x > θ ≥ 0, λ > 0;
0 elsewhere.

(7.39.1)

Here the graph of f is translated a distance θ along the positive x-axis. The
median is now θ + 1

λ
ln 2, and the mode is at the lowest value of x or at θ .

Additionally, the pth quantile is, in this instance, γp = θ + 1
λ

ln
(

1
1−p

)
.

5. The exponential probability distribution is applicable whenever a random
variable depicts the time until the next occurrence of an event, or the time
between successive occurrences of two independent Poisson events. In this
regard, the relationship between the Poisson and exponential distributions
is analogous to that between the binomial and geometric distributions; that
is, the Poisson and binomial distributions are concerned with the number of
occurrences of some event; the continuous exponential and discrete geometric
distributions deal with the amount of time and the number of trials, respec-
tively, until the first (next) occurrence of an event. Specifically, the geometric
random variable is the number of trials until the first success in a Bernoulli
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process with parameter p; the exponential random variable is the length of
time until the first occurrence of an event in a Poisson process with parameter
λ. The mean of the geometric random variable is 1

p ; that of the exponential
random variable is 1

λ
.

6. Given that the exponential random variable X typically is taken as the time
until the first occurrence of some Poisson event (such as an arrival per time unit
or the failure per time unit of an item), and if, say, the instantaneous failure
rate of an item over its entire lifetime is a constant λ, then the probability of no
failure in time T is termed an item’s reliability and will be denoted r(T ; λ) =
p(R = 0; λT) = e−λt . This is so because F(T) = 1 − e−λT = 1 − r(T ; λ) gives
the probability of failure prior to T and thus reliability is the probability of no
failure for at least time T or r(T ; λ) = 1 − F(T). In this context then, (7.38)
serves as the failure probability density function and its mean 1

λ
is termed the

average life of an item or the mean time between failures.

7. The exponential probability distribution exhibits the so-called memoryless
property in that the probability of occurrence of present or future events does
not depend upon events that have already happened in the past. That is, if X
is an exponential random variable, then

P(X > a + b|X > a) = P(X > b) for a, b > 0. (7.41)

Thus the fact that X has already attained some level “a” has no effect on the
probability of achieving a larger level “a + b” (since the events in a Poisson
process are independent). For instance, suppose the time to failure of a particular
item (e.g., a component in a stereo system) is exponentially distributed. If this
component has already been used 1000 hours without failure, then the probability
that it will last another 500 hours equals the probability of its lasting 500 hours
when it was new. Thus the chance of failure in a given time T will be the same
regardless of when it occurs in an item’s life.

To summarize, if events occur according to a Poisson process, then the time
between successive occurrences of these events is exponentially distributed. That
is:

Poisson random variable X—the number of occurrences in a finite interval T;
exponential random variable X—the length of time between Poisson occurrences
or the time until the first Poisson occurrence.

Furthermore:

λ = mean number of occurrences per time unit T of the Poisson process. (If T is
in hours, then λ is stated in occurrences/hr.)
1
λ

= mean time interval between successive Poisson occurrences or the expected
time until the first Poisson occurrence

(If events follow a Poisson process at a rate of λ = 10/min., then the average
time between these Poisson occurrences is 1

λ
= 0.10/min.) So if the number of
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occurrences in a fixed time interval T is Poisson distributed with parameter λT
and if some event A has just occurred, then the length of time we have to wait for
the next occurrence of A is exponentially distributed with parameter λT .

Example 7.6.1 Let us define an exponential random variable X as the length
of life of a particular component within a piece of precision machinery. Given
that the average life of this component is 1

λ
= 5000 hours (and thus the expected

number of failures in one hour is λ = 0.0002), the failure probability density
function appears as

f (T ; λ) = 0.0002e−0.0002T , T > 0.

Hence the cumulative distribution function is

F(T ; λ) = 1 − e−0.0002T

and thus the reliability or probability of no failure for at least T hours is

r(T ; λ) = e−0.0002T .

Then the probability that the component will fail before 3000 hours is

P(T ≤ 3000) = F(3000) = 1 − e−0.0002(3000) = 1 − 0.5488 = 0.4512.

The probability that it will last 6000 hours or more is

r(6000) = e−0.0002(6000) = 0.3012.

The probability that the component will last at least 4000 hours but not more than
7000 hours is

P(4000 ≤ X ≤ 7000) = F(7000) − F(4000)

= P(X > 4000) − P(X > 7000)

= e−0.0002(4000) − e−0.0002(7000)

= 0.4493 − 0.2466 = 0.2027.

And the probability that the component will last the average life or less is

P(X ≤ 5000) = F(5000) = 1 − e−0.0002(5000) = 1 − e−1 = 0.6322. �
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Example 7.6.2 Let us assume that the number of incoming calls at an answer-
ing service during a 15-minute period follows a Poisson distribution with λ = 3
(thus the average number of calls per 15-minute period is three). Hence the cor-
responding exponential random variable X is thus the time between calls with
1
λ

= 0.333 so that the average time between calls is approximately five minutes.
Then:

f (T ; λ) = 3e−3T , T > 0;

and

F(T ; λ) = 1 − e−3T ,

where T is expressed in 15-minute intervals. For instance, the probability of no
calls in a 15-minute period is equivalent to the probability that the time between
calls is greater than one 15-minute period or

P(T > 1) = e−3(1) = 0.04898.

The probability that it takes no more than three minutes to get the next call is

P
(

T ≤ 1
5

)
= 1 − e−3(1/5) = 1 − 0.5488 = 0.4512;

and the probability that the time between calls is at least 10 minutes is

P
(

T >
2
3

)
= e−3(2/3) = 0.1353.

An alternative approach to this problem is to use time intervals of one minute. In
this regard, based upon the information just given, the average number of calls
per minute is λ = 3

15 = 0.20 and thus the average duration between calls is, as
expected, 1

λ
= 1

0.20 = 5 minutes. So for intervals of one minute duration, we have

f (T ; λ) = 0.20e−0.20T , T > 0;

and

F(T ; λ) = 1 − e−0.20T .

Then the probability that the time between calls is greater than 15 minutes is

P(T > 15) = e−0.20(15) = e−3 = 0.0498;
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the probability that the next call arrives in three minutes or less is

P(T ≤ 3) = 1 − e−0.20(3t) = 1 − e−0,6 = 0.4512;

and the probability that the time between calls is at least 10 minutes is

P(T > 10) = e−0.20(10) = e−2 = 0.1353. �

7.7 Gamma and Beta Functions

For any real number α > 0, the gamma function (of α) is the improper integral2

�(α) =
∫ ∞

0
yα−1e−ydy. (7.42)

The gamma function is well defined and continuous for α > 0 and convergent if
and only if α > 0. So if α is positive, �(α) exists and is a positive number.

It can be shown that:

(a) �(1) = 1

(b) �

(
1
2

)
= √

π

(c) (7.42) satisfies the recursion formula �(α) = (α − 1)�(α − 1), α > 0

(d) �(α) = (α − 1)!, α a positive integer

(e) �(α + 1) = α!, α a nonnegative integer

(f)
(

n + α − 1
n

)
= �(n + α)

�(n)�(α)

(g) �(α) → +∞ as α → 0+
(h) �(α) has a unique minimum for 1 < α < 2

(i) �(α) is concave upward for all α > 0

(j) �(α) ≈ √
2π /α ααe−α for large α. (If α = n + 1, n a positive integer,

then, for large n, n! ≈ √
zπnn+ 1

z e−n (Stirling’s formula).)

(7.43)

2 In general, an integral is deemed improper if it is an integral of an unbounded function or if it is an
integral over an unbounded interval. The improper integral

∫∞
a f (x)dx is an integral in which f (x) is:

(a) defined for x ≥ a; and (b) integrable over every finite closed interval [a, b]. This integral is then
defined as the limit lim

b→∞
∫ b

a f (x)dx. If this limit exists, then the integral is said to be convergent.
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The function of the variables α and t,

�t(α) =
∫ t

0
yα−1e−y dy, (7.44)

is called the incomplete gamma function. It is defined for all α > 0 and t ≥ 0.
For real numbers α, β > 0, the beta function (of α and β) is the integral

B(α, β) =
∫ 1

0
yα−1(1 − y)β−1 dy. (7.45)

The beta function is well defined for α, β > 0. If α ≥ 1 and β ≥ 1, the integral
is proper (an integral is proper if the integrand is bounded or the interval of
integration is bounded). And if α, β > 0 and either α < 1 or β < 1 (or both), then
this integral is improper though convergent.

Some key properties of (7.45) are:

(a) B(α, β) = B(β, α)

(b) B(α, 1) = 1
α

(c) B
( 1

2 , 1
2

) = π

(d) if α, β > 0, then the relationship between the gamma and beta functions is
expressed as

B(α, β) = �(α)�(β)
�(α + β)

(7.46)

(e) βB(α + 1, β) = αB(α, β + 1)

(f) B(α + 1, β) = α
α+β

B(α, β)

(g) B(α + 1, β) + B(α, β + 1) = B(α, β)

(h) if α + 1 and β + 1 are positive integers, then

B(α + 1, β + 1) = α!β!
(α + β + 1)! .

The function of the variables α, β, and t,

Bt(α, β) =
∫ t

0
yα−1(1 − y)β−1 dy, (7.47)

is termed the incomplete beta function. It is defined for all real α > 0, β > 0, and
0 ≤ t ≤ 1.
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7.8 The Gamma Distribution

Within the gamma function (7.42)

�(α) =
∫ ∞

0
yα−1e−y dy

let us introduce a new variable x by writing y = x−τ
θ

, θ > 0, x > τ . Then since
dy = dx

θ
,

�(α) =
∫ ∞

0

(
x − τ

θ

)α−1

e− x−τ
θ

(
1
θ

)
dx

or

1 =
∫ ∞

0

1
�(α)θα

(x − τ )α−1e− x−τ
θ dx.

And since the integrand in this expression is nonnegative (for α, β, �(α), and
x(> τ ) all positive), it can serve as a probability density function. Consistent with
most applications of the gamma distribution, we shall restrict the (location)
parameter τ to zero.

In this regard, a continuous random variable X is said to follow a gamma
probability distribution if its probability density function is

f (x; α, θ) =
⎧
⎨

⎩

1
�(α)θα xα−1e−x/θ , 0 ≤ x < +∞, and α, θ > 0;

0 elsewhere.
(7.48)

Clearly f (x; α, θ) ≥ 0 and it is easily verified that

∫ +∞

−∞
f (x; α, θ)dx =

∫ ∞

0
f (x; α, θ)dx = 1.

Here the parameter α determines the shape of the gamma distribution and θ

serves as scale parameter. And as we vary these parameters, we generate a whole
family of gamma distributions. Specifically, as θ varies, the basic shape of the
gamma distribution is unchanged while:

(a) For small values of α(α < 1), the gamma distribution is reverse J-shaped with
an elongated right-hand tail.

(b) For 0 < α < 1, the gamma probability density function has no mode. For
α > 1, this function has a unique mode occurring at x = θ(α − 1).
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f (x ; a, q)

x

1 a = 1

a  = 2

a  = 4

Figure 7.13 Gamma probability density functions for selected values of θ and α.

For instance, a specific collection of gamma probability density functions for θ = 1
and α = 1, 2, and 4 is illustrated in Figure 7.13.

If the random variable X is gamma distributed, then the gamma cumulative
distribution function appears as

P(X ≤ t) = F(t; α, θ) = 1
�(α)θα

∫ t

0
xα−1e− x

θ dx, x > 0. (7.49)

Alternatively, if the variable of integration is changed to y = x
θ
, then dx = θdy

and (7.49) becomes

P(X ≤ t) = F(t; α, θ) = 1
�(α)θα

∫ t
θ

0
(θy)α−1e−yθdy

= 1
�(α)

∫ t
θ

0
yα−1e−ydy

= �t/θ (α)
�(α)

= It(α). (7.49.1)

Hence the gamma cumulative distribution function is expressible as the ratio
between the incomplete gamma function (see (7.44)) and the (complete) gamma
function (7.42). For given values of α and t

θ
, (7.49.1) is termed the incomplete

gamma function ratio. Although (7.49.1) does not admit a closed-form represen-
tation if α is not an integer, tables of gamma function integrals are available (see
Pearson (1956)). For instance, such tables would be needed to determine

P(a ≤ X ≤ b) = F(b; α, θ) − F(a; α, θ) =
∫ b

a

xα−1e− x
θ

�(α)θα
dx.
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If α is a positive integer, then it can be shown that (7.49) can be rewritten as the
closed form expression

F(t; α, θ) = 1 −
[

1 + t
θ

+ 1
2!
(

t
θ

)2

+ · · · + 1
(α − 1)!

(
t
θ

)α−1
]

e− t
θ . (7.49.2)

The gamma probability distribution has the following properties:

(a) Its mean and standard deviation are, respectively,

µ = E(X) = αθ ; (7.50)

σ =
√

V(X) = θ
√

α. (7.51)

(b) The gamma distribution is positively skewed since the coefficient of skew-
ness is

α3 = 2√
α

> 0. (7.52)

And since lim
α→∞ α3 = 0, this distribution approaches a symmetrical distribution

for very large α.

(c) The coefficient of kurtosis is

α4 = 3 + 6
α

. (7.53)

Hence the peak of a gamma probability density function is sharper than that
of a normal probability density function. But since lim

α→∞ α4 = 3, the degree

of sharpness of the gamma probability density function approaches that of a
normal probability density function for very large α.

(d) If a random variable X is gamma distributed with mean and standard devia-
tion given by (7.50) and (7.51), respectively, then, for a fixed θ , the variable
Z = (X − αθ)/θ

√
α → N(0, 1) as α → ∞.

(e) When α = 1 and 1
θ

= λ in (7.48), the gamma probability density function
reduces to the exponential probability density function. Hence the gamma
probability distribution can be viewed as a generalization of the exponential
distribution (7.39). Remember that the exponential random variable can be
regarded as the length of time until the occurrence of the first Poisson event (or
the time between successive occurrences of two independent Poisson events).
In general, when α in (7.48) is taken to be any positive integer (not necessarily
unity), the gamma distribution specializes to what is called the Erlang prob-
ability distribution (see (7.54)). As indicated earlier, a Poisson distribution
with intensity parameter λT = t

θ
is used to model the number of independent
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random occurrences of an event in a given time interval t. For a particular
integer α, the length of time until the occurrence of the αth Poisson event
(or the time between the occurrence of the αth Poisson event and the next α

consecutive Poisson events) is modeled by an Erlang probability distribution.
Hence the Poisson random variable X is the number of independent events
taking place at the constant rate 1

θ
over t whereas the Erlang random variable

T is the waiting time or the time interval t until the αth Poisson event obtains.
Specifically, let t denote the length of time until the αth occurrence of some
event in a Poisson process with intensity parameter λT = t

θ
. Then the

total time for α Poisson events is expressible as T = ∑α
i=1 Xi (it is the sum

of α independent and identically distributed exponential random variables
Xi) and follows an Erlang probability distribution with probability density
function

f (t; α, θ) =
{

tα−1e−t/θ

(α−1)!θα , t ≥ 0, α an integer;

0 elsewhere.
(7.54)

Then as we might anticipate, E(T) = αθ = α
λ

, V(T) = αθ2 = α

λ2 . Clearly the
Erlang distribution is simply a gamma distribution with α integer valued.

(f) Let X be a Poisson random variable with parameter λT = t
θ

and let the
random variable Y be Erlang distributed. Then Erlang probabilities can be
determined by using the Poisson distribution (table); that is, for α integer
valued and any real number t > 0,

P(Y ≤ t) = F(t; α, θ)

=
{

1 − P(X ≤ α − 1) = P(X ≥ α) , t > 0, α an integer;
0, t ≤ 0.

(7.55)

Thus the probability that the length of time until the αth Poisson event occurs
does not exceed t is the same as the probability that the number of Poisson
events occurring over t is at least α. This expression is valid because incom-
plete gamma functions with integer α’s can be written in terms of sums of
Poisson probabilities as

P(Y > t) =
∫ ∞

t

yα−1

�(α)θα
e− y

θ dy

=
α−1∑

j=0

( t
θ
) j

j! e− t
θ = P(X ≤ α − 1) = F(α − 1;

t
θ

).

(7.55.1)
Here the probability that the length of time until the αth Poisson event
occurs exceeds t equals the probability that the number of Poisson events
occurring over t does not exceed α − 1.
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(g) The negative binomial probability distribution is the discrete analog of the
gamma probability distribution; that is, the discrete negative binomial ran-
dom variable is the number of failures observed before exactly k successes
occur in a simple alternative experiment, and the continuous gamma random
variable is the length of time until the rth Poisson event occurs.

(h) The gamma distribution has the reproductive property: If X1 and X2 are
independent random variables each distributed as (7.48) with common θ ’s
but possibly with different α’s (call them α1 and α2, respectively), then
X1 + X2 also has a distribution of this form with the same θ and with an α =
α1 + α2.

7.9 The Beta Distribution

Starting with the beta function ((7.45))

B(α, β) =
∫ 1

0
xα−1(1 − x)β−1dx

let us form (using (7.46d))

1 =
∫ 1

0

�(α + β)
�(α)�(β)

xα−1(1 − x)β−1dx.

Since the integrand in this specification is nonnegative, it can be viewed as a prob-
ability density function. In this regard, a continuous random variable X ∈ (0, 1)
is said to follow a beta probability distribution if its probability density function is

f (x; α, β) =
⎧
⎨

⎩

�(α+β)
�(α)�(β) xα−1(1 − x)β−1, 0 < x < 1, with α, β > 0;

0 elsewhere.
(7.56)

As required, f (x; α, β) ≥ 0 and

∫ +∞

−∞
f (x; α, β)dx =

∫ 1

0
f (x; α, β)dx = 1.

Moreover, the beta distribution satisfies a symmetry condition if in (7.56) we
substitute 1 − x for x or

f (x; α, β) = f (1 − x; β, α). (7.57)

An alternative version of (7.56) results if α and β are taken to be positive integers
and we set n = α + β.
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Then from (7.43d), (7.56) becomes

f (x; n, α) =

⎧
⎪⎨

⎪⎩

(n−1)!
(α−1)!(n−α−1)!x

α−1 (1 − x)n−α−1 , 0 < x < 1,

with n, α > 0;
0 elsewhere.

(7.56.1)

The parameters α and β determine the shape of the beta distribution. In this
regard:

(a) If both α, β < 1, the beta distribution is U-shaped

(b) If α ≥ 1 and β < 1, the beta distribution is J-shaped with an elongated
left–hand tail

(c) Ifα < 1 andβ ≥ 1, the beta distribution is reverse J-shaped with its right–hand
tail elongated

(d) If a > 2, the beta distribution is tangent to the horizontal axis at x = 0; if
β > 2, it is tangent to the horizontal axis at x = 1

(e) For α < 0 and β < 1, the beta density f (x; α, β) → ∞ as x → 0 or 1

(f) When both α, β > 1, the beta probability density function has a unique mode
occurring at x = (α−1)

(α+β−2)

(g) The beta distribution is symmetrical when α = β

(h) If α = β = 1, f (x; 1, 1) = �(2) and thus the beta random variable X is
uniformly distributed over (0, 1)

(i) For α, β > 0, the beta distribution has points of inflection at

α − 1
α + β − 2

± 1
α + β − 2

√
(α − 1)(β − 1)

α + β − 3
.

(Note that these values must be real and are restricted to the interval (0, 1).)

A limited selection of beta probability density functions for specific values of α

and β is illustrated in Figure 7.14.
Given that the random variable X follows a beta distribution, the beta

cumulative distribution function is

P(X ≤ t) = F(t; α, β)

=

⎧
⎪⎪⎨

⎪⎪⎩

0, x ≤ 0;
�(α+β)

�(α)�(β) ∫t

0 xα−1(1 − x)β−1dx, 0 < x < 1

1, x ≥ 1.

(7.58)
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x
0 1

f (x ; a, b)

a = b = 2

a = 5,  b = 3
a = b = 3

Figure 7.14 Beta probability density functions for selected values of α and β.

Since P(X ≤ t) = 1 − P(1 − X ≤ 1 − t), the symmetry condition (7.57) allows as
to write

F(t; α, β) = 1 − F(1 − t; β, α). (7.59)

In addition, from (7.46d) and (7.47), we may rewrite (7.58) as

P(X ≤ t) = F(t; α, β)

= �(α + β)
�(α)�(β)

Bt(α, β) = Bt(α, β)
B(α, β)

= It (α, β) . (7.58.1)

Thus the beta cumulative distribution function can be expressed as the ratio
between the incomplete beta function (7.47) and the (complete) beta function
(7.45). For given values of α and β, (7.58.1) is termed the incomplete beta function
ratio. As was the case for the incomplete gamma function ratio, (7.58.1) does not
admit a closed form representation if α and β are not both integers. However,
beta function integral tables are available (Pearson (1956)). Note that if we again
invoke the symmetry condition we have, from (7.59) and (7.58.1),

It(α, β) = 1 − I1−t(α, β). (7.59.1)

Some key properties of the beta probability distribution are:

(a) Its mean and variance are, respectively,

µ = E(x) = α

α + β
; (7.60)

σ 2 = V(X) = αβ

(α + β)2(α + β + 1)
. (7.61)
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It is interesting to note that (7.60) and (7.61) may be used to readily
demonstrate that the parameters α and β can be written in terms of µ and
σ 2 as

α = µ

[
µ(1 − µ)

σ 2
− 1

]
, β = (1 − µ)

[
µ(1 − µ)

σ 2
− 1

]
.

(b) The coefficient of skewness is

α3 = 2(β − α)
α + β + 2

√
α + β + 1

αβ
. (7.62)

As indicated earlier, the beta distribution is symmetrical when α = β so that,
as expected, α3 = 0. (Note that when α = β, (7.60) simplifies to µ = 0.5. So
when the mean of the beta distribution is close to 0.5, the distribution itself is
nearly symmetrical.) Also, if α < β, then α3 > 0 and the beta distribution is
skewed to the right. But if α > β, then α3 < 0 and the distribution is skewed
to the left.

(c) The coefficient of kurtosis is

α4 = 3(α + β + 1)
[
2(α2 + β2) + αβ(α + β − 6)

]

αβ(α + β + 2)(α + β + 3)
.
3

(7.63)

(d) If X1 and X2 are independent gamma random variables, then the random vari-
able Y = X1

X1+X2
is beta distributed with probability density function f (y; α, β),

where y = x1
x1+x2

.

The beta distribution generally is used to model the behavior of random variables
whose values are restricted to intervals of finite length. In fact, up to this point in
our discussion of this distribution, we have taken X ∈ (0, 1). Although the unit
interval is used most commonly for defining the beta distribution, (7.56) can be

3 If the beta probability density is formulated as (7.56.1), then (7.60) through (7.63) appear as

µ = α/n; (7.60.1)

σ 2 = α(n − α)/n2(n + 1); (7.61.1)

α3 = 2(n − 2α)
n + 2

√
n + 1

α(n − α)
(7.62.1)

(here α3 = 0 when α = n
2 so that the distribution is symmetrical; if α < n

2 , then α3 < 0 and
the distribution is positively skewed; and if α > n

2 , then α3 < 0 and the distribution is negatively
skewed);

α4 = 3(n + 1)
[
2n2 + α(n − α)(n − 6)

]

α(n − α)(n + 2)(n + 3)
(7.63.1)
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generalized to the case where a continuous random variable X takes on values
within the interval (a, b), 0 < a < b < +∞.

For instance, if X ∈ (a, b), then, under a suitable translation and change of
scale, the beta distribution can be applied to the case a < X < b by forming a new
random variable Y = (X−a)

(b−a) . Then 0 < Y < 1 as required by (7.56) and (7.58). As
an alternative, we may rewrite (7.56) and (7.58) explicitly in terms of a and b. To
this end, X ∈ (a, b) follows a beta probability distribution if its probability density
function is

f (x; α, β) =

⎧
⎪⎨

⎪⎩

0, x ≤ a;
(b−a)1−α−β

B(α,β) (x − a)α−1(b − x)β−1, a < x < b, with α, β > 0

0, x ≥ b.

(7.64)

Here too f (x; α, β) ≥ 0 and
∫ +∞
−∞ f (x; α, β) = 1.

Also, for X ∈ (a, b), the beta cumulative distribution function is

P(X ≤ t) = F(t; α, β) =

⎧
⎪⎨

⎪⎩

0, x ≤ a;
(b−a)1−α−β

B(α,β)

∫ t
a (x − a)α−1(b − x)β−1 dx, a < x < b;

0, x ≥ b.
(7.65)

This expression may be written alternatively as

P(X ≤ t) = F(t; α, β) = 1
B(α, β)

∫ t−a
b−a

0
xα−1(1 − x)β−1dx

= B t−a
b−a

(α, β)/B(α, β).4 (7.65.1)

For a given finite interval (a, b) and specific values of α and β, (7.65.1) is referred
to as the incomplete beta function ratio.

A glance back at (7.56.1) reveals that the beta probability density func-
tion resembles the probability mass function (6.15) of the binomial distribution.
Since p, the probability of a success on any given trial of a Bernoulli experiment,
can assume an infinite number of values between 0 and 1, it follows that we can
actually use the continuous beta distribution to represent the distribution of p;

4 Equation (7.65.1) has been derived from (7.65) by using the following integral transformations.
Specifically, for real numbers a, b, and c:

(1)
∫ b

a
f (x)dx =

∫ (b+c)

(a+c)
f (x − c)dx;

(2)
∫ b

a
f (x)dx = 1

c

∫ bc

ac
f ( x

c )dx. (7.n4)
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that is, if p is beta distributed with parameters n and α, where n and α are integer
valued and n > α > 0, then the probability density function of p is

f (p; n, α) =

⎧
⎪⎨

⎪⎩

(n−1)!
(α−1)!(n−α−1)!p

α−1(1 − p)n−α−1, 0 < p < 1,

with n > α > 0;
0 elsewhere.

(7.65.2)

Here the parameters n and α may be viewed as the number of trials and the
number of successes, respectively, in a Bernoulli process with random variable
Y. And since n and α are integers, this beta density value can be found readily in
tables for the binomial probability distribution. (If n and α are not integers, the
factorial terms must be replaced by gamma function values; i.e., see (7.43d).)
To actually calculate (7.56.2) using binomial probabilities, let us rewrite this
expression as

fbeta(p; n, α) = (n − 1)
(n − 2)!

(α − 1)!(n − α − 1)!pα−1(1 − p)n−α−1

= (n − 1)Pbinom(α − 1; n − 2, p). (7.56.3)

Example 7.9.1 If n = 6, α = 3, and p = 0.40, the beta probability density value
is, via Table A.6,

fbeta(0.40; 6, 3) = 5Pbinom(2; 4, 0.40) = 5(0.3456) = 1.728.

Armed with (7.56.2), we can now determine, for various values of n and α,
probabilities involving p; for example;

P(a ≤ p ≤ b) =
∫ b

a
f (p; n, α)dp, (7.66)

where obviously 0 ≤ a ≤ b ≤ 1. (Keep in mind, however, that beta distribution
integral tables must generally be employed in order to find this probability.)

Finally, if α and β are integers and we set t = p, 0 < p < 1, then it is easily
seen (using (7.58)) that the beta cumulative distribution function is related to the
binomial cumulative distribution function as

P(X ≤ p) = F( p; α, β) = Ip(α, β) =
n−1∑

i=α

(
n − 1

i

)
pi(1 − p)n−1−i, (7.67)

where n = α + β. Alternatively, this same result may be obtained from (7.56.1)
by finding

P(X ≤ p) = F(p; n, α) = Ip(n, α) =
∫ p

0
f (x; n, α)dx.
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In fact, we may operationalize the process of determining cumulative beta prob-
abilities from tables for the binomial distribution (again n and α are deemed
integers) by writing the beta cumulative distribution function as

Fbeta(p;n,α)=
{

Pbinom(Y ≥α;n−1,p)=1−Pbinom(Y ≤α−1;n−1,p),p≤0.50;
Pbinom(Y <n−α;n−1,1−p),p≥0.50. �

Example 7.9.2 In this regard, if we again take n = 6, α = 3, and p = 0.40, then
the beta cumulative distribution function value is

Fbeta(0.40; 6, 3) = Pbinom(Y ≥ 3; 5, 0.40)

= 1 − Pbinom(Y ≤ 2; 5, 0.40) = 1 − B(2; 5, 0.40) = 0.3174. �

7.10 Other Useful Continuous Distributions

Although the preceding sections of this chapter have offered detailed descriptions
of many important families of continuous parametric probability distributions,
many other families of such distributions exist, although they may not have the
same degree of notoriety and applicability as in the former case. In this regard, only
an abbreviated sketch will be offered of the remaining (by no means exhaustive)
collection of probability distributions.

7.10.1 The Lognormal Distribution

Let the random variable Y be defined as Y = ln X , where X is a positive random
variable. If Y is normally distributed, then X = eY has a lognormal probability
distribution with probability density function

f (x; µ, σ ) = 1

σx
√

2π
e
− 1

2

(
ln x−µ

σ

)2

, x > 0, −∞ < µ < +∞, σ > 0. (7.68)

(Note that (7.68) does not describe the probability density function of the loga-
rithm of a normal random variable; it depicts the distribution of an exponential
function of a normal random variable.) For a lognormal random variable X, it can
be shown that

E(X) = eµ+ 1
2 σ 2

; (7.69)

V(X) = e2µ
(

e2σ 2 − eσ 2
)

. (7.70)

Hence µ and σ are not location and scale parameters, respectively, for the
lognormal random variable X. In fact, µ and σ are the mean and standard
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deviation, respectively, of the normally distributed random variable Y, that is,
E(ln X) = µ, V(ln X) = σ 2. The lognormal cumulative distribution function is

P(X ≤ t) = F(t; µ, σ ) = 1

σ
√

2π

∫ t

0

1
x

e− 1
2 (

ln x−µ

σ
)2

dx. (7.71)

Additional characteristics of a lognormal random variable X are:

(a) The median is equal to eµ and the (unique) mode is e(µ−σ 2).

(b) The lognormal distribution is skewed to the right since its coefficient of
skewness

α3 = (eσ 2 − 1)1/2(eσ 2 + 2) (7.72)

is positive. And since its coefficient of kurtosis

α4 = (eσ 2
)4 + 2(eσ 2

)3 + 3(eσ 2
)2 − 3 (7.73)

is also positive, the peak of the lognormal probability density function is
sharper than that of a normal distribution.

(c) The lognormal probability density function has two points of inflection
occurring at

x = e

[
µ− 3

2 σ 2±σ (1+ 1
4 σ 2)1/2

]

.

(d) As σ → 0, the standardized lognormal probability density function ap-
proaches a standard normal probability density function. And as σ → +∞,
the lognormal probability density function quickly becomes highly nonnormal
in shape.

(e) Values of the lognormal probability density function and cumulative distri-
bution function can be obtained from the standard normal tables (Tables A.2
and A.3 of the Appendix) once x, µ, and σ are given. In this regard, the prob-
ability density values for the lognormal (LN) and normal (N) distributions
satisfy

fLN(x; µ, σ ) = 1
x

fN(ln x; µ, σ ) = 1
σx

fN

(
z = ln x − µ

σ
; 0, 1

)
; (7.74)

and the cumulative distribution function values for these distributions satisfy

FLN(x; µ, σ ) = FN(ln x; µ, σ ) = FN

(
z = ln x − µ

σ
; 0, 1

)
. (7.75)
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Example 7.10.1.1 Suppose we choose to find the probability density func-
tion values for a lognormal variable X with µ = 0.2 and σ = 1.2 at x = 0.8.
From (7.74), z = ln 0.8−0.2

1.2 = −0.3526 and

fLN(0.8; 0.2, 1.2) = 1
1.2(0.8)

fN(−0.3526; 0, 1) = 0.375
0.96

= 0.3906

and from (7.75)

FLN(0.8; 0.2, 1.2) = FN(−0.3526; 0, 1) = 0.363. �

(f) The quantile γp for the lognormal (LN) distribution can be obtained from the
quantile ln γp for the normal (N) distribution since

FLN(γp; µ, σ ) = FN(ln γp; µ, σ ) = FN

(
zp = ln γp − µ

σ
; 0, 1

)
= p.

That is, if the random variable X is lognormal and the random variable Y is
normal, then

P(X ≤ γp) =
∫ γp

0
fLN(x; µ, σ )dx

=
∫ ln γp

−∞
fN( y; µ, σ )dy

=
∫ ln γp−µ

σ

−∞
fN(z; 0, 1)dz =

∫ zp

−∞
fN(z; 0, 1)dz = p.

Hence

zp = ln γp − µ

σ

and thus

γp = e(µ+σzp). (7.76)

Hence the quantileγp of the lognormal distribution (satisfying FLN(γp; µ, σ ) =
p) is obtained by finding the quantile zp = ln γp−µ

σ
of the standard normal

distribution (which satisfies FN(zp; 0, 1) = p).

Example 7.10.1.2 For instance, for X a lognormal random variable with
µ = 2 and σ = 0.6, find γ0.30. Since z0.30 = −0.52, (7.76) yields

γ0.30 = e[2+0.6(−0.52)] = 5.4087. �
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(g) If X1 and X2 are independent random variables, each distributed as (7.68),
then so is X1X2. Also, if X is distributed as (7.68), then so are Xα and αX ,
α �= 0.

It may be the case that at least one x value is negative. In this circumstance
we must redefine the origin of X so as to make all quantities positive; that
is, let y = log(x − α), where α < min{xi} is termed the threshold value
of the lognormal model. Then the probability density function for our new
lognormal random variable Y is

f ( y; µ, σ ) = 1

σ (x − α)
√

2π
e− 1

2

[
ln(x−α)−µ

σ

]2

. (7.68.1)

7.10.2 The Logistic Distribution

For convenience sake, discussions pertaining to a logistic probability distribution
typically start with its associated cumulative distribution function. In this regard,
for a logistic random variable X, the logistic cumulative distribution function has
the form

F(x; µ, β) = 1

1 + e− x−µ
β

, −∞ < x < +∞, −∞ < µ < +∞, β > 0; (7.77)

or, as it is equivalently expressed,

F(x; µ, β) = e
x−µ

β

1 + e
x−µ

β

, −∞ < x < +∞, −∞ < µ < +∞, β > 0. (7.77.1)

Here µ is the location parameter and β serves as a scale parameter.
For a logistic random variable X, it can be shown that:

E(X) = µ; V(X) = (βπ)2

3
.

Moreover, the logistic probability density function f (x; µ, β) can be obtained from
(7.77) by differentiation; that is,

f (x; µ, β) = F ′(x; µ, β) = 1
β

e− x−µ
β

(
1 + e− x−µ

β

)2 , −∞ < x, µ < +∞, β > 0. (7.78)

And since F(µ − a; µ, β) = 1 − F(µ + a; µ, β), this probability density function is
symmetrical about its mean µ (the coefficient of skewness is α3 = 0) with its shape
mirroring that of a normal probability distribution (the coefficient of kurtosis is
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α4 = 4.2 so that its peak is a bit sharper than that of a normal distribution). In
addition, it is readily seen that

f (x; µ, β) = 1
β

F(x; µ, β) [1 − F(x; µ, β)] ;

and

x = µ + β ln
{
F(x; µ, β)/ [1 − F(x; µ, β)]

}
.

Appendix 7.A Moment-Generating Function for the
Normal Distribution

For the N(0, 1) random variable Z = X−µ

σ
, it is easily demonstrated that its

moment-generating function is of the form

mZ(t) = e
t2
2 , −∞ < t < +∞. (7.A.1)

To this end set

mZ(t) = E(etZ) = 1√
2π

∫ +∞

−∞
etze− z2

2 dz = 1√
2π

e
t2
2

∫ +∞

−∞
e− (z−t)2

2 dz.

Then for u = z − t,

mZ(t) = e
t2
2

(
1√
2π

∫ +∞

−∞
e− u2

2 du
)

= e
t2
2 .

Replacing the right-hand side of mZ(t) by its Maclaurin’s series expansion yields

mZ(t) = 1 + t2

2
+
(

t2

2

)2

2! +
(

t2

2

)3

3! + · · · . (7.A.2)

Then we may generate all moments of Z about zero by finding m(r)
Z (0) = µ′

r ,
r = 1, 2, . . . . That is, using (7.A.2), you are asked to verify that m(1)

Z (0) = µ′
1 = 0,

m(2)
Z (0) = µ′

2 = 1, and m(3)
Z (0) = µ′

3 = 0. In fact, all odd-order moments of Z
about zero are equal to zero.

If X is N(µ, σ ), what is the form of the moment-generating function for X?
Since Z = X−µ

σ
is N(0, 1) if and only if X is N(µ, σ ), let us work with X = µ+ σZ

and obtain, via (4.44.a) and (7.A.1),

mX (t) = etµmZ(σ t) = etµet2σ 2/2 = etµ+t2σ 2/2, −∞ < t < +∞. (7.A.3)
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In addition, if X is N(µ, σ ), then the moment-generating function of X − µ is,
from (4.43),

mX−µ(t) = e−tµmX (t) = e
t2σ2

2 , −∞ < t < +∞, (7.A.4)

or, in terms of its Maclaurin’s series expansion,

mX−µ(t) = 1 + t2σ 2

2
+
(

t2σ 2

2

)2

2! +
(

t2σ 2

2

)3

3! + · · · . (7.A.5)

Then the rth central moment of X is determined as m(r)
X−µ(0) = µr , r = 1, 2, . . ..

(Verify that m(1)
X−µ(0) = 0, m(2)

X−µ(0) = σ 2, and m(3)
X−µ(0) = 0.) In fact, all odd-

order central moments of X are zero.
Our final result in this section addresses the issue of the form of the distribution

of a sum of independent normal random variables. Specifically, Theorem 7.A.1:

THEOREM 7.A.1. The sum of a finite number of independent normally
distributed random variables is itself normally distributed.

To verify this assertion, let U = ∑n
i=1 Xi, where each Xi is N(µi, σi), i = 1, . . . , n.

Then from (5.73.1) and (7.A.3),

mU (t) =
n∏

i=1

mXi (t) =
n∏

i=1

etµi+
t2σ2

i
2 = e

n
�

i=1

(
tµi+

t2σ2
i

2

)

= etµ+ t2σ2
2 , (7.A.6)

where µ = ∑n
i=1 µi and σ 2 = ∑n

i=1 σ 2
i . Hence U is N(µ, σ ).

If we replace the sum U = ∑n
i=1 Xi by the linear combination Y = ∑n

i=1 aiXi,
then (7.A.6) becomes

mY (t) = etµY + t2σ2
Y

2 , (7.A.7)

where µY = ∑n
i=1 aiµi and σ 2

Y = ∑n
i=1 a2

i σ
2
i . Thus Y is N(µY , σY ).

Appendix 7.B The Bivariate Normal Probability
Distribution

In this section we seek to generalize the univariate normal distribution involving
the random variable X to the bivariate case involving the random variables X
and Y. Specifically, let the two-dimensional random variable (X, Y) have the joint
probability density function

f (x, y) = 1
2πσXσY (1 − ρ2)1/2

e− 1
2 Q, −∞ < x, y < +∞, (7.B.1)
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where

Q = 1
1 − ρ2

[(
x − µX

σX

)2

− 2ρ

(
x − µX

σX

)(
y − µY

σY

)
+
(

y − µY

σY

)2
]

, (7.B.2)

and µX , µY , σX , σY , and ρ are all parameters with, −∞ < µX , µY < +∞, σX >

0, σY > 0, and −1 < ρ < 1 ( f (x, y) is undefined for ρ = ±1). Here µX =
E(X), µY = E(Y), σ 2

X = V(X), σ 2
Y = V(Y), and ρ is the coefficient of (linear)

correlation between X and Y; that is, it can be demonstrated that

ρXY = COV(X , Y)
σXσY

= E
[(

X − µX

σX

)(
Y − µY

σY

)]

=
∫ +∞

−∞

∫ +∞

−∞

(
x − µX

σX

)(
y − µY

σY

)
f (x, y)dydx = ρ.

If (7.B.1) and (7.B.2) hold, then X and Y are said to follow a bivariate normal
distribution with joint probability density function (7.B.1). In this regard, any
random variable (X , Y) having a probability density function given by (7.B.1) is
said to be bivariate N(µX, µY , σX , σY , ρ).

Looking to the properties of (7.B.1), f (x, y) depicts a bell-shaped surface that
is centered around the point (µX , µY ) in the x-, y-plane (so that any plane perpen-
dicular to the x-, y-plane will intersect the surface in a curve that has the univariate
normal form) with:

(a) f (x, y) > 0

(b) The probability that a point (X , Y) will lie within a region A of the
x, y-plane is

P [(X , Y) ∈ A] =
∫∫

A
f (x, y)dydx

(c) As required of any legitimate joint probability density function,

∫ +∞

−∞

∫ +∞

−∞
f (x, y)dydx = 1

Note that if in (7.B.1) we set

u = x − µX

σX
and v = y − µY

σY
, (7.B.3)

then f (x, y) can be expressed in terms of a single parameter ρ.
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Suppose that the random variable (X , Y) is bivariate N(µX , µY , σX , σY , ρ).
Then it can be shown that the marginal distribution of X is N(µX , σX ) and the
marginal distribution of Y is N(µY , σY ); that is, the individual marginal distribu-
tions of X and Y are univariate normal. Here the marginal distribution of X is
obtained by integrating out y in (7.B.1) or

g(x) =
∫ +∞

−∞
f (x, y)dy = 1√

2πσX
e− 1

2

(
x−µX

σX

)2

, −∞ < x < +∞; (7.B.4)

and the marginal distribution of Y is obtained by integrating out x in (7.B.1) or

h(y) =
∫ +∞

−∞
f (x, y)dx = 1√

2πσY
e− 1

2

(
y−µY

σY

)2

, −∞ < y < +∞. (7.B.5)

(It is important to note that if the marginal distributions of the random variables
X and Y are each univariate normal, this does not imply that (X , Y) is bivariate
normal.)

We noted earlier (in Chapter 5) that if the random variables X and Y are
independent, then they must also be uncorrelated or ρXY = 0. However, the
converse of this statement does not generally follow. Interestingly enough, it does
apply if X and Y follow a bivariate normal distribution, as Theorem 7.B.1 attests:

THEOREM 7.B.1. Let the random variables X and Y follow a bivariate nor-
mal distribution with probability density function given by (7.B.1). Then X
and Y are independent random variables if and only if ρXY = ρ = 0.

Hence, by virtue of this theorem, ρ = 0 is a necessary and sufficient condition
for independence under the assumption of bivariate normality. Given that ρ = 0,
(7.B.1) factors as f (x, y) = g(x)h(y), where g(x) and h(y) are the univariate normal
marginal distributions appearing in (7.B.4) and (7.B.5), respectively.

Next, if the random variable (X , Y) is bivariate N(µX , µY , σX , σY , ρ), then
the conditional distribution of X given Y = y is univariate N(µX + ρ

σX
σY

(y −
µY ), σX

√
1 − ρ2). Here the conditional mean of X given Y = y is E (X |Y = y) =

µX + ρ
(

σX
σY

)
(y − µY ) and the conditional variance of X given Y = y is

V (X |Y = y) = σ 2
X (1−ρ2). (Note that V (X |Y = y) ≤ V(X). Also, asρ → ±1, the

conditional variance σ 2
X (1 − ρ2) → 0, whereas if ρ = 0, then E (X |Y = y) = µX

and V (X |Y = y) = σ 2
X .) The conditional distribution of X given Y = y is obtained

from the joint and marginal distributions (7.B.1) and (7.B.5), respectively, for
h(y) �= 0, as

g (x|y) = f (x, y)
h(y)

= 1√
2π
√

V(X |Y = y)
e
− (x−E(X /Y=y))2

2V(X /Y=y)

= 1√
2πσX

√
1 − ρ2

e
− (x−µX −ρ(σX /σY )(y−µY ))

2

2σ2
X (1−ρ2) , −∞ < x < +∞.

(7.B.6)



284 Chapter 7 Continuous Parametric Probability Distributions

Similarly, the conditional distribution of Y given X = x is univariate

N
(
µY + ρ( σY

σX
)(x − µX ), σY

√
1 − ρ2

)
. Thus the conditional mean of Y given

X = x is E (Y |X = x) = µY + ρ
(

σY
σX

)
(x − µX ) and the conditional variance

of Y given X = x is V (Y |X = x) = σ 2
Y (1−ρ2). Hence the conditional distribution

of Y given X = x is obtained from the joint and marginal distributions (7.B.1) and
(7.B.4), respectively, given that g(x) �= 0, as

h (y|x) = f (x, y)
g(x)

= 1√
2π

√
V (Y |X = x)

e
− (y−E(Y |X=x))2

2V(Y |X=x)

= 1√
2πσY

√
1 − ρ2

e
− (y−µY −ρ(σY /σX )(x−µX ))

2

2σ2
Y (1−ρ2) , −∞ < y < +∞.

(7.B.7)

It is well known that the mean of a random variable in a conditional distribution
is termed a regression curve when expressed as a function of the fixed variable in
the said distribution. For instance, the regression of Y on X = x is the mean of Y
in the conditional density of Y given X = x and is written as a function y = j(x),
where

j(x) = E (Y |X = x) =
∫ +∞

−∞
yh(y|x)dy =

∫ +∞

−∞
y

f (x, y)
g(x)

dy. (7.B.8)

The expression y = j(x), the locus of the means of the conditional distribution
E (Y |X = x) when plotted in the x-, y-plane, gives the regression curve of y on x
for Y given X = x. That is to say, it is a curve that specifies the location of the
means of Y for various values of X in the conditional distribution of Y given
X = x. (The regression curve of x on y is defined in a similar fashion.)

Example 7.B.1 For example, to obtain the curve of regression of y on x, let

f (x, y) =
{

2
3 − 1

3 xy, 0 < x < 2, 0 < y < 1;
0 elsewhere.

Then

g(x) =
∫ 1

0
f (x, y)dy = 2

3
− 1

6
x

and thus

h(y|x) = f (x, y)
g(x)

=
2
3 − 1

3 xy
2
3 − 1

6 x
.
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Hence, from (7.B.8),

j(x) = E(Y |X = x) =
∫ 1

0
yh(y|x)dy = 1 − 1

3 x

2 − 1
2 x

. �

Although the regression function defined in (7.B.8) need not be a straight line
(as the preceding example reveals), it will be linear if the random variable (X , Y)
is bivariate N(µX , µY , σX , σY , ρ); that is, the regression curve of y on x for X
and Y jointly normally distributed has the linear form y = j(x) or

y = E(Y |X = x) = µY + ρ
σY

σX
(x − µX )

=
(

µY − ρ

(
σY

σX

)
µX

)
+ ρ

(
σY

σX

)
x = β0 + β1x, (7.B.9)

where β0 = µY − ρ
(

σY
σX

)
µX is the vertical intercept and β1 = ρ

(
σY
σX

)
is the slope

of the linear regression curve of y on x. So if the random variable (X , Y) follows a
bivariate N(µX , µY , σX , σY , ρ) distribution, then a linear regression model (such
as (7.B.9)) is the correct specification to be employed when studying the behavior
of Y conditioned on X.

Finally, we note briefly that if X and Y follow a bivariate normal distribution,
then the joint moment-generating function of X and Y is

mX ,Y (t1, t2) = E(et1X+t2Y ) = e[t1µX +t2µY + 1
2 (t21σ 2

X +2ρt1t2σX σY +t22σ 2
Y )]. (7.B.10)

And if (7.B.3) holds, then

mU ,V (t1, t2) = e
1
2 (t21+2ρt1t2+t22 ). (7.B.11)

7.11 Exercises

Uniform Distribution

7-1. If a continuous random variable X is uniformly distributed over the interval
(3,9), find its probability density function. What is its cumulative distribution
function? What is P(3.5 ≤ X < 7)? Find the mean and standard deviation
of X. What is the value of γ0.75?

7-2. The life X of a new miniature battery is uniformly distributed between
48 and 55 hours of continuous use. Law enforcement use requires that
it last at least 51 hours. What is the probability that X exceeds the law
enforcement standard? What is the probability that X is within ±σ of the
51 hour requirement?
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7-3. If X is uniformly distributed on (α, β), find a value of k such that

f (x) =
{

k, α < x < β;
0 elsewhere

is a legitimate probability density function.

7-4. Given that a random variable X is uniformly distributed with probability
density function (7.1), find E(X), V(X).

7-5. Given that a random variable X has a uniform probability distribution with
probability density function (7.1), find X’s moment-generating function.
Use it to determine E(X), V(X).

Normal Distribution

7-6. X is N(50, 10). Find:

(a) P(X ≤ 60)

(b) P(X ≥ 55)

(c) P(40 ≤ X ≤ 49)

(d) γ0.70

7-7. X is N(10, 8). Find:

(a) P(|X | ≤ 5)

(b) P(|X | > 8)

7-8. Chebyshev’s Theorem informs us that the probability that X will deviate
from µ by not more than 2σ is at least 0.75. Is this statement valid if X is
N(40, 2)? Verify your answer.

7-9. If X is N(50, 10), find a number b such that P(−b ≤ X ≤ b) = 0.90.

7-10. Find the 20th percentile of the distribution that is N(60, 20).

7-11. If X is N(µ, 10) and P(X ≤ 90) = 0.95, find µ.

7-12. Given that X is N(19, σ ) and P(X < 22) = 0.65, find σ .

7-13. The semester stipend given to college interns at Big Bucks Investments Inc.
is normally distributed with a mean of $4,000 and a standard deviation of
$600. If the bottom 5% of interns is to receive an increase in their stipend,
what is the level below which an intern will receive an increase?

7-14. Suppose that the amount of cereal X (measured in ounces) placed in a
box is N(16, 0.06). Let a denote the amount of cereal such that 95% of all
boxes contains at least a ounces. Find a.
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7-15. Verify that if a random variable X is N(µ, σ ), then (7.7) is a legitimate
probability density function.

7-16. A real-valued function y = f (x) is said to be an odd function if f (−x) =
−f (x). For any such function

∫ a
−a f (x)dx = 0. Using this concept, demon-

strate that
∫ +∞
−∞ xe− 1

2 x2
dx = 0.

7-17. Suppose a random variable X is N(µ, σ ). Find E(X), V(X) using (7.7).

7-18. Suppose that a random variable Z is N(0, 1). (1) Demonstrate that
E(Z) = 0, V(Z) = 1 using (7.13). (2) Suppose Z is not N(0, 1) but, in-
stead, is a continuous random variable with σ > 0. For Z = X−µ

σ
, does

E(Z) = 0, V(Z) = 1 still hold? Verify your answer.

7-19. Suppose a random variable X is N(µ, σ ). Which (if any) of the following
statements are true?

(a) Since the normal probability density function f (x; µ, σ ) is symmetrical
about x = µ and the maximum of f occurs at x = µ, it follows that µ =
median = mode.

(b) The normal probability density function f (x; µ, σ ) is symmetrical since
(7.A.2) does not include any odd powers of t.

(c) Only the presence of even-order central moments of X in (7.A.5)
indicates that the normal probability density function f (x; µ, σ ) is
symmetrical about x = µ.

7-20. Rewrite (7.A.5) in terms of even powers of σ t. Then demonstrate that
m(2)

X−µ(0) = σ 2.

7-21. Suppose a random variable Z is N(0, 1). Rewrite (7.A.2) in terms of even
powers of t.

(1) Verify that mZ(t) = ∑∞
n=0 antn, where

an =
{

0 if n is odd;
1

2n/2( n
2 )!

if n is even.

(2) Using (4.36), demonstrate that

E(Zn) = µ′
n =

{
0 if n is odd;

n!
2n/2( n

2 )!
if n is even.

7-22. Given that a random variable X is N(µ, σ ) with probability density func-
tion (7.7), use (7.7) to determine X’s moment-generating function. Once
this function is obtained, use it to determine the form of the associated
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probability density functions given that:

(a) mX (t) = e4t+3t2 , −∞ < t < +∞
(b) mX (t) = et2/2, −∞ < t < +∞

7-23. Given that a random variable X is N(µ, σ ) with probability density function
(7.7), use (7.7) to determine X’s central moment-generating function.

Normal Approximation to Binomial

7-24. Suppose that X is binomially distributed b(X ; 15, 0.5). Use the normal
approximation to the calculation of binomial probabilities to determine
P(X = 8) and P(5 ≤ X ≤ 10).

7-25. About 10% of all purchasers of the Zapper microwave oven fill out a mar-
keting survey card that accompanies the warranty statement. What is the
approximate probability that at least 20 cards will be returned out of the
next 250 ovens sold? What is the approximate probability that between 25
and 30 cards will be returned?

7-26. Let X be distributed as b(X ; 20, 0.3). Use the normal distribution to find the
approximate probabilities:

(a) P(X ≤ 5)

(b) P(X ≥ 10)

(c) P(3 ≤ X ≤ 7)

7-27. Suppose that 60% of the customers of a local department store that receive
a circular in the mail announcing a special sale actually respond to the
announcement. If 1000 circulars are mailed, what is the approximate prob-
ability that between 400 and 600 individuals will attend the special sale?
What is the approximate probability that at least half will attend?

Normal Approximation to Poisson

7-28. Suppose X is a Poisson random variable with parameter λ = 45. Use (7.35)
to find P(40 ≤ X ≤ 50). Recalculate this probability by employing the

continuity correction P(a ≤ X ≤ b) → F
(

b+0.5−λ√
λ

; 0, 1
)

− F
(

a−0.5−λ√
λ

; 0, 1
)

.

Also use the continuity correction to find P(X = a) → F
(

a+0.5−λ√
λ

; 0, 1
)

−
F
(

a−0.5−λ√
λ

; 0, 1
)

for a = 48.

7-29. Traffic safety records indicate that the number of accidents occurring along a
particular stretch of road is Poisson distributed with a mean of two accidents
per week. Determine the approximate probability that X varies between
100 and 110 over the course of a year. What is the approximate probability
that X ≤ 100 over a year?
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7-30. Let X be Poisson random variable with mean λ = 20. Approximate the
following probabilities using the normal distribution:

(a) P(16 ≤ X ≤ 20)

(b) P(16 < X ≤ 20)

(c) P(16 < X < 20)

Exponential Distribution

7-31. Suppose a random variable X depicts the life of a circuit board component
with probability density function

f (x; 0.0005) =
{

0.0005e−0.0005x, x > 0;
0 elsewhere.

What is the probability that the component will not last more than 1000
hours?

7-32. Suppose that four calls per minute arrive at a switchboard and that the
arrival of calls follows a Poisson process. What is the probability that the
next call will arrive within seven minutes? Suppose that a malfunction dis-
ables the switchboard for two minutes. What is the probability that no calls
arrive during this period?

7-33. System failures at an industrial facility are approximately Poisson dis-
tributed with λ = 0.25 per hour (the system experiences a failure every
four hours). If system startup begins at 7 A.M. on a typical work day and T
is the time until the first failure occurs, find

(a) The probability that it is at least two hours until the first failure occurs

(b) The probability that it is no more than six hours until the first failure
occurs

(c) The average time to the first failure

(d) The probability that the time to the next failure exceeds the average
time to failure

7-34. Imperfections in a certain grade of sail canvas occur randomly with a mean
of one flaw per 70 square feet of canvas. What is the probability that a piece
of sail canvas with dimensions 30 feet by 9 feet will have at least one flaw?

7-35. The length of time required to wash and dry a car at ACE Hand Wash is
exponentially distributed with a mean of 13 minutes. What percentage of
people will have their car ready within 10 minutes? Within 15 minutes?
Determine the length of time X0 such that the probability that the service
time will take more than X0 minutes is 0.70.
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7-36. The distribution of length of operating life before the first malfunction of a
certain electrical component is exponential with E(X) = 350 hours. What
is the form of X ’s probability density function and cumulative distribution
function? What is the probability that the component will operate effec-
tively less than 300 hours? More than 400 hours? Between 310 hours and
375 hours?

7-37. Let X follow an exponential distribution with parameter λ = 3. Find:

(a) P(X > 1)

(b) P(2 < X ≤ 5)

(c) E(X) and V(X)

7-38. The amount of time required for a customer at Big Bank to cash a check is
exponentially distributed with a mean time of 1.35 minutes. Find:

(a) λ

(b) The probability that a customer will cash a check in under 1.25 minutes

(c) The probability that it will take a customer more than two minutes to
cash a check

7-39. Verify that if a random variable X follows an exponential probability dis-
tribution, then (7.39) is a legitimate probability density function. (Note:
Readers not familiar with the gamma function (7.42) can return to this
exercise when coverage of this function is attained.)

7-40. Suppose that X is an exponential random variable with probability density
function (7.39). Demonstrate that E(X) = 1

λ
; V(X) = 1

λ2 .

7-41. For a random variable X with exponential probability density function
(7.39), verify that (7.41) holds.

7-42. Let a random variable X have a probability density function given by
(7.39). Determine X’s moment-generating function and use it to determine
E(X), V(X).

Gamma Distribution

7-43. Suppose a random variable X is gamma distributed with parameters α = 2,
θ = 10. Find:

(a) X’s probability density function

(b) E(X) and V(X)

(c) X’s cumulative distribution function

(d) P(15 < X < 25) using (7.49.2)

Recalculate the probability in (d) by using the Poisson approximation
provided by (7.55).
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7-44. Suppose that 20 customers per hour arrive at a gas station, where arrivals
are assumed to follow a Poisson process. If a minute is one unit, find λ.
What is the probability that the station attendant will wait more than five
minutes before the first two customers arrive? (Let X represent the waiting
time in minutes until the second customer arrives.)

7-45. If X is gamma distributed with θ = 4 and α = 2, find P(X < 8).

7-46. Given that a random variable X is gamma distributed with probability
density function (7.48), verify that (7.48) is a legitimate density function.

7-47. Let a random variable X be gamma distributed with probability density
function given by (7.48). What is the role of θ? Demonstrate that if X is
gamma distributed with parameters α and θ , then θX is gamma distributed
α, 1.

7-48. Given the gamma function (7.42), use integration by parts to demonstrate
that:

(a) �(α) = (α − 1)�(α − 1)

(b) If α is a positive integer, �(α) = (α − 1)(α − 2) . . . 2 · 1�(1)

(c) �(1) = 1

(d) �(α) = (α − 1)!

7-49. Cars arrive at a toll booth at an average rate of 10 cars every 20 minutes via
a Poisson process. Determine the probability that the toll booth operator
will have to wait longer than 30 minutes before the ninth toll.

7-50. Let X be gamma distributed with α = 2 and θ = 50. Find:

(a) The probability that X assumes a value within two standard deviations
of the mean

(b) The probability that X assumes a value below its mean

7-51. Suppose a random variable X is gamma distributed with probability density
function given by (7.48). Demonstrate that E(X) = αθ , V(X) = αθ2.

7-52. Suppose a random variable X follows a gamma distribution with proba-
bility density function given by (7.48). Determine X’s moment-generating
function.

7-53. Suppose a random variable X is gamma distributed with probability density
function (7.48). Demonstrate that the rth moment about zero, µ′

r , can be
written as µ′

r = θ r�(α + r)/�(α). Then use this expression to determine
E(X), V(X).

7-54. Suppose a random variable X follows a gamma distribution with cumula-
tive distribution function given by (7.49). Demonstrate that (7.49.2) can be
obtained from (7.49) by successive integration by parts. (Obtaining the first
few terms will obviously suffice.)
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Beta Distribution

7-55. Suppose a random variable X is beta distributed with parameters α = β = 3.
Find X’s probability density function. Then determine P(X ≥ 0.75).

7-56. Suppose that for a beta distribution n = 12, α = 6 and p = 0.30. Using
(7.68), find the probability that X is less than or equal to p. What is the
probability that X is less than or equal to 0.7?

7-57. Bill and Alice’s Country Store has propane tanks that are filled every
Wednesday. Experience indicates that the proportion of gas used between
fills is beta distributed with α = 3 and β = 2. Determine the probability
that at least 85% of the gas will be used between fills.

7-58. The proportion of defective parts produced by a metal stamping machine
follows a beta distribution with α = 1 and β = 10. Find:

(a) The probability that the proportion of defective units exceeds 5%

(b) The probability that the proportion defective is more than one standard
deviation above the mean

7-59. Let a random variable X be beta distributed with α = 2 and β = 3. Find:

(a) P(X < 0.1)

(b) The probability that X will assume a value within one standard
deviation of the mean

7-60. Verify that if a random variable X is beta distributed with probability density
function (7.56), then (7.56) is a legitimate probability density.

7-61. Suppose a random variable X is beta distributed with probability density
function given by (7.56). Use this density function to obtain µ′

r , the rth

moment about zero. Use the resulting expression to obtain E(X), V(X).
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Sampling and the Sampling
Distribution of a Statistic

In the introduction (Chapter 1) we rather loosely explored an assortment of
concepts such as statistical inference, population, random sample, statistic, and
so on. In this chapter we shall firm up these notions by redefining them in a much
more rigorous and technically correct fashion. This added degree of formality will
then enable us to fully develop the concept of random sampling and, in turn, the
sampling distribution of a statistic.

8.1 The Purpose of Random Sampling

Statistical or inductive inference generally involves extracting a sample of a
given size from an unknown population distribution in order to discern or infer
something about the characteristics or behavior of that distribution. Given that
conclusions or generalizations about a population are made from sample data
and that (typically) only a small portion of the population is being examined, we
essentially have incomplete information about the population. Hence an element
of uncertainty enters into our analysis so that any conclusions or assertions about
the characteristics of the population must be accompanied by a quantitative mea-
sure of the risk or degree of uncertainty of the inference made. As was mentioned
in Chapter 1, this process of inductively reaching conclusions in the face of uncer-
tainty about the characteristics of a population (or some phenomenon), as well as
quantitatively measuring the risk of the same, is called statistical inference. As we
shall now see, the act of making such inferences is carried out using the technique
of random sampling.

Inductive inference involves random sampling so that the rules of probability
theory can be applied in evaluating the magnitude of the risk inherent in this
process. Hence uncertain inferences can be made, and the degree of uncertainty
can be measured, if the sampling experiment is performed in accordance with

293
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certain fundamental principles that prescribe (limit) the way in which a sample is
obtained.

In this regard, inferences will be made under a process of random sampling
and, in particular, by taking simple random samples; that is, samples for which the
sampling process gives each item in a population of size N an equal probability of
being included in the sample, and gives each sample so obtained an equal prob-
ability of being drawn. In what follows we shall consider both random sampling
with and without replacement. In the former case (which is equivalent to sampling
from an infinite population) the same member of a population can be observed
more than once; in the latter, the same element of a population cannot be chosen
more than once.

The target population is the population about which information is desired,
whereas a random sample is actually selected from what is called the sampled
population, or from a population with probability density function (or probability
mass function) f (x; θ). (Hence a random sample is defined for a population that
has a density (mass) function—a distribution of numerical values that describe
the population.) Obviously the sampled population may or may not coincide with
the target population. In this regard, inferences about the sampled population
can be made using random samples obtained from the same, but inferences about
the target population cannot be made unless the target and sampled populations
are one and the same. By virtue of this discussion, we shall restrict our atten-
tion to selecting a sample of size n from the sampled population f (x; θ), and on
the basis of this sample information, make inferences or probability statements
about f (x; θ).

8.2 Sampling Scenarios

Two general sampling situations present themselves. The first involves the infinite
population case.

8.2.1 Data Generating Process or Infinite Population

Here an experiment is performed, which results in an infinite number of possible
values of a measurable or observable characteristic of some phenomenon. Hence
the occurrence of the phenomenon can be thought of as an information generating
process. For instance, a physical measurement such as weight in fluid ounces may
be taken on the output (fill amount) of an automatic bottling machine.

If we choose to investigate the occurrence of any given phenomenon, then
we must utilize the information that it generates. This information set is simply
called data—a collection of measurements or observations indicating how some
particular characteristic of the phenomenon manifests itself. In order to eventually
construct a statistical model of a data generating process, we need to assume that
the said process is probabilistic or random in that the inherent natural variation in
the data values precludes us from predicting their level or magnitude.
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The generated data or output of a random phenomenon serves as input into
a measurement process. We may think of this process as a means of communi-
cating data. It may involve specialized instrumentation or equipment (needed to
measure, for instance, the brightness of a light bulb), or simply a count via visual
observation (as in the case of an inspector recording the number of defects of a
particular type occurring on the surface of a manufactured product). The output
of the measurement process is simply a set of observed data values that is to be
used by the experimenter or analyst for the study at hand.

But the observed quantities rendered by the measurement process may them-
selves be subject to error. That is, there may exist systematic error (the values
obtained from the data generating process are modified in some consistent or
predictable fashion) or random error (possibly due to imprecise or outdated mea-
surement techniques). If we ignore outright the presence of any systematic error in
the measurement process and we assume that this process imparts only a negligible
random error, then we may assume that the (predominant) source of randomness
in the observed data is due to the data generating process itself. In this regard, we
need not worry about any experimental or nonsampling error that results when
the generated data is different from the observed data, where any such differences
are introduced, either systematically or randomly, by the measurement process
itself.

In sum, the researcher is faced with deciphering the output of a sequential
two-stage process, which consists of a data generating phase and a measurement
phase (see Figure 8.1). And if the measurement process does not taint the gen-
erated data with any systematic or random error, then the observed data mirrors
the properties of the generated data and we may now set out to construct a statis-
tical or probability model describing the behavior of this random phenomenon or
process.

Most data generating processes, at least in principle, are capable of producing
an infinite number of data points on a multitude of measurable characteristics
X, Y, Z, . . . of some random phenomenon. Hence the typical observed data set is
infinitely large. Yet, in practice, we deal with finite data sets. Clearly the distinction
we are making here is that between a population and a sample. To fully develop the
difference(s) between these two levels of abstraction, let us restrict our attention
to a single measurable characteristic (X) of some random phenomenon. In this
regard, for any such phenomenon, the population can be thought of as the state of
nature or collection of all possible values of a measurable characteristic X. It can
be finite or infinite. The sample is the finite collection of actual measurements on a
characteristic X obtained from the population in order to acquire representative
information about the same. It is generated by performing repeated trials of a
sampling experiment under conditions that are identical in terms of all controllable
environmental factors; that is, all sample outcomes are assumed to be drawn from
the same source and obtained under the same conditions. Hence the various trials
of the random experiment are independent (the outcome obtained on any one trial
does not affect nor is it affected by the outcome obtained on any other trial) and
thus may be viewed as constituting a process of random sampling with replacement
or from an infinite population.
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An Event or Phenomenon Constitutes a

Phase 1

output is

input to

Phase 2

output is

DATA GENERATING PROCESS
(assumed random)

GENERATED DATA
(values are unpredictable)

OBSERVED DATA
(corresponds to generated data)

MEASUREMENT PROCESS
(no experimental error)

Figure 8.1 A sequential two-stage information generating process.

In this regard, to obtain (sequential) readings on a measurable characteristic
X, let us repeat a random experiment n times in succession under identical condi-
tions. Then trial 1 of our sampling experiment generates the outcome X1; trial 2
generates the outcome X2; . . . ; and trial n generates the outcome Xn. Hence we
have obtained n generated data values on the characteristic X : X1, X2, . . . , Xn.
Once Xi has been subject to the measurement process, its observed (numerical)
level may be denoted as xi; that is, xi is termed a realization of the random variable
Xi, i = 1, . . . , n.

If f (x; θ) depicts the probability density function1 of the population distribu-
tion for the measurable characteristic X, then, by virtue of the preceding sampling
process, we may view the generated outcomes Xi, i = 1, . . . , n, as sample ran-
dom variables. And if the Xi have the same probability density function as that
of the population distribution and their joint probability density function can be
expressed as the product of their individual marginal probability densities f (xi; θ),

1 Although the discussion that immediately follows is framed in terms of the probability density function
for a continuous random variable, a parallel treatment can be given using the probability mass function
for a discrete random variable.
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then the Xi represent n mutually independent2 and identically distributed random
variables that constitute a random sample from the underlying (infinite) popula-
tion. To reiterate, the random variables Xi should be viewed as a random sample,
and their realizations xi form the observed data set.

Let us write the joint probability density function of the sample random
variables X1, . . . , Xn as

� (x1, x2, . . . , xn; θ , n) =
n∏

i=1

f (xi; θ), (8.1)

where θ and n are parameters and

f (xi; θ) = f (x; θ) , i = 1, . . . , n. (8.2)

So if (8.1) and (8.2) hold, then our sampling routine is deemed random and thus
the sample is connected in probability to the parent population f (x; θ).

Example 8.2.1.1 Let X1, . . . , Xn depict a random sample of n mutually inde-
pendent and identically distributed random variables obtained from a population
that follows a normal distribution with probability density function

f (x; µ, σ ) = 1√
2πσ

e− 1
2

(
x−µ
σ

)2

, −∞ < x < +∞.

When the sample random variable X1 is generated and its realization x1 is
observed, the marginal probability density of X1 mirrors that of the parent
population and thus

f (x1; µ, σ ) = 1√
2πσ

e− 1
2

(
x1−µ

σ

)2

, −∞ < x1 < +∞.

Next, let the sample random variable X2 admit the realization x2. Since X1, X2 are
independent random variables with the same marginal densities, it follows that

f (x2; µ, σ ) = 1√
2πσ

e− 1
2

(
x2−µ

σ

)2

, −∞ < x2 < +∞.

Then the joint probability density function of X1 and X2 is the bivariate function

�(x1, x2; µ, σ , n = 2) = f (x1; µ, σ ) · f (x2; µ, σ )

=
(

1√
2πσ

)2

e
− 1

2

[(
x1−µ

σ

)2+
(

x2−µ
σ

)2
]

, −∞ < x1, x2 < +∞.

2 Here mutual independence of the n random variables X1, . . . , Xn implies that they are pairwise inde-
pendent (Xi , Xj are independent for any i �= j with their bivariate probability density function
f (xi , xj ; θ) = f (xi ; θ) · f (xj ; θ)) but not conversely.
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In general, for a random sample of size n, the joint probability density func-
tion of the n mutually independent and identically distributed random variables
X1, . . . , Xn is

�(x1, . . . , xn; µ, σ , n) =
(

1√
2πσ

)n

e
− 1

2

n∑

i=1

(
xi−µ

σ

)2

− ∞ < xi < +∞, i = 1, . . . , n.

(8.3)

So f (x; µ, σ ) is the distribution of the population, and the joint density (8.3) is the
distribution of the (random) sample. Given that the joint probability density func-
tion (8.3) factors as (8.1) (the random variables Xi are mutually independent and
have a common probability density function by virtue of (8.2)), we may conclude
that X1, . . . , Xn is a random sample of size n from an infinite population with prob-
ability density f (x; µ, σ ). (Note again that the common distribution from which
we are sampling is actually the population.) �

Example 8.2.1.2 A second depiction of a random sample, this time taken from
a finite (discrete) population, involves tossing a fair coin n times in succession (the
data generating process) and counting the number of successes obtained in the n
trials, where a success is defined as getting heads on any toss. And since we can
flip the coin, at least conceptually, an unlimited number of times under identical
conditions, these flips are independent of each other and thus can also be viewed
as involving a process of sampling with replacement. Here the discrete population
random variable X has two values: x = 1 when heads occurs; x = 0 when tails
occurs. And since the sample space S admits but two simple events (heads or tails),
P(X = 1) = p = 1

2 ; P(X = 0) = 1 − p = 1
2 . In general, the probability mass

function for this discrete population random variable X is

P(X = x) = f (x) =
{

px(1 − p)1−x, x = 0 or 1;
0 otherwise.

(8.4)

Hence the population is the finite set {0, 1} and the distribution of the population
is the distribution of X. So on each toss of the coin, we are selecting either one or
the other of these two population values as the observed outcome.

In this regard, if the value of the random variable Xi is determined on the
ith toss of our coin, then each Xi has two possible realizations: either xi = 1
or 0, i = 1, . . . , n. Clearly these discrete sample random variables Xi are mutually
independent (the population is unaffected from toss to toss) and each has the same
distribution as X; that is, f (xi) = pxi (1 − p)1−xi , xi = 0 or 1, so that f (xi = 1) = p
and f (xi = 0) = 1 − p. Hence a random sample consists of the n random variables
X1, . . . , Xn with realizations x1, . . . , xn, respectively. Thus the n tosses of the coin
will result in an observed data set consisting of the realizations x1, . . . , xn with each
xi being either 0 or 1, i = 1, . . . , n.
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The probability of the event {X1 = x1, . . . , Xn = xn} is given by the joint
probability mass function of the discrete random variables X1, . . . , Xn and, under
the mutual independence of theXi, appears as

P(X1 = x1, . . . , Xn = xn) = �(x1, . . . , xn; n) =
n∏

i=1

f (xi), (8.5)

where n is a parameter and

f (xi) = f (x), i = 1, . . . , n. (8.6)

So if, via (8.6), each Xi is distributed as (8.4), then (8.5) becomes

�(x1, . . . , xn; n) =
⎧
⎨

⎩
p

n∑

i=1
xi

(1 − p)
n−

n∑

i=1
xi

, xi = 0 or 1;

0 otherwise,
(8.7)

where
∑n

i=1 xi = number of heads obtained in n tosses of a coin (it is the number
of 1’s in the observed data set x1, . . . , xn). Hence for each observed data set at
which

∑n
i=1 xi = v,

�(x1, . . . , xn; n) = pv(1 − p)n−v. (8.7.1)

So given that (8.7) factors as (8.5) (the discrete random variables Xi are mutually
independent and, from (8.6), have a common probability mass function), we
may conclude that the Xi, i = 1, . . . , n, constitute a random sample of size n
from a finite or discrete population {0, 1} with probability mass function f (x)
(see (8.4)). �

8.2.2 Drawings from a Finite Population

The preceding two examples of a random sample involved observing the data
obtained from an experimental or data generating process that, in effect, con-
stituted an infinite population. In contrast, we may be interested in examining
a measurable characteristic (X) of some finite collection of actual or material
objects, where the said characteristic may be a quantitative measure (such as the
individual lengths, in inches, of an assortment of steel rods) or possibly the pres-
ence or absence of an attribute (a motor vehicle either passes or fails a safety
inspection).

We have two ways of extracting a sample of size n from this type of population
(assumed to be of size N). The first involves sampling with replacement and is essen-
tially a special case of the preceding sampling or data generating process. Given
the N items in the population, the first is randomly drawn and the measurable
characteristic X is observed and recorded as X1 = x1. (It is assumed that the mea-
surement process does not exhibit any nonsampling error.) This first item is then
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put back into the population, the N items are randomized in some fashion, and
another item is selected. This yields the second observation on X that is recorded
as X2 = x2. Once the second item selected is returned to the population and the
latter is again randomized, a third item is drawn, and so on. This process continues
until all n items have been chosen, with the item obtained on any one trial replaced
in the population so that it is available for selection on the next trial. Hence on
each trial each of the N items is equally likely to be chosen. We ultimately obtain
a sample of n observations X1, . . . , Xn on the measurable characteristic X, where
each Xi, i = 1, . . . , n, is a discrete random variable that takes on each of the N
possible realizations x1, . . . , xN with equal probability 1

N . So under the scheme of
sampling with replacement from a finite population, the sample random variables
X1, . . . , Xn are mutually independent and identically distributed (the probability
distribution of each Xi, i = 1, . . . , n, is the same as that of the population) and thus
constitutes what is commonly called a simple random sample.

A second method of sampling from a finite population of size N is sampling
without replacement. If the items in the population are randomized before selec-
tion begins, then we simply extract n items in succession, one after the other,
without replacing the objects drawn on any one trial before the next trial begins.
This process also renders a collection of n sample random variables Xi whose
realizations xi, i = 1, . . . , n, are the elements of an observed data set. However,
these random variables do not constitute a random sample as previously defined
since they are not mutually independent, although they are identically distributed
since the marginal distribution of each Xi, i = 1, . . . , n, is the same as that of the
parent population. Under this sampling scheme, once an item is selected, it is
unavailable for selection on any subsequent trial. Hence N items are available for
the first draw and thus the probability of selecting any one item is 1

N . Without
replacement, there are only N − 1 items available for the second draw and thus
the probability of obtaining any one of these N − 1 population values is 1

N−1 and
so on for successive draws.

To verify that the random variables Xi are not mutually independent but are
identically distributed under a regime of sampling without replacement, let u
and v (with u �= v ) represent distinct elements of the population. Then on draw
one, P(X1 = u) = 1

N and, under sampling without replacement, for draw two,
P(X2 = u |X1 = u ) = 0 (u is not available for selection on draw two) and P(X2 =
v |X1 = u ) = 1

N−1 (since there is now one fewer element in the population). Hence
the (conditional) probability distribution of X2 depends on the realization of X1

so that X1 and X2 are not independent random variables. But, as noted earlier,
X1 and X2 are identically distributed; that is, the marginal distribution of each
Xi, i = 1, . . . , n, is the same as the population distribution. In this regard, for i = 1,
the marginal distribution of X1 is P(X1 = u) = 1

N for any u in the population.
And for i = 2, the marginal distribution of X2 is, via (3.4.2),

P(X2 = v) =
N∑

i=1

P(X2 = v |X1 = xi ) · P(X1 = xi). (8.8)
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For i = h, v = xh and P(X2 = xh|X1 = xh) = 0. For all other j �= h, P(X2 =
v|X1 = xj) = 1

N−1 . Hence (8.8) reduces to

P(X2 = v) =
∑

j �=h

P(X2 = v|X1 = xj) · P(X1 = xj) = (N − 1)
(

1
N − 1

· 1
N

)
= 1

N
.

(8.8.1)

Hence each Xi, i = 1, . . . , n, has the same marginal distribution.
So under sampling without replacement from a finite population, the with-

drawal of an item from the population obviously affects the probability distri-
bution of the same. Hence we must modify the preceding definition of simple
random sampling to accommodate this change. The usual modification is to intro-
duce randomness in sampling in a fashion such that all possible sequences of n trials
(or all possible samples of size n) have the same chance of occurring. To achieve
this, the first item must be drawn in a way that ensures that all N items in the
population have the same probability 1

N of being chosen. Having selected the first
item, the second sample element is drawn from the N − 1 remaining elements in
a way that ensures that each has the same probability 1

N−1 of being drawn. On the
third trial, the remaining N − 2 elements of the population each have the same
probability 1

N−2 of being chosen. This process continues until, finally, on the nth

draw, all N − (n − 1) remaining items have the same probability 1
N−(n−1)

of being
selected. Hence each sample of size n taken without replacement from a finite
population of size N has 1

N · 1
N−1 · 1

N−2 · · · 1
N−(n−1) as its probability of being drawn.

So if the sampling process is executed in this fashion, we again obtain a simple
random sample. In general, if the finite population is extremely large relative to
n, then sampling without replacement is, for all intents and purposes, equivalent
to sampling with replacement; in practice we can treat the sample random vari-
ables X1, . . . , Xn as if they were independent and identically distributed since, for
extremely large N, the probabilities 1

N , 1
N−1 , 1

N−2 , . . . will be approximately equal.
In this instance the random variables Xi, i = 1, . . . , n, may be termed nearly inde-
pendent in that, for large N, the conditional distribution of Xi given X1, . . . , Xi−1

is approximated closely by the marginal distribution of Xi alone if i(≤ n) is small
relative to N. Hence, for distinct population elements v, s, and t, it is assumed that
P(Xi = t |X1 = r, . . . , Xi−1 = s ) = 1

N−(i−1) ≈ 1
N .

If the population size N is relatively small to begin with, then random sampling
without replacement may be the preferred sampling process since, if replacement
occurs, there is a strong possibility that the same item may be selected more than
once. In sum, simple random sampling from a finite population is a process of
sampling that gives each possible sample of size n an equal probability of being
selected.

8.3 The Arithmetic of Random Sampling

An important consideration in simple random sampling is determining the total
number of possible samples of a given size that can be extracted from a finite
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population. Once this number is known, we can then set out to list the elements
appearing in each of these hypothetical samples as well as calculate probabilities
concerning the same.

Given a finite population of size N, let us determine the number of ways of
selecting a sample of size n. If we sample with replacement, then the first element
can be selected in N different ways and the probability of choosing any one element
on the first draw is 1

N ; the second element can also be selected in N different ways
and, here too, the probability of selecting any one element on the second draw is
1
N , and so on. Thus the total number of samples of size n that can be selected with
replacement is

N · N · · · N︸ ︷︷ ︸
taken n times

= Nn. (8.9)

Here the order of the elements in each sample matters; that is, each sample is a
permutation of n elements. Thus n ordered sample units have been drawn from
the N units in the population in a way that gives each of the population units the
same constant probability 1

N of being drawn. Moreover, each ordered sample has
probability

( 1
N

)n
of being drawn.

Example 8.3.1 If the population consists of N = 4 distinct objects labeled, A,
B, C, and D, then a random sample of size n = 2 with replacement can be drawn
by requiring that the first of the two places in the sample be any one of the four
letters (each has the same probability of 1

4 of being chosen) and that the second
of the two places in the sample be any one of the four letters (again with an equal
probability of 1

4 ). The total number of ordered samples obtained in this manner is

thus Nn = (4)2 = 16, and each of these samples has probability
( 1

N

)n = ( 1
4

)2 = 1
16

of being drawn (see the accompanying array of ordered samples presented in
part (a) of Figure 8.2). �

Example 8.3.2 To solidify our understanding of the salient features of simple
random sampling with replacement, let us assume that we have a vessel contain-
ing three red and seven blue balls. When a ball is selected at random, we will
denote the event a red (blue) ball is chosen as R(B). If X denotes the population
random variable, then the population probability (relative frequency) distribu-
tion is given in panel (a) of Table 8.1. Let us now extract a random sample
of size n = 2 from this population with replacement, where the random vari-
able X1(X2) describes the outcome obtained on the first (second) draw. Under
sampling with replacement, X1 and X2 are independent random variables. The
possible samples drawn and their associated probabilities are depicted in panel (b)
of Table 8.1. For instance, P(X1 = R ∩ X2 = R) = ( 3

10

) · ( 3
10

) = 9
100 . We may con-

sequently determine the probability distribution of X1 (panel (c) of Table 8.1) by
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Sampling with Replacement Sampling without Replacement

AA AB AC AD • AB AC AD

BA BB BC BD BA • BC BD

CA CB CC CD CA CB • CD

DA DB DC DD DA DB DC •

(N)n possible ordered pairs
NPn possible ordered pairs

(a) (b)

Sampling without Replacement

• AB AC AD

• • BC BD

• • • CD

• • • •

N
n

possible unordered pairs

(c)

⎛
⎜
⎝

⎛
⎜
⎝

Figure 8.2 (a) (N)n possible ordered pairs; (b) N Pn possible ordered pairs; (c)
(

N
n

)
possible unordered

pairs.

noting that

P(X1 = R) = 9
100

+ 21
100

= 3
10

;

P(X1 = B) = 21
100

+ 49
100

= 7
10

.

Similarly, since

P(X2 = R) = 9
100

+ 21
100

= 3
10

;

P(X2 = B) = 21
100

+ 49
100

= 7
10

,

the probability distribution of X2 is easily obtained (panel (d) of Table 8.1). Clearly
the probability distributions of X1 and X2 are identical to each other and to the
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Table 8.1

a. b.

Population
Sampling with Replacement

Probability Distribution

X Probability X1, X2 Probability

R 3/10 R, R (3/10) · (3/10) = 9/100
R 7/10 R, B (3/10) · (7/10) = 21/100

1 B, R (7/10) · (3/10) = 21/100
B, B (7/10) · (7/10) = 49/100

1

Probability Probability
Distribution of X1 Distribution of X2

X1 Probability X2 Probability

R 3/10 R 3/10
B 7/10 B 7/10

1 1

c. d.

distribution of the population random variable X. In general, when we extract
a random sample of size n from a finite population with replacement, we obtain
n independent and identically distributed sample random variables X1, . . . , Xn,
each having the same probability distribution as the parent population. �

Next, if sampling is undertaken without replacement, there are N choices for
the first sample element (and each of these can be selected with probability 1

N ),
N−1 choices for the second (each having a probability of 1

N−1 of being drawn), and
so on. So when we have N items in the population and we extract samples of size n
without replacement, there will be a total of N(N −1)(N − 2) · · · (N − (n − 1)

) =
NPn possible ordered samples. In addition, each of these ordered samples is
equally likely with probability 1

N · 1
N−1 · 1

N−2 · · · 1
(N−(n−1))

= 1
N Pn of being drawn,

and the probability is n/N that any member of the population will be included in
the sample.

Example 8.3.3 If the finite population again consists of N = 4 items marked
A, B, C, and D, then drawing random samples of size n = 2 without replacement
results in N(N − (n − 1)) = 4(4 − 1) = 12(= 4P2) possible samples, each having
probability 1

4P2
= 1

12 of being drawn (see array (b) of Figure 8.2 wherein the
sample pairs AA, BB, CC, and DD have been deleted). �

If we disregard the order in which the n elements appear in a sample (e.g.,
AB and BA may be viewed as the same sample), then each sample obtained
without replacement is a combination of n different items and thus each sample
has n! different orderings. Hence [N(N−1)(N−2)···(N−(n−1))]

n! = (
N
n

)
is the number of
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different samples of size n obtainable from N elements without replacement when
order is neglected. Moreover, each of these unordered samples is equally likely
with probability 1

/(
N
n

)
of being chosen and the probability that any member of

the population will be included in the sample is n
N .

Example 8.3.4 Again taking N = 4 (we have the same population elements A,
B, C, and D) and n = 2, there are

N
(
N − (n − 1)

)

n! =
(

N
n

)
=
(

4
2

)
= 4!

2!2! = 6

possible samples of size two when we disregard order (see array (c) of Figure 8.2).
Moreover, each of these samples has the same probability

( 1
6

)
of being drawn. �

In sum, under a regime of simple random sampling from a finite population
of size N, all possible samples of a given size n are equally likely to be selected.
If samples are taken with replacement, each possible sample has a probability of( 1

N

)n
of being drawn; if sampling occurs without replacement, each possible sam-

ple has a probability of 1
N Pn

of occurring when the order in which the items are
selected matters. If order is not important, each possible sample has a probability
of 1

/(
N
n

)
of being selected. And, as the preceding discussion has suggested, when

we sample without replacement, the process of simple random sampling implies
that, on any given trial, each element that has not been previously drawn has an
equal probability of being selected.

Example 8.3.5 Returning to the earlier example problem in which we had a
container housing three red and seven blue balls, let us now extract a sample of
size n = 2 from the same, but this time without replacement. (The population
distribution is given in Table 8.1a.) Again the random variable X1(X2) describes
the outcome obtained on the first (second) draw. Since X1 and X2 are not inde-
pendent under sampling without replacement, the probabilities associated with
the various possible samples are conditional on the particular color selected
on the first draw (see panel (a) of Table 8.2). That is, these probabilities are
determined as:

P(X1 = R ∩ X2 = R) = P(X1 = R) · P(X2 = R |X1 = R ) = 2
9

· 3
10

= 6
90

;

P(X1 = R ∩ X2 = B) = P(X1 = R) · P(X2 = B |X1 = R ) = 7
9

· 3
10

= 21
90

;

P(X1 = B ∩ X2 = R) = P(X1 = B) · P(X2 = R |X1 = B ) = 3
9

· 7
10

= 21
90

;

P(X1 = B ∩ X2 = B) = P(X1 = B) · P(X2 = B |X1 = B ) = 6
9

· 7
10

= 42
90

.
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Table 8.2

a. b. c.

Sampling Without Probability Distribution Probability Distribution
Replacement of X1 of X2

X1, X2 Probability X1 Probability X2 Probability

R, R 6/90 R 3/10 R 3/10
R, B 21/90 B 7/10 B 7/10
B, R 21/90 1 1
B, B 42/90

1

The probability distribution of X1 (panel (b) of Table 8.2) can be determined by
noting that

P(X1 = R) = 6
90

+ 21
90

= 3
10

;

P(X1 = B) = 21
90

+ 42
90

= 7
10

.

And since

P(X2 = R) = 6
90

+ 21
90

= 3
10

;

P(X2 = B) = 21
90

+ 42
90

= 7
10

,

the probability distribution of X2 can also be readily determined (panel (c) of
Table 8.2). So even though the sample random variables X1 and X2 are not inde-
pendent, their probability distributions are identical to each other and to the
distribution of the parent population. �

8.4 The Sampling Distribution of a Statistic

We noted in the preceding section that random samples would be used to make
inferences about unknown population characteristics. Such characteristics are
termed parameters—fixed numerical constants that describe a population dis-
tribution of a random phenomenon. For instance, if the population random
variable X is exponentially distributed, then we completely specify X’s proba-
bility density function once we set the value of the scale parameter (λ); if X is
normally distributed, we completely specify X’s probability density function once
the mean (µ) and the standard deviation (σ ) are given; and if X is binomially dis-
tributed, X’s probability mass function is completely described by the probability
of a success ( p) and the number of trials (n).
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A parameter is a characteristic of a population, whereas a statistic is a charac-
teristic of a sample that can be used to estimate or determine a parameter. In this
regard, we may view a statistic as a function of sample random variables X1, . . . , Xn

and known constants (e.g., the sample size n) and which is itself a random variable.
Hence a statistic cannot contain any unknown parameters.

If we denote a statistic as T = g(X1, . . . , Xn, n) (here the sample size is an
argument of the real-valued function g), then its realization t = g(x1, . . . , xn, n) is
determined once the realizations xi of the sample random variables Xi, i = 1, . . . , n,
are known. Here g is a rule or law of correspondence that tells us how to get t’s
from sets of xi’s. If the statistic T is used to determine some unknown population
parameter θ , then T is called a point estimator of θ and its realization t is termed a
point estimate of θ . (Here a point estimator of θ reports a single numerical value
as the estimate of θ . This is in contrast to an interval estimator of θ , which reports
a range of values and which will be introduced in a later chapter.) In Chapter 10
we shall study estimation and, in particular, the desirable properties that a good
estimator should possess.

We noted earlier that inductive statistics involves inferring from sample data
something about the characteristics of a population. Because only a limited
amount of data is examined, errors in making inferences are unavoidable due
to the presence of sampling error—which is the difference between the realiza-
tion (t) of a sample statistic (T) and the corresponding (unknown) population
value θ . Sampling error exists because of chance variability in random sampling;
that is, the realization of a statistic computed from a random sample of a given
size depends upon which population elements are included in the sample and, if
we repeat the sampling process and obtain another sample of the same size, we
usually get a different realization of T. Hence realizations vary from sample to
sample and are expected to be different (to varying degrees) from a population
parameter. In order to have confidence in any inference made about a population
parameter, we must develop methods for assessing the magnitude of the sampling
error connected with the same. And this can be accomplished only in terms of the
probability distribution of a statistic. That is, since T is a random variable, it has a
probability distribution whose properties will enable us to evaluate the chance of
making an erroneous inference. In general, the probability distribution of a statis-
tic that has been generated under random sampling from a given population will
be called the sampling distribution of the statistic. Once the sampling distribution
of a statistic is determined, it can be used to make inferences about a parameter
from random samples taken from a population by finding, say, the probability
that any realization of the statistic is due solely to chance factors. Hence sampling
distributions aid us in discerning the patterns and magnitudes of sampling errors;
they describe how a statistic varies, due to chance, under random sampling.

For instance, let T be an estimator for θ with t the realization of T. We take
a random sample of size n and record t(= t1). Then we take a second random
sample of the same size and again find t(= t2). Typically t1 �= t2. As we take more
and more random samples of the same size n, we build up a relative frequency
distribution of various t’s or estimates of θ . As the number of random samples
gets larger and larger, this relative frequency distribution gets closer and closer to
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the true theoretical sampling distribution of T, which reflects the inherent sample-
to-sample variability of the estimates of θ , and which is generally not of the same
form as the population probability density function (probability mass function)
f (x; θ). However, as we shall soon see, a sampling distribution is always related in
some specific way to the parent population distribution.

To formalize the preceding discussion, let us extract all possible random
samples of a given size from a specific population distribution and compute the
corresponding realizations of a statistic T. The resulting relative frequency dis-
tribution yields an approximation to the theoretical probability distribution that
would have been obtained had the number of samples been infinite rather than
just large. Hence we may define the sampling distribution of a statistic T as a the-
oretical probability distribution that associates with each possible realization t of
T its probability of occurrence (or probability density value). As such, it provides
us with a theoretical model for the relative frequency distribution of the possible
realizations of T that we would obtain under repeated sampling from the same
population.

Clearly the form of a sampling distribution of T depends upon, or can be
described in terms of, the distribution of the population from which the sample
random variables X1, . . . , Xn were obtained. Under random sampling, the Xi’s,
i = 1, . . . , Xn, are independent and identically distributed, where the marginal
distributions f (xi; θ) of the Xi’s, i = 1, . . . , Xn, are of the same form as the pop-
ulation distribution f (x; θ). Hence the theoretical or sampling distribution of T
can be obtained from the underlying population distribution, with the former dis-
tribution intimately related to, but distinct from, the latter. In this regard, (8.1),
which describes the joint occurrence of n independent and identically distributed
sample random variables, depends on f (x; θ) and n and thus serves as the basis of
forming the sampling distribution or probability density function f (t; θ , n) of T.

8.5 The Sampling Distribution of the Mean

Although we can form the sampling distribution of any measurable statistic under
random sampling, we shall concentrate in this section on the sampling distribu-
tion of the mean and, in subsequent sections, on the sampling distribution of
a proportion and of the variance.

We begin our discussion with an additivity theorem (Theorem 8.1) involving
a linear combination (Y) of a set of random variables. Specifically;

THEOREM 8.1. Let X1, . . . , Xn be a set of random variables with a1, . . . , an

a set of constants. In addition, let E(Xi) = µi and V(Xi) = σ 2
i , i = 1, . . . , n.

If the random variable Y = ∑n
i=1 aiXi, then:

(a) The mean and variance of Y are, respectively,

E(Y) =
n∑

i=1

aiµi (8.10)
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and

V(Y) =
n∑

i=1

ai
2σ i

2 + 2
∑∑

i<j

aiajσij, (8.11)

where σij = COV(Xi, Xj), i = 1, . . . , n; j = 1, . . . , n.

(b) If the random variables Xi, i = 1, . . . , n, are independent, then σij = 0 and
(8.11) reduces to

V(Y) =
n∑

i=1

a2
i σ

2
i . (8.11.1)

(c) If the random variables Xi, i = 1, . . . , n, are independent and identically
distributed with µi = µ and σ 2

i = σ 2 for all i = 1, . . . , n, then

E(Y) = µ

n∑

i=1

ai, (8.10.1)

V(Y) = σ 2
n∑

i=1

a2
i . (8.11.2)

(d) If the random variables Xi, i = 1, . . . , n, are independent normally distributed
random variables, then Y is normally distributed with E(Y) and V(Y) given
by (8.10) and (8.11.1), respectively.

(e) If the random variables Xi, i = 1, . . . , n, are independent normally distributed
random variables with µi = µ and σ 2

i = σ 2 for all i = 1, . . . , n, then Y is
normally distributed with E(Y) and V(Y) provided by (8.10.1) and (8.11.2),
respectively.

(Note that if ai = 1 for all i = 1, . . . , n, then the sum of n normally distributed
independent random variables is normally distributed with its mean (variance)
equal to the sum of the individual means (variances).)

8.5.1 Sampling from an Infinite Population

If we extract a random sample of size n from an infinite population (or if we sample
with replacement from a finite population), then the sample random variables
X1, . . . , Xn are independent and identically distributed with E(Xi) = µ and
V(Xi) = σ 2 for all i = 1, . . . , n, where µ and σ 2 are the population mean and
variance respectively and σ 2 is assumed finite. Let us form the statistic

�X =
n∑

i=1

Xi

n
(8.12)
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or the sample mean of the Xi. (If xi is the realization of Xi, then x̄ = ∑n
i=1

xi
n is the

realization of �X .) Since�X is a random variable, its relationship to the population
random variable X is provided by Theorem 8.2:

THEOREM 8.2. If X1, . . . , Xn are independent random variables having the
same distribution with mean µ and variance σ 2, then E(�X) = µ and
V(�X) = σ 2

n .

To rationalize this set of results let us consider part (c) of Theorem 8.1 wherein
Y = �X , E(Xi) = µi = µ, V(Xi) = σ 2

i = σ 2, and ai = 1
n . Then from (8.10.1) and

(8.11.2):

E(�X) = µ

n∑

i=1

1
n

= µ; (8.13)

V(�X) = σ 2
n∑

i=1

1
n2

= σ 2

n
. (8.14)

(It can also be demonstrated that: E
(

1
�X
)

≈ 1
µ

; V
(

1
�X
)

≈
(

1
µ

)4
V(�X).)

Note that these results are quite general and do not depend on the form of the
population probability density function; these expressions involve only the mean
and variance of the population probability density function.

How may we interpret (8.13) and (8.14)? Given that an expectation is the mean
of a random variable, it readily is seen that (8.13) informs us that the average of the
sample means taken over all possible samples of size n is equal to the population
mean. So although the value of �X determined from a particular sample generally
will not equal µ, the average of all possible values of �X for fixed n will equal µ.
Next, from (8.14), the positive square root of V(�X) will be denoted as

σ �X = σ√
n

(8.15)

and termed the standard error of the mean. It is simply the standard deviation of
the distribution of sample means taken over all possible samples of size n drawn
from a given population; it essentially serves as a measure of the average sampling
error arising when the mean of a single sample is used to estimate the population
mean. For n > 1, it is always the case that σ �X < σ .

A special case of Theorem 8.2 emerges when we sample from a population
that is normally distributed. That is, for Theorem 8.3:

THEOREM 8.3. If X1, . . . , Xn are independent normal random variables with
E(Xi) = µi = µ and V(Xi) = σ 2

i = σ 2 for all i = 1, . . . , n, then the distribution

of the sample mean �X is normal with E(�X) = µ and V(�X) = σ 2

n .

So given that the Xi, i = 1, . . . , n, are independent normal sample random vari-
ables, the sampling distribution of the mean is normal with probability density
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function

f (x̄; µ, σ �X , n) =
√

n√
2πσ

e− n
2

(
x̄−µ
σ

)2

, −∞ < x̄ < +∞. (8.16)

The associated cumulative distribution function can then be written as

F(x̄; µ, σ �X , n) =
√

n√
2πσ

∫ x̄

−∞
e− n

2

(
t−µ
σ

)2

dt; (8.17)

and if a random sample of size n is taken from a standard normal or N(0, 1)
population, then the preceding expression simplifies to

F(x̄; 0, σ �X , n) =
√

n√
2π

∫ x̄

−∞
e− n

2 t2 dt. (8.17.1)

8.5.2 Sampling from a Finite Population

The preceding discussion concerning the properties of the sampling distribution
of the mean ((8.13) and (8.14)) was framed in terms of simple random sam-
pling from an infinite population (or, equivalently, using random sampling with
replacement from a finite population). Let us now examine the properties of the
random variable �X under sampling from a finite or discrete population without
replacement.

To this end our experiment consists of randomly selecting a sample of size n
from the finite set of numbers {C1, . . . , CN}, where N(> n) is the population size.
Under random sampling without replacement, let X1 denote the first number
selected from the set of N items, X2 denotes the second number selected from the
N − 1 remaining items, . . ., and Xn represents the nth number selected from the
N−(n−1) remaining terms. Hence these sample random variables Xi, i = 1, . . . , n,
constitute a random sample of size n taken from this finite population and their
joint probability mass function is

f (x1, . . . , xn) = 1
N(N − 1) · · · (N − (n − 1)

) = 1

NPn
, (8.17)

where xi is the realization of the sample random variable Xi, i = 1, . . . , n, and the
order in which the items are selected matters. If order is not important, then each
possible sample of size n has a probability of n!

N Pn
= 1(

N
n

) of being selected.

Since in (8.17) the order of the Xi’s, i = 1, . . . , n, is not important, it follows
that, for n = 1, the marginal probability mass function for any individual Xi (take
i = r) is

f (xr) = 1
N

, xr = Cj, j = 1, . . . , N . (8.18)
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Then

E(Xr) =
N∑

j=1

Cj

(
1
N

)
= µ (8.19)

and

V(Xr) =
N∑

j=1

(Cj − µ)2
(

1
N

)
= σ 2 (8.20)

are, respectively, the mean and variance of this finite population.
Next, for any ordered pair of realizations of, say, the sample random variables

Xr and Xs, the joint marginal probability mass function is

f (xr , xs) = 1
N(N − 1)

, (8.21)

with xr = Cj, j = 1, . . . , N ; xs = Ch, h = 1, . . . , N , and j �= h. Then using (8.21),
the covariance of Xr and Xs may be written as

COV(Xr , Xs) =
N∑

j=1

N∑

h=1
(j �=h)

(Cj − µ)(Ch − µ)
(

1
N(N − 1)

)
.3 (8.22)

3 In order to simplify this covariance expression, let us make use of the following relationships:

1.
N∑

j=1
Cj = Nµ;

from (8.20),
N∑

j=1
(C2

j
− 2µCj + µ2) = Nσ 2 and thus

2.
N∑

j=1
C2

j = N(σ 2 + µ2);

3.
N∑

j=1

N∑
h=1

(j �=h)

µCj = µ
∑
h�=1

C1 + µ
∑
h�=2

C2 + · · · + µ
∑

h�=N
CN = µ(N − 1)C1 + µ(N − 1)C2 + · · ·

+ µ(N − 1)CN = µ(N − 1)
N∑

j=1
Cj = N(N − 1)µ2;

similarly,

4.
N∑

j=1

N∑
h=1

( j �=h)

µCh = N(N − 1)µ2;
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Utilizing the expressions presented in the footnote, it is readily demonstrated that
(8.22) can be rewritten as

COV(Xr , XS) = 1
N(N − 1)

⎡

⎢⎢⎢⎣

N∑

j=1

N∑

h=1
(j �=h)

CjCh − N (N − 1) µ2

⎤

⎥⎥⎥⎦

= 1
N(N − 1)

[
N2µ2 − N(σ 2 + µ2)

]− µ2 = − σ 2

N − 1
. (8.22.1)

Armed with this result, we may now state Theorem 8.4:

THEOREM 8.4. If �X is the mean of a random sample of size n selected from
a finite population of size N with mean µ and variance σ 2, then E(�X) =
µ and V(�X) = σ 2

n
N−n
N−1 , where N−n

N−1 is termed the finite population correction
factor.

To verify these assertions let us employ expressions (8.10), (8.11) of Theorem 8.1
with Y = �X , ai = 1

n , µi = µ, σ 2
i = σ 2, and, from (8.22.1), σij = − σ 2

N−1 . Then

E(�X) =
n∑

i=1

1
n

µ = µ (8.23)

5.
N∑

j=1

N∑
h=1

( j �=h)

µ2 = ∑
h�=1

µ2 + ∑
h�=2

µ2 + · · · + ∑
h�=N

µ2 = (N − 1) µ2 + (N − 1) µ2 + · · · + (N − 1) µ2

= N (N − 1) µ2;
and

6.
N∑

j=1

N∑
h=1

( j �=h)

CjCh = ∑
h�=1

C1Ch + ∑
h�=2

C2Ch + · · · + ∑
h�=N

CN Ch.

Since C1 + ∑
h�=1

Ch = Nµ,
∑
h�=1

Ch = Nµ − C1 we have C1
∑
h�=1

Ch = C1(C2 + C3 + · · · + CN ) =
C1(Nµ − C1) = C1Nµ − C2

1 .
Similar results hold for the remaining N − 1 terms on the right-hand side of (6). Hence (6) becomes

(6.1)
N∑

j=1

N∑
h=1

(j �=h)

CjCh = (C1Nµ − C2
1 ) + (C2Nµ − C2

2 ) + · · · + (CN Nµ − C2
N ) = Nµ

N∑
j=1

Cj −
N∑

j=1
C2

j

= N2µ2 −
N∑

j=1
C2

j .
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and

V(�X) =
n∑

i=1

1
n2

σ 2 + 2
∑∑

i<j

1
n2

σij

= σ 2

n
+ 2

n2

⎡

⎣
n∑

j=2

(
− σ 2

N − 1

)
+

n∑

j=3

(
− σ 2

N − 1

)
+ · · · +

(
− σ 2

N − 1

)⎤

⎦

= σ 2

n
+ 2

n2

(
− σ 2

N − 1

) [
(n − 1) + (n − 2) + · · · + (

n − (n − 1)
)]

= σ 2

n
+ 2

n2

(
− σ 2

N − 1

)[
n(n − 1)

2

]
= σ 2

n
N − n
N − 1

.4 (8.24)

So under random sampling without replacement from a finite population, the
standard error of the mean now appears as

σ �X = σ√
n

√
N − n
N − 1

. (8.25)

Note that as N → ∞ with n held constant, σ√
n

√
N−n
N−1 → σ√

n as expected; and as

n → N (= constant), σ√
n

√
N−n
N−1 → 0. In this regard, when N is large relative to n (in

particular, if the sample size is less than 5% of the population size or if n
N < 0.05),

use σ �X = σ√
n as an approximation to (8.25).

Why is the finite population correction factor required if n is a sizable pro-
portion of the finite population and we sample without replacement? It is needed
simply because as each successive unit is withdrawn from the population, the vari-
ability in the same is diminished before the next item is selected (since there is
now one fewer item in the population).

4 To derive the term in square brackets, set

(n − 1) + (n − 2) + · · · + (
n − (n − 1)

) =
n∑

i=1

n − 1 − 2 − 3 − · · · − (n − 1)

=
n∑

i=1

n − (
1 + 2 + 3 + · · · + (n − 1)

) = n2 − Sn,

where Sn denotes the sum of the first n terms of an arithmetic progression with common difference
d = 1. (An arithmetic progression may be viewed as a set of numbers in which each one after the first is
obtained from the preceding one by adding a fixed number d.) If a1 is the first term and an is the nth term
of the progression, then an = a1 + (n − 1)d = 1 + (n − 1) (1) = n and thus Sn = n

2 (a1 + an) = n
2 (1 + n).

Hence n2 − Sn = n2 − n
2 (1 + n) = n(n−1)

2 .
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Example 8.5.2.1 To see exactly how the sampling distribution of the mean
is constructed, let us take as our population of size N = 7 the set of values
X : 1, 2, 3, 4, 5, 6, 7. Here the mean and standard deviation are, respectively, µ = 4
and σ = 2.16. If we extract samples of size n = 3 without replacement, then, if
the order in which the values are selected is not important, we obtain

(
7
3

) = 35
possible random samples, with the probability of choosing any one sample equal
to 1

35 . If the sample random variables Xi have realizations xi, i = 1, 2, 3, then
each sample can be written as an unordered triple (x1, x2, x3). The 35 samples and
their associated sample means are presented in Table 8.3a. If we form the rela-
tive frequency distribution of these sample means, then this construct serves as
the sampling distribution of the mean for all possible unordered samples of size
n = 3 taken without replacement from a population of size N = 7. This sampling
distribution is illustrated in Table 8.3b and incorporates the assumption that the
probability of getting a mean of, say, three equals the probability of choosing a
sample that has a mean of three. And since three of the 35 samples exhibit a mean
of three, the probability that �X = 3 is 3

35 .
As anticipated from our preceding discussions concerning the properties of

the distribution of sample means,

E(�X) = E(X) = µ = 4;

σ �X = σ√
n

√
N − n
N − 1

= 2.16√
3

√
7 − 3
7 − 1

= 1.02.

(Note that the finite population correction factor was included in the calculation
of σ �X since the sample size is greater than 5% of the population size.) As these
values reveal, the sampling distribution of the mean is centered exactly on the
population mean (see Figure 8.3) and σ �X < σ ; that is, the individual sample means
or values of �X are clustered much more closely about the population mean than
are the original values of X.

What Table 8.3b gives us is an approximation to the true (unknown) sam-
pling distribution of the mean—the theoretical distribution that associates with
realizations x̄i of �X the probability mass (density) of each taken over all possible
samples of a given size. So for a fixed n, as the number of random samples taken
gets larger and larger, the resulting relative frequency distribution tends to get
closer and closer to the true sampling distribution of the mean.

Finally, the sampling errors associated with the various x̄i values are indicated
in Table 8.4. As mentioned earlier, these sampling errors reflect the inherent or
natural variation in sample means due to chance under random sampling. And
since σ �X depicts the average sampling error arising when �X is used to estimate µ, it

is readily demonstrated, via Table 8.4, that
∑13

i=1
|x̄i −µ|

13 = 1.07 (a value close to the
σ �X level obtained earlier using (8.25)). So by studying the sampling distribution
of the mean, we can learn something about the patterns of these sampling errors
as well as their magnitudes. �
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Table 8.3

a. b.

Sample Realizations Sample Means Sampling Distribution of the Mean
Number (x1, x2, x3) x̄

j
, j = 1, . . . , 35 �X P (�X = x̄i)

1 1, 2, 3 2 2 1/35
2 1, 2, 4 7/3 7/3 1/35
3 1, 2, 5 8/3 8/3 2/35
4 1, 2, 6 3 3 3/35
5 1, 2, 7 10/3 10/3 4/35
6 1, 3, 4 8/3 11/3 4/35
7 1, 3, 5 3 4 5/35
8 1, 3, 6 10/3 13/3 4/35
9 1, 3, 7 11/3 14/3 4/35

10 1, 4, 5 10/3 5 3/35
11 1, 4, 6 11/3 16/3 2/35
12 1, 4, 7 4 17/3 1/35
13 1, 5, 6 4 6 1/35
14 1, 5, 7 13/3 1
15 1, 6, 7 14/3
16 2, 3, 4 3
17 2, 3, 5 10/3
18 2, 3, 6 11/3
19 2, 3, 7 4
20 2, 4, 5 11/3
21 2, 4, 6 4
22 2, 4, 7 13/3
23 2, 5, 6 13/3
24 2, 5, 7 14/3
25 2, 6, 7 5
26 3, 4, 5 4
27 3, 4, 6 13/3
28 3, 4, 7 14/3
29 3, 5, 6 14/3
30 3, 5, 7 5
31 3, 6, 7 16/3
32 4, 5, 6 5
33 4, 5, 7 16/3
34 4, 6, 7 17/3
35 5, 6, 7 6

8.6 A Weak Law of Large Numbers

As (8.13) reveals, the average value of �X taken over all possible samples of size n
equals the population mean µ. Hence the sampling distribution of �X is centered
at µ. And as indicated by (8.15), the scatter or spread of the realizations of �X
(the x̄i’s, i = 1, . . . , n) about µ varies inversely with the sample size n. So when
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P (X =xi)

5/35

4/35

3/35

2/35

1/35

X
1 2 3 4 5 6 7

Figure 8.3 Probability mass function for the sampling distribution of �X .

Table 8.4

Sampling Error

x̄i − µ

2 − µ = −2
7/3 − µ =−5/3
8/3 − µ =−4/3

3 − µ = −1
10/3 − µ =−2/3
11/3 − µ =−1/3

4 − µ = 0
13/3 − µ = 1/3
14/3 − µ = 2/3

5 − µ = 1
16/3 − µ = 4/3
17/3 − µ = 5/3

6 − µ = 2

n is large, the x̄i’s tend to be much more concentrated about µ than when n is
small. This latter observation is underscored by what may be called a weak law of
large numbers. This law addresses the following question: Given that the sample
random variables X1, . . . , Xn are finite in number, can any reliable estimate of µ be
made using �X given that µ is actually the average of an infinite number of values
taken from the population distribution? As we shall now see, the answer is yes.
(In what follows we shall, for purposes of exposition, denote the sample mean
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computed from a random sample of size n as �Xn to emphasize its dependence
on n.)

Given that the Xi, i = 1, . . . , n, represent a set of independent and identically
distributed sample random variables whose individual expectations E(Xi) = µ

exist, the weak law of large numbers essentially informs us that the average of
these variables converges to their common mean µ as the number of such variables
increases. Thus realizations of �Xn can be expected to be closer to µ as more sample
random variables are introduced.

The weak law of large numbers (as it applies to estimating the population
mean µ) essentially states that we can determine a random sample size of (at
least) n such that the probability is as close to 1 as desired that the difference
between �Xn and µ will not exceed some arbitrarily small quantity. That is, there
exists an n for which the probability is as close to 1 as desired that µ lies within
the interval �Xn ± ε, ε > 0. More formally, we have Theorem 8.5, The Weak Law
of Large Numbers.

THEOREM 8.5. Let �Xn be the mean of a random sample of size n taken
from an infinite population with mean µ and finite variance σ 2. Choose any
two small numbers ε and δ such that ε > 0 and 0 < δ < 1. If n is any positive
integer greater than σ 2

δε2 , then

P
(∣∣�Xn − µ

∣∣ < ε
) ≥ 1 − δ. (8.26)

(Here
∣∣�Xn − µ

∣∣ < ε implies that �Xn deviates from µ by less than ε or that, for
ε sufficiently small, �Xn is arbitrarily close to µ while P(·) ≥ 1 − δ means that,
for δ sufficiently small, the indicated probability can be made as close to 1 as
desired.)

To rationalize this result let us express (4.19.2) (Chebyshev’s inequality) in terms
of �Xn as

P
(∣∣�Xn − µ

∣∣ < kσ �Xn

) ≥ 1 − 1
k2

, k > 0. (8.27)

Setting σ �Xn
= σ√

n and ε = kσ√
n we may rewrite this expression as

P
(∣∣�Xn − µ

∣∣2 <
k2σ 2

n

)
≥ 1 − 1

k2

or, since 1
k2 = σ 2

nε2 ,

P
(∣∣�Xn − µ

∣∣2 < ε2
)

≥ 1 − σ 2

nε2
≥ 1 − δ (8.28)

for δ > σ 2

nε2 or n > σ 2

δε2 .
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We determined earlier via the frequency limit principle (Section 3.8 of
Chapter 3) that the probability of an event can be interpreted as the expected long-
run relative frequency of that event. That is, if the trials of a random experiment
are independent, then, in the long run, the relative frequency of an event A should
approach some number P(A) (the probability of event A). The formalization of
this notion is the weak law of large numbers.

Example 8.6.1 In this context, to see how the weak law of large numbers
works, suppose that the failure rate for a certain model television set while under
extended warranty has been fairly stable over the last few years at about 3%. An
appliance store that sells a large number of these sets under extended warranty
can thus expect the relative frequency of failures in the near future to be very
close to 3%. If only a few sets are sold under extended warranty, then variations
from 3% (some of them sizeable) will surely occur. However, as more and more
sales under extended warranty are considered, the long-run relative frequency of
failures should stabilize at about 3%. Hence the weak law of large numbers can
thus be interpreted as a statement of empirical regularity or statistical stability. �

8.7 Convergence Concepts

If a random variable X depends upon a positive integer n, then this dependency
can be represented explicitly by writing the variable as Xn. The associated cumu-
lative distribution function for Xn can then be denoted as Fn(t). Let

{
Fn(t)

}
denote

a sequence of cumulative distribution functions indexed by the positive integer
n and let F(t) be the cumulative distribution function for the random variable
X. Then the random variable Xn converges in distribution (in law) to X (or Xn is
said to have a limiting distribution function F(t)) if

lim
n→∞ Fn(t) = F(t)

for every t at which F(t) is continuous. This type of convergence will be written

as d- lim
n→∞ Xn = X or Xn

d−→ X . In this regard, at points of continuity of F(t),

the sequence of cumulative distribution functions Fn(t) converges to F(t) as n
increases without bound. What this means is that for each (arbitrarily small) num-
ber ε > 0, a positive integer nε can be found such that

∣∣Fn(t) − F(t)
∣∣ < ε for all

n > nε; that is, the Fn(t)’s begin to pile up at F(t) beyond some value nε of n. We
note briefly that the limiting distribution of a random variable Xn may or may not
exist; and if it exists, it may be degenerate; that is, it has a probability of 1 at a
single point t = a. Here t = a is a constant that is independent of n.

If the limiting distribution of a random variable Xn is degenerate at t = a,
then Xn is said to converge stochastically to t = a or, alternatively, Xn converges
to t = a in probability. In this regard, if Xn converges to a in probability, then
a is termed the probability limit of Xn and written p- lim

n→∞ Xn = a or Xn
p−→ a.



320 Chapter 8 Sampling and the Sampling Distribution of a Statistic

More formally, the random variable Xn converges stochastically to the constant a
if and only if, for every arbitrarily small number ε > 0,

lim
n→∞ P (|Xn − a| < ε) = 1.5 (8.29)

Here (8.29) reveals that the probability of Xn differing from a by an arbitrar-
ily small amount ε nears 1 as n increases without bound. Looked at in another
fashion, if (8.29) holds for every ε > 0, then Xn converges stochastically to the
constant a; that is,

lim
n→∞ Fn(t) =

{
0, t < a;

1, t ≥ a

and thus Xn has a limiting distribution with cumulative distribution function

F(t) =
{

0, t < a;

1 t ≥ a.

Note that if Xn is stochastically convergent to a, then Yn = Xn − a converges
stochastically to zero; that is, for every ε > 0, lim

n→∞ P(|Yn| < ε) = 1.

We note briefly that if Xn
p−→ a and X ′

n
p−→ a′, then:

1. Xn + X ′
n

p−→ a + a′;

2. Xn · X ′
n

p−→ a · a′;

3. Xn
X ′

n

p−→ a
a′ ;

4. X1/2
n

p−→ a1/2 if P(Xn ≥ 0) = 1.

Let us frame the preceding discussion in terms of the random variable �Xn, the
mean of a random sample of size n taken from an infinite population with a finite
mean µ and variance σ 2. We know from our earlier results that the mean of Xn is
µ and its variance is σ 2

n . For every fixed ε = kσ√
n > 0, (8.27) becomes

P
(∣∣�Xn − µ

∣∣ < ε
) = 1 − σ 2

nε2

5 Since P(|�Xn − a| < ε) + P(|Xn − a| ≥ ε) = 1, a necessary and sufficient condition for the stochastic
convergence of Xn to a is

lim
n→∞ P(|Xn − a| ≥ ε) = 0, ε > 0. (8.29.1)
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and, for fixed ε > 0 and σ 2 finite,

lim
n→∞ P

(∣∣�Xn − µ
∣∣ < ε

) = lim
n→∞

(
1 − σ 2

nε2

)
= 1. (8.30)

But this result is the gist of the weak law of large numbers (Theorem 8.5); that
is, the preceding convergence concepts imply that the limiting cumulative distri-
bution function of �Xn is degenerate (assigns all of its mass to the single point µ

with probability 1) and thus, via (8.30), �Xn converges stochastically to µ or �Xn

converges to µ in probability. Since (8.30) involves the limit of a sequence of
probability statements, the weak law of large numbers does not state that �Xn is
necessarily getting closer and closer to µ as n gets larger and larger. It does state,
however, that as n increases without bound, the probability tends to 1 that �Xn will
not differ from µ by more than ε.

A stronger form of convergence is provided by the possibility that Xn con-
verges to a with probability 1; that is, for every arbitrarily small number
ε > 0,

P
(

lim
n→∞ |Xn − a| < ε

)
= 1 (8.31)

or

lim
n→∞ P (|Xm − a| < ε, all m > n) = 1. (8.31.1)

This type of convergence is often referred to as almost sure (a.s.) convergence.
Thus Xn converges almost surely to a limiting value a if (8.31) holds, where a is
now termed the almost sure limit of Xn and written pl- lim

n→∞ Xn = a or Xn
a.s.−→ a.

(Note that convergence with probability 1 implies convergence in probability and,
in turn, convergence in probability implies convergence in distribution. However,
converse statements do not hold.) Based upon this convergence concept, the
statement: “If we extract a random sample of size n from a population with finite
mean µ and variance σ 2, the sample mean �Xn converges to µ with probability 1”
is termed the strong law of large numbers.

What is the difference between the weak law of large numbers and its strong
counterpart? The implication of the weak law of large numbers is that for a suf-
ficiently large (fixed) n, the random variable �Xn has a high probability of being
near µ, but it does not stipulate that �Xn will remain near µ if n is increased. The
strong law of large numbers requires that �Xn approaches µ with probability 1 so
that all but a finite number of the �Xn’s are within a distance ε of µ; that is, only
finitely many of the events

∣∣�Xn − µ
∣∣ > ε will occur. Thus �Xn approaches µ with

probability 1.
We close this section by noting that an asymptotic distribution of a random

variable Xn is any distribution that closely approximates the actual distribution
of Xn for large samples. An asymptotic distribution may thus depend upon the
sample size n, whereas a limiting distribution does not.
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8.8 A Central Limit Theorem

We noted earlier (Theorem 8.3) that if we extract a random sample from a nor-
mal population with mean µ and variance σ 2, then the sampling distribution of
the mean (i.e., the random variable �X) is normal with mean µ and variance σ 2

n .
In this instance we can conveniently use the standard normal area table to cal-
culate probabilities involving the random variable �X . To see this, let us as-
sume that we take a random sample of size n = 100 from a population that is
N(µ, σ ) = N(50, 15). What is the probability that the sample mean takes on a
value between 48 and 55? Since �X is N(µ, σ �X ) = N(µ, σ /

√
n) = N (50, 1.5) , it

follows that the standardized sample mean

Z =
�X − µ

σ �X
∼ N(0, 1). (8.33)

Then, in general, since

P(a ≤ �X ≤ b) = P

(
a − µ

σ �X
≤

�X − µ

σ �X
≤ b − µ

σ �X

)
= P

(
z̄1 ≤ Z ≤ z̄2

)
,

it is easily shown that

P(48 ≤ �X ≤ 55) = P

(
48 − 50

1.5
≤

�X − µ

σ �X
≤ 55 − 50

1.5

)

= P
(
−1.33 ≤ Z ≤ 3.33

)
= 0.9082.

But what if we do not have any information pertaining to the form of the popula-
tion probability density function? Can we still use the standard normal area table
to calculate probabilities involving �X? Interestingly enough, the answer, under
certain conditions, is yes.

The justification for an affirmative answer to the preceding question is provided
by what is called a central limit theorem (since it specifies the limiting distribution
of a measure of central location �X). To see this, suppose we select a simple ran-
dom sample of size n from some infinite albeit unknown population. Given that
the sample random variables Xi, i = 1, . . . , n, are independent and identically dis-
tributed, we can determine the approximate sampling distribution of their mean
�Xn = ∑n

i=1
Xi
n if the sample size is relatively large and the population distribution

has mean µ and finite variance σ 2. Under these circumstances the random variable
�Xn will be approximately N(µ, σ �X ) for fixed n.

A formalization of this argument is provided by Theorem 8.6, Central Limit
Theorem.6

6 For a proof of Theorem 8.6 see Appendix 8.A to this chapter.
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THEOREM 8.6. Let Xi, i = 1, . . . , n, represent n independent and identically
distributed sample random variables with E(Xi) = µ and V(Xi) = σ 2 finite
and let the random variable �Xn = ∑n

i=1
Xi
n have mean E(�Xi) = µ and variance

V(�Xi) = σ 2

n so that the standardized sample mean is Zn = �Xn−µ

σ /
√

n .
Then the cumulative distribution function of Zn converges to the N(0, 1)

cumulative distribution function as n → ∞ and thus �Xn is approximately
distributed N(µ, σ �X ).

If we denote the cumulative distribution function of Zn as FZn
(t), then this theorem

indicates that Zn has a limiting standard normal distribution function or

lim
n→∞ FZn

(t) = F(t; 0, 1) = 1√
2π

∫ t

−∞
e− 1

2 x2
dx (8.34)

and thus �Xn has an asymptotic normal distribution with mean µ and variance σ 2

n .
This result is most remarkable and, as a practical matter, allows us to make the
following sequence of assertions: If the distribution of Zn converges to F(t; 0, 1),
then, for sufficiently large n, the distribution of Zn is approximately N(0, 1) and
thus �Xn is approximately N(µ, σ �X ). All this holds regardless of how the sample
random variables Xi, i = 1, . . . , n, are distributed. The only requirement is that the
unknown population has a mean and a finite variance. Of course, if the population
distribution is known, then the distribution of �Xn is known exactly and not just
approximately.

In terms of (8.34), the central limit theorem enables us to infer, for suffi-

ciently large n, that F Zn
(t) ≈ F(t; 0, 1) . For any n, F �Xn

(t) = F Zn

(
t−µ

σ �X

)
. Hence for

sufficiently large n,

F �Xn
(t) ≈ F

(
t − µ

σ �X
; 0, 1

)
= 1√

2π

∫ (t−µ)/σ �X

−∞
e− 1

2 x2
dx; (8.35)

that is, the cumulative distribution function of �Xn is approximately equal to the
standard normal cumulative distribution function regardless of the form of the
population distribution from which the sample random variables Xi, i = 1, . . . , n,
were obtained.

It should be obvious that the greater the departure of the population distribu-
tion from normality, the larger n needs to be in order for Zn to secure an adequate
approximation to the standard normal probability model. For highly skewed pop-
ulations, n > 30 usually will render a good approximation to normality so that,
given µ and σ 2, Zn can be used to calculate probabilities involving �X . (If the
population distribution has high tails and a low center, then n > 100 may be
required.)

It is the Central Limit Theorem that enables us to conclude that, for each
interval from z̄1 to z̄2(z̄1 < z̄2), the probability that the standardized sample mean
Zn assumes a value between z̄1 and z̄2 tends, as n → ∞, to the probability that
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the standard normal variable Z takes on a value between z̄1 and z̄2. And this in
turn allows us to conclude that, as n → ∞,

P
(
a ≤ �Xn ≤ b

) = P(z̄1 ≤ Zn ≤ z̄2) → 1√
2π

∫ z̄2

z̄1

e− 1
2 z2

dz

= F(z̄2; 0, 1) − F(z̄1; 0, 1). (8.36)

Example 8.8.1 If some population model has a mean of µ = 30 and a standard
deviation of σ = 8 and we select a simple random sample of size n = 50 from this
distribution, we can determine, say, the probability that �X will not differ from µ

by more than ±2 units or the probability that
∣∣�X − 30

∣∣ ≤ 2. Then −2 ≤ �X −30 ≤ 2
and thus, via the standard normal area table,

P(28 ≤ �X ≤ 32) = P

(
28 − 30

8
/√

50
≤

�X − µ

σ
/√

n
≤ 32 − 30

8
/√

50

)

= P(−1.76 ≤ Z ≤ 1.76) = 0.9216. �

Example 8.8.2 Let us extract a simple random sample of size n = 80 from a
uniform probability density (7.1) defined over the interval (α, β) = (10, 70). For
this population µ = 80

2 = 40 and σ = 60√
12

= 17.32. Then from the standard

normal area table, the probability that �X takes on a value between, say, 45 and
50 is

P
(
45 ≤ �X ≤ 50

) = P

(
45 − 40

17.32
/√

80
≤

�X − µ

σ
/√

n
≤ 50 − 40

17.32
/√

80

)

= P(2.58 ≤ Z ≤ 5.17) ≈ 0.005. �

Under what circumstances is it appropriate to invoke the conclusions of the
Central Limit Theorem? In many experiments a measurable characteristic can
often be viewed as the additive result of many independent small factors, each of
which may or may not be readily observable or measurable. Hence the Central
Limit Theorem informs us that the normal law is adequate for approximating
sums Sn = ∑n

i=1 Xi of many small independent random variables Xi, i = 1, 2, . . . .
It is the additivity of these many independent random variables that is of vital
importance in that normality obtains from sums of numerous small indepen-
dent causes or disturbances such as errors of measurement—errors that can be
attributed to many independent factors, with each contributing only a small por-
tion to their total impact. So with the sample mean �Xn expressible as a linear
combination of independent and identically distributed sample random variables,
the sampling distribution of the mean is taken as approximately normal for large
n. Have we already observed this phenomenon in action? You need only check
Figure 8.3 to verify that an answer in the affirmative is warranted.
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To underscore the importance of the aforementioned additivity notion in
assessing the limiting behavior of certain sums of random variables, let Sn =∑n

i=1 Xi represent the sum of n independent and identically distributed ran-
dom variables Xi, i = 1, 2, . . . , n, each with mean µ and variance σ 2. Then
E(Sn) = nµ, V(Sn) = nσ 2, and, as n → ∞, the standardized sum

Z′
n = Sn − nµ

σ
√

n

is approximately N(0, 1) distributed; that is, for sufficiently large n and fixed t,

P(Z′
n ≤ t) ≈ F(t; 0, 1) = 1√

2π

∫ t

−∞
e− 1

2 y2
dy.

Note that by virtue of the form of E(Sn) and V(Sn), both the expectation and
variance of the distribution of sums Sn become larger as n increases.

Example 8.8.3 This tendency towards normality of Sn for sufficiently large n
can readily be demonstrated by examining the probability mass function of Sn

for n = 1, 2, 3, 4, where, for the sake of concreteness, Sn denotes the number of
heads obtained in n tosses of a fair coin. Here each Xi is a Bernoulli random
variable with a uniform probability mass function (see Table 8.5) and with mean
E(Xi) = p(= 1

2 ) and V(Xi) = p(1 − p)(= 1
4 ). (In this instance Z′

n above becomes
Z′′

n = Sn−np√
np(1−p)

.)

For n = 1, the sample space has two simple events {E1 = 0, E2 = 1}
and the probability mass or relative frequency distribution of S1 = X1 is given
in Table 8.6a. When n = 2, S2 = X1 + X2 and the sample space has four
simple events {E1, . . . , E4} corresponding to the sums 0 + 0 = 0, 1 + 0 = 1,
0 + 1 = 1, and 1 + 1 = 2, respectively (see Table 8.6b). For n = 3, S3 =
X1 + X2 + X3, the sample space admits eight simple events {E1, . . . , E8} (e.g.,
0 + 1 + 0 = 1), and thus S3’s relative frequency distribution is given in Table 8.6c.
And when n = 4, S4 = X1 + X2 + X3 + X4 and the sample space has 16 sim-
ple events {E1, . . . , E16}. The probability mass function for this case appears in
Table 8.6d.

Table 8.5

Xi P (Xi)

0 1/2
1 1/2

1
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Table 8.6

a. b.

S1 = X1 P (S1) S2 = X1 + X2 P (S2)

0 1/2 0 1/4
1 1/2 1 1/2

1 2 1/4
1

c. d.

S3 = X1 + X2 + X3 P (S3) S4 = X1 + X2 + X3 + S4 P (S4)

0 1/8 0 1/16
1 3/8 1 4/16
2 3/8 2 6/16
3 1/8 3 4/16

1 4 1/16
1

Table 8.7

n E(Si) = np V (Si) = np(1 − p)

1 1/2 1/4
2 1 1/2
3 3/2 3/4
4 2 1
...

...
...

Looking to the mean and variance of each of the probability mass functions
presented in Table 8.6, it is easily shown in Table 8.7 that E(Si) and V(Si) → +∞
as n → +∞. �

8.9 The Sampling Distribution of a Proportion

Let the discrete random variable X represent the number of successes obtained
in n independent and identical trials of a simple alternative experiment. Then X
is distributed binomially with probability mass function

b(X ; n, p) =
(

n
X

)
pX (1 − p)n−X , X = 0, 1, . . . , n, (8.37)
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and cumulative distribution function

P(X ≤ x) =
∑

i≤x

(n
i

)
pi(1 − p)n−i. (8.38)

Here p depicts the probability of a success and 1 − p denotes the probability of a
failure on any given trial of the simple alternative experiment. ThenE(X) = np
and V(X) = np (1 − p).

Additionally, if we view p as the true proportion of successes in the binomial
population, then we may use the statistic P̂ = X

n to depict the proportion of suc-
cesses obtained in a simple random sample of size n taken with replacement from
this population. Here P̂ may be termed the observed relative frequency of a success
and serves as an estimator of the probability of a success p in the population. The
sample realization of P̂ will be denoted as p̂ = x

n , where x is the realized number
of successes. Then the probability of obtaining the proportion p̂ in a sample of
size n is

P(X = np̂) =
(

n
np̂

)
pnp̂(1 − p)n−np̂ (8.39)

and the probability of obtaining a proportion less than or equal to p̂ in a sample
of size n is given by the cumulative distribution function

P(X ≤ np̂) =
∑

i≤np̂

(n
i

)
pi(1 − p)n−i. (8.40)

(Note that if np̂ is not an integer, then we may round down to the nearest integer.)
To calculate the mean and variance of P̂, let us view the outcome on the ith trial

as corresponding to a separate Bernoulli random variable Xi, where Xi = 1 (when
a success occurs) or Xi = 0 (for a failure). Then the Xi, i = 1, . . . , n, represent
a set of independent and identically distributed sample random variables with
E(Xi) = p, V(Xi) = p(1 − p), i = 1, . . . , n, and since X = ∑n

i=1 Xi, P̂ =
X
n = 1

n

∑n
i=1 Xi is simply the average number of successes in the n trials. Since

P̂ is a random variable, its relationship to the random variable X is provided by
Theorem 8.7:

THEOREM 8.7. If X1, . . . , Xn are independent Bernoulli random variables
having the same mean E(Xi) = p and variance V(Xi) = p(1 − p), then
E(P̂) = p and V(P̂) = p(1−p)

n .

To verify this set of results we need only compute

(a) E(P̂) = E
(

X
n

)
= 1

n
E(X) = 1

n
(np) = p

(8.41)
(b) V

(
P̂
)

= V
(

X
n

)
= 1

n2
V(X) = 1

n2 [np(1 − p)] = p (1 − p)

n
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Here (8.41a) informs us that the average of the sample proportions taken over
all possible samples of size n is equal to the population proportion p. Next, from
(8.41b), the positive square root of V(P̂) will be denoted as

σP̂ =
√

p (1 − p)

n
(8.42)

and termed the standard error of the sample proportion. This value serves as a
measure of how sample proportions vary, due to chance, from sample to sample
under random sampling. Note that (8.42) holds if we sample from an infinite
population or if we sample with replacement from a finite population. But if we
sample without replacement from a finite population of size N and if n > 0.05N ,
then

σP̂ =
√

p (1 − p)

n

√
N − n
N − 1

, (8.42.1)

where the term
√

(N − n)/(N − 1) is the finite population correction factor.
To construct the sampling distribution of the proportion P̂ = X

n , let us
first determine the probability distribution of the random variable X. Here
X = ∑n

i=1 Xi is a binomial random variable depicting the number of successes
obtained in n trials of a Bernoulli experiment, where each Xi, i = 1, . . . , n, is a
Bernoulli random variable with realizations 0 or 1. And since the Xi are indepen-
dent and identically distributed sample random variables, any particular set of
realizations obtained in the n trials is the n-tuple (X1 = x1, X2 = x2, . . . , Xn = xn)
with probability

P(X1 = x1, . . . , Xn = xn) =
n∏

i=1

P(X = xi), (8.43)

where P(Xi = xi = 1) = p and P(Xi = xi = 0) = 1 − p for all i = 1, . . . , n.

Example 8.9.1 Specifically, suppose we toss a coin (possibly fair) n = 4 times in
succession and count the number of successes X obtained in the four trials, where
a success is defined as the coin shows heads. Then X = X1 + X2 + X3 + X4 is a
random variable depicting the total number of heads obtained in the four tosses
and Xi is the number of heads obtained (either 0 or 1) on the ith toss, i = 1, 2, 3, 4.
Since there are N = 2 possible outcomes (heads (H) or tails (T)) for each of
the n = 4 tosses of the coin, the total number of possible ordered 4-tuples is
Nn = 24 = 16. These outcome 4-tuples, the realizations of the Xi, the realizations
of X, and their probabilities are all depicted in Table 8.8. For instance, at the
outcome point (H, H, T, T): x1 = x2 = 1, x3 = x4 = 0, x = 2, and, by virtue of
(8.43), P(x = 2) = p · p · (1 − p)(1 − p) = p2(1 − p)2.

Based on the results presented in Table 8.8, the probability or sampling distri-
bution of X is indicated in Table 8.9a, and the sampling distribution of P̂ = X

n = X
4
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Table 8.8

Realizations of Xi : Realization of X: Probability:
Outcome Point x1 x2 x3 x4 x = ∑4

i=1 xi P (X = x)

H H H H 1 1 1 1 4 p4

H H H T 1 1 1 0 3 p3(1 − p)
H H T H 1 1 0 1 3 p3(1 − p)
H H T T 1 1 0 0 2 p2(1 − p)2

H T H H 1 0 1 1 3 p3(1 − p)
H T H T 1 0 1 0 2 p2(1 − p)2

H T T H 1 0 0 1 2 p2(1 − p)2

H T T T 1 0 0 0 1 p(1 − p)3

T H H H 0 1 1 1 3 p3(1 − p)
T H H T 0 1 1 0 2 p2(1 − p)2

T H T H 0 1 0 1 2 p2(1 − p)2

T H T T 0 1 0 0 1 p(1 − p)3

T T H H 0 0 1 1 2 p2(1 − p)2

T T H T 0 0 1 0 1 p(1 − p)3

T T T H 0 0 0 1 1 p(1 − p)3

T T T T 0 0 0 0 0 (1 − p)4

Table 8.9

a. b.

Sampling Distribution of Sampling Distribution of the
X = ∑4

i=1 Xi Proportion P̂ = X
n

= X
4

X P (X = x) P̂ P (P̂ = x
4 )

0 (1 − p)4 0 (1 − p)4

1 4p(1 − p)3 1/4 4p(1 − p)3

2 6p2(1 − p)2 1/2 6p2(1 − p)2

3 4p3(1 − p)2 3/4 4p3(1 − p)2

4 p4 1 p4

1 1

c. d.

Sampling Distribution of Sampling Error
P̂ = X

4 when p = 1
2

x
4 − p = x

4 − 1
2

P̂ P (P̂ = x
4 ) 0 − 1

2 = − 1
2

0 1/16 1
4 − 1

2 = − 1
4

1/4 1/4 1
2 − 1

2 = 0

1/2 3/8 3
4 − 1

2 = 1
4

3/4 1/4 1 − 1
2 = 1

2

1 1/16
1
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P (P =    )
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4

Figure 8.4 Probability mass function for the sampling distribution of P̂ = X
4 when p = 1

2 .

is given by Table 8.9b. Moreover, if p = 1
2 (the coin is fair), the distribution

of P̂ for this special case is depicted in Table 8.9c and illustrated graphically in
Figure 8.4. In addition, as required by (8.41a), E(P̂) = p = 1

2 ; and from (8.41b),

V(P̂) = p(1−p)
n = 1

16 . Note that, by virtue of these results, the sampling distribution
of P̂ : (a) is centered at p = 1

2 ; and (b) becomes more concentrated about p as n
increases; that is, V(P̂) → 0 as n → ∞.

So for a fixed n, as the number of repetitions of our simple alternative exper-
iment gets larger and larger, the resulting relative frequency distribution gets
closer and closer to the true sampling distribution of P̂. Finally, the sampling
errors associated with the various x

4 values are indicated in Table 8.9d. These
sampling errors reflect the inherent natural variation in the sample proportions
due to chance under random sampling. �

We noted earlier that, by virtue of (8.41b), the scatter or spread of the realiza-
tions of P̂ = X

n (the x
n ’s) about p varies inversely with the sample size n. Hence the

probability of P̂ being close to p increases with increasing n. This latter observa-
tion sets the stage for a discussion of the weak law of large numbers for proportions
since P̂ = X

n = 1
n

∑n
i=1 Xi is a specialization of the sample mean for Xi = 0 or

1, i = 1, . . . , n.
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In this regard, the average number of successes P̂ = X
n in n independent

Bernoulli trials should be near p for sufficiently large and fixed n. Hence the
weak law of large numbers informs us that as n increases without bound, the
probability that the average number of successes P̂ deviates from p by less than
any preassigned tolerance level ε > 0 tends to 1 or

P
(∣∣∣P̂ − p

∣∣∣ < ε
)

→ 1 as n → ∞, (8.44)

that is, P̂ converges stochastically to p. To see this let us express Chebyshev’s
inequality in terms of P̂ as

P
(∣∣∣P̂ − p

∣∣∣ < kσP̂

)
≥ 1 − 1

k2
, k > 0. (8.45)

For σP̂ =
√

p(1−p)

n and ε = k
√

p(1−p)

n , this expression can be rewritten as

P
(∣∣∣P̂ − p

∣∣∣ < ε
)

= 1 − p(1 − p)
nε2

and, for fixed ε > 0,

lim
n→∞ P

(∣∣∣P̂ − p
∣∣∣ < ε

)
= 1.

Probability statement (8.44) may be written in the alternative form

P
(∣∣∣P̂ − p

∣∣∣ ≥ ε
)

→ 0 as n → ∞, (8.44.1)

that is, the probability that the average number of successes P̂ differs from p by
more than ε > 0 tends to zero as n increases indefinitely. Note that neither (8.44)
nor (8.44.1) implies that P̂ itself necessarily gets closer and closer to p. But if, as
n → ∞, P̂ remains near p, then the strong law of large numbers applies; that
is, the probability is 1 that only finitely many of the terms |P̂ − p| > ε > 0 will
occur (or all but a finite number of P̂’s are within a distance ε of p). Hence the
probability is 1 that P̂ − p becomes smaller and stays small as n → ∞ or

P
(

lim
n→∞

∣∣∣P̂ − p
∣∣∣ < ε

)
= 1.

Thus P̂ converges to p with probability 1 or P̂ converges almost surely to p.
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We noted earlier that Chebyshev’s Theorem provides us with a very general
statement about the probability of P̂ being near p. A more satisfactory estimate
of this probability can be made if we possess knowledge about the form of the
sampling distribution of P̂. Since P̂ represents the average number of successes in a
sample of size n, a useful approximation to the form of the probability distribution
of P̂ is provided, for large n, by the Central Limit Theorem.

Given that the result obtained on each trial of a simple alternative experi-
ment is recorded as the realization xi of the individual Bernoulli random
variable Xi, i = 1, . . . , n, it follows that these Xi’s are independent and iden-
tically distributed. Hence the Central Limit Theorem applies to their mean
P̂ = X

n = 1
n

∑n
i=1 Xi. Since each individual Xi is a binomial random variable

(take n = 1) with mean p and standard deviation
√

p(1 − p), it follows that the
mean of P̂ is p and the standard deviation of P̂ is

√
p(1 − p)/n. Hence the random

variable

ZP̂ = P̂ − p
√

p(1 − p)/n
(8.46)

is approximately N(0, 1) for large n.
Looked at in another fashion, we previously noted in Chapter 7 that, by virtue

of the De Moivre–Laplace–Gauss Limit Theorem, the standardized binomial ran-
dom variable X = ∑n

i=1 Xi has as its limiting distribution the standard normal
distribution; that is,

X − np
√

np(1 − p)
−→d Z = N(0, 1).

But since

X − np
√

np(1 − p)
=

X
n − p

√
np(1 − p)

/
n

= ZP̂

(from (8.46)), the De Moivre–Laplace–Gauss limit result carries over to P̂ as well
so that P̂ is approximately N(p, σP̂).

Example 8.9.2 Suppose we toss a fair coin n = 100 times in succession and
count the total number of heads (deemed a success) X obtained. What is the
probability that the average number of heads P̂ will not differ from p(= 0.5)
by more than 3%? In this instance σP̂ = √

0.5(0.5)/100 = 0.05. Hence we are
interested in finding

P(p − 0.03 ≤ P̂ ≤ p + 0.03) = P

(
−0.03

0.05
≤ P̂ − p

σP̂

≤ 0.03
0.05

)
= P(−0.6 ≤ ZP̂ ≤ 0.6).
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Since ZP̂ is approximately N(0, 1), it is readily demonstrated that the preceding
probability simplifies to 0.4515. �

8.10 The Sampling Distribution of the Variance

Let us extract a random sample of size n from an infinite population (or, equi-
valently, sample with replacement from a finite population). Then the sample
random variables Xi, i = 1, . . . , n, are independent and identically distributed
with E(Xi) = µ and V(Xi) = σ 2 for all i, where µ and σ 2 are the population mean
and variance, respectively, and it is assumed that σ 2 is finite.

Suppose we are interested in the variability of a given measurable character-
istic X associated with some random phenomenon. Then we must examine the
properties of the statistic

S2 =

n∑
i=1

(Xi − �X)2

n − 1
(8.47)

or the sample variance of the Xi. (If xi is the realization of Xi and x̄ is the realization

of �X , then s2 =
∑n

i=1(xi−x̄)2

n−1 is the realization of S2.) In this regard, to determine
how sample variances would be expected to vary, due to chance, under random
sampling, we can derive empirically the distribution of individual sample variances
and then examine its properties. As was the case for the sample mean �X , various
general properties of the distribution can be determined.

Since S2 is a random variable, its relationship to the population random
variable X is provided by Theorem 8.8:

THEOREM 8.8. If X1, . . . , Xn are independent sample random variables
having the same distribution with mean µ and variance σ 2, then:

E(S2) = σ 2; (8.48)

V(S2) = 1
n

[
µ4 −

(
n − 3
n − 1

)
σ 4
]

, n > 1, (8.49)

where µ4 = E[(X − µ)4] is the fourth central moment of the population.

We may easily rationalize (8.48) by first noting that

n∑

i=1

(Xi − �X)2 =
n∑

i=1

(Xi + µ − µ − �X)2 =
n∑

i=1

[(Xi − µ) − (�X − µ)]2

=
n∑

i=1

(Xi − µ)2 − n(�X − µ)2.
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Then

E(S2) = 1
n − 1

E

[
n∑

i=1

(Xi − �X)2

]

= 1
n − 1

E

[
n∑

i=1

(Xi − µ)2 − n(�X − µ)2

]

= 1
n − 1

[
n∑

i=1

E(Xi − µ)2 − nE(�X − µ)2

]

= 1
n − 1

[
nσ 2 − nV(�X)

]

= 1
n − 1

[
nσ 2 − n

(
σ 2

n

)]
= σ 2.

This result informs us that the average of the sample variances taken over all
possible samples of size n is equal to the population variance. Hence the sampling
distribution of S2 is centered at σ 2.

Next, for

S2 =

n∑
i=1

(Xi − �X)2

n − 1
=

n∑
i=1

(Xi − µ)2 − n(�X − µ)2

n − 1
,

we seek to determine, using (8.48),

V(S2) = E
{[

S2 − E(S2)
]2} = E

[
(S2 − σ 2)2] = E(S2)2 − σ 4.

Then

E(S2)2 = E

⎡

⎢⎢⎣

n∑
i=1

(Xi − �X)2

n − 1

⎤

⎥⎥⎦

2

= 1
(n − 1)2

E

[
n∑

i=1

(Xi − µ)2 − n(�X − µ)2

]2

= 1
(n − 1)2

E

⎡

⎣
(

n∑

i=1

(Xi − µ)2

)2

− 2n(�X − µ)z

(8.50)

×
n∑

i=1

(Xi − µ)2 + n2(�X − µ)4

]
.
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Upon taking the expectation of each term within the square brackets of (8.50)
separately, it can be shown (with some extensive algebraic manipulations) that:

1. E
(

n∑
i=1

(Xi − µ)2

)2

= n
(
µ4 + (n − 1)σ 4

)
;

2. 2nE
(

(�X − µ)2
n∑

i=1
(Xi − µ)2

)
= 2

(
µ4 + (n − 1)σ 4

)
;

and

3. n2E
[
(�X − µ)4

] = 1
n (µ4 + 3(n − 1)σ 4).

Substituting 1–3 into (8.50) we obtain

E(S2)2 = 1
n

[
µ4 +

(
n2 − 2n + 3

n − 1

)
σ 4
]

. (8.50.1)

Hence from (8.50.1),

V(S2) = E(S2)2 − σ 4 = 1
n

[
µ4 −

(
n − 3
n − 1

)
σ 4
]

.

Note that V(S2) → 0 as n → ∞.
It is important to note that these results are quite general and independent of

the form of the population probability density function. Unfortunately, unless we
have prior knowledge concerning the shape of the population density function, we
cannot say much about the form of the distribution of sample variances. (However,
if we are sampling from a normal population, then much more can be said about
the form of the sampling distribution of the variance; as the next chapter will
attest, under the assumption of normality of the population density function, the
distribution of sample variances is chi-square distributed.)

We saw earlier that the weak law of large numbers could be applied to �X
as an estimator of µ. A similar law applies to S2 as an estimate of σ 2. (In what
follows we shall denote the sample variance computed from a random sample of
size n as S2

n to emphasize its dependence on n.) To see this we need only note
that since the Xi, i = 1, . . . , n, are independent and identically distributed sample
random variables whose individual variances exist, the weak law of large numbers
for variances states that the variance of these variables converges to their common
variance σ 2 as the sample size increases. Thus realizations of S2

n can be expected
to be close to σ 2 as more sample random variables are introduced.

Stated alternatively, the weak law of large numbers for variances implies that
there exists a sample size n such that the probability is as close to 1 as desired that
the difference between S2

n and σ 2 will not exceed some arbitrarily small quan-
tity. More formally, we have Theorem 8.9 (Weak Law Of Large Numbers for
Variances).
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THEOREM 8.9. Let S2
n be the variance of a random sample of size n taken

from an infinite population with finite variance σ 2. Then for every fixed ε > 0,

lim
n→∞ P

(∣∣S2
n − σ 2

∣∣ < ε
) = 1, (8.51)

that is, S2
n converges stochastically to σ 2 (or S2

n converges to σ 2 in probability).
To see this let us express Chebyshev’s inequality (4.19.2) in terms of S2

n as

P
(∣∣S2

n − σ 2
∣∣ < k

√
V(S2

n)
)

≥ 1 − 1
k2

or

P
(∣∣S2

n − σ 2
∣∣2 < k2V(S2

n)
)

≥ 1 − 1
k2

. (8.52)

If we take ε = k
√

V(S2
n), then (8.52) becomes

P
(∣∣S2

n − σ 2
∣∣2 < ε2

)
≥ 1 − V(S2

n)
ε2

. (8.52.1)

Then

lim
n→∞ P

(∣∣S2
n − σ 2

∣∣2 < ε2
)

= lim
n→∞

(
1 − V(S2

n)
ε2

)
= 1

since V(S2
n) → 0 as n → ∞. Hence a sufficient condition that S2

n converges in
probability to σ 2 is V(S2

n) → 0 as n → ∞.

Example 8.10.1 To see exactly how the sampling distribution of the variance
is determined, let us take as our finite population of size N = 6 the set of values
X : 1, 2, 3, 4, 5, 6. Here the mean and variance of this population are µ = 3.5 and
σ 2 = 2.916, respectively. If we select random samples of size n = 2 with replace-
ment, then, if the order in which the values are chosen matters, we obtain
Nn = 62 = 36 possible random samples, with the probability of choosing any
one sample equal to 1

36 . Given that the sample random variables Xi have realiza-
tions xi, i = 1, 2, each sample can be written as the ordered pair (x1, x2). The 36
samples and their associated sample variances are presented in Table 8.10a. If we
form the relative frequency distribution of these sample variances, then this con-
struct represents the sampling distribution of the variance for all possible ordered
samples of size n = 2 taken with replacement from a population of size N = 6.
This sampling distribution is illustrated in Table 8.10b.
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Table 8.10

a. b.

Sample Realizations Sample Variances Sampling Distribution
Number (x1, x2) s2

j , j = 1, . . . , 36 of the Variance

1 1, 1 0 S2 P (S2 = s2
i ))

2 1, 2 0.5 0 6/36
3 1, 3 2 0.5 10/36
4 1, 4 4.5 2 8/36
5 1, 5 8 4.5 6/36
6 1, 6 12.5 8 4/36
7 2, 1 0.5 12.5 2/36
8 2, 2 0 1
9 2, 3 0.5

10 2, 4 2
11 2, 5 4.5
12 2, 6 8
13 3, 1 2
14 3, 2 0.5
15 3, 3 0
16 3, 4 0.5
17 3, 5 2
18 3, 6 4.5
19 4, 1 4.5
20 4, 2 2
21 4, 3 0.5
22 4, 4 0
23 4, 5 0.5
24 4, 6 2
25 5, 1 8
26 5, 2 4.5
27 5, 3 2
28 5, 4 0.5
29 5, 5 0
30 5, 6 0.5
31 6, 1 12.5
32 6, 2 8
33 6, 3 4.5
34 6, 4 2
35 6, 5 0.5
36 6, 6 0

As indicated earlier (Theorem 8.8):

E(S2) = σ 2 = 2.916;

V(S2) = 1
n

[
µ4 −

(
n − 3
n − 1

)
σ 4
]

= 1
2

[
88.378

6
+ 38.503

]
= 11.616.
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P (S2 = si
2)

10
36

8
36

6
36

4
36

2
36

S20 1 2 3

E(S2) = σ2

↑

4 5 6 7 8 9 1110 12

Figure 8.5 Probability mass function for the sampling distribution of S2.

Clearly the sampling distribution of the variance is centered exactly on the
population variance (see Figure 8.5). �

What Table 8.10b provides us with is an approximation to the true (unknown)
sampling distribution of the sample variance—a theoretical distribution that asso-
ciates with realizations s2 of S2 the probability mass (density) of each taken over
all possible samples of a given size. And for fixed n, as the number of random
samples taken gets larger and larger, the resulting relative frequency distribution
tends to get closer and closer to the true sampling distribution of the variance.

8.11 A Note on Sample Moments

It was mentioned earlier that for a random sample of size n, the sample mean
�Xn = 1

n

∑n
i=1 Xi and the sample variance S2

n =
∑n

i=1(Xi−�Xn)2

n−1 are statistics used
to estimate the population mean µ and population variance σ 2, respectively. As
we shall now see, �Xn and S2

n can be thought of as special cases of more general
concepts called sample moments. In this regard, we may view sample moments as
statistics that are used to estimate their population counterparts.

More formally, let X1, . . . , Xn constitute a random sample of size n taken from
an infinite population (or from some population probability density function).
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Then the rth sample moment about zero is defined as

M′
r = 1

n

n∑

i=1

Xr
i . (8.53)

Note that for r = 1, M′
1 = �Xn; that is, the first sample moment about zero is

simply the sample mean. Note also that the sample variance S2
n can be written in

terms of sample moments about zero as

S2
n =

n∑
i=1

(Xi − �Xn)2

n − 1
= 1

n − 1

(
n∑

i=1

X2
i − n�X2

n

)
=
(

n
n − 1

)[
M′

2 − (
M′

1

)2
]

.

We may next specify the rth sample moment about the mean of X or the rth central
sample moment as

Mr = 1
n

n∑

i=1

(Xi − �Xn)r . (8.54)

Remember that the population counterparts of (8.53) and (8.54) are, for X a
random variable, µ′

r = E(Xr) and µr = E(X − µ)r , respectively (see (4.21)
through (4.24)). In addition, M′

r and Mr are currently random variables. However,
once a sample is taken, these variables have realizations

m′
r = 1

n

n∑

i=1

xr
i

and

mr = 1
n

n∑

i=1

(xi − x̄n)r ,

respectively, where xi is the realization of Xi, i = 1, . . . , n, and x̄n is the realization
of �Xn.

We mentioned earlier that the sampling distributions of the mean and variance
were centered on the population mean and population variance, respectively, or
E(�Xn) = µ, E(S2

n) = σ 2. A similar result holds for the sampling distributions
of sample moments taken about zero. That is, the various sample moments M′

r ,
r = 1, 2, . . . , can be used to estimate their corresponding population moments
since the sampling distribution of M′

r is concentrated about µ′
r . This result is
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incorporated in Theorem 8.10:

THEOREM 8.10. Let X1, . . . , Xn represent a set of independent and identi-
cally distributed sample random variables whose individual moments about
zero µ′

r and µ′
2r exist. Then the mean and variance of the rth sample moment

taken about zero can be expressed in terms of population moments as:

E(M′
r) = µ′

r ; (8.55)

V(M′
r) = 1

n

[
µ′

2r − (µ′
r)

2] . (8.56)

To verify these results let us first determine

E(M′
r) = 1

n
E

(
n∑

i=1

Xr
i

)
= 1

n

n∑

i=1

E(Xr
i ) = 1

n

n∑

i=1

µ′
r = µ′

r .

Next,

V(M′
r) = 1

n2
V

(
n∑

i=1

Xr
i

)

= 1
n2

n∑

i=1

V(Xr
i )

= 1
n2

n∑

i=1

[
E(X2r

i ) − E(Xr
i )2]

= 1
n2

n∑

i=1

[
µ′

2r − (µ′
r)

2] = 1
n

[
µ′

2r − (µ′
r)

2] .

For instance, if X1, . . . , Xn are independent sample random variables having the
same distribution with mean µ and variance σ 2, then it is easily shown that
E(M′

1) = µ′
1 = µ or that E(�Xn) = µ. In addition, V(M′

1) = 1
n [µ′

2 − (µ′
1)2] or

V(�Xn) = σ 2

n .

Appendix 8.A Proof of a Central Limit Theorem

In order to offer a proof of a Central Limit Theorem (presented as Theorem 8.6,
earlier), first we need to introduce the concept of convergence of moment-
generating functions. In this regard, suppose that {Xi, i = 1, 2, . . . , n} is a sequence



Appendix 8.A Proof of a Central Limit Theorem 341

of random variables whose individual moment-generating functions mXi (t), i =
1, . . . , n, exist for all |t| < t0, t0 > 0. Also, suppose that X is a random variable
whose moment-generating function mX (t) exists, also for all |t| < t0, and that

lim
i→∞

mXi (t) = mX (t). (8.A.1)

Then mX (t) is termed the limiting moment-generating function of the random
variables Xi, i = 1, . . . , n. Moreover, let FXi (s) depict the cumulative distribution
function of Xi and let FX (s) represent the cumulative distribution function for X.
Then if (8.A.1) holds, the cumulative distribution functions of the Xi converge
to the cumulative distribution function of X, that is, for all points where FX is
continuous,

lim
i→∞

FXi (s) = FX (s). (8.A.2)

So for all t within some suitably restricted neighborhood of zero, convergence
of mXi (t) to mX (t) implies convergence of FXi (s) to FX (s). And since mX (t)
is unique, there is only one probability density function fX (x) that yields this
moment-generating function.

Armed with these considerations, the proof of a Central Limit Theorem that
immediately follows is thus based upon demonstrating that, for |t| < t0, the
moment-generating function of some random variable Zn tends to that of a stan-
dard normal random variable Z as n → ∞. But this, in turn, implies that �Zn

has a cumulative distribution function that converges to that of a N(0, 1) random
variable.

For {Xi, i = 1, 2, . . . , n} a set of independent and identically distributed
sample random variables with E(Xi) = µ and V(Xi) = σ 2 finite for all i, let
�Xn = 1

n

∑n
i=1 Xi with E(�Xn) = µ and V(�Xn) = σ 2/n. In addition, let Zi =

(Xi − µ)/σ , i = 1, . . . , n, with �Zn = �Xn−µ

σ /
√

n . Since

�Zn =
∑n

i=1 Xi − nµ

n( σ√
n )

= 1√
n

n∑

i=1

Zi

and the Zi, i = 1, . . . , n, constitute a set of independent and identically distributed
random variables (since the Xi are independent and identically distributed), it
follows from (5.73.4) that

mZn
(t) = m∑

i

Zi√
n

(t) = m∑

i
Zi

(
t√
n

)
=
[

mZ

(
t√
n

)]n

=
[
E
(

etZ/
√

n
)]n

, |t| < σ
√

nt0, (8.A.3)

where mZ(t) denotes the common moment-generating function of the Zi’s, which
is taken to be finite for |t| < σ t0, t0 > 0. In addition E(Z) = 0 and E(Z2) = 1.
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If etZ/
√

n is replaced by its Maclaurin’s series expansion, we obtain

etZ/
√

n = 1 + t√
n

Z + t2

2!nZ2 + t3

3!n3/2
Z3 + · · · . (8.A.4)

Given this expression,

E
(

etZ/
√

n
)

= 1 + t2

2!n + t3

3!n3/2
E(Z3) + · · · (8.A.5)

and thus (8.A.3) becomes

mZn
(t) =

[
mZ

(
t√
n

)]n

=
{

1 + 1
n

[
t2

2! + t3

3!√n
+ · · ·

]}n

=
(

1 + an

n

)n
, (8.A.6)

where the square bracketed term is denoted as an. Now, since the terms within an

save for t2

2! all contain positive powers of n in their denominators, it follows that

as n → ∞, all terms within an except t2

2 (remember that t is fixed in value) go to
zero as a limit. Hence

lim
n→∞ m �Zn

(t) = lim
n→∞

(
1 + an

n

)n = et2/2. (8.A.7)

Remember that et2/2 or (7.A.1) is the moment-generating function for a standard
normal random variable.

As we alluded earlier, if the sequence of moment-generating functions
m �Zn

(t) → mZ(t) = et2/2, then the limit of the cumulative distributions FZn
(s) must

be F(s; 0, 1), the cumulative distribution function corresponding to the moment-
generating function et2/2. So if �Xn has a limiting N(0,1) cumulative distribution
function or

lim
n→∞ F �Xn

(s) = F(s; 0, 1),

then �Xn has an asymptotic normal distribution and thus the limiting distribution
of �X is N(µ, σ√

n ).

8.12 Exercises

8-1. Suppose a random variable X is N(µ, 1.5). Given n = 10, determine the
probability that �X will not differ from µ by more than 0.5 units. (Hint:
Z = (�X − µ)/σ�X is N(0, 1).)

8-2. Suppose as in Exercise 8-1 we know that X is N(µ, 1.5). How large of a
sample will be needed if we require that P(|�X − µ| ≤ 0.5) = 0.95?
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8-3. Suppose that from a population of size N = 20 random samples of size
n = 4 are to be selected. How many possible samples can be obtained?
What is the probability that any one of them will be selected?

8-4. List all possible samples of size n = 2 given the population X : A, B, C,
D, E, F . If A = 3, B = 5, C = 6 = D, E = 7, and F = 8, determine
the sampling distribution of the mean.

8-5. Let the random variables X1, . . . , X4 be Poisson distributed with mean λ.
Determine the joint probability distribution of the Xi, i = 1, . . . , 4. Are
these random variables independent?

8-6. If a population variable X is N(200, 12) and the sample size is n = 16, find:

(a) P(�X > 206)

(b) P(�X ≤ 209)

(c) P(195 < �X < 203)

8-7. Suppose a population variable X is N(2800, 2500). If a random sample of
size n = 36 is selected, find the probability that the sample mean �X will not
differ from the population mean µ by more than 30. Within what interval
would �X fall 90% of the time under random sampling for samples of size
36? How large of a sample must be taken so that the probability that �X is
within 20 units of µ is 0.95?

8-8. Suppose a population variable X has a mean of 35 and a standard deviation
of 10. What is the expression for σ �X , the standard error of the mean? If
a sample of n = 2000 is taken, what is the value of σ �X ? Use Chebyshev’s
Theorem to find the probability that the difference between �X and µ is less
than 3 units.

8-9. A population distribution has an unknown mean with σ = 2.5. How large
of a sample must be drawn so that the probability is at least 0.99 that �Xn

will lie within one unit of the population mean?

8-10. Let X be the outcome obtained on the toss of a fair single six-sided die
and let Y be the number of heads obtained on three flips of a fair coin.
Determine the joint probability mass function. Are X and Y independent
random variables? Also, find: E(X); E(Y); V(X); and V(Y). If W =
2X + 3Y , find E(W) and V(W).

8-11. Let X1, X2, and X3 depict sample random variables drawn from a pop-
ulation with probability density function f (x) = 2e−2x, 0 ≤ x < +∞.
What is the joint probability density function of these random variables?
What is its generalization to a random sample of size n? What is the
moment-generating function of Y = X1 + X2 + X3?

8-12. If X1, . . . , Xn depicts a random sample of size n taken from the probability
density function f (x; 2) = 2e−2x, 0 ≤ x < +∞ (see Exercise 8-11), find
P (X1 > 10, X2 > 10, . . . , Xn > 10).
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8-13. In a sample of n = 100 observations the number of successes was found to
be X = 35. If the population proportion is p = 0.40, find:

(a) P(P̂ ≤ 0.38)

(b) P(P̂ ≥ 0.50)

8-14. A nutritionist claims that about 50% of the individuals tasting a new soft
drink can detect the presence of a certain artificial sweetener. If the claim
is correct, find the probability that out of a random sample of size n = 70,
30 or fewer individuals detect the sweetener. What is the probability that
more than 60 detect it?

8-15. Suppose a population variable X has an unknown mean µ but a known vari-
ance σ 2. A random sample of size n is selected. Are the following quantities
statistics?

(a) �X
(b) �X + µ

(c) �X + σ 2

(d) X3

(e) X2 + µ − σ 2

(f)
1
2

min {Xi}
(g) �X /

√
n

(h) �X /σ

(i) logXi

8-16. Suppose that X has an unknown mean µ with σ 2 = 3. How large of a
sample must be taken so that the probability will be at least 0.90 that �X will
lie within 0.6 of the population mean? How large of a sample would you
need to be 99% certain that �X is within one standard deviation of µ? (Hint:
Use the law of large numbers.)

8-17. Given the letters A, B, C, and D, determine the number of different samples
of size n = 2 that can be selected:

(a) With replacement

(b) Without replacement

If n = 3, recalculate (a) and (b).

8-18. N = 8 different items are within a population. If we wish to select a sample
of size n = 3, how many ways are there of sampling? What is the probability
that any one sample will be chosen? What is the probability that any one
item will be in the sample?

8-19. Suppose that a population variable X has the values 1, 2, 3, 4, 5, and 6.
Determine the sampling distribution of the mean for samples of size n = 2.
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What is its mean and standard deviation? Repeat this exercise for n = 3
and compare your results.

8-20. Which of the following statements are true?

(a) If X is N (µ, σ), then �X is N(µ, σ√
n ).

(b) If X is not N(µ, σ ), then �X is approximately N(µ, σ√
n ) for large n.

(c) If X is not N (µ, σ), then Y = ∑n
i=1 Xi is approximately N

(
nµ, σ

√
n
)

for large n.

8-21. Let X1, . . . , Xn be independently distributed Bernoulli b(Xi; n, p) random
variables with 0 < p < 1 for all i = 1, . . . , n, where E(Xi) = p
and V(Xi) = p(1 − p). Demonstrate that �Xn converges in probability to
E(Xi) = p.

8-22. Let X1, . . . , Xn be independently distributed Poisson p(X ; λ) random vari-
ables with λ > 0 for all i = 1, . . . , n. Demonstrate that �Xn converges in
probability to E(Xi) = λ.

8-23. Let X1, . . . , Xn be independently distributed N(µ, 1) random variables
with −∞ < µ < +∞. Find a real number A such that e�Xn converges in
probability to A.

8-24. Let Xn be b(X ; n, p). Does 1 − (Xn/n) converge stochastically to 1 − p?

8-25. Suppose Xn is N
(
0, n−1/2

)
. Verify that {Xn} converges to 0 in distribution.

8-26. Based upon past experience, it is known that a certain manufacturing pro-
cess has a defect rate of 3%. A random sample of size n = 450 is taken from
a large production run and the CEO wants to determine the probability
that the sample proportion of defectives will not exceed 1%. If you are the
production manager, what is your response to the CEO?

8-27. Suppose a random variable X is N(4, 1.5). If a random sample of size
n = 25 is drawn, what is the probability that �X will exceed 4.5?

8-28. A particular socioeconomic group has a mean annual income of µ =
$35,800 with σ = $3,500. A random sample of n = 250 individuals from
this group is taken. What is the probability that �X will be within $500
of µ?

8-29. In a mayoral election last year candidate A received 55% of the 8,576 votes
cast. If a random sample of n = 200 eligible voters had been taken the day
before the election, what would have been the probability that candidate
A would have received at least 50% of the votes cast?

8-30. Suppose the sampling distribution of the sample variance has been de-
termined from samples of size n = 4 taken from a population variable
X : −2, 0, 1, 2, 3, 4, 5, 7. Find its mean and variance.

8-31. Given the sample values 1, 3, 1, 5, 8, and 2, find M′
1 and M′

2. Use them to
determine S2. Also find M3 and M4.
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8-32. Demonstrate that the mean �X of a random sample of size n drawn
from a population random variable X, which is N(µ, σ ), is distributed as
N(µ, σ /

√
n).

8-33. Let a random variable X be binomial b(X ; n, p). Demonstrate that the
limiting moment-generating function of X is the moment-generating func-
tion of a Poisson random variable Y with mean λ. (Hint: Starting with
mX (t) = (1 − p + pet)n, take the limit as n → ∞ with np = λ = constant.)

8-34. Let {X1, . . . , Xn} be a set of sample random variables drawn from a distri-
bution that is N(σ , µ). Demonstrate that the limiting moment-generating
function of �Xn is eµt . How do we interpret this result? If X is not normally
distributed, demonstrate that this result still holds.

8-35. Suppose X1, . . . , Xn depicts a random sample drawn from the gamma prob-
ability density function (7.48). What is the form of the sampling distribution
of �X?

8-36. Determine the moment-generating function of the observed relative fre-
quency of a success P̂ = X

n , where X = ∑n
i=1 Xi is the sum of n independent

Bernoulli random variables Xi ( = 0 or 1), i = 1, . . . , n.

8-37. Suppose X1, X2 are independent random variables with X1 ∼ N (4, 6.2),
X2 ∼ N (5, 7.1). If we form a new random variable Y = 2X1 − 3X2, find
P (Y > 8). What is the form of the moment-generating function for Y?

8-38. Let X1, . . . , X25 constitute a set of sample random variables drawn from a
population that is N (µ, σ) = N (100, 35). What is the form of the sampling
distribution of �X? Determine the moment-generating function for �X . How
is the probability density function for �X specified? What is P(�X < 90)?

8-39. (Sampling Distribution of the Median) Given a random sample of size
n, let us arrange the sample random variables X1, i = 1, . . . , n, in order
of increasing numerical magnitude. Let the resulting set of n values be
denoted as X(1), X(2), . . . , X(n), where, for 1 ≤ i ≤ n, X(1) = min X(i), X(2) =
2nd smallest Xi, . . . , X(n) = max Xi. Clearly X(1) ≤ X(2) ≤ · · · ≤ X(n). Here
Xi is termed the ith order statistic and is a function of the sample elements
Xi. In general, the order statistics of a random sample are simply the sample
values placed in ascending order. Although the X(i), i = 1, . . . , n, are indeed
random variables, they are not independent since, if Xi ≥ t, then obviously
X(i+1) ≥ t.

Consider the order statistic, which is (approximately) the (np)th order
statistic X(np) for a random sample of size n, 0 < p < 1. Choose pn so
that npn is an integer and n |pn − p| is finite. Then X(npn) is the (npn)th

order statistic for a random sample of size n. Based upon these consider-
ations, let X1, . . . , Xn be a set of independent and identically distributed
random variables with common probability density function f (x) and
strictly monotone cumulative distribution function F(t), 0 < F(t) < 1.
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Then for γp the pth population quantile (the quantile of order p, 0 < p < 1,
is a value γp such that F(γP) = P(X ≤ γp) = p), the (npn)th order statistic
X(npn) is asymptotically normal with

E(X(npn)) = γp,

V(X(npn)) = p(1 − p)
nf (γp)

2

,

where f (·) is the population probability density function.

In particular, if p = 0.5, then γ0.5 is the population median. (In terms of
order statistics, if X1, . . . , Xn denotes a sample of size n, then the sample
median is

md =
⎧
⎨

⎩

X((n+1)/2) if n is odd;

1
2

(
X(n/2) + X((n/2)+1)

)
if n is even.

Then, in the light of the preceding discussion, the sampling distribu-
tion of the sample median is asymptotically normal with mean equal
to the population median γ0.5 and variance 1/4nf (γ0.5)

2. Moreover, if
the population probability density function is normal with mean µ and
variance σ 2, then the sampling distribution of the sample median is
asymptotically normal with mean µ and variance 1/4nf (µ)2 = πσ 2/2n.

We may express the standard error of the median as σγ0.5 = √
π /2

(
σ /

√
n
)
.

(Since the standard error of the mean is only σ /
√

n, we see that, in terms
of large samples taken from a normal population, the sample mean is less
variable (and thus more reliable) than the sample median as a measure of
central tendency.)

Armed with these considerations, if a random sample of size n = 100 is
taken from a population that is N (40, 10), determine the probability that
the sample median (md) will not differ from the population median (γ0.5 =
µ = 40) by move than ± 5 units.
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99
The Chi-Square, Student’s t,
and Snedecor’s F Distributions

9.1 Derived Continuous Parametric Distributions

In this chapter we shall deal with three new continuous probability distributions,
each of which is built up or derived from one or more other continuous proba-
bility distributions. These new distributions are the chi-square, Student’s t, and
Snedecor’s F.

As we shall soon see, the chi-square distribution can be constructed as the sum
of the squares of v independent standard normal random variables, where the key
parameter of this distribution, its number of degrees of freedom, is taken to be
the number of squared standard normal variates entering into the sum.

The Student’s t distribution is formed as the ratio between a standard normal
random variable and the square root of a chi-square random variable that has
been divided by its degrees of freedom, and where these two random variables are
taken to be independent. The key parameter of the t distribution is its degrees of
freedom, which corresponds to the degrees of freedom of its constituent chi-square
variable.

Looking to Snedecor’s F distribution, it is determined by taking the ratio
between two independent chi-square random variables that have been divided by
their degrees of freedom. Here the key parameters of the F distribution are the
numbers of degrees of freedom associated with the chi-square random variables
in the numerator (stated first) and denominator.

These distributions will be employed in many sampling situations in which,
for instance, we are sampling from a normal population and we need to make an
inference about the (unknown) population mean or variance. Or if we have two
independent random samples from normal populations and we want to compare
their (unknown) variances.

349
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9.2 The Chi-Square Distribution

The chi-square distribution arises as a special case of the gamma probability dis-
tribution. That is, if in the gamma probability density function (7.48) we set the
shape parameter α equal to v

2 (v a positive integer) and the scale parameter θ

equal to 2, then we obtain the chi-square probability density function

f (x; v) =
⎧
⎨

⎩

1

�( v
2 )2

v
2

x
v
2 −1e− x

2 , 0 < x < +∞, v(> 0) an integer;

0 elsewhere
(9.1)

associated with the continuous random variable X. Here X is termed a chi-square
random variable with v degrees of freedom and denoted χ2

v . Note that (9.1)
exhibits but a single parameter, namely v. And as v varies through positive inte-
ger values, we obtain a whole family of particular chi-square distributions (see
Figure 9.1).

In addition, for X distributed as χ2
v , the chi-square cumulative distribution

function appears as

F(t; v) = P(X ≤ t) = 1

�( v
2 )2

v
2

∫ t

0
x

v
2 −1e− x

2 dx, x > 0. (9.2)

The chi-square probability distribution exhibits the following properties:

1. From (7.50) and (7.51) it follows that the mean and standard deviation of
a chi-square variable X are, respectively,

E(X) = v; (9.3)
√

V (X) = √
2v. (9.4)

f (x; n)

n = 2

n = 4

n = 6

n = 8

x 

Figure 9.1 A family of chi-square distributions for selected values of v.
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2. The chi-square distribution is positively skewed and its coefficient of skewness
(from (7.52)) is

α3 = 4√
2v

> 0 (9.5)

with lim
v→∞ α3 = 0.

3. If v > 2, the chi-square distribution attains its maximum at x = v − 2.

4. The chi-square distribution has a peak that is sharper than that of a normal
distribution since its coefficient of kurtosis (from (7.53)) is

α4 = 3
(

1 + 4
v

)
> 3 (9.6)

with lim
v→∞ α4 = 3.

5. If the random variable X is chi-square distributed with mean and standard
deviation given by (9.3), and (9.4), respectively, then the quantity Z =
(X − v)/

√
2v → N(0, 1) as v → ∞. Moreover, when v > 30, chi-square

probabilities can be determined via a standard normal approximation and per-
centiles of the chi-square distribution can be approximated by percentiles of the
N(0, 1) distribution. In this regard, if X is χ2

v with v > 30, then it can be shown
that the statistic

√
2X has a probability density function that is approximately

N(
√

2v − 1, 1). Hence the quantity Z = √
2X − √

2v − 1 is approximately
N(0, 1).

6. The chi-square distribution is said to be stochastically increasing in its degrees
of freedom; that is, if a random variable X is χ2

v and p and q are positive
integers such that p > q, then for any real a > 0, P(χ2

v=p > a) > P(χ2
v=q > a).

Selected quantiles of the chi-square distribution can be determined from the chi-
square table for various values of the degrees of freedom parameter v. From (9.2)
and for various cumulative probabilities 1 −α (see Figure 9.2), the quantile χ2

1−α,v
satisfies

F(χ2
1−α,v; v) = P(X ≤ χ2

1−α,v) =
∫ χ2

1−α,v

0
f (x; v)dx = 1 − α (9.7)

or, alternatively,

P(X > χ2
1−α,v) = 1 − F(χ2

1−α,v; v) =
∫ ∞

χ2
1−α,v

f (x; v)dx = α. (9.7.1)

That is, for various degrees of freedom v, χ2
1−α, v gives the value of χ2

v below
which the proportion 1 − α of the χ2

v distribution falls (or χ2
1−α, v is the value of χ2

v
above which the proportion α of the distribution is found).
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f (x; n)

1 − α

α
x

c1−α,n
2

Figure 9.2 The quantile χ2
1−α,v satisfies P(X ≤ χ2

1−α,v) = 1 − α and P(X > χ2
1−α,v) = α.

Example 9.2.1 If in Table A.4 of the Appendix we set 1 − α = 0.90 and
v = 14, then

P(X ≤ χ2
0.90,14) = P(X ≤ 21.064) = 0.90.

Similarly:

P(X ≤ χ2
0.10,5) = P(X ≤ 1.610) = 0.10;

P(X ≤ χ2
0.95, 5) = P(X ≤ 11.1) = 0.95;

and

P(X > χ2
0.90, 10) = P(X > 15.987) = 0.10. �

If v > 30, property (5), earlier, enables us to set

1 − α = P(X ≤ χ2
1−α, v) = P

(√
2X − √

2v − 1 ≤
√

2χ2
1−α, v − √

2v − 1
)

≈ P(Z ≤ z1−α),

where Z is N(0, 1) and z1−α is the 100(1 − α)th percentile of the standard normal

distribution (see Figure 9.3). Then z1−α ≈
√

2χ2
1−α, v − √

2v − 1 or

χ2
1−α, v ≈ 1

2

(
z1−α + √

2v − 1
)2

. (9.8)
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N (0,1)

1 − a

z
0 z1 − a

Figure 9.3 For v > 30, P(X ≤ χ2
1−α,v) = 1 − α ≈ P(Z ≤ z1−α).

Example 9.2.2 If v = 40 and 1 − α = 0.90, then from the standard normal
area table (Table A.2), we have 0.90 = P(Z ≤ z0.90) = P(Z ≤ 1.28). Then
from (9.8),

χ2
0.90,40 ≈ 1

2

(
1.28 + √

79
)2 = 51.697.

A direct examination of the chi-square table (Table A.4) renders χ2
1−α, v =

χ2
0.90,40 = 51.805. Clearly the standard normal approximation to this chi-square

percentile using the N(0, 1) percentile z0.90 = 1.28 works quite well. �

The chi-square distribution is of paramount importance when sampling from
a normal population or probability density function, as Theorems 9.1 and 9.2 will
attest:

THEOREM 9.1. If the random variable X is N(µ, σ ), then Z = (X − µ)/σ is
N(0, 1) and Z2 is χ2

1 .

In general,

THEOREM 9.2. Let X1, . . . , Xn constitute a random sample of size n taken
from a normal population with mean µ and standard deviation σ . Then Zi =
(Xi − µ)/σ , i = 1, . . . , n, are independent standard normal random variables
and

Y =
n∑

i=1

Z2
i =

n∑

i=1

(Xi − µ)2

σ 2
is χ2

n .

(Note that the number of degrees of freedom (n) corresponds to the number of
independent standard normal variables that are squared and summed.)

Theorems 9.3 and 9.4 deal with the reproductive (additivity) property of the
chi-square distribution.
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THEOREM 9.3. If X1, . . . , Xn constitute a set of independent chi-square ran-
dom variables with v1, . . . , vn degrees of freedom, respectively, then Y =∑n

i=1 Xi has a chi-square distribution with v = ∑n
i=1 vi degree of freedom.

Here independent chi-square random variables sum to a chi-square random
variable and their respective degrees of freedom are also additive; that is, if Xi is
χ2

vi
, i = 1, . . . , n, then

∑n
i=1 Xi is χ2∑

vi
. Also,

THEOREM 9.4. If Xi and Xj are independent random variables with Xi dis-
tributed as χ2

vi
and Xi + Xj distributed as χ2

v , v > vi, then Xj is distributed as
χ2

vj=v−vi
.

Example 9.2.3 Let us assume that a population random variable X is N(50, 3.2).
If a random sample of size n = 25 is taken from this population, what is the
probability that the quantity S2

0 = ∑n
i=1(Xi − µ)2/n < 12 (squared units)? By

virtue of Theorem 9.2, since µ is known (no correction for degrees of freedom is
warranted), the quantity

Y =

n∑
i=1

(Xi − µ)2

σ 2
= n

σ 2

n∑
i=1

(Xi − µ)2

n
= nS2

0

σ 2
(9.9)

is χ2
25. Then from Table A.4,

P(S2
0 <12) = P

(
nS2

0

σ 2
<

n(12)
σ 2

)
= P

(
Y <

25(12)
10.24

= 29.296
)

= 0.75.

Here 29.296 ≈ χ2
0.75,25 = χ2

1−α, v. �

9.3 The Sampling Distribution of the Variance When
Sampling from a Normal Population

In Section 8.10 we discussed the sampling distribution of the variance

S2 =

n∑
i=1

(Xi − �X)2

n − 1
(9.10)

under sampling from a general population. Let us now examine the properties of
the sampling distribution of S2 when sampling is undertaken from a population
which is normally distributed. We begin with Theorem 9.5:

THEOREM 9.5. If S2 is the variance of a random sample of size n taken
from a normal population with mean µ and variance σ 2, then the quantity

Y = (n−1)S2

σ 2 is distributed as χ2
n−1.
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To see this let us rewrite (9.10) as

(n − 1)S2 =
n∑

i=1

(Xi − µ − �X + µ)2 =
n∑

i=1

(Xi − µ)2 − n(�X − µ)2.

Then

(n − 1)S2

σ 2
+ n(�X − µ)2

σ 2
=

n∑
i=1

(Xi − µ)2

σ 2

or

(n − 1)S2

σ 2
+
(�X − µ

σ /
√

n

)2

=

n∑
i=1

(Xi − µ)2

σ 2
. (9.11)

Now, the second term on the left-hand side of (9.11) is the square of a N(0, 1)
random variable and thus, by Theorem 9.1, is distributed as χ2

1 . Since the right-
hand side of (9.11) is χ2

n (via Theorem 9.2), it follows from Theorem 9.4 that
(n−1)S2

σ 2 is distributed as χ2
n−1.

From the preceding theorem and (9.1), the probability density function of

Y = (n−1)S2

σ 2 can be written as

f (y; n − 1) =

⎧
⎪⎪⎨

⎪⎪⎩

1

�

(
n−1

2

)
2

n−1
2

y
n−1

2 −1e− y
2 , 0 ≤ y < +∞, n(> 1) an integer;

0 elsewhere.

(9.12)

And with Y distributed as χ2
n−1, if follows from (9.3) and (9.4), respectively, that:

E(Y) = n − 1; (9.13)
√

V(Y) =
√

2(n − 1). (9.14)

Given Y = (n−1)S2

σ 2 , it follows that S2 = σ 2Y
n−1 and thus

E(S2) = σ 2

n − 1
E(Y) = σ 2; (9.15)

V(S2) =
(

σ 2

n − 1

)2

V(Y) = 2σ 4

n − 1
. (9.16)

So if we are taking random samples of size n from a normal population with mean
µ and variance σ 2, it follows that the sampling distribution of S2 has a mean of σ 2

and a variance equal to 2σ 4

(n−1) .
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Example 9.3.1 Let us extract a random sample of size n = 25 from a population
that is N(µ, σ ) with µ unknown but with σ = 3. What is the probability that S2

will not differ from σ 2 by more than ±2 (squared units)? Here we are interested
in finding

P(7 ≤ S2 ≤ 11) = P
(

(n − 1)7
σ 2

≤ (n − 1)S2

σ 2
≤ (n − 1)11

σ 2

)

= P
(

24(7)
9

≤ Y ≤ 24(11)
9

)
= P(18.66 ≤ Y ≤ 29.33).

Since Y is χ2
n−1 = χ2

24, Table A.4 enables us to find

P(18.66 ≤ Y ≤ 29.33) = P(Y ≤ 29.33) − P(Y ≤ 18.66) ≈ 0.75 − 0.25 = 0.50.

Similarly, the probability that S2 exceeds 6 is found to be

P(S2 > 6) = P
(

(n − 1)S2

σ 2
>

(n − 1)6
σ 2

)
= P(Y > 16) = 1 − P(Y ≤ 16)

≈ 1 − 0.10 = 0.90. �

An important theorem that addresses the relationship between the sample vari-
ance S2 and the sample mean �X when sampling from a normal population is
Theorem 9.6:

THEOREM 9.6. Let X1, . . . , Xn constitute a random sample of size n taken
from a normal population with mean µ and standard deviation σ . Then
the statistics �X , S2 determined from this sample are independent random
variables.

So if we have n independent observations on a population random variable X,
then the sample mean and sample variance computed from these observations are
independent under the normality of X. This should be intuitively apparent since,
with S2 a measure of dispersion about �X , the dispersion of a random variable is
not determined by where the random variable happens to be centered. Hence
information about the sample mean in no way dictates the value of the sample
variance and conversely.

A specialization of Theorem 9.6 is provided by Theorem 9.6.1:

THEOREM 9.6.1. If Z1, . . . , Zn is a random sample taken from a standard
normal population (the random variable Z is N(0, 1)), then:

(a) �Z is N(0, 1√
n )

(b)
∑n

i=1(Zi − �Z)2 is χ2
n−1 (from Theorem 9.5)

(c) �Z and
∑n

i=1(Zi − �Z)2 are independent random variables
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9.4 Student’s t Distribution

We noted in the preceding chapter (e.g., Section 8.7) that under random sampling
from a population that is N(µ, σ ), with σ known, the standardized sample mean
�Z = �X −µ

(σ /
√

n) is N(0, 1). But if σ is unknown, then it can be estimated from the
sample values X1, . . . , Xn as

S =

√√√√√
n∑

i=1
(Xi − �X)2

n − 1
. (9.17)

If we replace σ by S in �Z, then the distribution of the resulting quantity

�X − µ

S/
√

n
(9.18)

is not N(0, 1), even though sampling is undertaken from a normal population.
To determine the exact sampling distribution of (9.18) when sampling from a

normal distribution N(µ, σ ) with both µ and σ unknown, let us form the random
variable

T = Z√
X /v

, −∞ < T < +∞, (9.19)

where Z and X are independent random variables, Z is N(0, 1), and X is χ2
v .

In this instance the random variable T is said to follow a Student’s t distribution
with v degrees of freedom and will be denoted as tv. Its probability density function
is given by

f (t; v) =

⎧
⎪⎪⎨

⎪⎪⎩

�

(
v+1

2

)

√
πv�( v

2 )

[
1 +

(
t2

v

)]− (v+1)
2 , −∞ < t < +∞, v(> 0) an integer;1

0 elsewhere.
(9.20)

Here (9.20) represents a one-parameter family of distributions and, as we vary the
parameter v, we obtain an assortment of particular t distributions (see Figure 9.4).

1 Given (9.19), (9.20) is arrived at via a suitable transformation of the joint probability density function
of (independent) Z and X

f (z, x; v) =

⎧
⎪⎨

⎪⎩

1√
2π

e− 1
2 z2 · 1

�(v/2)2v/2 x
v
2 −1e−x/2, −∞ < z < +∞, x > 0, v(> 0) an integer;

0 elsewhere.
(9.21)
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n = 10

f (t;n)

n = 2

−t 0 t

Figure 9.4 A family of t distributions for selected values of v.

In addition, the Student’s t cumulative distribution function (using (9.20)) appears
as

F(t; v) = P(T ≤ t) =
∫ t

−∞
f (t; v) dt, −∞ < t < +∞. (9.22)

We have just found that if Z is N(0, 1), X is χ2
v , and Z and X are independent

random variables, then T = Z√
X /v

is t distributed with v degrees of freedom. To
demonstrate that this result is applicable to sampling from a normal population,
we need to determine the connection between (9.18) and (9.19). In this regard, we
need only note that when sampling from a normal population with σ known, the
random variable �Z = (�X −µ)

(σ /
√

n) is N(0, 1) and, by virtue of Theorem 9.5, the quantity
(n−1)S2

σ 2 is χ2
n−1. Since �XandS2 are independent (Theorem 9.6), it follows that

T =
(�X −µ)
(σ /

√
n)√

(n−1) S2

σ 2
n−1

=
�X − µ

S/
√

n
(9.19.1)

is t distributed with n − 1 degrees of freedom.
The Student’s t distribution exhibits the following properties:

1. It is symmetrical about zero, asymptotic to the horizontal axis, and attains its
unique maximum at its modal value of t = 0.

2. The basic shape of the t probability density function is similar to that of the
standard normal distribution, with the tails of the former being a bit wider
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than those of the latter. Hence there is a larger area under the tails of the t
distribution than under those of the standard normal distribution.

3. For infinite degrees of freedom, the t and the standard normal distribution are
one and the same. In fact, for v ≥ 30, the t distribution closely approximates
the standard normal distribution. (This is why the t distribution is termed a
small sample distribution.) More formally, the quantity

Tn =
√

n(�Xn − µ)
√

S2
n

has a t distribution with n − 1 degrees of freedom, where �Xn and S2
n =∑n

i=1
(Xi−�Xn)2

(n−1) are, respectively, the mean and variance of a sample of size n
taken from a normal distribution with mean µ and (known) standard devia-
tion σ . Then the random variable Tn → N(0, 1) as n → ∞. Stated alternatively,
we may employ (9.20) to demonstrate that the t probability density function
converges to the standard normal probability density function for large v or

lim
v→∞ f (t; v) = 1√

2π
e− 1

2 t2 , −∞ < t < +∞.

In this regard, since the asymptotic distribution of T = �X−µ

S/
√

n is N(0, 1), if a < b,
then

P(a < T < b) → 1√
2π

∫ b

a
e−t2/2dt as n → ∞.

4. The mean and standard deviation of the t distribution are, respectively,

E(T) = 0, v > 1; (9.23)
√

V(T) =
√

v
v − 2

> 1, v > 2. (9.24)

Given these restrictions on v, it follows that the t distribution does not have
moments (about zero) of all orders; that is, if there are v degrees of freedom,
then there are only v − 1 moments. Thus a t distribution has no mean when
v = 1; it has no variance when v ≤ 2. In fact, all odd moments of T are zero.

5. The coefficient of skewness is

α3 = 0; (9.25)
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and the coefficient of kurtosis is

α4 = 3 + 6
v − 4

, v ≥ 4 (9.26)

with lim
v→∞ α4 = 3 (the value under normality).

Selected quantiles of the t distribution appear in Table A.3 of the Appendix for
various probabilities α (the area in the right-hand tail of the t distribution) and
degrees of freedom values v. That is, the right-tailed quantile tα, v is the value of T
for which

P(T ≥ tα,v) =
∫ +∞

tα,v

f (t; v) dt = α, 0 ≤ α ≤ 1 (9.26)

(see Figure 9.5a). In this regard, we may view tα, v as an upper percentage point
of the t distribution—the point for which the probability of a larger value of T
is α. By symmetry, the left-tailed quantile −tα, v is a lower percentage point of

f (t; n)

f (t; n)

f (t; n)

 α

−t −ta, n ta, n0 t −t −tα/2,n tα/2,n

α/2 α/2

0 t

(a) (b)

1−a
−t ta,n=

−t1−a,n

0 t

(c)

a

a

Figure 9.5 (a) −tα,v and tα,v· are respectively left- and right-tailed quantiles of the t distribution;
(b) ±tα/2,v are two-tailed quantiles of the t distribution; (c) For α > 0.5, tα,v = −t1−α,v.
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the t distribution—the point for which the probability of a smaller value is α (see
Figure 9.5a) or

P(T ≤ −tα,v) =
∫ −tα,v

−∞
f (t; v)dt = α, 0 ≤ α ≤ 1. (9.27)

In addition, two-tailed quantiles for the t distribution appear as ±tα
2 , v and satisfy

the relationship

P
(

T ≤ −tα
2 ,v

)
+ P

(
T ≥ tα

2 ,v

)
= α

2
+ α

2
= α. (9.28)

Here α is divided between the two tails of the distribution so that α
2 is the area in

each tail (see Figure 9.5b). For α > 0.5, tα,v = −t1−α,v (see Figure 9.5c).

Example 9.4.1 From Table A.3, it is easily seen that:

(a) tα,v = t0.05,20 = 2.086 or that P(T ≥ 2.086) = 0.05 (see Figure 9.6a)

(b) tα,v = t0.10,15 = 1.341 and thus P(T ≤ −1.341) = 0.10 (see Figure 9.6a)

(c) For α = 0.05, tα
2 ,v = t0.025,10 = 2.228 so that

P (T ≤ −2.228) + P (T ≥ 2.228) = 0.025 + 0.025 = 0.05 (see Figure 9.6b). �

Example 9.4.2 To see how the t distribution might be applied, let us extract
a random sample of size n = 25 from a normal population with unknown mean
and standard deviation. Suppose we find that the realization of S is 10. Given this

f (t; n) f (t; n)

0.10 0.05 0.025 0.025

−t −t0.10,15 =
−1.341

0 t0.05,20=
2.086

−t −t.025,10=
−2.228

0 t0.025,10=
2.228

(a) (b)

Figure 9.6 (a) P(T ≥ 2.086) = 0.05, P(T ≤ −1.341) = 0.10); (b) P(T ≤ −2.228) + P(T ≥ 2.228) =
0.05.
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f (t; n)

2 = 0.025 2 = 0.025

−t  −2.064 = 0 2.064 = t

aa

−t0.025,24 t0.25,24 

Figure 9.7 P(−2.064 ≤ T ≤ 2.064) = 0.95.

sample result, determine the probability that the sample mean will not differ from
the population mean by more than ±4 units. That is, we seek

P
(∣∣�X − µ

∣∣ ≤ 4
) = P

(−4 ≤ �X − µ ≤ 4
)

= P

(
−4

s/
√

n
≤

�X − µ

S/
√

n
≤ 4

s/
√

n

)
= P(−2 ≤ T ≤ 2).

Since the random variable T is t distributed with n − 1 = 24 degrees of freedom,
the preceding probability can be approximated (see Figure 9.7) as P(−2.064 ≤
T ≤ 2.064) ≈ 1 − 2(0.025) = 0.95. �

9.5 Snedecor’s F Distribution

Suppose we conduct a sampling experiment whose outcome is a set of observations
on two independent chi-square random variables X and Y with degrees of freedom
v1 and v2, respectively. The joint probability density function of X and Y is

g(x, y; v1, v2) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
�(

v1
2 )�(

v2
2 )2(v1+v2)/2 x

v1
2 −1y

v2
2 −1e− 1

2 (x+y),

0 < x, y < +∞, v1 and v2 positive integers;
0 elsewhere.

(9.29)

Let us define a new random variable

F = X /v1

Y /v2
; (9.30)
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h (f ;n1,n2)

(2, 2)

(9,2)

(9,9)

f 

Figure 9.8 A family of F distributions for selected combinations of v1, v2 values.

that is, F is the ratio of two independent chi-square random variables, each divided
by its degrees of freedom. Then it can be shown (by transforming x to f via (9.30)
in the joint probability density function (9.29) and integrating out y) that the
probability density function of F appears as

h( f ; v1, v2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�((v1+v2)/2)

�(v1/2)�(v2/2)

(
v1
v2

)v1/2 f
v1
2 −1

[1+(v1/v2)f ](v1+v2)/2
,

0 < f < +∞, v1 and v2 positive integers;

0 elsewhere.

(9.31)

Hence the random variable F is said to follow Snedecor’s F distribution with
v1, v2 degrees of freedom and will be denoted as Fv1,v2 . Here (9.31) is a two-
parameter family of distributions and, as we vary the parameters v1 and v2,
we generate a whole assortment of particular F distributions (Figure 9.8 illus-
trates the F distribution for several combinations ((v1, v2)) of degrees of freedom).
In addition, the Snedecor’s F cumulative distribution function is, from (9.31),

H(t; v1, v2) = P(F ≤ t) =
∫ t

0
h( f ; v1, v2) df , f > 0. (9.32)

We have just determined that the ratio of two independent chi-square random
variables, each divided by its degrees of freedom, is Fv1,v2 . What is the connec-
tion between this result and sampling from a normal population? To answer this
question, let X1, . . . , Xn1 be a random sample consisting of n1 independent and
identically distributed N(µ1, σ1) random variables. In addition, let Y1, . . . , Yn2 con-
stitute a random sample of n2 independent and identically distributed N(µ2, σ2)
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random variables. If these two random samples are independent, then, according

to Theorem 9.5, the quantities X = (n1 − 1)
S2

1
σ 2

1
and Y = (n2 − 1)

S2
2

σ 2
2

are indepen-

dent chi-square random variables with v1 = n1 − 1 and v2 = n2 − 1 degrees of
freedom, respectively, where S2

1(S2
2) is the variance of the first (second) sample.

Then from (9.30), the random variable

Fn1−1, n2−1 =
(n1−1)S2

1
σ 2

1

/
(n1 − 1)

(n2−1)S2
2

σ 2
2

/
(n2 − 1)

= S2
1/σ 2

1

S2
2/σ 2

2

(9.33)

is F distributed with n1 − 1 and n2 − 1 degrees of freedom. As we shall see later
on, (9.33) can be used to make inferences about the ratio of variances σ 2

1 /σ 2
2 of

two independent normal distributions whose means µ1 and µ2 are unknown and
whose variances σ 2

1 and σ 2
2 are also unknown.

Snedecor’s F distribution has the following properties:

(a) The probability density (9.31) of the F random variable (9.30) is not symmet-
rical in v1 and v2. This is why the degrees of freedom in the numerator of F is
stated first. In this regard,

(b) If the random variable F ((9.30)) is Fv1,v2 , then the random variable F ′ = 1
F =

Y /v2
X /v1

is Fv2,v1 . Hence P(F ≤ k) = P(F ′ = 1
F ≥ 1

k ).

(c) The mean and variance of the F distribution are, respectively,

E(F) = v2

v2 − 2
, v2 > 2; (9.34)

V(F) = 2v2(v1 + v2 − 2)
v1(v2 − 2)2(v2 − 4)

, v2 > 4. (9.35)

Thus the F distribution has no mean when v2 ≤ 2; it has no variance when
v2 ≤ 4. (Note that the mean of the random variable F ((9.30)) depends only
on the degrees of freedom associated with the chi-square random variable
in the denominator.)

(d) The F distribution is skewed positively for any values of v1 and v2; and it
becomes less skewed as v1 and v2 increase without bound. Its coefficient of
skewness is

α3 =
√

8(v2 − 4)
(v1 + v2 − 2)v1

· (2v1 + v2 − 2)
v2 − 6

, v2 > 6. (9.36)

(e) The F distribution has a single mode at

f = v2(v1 − 2)
v1(v2 + 2)

, v1 > 2,

and as f → ∞, the probability density value h( f ; v1, v2) → 0.
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(f) The F distribution has a peak that is sharper than that of a normal distribution
since its coefficient of kurtosis

α4 = 3 + 12
[
(v2 − 2)2(v2 − 4) + v1(v1 + v2 − 2)(5v2 − 22)

]

v1(v2 − 6)(v2 − 8)(v1 + v2 − 2)
> 3, v2 > 8,

(9.37)

and lim
v1,v2→∞ α4 = 3.

(g) The F distribution can be obtained under a suitable transformation of the β

distribution ((7.56)). To this end let us set α = v1
2 and β = v2

2 . Then

f (x; v1, v2) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�

(
v 1+v 2

2

)

�
( v 1

2

)
�
( v 2

2

)x
v 1
2 −1(1 − x)

v 2
2 −1, 0 < x < 1,

v1 and v2 positive integers;

0 elsewhere.

(9.38)

Let us define a new random variable F whose values are related to the ran-
dom variable X by f = v2x

v1(1−x) . Then solving for x enables us to transform
(9.38) to (9.31). Conversely, if the random variable F is Fv1, v2 , then the random
variable X = v1F /v2

[1+(v1F /v2)] has a β distribution with parameters α = v 1
2 , β = v 2

2 .

(h) If the random variable X is Fv1, v2 , then when v2 → ∞, the distribution of
v1X → χ2

v1
.

(i) If the random variable T = Z√
X /v

has a Student’s t distribution with v degrees

of freedom, then T2 is F1, v. With the t distribution symmetrical about zero, it
follows that

P(F1,v ≤ k) = P(T2 ≤ k) = P(|T | ≤ √
k),

where T has v degrees of freedom. Also, the random variable 1
2

√
v(F1/2

v,v −
F−1/2

v,v ) has a t distribution with v degrees of freedom.

( j) If a random variable X is F2(n−r+1),2r (r an integer and 0 ≤ r ≤ n) and Y
follows a binomial distribution with parameters n and p, then it can be
shown that

P
(

X >
1 − p

p
r

n − r + 1

)
= P(Y ≥ r).

Various quantiles for the F distribution can be determined for selected cumula-
tive proportions 1 − α and for various combinations of the degrees of freedom
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parameters v1 and v2. That is, given (v1, v2), the quantile of order 1 − α is the value
f1−α,v1,v2 such that

P(F ≤ f1−α, v1, v2 ) =
∫ f1−α,v1,v2

0
h( f ; v1, v2) df = 1 − α, 0 ≤ α ≤ 1 (9.39)

(see Figure 9.9a). The quantile values f1−α,v1,v2 usually are tabulated (see
Table A.5 of the Appendix) only for selected α’s that are less than 0.5; that is, sep-
arate tables exist for 1 − α = 0.90, 0.95, 0.975, and 0.99, with the columns of each
table depicting values of v1 (the degrees of freedom for the numerator of F) and
the rows exhibiting values of v2 (degrees of freedom for the denominator of F).
In this case, since α < 0.5, the quantity f1−α,v1,v2 is termed the upper α-percentage
point of the F distribution since α is the area in its right-hand tail (see Figure 9.9b).

1−a

f

f1−a,n1,n2

(a)

f

f1−α,n1,n2
, a < 0.5

(b)

a

h(f ;n1,n2)

h(f ;n1,n2) h(f ;n1,n2)

f

f1−α,n1,n2 = (fα′,n2,n1
)−1, a > 0.5

(c)

a

Figure 9.9 (a) f1−α,v1,v2 is the quantile of order 1 − α for the F distribution; (b) For α< 0.5, f1−α,v1,v2

is the upper percentage point of the F distribution; (c) the reciprocal property of the F
distribution.
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That is, f1−α,v1,v2 is the value of f such that the probability of a larger value is α.
For example, Table A.5 reveals that f0.95,10,6 = 4.06. Hence 4.06 depicts the upper
5% point of the F10,6 distribution.

If α > 0.5, then we may find left-sided quantiles or lower percentage points of
the F distribution in the following way. We noted earlier (property (b)) that if the
random variable F is Fv1,v2 , then the random variable F ′ is Fv2,v1 . Moreover, for
α > 0.5,

P(F ≤ f1−α,v1,v2 ) = P
(

F ′ = 1
F

>
1

f1−α,v1,v2

)
= 1 − α (9.40)

or

P
(

F ′ = 1
F

≤ 1
f1−α,v1,v2

)
= α. (9.41)

But since F ′ is Fv2,v1 , it follows that the quantile of order α or the lower
α-percentage point of F ′ is the value f ′

α,v2,v1
such that

P(F ′ ≤ f ′
α,v2,v1

) = α. (9.42)

That is, f ′
α,v2,v1

is the value of f ′ such that the probability of a smaller value is α.
Since (9.41) and (9.42) are equivalent probability statements, we may conclude
that

f1−α,v1,v2 = 1
f ′
α,v2,v1

, α > 0.5 (9.43)

(see Figure 9.9c). This latter equality is known as the reciprocal property of the
F distribution.

The preceding discussion has indicated that because of the relationship
between the random variables F and F ′ = 1

F , we need only tabulate upper (1 − α)-
percentage points of the F distribution. That is, if F is Fv1, v2 and F ′ is Fv2,v1 , then
for α > 0.5, the left-hand 100(1 − α) percent quantile or lower (1 − α)-percentage
point of F, f1−α,v1,v2 , is the reciprocal of the upper α-percentage point of F ′. In sum,
since an F table gives values f1−α,v1,v2 for α(< 0.5) for the area in the right-hand
tail only, an F value with 1 − α(α > 0.5) of the area in the left-hand tail is found
by the following process:

1. Reverse the order of the degrees of freedom designations v1, v2.

2. Find f1−α,v2,v1 , where α(< 0.5) is the area in the right-hand tail.

3. Take the reciprocal of f1−α,v2,v1 to find f1−α,v1,v2 , α > 0.5. So if f1−α,v1,v2 is the
lower α-percentage point of Fv1,v2 , then f1−α,v1,v2 = (f ′

α,v2,v1
)−1.
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h (f ;7,9) h (f ;15,10)

0.05 0.01

f f 
f0.05,7,9 = 0.272 f0.01,15,10 = 0.263

(a) (b)

Figure 9.10 (a) P(F ≤ 0.272) = 0.05; (b) P(F ≤ 0.263) = 0.01.

Example 9.5.1 For instance, what is the lower 5% point of F7,9? From
Table A.5, let us find f ′

0.95,9,7 = 3.68. Then f0.05,7,9 = 1
3.68 = 0.272. Hence

P(F ≤ f0.05,7,9) = P

(
F ≤ 1

f ′
0.95,9,7

)
= P(F ≤ 0.272) = 0.05

(see Figure 9.10a). Similarly, if F is F15,10, what is its lower 1% point? Using
Table A.5, we first determine f ′

0.99,10,15 = 3.80. Then f0.01,15,10 = 1
3.80 = 0.263 or

P(F ≤ f0.01,15,10) = P

(
F ≤ 1

f ′
0.99,10,15

)
= P(F ≤ 0.263) = 0.01

(see Figure 9.10b). �

9.6 Exercises

Chi-Square Distribution

9-1. Suppose a random variable X is chi-square distributed with ν = 8 degrees
of freedom. What is E(X), V(X), α3, and α4 ?

9-2. If X is χ2
v , find:

(a) χ2
0.90,10

(b) χ2
0.05,15

(c) χ2
0.99,5
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9-3. For v = 60 degrees of freedom, use the standard normal approximation to
determine the following quantiles of the chi-square distribution:

(a) χ2
0.90,v

(b) χ2
0.95,v

9-4. Suppose X is N(30, 3). For a random sample of size n = 40, find P(S2 < 10),
where S2 is the sample variance.

9-5. Suppose X is N(µ, 4), where µ is unknown. For n = 25, find:

(a) P(S2 < 18)

(b) P(12 < S2 < 20)

9-6. Demonstrate that if the random variable Z is N(0, 1), then Y = Z2 is χ2
1 .

(Hint: We need to show that the moment-generating function of Z2 corre-
sponds to that of a chi-square distribution with 1 degree of freedom.) To
this end we may directly find

mZ2 (t) = E(etz2
) = 1√

2π

∫ +∞

−∞
etz2

e−z2/2dz = 1√
2π

∫ +∞

−∞
e−z2/2(1−2t)−1

dz.

Since the integrand can be viewed as the probability density function of
a random variable that is N(0, (1 − 2t)−1/2), let us rewrite the preceding
expression as

mZ2 (t) = (1 − 2t)−1/2
∫ +∞

−∞
1√

2π(1 − 2t)−1/2
e−z2/2(1−2t)−1

dz

= (1 − 2)−1/2, 0 ≤ t <
1
2

.

Alternatively, in the moment-generating function for the gamma prob-
ability density function derived in Exercise 7.38, set α = v

2 = 1
2 and

θ = 2.

9-7. Suppose a random variable X is χ2
n . Demonstrate that X’s moment-

generating function is of the form mX (t) = (1 − 2t)−n/2, t < 1
2 .

9-8. Verify that the moment-generating function derived in Exercise 9-7 is a
special case of the gamma moment-generating function.

9-9. Demonstrate that the statement made in Theorem 9.1 is valid.

9-10. Suppose a random variable Xi is χ2
vi

. Determine Xi’s moment-generating
function. (Hint: Use the moment-generating function for the gamma
probability distribution.)

9-11. Demonstrate that Theorem 9.3 is valid by showing that the moment-
generating function for Y = ∑n

i=1 Xi corresponds to that of a probability
distribution that is χ2

v , where v = ∑n
i=1 vi.
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9-12. Demonstrate the validity of Theorem 9.2 by using the results offered by
Theorems 9.1 and 9.3.

9-13. Suppose X1, . . . , Xn depicts a random sample drawn from a population that
is N(µ, σ ). Demonstrate that �X and S2 are independent random variables.
(Hint: First show that if �X is independent of Xi − �X , i = 1, . . . , n, then
�X is independent of (n − 1)S2 = ∑n

i=1 (Xi − �X)2.)

9-14. From Theorem 9.5 it was determined that Y = (n − 1) S2

σ 2 is χ2
n−1. Deter-

mine the moment-generating function for Y.

9-15. Suppose a random variable X is N(µ, 1.5). If a random sample of size
n = 20 is drawn from the population distribution, determine the probability
that S2 > 2.5 (squared units).

t Distribution

9-16. Suppose a random variable T is t-distributed with v = 10 degrees of
freedom. For α = 0.05, find:

(a) tα,v

(b) tα/2,v.

What is V(T)? Find α4. What is P(T ≥ 1.729) when v = 19? For v = 14,
find P(−1.761 ≤ T ≤ 1.761).

9-17. Suppose a random variable X is N(15, σ ), where σ is unknown. From a
sample of size n = 10 it has been determined that x̄ = 13 with s = 2. Find
P(�X ≤ 14).

9-18. A sample of size n = 16 is extracted from a N(18, σ ) population. If x̄ = 20
and s = 2, find P(�X ≥ 19).

9-19. Find the probability that �X does not exceed 290 when a sample of size
n = 10 has been taken from a N(305, σ ) population and s = 20.

9-20. Suppose a random sample with realizations 1,2,3,4,7, and 10 is drawn from
a population that is N(µ, σ ) with both µ and σ unknown. Determine the
(approximate) probability that �X will be within 3.5 units of the population
mean.

F-Distribution

9-21. Suppose a random variable F is F-distributed with v1 = 6 and v2 = 8 degrees
of freedom, respectively. What is E(F) and V(F)? Determine α3, α4, and
the mode of F.

9-22. Suppose the random variable F follows an F-distribution with v1 = 4 and
v2 = 8 degrees of freedom, respectively. For α = 0.025, find f1−α,v1,v2 .
If α = 0.10, find f1−α,v1,v2 .
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9-23. If F is F4,5, what is the lower 1% point? Suppose F is F9,7. What is the lower
5% point?

9-24. If F is F10,7, find:

(a) The F-value with 5% of the area to its right

(b) The area to the right of the value 6.62
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1010
Point Estimation and
Properties of Point Estimators

10.1 Statistics as Point Estimators

We noted in Chapter 8 that a statistic is a characteristic of a sample that is used
to estimate or determine a parameter θ . In particular, we specified a statistic as
some function of the sample random variables X1, . . . , Xn (and also of the sample
size n), which itself is a random variable that does not depend upon any unknown
parameters. Additionally, we denoted a statistic as T = g(X1, . . . , Xn, n), where
g is a real-valued function that does not depend upon θ or on any other unknown
parameter. Then the realization of T , t = g(x1, . . . , xn, n), is determined once the
realizations xi of the sample random variables Xi, i = 1, . . . , n, are known. Thus
g is a rule (typically expressed as a formula), which tells us how to get t’s from
sets of xi’s. If the statistic T is used to determine some unknown population
parameter θ (or some function of θ , τ (θ)), then T is called a point estimator
of θ , and its realization t is termed a point estimate of θ . Hence a point estimator
renders a single numerical value as the estimate of θ .

Specifying a statistic T involves a form of data reduction; that is, we summarize
the information about θ contained in a sample by determining a few essential
characteristics of the sample values. Hence, for purposes of making inferences
about the parameter θ , we employ only the realization of T rather than the entire
set of observed data points. Thus the role of T is that it reduces or condenses
the n sample random variables X1, . . . , Xn into a single random variable. (For
instance, to summarize central tendency, we might reduce the entire set of sample
values to simply a single numerical measure—to a statistic or point estimator
representing the sample mean.) As will be evidenced, successful point estimation
practice involves developing methods of data reduction that: (1) do not ignore
any relevant sample information about θ ; and, at the same time, (2) tend to
discard any irrelevant information concerning the determination of θ .

373
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Since inferences about θ are made on the basis of sample data and thus a
limited amount of information is typically processed by T, errors in making infer-
ences are unavoidable because of what is termed sampling error—defined as the
difference between the sample statistic or estimator T and θ or

SE(T , θ) = T − θ . (10.1)

Since T is a random variable, then so is SE(T , θ). Sampling error exists because of
chance variability in random sampling. Under repeated random sampling (using
a fixed n) from a given population, the realizations of T vary from sample to
sample and consequently so do the realizations of the sampling errors of T
(denoted SE(t, θ) = t − θ).

In order to make good inferences about a population parameter, we must
develop methods for assessing the magnitude of the sampling error connected
with the same. As we shall now see, this can be done in terms of the probability
distribution or so-called sampling distribution of T,1 which will enable us to discern
the pattern of behavior of the sampling errors of T.

To this end, let the random variable X depict a measurable characteristic
of some random phenomenon and let f (x; θ) represent the probability density
function associated with the underlying population distribution of X. While θ is
an unknown parameter, we may, at times, assume that the form of f is known
(e.g., f (x; θ) may be taken as normally distributed). Let T = g (X1, . . . , Xn, n)

be a point estimator of θ . (In what follows we shall assume that we have an
infinite population or we are sampling with replacement.) If T is to be a good
point estimator of θ , then we must develop a collection of desirable properties
that any such estimator might possess. In order to compile a set of performance
criteria that T (or other alternative estimators) might satisfy, our yardstick or
standard of goodness will be framed in terms of certain key characteristics of the
sampling distribution of T (hereafter represented as h(t; θ , n)), such as its mean
and variance.

What are the desirable or optimal properties that a good point estimator (or
sequence of point estimators) may possess? As we will see, these properties typi-
cally are classified as small (finite) sample properties or large sample (asymptotic)
properties. And all of these properties will be framed in terms of the sampling
distribution of a point estimator.

1 Recall that the sampling distribution of T is the relative frequency distribution of the realizations t
of T, which emerges under repeated sampling from the same population. Hence, conceptually, a large
number of samples of the same size will be taken and t will be determined for each one. Since the
resulting t’s can be expected to vary randomly about θ , the relative frequency distribution (the sampling
distribution of T) will consequently serve as the basis for assessing the goodness of a point estimator.
In fact, it is the sampling distribution of T that provides information on the long-run performance of
T as an estimator of θ .
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10.2 Desirable Properties of Estimators as
Statistical Properties

Why initiate a discussion of the desirable properties of point estimators in terms
of the characteristics of their sampling distributions? First, since estimators are
random variables, it is important to study their distributions since it is the statisti-
cal properties of the same that determine which estimator is most appropriate
in any particular sampling situation. Hence the preference for one estimator
over another can be rationalized on the basis of the properties of the sampling
distributions of their estimates.

Second, since T is a random variable, we cannot expect that the estimates
produced will always equal the parameter θ . If T is a good estimator of θ , then
obviously its realizations t should be near θ . However, we only know t ex post;
that is, we do not know the value of t until after the sample is taken. Obviously
the goodness of an estimator cannot be determined on the basis of examining
its realization for a single sample. But if we extract many random samples from
the population at hand and construct the relative frequency distribution of the
resulting realizations of T (the sampling distribution of T), then we can readily
determine if this distribution is well behaved. That is, is the sampling distribution
of T concentrated about θ? In addition, how closely are the realizations of T
concentrated about θ? In this regard, what is important is the a priori behavior of
an estimator; that is, we are interested in how an estimator is expected to behave
under repeated sampling from the same population. Looked at from another
perspective, an assessment of the goodness of a point estimator must be based
on the probability distribution of its sampling errors and not on the magnitude of
any one realization of that error.

Moreover, if T ′ is an alternative estimator of θ with realization t′, then for one
particular sample t′ may be closer to θ than t, whereas for another sample it may
be t and not t′ that is closer to θ . Hence the relative merit of using T versus T ′ as
an estimator of θ hinges upon the statistical properties of the sampling distribu-
tions of these estimators. For instance, if we find that the sampling distribution T
is more highly concentrated about θ than that of T ′, then we can typically expect t
to be closer to θ than t′. In this circumstance we may consequently be led to con-
clude that not only is T a good estimator of θ , but it is also a better estimator of θ

than T ′.
In sum, the various realizations t of an estimator T are incorporated into

the sampling distribution of T, a probability density function h(t; θ , n) that
embodies all relevant statistical information pertaining to T. Hence the process
of evaluating the goodness of an estimator hinges upon conceptualizing the
entire spectrum of realizations that would be obtained if the estimation rule
T = g(X1, . . . , Xn, n) were applied again and again to many samples taken from
a given population. What is relevant is that the process of repeated sampling is
considered conceptually and that it is the long-run behavior of an estimator under
repeated sampling that matters.

Certain measurable characteristics of h have been deemed desirable or
meritorious as far as the determination of the parameter θ is concerned.
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These measurable characteristics thus serve as a guide in selecting the best esti-
mator of θ . Although some estimators of θ may attain these desirable properties
(or at least come close to attaining them), others may not. It is the satisfaction of
certain optimal properties of an estimator that ultimately will provide us with a
best guess estimate of θ . And it is to the specification of these properties that our
attention and efforts now turn. As will be explained in the next few sections, a point
estimator of θ may be unbiased, consistent, efficient, sufficient, have minimum
variance, and so on.

10.3 Small Sample Properties of Point Estimators

10.3.1 Unbiased, Minimum Variance, and Minimum
Mean Squared Error (MSE) Estimators

A small sample property of a point estimator is essentially a characteristic of the
sampling distribution of the estimator that holds for a fixed sample size n. This is
in contrast to a large sample or asymptotic property of a point estimator, which
results as n → ∞.

In what follows we shall assume that X1, . . . , Xn depicts a set of independent
and identically distributed sample random variables taken from the population
distribution f (x; θ) of the random variable X. In addition, let T = g(X1, . . . , Xn, n)

be a point estimator of θ . Since T is a random variable with probability den-
sity function or sampling distribution h(t; θ , n), it should be intuitively clear that,
if T is to serve as a good estimator of θ , then the realizations t of T should be
close to θ ; that is, the sampling distribution of T should be concentrated about θ .
We shall now consider ways of measuring the closeness of an estimator to θ .

Given the nature of the process of random sampling, we cannot expect to
find an estimator that is always on target; that is, since T is a random variable,
its realizations vary from sample to sample so that T will not always produce
estimates that are exactly equal to θ . As we noted in Section 10.1, sampling error(
SE(T , θ) = T − θ

)
is a fact of life and, for any individual sample, the sampling

error typically will not be zero. However, it is desirable that an estimator should
yield the correct result at least on the average. In this regard, the average value
of the sampling error taken over a large number of samples should be zero or
E
(
SE(T , θ)

) = E(T) − θ = 0.
Let us term the expected value of the sampling error of T its bias (denoted

B(T , θ)). Then if the bias or expected sampling error B(T , θ) = E(T) − θ is
(identically) zero for all n and θ or

E(T) = θ , (10.2)

then T is said to be an unbiased estimator of θ ; that is, an unbiased estimator
is one whose bias is zero. So if T is an unbiased estimator of θ , its sampling
distribution is centered exactly on θ (see Figure 10.1a); that is, as the number of
samples increases, the estimator is on target. If, however, the sampling distribution
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h(t ; q, n) h(t ; q, n)

t t
q (=E(T )) θ E(T )

bias = E(T ) − q ≠ 0
(a) (b)

h(t ; q, n), h(t ′ ; q, n) h(t ; q, n), h(t ′ ; q, n)

h(t ; q, n) h(t ; q, n)

h(t ′ ; q, n) h(t ′ ; q, n)

t, t ′ t, t ′

E(T ) q (= E(T ′))q (= E(T ) = E(T ′))
(c) (d)

Figure 10.1 (a) T is an unbiased estimator of θ ; (b) T is a biased estimator of θ ; (c) Both T and T ′ are
an unbiased estimator of θ but V(T) < V(T ′); (d) A biased estimator T may be preferable
to an unbiased estimator T ′ of θ .

of T is not centered on θ (see Figure 10.1b), then T is termed a biased estimator
of θ since the bias or B(T , θ) = E(T) − θ is different from zero. Here (10.2)
implies that obviously E(T) �= θ . Note that if an estimator T is unbiased, then the
average of its realizations taken over many samples is equal to the parameter θ

to be estimated. However, this does not mean that the estimator actually has a
high probability of being close to θ for any given sample. Unbiasedness assures us
that, over the long run and for a large number of estimations, errors will not tend
to cumulate; that is, on average, T estimates θ without systematic error.

For instance, if the independent and identically distributed sample random
variables Xi, i = 1, . . . , n, each have the same mean µ and variance σ 2 as the
population random variable X, then:

1. As revealed by Theorem 8.2, if T = �X , then E(�X) = µ for any population
distribution. Hence the sample mean is an unbiased estimator of the popula-
tion mean; that is, under repeated sampling from the same population, �X is,
on the average, equal to µ for any µ.
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2. Since the sample random variables Xi all have the same distribution as the
population random variable X, it follows that for T = Xi, E (Xi) = µ for all
i = 1, . . . , n. Hence any Xi serves as an unbiased estimator of µ.

3. If a statistic T = ∑n
i=1 aiXi is a linear combination of the sample random

variables Xi, i = 1, . . . , n, then by virtue of Theorem 8.1, E(T) = µ
∑n

i=1 ai.
If
∑n

i=1 ai = 1, then T is an unbiased estimator of µ.

4. We noted earlier (Theorem 8.7) that if T = S2 = ∑n
i=1

(Xi−�X)
2

n−1 , then E
(
S2
) =

σ 2 for any population distribution. Hence the sample variance is an unbiased
estimator of the population variance; that is, under repeated sampling from the
same population, S2 is, on the average, equal to σ 2 for any σ 2. (It is important
to remember that we are sampling from an infinite population. S2 is not an
unbiased estimator of σ 2 for a finite population.)

5. Since the sample random variables Xi all have the same distribution as the
population random variable X, it follows that for T = Xi, V(Xi) = σ 2 for all
i = 1, . . . , n. Hence the variance of any Xi serves as an unbiased estimator
of σ 2.

6. The quantity T = S2
1 = ∑n

i=1
(Xi−�X)

2

n is a biased estimator of the population
variance σ 2. To see this let us first write

∑n
i=1(Xi − �X)2 = ∑n

i=1 X2
i − n�X2.

Since

V(Xi) = σ 2 = E
(
X2

i

)− µ2;

V
(�X) = σ 2

n
= E

(�X2)− µ2,

it follows that

E

(
n∑

i=1

(
Xi − �X)2

)
= E

(
n∑

i=1

X2
i − n�X2

)

= E

(
n∑

i=1

X2
i

)
− nE

(�X2)

=
n∑

i=1

E
(
X2

i

)− nE
(�X2)

=
n∑

i=1

(
σ 2 + µ2)− n

(
σ 2

n
+ µ2

)
= (n − 1) σ 2.

Hence

E
(
S2

1

) = 1
n

E

(
n∑

i=1

(
Xi − �X)2

)
= (n − 1)σ 2

n
= σ 2 − σ 2

n
.
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h(s1
2; s2, n)

s1
2

bias = −s2 n

E(S1
2) s2

Figure 10.2 S2
1 is a biased estimator of σ 2.

Clearly S2
1 is a biased estimator of σ 2, where the extent of the bias is − σ 2

n or the
negative of the variance of �X (see Figure 10.2). Thus S2

1 generally understates
σ 2 for finite samples (i.e., S2

1 is said to be biased downwards).
We may easily correct S2

1 for the amount of bias by multiplying S2
1 by n

n−1 .
Then

( n
n−1

)
S2

1 = S2 and, as indicated earlier, E
(
S2
) =σ 2. This is why we termed

the quantity S2 (and not S2
1) as the sample variance—we divide

∑n
i=1(Xi − �X)2

by n−1 rather than by n so that we obtain an unbiased estimator of σ 2. In fact,
we can often convert a biased estimator into one that is unbiased by
multiplying the former by a suitable function of the sample size n.

It is important to note that we cannot conclude that for every particular
sample the realization of S2 provides us with a closer estimate of σ 2 than the
realization of S2

1. Remember that unbiasedness is an average property of an
estimator. Hence it is only under repeated sampling from the same popula-
tion that S2 is on target on the average. However, for any given sample, the
realization of S2

1 may be closer to σ 2 than the realization of S2.
If the mean µ of the population random variable X is known, then S2

0 =
1
n

∑n
i=1 (Xi − µ)2 is an unbiased estimator of σ 2.

7. Although the sample variance S2 serves as an unbiased estimator of the pop-
ulation variance σ 2, it does not follow that the sample standard deviation S
is generally an unbiased estimator of the population standard deviation σ .
To verify this statement we need only remember, by virtue of Theorem 9.5,

that the quantity Y = (n−1)S2

σ 2 is distributed as χ2
n−1. (Note that the probability

density function of Y is provided by (9.1) with v = n − 1.) Since

S =
(

σ

(n − 1)1/2

)
Y1/2,
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it follows that

E(S) = σ

(n − 1)1/2
E
(
Y1/2)

and thus, under a suitable transformation, it can be shown that

E(S) =
[

21/2�(n/2)
�
(
(n − 1)/2

)
(n − 1)1/2

]
σ , n > 1.

Clearly E(S) �= σ as was stated earlier.
In general, there is no known unbiased estimator of σ except in special cases;

that is, the correction factor to make S an unbiased estimator of σ depends upon
the form of the underlying probability density function. For example, if X is
N(µ, σ ), then an approximate unbiased estimator for σ is, for large n,

Tσ =
(

1 + 1
4(n − 1)

)
S.

8. For X a binomial random variable, Theorem 8.6 informs us that if T = P̂ = X
n ,

then E(P̂) = p. Hence the sample proportion serves as an unbiased estimator
of the population proportion p. That is, P̂ is, on the average, equal to p for
any p.

9. If T is an unbiased estimator of a parameter θ , it does not follow that every
function of T , j(T), is an unbiased estimator of j(θ).

It may be the case that there are many unbiased estimators for a parameter θ .
What is needed then is at least one other criterion for judging the goodness of an
estimator. To this end, it is reasonable to consider the variance of an estimator T,
defined as

V(T) = E
[
(T − E(T))2] = E

(
T2)− E(T)2 . (10.3)

Here V(T) provides us with a measure of the average variation about the mean of
T that can be expected to arise under repeated sampling from a given population.
Hence it serves as a measure of the dispersion of an estimator about its mean.
Moreover, we may define the standard error of an estimator T as the positive
square root of its variance. It will be denoted as

ST =
√

V(T). (10.4)

From (10.3), we can state that T is a minimum variance estimator of θ if V(T) ≤
V(T ′), where T ′ is any alternative estimator of θ .

Given a choice between two unbiased estimators T and T ′ of θ (here E(T) =
E
(
T ′) = θ), it seems preferable to choose the one with the smallest variance
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(see Figure 10.1c) since using T yields a higher probability of obtaining an estimate
that is closer to θ . However, if T is a biased estimator of θ and the bias is small,
then T may be preferable to an unbiased estimator T ′ whose variance is large (see
Figure 10.1d). The problem is that if the variance of an estimator is large, then
we may obtain a sample for which the realization of the estimator is far from the
true parameter value. Clearly a tradeoff exists between bias and variance when
it comes to determining which estimator is best for estimating θ . So if we desire
an estimator that typically yields estimates that are close to the true θ , then both
the bias and variance of an estimator must be taken into account simultaneously
when evaluating the merits of an estimator.

A general criterion for assessing the goodness of an estimator T of θ in terms
of the relative magnitude of its bias and variance is the mean squared error (MSE)
of T or

MSE(T , θ) = E
[
(T − θ)2] , (10.5)

which, in the context of repeated sampling from the same population, is defined
as the expected value of the square of its sampling error; that is, it measures
the average squared difference between T and the parameter θ or, stated alter-
natively, it indicates how the realizations of an estimator are, on the average,
distributed about θ . Looked at in an alternative fashion, we may think of the
quantity (T − θ)2 as measuring the loss from using T as an estimator of θ , and
E[(T − θ)2] may be viewed as the average loss or risk of using T as an estimator
of θ . If we perform the indicated squaring in (10.5), then we obtain

MSE(T , θ) = E
(
T2 − 2θT + θ2) = E

(
T2)− 2θE(T) + θ2

= V(T) + E(T)2 − 2θE(T) + θ2 (10.5.1)

= V(T) + (
E(T) − θ

)2 = V(T) + B(T , θ)2.

Hence the mean squared error of T is expressible as the sum of the variance of
T (which measures the precision of T) and the square of its bias (indicating the
degree of accuracy of T). An estimator with good MSE properties (in terms of
bringing us close to θ) is one that has a small combined variance and (squared) bias.

As (10.5.1) reveals, MSE(T , θ) ≥ V(T) since B(T , θ) ≥ 0. Here the mean
squared error of T measures the dispersion of T about the true θ whereas the
variance of T considers its dispersion about E(T). If the mean of T coincides with
θ so that T is unbiased, then E(T) = θ and thus MSE(T , θ) = V(T).

Example 10.3.1.1 Let �X and X̃ = �X + 1
n each serve as estimators of the popu-

lation mean µ. Hence E(�X) = µ (as verified earlier) and E(X̃) = µ + 1
n . Clearly

X̃ is a biased estimator of µ, where the bias is 1
n . Moreover, V(�X) = V(X̃) and

MSE(�X , µ) = V(�X) and, from (10.5.1), MSE(X̃ , µ) = V(�X) + ( 1
n

)2
. Note that

the unbiased estimator of µ or �X has the smallest mean squared error and thus
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is preferable to X̃ . If a variance only criterion were adopted, the two estimators
would be deemed equally good. �

Next, if we sample from a normal population, then S2 = ∑n
i=1

(Xi−�X)
2

n−1 is an

unbiased estimator for σ 2 and, from (9.16), V
(
S2
) = 2σ 4

n−1 = MSE
(
S2, σ 2

)
. As an

alternative estimator of σ 2, let us use S2
1 = ∑n

i=1
(Xi−�X)

2

n = ( n−1
n

)
S2. Although S2

1

is biased downward
(

E
(
S2

1

) = σ 2 − σ 2

n

)
, it does have a smaller variance than S2

since

V
(
S2

1

) =
(

n − 1
n

)2

V
(
S2) =

(
n − 1

n

)2 2σ 4

n − 1
< V

(
S2) .

Hence the biased estimator S2
1 is a bit more precise than the unbiased estimator

S2. Looking to their mean squared errors, we see that

MSE
(
S2, σ 2) = V

(
S2) = 2σ 4

n − 1

and, from (10.5.1),

MSE
(
S2

1, σ 2) = V
(
S2

1

)+ B
(
S2

1, σ 2)2

=
(

n − 1
n

)2 2σ 4

n − 1
+ σ 4

n2
= (2n − 1)

σ 4

n2
.

And since

MSE
(
S2, σ 2)− MSE

(
S2

1, σ 2) =
(

2
n − 1

− (2n − 1)

n2

)
σ 4 > 0,

it follows that the average spread of the realizations of S2 about σ 2 is a bit larger
than the average spread of the realizations of S2

1 about σ 2. What this discussion
indicates is that if T is a biased estimator of θ , it is generally preferable to judge
the goodness of T on the basis of its mean squared error instead of simply exam-
ining its variance alone. By trading off variance for bias, the mean squared error
improves.

Let us now summarize some of the preceding considerations concerning crite-
ria for selecting a best estimator (in terms of closeness to a given parameter) from
among several competing estimators.

1. If the estimators are all unbiased, then the best estimator is the one with mini-
mum mean squared error and thus with minimum variance. Hence in this case
simply comparing the variances of alternative estimators will do.
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2. Unless subject to additional qualification, the quality of minimum variance
taken by itself is a rather weak property of an estimator. The attribute of
minimum variance is most desirable when it is coupled with unbiasedness (and
vice versa).

3. If the estimators have mixed attributes in terms of bias and variance, then
we must use a selection method that incorporates a tradeoff between vari-
ance and (squared) bias, and this involves employing a mean squared error
criterion. Specifically, T is a minimum mean squared error estimator of θ if
MSE(T , θ) ≤ MSE(T ′, θ), where T ′ is any alternative estimator of θ .

4. A biased estimator may be preferable to an unbiased estimator if it has
a smaller mean squared error (since the unbiased estimator may display
considerable variability relative to the biased one).

Point (3) enables us to conclude that the best estimator is one that minimizes
the mean squared error over the set of alternative estimators of θ . However, as
revealed by (10.5), the mean squared error depends upon the value of θ . This
observation is crucial since the criterion of minimal mean squared error gener-
ally does not render an estimator that is superior to all other estimators for all
possible θ ’s; that is, one estimator may be better than another possible estima-
tor for one value of θ but not for another θ value. Hence there may not be one
best estimator of θ . What is desirable is an estimator with the uniformly lowest
mean squared error for all θ ’s. Unfortunately, such an estimator typically does
not exist since the collection of all possible estimators of θ is usually very large.
Hence the minimum mean squared error criterion is seldom operational; mean
squared error properties are often unknown and difficult to verify. To circumvent
this problem, let us restrict our attention to the class of unbiased estimators. By
doing so we radically improve the odds of finding an estimator that satisfies the
minimum mean squared error (and thus minimum variance) criterion for all θ ’s
within this restricted class of estimators. In what follows then, we shall focus our
attention on the class of unbiased estimators and, within it, we shall search for
one with minimum variance. (Remember that if T is an unbiased estimator of θ ,
then E(T) = θ and MSE(T , θ) = V(T).)

10.3.2 Efficient Estimators

We may characterize the notion of an unbiased estimator having the smallest
variance among the class of all unbiased estimators of θ in the following fashion.
Specifically, T is termed an efficient (alternatively minimum variance unbiased or
best unbiased) estimator of θ if T is unbiased and V(T) ≤ V(T ′) for all possible
values of θ , where T ′ is any other unbiased estimator of θ (see Figure 10.3).
Hence T is more efficient than T ′ since the sampling distribution of T is more
closely concentrated about θ than the sampling distribution of T ′.

How do we determine whether or not a given estimator is efficient? Although
it may be a fairly straightforward task to check an estimator for unbiasedness,
such is not the case when it comes to checking for minimum variance. This is
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t ′

h(t ; q, n)

h(t ′; q, n)

T  is efficient

relative to T ′

t

θ

Figure 10.3 T relative to T ′ is an efficient or best unbiased estimator of θ .

because we need to examine the variance of all possible unbiased estimators of θ .
And since there may be many such estimators, it is quite heroic to claim that a given
estimator is efficient. Hence, as a practical matter, we shall adopt the following
compromise. Instead of looking to state that a given unbiased estimator is best in
that it has a variance that is less than or equal to the variance of any of any other
unbiased estimator, we will simply be satisfied with pairwise comparisons; that is,
with being able to claim that one unbiased estimator is preferred (on minimum
variance grounds) to another. So when we compare two unbiased estimators,
we will concern ourselves with their relative efficiency (RE). Hence the unbiased
estimator with the smaller variance is more efficient relative to the other unbiased
estimator.

In view of this strategy, if T and T ′ are both unbiased estimators of θ and
V(T ′) ≥ V(T) for all θ and strict inequality holds for some value of θ , then T
is judged relatively more efficient than T ′ in estimating θ . To operationalize this
relative efficiency concept, let us work with the ratio of the variances of T and T ′.
In this regard, let both T and T ′ be unbiased estimators of θ with variances V(T)
and V(T ′), respectively. Then the efficiency of T relative to T ′ (or the efficiency of
T with respect to T ′) is given by the ratio

RE = V(T)
V(T ′)

× 100 (10.6)
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(here RE is expressed as a percentage). We shall adopt the convention that
the smaller variance goes into the numerator so that 0 ≤ RE ≤ 1. Once
RE is determined, this comparison scheme allows us to conclude that V(T) =
V
(
T ′)× RE or the variance of T is RE% of the variance of T ′.

Example 10.3.2.1 It can be shown that if the probability density function is
normal with mean µ and variance σ 2, then the sampling distribution of the sample
median is asymptotically normal with mean µ and variance πσ 2

2n . Moreover, we

noted earlier that the variance of the sample mean is only σ 2

n . Hence, for large
samples taken from a normal population, the sample mean is less variable (and
thus more reliable) than the sample median as a measure of central location.
Let us now frame these observations in terms of the preceding relative efficiency
concept.

For a random sample of size n taken from a normal population, both the sam-
ple mean �X and the sample median γ0.5 are unbiased estimators of the population
mean. Thus the efficiency of the sample mean relative to the sample median is

RE = V(�X)
V(γ0.5)

× 100 = σ 2/n
πσ 2/2n

× 100 = 200
π

= 63.66.

Thus the amount of variability associated with the sample mean is approximately
64% of the variability associated with the sample median. And since we have just
verified that the sampling distribution of the mean is more closely concentrated
about the population mean than the sampling distribution of the median, it follows
that if only a single sample were to be taken, the more likely it is that the sample
mean would be closer to µ than the sample median. So on the basis of this relative
efficiency criterion, we may conclude that the sample mean is preferable to the
sample median as an estimator of the population mean. �

Let us now consider a generalization of the definition of the relative efficiency
of one estimator with respect to another (10.6). For any two estimators T and T ′
(be they biased or unbiased), the efficiency of T relative to T ′ is

RE′ = MSE(T , θ)
MSE(T ′, θ)

× 100. (10.7)

Here too RE′ is expressed as a percentage with 0 ≤ RE′ ≤ 1 if the smaller mean
squared error appears in the numerator. Once RE′ is calculated, we see that
MSE(T , θ) = MSE

(
T ′, θ

) × RE′ or the mean squared error of T is RE′% of the
mean squared error of T ′. Note that if the estimators T and T ′ are unbiased, then
(10.6) serves as a special case of (10.7).

10.3.3 Most Efficient Estimators

We now turn to a more comprehensive approach to finding an efficient or mini-
mum variance unbiased estimator. Our search for any such estimator is facilitated
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by the notion of finding a lower limit CR(θ , n) on the variance of any unbiased
estimator of a parameter θ ; that is, if T is any unbiased estimator of θ , then
V(T) ≥ CR(θ , n). This lower bound enables us to determine if a given unbiased
estimator has the (theoretically) smallest possible variance in the sense that, if
V(T) = CR(θ , n), then T represents the most efficient estimator of θ . In this
regard, if we can find an unbiased estimator T for which V(T) = CR(θ , n), then
the most efficient estimator is actually a minimum variance bound estimator.

To set the stage for the determination of the minimum variance bound for an
estimator of θ , let us turn to a concept developed earlier in Section 8.2, namely
the joint probability density (mass) function of a random sample. Let us briefly
review this notion, treating the continuous case first. We previously noted that
if f (x; θ) depicts the probability density function of the population distribution
for a measurable characteristic X, then, under random sampling, the generated
outcomes Xi, i = 1, . . . , n, represent a collection of n independent sample random
variables. Since the Xi have the same probability density function as the population
distribution, their joint probability density function at x1, . . . , xn can be expressed
(under independence) as

l(x1, . . . , xn; θ , n) =
n∏

i=1

f (xi; θ), (10.8)

where f (xi; θ) = f (x; θ) is the marginal probability density function for the random
variable Xi, i = 1, . . . , n.

Next, if the sample random variables X1, . . . , Xn are discrete and the value of
Xi is determined on the ith trial of a random experiment (under, say, sampling
with replacement), then again the Xi’s, i = 1, . . . , n, depict a set of n independent
sample random variables. If f (x; θ) represents the probability mass function of the
population random variable X, then under independence each Xi has the same
probability mass function as the population distribution and thus the probability
of the event{X1 = x1, . . . , Xn = xn} is given by the joint probability mass function

P(X1 = x1, . . . , Xn = xn) = l(x1, . . . , xn; θ , n) =
n∏

i=1

f (xi; θ), (10.9)

where f (xi; θ) = f (x; θ) is the marginal probability mass function for Xi, i =
1, . . . , n.

For the continuous case, (10.8) simply yields the value of the joint probability
density function at the set of sample realizations x1, . . . , xn. In the discrete case,
(10.9) gives the probability of the event {Xi = xi, i = 1, . . . , n}. (Actually, in
the continuous case, the joint probability density value is proportional to the
probability of observing the sample outcome in a suitably restricted neighborhood
of the realizations obtained.)

Let us now change the interpretation of equation (10.8) by rewriting it as

L(θ ; x1, . . . , xn, n) =
n∏

i=1

f (xi; θ). (10.8.1)
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Here (10.8.1) is termed the likelihood function of the sample. (In what follows we
shall, for the most part, frame our discussion in terms of the likelihood function for
a set of continuous sample random variables Xi, i = 1, . . . , n. A parallel treatment
can easily be offered for the discrete case.)

Let us briefly discuss the arguments appearing in (10.8) and (10.8.1). We pre-
viously formulated the sampling distribution of a statistic as the joint probability
density function of the sample random variables ((10.8)) given a fixed value of
θ in the population probability density function f (x; θ). However, if we treat the
Xi’s as fixed and the parameter θ as a variable, (10.8.1) provides us with the joint
probability density of the given sample realizations as a function of θ . So when
we express the joint probability density function of a given sample as a function
of θ , we call the resulting equation a likelihood function. In sum, (10.8) depicts
a sampling distribution since the Xi’s are variable and θ is held constant, and
(10.8.1) is termed a likelihood function wherein the Xi’s have constant realiza-
tions xi, i = 1, . . . , n, and θ is variable; that is (10.8.1) yields the likelihood that
the random variables X1, . . . , Xn assume the realizations x1, . . . , xn. So for a set of
continuous independent and identically distributed random variables X1, . . . , Xn,
both the theoretical sampling distribution and the likelihood function are rep-
resented by the same joint probability density function—only the interpretation
differs.

For convenience, we usually work with the logarithm of L since forming log
L transforms the multiplicative function (10.8.1) into an additive one; that is,
log L = ∑n

i=1 log f (xi; θ). This last expression will be termed the log-likelihood
function of the sample.

We now return to the issue of finding a minimum variance bound (hereafter
called the Cramér-Rao (1945, 1946) lower bound and denoted CR(θ , n)) for an
unbiased estimator of a parameter θ . Specifically, if T is an unbiased estimator of
θ , then under some very general (regularity) conditions,2 the variance of T must
satisfy the Cramér-Rao inequality

V(T) ≥ 1

−E
(

∂2 log L
∂θ2

) = CR(θ , n). (10.10)

Hence the variance of T is never smaller than CR(θ , n), which is constant for a
fixed n. Note that the form of the population distribution f (x; θ) from which the
random sample is drawn must be known (even though θ itself is unknown).

If T is an unbiased estimator of θ and strict equality holds in (10.10), then
T is the most efficient or minimum variance bound estimator of θ . Hence the
realizations of the most efficient estimator are those that are most concentrated
about θ and thus have the highest probability of being close to θ . Moreover, it is
important to note that equality holds in (10.10) if and only if there exists a function

2 Specifically: (a) the sample space S is independent of θ ; (b) the derivatives ∂L/∂θ , ∂2L/∂θ2 exist for
all admissible θ ; and (c) E(∂ log L/∂θ) = 0.
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α(θ , n) such that

∂ log L
∂θ

= α(θ , n) (t (x1, . . . , xn, n) − θ) . (10.11)

Let us now consider an assortment of general observations pertaining to the salient
features of the Cramér-Rao lower bound:

1. The Cramér-Rao inequality provides us with a lower limit CR(θ , n) on the
variance of an unbiased estimator T of θ . However, (10.10) is only a sufficient
and not a necessary condition for an unbiased estimator of θ to be an effi-
cient estimator of that parameter. Hence this inequality does not necessarily
imply that the variance of an efficient estimator has to equal the Cramér-Rao
lower bound; it may be possible to find an unbiased estimator of θ whose vari-
ance is smaller than those of alternative unbiased estimators of θ , but whose
variance exceeds CR(θ , n). Hence there can exist an efficient estimator whose
variance does not coincide with the minimum variance bound. In fact, (10.10)
may be unattainable. But if the variance of an unbiased estimator of θ attains
the Cramér-Rao lower bound, that estimator is termed the most efficient or
minimum variance bound estimator of θ .

2. The Cramér-Rao lower bound is unique and always exists, but, as noted ear-
lier, an estimator that attains it does not always exist. Moreover, this bound
depends only on f (x; θ) and n and is independent of the estimator under con-
sideration. If for some unbiased estimator T (10.10) holds as a strict equality
for all values of θ , then T is termed a uniformly most efficient estimator of θ .

3. The quantity −E
(

∂2 log L
∂θ2

)
is termed the information number for the

Cramér-Rao lower bound. It reflects the amount of information on θ in the
realizations x1, . . . , xn and varies inversely with the same; that is, as we obtain
more information about θ , the information number increases and thus the
lower bound on the variance of any unbiased estimator of θ decreases.

4. The Cramér-Rao lower bound provides us with an operational procedure for
identifying specific estimators that can be labeled most efficient. That is, if a
known unbiased estimator has a variance that equals this bound, then obviously
our search for the most efficient estimator of θ can be terminated.

5. There are usually many possible unbiased estimators for a given popula-
tion parameter θ . If a particular unbiased estimator of θ does not attain the
Cramér-Rao lower bound, we usually do not know if the estimator is actually
the most efficient one at hand. It may be that no unbiased estimator of θ

attains the Cramér-Rao lower bound.

6. Let us specify the general exponential family of probability density functions
as

f (x; θ) = a(θ)b(x)ec(θ)d(x), −∞ < x < +∞, (10.12)
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for admissible θ . (For instance, if θ = λ and we set a(λ) = e−λ, b(x) = 1
x! ,

c(λ) = log λ, and d(x) = x, then clearly the Poisson probability density func-
tion belongs to this exponential family of distributions.) Then the likelihood
function for a random sample of size n taken from an exponential population
described by (10.12) is

L =
n∏

i=1

f (xi; θ) = a(θ)n

(
n∏

i=1

b(xi)

)
e

c(θ)
n∑

i=1
d(xi)

. (10.13)

Interestingly enough, it can be shown that if T is an unbiased estimator
of a parameter θ and the variance of T coincides with the Cramér-Rao
lower bound, then the underlying probability density function from which the
sample random variables were drawn is a member of the exponential family
of distributions. Conversely, if the population probability density function
f (x; θ) is a member of the exponential family of distributions, then there exists
an unbiased estimator T of θ such that V(T) = CR(θ , n).

7. If T is the minimum variance bound estimator of θ and T ′ is any other unbiased

estimator of θ , then the efficiency of T ′ relative to T is RE =
(

V(T)
V(T ′)

)
×100, 0 ≤

RE ≤ 1. Obviously for the most efficient or minimum variance bound estimator
of θ we have RE = 1. Otherwise RE < 1. For instance, given a sample of size n

taken from a N(µ, σ ) population, we determined earlier that S2 = ∑n
i=1

(Xi−�X)2

n−1
is an unbiased estimator of σ 2. Moreover, we also found that S2 is not a min-
imum variance bound estimator of σ 2. However, S2

0 = ∑n
i=1

(Xi−µ)2

n (with µ

known) is a minimum variance bound estimator of σ 2. Then the efficiency of
S2 relative to S2

0 is

V
(
S2

0

)

V
(
S2
) = 2σ 4/n

2σ 4/(n − 1)
= n − 1

n
< 1.

If for a given parameter θ a minimum variance bound or most efficient esti-
mator does not exist, then it is highly likely that there may be an estimator T ′
whose variance is smaller than the variance of any other unbiased estimator for
all admissible values of θ . We have previously referred to any such estimator as
simply an efficient or minimum variance unbiased estimator of θ . So if T ′ is an
efficient estimator of θ and T is any other unbiased estimator of θ , a measure

of the efficiency of T relative to T ′ is RE =
(

V(T)
V(T ′)

)
× 100.

To see exactly how the Cramér-Rao lower bound is employed, let us consider
the following assortment of example problems.

Example 10.3.3.1 Let X1, . . . , Xn be a set of independent and identically dis-
tributed sample random variables taken from a normally distributed population
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with probability density function f (x; µ, σ ) =
(√

2πσ
)−1

e−(x−µ)2/2σ 2
. Assuming

that σ 2 is known, what is the Cramér-Rao lower bound on the variance of any
unbiased estimator of µ? Since

L
(
µ, σ 2; x, n

) = 1
(
2πσ 2

)n/2 e
− 1

2

n∑

i=1

(xi − µ)2

σ 2 ,

log L = −n
2

log
(
2πσ 2)− 1

2

n∑

i=1

(xi − µ)2

σ 2

and thus

∂ log L
∂µ

=
n∑

i=1

xi − µ

σ 2
,

∂2 log L
∂µ2

= − n
σ 2

.

Then

−E
(

∂2 log L
∂µ2

)
= −E

(
− n

σ 2

)
= n

σ 2

so that, from (10.10),

V(T) ≥ 1

−E
(

∂2 log L
∂µ2

) = σ 2

n
= CR(µ, n).

Since �X is an unbiased estimator of µ and V(�X) = σ 2

n , it follows that T = �X is a
minimum variance bound estimator of µ.

Alternatively, let us directly employ (10.11) and write

∂ log L
∂µ

= n
σ 2

(�x − µ) ,

where α(µ, n) = n
σ 2 . Then �X is a minimum variance bound estimator of µ (given

that σ 2 is known) since its variance coincides with CR(µ, n). �
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Example 10.3.3.2 Again let X1, . . . , Xn be a set of independent and identically
distributed sample random variables taken from a normally distributed popula-
tion. This time, let us assume that µ is known. What is the Cramér-Rao lower
bound on the variance of any unbiased estimators of σ 2? From log L just given,

∂ log L
∂σ 2

= −n
2

1
σ 2

+ 1
2

n∑

i=1

(xi − µ)2
(

1
σ 4

)
,

∂2 log L
∂
(
σ 2
)2 = n

2
1
σ 4

−
n∑

i=1

(xi − µ)2
(

1
σ 6

)
.

Then

−E

(
∂2 log L
∂
(
σ 2
)2

)
= −n

2σ 4
+ 1

σ 6
E

(
n∑

i=1

(xi − µ)2

)
= −n

2σ 4
+ nσ 2

σ 6
= n

2σ 4

and thus, using (10.10),

V(T) ≥ 1

−E
(

∂2 log L
∂(σ 2)2

) = 2σ 4

n
= CR

(
σ 2, n

)
.

Hence any unbiased estimator T of σ 2 must satisfy this inequality. Since S2
0 =

∑n
i=1

(Xi−µ)2

n is an unbiased estimator of σ 2 and V(S2
0) = 2σ 4

n , it follows that
T = S2

0 is a minimum variance bound estimator of σ 2. A way of directly finding
a minimum variance bound estimator of σ 2 is given by (10.11). To pursue this
method, let us express ∂ log L

∂σ 2 as

∂ log L
∂σ 2

= n
2σ 4

⎛

⎝
n∑

i=1
(xi − µ)2

n
− σ 2

⎞

⎠ .

If we set α(σ 2, n) = n
2σ 4 , then S2

0 is the minimum variance bound estimator of σ 2

(assuming that µ is known) since V(S2
0) coincides with CR(σ 2, n). �

We noted earlier that if we sample from a normal population wherein both µ

and σ 2 are unknown, then an unbiased estimator of σ 2 is S2 =
∑n

i=1(Xi−�X)2

n−1 with

V(S2) = 2σ 4

n−1 . Hence V(S2) exceeds the Cramér-Rao lower bound; that is, if µ is
unknown, CR(σ 2, n) cannot be attained. So although S2 is an efficient estimator
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of σ 2, it is not the most efficient estimator of the same since its variance exceeds
the Cramér-Rao lower bound.

Example 10.3.3.3 Let X1, . . . , Xn be a set of independent and identically dis-
tributed sample random variables taken from a population that follows a Poisson
distribution with probability mass function p(x; λ) = e−λλx

x! , x = 0, 1, . . . ; λ > 0,
with E(X) = V(X) = λ. Forming

L (λ; x, n) =
n∏

i=1

e−λλxi

xi! = e−nλλ

n∑

i=1
xi

n∏
i=1

xi!

with

log L = −nλ +
n∑

i=1

xi log λ −
n∑

i=1

log xi!,

we have

∂ log L
∂λ

= −n +

n∑
i=1

xi

λ
,

∂2 log L
∂λ2

= −

n∑
i=1

xi

λ2
.

Then

−E
(

∂2 log L
∂λ2

)
= 1

λ2

n∑

i=1

E(xi) = 1
λ2

nλ = n
λ

and thus, from (10.10),

V(T) ≥ 1

−E
(

∂2 log L
∂λ2

) = n
λ

= σ 2

n
= CR(λ, n).

Hence any unbiased estimator of λ must satisfy V(T) ≥ σ 2

n . Since the sample
mean �X is an unbiased estimator of E(X) = λ and the variance of the sample
mean is σ 2

n , it follows that V(T) = V(�X) = σ 2

n and thus T = �X is a minimum
variance bound estimator of λ.

As an alternative, we may utilize (10.11) to write

∂ log L
∂λ

= −n + n�x
λ

= n
λ

(�x − λ) ,

where α(λ, n) = n
λ

. Hence �X is a minimum variance bound estimator of λ since
its variance equals CR(λ, n). �
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Example 10.3.3.4 For X a Bernoulli random variable, its probability mass func-
tion can be written as f (x; p) = P(X = x) = px(1 − p)1−x, x = 0 or 1. If we repeat
the implied simple alternative experiment n times in succession, then the value
of the discrete random variable Xi is determined on the ith trial. Clearly the Xi’s,
i = 1, . . . , n, constitute a set of independent and identically distributed sample
random variables. Given this random sampling scheme, what is the Cramér-Rao
lower bound on the variance of any unbiased estimator of p? The joint probability
mass function (and thus likelihood function) appears as

L(p; x, n) = p

n∑

i=1
xi

(1 − p)
n−

n∑

i=1
xi

, xi = 0 or 1,

and thus

log L =
(

n∑

i=1

xi

)
log p +

(
n −

n∑

i=1

xi

)
log(1 − p).

Then

∂ log L
∂p

=
(

1
p

) n∑

i=1

xi −
(

1
1 − p

)(
n −

n∑

i=1

xi

)
,

∂2 log L
∂p2

= −
(

1
p2

) n∑

i=1

xi −
(

1
(1 − p)2

)(
n −

n∑

i=1

xi

)
.

We next form

−E
(

∂2 log L
∂p2

)
= E

⎛

⎜⎝

n∑
i=1

xi

p2

⎞

⎟⎠+ E

⎛

⎜⎝
n −

n∑
i=1

xi

(1 − p)2

⎞

⎟⎠

=
(

1
p2

) n∑

i=1

E(xi) +
(

1
(1 − p)2

)(
n −

n∑

i=1

E(xi)

)
.

Now, since E(xi) = p for all i, it follows that the preceding expression becomes

−E
(

∂2 log L
∂p2

)
= n

p
+ n

1 − p
= n

p(1 − p)
.

Hence, by virtue of (10.10),

V(T) ≥ 1

−E
(

∂2 log L
∂p2

) = p(1 − p)
n

= CR(p, n).
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Since the estimator T = X
n (where X is the number of successes in n trials) is

unbiased for p and V(T) = p(1−p)
n , it follows that T is a minimum variance bound

estimator of p. Again (10.11) provides us with a direct method for finding the most
efficient estimator for a parameter. In this instance, since T = X

n = 1
n

∑n
i=1 Xi and

∂ log L
∂p

= nt
p

+ n − nt
(1 − p)

= n
p(1 − p)

(t − p),

where α(p, n) = n/p(1 − p), we see that T is indeed a minimum variance bound
estimator of p with V(T) = CR(p, n). �

The preceding set of example problems has indicated that, under certain
general regularity conditions (see footnote 2), we may determine if a particular
estimator is a minimum variance bound or most efficient estimator of a param-
eter θ . But what if the population probability density function f (x; θ) does not
satisfy the regularity assumptions underlying the existence of the Cramér-Rao
lower bound or the lower bound is unattainable for the set of admissible unbiased
estimators? If no such estimator attains the Cramér-Rao lower bound, how do
we know which estimator from among many possible unbiased estimators of θ is
efficient? One way to address these issues is to introduce the concept of sufficiency
while restricting our discussion to the class of unbiased estimators.

10.3.4 Sufficient Statistics

Sufficient statistics often can be used to develop estimators that are efficient
(have minimum variance among all unbiased estimators). In fact, as we shall
now see, if a minimum variance bound or most efficient estimator exists, it will be
found to be a sufficient statistic. Moreover, if an efficient estimator of θ exists, it
is expressible as a function of a sufficient statistic.

To set the stage for a formal definition of a sufficient statistic, let us note first
that, quite generally, a sufficient statistic for a parameter θ is one that utilizes
all the information about θ that appears in a random sample. So by employing a
sufficient statistic for θ , we are adopting a method of data reduction that does not
discard any information about θ while condensing the sample data into a single
value within which all sample information is contained.

In this regard, suppose that X1, . . . , Xn represent a set of sample random vari-
ables taken from a population with probability density function f (x; θ). Then an
estimator T = (X1, . . . , Xn, n) of a parameter θ is termed sufficient if and only if
the joint probability density function of X1, . . . , Xn given T is independent of θ

for any realization t of T; that is, the conditional distribution of X1, . . . , Xn given
T or f (X1, . . . , Xn|T) does not depend on θ . So if T is given, then X1, . . . , Xn has
nothing further to add about the value of θ and no alternative estimator can con-
tribute any additional information about θ . Thus any inference about θ depends
on the sample random variables X1, . . . , Xn only through the value of T; comput-
ing T enables us to achieve data reduction without losing any information about
the parameter θ . In this regard, a sufficient statistic T fully exploits the infor-
mation content of the sample; and it cannot be improved upon in the sense that
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there are no additional properties of the sample data not already included in the
specification of T.

We may view this definition of a sufficient statistic from another angle by
noting that if the value of a sufficient statistic is known, then the sample val-
ues themselves are superfluous and cannot add any additional information about
θ since the joint distribution of the sample random variables given T does not
depend on θ . That is, how much additional information about θ can be obtained
by sampling from a distribution that does not depend on θ?

For instance, suppose we want to estimate the population mean µ from a set
of sample random variables X1, . . . , Xn taken from a normal probability density
function with known standard deviation. To do so we summarize all the sam-
ple information in the statistic X = ∑n

i=1 Xi and then construct the estimator
�X = 1

n

∑n
i=1 Xi. Has this process of reducing the entire data set to the single value

X retained all the information about µ in the sample, or has some of the informa-
tion regarding µ been lost? As we shall soon see, X summarizes all the values in
the sample into a single number without loss of any information concerning µ and
thus is a sufficient statistic for µ and thus the estimator �X is also sufficient for µ.
(Note that the median is not sufficient since it utilizes only the ranking and not all
the values of the sample observations.)

In light of the preceding discussion, we may now generally conclude that if T
is a sufficient statistic for a parameter θ , then any one-to-one function of T, T ′ =
φ(T) is also sufficient for θ . For example, we just observed that if X = ∑n

i=1 Xi is
a sufficient statistic for µ, then so is �X = φ(X) = X

n .

Example 10.3.4.1 To clarify the preceding definition of a sufficient statistic, let
the value of the sample random variable Xi, i = 1, . . . , n, be determined on the
ith trial of a simple alternative or binomial experiment wherein the probability
of a success (Xi = 1) is p and the probability of a failure (Xi = 0) is 1 − p. Let
X = ∑n

i=1 Xi be the total number of successes in the n independent trials. If the
value of X, and thus P̂ = X

n , is known, can we gain any additional information
about p by examining the value of any alternative estimator that also depends
on X1, . . . , Xn? According to our definition of sufficiency, the conditional distri-
bution of X1, . . . , Xn given X must be independent of p. Is it? For x = np̂ the
realization of X = nP̂, let us form

P(X1 = x1, . . . , Xn = xn|X) = P(X1 = x1, . . . , Xn = xn, X = x)
P(X = x)

= px(1 − p)n−x

(
n
x

)
px(1 − p)n−x

= 1(
n
x

) = 1(
n
np̂

) .

Clearly the conditional distribution of the sample random variables given X is
free of p. So once X is known, no alternative estimator expressed as a function
of the Xi, i = 1, . . . , n, can add any additional information concerning the value
of p. Thus X (and consequently P̂) summarizes all relevant information about p
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by reducing the sample information to a single value (while not discarding any
information about p) and thus is deemed sufficient for p. �

The definition of a sufficient statistic can tell us how to check to see if a par-
ticular estimator is sufficient for a parameter θ , but it does not tell us how to
actually go about finding a sufficient statistic (if one exists). To address the issue
of operationally determining a sufficient statistic, we turn to Theorem 10.1, the
Fisher-Neyman Factorization Theorem (1922, 1924, 1935):

THEOREM 10.1. Let X1, . . . , Xn be a random sample taken from a pop-
ulation with probability density function f (x; θ). The estimator T =
g(X1, . . . , Xn, n) is a sufficient statistic for the parameter θ if and only if the
likelihood function of the sample factors as the product of two nonnegative
functions h(t; θ , n) and j(x1, . . . , xn, n) or

L(θ ; x1, . . . , xn, n) = h(t; θ , n) · j(x1, . . . , xn, n) (10.14)

for every realization t = g(x1, . . . , xn, n) of T and all admissible values of θ .

Although the function j is independent of θ (it may possibly be a constant), the
function h depends on the sample realizations via the estimator T and thus this
estimator constitutes a sufficient statistic for θ .

Equation (10.14) is known as the factorization criterion for a sufficient statistic,
and is useful as a device for discovering sufficient statistics (although it is not
useful in determining that a given statistic is not sufficient). As we shall now
see, this criterion avoids the potentially difficult and cumbersome procedure of
constructing a conditional probability distribution of the sample random variables
as required by the direct application of the definition of sufficiency.

To see how the factorization theorem is applied in specific instances, let us
consider the following assortment of example problems.

Example 10.3.4.2 Let the sample random variables X1, . . . , Xn be drawn from
a Poisson population with probability mass function, p(x; λ) = e−λ λx

x! , x =
0, 1, . . . ; λ > 0. To demonstrate that the minimum variance bound estimator �X is
sufficient for λ, let us start with the likelihood function

L(λ; x, n) = e−nλ λ

n∑

i=1
xi

n∏
i=1

xi!
= e−nλλnx̄

n∏
i=1

xi!
= h(x̄; λ, n) · j(x1, . . . , xn, n),

where h(x̄; λ, n) = e−nλλnx̄. Note that h depends upon the Xi, i = 1, . . . , n, only
through the function or realization t = x̄. Moreover, this factorization holds for
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all x and λ. Hence, by the factorization criterion (10.14), �X is a sufficient statistic
for λ. �

Example 10.3.4.3 If the sample random variables X1, . . . , Xn are taken
from a N(µ, σ ) population with probability density function f (x; µ, σ ) =
(2πσ 2)− 1

2 e− (x−µ)2

2σ2 , −∞ < x, µ < +∞, σ > 0, then, with σ 2 known, the likelihood
function factors as

L(µ, σ 2; x, n) = (2πσ 2)− n
2 e

−
n∑

i=1

(xi−µ)2

2σ2 = (2πσ 2)− n
2 e

−
n∑

i=1

(xi−x̄+x̄−µ)2

2σ2

= (2πσ 2)− n
2 e−

n∑

i=1
(xi−x̄)2+n(x̄−µ)2

2σ2

=
[

(2πσ 2)− n
2 e

−
n∑

i=1

(xi−x̄)2

2σ2

] [
e− n(x̄−µ)2

2σ2

]

= j(x1, . . . , xn, n) · h(x̄; µ, n),

where h(x̄; µ, n) = e−n(x̄−µ)2/2σ 2
. Since h is a function of the sample random vari-

ables only through t = x̄, it follows from the factorization criterion that, for all
x and µ, �X is a sufficient statistic for µ as well as a minimum variance bound
estimator for the same. �

Example 10.3.4.4 If the sample random variables are extracted from a N(µ, σ )
distribution with µ = 0, then the population probability density function appears
as f (x; µ, σ ) = (2πσ 2)−1/2e−x2/2σ 2

, −∞ < x, µ < +∞, σ > 0, and the likelihood
function assumes the form

L(µ, σ 2; x, n) = (2πσ 2)− n
2 e

−
n∑

i=1

x2
i

2σ2

=
[

(σ 2)− n
2 e− ns2

0
2σ2

] [
(2π)− n

2

]
= h(s2

0; σ 2, n) · j(x1, . . . , xn, n),

where h(s2
0; σ 2, n) = (σ 2)−n/2e−ns2

0/2σ 2
and the function j is a constant. (Remember

that with µ known, S2
0 = 1

n

∑n
i=1(xi − µ)2 serves as a minimum variance bound

estimator of σ 2.) Since h depends on the Xi, i = 1, . . . , n, only through the function
or realization s2

0 = 1
n

∑n
i=1 x2

i of S2
0 = 1

n

∑n
i=1 X2

i , the factorization criterion enables
us to conclude that, for all x and σ 2,

∑n
i=1 X2

i as well as S2
0 is sufficient for σ 2. �



398 Chapter 10 Point Estimation and Properties of Point Estimators

Example 10.3.4.5 Let X1, . . . , Xn represent a random sample taken from a
Bernoulli population with probability mass function f (x; p) = px(1 − p)1−x, x = 0
or 1, 0 ≤ p ≤ 1. Verify that the minimum variance bound estimator P̂ = X

n is also
sufficient for p. Given that the likelihood function can be expressed as

L( p; x, n) = p

n∑

i=1
xi

(1 − p)
n−

n∑

i=1
xi

= pnp̂(1 − p)n−np̂ = h(p̂; p, n) · j(x1, . . . , xn, n),

we see that h(p̂; p, n) = pnp̂(1 − p)n−np̂ and j = 1. Since h depends on the Xi, i =
1, . . . , n, only via the function np̂ = ∑n

i=1 xi, the factorization criterion deems
P̂ = X

n , where X = ∑n
i=1 Xi, a sufficient statistic for p. �

10.3.5 Minimal Sufficient Statistics

It may be the case that there is more than one sufficient statistic associated with
the parameter θ of some population probability density (or mass) function. Hence
it is only natural to ask whether one sufficient statistic is better than any other
such statistic in the sense that it achieves the highest possible degree of data
reduction without loss of information about θ . A sufficient statistic that satisfies
this requirement will be termed a minimal sufficient statistic. More formally, a
sufficient statistic T for a parameter θ is termed a minimal sufficient statistic if, for
any other sufficient statistic T ′ for θ , T is a function of T ′.

We note briefly that:

1. The entire sample X1, . . . , Xn serves as a sufficient statistic for a parameter
θ . To see this, let us factor the likelihood function as L(θ ; x1, . . . , xn, n) =
L
(
θ ; t(x1, . . . , xn), n

) · j(x1, . . . , xn), where t = (x1, . . . , xn) and j = 1 for all x.
Then, by the factorization theorem, we see that T = (X1, . . . , Xn) is a sufficient
statistic for θ .

2. If a population probability density (or mass) function f (x; θ) is a member of the
exponential family of distributions given by (10.12), then the factorization cri-
terion (10.14) applied to the likelihood function (10.13) reveals that

∑n
i=1 d(xi)

is a minimal sufficient statistic for θ .

A general procedure for finding a minimal sufficient statistic is provided by
Theorem 10.2, the Lehmann–Scheffé Theorem (1950, 1955, 1956):

THEOREM 10.2. Let L(θ ; x1, . . . , xn, n) denote the likelihood function of a
random sample taken from the population probability density function f (x; θ).
Suppose there exists a function T = g(X1, . . . , Xn, n) such that, for the two sets
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of sample realizations {x1, . . . , xn} and {y1, . . . , yn}, the likelihood ratio

L(θ ; x1, . . . , xn, n)
L(θ ; y1, . . . , yn, n)

(10.15)

is independent of θ if and only if g(x1, . . . , xn, n) = g(y1, . . . , yn, n).
Then T is a minimal sufficient statistic for θ .

Example 10.3.5.1 Let X1, . . . , Xn and Y1, . . . , Yn be two sets of sample ran-
dom variables taken from a Poisson population with probability mass function
p(x; λ) = e−λλx/x!, x = 0, 1, . . . ; λ > 0. From (10.15),

L(λ; x, n)
L(λ; y, n)

=
e−nλλ

n∑

i=1
xi/ n∏

i=1
xi!

e−nλλ

n∑

i=1
yi/ n∏

i=1
yi!

= λ

n∑

i=1
(xi−yi)

⎛

⎜⎜⎝

n∏
i=1

yi!
n∏

i=1
xi!

⎞

⎟⎟⎠ = λn(x̄−ȳ)

⎛

⎜⎜⎝

n∏
i=1

yi!
n∏

i=1
xi!

⎞

⎟⎟⎠ ·

Clearly this ratio is free of λ if and only if x̄ = ȳ. Hence �X is a minimal sufficient
statistic for λ. �

10.3.6 On the Use of Sufficient Statistics

Let us now consider the importance or usefulness of a sufficient statistic (provided,
of course, that one exists). As will be seen next, sufficient statistics often can
be used to construct estimators that have minimum variance among all unbiased
estimators or are efficient. In fact, sufficiency is a necessary condition for efficiency
in that an estimator cannot be efficient unless it utilizes all the sample information.

We note first that if an unbiased estimator T of a parameter θ is a function of
a sufficient statistic S, then T has a variance that is smaller than that of any other
unbiased estimator of θ that is not dependent on S. Second, if T is a minimum
variance bound or most efficient estimator of θ , then T is also a sufficient statistic
(although the converse does not necessarily hold).

This first point may be legitimized by the Rao-Blackwell Theorem (presented
next), which establishes a connection between unbiased estimators and sufficient
statistics. In fact, this theorem informs us that we may improve upon an unbiased
estimator by conditioning it on a sufficient statistic. That is, an unbiased estimator
and a sufficient statistic for a parameter θ may be combined to yield a single
estimator that is both unbiased and sufficient for θ and has a variance no larger
(and usually smaller) than that of the original unbiased estimator.

To see this let T be any unbiased estimator of a parameter θ and let the statistic
S be sufficient for θ . Then the Rao-Blackwell Theorem indicates that another
estimator T ′ can be derived from S (i.e., expressed as a function of S) such that T ′
is unbiased and sufficient for θ with the variance of T ′ uniformly less than or equal
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to the variance of T. More formally, we have Theorem 10.3, The Rao-Blackwell
Theorem (1947):

THEOREM 10.3. Let X1, . . . , Xn be a random sample taken from the popu-
lation probability density function f (x; θ) and let T = g(X1, . . . , Xn, n) be any
unbiased estimator of the parameter θ . For S = u(X1, . . . , Xn, n) a sufficient
statistic for θ , define T ′ = E(T /S), where T is not a function of S alone. Then
E(T ′) = θ and V(T ′) ≤ V(T) for all θ (with V(T ′) < V(T) for some θ unless
T = T ′ with probability 1).

What this theorem tells us is that if we condition any unbiased estimator T on a
sufficient statistic S to obtain a new unbiased estimator T ′, then T ′ is also sufficient
for θ and is a uniformly better unbiased estimator of θ . In this regard, if we seek
an efficient or minimum variance unbiased estimator of θ , we need only consider
estimators that are functions of a sufficient statistic. In particular, an efficient
estimator must be a function of a minimal sufficient statistic; that is, although
conditioning an unbiased estimator T on a sufficient statistic S helps us obtain a
better estimator T ′ of θ in the sense that V(T ′) ≤ V(T), it should be evident that
conditioning T on a minimal sufficient statistic S′ enables us to obtain an efficient
or minimum variance unbiased estimator T ′′ of θ . In this regard, it is usually the
case that any unbiased estimator that is a function of a minimal sufficient statistic
is an efficient estimator of θ . Moreover, the resulting efficient estimator is unique.

It was mentioned earlier that minimum variance bound estimators and suffi-
cient statistics are related. In fact, as we shall now see, under certain conditions
they are one and the same. To see this let us return to the Factorization
Theorem 10.1 and rewrite the factorization criterion or sufficiency condition
(10.14) as

log L(θ ; x1, . . . , xn, n) = log h(t; θ , n) + log j(x1, . . . , xn, n). (10.14.1)

Then the factorization criterion may be respecified as

∂ log L
∂θ

= ∂ log h(t; θ , n)
∂θ

· (10.14.2)

Here also (10.14.2) provides us with a sufficiency condition for an estimator T.
If the right-hand side of (10.14.2) can be expressed in the same form as the

right-hand side of (10.11); that is,

∂ log h(t; θ , n)
∂θ

= α(θ , n)
(
t(x1, . . . , xn, n) − θ

)
, (10.14.3)

then the sufficient statistic T is also a minimum variance bound estimator of the
parameter θ . However, if (10.14.2) cannot be written as (10.14.3), then a minimum
variance bound estimator of θ does not exist, even though T is a sufficient statistic
for θ . But if a minimum variance bound estimator for θ exists, it must, in general, be
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a function of a sufficient statistic. Clearly the condition for a minimum variance
bound estimator to exist (10.11) is much stronger or more restrictive than the
sufficiency condition (10.14.2).

Example 10.3.6.1 We noted earlier that if our random sample is taken from a
Poisson population, then the likelihood function of the sample can be factored as

L(λ; x, n) = e−nλλnx̄

n∏
i=1

xi!
= h(x̄; λ, n) · j(x1, . . . , xn, n),

with h(x̄; λ, n) = e−nλλnx̄. Then log h = −nλ + nx̄ log λ and thus

∂ log h
∂λ

= −n + nx̄
λ

= n
λ

(x̄ − λ),

where, in terms of (10.14.3), α(λ, n) = n
λ

and t(x1, . . . , xn, n) − λ = x̄ − λ. Hence
the sufficient statistic �X is also a minimum variance bound estimator of λ. �

10.3.7 Completeness

Before we continue with our search for efficient or best unbiased estimators of
a parameter θ , let us introduce some terminology that will be of considerable
importance when it comes to linking the notions of sufficiency and efficiency.
This is the concept of completeness. Specifically, let f (x; θ) represent a family of
probability density (mass) functions and let g(x) be a continuous function of x
that does not depend on θ . If E

(
g(x)

) = 0 for every admissible θ requires that
g(x) = 0 at each point x where at least one member of the family f (x; θ) is positive,
then the family of probability density (mass) functions f (x; θ) is termed a complete
family of probability density (mass) functions. So for a complete family of, say,
probability density functions, there are no unbiased estimators of zero other than
zero itself.

Example 10.3.7.1 Given the family of Bernoulli probability mass functions
f (x; p) = px(1 − p)1−x, x = 0 or 1; 0 < p < 1, and g(x) a continuous function
of x that does not involve p, suppose that E

(
g(x)

) = 0 for every p, 0 < p < 1.
According to the preceding definition, we must demonstrate that this implies that
g(x) = 0 at each x at which at least one member of this family of probability mass
functions is positive. But each f is positive at x = 0 and 1 and thus E

(
g(x)

) = 0
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implies g(0) = g(1) = 0, 0 < p < 1. From

E
(
g(x)

) =
1∑

x=0

g(x)f (x; θ) =
1∑

x=0

g(x)px(1 − p)1−x

= g(0)(1 − p) + g(1)p

= p
(
g(1) − g(0)

)+ g(0) = 0, 0 < p < 1.

Since this expression must vanish for all admissible values of p, it follows that
g(1) − g(0) = 0 and g(0) = 0 or g(1) = g(0) = 0. �

Armed with the completeness concept, let us continue our discussion of suffi-
ciency as a vehicle for achieving efficiency. We noted earlier that conditioning an
unbiased estimator T on a sufficient statistic S results in a new estimator T ′ that is
a uniformly better unbiased estimator of a parameter θ . So if we desire an efficient
or best unbiased estimator of θ , then we need only consider unbiased estimators
that are functions of a sufficient statistic. But if T ′ is an improvement over T in the
sense that V(T ′) ≤ V(T), how do we know that T ′ is efficient? If T ′ is a minimum
variance bound estimator of θ , then obviously T ′ is best unbiased. But if V(T ′)
does not coincide with the Cramér-Rao lower bound, then we obviously need an
alternative way of characterizing an efficient estimator.

One possibility is to introduce the concept of an unbiased estimator of zero;
that is, an estimator R that satisfies E(R) = 0 for all θ . Clearly an unbiased
estimator of zero is devoid of any information about θ . Let’s see if this type of
estimator can be utilized to improve upon the unbiased estimator T. To this end we
form T ′ = T + αR, α a constant, where E(T) = θ , E(R) = 0. Clearly E(T ′) = θ

so that T ′ is an unbiased estimator of θ . Is V(T ′) ≤ V(T)? To answer this question
let us form (using (5.45))

V(T ′) = V(T + αR) = V(T) + α2V(R) + 2α COV(T , R).

If for some particular θ we find that COV(T , R) < 0 (or >0), then it can easily
be demonstrated that one can determine an α for which V(T ′) < V(T) so that
T cannot be an efficient estimator of θ . Hence whether or not T is an efficient
estimator of θ hinges upon the connection between T and any unbiased estimator
of zero. In this regard, we can conclude that T is a best unbiased or efficient
estimator of θ if and only if T is uncorrelated with all unbiased estimators of zero.
So if T is efficient, then COV(T , R) = 0 for all θ and any estimator R for which
E(R) = 0. And if the unbiased estimator T is such that COV(T , R) = 0 for any R
satisfying E(R) = 0, then T is efficient.

How do we know that T is uncorrelated with all unbiased estimators of zero?
One way to ensure that there is no association between T and all unbiased
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estimators of zero is to place a restriction on the family of probability density
(mass) functions of the sufficient statistic S. In this regard, since COV(T , 0) = 0,
we can require that the family of probability densities f (x; θ , n) be complete;
that is, for this family there are no unbiased estimators of zero other than zero
itself.

In view of the preceding assortment of considerations and perspectives, our
analysis concerning the link between sufficiency and efficiency can now be brought
to closure. To accomplish this task, we may summarize the previous discussion as
follows. Let S be a sufficient statistic for a parameter θ and suppose that T is an
unbiased estimator of θ . Under what conditions will the function T ′ = l(S) =
E(T /S) represent a unique efficient or minimum variance unbiased estimator
of θ? To answer this question we need to utilize the notion of a complete fam-
ily of probability density (or mass) functions for a sufficient statistic. To this end
let f (s; θ , n) be a family of sampling distributions or probability density functions
of S and let g(S) = w(X1, . . . , Xn, n) be any statistic that is not a function of θ ,
where X1, . . . , Xn represent a collection of sample random variables taken from a
population with probability density function f (x; θ). If

E
(
g(s)

) = ∫
S g(s) · f (s; θ , n)ds ≡ 0

implies P
(
g(s) ≡ 0

) = 1 for all

admissible θ whenever f > 0,

⎫
⎪⎬

⎪⎭
(10.16)

then the family of probability density functions f (s; θ , n) is termed complete and
the statistic S is called a complete sufficient statistic. As (10.16) reveals, S is a
complete sufficient statistic if the only unbiased estimator of zero that is a function
of S is the statistic g(S) that is identically zero with probability equal to unity.

Hence there can be only one function T ′ = l(S) = E(T /S) such that E(T ′) = θ

so that T ′ is the unique minimum variance unbiased or efficient estimator of θ .
So if T is an unbiased estimator of θ and T is not a function of S alone, then an
efficient estimator of θ can be determined as T ′ = l(s) = E(T /S), where S is a
complete sufficient statistic for θ .

We note briefly that if a population probability density (or mass) function
f (x; θ) belongs to the exponential family of distributions given by (10.12), then it
can be demonstrated that S = ∑n

i=1 d(xi) is a complete minimal sufficient statistic
for the parameter θ . So for this class of distributions, T ′ = E(T /S) provides the
unique best unbiased or efficient estimator for θ .

It should be evident from the preceding discussion that, at times, finding an
efficient or best unbiased estimator of a parameter θ is no trivial task. We typically
need to specify the form of the population probability density function and, in the
case of trying to determine the most efficient estimator of θ , demonstrate that
a given unbiased estimator has a variance that coincides with the Cramér-Rao
lower bound. However, if the form of the population probability density function
is unknown or if the Cramér-Rao lower bound is unattainable, then it is very
difficult to establish if a given unbiased estimator is efficient.
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10.3.8 Best Linear Unbiased Estimators

Instead of looking for an unbiased estimator with minimum variance among all
alternative unbiased estimators of θ , an alternative approach is to restrict our
search for an efficient estimator to a smaller class of unbiased estimators, namely
those unbiased estimators that are linear functions of the sample observations.
In this regard, for a set of sample random variables X1, . . . , Xn, an estimator T is
termed a linear combination of the Xi, i = 1, . . . , n, if

T =
n∑

i=1

aiXi, (10.17)

where the ai are constant for all i = 1, . . . , n.
The notion of the linearity of an estimator now leads us to a specialization of

the concept of an efficient estimator of a parameter θ . Specifically, T is termed a
best linear unbiased estimator (BLUE) of θ if:

(a) T is a linear combination of the sample values Xi, i = 1, . . . , n

(b) E(T) = θ

(c) V(T) ≤ V(T ′), where T ′ is any other linear unbiased estimator of θ

That is, out of the class of all linear unbiased estimators of θ , T has minimum
variance. As usual, the expression for T cannot involve θ or any other population
parameter. So if we are interested in finding a BLUE for θ , then we need only
find a linear estimator that satisfies properties (b) and (c). Moreover, it is often
possible to find any such estimator without knowledge about the form of the pop-
ulation probability density function from which the sample random variables were
taken.

Example 10.3.8.1 Let us derive a BLUE for the population mean µ. Suppose
that X1, . . . , Xn is a collection of sample random variables taken from a population
with mean µ and variance σ 2. (Remember that E(Xi) = µ and V(Xi) = σ 2 for
all i = 1, . . . , n.) What we shall now demonstrate is that the sample mean �X
is a BLUE of µ. To this end let T be a linear unbiased estimator of µ. Then
T = ∑n

i=1 aiXi and E(T) = ∑n
i=1 aiE(Xi) = µ

∑n
i=1 ai = µ only if

∑n
i=1 ai = 1.

Next V(T) = V
(∑n

i=1 aiX
) = ∑n

i=1 a2
i V(Xi) = σ 2∑n

i=1 a2
i .

Hence the problem of finding a BLUE of µ amounts to finding a set of con-
stants a1, . . . , an such that the variance V(T) = σ 2∑n

i=1 a2
i is as small as possible

under the restriction (or constraint) that
∑n

i=1 ai = 1. But since σ 2 is constant, this
is equivalent to solving the constrained optimization problem:

min

{
n∑

i=1

a2
i

}
s.t.

n∑

i=1

ai = 1, (10.18)
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where s.t. stands for subject to and the ai’s, i = 1, . . . n, are the variables or
unknowns.3

Alternatively, we may easily convert this constrained problem to an uncon-
strained optimization problem by eliminating one of the variables in the constraint
equation (say, a1) and substituting its value into the objective function

∑n
i=1 a2

i and
then minimizing the latter quantity. That is, given a1 = 1 −∑n

j=2 aj, we seek to

determine the ai, i = 1, . . . , n, which minimize M =
(

1 −∑n
j=2 aj

)2 + ∑n
j=2 aj.

Setting

∂M
∂aj

= −2

⎛

⎝1 −
n∑

j=2

aj

⎞

⎠+ 2aj = 0, j = 2, . . . , n

(the first-order conditions for a minimum), we have aj = 1 −∑n
j=2 aj = a1. Hence

n∑

i=1

ai = a1 +
n∑

j=2

aj = a1 +
n∑

j=2

a1 = a1 + (n − 1)a1 = 1

or na1 = 1 and thus a1 = 1
n .

Then aj = 1
n , j = 2, . . . , n, or ai = 1

n for all i solves (10.18). (It is assumed that
the second-order conditions for a minimum of M hold.) Given that the constants
that make T unbiased and minimize its variance are ai = 1

n for i = 1, . . . , n, it

follows that T = ∑n
i=1

( 1
n

)
Xi = �X and V(T) = σ 2∑n

i=1

( 1
n

)2 = σ 2

n = V(�X). Thus
�X has the smallest variance among all linear unbiased estimators of µ. �

10.3.9 Jointly Sufficient Statistics

One final set of results for this section concerns the existence of jointly suf-
ficient statistics. Specifically, for X1, . . . , Xn a set of sample random variables
taken from the population probability density function f (x; θ), the statistics
Sk = uk(X1, . . . , Xn, n), k = 1, . . . , r, are said to be jointly sufficient if and only
if the joint probability density function of X1, . . . , Xn given S1, . . ., Sr is indepen-
dent of θ for any set of realizations sk = uk(x1, . . . , xn, n), k = 1, . . . , r; that is, the

3 Forming the Lagrangian function we have L = ∑n
i=1 a2

i +λ
(
1 −∑n

i=1 ai
)
, where λ is the undetermined

(and unrestricted in sign) Lagrange multiplier. Then the first-order conditions for a minimum are

∂L/∂ai = 2ai − λ = 0, i = 1, . . . , n;

∂L/∂λ = 1 −
n∑

i=1

ai = 0.

Solving this system simultaneously yields λ = 2/n and ai = λ/2 = 1/n, i = 1, . . . , n. (It is assumed that
the second-order conditions for a constrained minimum are satisfied.)



406 Chapter 10 Point Estimation and Properties of Point Estimators

conditional distribution of X1, . . . , Xn given S1, . . . , Sr or f (X1, . . . , Xn|S1, . . . , Sr)

does not depend on θ . (It is important to note that θ may not simply represent a
single unknown population parameter but may, in fact, depict a set of parameters;
that is, θ may be the v-tuple (θ1, . . . , θv).)

In general, any collection of one-to-one functions of the set of sufficient statis-
tics S1, . . . , Sr is also sufficient. That is, if S1, . . . , Sr is a set of jointly sufficient
statistics for a parameter θ , then the collection of one-to-one functions of the
Sk, k = 1, . . . , r, or

S′
j = φj(S1, . . . , Sr), j = 1, . . . , w,

is also jointly sufficient for θ . For example, it will be demonstrated shortly that
if S1 = ∑n

i=1 Xi and S2 = ∑n
i=1 X2

i are jointly sufficient statistics for θ1 = µ and
θ2 = σ 2, respectively, then so are

S′
1 = φ1(S1, S2) = �X = S1

n

and

S′
2 = φ2(S1, S2) =

n∑

i=1

(Xi − �X)2 =
n∑

i=1

X2
i − n�X2 = S2 − 1

n
S2

1.

We next examine a set of statistics for their joint sufficiency by considering
Theorem 10.4, the Generalized Fisher-Neyman Factorization Theorem:

THEOREM 10.4. Let X1, . . . , Xn be a random sample taken from a popu-
lation with probability density function f (x; θ). The set of estimators Sk =
uk(X1, . . . , Xn, n), k = 1, . . . , r, is jointly sufficient for the parameter θ if and
only if the likelihood function of the sample factors as the product of the two
nonnegative functions h(s1, . . . , sr ; θ , n) and j(x1, . . . , xr , n) or

L(θ ; x1, . . . , xn, n) = h(s1, . . . , sr ; θ , n) · j(x1, . . . , xn, n) (10.19)

for every set of realizations sk = uk(x1, . . . , xn, n), k = 1, . . . , r, of the Sk’s,
k = 1, . . . , r, and all admissible values of θ .

Here the function j is independent of θ (it may be a constant) and h depends
on the sample realizations via the estimators Sk, k = 1, . . . , r, and thus the Sk’s,
k = 1, . . . , r, constitute a set of jointly sufficient statistics for θ . Equation (10.19)
is termed the factorization criterion for jointly sufficient statistics.

Example 10.3.9.1 To see how (10.19) is applied, let X1, . . . , Xn depict a set of
independent and identically distributed sample random variables taken from a
normally distributed population with probability density function f (x; µ, σ ) =
(
√

2πσ )−1e−(x−µ)2/2σ 2
. Assuming that both µ and σ 2 are unknown, we have
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θ = (θ1, θ2) = (µ, σ 2). Then as developed earlier, the joint probability density or
likelihood function of the sample has the form

L(µ, σ 2; x, n) = 1
(2πσ 2)n/2

e
− 1

2

n∑

i=1

(xi−µ)2

σ2

= 1
(2πσ 2)n/2

e
− 1

2σ2

(
n∑

i=1
x2

i −2µ
n∑

i=1
xi+nµ2

)

= 1
(2πσ 2)n/2

e− 1
2σ2 (s2−2µs1+nµ2)

= h(s1, s2; θ , n) · j(x1, . . . , xn, n),

where

h(s1, s2; θ , n) = 1
(2πσ 2)n/2

e− 1
2σ2 (s2−2µs1+nµ2)

and j = 1. Since h depends on the Xi, i = 1, . . . , n, only through the functions
s1 = ∑n

i=1 xi and s2 = ∑n
i=1 x2

i , it follows that the statistics S1 = ∑n
i=1 Xi, S2 =∑n

i=1 X2
i are jointly sufficient for µ and σ 2, respectively. And since �X = S1

n = S′
1

and S2 = 1
n−1

∑n
i=1(Xi − �X)2 = 1

n−1

(∑n
i=1 X2

i − n�X2
) = 1

n−1

(
S2 − 1

n S2
1

) = S′
2 are

one-to-one functions of S1 and S2, it follows that �X and S2 are jointly sufficient
for µ and σ 2. �

We noted earlier that a minimal sufficient statistic is one that achieves the
highest possible degree of data reduction without losing any information about
a parameter θ . Moreover, a general procedure for finding a minimal sufficient
statistic was provided by the Lehman-Scheffé Theorem (Theorem 10.2). Let us
now extend this theorem to the determination of a set of jointly minimal sufficient
statistics. We thus have Theorem 10.5, the generalized Lehman-Scheffé Theorem:

THEOREM 10.5. Let L(θ ; x1, . . . , xn, n) denote the likelihood function of a
random sample taken from the probability density function f (x; θ). Suppose
there exists a set of functions Sk = uk(X1, . . . , Xn, n), k = 1, . . . , r, such that,
for two sets of sample realizations {x1, . . . , xn} and {y1, . . . , yn} the likelihood
ratio

L(θ ; x1, . . . , xn, n)
L(θ ; y1, . . . , yn, n)

(10.20)

is independent of θ if and only if uk(x1, . . . , xn, n) = uk(y1, . . . , yn, n), k =
1, . . . , r. Then the Sk, k = 1, . . . , r, represent, jointly, a set of minimal sufficient
statistics for θ .
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Example 10.3.9.2 Let X1, . . . , Xn and Y1, . . . , Yn be two sets of sample random
variables taken from a normal probability density function with unknown mean µ

and variance σ 2. From (10.20),

L(µ, σ 2; x, n)
L(µ, σ 2; y, n)

=
(

1√
2πσ

)n
e
− 1

2σ2

n∑

i=1
(xi−µ)2

(
1√

2πσ

)n
e
− 1

2σ2

n∑

i=1
(yi−µ)2

= e
− 1

2σ2

(
n∑

i=1
(xi−µ)2−

n∑

i=1
(yi−µ)2

)

= e
− 1

2σ2

[(
n∑

i=1
x2

i −
n∑

i=1
y2

i

)
−2µ

(
n∑

i=1
xi−

n∑

i=1
yi

)]

= e− 1
2σ2 [(sx

2−sy
2)−2µ(sx

1−sy
1)],

where sx
2 = ∑n

i=1 x2
i , sy

2 = ∑n
i=1 y2

i , sx
1 = ∑n

i=1 xi, and sy
1 = ∑n

i=1 yi. Clearly this
ratio is free of µ and σ 2 if and only if sx

2 = sy
2 and sx

1 = sy
1. Thus

∑n
i=1 xi and

∑n
i=1 x2

i
are jointly minimal sufficient statistics for µ and σ 2, respectively. And by virtue
of the argument used in the preceding example problem, it follows that �X and S2

are also jointly minimal sufficient statistics for µ and σ 2. �

We indicated earlier that the Rao-Blackwell Theorem (Theorem 10.3) serves
to establish a link between unbiased estimators and sufficient statistics; that is,
we may improve upon an unbiased estimator by conditioning it on a sufficient
statistic. We now extend this theorem to a collection of jointly sufficient statistics.
Specifically, we state the generalized Rao-Blackwell Theorem (Theorem 10.6):

THEOREM 10.6. Let X1, . . . , Xn be a random sample taken from a popu-
lation probability density function f (x; θ) and let T = g(X1, . . . , Xn, n) be
any unbiased estimator of the parameter θ . For Sk = uk(X1, . . . , Xn, n), k =
1, . . . , r, a set of jointly sufficient statistics for θ , define T ′ = E(T |S1, . . . , Sr),
where T ′ is not a function of the Sk’s, k = 1, . . . , r, alone. Then E(T ′) = θ and
V(T ′) ≤ V(T) for all θ (with V(T ′) < V(T) for some θ unless T = T ′ with
probability 1).

So if we condition any unbiased estimator T on a set of jointly sufficient statis-
tics Sk, k = 1, . . . , r, to obtain a new unbiased estimator T ′, then T ′ is also sufficient
for θ and is a uniformly better unbiased estimator of θ .

10.4 Large Sample Properties of Point Estimators

10.4.1 Asymptotic or Limiting Properties

In this section our aim is to develop large sample or asymptotic properties of a
point estimator of a parameter θ . Strictly speaking, asymptotic properties are
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actually properties of a sequence of point estimators {Tn} indexed by the sample
size n; that is, if Tn denotes an estimator based on a sample of size n, then
T1 = g1(X1, 1), T2 = g2(X1, X2, 2), . . . , Tn = gn(X1, . . . , Xn, n). Hence asymptotic
properties of an estimator Tn are limiting properties that emerge as n → ∞.

A large sample property of a point estimator is a characteristic of the sam-
pling distribution of the estimator that obtains as n → ∞. That is, as n increases
without bound, we will consider a set of asymptotic distributional properties of
an estimator—properties such as asymptotic unbiasedness, its asymptotic vari-
ance, and asymptotic efficiency, which characterize the sampling distribution of
an estimator as n → ∞.

We may view the asymptotic distribution of an estimator as the shape of the
sampling distribution of the estimator as n becomes very large. That is, if the dis-
tribution of an estimator tends to become more and more similar in form to some
specific or limiting distribution for increasing n, then this limiting distribution is
taken to be the asymptotic distribution of the estimator. Hence the asymptotic
distribution of an estimator T is the shape that the sampling distribution of T
assumes as it approaches its limiting form. The asymptotic distribution of T is not
the sampling distribution of T when the sample size is infinite since the distribution
of T with an infinite sample size is degenerate; that is, the distribution of T reduces
or collapses to a single point (possibly θ) with zero variance and with probabil-
ity mass equal to unity. Hence the asymptotic distribution of T is not the final
(degenerate) form that its sampling distribution assumes as n → ∞; it is the form
that the sampling distribution of T tends to take immediately before degeneracy
occurs.

To focus more sharply on the concept of the limiting form of the sampling
distribution of an estimator T, let us briefly review the notion of convergence in
distribution introduced earlier in Section 8.6. To this end let {Tn} be a sequence
of estimators of a parameter θ , where Tn has the cumulative distribution function
Fn(t). Then Tn converges in distribution to a random variable V with cumulative
distribution function F(t) if lim

n→∞ Fn(t) = F(t) (or lim
n→∞ |Fn(t) − F(t)| = 0) at all

continuity points of F(t). (This type of convergence was denoted as Tn
d−→ V .)

In this regard, if Tn converges in distribution to V, then F(t) serves as the limiting
distribution of Tn.

Although the form of the sampling distribution of an estimator T may be
unknown when n is small, this may not be the case when n is large; that is, the
sampling distribution of T may have a specific known form (its limiting distribu-
tion) when n increases without bound. For example, if X1, . . . , Xn constitutes a
set of sample random variables taken from an unknown population distribution
with finite mean µ and finite variance σ 2, then, via the central limit theorem,
�Zn = �Xn−µ

σ /
√

n

d−→ Z, where Z is N(0, 1). Here N(0, 1) is the limiting distribution of

�Zn and thus Tn = �Xn is asymptotically N
(
µ, σ√

n

)
. Hence the asymptotic distribu-

tion of �Xn, which is determined from the known limiting distribution of a function
�Zn of �Xn, provides us with an approximation to the true sampling distribution of
�Xn (which may or may not be exactly normally distributed).
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10.4.2 Asymptotic Mean and Variance

Given that the limiting distribution and its moments exist, the limiting mean and
limiting variance of an estimator Tn are, respectively, the mean and variance of
its limiting distribution. Let us see exactly how the limiting mean and limiting
variance are characterized. We noted earlier that an estimator T of a parameter θ

is unbiased if E(T) = θ . Now, an estimator T may actually be biased for small
samples but, as n increases without bound, its bias B(Tn, θ) = E(Tn) − θ may
decline to zero. If this is the case, then Tn is said to be an asymptomatically
unbiased estimator of θ . More formally, let us define the asymptotic expectation
(AE) of an estimator Tn as

AE(Tn) =
∫

Tnh(t; θ)dTn, (10.21)

where h(t; θ) is the limiting (sampling) distribution of Tn. Here AE(Tn) is simply
the limiting mean of Tn or the mean of the limiting distribution of Tn. In this
regard, we may now state that Tn is an asymptotically unbiased estimator of θ if
AE(Tn) = 0. Hence the asymptotic bias of Tn is simply AE(Tn) − θ . Note that if
a estimator is unbiased, then it is asymptotically unbiased (since E(Tn) = θ for
all values of n). However, the asymptotic unbiasedness of an estimator does not
necessarily imply that the estimator is unbiased.

An alternative condition for asymptotic unbiasedness is that E(Tn) → θ as
n → ∞ or lim

n→∞ E(Tn) = θ , where

lim
n→∞ E(Tn) = lim

n→∞

∫
Tnh(t; θ , n) dTn (10.22)

and h(t; θ , n) is the sampling distribution of Tn. Here (10.22) is simply the limit of
the expectation of Tn as n → ∞. Implicit in the condition lim

n→∞ E(Tn) = θ is the

requirement that, for indefinitely large n, E(Tn) exists. If E(Tn) does not exist,
then this alternative notion of asymptotic unbiasedness is undefined. In general,
AE(Tn) = θ does not imply lim

n→∞ E(Tn) = θ .

Example 10.4.2.1 Let us consider the statistic Yn = �Xn + 1
n as an estimator of

the population mean µ. Since E(Yn) = E(�Xn) + 1
n = µ + 1

n , it follows that Yn

is a biased estimator of µ, where the amount of bias is B(Yn, µ) = 1
n . But since

lim
n→∞ E(Yn) = µ, we see that Yn is an asymptotically unbiased estimator for µ. �

Since the sampling distribution of an estimator Tn might become degenerate
as n increases without bound (i.e., collapses to a single point with probability mass
equal to one), the asymptotic variance of Tn is not defined as lim

n→∞ V(Tn) since,

under degeneracy, V(Tn) → 0 as n → ∞. Instead, the asymptotic variance of Tn
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is simply the variance of the asymptotic distribution of Tn or

AV(Tn) = 1
n

lim
n→∞ E

{√
n
(
Tn − E(Tn)

)}2
(10.23)

given that the indicated individual expectations exist. Thus the asymptotic vari-
ance of Tn is determined as the limiting value of the expected squared deviation
of Tn about its mean.

10.4.3 Consistency

A desirable asymptotic property of a good point estimator T of a parameter θ is
that the sampling distribution of T becomes more closely concentrated about θ as
the sample size n increases without bound. Here we are considering the behav-
ior of the sampling distribution of T which, conceptually, is constructed from
indefinitely large samples. A concept that deals with the limiting behavior of the
sampling distribution of Tn as n → ∞ is consistency. Specifically, T is said to be a
consistent estimator of a parameter θ if the sequence of estimators {Tn} converges
in probability to θ as n increases without bound Tn

p−→ θ ; that is, T is a consistent
estimator of θ if

a. lim
n→∞ P(|Tn − θ | < ε) = 1 or

b. lim
n→∞ P(|Tn − θ | ≥ ε) = 0

(10.24)

for all admissible θ and all real ε > 0.4

Equation (10.24a) reveals that the probability that the sampling error |Tn − θ |
is less than any arbitrary small positive constant ε approaches one when n
approaches infinity (i.e., as the sample size becomes infinite, Tn will be arbitrarily
close to θ with high probability), and (10.24b) indicates that the probability that
the sampling error |Tn − θ | equals or exceeds an arbitrary small positive constant
ε approaches zero when n approaches infinity (i.e., as the sample size becomes
infinite, the probability that Tn misses θ is small). So if (10.24a) is true, then the
sequence of random variables {Tn} converges in probability to the constant θ . And
if (10.24b) holds, the values in the sequence {Tn} that are not close to θ become
increasingly unlikely as n grows large. In either case the sampling distribution of
Tn collapses upon θ—the limiting distribution of Tn has all of its probability mass
concentrated on θ .

To see exactly how the definition of consistency (as incorporated in (10.24))
can be used to actually verify the same for an estimator, let us demonstrate that
�X is a consistent estimator of µ.

4 An alternative version of, say, (10.24a) appears as: a sequence of estimators {Tn} is consistent for θ if,
for arbitrarily small positive constants ε and δ, a value nε of n exists such that if n > nε , P(|Tn − θ | <

ε) > 1 − δ.
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Example 10.4.3.1 Let X1, . . . , Xn depict a set of sample random variables drawn
from a population with a finite mean (µ) and variance (σ 2). From the (4.19.2)
version of Chebyshev’s inequality we have

P(|�Xn − µ| < kσ�X ) ≥ 1 − 1
k2

.

If we set k = ε

σ�X
= ε

√
n

σ
(since σ�X = σ√

n
), then

P(|�Xn − µ| < ε) ≥ 1 − σ 2

nε2

and thus

lim
n→∞ P(|Tn − θ | < ε) = 1.

Hence, by virtue of (10.24a), the sequence of estimators {�Xn} converges in prob-
ability to µ so that �X is a consistent estimator of µ. This result should be familiar
to you since it was actually encountered earlier under the heading of the (weak)
law of large numbers, which essentially states that �Xn

p−→ µ. �

Example 10.4.3.2 The preceding demonstration that the sample mean is a con-
sistent estimator of the population mean was offered without having to specify the
form of the population probability density (mass) function. However, if the form
of the population distribution is known, then it may be utilized to also demonstrate
that {�Xn} constitutes a sequence of consistent estimators for µ. To see this let us
assume that the sample random variables are taken from a population density

function, which is N(µ, σ ). Then {�Xn} depicts a sequence of N
(
µ, σ√

n

)
random

variables. Let us determine

P
(|�Xn − µ| < ε

) =
∫ µ+ε

µ−ε

1√
2πσ�X

e
− 1

2
(x̄n−µ)2

σ2�X dx̄n =
∫ µ+ε

µ−ε

√
n√

2πσ
e− n

2
(x̄n−µ)2

σ2 dx̄n.

Set y = x̄n−µ

σ
or σy = x̄n − µ. Then by virtue of (7.n4.1) (p. 274),

P(|�Xn − µ| < ε) =
∫ ε

−ε

√
n√

2π
e− n

2 y2
dy.

Next, let y = z√
n

so that, from (7.4n.2) (p. 274),

P(|�Xn − µ| < ε) =
∫ √

nε

−√
nε

1√
2π

e− 1
2 z2

dz = P
(|Z| <

√
nε
)

,
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where Z is N(0, 1). Then from Chebyshev’s inequality (4.19.2), P
(|Z| <

√
nε
) ≥

1 − 1
nε2 and thus lim

n→∞ P
(|Z| <

√
nε
) = 1. Hence {�Xn} is a consistent sequence of

estimators for µ. �

Example 10.4.3.3 If the random variable X represents the number of successes
in n independent trials of a simple alternative experiment, then X is binomially
distributed and, if the population probability of a success p is unknown, then,
as determined earlier, the best estimator for p is the sample proportion or the
observed relative frequency of a success P̂ = X

n . It should be intuitively clear that,
as n increases without bound, the sequence of estimators {P̂n} should approach
p; that is, {P̂n} should converge in probability to p(or P̂n

p−→ p) and thus P̂ is a
consistent estimator of p. To see this remember that P̂ is a random variable with

E(P̂) = p and σP̂ =
√

p(1−p)
n . Then using Chebyshev’s inequality (4.19.2),

P(|P̂n − p| < kσP̂) ≥ 1 − 1
k2

.

Let k = ε

σP̂

= ε

√
n

√
p(1 − p)

. Then

P(|P̂n − p| < ε) ≥ 1 − p(1 − p)
nε2

and thus

lim
n→∞ P(|P̂n − p| < ε) = 1

so that, as anticipated, P̂ is a consistent estimator of p. �

A practical way to determine if a particular estimator is consistent is by tracing
the behavior of its bias and variance as n → ∞. To this end we offer the follow-
ing two theorems. We assume that T is an unbiased estimator of θ . Then, by
Theorem 10.7:

THEOREM 10.7. An unbiased estimator T for a parameter θ is also a
consistent estimator of θ if lim

n→∞ V(Tn) = 0.

To see this let E(Tn) = θ and V(Tn) < ∞. For real ε > 0, Chebyshev’s inequality
((4.19.1)) informs us that P(|Tn − θ | ≥ ε) ≤ V(Tn)/ε2. If lim

n→∞ V(Tn) = 0, then

(10.24b) holds and thus T is a consistent estimator of θ (see Figure 10.4a). (This
restriction on the limit of the variance of Tn is only sufficient for Tn to be consistent
for θ ; that is, Tn can be a consistent estimator of θ even if V(Tn) does not approach
zero.)
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h(t ; q, n) h(t ; q, n)
n1< n2 < n3

n1< n2 < n3
h(t ; q, n3)

B(Tn, q) = 0 and
V(Tn) → 0 as
n → ∞.

B(Tn, q) → 0 and
V(Tn) → 0 as
n → ∞.h(t ; q, n2)

h(t ; q, n1)

Tn Tn
E(T1) E(T2) E(T3)

(a) (b)

q q

Figure 10.4 (a) T is a consistent estimator for θ if V(Tn) → 0 as n → ∞; (b) T is a consistent estimator
for θ if E(Tn) → θ and V(Tn) → 0 as n → ∞.

Since �X is an unbiased estimator of µ, Theorem (10.7) applied to σ 2
x̄ = σ 2

n
also reveals that �X is a consistent estimator of µ. And if this theorem is applied
to σ 2

P̂
= p(1−p)

n , then clearly P̂ is a consistent estimator of p.
The sample median is not a consistent estimator for µ if the population distri-

bution is not symmetrical. In this regard, the discussion presented in Section 8.9
informs us that if the population probability density function is N(µ, σ ), then the
sampling distribution of the sample median is asymptotically normally distributed
with mean µ and variance π σ 2

2n . Since the sample median in this case is unbiased
and its variance approaches zero as n → ∞, Theorem 10.7 reveals that the sample
median is a consistent estimator of µ.

If T is not an unbiased estimator of θ , then we have Theorem 10.8:

THEOREM 10.8. An estimator T for a parameter θ is called a mean-squared-
error-consistent estimator of θ if limn→∞ MSE(Tn, θ) = 0 or

(a) lim
n→∞ B(Tn, θ) = 0, where B(Tn, θ) denotes the bias of Tn

(b) lim
n→∞ V(Tn) = 0

Clearly, mean–squared–error–consistency implies that both the bias and variance
of Tn approach zero as n → ∞ so that the sampling distribution of Tn even-
tually becomes degenerate at θ . Hence Tn comes closer to the unknown θ (Tn

is asymptotically unbiased) and becomes more precise as n → ∞. To verify
this let V(Tn) < +∞ and, for real ε > 0, let us write Chebyshev’s inequal-
ity as P(|Tn − θ | ≥ ε) ≤ MSE(Tn, θ)/ε2, where MSE(Tn, θ) = E(Tn − θ)2 =
V(Tn) + B(Tn, θ)2. If lim

n→∞ V(Tn) = lim
n→∞ B(Tn, θ) = 0, then lim

n→∞ MSE(Tn, θ) = 0
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and thus lim
n→∞ P (|Tn − θ | ≥ ε) = 0. Again T is consistent for θ by virtue of (10.24b).

In this instance, lim
n→∞ MSE(Tn, θ) = 0 is a sufficient condition for T to be a consis-

tent estimator of θ in that it is possible to find an estimator whose mean squared
error does not approach zero as n → ∞ and yet is consistent (the estimator may
not have a finite mean or variance). However, if we restrict our discussion to
estimators that possess finite asymptotic means and variances, then the condition
lim

n→∞ MSE(Tn, θ) = 0 is both necessary and sufficient for consistency. Moreover,

if an estimator is mean–squared–error–consistent, then it is also consistent in the
sense of (10.24). (Hence the conditions given in (10.24) are weaker than those
offered in Theorem 10.8. In this regard, an estimator satisfying (10.24) is often
termed weakly consistent.) In either case the probability limit of Tn is θ .

The preceding discussion informs us that for consistency to hold, the sampling
distribution of Tn concentrates perfectly on θ as n approaches infinity; that is,
the mean and variance of the sampling distribution of Tn approach θ and zero,
respectively, as n increases without bound (see Figure 10.4b).

Example 10.4.3.4 We noted earlier in Section 8.10 that the sample variance

S2 =
n∑

i=1
(Xi−�X)2

n−1 is an unbiased estimator of the population variance σ 2 and that,
for a general population probability density function, if µ4 (the fourth central
moment of the population) is finite, then

V(S2) = 1
n

[
µ4 −

(
n − 3
n − 1

)
σ 4
]

, n > 1.

Clearly V(S2) → 0 as n → ∞ and thus, by virtue of Theorem 10.7, S2 is a consis-
tent estimator of σ 2 or the sequence of estimators {S2

n} converges in probability
to σ 2. (See also Theorem 8.8—the (weak) law of large numbers for variances.)
It was also mentioned earlier that S2

1 = 1
n

∑n
i=1(Xi − �X)2 is a biased (down-

ward) estimator of σ 2. However, S2
1 is an asymptotically unbiased estimator

of σ 2 since its bias approaches zero as n becomes indefinitely large; that is,

lim
n→∞ B(S2

1, σ 2) = lim
n→∞

(
− σ 2

n

)
= 0. And since MSE(S2

1, σ 2) = (2n − 1)
(

σ 4

n2

)
,

it follows that lim
n→∞ MSE(S2

1, σ 2) = 0 and thus, via Theorem 10.8, S2
1 is a

mean–squared–error–consistent estimator of σ 2. �

Additional considerations regarding the notion of consistency of an estimator
are:

(a) An estimator whose variance corresponds to the Cramér-Rao lower bound
is consistent for a parameter θ ; and any such estimator is unbiased, with its
variance approaching zero as n → ∞.
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(b) Consistency deals with the limiting behavior of Tn as n → ∞; consistency
does not imply that the realization of Tn is necessarily close to θ for any
given n.

(c) Let T be a consistent estimator for a parameter θ with {an}, {bn} sequences of
constants satisfying lim

n→∞ an = 1, lim
n→∞ bn = 0. Then the sequence of estimators

{Un}, where Un = anTn + bn, converges in probability to θ as n increases
without bound so that U = aT + b is a consistent estimator of θ .

(d) If Tn is a term of a consistent sequence of estimators {Tn}, then Tn is said to
be a consistent estimator of θ .

(e) Consistency does not imply unbiasedness; but consistency necessarily implies
asymptotic unbiasedness. In fact, the distinction between the unbiasedness
and consistency of an estimator Tn of a parameter θ hinges upon the treat-
ment of the sample size; that is, for unbiasedness, as the number of samples
increases, Tn is on target; for consistency, as the size of a single sample
increases, Tn is on target or Tn converges in probability to θ .

(f) Any continuous function of a consistent estimator is itself a consistent
estimator. Specifically, we have Theorem 10.9, the Slutsky Theorem:

THEOREM 10.9. If Tn
p−→ θ and g(Tn) is a continuous function of Tn,

then g(Tn)
p−→ g(θ).

Hence consistency is carried forward by continuous functions; for example, if
Tn is a consistent estimator of θ , then log Tn is a consistent estimator of log θ .

(g) Since convergence in probability implies convergence in distribution (see

Section 8.6), it follows that if Tn
p−→ θ (T is consistent for θ), then Tn

d−→ θ

and thus AE(Tn) = θ (= constant); that is, T is an asymptotically unbiased
estimator of θ . But remember that asymptotic unbiasedness does not neces-
sarily imply consistency. However, consistency and asymptotic unbiasedness
are equivalent if Tn is consistent and asymptotically normally distributed.

(h) A special case of convergence in probability is convergence in mean square:
if an estimator Tn has mean µn and variance σ 2

n and if lim
n→∞ µn = θ and

lim
n→∞ σ 2

n = 0, then Tn converges in mean square to θ and Tn
p−→ θ . Note that

convergence in probability does not imply convergence in mean square.

(i) Sample moments are consistent estimators of their corresponding population
parameters or moments. That is, given the population random variable X,

the statistic
∑ Xk

i
n is a consistent estimator of E(Xk) if both the mean and

variance of Xk are finite.

10.4.4 Asymptotic Efficiency

We noted earlier that in the finite sample case, other things being equal, an esti-
mator with a small variance is preferable to one that has a large variance. This is
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also true for indefinitely large samples. In this regard, we now turn to a consider-
ation of the concept of asymptotic efficiency—a property of an estimator that is
related to the dispersion of its asymptotic distribution (so that the estimator must
possess a finite asymptotic mean and variance). Specifically, if two estimators of
a parameter θ are each asymptotically unbiased, the one with the smaller asymp-
totic variance is said to be asymptotically more efficient than the other. And the
estimator with the smallest asymptotic variance among all asymptotic unbiased
estimators of θ is said to be asymptotically efficient.

It was previously mentioned (in Theorem 10.8) that if an estimator T for a
parameter θ is mean-squared-error consistent (i.e., if lim

n→∞ MSE(Tn, θ) = 0), then

it is also asymptotically unbiased. Hence first and foremost, an estimator must be
mean–squared–error–consistent in order to be deemed asymptotically efficient.

According to (10.24), an estimator will be consistent if its sampling distribution
concentrates perfectly on θ as n → ∞; that is, E(Tn) → θ and V(Tn) → 0 as
n → ∞. If T is a mean–squared–error–consistent estimator of θ (hence it is also
consistent in the sense of (10.24)), then it will be asymptotically efficient if its
variance approaches zero faster than the variance of any other mean–squared–
error–consistent estimator of θ .

We may further clarify the preceding comments by formally introducing the
property of asymptotic relative efficiency. If two estimators T and T ′ are mean–
squared–error–consistent (or at least both are asymptotically unbiased), the ratio
of their large sample variances is a measure of their relative efficiency; the one with
the smaller variance for a given n is relatively more efficient. To operationalize
this discussion let us express the efficiency of T relative to T ′ by the ratio

RE = V(Tn)
V(T ′

n)
× 100, 0 ≤ RE ≤ 1 (10.25)

(where the smaller variance appears in the numerator of this expression). Then
the asymptotic efficiency of T relative to T ′ is RE0 × 100, where

RE0 = lim
n→∞

V(Tn)
V(T ′

n)
, 0 ≤ RE0 ≤ 1. (10.25.1)

And if T is a mean–squared–error–consistent estimator of θ and RE0 < 1 for any
other such estimator T ′ of θ , then T is termed asymptotically efficient.

Example 10.4.4.1 It was determined earlier that if we sample from a normal

population, S2 = 1
n−1

∑n
i=1(Xi − �X)2 and S2

1 = 1
n

n∑
i=1

(Xi − �X)2 are, respectively,

unbiased and asymptotically unbiased estimators of σ 2. Then the efficiency of
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S2
1 relative to S2 is given by

RE = V(S2
1)

V(S2)
=
[ n−1

n

]2 [ 2σ 4

n−1

]

2σ 4

n−1

=
(

n − 1
n

)2

× 100.

And since in this instance RE = 1, it follows that the asymptotic efficiency of S2
1

relative to S2 is 100%; that is, S2
1 and S2 are asymptotically equally efficient. �

We noted in Section 10.3 that a minimum variance bound or most efficient
estimator of a parameter θ may not always exist (especially for all sample sizes n).
However, if T is unbiased and constitutes a minimum variance estimator of θ , then,
as n increases without bound, it may be the case that the asymptotic variance
of T equals the Cramér-Rao lower bound CR(θ , n) given by equation (10.10)
(assuming that the form of the population probability density function is known).
In this instance T is termed an asymptotically most efficient estimator of θ . Thus
for very large samples, the variance of an asymptotically efficient estimator of θ

can be approximated by the Cramér-Rao lower bound (provided, of course, that
this lower bound exists). And if a minimum variance bound estimator of θ does
not exist for all n, a large sample approximation to any such estimator can often
be provided by an asymptotically efficient estimator of θ . So if an estimator is
found to be most efficient, then it is also asymptotically most efficient. However,
the converse of this proposition need not necessarily hold.

10.4.5 Asymptotic Normality

One important characteristic that an estimator of a parameter θ may exhibit is
that, in addition to displaying many of the aforementioned desirable properties
of a good estimator, it also tends to be asymptotically normally distributed. This
observation thus leads us to specify what is called a best asymptotically normal
estimator. To this end let X1, . . . , Xn be a set of sample random variables drawn
from a population with a finite mean (µ) and variance (σ 2). Then a sequence
of estimators {Tn} of a parameter θ is termed best asymptotically normal if and
only if:

(a) The distribution of
√

n(Tn − θ) → N
(
0, V(Tn)

)
as n → ∞

(b) {Tn} is consistent for θ ; that is, for every real ε > 0, lim
n→∞ P(|Tn − θ | > ε) = 0

for all admissible θ

(c) For {Wn} any other sequence of consistent estimators of θ , the distribution of√
n(Wn − θ) → N

(
0, V(Wn)

)

(d) V(Tn) ≤ V(Wn) for all admissible θ

Note that since part (c) of this definition requires Tn to be consistent and part
(d) specifies that Tn is asymptotically efficient for θ , a best asymptotically normal
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estimator can alternatively be termed a consistent asymptotically normal efficient
estimator for θ .

For instance, if random samples are drawn from a population with mean
µ and variance σ 2, then the sequence of estimators {�Xn}, where �Xn = ∑n

i=1
Xi
n ,

is a best asymptotic normal estimator of µ (via the Central Limit Theorem).
The issue of �Xn being best for µ was addressed earlier in this chapter. To con-
sider the asymptotic normality of �Xn we need only remember that Section 8.8

revealed that Zn = √
n

�Xn−µ

σ

d−→ N(0, 1); that is, under the conditions of the

Central Limit Theorem, �Xn is approximately N
(
µ, σ√

n

)
for essentially any n.

But as n → ∞, V(�Xn) = σ√
n → 0 and thus the sampling distribution of �Xn

becomes degenerate. To avoid this difficulty, let us work with the random vari-
able Wn = √

n(�Xn − µ) instead of Zn. Then paralleling the discussion presented
in Theorem 8.6, we see that as n → ∞, the sequence of random variables
{Wn} has a sequence of cumulative distribution functions {Fn(t)} that converge
pointwise to the cumulative distribution function of a N(0, σ ) random variable or

Wn = √
n(�Xn − µ)

d−→ N(0, σ ). Hence �Xn converges in distribution to a N(0, σ )
random variable.

10.5 Techniques for Finding Good Point Estimators

10.5.1 Method of Maximum Likelihood

We now turn to two estimation methods that have been proven successful in
yielding point estimators that generally have good properties. The first is the
method of maximum likelihood and the second is the method of least squares.
Both methods can be classified as data reduction techniques that yield statis-
tics, which are used to summarize sample information. The maximum likelihood
method requires knowledge of the form of the population probability density (or
probability mass) function, whereas the least squares method does not.

To obtain an estimate of some unknown population parameter θ , let us begin
by assuming that the sample random variables X1, . . . , Xn have been drawn from
a population with probability density function f (x; θ). Given that the Xi, i =
1, . . . , n, are independent and identically distributed, their joint probability density
function appears as

l(x1, . . . , xn; θ , n) =
n∏

i=1

f (xi; θ)

wherein θ is fixed and the arguments are the variables xi, i = 1, . . . , n. But as
explained earlier (see Section 8.3), if the xi, i = 1, . . . , n are treated as realizations
of the sample random variables and θ is variable and no longer held constant, then
the preceding expression is termed the likelihood function of the sample and can
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be rewritten as

L(θ ; x1, . . . , xn, n) =
n∏

i=1

f (xi; θ) (10.26)

to emphasize its dependence on θ . For computational convenience L will be
transformed to

log L(θ ; x1, . . . , xn, n) =
n∑

i=1

log f (xi; θ). (10.26.1)

Here (10.26) represents, in terms of θ , the a priori probability of obtaining the
observed random sample. And as θ varies over some admissible range for fixed
realization xi, i = 1, . . . , n, the said probability does likewise. In short, the (log)
likelihood function expresses the probability of the observed random sample as
a function of θ . (Note that if the sample random variables Xi, i = 1, . . . , n, are
drawn with replacement from a discrete population with probability mass function
P(X = x) = f (x; θ) and the realization xi appears nj times, j = 1, . . . , k, with∑k

j=1 nj = n, then the likelihood function assumes the form

L(θ ; x1, . . . , xk, n) =
k∏

j=1

f (xj; θ)nj (10.27)

with

log L(θ ; x1, . . . , xk, n) =
k∑

j=1

nj log f (xj; θ).) (10.27.1)

So with θ treated as a variable in log L, the method of maximum likelihood is
grounded in the principle of maximum likelihood: select as an estimate of θ that
value of the parameter (call it θ̂) that maximizes the probability of observing the
given random sample. But this means that we are looking for a value of θ , θ̂ , for
which

log L(θ̂ ; x1, . . . , xn, n) ≥ log L(θ ; x1, . . . , xn, n)

for all admissible values of θ . Hence to find θ̂ , we need only maximize log L with
respect to θ . In this regard, if L is a twice-differentiable function of θ , then a
necessary or first-order condition for log L to attain a maximum at θ = θ̂ is

d log L
dθ

∣∣∣∣
θ=θ̂

= 0.5 (10.28)

5 In what follows we shall deal primarily with log L rather than with L itself since log L is a strictly
monotonic function of θ and the maximum of L occurs at the same θ as the maximum of log L.
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Hence all we need to do is set ∂ log L/∂θ = 0 and solve for the value of θ , θ̂ , which
makes this derivative vanish. (It is assumed that a solution to (10.28) exists and
is unique.) If θ̂ = g(x1, . . . , xn, n) is the value of θ that maximizes log L, then θ̂

will be termed the maximum likelihood estimate of θ ; it is the realization of the
maximum likelihood estimator T̂ = g(X1, . . . , Xn, n) and represents the parameter
value most likely to have generated the sample realizations xi, i = 1, . . . , n. Note
that θ̂ is not the true value of θ but simply a rule that tells us how to calculate θ in
terms of the sample realizations xi, i = 1, . . . , n.

If θ is held fixed, then the population density f (x; θ) is fully specified. But if
the xi’s are held fixed and θ is variable, then we seek to determine from which
density (as indexed by θ) the given set of sample values was most likely to have
been drawn; that is, we want to determine from which density the likelihood is
largest that the sample was obtained. This determination can be made by finding
the value of θ , θ̂ , for which L̂ = L(θ̂ ; x1, . . . , xn, n) = max

θ
L(θ ; x1, . . . , xn, n)—θ̂

thus makes the probability of getting the observed sample greatest in the sense
that it is the value of θ that would generate the observed sample most often.

To help reinforce your understanding of the preceding set of theoretical/
definitional considerations surrounding the method of maximum likelihood, we
offer the following assortment of example problems.

Example 10.5.1.1 Suppose we have a biased coin for which one side is four
times as likely to turn up on any given flip as the other. After n = 3 tosses we must
determine if the coin is biased in favor of heads (H) or in favor of tails (T). If
we define a success as getting heads on any flip of the coin, then the probability
that heads occurs will be denoted as p (and thus the probability of tails on any
single flip is 1 − p). For this problem θ = p so that the Bernoulli probability mass
function can be written as P(X = x; θ) = f (x; θ) = px(1 − p)1−x. So if heads
occurs, x = 1 and f (1; p) = p; and if tails occurs, x = 0 and f (0; p) = 1 − p. Since
one side of the coin is four times as likely to occur as the other, the possible values
of θ = p are 1

5 or 4
5 .6 For each of these θ ’s, the associated Bernoulli probability

distributions are provided by Table 10.1.

Hence maximizing the logarithm of the likelihood function is equivalent to maximizing the likeli-
hood function itself since d log L/dθ = (1/L) dL/dθ = 0 implies dL/dθ = 0. In addition, it is assumed
that θ̂ is an element of the interior of the set of admissible θ ’s and that the sufficient or second-order
condition for a maximum of log L at θ̂ is satisfied, that is,

d2 log L
dθ2

∣∣∣∣
θ=θ̂

< 0. (10.29)

6 Since the odds of one side are 4 to 1 relative to the other, we have y + 4y = 1 or y = 1
5 . Hence 1

5 is
the probability of one side occurring and 4

5 is the probability of the other side occurring. In general,
if the odds in favor of some event A occurring are a to b, then P(A) = a

a+b ; and the odds against A

must be P(�A) = b
a+b .
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Table 10.1

a. θ = 1
5 b. θ = 4

5

X P
(
X = x; 1

5

) = f
(
x; 1

5

)
X P

(
X = x; 4

5

) = f
(
x; 4

5

)

0 f
(
0; 1

5

) = 4
5 0 f

(
0; 4

5

) = 1
5

1 f
(
1; 1

5

) = 1/5
1 1 f

(
1; 4

5

) = 4/5
1

Suppose we toss the combination (H, T, H) so that x1 = 1, x2 = 0, and x3 = 1. Let
us express the likelihood function for n = 3 as

L(p; x1, x2, x3, n = 3) =
3∏

i=1

f (xi; p) = px1+x2+x3(1 − p)3−(x1+x2+x3).

Then

L(p; 1, 0, 1, n = 3) = p2(1 − p).

Clearly the probability of the observed sample is a function of θ = p. For, θ =
p = 1

5 ,

L
(

1
5

; 1, 0, 1, n = 3
)

=
(

1
5

)2 (4
5

)
= 4

125
;

and for θ = p = 4
5 ,

L
(

4
5

; 1, 0, 1, n = 3
)

=
(

4
5

)2 (1
5

)
= 16

125
.

So if the coin is biased toward heads, θ = p = 4
5 and thus the probability of the

event (H, T, H) is 16
125 ; and if it is biased toward tails, θ = p = 1

5 so that the
probability of observing (H, T, H) is 4

125 . Since the maximum of the likelihood
functions is 16

125 , the maximum likelihood estimate of p is p̂ = 4
5 , and this estimate

yields the largest a priori probability of the given event (H, T, H); that is, it is
the value of p that renders the observed sample combination (H, T, H) most
likely. �

Example 10.5.1.2 Next, suppose that in n = 5 drawings (with replacement)
from a vessel containing a large number of red and black balls we obtain two
red and three black balls. What is the best estimate of the proportion of red
balls in the vessel? Let p (respectively, 1 − p) denote the probability of getting
a red (respectively, black) ball from the vessel on any draw. Clearly the desired
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proportion of red balls must coincide with p. Under sampling with replacement,
the various drawings yield a set of independent events and thus the probability of
obtaining the given sequence of events is the product of the probabilities of the
individual drawings. With two red and three black balls, the probability of the
given sequence of events is p2(1 − p)3. But the observed sequence of outcomes is
only one way of getting two red and three black balls. The total number of ways
of getting two red and three black balls is

(
5
2

) = 10. Hence the implied binomial
probability is b(2; 5, p) = 10p2(1 − p)3. Since the number of red balls is fixed,
this expression is a function of p—the likelihood function of the sample. Thus the
likelihood function for the observed number of red balls is

L(p; 2, 5) = 10p2(1 − p)3, 0 ≤ p ≤ 1. (10.29)

Hence the maximum likelihood method has us choose the value for p, which
makes the observed outcome of two red and three black balls the most probable
outcome. To make our choice of p, let us perform the following experiment: we
specify a whole range of possible p’s and select the one that maximizes L. That
is, we will chose the p, p̂, that maximizes the probability of getting the actual
sample outcomes. Hence p̂ best explains the realized sample. All this is carried out
in Table 10.2. For instance, if p = 0.1, then L(0.1; 2.5) = 10(0.1)2(0.9)3 = 0.0729.
The remaining entries are determined in a similar fashion. So as p varies from
0 to 1, we find that the value of p which maximizes the likelihood function L is
p̂ = 0.4 (see Figure 10.5). Hence the maximum likelihood estimator of p is the
hypothetical population value that is most likely to have generated the observed
(fixed) sample values; it is the value of p that maximizes L. It should be no surprise
that p̂ equals the realization of P̂ = X

n , the observed relative frequency of a success
or the observed sample proportion, where X is the observed number of successes.
A more formal approach to solving a problem such as this is provided by the
following direct application of the maximum likelihood method. �

Table 10.2

p L(p; 2, 5)

0.0 0.0000
0.1 0.0729
0.2 0.2048
0.3 0.3087

( p̂ =)0.4 0.3456
0.5 0.3125
0.6 0.2304
0.7 0.1323
0.8 0.0552
0.9 0.0081
1.0 0.0000
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(p ; 2, 5)

0.4

0.3456

0.3

0.2

0.1

p

0.1 0.3 0.5 0.7 0.9

=p̂ 0.4

Figure 10.5 p̂ = 0.4 maximizes the likelihood function L( p; 2, 5).

Example 10.5.1.3 For a binomial distribution, the random variable X is defined
as the number of successes obtained in n independent trials of a simple alternative
experiment, where X = 0, 1, . . . , n. Let p be the probability of a success (assumed
constant from trial to trial). If we observe exactly X = x successes in the n tri-
als, find the maximum likelihood estimator of the binomial parameter p. Since
the likelihood function for the observed number of successes x is given by the
probability that X = x, we can write

L(p; x, n) = n!
x!(n − x)!px(1 − p)n−x, 0 ≤ p ≤ 1,

and thus

log L = log
[

n!
x!(n − x)!

]
+ x log p + (n − x) log(1 − p).

Then from (10.28), setting

d log L
dp

= x
p

− n − x
1 − p

= 0

renders the maximum likelihood estimate p̂ = x
n . (Note that d2 log L/dp2 < 0 for

p̂ < 1.) Hence the maximum likelihood estimator for p is P̂ = X
n , the fraction of

successes in the n trials. And as concluded earlier, P̂ serves as an unbiased esti-
mator of p. Thus the proportion of successes in a random sample of size n from
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a binomial population is the maximum likelihood estimator of the probability
of a success in the population. (Alternatively, if X1, . . . , Xn are taken to be inde-
pendent and identically distributed Bernoulli random variables, then f (xi; p) =
pxi (1 − p)1−xi and thus

L(p; x1, . . . , xn, n) =
n∏

i=1

pxi (1 − p)1−xi = py(1 − p)n−y,

where y = ∑n
i=1 x1. Then, provided 0 < y < n, ∂L

∂p = 0 yields p̂ = y
n = x

n as
previously determined, since Xi = 0 or 1, i = 1, . . . , n.) For instance, from (10.29),

log L = log 10 + 2 log p + 3 log(1 − p)

and thus

d log L
dp

= 2
p

− 3
1 − p

= 0

or p̂ = 0.4 as obtained in the preceding example problem. �

Example 10.5.1.4 Suppose the sample random variables X1, . . . , Xn are now
drawn from a population that follows an exponential distribution with probability
density function

f (x; λ) =
{

λe−λx, λ > 0, x ≥ 0;
0 elsewhere.

What is the maximum likelihood estimator of λ? For f (xi; λ) = λe−λxi , the
likelihood function appears as

L(λ; x1, . . . , xn, n) = λne
−λ

n∑

i=1
xi

with

log L = n log λ − λ

n∑

i=1

xi.

From

d log L
∂λ

= n
λ

−
n∑

i=1

xi = 0

we obtain λ̂ = ( 1
n

∑n
i=1 xi

)−1 = x̄−1. Hence the maximum likelihood estimator of
λ is the random variable T̂ = �X−1 (the inverse of the sample mean). �
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Example 10.5.1.5 It is important to note that a maximum likelihood esti-
mator of a parameter θ can exist even if there is no admissible θ for which
d log L/dθ = 0, so that the calculus cannot always be used to obtain a maxi-
mum likelihood estimator for θ . For instance, if the sample random variables
X1, . . . , Xn are taken from a population that is uniformly distributed, then the
implied probability density function appears as

f (x; θ) =
{

θ−1, 0 < x < θ ;
0 elsewhere.

(Here θ = β − α in equation (7.1).) Hence

f (xi; θ) =
{

θ−1, 0 < xi < θ ;
0 elsewhere,

i = 1, . . . , n, and thus L(θ ; x1, . . . , xn, n) =
n∏

i=1
f (xi; θ) = θ−n. What is the maximum

likelihood estimator of θ ? Since L = θ−n is a monotonically decreasing function
of θ , it follows that dL

dθ
�= 0 for any 0 < θ < +∞. But since L increases when θ

decreases and θ cannot be less than any of the observed sample values, it must be
the case that the value of θ that maximizes L is θ̂ = x(n) = max xi, i = 1, . . . , n, the
largest of the sample realizations. Hence the maximum likelihood estimator of θ

is T̂ = X(n), the nth order statistic. Although X(n) is not an unbiased estimator for
θ , it can be transformed into an unbiased estimator by multiplying X(n) by n+1

n ;
that is, T̂ ′ = ( n+1

n

)
X(n) is unbiased for θ . �

Example 10.5.1.6 Let X1, . . . , Xn represent a set of sample random variables
drawn from a normal distribution with probability density function f (x; µ, σ ) =
(
√

2πσ )−1e− (x−µ)2

2σ2 , −∞ < x + ∞. Let us find the maximum likelihood estimators
for µ and σ 2. To do so requires that we generalize (10.28); that is, if the likelihood
function depends upon h parameters θ1, . . . , θh, then the first-order conditions for
log L(θ1, . . . , θh; x1, . . . , xn, n) to attain a maximum at θj = θ̂j, j = 1, . . . , h, are

∂ log L
∂θj

∣∣∣∣
θj=θ̂j

= 0, j = 1, . . . , h. (10.28.1)

Hence we need only set ∂ log L/∂θj = 0, j = 1, . . . , h, and solve the result-
ing simultaneous equation system for the maximum likelihood estimates θ̂j =
gj(x1, . . . , xn, n). Here the θ̂j’s are the realizations of the maximum likelihood
estimators T̂j = gj(X1, . . . , Xn, n), j = 1, . . . , h (provided, of course, that the
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appropriate set of second-order conditions for a maximum of log L are satis-
fied). The maximum likelihood estimates of µ and σ 2 are, respectively, the values
µ̂ and σ̂ 2 for which

L(µ, σ 2; x1, . . . , xn, n) =
n∏

i=1

f (xi; µ, σ 2) = (2πσ 2)− n
2 e

− 1
2σ2

n∑

i=1
(xi−µ)2

or

log L = −n
2

log(2π) − n
2

log σ 2 − 1
2σ 2

n∑

i=1

(xi − µ)2

attains a maximum. Then from (10.28.1),

(a)
∂ log L

∂µ
= 1

σ 2

n∑

i=1

(xi − µ) = 0;

(b)
∂ log L
∂σ 2

= − n
2σ 2

+ 1
2σ 4

n∑

i=1

(xi − µ)2 = 0.

(10.30)

From (10.30a),
∑n

i=1 xi = nµ or µ̂ = 1
n

∑n
i=1 xi = x̄ (the maximum likeli-

hood estimate of the mean µ of a normal population is the realization of the
mean estimator �X = 1

n

∑n
i=1 Xi). And from (10.30b) and µ̂ = x̄ we obtain

σ̂ 2 = 1
n

∑n
i=1(xi − µ)2 = 1

n

∑n
i=1(xi − x̄)2 (the maximum likelihood estimate of

the population variance σ 2 of a normal population is the realization of the vari-
ance estimator S2

1 = 1
n

∑n
i=1(Xi − �X)2). As indicated earlier, �X is an unbiased

estimator of µ and S2
1 is a biased estimator of σ 2. Hence the method of maximum

likelihood may not always yield unbiased estimates of population parameters. �

Having discussed the particulars of the maximum likelihood method for deter-
mining point estimators of parameters, let us now turn to an inventory of their
(desirable) properties. Specifically:

(a) Maximum likelihood estimators may or may not be unbiased. For example,
under random sampling from a normal population, we found (in Example
10.5.1.6) that �X was unbiased for µ but that S2

1 was a biased estimator for σ 2.

(b) If the maximum likelihood estimator θ̂ of a parameter θ is unique, then θ̂

will be a function of a sufficient statistic. So if a sufficient statistic for θ exists,
it can always be found by the method of maximum likelihood. To see this
let T = g(X1, . . . , Xn, n) be a sufficient statistic for a parameter θ . Then the
maximum likelihood estimator θ̂ is always a function of T in that θ̂ depends
on the sample observations only through the value of T. That is, if T is a
sufficient statistic for θ , then by virtue of the Fisher–Neyman Factorization
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Theorem, the likelihood function can be factored as (10.14) and thus
log L = log h(t; θ , n) + log j(x1, . . . , xn, n). Since log j does not depend
on θ , maximizing log L with respect to θ is equivalent to maximizing log h
with respect to θ . And since log h depends on the sample observations only
through T, θ̂ depends on the same only through T. So if T is sufficient for θ ,
then the maximum likelihood estimator θ̂ is always a function of T.

Keep in mind, however, that the dependence of θ̂ on a sufficient statis-
tic does not guarantee that a maximum likelihood estimator will always be
unbiased or that it will have a variance that attains the Cramér-Rao lower
bound. For example, it can easily be demonstrated that S2

0 = 1
n

∑n
i=1(Xi −µ)2

is a maximum likelihood estimator of σ 2 when the sample random variables
are drawn from a normal population with known mean µ. Moreover, S2

0 is
unbiased for σ 2 and the variance of S2

0 equals the Cramér-Rao lower bound.
However, S2

1 = 1
n

∑n
i=1(Xi − �X)2 is also a maximum likelihood estimator of

σ 2 when sampling from a normal population. But this estimator is biased
and does not have a variance that coincides with the Cramér-Rao lower
bound.

(c) The maximum likelihood technique generally will yield an efficient or mini-
mum variance unbiased estimator of a parameter θ , if one exists. This follows
from the preceding set of comments concerning sufficiency. That is, if a maxi-
mum likelihood estimator θ̂ can be found and θ̂ is unbiased for θ (or perhaps θ̂

can be transformed to become unbiased for θ), then θ̂ will typically be an effi-
cient or best unbiased estimator of θ . So if an efficient estimator of θ exists,
the method of maximum likelihood can be used to find it. For example, under
random sampling from a normal population, �X is the maximum likelihood
estimator of µ. Since �X is unbiased, it is best unbiased or efficient for µ.
Under the same sampling scheme, S2

1 is a maximum likelihood estimator
of σ 2. But S2

1 is biased for σ 2 and thus cannot be the best unbiased estima-
tor of σ 2. However, S2 = ( n

n−1

)
S2

1 is unbiased for σ 2. So when a maximum
likelihood estimator θ̂ for θ is biased, if there exists a best unbiased estimator
for θ , then it must be some variant of θ̂ .

(d) The maximum likelihood method yields estimators that possess the invari-
ance property, which essentially states that maximum likelihood estimation
is invariant under a transformation of parameters. More formally, for θ̂ a
maximum likelihood estimator of θ , if φ(θ) is a single-valued function of θ

(for each θ there is unique φ(θ)), then the maximum likelihood estimator of
φ(θ) is φ(θ̂). For instance, if our maximum likelihood estimator of θ is T̂ ,
then:

● Our estimator of θ2 is T̂2

● Our estimator of θ + k is T̂ + k, k a constant

● Our estimator of kθ is kT̂ , k a constant

● Our estimator of αθ + β is αT̂ + β, α and β constants, and so on
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So if a maximum likelihood estimate has already been obtained for a param-
eter θ , and an estimate is desired for φ(θ), there is no need to reestimate the
model—φ(θ̂) will suffice. Hence under this invariance property of maximum
likelihood estimators, we can, for computational convenience, reparameter-
ize the likelihood function in any fashion that is suitable for our purposes.
For instance, in Example 10.5.1.4 (the probability density function is expo-
nential in form), we could set λ = 1

τ
. Then log L = n log

( 1
τ

) − 1
τ

∑n
i=1 xi.

Setting ∂ log L/∂τ = 0 yields τ̂ = x̄. Then λ̂ = τ̂−1 = x̄−1. In a similar
vein we may note that if S2

1 = 1
n

∑n
i=1(Xi − �X)2 is the (biased) maxi-

mum likelihood estimator of σ 2 when sampling from a normal population,
then, via the invariance property, the maximum likelihood estimator of σ is
S1 = [ 1

n

∑n
i=1(Xi − �X)2

]1/2
. Hence under the invariance property, it makes

no difference whether we maximize the likelihood function as a function of
θ or as a function of φ (θ). However, for the class of unbiased estimators,
the invariance property may not be satisfied. For example, although

( n
n−1

)
S2

1

is an unbiased estimator for σ 2, the positive square root of this estimator is
not an unbiased estimator for σ . Hence unbiasedness and invariance may not
always be compatible properties of a maximum likelihood estimator or of its
transform.

We next turn to a collection of asymptotic properties of maximum
likelihood estimators. In particular:

(e) Maximum likelihood estimators are consistent estimators of population
parameters. In this regard, for X1, . . . , Xn a set of sample random vari-
ables taken from a population with probability density function f (x; θ), let
θ̂n denote the maximum likelihood estimator of θ . Then under certain regu-
larity conditions on f (and thus on L),7 θ̂ is said to be a consistent estimator
of a parameter θ if the sequence of estimator {θ̂n} converges in probability to
θ as n increases without bound or if

lim
n→∞ P(|θ̂n − θ | < ε) = 1

for every real ε > 0 and every admissible θ .

7 The usual set of regularity conditions imposed upon the likelihood function when asymptotic proper-
ties of maximum likelihood estimators are discussed, and which guarantee that ∂ log L/∂θ = 0 has a
solution θ̂ that asymptotically approaches θ0 (the true or exact value of θ ) are:

(a) The range of x is independent of θ .

(b) The probability density function f (x; θ) possesses derivatives with respect to θ of at least third
order, and these derivatives are bounded by integrable functions of x. This requirement holds for
all x and all θ within an open interval containing θ .

(c) E(∂ log L/∂θ) = 0 and E(∂ log L/∂θ)2 = E(−∂2 log L/∂θ2).

(d) ∂ log f (x; θ)/∂θ |θ=θ0 has a positive and finite variance.
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(f) Under the preceding set of regularity conditions on the population prob-
ability density function (and thus on L), maximum likelihood estimators
of population parameters are generally asymptotically efficient; that is, as
n → ∞, the sequence of maximum likelihood estimators {θ̂n} for θ asymp-
totically attains the Cramér-Rao lower bound. In this regard, the maximum
likelihood estimator is the most efficient estimator of θ since it has minimum
asymptotic variance. Under this property, the Cramér-Rao lower bound
provides a convenient variance approximation for maximum likelihood
estimators of θ .

(g) Let X1, . . . , Xn depict a set of sample random variables drawn from a pop-
ulation probability density function f (x; θ) and let f satisfy the preceding
regularity conditions specified in footnote 7. Then the maximum likelihood
estimator θ̂n is asymptotically normal with mean θ (hence θ̂n is asymptoti-
cally unbiased) and variance corresponding to the Cramér-Rao lower bound.
Moreover, the sequence of maximum likelihood estimators {θ̂n} for θ is best
asymptotically normal.

10.5.2 Method of Least Squares

A second technique for obtaining a good (point) estimator of a parameter θ is
the method of least squares. Least squares estimators are determined in a fashion
such that desirable properties of an estimator are essentially built into them by
virtue of the process by which they are constructed. In this regard, least squares
estimators are BLUE; that is, best linear unbiased estimators. (Remember best
means that out of the class of all unbiased linear estimators of θ , the least squares
estimators have minimum variance, and thus minimum mean squared error.)
Additionally, least squares estimators have the advantage that knowledge of the
form of the population probability density function is not required.

Example 10.5.2.1 Let us determine a least squares estimator for the popula-
tion mean µ. Given that the sample random variables X1, . . . , Xn are indepen-
dent and identically distributed, it follows that E(Xi) = µ and V(Xi) = σ 2 for all
i = 1, . . . , n. Now, let Xi = µ + εi, i = 1, . . . , n, where εi is an observational ran-
dom variable with E(εi) = 0 and V(εi) = σ 2. Under random sampling, εi accounts
for the difference between Xi and its mean µ. Then the principle of least squares
directs us to choose µ (the Xi’s are fixed, i = 1, . . . , n) so as to minimize the sum
of the squared deviations between the observed Xi values and their mean µ; that
is, we should choose µ so as to minimize

∑n
i=1 ε2

i = ∑n
i=1(Xi − µ)2. To this end

we set

∂
n∑

i=1
ε2

i

∂µ
= 2

n∑

i=1

(Xi − µ)(−1) = 0
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so as to obtain µ̂ = �X . (Note that ∂2

∂µ2

∑n
i=1 ε2

i = 2n > 0 as required for a mini-
mum.) Hence the least squares estimator of the population mean µ is the sample
mean �X . �

In general, the least squares method is highly appropriate for estimating
moments about zero of a probability distribution. For a population random vari-
able X, its rth moment about zero is µ′

r = E(Xr), r = 0, 1, 2, . . .. Then by the
just provided argument, the principle of least squares has us choose µ′

r so as to

minimize the quantity
n∑

i=1
ε2

i = ∑n
i=1(Xr

i − µ′
r)

2. Setting ∂
∂µ′
∑n

i=1 ε2
i = 0 yields the

least squares estimator µ′
r = 1

n

∑n
i=1 Xr

i . Under some very mild restrictions (the
mean and variance of Xr are finite), these estimators are generally consistent and
asymptotically normal. Whereas least squares estimators are limited to the class
of linear estimators, this is not the case for maximum likelihood estimators.

10.6 Exercises

10-1. Let X1, . . . , Xn constitute a random sample taken from an exponential
distribution with probability density function

f (x; θ) =
{

1
θ
e−x/θ , x > 0, θ > 0;

0 elsewhere.

Which of the following point estimators for θ are unbiased:

T1 = X2, T2 = X1 + X3

2
, or T3 = �X?

Find the efficiency of T1 relative to T3.

10-2. Suppose {X1, X2, . . . , Xn} is a set of sample random variables taken
from a population with mean µ and variance σ 2 and that T1 = �X and
T2 = X1+Xn

2 are point estimators of µ. Are T1 and/or T2 unbiased? Find
the efficiency of T1 relative to T2.

10-3. Suppose {X1, X2, . . . , Xn} is a set of sample random variables taken from a
uniform distribution on the interval (θ , θ +1). Is T1 = �X −0.5 an unbiased
estimator of θ? Is T2 = 2�X an unbiased estimator of θ?

10-4. Suppose {X1, X2, . . . , Xn} is a set of sample random variables taken from

a population that is N(µ, σ ). Is T = (X1−�X)2

n an unbiased estimator of σ 2?

10-5. Suppose that T1 and T2 are independent unbiased estimators of a param-
eter θ , with V(T1) = σ 2

1 and V(T2) = σ 2
2 . If T3 = αT1 + (1 − α)T2,

α constant, is a new unbiased point estimator of θ , how should α be chosen
to minimize V(T3)?
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10-6. Suppose {X1, X2, . . . , Xn} depicts a set of sample random variables drawn
from a population for which E(Xi) = µ and V(Xi) = σ 2. Let T1 =∑n

i=1
Xi

n+1 and T2 = ∑n
i=1

Xi
n−1 be possible estimators for µ. Compare:

(a) E(T1) and E(T2)

(b) MSE(T1, µ) and MSE(T2, µ)

10-7. Let {X1, X2, . . . , Xn} be a set of independent and identically distributed
sample random variables drawn from a binomial population with unknown
parameter p. Two possible estimators for p are T1 = X

n and T2 = X+1
n+1 ,

where X is the observed number of successes. Are both of these estimators
unbiased? Compare the mean square error of each.

10-8. The statistics �X and S2 are unbiased estimators of µ and σ 2, respectively,
(for all µ and σ 2) for {X1, X2, . . . , Xn} a set of sample random variables.
Find the mean square errors of �X and S2.

10-9. Let {X1, X2, . . . , Xn} represent a set of Bernoulli random variables. For �X
an estimator of unknown p (the probability of a success), find MSE(�X , p).

10-10. A set of sample random variables {X1, X2, X3} is taken from a popula-
tion with mean µ and variance σ 2. Find the mean squared error of the
following estimators for µ:

(a) T1 = (X1 + X2 + 2X3)/4

(b) T2 = (2X1 + X2 + X3)/3

(Hint: Use the relationships V(T) = E(T2)−E(T)2 and E(X2
i ) = V(Xi)+

E(Xi)2 = σ 2 + µ2.)

10-11. Let {X1, X2, . . . , Xn} constitute a set of sample random variables taken
from a general population probability density function with E(Xi) = µ′ =
µ, E(X2

i ) = µ′
2, and E(X4

i ) = µ′
4 all finite. Verify that S2 = ∑n

i=1
(Xi−�X)2

n−1
is a consistent estimator of σ 2.

10-12. Let {X1, X2, . . . , Xn} depict a set of sample random variables drawn from
the probability density function

f (x; θ) =
{

θxθ−1, 0 < x < 1, θ > 0;
0 elsewhere.

Find a consistent estimator for θ .

10-13. Let {X1, X2, . . . , Xn} be a collection of sample random variables taken from
the probability density function f (x; θ) = 1

2 (1 + θx), −1 < x, θ < 1. Find a
consistent estimator for θ .

10-14. Let {X1, X2, . . . , Xn} depict a set of sample random variables drawn from
a N(µ, 1) population. For each random variable Yn presented, determine
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if there exists a real number c such that Yn
p−→ c as n → ∞:

(a) Yn = e�Xn

(b) Yn = e�X2
n−2�Xn

10-15. Verify that if X1, . . . , Xn depicts a random sample from a population for
which both E(Xk) and V(Xk) exist, then 1

n

∑n
i=1 Xk

i is a consistent estima-
tor of E(Xk). Use this result to demonstrate that S2

1 = 1
n

∑n
i=1 (Xi − �X)2

is a consistent estimator of σ 2.

10-16. Suppose {X1, X2, . . . , Xn} is a set of sample random variables drawn from
a N(µ, σ ) population. Consider two estimators for µ:

T1 =
n∑

i=1

Xi

n + 1
, T2 = 1

2
Xi + 1

2n

n∑

i=2

Xi.

Which of these two estimators has the largest bias? Are these estimators
efficient? Are T1 and T2 asymptotically unbiased? Are they consistent?
Are they asymptotically efficient?

10-17. Determine a lower bound for the probability that P̂
(= X

n

)
lies within an

ε-neighborhood of p(= E(P̂)). For what value of n will this probability
exceed the value 1 − δ?

10-18. Suppose {X1, X2, . . . , Xn} is a set of sample random variables drawn from
the exponential probability density function f (x; θ) = ( 1

θ

)
e−x/θ , 0 < x <

+∞. Verify that �X is a sufficient statistic for θ .

10-19. Let X1, . . . , Xn be a random sample drawn from a N(µ, σ ) probability den-
sity function. Maximum likelihood estimators for µ and σ 2 are �X and
S2

1 = 1
n

∑n
i=1 (Xi − �X)2, respectively. Demonstrate that �X is an unbiased

estimator for µ and S2
1 is a biased estimator for σ 2. Find the mean squared

error for both �X and S2
1.

10-20. Let X1, . . . , Xn constitute a random sample drawn from a uniform distri-
bution on

[
θ − 1

4 , θ + 1
4

]
. Is Xi an unbiased estimator for θ?

10-21. Suppose {X1, X2, . . . , Xn} is a set of independent sample random vari-
ables drawn from the probability mass function g(x; θ) = θ(1 − θ)x−1,
x = 1, 2, . . . , 0 < θ < 1. Find a sufficient statistic for θ .

10-22. Let {X1, X2, . . . , Xn} be a set of sample random variables for each of the
following probability density functions. Find a sufficient statistic for θ > 0:

(a) f (x; θ) = 2θ−2x, 0 < x < θ

(b) f (x; θ) = θxθ−1, 0 < x < 1, θ > 0
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10-23. Suppose X1, . . . , Xn is a random sample taken from a variable X that is
N(µ, σ ). Express P

(|�Xn − µ| < ε
)

as an integral that converges to 1 as
n → ∞.

10-24. Suppose a random variable X has a probability density function of the
form

f (x; λ) =
{

λe−λx, x ≥ 0, λ > 0;
0 elsewhere.

For X1, . . . , Xn a random sample drawn from this exponential distribution,
let T = ∑n

i=1
Xi
n be an estimator for λ. Find MSE(T , λ).

10-25. Let {X1, X2, . . . , Xn} depict a set of sample random variables drawn from
the probability density function f (x; θ) = 2θ−2x, 0 < x < θ . Find a best
unbiased estimator for θ2.

10-26. Suppose {X1, . . . , Xn} is a set of sample random variables drawn from the
probability density function:

f (x; θ) = θ /(1 + x)θ+1, 0 < x < θ < +∞.

Find a sufficient statistic for θ .

10-27. Given that X1, . . . , Xn depicts a random sample drawn from a variable X
that is N(0, σ ), find a sufficient statistic for σ 2.

10-28. Suppose X1, . . . , Xn is a random sample taken from a population with
known mean µ = µ0 and unknown variance σ 2. Is S2

0 = 1
n

∑n
i=1(Xi − µ0)2

an unbiased estimator of σ 2?

10-29. Let X1, . . . , Xn be a random sample taken from a Bernoulli probability
distribution

(
P(Xi = 1) = p, P(Xi = 0) = 1 − p, with p unknown). Find a

minimal sufficient statistic for p.

10-30. Given the probability density function presented in Exercise 10–12, find a
minimal sufficient statistic for θ .

10-31. Suppose {X1, X2, . . . , Xn} is a set of sample random variables taken from a
population distribution that is N(µ, σ ). Demonstrate that

∑n
i=1(Xi − �X)2

is a minimal sufficient statistic for σ 2. Use this statistic to find an efficient
estimator for σ 2.

10-32. Let {X1, X2, . . . , Xn} be a set of sample random variables drawn from the
probability density function f (x; θ) = θ(1 − θ)x−1, x = 1, 2, . . . ; 0 < θ < 1.
Find a minimal sufficient statistic for θ .

10-33. Let X1, . . . , Xn represent a random sample taken from a population with
mean µ and variance σ 2. Let �Xn = 1

n

∑n
i=1 Xi and S2

n = 1
(n−1)

∑n
i=1(Xi−�X)2

depict sequences of estimators for µ and σ 2, respectively. Verify that {�Xn}
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and {S2
n} are mean–squared–error–consistent sequences of estimators for

µ and σ 2, respectively.

10-34. It is known that for X a N(µ, σ ) random variable, the maximum likelihood
estimator of σ 2 is T̂ = S2

1 = 1
n

∑n
i=1(Xi − �X)2 and that T is a biased

estimator of σ 2. Demonstrate that the bias goes to zero as n → ∞.

10-35. Suppose X1, . . . , Xn constitutes a random sample drawn from a N(µ, σ )
population. Does S2 = 1

n−1

∑n
i=1(Xi − �X)2 converge to σ 2 in probability?

10-36. Suppose X1, . . . , Xn depicts a random sample drawn from a binomial pop-
ulation. In addition, let X = ∑n

i=1 Xi success be observed. Is P̂ = X
n a

consistent estimator for the binomial parameter p?

10-37. Let X1, . . . , Xn represent a random sample drawn for the exponential prob-
ability density function f (x; λ) = λe−λx, x ≥ 0, λ > 0. Find an asymp-
totically efficient estimator for λ.

10-38. For X1, . . . , Xn a random sample drawn from the probability density func-
tion f (x; θ) = 1

θ
e−x/θ , x ≥ 0, θ > 0, find a minimal sufficient statistic

for θ .

10-39. Let X1, . . . , Xn depict a random sample drawn from the exponential prob-
ability density function f (x; θ) = 1

θ
e−x/θ , x ≥ 0, θ > 0. Find an efficient or

minimum variance unbiased estimator for V(Xi).

10-40. Let X1, . . . , Xn depict a random sample drawn from the Poisson probability
density function f (X ; θ) = θX e−θ /X !, x = 0, 1, 2, . . . . It is known that
T = ∑n

i=1 Xi is a sufficient statistic for the mean θ > 0. Demonstrate that
T
n = �X is an efficient statistic for θ .

10-41. Let S2
1 = 1

n

∑n
i=1(Xi − �X)2 denote the variance of a random sample of size

n(>1) drawn from a N(µ, θ) probability density function. The estimator
T = n

n−1 S2
1 is unbiased since E(T) = θ . Is the statistic T the most efficient

estimator for θ?

10-42. Let {X1, X2, . . . , Xn} be a collection of sample random variables drawn from
the probability mass function f (x; θ) = θxe−θ

x! , x = 0, 1, 2, . . . , 0 < θ < +∞.
Verify that the family of distributions of X = ∑n

i=1 Xi is complete.

10-43. Let {X1, X2, . . . , Xn} constitute a set of sample random variables from a
Poisson probability density function with parameter (mean) λ. Find the
maximum likelihood estimator of θ .

10-44. Let {X1, X2, . . . , Xn} be a set of sample random variables drawn from the
probability density function

f (x; θ) =
{

(1 + θ)xθ , 0 ≤ x ≤ 1, θ > 0;
0 elsewhere.

Find the maximum likelihood estimator of θ .
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10-45. Consider a family of probability density functions of the form f (x; θ) =
1
θ
, 0 < x < θ . Is this family complete?

10-46. Suppose we draw a random sample of size n from a multinomial distri-
bution with probability mass function (6.24). Additionally, suppose there
occurs xj outcomes of type Aj, j = 1, . . . , k. Determine the maximum like-
lihood estimators for the parameters pj, j = 1, . . . , k. (Hint: Maximize the

likelihood function subject to the restriction
k∑

j=1
pj = 1.)

10-47. Suppose X1, . . . , Xn constitutes a random sample drawn from a population
that is N(µ, 1). Find the maximum likelihood estimator of µ.

10-48. Suppose {X1, X2, . . . , Xn} represents a set of sample random variables
drawn from each of the following probability density functions. Find a
maximum likelihood estimator of θ :

(a) f (x; θ) = 1
θ
x

1
θ
−1, 0 < x < 1, θ > 0

(b) f (x; θ) = θxθ−1, 0 ≤ x ≤ 1, θ > 0

(c) f (x; θ) = 1
θ2 xe−x/θ , x > 0, θ > 0

10-49. Let {X1, X2, . . . , Xn} represent a set of sample random variables drawn
from the probability density function

f (x; θ1, θ2) =
{

1
θ2

e−(x−θ1)2/θ2 , −∞ < θ1 ≤ x < +∞, 0 < θ2 < +∞,

0 elsewhere.

Find maximum likelihood estimates for θ1 and θ2. Are these estimates
jointly sufficient statistics?

10-50. Suppose {X1, X2, . . . , Xn} constitutes a set of sample random variables
drawn from the gamma probability density function (7.4.8). Determine
maximum likelihood estimates of α, θ . (Note: Do not expect to find a
closed form solution.)

10-51. Suppose X1, . . . , Xn depicts a random sample drawn from the probability
density function f (x, θ) = 1

θ
e−x/θ , x ≥ 0, θ > 0. Find a minimum variance

bound estimator for θ .

10-52. Let {X1, X2, . . . , Xn} depict a set of sample random variables drawn from a
N(θ , 1) population. Find a best unbiased estimator of θ2. Does the variance
of this estimator attain the Cramér-Rao lower bound?

10-53. Let X1, . . . , Xn depict a random sample drawn from the probability density
function f (x; θ) = θxθ−1, 0 < x < 1, θ > 0. Find the minimum variance
bound for an unbiased estimator of θ .
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10-54. Let {X1, X2, . . . , Xn} be a set of sample random variables drawn from
the Cauchy probability density function f (x; θ) = {

π
[
1 + (x − θ)2

]}−1,
−∞ < x, θ < +∞. Verify that the Cramér-Rao lower bound is 2

n .

10-55. Let {X1, X2, . . . , Xn} be a set of sample random variables taken from a
geometric distribution with probability mass function f (X ; p) = (1 −
p)X−1p, X = 1, 2, 3, . . . , 0 < p < 1. Determine the maximum likelihood
estimator of p.

10-56. Suppose X1, . . . , Xn is a random sample drawn from the probability mass
function f (x; θ) = P(X = x) = θ(1 − θ)x−1, x = 1, 2, . . . , 0 < θ < 1. Is this
family of distributions complete?

10-57. Suppose X1, . . . , Xn is a random sample taken from a binomial probability
mass function b(X ; n, p). Is the statistic X = ∑n

i=1 Xi complete for p?

10-58. Method of Moments Technique for Finding Point Estimators:
Let {X1, X2, . . . , Xn}be a set of sample random variables taken from a distri-
bution with a probability density function f (x; θ1, . . . , θk). Let µ′

r = E(Xr)

denote the rth moment of the distribution with M′
r = ∑n

i=1
Xr

i
n representing

the rth moment of the sample, r = 1, 2, 3, . . . . Then the method of moments
has us set E(Xr) to M′

r for as many values of r = 1, 2, . . ., as needed in order
to obtain enough equations to uniquely solve for θ1, . . . , θk. For X1, . . . , Xn

taken from f (x; θ) = θxθ−1, 0 < x < 1; 0 < θ < +∞, obtain an estimate of
θ by the method of moments. (Here we need only r = 1.)

10-59. Suppose X1, . . . , Xn represents a random sample drawn from a uniform
distribution with probability density function u(x; 0, θ) = 1

θ
, 0 < x <

θ , 0 elsewhere. Use the method-of-moments technique to estimate the
parameter θ .

10-60. Demonstrate that the method-of-moments estimator for θ determined in
Exercise 10-59 is a consistent estimator of θ .

10-61. Let {X1, X2, . . . , Xn} correspond to a set of sample random variables taken
from a distribution that is N(µ, σ ). Find estimates of µ and σ using the
method of moments. (Hint: First determine method-of-moments estimates
of µ and σ 2.)

10-62. Let {X1, X2, . . . , Xn} depict a set of sample random variables from the Pois-
son probability mass function f (x; λ) = λxe−λ

x! , x = 0, 1, 2, . . . , 0 < λ < +∞.
Determine the method-of-moments estimator of λ.

10-63. If {X1, X2, . . . , Xn} is a set of sample random variables taken from the prob-
ability density function f (x; θ) = θe−θx, 0 < x < +∞, find the method-
of-moments estimator of θ .

10-64. Let {X1, X2, . . . , Xn} represent a set of sample random variables drawn
from the probability mass function f (x; θ) = θx(1 − θ)1−x, x = 0, 1 and
0 ≤ θ ≤ 1

2 . Find the method-of-moments estimator of θ .
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10-65. Let X1, . . . , Xn be a random sample taken from the probability density func-
tion f (x; θ) = (θ + 1)xθ , 0 < x < 1. Find a method-of-moments estimator
for θ .

10-66. Suppose X1, . . . , Xn is a random sample drawn from a probability density
function that is N(µ, σ ). Find a constant c such that cS is an unbiased

estimator for σ . (Hint: c =
[√

n−1
2 �

(
n−1

2

)]

�( n
2 )

.)



1111
Interval Estimation and
Confidence Interval Estimates

11.1 Interval Estimators

In the preceding chapter we discussed issues concerning the determination of
a point estimator T = g(X1, . . . , Xn, n) for a parameter θ of a population dis-
tribution f (x; θ). As indicated therein, the realization t = g(x1, . . . , xn, n) of T
reports a single numerical value as the estimate of θ . Although a point estimator
may possess one or more of an assortment of desirable properties (as defined in
Chapter 10), its realization alone does not offer any assessment of how precisely
the parameter θ has been estimated by the chosen sample. What we need to do
is accompany t by some measure of the possible error associated with our esti-
mate of θ . That is, we need to bracket t with an interval that carries with it some
assurance that θ is a member of the interval.

Our approach to estimation in this chapter is to now report a range of likely
values for θ rather than a single point estimate. This range of values is termed
an interval estimate and typically is referred to as a confidence interval—a range
of values that enables us to state, with a certain degree of confidence, that the
reported interval contains θ . The role of a confidence interval is to indicate how
precisely θ has been estimated from the sample; that is, the narrower the interval,
the more precise the estimate.

We noted in the previous chapter that if T is a point estimator of θ , then, for
any particular sample, its realization t will not equal θ precisely; that is, from
equation (10.1), θ = t ± SE(t, θ), where SE(t; θ) is the realized sampling error of
T. Hence to determine an interval estimate for θ , we must specify how large this
allowance for sampling error must be. Clearly any adjustment for the effects of
sampling error must take into account the form or characteristics of the sampling
distribution of T , h(t; θ , n), as well as how confident we choose to be that the
interval contains θ .

To this end, let us bracket T by the error bound, ±�T , where this error
bound will be taken as some multiple k of the standard error of the sampling

439
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0
t−t

T − kσT T + kσT

α / 2α / 2

1 − α
h(t; θ,n)

Figure 11.1 The confidence probability is 1 − α = P(T − kαT < T < T + kαT ).

distribution of T; that is, the likely range of differences between T and θ is ±�T =
±kσT , so that we now may conclude that θ lies somewhere within the interval
determined by T ± kσT . Although this interval indicates something about the
variability of T as an estimator of θ , it does not carry with it any measure of
the degree of uncertainty associated with T. However, we may readily quantify
this uncertainty, in probability terms, by finding the area under the sampling
distribution of T between T − kσT and T + kσT ; that is,

P(T − kσT < T < T + kσT ) =
∫ T+kσT

T−kσT

h(t; θ , n)dt = 1 − α, (11.1)

where 1 − α is termed the confidence probability. (Figure 11.1 illustrates this
probability when the sampling distribution of T is symmetrical about zero.)

An examination of (11.1) reveals that (T −kσT , T +kσT ) is actually a random
interval that varies from sample to sample. In this regard, we may define an
interval estimator for a parameter θ as a random interval of values with a given
probability 1 − α of containing θ . And since T ± kσT are random variables, 1 − α

is a probability associated with the sample random variables X1, . . . , Xn before
the sample is drawn, and not with the sample realizations x1, . . . , xn after the
sample is drawn. Hence the confidence probability 1 − α is the probability of
obtaining a sample such that the interval, once realized, contains θ . However,
once the sample is taken and the sample realizations are obtained, we no longer
have a random interval and thus 1 − α is no longer a probability; 1 − α will simply
be called our degree of confidence or the confidence coefficient, and is given a
long-run relative frequency interpretation, that is, if many samples of size n were
taken from the same population distribution and the corresponding realizations
of the interval T ± kσT were obtained, then, in the long run, as the number
of samples increases without limit, 100(1 − α)% of the realized intervals would
contain θ , and 100α% of them would not. So, although T ± kσT is a random
interval with confidence probability 1 − α, its realization is a confidence interval
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with confidence coefficient 1 − α. Thus there is no probability associated with the
realized interval save for the values 1 or 0 (either the realized interval contains θ

or it does not).

11.2 Central Confidence Intervals

It should be evident that (11.1) yields the probability that the random variable T
assumes a value in the interval T ± kσT . However, to use any such interval for
making inferences about θ , we need to find a way to determine k as well as to
ultimately transform (11.1) into a probability statement that brackets θ . This is
readily achieved if we specify, in advance, the confidence coefficient 1 − α and
then use the sampling distribution h(t; θ , n) to find lower and upper confidence
limits L1(T) and L2(T), respectively, for θ , where these confidence limits depend
upon the sample random variables X1, . . . , Xn via T (T is thus typically taken to be
a sufficient statistic for θ) and L1(T) ≤ L2(T) for all sample points (X1, . . . , Xn).
To this end let T be a sufficient point estimator for θ obtained from a random
sample of size n. Moreover, let

(
L1(T), L2(T)

)
represent a central confidence

interval; that is, the confidence limits L1(T) and L2(T) are chosen so that the
area under each tail of h(t; θ , n) is α

2 (see Figure 11.1). This centrality restriction
conveniently provides us with a sufficient condition for the existence of unique
lower and upper confidence limits L1(T) and L2(T), respectively.

For concreteness sake, suppose θ = µ and T = �X and that we extract
a random sample of size n from a normal probability density function with
unknown mean µ and known standard deviation σ . Then from Theorem 8.3 and
(8.16), the sampling distribution of �X has the form

h(x̄; µ, σx̄, n) =
√

n√
2πσ

e− n
2 [(x̄−µ)/σ ]2

, −∞ < x̄ < +∞,

where σx̄ = σ√
n . Then

P(L1 < �X < L2) =
√

n√
2πσ

∫ L2

L1

e− n
2 [(x̄−µ)/σ ]2

dx̄ = 1 − α (11.2)

and, under the change of variable z̄ = (x̄ − µ)/σx̄, the preceding expression
becomes (for dx̄ = σx̄dz̄)

1√
2π

∫ (L2−µ)/σx̄

(L1−µ)/σx̄

e− z̄2
2 dz̄ = 1 − α. (11.3)

For a given α, the lower and upper limits of integration in (11.3) are, respectively,
−zα/2 and zα/2 (under the centrality restriction) since �Z is N(0, 1); that is,

−zα/2 = L1 − µ

σx̄
or L1 = µ − zα/2σx̄;
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and

zα/2 = L2 − µ

σx̄
or L2 = µ + zα/2σx̄.

Hence (11.2) becomes P(µ − zα/2σx̄ < �X < µ + zα/2σx̄) = 1 − α or, equivalently,

P

(�X − zα/2σx̄︸ ︷︷ ︸
L1(�X)

< µ < �X + zα/2σx̄︸ ︷︷ ︸
L2(�X)

)
= 1 − α. (11.4)

As was the case with (11.1), this equation is a probability statement about a
random interval, with 1 − α serving as the confidence probability. However,
once �X is replaced by its realization x̄, (11.4) becomes a confidence statement
concerning the constant µ (we no longer have a random interval) with realized
confidence limits

�1(x̄) = x̄ − zα/2σx̄; �2(x̄) = x̄ + zα/2σx̄ (11.5)

and confidence coefficient 1 − α. (Note that k in (11.1) above is thus zα/2.)
Hence we are thus able to conclude that we may be 100(1 − α)% confident
that the population mean µ lies between �1(x̄) and �2(x̄). In this regard, we fix
the value of the sample mean at x̄ and then we determine the range of values
of µ (the confidence interval

(
�1(x̄), �2(x̄)

))
that make this sample mean most

plausible.

11.3 The Pivotal Quantity Method

The procedure that we have just employed to determine a 100(1 − α)% confi-
dence interval for the population mean µ is termed the pivotal quantity method.
In general, to find a 100(1 − α)% confidence interval for a parameter θ , this
technique has us first find a pivotal quantity that possesses the following charac-
teristics: (1) it is a random variable that is expressible as a function of the sample
random variables X1, . . . , Xn and the unknown parameter θ (θ is, in fact, the only
unknown parameter in the specification of the pivotal quantity), and (2) it has a
sampling distribution that does not depend upon θ (or upon any other parame-
ter). Then a probability statement involving the pivotal quantity (with confidence
probability 1 − α) is transformed into a confidence statement concerning θ (with
confidence coefficient 1 − α).

More specifically, the pivotal quantity method (for obtaining a central confi-
dence interval) proceeds as follows:

(a) Let X1, . . . , Xn denote a set of sample random variables taken from a popu-
lation probability density function f (x; θ), where θ is an unknown parameter,
and let T serve as a point estimator of θ , where T is usually sufficient for θ .
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(b) Let the random variable Y = g(T ; θ) have a known sampling distribution
that does not depend upon θ (or upon any other parameter) so that Y serves
as a pivotal quantity.

(c) Then for any fixed quantity 1 − α, 0 < α < 1, there will exist values y1 and y2

(depending on 1 − α) such that P(y1 < Y < y2) = 1 − α.

(d) This probability statement with confidence probability 1 − α is then trans-
formed into an equivalent probability statement P(L1(T) < θ < L2(T)) =
1 − α.

(e) If T is replaced by its realization t, we then obtain the confidence statement
P
(
�1(t) < θ < �2(t)

) = 1 − α with confidence coefficient 1 − α and thus a
100(1 − α)% confidence interval for θ is

(
�1(t), �2(t)

)
.

In short, the pivotal quantity method requires that for any sample realization
(x1, . . . , xn), the inequality y1 < g(t; θ) < y2 can be pivoted (i.e., transformed or
inverted) as �1(t) < θ < �2(t); that is, if

y1 < g(t; θ) < y2 if and only if �1(t) < θ < �2(t)

for each sample realization (x1, . . . , xn), then
(
�1(t), �2(t)

)
is a 100(1 − α)% confi-

dence interval for θ . This interval thus gives the fraction of time, under repeated
sampling from the same population, that the realized intervals will contain θ .
In general, it can be shown that a pivotal quantity exists if we sample from a
population that possesses a continuous cumulative distribution function F(s; θ);
and if this cumulative distribution function is continuous in θ for each s, then the
pivotal quantity can (at least theoretically) be inverted to find confidence limits
�1(t) and �2(t). The next section demonstrates exactly how the pivotal quantity
method works.

11.4 A Confidence Interval for µ Under Random Sampling
from a Normal Population with Known Variance

Let X1, . . . , Xn depict a set of sample random variables drawn from a normal
population with unknown mean µ but known variance σ 2. Then, as indicated
earlier, the best estimator for µ is T = �X , where �X is N(µ, σx̄) and σx̄ = σ√

n

(Theorem 8.3). Hence from (8.33), the standardized sample mean �Z = �X−µ

σ /
√

n is
N(0, 1) and thus, from an adaptation of (7.31),

P(−zα/2 < �Z < zα/2) = P

(
−zα/2 <

�X − µ

σ /
√

n
< zα/2

)
= 1 − α. (11.6)

Here �Z serves as a pivotal quantity (it clearly has a known sampling distribution
that does not depend on µ) in this expression and thus (11.6) can easily be pivoted
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or transformed into (11.4) or

P

⎛

⎜⎝
�X − zα/2

σ√
n︸ ︷︷ ︸

L1

< µ < �X + zα/2
σ√
n︸ ︷︷ ︸

L2

⎞

⎟⎠ = 1 − α. (11.7)

As indicated earlier, (L1, L2) is a random interval with confidence probability
1 − α; that is, if we extracted many random samples of size n from our nor-
mal population and formed (L1, L2) for each of them, then, in the long run,
100(1 − α)% of these intervals would contain µ and 100α% of them would not.

If �X is now replaced by its realization x̄, (11.7) becomes

P

⎛

⎜⎝
x̄ − zα/2

σ√
n︸ ︷︷ ︸

�1

< µ < x̄ + zα/2
σ√
n︸ ︷︷ ︸

�2

⎞

⎟⎠ = 1 − α. (11.7.1)

Here (11.7.1) is a confidence statement with confidence coefficient 1 − α. Hence
a 100(1 − α)% confidence interval for µ is

(�1, �2) =
(

x̄ − zα/2
σ√
n

, x̄ + zα/2
σ√
n

)
, (11.8)

that is, we may be 100(1 − α)% confident that �1 < µ < �2. In this regard, if
1 − α = 0.95 and many samples of size n were taken from a normal population
and (�1, �2) was computed for each of them, then, in the long run, 95% of these
intervals would bracket µ and 5% of them would not. As the preceding sen-
tence indicates, a confidence statement such as P(�1 < µ < �2) = 1 − α actually
pertains to the behavior of samples since µ is a fixed parameter.

Example 11.4.1 Suppose we take a random sample of size n = 100 from a
normal population with µ unknown but with σ = 15 and we find that x̄ = 77. Then
from (11.8), 90%, 95%, and 99% confidence intervals for µ are, respectively:

(a) 1 − α = 0.90, α
2 = 0.05, and thus zα/2 = z0.05 = 1.645. Thus (�1, �2) =

(74.532, 79.468). Hence we may be 90% confident that µ lies between 74.532
and 79.468.

(b) 1 − α = 0.95, α
2 = 0.025, and thus z0.025 = 1.96. Then (�1, �2) = (74.060,

79.940). We are now 95% confident that µ falls between 74.060 and 79.940.

(c) 1 − α = 0.99, α
2 = 0.005 so that z0.005 = 2.58. Then (�1, �2) = (73.130, 80.870).

Hence we may be 99% confident that µ lies between 73.130 and 80.870. �
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What factors influence the width (w) of a confidence interval? From (11.7.1)
or (11.8) we can easily determine w = �2 − �1 = 2zα/2

σ√
n . Hence, as a general

proposition, we see that w varies directly with 1 − α (it affects the magnitude of
zα/2) and σ ; w varies inversely with n.

We noted at the outset of this chapter that the role of a confidence interval is
to determine the degree of precision associated with our estimation of a popula-
tion parameter θ ; that is, the narrower the interval, the more precise the estimate
of θ will be. In this regard, and in view of our current discussion, how precisely
have we estimated the population mean µ? To answer this question, let us rewrite
the left-hand side of (11.7.1) as

P
(

|x̄ − µ| < zα/2
σ√
n

)
= 1 − α. (11.9)

Since x̄ − µ can be either positive or negative, let us attach both a plus and a
minus sign to zα/2

σ√
n , where now zα/2 can be thought of as a 100(1 − α)% reliabil-

ity coefficient;1 it serves as a measure of the degree of reliability that we place on
our interval estimate. On the basis of these considerations, the degree of precision
of x̄ as an estimate of µ can now be expressed as: we are within ±zα/2

σ√
n units

of µ with 100(1 − α)% reliability. Hence this notion of precision is simply the
confidence interval half-width. That is, since the width is w = �2 − �1 = 2zα/2

σ√
n ,

the half width is w
2 = zα/2

σ√
n .

There is yet a third way to interpret a confidence interval estimate of a param-
eter θ (in this case µ). Since an inequality appears in the confidence statement
given by (11.9), this result can be given an error bound interpretation; that is, we
may state that we are 100(1 −α)% confident that x̄ will not differ from µ by more
than ±zα/2

σ√
n units.

Example 11.4.2 Given the 95% confidence interval for µ determined in part
(b) of the previous example problem, we may summarize our three equivalent
interpretations of (�1, �2) = (74.060, 79.940) as follows:

1. We may be 95% confident that the population mean µ lies between �1 =
74.060 and �2 = 79.940.

2. We are within ±zα/2
σ√
n = ±2.940 units of µ with 95% reliability.

3. We are 95% confident that x̄ will not differ from µ by more than ±2.940 units.

Any of these three statements can be used to depict how precisely we have
estimated µ on the basis of our sample results. �

1 We may view the notion of reliability as a long-run concept that emerges under repeated sampling
from the same population and thus has the same long-run relative frequency interpretation as the
confidence coefficient 1 − α.
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Given that we are sampling from a normal population with unknown mean µ

but known variance σ 2, we can easily address the problem of estimating µ with a
prespecified or target level of precision and reliability. To do so will require that
we calculate a particular sample size n that will enable us to attain our chosen
level of precision and reliability. Starting from the expression for the confidence
interval half-width or w

2 = zα/2
σ√
n , we can readily solve for n as

n =
(

zα/2σ
w
2

)2

. (11.10)

Here this expression (called the sample size requirements formula) gives the sam-
ple size required to estimate µ with a degree of precision of ±w

2 with 100(1−α)%
reliability.

Example 11.4.3 If σ = 15 and we desire to estimate µ to within ±w
2 = ±2 units

of its true value with 99% reliability, then the sample size needed to achieve this
objective is

n =
(

2.58 × 15
2

)2

= 374.42 ≈ 375

(note that we typically round our result for n up to the next highest integer). Hence
375 represents the sample size required for a degree of precision of ±2 units with
99% reliability. �

A couple of comments pertaining to (11.10) are warranted:

1. A glance at the structure of (11.10) reveals that, for fixed values of 1 − α and
σ , if we desire to double our degree of precision (i.e., we choose to be twice as
precise), then we must quadruple the sample size.

2. This formula requires that σ is known. If σ is unknown, then we may approx-
imate the standard deviation of our normal population as σ ≈ range/6 since
most (about 99% via the empirical rule) of the observations on the popula-
tion characteristic or random variable X will fall within an interval involving 3
standard deviations on either side of µ.

11.5 A Confidence Interval for µ Under Random Sampling
from a Normal Population with Unknown Variance

We found in Chapter 9 that when sampling from a normal population with both the
mean (µ) and variance (σ 2) unknown, the random variable T = �X−µ

S/
√

n ((9.19.1))
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has a t distribution with v = n − 1 degrees of freedom. Then from (9.28) and
Figure 9.5.6, we may form

P(−tα/2,n−1 < T < tα/2,n−1) = P

(
−tα/2,n−1 <

�X − µ

S/
√

n
< tα/2,n−1

)
= 1 − α,

(11.11)

where T = �X−µ

S/
√

n thus serves as a pivotal quantity. Then proceeding as earlier
(see the derivation underlying (11.9)), the preceding probability statement may
be transformed or pivoted into

P

⎛

⎜⎝
�X − tα/2,n−1

S√
n︸ ︷︷ ︸

L1

< µ < �X + tα/2,n−1
S√
n︸ ︷︷ ︸

L2

⎞

⎟⎠ = 1 − α. (11.12)

As defined previously, (L1, L2) is a random interval with confidence probability
1 − α. However, once �X and S are replaced by their realizations x̄ and s,
respectively, in (11.12), a 100(1 − α)% confidence interval for µ is

(�1, �2) =
(

x̄ − tα/2,n−1
s√
n

, x̄ + tα/2,n−1
s√
n

)
, (11.13)

that is, we may be 100(1−α)% confident that �1 < µ < �2. Here, too, the quantity
±tα/2,n−1

s√
n may be termed our error bound on x̄ as an estimate of µ or the degree

of precision involved in using x̄ as an estimate of µ.
It must be emphasized that since T is a small sample statistic, (11.13) must be

employed if n ≤ 30 and σ 2 is unknown and is estimated by S2 (see Figure 11.2).

Example 11.5.1 Suppose that from a random sample of size n = 25 it is deter-
mined that x̄ = 118 and s = 9.5. Find a 90% confidence interval for µ. Here
1 − α = 0.90, tα/2,n−1 = t0.05,24 = 1.711, and thus, from (11.13), we obtain

118 ± 1.711
(

9.5√
25

)
or 118 ± 3.251. Hence (�1, �2) = (114.749, 121.251) so that

we may be 90% confident that the population mean µ lies between 114.749 and
121.251. Stated alternatively, we may be 90% confident that the sample mean will
not differ from the population mean by more than ±3.251 units. �

11.6 A Confidence Interval for σ 2 Under Random Sampling
from a Normal Population with Unknown Mean

We found earlier, by virtue of Theorem 9.5, that under random sampling from a
normal population with unknown mean and variance, the quantity Y = (n − 1) S2

σ 2

is distributed as χ2
n−1, where S2 is the sample variance determined from a random
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A Confidence Interval for m Under Random Sampling from a 
Normal Population 

σ2 Known σ2 Unknown

n ≤ 30 n > 30n
σuse x ± zα/2

n
use x ± tα/2,n −1

s

n
use x ± zα/2

s

Figure 11.2 A confidence interval for µ under random sampling from a normal population.

y  
2χ

f (y; n−1)

α / 2
α / 2

1 − α

α/2,n−1
2χ1−(α/2),n−1

Figure 11.3 P
(
χ2

α/2,n−1 < Y < χ2
1−(α/2),n−1

)
= 1 − α.

sample of size n and n − 1 depicts degrees of freedom associated with the chi-
square random variable Y. Then from Figure 11.3, we seek to determine quantiles
χ2

α/2,n−1 and χ2
1−(α/2),n−1 such that

P
(
χ2

α/2,n−1 < Y < χ2
1−(α/2),n−1

)
= P

(
χ2

α/2,n−1 <
(n − 1)S2

σ 2
< χ2

1−(α/2),n−1

)
= 1 − α,

(11.14)
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where Y = (n−1) S2

σ 2 serves as our pivotal quantity. We may now pivot or transform
(11.14) to the probability statement

P

(
1

χ2
α/2,n−1

>
σ 2

(n − 1)S2
>

1
χ2

1−(α/2),n−1

)
= P

⎛

⎜⎜⎝

(n − 1)S2

χ2
1−(α/2),n−1︸ ︷︷ ︸

L1

< σ 2 <
(n − 1)S2

χ2
α/2,n−1︸ ︷︷ ︸

L2

⎞

⎟⎟⎠

= 1 − α. (11.15)

Although (L1, L2) is a random interval with confidence probability 1 − α, once
S2 is replaced by its sample realization s2 in (11.15), we obtain a 100(1 − α)%
confidence interval for σ 2 of the form

(�1, �2) =
(

(n − 1)s2

χ2
1−(α/2),n−1

,
(n − 1)s2

χ2
α/2,n−1

)
. (11.16)

Hence we may be 100(1 − α)% confident that �1 < σ 2 < �2. Moreover, the
preceding confidence interval for σ 2 can easily be converted into a confidence
interval for σ by simply taking the square root of the lower and upper confidence
limits for σ 2 and then forming the interval (

√
�1,

√
�2); that is, a 100(1 − α)%

confidence interval for σ is

(√
�1,
√

�2

)
=
(√

(n − 1)s2

χ2
1−(α/2),n−1

,

√
(n − 1)s2

χ2
α/2,n−1

)
(11.17)

so that we may be 100(1 − α)% confident that
√

�1 < σ <
√

�2.
It was mentioned in Chapter 9 (property (5), p. 351) that for degrees of free-

dom υ > 30, chi-square probabilities can be determined via a standard normal
approximation and thus percentiles of the chi-square distribution can be approxi-
mated by percentiles of the N(0, 1) distribution. In fact, if Y is χ2

υ with υ > 30, then
the quantity Z = √

2Y − √
2υ − 1 is approximately N(0, 1). So for large samples

we have

P(−zα/2 < Z < zα/2) = P
(
−zα/2 <

√
2Y − √

2υ − 1 < zα/2

)

= P

(
−zα/2 <

√
2(n − 1)S2

σ 2
− √

2υ − 1 < zα/2

)
≈ 1 − α.

(11.18)

Since 2(n − 1) ≈ 2υ − 1 for large n, it follows that (11.18) can be rewritten as

P
(

−zα/2 <

√
2(n − 1)

(
S
σ

− 1
)

< zα/2

)
≈ 1 − α, (11.18.1)



450 Chapter 11 Interval Estimation and Confidence Interval Estimates

where
√

2(n − 1)
( S

σ
− 1

)
now serves as the pivotal quantity. Then under a suitable

pivot operation or transformation of (11.18.1) we ultimately obtain

P

⎛

⎜⎝
S
√

2(n − 1)

zα/2 +√
2(n − 1)︸ ︷︷ ︸

L1

< σ <
S
√

2(n − 1)

−zα/2 +√
2(n − 1)︸ ︷︷ ︸

L2

⎞

⎟⎠ ≈ 1 − α, (11.19)

where (L1, L2) is a random interval with confidence probability 1 − α.
If S is replaced by its realization in (11.19), then a large sample (approximate)

100(1 − α)% confidence interval for σ is

(�1, �2) =
(

s
√

2(n − 1)

zα/2 +√
2(n − 1)

,
s
√

2(n − 1)

−zα/2 +√
2(n − 1)

)
; (11.20)

and a large sample (approximate) 100(1 − α)% confidence interval for σ 2 is

(
�2

1, �2
2

) =
(

2(n−1)s2
(

zα/2+
√

2(n−1)
)2 , 2(n−1)s2

(
−zα/2+

√
2(n−1)

)2

)
. (11.21)

This discussion is summarized in Figures 11.4, and 11.5.

A Confidence Interval for σ2 Under Random Sampling
from a Normal Population 

n < 32 n ≥ 32

(n−1)s2
,

2

1−(α/2),n−1
χ

(n−1)s2

2

α/2,n−1
χ( ) ,2(n−1)s2( )zα/2+   2(n−1)( )2

2(n−1)s2

–zα/2+   2(n−1)( )2

Figure 11.4 A confidence interval for σ 2 under random sampling from a normal population.
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A Confidence Interval for σ Under Random Sampling
from a Normal Population 

n < 32 n ≥ 32

(n−1)s2
,

2

1–(α/2),n−1
χ

(n−1)s2

2

α/2,n−1
χ

,s   2(n−1) s   2(n−1)

zα/2+   2(n−1)( ) –zα/2+   2(n−1)( )( ( ))
Figure 11.5 A confidence interval for σ under random sampling from a normal population.

Example 11.6.1 Suppose we extract a random sample of size n = 20 from
a normal population and that we obtain s2 = 72.25. Find a 95% confidence
interval for σ 2. With 1 − α = 0.95, χ2

α/2,n−1 = χ2
0.025,19 = 8.9 and χ2

1−(α/2),n−1 =
χ2

0.975,19 = 32.9. Then from (11.16), a 95% confidence interval for σ 2 is (�1, �2) =
(41.725, 154.242); that is, we may be 95% confident that the population variance
lies between 41.725 and 154.242. If we take the square root of these confidence
limits for σ 2, then we obtain a 95% confidence interval for σ or 6.459 < σ <

12.419.
If, however, we had taken a sample of size n = 160 from the same pop-

ulation and obtained s2 = 74.65, then, according to (11.21), our large sample
(approximate) 95% confidence interval for σ 2 would appear as (�2

1, �2
2) =

(60.648, 94.304).
Hence we are now 95% confident that the population variance is contained

within the interval (60.648, 94.304). Again passing to square roots, a large sample
95% confidence interval for the population standard derivation is 7.787 < σ <

9.711. �

11.7 A Confidence Interval for p Under Random Sampling
from a Binomial Population

We noted in Section 6.5 that the essential characteristics of a binomial experi-
ment are: (1) X is a discrete random variable; (2) we have a simple alternative
experiment (on the ith trial the random variable Xi has two possible values—0
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(for a failure) or 1 (for a success)); (3) the trials are identical and independent;
and (4) p, the probability of a success, is constant from trial to trial.

In what follows we shall now view p as the proportion of success in the pop-
ulation. To estimate p, let us extract a random sample of size n from a binomial
population (we perform a binomial experiment), where n is taken to be large.
The rationale for this restriction on n follows from the DeMoivre-Laplace-Gauss
Limit Theorem, which essentially states that a standardized binomial random
variable has as its limiting distribution the standard normal distribution; that is,

X−np√
np(1−p)

d−→ Z = N(0, 1).

As revealed in the preceding chapter, the best estimator for p is the sample
proportion of successes, P̂ = X

n where X is the observed number of successes in a
sample of size n, E(P̂) = p, V(P̂) = p(1 − p)/n, and the best estimator for V(P̂)
is S2(P̂) = P̂(1 − P̂)/n. Hence, by the DeMoivre-Laplace-Gauss Limit Theorem,

ZP̂ = P̂ − E(P̂)
√

S2(P̂)
= P̂ − p
√

P̂(1 − P̂)/n

d−→ Z = N(0, 1).

So for large n,

P
(
−z α

2
< ZP̂ < z α

2

)
= P

⎛

⎜⎜⎝
−z α

2
<

P̂ − p
√

P̂(1 − P̂)
n

< z α
2

⎞

⎟⎟⎠ ≈ 1 − α. (11.22)

Given that ZP̂ serves as a pivotal quantity (it has a known sampling distribution
which is independent of p), (11.22) can be transformed to

P

⎛

⎜⎜⎜⎝P̂ −z α
2

√
P̂(1 − P̂)

n︸ ︷︷ ︸
L1

< p < P̂ + z α
2

√
P̂(1 − P̂)

n︸ ︷︷ ︸
L2

⎞

⎟⎟⎟⎠ ≈ 1 − α. (11.23)

Thus the probability that p lies within the random interval (L1, L2) is 1 − α.
Once P̂ is replaced by its realization p̂(= x

n , where x is the realized number of
successes in the sample),we obtain as a large sample (approximate) 100(1 − α)%
confidence interval for p

(�1, �2) =
(

p̂ − z α
2

√
p̂(1 − p̂)

n
, p̂ + z α

2

√
p̂(1 − p̂)

n

)
, (11.24)

that is, we may be 100(1 − α)% confident that �1 < p < �2. For instance,
if 1 − α = 0.90 and many samples of size n were extracted from a binomial
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population and (�1, �2) was determined for each of them, then, in the long run,
90% of these intervals would contain p and 10% of them would not.

This procedure for estimating p via a confidence interval is essentially a large-
sample approximation technique. In this regard, to obtain a good approximation,
we require that n ≥ 50 or, alternatively, np̂ ≥ 5 and n(1 − p̂) ≥ 5 (i.e., both of
these inequalities must be satisfied).

Example 11.7.1 Suppose that a random sample of size n = 200 is taken from
a binomial population and that x = 83 successes are realized. Then from (11.24),
an (approximate) 99% confidence interval for the true or population proportion
of successes p can be determined as follows. Since 1 − α = 0.99, α

2 = 0.005 and
thus z α

2
= z0.005 = 2.58. Also, p̂ = x

n = 83
200 = 0.42 and thus (�1, �2) = (0.33, 0.51).

Hence we may be 99% confident that p lies between 0.33 and 0.51. �

How precisely have we estimated p? To answer this question, let us rewrite
the left-hand side of (11.23), with p̂ replacing P̂, as

P

(
∣∣p − p̂

∣∣ < z α
2

√
p̂(1 − p̂)

n

)
≈ 1 − α. (11.25)

Hence the degree of precision of p̂ as an estimate of p is ±zα/2

√
p̂(1−p̂)

n ; that is,

we are within ±zα/2

√
p̂(1−p̂)

n units of p with 100(1 − α)% reliability. As indicated
earlier, this degree of precision is simply the confidence interval half-width w

2 . And
since an inequality appears in the confidence statement given by (11.25), we may
also offer an error bound interpretation of this result. That is, we may assert with

100(1 − α)% confidence that p̂ will not differ from p by more than ±zα/2

√
p̂(1−p̂)

n
units.

Example 11.7.2 On the basis of the preceding discussion, it should be evident
that we now have three equivalent ways of interpreting a 100(1 − α)% confi-
dence interval for p. To see this, let us examine the 99% confidence interval for p
determined earlier.

Specifically, given (�1, �2) = (0.33, 0.51):

1. We may be 99% confident that the population proportion p lies between �1 =
0.33 and �2 = 0.51.

2. We are within ±zα/2

√
p̂(1−p̂)

n = ±0.09 units of p with 99% reliability.

3. We are 99% confident that p̂ will not differ from p by more than ±0.09
units. �

We now turn to the problem of estimating p with a prespecified or desired level
of precision and reliability. This involves determining the sample size n that will
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enable us to attain our target level of precision and reliability. To this end let us
express Chebyshev’s inequality (4.19.2) in terms of P̂ as

P
(∣∣∣P̂ − p

∣∣∣ < kσP̂

)
≥ 1 − 1

k2
, k > 0.

A glance back at (11.25) reveals that kσP̂ is simply an indicator of how precisely

we have estimated p using P̂ or kσP̂ = w
2 , where σP̂ =

√
p(1−p)

n . If k is taken to be

the 100(1 − α)% reliability coefficient zα/2, then P(|P̂ − p| < zα/2σP̂) ≈ 1 − α and
thus

w
2

= zα/2

√
p(1 − p)

n
.

Upon solving this equality for n we thus obtain the sample size requirements
formula

n = (zα/2)2p(1 − p)
(w

2

)2 . (11.26)

Here this expression represents the sample size required for a degree of precision
of ±w

2 with 100(1 − α)% reliability. Note that this formula involves p as an argu-
ment. But since p is unknown and is, in fact, the parameter to be estimated, we
need an independent estimate of p in order to determine n. If no such estimate
exists, then what is commonly done in practice is to set p = 1

2 in (11.26) (since
V(P̂) = p(1−p)

n attains its maximum at p = 1
2 ). So for p = 1

2 , the value of n that
emerges turns out to be a bit larger than that actually needed to attain the chosen
level of precision and reliability.

Example 11.7.3 If we choose to estimate p to within ±5% of its true value with
99% reliability, then, according to (11.26), the sample size required (assuming
p = 1

2 ) is n = (2.58)2(0.5)(0.5)/(0.05)2 ≈ 666. �

The confidence limits given by (11.24) are appropriate when n is very large.
But if n is relatively small, then (11.24) can be improved upon as follows. First,
since the binomial random variable X is discrete, a continuity correction factor
of the form 1

2n can be introduced into (11.24) so that a 100(1 − α)% confidence
interval for p is

(�1, �2) =
[(

p̂ − 1
2n

)
− z α

2

√
p̂(1 − p̂)

n
,
(

p̂ + 1
2n

)
+ z α

2

√
p̂(1 − p̂)

n

]
. (11.27)

A second procedure for improving upon (11.24) is to offer the observation that,
for large n, the possible values of p corresponding to the limits P̂ ± z α

2
σP̂ must



11.8 Joint Estimation of a Family of Population Parameters 455

satisfy the relationship

∣∣∣p − P̂
∣∣∣ = zα/2

√
p(1 − p)

n
(11.28)

and thus we may use this expression to construct a quadratic confidence interval
for p; that is, (11.28) can be rewritten as a quadratic equation in terms of p as

(
p − P̂

)2 = z2
α/2

(
p(1 − p)

n

)

or, for P̂ = X
n ,

(n + z2
α/2)p2 − (2X + z2

α/2)p + X2

n
= 0. (11.29)

Then solving for p via the quadratic formula2 and simplifying ultimately renders,
at the sample realization p̂ = x

n , the 100(1 − α)% confidence interval for p

n

n + z2
α/2

[
p̂ + z2

α/2

2n
± zα/2

√
p̂(1 − p̂)

n
+
(zα/2

2n

)2
]

. (11.30)

Example 11.7.4 We determined earlier that, for p̂ = 83
200 = 0.42, a 99%

confidence interval for the population proportion p is (�1, �2) = (0.33, 0.51).
Let us refine this calculation somewhat by applying (11.27) and (11.30) in turn.
First, from (11.27), we obtain (�1, �2) = (0.3275, 0.5125). And from (11.30),
(�1, �2) = (0.3346, 0.5104). �

11.8 Joint Estimation of a Family of Population Parameters

We now turn to the problem of making joint inferences from the same set of
sample observations. Although we have constructed separate 100(1 − α)% confi-
dence intervals for the population mean µ and population variance σ 2, we cannot
state with 100(1 − α)% confidence that the results for both µ and σ 2 are jointly
correct. If the inferences on the mean and variance were independent (e.g., dif-
ferent samples were used), the probability of both sets of results holding jointly
would simply be (1 − α)2. However, these inferences are not independent since
they are derived from the same set of sample observations.

2 We may find the zeros of the quadratic function ax2 + bx + c or, equivalently, solve the quadratic

equation ax2 + bx + c = 0(a �= 0) by employing the quadratic formula x = −b±
√

b2−4ac
2a .
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What we need is a procedure that would provide us with 100(1 − α)%
confidence concerning the correctness of the entire set or family of estimates.
To develop any such assurance, we need to distinguish between the notion
of a statement confidence coefficient and that of a family confidence coefficient.
A statement confidence coefficient is associated with a confidence statement for
an individual parameter—it indicates the long-run proportion of realized inter-
vals (�1, �2) that would contain the true population parameter under repeated
random sampling from the same population. (Here each sample provides us with
an estimate of a single parameter.) By contrast, if an entire family of param-
eters is estimated for each random sample selected from a given population,
then a family confidence coefficient indicates the long-run proportion of fami-
lies of realized intervals that would contain the true values of the entire family of
parameters under repeated sampling from the same population. Hence a family
confidence coefficient pertains to the simultaneous reliability of the entire family
of confidence statements concerning the true values of a family of parameters.

More specifically, if we jointly estimate µ and σ 2 (our family of parameters)
from the same set of sample realizations and if the family confidence coefficient
were, say, 0.95, then we would conclude that if many random samples were
selected and interval estimates for both µ and σ 2 were made from each sam-
ple (our family of interval estimates), then, in the long-run, 95% of the samples
would yield a family of realized intervals containing the true values of µ and σ 2

simultaneously, and 5% of the samples would yield a family of realized intervals
excluding either one or both of the true population parameters.

If both µ and σ 2 are to be estimated jointly from the same sample, then we
need a confidence coefficient (our family confidence coefficient) that will ensure
that the complete set of estimates is correct or reliable. In what follows we shall
explore the Bonferroni method of determining joint confidence intervals (or joint
confidence statements) having a family confidence coefficient. The procedure is
straightforward: we simply adjust each statement confidence coefficient to a level
higher than 1 − α so that the family confidence coefficient is at least 1 − α.

To examine the rationale underlying the Bonferroni technique, let us extract
a random sample of size n from a normal population with unknown mean and
variance and consider the individual confidence limits determined for µ and σ 2

earlier ((11.13) and (11.16), respectively):

CI1 : x̄ − tα/2,n−1
s√
n

< µ < x̄ + tα/2,n−1
s√
n

;

CI2 : (n − 1)s2

χ2
1−(α/2),n−1

< σ 2 <
(n − 1)s2

χ2
α/2,n−1

.

What is the probability that both sets of confidence limits (the family of interval
estimates) contain the parameters µ and σ 2 simultaneously?

To answer this question, let us construct the following events:

A1 = {µ /∈ CI1}, A2 = {σ 2 /∈ CI2};
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where P(A1) = P(A2) = α. By the general addition rule for probabilities (3.1),
P(A1 ∪A2) = P(A1)+P(A2)−P(A1 ∩A2) and thus 1−P(A1 ∪A2) = 1−P(A1)−
P(A2) + P(A1 ∩ A2). From corollary 1 and the first of DeMorgan’s Laws,

1 − P(A1 ∪ A2) = P(A1 ∪ A2) = P(�A1 ∩ �A2) = P(µ ∈ CI1 and σ 2 ∈ CI2),

that is, both confidence intervals contain their associated true parameter values.
Hence

P(�A1 ∩ �A2) = 1 − P(A1) − P(A2) + P(A1 ∩ A2).

Since P(A1 ∩A2) ≥ 0, the preceding expression can be rewritten as the Bonferroni
inequality

P(�A1 ∩ �A2) ≥ 1 − P(A1) − P(A2) = 1 − α − α = 1 − 2α, (11.31)

where the right-hand side of this inequality is termed the Bonferroni lower bound.
So if µ∈CI1 and σ 2 ∈CI2 hold individually with, say, 95% confidence, then (11.31)
establishes a family confidence coefficient of at least 1 − 0.05 − 0.05 = 0.90
that both CI1 and CI2 determined from the same sample contain µ and σ 2

simultaneously.
To obtain a family confidence coefficient of at least 1 −α for estimating µ and

σ 2 jointly, we first estimate µ and σ 2 separately with statement confidence coeffi-
cients of 1 − α

2 each (the area in each tail of the appropriate sampling distribution
is thus α

4 .) Hence the Bonferroni lower bound is 1 − α
2 − α

2 = 1 − α so that the
100(1 − α)% family or Bonferroni joint confidence limits for µ and σ 2 are:

BCI1 : x̄ − tα/4,n−1
s√
n

< µ < x̄ + tα/4,n−1
s√
n

;

BCI2 : (n − 1)s2

χ2
1−(α/4),n−1

< σ 2 <
(n − 1)s2

χ2
α/4,n−1

.
(11.32)

In sum, use BCI1 with tα/4,n−1 to get a 100(1−α/2)% confidence interval for µ; and
use BCI2 with χ2

1−(α/4),n−1 and χ2
α/4,n−1 to get a 100(1 − α/2)% confidence interval

for σ 2. Then the joint or Bonferroni confidence set is BC = {BCI1 ∩ BCI2} and
P
(
(µ, σ 2)εBC

) = P(µεBCI1 and σ 2 ε BCI2) = 1 − α.
It is useful to reiterate that if the family confidence coefficient is to be 1 − α,

then each statement confidence coefficient should be 1 − α
2 . But this implies that

α
2 must be divided between the two tails of each estimator’s sampling distribution.
Hence finding tα/4,n−1 or χ2

1−(α/4),n−1 and χ2
α/4,n−1 is required. In general, if r joint

confidence interval estimates are desired with a family confidence coefficient of
1 − α, then determining each separate interval estimate with a statement
confidence coefficient of 1 − α

r will do.
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Example 11.8.1 Suppose we extract a random sample of size n = 25 from a
normal population with unknown mean and variance and we find that x̄ = 17 and
s2 = 7.5. Find a set of Bonferroni joint confidence limits for µ and σ 2 when the
family confidence coefficient is 1 − α = 0.90. Here α = 0.10, α

4 = 0.025 so that
t α

4 ,n−1 = t0.025,24 = 2.064 and χ2
1− α

4 ,n−1 = χ2
0.975,24 = 39.4 while χ2

α
4 ,n−1 = χ2

0.025,24 =
12.4. Then from (11.32):

BCI1 : 17 ± 2.064
(

2.738√
25

)
or 15.870 < µ < 18.130;

BCI2 : 24(7.5)
39.4

< σ 2 <
24 (7.5)

12.4
or 4.568 < σ 2 < 14.516.

Thus we are at least 90% confident that µ lies within the interval (15.870, 18.130)
and σ 2 lies within the interval (4.568, 14.516). �

11.9 Confidence Intervals for the Difference of Means When
Sampling from Two Independent Normal Populations

Let {X1, . . . , XnX } and {Y1, . . . , YnY } be two sets of sample random variables taken
from independent normal distributions with means µX and µY and variances σ 2

X
and σ 2

Y , respectively. Our objective is to determine a 100(1 − α)% confidence
interval for the difference of means µX − µY . In order to do so, we must first
examine the characteristics of the sampling distribution of the difference between
two sample means.

To this end, let X and Y be independent random variables, where X is
N(µX , σX ) and Y is N(µY , σY ). In order to use �X −�Y as an estimator for µX −µY ,
we need to detail the properties of the distribution of �X − �Y given that we are
sampling from two independent normal populations.

We first assume that the population variances are equal and known; that is,
σ 2

X = σ 2
Y = σ 2 is known. By virtue of Theorem 8.3, �X is N

(
µX , σ /

√
nX
)

and �Y
is N

(
µY , σ /

√
nY
)
. Since �X and �Y are independent normally distributed random

variables, an application of part (d) of Theorem 8.1 to �X and �Y (with a1 = 1 and
a2 = −1 in equations (8.10) and (8.11.1)) leads us to conclude that �X − �Y is nor-

mally distributed with mean µX −µY and variance
(

σ 2
X

nX

)
+
(

σ 2
Y

nY

)
= σ 2

(
1

nX
+ 1

nY

)
.

Then with σ 2 known, the quantity

Z�µ = (�X − �Y) − (µX − µY )

σ

√
1

nX
+ 1

nY

(11.33)

[Sampling from two independent normal
populations with equal and known variances]

is N(0, 1).
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If the population variances are unequal but still assumed to be known, then
the quantity

Z
′
�µ = (�X − �Y) − (µX − µY )

√
σ 2

X

nX
+ σ 2

Y

nY

(11.34)

[Sampling from two independent normal
populations with unequal but known variances]

is still N(0, 1).
If the common variance σ 2(= σ 2

X = σ 2
Y ) is unknown, then we need to examine

the distribution of �X − �Y under sampling from two independent normal popu-
lations with unknown but equal variances. Let us specify the individual sample
variances as

S2
X =

nX∑
i=1

(Xi − �X)2

nX − 1
, S2

Y =

nY∑
i=1

(Yi − �Y)2

nY − 1
.

Then from Theorem 9.5, the quantities UX = (nX −1)S2
X

σ 2 and UY = (nY −1)S2
Y

σ 2 are
chi-square random variables with nX − 1 and nY − 1 degrees of freedom, respec-
tively. Moreover, since UX and UY are independent chi-square random variables,
it follows, via Theorem 9.3, that the quantity

U = UX + UY = (nX − 1)S2
X

σ 2
+ (nY − 1)S2

Y

σ 2
(11.35)

is chi-square distributed with k = nX + nY − 2 degrees of freedom.
Now, according to (9.19), the ratio of a N(0, 1) random variable to the square

root of chi-square random variable divided by its degrees of freedom ν is (under
the independence of these random variables) t distributed with ν degrees of
freedom. Hence the ratio of Z�µ to

√
U /k or

T = Z�µ√
U /k

(11.36)

follows a t distribution with k = nX + nY − 2 degrees of freedom.
Upon substituting the expressions appearing in (11.33) and (11.35) into (11.36)

and simplifying yields

T�µ = (�X − �Y) − (µX − µY )

Sp

√
1

nX
+ 1

nY

(11.36.1)

[Sampling from two independent normal
populations with equal but unknown variances]
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where

Sp =
√

(nX − 1)S2
X + (nY − 1)S2

Y

k
(11.37)

denotes the pooled estimator of the common standard deviation σ and k =
nX + nY − 2 depicts pooled degrees of freedom. Note that the term under the
radical in (11.37) (i.e., the pooled variance S2

p) is simply a weighted average of the
two sample variances S2

X and S2
Y , where the weights are the degrees of freedom

associated with the independent chi-square variables UX and UY .
We next consider the instance where the population variances are unequal and

unknown. Then it can be shown that when σ 2
X and σ 2

Y in Z′
�µ (11.34) are replaced

by their unbiased estimators S2
X and S2

Y , respectively, the resulting quantity

T
′
�µ = (�X − �Y) − (µX − µY )

√
S2

X

nX
+ S2

Y

nY

(11.38)

[Sampling from two independent normal
populations with unequal but unknown variances]

is approximately t distributed with degrees of freedom given approximately by

φ =

(
S2

X

nX
+ S2

Y

nY

)2

(
S2

X

nX

)2 (
1

nX + 1

)
+
(

S2
Y

nY

)2 (
1

nY + 1

) − 2.3 (11.39)

(If φ is not an integer, then it must be rounded to the nearest integer value.)
Having discussed the particulars of the sampling distribution of �X −�Y under a

variety of sampling assumptions, we now turn to the problem of finding confidence
interval estimates for µX − µY . The following special cases are of considerable
interest and hinge upon the assumptions made about the population variances σ 2

X
and σ 2

Y .

3 Equations (11.38) and (11.39) are connected with the so-called Behrens-Fisher problem, for which
there is no exact solution. For details concerning this problem see, for instance: Y.V. Linnik,
“Latest Investigation on Behrens-Fisher problem,” Sankhya (28 A), 1966 (pp. 15–24); J.S. Mehta and
R. Srinivasan, “On the Behrens-Fisher Problem,” Biometrica (57), 1990 (pp. 649–655); and H. Scheffé,
“Practical Solutions of the Behrens-Fisher Problem,” J. Amer. Stat. Assn. (65), 1970 (pp. 1501–1508).
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11.9.1 Population Variances Known

σ 2
X and σ 2

Y are known. As indicated earlier, the random variable Z′
�µ is N(0, 1).

Then proceeding as in Section 11.4, with Z′
�µ serving as a pivot quantity, the

probability statement

P(−zα/2 < Z′
�µ < zα/2) = 1 − α (11.40)

can be pivoted or transformed to

P

⎛

⎜⎜⎜⎝(�X − �Y) − zα/2

√
σ 2

X

nX
+ σ 2

Y

nY︸ ︷︷ ︸
L1

< µX − µY < (�X − �Y) + zα/2

√
σ 2

X

nX
+ σ 2

Y

nY︸ ︷︷ ︸
L2

⎞

⎟⎟⎟⎠

= 1 − α. (11.41)

Here (L1, L2) is a random interval with confidence probability 1 −α. Once �X and
�Y are replaced by their sample realizations x̄ and ȳ, respectively, a 100(1 − α)%
confidence interval for µX − µY given known population variances is

(�1, �2) =
⎛

⎝(x̄ − ȳ) − z α
2

√
σ 2

X

nX
+ σ 2

Y

nY
, (x̄ − ȳ) + z α

2

√
σ 2

X

nX
+ σ 2

Y

nY

⎞

⎠ , (11.42)

that is, we may be 100(1 − α)% confident that �1 < µX − µY < �2.
How precisely have we estimated µX − µY ? We may express the degree of

precision of x̄ − ȳ as an estimate of µX − µY as: we are within ±z α
2

√
σ 2

X
nX

+ σ 2
Y

nY

units of µX −µY with 100(1 −α)% reliability. Stated alternatively, using an error
bound interpretation: we are 100(1−α)% confident that x̄− ȳ will not differ from

µX − µY by more than ±z α
2

√
σ 2

X
nX

+ σ 2
Y

nY
units.

Note that if σ 2
X = σ 2

Y = σ 2, then (11.34) reduces to (11.33) and thus, for
known and equal population variances, a 100(1 − α)% confidence interval for
µX − µY is

(x̄ − ȳ) ± zα/2σ

√
1

nX
+ 1

nY
. (11.42.1)

11.9.2 Population Variances Unknown But Equal

σ 2
X and σ 2

Y are unknown but equal. In this instance the quantity T�µ (from
(11.36.1)) serves as a pivot in the probability statement

P(−tα/2,k < T�µ < tα/2,k) = 1 − α, k = nX + nY − 2. (11.43)
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Upon pivoting, this expression is transformed into

P

⎛

⎜⎜⎜⎜⎝
(�X − �Y) − t α

2 ,kSp

√
1

nX
+ 1

nY︸ ︷︷ ︸
L1

< µX − µY <
(�X − �Y)+ t α

2 ,kSp

√
1

nX
+ 1

nY︸ ︷︷ ︸
L2

⎞

⎟⎟⎟⎟⎠

= 1 − α. (11.44)

Here also (L1, L2) is a random interval with confidence probability 1 − α. Then
replacing �X , �Y , and Sp by their sample realizations enables us to obtain, for the
case of unknown but equal population variances, the 100(1 − α)% confidence
interval for µX − µY

(�1,�2)=
(

(x̄−ȳ)−tα/2,kSp

√
1

nX
+ 1

nY
, (x̄−ȳ)+tα/2,kSp

√
1

nX
+ 1

nY

)
. (11.45)

Thus we may be 100(1 − α)% confident that �1 < µX − µY < �2.
The discussion in Section 8.11.1 pertaining to the precision of �X − �Y as an

estimator of µX −µY and the error bound interpretation of the confidence interval
half width can also be offered for (11.44).

Note that if both nX and nY are large (nX and nY each >30), then (11.45) can
be replaced by

(x̄ − ȳ) ± zα/2Sp

√
1

nX
+ 1

nY
. (11.45.1)

11.9.3 Population Variances Unknown and Unequal

σ 2
X and σ 2

Y are unknown and unequal. For this situation T ′
�µ appearing in (11.38)

will be the pivot quantity in the probability statement

P(−tα/2,φ < T ′
�µ < tα/2,φ) = 1 − α, (11.46)

where φ (representing degrees of freedom for the t statistic) is defined by (11.39).
Then proceeding as in the preceding two cases, for unknown and unequal
population variances, an (approximate) 100(1 − α)% confidence interval for
µX − µY is

(�1, �2) =
⎛

⎝(x̄ − ȳ) − tα/2,φ

√
s2

X

nX
+ s2

Y

nY
, (x̄ − ȳ) + tα/2,φ

√
s2

X

nX
+ s2

Y

nY

⎞

⎠ , (11.47)

where x̄ and ȳ are the realized means of the two population random variables X
and Y, respectively, and s2

X and s2
Y are their respective realized variances. Hence

we may be 100(1 − α)% confident that approximately �1 < µX − µY < �2.
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Example 11.9.1 Suppose the random variable X is N(µX ,
√

14) and the random
variable Y is N(µY ,

√
11), with X and Y also taken to be independent. Let nX = 50

and nY = 60 and suppose we find that x̄ = 87 and ȳ = 77. Then, since the
population variances σ 2

X = 14 and σ 2
Y = 11 are known, we may find a 95%

confidence interval for µX − µY using (11.42). That is, for z0.025 = 1.96, (�1, �2) =
(8.666, 11.334); that is, we may be 95% confident that the true or population
difference in means µX − µY lies between 8.666 and 11.334.

Next, let nX = 15, nY = 13, x̄ = 24, ȳ = 20, and suppose s2
X = 8.2 and

s2
Y = 9.7 are the sample realizations of S2

X and S2
Y , respectively, where S2

X and S2
Y

are unbiased estimators for their respective unknown population counterparts σ 2
X

and σ 2
Y . If we assume that σ 2

X = σ 2
Y , then a 95% confidence interval for µX − µY

can be determined from (11.45). To this end, from (11.37),

Sp =
√

(15 − 1)(8.2) + (13 − 1)(9.7)
15 + 13 − 2

= 2.982.

Then with tα/2,k = t0.025,26 = 2.056, we have (�1, �2) = (1.682, 6.318).
And if σ 2

X and σ 2
Y are unknown and there is no compelling evidence to indicate

that they are equal, then we must employ (11.47) to find an (approximate) 95%
confidence interval for µX − µY . Using the preceding set of sample information
we have, from (11.39),

φ =

(
8.2
15

+ 9.7
13

)2

(
8.2
15

)2 ( 1
16

)
+
(

9.7
13

)2 ( 1
14

) − 2 = 28.58 − 2 ≈ 27.

Then tα/2,φ = t0.025,27 = 2.052 and thus (�1, �2) = (1.669, 6.331), approximately. �

At this point in our discussion of confidence interval estimation of µX −µY it is
important to review the basic assumptions underlying our two-sample procedures.
Specifically, we are assuming that:

1. We have independent random samples. This assumption is indispensable—
it must hold if we are to make probability (and thus confidence) statements
about µX − µY .

2. We have normal populations. This is a relatively weak assumption; that is, if the
samples are sufficiently large, then, by virtue of the Central Limit Theorem,
substantial departures from normality will not greatly affect our confidence
probabilities.

3. We have equal variances. If the population variances are not the same (whether
they are known or not), then our confidence interval for µX − µY is only
approximate.
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Figure 11.6 A confidence interval for µX − µY under sampling from two normal
populations.

The confidence interval results for this section are summarized in the left-hand
branch of Figure 11.6.

11.10 Confidence Intervals for the Difference of Means When
Sampling from Two Dependent Populations:
Paired Comparisons

The inferential techniques of the preceding section were based upon random
sampling from two independent (normal) populations. We now turn to the case
where the samples are dependent. In particular, the samples from the two pop-
ulations will be paired; that is, each observation in the first sample is related in
some specific way to exactly one observation in the second sample, so that the
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two samples are obviously not independent. However, before we develop the
statistical machinery for analyzing paired samples, we need to consider some pre-
liminary definitional material concerning the rudiments of experimental design.
This discussion will enable us to better understand why pairing is important and
if it should be done at all.

We previously defined an experiment as any process of observation; that is,
it is any proposed or planned process by which observations are generated or
data are collected. Hence the design of an experiment dictates the specific way
and conditions under which the data are collected—it is basically the method of
choosing a sample. For instance, we may face an experimental situation in which
there exists a well-defined target population and we wish to examine (possibly by
a survey) some measurable characteristic of that population. Here we may choose
to conduct a survey of the weights of men in a certain age group in a particular
locale; or take a survey of children in the 1–6 years of age group in a certain
city to determine the extent of their exposure to lead-based products; or perhaps
conduct a public opinion poll to assess the popularity of a given candidate for
political office.

Alternatively, we may face an experimental situation in which the target pop-
ulation does not actually exist and yet we want to investigate a characteristic of
some hypothetical population that possibly could exist. Experiments in the fields
of medicine, psychology, agriculture, chemistry, and so on are indicative of this
approach to experimental design. For example, we may be interested in moni-
toring the recovery time (in days) of patients undergoing a new type of surgical
process; or we might want to assess the effects of different approaches to teaching
basic algebra. In these circumstances, specialized or customized designs, involving
the control of extraneous factors and/or the external environment, may be appro-
priate. Hence the elementary sampling units might be chosen in some particular
or restrictive way that ostensibly enhances the efficiency or information content
of the experiment over and above that which could be obtained by simple random
sampling alone.

An important component of any experimental design is the notion of a
treatment, which may be defined as any procedure whose effect(s) we want to
measure (or simply observe) and compare; for example, determining a patient’s
response to different types (and/or dosages) of medications; assessing the effects
of temperature variations when glazing a painted surface; testing the residual
sharpness of different makes of saw blades after exposure to sustained cutting of
the same material; determining the effect of a variety of exercise programs (or
diets) on the elderly, and so on.

Suppose we want to compare the effects of two treatments that are applied to
similar experimental units. We may randomly assign a treatment to each exper-
imental unit with the proviso that each treatment is to be applied to the same
number of experimental units. An experimental design of this type is commonly
known as a completely randomized design.

After the treatments are applied, our goal is to measure the effects of each
treatment on each experimental unit to which it was applied. We thus have a set
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of outcomes or responses that may be classified into two groups according to the
treatment received. On the basis of this particular design, consequently we may
assume that:

1. The outcomes constitute independent random samples from the distribution
of all such outcomes.

2. The responses of all experimental units to which a given treatment could be
applied are normally distributed (or, at least, that the number of experimental
units receiving each treatment is large).

3. The variance of the outcomes of the experimental units receiving one of the
treatments is the same as that of the experimental units receiving the other
treatment.

Clearly the key assumptions supporting the use of the two-sample methods pre-
sented in Section 11.9 are satisfied. Hence these techniques for making group
comparisons may consequently be used herein to estimate the difference between
the effects of the two treatments; that is, any difference between the means
of the two groups of responses mirrors the difference between the effects of the
two treatments.

It should be apparent, by virtue of the structure of, say, (11.45), that the
precision of our interval estimate of µX − µY , for fixed sample sizes nX and nY ,
varies inversely with S2

p, the pooled estimator of the common variance σ 2. Here S2
p

is a measure of the unexplained variation among experimental units that receive
similar treatment. One way to possibly reduce this variation, and thus increase
the precision of our estimate of the difference in means for fixed nX and nY

values, is to pair the sample observations. That is, if the variation in the treatment
outcomes between the members of any pair is less than the variation between
corresponding members of different pairs, then the precision of our estimate of
µX − µY can be enhanced. This can be accomplished by randomizing the two
treatments over the two members of each pair (e.g., by flipping a coin) in a fashion
such that each treatment is applied to one and only one member of each pair.

The result of this paired experiment is that we can obtain, for each pair of
outcomes, an estimate of the difference between treatments effects, and thus
variation between pairs is not included in our estimate of the common variance.
So if the intrapair outcome variation is smaller than its interpair counterpart,
then we should expect a variance smaller than that which we would obtain if a
completely randomized (groups) design were implemented.

It was mentioned at the outset of this section that the random samples drawn
from two populations would turn out to be dependent rather than independent.
In this regard, samples can be dependent: (a) by virtue of their nature; that is,
they are intrinsically dependent; or (b) by deliberate design.

For instance, in case (a), readings are taken on some measurable characteristic
from the same experimental units at two different points in time and the means
of the measurements at the two times are compared. For example, a researcher
might conduct before and after weighings of a herd of cattle to determine the



11.10 Confidence Intervals for the Difference of Means 467

effectiveness of a new feed mixture that purports to accelerate weight gain. Here
the weights will be paired; that is, for a particular steer, its weight at the start of
the experiment (this measurement is an observation in the first sample) will be
compared to its weight at the end of the experiment (this latter measurement is
thus an observation in the second sample).

In case (b), the experimental units in the two samples may be paired to
eliminate extraneous (and possibly confounding) factors or effects that are of
no particular interest to the researcher. For instance, the director of a high-
school driver education program may be interested in trying a new driver-training
method that uses a high-tech driving simulator. Two new classes, each of the same
size, are being scheduled for the next term so that the new technology-based tech-
nique can be tested. The old teaching method will be used in the first class and
the simulator-based method will be employed in the second class. Although over
100 students have signed up for the driver training course, the director deems it
prudent to limit the size of each of the two classes to 10 students because each of
the various simulator modules takes a considerable amount of time to complete.
So out of a pool of over 100 students, the director selects 10 pairs of students,
where the individuals comprising each pair are as similar as possible (i.e., same
sex, same year in school, similar grade point average, similar extracurricular and
athletic interests, similar after-school work and activities, etc.) so that the effect
of any extraneous factors can be minimized. After making sure that the two mem-
bers of any pair are as alike as possible in all respects save for the method of
driving instruction, the director then flips a coin to determine which student is
assigned to the first class and which to the second class. Again the two samples (in
this case classes) will be dependent since the assignments of the students to the
two classes were not completely random in that they were deliberately made in
pairs.

In general, grouping the experimental units into pairs by design, and thus
according to the overall commonality of, say, environmental or extraneous factors,
enables us to purge much of the outcome variation due to these factors from our
estimate of the common variance σ 2 and thus the precision of our estimate of
µX − µY is increased. And as previously stated, the pairs must be chosen such
that the outcome variation among the pairs exceeds that occurring between the
experimental units within the pairs.

As we shall now see, the analysis of the results of a paired observa-
tion experiment (in which the two samples are not chosen independently and
at random) reduces to an application of a single-sample technique. In this
regard, suppose our paired experiment yields n pairs of observations denoted
by (X1, Y1), (X2, Y2), . . . , (Xn, Yn). Here Xi and Yi, i = 1, . . . , n, are members of
the sample pair (Xi, Yi), where the Xi sample random variable is drawn from the
first population and the sample random variable Yi is drawn from the second pop-
ulation. (We may view the Xi’s as depicting a set of sample outcomes for the first
treatment and the Yi’s as representing a set of sample responses for the second or
follow-up treatment.)

For the ith pair of sample random variables, let Di = Xi − Yi, i = 1, . . . , n,
be the difference between the two random variables Xi and Yi making up that
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pair, where Di is taken to be the ith observation on the random variable D. Each
Di thus provides us with a measure of the difference between the effectiveness
of the two treatments. Then the best estimators for the mean and variance of
D are

�D =
n∑

i=1

Di

n
, S2

D =
n∑

i=1

(Di − �D)2

n − 1
,

respectively. Here �D serves as an estimator of the mean difference between the
effects of the first and second treatments and S2

D, an estimator of the variance
of the differences in treatment effects, excludes any variation due to extraneous
factors (provided, of course, that pairing has been effective).

If we assume that the Di’s, i = 1, . . . , n, constitute a single random sample
from a normal population with mean µD = µX − µY and variance σ 2

D, then the
population random variable D, whose values are the paired differences Di =
Xi − Yi in the population, has a sampling distribution that is N(µD, σD). Hence
the statistic

T =
�D − µD

SD/
√

n

[Sampling from two dependent populations]

follows a t-distribution with n − 1 degrees of freedom. Note that this t statistic
for paired comparisons, has only n − 1 degrees of freedom as compared to the
t statistic for group comparisons, which was found to be k = nX +nY −2 = 2(n−1)
(since nX = nY = n). However, if pairing is warranted, this loss in degrees of
freedom is compensated for by the reduction in variance (due to the elimination
of the effects of extraneous factors) and the concomitant increase in the precision
of our estimate of µD = µX −µY . (Of course, if there are no extraneous factors to
guard against, then we actually lose information by pairing the two samples—only
n − 1 and not 2(n − 1) degrees of freedom are used to estimate σ 2.)

Then proceeding as in section 11.5, a 100(1 − α)% confidence interval for
µD = µX − µY is

(�1, �2) =
(

d̄ − tα/2,n−1
sD√

n
, d̄ + tα/2,n−1

sD√
n

)
, (11.48)

whered̄ and sD are the sample realizations of �D and SD, respectively. (This result
constitutes the right-hand branch appearing in Figure 11.6).

Example 11.10.1 A group of 15 voters was asked to rate the suitability of a
particular candidate for political office on a scale from 1 to 5 (with 5 being the
highest rating). After the rating was conducted, the group watched a 40-minute
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Table 11.1

Ratings of a Political Candidate

Before (x) After (y) Difference (d = x − y)

4 4 0
4 5 −1
3 3 0
5 5 0
5 5 0
5 4 1
2 4 −2
3 5 −2
4 5 −1
3 3 0
3 4 −1
5 4 1
5 4 1
4 4 0
4 4 0

videotape of the candidate’s responses to 10 questions pertaining to an assortment
of important social/economic issues. At the conclusion of the videotape, all 15
voters were again asked to rate the candidate on the same 1 to 5 scale. The results
of both ratings appear in Table 11.1. How precisely have we estimated the true
difference between the before- and after-mean ratings of the candidate by the
group? Let α = 0.05. From the realized differences di, i = 1, . . . , 15, appearing in
Table 11.1 we have

d̄ =
15∑

i=1

di

n
= − 4

15
= −0.266,

s2
D =

15∑
i=1

d2
i

n − 1
−

(
15∑

i=1
di

)2

n (n − 1)
= 14

14
− (−4)2

15(14)
= 0.924

and thus, from (11.48) (here tα/2,n−1 = t0.025,14 = 2.145), (�1, �2) = (−0.798, 0.266).
Hence we may be 95% confident that µD(= µX − µY ) lies between –0.798 and
0.266. Alternatively, we may conclude that we are within ±0.532 units of µD with
95% reliability. �
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11.11 Confidence Intervals for the Difference of Proportions
When Sampling from Two Independent Binomial
Populations

Let {X1, X2, . . . , XnX } and {Y1, Y2, . . . , YnY } be two sets of sample random variables
extracted from two independent binomial populations, where pX and pY are the
proportions of successes in the first and second binomial populations, respec-
tively. In addition, let X and Y be independent random variables representing the
observed number of successes in the samples of size nX and nY , respectively. Our
objective is to determine a 100(1 − α)% confidence interval for the difference in
proportions pX − pY . Moreover, the said confidence interval is only approximate
and holds for large samples. To accomplish this task, we must first specify the
characteristics of the sampling distribution of the difference between two sample
proportions.

On the basis of our discussion in Section 11.7, the best estimators for pX and
pY are the sample proportions of successes P̂X = X

nX
and P̂Y = Y

nY
, respectively,

with E(P̂X ) = pX , E(P̂Y ) = pY , V(P̂X ) = pX (1−pX )
nX

, and V(P̂Y ) = pY (1−pY )
nY

. Hence

the best estimator for pX − pY is P̂X − P̂Y with E(P̂X − P̂Y ) = pX − pY and the

best estimators for V(P̂X ) and V(P̂Y ) are, respectively, S2(P̂X ) = P̂X (1−P̂X )
nX

and

S2(P̂Y ) = P̂Y (1−P̂Y )
nY

.

Since P̂X and P̂Y are independent random variables, we have, by virtue of
(5.47) (with a = b = c), V(P̂X − P̂Y ) = V(P̂X ) + V(P̂Y ), where this variance
expression is estimated by S2(P̂X − P̂Y ) = S2(P̂X ) + S2(P̂Y ). Then according to
the De Moivre-Laplace-Gauss Limit Theorem,

Z�p = (P̂X − P̂Y ) − E(P̂X − P̂Y )
√

S2(P̂X − P̂Y )
= (P̂X − P̂Y ) − (pX − pY )

√
S2(P̂X ) + S2(P̂Y )

d−→ Z = N (0, 1) .

[Sampling from two independent binomial populations] (11.49)

So for large n,

P(−zα/2 < Z�p < zα/2) ≈ 1 − α (11.50)

Upon substituting (11.49) (the pivotal quantity) into (11.50), the resulting prob-
ability statement can be transformed into

P

⎛

⎜⎜⎜⎝

(
P̂X − P̂Y

)
− zα/2

√
S2
(

P̂X

)
+ S2

(
P̂Y

)

︸ ︷︷ ︸
L1

< pX − pY
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<
(

P̂X − P̂Y

)
+ zα/2

√
S2
(

P̂X

)
+ S2

(
P̂Y

)

︸ ︷︷ ︸
L2

⎞

⎟⎟⎟⎠ ≈ 1 − α. (11.51)

Thus the probability that pX −pY lies within the random interval (L1, L2) is 1−α.
Let us next: (1) replace P̂x and P̂y by their sample realizations p̂x(= x/nx)

and p̂y(= y/ny), where x (respectively, y) is the realized number of successes in
the first (respectively, second) sample; and (2) replace S2(P̂X ) and S2(P̂Y ) by
their corresponding sample realizations s2(p̂X ) = p̂X (1−p̂X )

nX
and s2(p̂Y ) = p̂Y (1−p̂Y )

nY
,

respectively. Then (11.51) renders as a large sample (approximate) 100(1 − α)%
confidence interval for pX − pY

(p̂X − p̂Y ) ± zα/2

√
p̂X (1 − p̂X )

nX
+ p̂Y (1 − p̂Y )

nY
, (11.52)

that is, we may be 100(1 − α)% confident that �1 < pX − pY < �2, where (�1, �2)
is the sample realization of (L1, L2).

It was mentioned earlier that we would be undertaking a large sample approach
to constructing an approximate confidence interval for the difference in population
proportions pX −pY . In this regard, the method should yield a good approximation
to normality provided that nX and nY are each ≥ 25. This technique should not
be used if nX and nY are both < 25.

Example 11.11.1 A random sample was taken from each of two independent
binomial populations, yielding the following results: p̂X = x

nX
= 18

30 = 0.600

and p̂Y = y
nY

= 10
35 = 0.286. Hence our best estimate of pX − pY , the differ-

ence between the two population proportions of successes, is p̂X − p̂Y = 0.314.
How precisely have we estimated pX − pY ? Using (11.52), with α = 0.05, we
obtain (�1, �2) = (0.053, 0.575); that is, we may be approximately 95% confident
that the true difference in the two population proportions lies between 0.053 and
0.575. Hence we are within ±0.261 units of the true difference pX − pY with 95%
reliability. �

11.12 Confidence Interval for the Ratio of Two Variances When
Sampling from Two Independent Normal Populations

Suppose we select random samples of sizes nX and nY from two independent nor-
mal populations N(µX , σX ) and N(µY , σY ), respectively, having unknown means
and variances. Our objective is to construct a 100(1−α)% confidence interval for
the ratio of population variances σ 2

Y /σ 2
X .
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We noted earlier ((9.33)) that the random variable

FnX −1,nY −1 = S2
X /σ 2

X

S2
Y /σ 2

Y

(11.53)

is F distributed with nX − 1 and nY − 1 degrees of freedom, where the sample
variances S2

X and S2
Y will serve as the best estimators of the population variances

σ 2
X and σ 2

Y , respectively.
Given (11.53), we now seek to find lower and upper quantile values

1
f1−(α/2),nY −1,nX −1

and f1−(α/2),nX −1,nY −1, respectively, of the F distribution such that

P
(

1
f1−(α/2),nY −1,nX −1

< FnX −1,nY −1 < f1−(α/2),nX −1,nY −1

)
= 1 − α. (11.54)

Upon substituting (11.53) into (11.54) and pivoting we obtain

P

⎡

⎢⎢⎣

(
1

f1−(α/2),nY −1,nX −1

)(
S2

Y

S2
X

)

︸ ︷︷ ︸
L1

<
σ 2

Y

σ 2
X

< (f1−(α/2),nX −1,nY −1)
(

S2
Y

S2
X

)

︸ ︷︷ ︸
L2

⎤

⎥⎥⎦ = 1 − α.

(11.55)

Thus the probability that σ 2
Y /σ 2

X lies within the random interval (L1, L2) is 1 − α.
And if we replace S2

X and S2
Y by their sample realizations in (11.55), a 100(1−α)%

confidence interval for σ 2
Y /σ 2

X is

(�1, �2) =
((

1
f1−(α/2),nY −1,nX −1

)(
s2

Y

s2
X

)
,
(
f1−(α/2),nX −1,nY −1

) ( s2
Y

s2
X

))
(11.56)

that is, we may be 100(1 − α)% confident that �1 <
σ 2

Y
σ 2

X
< �2.

Example 11.12.1 Suppose a random sample has been drawn from each of two
independent normal populations, yielding the following results:

Sample 1 Sample 2

nX = 5 nY = 7
s2

X = 14.6 s2
Y = 20.3

Find a 90% confidence interval for
σ 2

Y
σ 2

X
. Since α = 0.10, we first determine that

f1− α
2

, nX − 1, nY − 1 = f0.95,4,6 = 4.53, f1− α
2

, nY − 1, nX − 1 = f0.95,6,4 = 6.16,



11.13 Exercises 473

Then from (11.56), (�1, �2) = (0.226, 6.299). Hence we may be 90% confident that
σ 2

Y
σ 2

X
lies between 0.226 and 6.299. �

11.13 Exercises

11-1. The times spent at the pump were recorded for n = 65 randomly selected
customers at a small independent gas station. It was found that x̄ = 4.6
minutes with s = 2.06 minutes. Find a 95% confidence interval for the true
average time spent at the pump. How precisely have we estimated µ?

11-2. Let X ( the length of life in hours of a certain brand of 100-watt frosted
light bulb) be N(µ, 500). A random sample of n = 20 bulbs was tested
(until they all burned out), yielding a mean life of x̄ = 1357 hours. Find
a 95% confidence interval for µ. Explain your result. Suppose X is not
assumed to be normal but we have σ = 500. Can we still find a 95%
confidence interval for µ? What if we increase n to 150 and find x̄ = 1400
and s = 5.57? What are the new 95% confidence limits. What theorem
legitimizes them?

11-3. A manufacturer of adhesives has developed a new super latex cement
that was tested on n = 12 different industrial rubber compounds. The
drying times to adhesion (in seconds) were as follows:

81 103 100 67 63 71
90 91 85 88 71 73

Find a 95% confidence interval for the true mean drying time for this new
cement.

11-4. Let X be the amount of distillate per day (in pounds) produced by a
chemical process at ACE Laboratories and suppose that X is approx-
imately normally distributed. A sample of n = 10 consecutive days
yielded the following amounts (in pounds): 2.3, 4.1, 5.6, 3.1, 4.0, 5.1, 2.7,
3.6, 4.2, and 5.9. Find the 95% confidence interval for the true average
amount of distillate per day.

11-5. A random of sample size n = 16 from a distribution of the form N(µ, 25)
yielded a mean of x̄ = 75. Find a 99% confidence interval for µ. What is
the confidence interval if σ is unknown and s = 25?

11-6. A certain type of electronic measurement has a standard deviation of
9 units. How large of a sample should be taken so that the 95% confidence
interval for the mean will not exceed 4 units in width?
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11-7. A random sample is to be drawn from a population that is N(µ, σ ), with
σ 2 known. One objective is to use �X to estimate µ to within k units with
100(1 −α)% reliability. Solve for the sample size n required to meet these
conditions from the following probability statement: P(|�X − µ| ≤ k) =
1 − α.

11-8. Suppose we wish to estimate the average daily yield (in terms of tele-
phone inquiries) of a new magazine ad for a certain product. We want
a degree of precision of ±3 telephone calls with 95% reliability. If it is
known that σ = 10 calls, find the required sample size. If σ is unknown but
evidence indicates that the calls are approximately normally distributed
with a range of about 60 calls, recalculate n.

11-9. In a sample of n = 100 high pressure castings, 15 were found to exhibit
one or more defects. Find a 99% confidence interval for the population
percent of all defective castings.

11-10. About 9
10 of n = 400 persons of voting age interviewed were in favor

of funding a new public safety program. Determine a 95% confidence
interval for the fraction of the population who are in favor of the
program.

11-11. Under random polling of the eligible voters of a certain city it was deter-
mined that out of n = 350 voters, 200 of them favor candidate A. Find an
approximate 95% confidence interval for p, the true fraction of eligible
voters favoring this candidate.

11-12. A psychology experiment is structured so that either response A or
response B is forthcoming from a certain stimulus. If p is the true propor-
tion of subjects providing response B, determine the sample size needed
to estimate p to within ±0.87 units with 90% reliability. Suppose a pilot
study indicated that p is about 0.7. If no prior estimate of p is available,
recalculate n.

11-13. Suppose the sponsor of a popular television show wants to determine the
proportion of the viewing public watching the show to within 3% with
95% reliability. How large of a sample should be taken? Assume that past
experience dictates that p = 0.45. If this known value of p is not available,
what is the required sample size?

11-14. If the population mean µ is to be estimated by a 100(1 − α)% confidence
interval and we are sampling without replacement from a finite popula-
tion and n/N > 0.05, then a measure of how precisely we have estimated
µ is provided by ± error bound, where the error bound is

w
2

= zα/2
σ√
n

√
N − n
N − 1

.
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Solving this expression for n renders

n = mN
m + N − 1

, where m =
(zα/2σ

w/2

)2
.

What is the interpretation of n? Suppose X is N(µ, 20) and the popula-
tion size is N = 2300. How large of a sample is needed so that the 95%
confidence interval for the mean does not exceed 4 units in width?

11-15. If the population proportion p is to be estimated by a 100(1 − α)% confi-
dence interval and we are sampling from a binomial population of size N
without replacement, then a measure of how precisely we have estimated
p is determined by ± error bound, where the error bound is

w
2

= zα/2

√
p(1 − p)

n

(
N − n
N − 1

)
.

Solving this expression for n yields

n = mN
m + N − 1

, where m = zα/2 p(1 − p)
(w/2)2

What is the interpretation of n? (Note: since p is unknown, use p̂; if no
prior or pilot estimate such as p̂ is available, then use p = 1

2 .) Suppose
that a union shop involving N = 2500 members is interested in assessing
union support for a new contract involving enhanced benefits rather than
wage increases. To estimate the proportion p in favor of the contract, how
large a sample is required so that the 95% confidence interval for p will
not exceed 5%?

11-16. Suppose a random sample of size n = 15 is taken from a normally dis-
tributed population. It is determined that

∑15
i=1(xi − x̄) = 131.43. Find

a 95% confidence interval for σ 2. What is the 95% confidence interval
for σ?

11-17. Suppose the diameters of steel rods X (expressed in hundreds of millime-
ters) are approximately normally distributed. Given the following set of
sample observations: 533, 532, 535, 540, 544, 536, 541, 538, 533, 537,
determine a 95% confidence interval for σ 2. What is the 95% confidence
interval for σ?

11-18. From a sample of size 20 taken from an approximately normal popula-
tion it was determined that s2 = 5.36. Find a 90% confidence interval
for σ .

11-19. A random sample of 17 high school students was selected from the senior
class. It was found that the standard deviation of their summer hourly wage
rates was $4.35. Find a 90% confidence interval for the true variance of the
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hourly wage rate for all seniors who had summer jobs. What assumption
is required in order to find the said interval?

11-20. A researcher wants to check the variability of a device used to measure
the light intensity (in lumens) emitted from a certain welding machine.
Nine independent measurements are recorded: 546, 609, 550, 585, 570,
577, 580, 540, and 561. If the measurements recorded by this instrument
are approximately normally distributed, find a 95% confidence interval
for σ 2.

11-21. Suppose that nX = 10, nY = 8, x̄ = 70.5, ȳ = 77.3, σX = 22, and σY = 19.
If the samples are independent and drawn from two normal populations,
find a 95% confidence interval for µX − µY .

If σ 2
X and σ 2

Y are unknown and estimated by s2
X = 5 and s2

Y = 3.7, respec-
tively, with nX = 20 and nY = 25, find a 95% confidence interval for
µX − µY given that x̄ = 65.6 and ȳ = 58.9.

If σ 2
X = σ 2

Y = σ 2 and σ 2 is to be estimated using a pooled estimator of
the common variance, find a 95% confidence interval for µX − µY when
x̄ = 18.1, ȳ = 17.6, nX = 10, nY = 15, s2

X = 7, and s2
Y = 9.

If the preceding assumption that σ 2
X = σ 2

Y = σ 2 is untenable, what is the
95% confidence interval for µX − µY ?

11-22. Assume that miles per gallon of gasoline for imported passenger cars
(of a given engine displacement) are normally distributed with a known
standard deviation of 3.1 miles per gallon, and a comparable figure for
domestic vehicles having the same displacement is 4.7 miles per gallon.
Suppose that nX = 42 imported and nY = 50 domestic cars are sampled
and their average miles per gallon are 23.5 and 20.1, respectively. Find a
99% confidence interval for the difference µX − µY .

11-23. Resolve the preceding exercise if it is known that σ 2
X = σ 2

Y = σ 2.

11-24. The ABC corporation claims that its new gasoline additive for passenger
cars will enhance the mileage per tankfull of gasoline if a can of their prod-
uct is added to a full tank of gasoline. Five vehicles were tested, yielding
the following results (miles per tankfull):

Vehicle 1 2 3 4 5

Before additive 370 385 375 380 378
After additive 387 397 380 392 389

Find a 95% confidence interval for the difference in the means of these
two data sets.

11-25. Two soda vending machines in two separate wings of an office building are
tested monthly for average fill. Each machine is set to dispense 8 oz. of
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soda. On a particular day a service technician obtains the following results
(in ounces):

Machine 1 8.5 8.1 8.3 8.7 8.4 8.5

Machine 2 8.2 7.9 8.1 8.0 7.7

Find a 90% confidence interval for the mean difference in the amount that
each machine dispenses. First assume that it is known that σ 2

1 = σ 2
2 = σ 2. If

this assumption cannot be legitimately made, recalculate the said interval.

11-26. Independent random samples of sizes nX = 8 and nY = 10 were extracted
from normal populations having unknown means. If it is known that σ 2

X =
2.5 and σ 2

Y = 4.8, find a 95% confidence interval for µX − µY .

Sample 1: 3, 8, 6, 5, 10, 7, 7, 6

Sample 2: 1, 5, 8, 8, 6, 7, 6, 9, 4, 3

What is the 95% confidence interval for µX − µY if the population
variances are unknown?

11-27. Two brands of comparable electric drills (call them A and B) are each
guaranteed for 1 year under normal use. For n1 = 45 brand A drills, 10
failed to operate in under 1 year and for n2 = 48 brand B drills, 16 failed
before the warranty period ended. Determine a 99% confidence interval
for the true difference between the failure proportions during the warranty
period. How precisely have we estimated µ1 − µ2?

11-28. A horticulturalist has been using brand A fertilizer on a certain variety of
plant. A new brand B fertilizer has just been marketed, which purports
to be superior to brand A. Two independent groups of n1 = n2 = 8 new
plantings are to be treated (one with the brand A fertilizer and the other
with the brand B fertilizer) and the times (in days) taken to achieve a
certain height are recorded:

Brand A: 30 35 30 31 39 39 35 29

Brand B: 30 33 29 33 35 28 30 29

Find a 99% confidence interval for the true mean difference in growth
time (given that these times are approximately normally distributed and
the variances are approximately equal).

11-29. A time and motion expert is interested in comparing two new methods of
completing a certain task. The participants are divided into two groups of
equal size and, for each group, their times (in minutes) to completion of the
task will be monitored. It is anticipated that the completion times for each
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group will have a range of 10 minutes. If an estimate of the difference in
mean time to completion of the task is recognized to be within ±2 minutes
with 95% reliability, how large of a sample is needed (for each group)?
What is the sampling assumption being made?

11-30. Two spray-bottle rug cleaners were tested for their ability to remove a
specific type of stain. The first was deemed successful in x = 37 out of
nX = 70 independent trials and the second was judged successful in y = 62
out of nY = 85 independent trials. If pX (respectively, pY ) is the true
proportion of times the first (respectively, the second) cleaner is successful
at removing the specific stain, determine an approximate 95% confidence
interval for pX − pY .

11-31. A recent World Health Services poll revealed that x = 976 out of
nX = 1900 African women had their first child before the age of 15 years,
and y = 732 out of nY = 1850 Asian women had their first child before
they were 15 years old. If pX and pY are the respective proportions of
African and Asian women giving birth before age 15, find a 95% confi-
dence interval for pX − pY .

11-32. In a set of nX = 150 trials of a random experiment, x = 75 successes were
observed; in a second set of nY = 250 trials (performed independently of
the first set of trials), y = 105 successes were observed. Determine a 95%
confidence interval for pX − pY .

11-33. An experiment was conducted to compare the reaction times of a group
of 10 volunteers (from a psychology class) to a bright light versus the
sound of a loud air horn. When signaled with either the light or horn, the
individual was asked to press a button to turn off the light or to turn off
the horn. A special timing device monitored the reaction times (expressed
in seconds):

Subject Light(X) Horn(Y )

1 0.31 0.29
2 0.37 0.30
3 0.41 0.38
4 0.33 0.35
5 0.21 0.25
6 0.38 0.29
7 0.38 0.31
8 0.47 0.37
9 0.95 0.21
10 0.25 0.22

Find a 95% confidence interval for µD = µX − µY .

11-34. A group of 10 enrollees are weighed at the beginning and at the end of
a special combined diet and exercise program. Let the random variable
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(expressed in pounds) depict the weight difference (postprogram less pre-
program). Suppose D is approximately normally distributed with values:
−5.7, 1.0, −6.2, −9.8, −3.0, 2.4, −11.1, −1.2, −8.2, and 4.0. Find a 90%
confidence interval for µD = µX − µY .

11-35. Suppose that two independent random samples of sizes nX = 10 and nY =
15, respectively, are drawn from normal populations and that s2

X = 0.238
and s2

Y = 0.149. Find a 95% confidence interval for σ 2
X /σ 2

Y . What is the
95% confidence interval for σX /σY ?

11-36. A machine designed to dispense a specific amount of soap powder had a
sample variance of s2

1 = 0.714 for n1 = 17 fills. A similar machine was
tested for n2 = 25 fills and it was determined that s2

2 = 0.438. (Assume the
fill amounts for these machines are approximately normally distributed.)
Find a 95% confidence interval for σ 2

1 /σ 2
2 .

11-37. Random samples of sizes nX = nY = 5 were taken from normal distribu-
tions having unknown variances σ 2

X and σ 2
Y , respectively. Find:

(a) A 95% confidence interval for σ 2
X

(b) A 99% confidence interval for σ 2
Y

(c) A 95% confidence interval for σ 2
X /σ 2

Y

Sample 1: 3.7, 8.6, 4.2, 5.5, 6.2
Sample 2: 2.2, 1.89, 2.6, 2.82, 3.1

11-38. A random sample of size n = 18 is taken from a normal population
with the result that x̄ = 15 and s2 = 5.3. Determine a set of Bonferroni
joint confidence limits for µ and σ 2 for a family confidence coefficient of
1 − α = 0.95.

11-39. Suppose X1, . . . , Xn depicts random sample drawn from an exponential
probability density f (x; λ) = λe−λx, x > 0, λ > 0. It can be demon-
strated that a 100(1−α)% confidence interval for λ has the form (�1, �2) =(

χ2
α/2

2nx̄ ,
χ2

1−(α/2)
2nx̄

)
. Given this result, let us assume that a random sample has

been drawn from an exponential probability density with unknown λ. If∑n
i=1 xi = 23, 250, determine a 95% confidence interval for λ.

11-40. Suppose �X , �Y are the sample means determined from random samples of
sizes nX , nY , respectively, taken from two separate population distribu-
tions represented by the random variables X , Y . Verify that if �X , �Y are
normally and independently distributed, then �X − �Y is N(µ�X−�Y , σ�X−�Y ),

where µ�X−�Y = µ�X − µ�Y and σ�X−�Y =
√(

σ 2
X /nX

)+ (
σ 2

Y /nY
)
.

11-41. Suppose P̂X , P̂Y are sample proportions determined by drawing nX , nY

items, respectively, from two separate binomial populations with param-
eters pX , pY . In addition, let nX , nY be sufficiently large so that P̂X , P̂Y
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are approximately normally distributed. Verify that P̂X − P̂Y is approxi-
mately N(µP̂X −P̂Y

, σP̂X −P̂Y
), where µP̂X −P̂Y

= µP̂X
− µP̂Y

and σP̂X −P̂Y
=√

P̂X (1 − P̂X )
/

nX + P̂Y (1 − P̂Y )
/

nY .

11-42. Suppose X1, . . . , Xn is a random sample drawn from a Poisson proba-

bility mass function f (x; nλ) = e−nλ (nλ)X

X ! , X = 0, 1, 2, . . . , λ > 0. If
Y = ∑n

i=1 Xi ∼ f (x; nλ) and y denotes the sample realization of Y, then
it can be shown that a 100(1 − α)% confidence interval for λ is

(�1, �2) =
(

1
2n

χ2
1−(α/2),2y,

1
2n

χ2
α/2,2(y+1)

)
.

For n = 15 and y = 10, determine a 95% confidence interval for λ.

11-43. Confidence Intervals for Quantiles:
Let X1, . . . , Xn represent a set of sample random variables taken from a
population of size N . For the quantile �P , let γp be its sample realiza-
tion, where p depicts the proportion of the population below γp (e.g., for
quartiles, p = 0.25j, j = 1, 2, 3; for deciles, p = 0.10j, j = 1, . . . , 9; and for

percentiles, p = 0.01j, j = 1, . . . , 99) and σp =
√(

1 − n
N

) p(1−p)
n .

Then we may form (L1, L2) = (p − kσp, p + kσp) and thus, from the
sample observations (which have been placed in an increasing sequence
x(1), . . . , x(n)), let us determine the point �1 below which the proportion L1

of the sample frequencies fall; and the point �2 below which the propor-
tion L2 of the sample frequencies lie. Then if k = 2, an approximate 95%
confidence interval for �P is (�1, �2).

For sufficiently large n (> 50) , ±k may be replaced by the N(0, 1) upper
and lower percentage points ±zα/2 to give (�1, �2) = (p−zα/2σp, p+zα/2σp)
so that now a 100(1 − α)% confidence interval for �P is (�1, �2). To deter-
mine an interval estimate for the median, an alternative approach is to first
order the realizations of the sample random variables by increasing mag-
nitude as x(1), . . . , x(n). Then for n > 50, a 100(1 −α)% confidence interval
for the population median is �1 = x(h) ≤ median ≤ x(n−h+1) = �2, where h

is approximated as h = n−zα/2
√

n−1
2 . Suppose a set of n = 60 observations

taken from a population of size N = 2000 have been arranged by order of
magnitude as:

5, 5, 7, 7, 7, 8, 9, 9, 10, 10, 10, 10, 11, 14, 14,

20, 20, 22, 22, 25, 27, 27, 30, 30, 30, 35, 38, 38, 39, 40,

41, 45, 45, 50, 50, 50, 50, 53, 54, 55, 55, 58, 59, 61, 61, 61,

62, 64, 64, 64, 67, 71, 71, 80, 85, 85, 89, 90, 90, 90.
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Find a 95% confidence interval for the median. Also, find a 99%
confidence interval for the first quartile Q1.

11-44. Confidence Interval for the Coefficient of Variation:
We previously expressed the population coefficient of variation as CV =
σ
µ

. Given a collection of sample random variables X1, . . . , Xn, let us denote
the realization of CV as cv = s

x̄ . Then for n ≥ 25 and cv < 0.40, a
100(1 − α)% confidence interval for CV is

�1 = cv

1 + zα/2

√
1 + 2cv2

2(n + 1)

≤ CV ≤ �2 = cv

1 − zα/2

√
1 + 2cv2

2(n + 1)

.

Suppose that from a random sample of size n = 75 it was found that
x̄ = 127, s = 15.5, and cv = 0.122. Determine a 95% confidence interval
for CV .

11-45. Confidence Interval for a Population Total:
Let {X1, . . . , Xn} constitute a set of sample random variables taken from a
population of size N. We are interested in determining an interval estimate
for the population total τ = ∑N

j=1 Xj. Let N �X serve as an estimator for
τ . Then for Nx̄ the sample realization of N �X , a 100(1 − α)% confidence
interval for τ is

Nx̄ ± zα/2

√(
1 − n

N

) (Ns)2

n
,

where s is the realized sample standard deviation. Suppose that from a
random sample of size n = 50 taken from a population of size N = 750
it is found that x̄ = 81.2 and s = 9.8. Find a 90% confidence interval for
the population total.
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1212
Tests of Parametric Statistical
Hypotheses

12.1 Statistical Inference Revisited

In Chapters 10 and 11 we examined the rudiments of statistical inference by
considering the essentials of point and interval estimation; that is, we attempted
to make inferences about unknown population parameters based on sample data.
Such inferences took the form of confidence intervals. In effect, once a confidence
interval was estimated, it essentially specified all distributions that might reason-
ably explain the population characteristic or variable being studied since each
value in the interval effectively specifies a different distribution. This approach is
basically one side of the inferential coin. We now turn to the other side of this coin
by considering an area of statistics that is intimately related to estimation, namely
the process of statistical hypothesis testing. In this regard, we now consider a
set of procedures that can be used to determine whether one distribution (or set
of distributions) is more reasonable than another in describing some population
characteristic.

We may view a statistical hypothesis as an assertion about some unknown
feature (or features) of a population that might be true; that is, it is a conjec-
ture about the population distribution of a random variable, where the random
variable may be discrete or continuous. The unknown feature of a probability
density function (or probability mass function) may be its functional form (e.g.,
a population characteristic can be adequately modeled by a specific family of dis-
tributions) or, if the form is known, the value of one (or more) of its parameters.
For instance, a statistical hypothesis may correspond to a statement regarding the
form of a probability mass function; for example, the discrete random variable
X follows a binomial distribution. Alternatively, if the form of, say, a proba-
bility density function is known, then a statistical hypothesis may refer to the
numerical value of one of its parameters; for example, the continuous random
variable X is N(µ, 1) and it is hypothesized that “µ = 10.” In what follows
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we shall assume that the form of a population distribution is known and thus
concentrate exclusively on parametric hypotheses; that is, hypotheses that claim
that a certain population parameter assumes a given numerical value. (The next
chapter will consider nonparametric or distributional hypotheses and so-called
goodness-of-fit tests.)

Let us now consider a brief overview of the essence of statistical hypothe-
sis testing. Specifically, how does the process of statistical hypothesis testing
work? Since a statistical hypothesis is a statement about some unknown pop-
ulation parameter, we must decide whether the assertion made is supported
by experimental evidence obtained via random sampling. The decision as to
whether the sample evidence supports the claim is based on chance factors; that
is, the hypothesis will be rejected if it has a low probability of being correct in
the light of sample evidence. And if a sample realization leads us to conclude
that the probability is high that the claim is correct, then the hypothesis will not
be rejected.

12.2 Fundamental Concepts for Testing Statistical
Hypotheses

We may define a simple hypothesis as one that uniquely specifies the distribution
(either a probability density function or probability mass function) from which
the sample is drawn; that is, it specifies the functional form of the distribution as
well as the values of all parameters. This is in contrast to a composite hypothe-
sis, which does not uniquely determine a distribution. Thus a simple hypothesis
posits a single probability distribution for a sample and a composite hypothesis
specifies more than one possible distribution for a sample. Moreover, a statisti-
cal hypothesis may be exact (it posits a single numerical value for a parameter,
e.g., µ = 10) or inexact (here a range of values for some parameter is specified,
e.g., µ ≥ 10).

Conducting a hypothesis test requires two complementary hypotheses called
the null hypothesis and the alternative hypothesis. The null hypothesis is a theory
or assumption that we want to test and that is assumed to be true. Hence, it is an
indication of what we think the population looks like. In contrast, the alternative
hypothesis tells us what the population would look like if the null hypothesis is
not true—it essentially represents the negation or converse of the null hypoth-
esis. Hence the objective of a hypothesis test is to determine, on the basis of a
random sample extracted from the population, which of the two complementary
hypothesis is true (even though the actual parameter value may be different from
those specified by the null and alternative hypotheses). The null and alternative
hypotheses will be denoted as H0 and H1, respectively. So given the null hypoth-
esis H0, we must always have a hypothesis H1 counter to it; otherwise H0 is not a
testable hypothesis. In this regard, we say that the null hypothesis is tested against
the alternative hypothesis. Incidentally, the word null is to be interpreted in the
following context—it means that there is no difference between the hypothesized
value and the true value of some population parameter.
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To further examine the relationship between the null and alternative hypo-
theses, let θ be any population parameter and let P denote its parameter space or
set of admissible values for θ . For instance, if a random variable X is N(µ, σ ), then
the parameter space for µ is P = {µ/−∞ < µ < +∞} and the parameter space
for σ is P = {σ /0 < σ < +∞}. And if the random variable X is b(X ; n, p), then
the parameter space for p is P = { p/0 ≤ p ≤ 1} and the parameter space for n is
P = {n/n = 1, 2, 3, . . .}.

In very general terms then, the form of the null and alternative hypothesis
is H0 : θ ∈ P 0; H1 : θ ∈ P 1, where P 0 and P 1 are subsets of P , P 1 = �P 0 = P − P 0,
P 0 ∩ P 1 = Ø, and typically P = P 0 ∪ P 1. Thus P 1 is the complement of P 0 (it con-
tains those elements of P that are not in P 0), P 0 and P 1 are mutually exclusive or
have no elements in common, and P 0 and P 1 taken together usually exhaust all ele-
ments within P . (We can often assume that P 0 and P 1 are collectively exhaustive
and thus, since they are also mutually exclusive, form a partition of P .) Moreover,
if, say, H0 is a simple hypothesis (here we are assuming that the functional form
of the associated probability distribution is known), then it constitutes a single
point in P or P 0 is a singleton; and if, say, H1 is a composite hypothesis, then P 1

determines an interval in P . For example:

(a) Let the random variable X be distributed as N(µ, σ ):

● If µ is unknown but σ is known, then H0 : µ = µ0 is a simple hypoth-
esis and H1 : µ > µ0 is a composite hypothesis. Here H0 and H1 are
mutually exclusive but not exhaustive. Note also that H0 is exact and H1

is inexact. (If we had written H0 : µ ≤ µ0, then both the null and alternative
hypotheses would be composite, and both would be inexact.)

● If µ is unknown but σ is known, then H0 : µ = µ0 is simple and H1 : µ �= µ0

is composite. Now H0 and H1 are both mutually exclusive and collectively
exhaustive. In addition, H0 is exact while H1 is inexact.

● If both µ and σ are unknown, the H0 : µ = µ0 is composite. It is also exact.

(b) Let the random variable X be distributed as b(X ; n, p) :
● If n is given and p is unknown, then H0 : p = p0 is a simple hypothesis and

H1 : p < p0 is composite. Also, H0 is exact and H1 is inexact.

● If neither n nor p is specified, then H0 : p = p0 is composite and exact.

You might have noted already that the null hypothesis H0 always contains at least
an equality. This is so that a reference probability distribution can be specified
given that H0 is assumed to be true. That is, if the random variable X is N(µ, σ )
with σ known, then under H0 : µ = µ0, the null value µ0 is used to form the
test function N(µ0, σ ). Hence µ = µ0 determines a unique probability density
function to be used in conducting the hypothesis test.
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12.3 What Is the Research Question?

In practice, since the null and alternative hypotheses are complementary, support
for one proposition or theory is obtained by demonstrating lack of support for its
converse; that is, one of these rival hypotheses survives empirical testing because
the data contradicts the other. So although the null hypothesis is typically billed
as the hypothesis to be tested and either rejected or not rejected on the basis
of sample evidence, the actual research objective is usually to obtain support
for the alternative hypothesis. That is, the null hypothesis is the proposition that
we wish, in a sense, to disprove.

This being the case, although designation between the null and alternative
hypotheses is somewhat arbitrary, we generally specify the null hypothesis in
an exact manner and postulate no effect of some treatment or the absence of
effect of some research variable. The alternative hypothesis is typically much
more fluid and is formulated as a range of values that would result if the treat-
ment or variable being studied did exhibit an effect. Hence the null hypothesis
is often structured in a way that is opposite to what we want to establish or
believe to be true. Then the alternative hypothesis is simply framed in opposi-
tion to the null hypothesis. (In fact, these observations reinforce the notion that,
as indicated earlier, equality is always a part of the null hypothesis—it is easier
to disprove an exact or specific hypothesis relative to an inexact or nonspecific
one.)

By way of accepted methodology, if we want to establish some theory or
proposition, we term it the alternative hypothesis and then formulate the contrary
(null) hypothesis as a throw-away, which is considered as true or valid unless
the sample outcome deems it highly improbable. Given that the null hypothesis
is essentially expendable (it is a statistical straw man or considered to be data
fodder), then obviously we are compelled to reject it in the face of sample evidence
that strongly favors the alternative hypothesis and clearly renders the assertion
given by the null hypothesis unreasonable.

For instance, suppose a chemical company is testing a new and improved fer-
tilizer for, say, soybeans. The presumption is that the new fertilizer will do better,
in terms of its average yield (bushels per acre) than the old one. Once the experi-
mental results are obtained, the company seeks to determine if its presumption is
valid. Hence the null hypothesis is stated as

H0 : the new fertilizer produces the same mean yield as the old one

and the alternative hypothesis is framed as

H1 : the mean yield for the new fertilizer is greater than that for the old
one

Here the company wants to disprove the null hypothesis in favor of the alter-
native hypothesis. Note that the null hypothesis is exact, but the alternative
hypothesis is less so.
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12.4 Decision Outcomes

Once the null and alternative hypotheses have been formulated, there are two
possible decisions (based on the sample outcome) that we can ultimately make
regarding the null hypothesis H0—we can reject H0 or not reject H0. What are the
consequences of these decisions with respect to the characteristics of the prevail-
ing state of nature or true situation within the population? First, after observing
the sample, we may

Reject H0 given:
{

H0 true → incorrect decision;

H0 false → correct decision

or, second, we

Do Not Reject H0 given:
{

H0 true → correct decision;

H0 false → incorrect decision.

(Note that the second option has been expressed as do not reject H0 rather than
accept H0. This is because the null hypothesis is regarded as valid unless the data
dictates otherwise and thus, if the sample evidence does not support the rejection
of the null hypothesis, it only means that the data has not made its case. We shall
return to this point later on.)

Whether the decision is to reject or not reject the null hypothesis given the
actual state of nature, the possibility exists (because of random fluctuations in
sampling) that we may make an incorrect decision or error. In this regard, we
shall identify two types of potential errors:

Type I Error (TIE)—Rejecting H0 when it is true

Type II Error (TIIE)—Not rejecting H0 when it is false

Stated alternatively in terms of our parameter set notation, for H0 : θ ∈ P 0 and
H1 : θ ∈ P 1:

TIE—Rejecting H0 given θ ∈ P 0

TIIE—Not rejecting H0 given θ ∈ P 1

These outcomes or errors are summarized in Table 12.1a.
Next, let us specify the risks associated with these incorrect decisions as the

probabilities of committing Type I and Type II Errors. Based upon the preceding
definitions of these errors, it should be apparent that they are actually conditional
probabilities. That is:

(a) P(TIE) = P(reject H0|H0 true) = α, 0 ≤ α ≤ 1;

(b) P(TIIE) = P(do not reject H0|H0 false) = β, 0 ≤ β ≤ 1.
(12.2)
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Table 12.1

a. b.
Decision Outcomes Risks of Wrong Decisions

State of Nature State of Nature
H0 true H0 false H0 true H0 false

Action
taken

on the basis
of sample

information

Reject
H0

Incorrect
Decision

(TIE)

Correct
Decision

Action taken
on the basis
of sample

information

Reject
H0

P(TIIE) = α P(correct
decision) =

1 − β

Do not
reject

H0

Correct
Decision

Incorrect
Decision
(TIIE)

Do not
reject

H0

P(correct
decision) =

1 − α

P(TIIE) = β

Hence the magnitude of the risk associated with rejecting a true null hypoth-
esis is α (called the α-risk) and the risk associated with not rejecting a false
null hypothesis is β (termed the β-risk) (see Table 12.1b). These α- and
β-risks or error probabilities essentially serve as indexes of the seriousness of
making Type I and Type II Errors. Moreover, Table 12.1b also incorporates the
probabilities of correct decisions or

(a) P(do not reject H0|H0 true) = 1 − α.

(b) P(reject H0|H0 false) = 1 − β.
(12.3)

Note that the sum α + β is essentially meaningless. However, as Table 12.1b
indicates, since one of the two possible actions or conclusions must be obtained
in testing the null hypothesis against the alternative hypothesis (we either reject
the null hypothesis or do not reject it), and since the events in each column are
complementary, the probabilities within the same must sum to unity; that is,

(a) P(reject H0|H0 true) + P(do not reject H0|H0 true) = α + (1 − α) = 1;

(b) P(reject H0|H0 false) + P(do not reject H0|H0 false) = (1 − β) + β = 1.
(12.4)

12.5 Devising a Test for a Statistical Hypothesis

Given a null hypothesis H0 and an alternative hypothesis H1, we need to specify a
decision rule that will tell us when to either reject H0 (the sample outcome favors
H1) or not reject H0 (the sample outcome favors H0 itself). This decision rule
constitutes a test of a statistical hypothesis; that is, a test is simply a criterion that
informs us when the null hypothesis should be rejected or not rejected in the
face of sample evidence. (It is important to note that a test is specified before
the random sample is drawn. This is so that the selection of a decision rule is not
influenced by the sample.) Hence the notions of a test of a statistical hypothesis
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and a decision rule that tells us whether to reject H0 or not, are taken to be
synonymous.

To conduct a test of a statistical hypothesis we need to specify a test statistic
T or a random variable whose sampling distribution is known under the assump-
tion that the null hypothesis is true. Here T = g(X1, . . . , Xn, n), which is taken to
be a good estimator of the parameter θ , maps the realizations x1, . . . , xn of the sam-
ple random variables X1, . . . , Xn into some admissible realization t of T. For some
values of the test statistic T the null hypothesis H0 will be rejected and, for others,
it will not be rejected. Hence we may partition the range of g or the entire set T of
realizations or experimental values of T (called the sample space of the test) into
two separate and distinct regions: a critical region or region of rejection R , which
specifies the sample realizations of T for which the null hypothesis H0 is rejected
(hence R contains the sample outcomes least favorable to H0); and a region of
nonrejection �R = T − R (it contains the sample outcomes most favorable to H0 or
the sample realizations of T for which H0 is not rejected). By virtue of the nature
of a partition, T = R ∪ �R and R ∩ �R = Ø. In this regard, a test may be viewed as
a partition of T into R and �R . Hence prescribing a critical region is equivalent to
prescribing a test of a hypothesis.

How do we locate R and �R ? The boundary between R and �R is called the
critical value of the test statistic and will be denoted as tc. Here the critical value
of T is determined a priori (i.e., before the sample is drawn) and depends upon
the form of the sampling distribution of T, the alternative hypothesis made, and
the seriousness of the consequences associated with making an incorrect decision.
As we shall see later, the problem of constructing a test of a null hypothesis
corresponds to the problem of choosing a critical region for the test; that is, a
test is specified by its critical region; and this is accomplished by determining the
critical value of the test statistic.

We may establish a connection between the regions of rejection and non-
rejection and the risks associated with incorrect decisions as follows. Let the area
under the sampling distribution of T and above the critical region correspond
to the probability of a Type I Error or to α; that is, α will represent the size
of the critical region R and will be termed the level of significance of the test.
Here the context of the phrase level of significance is simply that the sample evi-
dence warrants rejection of the null hypothesis at the α level. So based upon the
preceding discussion, (12.2a,b) can now be modified as:

(a) α = P(TIE) = P(T ∈ R | H0 true);

(b) β = P(TIIE) = P(T ∈ �R | H0 false).
(12.2.1)

(Note that if, in general, we are testing H0 : θ ∈ P 0 versus H1 : θ ∈ P 1, then the
preceding probabilities may be rewritten as

(a) α(θ) = P(TIE) = P(T ∈ R /θ ∈ P 0);

(b) β(θ) = P(TIIE) = P(T ∈ �R /θ ∈ P 1).
(12.2.2)
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As (12.2.1a) reveals, α, the size of R , is the probability of obtaining a sample
realization of T that falls into R when the null hypothesis H0 is true; and from
(12.2.1b), β is the probability of obtaining a sample realization of T that does not
fall into R when H0 is not true.

More formally, for a population parameter θ , if the null hypothesis is simple
or H0 : θ = θ0, then for, say, T a continuous random variable, the sampling dis-
tribution or probability density function of T given that H0 is true is completely
determined and can be written as f (t; θ0, n). Hence the probability that the sample
will reject a true null hypothesis is

P(TIE) = P(T ∈ R |f , θ0, n) =
∫

t∈R

f (t; θ0, n)dt = α. (12.5)

Here α has a long-run relative frequency interpretation (as does β to follow). That
is to say, if the null hypothesis H0 were true and if we were to repeatedly draw
samples of size n from the population, then, in the long run, we would reject H0

approximately 100α% of the time.
What about the determination of the probability of a Type II Error or β? We

noted earlier that the null hypothesis H0 must be tested against an alternative
hypothesis H1; that is, any hypothesis test should be able to discriminate between
H0 and H1. Given H0 :θ = θ0, let the alternative hypothesis also be simple or
H1 :θ = θ1. (As indicated earlier, if H0 is true, then H1 is false; and if H0 is false,
then H1 is true.) If H0 is false, then the sampling distribution of T can be written
as f (t; θ1, n) and thus, since the region of nonrejection of H0 is �R = T − R , the
probability that the sample will not reject a false null hypothesis is

P(TIIE) = P
(
T ∈ �R | f , θ1, n

) =
∫

t∈�R

f (t; θ1, n)dt = β. (12.6)

Clearly β depends upon the alternative hypothesis made.
For instance, if again H0 :θ = θ0 and H1 :θ = θ1 with R = {t/t1 ≤ t ≤ t2} , then,

from (12.5,6),

α =
∫ t2

t1

f (t; θ0, n)dt = area A

(see Figure 12.1); and since �R = {t/−∞ < t < t1} ∪ {t/t2 < t < +∞} ,

β =
∫ t1

−∞
f (t; θ1, n)dt +

∫ +∞

t2

f (t; θ1, n)dt = area B + area C.

So if the null hypothesis H0 were false and if we were to repeatedly extract
random samples of size n from a population, then, in the long run, we would
fail to reject H0 approximately 100β% of the time.



12.6 The Classical Approach to Statistical Hypothesis Testing 491

B 

f ( t ;q , n)
f (t ;q0, n) f (t ;q1, n)

(H0 : q = q0 true) (H1 : q = q1 true)

C 

A

t1
t

t2

Figure 12.1 P(TIE) = α = area A; P(TIIE) = β = area B + area C.

12.6 The Classical Approach to Statistical Hypothesis Testing

How do we go about constructing good hypothesis tests? Moreover, what is our
yardstick for assessing goodness? A convenient gauge of the goodness of a test
is provided by the sizes of the α- and β-risks associated with making incorrect
decisions. As a practical matter, how should these errors be treated?

When testing statistical hypotheses, the classical approach deems committing a
Type I Error as a much more serious decision outcome than committing a Type II
Error. In this regard, we select, in advance, the maximum tolerable size of a Type I
Error α and then, for a fixed random sample size n, construct a test that minimizes
the size of the Type II Error β. Note that for a fixed n it is not possible to a priori
select values for both α and β when constructing a test for a null hypothesis against
some alternative hypothesis (we shall return to this point later on). For a given n,
α and β are inversely related; that is, the size of β will normally increase as the size
of α decreases. For instance, it is readily seen from Figure 12.1 that if the length
of interval R shrinks in size, then α = area A decreases and β = area B + area C
increases. Moreover, for most hypothesis tests, both α and β will decrease as
n increases. Hence we cannot make α extremely small without concomitantly
increasing β; one pays for a declining α-risk in terms of an increasing β-risk. In
the light of this trade-off between the α- and β-risk, we typically opt to construct
a test that has the smallest size Type II Error β among all other tests exhibiting
the same size Type I Error or significance level α. In sum, to construct a good test,
we shall limit our consideration to tests that (tightly) control the probability of a
Type I Error (it is set at some maximum tolerable level—usually 10% or 5% or
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Classical Hypothesis Testing United States Judicial Process

C.1 The null hypothesis H0 is “assumed true”

unless sufficient sample evidence dictates

otherwise.

J.1  The accused is “presumed not guilty” until a

preponderance of evidence dictates otherwise.

Hence H0: accused is not guilty; H1: accused is

guilty.

J.2 Possible outcomes: 

H0 rejected (a guilty verdict obtains if sufficient

evidence is presented for a conviction).

H0 not rejected (a not guilty verdict follows if the

prosecutor does not make a compelling case for

conviction).1 A Type I Error occurs if we convict

an innocent person; a Type II Error occurs if we  

set a guilty person free.

C.3  a = P(TIE) is taken to be very small.

(Committing a Type I Error is thought to be a

much more serious error relative to committing

a Type II Error.) 

J.3 “Convicting an innocent person” (a Type I

Error) is deemed much more serious than “letting  

a guilty person go unpunished” (a Type II Error).

Hence there should emerge an almost nonexistent

chance of rejecting H0 above if it is true. Hence

a = P(TIE) should be kept very small relative to

b = P(TIIE).

C.2 Possible outcomes:

H0 rejected (the sample evidence dictates that

H0 is untrue).

H0 not rejected (the data has not made a

compelling case against H0). A Type I Error

occurs if we reject a true hypothesis; a Type II

Error occurs if we do not reject a false

hypothesis.

Figure 12.2 The classical approach to hypothesis testing contrasted with the U.S. judicial process.

even 1%). Then within this class of tests we search for the test that exhibits the
smallest probability of a Type II Error.

It is interesting to note that the classical approach to statistical hypothesis
testing parallels the workings of the judicial process carried out in the United
States (see Figure 12.2).

It is important to note that since α and β vary inversely, α cannot be reduced
to zero (an innocent person is never convicted) without increasing β to one (every

1 However, this verdict does not necessarily imply that the accused is “innocent.” It simply reflects a
lack of substantive evidence needed for a conviction.
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accused person is set free). The only way that both α and β can be reduced simul-
taneously is by increasing the body (and quality) of evidence (this is analogous to
increasing the sample size under classical hypothesis testing).

12.7 Types of Tests or Critical Regions

Most hypothesis testing situations dictate that the null hypothesis H0 is simple
but that the alternative hypothesis H1 is composite. In this instance H0 specifies
a particular distribution from which a sample might be drawn, and H1 specifies
a collection of alternative distributions that might possibly generate an observed
data set. Given this observation, we now proceed to identify three basic cases
involving the testing of a simple null hypothesis against composite alternatives.
We then examine the implied critical regions (see Figure 12.3).

It is the type of test that locates the critical region R ; and this is dictated by
the sense of direction indicated in the alternative hypothesis made. Moreover, it
is the magnitude of the α-risk that determines the size of R .

For instance, let us assume that our test statistic T is a continuous random
variable with sampling distribution or probability density function expressed as
f (t; θ , n). Then for Case I, given a random sample of size n, we should reject
the null hypothesis H0 when t, the sample realization of T, is sufficiently greater
than the null value θ0. Here sufficiently greater than implies that the difference
between t and θ0 or t − θ0 is much greater than that which could be attributed

H0 : q = q0

H1 : q > q0

H0 : q = q0

H1 : q < q0

H0 : q = q0

H1 : q ≠ q0

Types of Tests

One-Sided Alternatives  Two-Sided Alternative

Case I Case II Case III

Figure 12.3 Case I: H0 : θ = θ0, H1 : θ > θ0; Case II: H0 : θ = θ0, H1 : θ < θ0; Case III: H0 : θ = θ0,
H1 : θ �= θ0.



494 Chapter 12 Tests of Parametric Statistical Hypotheses

to chance factors or to random fluctuations of T. If α = P(TIE) represents the
size of the critical region R , then R = {t/t ≥ tc} is located at the upper or right-
hand tail of the sampling distribution of T (since H0 is rejected for large values
of t), where tc (the critical value of T) corresponds to the right-tail quantile of the
sampling distribution of T; that is, tc is the value of T for which P(T ≥ tc) = α =
area under f (t; θ0, n) from tc to +∞ (see Figure 12.4a). So if H0 is taken to be true,
then it is rejected for realizations t that are extreme in the H1 direction. Here we
regard as extreme or very different from θ0 those t’s which, if H0 were true, would
occur by chance only very rarely or with a probability of size α. In this regard, if

(a) (b)

(c)

f(t;q, n)

f(t;q,n)

f(t;q, n)
f(t;q0, n)

f(t;q0,n)

f(t;q0, n)

t
tc

tc tcu

tc

R = {t t ≥ tc} R = {t t ≤ tc}

R = {t t ≤ tcl or t ≥ tcu}

(H0: q = q0 true) (H0 : q = q0 true)

(H0: q = q0 true)

t 

t 

a = P(TIE)

a = P(TIE)

}
} }

}

a  2

a  2

tcl 

Figure 12.4 (a) The critical region R for a left-hand tail test; (b) The critical region R for a right-hand
tail test; (c) The critical region R for a two-tail test.
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H0 were true and we repeated this test a large number of times, then, in the long
run, we would incorrectly reject H0 100α% of the time.

Looking to Case II, for a given sample of size n, we should reject the null
hypothesis H0 when t is sufficiently less than θ0; that is, the difference |t − θ0|
is much greater than that which would be expected to occur by chance. For a
specified α-risk, R = {t/t ≤ tc} is now located at the lower or left-hand tail of the
sampling distribution of T (since now H0 is rejected for small values of t), where
tc corresponds to the left-tail quantile of the sampling distribution of T. Hence
tc is the value of T for which P(T ≤ tc) = α = area under f (t; θ0, n) from −∞
to tc (see Figure 12.4b). Given that H0 is assumed true, it is now rejected if the
sample realization t falls short of θ0 by too much. Hence a realized value of T that
is considerably smaller than θ0 may be deemed, if H0 were true, as highly unlikely
if it occurs with a probability of size α.

Finally, for Case III, we should reject the null hypothesis H0 if the realized
value of the test statistic T is sufficiently different from θ0; that is, if H0 were true,
then it would be rejected for realizations t of T that are extreme in either direction
or for which |t − θ0| is very large. Hence realizations t that are much larger than θ0

or much smaller than θ0 constitute sample evidence against H0 and in favor of H1.
For a chosen α, the critical region R = {t/t ≤ tcl or t ≥ tcu} is determined at both
tails of the sampling distribution of T; that is, α is divided equally between the two
tails of the probability density function f (t; θ0, n) so that the area under each tail
is obviously α

2 (see Figure 12.4c). In this regard, tcl is the lower-tail quantile of the
sampling distribution of T (tcl is the value of T for which P(T ≤ tcl) = α

2 ) and tcu is
the upper-tail quantile of the sampling distribution of T(tcu represents the value
of T for which P(T ≥ tcu) = α

2 ). In sum, this particular test (or R ) is structured so
that we would reject H0 if a realization of T turned out to be either extremely low
or extremely high in relation to θ0 so that its occurrence by chance would be very
unlikely (the said occurrence would be with a probability of only 100α%).

The preceding discussion pertaining to the specification of a critical region
for a hypothesis test enables us to now offer a definition of the term statistical
significance. Specifically, an outcome of a random experiment is deemed statisti-
cally significant if it is highly unlikely that the said outcome has occurred solely
because of chance factors; that is, it is the result of some legitimate or systematic
experimental effect.

12.8 The Essentials of Conducting a Hypothesis Test

Within the classical vein of hypothesis testing, this brief section outlines, in
general terms, a stepwise procedure for conducting a statistical hypothesis test
on a population parameter θ . In the next few sections more specific hypoth-
esis tests concerning some important parameters will be offered. To this end
we have:

1. Formulate the null hypothesis H0 (assumed true) and the alternative hypoth-
esis H1 (it determines the location of the critical region R ).
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The alternative hypothesis is usually a proposition that we want to establish,
whereas the null hypothesis, which is stated as the exact opposite of the alter-
native hypothesis, is expendable and, if deemed highly improbable in the light of
sample evidence, is to be rejected.

2. Specify the level of significance α (it determines the size of R ).

Here α = P (Type I Error) typically is taken to be 0.01 or 0.05 or 0.10. It indicates
the (small) amount of risk we are willing to undertake in incorrectly rejecting H0

when it is true.

3. Select the test statistic T whose sampling distribution is known under the
assumption that H0 is true.

4. Find R . This involves determining tc, the critical value of T.

Given α, tc corresponds to a particular quantile of the sampling distribution of T.
For instance, if T is approximately normal, then tc will represent a quantile zc of
the Z or N(0, 1) distribution. In this regard, since zc comes from the N(0, 1) table,
it is sometimes called the tabular value.

5. For H0 : θ = θ0, compute the sample realization of the appropriate standardized
test statistic

T − θ0

σT
. (12.7)

For example, if T is approximately normal, then T−θ0
σT

is approximately N(0, 1).
Given a fixed sample size n, let zt , called the calculated z, denote the realization
of (12.7), which is to be compared to zc.

6. DECISION RULE: If the sample realization of (12.7) is an element of R , then
we reject H0.

For instance, if T−θ0
σT

is approximately N(0, 1), then we will reject H0 if zt ∈ R .
In the sections to follow, it is to be implicitly understood that this general

process of executing a statistical hypothesis test is being implemented.

12.9 Hypothesis Test for µ Under Random Sampling from
a Normal Population with Known Variance

Let {X1, . . . , Xn} constitute a set of sample random variables taken from a normal
population with unknown mean µ but known variance σ 2. Our objective is to
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construct hypothesis tests for each of the following sets of hypotheses:

Case I Case II Case III

H0 : µ = µ0 H0 : µ = µ0 H0 : µ = µ0

H1 : µ > µ0 H1 : µ < µ0 H1 : µ �= µ0

As determined earlier, the best estimator for µ is T = �X , where �X is N(µ, σx̄)
and σx̄ = σ√

n (see Theorem 8.3). Moreover, under the null hypothesis H0, �X is

N(µ0, σx̄) and, from (8.33), the standardized sample mean �Z = (�X − µ0)/(σ /
√

n)
is N(0, 1) or standard normal.

For Case I, given the one-sided alternative H1 : µ > µ0, the critical region of
size α is under the right-hand tail of the N(0, 1) distribution since we require that
P(�Z ≥ zα) = α (see Figure 12.5a). Hence the Case I critical region R involves
that portion of the z-axis such that z̄ ≥ zα or

x̄ − µ0

σ /
√

n
≥ zα , (12.8)

where z̄ is the realized value of �Z given that x̄ is the sample realization of �X . Upon
rearranging this inequality we have

x̄ ≥ µ0 + zα

σ√
n

, (12.8.1)

that is, H0 is rejected when x̄ exceeds µ0 by too much, where our measure of too
much is zα

σ√
n . (Too much simply means that the difference x̄ − µ0 exceeds that

which could reasonably be attributed to random or sampling fluctuations in the
estimator T = �X .) Hence the preceding inequalities serve as the basis for the
Case I decision rule for rejecting H0 relative to H1 : reject H0 if (12.8) holds.

Thus, in this instance, H0 is rejected when the calculated z is greater than or
equal to the tabular z value.

Looking to Case II, for the one-sided alternative H1 : µ < µ0, the critical
region of size α is now under the left-hand tail of the N(0, 1) distribution with
P(�Z ≤ −zα) = α (see Figure 12.5b). In this instance the Case II critical region R
involves that portion of the z-axis such that z̄ ≤ −zα or

x̄ − µ0

σ
√

n
≤ −zα (12.9)

or

x̄ ≤ µ0 − zα

σ√
n

, (12.9.1)
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(a) (b)
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Figure 12.5 (a) The critical region R for the one-sided alternative H1 : µ > µ0; (b) The critical region
R for the one-sided alternative H1 : µ < µ0; (c) The critical region R for the two-sided
alternative H1 : µ �= µ0.

that is, H0 is rejected when x̄ falls short of µ0 by at least zα
σ√
n (our indicator of

too much). Note that (12.9) can be converted to

−(x̄ − z0)
σ /

√
n

≥ zα . (12.10)

Here (12.10) transforms the critical region from the left-hand tail to the right-
hand tail of the N(0, 1) distribution. In this regard, we shall, at times, find it
convenient to formulate the Case II decision rule as: reject H0 relative to H1
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when (12.10) is satisfied. (Now H0 is rejected when the negative of the calculated
z equals or exceeds the tabular z.)

Finally, for Case III, the two-sided alternative hypothesis H1 : µ �= µ0 implies,
for a critical region of size α, that P(�Z ≤ −zα/2) = α

2 and P(�Z ≥ zα/2) = α
2

or P
(|�Z| ≥ zα/2

) = α
2 ; that is, α is divided equally between the two tails of the

N(0, 1) distribution (see Figure 12.5c). Hence the critical region R for Case III is
that portion of the z-axis such that z̄ ≤ −zα/2 or z̄ ≥ zα/2; that is,

x̄ − µ0

σ
√

n
≤ −zα/2 or

x̄ − µ0

σ
√

n
≥ zα/2. (12.11)

Let us rewrite (12.11) as

x̄ ≤ µ0 − zα/2
σ√
n

or x̄ ≥ µ0 + zα/2
σ√
n

. (12.11.1)

Then as these inequalities reveal, H0 is rejected when the realized sample mean
x̄ exceeds (respectively, falls short of) µ0 by too much, where now the measure
of too much is zα/2

σ√
n . Looked at in another fashion, the inequalities in (12.11)

together imply

∣∣∣∣
x̄ − µ0

σ /
√

n

∣∣∣∣ ≥ zα/2. (12.12)

Here (12.12) forms the basis for the Case III decision rule for rejecting H0 relative
to H1 : reject H0 if (12.12) holds.

Example 12.9.1 Suppose that a manufacturing process produces a large num-
ber of a particular type of electronic component having a mean operating life of
2,000 hours and a standard deviation of 300 hours. The research and development
department introduces a new process that it claims is more efficient than the old
one. The new process is run and a random sample of n = 100 components exhibits
a mean life of x̄ = 2,100 hours (with the standard deviation unchanged). Is the
new process really more efficient than the old one or did the increase in average
operating life arise simply because of chance factors? (Looked at in another fash-
ion, we seek to determine if the random sample of 100 components came from
the distribution characterizing the original process whose mean is 2,000 or from
an alternative distribution whose mean is 2,100.)

Let the null hypothesis be that the new process is just as efficient as the old
one or H0 : µ = µ0 = 2,000. Research and development seeks to demonstrate
that their claim is justified. Hence they structure the alternative hypothesis as
H1 : µ > 2,000. (Clearly this problem is structured as Case I, earlier.) Let α = 0.05.
Since x̄ is approximately normal and n is large, it follows that the critical region
R = {z/z̄ ≥ z0.05} = {z/z̄ ≥ 1.645} .
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For the calculated z we have

z̄ = x̄ − µ0
σ√
n

= 2100 − 2000
300√
100

= 3.33.

Then according to our decision rule (12.8), we reject H0 in favor of H1 at the 5%
level; that is, the new process is indeed better than the old one. In this regard, if
we were to perform this experiment a large number of times, then, in the long
run, we would make a Type I Error or incorrectly reject the null hypothesis less
than 5% of the time. We shall return to this latter point in Section 12.10. �

Example 12.9.2 In a certain locale the mean income last year for the head of
household was $55,000. Has there been a change in average income for this year?
A sample of n = 200 households revealed this year’s mean income to be $58,000
with a standard deviation of $2,700. If we set H0 : µ = µ0 = $55,000, then,
since average income can either increase or decrease over the course of a year, let
H1 : µ �= $55,000. (Note that we are now faced with a Case III hypothesis test.)
Again with �X approximately normal and n large, the N(0,1) distribution can be
utilized to find the critical region. To this end, for α = 0.05, R = {z/z̄ ≤ −z0.025 or
z̄ ≥ z0.025} = {z/|z̄| ≥ z0.025} = {z/|z̄| ≥ 1.96} .

Looking to the calculated z we have

∣∣∣∣
x̄ − µ0

σ /
√

n

∣∣∣∣ =
∣∣∣∣
58,000 − 55,000

2,700/
√

200

∣∣∣∣ = 15.71.

Since we are well within the critical region (H0 is consequently rejected), it follows
that the difference between last year’s and this year’s average income is highly
significant; that is, there has been a statistically significant change (obviously an
increase) in the mean head of household income level. �

The preceding set of decision rules for the Case I, Case II, and Case III hypoth-
esis tests ((12.8), (12.9), and (12.12), respectively) were all stated in terms of
comparing a calculated or realized �Z value with some critical (tabular) z value.
However, as an alternative to this approach, we may simply compare the realized
sample mean x̄ against a critical sample mean x̄c. For instance, let us denote the
right-hand side of (12.8.1) as x̄c. Then for Case I, we would reject H0 : µ = µ0

relative to H1 : µ > µ0 if x̄ ≥ x̄c, where x̄c depicts the upper-tail critical value
of x̄. Here R = { x̄| x̄ ≥ x̄c} . Similarly, for Case II, equation (12.9.1) tells us to
reject H0 : µ = µ0 relative to H1 : µ < µ0 if x̄ ≤ x̄c, where x̄c represents the right-
hand side of (12.9.1) and is now understood to represent the lower-tail critical
value of x̄. For this case R = {x̄ |x̄ ≤ x̄c} . Finally, for Case III, (12.11.1) has us
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reject H0 : µ = µ0 against H1 : µ �= µ0 if x̄ ≤ x̄cl or x̄ ≥ x̄cu, where

(a) x̄cl = µ0 − z α
2

σ√
n

,

(b) x̄cu = µ0 + z α
2

σ√
n

(12.13)

denote lower- and upper-tail critical values of x̄, respectively. In this instance
R = {x̄ |x̄ ≤ x̄cl or x̄ ≥ x̄cu}. It is interesting to note that the lower- and upper-tail
critical values of x̄ given by (12.13a,b) are actually the lower- and upper-confidence
limits �1 and �2, respectively, given by (11.7.1). In this regard, a 100(1 − α)%
confidence interval for µ contains all those null values that would not be rejected
at the 100α% level in a two-tail test involving H0 : µ = µ0 versus H1 : µ �= µ0.
Correspondingly, all null values found outside of a 100(1 − α)% confidence
interval for µ would be rejected at the 100α% level in a Case III two-tail test.

Example 12.9.3 In the preceding example problem we rejected H0 : µ =
$55,000 in favor of H1 : µ �= $55,000 at the 5% level. Then from (12.13a,b) we
have, respectively,

x̄cl = 55,000 − 1.96
2,700√

200
= 54,625.80,

x̄cu = 55,000 + 1.96
2,700√

200
= 55,374.20.

Hence any µ0 lying within the 95% confidence interval (�1, �2) = (x̄cl , x̄cu) =
(54,625.80, 55,374.20) would not be rejected under a two-tail test at the 5% level.
If we choose µ0 = $58,500 for our null value, then H0 would be rejected at the
5% level since it lies outside of the 95% confidence interval (x̄cl , x̄cu). In sum, a
100(1 − α)% confidence interval may be regarded as a collection of hypothesized
values that would not be rejected at the 100α% level when we have a two-sided
alternative hypothesis. �

12.10 Reporting Hypothesis Test Results

Our previous (classical) approach to reporting the results of parametric hypoth-
esis tests consisted of choosing (a priori) a tolerable α-risk, drawing a random
sample, and then, on the basis of the sample results, informing you as to whether
or not the null hypothesis H0 was rejected. If α is small, then the decision to, say,
reject H0 offers reasonable assurance that we have not acted incorrectly and thus
reached the wrong conclusion. But if α is large, we would not be easily persuaded
that the decision to reject H0 is the correct one.

As an alternative to this approach, let us report the p-value of a test. Whereas
α may be termed a chosen level of significance, a p-value is the realized level of
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significance; that is, it is a statistic that represents the probability of obtaining a
value of the test statistic T that is at least as extreme as that realized by the sample
given that the null hypothesis is true. In this regard, we may view a p-value as the
most extreme value of α for which a true null hypothesis is rejected. Unlike the
α-risk, the p-value is not arbitrary; it is, in fact, data sensitive in that it depends
upon the sample results.

Let’s see exactly how a p-value is obtained for a variety of test situations.
Suppose we are faced with a Case I test involving H0 : θ = θ0 versus H1 : θ > θ0.
If H0 is to be rejected in favor of H1 for large values of our test statistic T, then
the p-value associated with t, the sample realization of T, is

p-value = P(T ≥ t/H0 true)

= P(T assumes a value at least as large as t when H0 is true). (12.14)

Hence the p-value for this test amounts to the area under the sampling distribution
of T to the right of t and in the direction of H1. This realized level of significance
is thus the smallest level of significance α for which H0 would be rejected. So if H0

were true, there would be a 100p% chance of observing a T at least as large as t.
For Case II (testing H0 : θ = θ0 against H1 : θ < θ0), we reject H0 in favor of

H1 for small values of T so that, in this instance, the

p-value = P(T ≤ t/H0 true)

= P(assumes a value at least as small as t when H0 is true). (12.15)

In this instance the p-value is determined as the area under the sampling distri-
bution of T to the left of t and in the direction of H1. Here also this attained
level of significance provides us with the smallest α for which the null hypothesis
is rejected. With H0 true, we have a 100p% chance of observing a T at least as
small as t.

Finally, for Case III, if we test H0 : θ = θ0 relative to H1 : θ �= θ0, then H0 is
rejected in favor of H1 for very small or very large values of T. Hence the

p-value = P(|T | ≥ t/H0 true) = P(T ≤ −t or T ≥ t/H0 true)

= P(T ≤ −t/H0 true) + P(T ≥ t/H0 true). (12.16)

By virtue of this equation, it is evident that for a two-sided alternative hypoth-
esis, the p-value can be found by determining, say, the area under the sampling
distribution of T to the right of t and then doubling it; that is,

p-value = 2P(T ≥ t/H0 true). (12.16.1)

Thus this p-value gives us twice the probability of obtaining a value of our test
statistic as large as t, or larger, if H0 were true.

So if the p-value for a particular test is very small, then it is highly unlikely
that the sample was extracted from a population for which the null hypothesis
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H0 : θ = θ0 is true. Hence we may comfortably reject H0 in favor of H1. Thus a
p-value may be thought of as a measure of the strength of the sample evidence
against H0; it reflects the extent to which the sample results and H0 disagree. So
the closer t is to θ0, the larger the p-value for the test. Likewise, the greater the
disparity between t and θ0, the smaller the p-value for the test.

As a convenient rule of thumb we have:

if α ≥ p-value, then reject H0;

if α < p-value, do not reject H0,
(12.17)

where the α-risk of the test results is chosen subjectively by you, and thus reflects
your own comfort level associated with the possibility of incorrectly rejecting a
true null hypothesis.

Example 12.10.1 Suppose that for a test of H0 : µ = µ0 = 100 versus H1 : µ >

100 we find, using (12.8), that the realized �Z is z̄ = 2.47 (see Figure 12.6a). Then
from the standard normal area table, we find that the area under the N(0, 1)
distribution from 0 to 2.47 is 0.4932. Hence the remaining area under the right-
hand tail of this curve is 0.0068. This latter number is thus the p-value for the test.
Hence the probability that we would obtain a �Z value as large as 2.47, or larger,
given that H0 is true is only 0.0068 = P(�Z ≥ 2.47/H0 : µ = 100). Hence there is
less than a 1% chance of making a Type I Error. Thus the null hypothesis can
safely be rejected since it is highly unlikely that we would have obtained a z̄ of
this high a magnitude if H0 were true. Now, if the threshold of your comfort zone
for committing a Type I Error is α ≤ 0.05, then, by virtue of (12.17), we see that
H0 is again safely rejected.

Next, suppose we are testing H0 : µ = µ0 = 100 against H1 : µ �= 100 and
the sample yields |z̄| = 1.25 (see Figure 12.6b). Since the area under the upper
tail of the N(0, 1) distribution is 0.1056, it must be doubled to obtain the p-value

N(0,1) N(0,1)

0.4932 0.3944

p-value = 0.0068 p-value = 0.1056

−Z Z −Z Z

2

0 2.47 0 1.25

(a) (b)

Figure 12.6 Determining p-values for (a) one- and (b) two-tailed tests.
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since we are performing a two-tail test; that is, the p-value = 2 (0.1056) = 0.2112 or
P(|�Z| ≥ 1.25/H0 : µ = 100) = 0.2112. Hence the probability that we would obtain
a
∣∣�Z∣∣ value at least as large as 1.25 if H0 were true is in excess of 21%.

With a chance of making a Type I Error this large, we would not opt to
reject H0. It is quite likely that the sample came from a population having
µ = 100. �

It is important to note that although a p-value is not the same thing as an
α-risk (it does not have the same long-run relative frequency interpretation), it is,
however, defined in terms of (i.e., compared to) α = P(TIE) by virtue of (12.17).
Remember that α is chosen in advance of testing; the p-value is realized from the
sample and thus emerges as an ex post test result. In addition, a p-value provides
you with more information about the results of a hypothesis test than that offered
by α alone. For instance, what if we were told that, for a given hypothesis test,
the null hypothesis was rejected at the 100α% = 10% level. Although we know
that the value of our test statistic lies within the critical region R , we do not know
how deeply into R it is located. In fact, the deeper the realized test statistic lies
within R , the more likely it is that we have made a correct decision; that is, the
p-value serves as an index of the strength of our decision to reject H0; it does so
by indicating how likely it is for the sample to realize a T that is greater than or
equal to (or less than or equal to) t when H0 is true.

12.11 Determining the Probability of a Type II Error β

In this section we shall develop procedures for assessing the magnitude of a
Type II Error (defined as not rejecting a false null hypothesis) associated with
a hypothesis test. When H1 is composite, β = P(TIIE) = P(do not reject H0/H0

false) varies with each µ satisfying H1, where H1 is assumed to be true. Hence β

is not selected a priori as is α—it is, in fact, unknown. If we assume a value for
µ that is supported by H1, then we can calculate β.

For convenience, let us assume that we are sampling from a N(µ, σ ) popula-
tion, where the population mean µ is unknown but the population variance σ 2

is known. Based upon our previous discussion, we know that �X is the best estima-
tor of µ and that �X is N(µ, σ�X ), where σ�X = σ /

√
n. Let us first test H0 : µ = µ0

against H1 : µ > µ0 (our Case I test situation given earlier). Under H0, �X is
N(µ0, σ�X ).

Given the definition of a Type II Error, it is possible to calculate the proba-
bility of any such error only for specific µ’s, for which H0 is false or H1 is true;
that is, to determine β, we need to know the true mean µ, assuming that it is
not µ0. In this regard, from (12.8.1), the region of rejection is R = {x̄/x̄ ≥ x̄c} , and
the region of nonrejection is �R = {x̄/x̄ < x̄c} , where x̄c = µ0 + zα

σ√
n . Now, since

we can determine only β for values of µ satisfying H1, let us choose µ = µ1 > µ0.
So with H0 false, the correct distribution of �X is N(µ1, σ�X ). We thus have the two
essential ingredients needed for calculating β: (1) �R ; and (2) a µ = µ1 > µ0

consistent with H1. That is to say, β corresponds to the probability that the
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realization of �X resides in �R given that the true mean is not µ0 but is, instead, µ1.
Then

β = P(TIIE) = P
(�X ∈ �R /µ = µ1 true

)

= P
(�X < x̄c/µ = µ1 true

)

= P

(
�Z <

x̄c − µ1

σ�X
=

(µ0 − µ1) + zα
σ√
n

σ√
n

∣∣∣∣∣µ = µ1 true

)
, (12.18)

where �Z is N(0, 1) (see Figure 12.7a). In graphical terms then, β is always the area
under the N(µ1, σ�X ) distribution taken over the nonrejection region �R .

It is easily seen from expression (12.18) that β depends upon (a) the sample
size n; (b) the size of the α-risk selected; (c) the population standard deviation σ ;
and (d) the difference between the null value µ0 and the true mean µ1 subsumed

b

b

ba
a

m0

m = m0 true

m1xc m1 m0xc

m = m0 true

or X is N(m0,sx)

or X is N(m0,sx)

m = m1 true

or X is N(m1,sx)

m = m1 true

or X is N(m1,sx)

m0 m1xc xcu

R

R

m = m1 true

or X is N(m1,sx)

m = m0 true

or X is N(m0,sx)

x

(c)

x

x

(a) (b)R RR R

a  2 a  2

Figure 12.7 (a) Determining P(TIIE) = β for the one-sided alternative H1 : µ > µ0; (b) Determining
P(TIIE) = β for the one-sided alternative H1 : µ < µ0; (c) Determining P(TIIE) = β for
the two-sided alternative H1 : µ �= µ0.
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under H1 or µ0 − µ1. More specifically, in terms of its sensitivity to individual
changes in these arguments, β (a) varies inversely with n (with σ , α, and µ0 − µ1

held fixed); (b) varies inversely with α (for fixed σ , n, and µ0−µ1 values); (c) varies
directly with σ (with n, α, and µ0 −µ1 fixed); and (d) varies inversely with µ0 −µ1

(holding n, α, and σ constant).
Case (d) merits some additional attention. If the difference µ0 − µ1 is small,

then it will be difficult to determine which is the true value of µ and thus β will be
relatively large (i.e., the probability of not rejecting H0 when the true mean is µ1

will tend to be large). And if µ0 −µ1 is large, then β will be relatively small—it will
be easier to discriminate between µ0 and µ1 in determining the true population
mean µ.

Next, let us test H0 : µ = µ0 versus H1 : µ < µ0 (Case II). Then from (12.9.1),
the critical region R = {x̄/x̄ ≤ x̄c} , �R = {x̄/x̄ > x̄c} , and now x̄c = µ0 − zα

σ√
n with

�X distributed as N(µ0, σ�X ). Here also β can be determined only for values of µ

satisfying H1. Hence we can set µ = µ1 < µ0 (clearly H0 is false and thus �X is
N(µ1, σ�X )). Then the probability of not rejecting a false null hypothesis is

β = P(TIIE) = P
(�X ∈ �R /µ = µ1 true

)

= P(�X > x̄c/µ = µ1 true)

= P

(
�Z >

x̄c − µ1

σ�X
=

(µ0 − µ1) − zα
σ√
n

σ√
n

∣∣∣∣∣µ = µ1 true

)
(12.19)

(see Figure 12.7b).
Finally, when testing H0 : µ = µ0 against the Case III alternative H1 : µ

�= µ0, we previously determined that R = {x̄/x̄ ≤ x̄cl or x̄ ≥ x̄cu} and �R =
{x̄/x̄cl < x̄ < x̄cu}, where x̄cl = µ0 − zα/2

σ√
n and x̄cu = µ0 + zα/2

σ√
n given that

�X is N(µ0, σ�X ). Let µ = µ1 �= µ0 be true (H1 is satisfied and thus H0 is false so
that �X is now N(µ1, σ�X )).

Hence the probability of not rejecting H0 given that it is false is

β = P(TIIE) = P
(�X ∈ �R |µ = µ1 true

)

= P(x̄cl < �X < x̄cu|µ = µ1 true)

= P
(

x̄cl − µ1

σ�X
< �Z <

x̄cu − µ1

σ�X

∣∣∣∣µ = µ1 true
)

= P

(
(µ0 − µ1) − zα/2

σ√
n

σ√
n

< �Z <
(µ0 − µ1) + zα/2

σ√
n

σ√
n

∣∣∣∣∣µ = µ1 true

)
(12.20)

(see Figure 12.7c).
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Example 12.11.1 Suppose X is N(µ, 15) and that H0 : µ = µ0 = 20 and
H1 : µ > 20. Hence under H0 the distribution of �X is N(20, σ�X ). Given a sam-
ple of size n = 25, �X is N(20, 3) and �Z = (�X − 20)/3 is N(0, 1). For α = 0.05,
the critical region appears as R = {z/z̄ ≥ zα} = {z/z̄ ≥ 1.645} or, via (12.8.1),
R = {

x̄/x̄ ≥ x̄c = 20 + 1.645(3) = 24.935
}

. Hence the region of nonrejection is
�R = {x̄/x̄ < x̄c = 24.935} (see Figure 12.8a). Suppose the true population mean
is µ = µ1 = 28 so that the correct distribution of �X is N(28, σ�X ). Then from
(12.18), we are interested in finding the probability of not rejecting a false null
hypothesis (µ = µ1 = 28 satisfies H1) or

β = P

(
�Z <

(µ0 − µ1) + zα
σ√
n

σ√
n

∣∣∣∣∣µ = 28 true

)

= P
(

�Z <
−8 + 1.645(3)

3
= −1.0216|µ = 28 true

)
= 0.1539.

Hence there is a 15.4% chance of not rejecting the null hypothesis H0 : µ = 20
when the true mean is 28. It is important to remember that we do not know the
actual value of the true population mean µ; that is, we do not know what the true
distribution of �X happens to be (µ0 = 20 and µ1 = 28 are guesses). In this regard,
if H0 is true, then �X is N(µ0, σ�X ) and the test will lead to an incorrect conclusion

(a) (b)

m = m0 true m = m1 true

b = 0.1539 a = 0.05

20 24.935 28
x

R R

m = m1 true

b = 0.8513

91.57 95 100 108.42

R

x

= 0.005
2

m = m0 true

a

2

a
= 0.005

R

Figure 12.8 (a) The region of rejection R = {x̄|x̄ ≥ 24.935} and the region of non-rejection �R = {x̄|x̄ <

24.935}; (b) The region of rejection R = {x̄|x̄ ≤ 91.57 or x̄ ≥ 108.42} and the region of
non-rejection �R = {x̄|91.57 < x < 108.42}.
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100α% = 5% of the time; and if H1 is true, then �X is N(µ1, σ�X ) and the test will
produce an incorrect result 100β% = 15.4% of the time. �

Example 12.11.2 Given that X is N(µ, 40), the sample size is n = 150, and the
α-risk is 0.01, let us consider a test of H0 : µ = µ0 = 100 versus H1 : µ �= 100. In
this instance the critical region has the form R = {z/|z̄| ≥ zα/2} = {z/|z̄| ≥ 2.58} .
Alternatively, from (12.13), R = {x̄/x̄ ≤ x̄cl or x̄ ≥ x̄cu} = {x̄/x̄ ≤ 91.57 or
x̄ ≥ 108.42} , where

x̄cl = 100 − 2.58
(

40√
150

)
= 91.57,

x̄cu = 100 + 2.58
(

40√
150

)
= 108.42.

Then the region of nonrejection �R = {x̄|x̄cl < x̄ < x̄cu} = {x̄|91.57 < x̄ < 108.42}
(see Figure 12.8b). If the true population mean is µ = µ1 = 95, what is the
probability of not rejecting H0? Clearly µ1 = 95 satisfies H1 (thus H0 is false) and
is also an element of �R . Hence, via (12.20),

β = P

(
(µ0 − µ1) − zα/2

σ√
n

σ√
n

< �Z <
(µ0 − µ1) + zα/2

σ√
n

σ√
n

∣∣∣∣∣µ = 95 true

)

= P
(

5 − 2.58(3.27)
3.27

= −1.05 < �Z <
5 + 2.58(3.27)

3.27
= 4.11| µ = 95 true

)

= 0.8513.

In this instance we have slightly in excess of an 85% chance of not rejecting
H0 : µ = 100 when the true mean equals 95. So even for a sample of size n = 150,
the test will not easily detect a difference between µ0 and µ1 of 5 units. �

Suppose that in the preceding example problem we had realized a sample
mean of x̄ = 102. Then our calculated z̄ value would be

|z̄| =
∣∣∣∣
x̄ − µ0

σ /
√

n

∣∣∣∣ =
∣∣∣∣
102 − 100

40/
√

150

∣∣∣∣ = 0.612.

Since this realized Z is not a member of R = {z/|z| ≥ 2.58} , we cannot reject the
null hypothesis. But then this means that by not rejecting H0, we cannot determine
the magnitude of the Type II Error that may have been made.

We noted at the outset of this section that once α was chosen, we could
determine the unknown β-risk or P(TIIE) by choosing a value of µ = µ1 that
is consistent with the alternative hypothesis H1. The β forthcoming from this
process was found to depend upon α, n, σ , and µ0 −µ1. This observation provides
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us with a hint as to how we might determine the sample size n needed to support
desired levels of both α and β.

Why would any such calculation be important? If in our hypothesis testing
process we fail to reject the null hypothesis H0, then we do so for a given value
of n. But if n had been larger, we might have been able to reject H0 given that the
enlarged sample now provides us with sufficient information to do so. To avoid
having any doubts about the correctness of a decision to not reject H0, we may
opt to specify, in advance of any testing, the maximum tolerable levels of both α

and β and then find the value of n for which these levels are satisfied.
To this end suppose we are faced with testing H0 : µ = µ0 against H1 : µ > µ0.

Given that both α and β are to be specified a priori, with β evaluated for some
µ = µ1 > µ0 satisfying H1, the test ultimately depends upon the sample size n
and x̄c, the critical value of x̄. From the definitions of α and β, we may express
each of these error probabilities in terms of n and x̄c as

α = P(TIE) = P
(�X ∈ R |µ = µ0 true

)

= P
(�X ≥ x̄c|µ = µ0 true

)
,

= P
(

�Z ≥ x̄c − µ0

σ /
√

n
= zα|µ = µ0 true

)
, (12.21)

where zα satisfies P(Z ≥ zα) = α; and

β = P(TIIE) = P
(�X ∈ �R |µ = µ1 true

)

= P
(�X < x̄c|µ = µ1 true

)

= P
(

�Z <
x̄c − µ1

σ /
√

n
= −zβ |µ = µ1 true

)
(12.22)

with −zβ chosen so that P(Z < −zβ) = β.
From (12.21) and (12.22) we have, respectively,

zα = x̄c − µ0

σ /
√

n
, −zβ = x̄c − µ1

σ /
√

n
.

Upon eliminating x̄c from these latter two expressions we ultimately obtain

n =
[
σ (zα + zβ)
µ1 − µ0

]2

. (12.23)

(You can easily verify that for H0 : µ = µ0 versus H1 : µ < µ0, exactly the same
formula (12.23) for n obtains.)
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If we are testing H0 : µ = µ0 against the two-sided alternative H1 : µ �= µ0,
then (12.23) must be modified to

n =
[
σ (zα/2 + zβ)

µ1 − µ0

]2

, (12.24)

where zα/2 is chosen so that P(|�Z| ≥ zα/2) = α

2
.

Example 12.11.3 Suppose that from a population that is N (µ, 13), we desire
to extract a random sample for a test of H0 : µ = µ0 = 100 versus H1 : µ < 100.
For this test we choose as our maximum tolerable error probabilities α ≤ 0.05 and
β ≤ 0.05. How large a sample will be needed if µ1 − µ0 = −6 (i.e., if µ1 = 94)?
From (12.23) it is easily determined that

n =
[

13(1.645 + 1.645)
−6

]2

= 50.81.

Hence a sample of size 51 will do. Note that if n is not an integer, then we must
round up the value of n to the next larger integer. That is to say, a sample of
at least n = 51 is required to ensure that α ≤ 0.05 and β ≤ 0.05 when µ = µ1 = 94
is the true mean.

If in this example we had chosen H1 : µ �= 100, then, via (12.24),

n =
[

13(1.96 + 1.645)
−6

]2

= 61.01.

For this revised alternative hypothesis n = 62 is required. �

12.12 Hypothesis Tests for µ Under Random Sampling from a
Normal Population with Unknown Variance

We noted in Section 12.9 that if X is N(µ, σ ) and the population variance σ 2

is known, then the appropriate test statistic for conducting hypothesis tests
involving the population mean µ is the standard normal variate �Z = �X−µ

σ /
√

n .

Moreover, if σ 2 is unknown (its best estimator is the sample variance S2 =
1

n−1

∑n
i=1(Xi − �X)2), then, via the Central Limit Theorem, the statistic

�X−µ

S/
√

n is
approximately standard normal for large n. In this instance the test procedures
for µ introduced in Section 12.9 still apply. However, if σ 2 is unknown and the
sample size n is small (n ≤ 30), then the standard normal distribution is no longer
applicable when testing hypotheses about µ. For this latter case, under random
sampling from a normal population, with both the mean (µ) and variance (σ 2)
unknown and n small, the statistic T = �X−µ

S/
√

n follows a t distribution with ν = n − 1
degrees of freedom.
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For instance, given the Case I test situation (H0 : µ = µ0 and H1 : µ > µ0),
the critical region R involves that portion of the t-axis such that t ≥ tα,n−1; that is,
R = {t/t ≥ tα,n−1} or

x̄ − µ0

s/
√

n
≥ tα,n−1, (12.25)

where t is the sample realization of T, s =
√∑n

i=1(xi−x̄)2

n−1 is the realized value of the
sample standard deviation, and the α-risk satisfies P(T ≥ tα,n−1) = α. Hence we
will reject H0 in favor of H1 if (12.25) obtains.

For a Case II test (H0 : µ = µ0 and H1 : µ < µ0), we now require that
P(T ≤ −tα,n−1) = α so that R = {t/t ≤ −tα,n−1} or, proceeding as before,

−(x̄ − µ0)
s/

√
n

≥ tα,n−1. (12.26)

Hence, alternatively, we reject H0 relative to H1 when (12.26) is our test result.
Under Case III (H0 : µ = µ0 is tested against H1 : µ �= µ0), we require

that P(T ≤ −tα/2,n−1) = P(T ≥ tα/2,n−1) = α
2 so that R = {

t/t ≤ −tα/2,n−1 or
t ≥ tα/2,n−1

} = {
t/|t| ≥ tα/2,n−1

}
or

∣∣∣∣
x̄ − µ0

s/
√

n

∣∣∣∣ ≥ tα/2,n−1. (12.27)

Then H0 is rejected in favor of H1, provided (12.27) holds.

Example 12.12.1 Suppose we wish to test H0 : µ = µ0 = 20 against H1 : µ > 20
at the 5% level. From a sample of n = 15 items taken from a normal population
we find that x̄ = 25 and s = 8. Can we reject H0? Here R = {t/t ≥ t0.05,14 = 1.761}.
Since the calculated t value

x̄ − µ0

s/
√

n
= 25 − 20

8/
√

15
= 2.42

is an element of R , we will reject H0 in favor of H1; that is, we can safely conclude
at the 5% level of significance that the true or population mean exceeds a value
of 20.

What is the p-value associated with this test? For this one-sided alternative,
the p-value is given by p-value = P(T ≥ 2.42|H0 true).

A glance at Table A.3 reveals that, for 14 degrees of freedom, 2.42 falls
between t0.025,14 = 2.145 and t0.01,14 = 2.624. Thus we reject H0 for α = 0.025
but not for α = 0.01. Hence the p-value for this test is such that 0.01 < p < 0.025.
So if H0 were true, there would be a 1% to 2.5% chance of observing a value of
the t statistic at least as large as 2.42. �
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If, in the preceding example problem, we had tested H0 : µ = µ0 = 20 against
H1 : µ �= 20 with α = 0.05, then R = {t/|t| ≥ t0.025,14 = 2.145}. Since the absolute
value of the calculated t lies in R , the null hypothesis is again rejected in favor
of the alternative hypothesis at the 5% level of significance.

For this two-sided alternative the p-value appears, from (12.16), as

p-value = P(|T | ≥ 2.42|H0 true) = P(T ≤ −2.42|H0 true) + P(T ≥ 2.42|H0 true).

Again looking to Table A.3 we find, for 14 degrees of freedom, that 2.42 lies
between t0.05,14 = 2.145 and t0.02,14 = 2.624. Hence H0 is rejected for α = 0.05 but
not for α = 0.02 so the p-value must satisfy 0.02 < p < 0.05. Assuming that H0 is
true, there would be a 2% to 5% chance of observing a calculated T value as large
as 2.42 or larger. Note that, from (12.16.1), the p-value bounds for the two-tail
test are 2(0.01 < p < 0.025) or 0.02 < p < 0.05, where the parenthetical expres-
sion depicts the p-value limits for the one-sided alternative hypothesis presented
first.

We previously calculated the probability of a Type II Error, β, under the
assumption that we are sampling from a normal population with known vari-
ance σ 2. In this circumstance we were able to determine β using the standard
normal (N(0, 1)) area table. We simply found the probability that the realization
of �X was an element of �R given that the null hypothesis H0 was false. However,
for small samples and for σ 2 unknown, the task of finding β is not as straightfor-
ward as it was when we employed the N(0, 1) distribution. The problem is that
the distribution of the test statistic when H0 is false is not exactly the same as that
of the usual t statistic T = �X−µ

S/
√

n , which will be termed the central t statistic. If µ1

satisfies H1, then the quantity

Y =
�X − x0

S/
√

n

is called the noncentral t statistic. Clearly the difference between T and Y is that
x0 replaces µ in T, where x0 is an arbitrary constant (ostensibly for which H1 is
true). (If X is N(µ, σ ) and E(X) = µ = x0, then obviously T and Y coincide.)

Although tables for the noncentral t distribution are readily available, suffice
it to say that for n > 30, a determination of β under a central t test using x0 = µ1

true can be made via the standard normal approximation to T.

12.13 Hypothesis Tests for p Under Random Sampling from
a Binomial Population

To test hypotheses concerning p, the proportion of successes in the population,
let us extract a random sample of size n from a binomial population, where the
sample size n is taken to be large. Then according to the DeMoivre-Laplace-Gauss
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Limit Theorem, the standardized binomial random variable has as its limiting
distribution the standard normal distribution or

X − np
√

np(1 − p)
=

X
n − p
√

p(1−p)
n

d−→ Z = N(0, 1), (12.28)

where the random variable X is the observed number of successes in our sample
of size n and 0 < p < 1.

We know from our earlier analysis of binomial experiments that the best esti-
mator for p is P̂ = X

n . Furthermore, the sampling distribution of P̂ has as its mean

and variance E(P̂) = p and V(P̂) = p(1−p)
n , respectively, and the best estimator for

V(P̂) is S2(P̂) = P̂(1−P̂)
n . If we again invoke the DeMoivre-Laplace-Gauss Limit

Theorem, then a possible test statistic is

ZP̂ = P̂ − E(P̂)
√

S2(P̂)
= P̂ − p
√

P̂(1−P̂)
n

d−→ Z = N(0, 1) (12.28.1)

However, as we shall now see, there is no need to estimate
√

V(P̂) from sample
data. The null value of p is all that is needed.

Let us denote the null hypothesis as H0 : p = p0, where p0 is the null value
of p. Since H0 is assumed to be true, it follows that, under the null hypothe-
sis, V(P̂) = p0(1−p0)

n . Hence our test statistic is obtained from (12.28) simply by
replacing p by p0; that is, our test statistic is the quantity

Z0
P̂

= P̂ − p0√
p0(1−p0)

n

, (12.29)

which, via (12.28), is approximately N(0, 1) for large n. (The sampling distri-
bution of P̂ is approximately normal if the conditions np ≥ 5 and n(1 − p) ≥ 5
are met. As a practical matter, we generally require that n ≥ 25. If we suspect
that p is close to either 0 or 1, then a sample size of at least 50 is required.)

Tests for the following three sets of hypothesis will be considered in turn:

Case I Case II Case III

H0 : p = p0 H0 : p = p0 H0 : p = p0

H1 : p > p0 H1 : p < p0 H1 : p �= p0

For Case I, the critical region corresponding to the one-sided alternative
H1 : p > p0 is located under the right-hand tail of the N(0, 1) distribution since we
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require that P(Z0
P̂

≥ zα) = α. Hence R = {z|z0
P̂

≥ zα} or we are interested in the
set of z values for which

p̂ − p0√
p0(1 − p0)

n

≥ zα , (12.30)

where z0
P̂

is the realized value of Z0
P̂

given that p̂ = x
n is the sample realization

of P̂. Hence we reject H0 provided (12.30) holds.
Looking to Case II, for the one-sided alternative H1 : p < p0, the critical

region of size α is now located under the left-hand tail of the standard normal
distribution with P(Z0

P̂
≤ −zα) = α; that is, R = {z/z0

P̂
≤ −zα} or, under our

convention, we reject H0 when

−(p̂ − p0)
√

p0(1−p0)
n

≥ zα . (12.31)

Finally, for Case III, the two-sided alternative hypothesis H1 : p �= p0 implies,
for a critical region of size α, that P(|Z0

P̂
| ≥ zα/2) = α

2 ; that is, α is divided equally
between the two tails of the N(0, 1) distribution. Here R = {z/z0

P̂
≤ −zα/2 or

z0
P̂

≥ zα/2}. Under this requirement we shall reject H0 if

∣∣∣∣∣∣∣∣

p̂ − p0√
p0(1 − p0)

n

∣∣∣∣∣∣∣∣
≥ zα/2. (12.32)

Example 12.13.1 Suppose we find X = 80 successes in a random sample of
size n = 200 taken from a binomial population. Let us test H0 : p = p0 = 0.50
against H1 : p �= 0.50 using α = 0.01. Then zα/2 = z0.005 = 2.58 and thus R =
{z/z0

p̂ ≤ −2.58 or z0
p̂ ≥ 2.58}. From (12.32) we have

∣∣∣∣∣∣∣∣

80
200

− 0.50
√

0.50(0.50)
200

∣∣∣∣∣∣∣∣
= 2.86.

Since the calculated z exceeds the tabular z at the 1% level of significance
(we are within the critical region), the null hypothesis is rejected in favor of the
alternative hypothesis.

What is the p-value associated with this test? Since our sample yielded a
calculated Z0

P̂
value of |z0

P̂
| = 2.86, it follows that the area in the upper tail of

the N(0, 1) distribution equals 0.0021. However, we know that this area must
be doubled since we are performing a two-tail test. Thus the p-value = 0.0042
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or P(|Z0
P̂
| ≥ 2.86/H0 : p = 0.50) = 0.0042. Hence the probability that we would

obtain a realized |ZP̂| value at least as large as 2.86 if H0 were true is only
about 0.4%. Hence there is less than a 1% chance of committing a Type I
Error. We therefore have a highly significant test result—it is very unlikely that
we would have obtained a calculated |Z0

P̂
| value of this high a magnitude if H0

were true. �

Formulas (12.23) and (12.24) presented in Section 12.11 allowed us to deter-
mine the sample size n needed to support chosen α- and β-risks when conducting
hypothesis tests involving the population mean µ. Equation (12.23) holds for
one-sided alternative hypotheses whereas (12.24) was used when a two-sided alter-
native hypothesis was chosen. These formulas are easily modified to accommodate
the case where a hypothesis test involves a population proportion p.

Suppose we undertake a Case I test of H0 : p = p0 against H1 : p > p0 (this
analysis will also hold when we have the Case II alternative H1 : p < p0) and
that the maximum tolerable error risks α and β are to be specified a priori, where
β must be determined for some p = p1 > p0 satisfying H1. Let us express both
α and β in terms of the sample size n and the critical value of the test statistic P̂.
To this end we shall rewrite (12.30) as

p̂ ≥ p0 + zα

√
p0(1 − p0)

n
.

If we represent the right-hand side of this inequality as p̂c, then for the Case I
scenario we would reject H0 : p = p0 relative to H1 : p > p0 if p̂ ≥ p̂c, where p̂c

denotes the (upper-tail) critical sample proportion. Thus R = {p̂/p̂ ≥ p̂c}.
We may now express

α = P(TIE) = P
(

P̂ ∈ R|p = p0 true
)

= P
(

P̂ ≥ p̂c|p = p0 true
)

= P

⎛

⎜⎝ZP̂ ≥ p̂c − p0√
p0(1−p0)

n

= zα| p = p0 true

⎞

⎟⎠ , (12.33)

where zα satisfies P(Z ≥ zα) = α; and

β = P(TIIE) = P(P̂ ∈ �R | p = p1 true)

= P(P̂ < p̂c|p = p1 true)

= P

⎛

⎜⎝ZP̂ <
p̂c − p1√

p1(1−p1)
n

= −zβ | p = p1 true

⎞

⎟⎠ (12.34)

with −zβ chosen so that P(Z < −zβ) = β.
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From (12.33) and (12.34) we have, respectively,

zα = p̂c − p0√
p0(1−p0)

n

, −zβ = p̂c − p1√
p1(1−p1)

n

.

If we eliminate p̂c from each of these expressions we obtain

n =
[

zα

√
p0(1 − p0) + zβ

√
p1(1 − p1)

p1 − p0

]2

. (12.35)

Had we been testing H0 : p = p0 against H1 : p �= p0 (Case III), then (12.35) must
be replaced by

n =
[

zα/2
√

p0(1 − p0) + zβ

√
p1(1 − p1)

p1 − p0

]2

, (12.36)

where zα/2 satisfies P(|Z| ≥ zα/2) = α/2.

Example 12.13.2 Let us assume that we are sampling from a binomial pop-
ulation and that we are interested in obtaining a random sample for a test of
H0 : p = p0 = 0.30 against H1 : p > 0.30. It has been decided that the α- and
β-risks should not exceed 5%. How large of a sample will be needed if p1 = 0.50
(or if p1 − p0 = 0.20)? From (12.35) we have

n =
[

1.645
√

0.30(0.70) + 1.645
√

0.50(0.50)
0.20

]2

= 62.1.

We thus conclude that a sample of size 63 will meet the stated test specifications;
that is, a sample of at least 63 is needed to ensure that α ≤ 0.05 and β ≤ 0.05 when
p = p1 = 0.50 is the true population proportion. �

12.14 Hypothesis Tests for σ 2 Under Random Sampling from
a Normal Population

To test hypotheses concerning the population variance σ 2, let us extract a
random sample of size n from a normal population with unknown mean µ and
variance σ 2. We know from our earlier analysis of point and interval estimation
that the best estimator for σ 2 is S2, the sample variance. We also determined
that the quantity Y = (n − 1)S2/σ 2 is distributed as χ2

n−1, where n − 1 depicts
degrees of freedom associated with the chi-square random variable Y.
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Let us denote the null hypothesis as H0 : σ 2 = σ 2
0 , where σ 2

0 is the null value
of σ 2. Given that H0 is assumed to be true, it follows that under H0, the quantity

(n − 1)S2

σ 2
0

(12.37)

is χ2
n−1.
Tests for the following three sets of hypotheses will be conducted in turn:

Case I Case II Case III

H0 : σ 2 = σ 2
0 H0 : σ 2 = σ 2

0 H0 : σ 2 = σ 2
0

H1 : σ 2 > σ 2
0 H1 : σ 2 < σ 2

0 H1 : σ 2 �= σ 2
0

For Case I, the critical region corresponding to the one-sided alternative
hypothesis H1 : σ 2 > σ 2

0 is located under the right-hand tail of the chi-square
distribution since we require that P(Y > χ2

α,n−1) = α is the 100α% fractile of
the chi-square distribution; that is, it is the value beyond which 100α% of the
area under the chi-square distribution with n − 1 degrees of freedom is found.
Hence R = {y/y ≥ χ2

α,n−1} (see Figure 12.9a); that is, we are interested in the set
of chi-square values

(n − 1)s2

σ 2
0

≥ χ2
α,n−1, (12.38)

where s2 is the sample realization of S2. Hence we reject H0 if (12.38) is satisfied.
Looking to the Case II one-sided alternative H1 : σ 2 < σ 2

0 , the critical region
of size α is now located under the left-hand tail of the chi-square distribution
with P(Y < χ2

1−α,n−1) = α. Now, R = {y/y ≤ χ2
1−α,n−1} so that we are interested

in the set of chi-square values for which

(n − 1)s2

σ 2
0

≤ χ2
1−α,n−1 (12.39)

(see Figure 12.9b). In this instance we reject H0 if (12.39) holds.
As far as Case III is concerned, the two-sided alternative hypothesis H0 : σ 2 �=

σ 2
0 implies, for an α-risk for which P(Y < χ2

1−(α/2),n−1 or Y > χ2
α/2,n−1) = α, that the

corresponding critical region has the form R = {y|y ≤ χ2
1−(α/2),n−1 or y ≥ χ2

α/2,n−1}
(see Figure 12.9c). In this instance we are led to focus on the set of chi-square
values for which

(n − 1)s2

σ 2
0

≤ χ2
1−(α/2),n−1 or

(n − 1)s2

σ 2
0

≥ χ2
α/2,n−1. (12.40)

Given this structure for R , we may now reject H0 when (12.40) obtains.
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Figure 12.9 (a) The critical region R for the one-sided alternative H1 : σ 2 > σ 2
0 ; (b) The critical region

R for the one-sided alternative H1 : σ 2 < σ 2
0 ; (c) The critical region R for the two-sided

alternative H1 : σ 2 �= σ 2
0 .

Example 12.14.1 Suppose that a particular lot of finished machine parts is
claimed to have a diameter variance no larger than 0.008(mm)2. A random
sample of n = 15 such parts yielded s2 = 0.010(mm)2. The milling department
head decides to test H0 : σ 2 = σ 2

0 = 0.008 against H1 : σ 2 > 0.008 at the α = 0.05

level. Given that the finished part diameters are normally distributed, (n−1)S2

σ 2
0

is

χ2
n−1 and R = {y|y ≥ χ2

0.05,14 = 23.6848}. Since (n − 1) s2

σ 2
0

= 14(0.010)
0.008 = 17.50 does
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not fall within the critical region, we do not reject the null hypothesis at the 5%
level; that is, for the chosen α-risk, there is not sufficient sample evidence to
indicate that σ 2 > 0.008.

What is the p-value associated with the observed or realized level of the
preceding test statistic? For 14 degrees of freedom, the p-value = P(Y ≥
y|H0 true) = P(Y ≥ 17.50|σ 2 = 0.008). From the chi-square table (Table A.4)
we find that for 14 degrees of freedom, χ2

0.25,14 = 17.1170. Hence the p-value is
a bit smaller than 0.25 so that the probability that we would obtain a chi-square
value as large as 17.5, or larger, given that H0 is true is about 25%. Hence there
is a rather sizeable chance of making a Type I Error. Thus the null hypothesis
should not be rejected; it is highly likely that we could obtain a realized chi-
square value of this low magnitude if H0 were true. So for any α < 0.25, the null
hypothesis cannot be rejected.

What if we had tested H0 : σ 2 = σ 2
0 = 0.008 against H1 : σ 2 �= 0.008 (again

with y = 17.50). What is the p-value associated with this revised test? For a
two-tail test, one half of the p-value is found in the upper tail of the chi-square
distribution and amounts to slightly less than 0.25 so that p-value/2 < 0.25 or
p-value < 0.50. So if the null hypothesis were true, there would be almost a 50%
chance of observing a value of the chi-square statistic at least as large as 17.50.
So with the chance of making a Type I Error this large, we should not reject the
null hypothesis. It is quite likely that the sample came from a population with
σ 2 = 0.008. �

We note briefly that if the assumption of normality of the parent population
is violated, then the results of the preceding set of chi-square tests for variances
should be interpreted with caution. However, for large samples (say, n ≥ 100),
these tests are fairly reliable if the population is approximately normal.

12.15 The Operating Characteristic and Power Functions
of a Test

Let us assume that the alternative hypothesis H1 is composite or that, in general,
H1 : θ ∈ P 1. Then for a fixed sample size n and α-risk, the size of the Type II
Error, β, varies for different values of θ subsumed under H1. In this regard, let us
express the magnitude of the Type II Error as a function of θ or as β(θ), θ ∈ P 1.
Here β(θ), which will be termed the operating characteristic (OC) function of the
test, yields the probability that a sample realization t of the test statistic T will not
lie within the critical region given that the parameter value is θ ∈ P 1; that is,

β(θ) = P
(
T ∈ �R |θ ∈ P 1

) = P(do not reject H0|H0 false) (12.41)

Next, let us define the power of a test as the (a priori) probability of detecting
a false null hypothesis H0 : θ ∈ P 0 or the probability that H0 will be rejected when
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the parameter value is θ ∈ P 1. By virtue of equation (12.4b), the expression

P(θ) = 1 − β(θ) = P(T ∈ R |θ ∈ P 1) = P(reject H0|H0 false) (12.42)

is termed the power function of the test; it represents the probability that the real-
ization t of T will fall within the critical region given that θ ∈ P 1. Here P(θ) is defined
for a particular probability density function (or probability mass function), and the
value of P(θ) at a given θ yields the power of the test at that parameter point. The
graph of P(θ) is called the power curve; it exhibits the relationship between power
and the true value of θ ∈ P 1 under H1.

In general then, since 1 = P(TIIE) + power,

P(θ) =
{

α(θ) = P(TIE) if θ ∈ P 0;

1 − β(θ) = 1 − P(TIIE) if θ ∈ P 1.
(12.43)

Hence the power function contains all relevant information about a test having
critical region R and thus serves as an index of the capability of a test to dis-
criminate between a true and a false hypothesis. It thus constitutes a means for
evaluating the performance of a given test or the relative performance of two
competing tests. If we seek to test H0 : θ = θ0, against H1 : θ = θ1, (i.e., P 0 = {θ0}
and P 1 = {θ1}), then (12.43) specializes to

P(θ) =
{

α if θ = θ0;

1 − β if θ = θ1.
(12.43.1)

So when both the null and alternative hypotheses are simple, α and β are well-
defined and unique probabilities.

What does a typical power curve look like? If, for instance, the null and
alternative hypotheses are H0 : θ = θ0 and H1 : θ �= θ0, respectively, then P(θ) =
1 − β(θ) is illustrated in Figure 12.10a. Here we plot the power P(θ) for each
alternative θ covered under H1 to obtain the power curve. When we test a simple
null hypothesis against a composite alternative hypothesis, the probability of a
Type II Error, β, is no longer a single number for a given α-risk and sample size;
β depends upon the alternative value of the parameter θ chosen. For values of
θ near θ0, β(θ) will be high and thus the power of the test P(θ) = 1 − β(θ) will
be low. When θ is far removed from θ0, β(θ) will be low and thus the tests power
P(θ) will be high; that is, the more easily the test can discriminate between H0

and H1.
In general, the ideal (albeit unattainable) power curve assumes a value of

zero for θ ∈ P 0 and unity for θ ∈ P 1 (since we do not want to reject H0 if it is true,
and we do want to reject H0 if it is not true). If again H0 : θ = θ0 and H1 : θ �= θ0,
then the ideal power curve is depicted as Figure 12.10b; that is, ideally, the test
would detect a departure from θ0 with complete certainty or with P(θ) = 1 for
all θ included in H1. And since this ideal is, as indicated before, unattainable,
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Figure 12.10 (a) The power curve P(θ) = 1 − β(θ) when H0 : θ �= θ0, H1 : θ �= θ0; (b) The ideal power
curve when H0 : θ = θ0, H1 : θ �= θ0.

we seek, at best, a good test; that is, one whose power curve assumes a value near
zero for most θ ∈ P 0 and near one for most θ ∈ P 1.

Why is the power function important and how is it used? It is typically the case
that the null hypothesis H0 is tested against a composite alternative hypothesis
H1; that is, the parameter set P 1 contains more than just a single element. This
being the case, we do not know which particular alternative value of θ ∈ P 1 will
hold if H0 is not true. In general, since many different (and thus competing) tests
of H0 : θ ∈ P 0 versus H1 : θ ∈ P 1 can be constructed, with a new test emerging
for each new value of θ chosen from P 1, the value of the size of the Type II Error,
β, will depend upon the particular alternative value of θ being utilized. Hence
it is necessary to compare the β’s for all possible values of θ ∈ P 1 if we are to
determine how good one test is relative to all other alternative tests. Hence to
choose among competing tests of H0 against H1, we express β as a function of
θ , β(θ). Here β(θ) represents the probability that T ∈ �R given θ ; that is, β(θ)
is the probability that the realization t of the test statistic T will not fall within
the critical region when θ ∈ P 1 is true. However, to work exclusively with R , we
calculate P(θ) = 1 − β(θ)—the probability that T ∈ R given θ or that the sample
realization of T lies within the critical region when θ is true.

We noted in Section 12.6 that the classical approach to hypothesis testing
involves choosing a small value for α = P(TIE) and then finding, for a fixed
sample size n, the critical region R for which β = P(TIIE) is at a minimum.2 But
since P(θ) = 1 − β(θ), this means that we must choose R to maximize P(θ) for

2 Given that the α-risk (the probability of committing a Type I Error) is pegged in advance or controlled
for, any time we reject the null hypothesis H0 we immediately know the probability that we have made
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all θ implied by H1. So for all tests having the same α-risk, we seek the test whose
power function is closest to the ideal power function or, equivalently, we seek
the test with the smallest β value, which is the same as determining a test that
maximizes the power P(θ). In sum, the power function assists us in identifying
good tests when the alternative hypothesis is composite. So given a set P 1 of
alternative competing values of θ , the power function enables us to determine
their plausibility relative to the null value θ0.

What does it mean for a test to have high power? It was mentioned earlier
that the power of a test represents its ability to detect a true alternative hypoth-
esis or P(θ) = P(accept H1|θ ∈ P 1). That is, the notion of power reflects a test’s
ability to discriminate between a hypothetical situation (H0 : θ = θ0) and the true
one (H1 : θ = θ1(�= θ0)). A test of high power has a much greater chance of detect-
ing a false null hypothesis H0 than one of low power. So for a given sample size
and α-risk the larger the difference between θ0 and θ1 (and thus the smaller the
probability of not rejecting H0 when it is false), the more powerful is the test
of H0. In sum, since for each θ �= θ0 the value of the power function is the proba-
bility of making a correct decision, we desire to have such values as close to unity
as possible; that is, we desire a test of high power.

We previously specified the power function P(θ) = P(reject H0|H0 false) as
(12.43), where β(θ) = P(TIIE) = P(do not reject H0|H0 false). If θ = µ, then the
power function may be determined by first calculating β for various values of µ

satisfying the alternative hypothesis H1 and then subtracting each of the resulting
β’s from unity to obtain the corresponding powers at those µ’s. Then a plot of
P(µ) = 1 − β(µ) versus µ traces out the power curve.

Example 12.15.1 Suppose that X is N(µ, 15). For n = 25, �X is N(µ, 3) and
�Z = �X−µ

3 is N(0, 1). Let us consider H0 : µ = µ0 = 20 versus H1 : µ > 20 with
α = 0.05. Then from (12.8.1), R = {x̄|x̄ ≥ x̄c = 20 + 1.645(3) = 24.935} and thus
�R = {x̄|x̄ < x̄c = 24.935}. To calculate β, we need to choose µ = µ1 which satisfies
H1 or, from (12.18),

β(µ) = P
(

�Z <
24.935 − µ1

3

∣∣∣∣µ = µ1 true
)

. (12.44)

For instance, if µ = µ1 = 25, then β(25) = P(�Z < −0.021|µ = 25 true) = 0.4920.
And for µ = 21, β(21) = P(�Z < 1.31|µ = 21 true) = 0.9049.

In like fashion various other values of β(µ) for µ satisfying H1 are computed
using (12.44) and are presented in Table 12.2. For instance, if the true mean were
µ = µ1 = 19, then we would correctly reject the false null hypothesis about 2% of
the time; and if the true mean were µ = µ1 = 24, then we would correctly reject
the false null hypothesis about 38% of the time. The graph of the power function
or the power curve is provided by Figure 12.11a. It should be apparent that as the

an error. However, this is not the case for a Type II Error; i.e., if we do not reject H0 and it is false,
then we do not know the probability that we have made an error since the β-risk is not controlled for.
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Table 12.2

Determination of β(µ) and P (µ) = 1 − β(µ) for a One-Sided Alternative Hypothesis

µ β(µ) = P (TIIE) Power: P (µ) = 1 − β(µ)∗

19 0.9761 0.0239
20 0.9495 0.0505(= α)
21 0.9049 0.0951
22 0.8340 0.1660
23 0.7389 0.2611
24 0.6217 0.3783
25 0.4920 0.5080
26 0.3632 0.6368
27 0.2451 0.7549
28 0.1533 0.8467
29 0.0869 0.9131
30 0.0455 0.9545

∗If the true mean were equal to µ, we would correctly reject the false null hypothesis about 100P(µ)%
of the time.

difference between the null value µ0 under H0 and the true value µ1 under H1

increases, the power of the test concomitantly increases.
A glance at Figure 12.11a reveals that for µ > 26, it is highly likely that the

test will reject H0 and for µ < 24, it is highly unlikely that the test will reject H0.
For µ = 25, there is about a 50-50 chance that H0 will be rejected. Remember
that the power of a test reflects its likelihood of detecting the true alternative
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Figure 12.11 (a) The power curve for selected values of µ appearing in Table 12.2; (b) The power curve
for selected values of µ appearing in Table 12.3.
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hypothesis. So the furtherµ1 under H1 gets fromµ0 under H0, the easier it becomes
to discriminate between µ1 and µ0. Since power for a given µ = µ1 value yields
the probability of making no error, we prefer the test with the highest power
associated with it.

Note that since R = {x̄|x̄ ≥ 24.935}, we may use (12.42) directly by forming

P(µ) = P(�X ≥ 24.935|µ = µ1 true)

= P
(

�Z ≥ 24.935 − µ1

3

∣∣∣∣µ = µ1 true
)

= 1 − F
(

24.935 − µ1

3

)
, (12.45)

where again µ1 must be chosen to satisfy the alternative hypothesis H1.
(Remember that F(−z) = 1 − F(z), where F represents the standard normal
cumulative distribution function.) So how is (12.45) to be interpreted? The power
function for the test of H0 : µ = 20 is the function P(µ) whose value at µ = µ1

gives the probability that the test will reject H0 if in fact µ = µ1 is true. �

We next turn to the determination of the power function for a test involving
a two-sided alternative hypothesis.

Example 12.15.2 For X a N(µ, 40) random variable, n = 150, α = 0.01,
H0 : µ = 100 and H1 : µ �= 100, let us employ (12.42) to obtain the associated
two-tailed power function. For a two-sided alternative hypothesis we know that
R = {x̄/x̄ ≤ x̄cl or x̄ ≥ x̄cu}, where, from (12.13),

x̄cl = 100 − 2.58
(

40√
150

)
= 91.57, x̄cu = 100 + 2.58

(
40√
150

)
= 108.42.

Then from (12.42),

P(µ) = P(�X ≤ 91.57 or �X ≥ 108.42|µ = µ1 true)

= P(�X ≤ 91.57|µ = µ1 true) + P(�X ≥ 108.42|µ = µ1 true)

= P
(

�Z ≤ 91.57 − µ1

3.266

∣∣∣∣µ = µ1 true
)

+ P
(

�Z ≥ 108.42 − µ1

3.266

∣∣∣∣µ = µ1 true
)

,

(12.46)

where �Z = (�X − µ)/(σ /
√

n) is N(0, 1) and µ = µ1 satisfies H1. If µ = µ1 = 98,
P(98) = P(�Z ≤ −1.968|µ = 98 true) + P(�Z ≥ 3.190|µ = 98 true) =
0.0244 + 0.0000 = 0.0244. And for µ = µ1 = 105, P(105) = P(�Z ≤ −4.112|µ =
105 true) + P(�Z ≥ 1.047|µ = 105 true) = 0.0000 + 0.1469 = 0.1469. Table 12.3
contains other computed values of the power function for a variety of µ’s satisfy-
ing H1. A plot of P(µ) versus µ then enables us to trace out the power curve for
this test (see Figure 12.11b). �
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Table 12.3

Determination of P (µ) for a Two-Sided Alternative Hypothesis

µ Power: P (µ)∗

92 0.4483
93 0.3300
94 0.2297
95 0.1469
96 0.0869
97 0.0485
98 0.0244
99 0.0136

100 0.0100 (=α)
101 0.0136
102 0.0244
103 0.0485
104 0.0869
105 0.1469
106 0.2297
107 0.3300
108 0.4483

∗If the true mean were equal to µ, we would correctly reject the false null
hypothesis about 100P(µ)% of the time.

Example 12.15.3 Suppose we extract a random sample of size n = 100 from
a binomial population. Given α = 0.05, let us determine the power function
for the test of H0 : p = p0 = 0.80 against H1 : p < 0.80. Under H0, we know
that Z0

p̂ (given by (12.29)) is approximately N(0, 1) so that the standard normal
distribution will be used to obtain the power of the test for various values of p

satisfying H1. Let R = {p̂/p̂ ≤ p̂c} = {p̂/p̂ ≤ 0.7342}, where p̂c = p0−zα

√
p0(1−p0)

n =
0.80 − 1.645

√
0.80(0.20)

100 = 0.7342. Then from (12.42) the power of this test is

P(p) = P(P̂ ≤ 0.7342|p = p1 true) = P

⎛

⎜⎝Zp̂ ≤ 0.7342 − p1√
p1 (1−p1 )

n

∣∣∣∣∣∣∣
p = p1 true

⎞

⎟⎠ .

(12.47)

If p1 = 0.70, then from (12.47), P(0.70) = P(Zp̂ ≤ 0.7467|p = 0.70 true) = 0.7703.
Table 12.4 exhibits other computed values of the power function for various p’s
satisfying H1. A plot of P(p) against p traces out the power curve for this test (see
Figure 12.12). �

We close this section by offering a few comments concerning the main factors
that affect the power function, namely the level of significance α and the sample
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Table 12.4

Determination of P (p) for a One-Sided Alternative Hypothesis

p Power: P (p)∗

0.64 0.9750
0.67 0.9131
0.70 0.7703
0.73 0.5398
0.76 0.2757
0.80 0.0500 (=α)
0.83 0.0054
0.86 0.0000

∗If the true proportion were equal to p, we would correctly reject the false
null hypothesis about 100P(p)% of the time.

size n. These remarks are framed in the context of conducting hypothesis tests
for the population mean µ.

First, for a fixed n and a given alternative hypothesis H1, as α increases, the
power of the test increases over all possible true values of µ satisfying H1 (see
Figure 12.13a,b) and thus β = P(TIIE) decreases. For example, as α increases,
zα/2 decreases and thus the critical values x̄cl and x̄cu change in a fashion such that
R gets larger and �R gets smaller (here x̄cl increases and x̄cu decreases).

P (p)

p 

1.00

0.90

0.70

0.50

0.30

0.10

0.64 0.66 0.68 0.70 0.72 0.74 0.76 0.78 0.80 0.82 0.84 0.86

Figure 12.12 The power curve for selected values of p appearing in Table 12.4.
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Figure 12.13 The main factors affecting the power function are α and n.

Next, for a fixed α and a given H1, as n increases, the size of the Type II
Error, β, is reduced. But since power = 1 − β, the power function will thus
increase as n increases (see Figure 12.13c,d).

In fact, as n increases, the shape of the two-tailed power function is affected;
its shape tends toward that of the ideal power function depicted in Figure 12.10b.
Here also x̄cl increases and x̄cu decreases (or R gets larger and �R gets smaller) since
σx̄ = σ√

n decreases as n increases. This latter observation leads to an important
point regarding the way in which the power of a test might be enhanced—it is
best to increase the power of the test by increasing n rather than by increasing the
α-risk.

The preceding comments enable us to gain additional insight as to why the
power function is important—it enables us to determine, for fixed n, whether or
not there exists a satisfactory trade-off between the α- and β-risk associated with
a test; and, for a given α-risk, whether or not the trade-off between the β-risk
level and sample size n is tolerable.

One final consideration merits our attention. It is important to note that the
respective powers of one- and two-tailed tests will be different given the same
α-risk and the same true alternative µ1 under H1. For instance, if a one-tail test is
used and the true alternative µ is in the direction of the critical region R , then the
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P(m)

m0

m

1

One-tail test

Two-tail test

a

Figure 12.14 The powers of one- and two-tailed tests will be different given the same α and µ

under H1.

one-tail test is more powerful than the two-tail test taken over all relevant values
of µ (see Figure 12.14).

12.16 Determining the Best Test for a Statistical Hypothesis

How do we construct what will be called a best test of a parametric hypothesis? To
answer this question let us first assume that both the null and alternative hypothe-
ses are simple in form. Then for a random sample of size n, we choose to test
H0 : θ = θ0 against H1 : θ = θ1 so that the parameter space P has only two ele-
ments or P = {θ1, θ2}. (For this type of test, both α = P(TIE) and β = P(TIIE)
are well-defined unique values.) In effect, we seek to determine if our sample
random variables X1, . . . , Xn came from one of two unique distributions that are
completely specified as f 0(x; θ0) or f 1(x; θ1), respectively. Hence we are equiva-
lently testing H0 : Xi is distributed as f 0(x; θ0), against H1 : Xi is distributed as
f 1(x; θ1), i = 1, . . . , n. As we shall now see, the specification of a test as best is
ultimately based upon the characteristics of its power function P(θ).

Constructing the best test is equivalent to determining the best critical region
R of size α. In this regard, we should choose R so that α = P(θ0) is a (small) fixed
number and β = P(TIIE) is as small as possible. But since β = 1 − P(θ1), we seek
the test or critical region which maximizes P(θ1); that is, we seek a most powerful
test. In sum, to obtain the best test of H0 : θ = θ0 versus H1 : θ = θ1, select the
test with the smallest β-risk among all tests with Type I Error not exceeding some
specified α-risk level.
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More formally, a best or most powerful test must satisfy the following.

Best Test Criterion: A test with power function P(θ) of H0 : θ = θ0 versus
H1 : θ = θ1 is a most powerful test of size α if and only if:

(a) P(θ0) = α

(b) P(θ1) > �P(θ1) for any alternative test

with power function �P for which �P(θ0) ≤ α
(12.48)

Hence a most powerful test of size α itself has size α under H0 and, under H1,
has the largest power among all other tests of at most size α. Equivalently, a most
powerful test of size α itself has size α and has the smallest β among all other tests
of at most size α. To implement this criterion, we simply fix the size of the Type I
Error, α, and minimize the size of the Type II Error, β.

It is instructive to note that the preceding Best Test Criterion can be recast in
terms of specifying a best or most powerful critical region R ⊂ T , where T is the
entire set of realizations of an estimator T of θ . To this end we equivalently have
the following.

Best Critical Region Criterion: A critical region R ⊂ T is termed a most powerful
critical region of size α for testing H0 : θ = θ0 versus H1 : θ = θ1 if, for every subset
A ⊂ T for which PA (θ0) = P((X1, . . . , Xn) ∈ A /θ = θ0 true) = α:

(a) PR (θ0) = P
(
(X1, . . . , Xn) ∈ R /θ = θ0 true

) = α

(b) PR (θ1) = P
(
(X1, . . . , Xn) ∈ R /θ = θ1 true

) ≥ PA (θ1)

= P
(
(X1, . . . , Xn) ∈ A /θ = θ1 true

) (12.49)

Hence a most powerful critical region of size α itself has size α under H0 and,
under H1, has the greatest power among all other subsets A ⊂ T having size α.

The following theorem (known as the Neyman-Pearson Lemma) serves as a
guide for finding a best or most powerful test of size α by providing us with a set
of sufficient conditions for the existence of a best or most powerful critical region
of size α when both the null and alternative hypothesis are simple in form. In
particular, the theorem is used to determine the form of the critical region R for
best tests (the actual R depends upon the value of α chosen). That is, we seek the
R that is most powerful with respect to the alternative hypothesis H1.

To set the stage for the Neyman-Pearson Lemma, let X1, . . . , Xn denote a set
of sample random variables taken from a population with a probability density
function f (x; θ). Then the joint probability density function of X1, . . . , Xn is the
likelihood function L(θ ; x1, . . . , xn, n) = L(θ ; x, n) = ∏n

i=1 f (xi; θ). Given L, the
theorem employs the likelihood ratio

l = L(x1, . . . , xn, n) = L0

L1
= L(θ0; x, n)

L(θ1; x, n)
. (12.50)
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We may now state Theorem 12.1, the Neyman-Pearson Lemma.

THEOREM 12.1. Let X1, . . . , Xn be a random sample from the probability
density function f (x; θ), where the value of the parameter θ is restricted to only
one of two possible elements of the parameter set P = {θ0, θ1} and α = P(TIE)
is fixed. For k a positive constant and R ∈ T , let:

(a) P
(
(X1, . . . , Xn) ∈ R /θ = θ0 true

) = α

(b) l = L0

L1
≤ k if (X1, . . . , Xn) ∈ R and

l = L0

L1
≥ k if (X1, . . . , Xn) ∈ �R = T − R (12.51)

Then R is a best critical region of size α (or the test corresponding to the
critical region R is a most powerful test of size α) for testing H0 : θ = θ0

versus H1 : θ = θ1.

Here k must be chosen so as to make R a critical region of size α. As required by
(12.51b), the likelihood ratio l should be small for sample realizations within R
(which yield Type I Errors when θ = θ0 and correct decisions when θ = θ1); and
l should be large for sample realizations within �R (which yield correct decisions
when θ = θ0 and Type II Errors when θ = θ1).

For given α and n, the Neyman-Pearson Lemma provides us with a method
for determining the best or most powerful critical region and the best test of the
simple null versus simple alternative hypothesis specified earlier. The theorem
guarantees, among all possible critical regions of size α, the smallest possible β.
So for fixed α and n, if a critical region R minimizes the value of β, then it is
termed the best critical region of size α. And since a best critical region maximizes
the power of the test, it is alternatively called a most powerful critical region of
size α; and the corresponding test is termed a most powerful test of size α. To see
exactly how Theorem 12.1 is utilized, let us consider the following set of example
problems.

Example 12.16.1 Suppose that {X1, . . . , Xn} constitutes a set of sample ran-
dom variables selected from a probability density function given by

f (x; θ) =
{

θe−θx, θ > 0, x ≥ 0;

0 elsewhere.
(12.52)

Then the likelihood function for the sample random variables appears as

L(θ ; x1, . . . , xn, n) =
n∏

i=1

f (xi; θ) = θne
−θ

n∑

i=1
xi

. (12.53)
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To find the most powerful critical region of size α for a test of, say, H0 : θ = 1
versus H1 : θ = 2, let us employ (12.51b); that is, let us set

l = L0

L1
= e

−
n∑

i=1
xi

2ne
−2

n∑

i=1
xi

≤ k or e

n∑

i=1
xi ≤ k2n.

Then upon transforming this expression to logarithms, the form of R for the most
powerful critical region is

n∑

i=1

xi ≤ ln(k2n) = k′. (12.54)

Hence R = {y|y = ∑n
i=1 xi ≤ k′}; that is, the best critical region, as given

by (12.54), constitutes that portion of the y-axis under the left-hand tail of
the sampling distribution of Y with θ = 1. Here k is chosen so that P(Y ≤
k′|H0 true) = α. We are thus provided with the best or most powerful test of
H0 : θ = 1 versus H1 : θ = 2. �

Example 12.16.2 Let the set of sample random variables X1, . . . , Xn be
drawn from a normal distribution with unknown mean µ and known var-
iance σ 2. Our objective is to determine the best critical region of size α = 0.05 for
testing H0 : µ = µ0, against H1 : µ = µ1, where µ1 > µ0. Given that the likelihood
function for the sample random variables appears as

L(µ; x1, . . . , xn, n) = 1

(
√

2πσ )n
e
− 1

2σ2

n∑

i=1
(xi−µ)2

,

it is easily shown that (12.51b) requires

l = L0

L1
= e

1
2σ2

[
n∑

i=1
(xi−µ1)2−

n∑

i=1
(xi−µ0)2

]

≤ k. (12.55)

Upon transforming (12.55) to logarithms we have

n∑

i=1

(xi − µ1)2 −
n∑

i=1

(xi − µ0)2 ≤ 2σ 2 ln k

or, upon simplifying the left-hand side of this expression,

n(µ2
1 − µ2

0) − 2(µ1 − µ0)
n∑

i=1

xi ≤ 2σ 2 ln k. (12.55.1)
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Since µ1 − µ0 > 0, (12.55.1) may be rewritten as

n∑

i=1

xi ≥ n(µ2
1 − µ2

0) − 2σ 2 ln k
2(µ1 − µ0)

or

x̄ ≥ n(µ2
1 − µ2

0) − 2σ 2 ln k
2n(µ1 − µ0)

= x̄c. (12.56)

As promised by Theorem 12.1, (12.56) specifies the form of the best critical
region of size α for testing H0 versus H1. Since µ1 > µ0, the best critical region
of size α is located under the right-hand tail of the sampling distribution of �X and
appears as R = {x̄/x̄ ≥ x̄c}, where x̄c denotes the critical sample mean or critical
value of x̄ (see (12.8.1)). That is, for H0 true, P(�X ≥ x̄c|µ = µ0 true) = 0.05 as
required and thus, since �X is N(µ0, σ√

n ),

P
(

�Z ≥ x̄c − µ0

σ /
√

n

∣∣∣∣µ = µ0 true
)

= P(Z ≥ 1.645|µ = µ0 true) = 0.05

or, equivalently, R = {z|z ≥ 1.645}. So with x̄c−µ0
σ /

√
n = 1.645, it follows that x̄c =

µ0 + 1.645 σ√
n (in general, x̄c = µ0 + zα

σ√
n ). So once α is specified, the precise

value of x̄c is easily obtained. (It should be apparent that if we had stipulated
µ1 < µ0, then Theorem 12.1 or the Neyman-Pearson Lemma yields a best or most
powerful critical region of the form R = {x̄|x̄ ≤ x̄c}, where now x̄c = µ0 − zα

σ√
n .)

Whereas the probability of rejecting H0 when H0 is true is α, the probabil-
ity of rejecting H0 when H0 is false is the power of the test at µ = µ1; for example
for µ0 = 0, µ1 = 1, and σ = 1, �X is N(0, 1√

n ) and thus

P(µ) = P(�X ≥ x̄c|µ = µ1 true) =
∫ +∞

x̄c

1√
2π(1/

√
n)

e
− 1

2

(
x̄−1
1/

√
n

)2

dx̄.

(Note that P(µ) = P(�X ≥ x̄c|µ = µ0 true) = α.) For n = 36 and α = 0.05,
x̄c = µ0 + zα

σ√
n = 1.645

6 = 0.2741. Hence the power of this best or most powerful
test of H0 versus H1 when H1 is true is

P(µ) =
∫ +∞

0.2741

1√
2π
(
1/

√
n
)e

− 1
2

(
x̄−1
1/

√
n

)2

dx̄

=
∫ +∞

0.2741−1

1√
2π
(
1/

√
n
)e

− 1
2

(
x̄

1/
√

n

)2

dx̄ (see (7.n4.1))
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= 1√
n

∫ +∞

(0.2741−1)
√

n

1√
2π
(
1/

√
n
)e− 1

2 z2
dz (see (7.n4.2))

= 1√
2π

∫ +∞

−4.3554
e− 1

2 z2
dz = 0.9999

since Z is N(0, 1). Then β(µ1) = 1 − P(µ1) would be less than 1%. �

Note that the application of the Neyman-Pearson Lemma leads to the same
form for the critical region as that obtained for the Case I set of hypotheses in
Section 12.9. Hence the Case I critical region derived in Section 12.9 is, via (12.56),
a best critical region of size α for H0 : µ = µ0 versus H1 : µ > µ0.

A similar conclusion emerges when we consider the Case II set of hypotheses
also introduced in Section 12.9; that is, the Neyman-Pearson Lemma enables us
to conclude that a best critical region of size α for H0 : µ = µ0 versus H1 : µ < µ0

is of the form R = {x̄/x̄ ≤ x̄c}, where again x̄c = µ0 − zα
σ√
n . Hence our intuitive

specification of an upper-tail critical region for Case I and a lower-tail critical
region for Case II is now legitimized by the Neyman-Pearson Lemma.

Before considering some additional examples pertaining to the application
of the Neyman-Pearson Lemma, let us introduce some additional terminology.
Specifically, a test of the null hypothesis H0 : θ = θ0 is termed a uniformly most
powerful test of size α if, for each θ subsumed under the alternative hypothesis
H1, it is at least as powerful as any other test of at most size α. In this regard, the
power function of any such test is at least as large at that of any other test of at
most size α for every θ covered by H1. And since β = P(TIIE) = 1 − power,
it follows that, for a fixed α, a uniformly most powerful test is one that has a
β smaller than any other test regardless of the value of θ , which happens to be
true under the alternative hypothesis. If a uniformly most powerful test exists,
then, among all tests of at most size α, the uniformly most powerful test has the
greatest chance of rejecting the null hypothesis if rejection is warranted. And it is
the Neyman-Pearson Lemma that offers a way of finding uniformly most powerful
tests, provided that such tests exist.

The Neyman-Pearson Lemma holds for the case where both the null and
alternative hypotheses are of the simple variety. If we opt to test H0 : θ = θ0

against the composite alternative H1 : θ > θ0 (or H1 : θ < θ0), there is no general
theorem like the Neyman-Pearson Lemma that can be utilized to locate a best
or most powerful critical region. However, the Neyman-Pearson Lemma can be
utilized to obtain a best critical region for any single value of θ1 > θ0 covered
by H1. Since in most cases the form of R for the most powerful test does not
depend upon the particular θ1 chosen, it follows that when a test obtained via
the Neyman-Pearson Lemma maximizes the power for every θ > θ0, it is said to
be a uniformly most powerful test of size α for H0 : θ = θ0 against H1 : θ > θ0

(or H1 : θ < θ0).
For example, if we are to determine a uniformly most powerful critical region

of size α for the test H0 : µ = µ0 against H1 : µ > µ0 (µ is unknown and σ 2 is
assumed to be known), our starting point is the search for the most powerful
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critical region of size α for the test of H0 : µ = µ0 versus H1 : µ = µ1 for some
particular µ1 > µ0. Then according to the Neyman-Pearson Lemma, the most
powerful critical region of size α is an upper-tail region of the form R = {x̄|x̄ ≥ x̄c},
where the precise value of x̄c is determined by fixing α = P(�X ≥ x̄c|µ = µ0 true).
And since the form of R does not depend upon µ1, any µ > µ1 leads to exactly the
same type of critical region. Hence we have found the uniformly most powerful
critical region of size α, and thus the uniformly most powerful test of size α of
H0 : µ = µ0 versus H1 : µ > µ0.

The preceding argument also applies to the test of H0 : µ = µ0 against
H1 : µ < µ0. In this instance we obtain the lower-tail critical region R = {x̄|x̄ ≤ x̄c}
as the uniformly most powerful critical region of size α for all µ1 < µ0 and thus
the test of H0 : µ = µ0 versus H1 : µ < µ0 is the uniformly most powerful test of
size α.

In sum, a critical region R is a uniformly most powerful critical region of
size α for testing a simple null hypothesis H0 against a one-sided composite alter-
native hypothesis H1 if R is a best or most powerful critical region of size α for
testing H0 against each simple hypothesis covered by H1. But this means that the
power function of the test corresponding to the said critical region should be at
least as great as the power function of any other test with the same α-risk taken
over each simple hypothesis covered by H1; that is, the test associated with critical
region R is a uniformly most powerful test of size α for testing simple H0 against
composite H1.

If we wish to test H0 : θ = θ0 against H1 : θ �= θ0, no uniformly most power-
ful test exists; that is, there is no single critical region that represents the most
powerful test for all values of θ = θ1 �= θ0. Hence the Neyman-Pearson Lemma
is of no value for two-sided alternative hypotheses.

It is also the case that the Neyman-Pearson Lemma cannot be used when
testing hypotheses about a single parameter θ when the population probabil-
ity density function contains other unspecified parameters. For example, when
we tested H0 : µ = µ0 against an alternative hypothesis (simple or compos-
ite) and the sample random variables were extracted from a probability density
function that was specified as N(µ, σ ), we always assumed that the population
variance σ 2 was known. But if σ 2 is unknown, then H0 : µ = µ0 does not
uniquely specify the form of the population probability density function and thus
the null hypothesis is not simple in form as required by the Neyman-Pearson
Lemma.

Up to this point in our derivation of hypothesis tests we have been assuming
that the null hypothesis is of the simple variety. However, it may be the case that
the null hypothesis is composite; for example we may test H0 : θ ≤ θ0, against
H1 : θ > θ0 (or H0 : θ ≥ θ0 against H1 : θ < θ0). Again let the population probability
density function contain only a single unspecified parameter, namely θ . For this
test, let us define the α-risk to be the probability of a Type I Error when θ = θ0;
that is, α is the value of the power function for θ = θ0 true. Hence this α level is
taken to be the maximum value of the power function for θ ≤ θ0. In this regard,
the test of H0 : θ = θ0 against H1 : θ > θ0 is also the uniformly most powerful test
for H0 : θ ≤ θ0 versus H1 : θ > θ0.
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Example 12.16.3 To continue with our set of examples pertaining to the
application of the Neyman-Pearson Lemma (Theorem 12.1), let us posit that
a collection of sample random variables X1, . . . , Xn is drawn from the Bernoulli
probability density function

f (X ; p) =
{

pX (1 − p)1−X , X = 0 or 1;

0 elsewhere,
(12.57)

where the unknown parameter p represents Bernoulli probability and 0 < p < 1.
Let us derive a uniformly most powerful critical region for testing H0 : p = p0

against H1 : p > p0 for some specific α. Given that the likelihood function for the
sample random variables appears as

L(p; x1, . . . , xn, n) = p

n∑

i=1
xi

(1 − p)
n−

n∑

i=1
xi

,

it follows from (12.51) that for some value p1 > p0,

l = L0

L1
=
(

p0

p1

) n∑

i=1
xi
(

1 − p0

1 − p1

)n−
n∑

i=1
xi

≤ k

or

[
p0(1 − p1)
p1(1 − p0)

] n∑

i=1
xi
(

1 − p0

1 − p1

)n

≤ k.

Upon transforming this latter expression to logarithms, we have

n∑

i=1

xi ln
[

p0(1 − p1)
p1(1 − p0)

]
+ n ln

(
1 − p0

1 − p1

)
≤ ln k.

or

n∑

i=1

xi ≥
ln k − n ln

(
1−p0
1−p1

)

ln
[

p0(1−p1)
p1(1−p0)

] = k′

(here ln[p0(1 − p1)/p1(1 − p0)] < 0 since [p0(1 − p1)/p1(1 − p1)] < 1). Hence the
Neyman-Pearson Lemma informs us that the best or most powerful critical region
for testing H0 : p = p0 against H1 : p = p1 appears as R = {∑n

i=1 xi
∣∣∑n

i=1 xi ≥ k′};
that is, we reject H0 if the number of successes

∑n
i=1 xi is larger than k′. Moreover,

for each p1 > p0, the preceding argument holds; for example, if p2 > p0, then R is
a most powerful critical region of size α for testing H0 : p = p0 versus H1 : p = p2.
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Thus R must be a uniformly most powerful critical region of size α for testing
H0 : p = p0, against H1 : p > p0. (It is important to note that since X is a discrete
random variable, it may not be possible to specify a test that has an α equal to some
predetermined level. Hence a best test will be the one for which the P(TIE) =
P(
∑n

i=1 Xi ≥ k′/H0 true) is closest to the chosen α). �

Example 12.16.4 Suppose that {X1, . . . , Xn} represents a set of sample random
variables taken from a N(0, σ ) distribution, where σ (> 0) is unknown. Our objec-
tive is to determine a uniformly most powerful test or critical region of size α for
testing H0 : σ 2 = σ 2

0 , against H1 : σ 2 > σ 2
0 . For this collection of sample random

variables the likelihood function has the form

L(σ 2; x1, . . . , xn, n) =
(

1
2πσ 2

) n
2

e
− 1

2σ2

n∑

i=1
x2

i
.

Then for σ 2
1 > σ 2

0 , (12.51) requires that

l = L0

L1
=
(

σ 2
1

σ 2
0

) n
2

e
−
(

σ2
1 −σ2

0
2σ2

0 σ2
1

)
n∑

i=1
x2

i ≤ k

or, upon transforming to logarithms,

n∑

i=1

x2
i ≥

(
2σ 2

0 σ 2
1

σ 2
1 − σ 2

0

)[
n
2

ln
(

σ 2
1

σ 2
0

)
− ln k

]
= k′.

Then via the Neyman-Pearson Lemma, the best or most powerful critical region
for testing H0 : σ 2 = σ 2

0 , against H1 : σ 2 = σ 2
1 is R = {∑n

i=1 x2
i

∣∣∑n
i=1 x2

i ≥ k′}.
We know from Theorem 9.2 that, under H0, the quantity Y0 = ∑n

i=1 X2
i /σ 2

0 is
χ2

n . Hence we require that P(Y0 ≥ k′
σ 2

0
|H0 true) = α. (For instance, if n = 25,

α = 0.05, and σ 2
0 = 4, then from Table A.4, we can easily obtain k′/4 = 37.6525

or k′ = 150.61. Then R = {∑n
i=1 x2

i

∣∣∑n
i=1 x2

i ≥ 150.61} is a best critical region of
size α = 0.05 for testing H0 : σ 2 = 4, against H1 : σ 2 = σ 2

1 > 4.) Now, we know
from our preceding discussion that R is a best or most powerful critical region of
size α for each σ 2

1 > σ 2
0 ; for example, if σ 2 = σ 2

2 > σ 2
0 , then R is a most powerful

critical region of size α when testing H0 : σ 2 = σ 2
0 versus H1 : σ 2 = σ 2

2 . In this
regard, R must be a uniformly most powerful critical region of size α for testing
H0 : σ 2 = σ 2

0 against H1 : σ 2 > σ 2
0 . �

One final example pertaining to the specification of uniformly most powerful
critical regions or tests is warranted.
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Example 12.16.5 We noted earlier that for a two-sided alternative hypothesis,
no uniformly most powerful test exists; that is, there is no single critical region
that represents the most powerful test for all values of a parameter covered by any
such alternative hypothesis. To verify this assertion, let our collection of sample
random variables be extracted from a N(µ, 1) population with µ unknown. To
test H0 : µ = µ0, against H1 : µ �= µ0, let us select some µ1 �= µ0 and set σ = 1 in
(12.55.1) so as to obtain

n(µ2
1 − µ2

0) − 2(µ1 − µ0)
n∑

i=1

xi ≤ 2 ln k. (12.58)

If µ1 > µ0, then (12.58) can be rewritten as

x̄ ≥ µ1 + µ0

2
− ln k

n(µ1 − µ0)
(12.59)

(remember that µ2
1 − µ2

0 = (µ1 − µ0)(µ1 + µ0)); and if µ1 < µ0, then (12.58)
becomes

x̄ ≤ µ1 + µ0

2
− ln k

n(µ1 − µ0)
. (12.60)

So for µ1 > µ0, (12.59) specifies an upper-tail most powerful critical region of size
α for testing H0 : µ = µ0, against H1 : µ = µ1; and for µ1 < µ0, (12.60) deter-
mines a lower-tail most powerful critical region of size α for testing H0 : µ = µ0,
against H1 : µ = µ1. Clearly, we have no uniformly most powerful critical region
of size α. �

12.17 Generalized Likelihood Ratio Tests

We determined in the preceding section that the Neyman-Pearson Lemma would
enable us to identify the best or most powerful critical region (and thus the best
or most powerful test) when both the null and alternative hypotheses were simple
in form and the population probability density function involved only a single
unknown parameter θ ; that is, all other relevant parameters had specified values.
When the population distribution involves more than a single unknown param-
eter, then a more general method, also involving a ratio of likelihood functions,
is needed to derive good tests of hypotheses in the sense that β = P(TIIE) is
small for a given α = P(TIE). The technique that follows is appropriate for sim-
ple or composite hypotheses and can be applied in the instance where multiple
unspecified parameters exist in the population probability density function.

The generalized likelihood ratio technique offered next is basically an exten-
sion, via the method of maximum likelihood, of the Neyman-Pearson method
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for specifying critical regions or tests. Generalized likelihood ratio tests typically
yield best or most powerful critical regions of a fixed size α.

Suppose that the sample random variables X1, . . . , Xn are drawn from
a population probability density function involving an unknown parameter θ as
well as other unknown parameters. Then the likelihood function of the sample
is also a function of θ as well as other unspecified parameters. As denoted ear-
lier ((12.1)), consider H0 : θ ∈ P 0 versus H1 : θ ∈ P 1, where P 1 = �P 0 = P − P 0,
P 0 ∩ P 1 = Ø, and P = P 0 ∪ P 1. Here we are assuming that at least one of these
two competing hypotheses, H0 and H1, is composite.

Let us employ the sample realizations x1, . . . , xn to estimate all unknown
parameters by the method of maximum likelihood (see Section 8.5). If P̂ 0 depicts
the parameter set containing the maximum likelihood estimates of all unknown
parameters subject to the restriction θ ∈ P 0 and P̂ is the parameter set containing
the maximum likelihood estimates of all unknown parameters determined for any
θ ∈ P , then, provided that maximum likelihood estimates exist, the generalized
likelihood ratio can be written as

l̂ = �(x1, . . . , xn, n) =
max L(θ)

P 0

max L(θ)
P

= L
(
P̂ 0
)

L
(
P̂
) , 0 ≤ l̂ ≤ 1, (12.61)

where l̂, the sample realization of the likelihood ratio test statistic �(X1, . . . ,
Xn, n), serves as the basis for conducting the Generalized Likelihood Ratio Test:

A likelihood ratio test of H0 : θ ∈ P 0 against H1 : θ ∈ P 1 has as its critical
region the set R = {l̂|l̂ ≤ k}, where, for H0 simple, the constant k, 0 ≤ k ≤ 1,
is chosen so that the size of R is α; and for H0 composite, k is chosen so that
P(TIE) ≤ α for all θ ∈ P 0 and P(TIE) = α for at least one value of θ ∈ P 0.

(For P = {θ0, θ1}, the generalized likelihood ratio l̂ does not reduce to the simple
likelihood ratio l given by (12.50).) Note that the attained maximum in the
numerator of (12.61) is computed over all parameters under the null hypothe-
sis and thus represents a constrained maximum of the likelihood function, where
the constraint set is P 0; the attained maximum in the denominator is determined
for all parameters over P and also depicts a constrained maximum of the likeli-
hood function, where the constraint set is P . If, however, the maximum of the
likelihood function occurs at an interior point of P , then the denominator is simply
the likelihood function evaluated at the ordinary maximum likelihood parame-
ter estimates. Given that 0 ≤ l̂ ≤ 1, a value of l̂ near zero indicates that the
likelihood of the sample is small under H0 relative to its value under H1. Hence
the sample outcome favors H1 over H0 and thus we are inclined to reject H0.
A value of l̂ near unity implies that we may place considerable faith in the rea-
sonableness of H0; that is, the likelihood of the sample cannot be increased much
by allowing the parameters to assume values other than those dictated by H0.
Hence we should not be inclined to reject H0.



12.17 Generalized Likelihood Ratio Tests 539

Example 12.17.1 To see exactly how the generalized likelihood ratio tech-
nique works, let us extract a set of sample random variables {X1, . . . , Xn} from
a N(µ, σ ) population, where the mean µ is unknown but the variance σ 2 is
known. We seek to determine the critical region for a test of H0 : µ = µ0 versus
H1 : µ �= µ0. Using the preceding parameter-set notation, we have P 0 = {µ0},
P 1 = {µ| − ∞ < µ(�=µ0) < +∞}, and P is the set of all real numbers. Given that
P 0 has only one element µ0, it follows that P̂ 0 = {µ0} (no maximum likelihood
estimate of µ is required). And since P is the set of all real numbers, P̂ contains the
ordinary or unconstrained maximum likelihood estimate µ̂ of µ or P̂ = {x̄}. For
the normal probability density function, the likelihood function for the sample
random variables is

L(µ; x1, . . . , xn, n) = (2πσ 2)− n
2 e

− 1
2σ2

n∑

i=1
(xi−µ)2

.

Then from (12.61),

l̂ = L(P̂ 0)

L(P̂ )
= e

− 1
2σ2

n∑

i=1
(xi−µ0)2

e
− 1

2σ2

n∑

i=1
(xi−x̄)2

. (12.62)

Since
∑n

i=1(xi − µ0)2 = ∑n
i=1(xi − x̄)2 + n(x̄ − µ0)2, (12.62) becomes

l̂ = e− n
2σ2 (x̄−µ0)2

. (12.62.1)

Then according to the generalized likelihood ratio test procedure, the critical

region involves l̂ = e− n
2σ2 (x̄−µ0)2 ≤ k or (x̄ − µ0)2 ≥ − 2σ 2

n ln k = k′, where k′ is
chosen so that the size of the critical region is α. To this end, let us replace the
preceding inequality by |x̄ − µ0| ≥ k′′ = √

k′. Now, as k varies between 0 and 1,
k′′ varies between 0 and +∞. Hence the generalized likelihood ratio test rejects
the null hypothesis if x̄ differs from µ0 by more than a specified amount. That
is, since the random variable �X is N(µ, σ√

n ), (12.11.1) has us choose k′′ = zα/2
σ√
n

so that H0 is rejected if x̄ ≤ µ0 − zα/2
σ√
n or x̄ ≥ µ0 + zα/2

σ√
n (see (12.12)). �

Example 12.17.2 Suppose that the set of sample random variables {X1, . . . , Xn}
is taken from a N(µ, σ ) population, where both the mean µ and variance σ 2 are
unknown. Suppose we decide to test H0 : µ = µ0 against H1 : µ > µ0. In terms
of the preceding notation, P 0 = {µ0}, P 1 = {µ|µ > µ0}, and P = {µ|µ ≥ µ0}.
Given these parameter sets, we need to determine both L(P̂ 0) and L(P̂ ). First, let
us find the maximum likelihood estimates of µ and σ 2 under the restriction that
µ ∈ P 0. Since P 0 contains only a single parameter value, it follows that µ = µ0

(as in the preceding example, no maximum likelihood estimate is required). Also,
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when µ = µ0, the maximum likelihood estimate of σ 2 is σ̂ 2
0 = 1

n

∑n
i=1(xi − µ0)2

(see (10.30b) and the accompanying discussion). Second, to find the maximum
likelihood estimates of µ and σ 2 over P , we see from (10.30a) that the ordinary or
unrestricted maximum likelihood estimate of µ is µ̂ = x̄. (However, the maximum
likelihood estimate of µ over P is µ̂ = max{x̄, µ0}; that is, if the maximum of L
occurs at an interior point of P , then µ̂ = µ0.) And from (10.30b), the maximum
likelihood estimate of σ 2 in P is σ̂ 2 = 1

n

∑n
i=1(xi − x̄)2. Given that the population

random variable is normally distributed, the likelihood function for the sample
random variables is

L(µ, σ ; x1, . . . , xn, n) = (2πσ 2)− n
2 e

− 1
2σ2

n∑

i=1
(xi−µ)2

.

To determine the likelihood ratio (12.61), L(P̂ 0) is obtained by evaluating L at
µ = µ0 and σ 2 = σ̂ 2

0 and L(P̂ ) is obtained by evaluating L at µ = µ̂ = x̄ and
σ 2 = σ̂ 2; that is,

L(P̂ 0) = (2π)−n/2(σ̂ 2
0 )−n/2e−n/2, L(P̂ ) = (2π)−n/2(σ̂ 2)−n/2e−n/2,

so that

l̂ = L(P̂ 0)

L(P̂ )
=
(

σ̂ 2

σ̂ 2
0

) n
2

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎝
n∑

i=1
(xi−x̄)2

n∑

i=1
(xi−µ0)2

⎞

⎠

n
2

if x̄ > µ0;

1 if x̄ ≤ µ0.

(12.63)

Let us assume that x̄ > µ0 so that l̂ ≤ k < 1. Then the critical region for the
generalized likelihood ratio test is l̂ ≤ k or, from (12.63),

n∑
i=1

(xi − x̄)2

n∑
i=1

(xi − µ0)2
< k2/n = k′

or

n (x̄ − µ0)
2

n∑
i=1

(xi − x̄)2
>

1
k′ − 1 = k′′

(see the derivation of (12.62.1)) or

n(x̄ − µ0)2

n∑

i=1
(xi−x̄)2

(n−1)

= n(x̄ − µ0)2

s2
> (n − 1)k′′
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so that we ultimately obtain

√
n(x̄ − µ0)

s
>

√
(n − 1)k′′ = k′′′. (12.64)

Under the null hypothesis H0 : µ = µ0, we may view (12.64) as the sample
realization of the test statistic

T =
√

n(�X − µ0)
S

,

where T follows the Student’s t distribution with n − 1 degrees of freedom (see
(9.19.1)). Hence this generalized likelihood ratio test is equivalent to the ordinary
t test for the population mean (Section 12.12). �

Example 12.17.3 Continuing with our generalized likelihood ratio tests, let us
assume that the collection of sample random variables X1, . . . , Xn is drawn from
a N(µ, σ ) population, where the population mean µ is known and the popula-
tion variance σ 2 is unknown. Suppose we decide to test H0 : σ 2 ≤ σ 2

0 , against
H1 : σ 2 > σ 2

0 . We now have P 0 = {σ 2|σ 2 ≤ σ 2
0 }, P 1 = {σ 2|σ 2 > σ 2

0 }, and
P = {σ 2|0 < σ 2 < +∞}. Given that the population probability density function
is normal, the likelihood function for the set of sample random variables is

L(σ 2; x1, . . . , xn, n) = (2πσ 2)− n
2 e

− 1
2σ2

n∑

i=1
(xi−µ)2

.

To determine L(P̂ 0), we must maximize the likelihood function L subject to the
restriction that σ 2 ≤ σ 2

0 . We know that the ordinary maximum likelihood esti-
mates of µ and σ 2 are µ̂ = x̄ and σ̂ 2 = 1

n

∑n
i=1(xi − x̄)2, respectively. So if σ̂ 2 ≤ σ 2

0 ,
then σ̂ 2 is the maximizing value for σ 2; and if σ̂ 2 > σ 2

0 , then the maximizing value
of σ 2 is σ 2

0 . Hence

L
(
P̂ 0
) =

⎧
⎪⎨

⎪⎩

(2πσ̂ 2)− n
2 e− n

2 if σ̂ 2 ≤ σ 2
0 ;

(2πσ 2
0 )− n

2 e
− 1

2σ2
0

n∑

i=1
(xi−x̄)2

if σ̂ 2 > σ 2
0 .

Since P is the set of all admissible σ 2’s, P̂ contains the ordinary maximum like-
lihood estimates of µ and σ 2 or µ̂ = x̄ and σ̂ 2 = 1

n

∑n
i=1(xi − x̄)2, respectively.

Thus L(P̂ ) = (2πσ̂ 2)−n/2e−n/2. Then from (12.61)

l̂ = L
(
P̂ 0
)

L
(
P̂
) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if σ̂ 2 ≤ σ 2
0 ;

(
σ̂ 2

σ 2
0

) n
2

e
n
2 − 1

2σ2
0

n∑

i=1
(xi−x̄)2

if σ̂ 2 > σ 2
0 .

(12.65)
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Suppose σ̂ 2 > σ 2
0 so that l̂ ≤ k < 1. Then the critical region for the generalized

likelihood ratio test is l̂ ≤ k or, from (12.65),

⎛

⎜⎜⎝

n∑
i=1

(xi − x̄)2

nσ 2
0

⎞

⎟⎟⎠

n
2

e
n
2 − 1

2σ2
0

n∑

i=1
(xi−x̄)2

≤ k. (12.65.1)

Let us set y =
∑n

i=1(xi−x̄)2

nσ 2
0

. Then from (12.65.1), the expression l̂ = yn/2e
n
2 − n

2 y has

a maximum at y = 1 (l̂
′ = 0 and l̂

′′ = − n
2 < 0 at y = 1). Then we should reject

H0 if y = σ̂ 2

σ 2
0

> 1 and y
n
2 e

n
2 − n

2 y ≤ k. But y
n
2 e

n
2 − n

2 y ≤ k is equivalent to y > c.

So if H0 is true,
∑n

i=1(Xi−�X)2

σ 2
0

is a chi-square random variable with n − 1 degrees

of freedom (see Theorem 9.2) and thus P
(
Y =

∑n
i=1(Xi−�X)2

nσ 2
0

> c
) = P(χ2

n−1 > cn).

Given that we require P(TIE) = α, let us choose cn = χ2
1−α,n−1, where χ2

1−α,n−1
is the 100(1 − α) percentile of the chi-square distribution with n − 1 degrees
of freedom (see (9.7.1)). Then if we take c′ = σ 2

0 χ2
1−α,n−1, we will reject H0 if∑n

i=1(xi−x̄)2 > c′. For example, if we choose to test H0 : σ 2 ≤ 0.60 versus H1 : σ 2 >

0.60 with n = 30 and α = 0.05, then χ2
1−α,n−1 = χ2

0.95,29 = 42.5569. Hence we will
reject H0 if

∑n
i=1(xi − x̄)2 > 0.60(42.5569) = 25.53. �

We note briefly that if the preceding test involves H0 : σ 2 ≥ σ 2
0 versus

H1 : σ 2 < σ 2
0 , then we would reject H0 if

∑n
i=1(xi − x̄)2 < σ 2

0 χ2
α,n−1. And if we

are testing H0 : σ 2 = σ 2
0 against H1 : σ 2 �= σ 2

0 , then we would reject H0 if∑n
i=1(xi − x̄)2 < σ 2

0 χ2
α/2,n−1 or

∑n
i=1(xi − x̄)2 > σ 2

0 χ2
1−(α/2),n−1.

Example 12.17.4 Suppose that the sample random variables X1, . . . , Xn are
taken from a Bernoulli probability density function (12.57) with unknown
population parameter p, 0 ≤ p ≤ 1, and that we are to test H0 : p = p0

against H1 : p �= p0. Here P 0 = {p0}, P 1 = {p|0 ≤ p(�=p0) ≤ 1}, and
P = {p|0 ≤ p ≤ 1}. Then P̂ 0 = {p0}, and P̂ contains the ordinary or uncon-
strained maximum likelihood estimate of p or p̂ = x

n = x̄, where x = ∑n
i=1 xi

is the realized number of successes in a sample of size n. Since the likelihood
function of the sample random variables appears as

L(p; x1, . . . , xn, n) = p

n∑

i=1
xi

(1 − p)
n−

n∑

i=1
xi

,

we have

L(P̂ 0) = p

n∑

i=1
xi

0 (1 − p0)
n−

n∑

i=1
xi

,
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and

L(P̂ ) = x̄

n∑

i=1
xi

(1 − x̄)
n−

n∑

i=1
xi

.

Then from (12.61),

l̂ = L(P̂ 0)

L(P̂ )
=
(p0

x̄

) n∑

i=1
xi
(

1 − p0

1 − x̄

)n−
n∑

i=1
xi

. (12.66)

As required by the generalized likelihood ratio test, the critical region has the
form l̂ ≤ k or

n∑

i=1

xi

[
ln
(p0

x̄

)
− ln

(
1 − p0

1 − x̄

)]
≤ ln k − n ln

(
1 − p0

1 − x̄

)
= k′

or x = ∑n
i=1 xi ≥ k′′ if p0 < x̄. Similarly, x = ∑n

i=1 xi ≤ k′′′ if p0 > x̄.
So under H0, the generalized likelihood ratio test has us reject H0 if the real-
ized number of successes exceeds k′′ or falls short of k′′′. Since we require that
P(TIE) = α, we will reject H0 if x ≥ kα/2 or x ≤ k′

α/2, where kα/2 is the smallest
integer for which

∑n
y=kα/2

b(y; n, p0) ≤ α
2 (b(y; n, p0) via (6.14.1) is the probabil-

ity of obtaining y successes in n trials of a simple alternative experiment when

p = p0) and k′
α/2 is the largest integer for which

∑k′
α/2

y=0 b(y; n, p0) ≤ α
2 .

If our test involves H0 : p ≤ p0 versus H1 : p > p0, then the critical region
implied by the generalized likelihood ratio criterion is R = {x|x ≥ kα}, where kα is
the smallest integer for which

∑n
y=kα

b(y; n, p0) ≤ α. But if we are to test H0 : p ≥ p0

against H1 : p < p0, then the critical region has the form R = {x|x ≤ k′}, where k′
α

is the largest integer for which
∑k′

α

y=0 b(y; n, p0) ≤ α. �

We noted earlier in the statement of the generalized likelihood ratio test
that if the null hypothesis H0 is simple, then the constant k is chosen so that
the size of the critical region or P(TIE) = α. In this instance, if g(l) depicts
the (continuous) probability density function of the statistic �(X1, . . . , Xn, n),
then, under H0, k must satisfy the requirement ∫k

0 g(l/H0 true)dl = α pro-
vided that g does not depend upon any unknown parameters. However, it may
be the case that the generalized likelihood ratio test statistic �(X1, . . . , Xn, n) does
not exhibit a probability density function having a well-known form (such as the
standard normal or t distribution). As we shall now see, for large samples, we can
obtain an approximation to the sampling distribution of �(X1, . . . , Xn, n) by using
the chi-square statistic to determine a critical region of size α; that is, we have a
way of choosing k so that P(� ≤ k/θ = θ0 true) = α. Specifically, Theorem 12.2
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provides the form of the asymptotic distribution of the generalized likelihood
ratio statistic �:

THEOREM 12.2. Let the sample random variables X1, . . . , Xn be drawn from
a population probability density function f (x; θ), which obeys certain regular-
ity conditions (expressed mainly in terms of restrictions on the derivatives
with respect to θ of the sample likelihood function L). For H0 : θ ∈ P 0 true,
the statistic −2 ln �(X1, . . . , Xn, n) converges to a chi-square distribution as
n → ∞; that is, the limiting distribution of −2 ln � is χ2

ν , where degrees of
freedom ν = number of parameters assigned specific numerical values under
the null hypothesis H0.

In this regard, for large n, the statistic −2 ln � has approximately a chi-square
distribution with ν degrees of freedom. Then P(TIE) is approximately α if n
is large; that is, lim

n→∞ P(reject H0/θ ∈ P0) = α so that the critical region R =
{l̂/−2 ln �(x1, . . . , xn, n) = −2 ln l̂ ≥ χ2

1−α,ν} specifies an asymptotic test of size α,
where χ2

1−α,ν is the 100(1 − α) percentile of the chi-square distribution with ν

degrees of freedom. As the structure of R reveals, the rejection of H0 : θ ∈ P 0

for small values of l̂ is equivalent to the rejection of H0 for large values of
−2 ln l̂ since −2 ln l̂ increases as l̂ decreases.

Looking to the value of degrees of freedom ν, we note first that for H0 : µ =
µ0, ν = 1; for example, from (12.61.1), −2 ln l̂ = n

σ 2 (x̄ − µ0)2 = ( x̄−µ0
σ /

√
n )2 is

actually a realization of a random variable having a chi-square distribution with
1 degree of freedom. And if H0 : µ = µ0 and σ 2 = σ 2

0 , then ν = 2. In general, if
the population probability density function depends upon r parameters θ1, . . . , θr

and H0 : θ1 = θ ′
1, θ2 = θ ′

2, . . . , θs = θ ′
s, s < r, then ν = s.

Example 12.17.5 Suppose we choose to test H0 : p = p0 = 0.4 against H1 :p �=
0.4 with n = 130, x = 78, and α = 0.05. In this instance the critical region is R =
{l̂/−2 ln l̂ > χ2

0.95,1 = 3.8416}. Since x̄ = 78
130 = 0.6, it follows from (12.66) that

l̂ =
(

0.4
0.6

)78 (0.6
0.4

)52

= 0.000026

and thus −2 ln l̂ = 21.08 > 3.8416. So by virtue of the asymptotic decision rule
incorporated in the specification of R , we reject the null hypothesis at the 5%
level. �

We end this section by briefly discussing a few important characteristics of
hypothesis tests. First, it should be intuitively reasonable to expect that a test
should be more likely to reject H0 : θ ∈ P 0 if θ ∈ P 1 than if θ ∈ P 0. That is, a test
with power function P(θ) is said to be unbiased if P(θ1) ≥ P(θ0) for every θ1 ∈ P 1

and θ0 ∈ P 0. Hence the probability of rejecting H0 when it is false is at least as
large as the probability of rejecting H0 when it is true. If we are testing a simple
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null hypothesis H0 : θ = θ0 against a composite alternative, then a test is unbiased
if the power function assumes its minimum value at θ = θ0. Hence the probability
of rejecting H0 when it is false is at least as large as the probability of rejecting
H0 when it is true. If we are testing a simple null hypothesis H0 : θ = θ0 against
a composite alternative, then a test is unbiased if the power function assumes its
minimum value at θ = θ0. Hence the probability of rejecting H0 is least when H0

is true.

Example 12.17.6 Suppose that we draw a set of sample random variables
{X1, . . . , Xn} from a N(µ, σ ) population with µ unknown and σ 2 known and
we decide to perform a generalized likelihood ratio test of H0 : µ ≤ µ0 versus
H1 : µ > µ0. Here P 0 = {µ|µ ≤ µ0}, P 1 = {µ|µ > µ0}, and P = εµ| − ∞ < µ <

+∞}. We note first that the unconstrained maximum likelihood estimate µ̂ of µ

over P is simply µ̂ = x̄ and thus P̂ = {x̄}. Additionally, if x̄ < µ0, then P̂ 0 = {x̄};
and if x̄ ≥ µ0, then P̂ 0 = {µ0}. Hence

L(P̂ 0) =

⎧
⎪⎪⎨

⎪⎪⎩

(2πσ 2)
n
2 e

− 1
2σ2

n∑

i=1
(xi−µ0)2

if x̄ ≥ µ0;

(2πσ 2)− n
2 e

− 1
2σ2

n∑

i=1
(xi−x̄)2

if x̄ < µ0

and

L(P̂ ) = (2πσ 2)− n
2 e

− 1
2σ2

n∑

i=1
(xi−x̄)2

.

Then from (12.61), (12.62), and (12.62.1),

l̂ = L(P̂ 0)

L(P̂ )
=
{

e− n
2σ2 (x̄−µ0)2

if x̄ ≥ µ0;
1 if x̄ < µ0.

Then according to the generalized likelihood ratio test criterion, we reject the
null hypothesis if l̂ ≤ k or x̄−µ0

σ /
√

n ≥ k′. So for k < 1, rejecting H0 when l̂ ≤ k is

equivalent to rejecting H0 when z̄0 = x̄−µ0
σ /

√
n ≥ k′. Then the power function for this

test is

P(µ) = P

(
Z̄0 =

�X − µ0

σ /
√

n
≥ k′

)
= P

(�X − µ

σ /
√

n
≥ k′ + µ0 − µ

σ /
√

n

)

=
(

Z̄ ≥ k′ + µ0 − µ

σ /
√

n

)
,

where �Z is N(0, 1). For fixed µ0, P(µ) is an increasing function of µ so that
P(µ) > P(µ0) for all µ > µ0. (Note that P(µ0) = P(TIE) = α if P(Z̄ ≥ k′) = α.)
Hence this test is unbiased. �
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A glance back at the sequence of example problems presented in this sec-
tion reveals that the generalized likelihood ratio test typically yields sufficient
statistics since the parameters appearing in l̂ ((12.61)) are replaced by their max-
imum likelihood estimates. In this regard, let T = g(X1, . . . , Xn, n) be a sufficient
statistic for a parameter θ with probability density function h(t; θ , n). Then accord-
ing to the Fisher-Neyman Factorization Theorem (Theorem 10.1), the likelihood
function of the sample random variables X1, . . . , Xn factors as L(θ ; x1, . . . , xn, n) =
h(t; θ , n) · j(x1, . . . , xnn) = h(g(x1, . . . , xn, n); θ , n) · j(x1, . . . , xn, n) ((10.14)), where j
does not depend upon θ . This factorization criterion for a sufficient statistic holds
for every sample realization t of T and for all admissible θ . Then, from (12.61),

l̂t = L(P̂ 0)

L(P̂ )
= h(t; P̂ 0, n)

h(t; P̂ , n)
. (12.61.1)

And since maximum likelihood estimators are functions of sufficient statistics,
it follows that l̂ depends only upon such statistics. Hence the critical region for
the generalized likelihood ratio test will be defined as a function of the sufficient
statistic T and thus uses all of the information about θ provided by the sample;
that is, the test based on T should be equivalent to the test based on the complete
set of sample observations or l̂ given by (12.61) equals l̂t provided by (12.61.1).

As a special case of (12.61.1), we see that if a sufficient statistic T exists, then
the l of the Neyman-Pearson Lemma (Theorem 12.1) given by (12.50) can be
rewritten as

l = h(t; θ0, n)
h(t; θ1, n)

. (12.50.1)

Here, too, the critical region for the Neyman-Pearson test is defined as a function
of a sufficient statistic T and thus the best or most powerful test against any alter-
native hypothesis need only be based on T. The final characteristic of hypothesis
tests to be considered herein deals with the notion of consistency. Specifically, a
consistent test is one that exhibits, for large samples, a high probability of rejecting
a false null hypothesis. That is, it is a test having, for large samples, high power
against any true alternative hypothesis. In this regard, a consistent test is one for
which P(reject H0/H0 false) → 1 as n → ∞.

12.18 Hypothesis Tests for the Difference of Means When
Sampling from Two Independent Normal Populations

Let {X1, . . . , XnX } and {Y1, . . . , YnY } be two sets of sample random variables taken
from independent normal distributions with means µX and µY and variances σ 2

X
and σ 2

Y , respectively. Moreover, nX is the number of sample random variables
taken from the X population distribution and nY depicts the same for the Y pop-
ulation distribution. Suppose we are interested in testing the difference between
the two population means µX and µY , where the said difference will be denoted
as µX − µY = δ0. So if µX > µY , then δ0 > 0; if µX < µY , then δ0 < 0.
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And if µX = µY , then δ0 = 0. In this regard, we may test the null hypothesis
H0 : µX − µY = δ0 against any one of the following three alternative hypotheses:

Case I Case II Case III

H0 : µX − µY = δ0 H0 : µX − µY = δ0 H0 : µX − µY = δ0

H1 : µX − µY > δ0 H1 : µX − µY < δ0 H1 : µX − µY �= δ0

To construct a good test of H0 : µX − µY = δ0 against any of the preceding
alternatives, we must exploit the characteristics of the sampling distribution of
the difference between two sample means (on this account, review Section 11.9).
Given that X and Y are independent random variables, where X is N(µX , σX )
and Y is N(µY , σY ), and that �X − �Y is our estimator for µX − µY , the form of
the distribution of our test statistic �X − �Y will be specified under a variety of
assumptions concerning the variances of X and Y. To this end, various versions
of the test now follow.

12.18.1 Population Variances Equal and Known

We first assume that the population variances are equal and known; that is,
σ 2

X = σ 2
Y = σ 2. Then with σ 2 specified, the quantity

Zδ0 = (�X − �Y) − δ0

σ
√

1
nX

+ 1
nY

[sampling from two independent normal

populations with equal and known variances]

is N(0, 1) (see (11.33)). Then for a test conducted at the α = P(TIE) level, the
appropriate decision rules for rejecting H0 relative to H1 appear as:

(a) Case I—reject H0 if zδ0 ≥ zα ;

(b) Case II—reject H0 if zδ0 ≤ zα ; and

(c) Case III—reject H0 if |zδ0 | ≥ zα/2, (12.68)

with zδ0 depicting the sample realization of Zδ0 .

12.18.2 Population Variances Unequal But Known

If the population variances are unequal but still assumed to be known, then the
quantity

Z′
δ0

= (�X − �Y) − δ0√
σ 2

X
nX

+ σ 2
Y

nY

[sampling from two independent normal

populations with unequal but known variances]

(12.69)
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is still N(0, 1) (see (11.34)). Then the decision rules for rejecting the null hypoth-
esis H0 : µX −µY = δ0 relative to the previously stated alternatives at the 100α%
level are:

(a) Case I—reject H0 if z′
δ0

≥ zα ;

(b) Case II—reject H0 if z′
δ0

≤ −zα ; and

(c) Case III—reject H0 if |z′
δ0

| ≥ zα/2, (12.70)

where z′
δ0

depicts the sample realization of Z′
δ0

.

12.18.3 Population Variances Equal But Unknown

If the common variance σ 2(= σ 2
X = σ 2

Y ) is unknown, then we need to con-
sider the distribution of �X − �Y under sampling from two independent normal
populations with unknown but equal variances. In this circumstance the quantity

Tδ0 = (�X − �Y) − δ0

SP

√
1

nX
+ 1

nY

[sampling from two independent normal

populations with equal but unknown variances]

(12.71)

follows a t distribution with pooled degrees of freedom k = nX + nY − 2 and

SP =
√

(nX − 1)S2
X + (nY − 1)S2

Y

k
(11.37)

denotes the pooled estimator of the common standard derivation σ , where

S2
X =

nX∑
i=1

(Xi − �X)2

nX − 1
, S2

Y =

nY∑
i=1

(Yi − �Y)2

nY − 1
.

Now the Case I–Case III decision rules for rejecting H0 : µX − µY = δ0 relative
to H1 at the 100α% level are:

(a) Case I—reject H0 if tδ0 ≥ tα,k;

(b) Case II—reject H0 if tδ0 ≤ −tα,k; and

(c) Case III—reject H0 if |tδ0 | ≥ tα/2,k, (12.72)

where tδ0 is the sample realization of Tδ0 .
It is important to note that this particular t test assumes that:

(a) Both population distributions are normal

(b) The two random samples as well as the observations within each individual
sample are independent

(c) The population variances are equal
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Assumption (b) is critical and, for large samples, the violation of assumptions
(a) and (c) is not all that serious. However, if the sample sizes are small and
(c) seems untenable, then, as will be indicated immediately next, the pooled
estimate of σ given by (11.37) can be replaced by separate unbiased estimators of
σ 2

X and σ 2
Y and an approximation to degrees of freedom must be obtained so that,

in this instance, the test itself is only approximate.

12.18.4 Population Variances Unequal and Unknown

If the population variances are now assumed to be unequal and unknown, then
the quantity

T ′
δ0

=
(�X − �Y)− δ0√

S2
X

nX
+ S2

Y
nY

[sampling from two independent normal

populations with unequal and unknown variances]

(12.73)

is approximately t distributed with degrees of freedom given by

F =

(
S2

X
nX

+ S2
Y

nY

)2

(
S2

X
nX

)(
1

nX +1

)
+
(

S2
Y

nY

)(
1

nY +1

) − 2, (11.39)

where S2
X and S2

Y are given in (12.18.3) and the realization φ of � must be
rounded (if required) to the nearest integer value. For this test of H0 : µX −µY =
δ0 versus H1 at the 100α% level, the decision rules for rejecting H0 relative to H1

are:

(a) Case I—reject H0 if t′δ0
≥ tα,φ ;

(b) Case II—reject H0 if t′δ0
≤ −tα,φ ; and

(c) Case III—reject H0 if |t′δ0
| ≥ tα/2,φ ,

(12.74)

where t′δ0
is the realization of the test statistic T ′

δ0
.

Example 12.18.1 Suppose that we decide to test H0 : µX −µY = δ0 = 0 (there
is no difference between the population means), against H0 : µX − µY �= δ0 = 0
(the population means are different) at the α = 0.05 level. In addition, let nX = 25,
nY = 30, x̄ = 50, ȳ = 58, σ 2

X = 167, and σ 2
Y = 200. Since the population variances
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are known, (12.69) yields

z′
δ0

= (50 − 58) − 0
√

167
25 + 200

30

= −8√
13.34

= −2.19.

Since the critical region R = {z| |z | ≥ z0.025 = 1.96}, (12.70b) implies that we
should reject H0 at the 5% level of significance.

Let us now assume that the population variances σ 2
X and σ 2

Y are unknown but
equal and, in fact, are estimated from the sample observations as s2

X = 173 and
s2

Y = 193, respectively. Then from (12.71) and (11.37),

tδ0 = (50 − 58) − 0

13.56
√

1
25 + 1

30

= −8
13.56(0.073)

= −2.18,

where degrees of freedom k = 53. Looking to (12.72b), since R = {t| | t | ≥
t0.025,53 = 2.01}, we again reject H0 at the 5% level.

If the population variances are taken to be unequal and unknown, then
(12.73) and (11.39) simplify to t′δ0

= −8√
13.35

= −2.38 and φ ≈ 56, respectively.
This time R = {t| | t | ≥ t0.025,56 = 2.00} so that we reject H0 at the α = 0.05 level
of significance. �

The hypothesis test results for this section are summarized in the left-hand
branch of Figure 12.15.

Suppose that random samples of equal size n(= nX = nY ) are to be drawn
from two independent normal distributions with known but unequal variances.
Furthermore, let us test the null hypothesis H0 : µX − µY = δ0 against the al-
ternative hypothesis H0 : µX − µY = δ1 > δ0, and suppose we choose to specify
a priori the maximum tolerable size of the Type I and Type II Errors α and β,
respectively. What common sample size n should be chosen? That is, under the
aforementioned sampling conditions, we seek to determine the size of each of
two random samples required to assure the attainment of prespecified α- and
β-risks.

If H0 is true, P(reject H0|H0 true) = α; and if H0 is false, P(do not reject
H0|H0 false) = β. From these definitions of α and β we may express each
of these error probabilities in terms of n and the critical value of x̄ − ȳ or δC ,
where the critical region is R = {x̄ − ȳ|x̄ − ȳ ≥ δC}; that is,

α = P(TIE) = P(�X − �Y ∈ R |µX − µY = δ0)

= P(�X − �Y ≥ δC|µX − µY = δ0)

= P

⎛

⎜⎝Z ≥ δC − δ0√
σ 2

X +σ 2
Y

n

= zα

∣∣∣∣µX − µY = δ0

⎞

⎟⎠ , (12.75)
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Tests for H0 : mX − mY = d0  Against H1 : mX − mY > d0  (Case I) or mX − mY < d0  (Case II)

or mX − mY ≠ d0  (Case III) Under Sampling from Two Normal Populations

Independent Samples Matched Pairs

Are σX
2, σY

2  Known?

Yes No

Test Statistic:

Decision Rules:

Test Statistic:
Test Statistic:Test Statistic:

Test Statistic: Test Statistic:

SX
2    SY

2 

Td0
  = (X −Y ) − d0

Decision Rules:

 (X − Y) − d0Zd0 
= 

+

Decision Rules:
Case I—
reject H0 if zd0

 ≥ za;

Case II—
reject H0 if zd0

 ≤ za; and

Decision Rules:

nX and nY  > 30 nX and nY  ≤ 30 

Zd0
   =

1

(X − Y) − d0

SP +

sX
2 = σY

2  = s2 sX
2 ≠ σY

2  
sX

2 ≠ σY
2  

sX
2 = σY

2  

D − d0

SD    n

1
nX

1
nY

− −  (X − Y) − d0Zd0 
= 

− −
− −

σX
2 

+
 σY

2

nX nY

nX nY

Case III—
reject H0 if  zd0

    ≥ za  2

Case I—reject H0 if zd0
 ≥ za;

Case II—reject H0 if zd0
 ≤ za; and

Case III—reject H0 if  zd0
    ≥ za  2

Case I—
reject H0 if zd0

 ≥ za;

Case II—
reject H0 if zd0

 ≤ −za; and

Case III—
reject H0 if  zd0 

 ≥ za  2

Decision Rules:

nX nY

1

Decision Rules:

Td0
=

s
′ ′

+

′ ′ Td0
   =

1

(X − Y) − d0

SP +nX nY

1

′ ′ 

′′
′′

′′ Case I—reject H0 if td0
 ≥ ta,k;

Case II—reject H0 if td0
 ≤ −ta,k; and

Case III—reject H0 if  td0
    ≥ ta  2,k

Case I—reject H0
if t d0

 ≥ ta,f;

Case II—reject H0
if td0

 ≤ −ta,f; and

Case III—reject H0
if  td0

    ≥ ta  2,f′ 

′

′

Case I—reject H0 if t d0
 ≥ ta,n−1;

Case II—reject H0
if td0

 ≤ −ta,n−1; and

Case III—reject H0
if  td0

    ≥ ta  2,n−1

′′

′′

′′

′

′

′

Figure 12.15 Tests for H0 : µX − µY = δ0 against H1 : µX − µY > δ0 (Case I), or µX − µY < δ0

(Case II), or µX − µY �= δ0 (Case III) under sampling from two normal populations.
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where zα satisfies P(Z ≥ zα) = α; and for µX − µY = δ1 > δ0 satisfying H1,

β = P(TIIE) = P(�X − �Y ∈ �R |µX − µY = δ1),

= P(�X − �Y < δC|µX − µY = δ1),

= P

⎛

⎜⎝Z <
δC − δ1√

σ 2
X +σ 2

Y
n

= −zβ |µX − µY = δ1

⎞

⎟⎠ , (12.76)

with −zβ chosen so that P(Z < −zβ) = β.
From (12.75) and (12.76) we have, respectively,

zα = δC − δ0√
σ 2

X +σ 2
Y

n

, −zβ = δC − δ1√
σ 2

X +σ 2
Y

n

.

Upon eliminating δC from these latter two expressions we eventually obtain

n = (σ 2
X + σ 2

Y )(zα + zβ)2

(δ1 − δ0)2
. (12.77)

(Note that if n is not an integer, then it should be rounded up to the next largest
integer.)

If in the preceding pair of hypotheses we replace the right-sided alternative
hypothesis by its left-sided counterpart H1 : µX − µY = δ1 < δ0, then exactly the
same formula ((12.77)) for n obtains. And if we are testing H0 : µX − µY = δ0

against the two-sided alternative H1 : µX − µY = δ1 �= δ0, then an adequate
modification to (12.77) can be made by replacing α by α

2 or

n = (σ 2
X + σ 2

Y )(z α
2

+ zβ)2

(δ1 − δ0)2
. (12.78)

Example 12.18.2 Suppose that X is N(µX , 10) and Y is N(µY , 12) and that
we desire to extract a random sample of the same size n from each of these
two independent populations for a test of H0 : µX − µY = δ0 = 3 versus
H1 : µX − µY = δ1 = 5 > δ0. For this test we decide that the maximum toler-
able error probabilities are α ≤ 0.01 and β ≤ 0.05. How large of a sample from
each population will be required? From (12.77),

n = (100 + 144)(2.325 + 1.645)2

(5 − 3)2
≈ 962.

Hence a sample of at least n = 962 from each population is required to ensure
that α ≤ 0.01 and β ≤ 0.05 when δ1 = 5 is the true difference in population
means. �
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12.19 Hypothesis Tests for the Difference of Means When
Sampling from Two Dependent Populations:
Paired Comparisons

One of the key assumptions made in the preceding section was that the random
samples were drawn from two independent (normal) populations. If, however,
the samples from the two populations are paired (each observation in the first
sample is related in some specific way to exactly one observation in the second
sample), then the samples are obviously not independent. For this latter case, as
we shall now see, the analysis of the results of a paired observation experiment
(in which the two samples are not chosen independently and at random) reduces
to the application of a single-sample technique of hypothesis testing.

Following the discussion on paired comparisons offered in Section 11.10, let
us assume that our paired experiment yields n pairs of observations denoted by
(X1, Y1), (X2, Y2), . . . , (Xn, Yn), where the sample random variables Xi and Yi,
i = 1, . . . , n, are members of the same pair (Xi, Yi), with Xi drawn from the first
population and Yi drawn from the second population. For the ith pair of sample
random variables, let Di = Xi −Yi, i = 1, . . . , n, be the difference between the two
random variables Xi and Yi making up that pair, where Di is taken to be the ith

observation on the random variable D. Here each Di provides us with a measure
of the difference between, say, the effectiveness of two separate treatments; for
example, the Xi’s depict a set of sample outcomes for the first treatment and the
Yi’s represent a set of sample outcomes for a second or follow-up treatment.

Let us assume that the Di’s, i = 1, . . . , n, constitute a single random sample
from a normal population with mean µD = µX − µY and variance σ 2

D (here the
Di’s represent a set of independent normally distributed sample random variables
with E(Di) = µD and V(Di) = σ 2

D for all i). Then the population random variable
D, whose values are the Di = Xi − Yi, i = 1, . . . , n, has a sampling distribution
that is N(µD, σD). Hence the statistic

T =
�D − µD

SD/
√

n
(12.79)

follows a t distribution with n − 1 degrees of freedom, where

�D = 1
n

n∑

i=1

Di and S2
D = 1

n − 1

n∑

i=1

(Di − �D)2.

Here �D serves as an estimator of the mean difference between, say, the effects
of the first and second treatments, and S2

D is an estimator of the variance of the
differences in treatment effects.
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For a paired comparison experiment, we may test the null hypothesis
H0 : µD = δ0 against any one of the three alternative hypotheses:

Case I Case II Case III

H0 : µD = δ0 H0 : µD = δ0 H0 : µD = δ0

H1 : µD > δ0 H1 : µD < δ0 H1 : µD �= δ0

Under H0, our test statistic is (from (12.79))

T ′′
δ0

=
�D − δ0

SD/
√

n
[sampling from two dependent populations]

(12.80)

and the appropriate α-level critical regions are:

(a) Case I—reject H0 if t′′δ0
≥ tα,n−1;

(b) Case II—reject H0 if t′′δ0
≤ −tα,n−1; and

(c) Case III—reject H0 if |t′′δ0
| ≥ tα/2,n−1,

(12.81)

where t′′δ0
depicts the sample realization of T ′′

δ0
.

Example 12.19.1 An education consulting firm claims that, because of its inno-
vative instructional techniques, high school students taking its review course can,
on the average, increase their test scores on a certain national exam by at least
10 points. To support their claim, they offer to allow a random sample of n = 15
students from a particular high school to benefit from their course free of charge.
Table 12.5 contains the before and after test scores. Is there sufficient evidence
to support the firm’s claim at the 5% level? Let us test H0 : µY − µX = δ0 ≥ 10
against H1 : µY − µX = δ0 < 10.

From the realized differences di = yi − xi, i = 1, . . . , 15, appearing in
Table 12.5 we have

�d = 1
n

15∑

i=1

di = 82
15

= 5.46,

s2
D =

15∑
i=1

d2
i

n − 1
−

(
15∑

i=1
di

)2

n(n − 1)
= 938

14
− (82)2

15(14)
= 34.98.

Then from (12.99),

t′′δ0
=

�d − δ0

sD/
√

n
= 5.46 − 10

5.91/
√

15
= −2.97.
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Table 12.5

Effectiveness of a Review Course

Score Before (x) Score After (y) Difference (d = y − x)

80 82 2
82 82 0
71 81 10
77 79 2
75 77 2
90 95 5
92 95 3
81 90 9
70 80 10
70 82 12
80 85 5
90 85 −5
70 83 13
60 77 17
98 95 −3

Since tα,n−1 = t0.05,14 = 1.761, we see that −2.97 is an element of the critical
region R = {t′′δ0

| t′′δ0
≤ −1.761} so that, from (12.81a), we reject H0 at the 5%

level—the average increase in test scores for those taking the review course is
significantly below 10 points. �

12.20 Hypothesis Tests for the Difference of Proportions When
Sampling from Two Independent Binomial Populations

Let {X1, X2, . . . , XnX } and {Y1, Y2, . . . , YnY } be two sets of sample random vari-
ables taken from two independent binomial populations with pX and pY

representing the proportions of successes in the first and second binomial
populations, respectively. Additionally, let X and Y be independent random
variables representing the observed number of successes in the samples of size
nX and nY , respectively. To test hypotheses on the differences in proportions
pX − pY (remember that these tests are only approximate and hold only for
large samples), we must review the characteristics of the sampling distribution
of the difference between two sample proportions (see Section 11.11).

We know from Section 11.7 that the best estimators for pX and pY are the
sample proportions of successes P̂X = X

nX
and P̂Y = Y

nY
, respectively, with

E(P̂X ) = pX , E(P̂Y ) = pY , V(P̂X ) = pX (1−pX )
nX

, and V(P̂Y ) = pY (1−pY )
nY

. Then

the best estimators for V(P̂X ) and V(P̂Y ) are, respectively, S2(P̂X ) = P̂X (1−P̂X )
nX

and S2(P̂Y ) = P̂Y (1−P̂Y )
nY

.
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Since P̂X and P̂Y are independent random variables, V(P̂X − P̂Y ) = V(P̂X ) +
V(P̂Y ), with S2(P̂X − P̂Y ) = S2(P̂X ) + S2(P̂Y ) serving as its estimator. Then as
depicted by (11.49), the quantity

Z�p = (P̂X − P̂Y ) − (pX − pY )
√

S2(P̂X ) + S2(P̂Y )
(12.82)

is approximately N(0, 1) for large nX and nY .
Suppose we decide to test the null hypothesis H0 : pX − pY = δ0 against any

of the three alternative hypotheses given in

Case I Case II Case III

H0 : pX − pY = δ0 H0 : pX − pY = δ0 H0 : pX − pY = δ0

H1 : pX − pY > δ0 H1 : pX − pY < δ0 H1 : pX − pY �= δ0

Under H0 : pX − pY = δ0 �= 0, the quantity

Zδ0 = (P̂X − P̂Y ) − δ0√
S2(P̂X ) + S2(P̂Y )

= (P̂X − P̂Y ) − δ0√
P̂X (1−P̂X )

nX
+ P̂Y (1−P̂Y )

nY

[Sampling from two independent binomial populations with pX �= pY ]

(12.83)

is N(0, 1) (by virtue of (12.82)). Then for a test conducted at the α = P(TIE) level,
the appropriate decision rules for rejecting H0 relative to H1 are:

(a) Case I —reject H0 if zδ0 ≥ zα ;

(b) Case II—reject H0 if − zδ0 ≤ −zα ; and

(c) Case III—reject H0 if |zδ0 | ≥ zα/2,

(12.84)

where zδ0 is the sample realization of Zδ0 .
But if H0 : pX − pY = δ0 = 0 is true (the two population proportions pX and

pY are assumed to be equal), then we may take p as their common value. In this
case the best estimator of the common proportion p is the pooled estimator

P̂ = X + Y
nX + nY

,

where X and Y are, as defined earlier, the observed number of successes in the
two independent random samples. Then

S2(P̂X − P̂Y ) = P̂(1 − P̂)
nX

+ P̂(1 − P̂)
nY

= P̂(1 − P̂)
(

1
nX

+ 1
nY

)
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so that (12.83) becomes

Z′
δ0

= P̂X − P̂Y√
P̂(1 − P̂)

(
1

nX
+ 1

nY

) .

[Sampling from two independent binomial populations with pX = pY = p]
(12.83.1)

Here we will reject the null hypothesis of equal population proportions at the α

level if

(a) Case I—reject H0 if z′
δ0

≥ zα ;

(b) Case II—reject H0 if z′
δ0

≤ −zα ; and

(c) Case III—reject H0 if
∣∣z′

δ0

∣∣ ≥ zα/2,

(12.85)

with z′
δ0

depicting the realized value of Z′
δ0

.

Example 12.20.1 A random sample of nX = 200 individuals was taken from
one socioeconomic group and it was found that X = 25 of them were college
graduates. A second random sample of nY = 180 individuals from another socio-
economic group exhibited Y = 30 college graduates. Is there any compelling
sample evidence to indicate that one group’s proportion of college graduates is
any different than the others? Here we desire to test H0 : pX −pY = δ0 = 0 versus
H1 : pX − pY = δ0 �= 0 for, say, α = 0.01. Then the relevant sample realizations
are

p̂X = x
nX

= 25
200

= 0.125, p̂Y = y
nY

= 30
180

= 0.166, p̂ = x + y
nX + nY

= 55
380

= 0.145,

and, from (12.83.1),

z′
δ0

= 0.125 − 0.166
√

(0.145)(0.855)
( 1

200 + 1
180

) = −1.138.

For α = 0.01, zα/2 = z0.005 = 2.58. Since |z′
δ0

| < 2.58, it is evident that we cannot
reject H0 at the 1% level. In fact, we cannot reject H0 at any reasonable level of
significance since the associated p-value for this test is about 0.2542 = P(|Z| ≥
1.138|H0 true). �

12.21 Hypothesis Tests for the Difference of Variances When
Sampling from Two Independent Normal Populations

Suppose we extract random samples of sizes nX and nY from two independent
normal populations N(µX , σX ) and N(µY , σY ), respectively, having unknown
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means and variances. Our objective is to test the null hypothesis H0 : σ 2
X = σ 2

Y
against any one of the following alternative hypotheses:

Case I Case II Case III

H0 : σ 2
X = σ 2

Y H0 : σ 2
X = σ 2

Y H0 : σ 2
X = σ 2

Y

H1 : σ 2
X > σ 2

Y H1 : σ 2
X < σ 2

Y H1 : σ 2
X �= σ 2

Y

We determined in Section 11.12 that the random variable

FnX −1,nY −1 = S2
X

/
σ 2

X

S2
Y

/
σ 2

Y

(11.53)

follows an F distribution with nX − 1 and nY − 1 degrees of freedom, where
the sample variances S2

X and S2
Y serve as the best estimators of the population

variances σ 2
X and σ 2

Y , respectively. Under the null hypothesis, (11.53) reduces to

FnX −1,nY −1 = S2
X

S2
Y

. (12.86)

Let s2
X and s2

Y be the sample realizations of S2
X and S2

Y , respectively, with f denot-
ing the sample realization of the appropriate F-test statistic. Then we will reject
the null hypothesis of equal population variances at the α level if

(a) Case I—reject H0 if f = s2
X

s2
Y

≥ f1−α,nX −1,nY −1;

(b) Case II—reject H0 if f = s2
Y

s2
X

≥ f1−α,nY −1,nX −1;

(c) Case III—reject H0 if f = larger sample variance
smaller sample variance

≥ f1−(α/2),ν1,ν2 ,

(12.87)

where ν1 corresponds to numerator degrees of freedom and ν2 denotes denomi-
nator degrees of freedom.

Example 12.21.1 Random samples have been drawn from two independent
normal populations, yielding the following results:

Sample I Sample II

nX = 10 nY = 8

s2
X = 50 s2

Y = 67

At the 5% level, is there sufficient sample evidence to substantiate the claim that
the variance of the second population is significantly larger than the variance of
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the first population? To answer this question, let us test H0 : σ 2
X = σ 2

Y against
H1 : σ 2

X < σ 2
Y with α = 0.05. (Remember that the larger sample variance goes

into the numerator of our test statistic.) Given that the realized value of F is

f = s2
Y

s2
X

= 67
50

= 1.34

and the critical value of f is f1−α,nY −1,nX −1 = f0.95,7,9 = 3.29, we see, via (12.87b),
that since the realized f does not exceed the critical value of f, we cannot reject
H0 at the 5% level; that is, σ 2

Y is not significantly larger than σ 2
X . To approximate

the p-value = P(F ≥ 1.34|H0 true) for this test, we note that 1.34 lies between
f0.50,7,9 = 0.978 and f0.90,7,9 = 2.51. Hence 0.10 < p-value < 0.50.

Alternatively, suppose our sample information had appeared as

Sample I Sample II

nX = 60 nY = 60

s2
X = 2.87 s2

Y = 1.37

and we wanted to test H0 : σ 2
X = σ 2

Y against H1 : σ 2
X �= σ 2

Y at the 5% level. Now

f = s2
X

s2
Y

= 2.87
1.37

= 2.094

and f1−(α/2),nX −1,nY −1 = f0.975,59,59 ≈ 1.67 so that, according to (12.87c), we
reject H0 at the 5% level. We can again approximate our p-value = 2P(F ≥
2.094|H0 true) as 0.002 < p-value < 0.01 (i.e., 2.09 lies between f0.995,59,59 = 1.96
and f0.999,59,59 = 2.25. Hence the p-value lies between 2(0.001) = 0.002 and
2(0.005) = 0.01). �

12.22 Hypothesis Tests for Spearman’s Rank Correlation
Coefficient ρS

Let us extract a random sample involving n ordered pairs of observations
(Xi, Yi), i = 1, . . . , n, where the sample random variable Xi is the ith observation
on the variable X and the sample random variable Yi is the ith observations on the
variable Y. In addition, as stipulated in Section 12.5, Xi is an ordinal value that
depicts the rank associated with some variable W, where the ranks are arranged
from low to high or from 1 to n. A similar situation exists for the collection of Yi

values on the variable Y.
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From (2.33), we may specify as an estimator for ρS the sample rank correlation
coefficient

RS = 1 −
[

6
∑n

i=1 D2
i

n
(
n2 + 1

)
]

, (12.88)

where Di = Xi − Yi , i = 1, . . . , n. The sample realization of RS is then

rS = 1 −
[

6
∑n

i=1 d2
i

n
(
n2 + 1

)
]

= δ, (12.89)

where di = xi − yi is the sample realization of Di , i = 1, . . . , n.
For the null hypothesis let us choose H0 : ρS = 0 (there is no agreement

between ranks described by the X and Y variables). We may then test this null
hypothesis against the following selection of alternative hypotheses:

Case I Case II Case III

H0 : ρS = 0 H0 : ρS = 0 H0 : ρS = 0
H1 : ρS > 0 H1 : ρS < 0 H1 : ρS �= 0

For moderately large n (≥10), it can be demonstrated that, under H0 : ρS = 0,
the sampling distribution of RS is approximately normal with E(RS) = 0 and
V(RS) = 1

n−1 . Hence the standardized random variable

ZS = RS − E(RS)√
V(RS)

= RS

√
n − 1 (12.90)

is approximately N(0, 1). So for a test conducted at the α level of significance,
a set of decision rules for rejecting H0 relative to H1 is:

(a) Case I—reject H0 if zS ≥ zα ;

(b) Case II—reject H0 if zS ≤ −zα ; and

(c) Case III—reject H0 if |zS| ≥ zα/2,

(12.91)

where zS = rS
√

n − 1 is the sample realization of ZS.
For example, let us assume that the n = 10 rankings appearing in Table 2.13

are a random sample taken from some unspecified population distribution.
From this data we found that rS = 0.93. Let us test H0 : ρS = 0 versus H1 : ρS > 0
using α = 0.05. Since zS = 0.93

√
9 = 2.79 > z0.05 = 1.645, we reject H0 in favor of

H1; that is, there exists a statistically significant amount of agreement in the ranks
at the 5% level.
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12.23 Exercises

12-1. The times (in minutes) required to complete a test administered by the
human resources department of ABC Co. are approximately N(78, 12).
The department would like to ascertain whether applicants for employ-
ment who have completed at least two years of college complete the test
faster than the norm. Suppose a random sample of 30 applicants finish the
test in an average time of 72 minutes. Let α = 0.05. Suppose the human
resources department simply wanted to detect a difference in the sample
average from the norm. What is to be concluded? What is the p-value for
the test?

12-2. A soft drink company wants to test-market a new product in n = 40 ran-
domly selected convenience stores. The product will be introduced if in
excess of 10 cases are sold per week in each store. Experience with similar
new products reveals that sales are approximately normally distributed and
that the standard deviation should be approximately 3.5 cases per week.
Should the new product be marketed? Let α = 0.05. What is the p-value
for this test?

12-3. A distributor of a particular brand of industrial heat lamps states that their
average draw of current is 0.9 amps. A sample of n = 12 lamps was tested
and it was determined that x̄ = 0.13 with s = 0.41. For α = 0.05, should
we reject the distributors claim?

12-4. Hot-Shot legal services is attempting to increase reading comprehension
(RC) of its new hires. Fifteen of its first-year recruits are given a standard
RC test. After the test these individuals take a special course designed
to enhance their RC and they are given a second RC test. The difference
between the second and first sets of scores had a mean of 7 points and the
standard deviation of the difference was 9 points. For α = 0.10, has the
special course increased RC?

12-5. Last year average monthly expenditure per household on a certain product
was $12.97. Has there been a statistically significant change in average
household expenditure for this year? A sample of size n = 25 yielded
x̄ = $11.22 with s = $0.95. Use α = 0.01.

12-6. In a random sample of 500 tulip bulbs taken from a normal population
476 of them bloomed. For α=0.05, would you reject the claim that at least
90% of the bulbs will bloom? What is the p-value for this test?

12-7. From a random sample of 200 voters it was found that 110 were in favor of a
particular piece of legislation. Is opinion equally divided on this legislative
issue? Use α = 0.05. What is the p-value? What sampling assumptions are
being made?

12-8. A manufacturer of small machine parts claims that at least 98% of all
parts shipped to ACE Industries conform to specifications. In a sample
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of 250 parts, it was found that 22 did not conform to specifications. For
α = 0.01, should we reject the manufacturers claim?

12-9. To compare the durabilities of two premium exterior house paints (one
from House Depot and the other sold by KK-Mart), nine 4′ × 6′ panels
of each paint were exposed to the elements for a six-month trial period.
(The arrangement of the panels was randomly determined.) At the end of
the trial period the following reflectivity readings were obtained (higher
values represent greater reflectivity):

HD: 9.6, 11.1, 11.6, 9.8, 8.9, 9.5, 10.2, 11.5, 10.1

KK-Mart: 9.4, 10.1, 9.2, 8.0, 10.1, 10.6, 7.2, 8.5, 9.5

For α = 0.05, determine if the paints exhibit equal reflectivity. What
sampling assumptions are being made?

12-10. Given the following (random) sample results:

Sample 1: nX = 16, x̄ = 25, sX = 7.14

Sample 2: nY = 10, ȳ = 29, sY = 5.19

can we conclude at the 10% level of significance that µX < µY ?

12-11. The following are yields (in bushels/acre) for two different varieties of
winter wheat (call them A and B):

A: 62.7, 71.4, 76.7, 59.3, 59.7, 64.7, 69.1, 70.5

B: 69.8, 61.5, 49.9, 53.8, 65.1, 66.7, 47.8, 51.1

Can we conclude at the 5% level that the average yields are equal?

12-12. Ten pairs of twins of a different sex made the following scores on a
specialized dexterity test:

Female: 92, 83, 95, 96, 85, 61, 76, 80, 92, 87

Male: 90, 93, 80, 86, 71, 91, 80, 70, 80, 81

Is there any reason to believe that the female will generally make the
higher average score? Use α = 0.05.

12-13. Two different methods were used to determine the fat content (expressed
as a percent) in different samples of premium vanilla ice cream. Both
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methods were used on scoops taken from the same container. Does one
of these methods yield higher readings on the average? Use α = 0.01.

Sample: 1 2 3 4 5 6 7 8 9

Method 1: 20 21 18 17 22 21 23 19 16

Method 2: 17 20 18 16 17 20 19 21 21

12-14. A time-and-motion expert feels that she can shorten the workers handling
time for 5lb. packages in the shipping department of a candy manufacturer.
Suppose n = 10 workers are chosen at random. Time-and-motion readings
(in minutes) on them before and after the completion of a training program
appear as

Sample: 1 2 3 4 5 6 7 8 9 10

Before: 7 7 8 7 9 7 6 8 7 7

After: 6 7 6 5 7 5 4 6 4 4

For α = 0.05, has the average handling time per worker for a 5lb. package
decreased?

12-15. A random sample of n = 1000 persons consisted of 485 females and 515
males. Of the females, 250 were college graduates and 327 of the males
had graduated college. Does this sample evidence lead us to conclude that
the proportion of college graduates is smaller for females? Use α = 0.05.
Determine the p-value for this test.

12-16. In a sample of size nX = 100 from one binomial population it was found
that x = 31, and in a sample of size nY = 150 from a second binomial
population it was found that y = 50. Test the hypothesis of no difference
in the proportions of successes at the α = 0.01 level. What is the p-value
for this test?

12-17. A random sample of nX = 140 households from a low-income neighbor-
hood exhibited a head of household registered as a Democrat in x = 70
cases. A similar sample of size nY = 130 taken from a high-income neigh-
borhood had a head of household registered as a Democrat in y = 48 cases.
Is the proportion of Democratic registrations higher in the low-income
area? Use α = 0.10.

12-18. Fenway Park needs to purchase spotlights that exhibit long life as well as
uniformity of operating life. Past experience dictates that the variance of
bulb life should not exceed 230 (hours)2. A sample of n = 16 bulbs is
obtained from a new vendor wishing to get the lighting contract. It was
found that x̄ = 1020 hours with s2 = 275 (hours)2. For α = 0.05, does the
true or population variance exceed 230?

12-19. A sample of n = 25 ball bearings were tested for resistance to heat due
to friction. It was found that s2 = 150 (degrees)2. Is this result consistent
with the claim that the true variance will not exceed 118 (degrees)2? Use
α = 0.01.
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12-20. From a sample of size n = 30 it was determined that s2 = 14.7 (inches)2.
Test H0 : σ 2 ≥ 18 (inches)2 against H1 : σ 2 < 18 (inches)2 at the 1% level.
What is your conclusion?

12-21. Farmers consider uniformity of yield to be an important attribute of an
agricultural commodity. Two types of seed (brands X and Y) for growing
alfalfa are to be compared. They have about the same mean yield/acre
but it was determined for nX = nY = 15 that s2

X = 15 (bushels)2 and
s2

Y = 22 (bushels)2. Is the variance of brand X significantly lower than the
variance of brand Y? Use α = 0.10.

12-22. Two brands of heavy duty fan belts (call them brand X and brand Y)
have about the same average durability. However, their uniformity of
wear is questionable. A sample of 10 brand X belts and 15 brand Y belts
yielded s2

X = 5.576 (miles)2 and s2
Y = 8.025 (miles)2, respectively. Should

a trucking company purchase brand X belts for its fleet of trucks? Use
α = 0.05.

12-23. A study of two independent samples of sizes nX = 15 and nY = 19 yielded
s2

X = 10.8 and s2
Y = 15.9, respectively. Test H0 : σ 2

X ≥ σ 2
Y against H1 : σ 2

X <

σ 2
Y using α = 0.01. State your conclusion.

12-24. Let us assume that the n = 10 rankings appearing in Table 2.13 are a ran-
dom sample taken from some unspecified population distribution. From
this data we found that rs = 0.93. Test H0 : ρs = 0 versus H1 : ρs > 0 using
α = 0.05.

12-25. From a sample of size n = 14 rankings it was determined that the real-
ization of Spearman’s rank correlation coefficient was rs = 0.75. Test
H0 : ρs = 0, versus H1 : ρs > 0 using α = 0.01.

12-26. In a test of depth perception two judges each ranked n = 10 objects in
order of their approximate distance (rounded to the nearest yard) from
a fixed baseline marker. The results are presented in the accompanying
table.

Object Judge 1 Judge 2

1 5 3
2 4 1
3 3 7
4 2 6
5 1 5
6 7 8
7 9 10
8 8 9
9 10 4

10 6 2

Find rs. Using α = 0.05, test H0 : ρs = 0, against H1 : ρs �= 0.
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12-27. Given that X is N(µ, 10), the null hypothesis is H0 : µ = µ0 = 27, the
alternative hypothesis is H1 : µ < 27, and n = 50, what is the distribution
of �X? For α = 0.05, find R and �R . Suppose the true mean is µ = µ1 = 18.
What is the probability (β) of not rejecting H0 when the true mean is 18?

12-28. Recalculate β = P(TIIE) for the preceding problem when:

(a) n increases to 100

(b) α decreases to 0.01

(c) σ increases to 15

(d) µ1 decreases to 15

12-29. Suppose that in Exercise 12-27 the alternative hypothesis is replaced by
H1 : µ �= 27. Find R and �R . If the true population mean is 22, what is the
probability of not rejecting H0? What is the probability of not rejecting H0

if the true mean is 29?

12-30. Suppose X is N(µ, 20) and that, for α ≤ 0.05 and β ≤ 0.05, we want to
test H0 : µ = µ0 = 76, against H1 : µ > 76. How large of a sample will
be needed if µ1 = 80? How large of a sample would be required if the
alternative hypothesis is replaced by H1 : µ �= 76.

12-31. Assume that we are sampling from a binomial population and that we
are testing H0 : p = p0 = 45, against H1 : p > 0.45 using α = 0.05 given
n = 200. What is the distribution of P̂? Find R and �R . Suppose the true
proportion is p1 = 0.56. What is β = P(TIIE)?

12-32. Recalculate β for the preceding problem when:

(a) n decreases to 100

(b) α increases to 0.10

(c) p1 increases to 0.60

12-33. Suppose that in Exercise 12-31 the alternative hypothesis is replaced by
H1 : p �= 0.45. Find R and �R . If the true population proportion is 0.40,
what is the probability of not rejecting H0? What is the probability of not
rejecting H0 if the true proportion is 0.58?

12-34. Assume that we are sampling from a binomial population and that we are
to test H0 : p = p0 = 76, against H1 : p < 0.76. The α- and β-risks are each
not to exceed 10%. How large of a sample will be required if p1 = 0.60?

12-35. Suppose that X is N(µ, 20) and n = 40. Let H0 : µ = µ0 = 100, with
H1 : µ < 100. For α = 0.01, find R and �R . Find β(µ) for µ = µ1 = 80, 82,
84, 86, 88, 90, 92, 94, 96, 98. Determine the power P(µ) for each of the
given µ’s. Graph the power curve. What does its shape inform us about
the test?



566 Chapter 12 Tests of Parametric Statistical Hypotheses

12-36. For X distributed as N(µ, 10), n = 130, α = 0.05, H0 : µ = 200, and
H1 : µ �= 200, find R and �R . Use (12.42) to determine P(µ) for a variety
of µ’s satisfying H1. Graph and then interpret the power curve.

12-37. Suppose a random sample of size n = 200 is extracted from a binomial
population. For α = 0.01, let us test H0 : p = p0 = 0.35, against H1 : p >

0.35. Find R and �R . Use (12.42) to specify the power P( p) of this test for
a variety of p’s. Graph the power function and interpret its shape.

12-38. Suppose the random variable X has a probability density function of the
form f (x; l) = le−lx, x > 0, l > 0. For H0 : l = l0, and H1 : l = l1,
l0 > l1, determine the best test of size α of H0 versus H1 for a sample of
size n.

12-39. Let X1, . . . , Xn denote a set of sample random variables drawn from the
probability mass function p(x; θ) = e−θx

X ! , X = 0, 1, 2, . . . , θ ≥ 0; zero
elsewhere. Find the uniformly most powerful test of size α of H0 : θ = θ0,
against H1 : θ > θ0.

12-40. Determine the form of the Neyman-Pearson critical region for testing
H0 : l = l0 versus H1 : l > l0 for a set of n sample random variables drawn

from the probability mass function f (x; l) = e−llX

X ! , X = 0, 1, . . . ; l > 0.

12-41. Suppose {X1, . . . , Xn} is a set of sample random variables drawn from the
probability density function f (x; θ) = θxθ−1, 0 < x < 1; zero elsewhere.
Find the most powerful test of size α of H0 : θ = θ0 = 1, against H1 : θ =
θ1 = 2.

12-42. Let {X1, . . . , Xn} depict a set of sample random variables taken from the
(gamma) probability density function f (x; α0, θ) = 1

�(α0)θα0 xα0−1 e−x/θ ,
x ≥ 0; α0, θ > 0. Determine the most powerful test of size α of H0 : θ = θ0

versus H1 : θ = θ1, with θ1 > θ0.

12-43. Use the Neyman-Pearson Lemma to determine the best critical region for
testing H0 : θ = θ0 versus H1 : θ �= θ1(<θ0) for a random sample of size
n given the probability density function f (x; θ) = (1 + θ)xθ , 0 < x < 1;
zero elsewhere.

12-44. Suppose {X1, . . . , Xn} is a set of sample random variables drawn from a
N(θ , 1) population. Use the Neyman-Pearson Lemma to determine the
best critical region of size α for testing H0 : θ = 3 versus H1 : θ = 2.

12-45. For (12.61), explain why 0 ≤ l̂ ≤ 1.

12-46. For a set of sample random variables {X1, . . . , Xn} taken from the proba-
bility density function

f
(
x; l

) =
{

2lxe−lx2
, x > 0, l > 0;

0 elsewhere
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find a uniformly most powerful test of size α of H0 : l = l0 versus H1 :
l > l0.

12-47. Suppose X1, . . . , Xn depicts a random sample drawn from a N(µ, σ ) pop-
ulation, where both µ and σ 2 are unknown. Perform the generalized
likelihood ratio test of H0 : µ = µ0 = 100 versus H1 : µ �= 100.

12-48. Suppose X1, . . . , Xn is a random sample taken from a N(µ, σ ) random
variable with both µ, σ 2 unknown. Conduct the generalized likelihood
ratio test of H0 : σ 2 ≥ σ 2

0 = 0.37, against H1 : σ 2 < 0.37.

12-49. Hypothesis Tests for the Coefficient of Variation Under Random Sam-
pling. We may want to determine if a set of sample random variables
{X1, . . . , Xn} could have been drawn from a population having a given
coefficient of variation V0 = (σ /µ)0. For instance, suppose that in 1990 a
large cross-section of countries was known to have a coefficient of vari-
ation of per capita income levels equal to V1990. Has the coefficient of
variation calculated from a random sample of these countries for the year
2000 changed significantly from V1990? If, for instance, there has been a
statistically significant decline in the value of this statistic over time, then
we have some sample evidence that convergence of per capita incomes has
occurred; that is, the countries have become more similar or uniform with
respect to per capita income levels.

Suppose we want to test H0 : V = V0, against the two-tail alternative
H1 : V �= V0 at the α = P(TIE) level of significance. If the sampled popu-
lation is N(µ, σ ) with V = σ /µ ≤ 0.66, then, for a sample size n ≥ 10, the
test statistic

ZV =
√

n − 1
(
S/�X − Vo

)

Vo
√

V2
o + 0.5

is approximately N(0, 1). Then the critical region R = {zV /|zV | ≥ zα/2},
where zV is the sample realization of ZV . For one-tailed alterna-
tives (involving either H0 : V ≤ V0 vs. H1 : V ≤ V0 or H0 : V ≥ V0 versus
H1 : V < V0), this test works well for n ≥ 11 when sampling from a nor-
mal population with V ≤ 0.33. In this instance R = {zV |zV | ≥ zα} for
H1 : V > V0 or R = {zV |zV | ≤ −zα} when H1: V < V0.

A sample of size n = 25 is taken from a N(µ, σ ) population with the re-
sult that x̄ = 1.52, s = 4.67. For α = 0.05, test H0 : V = V0 = 0.35 against
H1 : V < 0.35.
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1313
Nonparametric Statistical
Techniques

13.1 Parametric vs. Nonparametric Methods

The previous chapter dealt with the classical or traditional theory and execution
of tests of statistical hypotheses. As indicated therein, a hypothesis is a state-
ment about the probability distribution of a random variable. Procedurally, we
assumed that the population distribution had a specific functional form and then
we tested hypotheses concerning its parameter(s). However, instead of dealing
with a parametric hypothesis, we may actually make a statement about the form
of the population distribution itself; that is, we can test a distributional hypothesis.
For example, we previously tested hypotheses about the unknown mean µ of
a population random variable X, which was assumed to be N(µ, σ ), with the
variance σ 2 either known or unknown. Clearly the distributional assumption of
normality was made. But if we actually choose to conduct a test of the null hypoth-
esis that X is normally distributed, then obviously a distributional hypothesis has
been made. The alternative hypothesis is then that the random variable X is not
of the stated form.

If this alternative hypothesis is assumed true, then, unfortunately, the like-
lihood function of the sample is not well defined and thus the likelihood-ratio
methodology developed in Sections 12.16 and 12.17 of Chapter 12 does not apply.
In such instances β = P(TIIE) cannot be evaluated so that comparisons among
alternative tests cannot be made.

Additionally, we also assumed under the classical approach to hypothesis
testing that we had a random sample of observations on some population char-
acteristic X; that is, the sample random variables X1, . . . , Xn were not obtained
in any systematic fashion and, in fact, were drawn independently of each other.
In this regard, we can also test what we shall call a randomness hypothesis. That
is, we can determine whether any given set of sample realizations {xi, . . . , xn} can
be taken to be a random sample. Here the null hypothesis is that the sample is
random and the alternative hypothesis is that it is not random.

569
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The aforementioned distributional and randomness hypotheses are part of a
broader class of testable hypotheses that come under the rubric of nonparametric
statistical techniques. We now offer a detailed comparison of the parametric versus
nonparametric approaches to statistical inference.

As noted in the preceding chapter, the common modus operandi for imple-
menting any parametric statistical technique quite generally involves (1) identify-
ing a population parameter θ as the object of our inferential inquiry; (2) extracting
a random sample of size n; (3) selecting a good point estimator T of θ ; and
(4) specifying the form and parameters of the sampling distribution of T. Once
these steps are taken, confidence limits and hypothesis tests can be formulated.
For instance, if it is assumed that the population random variable X (measured
on a quantitative scale) is N(µ, σ ), with σ unknown and n small, then the best
estimator of µ is �X , where �X follows a t-distribution with n−1 degrees of freedom.
Clearly in this circumstance the problem of statistical inference is reduced, say, to
testing hypotheses about the parameter µ.

However, if we are unsure about the legitimacy of any of the assumptions
underlying a specific parametric technique (e.g., it may be the case that the assump-
tion of the normality of the parent population is dubious or the value of one or
more of the parameters of the population distribution cannot be fixed), then pos-
sibly a nonparametric technique is appropriate for inferences about θ . In fact, if
X is measured on a nonquantitative scale, then µ and σ are meaningless. Hence
a parametric inference concerning, say, µ is impossible. More specifically, let us
examine Table 13.1.

Table 13.1

Parametric Methods Nonparametric Methods

p.1 n.1
Not applicable when dealing with

nominal or ordinal data. Most
parametric methods are relevant for
data measured on a quantitative
(interval or ratio) scale.

Primarily concerned with nominal or
ordinal data taken from a (typically)
continuous population distribution.
If a nonparametric technique is
appropriate for interval or ratio scale
data, then n.2 applies.

p.2 n.2
Assumes some knowledge of the form of

the population probability distribution
(e.g., normality). Often incorporates
additional assumptions such as
independence of the observations
(when conducting one-sample tests)
or the homogeneity of variances (when
performing two-sample tests).

Does not require that the probability
distribution of some population
characteristic assume any functional
form. In this regard, since the
population distribution is often
unspecified, nonparametric methods
are aptly termed distribution-free
statistical methods. Clearly
distribution-free methods are thus a
proper subset of the much broader
class of nonparametric methods.
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Table 13.1 Cont’d.

Parametric Methods Nonparametric Methods

p.3 n.3
For small random samples, the normality

assumption is questionable.
Suitable for making inferences about

populations with small- to
medium-sized random samples
(n ≤ 50) given that the form of the
population distribution is unknown.

p.4 n.4
Null and alternative hypotheses are

precisely stated. Hence conclusions
obtained from parametric hypothesis
tests have a high degree of information
content. (For example, if in a
two-sample t test of H0: µ1 − µ2 = 0
versus H1: µ1 − µ2 �= 0 we are led to
reject the null hypothesis in favor of
the alternative hypothesis at a
particular level of significance, then
we may conclude that “the two
populations differ with respect to
central tendency.”)

The null hypothesis formulated in a
nonparametric test is not as precise as
its parametric counterpart and thus
rarely equivalent to the same. (For
example, the nonparametric analog to
the parametric null hypothesis of equal
population means is H0: the population
distributions are identical. If this null
hypothesis is rejected in favor of the
alternative hypothesis H1: the
population distributions are not
identical, then the question of the
nature of the difference between the
two populations is left unanswered).

p.5 n.5
In instances where both parametric and

nonparametric techniques apply (i.e.,
the classical assumptions hold), the
power of a parametric test (its
ability to detect differences from
hypothesized values) is greater than
that of its nonparametric counterpart
given n, α = P(TIE), and the true
situation. That is, for a given level of
significance α and sample size n, the
probability of committing a Type II
Error is lower with parametric tests
relative to nonparametric ones. This
being the case, nonparametric tests
have less than 100% power efficiency
when compared to parametric tests.

When both parametric and
nonparametric techniques apply, a
nonparametric technique requires a
larger n (or α) to achieve the same
power as a parametric technique. In
fact, for sufficiently large samples, the
power of a nonparametric test
approaches that of its parametric
analogue. Thus nonparametric
methods require more evidence
relative to parametric ones to support
comparable inferences. When
classical assumptions do not hold,
nonparametric tests may be at least as
powerful as parametric ones in
detecting differences from
hypothesized values.

In what follows we shall first consider nonparametric tests on a single sample.
Specifically, we shall examine tests for the randomness of an ordered sample
data set; the sign test for a proportion as well as for the median of a random
sample; and the Wilcoxon signed rank test for the median under random sampling.
Two-sample tests on both independent and paired samples will subsequently be
offered.
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13.2 Tests for the Randomness of a Single Sample

In this section we shall examine the two tests that can be used to assess the ran-
domness or, equivalently, independence of a set of observations when the order in
which the observations were obtained is important. To this end, we shall attempt
to answer the question: Can a sample that is known to be nonrandomly drawn or
generated be treated as if it represented a random sample? The tests alluded to
are the runs test and the von Neumann ratio test.

A runs test, as the name implies, is based upon the notion of a run—an
unbroken sequence of identical outcomes/elements (denoted by letters or special
symbols) that are preceded and followed by different outcomes or no outcomes
at all. For instance, let us assume that a stamping machine in a metal shop has
produced the following ordered sequence of defective (d) and nondefective (n)
television chassis components: n n n n n / d / n n / d / n n n / d d / n n n. According
to our definition of a run, this sequence has seven runs, where a slash is used
to separate each individual run. That is, each sequence of n’s and d’s, uninter-
rupted by the other letter, constitutes a run. As this example indicates, we may
view a run as a maximal subsequence of like elements, where a subsequence is
simply a sequence within a sequence. Here we delimit the maximum number of
like items (say, n’s) before encountering a different item (d’s). Clearly the great-
est number of runs that can occur in an arrangement of n items is n; and the
smallest number of runs in any such arrangement is 1. It must be emphasized
that the order in which the observations occur must be preserved so that the var-
ious subsequences of runs can be identified. In addition, the length of each run is
irrelevant.

As we shall now see, a runs test is used to determine if the elements within
an ordered sequence of events occur in a random fashion, where each element
within the sequence assumes one of two possible values (e.g., the n’s and d’s
given earlier). In general, any letters (or symbols) may be used to designate the
dichotomy within the sequence generated by a binary process, and any principle
that orders these letters may be employed.

The total number of runs exhibited by a given sequence of outcomes is typi-
cally a good indicator of its possible lack of randomness; that is, the presence of
too few runs might indicate a specific grouping of items or perhaps a trend; and
too many runs might reveal some sort of periodic pattern within the sequence.
In either instance, either too few or too many runs provides us with evidence
supporting the lack of randomness in one set of observations.

The single-sample runs test can be performed using a variety of data types. It
is applicable when the observations are measured on a nominal or ordinal scale
(e.g., consider the preceding subsequences of n’s and d’s) as well as on an interval
or ratio scale. In this latter instance we typically consider runs above and below
some reference value such as the median. This is particularly useful if a time-
related trend is suspected to exist in the data set; for example too few runs is
indicative of a time trend in the data.

Suppose that we observe an ordered sequence of attributes; for example
defective versus nondefective items produced; yes or no answers to a specific
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question asked in a public opinion poll, and so on. In general, let the two types of
outcomes observed be denoted by the letters a and b. Suppose further that within
the entire sequence of n items we have n1 a’s and n2 b’s, where n1 + n2 = n. In
addition, let the random variable R denote the number of runs occurring in the
ordered sequence of n items and let r be its sample realization.

In the tests for sample randomness that follow, the null hypothesis will always
be specified as H0: the order of the sample data is random. Then the following
sets of hypotheses can be formulated:

Case I Case II Case III

H0: the order of the sample H0: the order of the sample H0: the order of the sample
data is random data is random data is random

H1: too many runs H1: too few runs (a specific H1: the order of the sample
(indicating periodicity) grouping or trend) data is not random

(Here Case III is the typical set of null and alternative hypotheses used when
testing randomness.)

At this point in our discussion of the runs test we need to explicitly take account
of the sample size. To this end we have:

A. Small Sample Runs Test. As a general rule, we shall perform a
small-sample runs test when n1 ≤ 15 and n2 ≤ 15. For Case III (which specifies
a two-sided alternative hypothesis) with α = 0.05, Table A.10 of the Appendix
enables us to identify both lower- and upper-tail critical values r� and ru, respec-
tively, of the sampling distribution f ( y) of R, which restrict the probability in each
tail of f ( y) to α

2 . That is, r� and ru are chosen so that

P(R ≤ r� or R ≥ ru) = P(R ≤ r�) + P(R ≥ ru) =
r�∑

y=2

f ( y) +
n∑

y=ru

f ( y)

≈ α

2
+ α

2
= α(= 0.05). (13.1)

(Since R is a discrete random variable, the true level of significance α may not
be precisely equal to 0.05.) Hence the critical region for this two-tailed test is
R = {r|r ≤ l or r ≥ ru}. So if r ∈ R , we reject the null hypothesis of random order
at the 5% level; that is, we cannot treat the given sample as if it were random.

Example 13.2.1 Suppose that an industrial process has generated the following
sequence of bolts whose diameters either satisfy the tolerance limits (this outcome
is denoted as a) or do not satisfy the stated limits (this outcome is depicted as b).
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A sample of n = 25 bolts yielded the following sequence of outcomes:

aaaa/bb/aaa/b/aaaa/bbb/aa/bb/aa/bb

Here n1 = 15, n2 = 10, and the realized number of runs is r = 10. Let us test
H0: the order of the process outcomes is random, against H1: the order of the
process outcomes is not random (Case III). For a = 0.05, Table A.10 renders r� = 7
and ru = 18. Hence we may specify the critical region as R = {r|r ≤ 7 or r ≥ 18}.
In this regard, since our sample result is such that r� < 10 < ru, we cannot reject
the null hypothesis of randomness at the 5% level. Hence the process outcomes
can be treated as if they represent a random sample. �

We note briefly that for the Case I pair of hypotheses, the critical region is
R = {r|r ≥ ru}, where P(R ≥ ru) = α

2 = 0.025. And for Case II, R = {r|r ≤ rl},
where P(R ≤ rl) = α

2 = 0.025.

B. Large Sample Runs Test. If either n1 or n2 exceeds 15, the sampling
distribution of R can be shown to be approximately normal with

E(R) = 2n1n2

n
+ 1, V(R) = 2n1n2(2n1n2 − n)

n2(n − 1)
, (13.2)

where n1 + n2 = n. Hence

ZR = R − E(R)
√

V(R)
(13.3)

is N(0, 1) and thus, for a test conducted at the 100α% level, the decision rules for
rejecting H0 relative to H1 are:

(a) Case I—reject H0 if zR ≥ zα ;

(b) Case II—reject H0 if zR ≤ −zα ; and

(c) Case III—reject H0 if |zR| ≥ zα/2,

(13.4)

where zR is the sample realization of ZR.

Example 13.2.2 Suppose an exit poll is undertaken on the day of an important
mayoral election in a large eastern city. A sample of n = 36 voters were asked if
they voted in the last election. Their responses were either “yes” (an a is recorded)
or “no” (in which case a b is recorded). Can we act as if the following ordered
sequence of responses resulted from a random sampling of voters? For α = 0.10,
let us test H0: the order of the sample data is random, against H1: the order of the
sample data is not random (Case III again). The responses are

aa/b/aaa/bb/aaa/b/aa/bbbb/a/b/aaa/b/aaaa/bb/a/bb/a/bb
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Here n1 = 20, n2 = 16 and r = 18. Then from (13.2) we have

E(R) = 2(20)(16)
36

+ 1 = 18.77,

V(R) = 2(20)(16)[2(20)(16) − 36]
(36)2(35)

= 8.52,

and thus, from (13.3),

|zR| =
∣∣∣∣
18 − 18.77√

8.52

∣∣∣∣ = 0.26.

Since this quantity is not an element of the critical region R = {zR| |zR| ≥ 1.645},
we cannot reject the null hypothesis at the 10% level. Hence the set of sample
observations can be treated as if they constitute a random sample. �

The preceding versions of the runs test have been developed for nonquantita-
tive (nominal or ordinal) or attribute data. However, if a sample consists of a set
of numerical values, such as those measured on an interval or ratio scale, then a
slightly different version of the runs test can be offered. In particular, we now turn
to the specification of a test for randomness that utilizes runs above and below
the sample median.

C. Runs Above and Below the Sample Median. Our first step is to
determine the median of the data set. We then seek to determine if each observa-
tion in the ordered sequence is above or below the median. Looking to the same
type of letter code as developed earlier, let a represent the label assigned to a value
falling above the median, and let b denote the label assigned to a value which falls
below the median. (Numerical values equal to the median are discarded.)

As before, n1 = total number of a’s, n2 = total number of b’s, and R is the total
number of runs above and below the median. Once these quantities have been
realized from the sample data, (13.2) through (13.4) can be used to test the
hypotheses concerning, say, trends or cyclical behavior.

Example 13.2.3 Suppose the following ordered sequence of n = 40 observa-
tions emerges from a particular process:

98 99 62 65 89 87 87 88 91 62 65 71 91 97 98 90 62
66 89 90 71 72 80 90 65 60 59 60 52 57 52 55 67 80
91 32 61 61 71 60

Once these observations are arranged in an increasing sequence, we can easily
verify that the sample median equals 71. Then those items above the median will
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be marked with an a and those items below the median will be tagged with a b.
The ordered sequence of a’s and b’s appears as

aa/bb/aaaaa/bb/aaaa/bb/aaaaa/bbbbbbbbb/aa/bbbb

(Note that the three 71’s have been omitted since they coincide with the median.)
Thus n = 37, n1 = 18, n2 = 19 and r = 10. Since it appears that most of the a’s
occur at the beginning of the sequence and a bunching of b’s emerges at the end
of the same, we shall consider the Case II option for our test of randomness of this
series; that is, there appears to be a downward trend to the data set. Let α = 0.05.
Then from (13.2) through (13.4):

E(R) = 2(18)(19)
37

+ 1 = 19.48,

V(R) = 2(18)(19)[2(18)(19) − 37]
(37)2(36)

= 8.98,

and

zR = 10 − 19.48√
8.98

= −3.17.

Here R = {zR|zR ≤ −1.96}. Clearly we may reject the null hypothesis of random-
ness at the 5% level; that is, we have a statistically significant downward trend to
this data series since it exhibits too few runs to be viewed as if the order of the
observations resulted from a purely random process. �

D. von Neumann Ratio Test. We now turn to the utilization of the
von Neumann ratio to test for the randomness (or independence) of an ordered
sample data set. Quite often a collection of observations is indexed by the pas-
sage of time; that is, it is time that imposes order upon the data set. In such
instances the resulting data set, generated sequentially in time, will be referred to
as a discrete time series. (It is discrete in the sense that observations are made on
a variable X at some fixed interval h.)

A series of observations ordered in time is typically not a random sample; for
example, annual values of U.S. gross domestic product (GDP) from 1960 to 2000
is not a random series. That is to say, the value of an observation recorded on a
variable X in period i may be related to its value in period i − j, i > j. In such
instances we say that the observations are serially correlated. If j = 1, then we
have first-order serial correlation; that is, successive X values are related. More
formally, we are interested in determining whether

P(Xi = a′∣∣Xi−1 = a) = P(Xi = a′), (13.5)
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that is does knowledge of the value of X in period i − 1 enable us to predict
the value of X in period i? If the answer is no, then the X series is independent
or random and thus lacks first-order serial correlation (however, serial corre-
lation of a higher order may still exist). But if the answer is yes, then the X
values are first-order serially correlated and thus their order is not indepen-
dent or random. In general, if inequality holds in (13.5) for some value of i,
then serial correlation is present—the data stream is not generated by a random
process.

Serial correlation, when it occurs, can be classified as either positive or neg-
ative. When positive serial correlation is present, we find that high (respectively,
low) values of X tend to remain high (respectively, low) for a succession of time
periods whereas when negative serial correlation manifests itself, successive X val-
ues tend to alternate between high and low levels. In this regard, although we
shall always work with a null hypothesis that asserts that the time series is random
or independent (i.e., H0: no serial correlation) a variety of alternative hypotheses
may be specified:

Case I Case II Case III

H0: no serial correlation; H0: no serial correlation; H0: no serial correlation;
H1: negative serial correlation H1: positive serial correlation H1: serial correlation exists

Given a set of sample random variables {X1, . . . , Xn}, the von Neumann ratio
test for randomness or independence of a time series employs the difference
between the successive values of a variable X or Xi − Xi−1, i = 2, 3, . . . , n. If
we square each of the differences Xi − Xi−1 and pass to its expectation, we have

E(Xi − Xi−1)2 = E[(Xi − µ) − (Xi−1 − µ)]2

= E(Xi − µ)2 − 2[E(Xi − µ)(Xi−1 − µ)] + E(Xi−1 − µ)2

= σ 2 − 2COV(Xi, Xi−1) + σ 2. (13.6)

Under the null hypothesis of independence, COV(Xi, Xi−1) = 0 so that (13.6)
reduces to

E(Xi − Xi−1)2 = 2σ 2. (13.6.1)

Next, if we average the n−1 squared differences, we obtain what is commonly
called the mean–square–successive difference (MSSD)

MSSD = 1
n − 1

n∑

i=2

(Xi − Xi−1)2. (13.7)
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Then, by virtue of (13.6.1),

E(MSSD) = 1
n − 1

E

[
n∑

i=2

(Xi − Xi−1)2

]
= 1

n − 1

n∑

i=2

E(Xi − Xi−1)2

= 1
n − 1

(n − 1)(2σ 2) = 2σ 2

and thus E
[

MSSD
σ 2

]
= 2. If we replace σ 2 by its unbiased estimator S2 =

n∑

i=1
(Xi−�X)2

n−1 ,

then the statistic

D = MSSD
S2

=

2∑
i=1

(Xi − Xi−1)2

n∑
i=1

(Xi − �X)2
(13.8)

denotes the von Neumann ratio of the mean–square–successive difference to the
variance. The sample realization of (13.8) is

d =

n∑
i=2

(xi − xi−1)2

n∑
i=1

(xi − x̄)2
. (13.8.1)

Turning to Case III (with its two-sided alternative hypothesis), Table A.20 of
the Appendix provides us with both lower- and upper-tail critical values d� and du,
respectively, of the sampling distribution f (y) of D, which restrict the probability
in each tail of f (y) to either α

2 = 0.01 or α
2 = 0.05, where α(= 0.02 or 0.10) is the

level of significance of the test. Thus d� and du are chosen so that

P(D ≤ d� or D ≥ du) = P(D ≤ d�) + P(D ≥ du) = 0.02 (or 0.10)

Hence the critical region corresponding to the Case III two-tail test is R = {d|d ≤
d� or d ≥ du}, where both d� and du are specified for either α = 0.02 or α = 0.10.
So if our sample result is such that d� < d < du, then we cannot reject the null
hypothesis at the stated α level. If you suspect the presence of negative serial
correlation (Case I), then the critical region is R = {d|d ≥ du} with P(D ≥ du) =
α(= 0.01 or 0.05). And if you suspect that position serial correlation is likely to
occur (Case II), then R = {d|d ≤ d�}, where P(D ≤ d�) = α(= 0.01 or 0.05).

Example 13.2.4 Given the following sample of n = 15 yearly observations on
a variable X (see Table 13.2), is there any compelling evidence to indicate the
presence of positive serial correlation (Case II) in the population? Let α = 0.01.
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Table 13.2

Yearly Observations on X

xi xi − xi−1 (xi − xi−1)2 xi − x̄ (xi − x̄)2

15 – – 3 9
14 −1 1 2 4
15 1 1 3 9
13 −2 4 1 1
12 −1 1 0 0

9 −3 9 −3 9
8 −1 1 −4 16

10 2 4 −2 4
9 −1 1 −3 9
8 −1 1 −4 16

11 3 9 −1 1
12 1 1 0 0
13 1 1 1 1
15 2 4 3 9
16 1 1 4 16—— —— ——
180 39 104

Given that x̄ = 180
15 = 12, we find, from (13.8.1), that d = 39

104 = 0.375. From
Table A.20 we have R = {d|d ≤ 0.9880}. Since our realized D falls within this
critical region, we reject the null hypothesis of no serial correlation at the 1% level
in favor of the alternative hypothesis that positive serial correlation exists in the
population.

Since Table A.20 holds for only α = 0.01 or α = 0.05, it might be useful to
have the p-value associated with d. To this end, it can be shown that for larger
samples, the sampling distribution of D tends to normality with

E(D) = 2n
n − 1

, V(D) = 4n2(n − 2)
(n − 1)3(n + 1)

. (13.9)

Then from the preceding example problem,

P(D ≤ d) = P(D ≤ 0.375) = P

(
D − E(D)
√

V(D)
≤ 0.375 − 2.142√

0.2665

)

= P(ZD ≤ −3.423) = 0.0003,

where ZD is N(0, 1). Hence the p-value is 0.0003; that is, the probability of getting
a value of ZD this small or smaller if the null hypothesis is true is virtually zero.

(Remember, however, that our n = 15 value is not exactly what we would call
large.) �
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13.3 Single-Sample Sign Test Under Random Sampling

Suppose we extract a random sample of size n from a given continuous popu-
lation, with {x1, . . . , xn} serving as the set of realizations of the sample random
variables X1, . . . , Xn. Furthermore, suppose we have a criterion that serves to
dichotomize the observations xi; that is, we have a rule that places each sample
realization in either of two mutually exclusive categories. If ties occur (an obser-
vation is common to each category), then the observation is eliminated and n is
appropriately adjusted downward. Once the dichotomization of the sample is com-
plete, the original (remaining) data points xi are converted to plus (+) or minus
(−) signs. The resulting plus or minus signs can be associated with observations
on any of the four measurement scales.

For instance, if we have a data set containing observations measured on a
nominal scale that pertain to the sex of an individual, then we may arbitrar-
ily assign males a “+” sign and females a “−” sign. Or if we have a set of
observations measured on an interval or ratio scale (the population variable is
continuous) and we are interested in testing a hypothesis about the population
median (denoted γ0.5), then any observation that exceeds the null value γ 0

0.5 can
be replaced by a + sign; and an observation that falls below the null value γ 0

0.5
can be replaced by a − sign. Values tied with the null value are discarded. Note
that if the population is symmetric, then the mean and median coincide and thus
testing a hypothesis about the median is equivalent to a hypothesis test concerning
the mean.

Once the assignment of plus and minus signs is complete, the sign test is per-
formed under the assumptions that (1) plus and minus signs are equally likely
within the population itself; and (2) the sign attached to one observation is inde-
pendent of the sign attached to any other observation. Additionally, since only
the number of plus (minus) signs will be needed in what follows, the order in
which the plus and minus signs occur is irrelevant (remember that order was
important for the runs test). Note that by virtue of assumption 1, the sign
test is a special case of the binomial test for the parameter p; that is, under
dichotomization the sign test is equivalent to a test of the Bernoulli hypothesis
H0: p = 0.50.

A. Sign Test for a Proportion. In the first version of the sign test that
follows, let p+ and p− denote the population proportions of plus and minus signs,
respectively. Moreover, let S+ = the number of plus signs and S− = the number
of minus signs. The sample realizations of S+ and S−, will be denoted as s+ and
s−, respectively. Given the following sets of hypotheses:

Case I Case II Case III

H0: p+ ≤ p− H0: p+ ≥ p− H0: p+ = p−
H1: p+ > p− H1: p+ < p− H1: p+ �= p−
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the specification of our test statistic S (with realization s) will be based upon the
alternative hypothesis made. That is,

TEST STATISTIC S UNDER H1:
(a) Case I—S = S+;

(b) Case II—S = S−; and

(c) Case III—S = max{S+, S−}.

(13.10)

Hence we may frame, for a given level of significance α = P(TIE), our

DECISION RULE FOR REJECTING H0 IN FAVOR OF H1:
(a) Case I—reject H0 if p-value = P(X ≥ s+) ≤ α;

(b) Case II—reject H0 if p-value = P(X ≥ s−) ≤ α;

(c) Case III—reject H0 if p-value = 2P(X ≥ s) ≤ α,

(13.11)

where the random variable X is binomially distributed b(x; n, 0.5).

Example 13.3.1 Suppose that a market research firm is interested in determin-
ing whether or not more than 75% of the shoppers at a given department store
have seen at least one of the store’s TV commercials broadcast by a local TV
station over the past week. A random sample of 15 shoppers was selected and
each was asked if they viewed at least one of the commercials. Twelve responded
positively (they each were tagged with a plus sign) and three said no (they received
minus signs). At the 5% level, is there any compelling evidence that would lead us
to conclude that the proportion of shoppers watching the commercials is greater
than 0.75? Let us test H0: p+ ≤ 0.75 against H1: p+ > 0.75. Since s+ = 12, let us
find, via Table A.7 of the Appendix,

p-value = P(X ≥ 12|n = 15, p = 0.5)

=
15∑

j=12

b( j; 15, 0.5)

=
15∑

j=12

15!
j!(15 − j)! (0.5) j(0.5)15−j

= 1 − P(X ≤ 11|n = 15, p = 0.5) = 1 − 0.9824 = 0.0176.

Since this p-value or observed level of significance falls short of a = 0.05, we will
reject the null hypothesis in favor of the alternative. There is sample evidence to
warrant the conclusion that more than 75% of the shoppers have seen at least one
of the TV commercials run by the department store. �
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We next turn to the specification of the single-sample:

B. Sign Test for the Median. (As indicated earlier, if we can assume
that the population distribution is symmetrical, then the sign test for the median is
equivalent to conducting the sign test for the mean.) Given a set of n independent
sample random variables {X1, . . . , Xn} taken from a continuous population whose
values are measured on an interval or ratio scale, we may employ the sample real-
izations x1, . . . , xn to test any of the following hypotheses concerning the median
γ0.5 of the population:

Case I Case II Case III

H0: γ0.5 ≤ γ 0
0.5 H0: γ0.5 ≥ γ 0

0.5 H0: γ0.5 = γ 0
0.5

H1: γ0.5 > γ 0
0.5 H1: γ0.5 < γ 0

0.5 H1: γ0.5 �= γ 0
0.5

where γ 0
0.5 is the null value of γ0.5.

If an observation xi > γ 0
0.5, then xi is assigned a plus sign; and if xi < γ 0

0.5, then xi

is assigned a minus sign. Any observation that is equal to the median is discarded
and n is reduced appropriately. As earlier, let our test statistic be determined by
(13.10). Then for a given level of significance α, the decision rule for rejecting the
null hypothesis in favor of the alternative is again (13.11).

Example 13.3.2 A bank manager claims that the median family income of its
customers does not exceed $ 25,000. To substantiate the claim, the manager has
a staff member select a random sample of 20 customer records from the loan
department where family income information is collected:

10,000 30,000 17,800 25,000 19,700
15,000 22,500 25,000 32,000 22,600
22,000 23,500 26,400 24,300 24,000
27,000 31,000 27,000 21,000 29,000

Here we wish to test H0: γ0.5 ≥ $25,000, against H1: γ0.5 < $25,000 at, say, the
α = 0.05 significance level. Since s = s− = 11 and there are two ties, we reduce
n to 18. We know from our earlier discussion that under H0, s− is binomially
distributed with p ≥ 0.5; and under H1, s− follows a binomial distribution with
p < 0.5. Then from Table A.7, let us determine

p-value = P(X ≥ 11|n = 18, p = 0.5)

=
18∑

j=11

b( j; 18, 0.5)

=
18∑

j=11

18!
j!(18 − j)! (0.5) j(0.5)18−j
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= 1 − P(X ≤ 10|n = 18, p = 0.5)

= 1 − 0.7597 = 0.2403.

Since this p-value exceeds our chosen α, we cannot reject the null hypothesis; the
manger’s claim is substantiated by the data. �

C. Large-Sample Sign Test for the Median. For n ≥ 20, the normal
approximation to the calculation of binomial probabilities (see Section 7.3) can be
used to conduct a large-sample sign test for the median. Under H0, S (determined
from (13.10)) follows a binomial distribution with p = 0.5 so that E(S) = np =
0.5n and V(S) = np(1 − p) = 0.25n. Then our test statistic is the quantity

Zs = (S − 0.5) − E(S)
√

V(S)
= (S − 0.5) − 0.5n

0.5
√

n
, (13.12)

which is N(0, 1), where 0.5 is subtracted from S as a correction for continuity
(see (7.32.1)). In view of (13.12), our decision rule for rejecting H0 in favor of H1

at the α level of significance is

(a) Case I—reject H0 if zS ≥ zα ;

(b) Case II—reject H0 if zs ≤ −zα ; and

(c) Case III—reject H0 if |zs| ≥ zα/2,

(13.13)

where zs is the sample realization of Zs.

Example 13.3.3 Suppose that for a sample of size n = 40 we wish to test
H0: γ0.5 = 150, against H1: γ0.5 �= 150 at the 5% level of significance. Furthermore,
suppose we find that s = s+ = max{s+, s−} = 25. Then from (13.12),

|zs| =
∣∣∣∣

25 − 0.5 − 20
3.16

∣∣∣∣ = 1.42.

Since |zs| does not exceed za/2 = z0.025 = 1.96, we cannot reject the null hypothesis
at the 5% level. In fact, it is easily demonstrated that the p-value for this test is
0.1556. �

13.4 Wilcoxon Signed Rank Test of a Median

The sign test (for the median of a random sample) that we just examined did not
assume that the underlying population was symmetrical. However, if we have
sufficient evidence that points to a symmetric population distribution, then we
can perform the Wilcoxon signed rank test for the median—a test that is more
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powerful than the sign test since, in addition to having a criterion that dichotomizes
the sample observations, we can also exploit the ranks of the data values rather
than simply replacing the same by a sign. To this end, let us extract a set of
independent sample random variables {X1, . . . , Xn} from a continuous symmetric
population (although the population is taken to be symmetric, it is not assumed
to be normally distributed). Here too the population values are measured on an
interval or ratio scale.

Given that xi depicts the realization of the sample random variable Xi, i =
1, . . . , n, we may test the following hypotheses pertaining to the population median
γ0.5:

Case I Case II Case III

H0: γ0.5 ≤ γ 0
0.5 H0: γ0.5 ≥ γ 0

0.5 H0: γ0.5 = γ 0
0.5

H1: γ0.5 > γ 0
0.5 H1: γ0.5 < γ 0

0.5 H1: γ0.5 �= γ 0
0.5

where γ 0
0.5 is the null value of γ0.5. To perform the Wilcoxon signed rank test, let

us execute the following steps:

1. Subtract the null value γ 0
0.5 from each xi; that is, from the differences yi =

xi − γ 0
0.5, i = 1, . . . , n. (If any yi = 0, eliminate xi as in the sign test and reduce

n accordingly.)

2. Rank the yi’s in order of increasing absolute value. (If any of the nonzero yi’s
are tied in value, then these tied yi’s are given the average rank.)

3. Restore to the rank values 1, . . . , n the algebraic sign of the associated dif-
ference yi. Then the ranks with the appropriate signs attached are called the
signed ranks Ri, i = 1, . . . , n, where R+

i denotes a rank carrying a positive sign.
The sample realization of R+

i will be depicted as r+
i .

Let us define our test statistic W+ as the sum of the positive ranks or W+ =∑n
i=1 R+

i .

A. Small-Sample Wilcoxon Signed Rank Test. A small-sample
Wilcoxon signed rank test will be performed when n ≤ 25. For Case I and a
level of significance α, Table A.11 (Appendix) specifies the right-hand tail crit-
ical value wu of the sampling distribution of W+, which cuts off 100α% of the
upper-tail area or P(W+ ≥ wu) = α. Hence the Case I critical region appears as
R = {w+|w+ ≥ wu}, where w+ is the sample realization of W+. We thus reject H0

for large values of W+. Turning to Case II, let wl denote the left-hand tail critical
value, which satisfies P(W+ ≤ wl) = α. Hence the lower-tail critical region has the
form R = {w+|w+ ≤ wl}; that is, we now reject H0 for small values of W+. Finally,
for Case III, wl and wu are chosen to satisfy P(W+ ≤ wl or W+ ≥ wu) = α. Hence
the two-tail critical region is structured as R = {w+|w+ ≤ wl or w+ ≥ wu}. We
consequently reject the null hypothesis for either very small or very large values
of our test statistic.
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Table 13.3

Ranks and Signed Ranks

yi = xi − 22 |yi| Ranks of |yi| Signed Ranks Ri

−2 2 2.5 −2.5
3 3 4.5 4.5

10 10 11 11
11 11 12 12

5 5 7.5 7.5
−5 5 7.5 −7.5

−12 12 13.5 −13.5
−3 3 4.5 −4.5

4 4 6 6
9 9 10 10

12 12 13.5 13.5
−2 2 2.5 −12.5
−1 1 1 −1
−7 7 9 −9

Example 13.4.1 To see exactly how Table A.11 is employed, suppose the mar-
keting department for a retail food chain is monitoring the number of hits its
Web site gets over a two week period. The recorded hits per day are:

20 25 32 33 27 17 10 19 26 31 35 20 21 15

At the 5% level, is there sufficient evidence to indicate that the median number
of hits per day differs from 22? That is, we seek to test H0: γ0.5 = γ 0

0.5 = 22 against
H1: γ0.5 �= 22. From Table 13.3 we have w+ = ∑7

j=1 r+
j = 4.5 + 11 + 12 + 7.5 + 6 +

10 + 13.5 = 64.5 (since 2 is given an average rank of 2.5, 3 gets an average rank
of 4.5, and 12 gets an average rank of 13.5). Looking to Table A.11 for n = 14
(since no ties with the null value γ 0

0.5 = 22 have been discarded), the critical
region is structured as R = {w+|w+ ≤ 21 or w+ ≥ 84}. Given that w+ = 64.5
is not a member of R , we cannot reject the null hypothesis—there is insufficient
evidence for us to conclude that the median number of site hits differs significantly
from 22 at the 5% level. �

B. Large-Sample Wilcoxon Signed Rank Test. For n ≥ 25, an excellent
approximate test can be performed using the standard normal distribution. (Actu-
ally, the approximation to the standard normal form is quite good for n ≥ 12.) In
this regard, our standardized test statistic under H0 is

Zw+ = W+ − m(m + 1)/4
√

m(m + 1)(2m + 1)/24
, (13.14)
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where Zw+ is N(0, 1), W+ is the sum of the positive signed ranks, and m is the final
number of observations which are ranked.

Given (13.14), our decision rule for rejecting H0 in favor of H1 at the 100α%
level of significance is

(a) Case I—reject H0 if zw+ ≥ zα ;

(b) Case II—reject H0 if zw+ ≤ −zα ; and

(c) Case III—reject H0 if |zw+| ≥ zα/2,

(13.15)

with zw+ denoting the sample realization of Zw+ .

Example 13.4.2 The number of daily requests for a brochure made to sales
personnel by shoppers concerning the features of a new model SUV at an
automobile dealership have been recorded for a four week period:

20 25 21 20 30 35 15 16 10 25 30 40
10 10 9 11 15 20 10 9 9 15 17 25

For α = 0.05, does the median number of brochures per day differ significantly
from 20? Here H0: γ0.5 = γ 0

0.5 = 20 and H1: γ0.5 �= 20. From Table 13.4 we have
m = 21, w+ = ∑8

j=1 r+
j = 6.5 + 1 + 13.5 + 20 + 6.5 + 13.5 + 21 + 6.5 = 88.5. (Note

that 5 is given an average rank of 6.5, 10 is given an average rank of 13.5, and 11
receives an average rank of 18.) Then from (13.14),

|zw+| =
∣∣∣∣∣

88.5 − 21(22)/4
√

21(22)(43)/24

∣∣∣∣∣ = 0.938.

A glance back at (13.15) indicates that, at the 5% level of significance, we cannot
reject the null hypothesis since z0.025 = 1.96. In addition, the p-value for this test
is about 0.34. �

It is important to note that the Wilcoxon signed rank test may be viewed as
a test of symmetry about the median. That is, we may test H0: the population
distribution is symmetrical about the median, against, say, H1: the population is
not symmetrical about the median.

We end our discussion of single-sample nonparametric hypothesis tests by a
comparison of such tests with their parametric counterparts (provided, of course,
that a parametric equivalent test exists). Table 13.5 provides the details.

Our efforts now turn to the development of two-sample nonparametric tests,
which, very generally, seek to determine if two population distributions are iden-
tical. In particular, for independent samples, we shall consider the runs test and
the Mann-Whitney (rank sum) test. For paired comparisons, we have the sign test
and the Wilcoxon signed rank test.
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Table 13.4

Ranks and Signed Ranks

yi = xi − 20 |yi| Ranks of |yi| Signed Ranks Ri

0 – – –
5 5 6.50 6.50
1 1 1.00 1.00
0 – – –

10 10 13.50 13.50
15 15 20.00 20.00
−5 5 6.50 −6.50
−4 4 3.00 −3.00

−10 10 13.50 −13.50
5 5 6.50 6.50

10 10 13.50 13.50
20 20 21.00 21.00

−10 10 13.50 −13.50
−10 10 13.50 −13.50
−11 11 18.00 −18.00
−9 9 10.00 −10.00
−5 5 6.50 −6.50

0 – – –
−10 10 13.50 −13.50
−11 11 18.00 −18.00
−11 11 18.00 −18.00
−5 5 6.50 −6.50
−3 3 2.00 −2.00

5 5 6.50 6.50

Table 13.5

Nonparametric Tests vs. Parametric Equivalents

(a) Single-Sample Runs Test (a′) No Parametric Equivalent
(b) Single-Sample Sign Test (b′) Binomial Test on p or Z or t test of H0: µ = µ0

(provided the population is normal)
(c) Single-Sample Wilcoxon (c′) t Test of H0: µ = µ0 (provided the population

Signed Rank Test is normal)

13.5 Runs Test for Two Independent Samples

The runs test presented earlier for a single sample can also be used to com-
pare the identity of two population frequency distributions, given that we have
two independent and unpaired random samples of sizes n1 and n2, respectively.
It is assumed that the underlying population characteristic that these samples
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represent can be described by a variable that follows a continuous distribution
(so that the test applies to data measured on an interval or ratio scale).

Each of the n = n1 +n2 observations in these samples is assigned a letter code;
for example any observation from sample 1 is marked with the letter a, and any
observation appearing in sample 2 is tagged with the letter b. Next, let us rank all
n observations jointly according to the order of magnitude of their scores, with
an a placed below each observation belonging to the first sample and a b placed
beneath each value belonging to the second sample. Hence we have an ordered
sequence of a’s and b’s so that we can now conduct a test for the randomness of
this arrangement.

We now need to focus on the runs or clusterings of the a’s and b’s. If the two
samples have been drawn from identical populations, then we should expect to see
many runs since the n observations from the two samples should be completely
intermingled when placed in numerical order. (With identical populations, there
will be, at most, n1 + n2 runs in the ordered sequence.) However, if the two
populations are not identical (e.g., they differ with respect to location or central
tendency), then we should expect fewer runs in the ordered arrangement. In fact,
in the extreme case of a large disparity in central tendency, we should expect only
two runs—all the observations in one sample lie below all the data points in the
other sample.

In view of this discussion, let us frame the null and alternative hypotheses as:

H0: the population distributions are identical

H1: too few runs (the two samples come from populations having, say, unequal
means)

Here the alternative hypothesis obviously implies a one-tailed critical region.
If we let R denote the total number of runs appearing in the joint sequence of

a’s and b’s, then it can be shown that for large values of n1 and n2, the sampling
distribution of R is approximately normal with

E(R) = 2n1n2

n1 + n2
+ 1 (13.16)

and

V(R) = 2n1n2(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 − 1)

.

Hence, under H0, the distribution of the standardized R or

ZR = R − E(R)
√

V(R)
(13.17)

is N(0, 1) and thus, for a test conducted at the 100α% level of significance, the
critical region is R = {zR|zR ≤ −zα} with P(R ≤ −zα) = α, where zR is the
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sample realization of ZR. For convenience, we may express our decision rule as

Reject H0 in favor of H1 if zR ≥ − zα . (13.18)

The approximation provided by (13.17) is quite good when both n1 and n2

exceed 10.

Example 13.5.1 Suppose the following two samples have been extracted inde-
pendently and at random from two distinct continuous populations. Can we
conclude on the basis of a runs test with α = 0.05 that these samples come from
identical populations?

Sample 1(n1 = 12)

15.2 9.0 17.4 18.0 12.0 13.1 20.6 9.1
10.8 15.3 19.0 7.5

Sample 2(n2 = 15)

19.5 22.0 17.1 19.1 15.6 20.2 21.7 21.9
30.0 15.1 17.3 17.5 31.0 35.2 33.4

Joint Ranking of Samples 1 and 2 (n = n1 + n2 = 27)

7.5 9.0 9.1 10.8 12.0 13.1 15.1 15.2 15.3 15.6 17.1 17.3
a a a a a a / b / a a / b b b /

17.4 17.5 18.0 19.0 19.1 19.5 20.2 20.6 21.7 21.9 22.0 30.0
a / b / a a / b b b / a / b b b b

31.0 33.4 35.2
b b b

Here the realized value of R is r = 10. Then from (13.16) we have

E(R) = 2(12)(15)
27

+ 1 = 14.333,

V(R) = 2(12)(15) [2(12)(15) − 27]
(27)2(26)

= 6.325

so that, from (13.16),

zR = 10 − 14.333√
6.325

= −1.722.

Since zα = z0.05 = 1.645, our decision rule (13.18) has us reject the null hypoth-
esis of identical population distributions at the 5% level; that is, it appears that
the mean of the first population lies significantly below the mean of the second
population. �
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The version of the runs test just described is very general and thus is actually
consistent with a whole host of differences among two continuous population dis-
tributions (and not just with differences in central tendency). If we reject the null
hypothesis that the populations are identical (in every conceivable way), there
may be many reasons why the populations differ—reasons that are not explic-
itly incorporated in the alternative hypothesis. So, although rejection of the null
hypothesis tells us that the populations are not identical, we are left cold when
it comes to determining exactly how they differ. The price to be paid for such
generality is the test’s relatively low power (remember, however, that the exact
power of a test can be determined only against specific alternative hypotheses).
This runs test should be used as the basis for the preliminary study of two inde-
pendent random samples or applied when all other types of two-sample tests have
either been exhausted or deemed inappropriate.

13.6 Mann-Whitney (Rank-Sum) Test for Two Independent
Samples

The Mann-Whitney test, like the runs test of the preceding section, is designed
to compare the identity of the two population distributions by examining the
characteristics of two independent and unmatched random samples of sizes
n1 and n2, respectively. Here, too, the population distributions are assumed
continuous with the observations measured on an interval or ratio scale. How-
ever, unlike the runs test, the Mann-Whitney procedure exploits the numerical
ranks of the observations once they have been jointly arranged in an increasing
sequence.

In this regard, suppose we arrange the n = n1 +n2 sample values in an increas-
ing order of magnitude and assign them the ranks 1, . . . , n while keeping track of
the source sample from which each observation was selected for ranking; that is,
an observation taken from sample 1 is tagged with, say, letter a and an observa-
tion extracted from sample 2 is marked with the letter b. (If ties in the rankings
occur, we simply resolve them by assigning each of the tied values the average of
the ranks that would have been assigned to these observations in the absence of
a tie.)

What can the rankings tell us about the population distributions? Let R1 and
R2 denote the rank sums for the first and second samples, respectively. If the
observations were selected from identical populations, then R1 and R2 should be
nearly equal in value. However, if the data points in, say, population 1 tended to
be larger than those in population 2 (given equal sample sizes) then obviously R1

should be appreciably larger than R2, thus providing evidence that the populations
differ in some fashion (typically in central tendency or location). Hence very large
or very small values of R1 imply a separation of the rankings of the sample 1 versus
sample 2 observations, thus providing evidence of a shift in the location of one
population relative to the other.

The Mann-Whitney test frames the null hypothesis as H0: the population
distributions are identical. This hypothesis may be tested against alternatives
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specified as:

Case I Case II Case III

H0: the population H0: the population H0: the population
distributions are distributions are distributions are
identical identical identical

H1: population 1 is H1: population 1 is H1: the populations differ
located to the right of located to the left of in location
population 2 population 2

For our test statistic let us use R1 = sum of the ranks associated with the obser-
vations from sample 1, with r1 denoting its sample realization. (It is immaterial
which sample is designated as sample 1.) To appropriately execute the rank-sum
test, we need to take account of the sizes of our two samples. To this end we first
consider the following.

A. Small-Sample Mann-Whitney Rank-Sum Test. In general, a small-
sample rank-sum test will be performed when n1 ≤ 20 and n2 ≤ 20. For Case I
and a given level of significance α, Table A.12 (Appendix) enables us to locate
the upper-tail critical value ru of the sampling distribution of R1, which restricts
the area in the right-hand tail to α or P(R1 ≥ ru) = α. Hence the Case I critical
region is of the form R = {r1|r1 ≥ ru}; that is, we reject H0 for large values of R1.
Looking to Case II, if rl denotes the lower-tail critical value, which is chosen so
that P(R1 ≤ rl) = α, then the lower-tail critical region has the form R = {r1|r1 ≤ rl}
(in this instance we reject H0 for small values of R1). Finally, for the Case III set
of hypotheses, rl and ru are chosen so that P(R1 ≤ rl or R1 ≥ ru) = α (thus the
area in each tail of the sampling distribution of R1 is α

2 ) and thus the two-tailed
critical region amounts to R = {r1|r1 ≤ rl or r1 ≥ ru}; that is, based upon the
sample values, we seek to detect a shift in the population distributions in either
direction.

Example 13.6.1 A law firm in a large city is trying to choose between two
messenger services (call them 1 and 2) for pick-up and delivery of legal forms
to/from nearby clients. It uses each service for a two-week period and records
the times (in minutes) elapsed after a call requesting a pick-up. These times
are displayed in Table 13.6. The office manager feels that service 1 might be
more responsive than service 2 (pick-ups are quicker for service 1). Conduct a
Mann-Whitney test of this hypothesis at the α = 0.05 level. Mirroring Case II
we form

H0: the response times are identically distributed

H1: service 1’s response time distribution lies to the left of service 2’s response
time distribution
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Table 13.6

Response Times in Minutes

Service 1 (n1 = 9) Service 2(n2 = 8)

8 10
15 12
13 15

9 13
10 18
17 19
12 20
13 15
16

If we tag service 1 observations with an a and service 2 observations with a b, then
the following rankings allow us to determine the realized value of R1 as

r1 = 1 + 2 + 3.5 + 5.5 + 8 + 8 + 11 + 13 + 14 = 66.

Service a a a b a b a a b a b b a a b b b

Joint Ordering 8 9 10 10 12 12 13 13 13 15 15 15 16 17 18 19 20

Rank 1 2 3.5 3.5 5.5 5.5 8 8 8 11 11 11 13 14 15 16 17

Then from Table A.12, R = {r1|r1 ≤ rl = 63}. Since 66 lies outside of this critical
region, we cannot reject H0 at the 5% level. In effect, the two messenger services
are equally responsive. �

B. Large-Sample Mann-Whitney Rank-Sum Test. To conduct a large-
sample rank-sum test, let us employ the test statistic U = number of observations
in sample 1 that precede each observation in sample 2, given that all n = n1 + n2

observations have been jointly arranged in an increasing sequence. For example,
given the following two samples containing n1 = n2 = 4 observations each:

Sample 1: 22 27 15 32

Sample 2: 14 19 25 30

our combined ordered arrangement is

14 15 19 22 25 27 30 32
b a b a b a b a
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Since the smallest sample 2 observation is 14, U1 = 0 observations from sample 1
precede it. The sample 2 value of 19 is preceded by only U2 = 1 sample 1 value;
the sample 2 value of 25 is preceded by U3 = 2 sample 1 values; and the sample 2
value of 30 is preceded by U4 = 3 sample 1 values. Hence the total number
of observations in sample 1 that precede each observation in sample 2 is U =
U1 + U2 + U3 + U4 = 0 + 1 + 2 + 3 = 6. Clearly the value of U depends upon how
the a’s and b’s are distributed under the ranking process.

Given that the populations are taken to be continuous (theoretically, at least,
there are no ties), it can be shown that

U = n1n2 + n1(n1 + 1)
2

− R1, (13.19)

where again R1 is the sum of the ranks assigned to observations in the first sample
and the sample realization of U is denoted as u = n1n2 + n1(n1+1)

2 − r1. Since under
the null hypothesis of identical population distributions we have

E(R1) = n1(n1 + n2 + 1)
2

and V(R1) = n1n2(n1 + n2 + 1)
12

,

it follows that

E(U) = n1n2

2

and

V(U) = n1n2(n1 + n2 + 1)
12

. (13.20)

Then as n1 and n2 increase without bound, the asymptotic distribution of

Zu = U − E(U)
√

V(U)
(13.21)

is standard normal or N(0, 1). (Actually, the approximation to normality is quite
good for n1 ≥ 10 and n2 ≥ 10.)

Given this result, for a test conducted at the 100α% level, the decision rules
for rejecting H0 relative to H1 are:

(a) Case I—reject H0 if zu ≤ zα ;

(b) Case II—reject H0 if zu ≥ −zα ; and

(c) Case III—reject H0 if |zu| ≥ zα/2,

(13.22)

where zu is the sample realization of Zu. Note that for the Case I alternative, U
will be small when R1 is large. Hence the critical region in this instance is actually
under the left-hand tail of the standard normal distribution or R = {zu|zu ≤ −zα}.
And if R1 is small, then U will be large so that, for the Case II alternative, the
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region of rejection is under the right-hand tail or R = {zu|zu ≥ zα}. Both of these
cases are addressed under (13.22a,b).

Example 13.6.2 To see exactly how a large-sample test using (13.21) is
employed, suppose that a production manager wants to determine if the quality
levels of the outputs produced by two different processes are the same. Process
1 is run for n1 = 15 weeks and process 2 is run for only n2 = 10 weeks and the
percentages of defective items per week are recorded as:

Process 1: 5.7 6.5 6.4 7.0 6.0 6.1 7.2 7.3 6.3 6.2 6.0 6.8 6.4 7.1 5.9;

Process 2: 6.6 7.1 7.0 6.2 6.7 7.3 7.1 6.9 7.0 6.8.

Given that the two processes are independent, let us test H0: the process pop-
ulation distributions are identical, against H1: the process populations differ in
location at the α = 0.05 level. As Table 13.7 reveals, column 1 specifies the obser-
vation numbers assigned to the pooled sample values listed in increasing order of
magnitude in columns 2 and 3. The process ranks are then reported in columns 4
and 5; that is, although ranks from 1 to 25 are assigned to the pooled sample val-
ues, they are separately identified for each sample. (Note that observations 3 and
4 are tied for process 1 so that the average rank assigned to this within-process tie
is 3.5. A between-process tie occurs for observations 6 and 7. Hence each of these
observations is given an average rank of 6.5. Observations 17, 18, and 19 involve
both a within-process and a between-process tie. The average rank assigned to
each tied value is 18. Other ties are handled accordingly.)

The realized sum of the ranks for process 1 is r1 = 158.5. Then from (13.19)
through (13.21),

U = 150 + 15(16)
2

− 158.5 = 111.5,

E(U) = 15(10)
2

= 75,

V(U) = 15(10)26
12

= 325,

and thus

|zu| =
∣∣∣∣
111.5 − 75

18.03

∣∣∣∣ = 2.02.

Since 2.02 is a member of the critical region R = {zu| |zu| ≥ 1.96} (see (13.22)),
we reject the null hypothesis at the 5% level. It appears, therefore, that the
two processes do not exhibit identical population distributions—at this level of
significance, the process 1 distribution seems to be shifted to the left of the process
2 distribution. �
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Table 13.7

Percentage Defective

Pooled g = 7
Observation Process 1 Process 2 Groups of

Number Process 1 Process 2 Ranks Ranks Tied Ranks ti

1 5.7 1.0
2 5.9 2.0
3 6.0 3.5

{3.5, 3.5} 2
4 6.0 3.5
5 6.1 5.0
6 6.2 6.5

{6.5, 6.5} 2
7 6.2 6.5
8 6.3 8.0
9 6.4 9.5

{9.5, 9.5} 2
10 6.4 9.5
11 6.5 11.0
12 6.6 12.0
13 6.7 13.0
14 6.8 14.5

{14.5, 14.5} 2
15 6.8 14.5
16 6.9 16.0
17 7.0 18.0
18 7.0 18.0 {18, 18, 18} 3
19 7.0 18.0
20 7.1 21.0
21 7.1 21.0 {21, 21, 21} 3
22 7.1 21.0
23 7.2 22.0
24 7.3 23.5

{23.5, 23.5} 2
25 7.3 23.5

158.5

The preceding example problem has offered a practical and convenient way
of handling tied observations (either on a within-sample or on a between-sample
basis). If ties happen to be relatively infrequent, the normal approximation (13.21)
is very efficient in detecting any shifts in location characterized by Cases I through
III. However, if ties are numerous, then a modification of V(U) is in order. Specif-
ically, if there are g distinct sets of tied ranks or observations, with j indexing any
one such set, and tj is the number of tied ranks in set j, then the variance of U
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adjusted for ties is

V(U) = n1n2

2

⎡

⎢⎢⎢⎣(n1 + n2 + 1) −

g∑
j=1

tj(t2
j − 1)

(n1 + n2)(n1 + n2 − 1)

⎤

⎥⎥⎥⎦ . (13.23)

Example 13.6.3 Since there exists a considerable number of ties occurring in
the process defect rates appearing in Table 13.7, let us use (13.23) to recalculate
V(U) and consequently Zu (13.21). The g = 7 groups of tied ranks and the
associated tj’s, j = 1, . . . , 7 = g, are presented in columns 6 and 7. Upon finding

7∑

j=1

tj(t2
j − 1) = 5 [2(3)] + 2 [3(8)] = 78,

(13.23) renders

V(U) = 15(10)
12

[
26 − 78
(25)(24)

]
= 323.38.

Hence from (13.21)

|zu| =
∣∣∣∣
111.5 − 75

17.98

∣∣∣∣ = 2.03.

Obviously the nature of the ties exhibited by this pooled arrangement does not
lead us to modify our basic conclusion. �

The Mann-Whitney test is considered one of the best nonparametric tests
for differences in location (and thus for differences in means or medians) when
its asymptotic relative efficiency is compared to that of the parametric t test
for differences in means, given that the assumptions underlying the t test (e.g.,
normality) hold. That is, the asymptotic relative efficiency of the Mann-Whitney
statistic relative to the t statistic is at least 95% if the populations are normal; it is
at least 86% in the absence of normality if the population distributions are identi-
cal. In fact, for continuous and independent distributions, the Mann-Whitney test
might perform better than the t test in the absence of the normality.

Stated alternatively, for given α and β risks, the sample size required for a
t test is approximately 95% of that required for the Mann-Whitney test if nor-
mality holds. For nonnormal populations, the Mann-Whitney test requires fewer
observations than the t test to achieve comparable α and β risks.

Moreover, if we reject the null hypothesis (of identical population distribu-
tions) when performing a two-sample nonparametric hypothesis test, we are not
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told exactly how the populations differ. If we reject the null hypothesis (of equal
population means) for the two-sample t test, then we know that the populations
differ specifically with respect to their means.

13.7 The Sign Test When Sampling from Two Dependent
Populations: Paired Comparisons

Following the discussions on paired comparisons presented earlier in Sec-
tions 11.10 and 12.19, let us assume that a paired experiment yields n pairs of
observations denoted as (X1, Y1), . . . , (Xn, Yn), where the sample random vari-
ables Xi and Yi, i = 1, . . . , n, are members of the same pair (Xi, Yi), with Xi drawn
from population 1 and Yi drawn from population 2. For the ith pair of sample
random variables, let Di = Xi − Yi, i = 1, . . . , n, be the difference between
the two random variables Xi and Yi making up that pair, where Di is taken to
be the ith observation on the random variable D. No distributional assumptions
concerning D will be made. Let di = xi − yi denote the sample realization of
Di, i = 1, . . . , n, where xi (respectively, yi) is the realized value of Xi (respectively,
Yi). It is assumed that the population probability distributions are continuous,
with data measured on an ordinal (ranks are assigned within pairs), interval, or
ratio scale.

A comparison of the members of each pair (Xi, Yi) will produce a “+” sign,
“–” sign, or a zero value. In this regard, when the value of an element from pop-
ulation 1 exceeds the value of its paired element from population 2, we assign a
+ sign to the pair and di > 0. (A + sign is also warranted if, say, of two experi-
mental treatments, the outcome of treatment 1 is deemed more effective than that
of treatment 2; or if an outcome from population 1 is preferred to an outcome
obtained from population 2.) If the value of an element from population 1 falls
short of the value of its paired counterpart from population 2, then obviously the
pair is given a − sign and di < 0. Ties will occur if di = 0. In this instance any
pair (Xi, Yi) producing a tie is eliminated from the sample. Hence only the sign
and not the magnitude of the difference between paired items is important in the
sign test.

The sign test involving matched pairs is designed to test the null hypothesis
H0: the population distributions are identical. This hypothesis is tested against
the following assortment of alternative hypotheses:

Case I Case II Case III

H0: the population H0: the population H0: the population
distributions are distributions are distributions are
identical identical identical

H1: population 1 is H1: population 1 is H1: the populations differ
located to the right of located to the left of in location
population 2 population 2
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(Based upon the preceding discussion, it should be reasonably clear that the sign
test actually tests H0: the median of the Di’s is zero. Then the Case I, Case II,
and Case III alternatives are, respectively, the median of the Di’s is positive; the
median of the Di’s is negative; and the median of the Di’s is different from zero.)

The motivation underlying the matched pairs sign test is similar to that men-
tioned earlier for the single-sample sign test. That is to say, under the null
hypothesis that Xi and Yi come from identical populations, if only chance fac-
tors dictate which member of a pair gets which of two treatments, then we should
expect an equal number of positive and negative differences or P(Di > 0) =
P(Di < 0) = 0.5. Let S+ represent the number of positive differences or + signs
(S− depicts the number of negative differences or – signs). If the Xi and Yi values
have identical population distributions, then S+ will follow a binomial distribu-
tion with p = P(Di > 0) = 0.5. Then the critical region (or p-value) can be
obtained by using either the binomial distribution proper or its standard normal
approximation.

For a small sample (n < 20) sign test applied to the signs of the di’s, the test
statistic under H1 is provided by (13.10) and the decision rule for rejecting H0 in
favor of H1 is given in (13.11). And for a large sample (n ≥ 20) sign test (again
utilizing only the signs of the di’s), we may employ (13.12) (wherein n is to be
interpreted as the number of untied sample pairs (Xi, Yi) for which di �= 0) and
(13.13). (Actually, the large sample sign test has been shown to be valid if the
number of nonzero differences is at least 10.)

Example 13.7.1 Suppose n = 17 students in a photography class were asked
to rate, on a scale from 1 to 5, samples of two types of paper used to make
prints. Use the sample data presented in Table 13.8 to test H0: the distributions
of ratings are identical, versus H1: the distributions of ratings are different (and
one type of paper is preferred to the other). Let us choose α = 0.05. For this test,
n = 15 = number of untied pairs of observations and, considering the signs of the
differences di, we see that S = S+ = 10. Then

|zs| =
∣∣∣∣∣
(S − 0.5) − E(S)

√
V(S)

∣∣∣∣∣ =
∣∣∣∣
(10 − 0.5) − 0.5(15)

0.5
√

15

∣∣∣∣ = 1.03.

Since 1.03 is not an element of R = {zs| |zs| ≥ 1.96}, we cannot reject H0—the
distributions of ratings do not differ significantly at the 5% level. �

As stated earlier, the sign test for matched pairs does not make any assump-
tion about sampling from normal populations or that the Di’s are normally
distributed; and it is not necessary to assume that the Di’s are identically dis-
tributed as in the paired t test. Continuity of the population distributions is all
that is called for. Moreover, the sign test checks whether the proportion of pairs
exhibiting a positive difference equals the proportion of pairs with a negative
difference. Equivalently, the test addresses the issue of location by testing for a
median difference equal to zero.
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Table 13.8

Rankings of Photography Paper (1 = lowest; 5 = highest)

Student Paper 1 Paper 2 Sign of Difference di

1 4 4 Tie
2 4 3 +
3 5 5 Tie
4 4 5 −
5 3 4 −
6 4 5 −
7 3 2 +
8 4 2 +
9 4 5 −

10 3 2 +
11 5 4 +
12 5 3 +
13 3 4 −
14 4 2 +
15 4 1 +
16 5 3 +
17 4 2 +

If the Di’s are normally distributed with a common variance, then the ordinary
t test is superior to the sign test in detecting a shift in location; that is, the t test
for paired comparisons is a more powerful test since it utilizes the numerical
magnitude of the Di’s. The sign test for matched pairs should be employed when
the assumptions underlying the t test for the same do not hold or are not easily
verified as holding.

13.8 Wilcoxon Signed Rank Test When Sampling from Two
Dependent Populations: Paired Comparisons

Although the sign test developed in the preceding section considers only the sign
of the differences Di = Xi − Yi for each matched pair of observations (Xi, Yi),
i = 1, . . . , n, it ignores the notion that not only does each difference have a sign, it
also has a rank among all such differences. The Wilcoxon signed rank test exploits
the signs as well as the ranks of the differences. In this regard, both population
distributions are assumed continuous and, since the ranks of the differences are
utilized, each observation must be a point on an interval or ratio scale. Moreover,
the Di’s are taken to be independent random variables that follow a distribution
that is symmetrical about a common median.

For the Wilcoxon rank sum test for matched pairs, the null hypothesis typically
is taken to be H0: the population distributions are identical. (The Wilcoxon signed-
rank procedure can also be considered as a test for symmetry if the only assumption
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made is that the Di’s are randomly drawn from a continuous distribution.) This
hypothesis is then tested against the following alternatives:

Case I Case II Case III

H0: the population H0: the population H0: the population
distributions are distributions are distributions are
identical identical identical

H1: population 1 is H1: population 1 is H1: the populations differ
shifted to the right of shifted to the left of in location
population 2 population 2

As was the case for the sign test involving paired comparisons, let us determine
for each of the pairs of values (Xi, Yi) the difference Di = Xi −Yi, i = 1, . . . , n. Let
di = xi − yi denote the sample realization of Di, where xi and yi are the realized
values of Xi and Yi, respectively. If di = 0, its source sample point (Xi, Yi) is
eliminated from further consideration and n is appropriately adjusted downward.

To perform the Wilcoxon signed-rank test, let us consider the following
sequence of steps:

1. Determine di for all sample points (Xi, Yi), i = 1, . . . , n. (Discard any zero
valued di’s.)

2. Rank the di’s in order of increasing absolute value. (If any of the di’s are tied
in value, then the tied di’s are given the average rank.)

3. Restore to the rank values 1, . . . , n the algebraic sign of the associated dif-
ference di. The ranks with the appropriate signs are the signed ranks Ri,
i = 1, . . . , n. They are of two types: R+

i is a rank carrying a + sign and R−
i

depicts a rank carrying a − sign. Furthermore, W+ = ∑n
i=1 R+

i is the sum
of the positive signed ranks and W− = ∑n

i=1 R−
i is the sum of the negative

signed ranks. (Their sample realizations are denoted as w+ = ∑n
i=1 r+

i and
w− = ∑n

i=1 r−
i , respectively.)

Under H0, positive and negative differences of equal absolute value should occur
with equal probability. If we were to order these differences according to their
absolute values and rank them from smallest to largest, the expected sums of
positive and negative signed ranks should be equal. Sizeable differences in these
sums of signed ranks would provide evidence indicating a shift in the location of
the two population distributions.

To detect a shift in location, let W+ serve as our test statistic. For n ≤ 25, we
first look to the following.

A. Small-Sample Wilcoxon Signed Rank Test. For Case I and a level
of significance α, Table A.11 provides us with a right-hand tail critical value wu

of the sampling distribution of W+, which satisfies P(W+ ≥ wu) = α. Thus the
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Case I critical region R = {w+|w+ ≥ wu} so that H0 is rejected for very large
values of W+. For Case II, wl denotes the left-hand tail critical value for which
P(W+ ≤ wl) = α. Hence the lower-tail critical region is structured as R =
{w+|w+ ≤ wl}; that is, H0 is rejected when the realized W+ is very small. And for
Case III, wl and wu are chosen so that P(W+ ≤ wl and W+ ≥ wu) = α. Hence the
two-tail critical region dictates that H0 should be rejected for very small or very
large values of W+ or R = {w+|w+ ≤ wl or w+ ≥ wu}.

B. Large-Sample Wilcoxon Signed Rank Test. For n > 25, an approx-
imate test using the standard normal distribution is again in order. Hence our
standardized test statistic under H0 is provided by (13.14). (In fact, the approxi-
mation to the standard normal form works well for a value of n in excess of 15.)
And for a given level of significance α, our decision rule for rejecting H0 in favor
of H1 is given by (13.15).

Example 13.8.1 Suppose two different processes of enameling are to be com-
pared to determine which one is more efficient in terms of time to finishing. Twenty
pairs of artisans are chosen, having been matched by years of experience and skill
level. The times to finishing (in minutes) of plates of similar sizes are presented in
Table 13.9. For α = 0.05, determine if the underlying process distributions differ
significantly in terms of time to finishing. Clearly Case III applies.

Given three ties, n is reduced to 17 = m in (13.14), with w+ = 95 and thus

zw+ = 95 − 17(18)/4
√

17(18)(35)/24
= 0.88.

Since 0.88 does not fall within the critical region R = {zw+|zw+ ≥ 1.96}, we cannot
reject the null hypothesis; that is, at the 5% level of significance, the two process
population distributions are essentially identical. �

A few additional points pertaining to the Wilcoxon signed rank test are in
order. First, if we want to explicitly make inferences about the median γ0.5 of
the Di’s, let us specify the null hypothesis as H0: γ0.5 = γ 0

0.5. Then the absolute
differences |di| = |xi −yi −γ 0

0.5| may be ranked and signed as before. This process
assumes, of course, that each Di is drawn independently from a population of
differences that is continuous and symmetric about its median.

Next, in the presence of a large number of ties among the di’s, the standard
deviation of W+ appearing in the denominator of (13.14) can be adjusted for ties
by being replaced by

√
V(W+) =

⎡

⎢⎢⎢⎣
n(n + 1)(2n + 1)

24
−

g∑
j=1

tj(t2
j − 1)

48

⎤

⎥⎥⎥⎦

1
2

,
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Table 13.9

Process Times to Finishing (in minutes)

Pair Process 1 Process 2 di |di| Signed rank of di

1 55 50 5 5 16.0
2 53 50 3 3 14.5
3 47 47 0 0 Tie
4 49 48 1 1 5.0
5 50 51 −1 1 −5.0
6 49 50 −1 1 −5.0
7 48 49 −1 1 −5.0
8 47 49 −2 2 −11.5
9 52 50 2 2 11.5

10 51 52 −1 1 −5.0
11 50 51 −1 1 −5.0
12 55 52 3 3 14.5
13 58 50 8 8 17.0
14 50 49 1 1 5.0
15 47 49 −2 2 −11.5
16 49 47 2 2 11.5
17 48 47 1 1 5.0
18 50 50 0 0 Tie
19 50 51 −1 1 −5.0
20 50 50 0 0 Tie

where there are g distinct sets of tied ranks, with j indexing any one such set, and
tj is the number of tied ranks in set j.

Finally, the Wilcoxon signed rank test is perhaps the most powerful of all
nonparametric tests that hypothesize identical population distributions when
making paired comparisons. Given a sample of matched pairs, this test is useful
in determining whether the medians of the population distributions are identical,
or whether one such distribution is located to the right or left of the other. And in
the instance where the assumption of normality cannot be justified, the Wilcoxon
signed rank test should be utilized instead of the parametric t test for matched
pairs since the latter explicitly assumes normality. The asymptotic relative effi-
ciency of the Wilcoxon signed rank test for matched pairs, when considered
against the standard t test for the same, is at least 86%; and if the Dj’s follow
a normal distribution, the asymptotic relative efficiency of the Wilcoxon versus
the t test is about 95%.

We bring our discussion of nonparametric hypothesis tests to a close by
comparing these tests with their parametric counterparts (see Table 13.10).
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Table 13.10

Nonparametric Tests vs. Parametric Equivalents

A. Independent Samples A′. Independent Samples
(a) Two-sample runs test (a′) No parametric equivalent
(b) Two-sample Mann-Whitney (b′) t test of H0: µ1 − µ2 = 0

rank-sum test (provided the populations
are normal)

B. Matched Pairs B′. Matched Pairs
(a) Two-sample sign test (a′) t Test of H0: µx − µy = 0
(b) Two-sample Wilcoxon (provided the differences

signed rank test Di = Xi − Yi are normal)
(b′) t Test of H0: µx − µy = 0

(provided the differences
Di = Xi − Yi are normal)

13.9 Exercises

13-1. A group of workers was asked if they favored a new proposed contract
that emphasizes fringe benefits rather than hourly wage rate increases.
“Yes” answers are coded as “a” and “no” answers are coded as “b.” Can
the following sequence of responses be treated as if they depict a random
sample? Set α = 0.05.

aa/bbb/a/b/aaa/b/aaaa/bb/aa/b/a/bbb/aa/b

13-2. The ACE Dairy Co. has developed what it calls an improved and more
flavorful variety of vanilla ice cream. It offers a free sample to its customers
and asks them if they would switch to this new variety of vanilla ice cream.
A “yes” response is denoted as “a” and a “no” answer is recorded as “b.”
Can the following sequence of responses appear to be a random sample?
Use α = 0.05.

a/bb/aaa/b/a/bbbb/a/b/a/bb/a/bbb/aaa/bb/a/bb/aa/bbb/a/b/aa

13-3. Has the following sequence of observations been generated by a random
process? Use α = 0.05.

147 130 75 100 92 102 120 122 176 131
89 77 141 91 73 97 138 140 80 100
99 89 107 81 102 91 98 79 106 120
91 87 101 92 107 131 140 99 98 105
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13-4. Does the following sequence of daily enrollment figures at Happy Trails
Day Camp exhibit negative serial correlation? Use α = 0.01.

35 23 25 19 24 23 27 29 25 26
20 18 25 22 27 22 31 29

13-5. Test the following sequence of sales of ice (expressed in bags/day) at a local
convenience store over a three-week period for positive serial correlation.
Use α = 0.05.

15 17 18 22 19 16 14 10 12 17 27
29 35 30 25 24 17 15 19 25 31

13-6. DEF Transportation Inc. is interested in determining whether or not one-
half of its bus commuters favor the newly instituted schedule change.
A sample of 20 riders was selected at random: 14 indicated that they
favored the change and 6 did not approve of the change. Use α = 0.05.

13-7. A beginning aerobics class for working women has 27 enrollees and meets
three times a week. Over a four-week period the number of absences per
class was

3 2 3 4 3 5 4 3 6 5 7 6

Is there any evidence, at the α = 0.05 level, that the median number of
absences differs from 4?

13-8. A wine and sprits shop is interested in knowing whether more than half of
its traffic is exclusively for lottery sales. A random sample of 60 customers
revealed that 43 purchased only lottery tickets. Construct a test using α =
0.05. Is your result consistent with a large-sample sign test?

13-9. A messenger service van completes its route every 90 minutes. For n = 15
runs of this route the number of items picked up for delivery was:

23 28 15 40 27 14 16 12 23 36 26 33 24 31 44

Is there reason to believe that the median number of items accepted for
delivery/run exceeds 25? Use α = 0.05 to perform Wilcoxon’s signed rank
test.

13-10. Wheels Unlimited operates a limousine service between the local airport
and one of the major hotels in a large city. The round trip typically takes
one hour, but one of the new drivers seems to be taking more than the usual
or expected time of one hour. Fifteen of her runs (expressed in minutes)
are timed:

56 62 55 70 69 65 68 71 75 80 66 62 63 58 68
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Use the Wilcoxon signed rank test to determine if, at the 5% level, the
median time is above one hour.

13-11. A human resources director feels that workers with at least one year of
college will score above 75 points on a certain 100 point test. A group of
n = 30 workers take the test and generate the following scores:

85 88 89 76 91 90 77 68 74 88
87 73 72 77 89 95 85 79 77 92
93 97 96 98 70 73 75 77 90 99

Is the director correct in his speculation? Use α = 0.05 and perform the
Wilcoxon large-sample signed rank test.

13-12. A random sample of incomes (expressed in thousands of dollars) is taken
from each of two communities (call them A and B):

Community A Community B

20 20.5 35 19 52 55 31

46 51.5 40 47 67 71 54

39 45 30 62 55 57 60

Use the runs test to determine if the population distributions are identical.
Let α = 0.01.

13-13. Suppose 15 additional observations on incomes in each of the communities
specified in the preceding exercise have been obtained. Retest using the
expanded samples.

Additional Community A Additional Community B
Observations Observations

25 30 41 22 38 27 35 52 41 61

45 50 39 35 41 41 44 61 32 67.5

44 46.5 27 31 46 38 49 51 56 62.5

13-14. A statistics class is randomly divided into two groups. One uses only
the textbook and the other uses the textbook and study guide. The final
averages for the two groups are:

Textbook Only Textbook and Study Guide

77 63 75 84 79 82 74 91

94 96 87 72 93 98 82 85
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Is there any evidence to indicate that those students who used the textbook
and study guide earned higher course averages? Use α = 0.05 and perform
a rank-sum test.

13-15. At a garden center two types of fertilizers (call them A and B) are being
tested. Sixteen identical plots are available for the test, with four seedlings
planted in each plot. Fertilizer A is randomly applied to eight of the plots
and Fertilizer B is applied to the remaining plots. After a month of consis-
tent care the average height (in inches) of the four seedlings in each plot
is calculated:

Fertilizer A Fertilizer B

12 11.2 13 10.8 12.8 14.2 13.8 12.7

11.5 13.1 12.4 10.1 10.6 15.1 14.9 12.9

For α = 0.05, is there any evidence that fertilizer B produces plants of
greater height? Use the rank-sum test.

13-16. The number of sun worshipers (expressed in thousands per week) who
frequented two separated but nearby beaches (call them A and B) last
season, were:

Beach A Beach B

(June) 12.7 15 11 16 (June) 12.6 13 12 15

(July) 13.8 12 12.7 13.6 (July) 13.7 12 11 11.2

(Aug) 16.4 15.1 14 13 (Aug) 14 14.6 11 13.1

Given that the beaches are in close proximity to each other and have
essentially the same features (parking, food, restrooms, lifeguards, etc.),
is there any evidence to indicate that beach A is preferred over beach B?
Use the large sample rank-sum test for α = 0.05.

13-17. A paint manufacturer wants to determine if its new formula for exterior
house paint is superior to the old formula. Sixteen large panels of wood
were selected. The panels were paired into sections, and the two paints
were randomly applied, one to each section of each panel. After exposure
to the elements for nine months, reflectivity readings were taken of each
side of each panel. If the old formula is more reflective, an “O” is recorded;
if the new formula turns out to be brighter, an “N” is recorded:

N N N N O O N N N O N N N N O N

Is there any evidence to indicate that the new formula is superior to the
old one? Use α = 0.05.
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13-18. Recently married couples were asked (independently of each other) to
specify (under ideal circumstances) the number of years they would like
to wait before having children:

Couple Wife Husband

1 0 2

2 0 1

3 1 1

4 0 2

5 1 2

6 2 2

7 1 3

8 3 1

9 1 2

10 0 1

Use the sign test for paired comparisons to determine if these couples have
different propensities to wait for children. Let α = 0.05.

13-19. A production manager wishes to compare two methods for detecting
defects on the surface of a finished metal product. Each method is applied
to each of 25 finished items:

Item Method 1 Method 2 Item Method 1 Method 2

1 4 3 13 3 4

2 3 3 14 5 4

3 0 1 15 7 7

4 0 1 16 1 3

5 1 2 17 4 5

6 2 2 18 2 3

7 3 2 19 0 1

8 1 3 20 0 1

9 4 5 21 1 1

10 0 2 22 0 3

11 0 2 23 3 3

12 2 3 24 1 2

25 4 5

Is Method 2 superior to Method 1? Use the sign test with α = 0.05.
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13-20. Suppose two different inspection procedures are being compared using ten
pairs of inspectors, matched by years of experience, and so on. The inspec-
tors within each pair are randomly assigned to one of the two procedures
and the numbers of items inspected/hour are:

Pair: 1 2 3 4 5 6 7 8 9 10

Procedure 1: 11 10 9 10 9 12 13 9 8 11

Procedure 2: 15 12 10 12 8 12 15 14 10 13

Is Procedure 2 more effective than Procedure 1? Use the Wilcoxon signed
rank test with α = 0.01.

13-21. The marketing department of ACE Industries is investigating the sales
appeal of two different display formats for a given product—one with and
one without animation. The two displays are installed at each of 12 stores
for one week and the numbers of items purchased from each display are:

Animated Non animated Animated Non animated
Store Display Display Store Display Display

1 27 25 7 33 27

2 35 30 8 37 29

3 17 10 9 21 19

4 20 21 10 24 17

5 22 20 11 19 22

6 39 30 12 44 30

Is the animated display more effective than the nonanimated one? Employ
the Wilcoxon signed-rank test with α = 0.05.

13-22. Resolve Exercise 19 using the large-sample Wilcoxon signed rank test.



1414
Testing Goodness of Fit

14.1 Distributional Hypotheses

In Chapter 12 we assumed that a population probability distribution had a specific
functional form. This allowed us to test hypotheses concerning its parameter(s).
However, instead of dealing with parametric hypotheses, we may choose to make
a statement about the form of the population probability distribution itself; that
is, we can test a distributional hypothesis. For instance, we previously tested para-
metric hypotheses about the unknown mean µ of a population random variable X,
which was assumed to be N(µ, σ ), with the variance σ 2 either known or unknown.
Clearly the distributional assumption of normality was made. But if we actually
choose to test the null hypothesis that X is normally distributed, then obviously
a distributional hypothesis has been made. The alternative hypothesis is then that
the random variable X is not of the stated form.

An important method of testing a distributional hypothesis is Pearson’s
goodness-of-fit test. As the name implies, we are interested in determining if a set
of sample observations can be viewed as values of a population random variable
having a given probability distribution. So given some distributional hypothesis,
this test enables us to verify if it is supported by the data; that is, we can determine
if the population follows a specific probability model.

As we shall now see, the Pearson goodness-of-fit test is based upon the multi-
nomial distribution presented in Section 6.6. Moreover, this test is applicable in
testing goodness of fit for either discrete or continuous probability distributions.

14.2 The Multinomial Chi-Square Statistic:
Complete Specification of H0

Let us briefly review the essential features of a multinomial random experiment
presented in Section 6.6. We noted earlier that for this type of experiment, each
of the n trials results in a k-fold alternative; that is, each trial results in any
one of k mutually exclusive and collectively exhaustive outcomes E1, . . . , Ek with

609



610 Chapter 14 Testing Goodness of Fit

respective probabilities P(E1) = p1, . . . , P(Ek) = pk, where
∑k

i=1 pi = 1 and the
pi are constant from trial to trial. If the (discrete) random variable Xi, i = 1, . . . , k,
depicts the number of times the ith outcome type Ei occurs in the n independent
and identical trials of the k-fold alternative, then the multinomial random vari-
able (X1, . . . , Xk) follows a multinomial probability distribution with probability
density function given by (6.24). (Remember that the binomial experiment is a
special case of the multinomial experiment when k = 2.)

If we view Ei as a particular outcome class or cell, then we may denote the
number of trials in which Ei occurs or the number of observations falling into
cell i as Xi, i = 1, . . . , k. And if xi is the sample realization of Xi, then clearly
n = ∑k

i=1 xi.
For instance, suppose a population probability distribution consists of a set

of k probabilities or relative frequencies pi assigned to each of a collection of
k mutually exclusive and collectively exhaustive categories or cells. Columns 1
and 2 of Table 14.1 provide us with such a probability distribution. Next, suppose
that we are presented with a random sample of n = 100 observations collected
from some unknown source and each observation is placed within one and only
one of the seven cells given in Table 14.1. These observed (or sample) frequencies
oi are given in column 3. Does the sample distribution (consisting of columns 1
and 3 in Table 14.1) of 100 items differ from the population or theoretical distri-
bution? That is, can we legitimately presume that the sample of 100 data points
has been drawn from the population distribution given in the first two columns of
Table 14.1?

To determine if the observed or sample distribution is the same as the given
population distribution, let us formulate

H0: the population distribution and the sample distribution are identical

H1: the sample distribution differs from the population distribution

Here the null hypothesis specifies the exact or theoretical distribution (our bench-
mark) and the alternative hypothesis simply indicates some unspecified disparity
between the two distributions.

Table 14.1

Population Relative Frequency or Observed Expected Frequency
Category Theoretical Probability pi Frequency oi Under H0 ei(= np0

i )

1 0.14 10 14
2 0.17 18 17
3 0.33 24 33
4 0.21 18 21
5 0.10 15 10
6 0.03 10 3
7 0.02 5 2

—— —— ——
1.00 100 100
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Given the relative frequencies specified for the theoretical distribution, the
exact probability of observing this particular sample distribution can be obtained
from the multinomial probability rule (6.23.1); that is, under H0 and indepen-
dent random sampling with replacement, the probability of obtaining a sample
distribution exactly like the one appearing in columns 1 and 3 of Table 14.1 is

m(x1 = 10, x2 = 18, x3 = 24, x4 = 18, x5 = 15, x6 = 10, x7 = 5; n = 100,

p1 = 0.14, p2 = 0.17, p3 = 0.33, p4 = 0.21, p5 = 0.10, p6 = 0.03, p7 = 0.02)

= 100!
10! 18! 24! 18! 15! 10! 5!

[
(0.14)10(0.17)18(0.33)24(0.21)18 (0.10)15(0.03)10(0.02)5

]
.

Obviously this sort of calculation requires a considerable amount of computa-
tional effort. Needless to say, an alternative approach (which avoids the direct
calculation of exact multinomial probabilities) must be sought, which enables us to
easily address problems pertaining to goodness of fit. This alternative computation
scheme is based upon the so-called Pearson multinomial chi-square distribution.
Specifically, we have Theorem 14.1:

THEOREM 14.1. Let the random variable (X1, . . . , Xk) follow a multinomial
probability distribution with parameters n, p1, . . . , pk. Then for k fixed, as the
number of trials n increases without limit, the distribution function FU (t) of
the random variable

U =
k∑

i=1

(Xi − npi)2

npi
(14.2)

approaches the chi-square distribution function Fχ2 (t) with k − 1 degrees of
freedom; that is, lim

n→∞ FU (t) = Fχ2 (t) for every t.

As this theorem reveals, if the possible outcomes of a random experiment can
be decomposed into k mutually exclusive and collectively exhaustive categories
with pi denoting the probability that an outcome falls in category i, then, in n
independent and identical trials of this k-fold alternative experiment, with Xi

representing the number of outcomes favoring category i (so that
∑k

i=1 xi = n),
the limiting distribution of U is χ2

k−1 as n → ∞. (In terms of the notation devel-
oped in Chapter 8, U

d−→ χ2
k−1 as n → ∞.)

It is important to note that the random variable U((14.2)) is termed the Pearson
or multinomial chi-square statistic; it serves as a reasonably good approximation
to the ordinary chi-square random variable X only if n is large, where, as we
have seen from Chapter 9, E(X) = v and V(X) = 2v. However, it can be
demonstrated that for the Pearson random variable U, E(U) = v(= k − 1) and
V(U) = 2v + 1

n

(∑k
i=1 p−1

i − v2 − 4v − 1
)
. Hence V(U) → V(X) only in the limit

as n → ∞.



612 Chapter 14 Testing Goodness of Fit

How may we rationalize this result? To keep our analysis as transparent as
possible, let us consider the case where k = 2; that is, the multinomial ran-
dom variable (X1, X2) admits only two possible outcomes or classes of events.
Clearly this is the binomial case considered earlier in Chapter 6. Consistent with
our binomial terminology, let us call the first class success and the second class
failure. Then X1 is the number of successes and X2 = n − X1 is the number of
failures in n trials, where p1 is the probability of a success and p2 = 1 − p1 is the
probability of a failure. Then from (14.2),

U = (X1 − np1)2

np1
+ (X2 − np2)2

np2
= (X1 − np1)2

np1
+ [n − X1 − n(1 − p1)]2

n(1 − p1)

= (X1 − np1)2

np1(1 − p1)
= V2. (14.3)

By the De Moivre-Laplace-Gauss Limit Theorem of Chapter 7, the quantity
V = X1−np1√

np1(1−p1)
is approximately a N(0, 1) random variable for large n. So for

large n, V2 is approximately the square of a N(0, 1) random variable and thus, via
Theorem 9.1, V2 is χ2

1 . In general, by the preceding argument, (14.2) is the sum
of the squares of k − 1 independent random variables, each of which approaches
the square of a N(0, 1) random variable as n increases without bound. Then by
Theorem 9.2, this sum is χ2

k−1; that is, under repeated sampling from the same
multinomial population, the statistic (14.2) is approximately χ2

k−1.
The significance of Theorem 14.1 is that it enables us to use (14.2) as a

test statistic for conducting a multinomial goodness-of-fit test without having to
resort to the direct calculation of multinomial probabilities. In this regard, for
(X1, . . . , Xk) a multinomial random variable, we may test a null hypothesis that
specifies the parameters of a multinomial distribution as

H0: p1 = p0
1, p2 = p0

2, . . . , pk = p0
k,

against (14.4)

H1: pi �= p0
i for at least one i = 1, . . . , k.

Then for a random sample of size n taken from a multinomial population, the
realization of (14.2) under H0 is

u =
k∑

i=1

(xi − np0
i )2

np0
i

.

Since n is nondecreasing as i goes from 1 to k, we reject H0 if u is an element of
R = {u|u ≥ χ2

1−α,k−1}, where χ2
1−α,k−1 is the 100(1−α) percentile of the chi-square

distribution with k − 1 degrees of freedom and α = P(TIE).
As (14.4) reveals, a goodness-of-fit test is essentially a test of a hypothesis

concerning specified cell probabilities pi, i = 1, . . . , k. Keep in mind, however, that



14.2 The Multinomial Chi-Square Statistic: Complete Specification of H0 613

in order to use (14.5) to approximate multinomial probabilities (a) each outcome
falls into one and only one cell or category; (b) the outcomes are independent;
and (c) the sample size n is large.

To see exactly why this test has an upper tail critical region (we reject H0

for very large u’s) and why (14.5) is structured to actually reveal goodness of fit,
let us return to the data presented in Table 14.1. It should be intuitively clear
that the notion of goodness of fit should be assessed on the basis of the degree
of disparity between the sample or empirical distribution and the expected or
theoretical distribution given that the latter is specified by the null hypothesis.
Under H0, the expected or theoretical frequencies for the k categories or cells
are simply E(Xi) = np0

i = ei, i = 1, . . . , k; that is, ei is the product between the
sample size and the hypothesized relative frequency or theoretical probability p0

i .
Then if H0 is true, ei = np0

i should be the expected number of occurrences for
cell i under n repeated trials of our k-fold alternative experiment. The expected
cell frequencies for the problem at hand are given in column 4 of Table 14.1.
In view of these considerations, we may rewrite (14.5) as

u =
k∑

i=1

(oi − ei)2

ei
. (14.5.1)

Here u serves as an index of goodness of fit given that H0 specifies the theo-
retical distribution that is fitted to empirical or sample data. As this expression
reveals, each squared difference in observed and expected frequencies is weighted
inversely by the expected frequency for cell i; that is, any departure from expecta-
tion receives relatively more weight if we expect only a few outcomes in that cell
than if we expect many such outcomes.

Equation (14.5.1) enables us to determine how well the sample distribution
and the expected or theoretical distribution agree. Clearly the difference oi − ei

serves as a measure of the agreement between the observed and expected frequen-
cies belonging to cell i. Under H0 or perfect agreement,

∑
(oi − ei) = 0. To avoid

this problem, we use the squares (oi − ei)2. Then (oi − ei)2 is weighted inversely

by ei to gauge its relative importance so that (oi−ei)2

ei
is the individual contribu-

tion of cell i to u, with the latter now serving as an overall or global measure of
goodness of fit.

When there is a high degree of agreement between the sample and theoretical
distributions, u tends to be relatively small and thus it is highly unlikely that it
would lie within the critical region and that H0 would be rejected. However, if
there is considerable disagreement between the observed and expected frequen-
cies, then u tends to be relatively large, thus favoring the terms upon which it is
likely to fall within the critical region and H0 is rejected.

As this discussion reveals, the critical region must be located in the upper tail
of the chi-square distribution. Given that we are determining the goodness of
fit between an empirical and theoretical probability distribution, small realized
values of U indicate agreement between the observed and expected frequencies
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(H0 is not likely to be rejected), and large realizations of U indicate disagreement
between these frequencies (H0 is likely to be rejected).

Note that degrees of freedom for the chi-square approximation provided by
(14.5.1) is k − 1; it amounts to the number of cells (k) less the number of linear
restrictions (1) imposed upon the sum of squares

∑
(oi −ei)2; that is, the constraint∑

(oi − ei) = 0 must hold. So if the values of any k − 1 of these differences are
known, then the value of the kth difference is uniquely determined.

The goodness-of-fit test just described can be executed for any theoretical
population distribution we choose to specify under H0; all that is required is
that the population distribution is discrete or its domain can be partitioned into
a collection of class intervals. In fact, for F0(t) a theoretical cumulative distri-
bution function having all of its parameters completely specified, the Pearson
goodness-of-fit test can be applied to determining whether the cumulative dis-
tribution function F(t) of a random variable X (discrete or continuous) has
the form F0(t). This is because, for large n, the limiting chi-square distribu-
tion of (14.2) is independent of the form of the null distribution F0(t). That is,
under H0: F(t) = F0(t), we can determine the probability pi that an outcome of
our k-fold alternative experiment falls into category i. More formally, we state
Theorem 14.2:

THEOREM 14.2. Let the sample random variables Y1, . . . , Yn be drawn from
a population variable Y having a cumulative distribution function FY (t). For
the k cells or categories

I1 = {y|y ≤ a1} , I2 = {y|a1 < y ≤ a2} , . . . ,

Ik−1 = {y|ak−2 < y ≤ ak−1} , and Ik = {y|ak−1 < y} ,

suppose Xi is the number of outcomes occurring in cell Ii, i = 1, . . . , k. Then
(X1, . . . , Xk) is a multinomial random variable with parameters n and pi =
P(Y ∈ Ii), i = 1, . . . , k.

Then for any cumulative distribution function FY (t), we can test the hypothesis
H ′

0: FY (t) = F0(t) by testing the equivalent hypothesis that H ′′
0 : pi = P(Y ∈ Ii),

i = 1, . . . , k. (Here we are saying that the hypothesis that each Yi has cumulative
distribution function FY (t) is equivalent to the hypothesis that the multinomial
random variable (X1, . . . , Xk) generated by Y1, . . . , Yn exhibits the parameters
pi = P(Y ∈ Ii), i = 1, . . . , k.) If we reject H ′′

0 , then, based upon the sample
evidence, FY (t) does not adequately describe the population variable Y; if H ′′

0 is
not rejected, then FY (t) is consistent with the sample observations.

To apply Theorem 14.2 we need only note that if X is a discrete random
variable, then the intervals Ii, i = 1, . . . , k, are all singletons (sets contain-
ing a single point) in that they amount to the discrete values that the variable
assumes; in the continuous case, we must actually construct a set of classes or
intervals. In this latter instance the construction is arbitrary save for the fact that
the intervals should be of uniform length and the number of intervals should be
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such that ei = npi ≥ 5 for i = 1, . . . , k. (Note that adjacent intervals may be
combined to meet the requirement that ei ≥ 5.) Hence a cell is taken to be either
a specific numerical value (for a discrete distribution) or an interval (in the case
of a continuous distribution).

The foregoing discussion has indicated that the chi-square goodness-of-fit
test is based upon the differences between the observed cell frequencies obtained
from the sample and the cell frequencies we would expect to obtain if the random
variable (X1, . . . , Xk) conformed to the assumed theoretical distribution (given
by H0). To see this, let us return to the distributions appearing in Table 14.1.

For α = 0.05, let the null and alternative hypotheses be given by (14.1). Then
the critical region has the form R = {u|u ≥ χ2

0.95,6 = 12.5916} (see Table A.4 of
the Appendix) and, from (14.5.1),

u =
7∑

i=1

(oi − ei)2

ei
= (10 − 14)2

14
+ (18 − 17)2

17
+ · · · + (5 − 2)2

2
= 27.4179.

Since this realization of U lies well within the critical region, we reject H0 at the
5% level—the sample and theoretical distributions are not identical. In fact, the
p-value or observed level of significance for this test is less than 0.1%. (In general,
p-value = P(χ2 > u|k − 1 degrees of freedom).)

Example 14.2.1 Given the absolute frequency distribution appearing in col-
umns 1 and 2 of Table 14.2a, determine, for α = 0.05, if the random variable X
follows a Poisson distribution with λ = 0.7. Since X is discrete, we may deter-
mine the five Poisson probabilities p(X ; λ = 0.7), X = 0, 1, 2, 3, 4, using (6.59)
(the Poisson probability mass function) or Table A.8 of the Appendix. These
cell probabilities appear in column 3 of Table 14.2a. Since np4 = 0.9 < 5 let us
combine the cells for X = 3 and X = 4.

This yields a new absolute frequency distribution for X and thus a revised set
of Poisson probabilities (see Table 14.2b). (Note that since the set of Poisson
probabilities must sum to unity, p4 = 1 − p1 − p2 − p3 = 0.0341.) As this
revised table reveals, each expected frequency ei = npi > 5, i = 0, 1, 2, 3. So
given Table 14.2b, we may now test

H0: X is Poisson distributed with λ = 0.7, against

H1: X is not Poisson distributed with λ = 0.7.

In terms of our preceding discussion, this null hypothesis is equivalent to

H ′
0 : (X1, X2, X3, X4) is a multinomial random variable with parameters n = 180,

p1 = 0.4966, p2 = 0.3476, p3 = 0.1217, and p4 = 0.0341.
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Table 14.2

a.

X f (x)(= oi) p(X; λ = 0.7) npi(= ei)

0 90 p1 = 0.4966 89.388
1 53 p2 = 0.3476 62.568
2 25 p3 = 0.1217 21.906
3 9 p4 = 0.0284 5.112
4 3 p5 = 0.0050 0.900

—–
180

b.

X f (x)(= oi) p(X; λ = 0.7) npi(= ei)

0 90 p1 = 0.4966 89.388
1 53 p2 = 0.3476 62.568
2 25 p3 = 0.1217 21.906
3 12 p4 = 0.0341 6.138

—–
180

Since α = 0.05, the critical region appears as R =
{

u|u ≥ χ2
0.95,3 = 7.8147

}
. And

from (14.5.1), we find

u =
4∑

i=1

(oi − ei)2

ei
= (90 − 89.388)2

89.388
+ (53 − 62.568)2

62.568
+ (25 − 21.906)2

21.906
+

(12 − 6.138)2

6.138
= 7.5066.

Since this value of u is not a member of R , we cannot reject H0 at the 5% level—it
is highly likely that the observed data set was generated by a Poisson random
variable having λ = 0.7. �

14.3 The Multinomial Chi-Square Statistic:
Incomplete Specification of H0

In the preceding section the null hypothesis was taken to be simple in form; that
is, it was stated in a fashion that completely specified the parameter(s) of some
theoretical population distribution. Such complete specification then enabled
us to determine the exact multinomial probabilities p1, . . . , pk. For instance, in
the example problem provided at the end of Section 14.2, the Poisson param-
eter under H0 was given as λ = 0.7. But what if such complete information
is not available? Then the null hypothesis will obviously be incompletely spec-
ified and a less restrictive composite hypothesis (such as H0: X is Poisson
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distributed) will be tested once certain key parameters have been estimated from
the sample data.

To formalize this approach, let us consider Theorem 14.3:

THEOREM 14.3. Let the sample random variables Y1, . . . , Yn be drawn from
a population variable Y having a distribution function FY (t; θ1, . . . , θr), where
θj, j = 1, . . . , r, depicts an unknown population parameter. For Ii and Xi,
i = 1, . . . , k, specified as in Theorem 14.2, define

pi = P(Y ∈ Ii) = φi(θ1, . . . , θr), i = 1, . . . , k.

Let θ̂j be the maximum likelihood estimators of θj, j = 1, . . . , r, deter-
mined from X1, . . . , Xk. Then for fixed k and certain regularity conditions
on the φi, i = 1, . . . , k, as the number of trials n increases without limit, the
distribution function FY (t; θ̂1, . . . , θ̂r) of the random variable

V =
k∑

i=1

(Xi − np̂i)2

np̂i
(14.7)

approaches the chi-square distribution function with k − r − 1 degrees of
freedom, where

p̂i = φi(θ̂1, . . . , θ̂r), i = 1, . . . , k.

Note that we lose one degree of freedom for each parameter estimated. So
if for every unknown parameter θj the statistic θ̂j, j = 1, . . . , r, is a maximum
likelihood estimator for θj, and if the expected frequencies are determined as
functions of these maximum likelihood estimators, then V is approximately
chi-square distributed with k − r − 1 degrees of freedom.

Given that we want to perform a goodness-of-fit test under a less restrictive
hypothesis that lacks the complete specification of relevant population parame-
ters, we need only use the observed frequencies Xi, i = 1, . . . , k, to determine
maximum likelihood estimates of the relevant parameters. Once the maximum
likelihood estimation is complete, the test proceeds in a fashion similar to that
given earlier, under complete parameter specification, with the sample realization
of (14.7) appearing as

v =
k∑

i=1

(oi − êi)2

êi
, (14.7.1)

where êi = np̂i, i = 1, . . . , k. Then for given H0 and α = P(TIE), R =
{v|v ≥ χ2

1−α,k−r−1}.

Example 14.3.1 To see how Theorem 14.3 is applied, let us consider a situation
in which the Department of Transportation of a large eastern state is monitoring
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Table 14.3

a.

X f (x)(= oi) p(X = xi ; λ̂ = 1.1)(= p̂i) np̂i(= êi)

0 56 0.3329 57.59
1 68 0.3662 63.35
2 33 0.2014 34.84
3 11 0.0738 12.76
4 2 0.0203 3.51
5 2 0.0045 0.77
6 1 0.0008 0.13

—–
173

b.

X oi p̂i êi

0 56 0.3329 57.59
1 68 0.3662 63.35
2 33 0.2014 34.84

≥ 3 16 0.0995 17.21
—–
173

motor vehicle fatalities on a particular stretch of road for a 100-day period. It
collects information on deaths per accident (X) involving at least one passenger
vehicle (see Table 14.3a). Let us test H0: X is Poisson distributed, versus H1: X
is not Poisson distributed, at the 5% level of significance. As noted earlier (see
Chapter 10), the maximum likelihood estimator of the Poisson parameter λ is the
sample mean �X with realization x̄ = 1

n

∑7
i=1 xif (xi) = 191

173 = 1.1 = λ̂.
Then from Table A.8, the Poisson probabilities p(X ; λ̂ = 1.1), X = 0, 1, . . . , 6,

are presented in column 3 of Table 14.3a. (Note that in the absence of a table that
displays this specific λ̂ value, these probabilities may be calculated directly from
the Poisson probability mass function (6.59) with λ = λ̂.) Once the Poisson proba-
bilities are obtained, the expected frequencies êi = np̂i = np(X = xi; λ̂ = 1.1), i =
1, . . . , 7, are given in column 4 of Table 14.3a. Since the expected frequencies for
the last three cells are each less than 5, let us combine the last four cells so that
each expected frequency turns out to be at least 5 (all this is done in Table 14.3b).
Note that p̂4 = 1 − p̂1 − p̂2 − p̂3 = 0.0995 so that these final four probabilities sum
to unity. (Remember that our justification for this procedure is: if the sam-
ple observations are independent, then the observed cell frequencies X1 =
o1, . . . , X4 = o4 follow a multinomial distribution with parameters n, p1, . . . , p4.
Hence E(Xi) = npi and thus the estimates of these expected cell frequencies are
êi = np̂i, i = 1, . . . , 4.)

Given this revised number of cells and r = 1 parameters estimated, degrees
of freedom for this test amounts to k − r − 1 = 4 − 1 − 1 = 2. Hence the critical
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Table 14.4

X oi p̂i êi

3.01–3.02 13 0.1685 42.125
3.03–3.04 27 0.2328 58.200
3.05–3.06 52 0.2759 68.975
3.07–3.08 90 0.2018 50.450
3.09–3.10 38 0.0916 22.900
3.11–3.12 20

10

}
30

0.0247
0.0047

}
0.0294

6.175
1.175

}
7.350

3.13–3.14
—–
250

region is R =
{

v|v ≥ χ2
1−α,k−r−1 = χ2

0.95,2 = 5.9915
}

. Then from (14.7.1),

v =
4∑

i=1

(oi − êi)2

êi
= (56 − 57.59)2

57.59
+ (68 − 63.38)2

63.38
+ (33 − 34.84)2

34.84
+

(16 − 17.21)2

17.21
= 0.5672.

Since this value of v is not an element of R , we cannot reject H0 at the 5% level;
it appears that deaths per accident can be viewed as following a Poisson random
variable with λ̂ = 1.1. �

The final example problem offered in this section deals with a very common
application of Pearson’s chi-square goodness-of-fit test. Specifically, the test is
often used to determine if a sample distribution can be thought of as having
been drawn from a normal population. A chi-square test of normality now
follows.

Example 14.3.2 A manufacturer of brass fittings wants to determine if the
inside diameter (X) of a fitting can be viewed as a normal random variable.
To test H0: X is normally distributed, against H1: X is not normally distributed,
at the α = 0.05 level, a random sample of n = 250 fittings is collected and the
appropriate measurement on each fitting is taken. The resulting measurements
(expressed in millimeters) are then used to construct the absolute frequency
distribution presented in Table 14.4. As a first step, let us estimate µ and σ

(since the null hypothesis is not completely specified) from the sample distri-
bution. As indicated in Chapter 10, maximum likelihood estimators for these

parameters are �X and S1 =
√

n−1
n S2, respectively. Then their sample realiza-

tions are, from (2.E.1) and (2.E.2), respectively, x̄ = 3.052 and s1 = 0.028 (see
Exercise 2.13).
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Our next step is to use x̄ and s1 to determine, via the standard normal area
table (Table A.1 of the Appendix), the probability that a N (3.052, 0.028) random
variable would assume a value in each of the seven cells appearing in Table 14.4.
To this end, the cell probabilities are estimated by using the class boundaries
(3.005, 3.025, . . . , 3.125, 3.145) and, under the requirement that these probabilities
must sum to 1, the first and last cells are replaced by −∞ < X ≤ 3.025 and
3.13 ≤ X < +∞, respectively. Then for Z = X−�X

S1
:

p̂1 = P(−∞ < X ≤ 3.025) = P(−∞ < Z ≤ −0.964) = 0.1685;

p̂2 = P(3.025 ≤ X ≤ 3.045) = P(−0.964 ≤ Z ≤ −0.250) = 0.2328;

...

p̂6 = P(3.105 ≤ X ≤ 3.125) = P(1.892 ≤ Z ≤ 2.607) = 0.0247;

p̂7 = P(3.125 ≤ X < +∞) = P(2.607 ≤ Z < +∞) = 0.0047.

Now, if H0 is true, then step three has us determine the expected cell frequencies
as êi = np̂i = 250p̂i, i = 1, . . . , 7 (see column 4 of Table 14.4). Note that since
the expected frequency of the last cell is less than 5, the sixth and seventh cells
will be combined so that the last cell (which is now the sixth cell) is configured
as 3.11 ≤ X < +∞. Its observed frequency is thus o6 = 30, its cell probabil-
ity is p̂6 = 0.0294, and its expected frequency is ê6 = np̂6 = 7.350. In view
of these adjustments, our final step, which involves an application of (14.7.1),
yields

v =
6∑

i=1

(oi − êi)2

êi
= (13 − 42.125)2

42.125
+ (27 − 58.200)2

58.200
+ · · · + (30 − 7.350)2

7.350

= 151.797.

For degrees of freedom corresponding to k − r − 1 = 6 − 2 − 1 = 3, the critical
region R = {v|v ≥ χ2

0.95,3 = 7.8147}. Since v lies well within R , we can safely
reject the null hypothesis of normality at the 5% level of significance. �

We end our discussion of the chi-square goodness-of-fit test with a few
summary comments/cautions:

1. If X is a discrete random variable and the number of cells or categories is
k = 2 (so that degrees of freedom amounts to k − 1 = 1), the normal
approximation to the binomial distribution should be used to test H0: p1 = X1

n

of the data is in cell 1 and p2 = X2
n = n−X1

n of the data lies in cell 2.

2. If X is a continuous random variable, then to use this test, the data must be
grouped into k class intervals or cells of uniform length, where the number
of cells typically ranges between 5 and 10 and each cell has an expected
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frequency of at least 5. (This requirement implies that the sample size n is
moderately large.)

3. The test tends to be less precise for continuous distributions relative to dis-
crete ones since, in the continuous case, the grouping into artificial intervals
is arbitrary, whereas, for the discrete case, the data has an inherent or natural
grouping that is dictated by the specific variable values.

4. The test is performed only on frequencies and not on, say, proportions.

5. If the chi-square goodness-of-fit test is being applied to determine if the popu-
lation is normally distributed, then the grouping of adjacent cells in the right-
or left-hand tail of the sample distribution may be warranted to ensure that
these extreme expected cell frequencies are at least 5. However, under this
procedure, the chi-square test undergoes a loss of power in its ability to detect
departures from normality in the tails of the sample distribution. In view
of this potential problem, it must be emphasized that extreme care must be
taken to construct the cells or class intervals when dealing with continuous
distributions.

6. For this test the alternative hypothesis typically lacks specificity (e.g., H1 in
(14.1) does not provide us with any hint as to what the population might look
like if the null hypothesis H0 is untrue). If we do not posit an alternative
hypothesis that specifies a particular statistical model, then the power of the
multinomial goodness-of-fit test is difficult to ascertain. However, it has been
shown that the power of the test tends to unity as n → ∞. Hence for very large
samples, the test is almost certain to reject H0. This is obviously a weakness of
this type of goodness-of-fit test.

14.4 The Kolmogorov-Smirnov Test for Goodness of Fit

It was determined in the preceding two sections of this chapter that if our sample
data is categorical, or if it can be grouped into categories, then Pearson’s chi-
square statistic is applicable for testing goodness of fit. Hence the chi-square test
is appropriate when the null distribution function F0(t) under H0: F(t) = F0(t) is
discrete.

To apply Pearson’s chi-square goodness-of-fit test when F0(t) is continuous,
we must approximate F0(t) by grouping the sample data into an arbitrary number
of fictitious class intervals or cells. Clearly any such grouping implicitly requires
the sample size n to be fairly large since the expected frequency of each cell must
be at least five.

An alternative goodness-of-fit test that is more appropriate for continuous
distributions (since it does not require grouping the sample data into contrived
cells or intervals), and that is suitable for small n, is the Kolmogorov-Smirnov
(K-S) test. Unlike the chi-square goodness-of-fit test, the K-S test requires that
the null distribution function F0(t) be completely specified; that is, the functional
form as well as all parameters are assumed known so that H0: F(t) = F0(t)
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is simple. Hence the K-S goodness-of-fit test is not applicable when the null
hypothesis is composite. (Remember that the Pearson chi-square goodness-of-fit
test can be performed under incomplete specification of the population param-
eters, as indicated in Section 14.3.) In addition, this test cannot be applied in
instances when the observations are not inherently numerical; that is, the K-S
procedure must be applied to data measured on at least an ordinal scale since,
as we shall soon see, the observations must be ordered so that the sample distri-
bution function can be formed. The K-S test is therefore not applicable to cate-
gorical data.

Before we examine the particulars of the K-S test, let us consider some addi-
tional salient points of comparison between the Pearson chi-square and K-S
goodness-of-fit tests. First, the chi-square test is used to determine goodness of
fit between observations classified into cells or categories and some theoretical or
expected distribution taken over the same categories. Under the restriction that
expected cell frequencies must be at least five, adjacent problematic or low-count
cells can be pooled to fulfill this requirement. However, when the population
distribution is continuous, any such consolidation of cells might result in a loss of
information, especially in the tails of the distribution or if there are many narrow
intervals. Since the K-S procedure is designed to handle continuous data, any
placement of the observations into cells or intervals is purely for convenience
sake.

Second, if the n sample values are realizations of a continuous random variable
X, as opposed to sampling strictly categorical data, then an assessment of goodness
of fit via the K-S method can be made at each of the realizations x of X . For
the Pearson chi-square goodness-of-fit test involving k(≤ n) distinct cells, only k
comparisons are made. So since the K-S test allows us to examine goodness of fit for
each of the n sample realizations, instead of only for k classes, the K-S procedure
utilizes the sample information in a much more comprehensive fashion relative to
the chi-square test. In fact, the test results obtained via the chi-square procedure
are affected by the number of cells or intervals as well as by their width, each of
which is arbitrarily chosen.

Let us now turn to the particulars of the K-S test for goodness of fit between
observed sample data and some given theoretical or expected population dis-
tribution. The test addresses the question: Did the sample observations come
from some hypothesized population distribution? (Remember that the pop-
ulation random variable must be continuous and the population distribution
completely specified.)

As we shall now see, if the n sample observations are realizations of a con-
tinuous random variable X, then comparisons can be made between observed
and expected cumulative relative frequencies determined at each of these values
of X . That is to say, we need to compare the values of a hypothesized distri-
bution function F0(x) with the values of the sample or empirical distribution
function Sn(x) for all realizations x of X. Hence Sn(x) gives the proportion of the
sample realizations that do not exceed some number x for all real x; it provides
a consistent estimator for the true or population (unknown) distribution function
F(x) for the sample realizations of X.
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x(1) x(2) x(3) x(n–1)
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3/n

2/n

1/n

Figure 14.1 An empirical distribution function with step size 1
n .

Let us consider for the moment the characteristics of the empirical distribu-
tion function Sn(x). It amounts to the relative frequency distribution function for
a set of sample random variables and, as stated earlier, it exhibits the propor-
tion of sample realizations that are less than or equal to x. In this regard, Sn(x)
is a discrete random variable whose graph corresponds to a step function that
increases in relative frequency by the amount 1

n at each of its points of disconti-
nuity or jump points, where the latter occur at the realizations x(1), x(2), . . . , x(n)

of the order statistics X(1), X(2), . . . , X(n) of a random sample.1 In this regard, the
sample or empirical distribution function is defined as

Sn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < x(1);
i
n , x(i) ≤ x < x(i+1), i = 1, 2, . . . , n − 1;

1 x ≥ x(n).

(14.8)

The graph of a typical empirical distribution function is given in Figure 14.1,
with the size of each step corresponding to P(X = x(i)) = 1

n for all i.
Given that Sn(x) is the empirical distribution function of the sample random

variables X(1), . . . , X(n) taken from the population distribution function F(x), it

1 Given a random sample of size n, let us arrange the sample random variables Xi , i = 1, . . . , n, in order
of increasing numerical magnitude, with the resulting set of n values denoted as X(1), X(2), . . . , X(n),
where, for 1 ≤ i ≤ n, X(1) = min Xi , X(2) = 2nd smallest Xi , . . . , X(n) = max Xi . Clearly X(1) < X(2) <

. . . < X(n) with X(i) termed the ith order statistic. In general, the order statistics of a random sample
are simply the sample values placed in ascending order.
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can be shown that

P
(

Sn(x) = j
n

)
=
(

n
j

)
F(x) j (1 − F(x)

)n−j , j = 0, 1, . . . , n,

with the mean and variance of Sn(x) corresponding to

E
(
Sn(x)

) = F(x),

V
(
Sn(x)

) = F(x)
(
1 − F(x)

)

n
,

respectively. Moreover, the sample distribution function Sn(x) converges in prob-
ability to the true distribution function F(x) for all real x, and the sampling
distribution of Sn(x) is asymptotically normal; that is, for large n, a standardized
Sn(x) converges in distribution to a standard normal variate.

Since under the null hypothesis the observed sample is from a comple-
tely specified theoretical distribution function F(x), it must be the case that
Sn(x)

p−→ F(x) for all x. Hence it follows that, for large n, the difference
between the empirical distribution function and its theoretical counterpart or∣∣Sn(x) − F(x)

∣∣ should be small save for sampling fluctuations. In fact, the random
variable

Dn = sup
x

∣∣Sn(x) − F(x)
∣∣ , (14.9)

known as the Kolmogorov-Smirnov statistic, will serve as a measure of goodness
of fit between Sn(x) and F(x). Here

∣∣Sn(x) − F(x)
∣∣ depicts the vertical distance

between the empirical distribution function and the theoretical distribution func-
tion at a particular x. Then Dn is the supremum or least upper bound of all such
distances determined at each x. To ensure that the supremum is actually attained,
(14.9) can be replaced by

Dn = max
x

{∣∣Sn(x) − F(x)
∣∣ ,
∣∣Sn(x − ε) − F(x)

∣∣} , ε > 0, (14.9.1)

that is, the K-S statistic is the maximum vertical distance between the two cumu-
lative relative frequency distributions Sn(x) and F(x). Here the additional term∣∣Sn(x − ε) − F(x)

∣∣, the difference between F at x and Sn at the next smaller
x value, is included in (14.9.1) since Sn is continuous only from the right.
For instance, as Figure 14.2 reveals, distance AB = ∣∣Sn(x′) − F(x′)

∣∣ and dis-
tance AC = ∣∣Sn(x′ − ε) − F(x′)

∣∣ = ∣∣Sn(x′′) − F(x′)
∣∣. Then according to (14.9.1),

Dn = AC. In addition, (14.9.1) is useful when ties within the sequence of∣∣Sn(x) − F(x)
∣∣ values are present.

A key property of Dn is that it is a distribution-free statistic; that is, the
sampling distribution of Dn does not depend upon F(x) provided that F(x) is
continuous. Moreover, unlike the Pearson chi-square test, the K-S procedure
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Figure 14.2 The K-S statistic Dn = AC > AB.

is exact for any sample size in that it does not employ an approximate distri-
bution to test goodness of fit. That is, the exact sampling distribution of Dn is
known and has been tabulated (see Table A.14 of the Appendix), whereas the
sampling distribution of Pearson’s chi-square statistic is only approximately chi-
square distributed for any finite n. Hence the K-S procedure is applicable for any
sample size n, whereas Pearson’s chi-square statistic renders a good chi-square
approximation only for large n.

To perform the K-S goodness-of-fit test, suppose we extract a random sample
of size n from an unknown distribution function F(x). Let us test H0: F(x) = F0(x),
against H1: F(x) �= F0(x) for at least one x. Then:

(a) Order the sample realizations from smallest to largest; that is, form the
ordered sequence x(1), x(2), . . . , x(n).

(b) Compute the value of the sample or empirical distribution function Sn(x) =
i
n for all i = 1, . . . , n and x(i) ≤ x < x(i+1). Sn(x) will abruptly jump by 1

n at
each ordered x value.

(c) Since the theoretical distribution is completely specified under H0 (its param-
eter values are given), find the expected probability F0(x) at each ordered x
value.

So under H0, our test statistic is

D0
n = max

x

{∣∣Sn(x) − F0(x)
∣∣ ,
∣∣Sn(x − ε) − F0(x)

∣∣} , ε > 0, (14.9.2)

with its sample realization denoted as d0
n, 0 ≤ dn ≤ 1 (see Figure 14.3). (Remem-

ber that D0
n is a function of the deviations between the observed cumulative
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Figure 14.3 Under H0, d0
n is the sample realization of D0
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Table 14.5

One-Sided α 0.10 0.075 0.05 0.025 0.005
Two-Sided α 0.20 0.15 0.10 0.05 0.01

dn,1−α 1.07/c 1.14/c 1.22/c 1.36/c 1.63/c

relative frequency distribution and the corresponding cumulative probabilities
determined under H0.)

If H0 is true, then the absolute differences
∣∣Sn(x) − F0(x)

∣∣ should be rela-
tively small and attributable to only sampling variation. And if these differences
tend to be relatively large, then we have sample evidence against H0; that is, a
large value of d0

n casts serious doubt upon H0. Given that absolute distances are
taken in (14.9.2) (we ignore their signs), we are essentially performing a two-
tail test of goodness of fit; that is, D0

n picks up significant deviations in either
direction between the observed and theoretical distribution functions over all
x’s. And since we reject H0 if d0

n is large, it follows that, for a given tail prob-
ability α = P(TIE), the K-S goodness-of-fit test has a critical region of the
form R = {dn|dn ≥ dn,1−α}, where the critical value of dn, dn,1−α , is the upper
100(1 − α)% quantile of the sampling distribution of Dn and is obtained from
Table A.14. It is important to note that this table is exact only if the null distri-
bution F0(x) is continuous; otherwise, these critical values render a conservative
test (the chances of rejecting H0 for a given α are diminished somewhat). For
large samples (n > 40), some of the critical values dn,1−α determined from
the asymptotic approximation to the sampling distribution of Dn are offered in

Table 14.5, where c =
(

n + √
n/10

)1/2
.



14.4 The Kolmogorov-Smirnov Test for Goodness of Fit 627

We note briefly that in virtually all instances the K-S test is more powerful
than Pearson’s chi-square test when both are applicable in testing goodness of
fit between a sample and a theoretical distribution function. In fact, for F0(x) a
completely specified normal distribution function, the K-S test is asymptotically
more powerful than the chi-square test. And when n is small, the K-S procedure,
unlike the chi-square test, provides an exact test of H0: F(x) = F0(x).

When is Pearson’s chi-square test superior to the K-S test for assessing
goodness of fit? If F0(x) is discrete and completely specified, then the chi-square
routine provided in Section 14.2 should be used (the sampling distribution of Dn

is not exact in this circumstance). Additionally, if F0(x) is discrete but not com-
pletely specified, then the discussion pertaining to the chi-square test given in
Section 14.3 applies.

We now turn to some example problems involving the K-S routine for testing
goodness of fit.

Example 14.4.1 The run time of a commuter bus in a certain city is thought
to be uniformly distributed with time to destination limits of 35 minutes to
50 minutes depending upon morning traffic flow. A random sample of n = 10
run times was taken, yielding the following realizations: 37, 42, 48, 30, 38, 39,
49, 47, 40, 41. For α = 0.05, determine if the sample is indeed from a uniform
distribution. From (7.2), the null distribution function is completely determined
as

F0(x; 35, 50) =

⎧
⎪⎨

⎪⎩

0, x < 35;
x−35

15 , 35 ≤ x < 50;
1, x > 50.

Hence we shall test H0: F(x) = F0(x; 35, 50), against H1: F(x) �= F0(x; 35, 50) for at
least one x. Table 14.6 houses all relevant calculations. From (14.9.2), d0

10 = 0.234
and from Table A.14, R = {d10|d10 ≥ d10,0.95 = 0.41}. Since d0

10 is not an element
of the critical region R , it follows that we cannot reject H0 at the 5% level—there
is no compelling sample evidence that suggests that X is not uniformly distributed
between 35 and 50. �

Example 14.4.2 Suppose that five years ago it was determined that a particu-
lar population characteristic X is normally distributed with distribution function
F(x; µ, σ ) = F(x; 127, 10).

Recently, this characteristic was revisited and a random sample of n = 20
items was selected, rendering the following realizations: 130, 126, 129, 130,
135, 120, 128, 128, 123, 126, 125, 130, 132, 138, 132, 129, 128, 132, 130, 129.
Has there been a significant change in the distribution of X’s at the α = 0.05
level? Let us test H0: F(x) = F0(x; 127, 10), versus H1: F(x) �= F0(x; 127, 10) for at
least one x. Our calculations are summarized in Table 14.7. Note that column 3
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Table 14.6

Ordered Realizations S10(x) = i
10

∣∣∣∣
S10(x)−
F0(x; 35, 50)

∣∣∣∣

∣∣∣∣
S10(x − ε)−
F0(x; 35, 50)

∣∣∣∣xi , i = 1, ..., 10 i = 1, ..., 10 F0(x; 35, 50)

30 0.10 0.000* 0.100 0.000
37 0.20 0.133 0.067 0.033
38 0.30 0.200 0.100 0.000
39 0.40 0.266 0.134 0.034
40 0.50 0.333 0.167 0.067
41 0.60 0.400 0.200 0.100
42 0.70 0.460 0.234 0.134
47 0.80 0.800 0.000 0.100
48 0.90 0.866 0.034 0.066
49 1.00 0.983 0.067 0.033

*30 is less than the lower limit of 35.

Table 14.7

Ordered
Realizations S20(x) = i

20 , z(i) = x(i)−127
10 ,

∣∣∣∣
S20(x)−

F0(z(i); 0, 1)

∣∣∣∣

∣∣∣∣
S20(x − ε)−
F0(z(i); 0, 1)

∣∣∣∣x(i), i = 1, ..., 20 i = 1, ..., 20 i = 1, ..., 20 F0(z(i); 0, 1)

120 0.05 −0.70 0.2420 0.1920 0.2420
123 0.10 −0.40 0.3446 0.2446 0.2946
125 0.15 −0.20 0.4208 0.2708 0.3208
126 0.20 −0.10 0.4602 0.2602 0.3102
126 0.25 −0.10 0.4602 0.2102 0.2602
128 0.30 0.10 0.5398 0.2398 0.2898
128 0.35 0.10 0.5398 0.1898 0.2398
128 0.40 0.10 0.5398 0.1398 0.1898
129 0.45 0.20 0.5792 0.1292 0.1792
129 0.50 0.20 0.5792 0.0792 0.1292
129 0.55 0.20 0.5792 0.0792 0.0792
130 0.60 0.30 0.6179 0.0179 0.0679
130 0.65 0.30 0.6179 0.0321 0.0179
130 0.70 0.30 0.6179 0.0821 0.0321
130 0.75 0.30 0.6179 0.1321 0.0821
132 0.80 0.50 0.6914 0.1086 0.0586
132 0.85 0.50 0.6914 0.1586 0.1086
132 0.90 0.50 0.6914 0.2086 0.1586
135 0.95 0.80 0.7881 0.1619 0.1119
138 1.00 1.10 0.8643 0.1357 0.0857
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exhibits the set of standardized x(i)’s and column 4 indicates the correspond-
ing N(0, 1) distribution function value. From (14.9.2), d0

20 = 0.3208 and, from
Table A.14, R = {d20|d20 ≥ d20,0.95 = 0.294}. Since d0

20 exceeds the critical
value of 0.294, we reject the null hypothesis at the 5% level—there has been
a significant change in the distribution of the X characteristic from its previous
normal form. �

Example 14.4.3 Suppose that we are faced with conducting a goodness-of-fit
test for normality given that the data set under scrutiny has been grouped into
k(= 8) classes (see Table 14.8). It is believed that this sample data set has
been drawn from a normal population with a distribution function of the form
F(x; µ, σ ) = F(x; 30, 6). In this regard, for α = 0.05, let us test H0: F(x) =
F0(x; 30, 6), against H1: F(x) �= F0(x; 30, 6) for at least one x. Here the values
of the sample or empirical distribution function S33(x) appear in column 4 of
Table 14.8 and the values of the expected or theoretical distribution function

Table 14.8

1. 2. 3. 4.
Observed Absolute Observed Relative Cumulative Observed

Frequency oj , Frequency oj

33 , Relative Frequency
Classes of X j = 1, ..., 8 j = 1, ..., 8 S33(x)

0–9 1 0.0303 0.0303
10–19 3 0.0909 0.1212
20–29 5 0.1515 0.2727
30–39 10 0.3030 0.5757
40–49 7 0.2121 0.7878
50–59 4 0.1212 0.9090
60–69 2 0.0606 0.9696
70–79 1 0.0303 0.9999

—–
33

5. 6. 7. 8. 9.
Upper Real Class

Limits z(j) = x(j)−30
6

∣∣∣
∣
S33(x)−
F0(z(i); 0, 1)

∣
∣∣∣

∣
∣∣∣
S33(x − ε)−
F0(z(i); 0, 1)

∣
∣∣∣x(j), j = 1, ..., 8 j = 1, ..., 8 F0

(
z(j); 0, 1

)

9.5 − 3.41 0.0003 0.0300 0.0003
19.5 − 1.75 0.0400 0.0812 0.0097
29.5 − 0.08 0.4681 0.1954 0.3469
39.5 1.58 0.9430 0.3673 0.6703
49.5 3.25 0.9994 0.2116 0.2116
59.5 4.91 1.0000 0.0910 0.0910
69.5 6.58 1.0000 0.0304 0.0304
79.5 8.25 1.0000 0.0001 0.0001
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(determined at the upper boundaries of the class intervals) are provided by
column 7. Again looking to (14.9.2) we have d0

33 = 0.6703. With R = {d33|d33 ≥
d33,0.95 = 0.231}, it is readily seen that we may reject H0 at the 5% level. The
observed data set should not be viewed as having been extracted from the null
distribution function given earlier. �

14.5 The Lilliefors Goodness-of-Fit Test for Normality

We noted in the preceding section that if we wanted to determine if a random
sample could be thought of as having been selected from a normal population,
then the Kolmogorov-Smirnov goodness-of-fit test was applicable if the null dis-
tribution function F0(x) was completely specified; that is, all of its parameters,
specifically µ and σ , were given. However, if the parameters µ and σ within
F0(x) are unknown and must be estimated from sample data (their estimators
are �X and S = [∑n

i=1(Xi − �X)2/(n − 1)
]1/2

, respectively), then a modification of
the table of critical values of the sampling distribution of Dn must be made. The
modified table was developed by Lilliefors so that the value of the test statis-
tic Dn depends upon x̄ and s (the sample realizations of �X and S, respectively)
instead of µ and σ .

Lilliefors’ test for a normal distribution with unspecified mean and standard
deviation is a distribution-free technique that tests the composite null hypothesis

H0: the random sample is from a normal distribution function with unknown mean
and variance, against

H1: the random sample is not from a normal distribution function

From the realizations x(i) of the order statistics X(i), i = 1, . . . , n, let us form the

standardized ordered realizations, z(i) = x(i)−x̄

s , i = 1, . . . , n. Then the two-sided
test statistic

D̂n = max
{∣∣∣Sn(z) − F̂(z(i); 0, 1)

∣∣∣ ,
∣∣∣Sn(z − ε) − F̂(z(i); 0, 1)

∣∣∣
}

, ε > 0, (14.9.3)

with realization d̂n, is computed from the z(i)’s; that is, Sn(z) is the empirical
distribution function of the z(i)’s and F̂(z(i); 0, 1) is the standard normal distribu-
tion function with mean 0 and standard deviation 1. Clearly D̂n represents the
maximum vertical distance between these two expressions.

As before, we will reject the null hypothesis if d̂n ≥ dn,1−α , where dn,1−α depicts
the 100(1 − α)% quantile of the approximate sampling distribution of D̂n and is
obtained from Table A.13 of the Appendix. For large samples (n > 30), some
of the critical values dn,1−α determined from an asymptotic approximation to the
sampling distribution of D̂n are presented in Table 14.9.
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Table 14.9

α 0.20 0.15 0.10 0.05 0.01

dn,1−α

0.74√
n

0.77√
n

0.82√
n

0.89√
n

1.04√
n

Table 14.10

xi , z(i) = x(i)−x̄

s
,

∣∣∣∣
S10(z)−
F̂ (z; 0, 1)

∣∣∣∣

∣∣∣∣
S10(z − ε)−
F̂ (z; 0, 1)

∣∣∣∣i = 1, ..., 10 i = 1, ..., 10 S10(z) F̂ (z; 0, 1)

100 − 2.55 0.10 0.0054 0.0946 0.0054
145 − 0.38 0.20 0.3520 0.1520 0.2520
148 − 0.23 0.30 0.4090 0.1090 0.2090
150 − 0.14 0.40 0.4443 0.0443 0.1443
156 0.15 0.50 0.5596 0.0596 0.1596
160 0.34 0.60 0.6331 0.0331 0.1331
162 0.46 0.70 0.6772 0.0228 0.0772
165 0.59 0.80 0.7224 0.0776 0.0224
170 0.83 0.90 0.7967 0.1033 0.0033
172 0.93 1.00 0.8238 0.1762 0.0762

Example 14.5.1 Let us determine, for α = 0.05, if the following random sample
has been extracted from a normal distribution: 100, 150, 172, 145, 160, 170, 156,
165, 148, 162. To this end, we want to test H0 versus H1 as given at the outset of
this section. Since x̄ = 152.80 and s = 20.65, the z(i)’s are determined in column 2
of Table 14.10. Then from (14.9.3), d̂10 = 0.2520. And since R = {d̂10|d̂10 ≥
d10,0.95 = 0.258}, we cannot reject H0 at the 5% level of significance; that is, the
normal distribution function seems to be a reasonable representation of the true
unknown distribution function. �

14.6 The Shapiro-Wilk Goodness-of-Fit Test for Normality

The Shapiro-Wilk (S-W) test for normality of an unknown population distribution
function is a useful alternative to the chi-square and Kolmogorov-Smirnov tests
for goodness of fit. The test is relatively powerful when testing for departures
from normality. However, unlike the chi-square and K-S procedures, the S-W
test requires a considerable amount of computational effort.

Suppose we extract a set of sample random variables {X1, . . . , Xn} from an
unknown distribution function F(x). As was the case with the preceding Lilliefors
goodness-of-fit test, we seek to test the composite null hypothesis

H0: the random sample is from a normal distribution function with unknown
mean and variance, against

H1: the random sample is not from a normal distribution function



632 Chapter 14 Testing Goodness of Fit

To obtain the S-W test statistic, let us first determine the order statistics of the
preceding sample random variables or X(1), X(2), . . . , X(n). Next, for our sample
of size n, let us consult Table A.18 of the Appendix so as to obtain the constant
coefficients a1, a2, . . . , ak, where k is (approximately) n

2 . As a last step we form the
S-W test statistic

W =

[
k∑

j=1
aj(X(n−j+1) − X( j))

]2

n∑
i=1

(Xi − �X)2
, (14.9.4)

where the random variable �X is the sample mean and the sample realization of
W is expressed as

w =

[
k∑

j=1
aj(x(n−j+1) − x( j))

]2

n∑
i=1

(xi − x̄)2
. (14.9.4.1)

For a level of significance α = P(TIE), the S-W test has a critical region of the
form R = {w|w ≤ wα}, where wα is the 100α% quantile of the sampling
distribution of W (Table A.17 of the Appendix).

Example 14.6.1 Is there any reason to conclude, at the α = 0.05 level of sig-
nificance, that the following sample of n = 20 observations was not taken from
a normal distribution function: 16, 19, 17, 20, 1, 5, 7, 27, 15, 18, 19, 18, 17,
25, 18, 30, 35, 29, 10, 6? Let H0 and H1 be formulated as before. Looking
to Table 14.11, column 1 contains the sample realizations of the order statis-
tics X(1), . . . , X(20) and column 2 exhibits the aj’s, j = 1, . . . , k = 10, obtained
from Table A.18. In addition, x̄ = 17.6 while

∑20
i=1(xi − x̄)2 = 1488.80. Then

from (14.9.4.1), w = (37.877)2

1488.80 = 0.9636. From Table A.17 we may determine
that R = {w|w ≤ w0.05 = 0.905}. Since our realized W value does not lie
within the critical region, we have insufficient sample evidence to reject H0 at the
5% level. �

14.7 The Kolmogorov-Smirnov Test for Goodness of Fit:
Two Independent Samples

Let {X1, . . . , Xn} and {Y1, . . . , Ym} be two independent sets of sample random
variables of sizes n and m that have been drawn from the unknown distribution
functions FX (x) and FY (x), respectively. As was the case for the one-sample K-S
goodness-of-fit test, FX (x) and FY (x) are assumed continuous and the random
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Table 14.11

x(i), aj , x(n−j+1) − x(j),
i = 1, ..., 20 j = 1, ..., 10 j = 1, ..., 10 aj (x(n−j+1) − x(j))

x(1) = 1 x(11) = 18 0.4734 x(20) − x(1) = 34 16.095
x(2) = 5 x(12) = 18 0.3211 x(19) − x(2) = 25 8.028
x(3) = 6 x(13) = 19 0.2565 x(18) − x(3) = 23 5.900
x(4) = 7 x(14) = 19 0.2085 x(17) − x(4) = 20 4.170
x(5) = 10 x(15) = 20 0.1686 x(16) − x(5) = 15 2.529
x(6) = 15 x(16) = 25 0.1334 x(15) − x(6) = 5 0.667
x(7) = 16 x(17) = 27 0.1013 x(14) − x(7) = 3 0.304
x(8) = 17 x(18) = 29 0.0711 x(13) − x(8) = 2 0.142
x(9) = 17 x(19) = 30 0.0422 x(12) − x(9) = 1 0.042

x(10) = 18 x(20) = 35 0.0140 x(11) − x(10) = 0 0.000
———
37.877

variables X and Y are measured on at least an ordinal scale. Our objective then
is to determine if these two sets of sample random variables have been drawn
from identical population distribution functions. This means that the following
test does not simply reveal differences in, say, location; it detects any and all
differences that may exist between the two distribution functions.

For the two-sample K-S goodness-of-fit test, a comparison is made between
the empirical distribution functions Sn(x) and Sm(x) of the two samples. To this
end, let x(1), . . . , x(n) and y(1), . . . , y(m) be the realizations of the sets of order
statistics {X(1), . . . , X(n)} and {Y(1), . . . , Y(m)}, respectively. Then the corresponding
empirical distribution functions appear as:

Sn(x) =

⎧
⎪⎨

⎪⎩

0 if x < x(1);
i
n if x(i) ≤ x < x(i+1),
1 if x ≥ x(n)

1 = 1, 2, . . . , n − 1;

and

Sm(x) =

⎧
⎪⎨

⎪⎩

0 if x < y(1);
j

m if y(j) ≤ x < y( j+1), j = 1, 2, . . . , m − 1;
1 if x ≥ y(m).

Let us pool both sets of realizations of the sample random variables. Then for
the combined ordered arrangement of the n + m sample realizations, Sn(x) and
Sm(x) exhibit the respective proportions of these realizations that are less than
or equal to x. As indicated in Section 14.4, these empirical distribution functions
provide consistent estimators for the true or population distribution functions
FX (x) and FY (x) for the sample realizations of the X and Y random variables,
respectively.
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Let us frame the null hypothesis as H0: FX (x) = FY (x) for all x. Under this
composite hypothesis, the population distribution functions are identical and
we have two samples drawn from exactly the same population. Then except
for sampling variation, there should be fairly close agreement between the two
sample or empirical distribution functions. If we test H0 against the two-sided
alternative H1: FX (x) �= FY (x) for at least one value of x, then the K-S two-sample
test statistic is

Dn,m = max
x

∣∣Sn(x) − Sm(x)
∣∣ . (14.10)

Its sample realization is denoted as dn,m. Given H1, Dn,m depicts the maximum
absolute difference between the two empirical distribution functions so that
only magnitudes and not the directions of the deviations in this expression are
relevant.

For α = P(TIE), we may construct the critical region as R = {dn,m|dn,m ≥
dn,m,1−α}, where dn,m,1−α is the 100(1 − α)% quantile of the appropriate sam-
pling distribution of Dn,m. That is, if n = m, then the relevant critical values
appear in Table A.15 of the Appendix; and if n �= m, then the critical values
are given in Table A.16. (Note that these sampling distributions are exact if the
population distribution functions are continuous.)

Example 14.7.1 Given the following sets of sample realizations:

X: 10, 19, 15, 20, 12, 8, 15, 21 (n = 8)

Y: 15, 22, 17, 9, 12, 10, 29, 11, 25, 31 (m = 10)

determine, for α = 0.05, if these two data sets have been extracted from identi-
cal population distribution functions. As Table 14.12 reveals, these two samples
are pooled and subsequently ordered into a single or combined sample involving
n + m = 18 data points.

Here dn,m = d8,10 = 0.400. Looking to Table A.16, the 100(1 − α)% = 95%
quantile of the sampling distribution of Dn,m is 23

40 = 0.575 or R = {dn,m|dn,m ≥
d8,10,0.95 = 0.575}. Since our realized Dn,m does not fall within R , we cannot reject
the null hypothesis at the 5% level; that is, we have no reason to doubt that the
two distribution functions FX (x) and FY (x) are identical. �

14.8 Assessing Normality via Sample Moments

Another test for determining if a random sample can be viewed as having been
extracted from a normal population is one that utilizes the moments of a distri-
bution. In this regard, the present test for normality exploits the known values of
certain key moments of a normal distribution. That is, our test for normality will
employ the third and fourth moments about the mean of the sample, where the
third moment addresses symmetry and the fourth moment pertains to kurtosis.
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Table 14.12

x(i), i = 1, ..., 8, y(j), j = 1, ..., 10 Sn(x) Sm(x)
∣∣Sn(x) − Sm(x)

∣∣

5 0.125 0.125 − 0.000 = 0.125
8 0.250 0.250 − 0.000 = 0.250

9 0.100 0.250 − 0.100 = 0.150
10 10 0.375 0.200 0.375 − 0.200 = 0.175

11 0.300 0.375 − 0.300 = 0.075
12 12 0.500 0.400 0.500 − 0.400 = 0.100
15 15 0.625 0.500 0.625 − 0.500 = 0.125

17 0.600 0.625 − 0.600 = 0.025
19 0.750 0.750 − 0.600 = 0.150
20 0.875 0.875 − 0.600 = 0.275
21 1.000 1.000 − 0.600 = 0.400

22 0.700 1.000 − 0.700 = 0.300
25 0.800 1.000 − 0.800 = 0.200
29 0.900 1.000 − 0.900 = 0.100
31 1.000 1.000 − 1.000 = 0.000

Although tests of the null hypothesis of normality have been performed using
either sample skewness or sample kurtosis measures taken individually, we shall
now consider a so-called omnibus or composite sample statistic, which incorporates
both of these measures simultaneously and which can be used to test for the
normality of a population distribution. For instance, in Chapter 4 we defined
coefficients of skewness and kurtosis as

α3 = µ3

(µ2)3/2
(4.27)

and

α4 = µ4

(µ2)2
, (4.28)

respectively, where

µr =

N∑
i=1

(Xi − µ)r

N
, r = 2, 3, 4,

is the rth moment about the mean. (Remember that for a normal distribution,
α3 = 0 and α4 = 3.)

Let us now specify a composite test statistic as

C = n
[
α2

3

6
+ (α4 − 3)2

24

]
, (14.11)

where c = n
[
(α̂2

3)/6 + (α̂4 − 3)/24
]

is the sample realization of C, α̂3 is the realized
value of α3, α̂4 is the realization of α4, and 6

n and 24
n are the asymptotic variances
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of α̂3 and α̂4, respectively (Bowman and Shenton (1975)).2 For large n, C is
approximately chi-square distributed with v = 2 degrees of freedom. Here C
will be employed to test for normality under the null hypothesis

H0: α3 = 0 and α4 = 3. (14.12)

The alternative hypothesis is then H1: the null hypothesis is untrue and the true
distribution is χ2

2 . Given these hypotheses, our decision rule is that we reject H0 if
c ∈ R = {c|c > χ2

1−α,2}, where χ2
1−α,2 is the 100(1 − α) percentile of the chi-square

distribution with 2 degrees of freedom and α = P(TIE).
To calculate C from sample information let us employ, via (4.25.1), (4.26.1),

and (4.28.1), the sample realizations of µ2, µ3, and µ4 or

µ̂2 = µ̂′
2 − µ̂2;

µ̂3 = µ̂′
3 − 3µ̂µ̂′

2 + 2µ̂3; and (14.13)

µ̂4 = µ̂′
4 − 4µ̂µ̂′

3 + 6µ̂2µ̂′
2 − 3µ̂4,

where µ̂′
r = 1

n

∑n
i=1 xr

i , r = 2, 3, 4, is the realized rth moment about zero, µ̂ =
1
n

∑n
i=1 xi, and xi is the realization of the sample random variable Xi, i = 1, . . . , n.

Example 14.8.1 Has the following set of n = 30 sample realizations (see
Table 14.13) been taken from a normal population? Test (14.12) using α = 0.05.
Let us first determine

µ̂ = 175
30

= 5.833,

µ̂′
2 = 1,235

30
= 41.166,

µ̂′
3 = 9,925

30
= 330.833,

µ̂′
4 = 87,599

30
= 2,919.966.

Then from (14.13),

µ̂2 = 41.166 − (5.833)2 = 7.143,

µ̂3 = 330.833 − 3(5.833)(41.166) + 2(5.833)2 = 7.392,

2 K.O. Bowman, L.R. Shenton, “Omnibus Test Contours for Departures from Normality Based on√
b1 and b2,” Biometrica, Vol. 62, Issue 2 (Aug. 1975), pp. 243–250.
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Table 14.13

xi x2
i x3

i x4
i

5 25 125 625
1 1 1 1
3 9 27 81
8 64 512 4,096
4 16 64 256
2 4 8 16
2 4 8 16
4 16 64 256
5 25 125 625
6 36 216 1,296
5 25 125 625
8 64 512 4,096
7 49 343 2,401

10 100 1,000 10,000
9 81 729 6,561

11 121 1,331 14,641
9 81 729 6,561

12 144 1,728 20,736
5 25 125 625
6 36 216 1,296
6 36 216 1,296
3 9 27 81
7 49 343 2,401
3 9 27 81
8 64 512 4,096
7 49 343 2,401
6 36 216 1,296
4 16 64 256
5 25 125 625
4 16 64 256

——– ——– ——– ——–
Totals 175 1,235 9,925 87,599

µ̂4 = 2, 919.966 − 4(5.833)(330.833) + 6(5.833)2(41.166)

− 3(5.833)4 = 131.859

and thus

α̂3 = µ̂3

(µ̂2)3/2
= 7.392

(7.143)3/2
= 0.3872,

α̂4 = µ̂4

(µ̂2)2
= 131.859

(7.143)2
= 2.584.
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Hence the estimated value of the test statistic C is

c = 30
[

0.1499
6

+ (2.584 − 3)2

24

]
= 0.963.

Since this realized C value is not an element of R = {c|c > χ2
0.95,2 = 5.991}, we

cannot reject the null hypothesis—it appears that, at the 5% level of significance,
the sample data set was drawn from a normal population. �

14.9 Exercises

14-1. ACE Motors surveyed 250 of its customers, asking them to indicate
their preferred time for servicing their automobiles and/or trucks: morn-
ing (O1), afternoon (O2), or Saturday mornings (O3). The results are
o1 = 101, o2 = 60, and o3 = 89. The service manager speculates that
the proportions for the three groups or cells should be 1

2 , 1
4 , and 1

4 , respec-
tively. Is there any evidence indicating that these proportions differ from
2:1:1? Choose α = 0.05.

14-2. John’s project for his statistics course was to toss a single six-sided die
500 times and count the number of times each face obtains in order to
determine if the die is biased. (Note: A die is considered biased if its faces
do not each occur with a relative frequency of 1/6.) The results of John’s
experiment are

Face Value 1 2 3 4 5 6

Frequency 80 79 88 80 84 89

Does John’s die exhibit biased results? Let α = 0.10.

14-3. ACE Nice Products has been in operation for one month. It employs four
salesman (denoted A, B, C, and D) who have similar territories. Sales calls
made for the month are:

Salesman A B C D

Number of Calls 57 65 60 66

For α = 0.01, is the number of calls made uniformly distributed over the
sales force?
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14-4. Given the following absolute frequency distribution, can we conclude for
α = 0.05 that it was drawn from a normal population?

X Oi

3.3–3.4 15
3.5–3.6 35
3.7–3.8 70
3.9–4.0 92
4.1–4.2 60
4.3–4.4 21
4.5–4.6 7

14-5. A recently printed novel was scanned to determine the number of mis-
prints of a certain type per page. The production editor feels that this type
of misprint follows a Poisson distribution with λ = 0.50. For α = 0.05,
determine if the editor’s assertion is reasonable.

Number of Misprints 0 1 2 3 4

Number of Pages 82 37 20 7 2

14-6. A sawmill has its cutting equipment set to produce boards of 8 feet (or 96
inches) in length. The operations manager feels that the “true” length of
a board should be normally distributed. A random sample of 295 boards
yielded the following absolute frequency distribution:

Actual Length Inches Oi

95.95–95.96 5
95.97–95.98 32
95.99–96.00 111
96.01–96.02 97
96.03–96.04 42
96.05–96.06 8

For α = 0.05, test the manager’s “hunch.”

14-7. The number of accidents/month on a certain stretch of road is thought to
follow a Poisson distribution. Given α = 0.05, does the following observed
data set (taken over a six year period) support this contention?

Number of Accidents per Month 0 1 2 3 4

Oi 35 20 10 4 3
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14-8. A total of 200 students took the same written portion of a driver’s education
exam:

Score Oi

70–74 15
75–79 18
80–84 60
85–89 70
90–94 20
95–99 17

If these student drivers can be thought of as a constituting a random sam-
ple taken from a population of individuals who would take the exam, can
we legitimately hypothesize that the scores earned by the said population
would be normally distributed? Take α = 0.01.

14-9. A state motor vehicle emission inspection process has been designed so
that inspection time is uniformly distributed with limits of 10 and 17 min-
utes. A sample of n = 10 duration times (taken under a variety of traffic
conditions) yielded the following times (in minutes):

10.3 11.4 16.7 13.6 9.9 13.2 11.2 16.3 11.8 12.5

Use the Kolmogorov-Smirnov (K-S) test to determine if motor vehicles
are inspected at a time that is uniformly distributed between 10 and 17
minutes. Use α = 0.05.

14-10. The marketing director for ACE Superstores speculates that daily sales
in the housewares department are normally distributed with µ = 130 and
σ = 20. Individual sales at n = 18 such stores are recorded:

152 169 102 178 174 160 105 150 148 111
150 149 105 118 162 121 142 129

For α = 0.05, determine via the K-S routine if the daily sales data is from
the specified normal distribution.

14-11. The scores obtained on a certain financial analysts certification exam are
thought to be normally distributed with µ = 550 and σ = 100. A random
sample of n = 10 such scores resulted in the values:

500 470 550 580 490 525 495 570 510 530

Use the K-S test for α = 0.05 to determine if we can view these observa-
tions as having been drawn from the specified normal distribution.

14-12. Given the following absolute frequency distribution, determine if the data
set could have been drawn from a normal distribution with µ = 75 and
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σ = 15. Use α = 0.05.

Classes of X Oi

0–19 3
20–39 10
40–59 22
60–79 74
80–99 68

100–119 35
120–139 14
140–159 2

14-13. Using α = 0.05, perform a Lilliefors test for normality using the data
presented in Exercise 14-10.

14-14. Using α = 0.05, perform a Lilliefors test for normality using the data
presented in Exercise 14-11.

14-15. Can we conclude at the α = 0.05 level that the following set of n = 22 data
points was extracted from a normal distribution?

80 60 90 100 120 160 150 105 160 155 145
120 140 110 175 87 163 98 110 115 109 177

Employ the Shapiro-Wilk goodness-of-fit-test.

14-16. Two brands of fertilizer (call them A and B) are being tested on two
identical plots of land planted with wheat. Each plot is divided into 10
equal sections. Yields per section have been determined for each brand of
fertilizer. For α = 0.05, use the K-S test to determine if the two samples
were drawn from the same population distribution.

Fertilizer A 89.8 99.5 101.2 100.8 95.3 84.7 88.8 98.5 86.1 91.9

Fertilizer B 90.1 85.6 81.5 79.2 82.1 80.2 76.7 93.2 78.3 83.0

14-17. Two different training methods (call them A and B) are being tested
at ACE Pharmaceuticals. Two groups of trainees have been selected
randomly; one uses Method A and the other uses Method B. At the end
of the training period each group is given a proficiency test to determine
how well they perform a specific task. The scores are:

Method A 55 70 65 62 81 72 58 50 67 71

Method B 50 88 84 91 90 78 62 82 75 80 79 83
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For α = 0.05, use the K-S method to determine if the two groups were
drawn from the same population.

14-18. Use the moments of the following data set to determine if observations
can be viewed as having been randomly drawn from a population that
follows a normal distribution. Use α = 0.05.

10 6 35 40 14 16 14 16 25 35
29 25 29 25 25 50 45 25 16 29



1515
Testing Goodness of Fit:
Contingency Tables

15.1 An Extension of the Multinomial Chi-Square Statistic

In the Pearson or multinomial chi-square tests offered in Chapter 14 (see
Sections 14.2 and 14.3), our (random) sample data was classified in accordance
with a single factor or criterion into a set of mutually exclusive and collectively
exhaustive categories or cells. As we shall now see, this approach can be applied to
situations other than those arising from multinomial experiments. In this regard,
suppose our observations are classified according to two or more attributes. Then
the question naturally arises: Are these attributes or criteria of classification
statistically independent? (Do they lack statistical association?) To answer this
query, we shall employ Pearson’s chi-square test for independence of attributes
(or, as it is alternatively called, Pearson’s chi-square test of association). As
will be seen next, this technique can be applied to either quantitative or quali-
tative data.

Given a particular criterion of classification, suppose we cross-classify our
data set according to a second criterion or attribute, where the true or population
proportion within each resulting cell is unknown. For instance, given, say, a set
of categories on the factor education (high school, some college, college degree,
graduate degree), we may cross-classify according to a second factor such as sex
or income category (low, middle, high). Here the resulting two-way classification
scheme is termed a two-way contingency table.

15.2 Testing Independence

As just indicated, we are interested in determining whether there is any
dependency relationship or association between two population characteristics.

643
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Table 15.1

a. b.

B1 B2 B1 B2

A1 (A1, B1) (A1, B2) A1 n11 n12 n11 + n12 = n1•
A2 (A2, B1) (A2, B2) A2 n21 n22 n21 + n22 = n2•
A3 (A3, B1) (A3, B2) A3 n31 n32 n31 + n32 = n3•

n11 + n21 + n31 = n•1 n12 + n22 + n32 = n•2
n1• + n2• + n3•

= n•1 + n•2 = n

We thus test

H0: the two attributes are independent (or the rows and columns
represent independent classifications), against (15.1)

H1: the two attributes are not independent (or the rows and
columns are not independent classifications)

(The alternative hypothesis states that the attributes are dependent or related
in some way. However, the extent or nature of the dependency relationship is
unspecified.)

Suppose that n independent sample realizations have been obtained from
a population of size N and each such realization is classified according to two
attributes or criteria, which we shall simply label A and B. (Here we are implicitly
assuming that N is large enough so that if the sample is taken without replace-
ment, n

N is small enough to warrant treating the sample as if it were drawn with
replacement.) Suppose further that there are r mutually exclusive and collectively
exhaustive categories for attribute A (A1, A2, . . . , Ar) and c such categories for
attribute B (B1, B2, . . . , Bc).

All n sample realizations can then be classified into a two-way table, with Ai,
i = 1, . . . , r, categories for factor A making up the rows and the Bj, j = 1, . . . , c,
categories for factor B constituting the columns. The resulting table is termed
an r × c contingency table, where each possible combination of factors A and B,
(Ai, Bj), i = 1, . . . , r; j = 1, . . . , c, represents a distinct cell within the table, for
example, a 3 × 2 contingency table is given by Table 15.1a. In addition, all n
sample realizations are to be housed within the r × c contingency table on the
basis of their specific A and B attribute categories. To this and, let nij denote
the number of realizations falling into row i and column j; that is, nij is the
observed number of items possessing attribute Ai and Bj in combination.

Let us denote the total number of sample realizations having attribute Ai as

ni• =
c∑

j=1

nij = ith row total

(i is held fixed and we sum over columns)

(15.2)
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(the dot “•” indicates the subscript over which the summation takes place).
Similarly, the total number of realizations possessing attribute Bj is

n•j =
r∑

i=1

nij = jth column total

( j is held fixed and we sum over rows)

. (15.3)

Here both (15.2) and (15.3) are termed marginal totals. Clearly n1• + n2• + · · · +
nr• = n = n•1 + n•2 + · · · + n•c or

r∑

i=1

ni• = n =
c∑

j=1

n•j (15.4)

(see Table 15.1b for the case where r = 3 and c = 2).
As stated in (15.1), the null hypothesis H0 is that the two factors A and B

are independent. (If H0 is rejected in favor of H1, then the A and B attributes
are related or statistically dependent.) Under H0, attributes A and B for the
population at large are independent if and only if

P(Ai ∩ Bj) = P(Ai) · P(Bj) (15.5)

for all possible joint events Ai ∩ Bj, i = 1, . . . , r; j = 1, . . . , c, or

pij = (pi•)(p•j), i = 1, . . . , r; j = 1, . . . , c. (15.5.1)

Here pij is the unknown joint probability that an item selected at random
from the population will be from the (i, j)thcell, pi• is the unknown marginal prob-
ability that an item drawn at random from the population is from category i of
characteristic A, and p•j is the unknown marginal probability that a randomly
selected item from the population is from category j of characteristic B. Then
under the independence assumption,

H0: pij = (pi•)(p•j) for all i and j

H1: pij �= (pi•)(p•j) for at least one cell (i, j)
(15.1.1)

i = 1, . . . , r; j = 1, . . . , c.
Since the population marginal probabilities on the right-hand side of (15.5.1)

are unknown, let us estimate them from our sample data. To this end, the best
(maximum likelihood) estimates of the population marginal probabilities pi• and
p•j are the respective sample marginal probabilities

p̂i• = ni•
n

, i = 1, . . . , r;

p̂•j = n•j

n
, j = 1, . . . , c.

(15.6)
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Hence our estimate of the population probability of the joint event Ai ∩ Bj is

p̂ij = (p̂i•)(p̂•j) = (ni•)(n•j)
n2

for all i, j. (15.7)

In this regard, the expected frequency of the joint event Ai ∩ Bj is thus

eij = np̂ij = (ni•)(n•j)
n

for all i, j. (15.8)

So in a test of the independence of attributes, the expected frequency in any cell
(i, j) is simply the product between the frequency of row i and the frequency of
column j (or the product between the marginal total for row i and the marginal
total for column j) divided by the sample size n. In this regard, if the propor-
tion of category Bj in the population is

n•j
n , then the expected number of items

having characteristics Ai and Bj is (
n•j
n )ni•; that is, independence means that the

proportion of each row total that belongs to the jthcolumn is the same for all rows.
So if (15.8) is true, then the observed values are said to occur independently of
the row and column categories.

On the basis of (15.8), we may extend Pearson’s multinomial chi-square statis-
tic (14.2) to the case where we test for independence among the two factors A
and B in an r × c contingency table. We note first that for n independent trials
of a random experiment classified by the categories of attributes A and B speci-
fied earlier, if the random variable Nij is the frequency of event Ai ∩ Bj, then the
statistic

U =
r∑

i=1

c∑

j=1

(Nij − npij)2

npij
(15.9)

is, for large n, approximately chi-square distributed with rc − 1 degrees of
freedom. Under (15.1.1) with equations (15.6–15.8) holding, (15.9) becomes
Pearson’s chi-square statistic for a test of association

U =
r∑

i=1

c∑

j=1

(Nij − np̂ij)2

np̂ij
. (15.9.1)

So for large n, this quantity is approximately chi-square distributed with
(r − 1)(c − 1) degrees of freedom. Let the sample realization of (15.9.1) appear
as

u =
r∑

i=1

c∑

j=1

(oij − eij)2

eij
, (15.9.2)
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where oij(= nij) is the realized frequency for the (i, j)th cell. Note that the finite
double sum in this expression has us take the sum over all r × c cells, with the

contribution of the (i, j)th cell to the Pearson chi-square statistic being
(oij−eij)2

eij
.

How have the degrees of freedom for (15.9.1 and 15.9.2) been determined?
Suppose that the true or underlying joint probability distribution for A and B is
completely specified; that is, we have some exact hypothesis that specifies pij for all
i, j. Hence the exact frequency in (15.9) is, as indicated, npij. Since no parameters
have been estimated, degrees of freedom amounts to the number of joint event
cells less 1 or rc − 1. However, since we are estimating marginal probabilities
from sample realizations, we subtract 1 degree of freedom for each parameter
estimated. And since we require that

∑r
i=1 pi• = 1 and

∑c
j=1 p•j = 1, there are,

respectively, r − 1 row parameters and c − 1 column parameters to be estimated
(e.g., knowing, say, the first r − 1 of the probabilities in

∑r
i=1 pi• = 1 uniquely

determines the rth probability). Hence it follows that degrees of freedom = rc −
1 − (r − 1) − (c − 1) = rc − r − c − 1 = (r − 1)(c − 1).

As was the case with (14.2), we compare the observed cell frequencies
with the expected cell frequencies under H0. If the deviations between the
observed and expected cell frequencies are significantly large (i.e., larger than
that attributed to simply sampling variation alone), then we are disposed to
reject H0 for large values of u. Hence the critical region for this upper-tail test is
R = {u|u ≥ χ2

1−α,(r−1)(c−1)}, where χ2
1−α,(r−1)(c−1) is the 100(1 − α) percentile of the

chi-square distribution with (r − 1)(c − 1) degrees of freedom and α = P(TIE).
As a special case of Pearson’s chi-square test for independence involving an

r × c contingency table, we are often confronted with performing the test for a
2 × 2 table (the A and B attributes each have only two categories). To streamline
the calculations in this instance, let our 2 × 2 contingency table be provided by
Table 15.2.

Then a particularization of (15.9.2) to the 2 × 2 case, which includes Yates’
continuity correction, is

u′ =
2∑

i=1

2∑

j=1

(∣∣oij − eij
∣∣− 1

2

)2

eij
(15.10)

or, in terms of the actual entries exhibited within Table 15.2,

u′′ = n
(|ad − bc| − n

2

)2

efgh
, (15.10.1)

Table 15.2

B1 B2

A1 a b e

A2 c d f

g h n
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where R = {u′ or u′′|u′ or u′′ ≥ χ2
1−α,1}. Remember that for either the general

r × c contingency table or the 2 × 2 special case of the same, in order for the
Pearson realizations (15.9.2), (15.10), and (15.10.1) to provide a good approxima-
tion to the chi-square distribution with (r − 1)(c − 1) degrees of freedom, each
expected cell frequency should be at least 5. If this requirement is not met, then
adjacent cells may be combined as is appropriate. It is important to note that it
is sometimes argued that if r and c are large, then even if some of the eij’s are
much smaller than 5, the approximation to the chi-square distribution is good
provided the eij’s are all of about the same magnitude.

Example 15.2.1 To see exactly how (15.9.2) is applied, let us assume that the
Board of Regents of a medium-sized university is meeting to discuss a proposal
from the Athletic Department for upgrading its athletic programs to division 1-A
status. The Board has chosen to sample the opinion of the college community to
determine whether opinion on this issue is independent of university affiliation.
A random sample of 300 so-called stakeholders yielded the information (observed
frequencies) presented in Table 15.3. For instance: 80 students are in favor of
division 1-A athletics; 60 faculty are opposed to the same; 10 staff members are
neutral, and so on. Given the information appearing in this table, is opinion
independent of university affiliation at the α = 0.05 level?

Let H0: pij = pi•p•j, with H1 : pij �= pi•p•j for at least one cell (i, j),
i = 1, 2, 3, 4; j = 1, 2, 3, where pij is the (joint) probability that a stakeholder
selected at random will fall into the (i, j)th category; pi• is the (marginal) probabil-
ity that a randomly selected stakeholder belongs to affiliation category i; and p•j

is the (marginal) probability that a stakeholder selected at random has opinion j.
By (15.8), the expected frequency of the (i, j)thcell is

ni•n•j
n (appearing parenthet-

ically to the right of the observed cell frequency for the (i, j)thcell). For instance,
the expected frequency of a staff member opposed to division 1-A athletics is
n4•n•3

n = (50)(110)
300 = 18.33. Then the realized value of the Pearson chi-square

statistic is, from (15.9.2),

u = (80 − 51.66)2

51.66
+ (10 − 11.66)2

11.66
+ (10 − 70)2

70
+ (45 − 36.16)2

36.16

+ · · · + (10 − 5.83)2

5.83
+ (30 − 18.33)2

18.33
= 146.85.

Table 15.3

Opinion

Affiliation In Favor Neutral Opposed Totals

Students 80(51.66) 10(11.66) 10(70) 100(= n1•)
Alumni 45(36.16) 15(8.16) 10(49) 70(= n2•)
Faculty 20(41.33) 0(9.33) 60(56) 80(= n3•)

Staff 10(25.83) 10(5.83) 30(18.33) 50(= n4•)
Totals 155(= n•1) 35(= n•2) 110(= n•3) 300(= n)
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Table 15.4

Opinion

Sex Modify Do Not Modify Totals

Male 157(=a) 30(=b) 187(=e)
Female 98(=c) 15(=d) 113(=f)
Totals 255(=g) 45(=h) 30(=n)

Since r = 4 and c = 3, degrees of freedom is (r − 1)(c − 1) = 3 · 2 = 6.
From Table A.4 of the Appendix, the critical value of the chi-square statistic
is χ2

0.95,6 = 12.59. Since the calculated chi-square value is well within the critical
region R = {u|u ≥ χ2

0.95,6 = 12.59}, we reject the null hypothesis of independence
between opinion and university affiliation at the 5% level. In fact, the p-value is
less than 0.005. �

Example 15.2.2 Suppose the results of a company-wide random survey con-
cerning employee satisfaction with the proposed modification of the health
insurance plan appear in Table 15.4. Are opinion and sex statistically independent
at the α = 0.10 level? We again have H0: pij = pi•p•j, versus H1: pij �= pi•p•j for at
least one cell (i, j), i = 1, 2; j = 1, 2. From (15.10.1),

u′′ = 300
(∣∣(157)(15) − (30)(98)

∣∣− 150
)2

(187)(113)(255)(45)
= 0.234.

Since the critical region R = {u′′|u′′ ≥ χ2
0.90,1 = 2.71}, we cannot reject the

null hypothesis of independence between opinion and sex at the 10% level of
significance. �

15.3 Testing k Proportions

Let us consider a special case of (15.9.2). Specifically, we examine the instance in
which we want to test for the significance of the differences among the k popula-
tion proportions pi, i = 1, . . . , k. That is, suppose we have k independent random
samples and that X1, . . . , Xk comprise a set of independent binomial random vari-
ables with the parameters p1 and n1; p2 and n2; . . . ; pk and nk, respectively, where
pi, i = 1, . . . , k, is the (true) proportion of successes for the ithpopulation. Here
the random variable Xi, i = 1, . . . , k, depicts the number of successes obtained in
the ithsample. Its sample realization is denoted as xi, i = 1, . . . , k.

Let us arrange the realized number of successes and failures observed in
the k independent random samples in the following k × 2 table (see Table 15.5).
Here the 2k entries within this table are the observed cell frequencies oij,
i = 1, . . . , k; j = 1, 2.
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Table 15.5

Realized Number of Successes and Failures in
k Independent Random Samples

Successes Failures

Sample 1 x1 = o11 n1 − x1 = o12

Sample 2 x2 = o21 n2 − x2 = o22

...
...

...

Sample k xk = ok1 nk − xk = ok2

Our objective is to test H0: p1 = p2 = · · · = pk = p0, against H1: pi �= p0 for
at least one value of i = 1, . . . , k, where p0 is the null value of pi.

Under H0, the expected number of successes for sample i is nip0, i = 1, . . . , k
(since p0 = xi

ni
, i = 1, . . . , k); and the expected number of failures for sample i is

ni(1 − p0) (given that, 1 − p0 = ni−xi
ni

, i = 1, . . . , k). In this regard, the expected

cell frequencies for column 1 are e0
i1 = nip0, i = 1, . . . , k; and the expected cell

frequencies for column 2 are e0
i2 = ni(1 − p0), i = 1, . . . , k. So given p0, (15.9.2)

becomes

Up0 =
k∑

i=1

2∑

j=1

(oij − e0
ij)

2

e0
ij

, (15.11)

where oi1 is the collection of observed cell frequencies for the success column;
oi2 is the set of observed cell frequencies for the failure column; the expected
cell frequencies for the success category are e0

i1 = nip0; and the expected cell
frequencies for the failure category are e0

i2 = ni(1 − p0), i = 1, . . . , k. For α =
P(TIE) the critical region is R = {up0

|up0
≥ χ2

1−α,k−1}.
If p0 is not specified (we simply test H0 = p1 = p2 = · · · = pk, against H1:

the pi’s are not all equal), then we may obtain a pooled estimate of the common
proportion of successes p̂ as

p̂ = x1 + x2 + · · · + xk

n1 + n2 + · · · + nk
. (15.12)

Then from this expression, the expected cell frequency estimates are

ê0
i1 = nip̂ and ê0

i2 = ni(1 − p̂), i = 1, . . . , k. (15.13)

So when (15.12) is required, (15.11) is replaced by

Up̂ =
k∑

i=1

2∑

j=1

(oij − ê0
ij)

2

ê0
ij

. (15.14)
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Table 15.6

Number Favoring Number Favoring
Candidate A Candidate B

Precinct 1 60 40 n1 = 100
Precinct 2 70 80 n2 = 150
Precinct 3 40 40 n3 = 80
Precinct 4 50 80 n4 = 130

Example 15.3.1 On the basis of the sample realizations presented in Table 15.6,
determine if the true or population proportion of voters favoring candidate A
(defined as a success) over candidate B is the same across the four precincts polled
just before a certain mayoral election. Let α = 0.05. Here H0: p1 = p2 = p3 = p4

is to be tested against H1: the pi’s are not all equal, i = 1, 2, 3, 4.
Given the observed cell frequencies, the pooled estimate of the common

proportion of successes (15.12) is

p̂ = 60 + 70 + 40 + 50
100 + 150 + 80 + 130

= 220
460

= 0.478.

Then from (15.13), the expected cell frequencies are

ê11 = n1p̂ = 100(0.478) = 47.80 ê12 = n1(1 − p̂) = 100(0.522) = 52.20

ê21 = n2p̂ = 150(0.478) = 71.70 ê22 = n2(1 − p̂) = 150(0.522) = 78.30

ê31 = n3p̂ = 80(0.478) = 38.24 ê32 = n3(1 − p̂) = 80(0.522) = 41.76

ê41 = n4p̂ = 130(0.478) = 62.14 ê42 = n4(1 − p̂) = 130(0.522) = 67.86

A substitution of the observed and expected cell frequencies into (15.14) yields

up̂ = (60 − 47.80)2

47.80
+ (70 − 71.70)2

71.70
+ · · · + (40 − 41.76)2

41.76
+ (80 − 67.86)2

67.86
= 10.75.

Since up̂ is an element of R = {up̂|up̂ ≥ χ2
1−α,k−1 = χ2

0.95,3 = 7.815}, we reject
the null hypothesis of equal proportions at the 5% level; that is, the proportion
of voters favoring candidate A over candidate B is not the same across the four
precincts polled. �

15.4 Testing for Homogeneity

We next turn to an additional application of Pearson’s equation (15.9.2).
Section 15.2 employed this expression to test for the independence of two
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attributes or factors, each characterized by a variety of categories that, when
cross-classified, formed an r × c contingency table. Our objective was to deter-
mine if any dependency relationship or association existed between the two
population characteristics.

The test of homogeneity that follows is constructed so as to determine if two
or more independent random samples are drawn from the same population. This
test is a simple extension of the chi-square test of independence in that it also uses
cross-classified data as well as the same realized test statistic (15.9.2). For instance,
a sampling plan may be implemented multiple times, where the observations are
taken from a given population at, say, different points in time. Here we are
interested in determining if the population remains stable over time. Or we may
take separate subsamples, one for each of a variety of constituencies at a given
point in time, and ask whether or not these subgroups have the same distribution
of characteristics or traits and thus can be thought of as coming from the same
population.

In testing for independence, a single random sample of size n was extracted
from one specific population. However, in testing for homogeneity among
samples, two or more independent random samples are obtained—one from each
of the individual populations represented. In this regard, in tests of independence,
all marginal frequencies or totals are randomly determined for a fixed n. In tests
of homogeneity, the row totals ni•, i = 1, . . . , r, are actually fixed sample sizes
that are chosen quantities.

As before, for attributes A and B, let the categories A1, . . . , Ar and B1, . . . , Bc

constitute the rows and columns, respectively, of the r × c two-way table
depicted in Table 15.7.

Additionally, let the row totals, ni• = ni, i = 1, . . . , r, represent the sizes of
r separate independent random samples. Suppose each realization within each
sample is classified into one of the B attribute categories B1, . . . , Bc; for exam-
ple, let the A attribute be fixed at Ai and let the category Bj be observed. Then
the cell probability pij is the conditional probability pij = P(B = Bj|A = Ai),
i = 1, . . . , r; j = 1, . . . , c.

Table 15.7

Attribute B

Attribute A B1 B2 . . . Bc Totals

A1 n11 n12 . . . n1c n1• = n1 (fixed)

A2 n21 n22 . . . n2c n2• = n2 (fixed)
...

...
... . . .

...
...

Ar nr1 nr2 . . . nrc nr• = nr (fixed)

Totals n•1 n•2 . . . n•c n
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Now, our objective is to test the homogeneity hypothesis

H0: the r samples come from the same population, against

H1: the r samples do not come from the same population
(15.15)

More specifically, the null hypothesis states that the probability of observing
category Bj is the same regardless of the row population sampled; that is, we
have

H0: pij = P(B = Bj|A = Ai) = pj for all i, j = 1, . . . , c;

H1: pij = P(B = Bj|A = Ai) �= pj for at least one value of i, j = 1, . . . , c.
(15.16)

It is instructive to note that the null and alternative hypotheses expressed
in (15.16) may be stated alternatively as

H0: ( pi1, pi2, . . . , pic) = (p1, p2, . . . , pc) for all i;

H1: ( pi1, pi2, . . . , pic) are not the same for all i.
(15.16.1)

Then it is readily seen from the null hypothesis stated in (15.16.1) that:

p11 = p21 = · · · = pr1 = p1

p12 = p22 = · · · = pr2 = p2

...

p1c = p2c = · · · = prc = pc

(15.16.2)

Under H0, the best estimate of the proportion of category Bj (taken over all r
samples) is

n•j
n , j = 1, . . . , c, where n•j is the marginal total for column Bj. So for

sample i, the expected frequency of the joint event Ai ∩ Bj is

eij =
(n•j

n

)
ni, j = 1, . . . , c. (15.17)

Given (15.17), the realization of Pearson’s chi-square statistic for a test of
homogeneity is, from (15.9.2),

u =
r∑

i=1

c∑

j=1

(oij − eij)2

eij
, (15.18)

where oij(= nij) is the realized frequency for the (i, j)th cell. As determined earlier,
the critical region corresponding to an upper tail test is R = {u|u ≥ χ2

1−α,(r−1)(c−1)},
where χ2

1−α,(r−1)(c−1) is the 100(1 − α) percentile of the chi-square distribution
with (r − 1)(c − 1) degrees of freedom and α = P(TIE).
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Example 15.4.1 Assume that four independent random samples are taken
from the student body of a small single-gender college: n1 = 100 Freshman;
n2 = 95 Sophomores; n3 = 95 Juniors; and n4 = 90 Seniors. Each student chosen
is asked to offer an opinion of either Yes, No, or Indifferent to the question of
whether the college should “go co-ed.” The realizations of the poll are presented
as Table 15.8.

Let us test the null hypothesis of homogeneity (or no difference) of opinion
among the four groups against the alternative hypothesis of differences of opinion
among these groups or

H0: the four samples come from the same population, versus

H1: the four samples are drawn from different populations

In terms of (15.16.2), we seek to test

H0: P(Yes/Fr.) = P(Yes/Soph.) = P(Yes/Jr.) = P(Yes/Sr.) = p1

P(No/Fr.) = P(No/Soph.) = P(No/Jr.) = P(No/Sr.) = p2

P(Indiff ./Fr.) = P(Indiff ./Soph.) = P(Indiff ./Jr.) = P(Indiff ./Sr.) = p3

against

H1: not all equalities stated in H0 are true.

Under H0, the best estimates of the proportions responding Yes, No, and
Indifferent for Freshman are, from (15.17), respectively,

e11 = 270
380

(100) = 71.05 (Yes)

e12 = 65
380

(100) = 17.11 (No)

e13 = 45
380

(100) = 11.84 (Indifferent).

Table 15.8

Opinion

Year Yes No Indifferent Total

Freshman 60 (71.05) 20 (17.11) 20 (11.84) 100 (= n1)

Sophomore 60 (67.5) 30 (16.25) 5 (11.25) 95 (= n2)

Junior 70 (67.5) 10 (16.25) 15 (11.25) 95 (= n3)

Senior 80 (63.95) 5 (15.39) 5 (10.66) 90 (= n4)

Total 270 65 45 380



15.5 Measuring Strength of Association in Contingency Tables 655

These expected frequencies appear parenthetically to the right of the observed
frequencies given in row 1 of Table 15.8. The remaining expected frequencies are
determined and exhibited in a similar fashion. Let us choose α = 0.05. Then for
(r − 1)(c − 1) = 6, R = {u|u ≥ χ2

0.95,6 = 12.59}. Looking to (15.18),

u = (60 − 71.05)2

71.05
+ (20 − 17.11)2

17.11
+ (20 − 11.84)2

11.84
+ · · · + (5 − 10.66)2

10.66
= 43.86.

Clearly we may reject the null hypothesis of homogeneity at the 5% level—the
four samples are drawn from different populations. �

15.5 Measuring Strength of Association in
Contingency Tables

We noted in Section 15.2 that Pearson’s chi-square statistic is used in testing for
association between two attributes A and B. To execute the test we hypothesize
independence among the A and B factors and then, for a given level of signifi-
cance α = P(TIE), we see if we can reject the null hypothesis of independence
in favor of the alternative hypothesis that the A and B characteristics are not
independent but, at the chosen level of significance, exhibit statistical association.

If the null hypothesis is actually rejected, then what does the notion of lack of
independence really tell us? As mentioned earlier, if n is large enough, virtually
any degree of statistical association will lead to the rejection of the null hypoth-
esis; that is, even the slightest degree of departure from strict independence of
the A and B attributes typically is uncovered by the test.

Although detecting statistical association is important, we need to take the
next logical step in our analysis of the A and B attributes and ask the question:
How strong is the association between the A and B categories? In this regard,
we need to go beyond a simple test of significance and devise a measure of the
strength of association between the A and B factors.

Let us first consider a measure of association for a two-way contingency
table. One of the most common measures of the strength of statistical associ-
ation between attributes A and B in a test of independence is the odds ratio
(or cross-product ratio)

ψ = p11p22

p12p21
, (15.19)

where pij is the true or population probability of an observation falling into the
(i, j)th cell (see Table 15.9). In this expression, for row 1, the odds that the
response or outcome is in column 2 and not in column 1 is ψ1 = p12

p11
; and for

row 2, the odds that the response or outcome is in column 2 and not in column 1
is ψ2 = p22

p21
. Here ψi ≥ 0, with ψi > 1 if response 2 is more likely than response 1,

i = 1, 2. Then the ratio of these odds is ψ = ψ2
ψ1

or (15.19).
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Table 15.9

Attribute A
A

tt
ri

bu
te

B A1 A2

B1 p11 p12

B2 p21 p22

When the null hypothesis of independence of the A and B attributes holds,
then ψ1 = ψ2 so that ψ = 1. If 1 < ψ < +∞, we have positive association
between the A and B attributes in that the odds of the column 2 outcome are
higher for row 2 than for row 1. And if 0 ≤ ψ < 1, there exists negative associa-
tion between the A and B characteristics in that the odds of the column 2 outcome
are higher for row 1 than for row 2.

It should be intuitively clear that an appropriate estimate of ψ in (15.19) is

ψ̂ = n11n22

n12n21
, (15.20)

where pij is estimated by the observed relative frequency
nij
n , nij ≥ 0, i = 1, 2;

j = 1, 2.
Under random sampling, ln ψ̂ is asymptotically normally distributed with

asymptotic mean ln ψ and asymptotic standard deviation estimated by

σ̂ (ln ψ̂) =
(

1
n11

+ 1
n12

+ 1
n21

+ 1
n22

)1/2

. (15.21)

Then an approximate or asymptotic 100(1 − α)% confidence interval for ln ψ is

ln ψ̂ ± zα/2σ̂ (ln ψ̂). (15.22)

If we represent the lower and upper confidence limits determined in (15.22) as l
and u, respectively, then the corresponding 100(1 − α)% confidence interval for
ψ is

(el , eu). (15.22.1)

If the 100(1 − α)% confidence interval for ψ excludes the value 1, then ψ̂ departs
significantly from 1 at the α% level so that H0: ψ = 1 can safely be rejected in
favor of the two-sided alternative H1: ψ �= 1. The two-sided p-value for this test
(under H0: ln ψ = 0) can be determined from the standard normal variate value
z = ln ψ̂ /σ̂ (ln ψ̂).
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Example 15.5.1 Let us return to the sample data set presented earlier in the
2 × 2 contingency table involving opinion and sex (see Table 15.4). From (15.20),

ψ̂ = 157(15)
98(30)

= 0.80.

Since ψ̂ < 1, we have negative association between the row and column variables
or attributes; that is, for this random sample, females are less likely to report
“do not modify” than are males. In fact, the odds of a person choosing “do not
modify” are 0.8 times lower for females than for males. (If it had turned out that,
say, ψ̂ = 1.66, then positive association would be exhibited by the row and column
variables. In this instance we would conclude that the odds of choosing “modify”
would be 1.66 times higher for males than for females.) Since from (15.21) we
have

σ̂ (ln ψ̂) =
(

1
157

+ 1
30

+ 1
98

+ 1
15

)1/2

= 0.341,

it follows from (15.22) that for 1 − α = 0.95, an approximate 95% confidence
interval for ln ψ is −0.223 ± 1.96(0.341) or (l = −0.891, u = 0.445). Then a 95%
confidence interval for ψ is, from (15.22.1), (0.410, 1.560). Since 1 is a member of
the confidence interval for ψ(and 0 is within the confidence interval for ln ψ), it
is highly plausible that opinion and sex are not statistically independent. �

If any of the observed cell frequencies in a 2 × 2 contingency table is very
small, then an alternative estimator of ψ is

ψ̃ = (n11 + 0.5)(n22 + 0.5)
(n12 + 0.5)(n21 + 0.5)

. (15.20.1)

It has been shown that ψ̃ and σ̂ (ln ψ̃) have smaller asymptotic bias and mean
square error than ψ̂ and σ̂ (ln ψ̂), respectively. In most instances the confidence
interval determined via (15.22) will be very similar to that obtained by adding 0.5
to each observed cell frequency.

We next turn to the specification of indexes of contingency and predictive
association. One way to depict statistical association in an r × c contingency table
is by Cramer’s phi-squared statistic

ϕ2 = U
n(q − 1)

, 0 ≤ ϕ2 ≤ 1, (15.23)

obtained by dividing Pearsons’s chi-square statistic U by its theoretical maxi-
mum value n(q − 1), where n is the sample size, and q = min{r, c}. Here (15.23)
measures the overall strength of association in a sample; that is, for ϕ2 = 0, the
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sample exhibits complete independence between the A and B attributes; when
ϕ2 = 1, there exists complete dependence between these attributes or factors.

Example 15.5.2 From an examination of the chi-square test results deter-
mined earlier for the 4 × 3 contingency table involving university affiliation and
opinion (see Table 15.3), it is easily shown that the realized value of Cramer’s
phi-squared statistic is ϕ2 = 140.13

300(3) = 0.16. �

Next, let us consider a measure of association that exploits the notion that
information about one attribute may enhance our ability to predict the other
attribute. That is, association between attributes A and B is measured by the
reduction in the probability of error in predicting, say, A, given knowledge
concerning which B category has obtained. Given that our goal is to predict
one attribute from information pertaining to the other attribute, two situations
present themselves. First, if the A and B attributes are independent, then we
cannot expect to do any better in predicting, say, A, from knowledge of B
than if no information concerning the B attribute was at hand. But if the A and
B attributes are in some sense functionally related, then obviously knowledge
of B reduces the probability of error in predicting A.

Given the joint probability distribution for attributes A and B, suppose an
item is drawn at random from this distribution and we find that category Bj

has occurred. If knowing that Bj has occurred enables us to reduce the prob-
ability of error in predicting A, then we say that there is predictive association
between categories A and B; that is, if P(error in predicting A/B known) <

P(error in predicting A/B unknown), then we may specify an index of predictive
association for A given B as

λA/B = 1 − P(error in predicting A/B known)
P(error in predicting A/B unknown)

. (15.24)

Here this expression represents the proportionate reduction in the probability
of error in predicting the A category when the B category is known. (In this
regard, if λA/B is, say, 0.15, then knowing the B category reduces the probability
of error in predicting the A category by 15% on the average.) If knowing the B
category does not reduce the probability of error in predicting A, then λA/B = 0;
that is, there is no predictive association between A and B. But if λA/B = 1,
there is complete predictive association between these attributes in that no error
is made at all when the B category is given. It is important to note, however,
that even if λA/B = 0, some statistical association may exist between the A and B
attributes; that is, we cannot conclude that A and B are completely independent
when λA/B = 0. And when there is perfect association between the A and B
attributes, then complete predictive association emerges so that λA/B = 1.

Given an r × c contingency table, an estimate of λA/B can be obtained from
the sample frequency counts nij, i = 1, . . . , r; j = 1, . . . , c; that is, for items drawn
at random from a sample of size n, the estimated proportionate reduction in the
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probability of error in predicting A given B is

λ̂A/B =

c∑
j=1

max
i

nij − max
i

ni•

n − max
i

ni•
, 0 ≤ λ̂A/B ≤ 1, (15.25)

where nij is the frequency observed in the (i, j)th cell, max
i

nij is the largest observed

frequency in column j, and max
i

ni• is the largest marginal frequency among the

rows Ai. So when A and B are functionally related, we expect to experience
an improvement in our ability to predict the A attribute from knowledge of the
B attribute. And we can quantify the degree of improvement according to the
proportionate reduction in the probability of error index (15.25).

It should be obvious that (15.25) is an asymmetric measure of predictive
association in that it is only relevant for predicting the A category when the B
category is independently determined or known; that is, the B attribute is the
independent variable in the functional relationship between A and B. Let us now
reverse the conditional roles of the A and B attributes. Specifically, if knowing
that Ai has occurred enables us to reduce the probability of error in predicting B,
then again predictive association exists between the A and B attributes. An index
of predictive association for B given A is provided by

λB/A = 1 − P(error in predicting B/A known)
P(error in predicting B/A unknown)

; (15.26)

it renders the proportionate reduction in the probability of error in predicting
the B category when the A category is known.

In terms of the sample frequency counts nij, i = 1, . . . , r; j = 1, . . . , c, within
an r × c contingency table determined from a sample of size n, the estimated
proportionate reduction in the probability of error in predicting B given A is

λ̂B/A =

r∑
i=1

max
j

nij − max
j

n•j

n − max
j

n•j
, 0 ≤ λ̂B/A ≤ 1, (15.27)

where max
j

nij is the largest observed frequency in row Ai and max
j

n•j is the

largest marginal frequency among the columns Bj.
Now, it may be the case that A is predictable from B but B is not predictable

from A so that, in general, λ̂A/B �= λ̂B/A. Hence determining the values of both
(15.25) and (15.27) is important once we have rejected the null hypothesis of
independence in a chi-square test of association in an r × c contingency table.
This is because a significant chi-square test result in and of itself conveys no
information concerning the strength of the (asymmetric) predictive association
that may exist between the A and B attributes. It is essential to determine if
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knowing something about the A attribute can enhance our ability to make an
informed assessment of the B attribute and vice versa.

Under random sampling, λ̂B/A is normally distributed with asymptotic mean
λB/A and asymptotic standard deviation estimated by

σ̂ (λ̂B/A) =

⎡

⎢⎢⎢⎣

(
n −

r∑
i=1

max
j

nij

)(
r∑

i=1
max

j
nij + max

j
n•j − 2 max

i
ni∗
)

(
n − max

j
n•j

)3

⎤

⎥⎥⎥⎦

1/2

, (15.28)

where max
i

ni∗ is the largest of the r row frequencies observed within the col-

umn containing max
j

n•j = n•∗. Then for a given 1 − α value (α = P(TIE)), an

approximate or asymptotic 100(1 − α)% confidence interval for λB/A is

λ̂B/A ± zα/2σ̂ (λ̂B/A). (15.29)

If the resulting confidence interval contains zero, then the sample estimate λ̂B/A

is not significantly different from zero so that there is no compelling statisti-
cal evidence of the existence of predictive association (involving the A to B
direction) between the A and B attributes.

Similarly, an approximate or asymptotic 100(1 − α)% confidence interval for
λA/B is

λ̂A/B ± zα/2σ̂ (λ̂A/B), (15.30)

with

σ̂ (λ̂A/B) =

⎡

⎢⎢⎢⎢⎣

(
n −

c∑
j=1

max
i

nij

)(
c∑

j=1
max

i
nij + max

i
ni• − 2 max

j
n∗j

)

(n − max
i

ni•)3

⎤

⎥⎥⎥⎥⎦

1/2

, (15.31)

where max
j

n∗j is the largest of the c column frequencies observed within the row

containing max
i

ni• = n∗•.

Example 15.5.3 Given the random sample data set on opinion (attribute B)
and university affiliation (attribute A) presented in Table 15.3, and replicated
as Table 15.3.1, determine the degree of predictive association between these
two attributes. In addition, find 95% confidence intervals for both λA/B and λB/A.
First, from (15.25),

λ̂A/B = (80 + 15 + 60) − 100
300 − 100

= 0.275,
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Table 15.3.1

Opinion (Attribute B)
A

ffi
lia

ti
on

(A
tt

ri
bu

te
A

) 80 10 10 100 = n1•
45 15 10 70 = n2•
20 0 60 80 = n3•
10 10 30 50 = n4•

155 = n•1 35 = n•2 110 = n•3 n = 300

that is, knowing the B category reduces the probability of error in predicting the
A category by 27.5% on the average. And from (15.31),

σ̂ (λ̂A/B) =
[

(300 − 155)
(
155 + 100 − 2(80)

)

(300 − 100)3

]1/2

= 0.041.

Then a 95% confidence interval for λA/B is, from (15.30), 0.275 ± 1.96(0.041)
or (0.195, 0.355). Since 0 is not a member of this interval, it follows that λ̂A/B is
significantly different from zero at the α = 0.05 level.

Next, if we reverse the conditional roles of the A and B attributes, then, from
(15.27),

λ̂B/A = (80 + 45 + 60 + 30) − 155
300 − 155

= 0.414.

Thus knowing the A category reduces the probability of error in predicting the B
category by 41.4% on the average and, from (15.28),

σ̂ (λ̂B/A) =
[

(300 − 215)
(
215 + 155 − 2(80)

)

(300 − 155)3

]1/2

= 0.077

so that a 95% confidence interval for λB/A is, from (15.29), 0.414 ± 1.96(0.077)
or (0.263, 0.565). Since 0 is not a member of this interval, we may conclude that
λ̂B/A is significantly different from zero at the α = 0.05 level. We have thus deter-
mined that a statistically significant degree of predictive association exists in the
B to A direction as well as in the A to B direction. �

15.6 Testing Goodness of Fit with Nominal-Scale Data:
Paired Samples

Suppose we have n mutually independent bivariate sample random variables
(Xi, Yi) with realizations (xi, yi), i = 1, . . . , n. Suppose further that the Xi and
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Table 15.10

Yi Realizations

yi = 1 yi = 0

Xi Realizations
xi = 1

n11 (number of pairs n12 (number of pairs
with xi = yi = 1) with xi = 1, yi = 0)

xi = 0
n21 (number of pairs n22 (number of pairs
with xi = 0, yi = 1) with xi = yi = 0)

Yi variables are measured on a nominal scale, with two categories or possible
values for all Xi and Yi, i = 1, . . . , n. Given that the data are dichotomous, we can
use a set of 0’s and 1’s to code the realizations of Xi and Yi for all i. That is, each
xi = 0 or 1; each yi = 0 or 1. Hence the possible values of (xi, yi) are (0,0), (0,1),
(1,0), and (1,1). These possible pairs of values can be summarized in a 2 × 2 table
(see Table 15.10).

The chi-square test that follows, known as the McNemar test, attempts to
detect a difference between the probability of the (xi = 0, yi = 1) combination
and the probability of the (xi = 1, yi = 0) combination. Here the combinations
(xi = 1, yi = 1) and (xi = 0, yi = 0) are ignored since, for the purpose of the test,
these combinations are considered to be ties. In this regard, we seek to test

H0: P(Xi = 0, Yi = 1) = P(Xi = 1, Yi = 0),

against

H1: P(Xi = 0, Yi = 1) �= P(Xi = 1, Yi = 0).

In terms of the observed sample frequencies presented in Table 15.10, we may
test

H0: each of the sample proportions n11+n12
n and n11+n21

n serve as estimators of the
same population proportion, against

H1: each of the indicated sample proportions do not serve as estimators of the
same population proportion

or, in terms of the observed cell frequencies n12 and n21, let us test

H0: r = 1, against H1: r �= 1,

where the population ratio r = p12
p21

is estimated by r̂ = n12
n21

.
For n12 + n21 > 20 and 1 degree of freedom, the sample realization of

the chi-square test statistic incorporating Yates’ continuity correction can be
written as

χ2 = (|n12 − n21| − 1)2

n12 + n21
(15.32)
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Table 15.11

Brand B

Chipping No chipping
B

ra
nd

A Chipping n11 = 40 n12 = 15 55

No chipping n21 = 10 n22 = 5 15

50 20 70

and, for a given α = P(TIE), the critical region or region of rejection is R =
{χ2|χ2 ≥ χ2

1−α,1}, where χ2
1−α,1 is the 100(1 − α)% quantile of the chi-square

distribution with 1 degree of freedom. (Note that (15.32) is equivalent to the
realization

χ = |n12 − n21| − 1√
n12 + n21

(15.32.1)

of a standard normal variate with R = {z/z ≥ zα/2}.)
If n12 + n21 ≤ 20, then the binomial test should be performed. In this instance

n = n12 + n21, x = n12 (or = n21) serves as the realized number of successes, and
the null and alternative hypotheses are H0: p = 1

2 and H1: p �= 1
2 , respectively.

It is important to mention that the McNemar test is not a 2 × 2 contingency
test even though it uses the chi-square variate. This is because the chi-square
contingency test hypothesizes independence between the rows and columns of
the contingency table whereas the McNemar test is specifically designed to
exhibit association between the rows and columns of the said table.

Example 15.6.1 We wish to test at the α = 0.05 level whether two different
nail polishes (call them brands A and B) are equally effective at resisting chipping
over a 24-hour period. In a random sample of n = 70 women, brand A was applied
to one hand and brand B was applied to the other hand, with the choice of the
hand getting, say, brand A determined in a random fashion by tossing a coin.
The results of the test are presented in Table 15.11. Here H0: the proportion of
women experiencing chipping is the same for both brands; H1: the proportion
of women experiencing chipping is not the same for both brands. Given that

n12 + n21 = 25 > 20, (15.32) renders χ2 = (|15−10|−1)2

25 = 0.64. Since 0.64 is not an
element of R = {χ2|χ2 ≥ χ2

0.95,1 = 3.841}, we cannot reject the null hypothesis;
brands A and B are equally resistant to chipping. �

The McNemar test is very useful when testing for a significant change in
outcomes or responses by recording the same before and after some event or
treatment. That is, our test situation can be viewed as one in which for each pair
(Xi, Yi), i = 1, . . . , n, Xi depicts the condition or state of some experimental unit
before the treatment and Yi depicts the condition of the experimental unit after
the treatment.
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Table 15.12

After

Coach of Team A Coach of Team B
(yi = 1) (yi = 0)

B
ef

or
e Coach of Team A

40(= n11) 20(= n12) 60
(xi = 1)

Coach of Team B
10(= n21) 10(= n22) 20

(xi = 0)

50 30 80

Example 15.6.2 Prior to the playing of a nationally televised college football
game involving teams A and B, a random sample of n = 80 college football
coaches were asked to state their preferences for the coach of team A or the
coach of team B to be elected coach of the year. Sixty favored the coach of team
A and 20 favored the coach of team B. After the game, the same 80 coaches
were asked to cast their vote again, with 50 now favoring the coach of team
A and 30 favoring the coach of team B. The voting results are summarized in
Table 15.12. Let us test H0: the population voting preference was not changed by
the game, against H1: there has been a change in the proportion of voters who
favor the coach of team A relative to the coach of team B. Given the sample

results, our realized test statistic is, from (15.32), χ2 = (|20−10|−1)2

30 = 2.70. Then
for, say, α = 0.05, the critical region R = {χ2|χ2 ≥ χ2

0.95,1 = 3.841}. Since this
realized chi-square statistic is not an element of R , we cannot reject H0 at the
5% level; voter preference has not been significantly changed by the outcome of
the game. �

15.7 Exercises

15-1. A group of males and females is asked to state their preference for driving
either a mini-van or SUV on a daily basis. The responses are indicated
here. Are preference and sex independent? What is the p-value?

Preference

Mini-van SUV

Sex
Male 10 30

Female 20 20

15-2. Random samples of high school students from urban, suburban, and
rural areas are asked if they are planning to attend an institution of
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higher learning. Are the categories of planning for college and location
independent?

Location

Urban Suburban Rural

Planning
for College

Yes 15 40 25

No 35 10 25

Determine the p-value.

15-3. A department manager at one of the ACE Department Stores is interested
in the relationship between sales force training and customer satisfaction
with the service as indicated by customer responses to a brief survey taken
randomly at time of purchase.

Customer Satisfaction

Poor Good Excellent

Days of
Training

1 day 10 15 2

2 days 7 10 9

3 days 5 15 8

4 days 3 20 10

Are days of training and customer satisfaction independent? What is the
p-value?

15-4. A sociologist is interested in determining if there is a relationship between
family income and type of college attended. A random sample of families
having at least one child in some sort of college yielded the following
results:

Type of College

Private Public Community

Family
Income

Low 5 10 18

Middle 8 15 10

High 20 8 6

Are type of college and family income independent? Determine the
p-value.

15-5. In a large city four independent random samples of city employees (com-
posed of workers categorized as clerical, sanitation, transportation, and
buildings and grounds) were taken in order to determine their attitude
concerning a new sick-leave policy.
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Attitude

In Favor Neutral Opposed

Type of
Employee

Clerical 27 33 15

Sanitation 13 41 21

Transportation 25 10 40

Bldg. & Grnds. 11 50 14

Can we conclude that the four samples have been drawn from the same
population? Take α = 0.01.

15-6. Suppose that in Exercise 15-5 the “Neutral” category is omitted. Is the
proportion of city employees in favor of the new policy the same across
the four employee types? Use α = 0.05.

15-7. Five groups were independently and randomly polled regarding the issue
of stricter handgun control. Are the population proportions of individu-
als favoring stricter handgun control the same across the groups polled?
Choose α = 0.10.

Stricter Handgun Control

In Favor Opposed

G
ro

up

Law Enforcement Officers 37 13

Hunters 10 40

High School Teachers 25 25

Clergy 40 10

Shopkeepers 30 20

15-8. Determine an estimate of the population odds ratio for Exercise 15-1.
Find a 95% confidence interval for the said odds ratio. What is the value
of Cramer’s phi-squared statistic?

15-9. Find the value of Cramer’s phi-squared statistic for the contingency tables
appearing in Exercises 15-2, 15-3, and 15-4.

15-10. For Exercise 15-2, find estimates of λA|B and λB|A. Also determine 95%
confidence intervals for these parameters.

15-11. For Exercise 15-3, determine estimates of λA|B and λB|A. Also find 99%
confidence intervals for λA|B and λB|A.

15-12. For Exercise 15-4, produce estimates of λA|B and λB|A. In addition, find
95% confidence intervals for λA|B and λB|A.

15-13. Cook-Rite Inc. has developed a spray product called No-Stick that it
says prevents food from sticking to the cooking surface of frying pans.
Sixty pans of the same size, material, and make are to be tested (at the
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same heat setting) with No-Stick, with one half of the pan sprayed with
No-Stick and the other half uniformly coated with margarine, where the
side sprayed with No-Stick is determined in a random fashion.

No-Stick

Food Sticking Food not Sticking

Margarine
Food Sticking 12 20

Food not Sticking 15 13

For α = 0.05, does No-Stick perform better than margarine?

15-14. A random sample of n = 50 newspaper business editors were asked if
they agreed with the newly elected President’s current domestic economic
policies. The same group of editors was polled a year later and asked the
same question. For α = 0.05, has there been a change in the editor’s view
of the President’s current domestic economic policies?

Second Poll

Agree Disagree

First Poll
Agree 20 5
Disagree 15 10
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1616
Bivariate Linear Regression
and Correlation

16.1 The Regression Model

The purpose of regression analysis is two-fold: (1) we study the functional
relationship between two variables X and Y and, if the said relationship is
deemed meaningful (typically in a statistical sense), then (2) we seek to fore-
cast or predict a value of one variable (Y) from a given observation on another
variable (X). More specifically, as will be seen next, we can predict either the
average value of Y for a given value of X or a particular value of Y correspond-
ing to a given value of X. In order to obtain the said predictions, we need to first
determine the association between the X and Y variables.

To this end, let us first assume that X and Y are random variables with joint
probability density function f (x, y). Then for each realization x of X, there is a
conditional distribution of Y given X = x or h(y|x). Then the regression of Y
on X = x is the mean of Y in the conditional density of Y given X = x and
appears as

j(x) = E(Y |X = x) =
∫ +∞

−∞
yh(y|x)dy =

∫ +∞

−∞
y

f (x, y)
g(x)

dx, (16.1)

where g(x) = ∫+∞
−∞ f (x, y)dy is the marginal distribution of X. Hence y = j(x),

the locus of means of the conditional distribution E(Y |X = x) when plotted
in the x, y-plane, represents the regression curve of y on x for Y given X = x.
(For an example on the specification of (16.1) see Appendix 7.B.)

Next, if the joint probability density function f(x, y) is unknown, then we can
simply assume a particular functional form (typically linear) for the regression
curve and then fit the function to a set of observations on the variables X and Y.
As will be explained shortly, Y is taken to be a random variable whose values
are conditional on a set of fixed admissible X values. This second approach to
regression analysis (involving random Y, nonrandom X, and a linear regression
curve) is the one that will be followed throughout this chapter.

669
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The basic problem that we face is to determine the line of best fit through a
scatter of n sample points (X1, Y1), . . . , (Xn, Yn). Moreover, once the equation of
the implied line has been empirically determined, we must make an assessment of
its goodness of fit to the data. If the line is indeed found to fit the data well, in the
sense that it closely approximates the true (but unknown) relationship between X
and Y, then it can be used for predictive purposes, with the appropriate prediction
error reported.

To solve the regression problem, let us begin by obtaining a sample of n
observations on a variable Y : Y1, . . . , Yn, where

Yi = systematic component + random component, i = 1, . . . , n. (16.2)

Here the systematic or deterministic part of Yi reflects a particular behavioral
hypothesis, whereas the random part is unobservable and arises because of some
combination of sampling, measurement, and specification error; that is, it covers
a multitude of sins in that it depicts the influence on Yi of many omitted variables,
each presumably exerting an individually small effect. Moreover, as will be seen
later, the Xi’s, i = 1, . . . , n, are taken to be nonrandom or predetermined.

If we assume a priori a functional relationship between X and Y, and, in
particular, that Y is linearly related to X, Y = β0 + β1X , where the unknown
population parameters β0 and β1 are, respectively, the vertical intercept and
slope of the regression line, then (16.2) may be rewritten as

Yi = β0 + β1Xi + εi, i = 1, . . . , n, (16.3)

where β0 + β1Xi is the systematic component and εi is a stochastic disturbance
or random error term. It is apparent that because of the random nature of the εi

values, we must construct, for purposes of estimation and testing, a probabilistic
model that incorporates their requisite properties so that inferences from the set
of sample data can be made about the unobserved population regression line.

16.2 The Strong Classical Linear Regression Model

Given that Yi, i = 1, . . . , n, is assumed to be statistically (and linearly) related
to X and ε according to the specification Y = β0 + β1X + ε, we will refer to X
as the explanatory variable (remember that X is taken to be nonstochastic, e.g.,
it is controllable or fully predictable), to ε as a random variable, and to Y as
the explained variable (Y is also a random variable since ε is stochastic). In this
regard, for each fixed Xi there is a whole probability distribution associated with
Yi, the characteristics of which are determined by Xi and the probability distri-
bution of εi, i = 1, . . . , n. For instance, as Figure 16.1 reveals, at each Xi value
we cannot expect Yi to equal β0 + β1Xi exactly because of the random behav-
ior of εi. Hence we only require that, on the average, Yi equals β0 + β1Xi since
realized values of Yi may depart radically from the latter. To illustrate this aver-
age relationship, we shall indicate that, on the average, the systematic part of
Yi given Xi is E(Yi|Xi) = β0 + β1Xi; that is, the conditional expectation of Yi

given Xi. (In this regard, β1 is the average change in Y per unit change in X.)
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f(e) = f(Y)

X

E(Y1⏐X1) = b0 + b1X1

X
1     X

2 ....... X
n

f(e1)
f(e2)

f(en)

E(Yn⏐Xn) = b0 + b1Xn

Y

E(Y2⏐X2) = b0 + b1X2

E(Y⏐X ) = b0 + b1X 

Figure 16.1 The probability distribution of εi is concentrated about E(Yi|Xi) = β0 + β1Xi under the
linearity hypothesis.

Hence the probability distribution of εi, f (εi), is concentrated about E(Yi|Xi).
Thus the regression equation resulting from knowledge of this average relation-
ship is Y = E(Y |X) + ε = β0 + β1X + ε; that is, on the average, Y’s systematic
component is E(Y |X) = β0 + β1X . And as indicated in Figure 16.1, under the
linearity hypothesis, each of the n means E(Yi|Xi) lies on this population regres-
sion line. Let us now turn to the specific assumptions concerning the probability
distribution of ε.

Given that 16.3 holds:

(A.1) εi is normally distributed for all i. Given that εi is composed of a diversity
of factors that work in opposite directions, we may expect small values of
εi to occur more frequently than large ones.

(A.2) εi has zero mean or E(εi) = 0 for all i. Positive deviations from β0 + β1X
are just as likely to occur as negative ones so that the random errors εi are
distributed about a mean of zero.

(A.3) The errors εi are homoscedastic or V(εi) = E(ε2
i ) − E(εi)2 = E(ε2

i ) =
σ 2

ε = constant for all i. Each f (εi) distribution has the same constant
variance σ 2

ε whose value is unknown.
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(A.4) Nonautocorrelation of the εi’s or COV(εi, εj) = E([εi − E(εi)][εj − E(εj)]) =
E(εiεj) = 0, i �= j. (Successive εi values are uncorrelated.) In addition,
X and ε are uncorrelated or COV(Xi, εj) = 0 for all i and j.

(A.5) X is a nonrandom variable. The Xi values are fixed; that is, controllable,
in repeated sampling from the same population.1

Here (A.2) and (A.4) imply that the εi’s are uncorrelated, and (A.1), (A.2),
and (A.4) imply that the εi’s are independent. Moreover, (A.1) allows us to
conduct tests of hypotheses and to construct confidence intervals for β0, β1 and
E(Y |X) = β0 + β1X as well as determine prediction intervals for either the
average value of Y given some X value (call it X0) or for a particular value of
Y corresponding to X0.

We noted in (A.5) that the Xi, i = 1, . . . , n, values are held fixed. Hence
the sole source of variation in the random variable Y in repeated sampling
from the same population is variation in ε so that the probability distribution
of Y is identical to that of ε. So as far as the properties of the probability
distribution of Y are concerned:

(B.1) E(Yi) = E(Yi|Xi) + E(εi) = β0 + β1Xi, i = 1, . . . , n.

(B.2) V(Yi) = E[Yi − E(Yi)]2 = E(β0 + β1Xi + εi − β0 − β1Xi)2 = E(ε2
i ) = σ 2

ε =
constant for all i while COV(Yi, Yj) = 0, i �= j.

(B.3) The random variable Yi is normally distributed since εi is normally
distributed, i = 1, . . . , n.

(B.4) The random variables Yi are independent because the εi are independent,
i = 1, . . . , n.

Having discussed the nature of the variables X, ε, and Y, our next set of
objectives is to:

(a) Obtain estimates of β0, β1 (denoted as β̂0, β̂1, respectively).

(b) Obtain estimates of the variances of β̂0, β̂1, and ε.

On the basis of this information we can next:

(c) Test hypotheses concerning the population parameters β0, β1.

(d) Construct confidence intervals for the population parameters β0, β1.

(e) Test hypotheses concerning the entire population regression line; that is,
perform a significance test of β̂0 and β̂1 jointly.

(f) Determine a prediction interval for the average value of Y given X0.

1 If only A.2–A.5 are considered, then the resulting model is simply termed the weak classical linear
regression model. If A.1 is also included, then the strong case emerges.
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(g) Construct a confidence band for the entire population regression line proper.

(h) Determine a prediction interval for a particular value of Y given X0.

(i) Construct a partitioned sums-of-squares table.

16.3 Estimating the Slope and Intercept of the Population
Regression Line

When the values of β0 and β1 are estimated on the basis of sample informa-
tion, we obtain the sample regression line Ŷ = β̂0 + β̂1X that serves as our
proxy for the population regression line E(X |Y) = β0 + β1X , where Ŷ is the
fitted or estimated value of Y and β̂0 and β̂1 represent the estimated popula-
tion parameters. Since most (if not all) of the observed Yi values will not lie
exactly on the sample regression line, the values of Yi and Ŷi differ. This differ-
ence will be denoted as ei = Yi − Ŷi, 1, . . . , n, and will be termed the ith residual
or deviation from the sample regression line. Here ei serves as an estimate of
the stochastic or unobserved disturbance εi. To see the difference between εi

and ei directly, let us examine the hypothetical population and sample regression
lines illustrated in Figure 16.2, where Yi may be viewed as being determined by
either the population or sample regression lines

(population regression line) Yi = E(Yi|Xi) + εi = β0 + β1Xi + εi,

(sample regression line) Yi = Ŷi + ei = β̂0 + β̂1Xi + ei,

respectively.

(Xi, Yi)

(sample regression line)

(population regression line)

iε

Yi
ˆ

ˆ

Y = b0 + b1Xˆ ˆ ˆ

E(Y⏐X ) = b0 + b1X

E(Yi⏐Xi) = b0 + b1Xi

ei =Yi –Yi

Xi

Y

X

Figure 16.2 The population and sample regression lines.
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The decision rule or criterion of goodness of fit to be employed in estimating
β0 and β1 is depicted by the principle of least squares: to obtain the line of best
fit, choose β̂0and β̂1 so as to minimize the sum of the squared deviations from the
sample regression line; that is,

min

{
n∑

i=1

e2
i =

∑
(Yi − Ŷi)2 =

∑
(Yi − β̂0 − β̂1Xi)2 = F(β̂0, β̂1)

}
.

(For convenience the operator
∑n

i=1 will at times be simplified to
∑

, where it is to
be understood that we always sum over all values of the i index; i.e., i = 1, . . . , n.)
Upon setting ∂F

∂β̂0
= ∂F

∂β̂1
= 0 (it is assumed that the second-order conditions for

a minimum are satisfied), the resulting simultaneous linear equation system

∑
ei = 0

∑
Xiei = 0

⎫
⎪⎬

⎪⎭
or

⎧
⎨

⎩

(a) nβ̂0 + β̂1
∑

Xi = ∑
Yi

(b) β̂0
∑

Xi + β̂1
∑

X2
i = ∑

XiYi

[system of least squares normal equations]

(16.4)

yields the solution

β̂0 = (
∑

Yi)(
∑

X2
i ) − (

∑
XiYi)(

∑
Xi)

n
∑

X2
i − (

∑
Xi)2

, β̂1 = n
∑

XiYi − (
∑

Xi)(
∑

Yi)
n
∑

X2
i − (

∑
Xi)2

.

An alternative specification of β̂0 and β̂1 is in terms of the deviations of Xi and
Yi from their respective means �X and �Y . That is, if xi = Xi − �X (respectively,
yi = Yi − �Y), i = 1, . . . , n, represents the ith deviation of Xi (respectively, Yi) from
its mean, then

(a) β̂1 =
∑

(Xi − �X)(Yi − �Y)
∑

(Xi − �X)2
=
∑

xiyi∑
x2

i

,

(b) β̂0 = �Y − β̂1�X (from (16.4a)).

(16.5)

Note that (16.5b) reveals an important property of the least squares line of best
fit Ŷ = β̂0 + β̂1X , namely that it passes through the point of means (�X , �Y) (see
Figure 16.3). (For notational convenience, β̂0 and β̂1 will also be used to denote
the sample realizations of these least squares estimators.)

What about the statistical properties of the least squares estimators β̂0 and
β̂1? To answer this question we shall rely upon the Gauss-Markov Theorem:
If assumptions (A.2) through (A.5) underlying the weak classical linear regres-
sion model hold, then, within the class of linear unbiased estimators of β0 and
β1, the least squares estimators have minimum variance; that is, the least squares
estimators are BLUE (Best Linear Unbiased Estimators). Hence BLUE requires
that the estimator β̂0 (respectively, β̂1) be expressible as a linear combination of
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Y

Y

X
X

(X ,Y )

Y = b0 + b1X ˆ ˆ ˆ

Figure 16.3 The sample regression line passes through the point of means (�X , �Y).

the Yi, i = 1, . . . , n, that it be unbiased, and its variance be smaller than that of
any alternative linear unbiased estimator of β0 (respectively, β1).

It is important to note that if we admit assumption (A.1) to our discussion;
that is, if we work with the strong classical linear regression model, then the least
squares estimators β̂0 and β̂1 are maximum likelihood estimators of β0 and β1,
respectively. (You will verify this assertion in Exercise 16.15.)

Example 16.3.1 Let us assume that a certain manufacturing company has
compiled a set of data (see columns 1 and 2 of Table 16.1 and Figure 16.4)
pertaining to its last 10 years of operation in a certain market. It has available
observations on gross sales (in millions of current dollars) and advertising outlay
(also expressed in millions of current dollars). Is there a statistically significant
linear relationship between gross sales and advertising expenditure? In addition,
if the company is considering a new advertising campaign that would involve an
outlay of 12 million dollars in 2005, what is the anticipated level of gross sales for
that period?

A glance at columns 1 and 2 of Table 16.1 reveals that with n = 10,
∑

Xi =
72.10, and

∑
Yi = 122.95, it follows that �X = 7.210 and �Y = 12.295. On the basis

of these values we may determine the entries in columns 3 through 7. And from
the indicated column totals, we obtain

β̂1 =
∑

xiyi∑
x2

i

= 88.7010
61.7490

= 1.4365,

β̂0 = �Y − β̂1�X = 12.295 − 1.4365(7.210) = 1.9379.

So when X increases by one unit, Y ’s average increase is 1.4365 units. Moreover,
the average value of Y when X = 0 is 1.9379. Hence the estimated regression
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Table 16.1

Year

(1) (2) (3) (4) (5) (6) (7)

Gross Sales Advertising xi = Xi − �X yi = Yi − �Y x2
i y2

i xiyi

(Y ) Outlay = Xi − 7.210 = Yi − 12.295
(X)

1995 7.60 4.00 −3.210 −4.695 10.3041 22.0430 15.0710
1996 8.36 4.50 −2.710 −3.935 7.3441 15.4842 10.6639
1997 8.00 4.60 −2.610 −4.295 6.8121 18.4470 11.2100
1998 9.58 5.00 −2.210 −2.715 4.8841 7.3712 6.0002
1999 11.51 7.00 −0.210 −0.785 0.0441 0.6162 0.1649
2000 13.00 8.00 0.790 0.705 0.6241 0.4970 0.5570
2001 15.10 8.20 0.990 2.805 0.9801 7.8680 2.7770
2002 15.60 9.00 1.790 3.305 3.2041 10.9230 5.9160
2003 16.00 10.50 3.29 3.705 10.8241 13.7270 12.1895
2004 18.20 11.30 4.090 5.905 16.7281 34.8690 24.1515

Column
Totals

∑
Yi = ∑

Xi = 72.10
∑

xi = 0
∑

yi = 0
∑

x2
i = ∑

y2
i = ∑

xiyi =
122.95 61.7490 131.8456 88.7010

line is Ŷ = β̂0 + β̂1X = 1.9379 + 1.4365X . And if advertising outlay increases to
X0 = 12, the predicted value of gross sales, Ŷ0, is determined from the estimated
regression equation to be Ŷ0 = β̂0 + β̂1X0 = 1.9379 + 1.4365(12) = 19.1759. �

How reliable is the predicted value of Y? The answer to this question
obviously hinges upon how well we have estimated the population regression
equation itself; that is, does the set of sample data offer sufficient evidence to
indicate that advertising outlay serves as a reasonably good explanatory variable
as far as the behavior of gross sales is concerned, or can the observed relationship
between these variables be attributed solely to chance? In the next three sections
we shall explicitly address the issue of goodness of fit of the sample regression line.

16.4 Mean, Variance, and Sampling Distribution of the Least
Squares Estimators β̂0 and β̂1

From the Gauss-Markov Theorem we know that E(β̂0) = β0 and E(β̂1) = β1.
Moreover, it can be shown that

V(β̂0) = σ 2
ε

(
1
n

+
�X2

∑
x2

i

)
, V(β̂1) = σ 2

ε∑
x2

i

, (16.6)

where σ 2
ε is the unknown variance of the random (error) variable ε. (It is evident

from these expressions that V(β̂0) and V(β̂1)both vary directly with the spread
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Y = 1.9379 + 1.4365X
(Gross sales regressed
on advertising outlay)

Y

X 

(X0, Y0) ˆ

ˆ

ˆ

Figure 16.4 Using the least squares regression equation to predict gross sales at an advertising outlay
of X0 = 12.

or dispersion of the unobserved εi values about the population regression line;
that is, with σ 2

ε , and inversely with the variation or dispersion of the Xi values
about �X , or

∑
x2

i .) In addition,

COV(β̂0, β̂1) = E
([

β̂0 − E(β̂0)
] [

β̂1 − E(β̂1)
])

= E
(

(β̂0 − β0)(β̂1 − β1)
)

= −�X
(

σ 2
ε∑
x2

i

)
,

where β̂0 − β0 and β̂1 − β1 are the sampling errors of β̂0 and β̂1, respectively.
Clearly COV(β̂0, β̂1) < 0 when �X > 0; that is, the said sampling errors are of
opposite sign, to wit an understatement of β0 is accompanied with an overstate-
ment of β1, and conversely. It should be apparent that neither of the quantities
in (16.6) can be directly employed as an aid in determining just how precisely the
population regression line has been estimated since σ 2

ε is unknown and must be
determined from the sample values. To this end we shall use

S2
ε =

∑
e2

i

n − 2
=
∑

(Yi − Ŷi)2

n − 2
=
∑

y2
i − β̂1

∑
xiyi

n − 2
(16.7)
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as an unbiased estimator of σ 2
ε . If this estimator for σ 2

ε is inserted into (16.6), it
follows that estimators for the variances of β̂0 and β̂1 are, respectively,

S2
β̂0

= S2
ε

(
1
n

+
�X2

∑
x2

i

)
, S2

β̂1
= S2

ε∑
x2

i

.

If we take the positive square root of each of these expressions, then we obtain
the estimated standard deviations of β̂0 and β̂1 or, as they are more commonly
called, the estimated standard errors of the regression coefficients

Sβ̂0
= Sε

√
1
n

+
�X2
∑

x2
i

, Sβ̂1
= Sε√∑

x2
i

. (16.8)

In these expressions Sε is referred to as the standard error of estimate and
serves as a measure of the average dispersion of the individual sample points
about the estimated regression line. Clearly the estimated standard errors of β̂0

and β̂1 vary directly with Sε; that is, the greater the dispersion of the sample
points about the estimated regression line, the less precise our estimates of β0

and β1.

Example 16.4.1 We may continue with the preceding example by using the
sample data presented in Table 16.1 to find sample realizations of Sβ̂0

and Sβ̂1
.

Since from (16.7) we have

sε =
√∑

y2
i − β̂1

∑
xiyi

n − 2
=
√

131.8456 − 1.4365(88.7010)
8

= 0.7439,

it follows from (16.8) that

sβ̂0
= sε

√
1
n

+
�X2
∑

x2
i

= 0.7439

√
1

10
+ (7.210)2

61.7490
= 0.7219,

sβ̂1
= sε√∑

x2
i

= 0.7439√
61.7490

= 0.0946. �

If we now couple assumption (A.1) with the Gauss-Markov results, it can
be shown that both β̂0 and β̂1 are expressible as linear combinations of the
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independent normal random variables Yi, i = 1, . . . , n, so that

β̂0 is N
(

E(β̂0),
√

V(β̂0)
)

= N

⎛

⎝β0, σε

√
1
n

+
�X2
∑

x2
i

⎞

⎠ ,

β̂1 is N
(

E(β̂1),
√

V(β̂1)
)

= N

(
β1,

σε√∑
x2

i

)

and thus

β̂0 − β0

σε

√
1
n + �X2

∑
x2

i

is N(0, 1) and
β̂1 − β1

σε√∑
x2

i

is N(0, 1). (16.9)

If in (16.9) we replace σε by Sε, then the resulting quantities follow a t dis-
tribution with n − 2 degrees of freedom (since from a sample of size n we
have estimated two population parameters so that the number of independent
observations remaining in the sample is n − 2); that is,

β̂0 − β0

Sε

√
1
n + �X2

∑
x2

i

= β̂0 − β0

Sβ̂0

is tn−2,
β̂1 − β1

Sε√∑
x2

i

= β̂1 − β1

Sβ̂1

is tn−2. (16.10)

16.5 Precision of the Least Squares Estimators β̂0, β̂1:
Confidence Intervals

To determine just how precisely the population parameters have been estimated
from the sample data, let us construct the probability statements

(a) P

(
−tα/2,n−2 ≤ β̂0 − β0

Sβ̂0

≤ tα/2,n−2

)
= 1 − α,

(b) P

(
tα/2,n−2 ≤ β̂1 − β1

Sβ̂1

≤ tα/2,n−2

)
= 1 − α,

(16.11)

where −tα/2,n−2, tα/2,n−2 are lower and upper percentage points, respectively,
of the t distribution (i.e., values that cut off α

2 of the total area under the t
distribution at each tail end) and 1 − α is the confidence probability. Upon piv-
oting in (16.11a,b) and passing to sample realizations we obtain the confidence
statements

(a) P(β̂0 − tα/2,n−2 sβ̂0
≤ β0 ≤ β̂0 + tα/2,n−2 sβ̂0

) = 1 − α,

(b) P(β̂1 − tα/2,n−2 sβ̂1
≤ β1 ≤ β̂1 + tα/2,n−2 sβ̂1

) = 1 − α,
(16.12)
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with confidence coefficient 1 −α so that, from (16.12a), a 100(1 −α)% confidence
interval for β0 is

(β̂0 − tα/2,n−2 sβ̂0
, β̂0 + tα/2,n−2 sβ̂0

); (16.13)

and from (16.12b), a 100(1 − α)% confidence interval for β1 amounts to

(β̂1 − tα/2,n−2 sβ̂1
, β̂1 + tα/2,n−2 sβ̂1

). (16.14)

In this regard, (16.13) and (16.14) inform us that we may be 100(1 − α)% confi-
dent that the true regression intercept β0 (respectively, slope β1) lies between
β̂0 ± tα/2,n−2 sβ̂0

(respectively, β̂1 ± tα/2,n−2 sβ̂1
). It should be evident that the

narrower the intervals depicted in (16.13) and (16.14), the more precise the
estimates of β0 and β1, respectively.

Example 16.5.1 How precisely have we estimated β0 and β1 from the pre-
ceding sample of gross sales-advertising outlay data (see Table 16.1)? If we
want a 95% confidence interval, then, since 1 − α = 0.95, α = 0.05 and thus
α
2 = 0.025. Hence tα/2,n−2 = t0.025,8 = 2.306. From Section 16.4 we found that
sβ̂0

= 0.7219, sβ̂1
= 0.0946. Then from (16.13) we have

β̂0 − tα/2,n−2 sβ̂0
= 1.9379 − 2.306(0.7219) = 0.2732,

β̂0 + tα/2,n−2 sβ̂0
= 1.9379 + 2.306(0.7219) = 3.6026.

Hence we may be 95% confident that the true regression intercept β0 lies
between 0.2732 and 3.6026. And from (16.14) we get

β̂1 − tα/2,n−2 sβ̂1
= 1.4365 − 2.306(0.0946) = 1.4147,

β̂1 + tα/2,n−2 sβ̂1
= 1.4365 + 2.306(0.0946) = 1.4583.

Thus we may be 95% confident the true regression slope β1 lies between 1.4147
and 1.4583. �

16.6 Testing Hypotheses Concerning β0, β1

One question that naturally arises once β0 and β1 have been estimated is
whether or not the variables X and Y are truly linearly related. Equivalently,
we may inquire as to whether or not the sample data set exhibits sufficient evi-
dence to indicate that X actually contributes significantly to the prediction of the
average value of Y for a given value of X or to the prediction of a particular value
of Y corresponding to a given value of X. Conceivably the observed or fitted linear
relationship may simply be the result of chance phenomena. To answer these ques-
tions we shall test a particular null hypothesis concerning β1 against an appropriate
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alternative hypothesis, where the latter is typically dictated on a priori grounds
by some supporting scientific or behavioral (e.g., economic) theory relating X
and Y. The most common type of hypothesis tested is that there is no linear rela-
tionship between X and Y or E(Y |X) = β0 + β1X = β0; that is, the conditional
expectation of Y given X does not depend linearly upon X so that the popula-
tion regression line is horizontal. Hence the implied null hypothesis of no linear
relationship between X and Y is H0: β1 = 0.

As far as possible alternative hypotheses are concerned:

(a) If, say, on an a priori basis some specific theory indicates that X and Y
are positively related, we then choose H1: β1 > 0. In this instance we
have a one-tail alternative involving the right-hand tail of the t distribu-
tion. Here the region of rejection is R = {t|t > tα,n−2}, where tα,n−2 is the
critical (tabular) value of t. From (16.10), given that H0 is true, the test
statistic is T = β̂1

S
β̂1

, where the sample realization of T will be denoted as

t = β̂1
s
β̂1

. Then if t > tα,n−2, we reject H0 in favor of H1; that is, at the 100α%

level, we conclude that there exists a statistically significant positive linear
relationship between X and Y.

(b) But if a priori theory indicates that X and Y are negatively related, we then
have H1: β1 < 0. Relative to this alternative we have a one-tail test involv-
ing the left-hand tail of the t distribution with R = {t|t < −tα,n−2}. Again

the test statistic is T = β̂1
S
β̂1

. In this regard, if t < −tα,n−2 or −t > tα,n−2, we

reject H0 in favor of H1 and conclude that, at the 100α% level, there exists
a statistically significant negative linear relationship between X and Y.

(c) If we are uncertain about the relationship between X and Y, then the appro-
priate alternative hypothesis is H1: β1 �= 0. Clearly this alternative implies a

two-tail test with R = {t| |t| > tα/2,n−2}. For this test, if |t| = | β̂1
s
β̂1

| > tα/2,n−2,

we reject H0 in favor of H1 and conclude that, at the 100α% level, there
exists a statistically significant linear relationship between X and Y.

(Note: If we do not reject H0, it does not mean that X and Y are unrelated
but only that there is no significant linear relationship exhibited by the data;
the true underlying relationship between Xand Y may be highly nonlinear.)

The occasion may arise when we want to test the null hypothesis H0: β1 =
β0

1 , where β0
1 is some specific or anticipated level of β1 (not necessarily zero).

If from (16.10) the sample realization of the test statistic T under H0 is denoted

as t = β̂1−β0
1

s
β̂1

, then the appropriate set of alternative hypotheses is:

(a) H1: β1 > β0
1 . Here R = {t|t > tα,n−2}; or

(b) H1: β1 < β0
1 . In this case R = {t|t < −tα,n−2}; or

(c) H1: β1 �= β0
1 . Then R = {t||t| > tα/2,n−2}.
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As far as the true regression intercept is concerned, the relevant null hypothe-
ses to be tested are either H0: β0 = 0 (i.e., the population regression line passes
through the origin) or H0: β0 = β0

0 , where β0
0 is some specific or anticipated

level of β0 (not necessarily zero). The appropriate critical region R and test statis-
tic T are formed in a fashion similar to those specified earlier when hypotheses
about β1 were tested.

Example 16.6.1 On the basis of the least-squares estimates β̂0 and β̂1 obtained
from the sample data on advertising outlay (X) and gross sales (Y), can we
conclude, at the 5% level, that the true population parameters β0 and β1 are
significantly different from zero? As far as the population regression intercept
is concerned, H0: β0 = 0 and H1: β0 > 0 (we anticipate a priori that even if
the company did not advertise, the level of gross sales should be positive). With

tα,n−2 = t0.05,8 = 1.86, R = {t|t > 1.86}. Since t = β̂0
s
β̂0

= 1.9379
0.7219 = 2.6844 ∈ R , we

thus reject H0 in favor of H1. Here 0.01 < p-value < 0.025.
Is there a significant positive linear relationship between sales and ad-

vertising? To answer this question we form H0: β1 = 0, H1: β1 > 0 (we anticipate
a priori that the effect of the company’s promotional activities is to increase sales).

Since R = {t|t > 1.86} and t = β̂1
s
β̂1

= 1.4365
0.0946 = 15.1849 ∈ R , we reject H0 in favor of

H1 (p-value < 0.0005) and conclude that there is a strong (statistically significant)
positive linear relationship between X and Y. �

Example 16.6.2 At a promotional strategy session of the advertising de-
partment one of the account coordinators stated that for every $1 expended on
advertising the company would obtain, on the average, about a $2 increase in
gross sales. Is this assertion supported by the data at the 5% level? Let us select
H0 = β1 = β0

1 = 2 and test it against H1 = β1 �= β0
1 = 2 (gross sales increases

by some figure other than $2). Since R = {t||t| > tα/2,n−2 = t0.025,8 = 2.306} and

|t| = ∣∣ β̂1−β0
1

s
β̂1

∣∣ = ∣∣ 1.4365−2
0.0946

∣∣ = 5.9567 ∈ R , we reject H0 in favor of H1, (p-value <

0.0005); that is, on the average, a $1 increase in advertising outlay does not
precipitate a $2 increase in gross sales. In fact, the actual increase lies sig-
nificantly below the $2 level. (Interestingly enough, we could have reached
this same conclusion by simply examining the 95% confidence interval for β1

computed in Section 16.5. Since 2 is not a member of the said interval, β1 must
depart significantly from 2. Hence an explicit or formal test at the 100α% level of
H0: β1 = β0

1 against H1: β1 �= β0
1 is not necessary if the 100(1 − α)% confidence

interval for β1 is given.) �

One final set of test procedures concerning β0 and β1 will be mentioned
briefly. We have been performing hypothesis tests on β0 and β1 separately.
However, we can easily test β0 and β1 jointly in order to determine whether
or not the entire population regression equation itself is significant; that is, we can
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determine whether or not β0 and β1 are jointly significantly different from zero.
To this end we form the joint null hypothesis H0: β0 = β1 = 0 and test it against
the joint alternative H1: β0 �= 0, β1 �= 0 at the 100α% level. At a particular Xi

value, let us compute the difference between the sample and population regres-
sion lines as Ŷi − E(Yi|Xi) = β̂0 + β̂1Xi − (β0 + β1Xi) = (β̂0 − β0) + (β̂1 − β1)Xi.
Then

∑[Ŷi − E(Yi|Xi)]2 = ∑[(β̂0 − β0) + (β̂1 − β1)Xi]2 serves as a measure of
the overall discrepancy between the estimated values of β0 and β1 and their true
population values for given Xi’s. Clearly this sum varies directly with |β̂0 − β0|
and |β̂1 − β1|. Furthermore, it can be shown that the quantity

F =
∑[

(β̂0 − β0) + (β̂1 − β1)Xi

]2/
2

S2
ε

is F2,n−2. (16.15)

Under H0, this test statistic becomes

F =
∑

(β̂0 + β̂1Xi)2/2
S2

ε

= (n�Y2 + β̂1
∑

xiyi)/2
S2

ε

(16.16)

while R = {F |F > f1−α,2,n−2}. Here we have a one-tail alternative on the
upper tail of the F distribution so that we reject H0 when the realized F value
exceeds f1−α,2,n−2.

It is evident that a more general joint test can be performed by stating the
joint null hypothesis as H0: β0 = β0

0 , β1 = β0
1 , where β0

0 and β0
1 are specific

anticipated values (not necessarily zero) of the true regression intercept and
slope, respectively. This hypothesis is to be tested against the joint alternative
H1: β0 �= β0

0 , β1 �= β0
1 . Given that H0 is true, the test statistic may be obtained

from (16.15) and written as

F =

{
n
[
(β̂0 − β0

0 ) + (β̂1 − β0
1 )�X

]2 + (β̂1 − β0
1 )2∑ x2

i

}/
2

S2
ε

.

Example 16.6.3 Do the estimates obtained for β0 and β1 from the sample data
on gross sales and advertising expenditure warrant the conclusion that the entire
population regression line is significant at the 5% level? To answer this let us set
H0: β0 = β1 = 0 and test it against H1: β0 �= 0, β1 �= 0 (the entire population
regression equation is significant). Since R = {F |F > f1−α,2,n−2 = f0.95,2,8 = 4.46}
and, from (16.16), the realized

F =
[
10 (12.295)

2 + 1.4365 (88.7010)
]/

2

0.5533
= 1,250.9048 ∈ R ,
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we conclude that the entire population regression line is statistically signifi-
cant; that is, |β̂0| and |β̂1| are sufficiently large to warrant rejecting H0 at the
5% level. �

16.7 The Precision of the Entire Least Squares Regression
Equation: A Confidence Band

We noted earlier that the purpose of regression analysis is to predict either the
average value of Y for a given value of X or a particular value of Y correspond-
ing to a given value of X. If in this section we restrict our discussion to predicting
the average value of Y given X = Xi, E(Y |Xi), then we can determine just how
precisely we have estimated the population regression line E(Y |X) = β0 +β1X by
constructing a confidence band around the sample regression line Ŷ = β̂0 + β̂1X .
Clearly the narrower the confidence band the more precisely the sample regres-
sion line estimates the population regression line. Since β̂0 and β̂1 are unbiased
estimators of β0 and β1, respectively, it follows that E(Ŷ) = β0 + β1X ; that is,
an unbiased estimator for the population regression line is the sample regression
line. In this regard, since Ŷi = β̂0 + β̂1Xi is an estimator for E(Yi|Xi) = β0 +β1Xi,
it can be shown that the variance of Ŷi may be computed as

σ 2
Ŷi

= σ 2
ε

[
1
n

+ (Xi − �X)2

∑
x2

i

]
. (16.17)

It is evident that (16.17) cannot be employed directly to ascertain the precision
of our estimate of the population regression line since σ 2

ε is unknown. As before,
let us estimate σ 2

ε by S2
ε (see (16.7)). Then from (16.17), the estimated variance

of Ŷi is

S2
Ŷi

= S2
ε

[
1
n

+ (Xi − �X)2

∑
x2

i

]
.

If we take the positive square root of this expression we obtain the estimated
standard deviation of Ŷi,

SŶi
= Sε

√
1
n

+ (Xi − �X)2
∑

x2
i

. (16.18)

By virtue of assumption (A.1) and the Gauss-Markov results, it can be demon-
strated that Ŷi = β̂0 + β̂1Xi is a linear combination of normal random variables



16.7 Entire Least Squares Regression Equation: A Confidence Band 685

so that

Ŷi is N
(

E(Yi|Xi),
√

V(Ŷi)
)

= N

⎛

⎝β0 + β1Xi, σε

√
1
n

+ (Xi − �X)2
∑

x2
i

⎞

⎠

and thus

Ŷi − (β0 + β1Xi)

σε

√
1
n

+ (Xi − �X)2

∑
x2

i

is N(0, 1). (16.19)

If in (16.19) we replace σε by Sε, the resulting quantity follows a t distribution
with n − 2 degrees of freedom; that is,

Ŷi − (β0 + β1Xi)

Sε

√
1
n

+ (Xi − �X)2

∑
x2

i

= Ŷi − (β0 + β1Xi)
SŶi

is tn−2.

To determine just how precisely the population regression line has been
estimated from the sample data, let us form the probability statement

P

(
−tα/2,n−2 ≤ Ŷi − (β0 + β1Xi)

SŶi

≤ tα/2,n−2

)
= 1 − α. (16.20)

Upon pivoting in (16.20) and employing (16.18) we obtain the confidence
statement

P
(

Ŷi − tα/2,n−2 sŶi
≤ β0 + β1Xi ≤ Ŷi + tα/2,n−2 sŶi

)
= 1 − α (16.21)

so that, from (16.21), a 100(1 − α)% confidence interval for E(Yi|Xi) =
β0 + β1Xi is

(Ŷi − tα/2,n−2 sŶi
, Ŷi + tα/2,n−2 sŶi

). (16.22)

In this regard, (16.22) informs us that we may be 100(1 − α)% confident that the
true or population average value of Yi given Xi lies between Ŷi − tα/2,n−2sŶi

and

Ŷi + tα/2,n−2sŶi
.

A glance at (16.22) reveals that this confidence interval can be calculated for
any Xi within the domain of X. And as we vary X, we can compute a whole set
of confidence intervals, with each one corresponding to (i.e., centered around) a
point on the sample regression line. The collection of these confidence intervals
forms a confidence band about the estimated sample regression line. Note that
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−

Figure 16.5 A 95% confidence band for E(Yi|Xi) (see solid lines) and a 95% prediction band for Y0

(dashed lines).

since SŶi
varies directly with (Xi − �X)2, the further Xi lies from �X , the greater the

estimated standard deviation of Yi and thus the wider the confidence band at this
point. If we use (16.22) to calculate a confidence interval for each Xi, the locus of
end points of these intervals would correspond to two branches of a rectangular
hyperbola, indicating that we have more confidence in predicting E(Yi|Xi) near
the center of the Xi’s than at the extremes of the range of X values (see Figure 16.5).

We may utilize the results of the preceding discussion to conduct a test of the
hypothesis that E(Yi|Xi) equals some specific or anticipated value E0

i ; that is, the
null hypothesis is H0: E(Yi|Xi) = E0

i . Given that H0 is true, the test statistic

T = Ŷi − E0
i

SŶi

is tn−2. (16.23)

As always, the critical region is determined by the alternative hypothesis
offered (see the presentation given in Section 16.6 concerning the various
possible alternative hypotheses usually made).

Example 16.7.1 Let us construct a 95% confidence band for the population
regression equation given that the estimated regression equation determined
from the sales/advertising data set is Ŷ = 1.9379 + 1.4365X . Using tα/2,n−2 =
t0.025,8 = 2.306 and

sŶi
= 0.7439

√
1

10
+ (Xi − 7.210)2

61.7490
,
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Table 16.2

Xi Ŷi s
Ŷi

95% Confidence Band
Width=Upper Limit
Minus Lower LimitLower Limit Upper Limit

(Ŷi − 2.306s
Ŷi

) (Ŷi + 2.306s
Ŷi

)

4.00 7.6839 0.3843 6.7977 8.5901 1.7924
5.00 9.1204 0.3148 8.3945 9.8463 1.4518
6.00 10.5569 0.2616 9.9537 11.1602 1.2065
7.00 11.9934 0.2360 11.4492 12.5376 1.0884

7.21(=�X) 12.2950 0.2352 11.7526 12.8374 1.0848
8.00(=X0 ) 13.4299 0.2468 12.8608 13.9990 1.1382

9.00 14.8664 0.2899 14.1979 15.5349 1.3370
10.00 16.3029 0.3537 15.4873 17.1185 1.6312
11.00 17.7394 0.4290 16.7501 18.7289 1.9788
11.30 18.1704 0.4530 17.1258 19.2150 2.0892

we may easily complete Table 16.2 for selected Xi values and thus determine the
95% confidence band. As Figure 16.5 reveals, the confidence band is narrowest
at �X , with the width of the individual confidence intervals increasing as we move
away from �X in either direction.

For instance, at a level of, say, advertising outlay of $10,500,000 (Xi = 10.5),
is there sufficient evidence for concluding, at the 5% level, that, on the aver-
age, gross sales will exceed $17,000,000 (E0

i = 17.0)? Here H0: E0
i ≤ 17.0,

H1: E0
i > 17.0, and tα,n−2 = t0.05,8 = 1.86. Since R = {t|t > 1.86} and, from

(16.23), the realized T = 17.0212−17.0
0.3903 = 0.0543 �∈ R , (p-value > 0.10) it follows that

we cannot reject H0; that is, the predicted average value of gross sales does not lie
far enough above E0

i = 17 to enable us to conclude that gross sales at Xi = 10.5 will
exceed E0

i = 17. �

16.8 The Prediction of a Particular Value of Y Given X

In the preceding section we considered the problem of predicting the average
value of Yi given Xi. Let us now look to the task of predicting a particular Yi value
from a given Xi. Specifically, for X = X0, let us predict or forecast the value of
the random variable Y0 = β0 + β1X0 + ε0. If the true population regression line
were known, the predictor of Y0 would be E(Y0|X0) = β0 + β1X0, a point on the
population regression line corresponding to X0. Since E(Y0|X0) is unknown and
must be estimated from the sample data, let us use as an estimator Ŷ0 = β̂0 +β̂1X0,
a point on the sample regression line. In this regard, if Ŷ0 is used to estimate Y0,
then the forecast error is the random variable Y0−Ŷ0 =β0+β1X0+ε0−(β̂0+β̂1X0).
Since β̂0 and β̂1 are unbiased estimators of β0 and β1, respectively, and E(ε0) = 0,
the mean of the forecast error is E(Y0 − Ŷ0) = 0; that is, Ŷ0 is an unbiased
estimator of Y0. (Note that Ŷ0 is an unbiased estimator for Y0 as well as for
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E(Y0|X0).) Moreover, it can be shown that the variance of Y0 − Ŷ0 is σ 2
(Y0−Ŷ0)

=
σ 2

ε + σ 2
Ŷ0

, where σ 2
Ŷ0

is determined from (16.17) when Xi = X0. Then

σ 2
(Y0−Ŷ0)

= σ 2
ε

[
1 + 1

n
+ (X0 − �X)2

∑
x2

i

]
. (16.24)

Since σ 2
ε is unknown, it will be estimated by S2

ε (see (16.7)) so that (16.24) becomes

S2
(Y0−Ŷ0)

= S2
ε

[
1 + 1

n
+ (X0 − �X)2

∑
x2

i

]
. (16.25)

Upon taking the positive square root of this expression, we obtain the estimated
standard deviation of the forecast error Y0 − Ŷ0 or

S(Y0−Ŷ0) = Sε

√

1 + 1
n

+ (X0 − �X)2
∑

x2
i

. (16.26)

If we invoke assumption (A.1) and employ the Gauss-Markov Theorem, we see
that Y0 − Ŷ0 is a linear combination of the normal random variables Y0 and Ŷ0 so
that

Y0 − Ŷ0 is N
(

E(Y − Ŷ0),
√

V(Y − Ŷ0)
)

= N

⎛

⎝0, σε

√

1 + 1
n

+ (X0 − �X)2
∑

x2
i

⎞

⎠

and thus

Y0 − Ŷ0

σε

√

1 + 1
n

+ (X0 − �X)2

∑
x2

i

is N(0, 1). (16.27)

If in (16.27) σε is replaced by Sε, the resulting quantity follows a t distribution
with n − 2 degrees of freedom; that is,

Y0 − Ŷ0

Sε

√

1 + 1
n

+ (X0 − �X)2

∑
x2

i

= Y0 − Ŷ0

S(Y0−Ŷ0)
is tn−2.

To determine just how precisely Y0 has been estimated from the sample data,
let us form the probability statement

P

(
−tα/2,n−2 ≤ Y0 − Ŷ0

S(Y0−Ŷ0)
≤ tα/2,n−2

)
= 1 − α. (16.28)
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Upon pivoting and passing to sample realizations, (16.28) becomes

P
(

Ŷ0 − tα/2,n−2 s(Y0−Ŷ0) ≤ Y0 ≤ Ŷ0 + tα/2,n−2 s(Y0−Ŷ0)

)
= 1 − α (16.29)

so that, from (16.29), a 100(1 − α)% confidence interval for Y0 is

(Ŷ0 − tα/2,n−2 s(Y0−Ŷ0), Ŷ0 + tα/2,n−2 s(Y0−Ŷ0)). (16.30)

Hence (16.30) informs us that we may be 100(1 − α)% confident that the true
value of Y0 lies within the interval determined by Ŷ0 ± tα/2,n−2 s(Y0−Ŷ0).

Upon closely examining (16.30) we can easily see that this confidence inter-
val can be calculated for any X = X0 value. In fact, as X0 is varied, we can
generate a whole set of confidence intervals, the collection of which defines a
prediction band about the estimated sample regression line. And since S(Y0−Ŷ0)

varies directly with (X0 − �X)2, the further X0 lies from �X , the greater is the value
of s(Y0−Ŷ0) and thus the wider the prediction band at X0. Hence we have more
confidence in predicting Y0 near the center of the Xi ’s than at the extremes of
the range of X values. Note also that since s(Y0−Ŷ0) > sŶi

, the prediction band
obtained by employing (16.30) is wider than the confidence band obtained from
(16.22); that is, for X = X0, it is intuitively clear that the prediction of an indi-
vidual value of Y, namely Y0, should have a greater error associated with it than
the error arising from an estimate of the average value of Y given X0, E(Y0|X0).

To test the hypothesis that Y0 equals some specific or anticipated value Y0
0 ,

let us form H0: Y0 = Y0
0 . If H0 is true, the statistic

T = Ŷ0 − Y0
0

S(Y0−Ŷ0)
is tn−2. (16.31)

Here, too, the critical region is determined by the alternative hypothesis made
(see Section 16.6).

Example 16.8.1 Let us again look to the gross sales/advertising outlay data
presented in Table 16.1. If X0 = 8, determine a 95% prediction interval for Y0.
Since tα/2,n−2 = t0.025,8 = 2.306, Ŷ0 = β̂0 + β̂1X0 = 1.9379 + 1.4365(8) = 13.4299,
and

s(Y0−Ŷ0) = 0.7439

√
1 + 1

10
+ (8 − 7.210)2

61.7490
= 0.7847,

it follows that

Ŷ0 − tα/2,n−2 s(Y0−Ŷ0) = 13.4299 − 2.306(0.7847) = 11.6203,

Ŷ0 + tα/2,n−2 s(Y0−Ŷ0) = 13.4299 + 2.306(0.7847) = 15.2394.
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Thus we may be 95% confident that the true value of Y0 lies between 11.6203
and 15.2394 (see Figure 16.5). If we vary X0, then we may construct the entire
prediction band (see the dashed lines in Figure 16.5) in a fashion similar to that
used to derive the confidence band depicted in Table 16.2. �

Example 16.8.2 At the 5% level, can we conclude that, for X0 = 10, the
predicted value of Y does not exceed 18. Here H0: Y0 ≥ 18 is tested against
H1: Y0 < 18. With Ŷ0 = 1.9379 + 1.4365(10) = 16.3029 and R = {t|t < −1.86},
we see that, from (16.31), the realized T = 16.3029−18

0.8237 = −2.0603 ∈ R (0.025 <

p-value < 0.05) so that we will reject H0 in favor of H1; that is, Y0 lies significantly
below Y0

0 = 18 at the 5% level. �

Example 16.8.3 If we now return to the question posed at the beginning
of the final paragraph of Section 16.3, it can be seen that to answer the same,
we must determine the precision of the predicted value of Y. We previously found
that, on the basis of the estimated linear relationship between X and Y for 1995 to
2004, when X0 = 12, it follows that Ŷ0 = 19.1759. Then the 95% lower and upper
prediction limits for Y0 (the true Y value at X0) are, respectively,

Ŷ0 − tα/2,n−2 s(Y0−Ŷ0) = 19.1759 − 2.306(0.9024) = 17.0949,

Ŷ0 + tα/2,n−2 s(Y0−Ŷ0) = 19.1759 + 2.306(0.9024) = 21.2568.

Hence we may be 95% confident that the population value of Y given X0 =
$12,000,000 lies between $17,094,900 and $21,256,800. �

One important application of the statistic Y0−Ŷ0
S(Y0−Ŷ0)

is the determination of

whether or not a new observed data point comes from the same linear relation-
ship as that obtained from the original set of sample points. For example, let
us assume that the aforementioned new advertising campaign for 2005 is actu-
ally undertaken and that for this particular year the company finds that with an
advertising outlay of 12 million dollars, the realized or actual level of gross sales
is 22 million dollars. Does this increase in gross sales indicate that there has been
a statistically significant change in the underlying linear relationship, or did this
additional sample point come from the same linear relationship as before? To
determine whether or not there has been a change in the basic structure of the
gross sales/advertising outlay equation, let X0 = 12, Y0 = 22, and Ŷ0 = 19.1759.
At the 5% level, is there sufficient evidence to indicate that Y0 is significantly
greater than Ŷ0? Let us test H0: Y0 − Ŷ0 = 0 against H1: Y0 − Ŷ0 > 0. Since

R = {t|t > 1.86} and, under H0, the realized T = Y0−Ŷ0
s(Y0−Ŷ0)

= 22−19.1759
0.9024 = 3.1295 ∈

R (0.005 < p-value < 0.01), we reject H0 in favor of H1 and conclude that the
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underlying linear relationship that held from 1995 to 2004 did not generate the
observed pair (12,22).

16.9 Decomposition of the Sample Variation of Y

One useful device for summarizing the regression results is provided by the
analysis-of-variance table depicting what we shall call the partitioned sum of
squares. The purpose of this construct is to ultimately determine why the values
of Y change between successive X values. If we invoke assumptions B.1, B.2,
and B.4 (see Section 16.2), then the variation in Y can be attributed partly
to changes in the X values and partly to the effect of the random disturbance
term ε. In this regard, we may ask, how much of the variation in Y can be
attributed to the systematic influence of X and how much is attributed to the
random effect of the disturbance term?

To answer this question let us begin by determining the sample variation of Y
about its mean �Y (if there is no variation in Y as X increases in value, then all of
the Y values lie on the horizontal line Y = �Y). As a concise summary measure of
the total variation of the Yi values about �Y , let us use

∑
(Yi − �Y)2 =

∑
y2

i . (16.32)

For X = Xi, Figure 16.6 reveals that Yi − �Y = (Ŷi − �Y) + ei. Upon substituting
this expression into (16.32) we obtain

∑
(Yi − �Y)2

[Total sum of
squares (SST)]

=
∑

(Ŷi − �Y)
2

[Regression sum
of squares (SSR)]

+
∑

e2
i

[Error sum
of squares
(SSE)]

+ 2
∑

(Ŷi − �Y)ei
︸ ︷︷ ︸

(=0)

(16.33)

Y

Y

X

Yi
Yi

Yi

ei

(Xi , Yi)

X

Y

Y

Y = b0  + b1 X 

Xi

ˆ ˆ ˆ

ˆ
ˆ

Figure 16.6 Decomposition of Yi − �Y into ei and Ŷi − �Y .



692 Chapter 16 Bivariate Linear Regression and Correlation

This expression reveals that the total sum of squares may be partitioned into two
parts: (1) the regression sum of squares SSR (which reflects the variation in Y
attributed to the linear influence of X); and (2) the error sum of squares SSE
(which depicts the variation in Y ascribed to random factors). In this regard, SSR
is called the explained sum of squares (explained SS) and SSE is referred to as
the unexplained sum of squares (unexplained SS).

As far as the computation of the various sums of squares are concerned,

SST =
∑

y2
i ,

SSR = β̂2
1

∑
x2

i

(
or = β̂1

∑
xiyi

)
, (16.34)

SSE =
∑

y2
i − β̂1

∑
xiyi.

One important application of these sums of squares is the specification of what is
called the sample coefficient of determination

R2 = SSR
SST

= explained SS
total SS

= β̂1
∑

xiyi∑
y2

i

(16.35a)

or, since SSR = SST − SSE,

R2 = 1 − SSE
SST

= 1 − unexplained SS
total SS

= 1 −
∑

y2
i − β̂1

∑
xiyi∑

y2
i

, (16.35b)

where r2 denotes its realized value. Here R2 serves as a measure of goodness of
fit—it represents the proportion of the total variation in Y that can be explained
by the linear influence of X . (When the number of degrees of freedom is small,
R2 is biased upward. To correct for degrees of freedom and thus for the bias,
let us compute the adjusted coefficient of determination �R2 = 1 − ( SSE

SST

)[ n−1
n−2

]
.

Clearly n−1
n−2 > 1 so that �R2 < R.2 And as n → ∞, �R2 − R2 → 0.) From (16.35.b) it

is evident that 0 ≤ R2 ≤ 1; that is, when
∑

e2
i = ∑

y2
i (the sample regression line

is Ŷ = �Y and the explained variation in Y or SSR is zero), it follows that R2 = 0
(see Figure 16.7a); and for

∑
e2

i = 0 (the observed points all lie on the sample
regression line and the unexplained variation in Y or SSE is zero), we see that
R2 = 1 (see Figure 16.7b). The only time that R2 is undefined is when

∑
y2

i = 0;
that is, there is no variation in Y (see Figure 16.7c).

We noted earlier that R2 is a measure of goodness of fit. Hence R2 = 0 may
reflect the fact that a linear function provides a poor fit (here

∑
e2

i = ∑
y2

i ) to an
essentially nonlinear scatter of points (see Figure 16.7d).

Based upon the sums of squares presented in (16.34), we may construct
the partitioned sums-of-squares (or analysis-of-variance) table for our regression
results as seen in Table 16.3.

Note that the error mean square presented in Table 16.3 is just S2
ε . So if the

underlying population regression equation is truly linear, the error mean square
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(a)

Y

Y Y

X X 

Y

X

Y = b0 + b1X

(Yi = Yi for all i )

(Y1 = Y2 =. . .= Yn)

X

Y = Y

(b)

(c) (d)

ˆ
ˆ ˆ ˆ

Y = Yˆ
Y = Yˆ

ˆ

Figure 16.7 Selected special cases for the value of R2. (See text for details of a–d).

Table 16.3

Summary Table for the Partitioned Sums of Squares

Degrees of Freedom Mean Square (MS) =
Source of Variation Sum of Squares (SS) (d.f.) SS/d.f.

(Regression MS)
Regression (explained (SSR) 1 SSR/1 = β̂1

∑
xiyi

/
1

variability) β̂1
∑

xiyi = β̂1
∑

xiyi

(Error MS)
Error (unexplained (SSE) n − 2 SSE/(n − 2) =

variability)
∑

y2
i − β̂1

∑
xiyi

(∑
y2

i − β̂1
∑

xiyi

)/
(n − 2)

R2 = SSR/SST ;

Total variability in Y (SST) n − 1 F = Regression MS
Error MS∑

y2
i = [SSR/1]

/
[SSE/(n − 2)]
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is an estimate of σ 2
ε . Alternatively, the regression mean square term provides us

with an estimate of σ 2
ε only if H0: β1 = 0 is true; that is, only if X is of no use in

explaining the variation in Y.
The second important application of the partitioned sums of squares notion

is to determine whether or not X contributes significantly to the variation in Y.
If H0: β1 = 0 is true (there is no linear relationship between X and Y), then
the sole source of variation in Y is the random disturbance term ε since the
population regression sum of squares is zero. Now, it can be shown that the
statistic

(β̂1 − β1)2∑ x2
i∑

e2
i /(n − 2)

is F1,n−2.

Under H0: β1 = 0, the preceding expression becomes

β̂1
∑

xiyi

S2
ε

= regression mean square
error mean square

= SSR/1
SSE/(n − 2)

= R2/1
(1 − R2)/(n − 2)

is F1,n−2.

(16.36)

Here the appropriate alternative hypothesis is H1: β1 �= 0 so that R ={
F
/ SSR/1

SSE/(n−2) > f1−α,1,n−2

}
provides us with a one-tail alternative on the upper

tail of the F-distribution. So if the realized value of F exceeds the tabular
value, we reject H0 in favor of H1 and conclude that there exists a statistically
significant linear relationship between X and Y; that is, the observed linear rela-
tionship between X and Y did not arise solely because of chance or random

factors. It is interesting to note that if we square the T-statistic T = β̂1
S
β̂1

, we
obtain the F-statistic presented in (16.36). Thus, under H0: β1 = 0,

T2 =
(

β̂1

Sβ̂1

)2

= β̂2
1

S2
ε /
∑

x2
i

= β̂1
∑

xiyi

S2
ε

= F .

For instance, if α = 0.05 and n − 2 = 10, then the one-tail F-value f0.95,1,10 = 4.96
is equivalent to the two-tail t value squared or (t0.025,10)2 = (2.228)2 = 4.9639.
Hence the preceding one-sided F-test of H0: β1 = 0 versus H1: β1 �= 0 is equi-
valent to the two-sided t test of H0: β1 = 0 versus H1: β1 �= 0.

Example 16.9.1 Using the preceding set of gross sales/advertising outlay data,
construct the analysis-of-variance table for the partitioned sum of squares. What
inferences can be made from the information contained within this table? Using
Table 16.3 as our guide, we obtain Table 16.3.1.
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Table 16.3.1

Summary Table for the Partitioned Sums of Squares

Degrees of Mean Square (MS) =
Source of Variation Sum of Squares (SS) Freedom (d.f.) SS/d.f.

(SSR)
Regression (explained

variability)
β̂1
∑

xiyi = 1.4365(88.7010)
= 4.4266

1 (Regression MS)

SSR
1

= 127.4190

(SSE)
∑

y2
i − β̂1

∑
xiyi (Error MS)

Error (unexplained
variability)

= 131.8456 − 127.4190 n − 2 = 8
SSE
n − 2

= 4.4266
8

= 0.5533
= 4.4266

r2 = SSR/SST = 127.4190
131.8456

= 0.9664;Total variability in Y

(SST)∑
y2

i = 131.8456
n − 1 = 9 F = Regression MS

Error MS
= 127.4190

0.5533

= 230.2892

Since r2 = 0.9664, we see that approximately 97% of the variation in Y may
be explained by the linear influence of X while about 3% is left unexplained.
In addition, we may look to the question of whether or not there exists a statis-
tically significant linear relationship between X and Y. That is, for α = 0.05, let
H0: β1 = 0 and H1: β1 �= 0 with R = {F |F > f1−α,1,n−2 = f0.95,1,8 = 5.32}. Since the
realized F = regression MS/error MS = 230.2892 ∈ R , we may conclude that the
linear relationship between X and Y is highly significant at the 5% level. �

16.10 The Correlation Model

The purpose of correlation analysis is: (Case A) to determine the degree of covari-
ability between two random variables X and Y (here both X and Y are subject
to random errors); or (Case B) if only Y is assumed random and is regressed on
X, with the values of the latter variable fixed (see Section 16.2), then correlation
serves to measure the goodness of fit of the sample linear regression equation to
the scatter of observations on X and Y.

If Case A is of interest, then we need to determine the direction as well
as the strength (i.e., the degree of closeness) of the relationship between the
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random variables X and Y, where X and Y follow a joint bivariate distribution.
This will be accomplished by extracting a sample consisting of the n pairs of
values (Xi, Yi), i = 1, . . . , n, from the said distribution. Moreover, once we com-
pute a sample correlation coefficient, we must determine whether or not it serves
as a good estimate of the underlying degree of covariation within the population.

For Case B, we need to regress Y on X given the scatter of the n sample
points (Xi, Yi), i = 1, . . . , n, under the assumptions of the strong classical linear
regression model. Once we obtain the line of best fit and construct the analysis-
of-variance table, we will be able to directly determine the sample correlation
coefficient as well as test how good this measure is as an indicator of goodness of
fit of the least squares regression line to the set of observations on X and Y.

To address the Case A problem, let X and Y be random variables, which
follow a joint bivariate distribution. If: E(X) and E(Y) depict the means of
X and Y, respectively; S(X) and S(Y) represent the standard deviations of
X and Y , respectively; and COV(X , Y) denotes the covariance between X
and Y , then the population correlation coefficient, which serves as a measure of
the linear association between X and Y , may be depicted as

ρ = COV(X , Y)
S(X)S(Y)

= E
(
[X − E(X)] [Y − E(Y)]

)

S(X)S(Y)
. (16.36)

(If we form the standardized variables X̃ = X−E(X)
S(X) and Ỹ = Y−E(Y)

S(Y) , then (16.36)

can be rewritten as ρ = COV(X̃ , Ỹ); that is, we may think of the population
correlation coefficient as simply the covariance of the two standardized vari-
ables X̃ and Ỹ .) As far as the properties of ρ are concerned: it is symmetrical
with respect to X and Y (the correlation between X and Y is the same as that
between Y and X); it is dimensionless (i.e., a pure number); it is independent of
the units or the scale of measurement used; and, by incorporating in its calcula-
tion deviations from the means of X and Y, it shifts the origin of the population
values to the means of X and Y.

The value of the population correlation coefficient exhibits both the direc-
tion and the strength of the linear relationship between the random variables
X and Y. That is, if ρ > 0, both variables tend to increase or decrease together
(we have a direct relationship between X and Y), and if ρ < 0, an increase in
one variable is accompanied by a decrease in the other (there exists an inverse
relationship between X and Y). Clearly the sign of ρ is determined by the sign of
COV(X , Y).

As far as the range of values assumed by ρ is concerned, it can be shown
that |ρ| ≤ 1 or −1 ≤ ρ ≤ 1. In this regard, for ρ = 1 or −1, we have perfect
positive association or perfect negative association, respectively. If ρ = 0, the
variables are uncorrelated, thus indicating the absence of any linear relationship
between X and Y. (It is important to remember that ρ depicts the strength of
the linear relationship between X and Y. If X and Y are independent random
variables, then ρ = 0 since COV(X , Y) = 0. However, the converse is not
true; that is, we cannot legitimately infer that X and Y are independent if ρ = 0
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since the true underlying relationship between X and Y may be highly nonlinear.)
And as ρ increases (respectively, decreases) in value from 0 to 1 (respectively,
from 0 to −1) the closeness or strength of the linear relationship between X and Y
concomitantly increases. It is important to remember that because two random
variables may be highly correlated, the association between them does not allow
us to infer anything about cause and effect (both X and Y may be related to a
third unobserved variable, say, W, which causes movements in both X and Y)
or to predict values of one variable from the other. In addition, no functional
relationship between X and Y (as was the case for the preceding regression model
involving X and Y) is assumed.

16.11 Estimating the Population Correlation Coefficient ρ

If a sample of size n consisting of the pairs of observations (Xi, Yi), i = 1, . . . , n,
is extracted from the underlying joint bivariate population of true X and
Y values, then we may estimate ρ by using the sample correlation coefficient
(called the Pearson product-moment coefficient of correlation)

ρ̂ =
1

n−1

∑
(Xi − �X)(Yi − �Y)

√
1

n−1

∑
(Xi − �X)2

√
1

n−1

∑
(Yi − �Y)2

=
∑

xiyi√∑
x2

i

∑
y2

i

. (16.37)

Although ρ̂ is a slightly biased (downward) estimator of ρ for small samples,
it is a consistent as well as sufficient estimator. (An unbiased estimator of ρ is
ρ̂∗ = ρ̂[1 + (1 − ρ̂2)/2(n − 4)].) Our interpretation of ρ̂ is the same as the one
advanced earlier for ρ. In this regard, as Figure 16.8a,b reveals, if ρ̂ = 1 (respec-
tively, −1), we have perfect positive (respectively, negative) linear association
between X and Y (here all sample points lie on some imaginary positively or neg-
atively sloped line); if |ρ̂| < 1, the random variables are linearly related but to a
lesser degree (see Figure 16.8c,d); and if ρ̂ = 0 (see Figure 16.8e), X and Y are
not linearly related at all. And as noted earlier, if ρ̂ = 0 we may not legitimately
conclude that X and Y are not related—the true relationship may be nonlinear
(see Figure 16.8f).

Example 16.11.1 Appearing in Table 16.4 is a random sample of n = 10 obser-
vations taken from a joint bivariate distribution for the random variables X and
Y. Are these variables linearly related? If so, in what direction?

If the totals of columns 5, 6, and 7 are inserted into (16.37) we have the realized

ρ̂ =
∑

xiyi√∑
x2

i

√∑
y2

i

= −22.9870√
7.3690

√
158.1601

= −0.6741.

With the value of ρ̂ < 0, it follows that X and Y vary inversely. �
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(a) (b)

(d)(c)

(e) (f)

Y

X

Y Y

Y

X

X

Y

X

X

Y

X

perfect positive association

X and Y are directly related X and Y are inversely related

nonlinear relation between X, YX, Y not linearly related

perfect negative association

r = 1ˆ

r = 0ˆ r = 0ˆ

0 < r < 1ˆ
−1 < r < 0ˆ

r = −1ˆ

Figure 16.8 Selected special cases for the value of ρ̂. (See text for details of a–f).

16.12 Inferences about the Population Correlation
Coefficient ρ

The population correlation coefficient ρ may be estimated by ρ̂ from a set of
observations taken from any joint bivariate distribution relating the random vari-
ables X and Y. However, if we want to test hypotheses about ρ or determine
confidence intervals for this parameter, then we must strengthen our assump-
tions concerning the bivariate population at hand. In particular, we shall assume
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Table 16.4

(1) (2) (3) (4) (5) (6) (7)

xi = Xi − �X yi = Yi − �Y
X Y = Xi − 4.61 = Yi − 85.27 x2

i y2
i xiyi

4.5 89.5 −0.11 4.23 0.0121 17.8929 −0.4653
3.8 91.1 −0.81 5.83 0.6561 33.9889 −4.7223
3.8 86.9 −0.81 1.63 0.6561 2.6569 −1.3203
3.6 87.0 −1.01 1.73 1.0201 2.9929 −1.7473
3.5 86.2 −1.11 0.93 1.2321 0.8649 −1.0323
4.9 79.2 0.29 −6.07 0.0841 36.0840 −1.7603
5.9 78.0 1.29 −7.27 1.6641 52.8529 −9.3783
5.6 83.1 0.99 −2.17 0.9801 4.7089 −2.1483
4.9 87.5 0.29 2.23 0.0841 4.9729 0.6467
5.6 84.2 0.99 −1.07 0.9801 1.1449 −1.0593

∑
Xi = 46.1

∑
Yi = 852.7

∑
xi = 0

∑
yi = 0

∑
x2

i = ∑
y2

i = ∑
xiyi =

7.3690 158.1601 −22.9870

that X and Y follow a joint bivariate normal distribution (see Appendix 7.B).
In brief, its specific properties are:

(C.1) Both X and Y are random variables with means µX and µY , respectively,
and possess constant variances σ 2

X and σ 2
Y , respectively.

(C.2) The individual marginal distributions of both X and Y are N(µX , σX )
and N(µY , σY ), respectively. (It must be mentioned that if the individ-
ual marginal distributions of two random variables X and Y are normal,
it does not necessarily follow that the joint bivariate distribution of X
and Y will be normal).

(C.3) The conditional distribution of Y given X is

N
(
µX + ρσX Ỹ , σX

√
1 − ρ2

)

and the conditional distribution of X given Y is

N
(
µY + ρσY X̃ , σY

√
1 − ρ2

)
,

where X̃ = X−µX
σX

and Ỹ = Y−µY
σY

.

(C.4) The relationship between X and Y is strictly linear and is summarized by
the correlation coefficient ρ (we will return to a formal interpretation of
C.3 and C.4 when Case B is considered later).
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We noted earlier that if X and Y are independent, then ρ = 0. It was also
mentioned that if X and Y follow a joint bivariate distribution and ρ = 0,
then we cannot generally conclude that X and Y are independent. Interestingly
enough, for a joint bivariate normal distribution, independence implies ρ = 0
and conversely; that is, zero covariance is equivalent to independence.

Given that X and Y follow a joint bivariate normal distribution, it follows
that under H0: ρ = 0,

ρ̂ is N
(

E(ρ̂),
√

V(ρ̂)
)

= N

⎛

⎝0,

√
1 − ρ2

n − 2

⎞

⎠ .

Then

ρ̂ − E(ρ̂)
S(ρ̂)

= ρ̂
√

n − 2
√

1 − ρ2
is N(0, 1). (16.38)

If ρ̂ is used to estimate ρ in (16.38), then the resulting quantity

Tρ̂ = ρ̂
√

n − 2
√

1 − ρ̂2
is tn−2. (16.39)

We noted earlier that lack of linear association is equivalent to independence
if X and Y follow a joint bivariate normal distribution. Hence testing lack of linear
association is equivalent to testing the independence of X and Y. In this regard,
we may test the null hypothesis H0: ρ = ρ0 = 0 against any of the following
alternative hypotheses

Case I Case II Case III

H0: ρ = 0 H0: ρ = 0 H0: ρ = 0

H1: ρ > 0 H1: ρ < 0 H1: ρ �= 0

The corresponding critical regions are determined in the usual fashion; that is,
at the 100α% level, our set of decision rules for rejecting H0 relative to H1 is:

(a) Case I—reject H0 if tρ̂ > tα,n−2;

(b) Case II—reject H0 if tρ̂ < −tα,n−2; and

(c) Case III—reject H0 if |tρ̂ | > tα/2,n−2,

where tρ̂ is the sample realization of Tρ̂ .
The test statistic presented in (16.39) is valid only under H0: ρ = ρ0 = 0.

It cannot be used for testing any other hypothesis concerning ρ. This is because
when ρ0 �= 0, the sampling distribution of ρ̂ is highly skewed. To circumvent
this problem, let us construct an expression involving ρ̂ that may be used to
transform ρ̂ into a test statistic similar to (16.38). To this end we may note
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that for moderately large samples (n ≥ 20) taken from a joint bivariate normal
population, the function (known as Fisher’s ξ transformation)

ξ = 1
2

loge

(
1 + ρ̂

1 − ρ̂

)
(16.40)

is approximately

N
(

E(ξ),
√

V(ξ)
)

= N

(
1
2

loge

(
1 + ρ

1 − ρ

)
,

√
1

n − 3

)

for any admissible value of ρ. Hence the quantity

Z = ξ − E(ξ)
S(ξ)

is approximately N(0, 1) (16.41)

and thus, for H0: ρ = ρ0 �= 0 (where ρ0 is some specific or anticipated nonzero
value of ρ),

ξ0 = 1
2

loge

(
1 + ρ0

1 − ρ0

)

so that we can use the test statistic

Zξ = ξ − E(ξ)
S(ξ)

=
1
2 loge

(
1+ρ̂

1−ρ̂

)
− 1

2 loge

(
1+ρ0
1−ρ0

)

1/
√

n − 3
. (16.42)

Again we may test the null hypothesis H0: ρ = ρ0 �= 0 against any of the
following alternatives

Case I Case II Case III

H0: ρ = ρ0 H0: ρ = ρ0 H0: ρ = ρ0

H1: ρ > ρ0 H1: ρ < ρ0 H1: ρ �= ρ0

Then for a test conducted at the 100α% level, our decision rules for rejecting H0

in favor of H1 are:

(a) Case I—reject H0 if zξ > zα ;

(b) Case II—reject H0 if zξ < −zα ; and

(c) Case III—reject H0 if |zξ | ≥ zα/2,

where zξ is the sample realization of Zξ . Note that as far as this general test
procedure is concerned (it will also be valid when we construct confidence inter-
vals for ρ later on), since ξ is a one-to-one and onto mapping (for each ρ̂

value there exists a unique ξ value and conversely), we can convert a ρ̂ value
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into a ξ value, make an inference about ξ , and then transform the inference
concerning ξ back into an inference about ρ.

Example 16.12.1 Given the data appearing in Table 16.4, does our estimate
for ρ, ρ̂ = −0.6741, lie significantly below zero at the 5% level? In addition, are
we safe in concluding that ρ = −0.7 at this same level? Under H0: ρ = 0, let
H1: ρ < 0. Then from (16.39), since

|tρ̂ | =
∣∣∣∣∣

−0.6741
√

8√
1 − 0.4544

∣∣∣∣∣ = 2.5814 ∈ R = {tρ̂ | tρ̂ < −1.86},

we may reject H0 in favor of H1; that is, at the 5% level the population corre-
lation coefficient lies significantly below zero. (Here 0.01 < p-value < 0.025.)
Next, let us test H0 : ρ = ρ0 = −0.7 against H1 : ρ �= ρ0 = −0.7. Since

ξ = 1
2

loge

(
1 − 0.6741
1 + 0.6741

)
= −0.8180

and

ξ0 = 1
2

loge

(
1 − 0.7
1 + 0.7

)
= −0.8673

(see Table A.9 of the Appendix), we have, from (16.42),

|zξ | =
∣∣∣∣
−0.8180 + 0.8673

1/
√

7

∣∣∣∣ = 0.1305 �∈ R = {zξ | |zξ | > 1.96}.

Thus we cannot reject H0 in favor of H1—at the 5% level, ρ is not significantly
different from −0.7. Moreover, p-value = 0.8966. �

To determine just how precisely the population correlation coefficient has
been estimated from the sample data, let us construct the probability statement

P
(

−zα/2 ≤ ξ − E(ξ)
S(ξ)

≤ zα/2

)
≈ 1 − α.

Upon rearranging this expression and passing to sample realizations we have
the confidence statement

P
(

1
2

loge

(
1 + ρ̂

1 − ρ̂

)
− zα/2√

n − 3
≤ 1

2
loge

(
1 + ρ

1 − ρ

)

≤ 1
2

loge

(
1 + ρ̂

1 − ρ̂

)
+ zα/2√

n − 3

)
≈ 1 − α.
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Hence an (approximate) 100(1 − α)% confidence interval for the parameter
1
2 loge

( 1+ρ

1−ρ

)
is

(
1
2

loge

(
1 + ρ̂

1 − ρ̂

)
− zα/2√

n − 3
,

1
2

loge

(
1 + ρ̂

1 − ρ̂

)
+ zα/2√

n − 3

)
. (16.43)

If the lower and upper confidence limits indicated in (16.43) are denoted as lξ
and uξ , respectively, then these quantities can be used to determine the lower
and upper confidence limits lρ and uρ , respectively, for the parameter ρ by
reversing the ξ -transform; that is, upon setting

lξ = 1
2

loge

(
1 + lρ
1 − lρ

)
, uξ = 1

2
loge

(
1 + uρ

1 − uρ

)
(16.44)

we may read Table A.9 in reverse to find a 100(1 − α)% confidence interval
for ρ. That is, if we find lξ (respectively, uξ ) in the body of this table, we can easily
determine the corresponding lρ (respectively, uρ) value so that the (approximate)
100(1 − α)% confidence interval for ρ is (lρ , uρ).

Example 16.12.2 Using the data presented in Table 16.4, find a 95% confi-
dence interval for the true or population correlation coefficient ρ given that
ρ̂ = −0.6741. Using (16.43) it is easily seen that an (approximate) 95% confidence
interval for 1

2 loge

( 1+ρ

1−ρ

)
is, for zα/2 = z0.025 = 1.96,

[
1
2

loge

(
1 + 0.6741
1 − 0.6741

)
− 1.96√

7
,

1
2

loge

(
1 + 0.6741
1 − 0.6741

)
+ 1.96√

7

]

or, using Table A.9, lξ = −0.8180 − 0.7408 = −1.5588, uξ = −0.8180 + 0.7408 =
−0.0772. Then

−1.5588 = 1
2

loge

(
1 + lρ
1 − lρ

)
,

−0.0772 = 1
2

loge

(
1 + uρ

1 − uρ

)

and thus a 95% confidence interval for ρ has as its lower and upper limits
lρ = −0.9150 and uρ = −0.0770, respectively (here we find 1.5588 and 0.0772
in the body of Table A.9 and read it in reverse so as to obtain the appro-
priate correlation coefficient values). Thus we may be 95% confident that the
population correlation coefficient lies between −0.9150 and −0.0770. �

Let us now consider the Case B problem. Our preceding discussion concern-
ing ρ specified that the random variables X and Y followed a joint bivariate
distribution (Case A). We then strengthened this assumption by introducing
the concept of normality. In this regard, let us, for the moment, retain the
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requirement that X and Y follow a joint bivariate normal distribution. Since
both X and Y are variable, we can regress Y on X and X on Y. In the first
instance the Xi’s are held fixed (Y is the dependent variable), and in the
second the Yi’s are taken to be fixed (X is now the dependent variable). That
is, we want the mean of Y given X as well as the mean of X given Y. Hence the
implied population regression equations are, respectively,

(a) E(Y |X) = β0 + β1X ,

(b) E(X |Y) = β̄0 + β̄1Y .
(16.45)

To see this let us refer to (C.3) and (C.4). As indicated therein, we may form,
for instance,

E(Y |X) = µY + ρσY X̃ = µY + ρσY

(
X − µX

σX

)
=
[
µY − ρσY

µX

σX

]
+ ρ

σY

σX
X

(16.46)

(see Section 16.8). In this regard, if X and Y follow a joint bivariate normal
distribution, then ρ2 can be used as a measure of the goodness of fit of the
population regression line to the data points (Xi, Yi), i = 1, . . . , n, in that it indi-
cates the proportion of the variation in Y explained by the linear influence of X;
it also serves as a measure of the covariability between the random variables X
and Y. This same conclusion is valid if the assumption of normality is dropped and
the random variables X and Y simply follow a joint bivariate distribution. More-
over, if the assumptions of the strong classical linear regression model hold so that
only Y is a random variable and X is held fixed, then, since COV(X , Y) does not
exist, ρ2 (or ρ) cannot serve as a measure of covariability—it is only indicative of
the goodness of fit of the population regression line to the scatter of data points.
In this regard, if the strong classical linear regression model is applied and we

have obtained R2 according to SSR
SST = β̂1

∑
xiyi∑

x2
i

(see Table 16.3 of Section 16.8),

then we also have obtained R2 as an estimate of ρ2. However, R does not serve
as an estimate of ρ in (16.36) since the latter is, strictly speaking, undefined.

Are regression and correlation analysis in any way related? The answer is,
yes. If we have a sample of n data points (Xi, Yi), i = 1, . . . , n, then, from (16.46),

β̂1 = ρ̂
( SY

SX

)
. Under H0: β1 = 0, we previously used as a test statistic T = β̂1

S
β̂1

.

If the preceding expression for β̂1 is substituted into this T-statistic, we obtain

T = β̂1

Sβ̂1

=
ρ̂
(

SY
SX

)

Sε√∑
x2

i

=
ρ̂
(

SY
SX

)
SX

√
n − 1

√
n − 2

√∑
y2

i − β̂1
∑

xiyi

=
ρ̂
(

SY
SX

)
SX

√
n − 1

√
n − 2

√
(n − 1)S2

Y − ρ̂
(

SY
SX

)
SX SY ρ̂(n − 1)

= ρ̂
√

n − 2
√

1 − ρ̂2
.
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But this is the T obtained earlier under H0: ρ = 0. Moreover, we previously

determined (in Section 16.8) that F = β̂1
∑

xiyi
S2
ε

. If β̂1 = ρ̂
( SY

SX

)
is substituted into

this expression we have

F = β̂1
∑

xiyi

S2
ε

=
ρ̂
(

SY
SX

)
SX SY ρ̂(n − 1)(n − 2)

(n − 1)S2
Y − ρ̂

(
SY
SX

)
SX SY ρ̂(n − 1)

= ρ̂2(n − 2)
1 − ρ̂2

,

which is the square of the preceding T-statistic. Thus the regression and cor-
relation t tests and the analysis of variance F-test are all equivalent ways of
testing for a significant linear relationship between X and Y; that is, testing
H0: β1 = 0 is equivalent to testing H0: ρ = 0. In this regard, for the bivariate
linear model, if either the t or F-test leads us to reject one of the aforementioned
null hypotheses, then the other must be rejected also. Hence we need not perform
all three significance tests; only one is necessary and any one will suffice.

16.13 Exercises

16-1. Given the following sample data set (with the X values held fixed), find:

(a) Least squares estimates of β0 and β1

(b) An estimate of σ 2
ε

(c) Standard error of estimate

(d) Estimates of the standard errors of the regression coefficients

Y 4 4 6 6 10 8 10 14 10 16
X 2 4 6 8 9 10 11 12 14 16

16-2. Using the data presented in Exercise 16-1:

(a) Find 95% confidence intervals for β0 and β1.

(b) For α = 0.01, test H0: β1 = 0, against H1: β1 > 0.

(c) Construct a hypothesis test to determine if the population regres-
sion line passes through the origin.

(d) For α = 0.05, test H0: β1 = β0
1 = 0.65, against H1: β1 < 0.65.

(e) Determine if β0 and β1 are jointly significantly different from zero.

16-3. The point elasticity of Y with respect to X is defined as η =
(dY /dX)(X /Y). For the population regression equation estimated in
Exercise 16-1, find an estimate of the point elasticity coefficient η at the
point of means of the variables; that is, find η̂ = (dŶ /dX)(�X /�Y). Interpret
your result. (Hint: η serves as an index of the responsiveness of Y to a
1% change in X. So if, say, η̂ = 1.35, then a 1% increase in X leads to



706 Chapter 16 Bivariate Linear Regression and Correlation

a 1.35% increase in Y (the elastic case, since η̂ > 1). And if η̂ = 0.80, a 1%
increase in X precipitates only a 0.80% increase in Y (the inelastic case,
since η̂ < 1).

16-4. Using the data presented in Exercise 16-1:

(a) Find a 95% confidence band for the population regression equation
using the following X values (X = 2, 4, 6, 8, 10, 12, 14, 16).

(b) For X = 9, can we conclude at the α = 0.05 level that, on the average,
Y will exceed 10.5?

(c) If X0 = 17, determine a 95% prediction interval for Y0.

(d) For α = 0.05, can we conclude that, for X0 = 17, the predicted value
of Y does not exceed 18?

(e) For α = 0.05, determine if the underlying regression relationship
generated the point (X0, Y0) = (18, 18).

16-5. Using the data presented in Exercise 16-1:

(a) Construct the analysis-of-variance table for the partitioned sum of
squares.

(b) What is the value of the coefficient of determination?

(c) Use the F-test with α = 0.05 to determine if there exists a significant
linear relationship between X and Y.

16-6. For the Exercise 16-1 data set:

(a) Find ρ̂ using (16.37).

(b) For α = 0.01, test H0: ρ = 0, against H1: ρ > 0.

(c) Using α = 0.05, test H0: ρ = ρ0 = 0.85, against H1: ρ < 0.85.

(d) Find a 95% confidence interval for ρ.

16-7. Given the following sample data set:

Y 4 2 4 6 10 6 8 12 16 14
X 2 4 6 8 10 12 14 16 18 20

(a) Perform a regression and correlation study. Use α = 0.05.

(b) For X0 = 23, find a 95% prediction interval for Y0.

16-8. Our operating assumption in this chapter is that Y is a linear function of X
(plus an additive error term). What is important is not that the regression
model is linear in the variables but that it must be linear in the parameters
in order to be estimated. For example:

(a) Y = β0 + β1X−1 is nonlinear in X but linear in the parameters; and

(b) Y = β0Xβ1 is nonlinear in both X and in the parameters yet ln Y =
ln β0 + β1 ln X is linear in the parameters.
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For case (a):
1. Show that the slope is everywhere negative and decreases in

absolute value as X increases.
2. Graph the function for X > 0. Verify that as X → 0, Y → ∞;

and as X → ∞, Y → β0.
3. What is the interpretation of β0?
4. Convert Y into a linear estimating equation by introducing a

new variable Z = X−1. Estimate β0 and β1 via least squares
using the data in Table A.

For case (b):
1. Show that if β1 > 0, the slope is always positive and Y → ∞ as

X → ∞. If β1 > 1, the slope is monotonically increasing as X
increases; if 0 < β1 < 1, the slope is monotonically decreasing
as X increases. If β1 < 0, the slope is always negative as X
increases.

2. Graph the function for β1 = −1 and X > 0. What is this type
of expression called?

3. Verify that this function has a constant elasticity equal to β1.
4. Using the data in Table B, estimate this expression via least

squares by defining new variables W = ln Y and Z = ln X .
How is β0 obtained?

A B

X Y X Y

1 14 1 2
2 10 2 5
3 8 3 8
4 6 4 12
5 5.8 5 17
6 5.5 6 25
7 5.3 7 37
8 4.9 8 52

16-9. Use the methodology of the preceding exercise and the accompanying
data set given here to estimate the parameters β0 and β1 of the expression
Y = eβ0+β1X , Y > 0, where the vertical intercept is eβ0 . The slope of this
function is positive (respectively, negative) if β1 > 0(respectively, <0).
And since β1 = (1/Y)(dY /dX), this function is alternatively referred to as
the constant growth curve; that is, the proportionate rate of change in Y
per unit change in X is the constant β1.

Y 8 11 14 18 23 31 43 58
X 1 2 3 4 5 6 7 8
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16-10. What if instead of regressing a dependent variable Y on an explanatory
variable X, we regress the Z-scores of Y on the Z-scores of X? From
Yi = β0 + β1Xi + εi and �Y = β0 + β1 �X + ε̄,

Yi − �Y
σY

= β1
Xi − �X

σX

σX

σY
+ εi − ε̄

σY

or

ZiY = β1

(
σX

σY

)
ZiX + ui = β∗

1 ZiX + ui. (16.E.1)

Applying ordinary least squares to (16.E.1) renders

ẐiY = β̂∗
1 ZiX .

(What assumptions must ui satisfy?)

The quantity β̂∗
1 is termed a standardized regression coefficient or simply

a beta coefficient. So although the usual regression slope β̂1 represents the
average rate of change in Y per unit change in X, we see that the beta
coefficient β̂∗

1 measures the said changes in standard deviation units; that
is, when X increases by one standard deviation, Y changes by β̂∗

1 standard
deviations on the average. Hence the beta coefficient is independent of
units. Note that we can easily recover the usual regression slope as β̂1 =
β̂∗

1 (σY /σX ). A glance at the structure of β̂∗
1 reveals that it is simply the

estimated coefficient of correlation between the variables X and Y.
For the following data set:

(a) Transform the X and Y variables to Z-scores.

(b) Use least squares to regress the Y Z-score on the X Z-score with the
intercept suppressed.

(c) From β̂∗
1 determine β̂1.

(d) Calculate the coefficient of correlation between X and Y directly and
verify that it equals β̂∗

1 .

X 1 2 3 4 5 6 7 8
Y 3 4 3 5 6 5 4 7

16-11. Testing for a structural break, or testing for the equality of two regression
equations, can be accomplished by performing the so-called Chow test.2

2 Gregory C. Chow, “Tests of the Equality Between Sets of Coefficients in Two Linear Regressions,”
Econometrica, Vol. 28, No. 3, 1960, pp. 591–605.
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For instance, suppose we have a sample of n1 observations on the variables
X and Y for one time period and a second sample of n2 data points on the
same variables for another time period (e.g., we can model some measur-
able characteristic pre 9/11/01 and post 9/11/01). The relevant question is
then, “Is there a change (either in intercepts, or slopes, or both) in the
response of Y to X between the two periods?” That is, “Can each regres-
sion equation be viewed as coming from the same population?” Looked at
a third way, “Is the regression relationship between X and Y structurally
stable over the two time periods?”

To perform the Chow test for equality of two regression equations

Yi1 = β01 + β11Xi1 + εi1, i = 1, . . . , n1; [Period 1] (16.E.2)

Yj2 = β02 + β12Xj2 + εj2, j = 1, . . . , n2; [Period 2] (16.E.3)

(here the second subscript refers to the subsample or period):

STEP 1. Pool all n1+n2 = n observations and estimate a single regression
equation Y = β0 + β1X + ε over the combined sample period. From this
regression obtain the residual sum of squares SSEC with n1+n2−2 degrees
of freedom.

STEP 2. Estimate the two subperiod regressions (16.E.2) and (16.E.3)
separately and obtain the residual sum of squares for each, denoted SSE1

with degrees of freedom n1 − 2 and SSE2 with degrees of freedom n2 − 2
respectively. Form SSE+ = SSE1 + SSE2 with n1 + n2 − 4 degrees of
freedom.

STEP 3. To test H0: β01 = β02 and β11 = β12, against H1: H0 is not true,
we use the test statistic

F = (SSEC − SSE+)/2
SSE+/(n1 + n2 − 4)

∼ F2,n1+n2−4, (16.E.4)

where f is the sample realization of (16.E.4) and

R = {
f |f > f1−α,2,n1+n2−4

}
.

For the data set given here, employ the Chow test to determine if, for
α = 0.05, the two regression structures are the same. That is, at this level
of significance, can we conclude that the two subsamples have been drawn
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from the same population regression structure?

Period 1 Period 2

X Y X Y

88 36 166 90
94 21 176 95

100 18 186 82
105 20 196 104
109 10 211 153
118 12 227 194
127 41 239 175
134 50 250 199
141 43
155 59

16-12. Binary or dummy or count variables are used to depict the situation in
which some attribute is either present or absent. For instance, in taking
the medical history of a patient in a hospital we may ask if he or she is a
smoker. If the individual answers yes, we can record a “1”; if the answer is
no, we record a “0.” In general, a 1 indicates the presence of some attribute
and 0 indicates its absence. More formally, if Xi denotes a binary variable,
then

Xi =
{

1 if an attribute is present;

0 if an attribute is not present.

Other instances include the attributes of sex (Xi = 1 if the person is male;
Xi = 0 if the person is female), automobile ownership (Xi = 1 if an
individual owns an automobile; Xi = 0 if not), and so on.

Suppose we are interested in comparing the average salaries of males
versus females at the XYZ Corporation, where µM (respectively, µF )
denotes the true or population mean salary level for males (respec-
tively, females). If Y represents employee salaries (assume Y is N(µ, σ ),
σ = constant, with overall mean µ), then a salary comparison between
males and females can be undertaken by formulating the following
linear regression model:

Yi = β0 + β1Xi + εi, i = 1, . . . , n, (16.E.5)
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where Yi is the salary of the ith employee in a sample of size n, Xi is a
dummy variable such that

Xi =
{

1 if the employee is male (M);

0 if the employee is female (F),

and εi is a random error term satisfying all of the assumptions of the
(strong) classical linear regression model. In this regard, since

E(Yi|Xi = 0) = µF = β0,

E(Yi|Xi = 1) = µM = β0 + β1,

it follows that

β1 = µM − µF ;

that is, the intercept of the population regression equation measures the
mean salary of females and the slope of the same measures the difference
between the mean salary of males and the mean salary of females.

So to compare the average salaries of males and females, let us test
H0: β1 = 0 (there is no difference between the average salaries of males
and females), against any of the following alternative hypotheses:

Case I Case II Case III

H0: β1 = 0 H0: β1 = 0 H0: β1 = 0

H1: β1 > 0 H1: β1 < 0 H1: β1 �= 0

(or µM > µF ) (or µM < µF ) (or µM �= µF )

The coefficients of (16.E.5) can be estimated via least squares and all of
the standard tests and interval estimates apply. (Note that since it can
be readily demonstrated that β̂1 = �YM − �YF and β̂0 = �YF , where �YM

is the sample mean salary of males and �YF is the sample mean salary of
females, it follows that testing H0: β1 = 0 is equivalent to the two-sample
t-test of H0: µM − µF = 0 developed in Chapter 12.)

For the following data set pertaining to employee absenteeism (Y)
for a one-month period at ABC Inc. and smoking (X), determine if
smokers have a significantly higher rate of absenteeism relative to non-
smokers over this time period using α = 0.05. Let

Xi =
{

1 if the employee is a smoker;

0 if the employee is a nonsmoker.
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X Y (=days absent)
0 3
0 2
1 5
0 2
1 7
1 9
1 11
0 4
0 3
0 2
1 6
0 0
0 1
0 3
1 5

16-13. It is not unusual for a regression study to be performed using a data set
containing outlier observations; that is, data points that are remote or
distinctly separated from the main scatter of observations. Clearly outlier
points can have a significant effect on the regression results—they can
exhibit inordinately large residuals that, in turn, can impact the location
of the estimated regression line.

How can outliers be identified? Moreover, if a sample point is deemed
an outlier, should it be retained or eliminated? A data point can be an
outlier with respect to its X coordinate, its Y coordinate, or both (see
Figure 16.E.1).

(X1,Y1) (X3,Y3)

(X2,Y2)

(X4,Y4)

(X5,Y5)

Y

X 

Figure 16.E.1

Points (X1, Y1) and (X2, Y2) are outliers with respect to both the X and Y
coordinates since the said coordinates are well outside of the main scatter
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of points; (X3, Y3) is an outlier with respect to its Y coordinate (its X
coordinate is near the middle of the range of X values); and (X4, Y4) is
outlying with respect to its X coordinate (the Y coordinate is near the
middle of the range of Y values).

Outlying points may not be equally influential on the regression results.
That is, although points (X1, Y1) and (X2, Y2) are consistent with the
regression equation passing through the nonoutlying points, this will not
be the case for (X5, Y5).

(a) Identifying outlying X values.

It can be shown that the variance of the residual ei can be expressed as

σ 2
ei

= σ 2
ε (1 − hii), (16.E.6)

where

hii =
∑

X2
i − 2n�XXi + nX2

i

n(
∑

X2
i − n�X2)

= 1
n

+ (Xi − �X)2

∑
(Xi − �X)2

= 1
n

+ x2
i∑
x2

i

,

i = 1, . . . , n, (16.E.7)

with 0 ≤ hii ≤ 1 and
∑n

i=1 hii = number of parameters estimated = 2.
The quantity hii, called the leverage of Xi, is useful in indicating
whether or not Xi is outlying since it essentially measures the dis-
tance of Xi from the center of all X values. If Xi exhibits a large
leverage value hii, then it makes a substantial contribution to the
determination of the estimated Y value Ŷi; that is, if hii is large,
the more important Yi is in determining Ŷi. In addition, as (16.E.6)
reveals, the larger is hii, the smaller is the variance of ei. In this regard,
the larger is hii, the smaller will be the difference ei = Yi − Ŷi. (Since
hii and ei vary inversely, the detection of outliers cannot be left to
simply an examination of the least squares residuals ei.)

A leverage value hii is deemed large if it is more than twice as
large as the mean leverage value h̄ = ∑n

i=1 hii
/

n = 2
n . That is, Xi

is considered to be an outlier if hii > 4
n . Alternatively, it is sometimes

suggested that Xi exhibits high leverage if hii > 0.5 and Xi exhibits
moderate leverage if 0.2 ≤ hii ≤ 0.5.

(b) Identifying outlying Y values.

To detect outlying Y observations we may employ what is called
the studentized deleted residual

d∗
i = ei

[
n − 3

SSE(1 − hii) − e2
i

]1/2

. (16.E.8)
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(A deleted residual is di = Yi − Ŷi(−i), where Ŷi(−i) is the estimated Y
value obtained by deleting (Xi, Yi) and fitting the regression equation
to the remaining n − 1 observations. Once di has been divided by
its estimated standard deviation, we obtain (16.E.8).) Here |d∗

i | is
compared to, say, the upper 5% quantile of the t distribution; that is,
a Yi value is considered to be an outlier if |d∗

i | > t0.05,n−3.

(c) Identifying influential data values

Once it has been discovered that an X and/or Y value is an outlier,
it remains to determine whether or not this outlier can be consid-
ered as influential—in the sense that its exclusion precipitates major
changes in the estimated regression equation. A measure of the
influence that the ith data point has on the estimated Y value, Ŷi, is
provided by

(DFFITS)i = d∗
i

(
hii

1 − hii

)1/2

, (16.E.9)

with this quantity essentially representing the ith studentized deleted
residual increased or decreased by a scale factor dependent upon the
ith leverage value; it amounts to the number of estimated standard
deviations that Ŷi changes when the ith observation (Xi, Yi) is removed
from the data set. (Note that DF stands for the difference between
Ŷi and Ŷi(−i), where, as defined earlier, Ŷi(−i) is the estimated Y value
obtained when the ith data point (Xi, Yi) is eliminated.) In general,
Xi is an influential outlier if:

1. |(DFFITS)i| > 1 for small to medium-sized samples
2. |(DFFITS)i| > 2

√
2/n for large samples

A global or overall measure of the combined influence of the ith

data point (Xi, Yi) on all regression coefficients simultaneously is
Cook’s distance measure

Di = e2
i

2 MSE

[
hii

(1 − hii)2

]
, (16.E.10)

which essentially gauges the combination of the differences in the
estimated regression coefficients before and after the ith data point
is deleted. The magnitude of Di is compared to the quantile value
of the F distribution with 2 and n − 2 degrees of freedom. If the
quantile value of F2,n−2 is near 50% or more, we may conclude that
the ith sample data point has considerable influence on the estimated
regression coefficients.
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Given the following sample data set, determine if any of the
observations is an outlier. (Hint: Graph the n = 15 data points and
then apply (16.E.7)–(16.E.10).)

X 4 6 7 7 8 9 10 11 12 14 14 16 16 18 18
Y 18 13 1 4 2 8 10 9 12 13 16 15 20 4 18

16-14. Prove the Gauss-Markov Theorem. Hint:

(1) First express β̂0, β̂1 as linear functions of the Yi, i = 1, . . . , n; that is,
write

β̂1 =
n∑

i=1

wiYi, where wi = xi
n∑

i=1
x2

i

;

β̂0 =
n∑

i=1

viYi, where vi = 1
n

�Xwi.

(2) Write β̂1 = ∑n
i=1 xiyi

/∑n
i=1 x2

i = β1 + ∑
wiεi and β̂0 = β0 +

(β1 − β̂1)�X + ε̄. Then find E(β̂1), E(β̂0).

(3) Determine the variances of β̂, β̂1 as

V(β̂1) = E
[
(β̂1 − β1)2

]
= σ 2

ε

/ n∑

i=1

x2
i ;

V(β̂0) = E
[
(β̂0 − β0)2

]
= σ 2

ε

(
1
n

+
�X2

∑n
i=1 x2

i

)

(given that E[(β̂1 − β1ε̄] = 0 and E(ε̄2) = σ 2
ε /n).

(4) Let β ′
1 = ∑n

i=1 aiYi be an alternative linear estimator of β1 and verify
that E(β ′

1) = β1 under the restrictions
∑n

i=1 ai = 0 and
∑n

i=1 aiXi = 1.

(5) Given these restrictions, β ′
1 = β1 +∑n

i=1 aiεi and V(β ′
1) = σ 2

ε

∑n
i=1 a2

i .

(6) To compare β ′
1 with β̂1, set ai = wi + di, di constant for all i. Then

verify that V(β ′
1) = V(β̂1) + σ 2

ε

∑n
i=1 d2

i ≥ V(β̂1). (A similar line of
argumentation holds for β̂0.)

16-15. Verify that, for ε normal, the least squares estimators are maximum
likelihood estimators.

16-16. Verify that COV(β̂0, β̂1) = −�Xσ 2
ε

/∑n
i=1 x2

i .

16-17. Demonstrate that S2
ε = ∑n

i=1 e2
i

/
(n − 2) is an unbiased estimator for σ 2

ε .
(Hint: In d2 = 1

n

∑n
i=1 e2

i set ei = −(β̂1 − β1)xi + εi − ε̄. Then correct for
the bias in E(d2) = ( n−2

n

)
σ 2

ε .)
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16-18. Verify that SST = SSR + SSE. (Hint: Square yi = β̂1xi + ei and sum
over all i values. Then determine that

∑n
i=1 xiei = 0. The desired result

immediately follows.)

16-19. Demonstrate that 0 ≤ R2 ≤ 1. (Hint: Use
∑n

i=1 xiyi = β̂1
∑

x2
i to verify

that
∑n

i=1 y2
i ≥ ∑n

i=1 e2
i ≥ 0.)
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Table A.1 Standard Normal Areas (Z is N(0,1))

A(z0)

f(z;0,1)

−z z
0 z0

Figure A.1

A(z0) = 1√
2π

∫ z0

0
e−z2/2dz.

A(z0) gives the total area under the standard
normal distribution between 0 and any point z0

on the positive z-axis
(e.g., for z0 = 1.96, A(z0) = 0.475).

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.0000 0.0040 0.0080 0.0120 0.0150 0.0199 0.0239 0.0279 0.0319 0.0359
0.1 0.0398 0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0754
0.2 0.0793 0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141
0.3 0.1179 0.1217 0.1253 0.1293 0.1331 0.1368 0.1406 0.1443 0.1480 0.1517
0.4 0.1554 0.1591 0.1628 0.1664 0.1700 0.1736 0.1772 0.1808 0.1844 0.1879
0.5 0.1915 0.1950 0.1985 0.2019 0.2054 0.2088 0.2123 0.2157 0.2190 0.2224
0.6 0.2258 0.2291 0.2324 0.2357 0.2389 0.2422 0.2454 0.2486 0.2518 0.2549
0.7 0.2580 0.2612 0.2642 0.2673 0.2704 0.2734 0.2764 0.2794 0.2823 0.2852
0.8 0.2881 0.2910 0.2939 0.2967 0.2996 0.3023 0.3051 0.3078 0.3106 0.3133
0.9 0.3159 0.3186 0.3212 0.3288 0.3264 0.3289 0.3315 0.3340 0.3365 0.3389
1.0 0.3413 0.3438 0.3461 0.3485 0.3508 0.3531 0.3554 0.3557 0.3559 0.3621
1.1 0.3642 0.3665 0.3686 0.3708 0.3729 0.3749 0.3770 0.3790 0.3810 0.3830
1.2 0.3849 0.3869 0.3888 0.3907 0.3925 0.3944 0.3962 0.3980 0.3997 0.4015
1.3 0.4032 0.4049 0.4066 0.4082 0.4099 0.4115 0.4131 0.4147 0.4162 0.4177
1.4 0.4192 0.4207 0.4222 0.4236 0.4251 0.4265 0.4279 0.4292 0.4306 0.4319
1.5 0.4332 0.4345 0.4357 0.4370 0.4382 0.4394 0.4406 0.4418 0.4429 0.4441
1.6 0.4452 0.4463 0.4474 0.4484 0.4495 0.4505 0.4515 0.4525 0.4535 0.4545
1.7 0.4554 0.4564 0.4573 0.4582 0.4591 0.4599 0.4608 0.4616 0.4625 0.4633
1.8 0.4641 0.4649 0.4656 0.4664 0.4671 0.4678 0.4686 0.4693 0.4699 0.4706
1.9 0.4713 0.4719 0.4726 0.4732 0.4738 0.4744 0.4750 0.4756 0.4761 0.4767
2.0 0.4772 0.4778 0.4783 0.4788 0.4793 0.4798 0.4803 0.4808 0.4812 0.4817
2.1 0.4821 0.4826 0.4830 0.4834 0.4838 0.4842 0.4846 0.4850 0.4854 0.4857
2.2 0.4861 0.4864 0.4868 0.4871 0.4875 0.4878 0.4881 0.4884 0.4887 0.4890
2.3 0.4893 0.4896 0.4898 0.4901 0.4904 0.4906 0.4909 0.4911 0.4913 0.4916
2.4 0.4918 0.4920 0.4922 0.4925 0.4927 0.4929 0.4931 0.4932 0.4934 0.4936
2.5 0.4938 0.4940 0.4941 0.4943 0.4945 0.4946 0.4948 0.4949 0.4951 0.4952
2.6 0.4953 0.4955 0.4956 0.4957 0.4959 0.4960 0.4961 0.4962 0.4963 0.4964
2.7 0.4965 0.4966 0.4967 0.4968 0.4969 0.4970 0.4971 0.4972 0.4973 0.4974
2.8 0.4974 0.4975 0.4976 0.4977 0.4977 0.4978 0.4979 0.4979 0.4980 0.4981
2.9 0.4981 0.4982 0.4982 0.4983 0.4984 0.4984 0.4985 0.4985 0.4986 0.4986
3.0 0.4987 0.4987 0.4987 0.4988 0.4988 0.4989 0.4989 0.4989 0.4990 0.4990
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Table A.2 Cumulative Distribution Function Values for the Standard Normal Distribution (Z is N(0,1))

f(z;0,1)

−z
z0

z
0

F(z0;0,1)

Figure A.2

F(z0; 0, 1) = P(Z ≤ z0) = 1√
2π

∫ z0

−∞
e−z2/2 dz.

F(z0; 0, 1) gives the total area under the standard
normal distribution from −∞ to any point z0 on
the z-axis (e.g., for z0 = 1.96, F(1.96; 0, 1) =
0.975; for z0 = −1.96, F(−1.96; 0, 1) = 0.025).

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

–3.0 0.0014 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010
–2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014
–2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019
–2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026
–2.6 0.0047 0.0045 0.0044 0.0043 0.0042 0.0040 0.0039 0.0038 0.0037 0.0036
–2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048
–2.4 0.0082 0.0080 0.0078 0.0076 0.0073 0.0071 0.0070 0.0068 0.0066 0.0064
–2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084
–2.2 0.0139 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110
–2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143
–2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183
–1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233
–1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0301 0.0294
–1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367
–1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455
–1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559
–1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681
–1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823
–1.2 0.1151 0.1131 0.1112 0.1094 0.1075 0.1057 0.1038 0.1020 0.1003 0.0985
–1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170
–1.0 0.1587 0.1563 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379
–0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611
–0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867
–0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2207 0.2177 0.2148
–0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451
–0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776
–0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121
–0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483
–0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859
–0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641
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Table A.2 (Contd.)

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5190 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7969 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8513 0.8554 0.8577 0.8529 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
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Table A.3 Quantiles of Student’s t Distribution (T is tv)

− t
 t α,v

α

f(t; v)

0
(a) One- tail α

f(t;v)

 α/2

 

α /2

t− t
0 − t α /2,v − t α /2,v 

(b) Two-tail α
  

t

Figure A.3

Given degrees of freedom v, the table gives either:
(a) the one-tail tα,v value such that P(T ≥ tα,v) = α;
or (b) the two-tail ±tα/2,v values for which P(T ≤
−tα/2,v) + P(T ≥ tα/2,v) = α/2 + α/2 = α (e.g., for v =
15 and α = 0.05, t0.05, 15 = 1.753 and t0.025, 15 = 2.131).

One-tail α

0.10 0.05 0.025 0.01 0.005 0.001

Two-tail α

v 0.20 0.10 0.05 0.02 0.01 0.002

1 3.078 6.314 12.706 31.821 63.657 318.309
2 1.886 2.920 4.303 6.965 9.925 22.327
3 1.638 2.353 3.182 4.541 5.841 10.215
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.893
6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.860 2.306 2.896 3.355 4.501
9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144
11 1.363 1.796 2.201 2.718 3.106 4.025
12 1.356 1.782 2.179 2.681 3.055 3.930
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.977 3.787
15 1.341 1.753 2.131 2.602 2.947 3.733
16 1.337 1.746 2.120 2.583 2.921 3.686
17 1.333 1.740 2.110 2.567 2.898 3.646
18 1.330 1.734 2.101 2.552 2.878 3.610
19 1.328 1.729 2.093 2.539 2.861 3.579
20 1.325 1.725 2.086 2.528 2.845 3.552
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Table A.3 (Contd.)

One-tail α

0.10 0.05 0.025 0.01 0.005 0.001

Two-tail α

v 0.20 0.10 0.05 0.02 0.01 0.002

21 1.323 1.721 2.080 2.518 2.831 3.527
22 1.321 1.717 2.074 2.508 2.819 3.505
23 1.319 1.714 2.069 2.500 2.807 3.485
24 1.318 1.711 2.064 2.492 2.797 3.467
25 1.316 1.708 2.060 2.485 2.787 3.450
29 1.311 1.699 2.045 2.462 2.756 3.396
30 1.310 1.697 2.042 2.457 2.750 3.385
40 1.303 1.684 2.021 2.423 2.704 3.307
60 1.296 1.671 2.000 2.390 2.660 3.232
80 1.292 1.664 1.990 2.374 2.639 3.195

100 1.290 1.660 1.984 2.364 2.626 3.174
∞ 1.282 1.645 1.960 2.326 2.576 3.090

Table A.4 Quantiles of the Chi-Square Distribution (X is χ2
v )

f(x; v)

1 − α

χ1−α ,ν

x

α

2

Figure A.4

For the cumulative probability 1 − α and degrees of
freedom v, the quantile χ2

1−α,v satisfies F(χ2
1−α ; ν) =

P(X ≤ χ2
1−α,ν) = 1 − α or, alternatively, P(X >

χ2
1−α,v) = 1 − P(X ≤ χ2

1−α,ν) = α (e.g., for v = 10
and α = 0.05, 1 − α = 0.95 and thus χ2

0.95,10 = 18.31).

ν
1 − α

0.75 0.90 0.95 0.975 0.99 0.995 0.999

1 1.3233 2.7100 3.8400 5.0200 6.6300 7.8800 10.8280
2 2.7726 4.6100 5.9900 7.3800 9.2100 10.6000 13.8160
3 4.1084 6.2500 7.8100 9.3500 11.3400 12.8400 16.2660
4 5.3853 7.7800 9.4900 11.1400 13.2800 14.8600 18.4670
5 6.6257 9.2400 11.0700 12.8300 15.0900 16.7500 20.5150
6 7.8408 10.6400 12.5900 14.4500 16.8100 18.5500 22.4580
7 9.0372 12.0200 14.0700 16.0100 18.4800 20.2800 24.3220
8 10.2188 13.3600 15.5100 17.5300 20.0900 21.9600 26.1250
9 11.3887 14.6800 16.9200 19.0200 21.6700 23.5900 27.8770

10 12.5489 15.9900 18.3100 20.4800 23.2100 25.1900 29.5880
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Table A.4 (Contd.)

ν
1 − α

0.75 0.90 0.95 0.975 0.99 0.995 0.999

11 13.7007 17.2800 19.6800 21.9200 24.7300 26.7600 31.2640
12 14.8454 18.5500 21.0300 23.3400 26.2200 28.3000 32.9090
13 15.9839 19.8100 22.3600 24.7400 27.6900 29.8200 34.5280
14 17.1170 21.0600 23.6800 26.1200 29.1400 31.3200 36.1230
15 18.2451 22.3100 25.0000 27.4900 30.5800 32.8000 37.6970
16 19.3688 23.5400 26.3000 28.8500 32.0000 34.2700 39.2520
17 20.4887 24.7690 27.5871 30.1910 33.4087 35.7185 40.7900
18 21.6049 25.9900 28.8700 31.5300 34.8100 37.1600 42.3120
19 22.7178 27.2036 30.1435 32.8523 36.1908 38.5822 43.8200
20 23.8277 28.4100 31.4100 34.1700 37.5700 40.0000 45.3150
21 24.9348 29.6151 32.6705 35.4789 38.9321 41.4010 46.7970
22 26.0393 30.8133 33.9244 36.7807 40.2894 42.7956 48.2680
23 27.1413 32.0069 35.1725 38.0757 41.6384 44.1813 49.7280
24 28.2412 33.1963 36.4151 39.3641 42.9798 45.5585 51.1790
25 29.3389 34.3816 37.6525 40.6465 44.3141 46.9278 52.6200
26 30.4345 35.5631 38.8852 41.9232 45.6417 48.2899 54.0520
27 31.5284 36.7412 40.1133 43.1944 46.9630 49.6449 55.4760
28 32.6205 37.9159 41.3372 44.4607 48.2782 50.9933 56.8920
29 33.7109 39.0875 42.5569 45.7222 49.5879 52.3356 58.3020
30 34.7998 40.2560 43.7729 46.9792 50.8922 53.6720 59.7030
40 45.6160 51.8050 55.7585 59.3417 63.6907 66.7659 73.4020
50 56.3336 63.1671 67.5048 71.4202 76.1539 79.4900 86.6610
60 66.9814 74.4000 79.0800 83.3000 88.3800 91.9500 99.6070
70 77.5766 85.5271 90.5312 95.0231 100.4250 104.2150 112.3170
80 88.1303 96.5782 101.8790 106.6290 112.3290 116.3210 124.8390
90 98.6499 107.5650 113.1450 118.1360 124.1160 128.2990 137.2080

100 109.1410 118.4980 124.3420 129.5610 135.8070 140.1690 149.4490

From E.S. Pearson and H.O. Hartley (1976), Biometrika Tables for Statisticians, Vol. I. Reproduced with the kind
permission of Oxford University Press.
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Table A.5 Quantiles of Snedecor’s F Distribution (F is Fv1,v2 )

h(f; v1, v2)

f

f1−α , v1, v2

α

Figure A.5

Given the cumulative propor-
tion 1 − α and numerator
and denominator degrees of
freedom v1 and v2, respec-
tively, the table gives the upper
α-quantile f1−α,v1,v2 such that
P(F ≥ f1−α,v1,v2 ) = α (e.g., for
1 − α = 0.95, v1 = 6, and
v2 = 10, f0.95,6,10 = 5.39).

α = 0.10 (upper 10% fractile)

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞
v2

1 39.86 49.50 53.59 55.83 57.24 58.20 58.91 59.44 59.86 60.19 60.71 61.22 61.74 62.00 62.26 62.53 62.79 63.06 63.33

2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.41 9.42 9.44 9.45 9.46 9.47 9.47 9.48 9.49

3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.20 5.18 5.18 5.17 5.16 5.15 5.14 5.13

4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.95 3.94 3.92 3.90 3.87 3.84 3.83 3.82 3.80 3.79 3.78 3.76

5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.27 3.24 3.21 3.19 3.17 3.16 3.14 3.12 3.10

6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.90 2.87 2.84 2.82 2.80 2.78 2.76 2.74 2.72

7 3.59 3.26 3.07 2.96 2.88 2.83 2.78 2.75 2.72 2.70 2.67 2.63 2.59 2.58 2.56 2.54 2.51 2.49 2.47

8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.50 2.46 2.42 2.40 2.38 2.36 2.34 2.32 2.29

9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.38 2.34 2.30 2.28 2.25 2.23 2.21 2.18 2.16

10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.28 2.24 2.20 2.18 2.16 2.13 2.11 2.08 2.06

11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.21 2.17 2.12 2.10 2.08 2.05 2.03 2.00 1.97

12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.15 2.10 2.06 2.04 2.01 1.99 1.96 1.93 1.90

13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.10 2.05 2.01 1.98 1.96 1.93 1.90 1.88 1.85

14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.05 2.01 1.96 1.94 1.91 1.89 1.86 1.83 1.80

15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.02 1.97 1.92 1.90 1.87 1.85 1.82 1.79 1.76

16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 1.99 1.94 1.89 1.87 1.84 1.81 1.78 1.75 1.72

17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.96 1.91 1.86 1.84 1.81 1.78 1.75 1.72 1.69

18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.93 1.89 1.84 1.81 1.78 1.75 1.72 1.69 1.66

19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.91 1.86 1.81 1.79 1.76 1.73 1.70 1.67 1.63

20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.89 1.84 1.79 1.77 1.74 1.71 1.68 1.64 1.61

21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.87 1.83 1.78 1.75 1.72 1.69 1.66 1.62 1.59

22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.86 1.81 1.76 1.73 1.70 1.67 1.64 1.60 1.57

23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.84 1.80 1.74 1.72 1.69 1.66 1.62 1.59 1.55

24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.83 1.78 1.73 1.70 1.67 1.64 1.61 1.57 1.53

25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.82 1.77 1.72 1.69 1.66 1.63 1.59 1.56 1.52

26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.81 1.76 1.71 1.68 1.65 1.61 1.58 1.54 1.50

27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.80 1.75 1.70 1.67 1.64 1.60 1.57 1.53 1.49

28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.79 1.74 1.69 1.66 1.63 1.59 1.56 1.52 1.48

29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.78 1.73 1.68 1.65 1.62 1.58 1.55 1.51 1.47

30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.77 1.72 1.67 1.64 1.61 1.57 1.54 1.50 1.46

40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.71 1.66 1.61 1.57 1.54 1.51 1.47 1.42 1.38

60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.66 1.60 1.54 1.51 1.48 1.44 1.40 1.35 1.29

120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.60 1.55 1.48 1.45 1.41 1.37 1.32 1.26 1.19

∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.55 1.49 1.42 1.38 1.34 1.30 1.24 1.17 1.00
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Table A.5 (Contd.)

α = 0.05 (upper 5% fractile)

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞
v2

1 161.40 199.50 215.70 224.60 230.20 234.00 236.80 238.90 240.50 241.90 243.90 245.90 248.00 249.10 250.10 251.10 252.20 253.30 254.30

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table A.5 (Contd.)

α = 0.01 (upper 1% fractile)

v1 1 2 3 4 5 6 7 8 9 10 12 15 20 24 30 40 60 120 ∞
v2

1 4052.004999.505403.005625.005764.005859.005928.005982.006022.006056.006106.006157.006209.006235.006261.006287.006313.006339.006366.00

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36

22 7.95 5.72 7.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

24 7.82 5.61 7.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.34 2.19 2.03 1.95 1.86 1.76 2.66 1.53 1.38

∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00

From E.S. Pearson and H.O. Hartley (1976), Biometrika Tables for Statisticians, Vol. I. Reproduced with the kind permission of Oxford University Press.
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Table A.6 Binomial Probabilities (X is b(X ; n, p))

Given n and p, the table gives the binomial probability of X = r successes or P(X = r; n, p) = (n
r)pr(1 −

p)n−r , r = 0, 1, . . . , n. For p > 0.50, P(X = r; n, p) = P(X = n − r; n, 1 − p) (e.g., P(3; 10, 0.40) = 0.2150;
P(4; 10, 0.70) = P(6; 10, 0.30) = 0.0368).

p

n r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

1 0 0.9500 0.9000 0.8500 0.8000 0.7500 0.7000 0.6500 0.6000 0.5500 0.5000
1 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500 0.4000 0.4500 0.5000

2 0 0.9025 0.8100 0.7225 0.6400 0.5625 0.4900 0.4225 0.3600 0.3025 0.2500
1 0.0950 0.1800 0.2550 0.3200 0.3750 0.4200 0.4550 0.4800 0.4950 0.5000
2 0.0025 0.0100 0.2550 0.0400 0.0625 0.0900 0.1225 0.1600 0.2025 0.2500

3 0 0.8574 0.7290 0.6141 0.5120 0.4219 0.3430 0.2746 0.2160 0.1664 0.1250
1 0.1354 0.2430 0.3251 0.3840 0.4219 0.4410 0.4436 0.4320 0.4084 0.3750
2 0.0071 0.0270 0.0574 0.0960 0.1406 0.1890 0.2389 0.2880 0.3341 0.3750
3 0.0001 0.0010 0.0034 0.0080 0.0156 0.0270 0.0429 0.0640 0.0911 0.1250

4 0 0.8145 0.6561 0.5220 0.4098 0.3164 0.2401 0.1785 0.1296 0.0915 0.0625
1 0.1715 0.2916 0.3685 0.4096 0.4219 0.4116 0.3845 0.3456 0.2995 0.2500
2 0.0135 0.0486 0.0975 0.1536 0.2109 0.2646 0.3105 0.3456 0.3675 0.3750
3 0.0005 0.0036 0.0115 0.0256 0.0469 0.0756 0.1115 0.1536 0.2005 0.2500
4 0.0000 0.0001 0.0005 0.0016 0.0039 0.0081 0.0150 0.0256 0.0410 0.0625

5 0 0.7738 0.5905 0.4437 0.3277 0.2373 0.1681 0.1160 0.0778 0.0503 0.0312
1 0.2036 0.3280 0.3916 0.4096 0.3955 0.3602 0.3124 0.2592 0.2059 0.1562
2 0.0214 0.0729 0.1382 0.2048 0.2637 0.3087 0.3364 0.3456 0.3369 0.3125
3 0.0011 0.0081 0.0244 0.0512 0.0879 0.1323 0.1811 0.2304 0.2757 0.3125
4 0.0000 0.0004 0.0022 0.0064 0.0146 0.0284 0.0488 0.0768 0.1128 0.1562
5 0.0000 0.0000 0.0001 0.0003 0.0010 0.0024 0.0053 0.0102 0.0185 0.0312

6 0 0.7351 0.5314 0.3771 0.2621 0.1780 0.1176 0.0754 0.0467 0.0277 0.0156
1 0.2321 0.3543 0.3993 0.3932 0.3560 0.3025 0.2437 0.1866 0.1359 0.0938
2 0.0305 0.0984 0.1762 0.2458 0.2966 0.3241 0.3280 0.3110 0.2780 0.2344
3 0.0021 0.0146 0.0415 0.0819 0.1318 0.1852 0.2355 0.2785 0.3032 0.3125
4 0.0001 0.0012 0.0055 0.0154 0.0330 0.0595 0.0951 0.1382 0.1861 0.2344
5 0.0000 0.0001 0.0004 0.0015 0.0044 0.0102 0.0205 0.0369 0.0609 0.0938
6 0.0000 0.0000 0.0000 0.0001 0.0002 0.0007 0.0018 0.0041 0.0083 0.0156

7 0 0.6983 0.4783 0.3206 0.2097 0.1335 0.0824 0.0490 1.0280 0.0152 0.0078
1 0.2573 0.3720 0.3960 0.3670 0.3115 0.2471 0.1848 0.1306 0.0872 0.0547
2 0.0406 0.1240 0.2097 0.2753 0.3115 0.3177 0.2985 0.2613 0.2140 0.1641
3 0.0036 0.0230 0.0617 0.1147 0.1730 0.2269 0.2679 0.2903 0.2918 0.2734
4 0.0002 0.0026 0.0109 0.0287 0.0577 0.0972 0.1442 0.1935 0.2388 0.2734
5 0.0000 0.0002 0.0012 0.0043 0.0115 0.0250 0.0466 0.0774 0.1172 0.1641
6 0.0000 0.0000 0.0001 0.0004 0.0013 0.0036 0.0084 0.0172 0.0320 0.0547
7 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0006 0.0016 0.0037 0.0078
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Table A.6 (Contd.)

p

n r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

8 0 0.6634 0.4305 0.2725 0.1678 0.1001 0.0576 0.0319 0.0168 0.0084 0.0039
1 0.2793 0.3826 0.3847 0.3355 0.2760 0.1977 0.1373 0.0896 0.0548 0.0312
2 0.0515 0.1488 0.2376 0.2936 0.3115 0.2965 0.2587 0.2090 0.1569 0.1094
3 0.0054 0.0331 0.0839 0.1468 0.2076 0.2541 0.2786 0.2787 0.2568 0.2188
4 0.0004 0.0046 0.0185 0.0459 0.0865 0.1361 0.1875 0.2322 0.2627 0.2734
5 0.0000 0.0004 0.0026 0.0092 0.0231 0.0467 0.0808 0.1239 0.1719 0.2188
6 0.0000 0.0000 0.0002 0.0011 0.0038 0.0100 0.0217 0.0413 0.0703 0.1094
7 0.0000 0.0000 0.0000 0.0001 0.0004 0.0012 0.0033 0.0079 0.0164 0.0312
8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0007 0.0017 0.0039

9 0 0.6302 0.3874 0.2316 0.1342 0.0751 0.0404 0.0277 0.0101 0.0046 0.0020
1 0.2985 0.3874 0.3679 0.3020 0.2253 0.1556 0.1004 0.0605 0.0339 0.0176
2 0.0629 0.1722 0.7260 0.3020 0.3003 0.2668 0.2162 0.1612 0.1110 0.0703
3 0.0077 0.0446 0.1069 0.1762 0.2336 0.2668 0.2716 0.2508 0.2119 0.1641
4 0.0006 0.0074 0.0283 0.0661 0.1168 0.1715 0.2194 0.2508 0.2600 0.2461
5 0.0000 0.0008 0.0050 0.0165 0.0389 0.0735 0.1181 0.1672 0.2128 0.2461
6 0.0000 0.0001 0.0006 0.0028 0.0087 0.0210 0.0424 0.0743 0.1160 0.1641
7 0.0000 0.0000 0.0000 0.0003 0.0012 0.0039 0.0098 0.0212 0.0407 0.0703
8 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0013 0.0035 0.0083 0.0176
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0008 0.0020

10 0 0.5987 0.3487 0.1969 0.1074 0.0563 0.0282 0.0135 0.0060 0.0025 0.0010
1 0.3151 0.3874 0.3474 0.2684 0.1877 0.1211 0.0725 0.0403 0.0207 0.0098
2 0.0746 0.1937 0.2759 0.3020 0.2816 0.2335 0.1757 0.1209 0.0763 0.0439
3 0.0105 0.0574 0.1298 0.2013 0.2503 0.2668 0.2522 0.2150 0.1665 0.1172
4 0.0010 0.0112 0.0401 0.0881 0.1460 0.2001 0.2377 0.2508 0.2384 0.2051
5 0.0001 0.0015 0.0085 0.0284 0.0584 0.1029 0.1536 0.2007 0.2340 0.2461
6 0.0000 0.0001 0.0012 0.0055 0.0162 0.0368 0.0689 0.1115 0.1596 0.2051
7 0.0000 0.0000 0.0001 0.0608 0.0031 0.0090 0.0212 0.0425 0.0746 0.1172
8 0.0000 0.0000 0.0000 0.0001 0.0004 0.0014 0.0043 0.0106 0.0229 0.0439
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0016 0.0042 0.0098

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0016
11 0 0.5688 0.3138 0.1673 0.0859 0.0422 0.0198 0.0088 0.0036 0.0014 0.0005

1 0.3293 0.3835 0.3248 0.2362 0.1549 0.0932 0.0518 0.0266 0.0125 0.0054
2 0.0867 0.2131 0.2866 0.2953 0.2581 0.1998 0.1395 0.0887 0.0513 0.0269
3 0.0137 0.0710 0.1517 0.2215 0.2581 0.2568 0.2254 0.1774 0.1259 0.0806
4 0.0014 0.0158 0.0536 0.1107 0.1721 0.2201 0.2428 0.2365 0.2060 0.1611
5 0.0001 0.0025 0.0132 0.0388 0.0803 0.1231 0.1830 0.2207 0.2360 0.2256
6 0.0000 0.0003 0.0023 0.0097 0.0268 0.0566 0.0985 0.1471 0.1931 0.2256
7 0.0000 0.0000 0.0003 0.0017 0.0064 0.0173 0.0379 0.0701 0.1128 0.1611
8 0.0000 0.0000 0.0000 0.0002 0.0011 0.0037 0.0102 0.0234 0.0462 0.0806
9 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0018 0.0052 0.0126 0.0269

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0007 0.0021 0.0054
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0005
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Table A.6 (Contd.)

p

n r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

12 0 0.5404 0.2824 0.1422 0.0687 0.0317 0.0138 0.0057 0.0022 0.0008 0.0002
1 0.3413 0.3766 0.3012 0.2062 0.1267 0.0712 0.0368 0.0174 0.0075 0.0029
2 0.0988 0.2301 0.2924 0.2835 0.2323 0.1678 0.1088 0.0639 0.0339 0.0161
3 0.0173 0.0852 0.1720 0.2362 0.2581 0.2397 0.1954 0.1419 0.0923 0.0537
4 0.0021 0.0213 0.0683 0.1329 0.1936 0.2311 0.2367 0.2128 0.1700 0.1208
5 0.0002 0.0038 0.0193 0.0532 0.1032 0.1585 0.2039 0.2270 0.2225 0.1934
6 0.0000 0.0005 0.0040 0.0155 0.0401 0.0792 0.1281 0.1766 0.2124 0.2256
7 0.0000 0.0000 0.0006 0.0033 0.0115 0.0291 0.0591 0.1009 0.1489 0.1934
8 0.0000 0.0000 0.0001 0.0005 0.0024 0.0078 0.0199 0.0420 0.0762 0.1208
9 0.0000 0.0000 0.0000 0.0001 0.0004 0.0015 0.0048 0.0125 0.0277 0.0537

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0008 0.0025 0.0068 0.0161
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0010 0.0029
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002

13 0 0.5133 0.2542 0.1209 0.0550 0.0238 0.0097 0.0037 0.0013 0.0004 0.0001
1 0.3512 0.3672 0.2774 0.1787 0.1029 0.0540 0.0259 0.0113 0.0045 0.0016
2 0.1109 0.2448 0.2937 0.2680 0.2059 0.1388 0.0836 0.0453 0.0220 0.0095
3 0.0214 0.0997 0.1900 0.2457 0.2517 0.2181 0.1651 0.1107 0.0660 0.0349
4 0.0028 0.0277 0.0838 0.1535 0.2097 0.2337 0.2222 0.1845 0.1350 0.0873
5 0.0003 0.0055 0.0266 0.0691 0.1258 0.1803 0.2154 0.2214 0.1989 0.1571
6 0.0000 0.0008 0.0063 0.0230 0.0559 0.1030 0.1546 0.1968 0.2169 0.2095
7 0.0000 0.0001 0.0011 0.0058 0.0186 0.0442 0.0833 0.1312 0.1775 0.2095
8 0.0000 0.0000 0.0001 0.0011 0.0047 0.0142 0.0336 0.0656 0.1089 0.1571
9 0.0000 0.0000 0.0000 0.0001 0.0009 0.0034 0.0101 0.0243 0.0495 0.0873

10 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0022 0.0065 0.0162 0.0349
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0012 0.0036 0.0095
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0016
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

14 0 0.4877 0.2288 0.1028 0.0440 0.0178 0.0068 0.0024 0.0008 0.0002 0.0001
1 0.3593 0.3559 0.2539 0.1539 0.0832 0.0407 0.0181 0.0073 0.0027 0.0009
2 0.1229 0.2570 0.2912 0.2501 0.1802 0.1134 0.0634 0.0317 0.0141 0.0056
3 0.0259 0.1142 0.2056 0.2501 0.2402 0.1943 0.1366 0.0845 0.0462 0.0222
4 0.0037 0.0349 0.0998 0.1720 0.2202 0.2290 0.2022 0.1549 0.1040 0.0611
5 0.0004 0.0078 0.0352 0.0860 0.1468 0.1963 0.2178 0.2066 0.1701 0.1222
6 0.0000 0.0013 0.0093 0.0322 0.0734 0.1262 0.1759 0.2066 0.2088 0.1833
7 0.0000 0.0002 0.0019 0.0092 0.0280 0.0618 0.1082 0.1574 0.1952 0.2095
8 0.0000 0.0000 0.0003 0.0020 0.0082 0.0232 0.0510 0.0918 0.1398 0.1833
9 0.0000 0.0000 0.0000 0.0003 0.0018 0.0066 0.0183 0.0408 0.0762 0.1222

10 0.0000 0.0000 0.0000 0.0000 0.0003 0.0014 0.0049 0.0136 0.0312 0.0611
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0010 0.0033 0.0093 0.0222
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0019 0.0056
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0009
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
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Table A.6 (Contd.)

p

n r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

15 0 0.4633 0.2059 0.0874 0.0352 0.0134 0.0047 0.0016 0.0005 0.0001 0.0000
1 0.3658 0.3432 0.2312 0.1319 0.0668 0.0305 0.0126 0.0047 0.0016 0.0005
2 0.1348 0.2669 0.2856 0.2309 0.1559 0.0916 0.0476 0.0219 0.0090 0.0032
3 0.0307 0.1285 0.2184 0.2501 0.2252 0.1700 0.1110 0.0634 0.0318 0.0139
4 0.0049 0.0428 0.1156 0.1876 0.2252 0.2186 0.1792 0.1268 0.0780 0.0417
5 0.0006 0.0105 0.0449 0.1032 0.1651 0.2061 0.2123 0.1859 0.1404 0.0916
6 0.0000 0.0019 0.0132 0.0430 0.0917 0.1472 0.1906 0.2066 0.1914 0.1527
7 0.0000 0.0003 0.0030 0.0138 0.0393 0.0811 0.1319 0.1771 0.2013 0.1964
8 0.0000 0.0000 0.0005 0.0035 0.0131 0.0348 0.0710 0.1181 0.1647 0.1964
9 0.0000 0.0000 0.0001 0.0007 0.0034 0.0116 0.0298 0.0612 0.1048 0.1527

10 0.0000 0.0000 0.0000 0.0001 0.0007 0.0030 0.0096 0.0245 0.0515 0.0916
11 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0024 0.0074 0.0191 0.0417
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0016 0.0052 0.0139
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0010 0.0032
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16 0 0.4401 0.1853 0.0743 0.0281 0.0100 0.0033 0.0010 0.0003 0.0001 0.0000
1 0.3706 0.3294 0.2097 0.1126 0.0535 0.0228 0.0087 0.0030 0.0009 0.0002
2 0.1463 0.2745 0.2775 0.2111 0.1336 0.0732 0.0353 0.0150 0.0056 0.0018
3 0.0359 0.1423 0.2285 0.2463 0.2079 0.1465 0.0888 0.0468 0.0215 0.0085
4 0.0061 0.0514 0.1311 0.2001 0.2252 0.2040 0.1553 0.1014 0.0572 0.0278
5 0.0008 0.0137 0.0555 0.1201 0.1802 0.2099 0.2008 0.1623 0.1123 0.0667
6 0.0001 0.0028 0.0180 0.0550 0.1101 0.1649 0.1982 0.1983 0.1684 0.1222
7 0.0000 0.0004 0.0045 0.0197 0.0524 0.1010 0.1524 0.1889 0.1969 0.1746
8 0.0000 0.0001 0.0009 0.0055 0.0197 0.0487 0.0923 0.1417 0.1812 0.1964
9 0.0000 0.0000 0.0001 0.0012 0.0058 0.0185 0.0442 0.0840 0.1318 0.1746

10 0.0000 0.0000 0.0000 0.0002 0.0014 0.0056 0.0167 0.0392 0.0755 0.1222
11 0.0000 0.0000 0.0000 0.0000 0.0002 0.0013 0.0049 0.0142 0.0337 0.0667
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0011 0.0040 0.0115 0.0278
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0008 0.0029 0.0085
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0018
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

17 0 0.4181 0.1668 0.0631 0.0225 0.0075 0.0023 0.0007 0.0002 0.0000 0.0000
1 0.3741 0.3150 0.1893 0.0957 0.0426 0.0169 0.0060 0.0019 0.0005 0.0001
2 0.1575 0.2800 0.2673 0.1914 0.1136 0.0581 0.0260 0.0102 0.0035 0.0010
3 0.0415 0.1556 0.2359 0.2393 0.1893 0.1245 0.0701 0.0341 0.0144 0.0052
4 0.0076 0.0605 0.1457 0.2093 0.2209 0.1868 0.1320 0.0796 0.0411 0.0182
5 0.0010 0.0175 0.0668 0.1361 0.1914 0.2081 0.1849 0.1379 0.0875 0.0472
6 0.0001 0.0039 0.0236 0.0680 0.1276 0.1784 0.1991 0.1839 0.1432 0.0944
7 0.0000 0.0007 0.0065 0.0267 0.0668 0.1201 0.1685 0.1927 0.1841 0.1484
8 0.0000 0.0001 0.0014 0.0084 0.0279 0.0644 0.1143 0.1606 0.1883 0.1855
9 0.0000 0.0000 0.0003 0.0021 0.0093 0.0276 0.0611 0.1070 0.1540 0.1855

10 0.0000 0.0000 0.0000 0.0004 0.0025 0.0095 0.0263 0.0571 0.1008 0.1484
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Table A.6 (Contd.)

p

n r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

17 11 0.0000 0.0000 0.0000 0.0001 0.0005 0.0026 0.0090 0.0242 0.0525 0.0944
12 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0024 0.0081 0.0215 0.0472
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0021 0.0068 0.0182
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0016 0.0052
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0010
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

18 0 0.3972 0.1501 0.0536 0.0180 0.0058 0.0016 0.0004 0.0001 0.0000 0.0000
1 0.3763 0.3002 0.1704 0.0811 0.0338 0.0126 0.0042 0.0012 0.0003 0.0001
2 0.1683 0.2835 0.2558 0.1723 0.0958 0.0458 0.0190 0.0069 0.0022 0.0006
3 0.0473 0.1680 0.2406 0.2297 0.1704 0.1046 0.0547 0.0246 0.0095 0.0031
4 0.0093 0.0700 0.1592 0.2153 0.2130 0.1681 0.1104 0.0614 0.0291 0.0117
5 0.0014 0.0218 0.0787 0.1507 0.1988 0.2017 0.1664 0.1146 0.0666 0.0327
6 0.0002 0.0052 0.0310 0.0818 0.1436 0.1873 0.1941 0.1655 0.1181 0.0708
7 0.0000 0.0010 0.0091 0.0350 0.0820 0.1376 0.1792 0.1892 0.1657 0.1214
8 0.0000 0.0002 0.0022 0.0120 0.0376 0.0811 0.1327 0.1734 0.1864 0.1669
9 0.0000 0.0000 0.0004 0.0033 0.0139 0.0386 0.0794 0.1284 0.1694 0.1855

10 0.0000 0.0000 0.0001 0.0008 0.0042 0.0149 0.0385 0.0771 0.1248 0.1669
11 0.0000 0.0000 0.0000 0.0001 0.0010 0.0046 0.0151 0.0374 0.0742 0.1214
12 0.0000 0.0000 0.0000 0.0000 0.0002 0.0012 0.0047 0.0145 0.0354 0.0708
13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0012 0.0045 0.0134 0.0327
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0011 0.0039 0.0117
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0009 0.0031
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 0 0.3774 0.1351 0.0456 0.0144 0.0042 0.0011 0.0003 0.0001 0.0000 0.0000
1 0.3774 0.2852 0.1529 0.0685 0.0268 0.0093 0.0029 0.0008 0.0002 0.0000
2 0.1787 0.2852 0.2428 0.1540 0.0803 0.0358 0.0138 0.0046 0.0013 0.0003
3 0.0533 0.1796 0.2428 0.2182 0.1517 0.0869 0.0422 0.0175 0.0062 0.0018
4 0.0112 0.0798 0.1714 0.2182 0.2023 0.1491 0.0909 0.0467 0.0203 0.0074
5 0.0018 0.0266 0.0907 0.1636 0.2023 0.1916 0.1468 0.0933 0.0497 0.0222
6 0.0002 0.0069 0.0374 0.0955 0.1574 0.1916 0.1844 0.1451 0.0949 0.0518
7 0.0000 0.0014 0.0122 0.0443 0.0974 0.1525 0.1844 0.1797 0.1443 0.0961
8 0.0000 0.0002 0.0032 0.0166 0.0487 0.0981 0.1489 0.1797 0.1771 0.1442
9 0.0000 0.0000 0.0007 0.0051 0.0198 0.0514 0.0980 0.1464 0.1771 0.1762

10 0.0000 0.0000 0.0001 0.0013 0.0066 0.0220 0.0528 0.0976 0.1449 0.1762
11 0.0000 0.0000 0.0000 0.0003 0.0018 0.0077 0.0233 0.0532 0.0970 0.1442
12 0.0000 0.0000 0.0000 0.0000 0.0004 0.0022 0.0083 0.0237 0.0529 0.0961



732 Appendix A

Table A.6 (Contd.)

p

n r 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

19 13 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0024 0.0085 0.0233 0.0518
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0024 0.0082 0.0222
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0022 0.0074
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0018
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003
18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
19 0.0000 0.0000 0.0000 0.0000 0.0600 0.0000 0.0000 0.0000 0.0000 0.0000

20 0 0.3585 0.1216 0.0388 0.0115 0.0032 0.0008 0.0002 0.0000 0.0000 0.0000
1 0.3774 0.2702 0.1368 0.0576 0.0211 0.0068 0.0020 0.0005 0.0001 0.0000
2 0.1887 0.2852 0.2293 0.1369 0.0669 0.0278 0.0100 0.0031 0.0008 0.0002
3 0.0596 0.1901 0.2428 0.2054 0.1339 0.0716 0.0323 0.0123 0.0040 0.0011
4 0.0133 0.0898 0.1821 0.2182 0.1897 0.1304 0.0738 0.0350 0.0139 0.0046
5 0.0022 0.0319 0.1028 0.1746 0.2023 0.1789 0.1272 0.0746 0.0365 0.0148
6 0.0003 0.0089 0.0454 0.1091 0.1686 0.1916 0.1712 0.1244 0.0746 0.0370
7 0.0000 0.0020 0.0160 0.0545 0.1124 0.1643 0.1844 0.1659 0.1221 0.0739
8 0.0000 0.0004 0.0046 0.0222 0.0609 0.1144 0.1614 0.1797 0.1623 0.1201
9 0.0000 0.0001 0.0011 0.0074 0.0271 0.0654 0.1158 0.1597 0.1771 0.1602

10 0.0000 0.0000 0.0002 0.0020 0.0099 0.0308 0.0686 0.1171 0.1593 0.1762
11 0.0000 0.0000 0.0000 0.0005 0.0030 0.0120 0.0336 0.0710 0.1185 0.1602
12 0.0000 0.0000 0.0000 0.0001 0.0008 0.0039 0.0136 0.0355 0.0727 0.1201
13 0.0000 0.0000 0.0000 0.0000 0.0002 0.0010 0.0045 0.0146 0.0366 0.0739
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0012 0.0049 0.0150 0.0370
15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0013 0.0049 0.0148
16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0013 0.0046
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0011
18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table A.7 Cumulative Distribution Function Values for the Binomial Distribution (X is b(X ; n, p))

B(x; n, p) =
∑

i≤x

(n
i

)
pi(1 − p)n−i =

∑

i≤x

b(i; n, p)

B(x; n, p) gives the probability that the random variable X assumes a value ≤ x.

p

n x 0.1 0.2 0.3 0.4 0.5

2 0 0.8100 0.6400 0.4900 0.3600 0.2500
1 0.9900 0.9600 0.9100 0.8400 0.7500

3 0 0.7290 0.5120 0.3430 0.2160 0.1250
1 0.9720 0.8960 0.7840 0.6480 0.5000
2 0.9990 0.9920 0.9730 0.9360 0.8750

4 0 0.6561 0.4096 0.2401 0.1296 0.0625
1 0.9477 0.8192 0.6517 0.4752 0.3125
2 0.9963 0.9728 0.9163 0.8208 0.6875
3 0.9999 0.9984 0.9919 0.9744 0.9375

5 0 0.5905 0.3277 0.1681 0.0778 0.0312
1 0.9185 0.7373 0.5282 0.3370 0.1875
2 0.9914 0.9421 0.8369 0.6826 0.5000
3 0.9995 0.9933 0.9692 0.9130 0.8125
4 1.0000 0.9997 0.9976 0.9898 0.9688

6 0 0.5314 0.2621 0.1176 0.0467 0.0156
1 0.8857 0.6554 0.4202 0.2333 0.1094
2 0.9842 0.9011 0.7443 0.5443 0.3438
3 0.9987 0.9830 0.9295 0.8208 0.6562
4 0.9999 0.9984 0.9891 0.9590 0.8906
5 1.0000 0.9999 0.9993 0.9959 0.9844

7 0 0.4783 0.2097 0.0824 0.0280 0.0078
1 0.8503 0.5767 0.3294 0.1586 0.0625
2 0.9743 0.8520 0.6471 0.4199 0.2266
3 0.9973 0.9667 0.8740 0.7102 0.5000
4 0.9998 0.9953 0.9712 0.9037 0.7734
5 1.0000 0.9996 0.9962 0.9812 0.9375
6 1.0000 1.0000 0.9998 0.9984 0.9922

8 0 0.4305 0.1678 0.0576 0.0168 0.0039
1 0.8131 0.5033 0.2553 0.1064 0.0352
2 0.9619 0.7969 0.5518 0.3154 0.1445
3 0.9950 0.9437 0.8059 0.5941 0.3633
4 0.9996 0.9896 0.9420 0.8263 0.6367
5 1.0000 0.9988 0.9887 0.9502 0.8555
6 1.0000 0.9999 0.9987 0.9915 0.9648
7 1.0000 1.0000 0.9999 0.9993 0.9961
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Table A.7 (Contd.)

p

n x 0.1 0.2 0.3 0.4 0.5

9 0 0.3874 0.1342 0.0404 0.0101 0.0020
1 0.7748 0.4362 0.1960 0.0705 0.0195
2 0.9470 0.7382 0.4628 0.2318 0.0898
3 0.9917 0.9144 0.7197 0.4826 0.2539
4 0.9991 0.9804 0.9012 0.7334 0.5000
5 0.9999 0.9969 0.9747 0.9006 0.7461
6 1.0000 0.9997 0.9957 0.9750 0.9102
7 1.0000 1.0000 0.9996 0.9962 0.9805
8 1.0000 1.0000 1.0000 0.9997 0.9980

10 0 0.3487 0.1074 0.0282 0.0060 0.0010
1 0.7361 0.3758 0.1493 0.0464 0.0107
2 0.9298 0.6778 0.3828 0.1673 0.0547
3 0.9872 0.8791 0.6496 0.3823 0.1719
4 0.9984 0.9672 0.8497 0.6331 0.3770
5 0.9999 0.9936 0.9527 0.8338 0.6230
6 1.0000 0.9991 0.9894 0.9452 0.8281
7 1.0000 0.9999 0.9984 0.9877 0.9453
8 1.0000 1.0000 0.9999 0.9983 0.9893
9 1.0000 1.0000 1.0000 0.9999 0.9990

11 0 0.3138 0.0859 0.0198 0.0036 0.0005
1 0.6974 0.3221 0.1130 0.0302 0.0059
2 0.9104 0.6174 0.3127 0.1189 0.0327
3 0.9815 0.8389 0.5696 0.2963 0.1133
4 0.9972 0.9496 0.7897 0.5328 0.2744
5 0.9997 0.9883 0.9218 0.7535 0.5000
6 1.0000 0.9980 0.9784 0.9006 0.7256
7 1.0000 0.9998 0.9957 0.9707 0.8867
8 1.0000 1.0000 0.9994 0.9941 0.9673
9 1.0000 1.0000 1.0000 0.9993 0.9941

10 1.0000 1.0000 1.0000 1.0000 0.9995

12 0 0.2824 0.0687 0.0138 0.0022 0.0002
1 0.6590 0.2749 0.0850 0.0196 0.0032
2 0.8891 0.5583 0.2528 0.0834 0.0193
3 0.9744 0.7946 0.4925 0.2253 0.0730
4 0.9957 0.9274 0.7237 0.4382 0.1938
5 0.9995 0.9806 0.8822 0.6652 0.3872
6 0.9999 0.9961 0.9614 0.8418 0.6128
7 1.0000 0.9994 0.9905 0.9427 0.8062
8 1.0000 0.9999 0.9983 0.9847 0.9270
9 1.0000 1.0000 0.9998 0.9972 0.9807

10 1.0000 1.0000 1.0000 0.9997 0.9968
11 1.0000 1.0000 1.0000 1.0000 0.9998
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Table A.7 (Contd.)

p

n x 0.1 0.2 0.3 0.4 0.5

13 0 0.2542 0.0550 0.0097 0.0013 0.0001
1 0.6213 0.2336 0.0637 0.0126 0.0017
2 0.8661 0.5017 0.2025 0.0579 0.0112
3 0.9658 0.7473 0.4206 0.1686 0.0461
4 0.9935 0.9009 0.6543 0.3530 0.1334
5 0.9991 0.9700 0.8346 0.5744 0.2905
6 0.9999 0.9930 0.9376 0.7712 0.5000
7 1.0000 0.9988 0.9818 0.9023 0.7095
8 1.0000 0.9998 0.9960 0.9679 0.8666
9 1.0000 1.0000 0.9993 0.9922 0.9539

10 1.0000 1.0000 0.9999 0.9987 0.9888
11 1.0000 1.0000 1.0000 0.9999 0.9983
12 1.0000 1.0000 1.0000 1.0000 0.9999

14 0 0.2288 0.0440 0.0068 0.0008 0.0001
1 0.5846 0.1979 0.0475 0.0081 0.0009
2 0.8416 0.4481 0.1608 0.0398 0.0065
3 0.9559 0.6982 0.3552 0.1243 0.0287
4 0.9908 0.8702 0.5842 0.2793 0.0898
5 0.9985 0.9561 0.7805 0.4859 0.2120
6 0.9998 0.9884 0.9067 0.6925 0.3953
7 1.0000 0.9976 0.9685 0.8499 0.6047
8 1.0000 0.9996 0.9917 0.9417 0.7880
9 1.0000 1.0000 0.9983 0.9825 0.9102

10 1.0000 1.0000 0.9998 0.9961 0.9713
11 1.0000 1.0000 1.0000 0.9994 0.9935
12 1.0000 1.0000 1.0000 0.9999 0.9991
13 1.0000 1.0000 1.0000 1.0000 0.9999

15 0 0.2059 0.0352 0.0047 0.0005 0.0000
1 0.5490 0.1671 0.0353 0.0052 0.0005
2 0.8159 0.3980 0.1268 0.0271 0.0037
3 0.9444 0.6482 0.2969 0.0905 0.0176
4 0.9873 0.8358 0.5155 0.2173 0.5920
5 0.9978 0.9389 0.7216 0.4032 0.1509
6 0.9997 0.9819 0.8689 0.6098 0.3036
7 1.0000 0.9958 0.9500 0.7869 0.5000
8 1.0000 0.9992 0.9848 0.9050 0.6964
9 1.0000 0.9999 0.9963 0.9662 0.8491

10 1.0000 1.0000 0.9993 0.9907 0.9408
11 1.0000 1.0000 0.9999 0.9981 0.9824
12 1.0000 1.0000 1.0000 0.9997 0.9963
13 1.0000 1.0000 1.0000 1.0000 0.9995
14 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.7 (Contd.)

p

n x 0.1 0.2 0.3 0.4 0.5

16 0 0.1853 0.0281 0.0033 0.0003 0.0000
1 0.5147 0.1407 0.0261 0.0033 0.0003
2 0.7892 0.3518 0.0994 0.0183 0.0021
3 0.9316 0.5981 0.2459 0.0651 0.0106
4 0.9830 0.7982 0.4499 0.1666 0.0384
5 0.9967 0.9183 0.6598 0.3288 0.1051
6 0.9995 0.9733 0.8247 0.5272 0.2272
7 0.9999 0.9930 0.9256 0.7161 0.4018
8 1.0000 0.9985 0.9743 0.8577 0.5982
9 1.0000 0.9998 0.9929 0.9417 0.7728

10 1.0000 1.0000 0.9984 0.9809 0.8949
11 1.0000 1.0000 0.9991 0.9951 0.9616
12 1.0000 1.0000 1.0000 0.9991 0.9894
13 1.0000 1.0000 1.0000 0.9999 0.9979
14 1.0000 1.0000 1.0000 1.0000 0.9997
15 1.0000 1.0000 1.0000 1.0000 1.0000

17 0 0.1668 0.0225 0.0023 0.0002 0.0000
1 0.4818 0.1182 0.0193 0.0021 0.0001
2 0.7618 0.3096 0.0774 0.0123 0.0012
3 0.9174 0.5489 0.2019 0.0464 0.0064
4 0.9779 0.7582 0.3887 0.1260 0.0245
5 0.9953 0.8943 0.5968 0.2639 0.0717
6 0.9992 0.9623 0.7752 0.4478 0.1662
7 0.9999 0.9891 0.8954 0.6405 0.3145
8 1.0000 0.9974 0.9597 0.8011 0.5000
9 1.0000 0.9995 0.9873 0.9081 0.6855

10 1.0000 0.9999 0.9968 0.9652 0.8338
11 1.0000 1.0000 0.9993 0.9894 0.9283
12 1.0000 1.0000 0.9999 0.9975 0.9755
13 1.0000 1.0000 1.0000 0.9995 0.9936
14 1.0000 1.0000 1.0000 0.9999 0.9988
15 1.0000 1.0000 1.0000 1.0000 0.9999
16 1.0000 1.0000 1.0000 1.0000 1.0000

18 0 0.1501 0.0180 0.0016 0.0001 0.0000
1 0.4503 0.0991 0.0142 0.0013 0.0001
2 0.7338 0.2713 0.0600 0.0082 0.0007
3 0.9018 0.5010 0.1646 0.0328 0.0038
4 0.9718 0.7164 0.3327 0.0942 0.0154
5 0.9936 0.8671 0.5344 0.2088 0.0481
6 0.9988 0.9487 0.7217 0.3743 0.1189
7 0.9998 0.9837 0.8593 0.5634 0.2403
8 1.0000 0.9957 0.9404 0.7368 0.4073
9 1.0000 0.9991 0.9790 0.8653 0.5927

10 1.0000 0.9998 0.9939 0.9424 0.7597
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Table A.7 (Contd.)

p

n x 0.1 0.2 0.3 0.4 0.5

18 11 1.0000 1.0000 0.9986 0.9797 0.8811
12 1.0000 1.0000 0.9997 0.9942 0.9519
13 1.0000 1.0000 1.0000 0.9987 0.9846
14 1.0000 1.0000 1.0000 0.9998 0.9962
15 1.0000 1.0000 1.0000 1.0000 0.9993
16 1.0000 1.0000 1.0000 1.0000 0.9999
17 1.0000 1.0000 1.0000 1.0000 1.0000

19 0 0.1351 0.0144 0.0011 0.0001 0.0000
1 0.4203 0.0829 0.0104 0.0008 0.0000
2 0.7054 0.2369 0.0462 0.0055 0.0004
3 0.8850 0.4551 0.1332 0.0230 0.0022
4 0.9648 0.6733 0.2822 0.0696 0.0096
5 0.9914 0.8369 0.4739 0.1629 0.0318
6 0.9983 0.9324 0.6655 0.3081 0.0835
7 0.9997 0.9767 0.8180 0.4878 0.1796
8 1.0000 0.9933 0.9161 0.6675 0.3238
9 1.0000 0.9984 0.9674 0.8139 0.5000

10 1.0000 0.9997 0.9895 0.9115 0.6762
11 1.0000 1.0000 0.9720 0.9648 0.8204
12 1.0000 1.0000 0.9994 0.9884 0.9165
13 1.0000 1.0000 0.9999 0.9969 0.9682
14 1.0000 1.0000 1.0000 0.9994 0.9904
15 1.0000 1.0000 1.0000 0.9999 0.9978
16 1.0000 1.0000 1.0000 1.0000 0.9996
17 1.0000 1.0000 1.0000 1.0000 1.0000

20 0 0.1216 0.0115 0.0008 0.0000 0.0000
1 0.3917 0.0692 0.0076 0.0005 0.0000
2 0.6769 0.2061 0.0355 0.0036 0.0002
3 0.8670 0.4114 0.1071 0.0160 0.0013
4 0.9568 0.6296 0.2375 0.0510 0.0059
5 0.9887 0.8042 0.4164 0.1256 0.0207
6 0.9976 0.9133 0.6080 0.2500 0.0577
7 0.9996 0.9679 0.7723 0.4159 0.1316
8 0.9999 0.9900 0.8867 0.5956 0.2517
9 1.0000 0.9974 0.9520 0.7553 0.4119

10 1.0000 0.9994 0.9829 0.8725 0.5881
11 1.0000 0.9999 0.9949 0.9435 0.7483
12 1.0000 1.0000 0.9987 0.9790 0.8684
13 1.0000 1.0000 0.9997 0.9935 0.9423
14 1.0000 1.0000 1.0000 0.9984 0.9793
15 1.0000 1.0000 1.0000 0.9997 0.9941
16 1.0000 1.0000 1.0000 1.0000 0.9987
17 1.0000 1.0000 1.0000 1.0000 0.9998
18 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A.8 Poisson Probabilities (X is p(X ; λT))

Given λT and nonnegative integer values of k, the table gives the probability

p(X = k; λT) = e−λT (λT)k

k! (e.g., p(X = 2; 3.7) = 0.1692).

λT

k 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.9048 0.8187 0.7408 0.6703 0.6065 0.5488 0.4966 0.4493 0.4066 0.3679
1 0.0905 0.1637 0.2222 0.2681 0.3033 0.3293 0.3476 0.3595 0.3659 0.3679
2 0.0045 0.0164 0.0333 0.0536 0.0758 0.0988 0.1217 0.1438 0.1647 0.1839
3 0.0002 0.0011 0.0033 0.0072 0.0126 0.0198 0.0284 0.0383 0.0494 0.0613
4 0.0000 0.0001 0.0002 0.0007 0.0016 0.0030 0.0050 0.0077 0.0111 0.0153
5 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004 0.0007 0.0012 0.0020 0.0031
6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0003 0.0005
7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

λT

k 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 0.3329 0.3012 0.2725 0.2466 0.2231 0.2019 0.1827 0.1653 0.1496 0.1353
1 0.3662 0.3614 0.3543 0.3452 0.3347 0.3230 0.3106 0.2975 0.2842 0.2707
2 0.2014 0.2169 0.2303 0.2417 0.2510 0.2584 0.2640 0.2678 0.2700 0.2707
3 0.0738 0.0867 0.0998 0.1128 0.1255 0.1378 0.1496 0.1607 0.1710 0.1804
4 0.0203 0.0260 0.0324 0.0395 0.0471 0.0551 0.0636 0.0723 0.0812 0.0902
5 0.0045 0.0062 0.0084 0.0111 0.0141 0.0176 0.0216 0.0260 0.0309 0.0361
6 0.0008 0.0012 0.0018 0.0026 0.0035 0.0047 0.0061 0.0078 0.0098 0.0120
7 0.0001 0.0002 0.0003 0.0005 0.0008 0.0011 0.0015 0.0020 0.0027 0.0034
8 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0003 0.0005 0.0006 0.0009
9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002

λT

k 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 0.1225 0.1108 0.1003 0.0907 0.0821 0.0743 0.0672 0.0608 0.0550 0.0498
1 0.2572 0.2438 0.2306 0.2177 0.2052 0.1931 0.1815 0.1703 0.1596 0.1494
2 0.2700 0.2681 0.2652 0.2613 0.2565 0.2510 0.2450 0.2384 0.2314 0.2240
3 0.1890 0.1966 0.2033 0.2090 0.2138 0.2176 0.2205 0.2225 0.2237 0.2240
4 0.0992 0.1082 0.1169 0.1254 0.1336 0.1414 0.1488 0.1557 0.1622 0.1680
5 0.0417 0.0476 0.0538 0.0602 0.0668 0.0735 0.0804 0.0872 0.0940 0.1008
6 0.0146 0.0174 0.0206 0.0241 0.0278 0.0319 0.0362 0.0407 0.0455 0.0504
7 0.0044 0.0055 0.0068 0.0083 0.0099 0.0118 0.0139 0.0163 0.0188 0.0216
8 0.0011 0.0015 0.0019 0.0025 0.0031 0.0038 0.0047 0.0057 0.0068 0.0081
9 0.0003 0.0004 0.0005 0.0007 0.0009 0.0011 0.0014 0.0018 0.0022 0.0027

10 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0004 0.0005 0.0006 0.0008
11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0002 0.0002
12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
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Table A.8 (Contd.)

λT

k 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 0.0450 0.0408 0.0369 0.0334 0.0302 0.0273 0.0247 0.0224 0.0202 0.0183
1 0.1397 0.1304 0.1217 0.1135 0.1057 0.0984 0.0915 0.0850 0.0789 0.0733
2 0.2165 0.2087 0.2008 0.1929 0.1850 0.1771 0.1692 0.1615 0.1539 0.1465
3 0.2237 0.2226 0.2209 0.2186 0.2158 0.2125 0.2087 0.2046 0.2001 0.1954
4 0.1734 0.1781 0.1823 0.1858 0.1888 0.1912 0.1931 0.1944 0.1951 0.1954
5 0.1075 0.1140 0.1203 0.1264 0.1322 0.1377 0.1429 0.1477 0.1522 0.1563
6 0.0555 0.0608 0.0662 0.0716 0.0771 0.0826 0.0881 0.0936 0.0989 0.1042
7 0.0246 0.0278 0.0312 0.0348 0.0385 0.0425 0.0466 0.0508 0.0551 0.0595
8 0.0095 0.0111 0.0129 0.0148 0.0169 0.0191 0.0215 0.0241 0.0269 0.0298
9 0.0033 0.0040 0.0047 0.0056 0.0066 0.0076 0.0089 0.0102 0.0116 0.0132

10 0.0010 0.0013 0.0016 0.0019 0.0023 0.0028 0.0033 0.0039 0.0045 0.0053
11 0.0003 0.0004 0.0005 0.0006 0.0007 0.0009 0.0011 0.0013 0.0016 0.0019
12 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006
13 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002
14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

λT

k 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 0.0166 0.0150 0.0136 0.0123 0.0111 0.0101 0.0091 0.0082 0.0074 0.0067
1 0.0679 0.0630 0.0583 0.0540 0.0500 0.0462 0.0427 0.0395 0.0365 0.0337
2 0.1393 0.1323 0.1254 0.1188 0.1125 0.1063 0.1005 0.0948 0.0894 0.0842
3 0.1904 0.1852 0.1798 0.1743 0.1687 0.1631 0.1574 0.1517 0.1460 0.1404
4 0.1951 0.1944 0.1933 0.1917 0.1898 0.1875 0.1849 0.1820 0.1789 0.1755
5 0.1600 0.1633 0.1662 0.1687 0.1708 0.1725 0.1738 0.1747 0.1753 0.1755
6 0.1093 0.1143 0.1191 0.1237 0.1281 0.1323 0.1362 0.1398 0.1432 0.1462
7 0.0640 0.0686 0.0732 0.0778 0.0824 0.0869 0.0914 0.0959 0.1002 0.1044
8 0.0328 0.0360 0.0393 0.0428 0.0463 0.0500 0.0537 0.0575 0.0614 0.0653
9 0.0150 0.0168 0.0188 0.0209 0.0232 0.0255 0.0280 0.0307 0.0334 0.0363

10 0.0061 0.0071 0.0081 0.0092 0.0104 0.0118 0.0132 0.0147 0.0164 0.0181
11 0.0023 0.0027 0.0032 0.0037 0.0043 0.0049 0.0056 0.0064 0.0073 0.0082
12 0.0008 0.0009 0.0011 0.0014 0.0016 0.0019 0.0022 0.0026 0.0030 0.0034
13 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0011 0.0013
14 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005
15 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002
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Table A.8 (Contd.)

λT

k 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 0.0061 0.0055 0.0050 0.0045 0.0041 0.0037 0.0033 0.0030 0.0027 0.0025
1 0.0311 0.0287 0.0265 0.0244 0.0225 0.0207 0.0191 0.0176 0.0162 0.0149
2 0.0793 0.0746 0.0701 0.0659 0.0618 0.0580 0.0544 0.0509 0.0477 0.0446
3 0.1348 0.1293 0.1239 0.1185 0.1133 0.1082 0.1033 0.0985 0.0938 0.0892
4 0.1719 0.1681 0.1641 0.1600 0.1558 0.1615 0.1472 0.1428 0.1383 0.1339
5 0.1753 0.1748 0.1740 0.1728 0.1714 0.1697 0.1678 0.1656 0.1632 0.1606
6 0.1490 0.1515 0.1537 0.1555 0.1571 0.1584 0.1594 0.1601 0.1605 0.1606
7 0.1086 0.1125 0.1163 0.1200 0.1234 0.1267 0.1298 0.1326 0.1353 0.1377
8 0.0692 0.0731 0.0771 0.0810 0.0849 0.0887 0.0925 0.0962 0.0998 0.1033
9 0.0392 0.0423 0.0454 0.0486 0.0519 0.0552 0.0586 0.0620 0.0654 0.0688

10 0.0200 0.0220 0.0241 0.0262 0.0285 0.0309 0.0334 0.0359 0.0386 0.0413
11 0.0093 0.0104 0.0116 0.0129 0.0143 0.0157 0.0173 0.0190 0.0207 0.0225
12 0.0039 0.0045 0.0051 0.0058 0.0065 0.0073 0.0082 0.0092 0.0102 0.0113
13 0.0015 0.0018 0.0021 0.0024 0.0028 0.0032 0.0036 0.0041 0.0046 0.0052
14 0.0006 0.0007 0.0008 0.0009 0.0011 0.0013 0.0015 0.0017 0.0019 0.0022
15 0.0002 0.0002 0.0003 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009
16 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003
17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001

λT

k 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 0.0022 0.0020 0.0018 0.0017 0.0015 0.0014 0.0012 0.0011 0.0010 0.0009
1 0.0137 0.0126 0.0116 0.0106 0.0098 0.0090 0.0082 0.0076 0.0070 0.0064
2 0.0417 0.0390 0.0364 0.0340 0.0318 0.0296 0.0276 0.0258 0.0240 0.0223
3 0.0848 0.0806 0.0765 0.0726 0.0688 0.0652 0.0617 0.0584 0.0552 0.0521
4 0.1294 0.1249 0.1205 0.1162 0.1118 0.1076 0.1034 0.0992 0.0952 0.0912
5 0.1579 0.1549 0.1519 0.1487 0.1454 0.1420 0.1385 0.1349 0.1314 0.1277
6 0.1605 0.1601 0.1595 0.1586 0.1575 0.1562 0.1546 0.1529 0.1511 0.1490
7 0.1399 0.1418 0.1435 0.1450 0.1462 0.1472 0.1480 0.1486 0.1489 0.1490
8 0.1066 0.1099 0.1130 0.1160 0.1188 0.1215 0.1240 0.1263 0.1284 0.1304
9 0.0723 0.0757 0.0791 0.0825 0.0858 0.0891 0.0923 0.0954 0.0985 0.1014

10 0.0441 0.0469 0.0498 0.0528 0.0558 0.0588 0.0618 0.0649 0.0679 0.0710
11 0.0245 0.0265 0.0285 0.0307 0.0330 0.0353 0.0377 0.0401 0.0426 0.0452
12 0.0124 0.0137 0.0150 0.0164 0.0179 0.0194 0.0210 0.0227 0.0245 0.0264
13 0.0058 0.0065 0.0073 0.0081 0.0089 0.0098 0.0108 0.0119 0.0130 0.0142
14 0.0025 0.0029 0.0033 0.0037 0.0041 0.0046 0.0052 0.0058 0.0064 0.0071
15 0.0010 0.0012 0.0014 0.0016 0.0018 0.0020 0.0023 0.0026 0.0029 0.0033
16 0.0004 0.0005 0.0005 0.0006 0.0007 0.0008 0.0010 0.0011 0.0013 0.0014
17 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005 0.0006
18 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002
19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001
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Table A.8 (Contd.)

λT

k 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 0.0008 0.0007 0.0007 0.0006 0.0006 0.0005 0.0005 0.0004 0.0004 0.0003
1 0.0059 0.0054 0.0049 0.0045 0.0041 0.0038 0.0035 0.0032 0.0029 0.0027
2 0.0208 0.0194 0.0180 0.0167 0.0156 0.0145 0.0134 0.0125 0.0116 0.0107
3 0.0492 0.0464 0.0438 0.0413 0.0389 0.0366 0.0345 0.0324 0.0305 0.0286
4 0.0874 0.0836 0.0799 0.0764 0.0729 0.0696 0.0663 0.0632 0.0602 0.0573
5 0.1241 0.1204 0.1167 0.1130 0.1094 0.1057 0.1021 0.0986 0.0951 0.0916
6 0.1468 0.1445 0.1420 0.1394 0.1367 0.1339 0.1311 0.1282 0.1252 0.1221
7 0.1489 0.1486 0.1481 0.1474 0.1465 0.1454 0.1442 0.1428 0.1413 0.1396
8 0.1321 0.1337 0.1351 0.1363 0.1373 0.1382 0.1388 0.1392 0.1395 0.1396
9 0.1042 0.1070 0.1096 0.1121 0.1144 0.1167 0.1187 0.1207 0.1224 0.1241

10 0.0740 0.0770 0.0800 0.0829 0.0838 0.0887 0.0914 0.0941 0.0967 0.0993
11 0.4780 0.0504 0.0531 0.0558 0.0585 0.0613 0.0640 0.0667 0.0695 0.0722
12 0.0283 0.0303 0.0323 0.0344 0.0366 0.0388 0.0411 0.0434 0.0457 0.0481
13 0.0154 0.0168 0.0181 0.0196 0.0211 0.0227 0.0243 0.0260 0.0278 0.0296
14 0.0078 0.0086 0.0095 0.0104 0.0113 0.0123 0.0134 0.0145 0.0157 0.0169
15 0.0037 0.0041 0.0046 0.0051 0.0057 0.0062 0.0069 0.0075 0.0083 0.0090
16 0.0016 0.0019 0.0021 0.0024 0.0026 0.0030 0.0033 0.0037 0.0041 0.0045
17 0.0007 0.0008 0.0009 0.0010 0.0012 0.0013 0.0015 0.0017 0.0019 0.0021
18 0.0003 0.0003 0.0004 0.0004 0.0005 0.0006 0.0006 0.0007 0.0008 0.0009
19 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0004
20 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002
21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001

λT

k 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 0.0003 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0001 0.0001
1 0.0025 0.0023 0.0021 0.0019 0.0017 0.0016 0.0014 0.0013 0.0012 0.0011
2 0.0100 0.0092 0.0086 0.0079 0.0074 0.0068 0.0063 0.0058 0.0054 0.0050
3 0.0269 0.0252 0.0237 0.0222 0.0208 0.0195 0.0183 0.0171 0.0160 0.0150
4 0.0544 0.0517 0.0491 0.0466 0.0443 0.0420 0.0398 0.0377 0.0357 0.0337
5 0.0882 0.0849 0.0816 0.0784 0.0752 0.0722 0.0692 0.0663 0.0635 0.0607
6 0.1191 0.1160 0.1128 0.1097 0.1066 0.1034 0.1003 0.0972 0.0941 0.0911
7 0.1378 0.1358 0.1338 0.1317 0.1294 0.1271 0.1247 0.1222 0.1197 0.1171
8 0.1395 0.1392 0.1388 0.1382 0.1375 0.1366 0.1356 0.1344 0.1332 0.1318
9 0.1256 0.1269 0.1280 0.1290 0.1299 0.1306 0.1311 0.1315 0.1317 0.1318

10 0.1017 0.1040 0.1063 0.1084 0.1104 0.1123 0.1140 0.1137 0.1172 0.1186
11 0.0749 0.0776 0.0802 0.0828 0.0853 0.0878 0.0902 0.0925 0.0948 0.0970
12 0.0505 0.0530 0.0555 0.0579 0.0604 0.0629 0.0654 0.0679 0.0703 0.0728
13 0.0315 0.0334 0.0354 0.0374 0.0395 0.0416 0.0438 0.0459 0.0481 0.0504
14 0.0182 0.0196 0.0210 0.0225 0.0240 0.0256 0.0272 0.0289 0.0306 0.0324
15 0.0098 0.0107 0.0116 0.0126 0.0136 0.0147 0.0158 0.0169 0.0182 0.0194
16 0.0050 0.0055 0.0060 0.0066 0.0072 0.0079 0.0086 0.0093 0.0101 0.0109
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Table A.8 (Contd.)

λT

k 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

17 0.0024 0.0026 0.0029 0.0033 0.0036 0.0040 0.0044 0.0048 0.0053 0.0058
18 0.0011 0.0012 0.0014 0.0015 0.0017 0.0019 0.0021 0.0024 0.0026 0.0029
19 0.0005 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0014
20 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004 0.0005 0.0005 0.0006
21 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0003
22 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

λT

k 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
1 0.0010 0.0009 0.0009 0.0008 0.0007 0.0007 0.0006 0.0005 0.0005 0.0005
2 0.0046 0.0043 0.0040 0.0037 0.0034 0.0031 0.0029 0.0027 0.0025 0.0023
3 0.0140 0.0131 0.0123 0.0115 0.0107 0.0100 0.0093 0.0087 0.0081 0.0076
4 0.0319 0.0302 0.0285 0.0269 0.0254 0.0240 0.0226 0.0213 0.0201 0.0189
5 0.0581 0.0555 0.0530 0.0506 0.0483 0.0460 0.0439 0.0418 0.0398 0.0378
6 0.0881 0.0851 0.0822 0.0793 0.0764 0.0736 0.0709 0.0682 0.0656 0.0631
7 0.1145 0.1118 0.1091 0.1064 0.1037 0.1010 0.0982 0.0955 0.0928 0.0901
8 0.1302 0.1286 0.1269 0.1251 0.1232 0.1212 0.1191 0.1170 0.1148 0.1126
9 0.1317 0.1315 0.1311 0.1306 0.1300 0.1293 0.1284 0.1274 0.1263 0.1251

10 0.1198 0.1210 0.1219 0.1228 0.1235 0.1241 0.1245 0.1249 0.1250 0.1251
11 0.0991 0.1012 0.1031 0.1049 0.1067 0.1083 0.1098 0.1112 0.1125 0.1137
12 0.0752 0.0776 0.0799 0.0822 0.0844 0.0866 0.0888 0.0908 0.0928 0.0948
13 0.0526 0.0549 0.0572 0.0594 0.0617 0.0640 0.0662 0.0685 0.0707 0.0729
14 0.0342 0.0361 0.0380 0.0399 0.0419 0.0439 0.0459 0.0479 0.0500 0.0521
15 0.0208 0.0221 0.0235 0.0250 0.0265 0.0281 0.0297 0.0313 0.0330 0.0347
16 0.0118 0.0127 0.0137 0.0147 0.0157 0.0168 0.0180 0.0192 0.0204 0.0217
17 0.0063 0.0069 0.0075 0.0081 0.0088 0.0095 0.0103 0.0111 0.0119 0.0128
18 0.0032 0.0035 0.0039 0.0042 0.0046 0.0051 0.0055 0.0060 0.0065 0.0071
19 0.0015 0.0017 0.0019 0.0021 0.0023 0.0026 0.0028 0.0031 0.0034 0.0037
20 0.0007 0.0008 0.0009 0.0010 0.0011 0.0012 0.0014 0.0015 0.0017 0.0019
21 0.0003 0.0003 0.0004 0.0004 0.0005 0.0006 0.0006 0.0007 0.0008 0.0009
22 0.0001 0.0001 0.0002 0.0002 0.0002 0.0002 0.0003 0.0003 0.0004 0.0004
23 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0002 0.0002
24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0001



Appendix A 743

Table A.8 (Contd.)

λT

k 11 12 13 14 15 16 17 18 19 20

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
1 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2 0.0010 0.0004 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
3 0.0037 0.0018 0.0008 0.0004 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000
4 0.0102 0.0053 0.0027 0.0013 0.0006 0.0003 0.0001 0.0001 0.0000 0.0000
5 0.0224 0.0127 0.0070 0.0037 0.0019 0.0010 0.0005 0.0002 0.0001 0.0001
6 0.0411 0.0265 0.0152 0.0087 0.0048 0.0026 0.0014 0.0007 0.0004 0.0002
7 0.0646 0.0437 0.0281 0.0174 0.0104 0.0060 0.0034 0.0018 0.0010 0.0005
8 0.0888 0.0665 0.0457 0.0304 0.0194 0.0120 0.0072 0.0042 0.0024 0.0013
9 0.1085 0.0874 0.0661 0.0473 0.0324 0.0213 0.0135 0.0083 0.0050 0.0029

10 0.1194 0.1048 0.0859 0.0663 0.0486 0.0341 0.0230 0.0150 0.0095 0.0058
11 0.1194 0.1144 0.1015 0.0844 0.0663 0.0496 0.0355 0.0245 0.0164 0.0106
12 0.1094 0.1144 0.1099 0.0984 0.0829 0.0661 0.0504 0.0368 0.0259 0.0176
13 0.0926 0.1056 0.1099 0.1060 0.0956 0.0814 0.0658 0.0509 0.0378 0.0271
14 0.0728 0.0905 0.1021 0.1060 0.1024 0.0930 0.0800 0.0655 0.0614 0.0387
15 0.0534 0.0724 0.0886 0.0989 0.1024 0.0992 0.0906 0.0786 0.0650 0.0516
16 0.0367 0.0543 0.0719 0.0866 0.0960 0.0992 0.0963 0.0884 0.0772 0.0646
17 0.0237 0.0383 0.0550 0.0713 0.0847 0.0934 0.0963 0.0936 0.0863 0.0760
18 0.0146 0.0256 0.0397 0.0554 0.0706 0.0830 0.0909 0.0936 0.0911 0.0844
19 0.0084 0.0161 0.0272 0.0409 0.0557 0.0699 0.0814 0.0887 0.0911 0.0888
20 0.0046 0.0097 0.0177 0.0286 0.0418 0.0559 0.0692 0.0798 0.0866 0.0888
21 0.0024 0.0055 0.0109 0.0191 0.0299 0.0426 0.0560 0.0684 0.0783 0.0846
22 0.0012 0.0030 0.0066 0.0121 0.0204 0.0310 0.0433 0.0560 0.0676 0.0769
23 0.0006 0.0016 0.0037 0.0074 0.0133 0.0216 0.0320 0.0438 0.0559 0.0669
24 0.0003 0.0008 0.0020 0.0043 0.0083 0.0144 0.0226 0.0328 0.0442 0.0557

λT

k 11 12 13 14 15 16 17 18 19 20

25 0.0001 0.0004 0.0010 0.0024 0.0050 0.0092 0.0154 0.0237 0.0336 0.0446
26 0.0000 0.0002 0.0005 0.0013 0.0029 0.0057 0.0101 0.0164 0.0246 0.0343
27 0.0000 0.0001 0.0002 0.0007 0.0016 0.0034 0.0063 0.0109 0.0173 0.0254
28 0.0000 0.0000 0.0001 0.0003 0.0009 0.0019 0.0038 0.0070 0.0117 0.0181
29 0.0000 0.0000 0.0001 0.0002 0.0004 0.0011 0.0023 0.0044 0.0077 0.0125
30 0.0000 0.0000 0.0000 0.0001 0.0002 0.0006 0.0013 0.0026 0.0049 0.0083
31 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0007 0.0015 0.0030 0.0054
32 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0004 0.0009 0.0018 0.0034
33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0005 0.0010 0.0020
34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0006 0.0012
35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0007
36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0004
37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002
38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001
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Table A.9 Fisher’s ρ̂(= r) to ξ Transformation

The table gives values of ξ(ρ̂) = 1
2 loge

(
1+ρ̂

1−ρ̂

)
, where ξ(−ρ̂) = −ξ(ρ̂) (e.g., for ρ̂ = 0.76, ξ(0.76) = 0.996;

for ρ̂ = −0.76, ξ(−0.76) = −0.996).

ρ̂
ρ̂ (3rd decimal)

ρ̂
ρ̂ (3rd decimal)

0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008

0.00 0.0000 0.0020 0.0040 0.0060 0.0080 0.50 0.5493 0.5520 0.5547 0.5573 0.5600
1 0.0100 0.0120 0.0140 0.0160 0.0180 1 0.5627 0.5654 0.5682 0.5709 0.5736
2 0.0200 0.0220 0.0240 0.0260 0.0280 2 0.5763 0.5791 0.5818 0.5846 0.5874
3 0.0300 0.0320 0.0340 0.0360 0.0380 3 0.5901 0.5929 0.5957 0.5985 0.6013
4 0.0400 0.0420 0.0440 0.0460 0.0480 4 0.6042 0.6070 0.6098 0.6127 0.6155

0.05 0.0500 0.0520 0.0541 0.0561 0.0581 0.55 0.6194 0.6213 0.6241 0.6270 0.6299
6 0.0601 0.0621 0.0641 0.0661 0.0681 6 0.6328 0.6358 0.6387 0.6416 0.6446
7 0.0701 0.0721 0.0741 0.0761 0.0782 7 0.6475 0.6505 0.6535 0.6565 0.6595
8 0.0802 0.0822 0.0842 0.0862 0.0882 8 0.6625 0.6655 0.6685 0.6716 0.6746
9 0.0902 0.0923 0.0943 0.0963 0.0983 9 0.6777 0.6807 0.6838 0.6869 0.6900

0.10 0.1003 0.1024 0.1044 0.1064 0.1084 0.60 0.6931 0.6963 0.6994 0.7026 0.7057
1 0.1104 0.1125 0.1145 0.1165 0.1186 1 0.7089 0.7121 0.7153 0.7185 0.7218
2 0.1206 0.1226 0.1246 0.1267 0.1287 2 0.7250 0.7283 0.7315 0.7348 0.7381
3 0.1307 0.1328 0.1348 0.1368 0.1389 3 0.7414 0.7447 0.7481 0.7514 0.7548
4 0.1409 0.1430 0.1450 0.1471 0.1491 4 0.7582 0.7616 0.7650 0.7684 0.7718

0.15 0.1511 0.1532 0.1552 0.1573 0.1593 0.65 0.7753 0.7788 0.7823 0.7858 0.7893
6 0.1614 0.1634 0.1655 0.1676 0.1696 6 0.7928 0.7964 0.7999 0.8035 0.8071
7 0.1717 0.1737 0.1758 0.1779 0.1799 7 0.8107 0.8144 0.8180 0.8217 0.8254
8 0.1820 0.1841 0.1861 0.1882 0.1903 8 0.8291 0.8328 0.8366 0.8404 0.8441
9 0.1923 0.1944 0.1965 0.1986 0.2007 9 0.8480 0.8518 0.8556 0.8595 0.8634

0.20 0.2027 0.2048 0.2069 0.2090 0.2111 0.70 0.8673 0.8712 0.8752 0.8792 0.8832
1 0.2132 0.2153 0.2174 0.2195 0.2216 1 0.8872 0.8912 0.8953 0.8994 0.9035
2 0.2237 0.2258 0.2279 0.2300 0.2321 2 0.9076 0.9118 0.9160 0.9202 0.9245
3 0.2342 0.2363 0.2384 0.2405 0.2427 3 0.9287 0.9330 0.9373 0.9417 0.9462
4 0.2448 0.2469 0.2490 0.2512 0.2533 4 0.9505 0.9549 0.9549 0.9639 0.9684

0.25 0.2554 0.2575 0.2597 0.2618 0.2640 0.75 0.9730 0.9780 0.9820 0.9870 0.9910
6 0.2661 0.2683 0.2704 0.2726 0.2747 6 0.9960 1.0010 1.0060 1.0110 1.0150
7 0.2769 0.2790 0.2812 0.2833 0.2855 7 1.0200 1.0250 1.0300 1.0350 1.0400
8 0.2877 0.2899 0.2920 0.2942 0.2964 8 1.0450 1.0500 1.0560 1.0610 1.0660
9 0.2986 0.3008 0.3029 0.3051 0.3073 9 1.0710 1.0770 1.0820 1.0880 1.0930

0.30 0.3095 0.3117 0.3139 0.3161 0.3183 0.80 1.0990 l.l 040 l.l100 1.1160 1.1210
1 0.3205 0.3228 0.3250 0.3272 0.3294 1 1.1270 1.1330 1.1390 1.1450 1.1510
2 0.3316 0.3339 0.3361 0.3383 0.3406 2 1.1570 1.1630 1.1690 1.1750 1.1820
3 0.3428 0.3451 0.3473 0.3496 0.3518 3 1.1880 1.1950 1.2010 1.2080 1.2140
4 0.3541 0.3564 0.3586 0.3609 0.3632 4 1.2210 1.2280 1.2350 1.2420 1.2490

0.35 0.3654 0.3677 0.3700 0.3723 0.3746 0.85 1.2560 1.2630 1.2710 1.2780 1.2860
6 0.3769 0.3792 0.3815 0.3838 0.3861 6 1.2930 1.3010 1.3090 1.3170 1.3250
7 0.3884 0.3907 0.3931 0.3954 0.3977 7 1.3330 1.3410 1.3500 1.3580 1.3670
8 0.4001 0.4024 0.4047 0.4071 0.4094 8 1.3760 1.3850 1.3940 1.4030 1.4120
9 0.4118 0.4142 0.4165 0.4189 0.4213 9 1.4220 1.4320 1.4420 1.4520 1.4620

0.40 0.4236 0.4260 0.4284 0.4308 0.4332 0.90 1.4720 1.4830 1.4940 1.5050 1.5160
1 0.4356 0.4380 0.4404 0.4428 0.4453 1 1.5280 1.5390 1.5510 1.5640 1.5760
2 0.4477 0.4501 0.4526 0.4550 0.4574 2 1.5890 1.6020 1.6160 1.6300 1.6440
3 0.4599 0.4624 0.4648 0.4673 0.4698 3 1.6580 1.6730 1.6890 1.7050 1.7210
4 0.4722 0.4747 0.4772 0.4797 0.4822 4 1.7380 1.7560 1.7740 1.7920 1.8120
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Table A.9 (Contd.)

ρ̂
ρ̂ (3rd decimal)

ρ̂
ρ̂ (3rd decimal)

0.000 0.002 0.004 0.006 0.008 0.000 0.002 0.004 0.006 0.008

0.45 0.4847 0.4872 0.4897 0.4922 0.4948 0.95 1.8320 1.8530 1.8740 1.8970 1.9210
6 0.4973 0.4999 0.5024 0.5049 0.4075 6 1.9460 1.9720 2.0000 2.0290 2.0600
7 0.5101 0.5126 0.5152 0.5178 0.5204 7 2.0920 2.1270 2.1650 2.2050 2.2490
8 0.5230 0.5256 0.5282 0.5308 0.5334 8 2.2980 2.3510 2.4100 2.4770 2.5550
9 0.5361 0.5387 0.5413 0.5440 0.5466 9 2.6470 2.7590 2.9030 3.1060 3.4530

This table is abridged from E.S. Pearson and H.O. Hartley. (1976); Biometrika Tables for Statisticians, Vol. I.
Reproduced with the kind permission of Oxford University Press.

Table A.10 R Distribution for the Runs Test of Randomness, α = 0.05

Given n1 and n2, the table gives the lower- and upper-tail critical values rl and ru, respectively, such that
P(R ≤ rl) + P(R ≥ ru) = α/2 + α/2 = 0.05.

n2 rl

n1 ru 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 rl 2 2 2 2
ru

3 rl 2 2 2 2 2 2 2 2 2 3
ru

4 rl 2 2 2 3 3 3 3 3 3 3 3
ru 9 9

5 rl 2 3 3 3 3 3 4 4 4 4 4
ru 9 10 10 11 11

6 rl 2 2 3 3 3 3 4 4 4 4 5 5 5
ru 9 10 11 12 12 13 13 13 13

7 rl 2 2 3 3 3 4 4 5 5 5 5 5 6
ru 11 12 13 13 14 14 14 14 15 15 15

8 rl 2 3 3 3 4 4 5 5 5 6 6 6 6
ru 11 12 13 14 14 15 15 16 16 16 16

9 rl 2 3 3 4 4 5 5 5 6 6 6 7 7
ru 13 14 14 15 16 16 16 17 17 18

10 rl 2 3 3 4 5 5 5 6 6 7 7 7 7
ru 13 14 15 16 16 17 17 18 18 18

11 rl 2 3 4 4 5 5 6 6 7 7 7 8 8
ru 13 14 15 16 17 17 18 19 19 19

12 rl 2 2 3 4 4 5 6 6 7 7 7 8 8 8
ru 13 14 16 16 17 18 19 19 20 20

13 rl 2 2 3 4 5 5 6 6 7 7 8 8 9 9
ru 15 16 17 18 19 19 20 20 21

14 rl 2 2 3 4 5 5 6 7 7 8 8 9 9 9
ru 15 16 17 18 19 20 20 21 22

15 rl 2 3 3 4 5 6 6 7 7 8 8 9 9 10
ru 15 16 18 18 19 20 21 22 22

Adapted from F.S. Swed and C. Eisenhart, “Tables for Testing Randomness of Grouping in a Sequence of Alternatives,”
The Annals of Mathematical Statistics, 14, 1943, 66–87, with kind permission from the Institute of Mathematical Statistics.
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Table A.11 W+ Distribution for the Wilcoxon Signed Rank Test

One-Tail Test. Given n and α, the table gives the (CASE I) upper-tail critical value wu such that
P(W+ ≥ wu) = α; or the (CASE II) lower-tail critical value wl such that P(w+ ≤ wl) = α (e.g., for n = 17
and α = 0.05, the CASE I critical region is R = {w+ | w+ ≥ 112}; and the CASE II critical region is
R = {w+ | w+ ≤ 41}).

Two-Tail Test. Given n and α, the table gives the (CASE III) lower- and upper-tail critical values wl

and wu, respectively, such that P(W+ ≤ wl)+P(W+ ≥ wu) = α/2+α/2 = α (e.g., for n = 10 and α = 0.01,
the CASE III critical region is R = {w+ | w+ ≤ 3 or w+ ≥ 52}).

wl wu

n 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n

6 0 2 19 21 6
7 0 2 3 25 26 28 7
8 0 1 3 5 31 33 35 36 8
9 1 3 5 8 37 40 42 44 9
10 3 5 8 10 45 47 50 52 10
11 5 7 10 13 53 56 59 61 11
12 7 9 13 17 61 65 69 71 12
13 9 12 17 21 70 74 79 82 13
14 12 15 21 25 80 84 90 93 14
15 15 19 25 30 90 95 101 105 15
16 19 23 29 35 101 107 113 117 16
17 23 27 34 41 112 119 126 130 17
18 27 32 40 47 124 131 139 144 18
19 32 37 46 53 137 144 153 158 19
20 37 43 52 60 150 158 167 173 20
21 42 49 58 61 164 173 182 189 21
22 48 55 65 75 178 188 198 205 22
23 54 62 73 83 193 203 214 222 23
24 61 69 81 91 209 219 231 239 24
25 68 76 89 100 225 236 249 257 25

Adapted from “Critical Values and Probability Levels for the Wilcoxon Rank Sum Test and the Wilcoxon Signed-Rank
Test” by F. Wilcoxon, S.K. Katti, and R.A. Wilcox. Lederle Laboratories Division, American Cyanamid Company,
1963. Copyright © Wyeth. All rights reserved and used with permission.



Appendix A 747

Table A.12 R1 Distribution for the Mann-Whitney Rank-Sum Test

One-Tail Test. Given n1, n2, and α, the table gives the (CASE I) upper-tail critical value ru such that
P(R1 ≥ ru) = α; or the (CASE II) lower-tail critical value rl such that P(R1 ≤ rl) = α (e.g., for n1 = 8,
n2 = 6, and α = 0.01, the CASE I critical region is R = {r1 | r1 ≥ 78}; and the CASE II critical region is
R = {r1 | r1 ≤ 42}.

Two-Tail Test. Given n1, n2, and α, the table gives the (CASE III) lower- and upper-tail critical values
rl and ru, respectively, such that P(R1 ≤ rl) + P(R1 ≥ ru) = α/2 + α/2 = α (e.g., for n1 = n2 = 10 and
α = 0.05, the CASE III critical region is R = {r1 | r1 ≤ 78 or r1 ≥ 132}).

rl ru

n1 = 3 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 3

3 5 5 5 6 15 16 16 16 3
4 5 5 5 6 18 19 19 19 4
5 5 5 6 7 20 21 22 22 5
6 5 5 7 8 22 23 25 25 6
7 5 6 7 8 25 26 27 28 7
8 5 6 8 9 27 28 30 31 8
9 6 7 8 10 29 31 32 33 9

10 6 7 9 10 32 33 35 36 10
11 6 7 9 11 34 36 38 39 11
12 7 8 10 11 37 38 40 41 12
13 7 8 10 12 39 41 43 44 13
14 7 8 11 13 41 43 46 47 14
15 8 9 11 13 44 46 48 49 15
16 8 9 12 14 46 48 51 52 16
17 8 10 12 15 48 51 53 55 17
18 8 10 13 15 51 53 56 58 18
19 9 10 13 16 53 56 59 60 19
20 9 11 14 17 55 58 61 63 20

rl ru

n1 = 4 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 4

3 9 9 9 10 22 23 23 23 3
4 9 9 10 11 25 26 27 27 4
5 9 10 11 12 28 29 30 31 5
6 10 11 12 13 31 32 33 34 6
7 10 11 13 14 34 35 37 38 7
8 11 12 14 15 37 38 40 41 8
9 11 13 14 16 40 42 43 45 9

10 12 13 15 17 43 45 47 48 10
11 12 14 16 18 46 48 50 52 11
12 13 15 17 19 49 51 53 55 12
13 13 15 18 20 52 54 57 59 13
14 14 16 19 21 55 57 60 62 14
15 15 17 20 22 58 60 63 65 15
16 15 17 21 24 60 63 67 69 16
17 16 18 21 25 63 67 70 72 17
18 16 19 22 26 66 70 73 76 18
19 17 19 23 27 69 73 77 79 19
20 18 20 24 28 72 76 80 82 20
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Table A.12 (Contd.)

rl ru

n1 = 5 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 5

3 14 14 15 16 29 30 31 31 3
4 14 15 16 17 33 34 35 36 4
5 15 16 17 19 36 38 39 40 5
6 16 17 18 20 40 42 43 44 6
7 16 18 20 21 44 45 47 49 7
8 17 19 21 23 47 49 51 53 8
9 18 20 22 24 51 53 55 57 9

10 19 21 23 26 54 57 59 61 10
11 20 22 24 24 27 58 61 63 11
12 21 23 26 28 62 64 67 69 12
13 22 24 27 30 65 68 71 73 13
14 22 25 28 31 69 72 75 78 14
15 23 26 29 33 72 76 79 82 15
16 24 27 30 34 76 80 83 86 16
17 25 28 32 35 80 83 87 90 17
18 26 29 33 37 83 87 91 94 18
19 27 30 34 38 87 91 95 98 19
20 28 31 35 40 90 95 99 102 20

rl ru

n1 = 6 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 6

3 20 20 22 23 37 38 40 40 3
4 21 22 23 24 42 42 43 44 4
5 22 23 24 26 26 46 48 49 5
6 23 24 26 28 50 52 54 55 6
7 24 25 27 29 55 57 59 60 7
8 25 27 29 31 59 61 63 65 8
9 26 28 31 33 63 65 68 70 9

10 27 29 32 35 67 70 73 75 10
11 28 30 34 37 71 74 78 80 11
12 30 32 35 38 76 79 82 84 12
13 31 33 37 40 80 83 87 89 13
14 32 34 38 42 84 88 92 94 14
15 33 36 40 44 88 92 96 99 15
16 34 37 42 46 92 96 101 104 16
17 36 39 43 47 97 101 105 108 17
18 37 40 45 49 101 105 110 113 18
19 38 41 46 51 105 110 115 118 19
20 39 43 48 53 109 114 119 123 20
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Table A.12 (Contd.)

rl ru

n1 = 7 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 7

3 27 28 29 30 47 48 49 50 3
4 28 29 31 32 52 53 55 56 4
5 29 31 33 34 57 58 60 62 5
6 31 32 34 36 62 62 64 66 6
7 32 34 36 39 66 66 69 71 7
8 34 35 38 41 71 74 77 78 8
9 35 37 40 43 76 79 82 84 9
10 37 39 42 45 81 84 87 89 10
11 38 40 44 47 86 89 93 95 11
12 40 42 46 49 91 94 98 100 12
13 41 44 48 52 95 99 103 106 13
14 43 45 50 54 100 104 109 111 14
15 44 47 52 56 105 109 114 117 15
16 46 49 54 58 110 114 119 122 16
17 47 51 56 61 114 119 124 128 17
18 49 52 58 63 119 124 130 133 18
19 50 54 60 65 124 129 135 139 19
20 52 56 62 67 129 134 140 144 20

rl ru

n1 = 8 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 8

3 35 36 38 39 57 58 60 61 3
4 37 38 40 41 63 64 66 67 4
5 38 40 42 44 68 70 72 74 5
6 40 42 44 46 74 76 78 80 6
7 42 43 46 49 79 82 85 86 7
8 43 45 49 51 85 87 91 93 8
9 45 47 51 54 90 93 97 99 9
10 47 49 53 56 96 99 103 105 10
11 49 51 55 59 101 105 109 111 11
12 51 53 58 62 106 110 115 117 12
13 53 56 60 64 112 116 120 123 13
14 54 58 62 67 117 122 126 130 14
15 56 60 65 69 123 127 132 136 15
16 58 62 67 72 128 133 138 142 16
17 60 64 70 75 133 138 144 148 17
18 62 66 72 77 139 144 150 154 18
19 64 68 74 80 144 150 156 160 19
20 66 70 77 83 149 155 162 166 20
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Table A.12 (Contd.)

rl ru

n1 = 9 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 9

3 45 46 47 49 68 70 71 72 3
4 46 48 49 51 75 77 78 80 4
5 48 50 52 54 81 83 85 87 5
6 50 52 55 57 87 89 92 94 6
7 52 54 57 60 93 96 99 101 7
8 54 56 60 63 99 102 106 108 8
9 56 59 62 66 105 109 112 115 9
10 58 61 65 69 111 115 119 122 10
11 61 63 68 72 117 121 126 128 11
12 63 66 71 75 123 127 132 135 12
13 65 68 73 78 129 134 139 142 13
14 67 71 76 81 135 140 145 149 14
15 69 73 79 84 141 146 152 156 15
16 72 76 82 87 147 152 158 162 16
17 74 78 84 90 153 159 165 169 17
18 76 81 87 93 159 165 171 176 18
19 78 83 90 96 165 171 178 183 19
20 81 85 93 99 171 177 185 189 20

rl ru

n1 = 10 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 10

3 55 56 58 59 81 82 84 85 3
4 57 58 60 62 88 90 92 93 4
5 59 61 63 66 94 97 99 101 5
6 61 63 66 69 101 104 107 109 6
7 64 66 69 72 108 111 114 116 7
8 66 68 72 75 115 118 122 124 8
9 68 71 75 79 121 125 129 132 9
10 71 74 78 82 128 132 136 139 10
11 73 77 81 86 134 139 143 147 11
12 76 79 84 89 141 146 151 154 12
13 79 82 88 92 148 152 158 161 13
14 81 85 91 96 154 159 165 169 14
15 84 88 94 99 161 166 172 176 15
16 86 91 97 103 167 173 179 184 16
17 89 93 100 106 174 180 187 191 17
18 92 96 103 110 180 187 194 198 18
19 94 99 107 113 187 193 201 206 19
20 97 102 110 117 193 200 208 213 20
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Table A.12 (Contd.)

rl ru

n1 = 11 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 11

3 66 67 69 71 94 96 98 99 3
4 68 70 72 74 102 104 106 108 4
5 71 73 75 78 109 112 114 116 5
6 73 75 79 82 116 119 123 125 6
7 76 78 82 85 124 127 131 133 7
8 79 81 85 89 131 135 139 141 8
9 82 84 89 93 138 142 147 149 9

10 84 88 92 97 145 150 154 158 10
11 87 91 96 100 153 157 162 166 11
12 90 94 99 104 160 165 170 174 12
13 93 97 103 108 167 172 178 182 13
14 96 100 106 112 174 180 186 190 14
15 99 103 110 116 181 187 194 198 15
16 102 107 113 120 188 195 201 206 16
17 105 110 117 123 196 202 209 214 17
18 108 113 121 127 203 209 217 222 18
19 111 116 124 131 210 217 225 230 19
20 114 119 128 135 217 224 233 238 20

rl ru

n1 = 12 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 12

3 79 80 82 83 109 110 112 113 3
4 81 83 85 87 117 119 121 123 4
5 84 86 89 91 125 127 130 132 5
6 87 89 92 95 133 136 139 141 6
7 90 92 96 99 141 144 148 150 7
8 93 95 100 104 148 152 157 159 8
9 96 99 104 108 156 160 165 168 9

10 99 102 107 112 164 169 174 177 10
11 102 106 111 116 172 177 182 186 11
12 105 109 115 120 180 180 185 191 12
13 109 113 119 125 187 193 199 203 13
14 112 116 123 129 195 201 208 212 14
15 115 120 127 133 203 209 216 221 15
16 119 124 131 138 210 217 224 229 16
17 122 127 135 142 218 225 233 238 17
18 125 131 139 146 226 233 241 247 18
19 129 134 143 150 234 241 250 255 19
20 132 138 147 155 241 249 258 264 20
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rl ru

n1 = 13 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 13

3 92 93 95 97 124 126 128 129 3
4 94 96 99 101 133 135 138 140 4
5 98 100 103 106 141 144 147 149 5
6 101 103 107 110 150 153 157 159 6
7 104 107 111 115 158 162 166 169 7
8 108 111 115 119 167 171 175 178 8
9 111 114 119 124 175 180 185 188 9

10 115 118 124 128 184 188 194 197 10
11 118 122 128 133 192 197 203 207 11
12 122 126 132 138 200 206 212 216 12
13 125 130 136 142 209 215 221 226 13
14 129 134 141 147 217 223 230 235 14
15 133 138 145 152 225 232 239 244 15
16 136 142 150 156 234 240 248 254 16
17 140 146 154 161 242 249 257 263 17
18 144 150 158 166 250 258 266 272 18
19 148 154 163 171 258 266 275 281 19
20 151 158 167 175 267 275 284 291 20

rl ru

n1 = 14 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 14

3 106 107 110 112 140 142 145 146 3
4 109 111 114 116 150 152 155 157 4
5 112 115 118 121 159 162 165 168 5
6 116 118 122 126 168 172 176 178 6
7 120 122 127 131 177 181 186 188 7
8 123 127 131 136 186 191 195 199 8
9 127 131 136 141 195 200 205 209 9

10 131 135 141 146 204 209 215 219 10
11 135 139 145 151 213 219 225 229 11
12 139 143 150 156 222 228 235 239 12
13 143 148 155 161 231 237 244 249 13
14 147 152 160 166 240 246 254 259 14
15 151 156 164 171 249 256 264 269 15
16 155 161 169 176 258 265 273 279 16
17 159 165 174 182 266 274 283 289 17
18 163 170 179 187 275 283 292 299 18
19 168 174 183 192 284 293 302 308 19
20 172 178 188 197 293 302 312 318 20
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Table A.12 (Contd.)

rl ru

n1 = 15 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 15

3 122 123 125 127 158 160 162 163 3
4 125 127 130 132 168 170 173 175 4
5 128 131 134 138 177 181 184 187 5
6 132 135 139 143 187 191 195 198 6
7 136 139 144 148 197 201 206 209 7
8 140 144 149 153 207 211 216 220 8
9 144 148 154 159 216 221 227 231 9
10 149 153 159 164 226 231 237 241 10
11 153 157 164 170 235 241 248 252 11
12 157 162 169 175 245 251 258 263 12
13 162 167 174 181 254 261 268 273 13
14 166 171 179 186 264 271 279 284 14
15 171 176 184 192 273 281 289 294 15
16 175 181 190 197 283 290 299 305 16
17 180 186 195 203 292 300 309 315 17
18 184 190 200 208 302 310 320 326 18
19 189 195 205 214 311 320 330 336 19
20 193 200 210 220 320 330 340 347 20

rl ru

n1 = 16 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 16

3 138 139 142 144 116 178 181 182 3
4 141 143 147 150 186 189 193 195 4
5 145 148 151 155 191 201 204 207 5
6 149 152 157 161 207 211 216 219 6
7 154 157 162 166 218 222 227 230 7
8 158 162 167 172 228 233 238 242 8
9 163 167 173 178 238 243 249 253 9
10 167 172 178 184 248 254 260 265 10
11 172 177 183 190 258 265 271 276 11
12 177 182 189 196 268 275 282 287 12
13 181 187 195 201 279 285 293 299 13
14 186 192 200 207 289 296 304 310 14
15 191 197 206 213 299 306 315 321 15
16 196 202 211 219 309 317 326 332 16
17 201 207 211 225 319 327 337 343 17
18 206 212 222 231 329 338 348 354 18
19 210 218 228 237 339 348 358 366 19
20 215 223 234 243 349 358 369 377 20



754 Appendix A

Table A.12 (Contd.)

rl ru

n1 = 17 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 17

3 155 157 159 162 195 198 200 202 3
4 159 161 164 168 206 210 213 215 4
5 163 166 170 173 218 221 225 228 5
6 168 171 175 179 229 233 237 240 6
7 172 176 181 186 239 244 249 253 7
8 177 181 187 192 250 255 261 265 8
9 182 186 192 198 261 267 273 277 9

10 187 191 198 204 272 278 285 289 10
11 192 197 204 210 283 289 296 301 11
12 197 202 210 217 293 300 308 313 12
13 202 208 216 223 304 311 319 325 13
14 207 213 222 230 314 322 331 337 14
15 213 219 228 236 325 333 342 348 15
16 218 224 234 242 336 344 354 360 16
17 223 230 240 249 346 355 365 372 17
18 228 235 246 255 357 366 377 384 18
19 234 241 252 262 367 377 388 395 19
20 239 246 258 268 378 388 400 407 20

rl ru

n1 = 18 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 18

3 173 175 178 180 216 218 221 223 3
4 177 180 183 187 227 231 234 237 4
5 182 185 189 193 239 243 247 250 5
6 187 190 195 199 251 255 260 263 6
7 192 195 201 206 262 267 273 276 7
8 197 201 207 212 274 279 285 289 8
9 202 207 213 219 285 291 297 302 9

10 208 212 219 226 296 303 310 314 10
11 213 218 226 232 308 314 322 327 11
12 218 224 232 239 319 326 334 340 12
13 224 230 238 246 330 338 246 352 13
14 229 236 245 253 341 349 358 365 14
15 235 241 251 259 353 361 371 377 15
16 241 247 257 266 364 373 383 389 16
17 246 253 264 273 375 384 395 402 17
18 252 259 270 280 386 396 407 414 18
19 258 265 277 287 397 407 419 426 19
20 263 271 283 294 408 419 431 439 20
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Table A.12 (Contd.)

rl ru

n1 = 19 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 19

3 193 194 197 200 237 240 243 244 3
4 197 199 203 207 249 253 257 259 4
5 202 205 209 213 262 266 270 273 5
6 207 210 215 220 274 279 284 287 6
7 212 216 222 227 286 291 297 301 7
8 218 222 228 234 298 304 310 314 8
9 223 228 235 241 310 316 323 328 9
10 229 234 242 248 322 328 336 341 10
11 235 240 248 255 334 341 349 354 11
12 241 246 255 262 346 353 362 367 12
13 247 253 262 270 357 365 374 380 13
14 253 259 268 277 369 378 387 393 14
15 259 265 275 284 381 390 400 406 15
16 264 272 282 291 393 402 412 420 16
17 271 278 289 299 404 414 425 432 17
18 277 284 296 306 416 426 438 445 18
19 283 291 303 313 428 438 450 458 19
20 289 297 309 320 440 451 463 471 20

rl ru

n1 = 20 n2 0.005 0.01 0.025 0.05 0.95 0.975 0.99 0.995 n2 n1 = 20

3 213 215 218 221 259 262 265 267 3
4 218 220 224 228 272 276 280 282 4
5 223 226 230 235 285 290 294 297 5
6 228 232 237 242 298 303 308 312 6
7 234 238 244 249 311 316 322 326 7
8 240 244 251 257 323 329 336 340 8
9 246 250 258 264 336 342 350 354 9
10 252 257 265 272 348 355 363 368 10
11 258 263 272 279 361 368 377 382 11
12 264 270 279 287 373 381 390 396 12
13 270 277 286 294 386 394 403 410 13
14 277 283 293 302 398 407 417 423 14
15 283 290 300 310 410 420 430 437 15
16 289 297 308 317 423 432 443 454 16
17 296 303 315 325 435 445 457 464 17
18 302 310 322 333 447 458 470 478 18
19 309 317 329 340 460 471 483 491 19
20 315 324 337 348 472 483 496 505 20

Adapted from “Critical Values and Probability Levels for the Wilcoxon Rank Sum Test and the Wilcoxon Signed-Rank
Test” by F. Wilcoxon, S.K. Katti, and R.A. Wilcox, Lederle Laboratories Division, American Cyanamid Company,
1963. Copyright © Wyeth. All rights reserved and used with permission.



756 Appendix A

Table A.13 Quantiles of the Lilliefors Test Statistic D̂n

The table gives the upper 100(1 − α)% quantile d̂n,1−α of the sampling distribution of D̂n

such that P(D̂n ≤ d̂n,1−α) = 1 − α or P(D̂n ≥ d̂n,1−α) = α (e.g., for n = 15 and α = 0.01,
the upper-tail critical region is R = {d̂15|d̂15 ≥ d̂15,0.99 = 0.257}).

1 − α = 0.80 0.85 0.90 0.95 0.99

Sample size n = 4 0.300 0.319 0.352 0.381 0.417
5 0.285 0.299 0.315 0.337 0.405
6 0.265 0.277 0.294 0.319 0.364
7 0.247 0.258 0.276 0.300 0.348
8 0.233 0.244 0.261 0.285 0.331
9 0.223 0.233 0.249 0.271 0.311

10 0.215 0.224 0.239 0.258 0.294
11 0.206 0.217 0.230 0.249 0.284
12 0.199 0.212 0.223 0.242 0.275
13 0.190 0.202 0.214 0.234 0.268
14 0.183 0.194 0.207 0.227 0.261
15 0.177 0.187 0.201 0.220 0.257
16 0.173 0.182 0.195 0.213 0.250
17 0.169 0.177 0.189 0.206 0.245
18 0.166 0.173 0.184 0.200 0.239
19 0.163 0.169 0.179 0.195 0.235
20 0.160 0.166 0.174 0.190 0.231
25 0.142 0.147 0.158 0.173 0.200
30 0.131 0.136 0.144 0.161 0.187

Over 30
0.736√

n

0.768√
n

0.805√
n

0.886√
n

1.031√
n

Adapted from Table 1 of H.W. Lilliefors, “On the Kolmogorov-Smirnov Test for Normality
with Mean and Variance Unknown,” JASA, 62, 1967, 399–402. Reprinted with permission from
The Journal of the American Statistical Association. Copyright [1967] by the American Statistical
Association. All rights reserved.
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Table A.14 Quantiles of the Kolmogorov-Smirnov Test Statistics Dn

The table gives the upper 100(1−α)% quantile d̂n,1−α of the sampling distribution of D̂n such that P(D̂n ≤
d̂n,1−α) = 1 − α or P(D̂n ≥ d̂n,1−α) = α (e.g., for n = 20 and α = 0.05, the one-tail critical region is
R = {d̂20|d̂20 ≥ d̂20,0.95 = 0.265}; the two-tail critical region is R = {d̂20|d̂20 ≥ d̂20,0.95 = 0.294}).

One-Sided Test
1 − α = 0.90 0.95 0.975 0.99 0.995 1 − α = 0.90 0.95 0.975 0.99 0.995

Two-Sided Test
1 − α = 0.80 0.90 0.95 0.98 0.99 1 − α = 0.80 0.90 0.95 0.98 0.99

n = 1 0.900 0.950 0.975 0.990 0.995 n = 21 0.226 0.259 0.287 0.321 0.344
2 0.684 0.776 0.842 0.900 0.929 22 0.221 0.253 0.281 0.314 0.337
3 0.565 0.636 0.708 0.785 0.829 23 0.216 0.247 0.275 0.307 0.330
4 0.493 0.565 0.624 0.689 0.734 24 0.212 0.242 0.269 0.301 0.323
5 0.447 0.509 0.563 0.627 0.669 25 0.208 0.238 0.264 0.295 0.317
6 0.410 0.468 0.519 0.577 0.617 26 0.204 0.233 0.259 0.290 0.311
7 0.381 0.436 0.483 0.538 0.576 27 0.200 0.229 0.254 0.284 0.305
8 0.358 0.410 0.454 0.507 0.542 28 0.197 0.225 0.250 0.279 0.300
9 0.339 0.387 0.430 0.480 0.513 29 0.193 0.221 0.246 0.275 0.295

10 0.323 0.369 0.409 0.457 0.489 30 0.190 0.218 0.242 0.270 0.290
11 0.308 0.352 0.391 0.437 0.468 31 0.187 0.214 0.238 0.266 0.285
12 0.296 0.338 0.375 0.419 0.449 32 0.184 0.211 0.234 0.262 0.281
13 0.285 0.325 0.361 0.404 0.432 33 0.182 0.208 0.231 0.258 0.277
14 0.275 0.314 0.349 0.390 0.418 34 0.179 0.205 0.227 0.254 0.273
15 0.266 0.304 0.338 0.377 0.404 35 0.177 0.202 0.224 0.251 0.269
16 0.258 0.295 0.327 0.366 0.392 36 0.174 0.199 0.221 0.247 0.265
17 0.250 0.286 0.318 0.355 0.381 37 0.172 0.196 0.218 0.244 0.262
18 0.244 0.279 0.309 0.346 0.371 38 0.170 0.194 0.215 0.241 0.258
19 0.237 0.271 0.301 0.337 0.361 39 0.168 0.191 0.213 0.238 0.255
20 0.232 0.265 0.294 0.329 0.352 40 0.165 0.189 0.210 0.235 0.252

Adapted from L.H. Miller, “Tables of Percentage Points of Kolmogorov Statistics,” JASA, 51, 1956, 111–121. Reprinted
with permission from The Journal of the American Statistical Association. Copyright [1956] by the American Statistical
Association. All rights reserved.
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Table A.15 Quantiles of the Kolmogorov-Smirnov Test Statistic Dn,m When n = m

The table gives the upper 100(1 − α) % quantile d̂n,m of the sampling distribution of D̂n,m such that
P(D̂n,m ≤ d̂n,m,1−α) = 1 − α or P(D̂n,m ≥ d̂n,m,1−α) = α (e.g., for n = m = 15 and α = 0.05, the one-tail
critical region is R = {d̂15,15|d̂15,15 ≥ d̂15,15,0.95 = 0.40}; the two-tail critical region is R = {d̂15,15|d̂15,15 ≥
d̂15,15,0.95 = 0.467}).

One-Sided Test
1 − α = 0.90 0.95 0.975 0.99 0.995 1 − α = 0.90 0.95 0.975 0.99 0.995

Two-Sided Test
1 − α = 0.80 0.90 0.95 0.98 0.99 1 − α = 0.80 0.90 0.95 0.98 0.99

n = 3 2/3 2/3 n = 20 6/20 7/20 8/20 9/20 10/20
4 3/4 3/4 3/4 21 6/21 7/21 8/21 9/21 10/21
5 3/5 3/5 4/5 4/5 4/5 22 7/22 8/22 8/22 10/22 10/22
6 3/6 4/6 4/6 5/6 5/6 23 7/23 8/23 9/23 10/23 10/23
7 4/7 4/7 5/7 5/7 5/7 24 7/24 8/24 9/24 10/24 11/24
8 4/8 4/8 5/8 5/8 6/8 25 7/25 8/25 9/25 10/25 11/25
9 4/9 5/9 5/9 6/9 6/9 26 7/26 8/26 9/26 10/26 11/26

10 4/10 5/10 6/10 6/10 7/10 27 7/27 8/27 9/27 11/27 11/27
11 5/11 5/11 6/11 7/11 7/11 28 8/28 9/28 10/28 11/28 12/28
12 5/12 5/12 6/12 7/12 7/12 29 8/29 9/29 10/29 11/29 12/29
13 5/13 6/13 6/13 7/13 8/13 30 8/30 9/30 10/30 11/30 12/30
14 5/14 6/14 7/14 7/14 8/14 31 8/31 9/31 10/31 11/31 12/31
15 5/15 6/15 7/15 8/15 8/15 32 8/32 9/32 10/32 12/32 12/32
16 6/16 6/16 6/25 8/16 12/15 34 8/34 10/34 11/34 12/34 13/34
17 9/29 7/17 7/17 8/22 9/17 36 9/36 10/36 11/36 12/36 13/36
18 6/18 7/18 8/18 9/18 9/19 38 9/38 10/38 11/38 13/38 14/38
19 6/19 7/19 8/19 9/19 9/19 40 9/40 10/40 12/40 13/40 14/40

Approximation
1.52√

n

1.73√
n

1.92√
n

2.15√
n

2.30√
n

for n > 40:

Adapted from Z.W. Birnbaum and R.A. Hall, “Small Sample Distribution for Multisample Statistics of the Smirnov
Type,” The Annals of Mathematical Statistics, 31, 1960, 710–720, with kind permission from the Institute of Mathematical
Statistics.
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Table A.16 Quantiles of the Kolmogorov-Smirnov Test Statistic Dn,m When n �= m∗

The table gives the upper 100(1−α)% quantile d̂n,m of the sampling distribution of D̂n,m such that P(D̂n,m ≤
d̂n,m,1−α) = 1 − α or P(D̂n,m ≥ d̂n,m,1−α) = α (e.g., for n = 6, m = 10, and α = 0.05, the one-tail critical
region is R = {d̂6,10|d̂6,10 ≥ d̂6,10,0.95 = 0.567}; the two-tail critical region is R = {d̂6,10|d̂6,10 ≥ d̂6,10,0.95 =
0.633}).

One-Sided Test 1 − α = 0.90 0.95 0.975 0.99 0.995

Two-Sided Test 1 − α = 0.80 0.90 0.950 0.98 0.990

n = 1 m = 9 17/18
10 9/10

n = 2 3 5/6
4 3/4
5 4/5 4/5
6 5/6 5/6
7 5/7 6/7
8 3/4 7/8 7/8
9 7/9 8/9 8/9
10 7/10 4/5 9/10

n = 3 m = 4 3/4 3/4
5 2/3 4/5 4/5
6 2/3 2/3 5/6
7 2/3 5/7 6/7 6/7
8 5/8 3/4 3/4 7/8
9 2/3 2/3 7/9 8/9 8/9
10 3/5 7/10 4/5 9/10 9/10
12 7/12 2/3 3/4 5/6 11/12

n = 4 m = 5 3/5 3/4 4/5 4/5
6 7/12 2/3 3/4 5/6 5/6
7 17/28 5/7 3/4 6/7 6/7
8 5/8 5/8 3/4 7/8 7/8
9 5/9 2/3 3/4 7/9 8/9
10 11/20 13/20 7/10 4/5 4/5
12 7/12 2/3 2/3 3/4 5/6
16 9/16 5/8 11/16 3/4 13/16

n = 5 m = 6 3/5 2/3 2/3 5/6 5/6
7 4/7 23/35 5/7 29/35 6/7
8 11/20 5/8 27/40 4/5 4/5
9 5/9 3/5 31/45 7/9 4/5
10 1/2 3/5 7/10 7/10 4/5
15 8/15 3/5 2/3 11/15 11/15
20 1/2 11/20 3/5 7/10 3/4
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Table A.16 (Contd.)

One-Sided Test 1 − α = 0.90 0.95 0.975 0.99 0.995

Two-Sided Test 1 − α = 0.80 0.90 0.950 0.98 0.990

n = 6 m = 7 23/42 4/7 29/42 5/7 5/6
8 1/2 7/12 2/3 3/4 3/4
9 1/2 5/9 2/3 13/18 7/9

10 1/2 17/30 19/30 7/10 11/15
12 1/2 7/12 7/12 2/3 3/4
18 4/9 5/9 11/18 2/3 13/18
24 11/24 1/2 7/12 5/8 2/3

n = 7 m = 8 27/56 33/56 5/8 41/56 3/4
9 31/63 5/9 40/63 5/7 47/63

10 33/70 39/70 43/70 7/10 5/7
14 3/7 1/2 4/7 9/14 5/7
28 3/7 13/28 15/28 17/28 9/14

n = 8 m = 9 4/9 13/24 5/8 2/3 3/4
10 19/40 21/40 23/40 27/40 7/10
12 11/24 1/2 7/12 5/8 2/3
16 7/16 1/2 9/16 5/8 5/8
32 13/32 7/16 1/2 9/16 19/32

n = 9 m = 10 7/15 1/2 26/45 2/3 31/45
12 4/9 1/2 5/9 11/18 2/3
15 19/45 22/45 8/15 3/5 29/45
18 7/18 4/9 1/2 5/9 11/18
36 13/36 5/12 17/36 19/36 5/9

n = 10 m = 15 2/5 7/15 1/2 17/30 19/30
20 2/5 9/20 1/2 11/20 3/5
40 7/20 2/5 9/20 1/2

n = 12 m = 15 23/60 9/20 1/2 11/20 7/12
16 3/8 7/16 23/48 13/24 7/12
18 13/36 5/12 17/36 19/36 5/9
20 11/30 5/12 7/15 31/60 17/30

n = 15 m = 20 7/20 2/5 13/30 29/60 31/60
n = 16 m = 20 27/80 31/80 17/40 19/40 41/80

Large-sample approximation 1.07

√
m + n

mn
1.22

√
m + n

mn
1.36

√
m + n

mn
1.52

√
m + n

mn
1.63

√
m + n

mn

∗Let n be the smaller sample size and let m be the larger sample size. If this table does not cover n and m, use the large
sample approximation.
Adapted from F.J. Massey, “Distribution Table for the Deviation Between Two Sample Cumulatives,” The Annals of
Mathematical Statistics, 23, 1952, 435–441. Corrections appear in Davis, L.S. (1958), Mathematical Tables and other
Aids to Computation, 12, 1952, 262–263, with kind permission from the Institute of Mathematical Statistics.
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Table A.17 Quantiles of the Shapiro-Wilk Test Statistic W

The table gives the 100α% quantile wα of the sampling distribution of W such that P(W ≤ wα) = α (e.g., for n = 30
and α = 0.01, the critical region R = {w|w ≤ w0.01 = 0.900}).

α 0.01 0.02 0.05 0.10 0.50 0.90 0.95 0.98 0.99
n

3 0.753 0.756 0.767 0.789 0.959 0.998 0.999 1.000 1.000
4 0.687 0.707 0.748 0.792 0.935 0.987 0.992 0.996 0.997
5 0.686 0.715 0.762 0.806 0.927 0.979 0.986 0.991 0.993
6 0.713 0.743 0.788 0.826 0.927 0.974 0.981 0.986 0.989
7 0.730 0.760 0.803 0.838 0.928 0.972 0.979 0.985 0.988
8 0.749 0.778 0.818 0.851 0.932 0.972 0.978 0.984 0.987
9 0.764 0.791 0.829 0.859 0.935 0.972 0.978 0.984 0.986

10 0.781 0.806 0.842 0.869 0.938 0.972 0.978 0.983 0.986
11 0.792 0.817 0.850 0.876 0.940 0.973 0.979 0.984 0.986
12 0.805 0.828 0.859 0.883 0.943 0.973 0.979 0.984 0.986
13 0.814 0.837 0.866 0.889 0.945 0.974 0.979 0.984 0.986
14 0.825 0.846 0.874 0.895 0.947 0.975 0.980 0.984 0.986
15 0.835 0.855 0.881 0.901 0.950 0.975 0.980 0.984 0.987
16 0.844 0.863 0.887 0.906 0.952 0.976 0.981 0.985 0.987
17 0.851 0.869 0.892 0.910 0.954 0.977 0.981 0.985 0.987
18 0.858 0.874 0.897 0.914 0.956 0.978 0.982 0.986 0.988
19 0.863 0.879 0.901 0.917 0.957 0.978 0.982 0.986 0.988
20 0.868 0.884 0.905 0.920 0.959 0.979 0.983 0.986 0.988
21 0.873 0.888 0.908 0.923 0.960 0.980 0.983 0.987 0.989
22 0.878 0.892 0.911 0.926 0.961 0.980 0.984 0.987 0.989
23 0.881 0.895 0.914 0.928 0.962 0.981 0.984 0.987 0.989
24 0.884 0.898 0.916 0.930 0.963 0.981 0.984 0.987 0.989
25 0.888 0.901 0.918 0.931 0.964 0.981 0.985 0.988 0.989
26 0.891 0.904 0.920 0.933 0.965 0.982 0.985 0.988 0.989
27 0.894 0.906 0.923 0.935 0.965 0.982 0.985 0.988 0.990
28 0.896 0.908 0.924 0.936 0.966 0.982 0.985 0.988 0.990
29 0.898 0.910 0.926 0.937 0.966 0.982 0.985 0.988 0.990
30 0.900 0.912 0.927 0.939 0.967 0.983 0.985 0.988 0.990
31 0.902 0.914 0.929 0.940 0.967 0.983 0.986 0.988 0.990
32 0.904 0.915 0.930 0.941 0.968 0.983 0.986 0.988 0.990
33 0.906 0.917 0.931 0.942 0.968 0.983 0.986 0.989 0.990
34 0.908 0.919 0.933 0.943 0.969 0.983 0.986 0.989 0.990
35 0.910 0.920 0.934 0.944 0.969 0.984 0.986 0.989 0.990
36 0.912 0.922 0.935 0.945 0.970 0.984 0.986 0.989 0.990
37 0.914 0.924 0.936 0.946 0.970 0.984 0.987 0.989 0.990
38 0.916 0.925 0.938 0.947 0.971 0.984 0.987 0.989 0.990
39 0.917 0.927 0.939 0.948 0.971 0.984 0.987 0.989 0.991
40 0.919 0.928 0.940 0.949 0.972 0.985 0.987 0.989 0.991
41 0.920 0.929 0.941 0.950 0.972 0.985 0.987 0.989 0.991
42 0.922 0.930 0.942 0.951 0.972 0.985 0.987 0.989 0.991
43 0.923 0.932 0.943 0.951 0.973 0.985 0.987 0.990 0.991
44 0.924 0.933 0.944 0.952 0.973 0.985 0.987 0.990 0.991
45 0.926 0.934 0.945 0.953 0.973 0.985 0.988 0.990 0.991
46 0.927 0.935 0.945 0.953 0.974 0.985 0.988 0.990 0.991
47 0.928 0.936 0.946 0.954 0.974 0.985 0.988 0.990 0.991
48 0.929 0.937 0.947 0.954 0.974 0.985 0.988 0.990 0.991
49 0.929 0.937 0.947 0.955 0.974 0.985 0.988 0.990 0.991
50 0.930 0.938 0.947 0.955 0.974 0.985 0.988 0.990 0.991

Reprinted from E.S. Pearson and H.O. Hartley (1976), Biometrika Tables for Statisticians, Vol. II. Reproduced with
the kind permission of Oxford University Press.
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Table A.18 Coefficients for the Shapiro-Wilk Test

The table gives coefficients aj , j = 1, . . . , k (≈ n/2) for the Shapiro-Wilk test statistic W .

n
2 3 4 5 6 7 8 9 10

j

1 0.7071 0.7071 0.6872 0.6646 0.6431 0.6233 0.6052 0.5888 0.5739
2 0.0000 0.1667 0.2413 0.2806 0.3031 0.3164 0.3244 0.3291
3 0.0000 0.0875 0.1401 0.1743 0.1976 0.2141
4 0.0000 0.0561 0.0947 0.1224
5 0.0000 0.0399

n
11 12 13 14 15 16 17 18 19 20

j

1 0.5601 0.5475 0.5359 0.5251 0.5150 0.5056 0.4968 0.4886 0.4808 0.4734
2 0.3315 0.3325 0.3325 0.3318 0.3306 0.3290 0.3273 0.3253 0.3232 0.3211
3 0.2260 0.2347 0.2412 0.2460 0.2495 0.2521 0.2540 0.2553 0.2561 0.2565
4 0.1429 0.1586 0.1707 0.1802 0.1878 0.1939 0.1988 0.2027 0.2059 0.2085
5 0.0695 0.0922 0.1099 0.1240 0.1353 0.1447 0.1524 0.1587 0.1641 0.1686
6 0.0000 0.0303 0.0539 0.0727 0.0880 0.1005 0.1109 0.1197 0.1271 0.1334
7 0.0000 0.0240 0.0433 0.0593 0.0725 0.0837 0.0932 0.1013
8 0.0000 0.0196 0.0359 0.0496 0.0612 0.0711
9 0.0000 0.0163 0.0303 0.0422

10 0.0000 0.0140

n
21 22 23 24 25 26 27 28 29 30

j

1 0.4643 0.4590 0.4542 0.4493 0.4450 0.4407 0.4366 0.4328 0.4291 0.4254
2 0.3185 0.3156 0.3126 0.3098 0.3069 0.3043 0.3018 0.2992 0.2968 0.2944
3 0.2578 0.2571 0.2563 0.2554 0.2543 0.2533 0.2522 0.2510 0.2499 0.2487
4 0.2119 0.2131 0.2139 0.2145 0.2148 0.2151 0.2152 0.2151 0.2150 0.2148
5 0.1736 0.1764 0.1787 0.1807 0.1822 0.1836 0.1848 0.1857 0.1864 0.1870
6 0.1399 0.1443 0.1480 0.1512 0.1539 0.1563 0.1584 0.1601 0.1616 0.1630
7 0.1092 0.1150 0.1201 0.1245 0.1283 0.1316 0.1346 0.1372 0.1395 0.1415
8 0.0804 0.0878 0.0941 0.0997 0.1046 0.1089 0.1128 0.1162 0.1192 0.1219
9 0.0530 0.0618 0.0696 0.0764 0.0823 0.0876 0.0923 0.0965 0.1002 0.1036

10 0.0260 0.0368 0.0459 0.0539 0.0610 0.0672 0.0728 0.0778 0.0822 0.0862
11 0.0000 0.0122 0.0228 0.0321 0.0403 0.0476 0.0540 0.0598 0.0650 0.0697
12 0.0000 0.0107 0.0200 0.0284 0.0358 0.0424 0.0483 0.0537
13 0.0000 0.0094 0.0178 0.0253 0.0320 0.0381
14 0.0000 0.0084 0.0159 0.0227
15 0.0000 0.0076
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Table A.18 (Contd.)

n 31 32 33 34 35 36 37 38 39 40
j

1 0.4220 0.4188 0.4156 0.4127 0.4096 0.4068 0.4040 0.4015 0.3989 0.3964
2 0.2921 0.2898 0.2876 0.2854 0.2834 0.2813 0.2794 0.2774 0.2755 0.2737
3 0.2475 0.2462 0.2451 0.2439 0.2427 0.2415 0.2403 0.2391 0.2380 0.2368
4 0.2145 0.2141 0.2137 0.2132 0.2127 0.2121 0.2116 0.2110 0.2104 0.2098
5 0.1874 0.1878 0.1880 0.1882 0.1883 0.1883 0.1883 0.1881 0.1880 0.1878
6 0.1641 0.1651 0.1660 0.1667 0.1673 0.1678 0.1683 0.1686 0.1689 0.1691
7 0.1433 0.1449 0.1463 0.1475 0.1487 0.1496 0.1505 0.1513 0.1520 0.1526
8 0.1243 0.1265 0.1284 0.1301 0.1317 0.1331 0.1344 0.1356 0.1366 0.1376
9 0.1066 0.1093 0.1118 0.1140 0.1160 0.1179 0.1196 0.1211 0.1225 0.1237

10 0.0899 0.0931 0.0961 0.0988 0.1013 0.1036 0.1056 0.1075 0.1092 0.1108
11 0.0739 0.0777 0.0812 0.0844 0.0873 0.0900 0.0924 0.0947 0.0967 0.0986
12 0.0585 0.0629 0.0669 0.0706 0.0739 0.0770 0.0798 0.0824 0.0848 0.0870
13 0.0435 0.0485 0.0530 0.0572 0.0610 0.0645 0.0677 0.0706 0.0733 0.0759
14 0.0289 0.0344 0.0395 0.0441 0.0484 0.0523 0.0559 0.0592 0.0622 0.0651
15 0.0144 0.0206 0.0262 0.0314 0.0361 0.0404 0.0444 0.0481 0.0515 0.0546
16 0.0000 0.0068 0.0131 0.0187 0.0239 0.0287 0.0331 0.0372 0.0409 0.0444
17 0.0000 0.0062 0.0119 0.0172 0.0220 0.0264 0.0305 0.0343
18 0.0000 0.0057 0.0110 0.0158 0.0203 0.0244
19 0.0000 0.0053 0.0101 0.0146
20 0.0000 0.0049

n 41 42 43 44 45 46 47 48 49 50
j

1 0.3940 0.3917 0.3894 0.3872 0.3850 0.3830 0.3808 0.3789 0.3770 0.3751
2 0.2719 0.2701 0.2684 0.2667 0.2651 0.2635 0.2620 0.2604 0.2589 0.2574
3 0.2357 0.2345 0.2334 0.2323 0.2313 0.2302 0.2291 0.2281 0.2271 0.2260
4 0.2091 0.2085 0.2078 0.2072 0.2065 0.2058 0.2052 0.2045 0.2038 0.2032
5 0.1876 0.1874 0.1871 0.1868 0.1865 0.1862 0.1859 0.1855 0.1851 0.1847
6 0.1693 0.1694 0.1695 0.1695 0.1695 0.1695 0.1695 0.1693 0.1692 0.1691
7 0.1531 0.1535 0.1539 0.1542 0.1545 0.1548 0.1550 0.1551 0.1553 0.1554
8 0.1384 0.1392 0.1398 0.1405 0.1410 0.1415 0.1420 0.1423 0.1427 0.1430
9 0.1249 0.1259 0.1269 0.1278 0.1286 0.1293 0.1300 0.1306 0.1312 0.1317

10 0.1123 0.1136 0.1149 0.1160 0.1170 0.1180 0.1189 0.1197 0.1205 0.1212
11 0.1004 0.1020 0.1035 0.1049 0.1062 0.1073 0.1085 0.1095 0.1105 0.1113
12 0.0891 0.0909 0.0927 0.0943 0.0959 0.0972 0.0986 0.0998 0.1010 0.1020
13 0.0782 0.0804 0.0824 0.0842 0.0860 0.0876 0.0892 0.0906 0.0919 0.0932
14 0.0677 0.0701 0.0724 0.0745 0.0765 0.0783 0.0801 0.0817 0.0832 0.0846
15 0.0575 0.0602 0.0628 0.0651 0.0673 0.0694 0.0713 0.0731 0.0748 0.0764
16 0.0476 0.0506 0.0534 0.0560 0.0584 0.0607 0.0628 0.0648 0.0667 0.0685
17 0.0379 0.0411 0.0442 0.0471 0.0497 0.0522 0.0546 0.0568 0.0588 0.0608
18 0.0283 0.0318 0.0352 0.0383 0.0412 0.0439 0.0465 0.0489 0.0511 0.0532
19 0.0188 0.0227 0.0263 0.0296 0.0328 0.0357 0.0385 0.0411 0.0436 0.0459
20 0.0094 0.0136 0.0175 0.0211 0.0245 0.0277 0.0307 0.0335 0.0361 0.0386
21 0.0000 0.0045 0.0087 0.0126 0.0163 0.0197 0.0229 0.0259 0.0288 0.0314
22 0.0000 0.0042 0.0081 0.0118 0.0153 0.0185 0.0215 0.0244
23 0.0000 0.0039 0.0076 0.0111 0.0143 0.0174
24 0.0000 0.0037 0.0071 0.0104
25 0.0000 0.0035

Reprinted from E.S. Pearson and H.O. Hartley (1976), Biometrika Tables for Statisticians, Vol. II. Reproduced with
the kind permission of Oxford University Press.
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Table A.19 Durbin-Watson (DW) Statistic—5% Significance Points
dL and dU (n is the sample size and k′ is the number of regressors excluding the intercept)

k′ = 1 k′ = 2 k′ = 3 k′ = 4 k′ = 5 k′ = 6 k′ = 7 k′ = 8 k′ = 9 k′ = 10

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU
6 0.610 1.400
7 0.700 1.356 0.467 1.896
8 0.763 1.332 0.559 1.777 0.368 2.287
9 0.824 1.320 0.629 1.699 0.455 2.128 0.296 2.588
10 0.879 1.320 0.697 1.641 0.525 2.016 0.376 2.414 0.243 2.822
11 0.927 1.324 0.758 1.604 0.595 1.928 0.444 2.283 0.316 2.645 0.203 3.005
12 0.971 1.331 0.812 1.579 0.658 1.864 0.512 2.177 0.379 2.506 0.268 2.832 0.171 3.149
13 1.010 1.340 0.861 1.562 0.715 1.816 0.574 2.094 0.445 2.390 0.328 2.692 0.230 2.985 0.147 3.266
14 1.045 1.350 0.905 1.551 0.767 1.779 0.632 2.030 0.505 2.296 0.389 2.572 0.286 2.848 0.200 3.111 0.127 3.360
15 1.077 1.361 0.946 1.543 0.814 1.750 0.685 1.977 0.562 2.220 0.447 2.472 0.343 2.727 0.251 2.979 0.175 3.216 0.111 3.438
16 1.106 1.371 0.982 1.539 0.857 1.728 0.734 1.935 0.615 2.157 0.502 2.388 0.398 2.624 0.304 2.860 0.222 3.090 0.155 3.304
17 1.133 1.381 1.015 1.536 0.897 1.710 0.779 1.900 0.664 2.104 0.554 2.318 0.451 2.537 0.356 2.757 0.272 2.975 0.198 3.184
18 1.158 1.391 1.046 1.535 0.933 1.696 0.820 1.872 0.710 2.060 0.603 2.257 0.502 2.461 0.407 2.667 0.321 2.873 0.244 3.073
19 1.180 1.401 1.074 1.336 0.967 1.685 0.859 1.848 0.752 2.023 0.649 2.206 0.549 2.396 0.456 2.589 0.369 2.783 0.290 2.974
20 1.201 1.411 1.100 1.537 0.998 1.676 0.894 1.828 0.792 1.991 0.692 2.162 0.595 2.339 0.502 2.521 0.416 2.704 0.336 2.885
21 1.221 1.420 1.125 1.538 1.026 1.669 0.927 1.812 0.829 1.964 0.732 2.124 0.637 2.290 0.547 2.460 0.461 2.633 0.380 2.806
22 1.239 1.429 1.147 1.541 1.053 1.664 0.958 1.797 0.863 1.940 0.769 2.090 0.677 2.246 0.588 2.407 0.504 2.511 0.424 2.734
23 1.257 1.437 1.168 1.543 1.078 1.660 0.986 1.785 0.895 1.920 0.804 2.061 0.715 2.208 0.628 2.360 0.545 2.514 0.465 2.670
24 1.273 1.446 1.188 1.546 1.101 1.656 1.013 1.775 0.925 1.902 0.837 2.035 0.751 2.174 0.666 2.318 0.584 2.464 0.506 2.613
25 1.288 1.454 1.206 1.550 1.123 1.654 1.038 1.767 0.953 1.886 0.868 2.012 0.784 2.144 0.702 2.280 0.621 2.419 0.544 2.560
26 1.302 1.461 1.224 1.553 1.143 1.652 1.062 1.759 0.979 1.873 0.897 1.992 0.816 2.117 0.735 2.246 0.657 2.379 0.581 2.513
27 1.316 1.469 1.240 1.556 1.162 1.651 1.084 1.753 1.004 1.861 0.925 1.974 0.845 2.093 0.767 2.216 0.691 2.342 0.616 2.470
28 1.328 1.476 1.255 1.560 1.181 1.650 1.104 1.747 1.028 1.850 0.951 1.958 0.874 2.071 0.798 2.188 0.723 2.309 0.650 2.431
29 1.341 1.483 1.270 1.563 1.198 1.650 1.124 1.743 1.050 1.841 0.975 1.944 0.900 2.052 0.826 2.164 0.753 2.278 0.682 2.396
30 1.352 1.489 1.284 1.567 1.214 1.650 1.143 1.739 1.071 1.833 0.998 1.931 0.926 2.034 0.854 2.141 0.782 2.251 0.712 2.363
31 1.363 1.496 1.297 1.570 1.229 1.650 1.160 1.735 1.090 1.825 1.020 1.920 0.950 2.018 0.879 2.120 0.810 2.226 0.741 2.333
32 1.373 1.502 1.309 1.574 1.244 1.650 1.177 1.732 1.109 1.819 1.041 1.909 0.972 2.004 0.904 2.102 0.836 2.203 0.769 2.306
33 1.383 1.508 1.321 1.577 1.258 1.651 1.193 1.730 1.127 1.813 1.061 1.900 0.994 1.991 0.927 2.085 0.861 2.181 0.795 2.281
34 1.393 1.514 1.333 1.580 1.271 1.652 1.208 1.728 1.144 1.808 1.080 1.891 1.015 1.979 0.950 2.069 0.885 2.162 0.821 2.257
35 1.402 1.519 1.343 1.584 1.283 1.653 1.222 1.726 1.160 1.803 1.097 1.884 1.034 1.967 0.971 2.054 0.908 2.144 0.845 2.236
36 1.411 1.525 1.354 1.587 1.295 1.654 1.236 1.724 1.175 1.799 1.114 1.877 1.053 1.957 0.991 2.041 0.930 2.127 0.868 2.216
37 1.419 1.530 1.364 1.590 1.307 1.655 1.249 1.723 1.190 1.795 1.131 1.870 1.071 1.948 1.011 2.029 0.951 2.112 0.891 2.198
38 1.427 1.535 1.373 1.594 1.318 1.656 1.261 1.722 1.204 1.792 1.146 1.864 1.088 1.939 1.029 2.017 0.970 2.098 0.912 2.180
39 1.435 1.540 1.382 1.597 1.328 1.658 1.273 1.722 1.218 1.789 1.161 1.859 1.104 1.932 1.047 2.007 0.990 2.085 0.932 2.164
40 1.442 1.544 1.391 1.600 1.338 1.659 1.285 1.721 1.230 1.786 1.175 1.854 1.120 1.924 1.064 1.997 1.008 2.072 0.952 2.149
45 1.475 1.566 1.430 1.615 1.383 1.666 1.336 1.720 1.287 1.776 1.238 1.835 1.189 1.895 1.139 1.958 1.089 2.022 1.038 2.088
50 1.503 1.585 1.462 1.628 1.421 1.674 1.378 1.721 1.335 1.771 1.291 1.822 1.246 1.875 1.201 1.930 1.156 1.986 1.110 2.044
55 1.528 1.601 1.490 1.641 1.452 1.681 1.414 1.724 1.374 1.768 1.334 1.814 1.294 1.861 1.253 1.909 1.212 1.959 1.170 2.010
60 1.549 1.616 1.514 1.652 1.480 1.689 1.444 1.727 1.408 1.767 1.372 1.808 1.335 1.850 1.298 1.894 1.260 1.939 1.222 1.984
65 1.567 1.629 1.536 1.662 1.503 1.696 1.471 1.731 1.438 1.767 1.404 1.805 1.370 1.843 1.336 1.882 1.301 1.923 1.266 1.964
70 1.583 1.641 1.554 1.672 1.525 1.703 1.494 1.735 1.464 1.768 1.433 1.802 1.401 1.837 1.369 1.873 1.337 1.910 1.305 1.948
75 1.598 1.652 1.571 1.680 1.543 1.709 1.515 1.739 1.487 1.770 1.458 1.801 1.428 1.834 1.399 1.867 1.369 1.901 1.339 1.935
80 1.611 1.662 1.586 1.688 1.560 1.715 1.534 1.743 1.507 1.772 1.480 1.801 1.453 1.831 1.425 1.861 1.397 1.893 1.369 1.925
85 1.624 1.671 1.600 1.696 1.575 1.721 1.550 1.747 1.525 1.774 1.500 1.801 1.474 1.829 1.448 1.857 1.422 1.886 1.396 1.916
90 1.635 1.679 1.612 1.703 1.589 1.726 1.566 1.751 1.542 1.776 1.518 1.801 1.494 1.827 1.469 1.854 1.445 1.881 1.420 1.909
95 1.645 1.687 1.623 1.709 1.602 1.732 1.579 1.755 1.557 1.778 1.535 1.802 1.512 1.827 1.489 1.852 1.465 1.877 1.442 1.903

100 1.654 1.694 1.634 1.715 1.613 1.736 1.592 1.758 1.571 1.780 1.550 1.803 1.528 1.826 1.506 1.850 1.484 1.874 1.462 1.898
150 1.720 1.746 1.706 1.760 1.693 1.774 1.679 1.788 1.665 1.802 1.651 1.817 1.637 1.832 1.622 1.847 1.608 1.862 1.594 1.877
200 1.758 1.778 1.748 1.789 1.738 1.799 1.728 1.810 1.718 1.820 1.707 1.831 1.697 1.841 1.686 1.852 1.675 1.863 1.665 1.874
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Table A.19 (Contd.)

k′ = 11 k′ = 12 k′ = 13 k′ = 14 k′ = 15 k′ = 16 k′ = 17 k′ = 18 k′ = 19 k′ = 20

n dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU dL dU
16 0.098 3.503
17 0.138 3.378 0.087 3.557
18 0.177 3.265 0.123 3.441 0.078 3.603
19 0.220 3.159 0.160 3.335 0.111 3.496 0.070 3.642
20 0.263 3.063 0.200 3.234 0.145 3.395 0.100 3.542 0.063 3.616
21 0.307 2.976 0.240 3.141 0.182 3.300 0.132 3.448 0.091 3.583 0.058 3.105
22 0.349 2.897 0.281 3.057 0.220 3.211 0.166 3.358 0.120 3.495 0.083 3.619 0.052 3.731
23 0.391 2.826 0.322 2.979 0.259 3.128 0.202 3.272 0.153 3.409 0.110 3.535 0.076 3.650 0.048 3.753
24 0.431 2.761 0.362 2.908 0.297 3.053 0.239 3.193 0.186 3.327 0.141 3.454 0.101 3.572 0.070 3.678 0.044 3.773
25 0.470 2.702 0.400 2.844 0.335 2.983 0.275 3.119 0.221 3.251 0.172 3.376 0.130 3.494 0.094 3.604 0.065 3.702 0.041 3.790
26 0.508 2.649 0.438 2.784 0.373 2.919 0.312 3.051 0.256 3.179 0.205 3.303 0.160 3.420 0.120 3.531 0.087 3.632 0.060 3.724
27 0.544 2.600 0.475 2.730 0.409 2.859 0.348 2.987 0.291 3.112 0.238 3.233 0.191 3.349 0.149 3.460 0.112 3.563 0.081 3.658
28 0.578 2.555 0.510 2.680 0.445 2.805 0.383 2.928 0.325 3.050 0.271 3.168 0.222 3.283 0.178 3.392 0.138 3.495 0.104 3.592
29 0.612 2.515 0.544 2.634 0.479 2.755 0.418 2.874 0.359 2.992 0.305 3.107 0.254 3.219 0.208 3.327 0.166 3.431 0.129 3.528
30 0.643 2.477 0.577 2.592 0.512 2.708 0.451 2.823 0.392 2.937 0.337 3.050 0.286 3.160 0.238 3.266 0.195 3.368 0.156 3.465
31 0.614 2.443 0.608 2.553 0.545 2.665 0.484 2.776 0.425 2.887 0.370 2.996 0.317 3.103 0.269 3.208 0.224 3.309 0.183 3.406
32 0.703 2.411 0.638 2.517 0.576 2.625 0.515 2.733 0.457 2.840 0.401 2.946 0.349 3.050 0.299 3.153 0.253 3.252 0.211 3.348
33 0.731 2.382 0.668 2.484 0.606 2.588 0.546 2.692 0.488 2.796 0.432 2.899 0.379 3.000 0.329 3.100 0.283 3.198 0.239 3.293
34 0.758 2.355 0.695 2.454 0.634 2.554 0.575 2.654 0.518 2.754 0.462 2.854 0.409 2.954 0.359 3.051 0.312 3.147 0.267 3.240
35 0.783 2.330 0.722 2.425 0.662 2.521 0.604 2.619 0.547 2.716 0.492 2.813 0.439 2.910 0.388 3.005 0.340 3.099 0.295 3.190
36 0.808 2.306 0.748 2.398 0.689 2.492 0.631 2.586 0.575 2.680 0.520 2.774 0.467 2.868 0.417 2.961 0.369 3.053 0.323 3.142
37 0.831 2.285 0.772 2.374 0.714 2.464 0.657 2.555 0.602 2.646 0.548 2.738 0.495 2.829 0.445 2.920 0.397 3.009 0.351 3.091
38 0.854 2.265 0.796 2.351 0.739 2.438 0.683 2.526 0.628 2.614 0.575 2.703 0.522 2.792 0.472 2.880 0.424 2.968 0.318 3.054
39 0.815 2.246 0.819 2.329 0.763 2.413 0.707 2.499 0.653 2.585 0.600 2.671 0.549 2.757 0.499 2.843 0.451 2.929 0.404 3.013
40 0.896 2.228 0.840 2.309 0.785 2.391 0.731 2.473 0.678 2.557 0.626 2.641 0.575 2.724 0.525 2.808 0.477 2.892 0.430 2.974
45 0.988 2.156 0.938 2.225 0.887 2.296 0.838 2.367 0.788 2.439 0.740 2.512 0.692 2.586 0.644 2.659 0.598 2.733 0.553 2.801
50 1.064 2.103 1.019 2.163 0.973 2.225 0.927 2.287 0.882 2.350 0.836 2.414 0.792 2.479 0.747 2.544 0.703 2.610 0.660 2.675
55 1.129 2.062 1.087 2.116 1.045 2.170 1.003 2.225 0.961 2.281 0.919 2.338 0.877 2.396 0.836 2.454 0.795 2.512 0.754 2.571
60 1.184 2.031 1.145 2.079 1.106 2.127 1.068 2.177 1.029 2.227 0.990 2.278 0.951 2.330 0.913 2.382 0.874 2.434 0.836 2.487
65 1.231 2.006 1.195 2.049 1.160 2.093 1.124 2.138 1.088 2.183 1.052 2.229 1.016 2.276 0.980 2.323 0.944 2.371 0.908 2.419
70 1.272 1.986 1.239 2.026 1.206 2.066 1.172 2.106 1.139 2.148 1.105 2.189 1.072 2.232 1.038 2.275 1.005 2.318 0.971 2.362
75 1.308 1.970 1.277 2.006 1.247 2.043 1.215 2.080 1.184 2.118 1.153 2.156 1.121 2.195 1.090 2.235 1.058 2.275 1.021 2.315
80 1.340 1.957 1.311 1.991 1.283 2.024 1.253 2.059 1.224 2.093 1.195 2.129 1.165 2.165 1.136 2.201 1.106 2.238 1.076 2.275
85 1.369 1.946 1.342 1.977 1.315 2.009 1.287 2.040 1.260 2.073 1.232 2.105 1.205 2.139 1.177 2.172 1.149 2.206 1.121 2.241
90 1.395 1.937 1.369 1.966 1.344 1.995 1.318 2.025 1.292 2.055 1.266 2.085 1.240 2.116 1.213 2.148 1.187 2.179 1.160 2.211
95 1.418 1.929 1.394 1.956 1.370 1.984 1.345 2.012 1.321 2.040 1.296 2.068 1.271 2.097 1.247 2.126 1.222 2.156 1.197 2.186

100 1.439 1.923 1.416 1.948 1.393 1.974 1.371 2.000 1.347 2.026 1.324 2.053 1.301 2.080 1.277 2.108 1.253 2.135 1.229 2.164
150 1.579 1.892 1.564 1.908 1.550 1.924 1.535 1.940 1.519 1.956 1.504 1.972 1.489 1.989 1.474 2.006 1.458 2.023 1.443 2.040
200 1.654 1.885 1.643 1.896 1.632 1.908 1.621 1.919 1.610 1.931 1.599 1.943 1.588 1.955 1.576 1.967 1.565 1.979 1.554 1.991

From N.E. Savin and K.J. White, “The Durbin-Watson Test for Serial Correlation with Extreme Sample Sizes or
Many Regressors,” Econometricia, 45, 1977, 1989–1996. Corrections: R.W. Farebrother, Econometricia, 48, 1980, 1554.
Reprinted by permission of the Econometric Society.
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Table A.20 D Distribution of the von Neumann Ratio of the Mean Square Successive Difference to the
Variance, α/2 = 0.05 (or 0.01)

Table gives both the lower- and upper-tail critical values dl and du, respectively, such that P(D ≤ dl) +
P(D ≥ du) = α/2 + α/2 = 0.10 (or 0.02)).

Values of dl Values of du Values of dl Values of du

n P = 0.01 P = 0.05 P = 0.95 P = 0.99 n P = 0.01 P = 0.05 P = 0.95 P = 0.99
4 0.8341 1.0406 4.2927 4.4992 31 1.2469 1.4746 2.6587 2.8864
5 0.6724 1.0255 3.9745 4.3276 32 1.2570 1.4817 2.6473 2.8720
6 0.6738 1.0682 3.7318 4.1262 33 1.2667 1.4885 2.6365 2.8583
7 0.7163 1.0919 3.5748 3.9504 34 1.2761 1.4951 2.6262 2.8451
8 0.7575 1.1228 3.4486 3.8139 35 1.2852 1.5014 2.6163 2.8324
9 0.7974 1.1524 3.3476 3.7025

10 0.8353 1.1803 3.2642 3.6091 36 1.2940 1.5075 2.6068 2.8202
37 1.3025 1.5135 2.5977 2.8085

11 0.8706 1.2062 3.1938 3.5294 38 1.3108 1.5193 2.5889 2.7973
12 0.9033 1.2301 3.1335 3.4603 39 1.3188 1.5249 2.5804 2.7865
13 0.9336 1.2521 3.0812 3.3996 40 1.3266 1.5304 2.5722 2.7760
14 0.9618 1.2725 3.0352 3.3458
15 0.9880 1.2914 2.9943 3.2977 41 1.3342 1.5357 2.5643 2.7658

42 1.3415 1.5408 2.5567 2.7560
16 1.0124 1.3090 2.9577 3.2543 43 1.3486 1.5458 2.5494 2.7466
17 1.0352 1.3253 2.9247 3.2148 44 1.3554 1.5506 2.5424 2.7376
18 1.0566 1.3405 2.8948 3.1787 45 1.3620 1.5552 2.5357 2.7289
19 1.0766 1.3547 2.8675 3.1456
20 1.0954 1.3680 2.8425 3.1151 46 1.3684 1.5596 2.5293 2.7205

47 1.3745 1.5638 2.5232 2.7125
21 1.1131 1.3805 2.8195 3.0869 48 1.3802 1.5678 2.5173 2.7049
22 1.1298 1.3923 2.7982 3.0607 49 1.3856 1.5716 2.5117 2.6977
23 1.1456 1.4035 2.7784 3.0362 50 1.3907 1.5752 2.5064 2.6908
24 1.1606 1.4141 2.7599 3.0133
25 1.1748 1.4241 2.7426 2.9919 51 1.3957 1.5787 2.5013 2.6842

52 1.4007 1.5822 2.4963 2.6777
26 1.1883 1.4336 2.7264 2.9718 53 1.4057 1.5856 2.4914 2.6712
27 1.2012 1.4426 2.7112 2.9528 54 1.4107 1.5890 2.4866 2.6648
28 1.2135 1.4512 2.6969 2.9348 55 1.4156 1.5923 2.4819 2.6585
29 1.2252 1.4594 2.6834 2.9177
30 1.2363 1.4672 2.6707 2.9016 56 1.4203 1.5955 2.4773 2.6524

57 1.4249 1.5987 2.4728 2.6465
58 1.4294 1.6019 2.4684 2.6407
59 1.4339 1.6051 2.4640 2.6350
60 1.4384 1.6082 2.4596 2.6294

Reproduced from B.I. Hart, “Significance Levels for the Ratio of the Mean Square Successive Difference to the
Variance,” Annals of Mathematical Statistics, 13, no. 4, 1942, 445–447, with kind permission from the Institute of
Mathematical Statistics.



Solutions to Selected Exercises

2-2 A: n = 10, �X = 8.7, median = 9, two modes (7 and 10), S = 3.59.
B: n = 9, �X = 5.44 , median = 5, mode = 10, S = 4.36.

2-3 A: VA = (
S/�X)× 100 = 41.26%.

B: VB = (
S/�X)× 100 = 80.15%. B has more variability.

2-4 1 − 1
k2 = 0.84. At least 84% of the data lies within 2.5 standard deviations

of the mean. �X ± 2.5S becomes 8.7 ± 2.5(3.59) or (−0.275, 17.675).

3-1 (a) 0.034 (f) 0.170
(b) 0.593 (g) 0.343
(c) 0 (h) No.
(d) 0.146
(e) 0.671

3-3 (a) 1; (b) 0

3-5 (a) 0.87 (d) 0.91
(b) 0.07 (e) 0.435
(c) 0.125

3-9 0.03

3-11 0.0909

3-15 (a) Yes; No (c)
1
8

(b)
1
2

(d)
3
4

3-21 (a)
1
6

; (b)
1
4

3-23 wc · w + mc(1 − w)

767



768 Solutions to Selected Exercises

3-31 P(R) = P(Q) = P(T) = 1
2

and

P(R ∩ Q) = 1
4

= P(R) · P(Q)

P(R ∩ T) = 1
4

= P(R) · P(T)

P(Q ∩ T) = 1
4

= P(Q) · P(T)

P(R ∩ Q ∩ T) = 1
4

�= P(R) · P(Q) · P(T) = 1
8

3-34 0.016

3-35 (a) No (d) Yes

(b) Yes (e) No

(c) Yes

3-36 (a) 20/100 (e) 10/40

(b) 60/100 HSG and Gender are not

(c) 70/100 independent. For instance,

(d) 40/70 P(M ∩ N) = 20
100

�= P(M) · P(N) = 18
100

3-37 0.056

3-38 0.008

3-39 (a) 2/15; (b) 6/15

3-47 0.4463

3-48 0.0884

3-49 0.75

4-1 (a) k = 1
3

.

(b) F(t) =
{

0, t < 0;
1 − e− t

3 , t ≥ 0.

(c) 1 − e−2; (d) e− 1
3 − e− 4

3 .

4-4 (a) F
(

1
4

)
= 7

16
; (b) 1 − P(X ≤ 1

4
) = 1 − F

(
1
4

)
= 9

16
;

(c) F
(

3
4

)
− F

(
1
3

)
= 5

16
− 5

9
; (d) F ′(t) = 2 − 2t = f (t) or

f (x) =
{

2 − 2x, 0 ≤ x ≤ 1;
0 elsewhere.
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4-5 F(X) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, X < 0
0.215, 0 ≤ X < 1
0.648, 1 ≤ X < 2
0.936, 2 ≤ X < 3
1, X ≥ 3.

4-6 F(X) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0, X < −1
0.5787, −1 ≤ X < 1
0.9259, 1 ≤ X < 2
0.9954, 2 ≤ X < 3
1, X ≥ 3.

(a) 0.4167; (b) 0.9259; (c) 0.4167; (d) 0.

4-7 (a)
1
2

; (b)
1
3

; (c)
1
6

.

4-9 Yes (check properties 4.10a,b,c,d).

4-10 Yes (check properties 4.4a,b,g,h).

4-13

X 0 1 4

f(X) 1/2 1/4 1/8

4-16 f is unbounded. Yes (since f (x) ≥ 0 for all real x; f has at most a finite

number of discontinuities; and
+∞∫
−∞

f (x)dx = 1).

4-17 f is discontinuous. At x = 0, 1, 4, 6. Yes (see the requisite properties listed
in Exercise 4-16).

4-18 Yes. See Example 4.2.1.

4-22 0.4375.

4-24 1 − e−θ1/2
.

4-29 No. E(X) =
+∞∫

1
dx/x = lima→+∞(ln a − ln 1) does not exist.

4-33 P(A) = 0.2591.

4-34 24.

4-35 E(X) = 7.5; E(X2) = 58.3334; V(X) = 2.0834.
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4-41 0.8236.

4-43 (a) F(γ0.25) = γ 0.5
0.25 = 0.25 so that γ0.25 = 0.0625.

(b) F(γ0.50) = γ 0.5
0.50 = 0.50 so that γ0.50 = 0.25.

(c) F(γ0.75) = γ 0.5
0.75 = 0.75 so that γ0.75 = 0.5625.

Q.D. = (γ0.75 − γ0.25)/2 = 0.25.

4-44 No. E(X) = 0.33 �= γ0.50 = 0.25.

4-45 µ′
r = 0r(0.3) + 1r(0.7) = 0.7, r = 1, 2, . . ..

4-46 (a) 277.666; (b) −10.120; (c) −0.651; (d) 2.607; (e) 5; (f) 7.

4-51 µ′
r =

25∫

20

1
5

xrdx = 25r+1 − 20r+1

5(r + 1)
, r = 1, 2, . . ..

Then: µ′
1 = µ = 22.50; µ′

2 = 508.3333; µ′
3 = 11,531.25; µ′

4 = 262,625;

µ2 = µ′
2 − µ2 = 2.08; µ3 = µ′

3 − 3µµ′
2 + 2µ3 = 0;

µ4 = µ′
4 − 4µµ′

3 + 6µ2µ′
2 − 3µ4 = 7.8125; α3 = 0; and α4 = 1.8058.

4-61

X 0 1 2

f(X) 1/4 1/2 1/4

mX (t) = 1
4

+ 1
2

et + 1
4

e2t ; µ = 1; σ
√

1/2.

4-62 φX (t) = 1
4

+ 1
2

t + 1
4

t2.

φX (0) = 1
4

= f (0); φ
(1)
X (0) = 1

2
= f (1); φ

(2)
X (0) = 1

2
= 2f (2) so that

f (2) = 1
4

.

φ
(1)
X (1) = 1 = µ; φ

(2)
X (1) = 1

2
= E(X2) − µ.

4-63 mX (t) = 10
10 − t

, t < 10; mX−µ(t) = 10e−µt

10 − t
, t < 10.

4-65 We know that mX (t) = E(etx) = ∑n
i=1 etXi f (Xi) with m(1)

X (0) = E(X); and
φX (t) = E(tX ) = ∑n

i=0 tif (i) with φ
(1)
X (1) = E(X). But φX (et) = mX (t)

so that φX (et) = ∑n
i=0 etif (i) = 1

8
+ 3

8
et + 3

8
e2t + 1

8
e3t .

The expectation must exist near t = 0. At t = 0 φ
(1)
X (et) = E(X).

4-67 x = w(y) = 1
3

y and dw(y)/dy = 1
3

�= 0. Then h(y) = 1
3

e− 1
3 y, y ≥ 0.
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5-10 E(Z) = 1.65.

5-11 E(X |Z = 7) = 21/6.

5-16 P(0 ≤ X ≤ 100, 0 ≤ Y ≤ 100) = (1 − e−100θ )2.

5-18 λ = 1/2. P(0 < X < 1/2, 1/2 < Y < 3/4) = 1/16.

5-19 P(A) = 1/4.

5-21 F(t) = 1 − e−t/10 − te−t/10; h(z) = 1
10

(z − 9)e−z/10, z > 0.

5-23 k = [2 ln(3)]−1.

5-25 P(1/3 < X ≤ 1, Y ≤ 2/3) = 32/81.

5-27 It is the marginal probability density function of X.

5-29 ∂2F /∂s∂t = 4e−2(t+s).

5-33 h(z) = ze−z.

5-34 f (x, y) =
{

(β − α)−2, α ≤ x ≤ β and α ≤ y ≤ β;
0 elsewhere.

5-35 P(X + Y > 10) = 10e−10 + e−10.

5-36 (a) k=1; (b) F(t, s) = ts(t + s)/2; (c) F
(

1
2

,
1
2

)
= 1

8
and

P
(

0 ≤ X ≤ 1
2

, 0 ≤ Y ≤ 1
2

)
= 1

8
.

5-41 (a)
1
3

; (b)
2
3

; (c)
1

16
; and (d)

1
18

.

6-5 P(X = 3) = 0.1536; P(X ≤ 2) = 0.8208.

6-7 (a) 0.7023; (b) 0.0014.

6-9 0.0008.

6-12 P(X > 10) = 0.4119.

6-14 P(X ≥ 7) = 0.1719.

6-24 0.0147.

6-26 0.0034.

6-28 P(X < 5) = 0.5904; E(X) = 5.

6-30 P(X < 10) = 0.009; E(X) = 1000.

6-36 0.0583; 0.1654.

6-38 0.0820; 0.0915.
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6-42 0.048; 0.997.

6-44 0.0067; P(4 < X ≤ 10) = 0.546.

6-46 P(X ≥ 5) = 0.042; P(X = 0) = 0.223.

6-53 P(X ≥ 2) = 0.9241.

6-54 0.0523.

6-55 E(X) = 1.80; V(X) = 0.5603.

7-6 (a) 0.8413; (b) 0.3085; (c) 0.3015; and (d) 55.25

7-8 0.9544. Yes.

7-9 66.45.

7-12 7.792.

7-13 $3,013.

7-19 All true.

7-31 F(1000; 0.0005) = 1 − e−0.0005(1000) = 1 − 0.951 = 0.049.

8-13 (a) P(ZP̂ ≤ −1.22) = 1 − P(ZP̂ ≤ +1.22) = 0.1112;

(b) P(ZP̂ ≥ 2.04) = 1 − P(ZP̂ ≤ 2.04) = 0.0207.

8-20 All true.

8-26 P(P̂ ≤ 0.01) = P

(
P̂ − p

σP̂

≤ 0.01 − 0.03
0.008

)
= P

(
ZP̂ ≤ −2.50

) = 0.0062.

8-27 P(�X > 4.5) = P

(�X − µ

σ /
√

n
>

4.5 − 4
1.5/5

)
= P

(�Z > 1.66
) = 1 − P(�Z ≤ 1.66)

= 1 − 0.9515 = 0.0485.

8-28 P(|�X − µ| ≤ 500) = P(−500 ≤ �X − µ ≤ 500) =

P

(
−500

3500/
√

250
≤

�X − µ

σ /
√

n
≤ 500

3500/
√

250

)
= P

(−2.25 ≤ �Z ≤ 2.25
) =

F(2.25; 0, 1) − F(−2.25; 0, 1) = 2F(2.25; 0, 1) − 1 = 0.9756.

8-29 P(P̂ > 0.50) = P

(
P̂ − p

σP̂

>
0.50 − 0.55

0.035

)
= P(ZP̂ > −1.42) =

1 − P(ZP̂ ≤ −1.42) = 1 − 0.7782 = 0.9222.
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8-31 m′
1 = 1

n

n∑
i=1

xi = x̄n = 20/6 = 3.33;

m′
2 = 1

n

n∑
i=1

x2
i = 104/6 = 17.33;

S2 =
(

n
n − 1

) [
m′

2 − (m′
1)2
] = (6/5) [17.33 − (3.33)2] = 7.4893.

m3 = 1
n

n∑
i=1

(xi − x̄n)
3 = 78.8181/6 = 13.1364.

m4 = 1
n

n∑
i=1

(xi − x̄n)
4 = 545.4930/6 = 90.9155.

9-1 E(X) = 8; V(X) = 16; α3 = 4/
√

16 = 1; and α4 = 3
(

1 + 1
2

)
= 4.5.

9-3 χ2
0.90,60 ≈ 1

2

(
z0.90 + √

119
)2 = 1

2
(1.28 + 10.91)2 = 74.298;

χ2
0.95,60 ≈ 1

2

(
z0.95 + √

119
)2 = 1

2
(1.645 + 10.91)

2 = 78.814.

9-4 P
(
S2 < 10

) = P
(

nS2

σ 2
<

40 (10)

9

)
= P (Y < 44.44) = 0.95

since 44.44 ≈ χ2
0.95,40 = χ2

1−α,v.

9-5 P(S2 < 18) = P
(

(n − 1)S2

σ 2
<

24(18)
16

)
= P(Y ≤ 27) ≈ 0.70;

P
(
12 < S2 < 20

) = P
(

24(12)
16

<
(n − 1) S2

σ 2
<

24(20)
16

)

= P(18 < Y < 30) = P(Y < 30) − P(Y < 18) ≈ 0.80 − 0.20

= 0.60.

9-8 Set α = n/2, θ = 2.

9-16 (a) t0.05,10 = 1.812; (b) t0.025,10 = 2.228. V(T) = 5/4; α4 = 4.

P(T ≥ 1.729) = 0.05. P(−1.761 ≤ T ≤ 1.761) = 0.90.

9-17 P(�X ≤ 13) = P(T ≤ −1.581). For 9 degrees of freedom, the probability
lies between 0.05 and 0.10.

9-18 P(�X ≥ 19) = P(T ≥ 2). For 15 degrees of freedom, the probability lies
between 0.025 and 0.05.

9-19 P
(�X ≤ 290

) = P(T ≤ −2.37). For 9 degrees of freedom, the probability
is between 0.01 and 0.025.

9-21 E (F) = 1.33; V(F) = 0.22; α3 = 6; α4 cannot be determined if v2 does
not exceed 8; mode = 0.53.
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9-22 f0.975,4,8 = 5.05; f0.90,4,8 = 2.81.

9-23 f ′
0.99,5,4 = 15.52. Then f0.01,4,5 = 1/15.52 = 0.064.

f ′
0.95,7,9 = 3.29. Then f0.05,9,7 = 1/3.29 = 0.304.

9-24 (a) f0.95,10,7 = 3.64; (b) 0.01.

10-4 No. E(T) = σ 2
(

n−1
n2

)
.

10-10 (a) E(T1) = µ (T1 is unbiased); MSE(T1, µ) = V(T1) = 3
8
σ 2.

(b) E(T2) = 4
3
µ (T2 is biased); MSE(T2, µ) = V(T2) + B(T2, µ)2 =

6
9
σ 2 + 1

9
µ2.

10-12 The maximum likelihood estimate of θ is θ̂ = −n/ln(
n
�
i=1

xi). The maximum

likelihood estimator T̂ = −n/ln(
n
�
i=1

Xi) is consistent.

10-44 θ̂ = −(n/
∑n

i=1 log xi) − 1.

10-47 T̂ = �X .

10-49 T̂1 = ∑n
i=1 Xi/n; T̂2 = ∑n

i=1 (Xi − T̂1)2/n. From Theorem 10.4, S1 =∑n
i=1 Xi and S2 = ∑n

i=1 X2
i are jointly sufficient for θ1, θ2 respectively.

10-55 T̂ = 1/�X .

10-62 To estimate λ, set M
′
1 = µ

′
1 = λ = E(X). Thus the method-of-moments

estimator for λ is M
′
1 = �X .

10-63 To estimate θ , set M
′
1 = µ

′
1 = θ = E(X). Then the method-of-moments

estimator of θ is 1/M
′
1 = 1/�X .

11-1 x̄ ± zα/2(s/
√

n) becomes 4.6 ± 1.96(2.06/
√

65) or (l1, l2) = (4.099, 5.101).
Degree of precision is ±0.5008.

11-3 x̄ ± tα/2,n−1(s/
√

n) yields for t0.025,11 = 2.201, 81.917 ± 2.201(13.021/
√

12) or
(l1, l2) = (73.644, 90.190)

11-7 The error bound is ±zα/2(σ /
√

n), Hence set k = zα/2(σ /
√

n) so as to obtain
n = (zα/2σ /k)

2.

11-9 p̂ + zα/2
√

p̂(1 − p̂)/n becomes 0.15 ± 2.58(0.0357) or (l1, l2) = (0.0579,
0.2421).

11-11 p̂ ± zα/2
√

p̂(1 − p̂)/n yields 0.5714 ± 1.96(0.0265) or (l1, l2) = (0.0596,
0.6232).

11-13 n = (1.96)2(0.45)(0.55)/(0.03)2 = 1057. If p is unknown, use p = 0.5.
Then n = (1.96)2(0.25)/(0.03)2 = 1068.
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11-15 m = 1.96(0.25)/(0.05)2 = 196 so that n = 182.

11-24 d̄ = −11.4, sD = 4.28, t0.025,4 = 2.776. Then from (11.48), (l1, l2) =
(−16.714, −6.087).

11-30 p̂x = 0.5286, p̂y = 0.7294, z0.025 = 1.96. Then from (11.52), (l1, l2) =
(−0.3509, −0.0507).

11-32 p̂x = 0.50, p̂y = 0.42, Z0.025 = 1.96. Using (11.52) renders (l1, l2) =
(−0.0213, 0.1813).

11-34 d̄ = −3.79, sD = 5.262, t0.05,9 = 1.833. Then from (11.48), (l1, l2) =
(−6.84, 0.74).

11-42 (l1, l2) =
(

1
30χ2

0.975,20, 1
30χ2

0.025,22

)
= (9.59/30, 36.78/30) = (0.320, 1.226).

12-1 H0: µ = µ0 = 78, H1: µ �= 78. |z̄| = 2.7386 > 1.96 = z0.025 . Reject H0.
p-value = 0.0064.

12-3 H0: µ = µ0 = 0.9, H1: µ �= 0.9. |t| = 6.5034 > 2.201 = t0.025,11. Reject H0.

12-5 H0: µ = µ0 = 12.97, H1: µ �= 12.97. |t| = 9.2105 > 2.797 = t0.005,24.
Reject H0.

12-7 H0: p = p0 = 0.5, H1: p �= 0.5.
∣∣∣zo

p̂

∣∣∣ = 1.4142 < 1.96 = z0.025. Do not

reject H0. We sample from a binomial population; n is large; and the
standardized observed relative frequency of a success is approximately
N(0, 1).

12-18 H0: σ 2 = σ 2
0 = 230, H1: σ 2 > 230. (n − 1) s2/σ 2

0 = 17.93 < χ2
α,n−1 =

χ2
0.05,15 = 24.996. Do not reject H0.

12-21 H0: σ 2
X = σ 2

Y , H1: σ 2
X < σ 2

Y . f = s2
Y /s2

X = 1.467 < f0.90,14,14 = 2.02. Do not
reject H0.

12-24 Since zS = 0.93
√

9 = 2.79 > 1.645 = z0.05, we reject H0; i.e., there exists a
statistically significant amount of agreement in the ranks at the 5% level.

12-25 Since zS = 0.75
√

13 = 2.704 > 2.33 = z0.01, we reject H0 — at the 1% level
we have a statistically significant amount of agreement in the rankings.

12-49 Since zV = √
24(0.306 − 0.35)/0.35

√
0.6225 = −0.7826 > −1.645 = z0.05,

we do not reject H0.

13-1 n1 = 15, n2 = 12, n1 + n2 = 27 and r = 14. The Case III R = { r| r ≤ 8 or
r ≥ 20}. Do not reject H0.

13-2 For this large-sample runs test, n1 = 17, n2 = 21, n1 + n2 = 38, and
r = 21. With E(R) = 19.79, V(R) = 9.03, and zR = 0.402, the Case III
R = {zR| |zR | ≥ 1.96 } . Do not reject H0.

13-4 n = 18, x̄ = 25, and d = 480/514 = 1.529. The Case I R = {d| d ≥
du = 3.1787} with P (D ≥ du) = 0.01. Do not reject H0.
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14-1 H0: p1 = 1
2

, p2 = 1
4

, p3 = 1
4

, H1: at least one of these equalities does

not hold. R =
{

u| u ≥ χ2
0.95,2 = 5.99

}
.

oi ei = npi

o1 = 101 250
(

1
2

)
= 125 = e1

o2 = 60 250
(

1
4

)
= 62.5 = e2

o3 = 89 250
(

1
4

)
= 62.5 = e3

250 250

u = ∑3
i=1

(oi − ei)
2

ei
= 15.944. Reject H0.

14-3 H0: number of calls uniformly distributed, H1: number of calls not

uniformly distributed. R =
{

u| u ≥ χ2
0.95,3 = 11.34

}
.

oi ei = n
(

1
4

)

o1 = 57 248
(

1
4

)
= 62 = e1

o2 = 65 248
(

1
4

)
= 62 = e2

o3 = 60 248
(

1
4

)
= 62 = e3

o4 = 66 248
(

1
4

)
= 62 = e4

248 248

u = ∑4
i=1

(oi−ei)
2

ei
= 0.871. Do not reject H0.

14-5 H0: X is Poisson distributed with λ = 0.5, H1: X is not Poisson distributed
with λ = 0.5.

X oi p (X ; λ = 0.5) ei = npi

0 82 p1 = 0.6065 89.7620
1 37 p2 = 0.3033 44.8884
2 20 p3 = 0.0758 11.2184
3 7 p4 = 0.0126 1.8648
4 2 p5 = 0.0016 0.2368

148
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Since np4, np5 are each less than five, combine cells 3, 4, and 5 with p3 =
1 − p1 − p2 = 0.0902

(Cells 3, 4, and 5 combined)

X oi p (X ; λ = 0.5) ei = npi

0 82 p1 = 0.6065 87.7620
1 37 p2 = 0.3033 44.8884
2 29 p3 = 0.0902 13.3496

148

u = ∑3
i=1

(oi−ei)
2

ei
= 20.4052, R =

{
u| u ≥ χ2

0.95,2 = 5.99
}

. Reject H0.

14-6 H0: X is normally distributed, H1: X is not normally distributed. Class
boundaries are:

95.945 – 95.965
95.965 – 95.985
95.985 – 96.005
96.005 – 96.025
96.025 – 96.045
96.045 – 96.065

We next determine x̄ = 96.0061 and s = 0.0202 (see exercise 2-13) and
thus:

p̂1 = P(−∞ < X < 95.965) = P(−∞ < Z < −2.0347) = 0.0212,

p̂2 = P(95.965 ≤ X ≤ 95.985) = P(−2.0347 ≤ Z ≤ −1.0446) = 0.1270,

p̂3 = P(95.985 ≤ X ≤ 96.005) = P(−1.0446 ≤ Z ≤ −0.0545) = 0.3309,

p̂4 = P(96.005 ≤ X ≤ 96.025) = P(−0.0545 ≤ Z ≤ 0.9356) = 0.3484,

p̂5 = P(96.025 ≤ X ≤ 96.045) = P(0.9356 ≤ Z ≤ 1.9257) = 0.1444,

p̂6 = P(96.045 ≤ X < +∞) = P(1.9257 ≤ Z < +∞) = 0.0268.

Then

X oi p̂i êi = np̂i

95.95–95.96 5 0.0212 6.2540
95.97–95.98 32 0.1270 37.4650
95.99–96.00 111 0.3309 97.6155
96.01–96.02 97 0.3484 102.7780
96.03–96.04 42 0.1444 42.5980
96.05–96.06 8 0.0268 7.9060

295
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v = ∑6
i=1

(oi−êi)
2

êi
= 3.2181. With k − r − 1 = 6 − 2 − 1 = 3, R ={

v| v ≥ χ2
0.95,3 = 7.81

}
. Do not reject H0.

14-9 Null distribution is

F0(x; 10, 17) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, x < 10;
x − 10

7
, 10 ≤ x ≤ 17;

1, x > 17.

H0: F(x) = F0(x; 10, 17), H1: F(x) �= F0(x; 10, 17).

Ordered
Realizations S10(x) = i/10,

∣∣S10(x)− ∣∣S10(x − ε)−
x(i), i = 1, . . . , 10 i = 1, . . . , 10 F0(x; 10, 17) F0(x; 10, 17)

∣∣ F0(x; 10, 17)
∣∣

9.9 0.10 0.0000 0.1000 0.0000
10.3 0.20 0.0429 0.1571 0.0571
11.2 0.30 0.1714 0.1286 0.0286
11.4 0.40 0.2000 0.2000 0.1000
11.8 0.50 0.2571 0.2429 0.1429
12.5 0.60 0.3571 0.2429 0.1429
13.2 0.70 0.4571 0.2429 0.1429
13.6 0.80 0.5143 0.2857 0.1857
16.3 0.90 0.9000 0.0000 0.1000
16.7 1.00 0.9571 0.0429 0.0571

d0
10 = 0.2857, R = {

d10
∣∣d10 ≥ d10,0.95 = 0.41

}
. Do not reject H0.

14-11 H0: F(x) = F0(x; 550, 100), H1: F(x) �= F0(x; 550, 100).

Ordered
Realizations S10(x) = i/10, z(i) = x(i) − 550

100
,

∣∣S10(x)− ∣∣S10(x − ε)−
x(i), i = 1, . . . , 10 i = 1, . . . , 10 i = 1, . . . , 10 F0(z(i); 0, 1) F0(z(i); 0, 1)

∣∣ F0(z(i); 0, 1)
∣∣

470 0.10 −0.8000 0.2119 0.1119 0.2119
490 0.20 −0.6000 0.2743 0.0743 0.1743
495 0.30 −0.5500 0.2912 0.0088 0.0912
500 0.40 −0.5000 0.3085 0.0915 0.0085
510 0.50 −0.4000 0.3446 0.1554 0.0554
525 0.60 −0.2500 0.4013 0.1987 0.0987
530 0.70 −0.2000 0.4207 0.2793 0.1793
550 0.80 0.0000 0.5000 0.3000 0.2000
570 0.90 0.2000 0.5793 0.3207 0.2207
580 1.00 0.3000 0.6179 0.3821 0.2821

d0
10 = 0.3821, R = {

d10
∣∣d10 ≥ d10,0.95 = 0.41

}
. Do not reject H0.
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14-13 H0: the random sample is from a normal distribution function, H1: not H0.
From this sample data set we obtain x̄ = 140.28, s = 24.87.

Ordered
Realizations z(i) = x(i) − x̄

s
, S18(z) = i/18,

∣∣S18(z)− ∣∣S18(z − ε)−
x(i), i = 1, . . . , 18 i = 1, . . . , 18 i = 1, . . . , 18 F̂(z(i); 0, 1) F̂(z(i); 0, 1)

∣∣∣ F̂(z(i); 0, 1)
∣∣∣

102 −1.54 0.0556 0.0618 0.0062 0.0618
105 −1.41 0.1111 0.0793 0.0318 0.0237
105 −1.41 0.1667 0.0793 0.0874 0.0318
111 −1.18 0.2222 0.1190 0.1032 0.0477
118 −0.90 0.2778 0.1841 0.0937 0.0381
121 −0.78 0.3333 0.2177 0.1156 0.0601
129 −0.45 0.3889 0.3264 0.0625 0.0069
142 0.07 0.4444 0.4721 0.0277 0.0832
148 0.31 0.5000 0.6217 0.1217 0.1773
149 0.35 0.5556 0.6368 0.0812 0.1369
150 0.39 0.6111 0.6517 0.0406 0.0961
150 0.39 0.6667 0.6517 0.0150 0.0406
152 0.47 0.7222 0.6808 0.0414 0.0141
160 0.79 0.7778 0.7852 0.0074 0.0630
162 0.87 0.8333 0.8078 0.0255 0.0300
169 1.15 0.8889 0.8749 0.0140 0.0416
174 1.36 0.9444 0.9131 0.0313 0.0242
178 1.51 1.0000 0.9345 0.0655 0.0099

d̂18 = 0.1773, R =
{

d̂18

∣∣∣d̂18 ≥ d18,0.95 = 0.20
}

. Do not reject H0.

14-15 H0: the distribution function is normal, H1: not H0.

x(i), i = 1, . . . , 22 aj , j = 1, . . . , 11 x(n−j+1) − x( j) aj
(
x(n−j+1) − x( j)

)

x(1) = 60 x(12) = 120 0.4590 x(22) − x(1) = 117 53.703
x(2) = 80 x(13) = 120 0.3156 x(21) − x(2) = 95 29.982
x(3) = 87 x(14) = 140 0.2571 x(20) − x(3) = 76 19.539
x(4) = 90 x(15) = 145 0.2131 x(19) − x(4) = 70 14.917
x(5) = 98 x(16) = 150 0.1764 x(18) − x(5) = 62 10.936
x(6) = 100 x(17) = 155 0.1443 x(17) − x(6) = 55 7.937
x(7) = 105 x(18) = 160 0.1150 x(16) − x(7) = 45 5.175
x(8) = 109 x(19) = 160 0.0878 x(15) − x(8) = 36 3.161
x(9) = 110 x(20) = 163 0.0618 x(14) − x(9) = 30 1.854

x(10) = 110 x(21) = 175 0.0368 x(13) − x(10) = 10 0.368
x(11) = 115 x(22) = 177 0.0122 x(12) − x(11) = 5 0.061

147.633

Since x̄ = 124.05 and
∑22

i=1 (Xi − �X)2 = 22,732.15, we have w =
(147.633)2/22,732.15 = 0.9588. With R = {w |w ≤ w0.05 = 0.911 }, we do
not reject H0.
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14-17 X corresponds to Method A, Y corresponds to Method B. H0: FX (x) =
FY (x), H1: FX (x) �= FY (x) for at least one x.

x(i), i = 1, . . . , 10 y(j), j = 1, . . . , 12 Sn(x) Sm(x)
∣∣Sn(x) − Sm(x)

∣∣

50 50 0.100 0.083 0.100 − 0.083 = 0.017
55 0.200 0.200 − 0.083 = 0.117
58 0.300 0.300 − 0.083 = 0.217
62 62 0.400 0.167 0.400 − 0.167 = 0.233
65 0.500 0.500 − 0.167 = 0.333
67 0.600 0.600 − 0.167 = 0.433
70 0.700 0.700 − 0.167 = 0.533
71 0.800 0.800 − 0.167 = 0.633
72 0.900 0.900 − 0.167 = 0.733

75 0.250 0.900 − 0.250 = 0.650
78 0.333 0.900 − 0.333 = 0.567
79 0.417 0.900 − 0.417 = 0.483
80 0.500 0.900 − 0.500 = 0.400

81 1.000 1.000 − 0.500 = 0.500
82 0.583 1.000 − 0.583 = 0.417
83 0.667 1.000 − 0.667 = 0.333
84 0.750 1.000 − 0.750 = 0.250
88 0.833 1.000 − 0.833 = 0.167
90 0.917 1.000 − 0.917 = 0.083
91 1.000 1.000 − 1.000 = 0

d10,12 = 0.733, R =
{

d10,12

∣∣∣∣d10,12 ≥ d10,12,0.95 = 1.36
√

12+10
120 = 1.36(0.4282) =

0.5823
}

. Reject H0.

15-1 H0: preference and sex are independent,
H1: not H0.

Mini-Van SUV

Male 10 (=a) 30 (=b) 40 (=e)
Female 20 (=c) 20 (=d) 40 (=f)

30 (=g) 50 (=h) 80 (=n)
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From (15.10.1)

u′′ = 80 (|200 − 600| − 40)
2

40(40)(30)(50)
= 4.32.

For 1 degree of freedom, 0.025 < p-value < 0.05.

15-3 H0: pij = pi·p·j, H1: pij �= pi·p·j for at least one cell (i, j), i = 1, . . . , 4; j =
1, . . . , 3.

Poor Good Excellent

1 day 10 (5.92) 15 (14.21) 2 (6.86) 27 (=n1·)
2 days 7 (5.70) 10 (13.68) 9 (6.61) 26 (=n2·)
3 days 5 (6.14) 15 (14.73) 8 (7.12) 28 (=n3·)
4 days 3 (7.23) 20 (17.36) 10 (8.39) 33 (=n4·)

25 (=n·1) 60 (=n·2) 29 (=n·3) 114 (= n)

From (15.9.2)

u = (10 − 5.92)2

5.92
+ · · · + (10 − 8.39)2

8.39
= 11.93.

For degrees of freedom = (r − 1)(c − 1) = 6, 0.05 < p-value < 0.10.

15-5 H0: the four samples come from the same population,
H1: not H0.

In Favor Neutral Opposed

Clerical 27 (19) 33 (33.5) 15 (22.5) 75 (=n1)
Sanitation 13 (19) 41 (33.5) 21 (22.5) 75 (=n2)

Transp. 25 (19) 10 (33.5) 40 (22.5) 75 (=n3)
Bldg.&Grnds. 11 (19) 50 (33.5) 14 (22.5) 75 (=n4)

76 134 90 300 (=n)

From (15.18),

u = (27 − 19)2

19
+ · · · + (14 − 22.5)2

22.5
= 56.22.

For degrees of freedom = (r −1)(c−1) = 6, R =
{

u
∣∣∣u ≥ χ2

0.99,6 = 16.81
}

.

Reject H0.
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15-7 H0: p1 = · · · = p5, H1: the pi’s are not all equal, i = 1, . . . , 5.

In Favor Opposed

Officers 37 13 n1 = 50
Hunters 10 40 n2 = 50
Teachers 25 25 n3 = 50 p̂ = 142

250
= 0.568,

1 − p̂ = 0.432
Clergy 40 10 n4 = 50
Shopkeepers 30 20 n5 = 50

142 108 250 (=n)

ei1 = 28.4, ei2 = 21.6, i = 1, . . . , 5.
From (15.14),

u = (37 − 28.4)2

28.4
+ · · · + (20 − 21.6)2

21.6
= 51.71.

R = {
u
∣∣u ≥ χ2

0.90,4 = 7.78
}
. Reject H0.

15-8 ψ̂ = n11n22

n12n21
= 0.33, σ̂ (ln ψ̂) = (0.233)1/2 = 0.4827.

ln ψ̂ ± 1.96σ̂ (ln ψ̂) becomes (l, u) = (−2.0548, −0.1626). Then (el , eu) =
(0.1281, 0.8499).

ϕ2 = 4.32
80(2 − 1)

= 0.054.

15-11

Attribute B

10 15 2 27 (=n1·)
7 10 9 26 (=n2·)

Attribute A 5 15 8 28 (=n3·)
3 20 10 33 (=n4·)

25(=n·1) 60(=n·2) 29(=n·3) 114 (=n)

λ̂A/B = 10 + 20 + 10 − 33
114 − 33

= 0.0864,

σ̂ (λ̂A/B) =
[

(114 − 40)(40 + 33 − 2(20))
(114 − 33)3

]1/2

= 0.0678,
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λ̂A/B ± 2.58σ̂ (λ̂A/B) becomes (−0.0885, 0.2613).

λ̂B/A = 15 + 10 + 15 + 20 − 60
114 − 60

= 0,

σ̂ (λ̂B/A) =
[

(114 − 60)(60 + 60 − 2(20))
(114 − 60)3

]1/2

= 0.1656,

λ̂B/A ± 2.58σ̂ (λ̂B/A) becomes (−0.4273, 0.4273).

15-13 H0: the proportion of pans exhibiting food sticking is the same for No-Stick
and margarine,
H1: not H0.

No-Stick

Sticking Not Sticking

Margarine Sticking 12 20 (=n12) 32
Not Sticking 15 (=n21) 13 28

27 33 60 (=n)

From (15.32),

χ2 = (|20 − 15| − 1)
2

20 + 15
= 0.4571.

R =
{
χ2
∣∣∣χ2 ≥ χ2

0.95,1 = 3.84
}

. Do not reject H0.

16-1 �X = 9.2, �Y = 8.8,
∑10

i=1 x2
i = 171.6,

∑10
i=1 y2

i = 145.6,
∑10

i=1 xiyi = 142.4.

a. β̂1 = 0.8298, β̂0 = 1.1655. Ŷ = 1.1655 + 0.8298X.

b. From (16.7), s2
ε = 3.4289.

c. sε = 1.8517.

d. From (16.8), sβ̂0
= 1.4262, sβ̂1

= 0.1414.

16-3
∧
η = 0.8298(9.2/8.8) = 0.8675. Inelastic case. A 1% increase in X is as-
sociated with a 0.87% increase in Y on the average.
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Index

A
Absolute frequency distribution,

11–12, 11t, 12t, 19, 47–48
normal, 34

Absolute frequency function, 12, 13f
Absolute variation, 33
Absolute zero, 6
Addition rule (general)

for probability theory, 65–66, 65f
Additivity

of chi-square distribution,
353–354

of independent small factors,
324–325

sampling distribution of mean,
308–309

Almost sure (a.s.) convergence,
321

Approximation, 409, 614. See also
Normal approximation

large sample, 453
A priori, 77, 79f, 375, 420, 422, 501,

504, 550, 670, 681
Area, 59, 60f
Arithmetic mean, central location,

16–17, 17f, 17t
Arithmetic progression, 314
Associated cumulative distribution

function, 311
Associated discrete probability

distribution, 98
Associated probability density

function, 258
Association

lack of linear, 700
measures of, 10f, 11

measuring strength of, in
contingency tables, 655–661,
656t, 661t

Pearson chi-square statistic for
test of, 646–647

predictive, 658–660
Asymptotic distribution, 321, 323,

342, 359, 656
generalized likelihood ratio tests,

544
Asymptotic distribution, point

estimator
mean and variance, 410–411
properties, 376, 408–409

Asymptotic relative efficiency, 417,
596–597, 602

Asymptotically efficient estimator,
416–418

Asymptotically most efficient
estimator, 418

Asymptotically normal estimator,
best, 418–419, 430

Asymptotically unbiased estimator,
410, 416

Average speed, 22
Axiom, probability, 62–64

B
Bayes’s rule, 79–82, 79f
Behrens-Fisher problem, 460
Bell-shaped distribution, 238
Bernoulli distribution, 195–197,

196f
Bernoulli probability mass function,

195–197, 196f

Bernoulli process, 27
binomial distribution, 197–198,

254
geometric distribution, 206
independent trial of, Poisson

distribution, 213, 214
negative binomial distribution,

209–211
Bernoulli random variable, 196, 325,

327, 331, 332, 393, 425
Best guess probability, 77
Best linear unbiased estimator

(BLUE), 404–405, 430,
674–675

Best unbiased estimator. See
Efficient estimator

Beta cumulative distribution
function, 271–272

Beta functions
continuous parametric probability

distributions, 264–265
incomplete, 265

Beta probability density function,
271, 272f, 273–274

Beta probability distribution,
270–276, 292

incomplete beta function ratio,
272, 274

key properties, 272–274
Bias, 376, 410
Biased estimator, 377–379, 377t,

379f, 381–383
Binary variable, 5
Binomial coefficient, 192–193, 194f
Binomial cumulative distribution

function, 199–200, 200t
Binomial expansion, 192–193, 198

789
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Binomial population(s)
confidence interval

for differences of proportions
when sampling from two
independent, 470–471

for p under random sampling
from, 451–455

hypothesis test
for difference of proportions

when sampling from two
independent, 555–557

for p under random sampling
from, 512–516

Binomial probability distribution,
197–202, 199t, 204, 227–228

Bernoulli process, 197–198, 206,
209–211

binomial cumulative distribution
function, 199–200, 200t

flat-topped, 202
key properties of, 201–202
negative, 208–212, 230–231, 270
normal approximation to,

253–257, 288
symmetrical, 201

Bivariate cumulative distribution
function, 157–159, 158f

Bivariate linear regression. See
Regression model

Bivariate normal probability
distribution, 281–285

conditional distribution, 284
joint, 699–700, 704
marginal distribution, 283
regression curve, 284–285

Bivariate probability density
function, 154–157

Bivariate probability distributions,
174–186

bivariate cumulative distribution
function, 149

bivariate random variables, 147
Chebyshev’s theorem for, 169
continuous, 154–162
discrete, 147–154
expectations and moments of,

162–169
joint classification, 148–149, 148t
joint moment-generating

function, 169–174
mass functions, 148, 149t, 150t,

151
univariate marginal probability

function, 150–151

Bivariate probability mass function,
152

Bivariate random variables, 147
BLUE. See Best linear unbiased

estimator
Bonferroni joint confidence limits,

457–458
Bonferroni method, 456–457
Boole’s inequality, 65

C
Cells, 610, 615, 620–622, 649–651

distinct, 644
Census, 1
Central confidence interval, 441–442
Central Limit Theorem, 322–326,

332, 419, 510
proof of, 340–342

Central location
arithmetic mean, 16–17, 17f, 17t
arithmetic mean of frequency

distribution, 18–19, 19t
measures of, 9, 10f, 16–21
median, 19–21, 20f
mode, 21, 21f
weighed mean, 17–18, 18t

Change, 663
Chebyshev’s Theorem, 318, 336,

412–413, 454
asymmetric variant of, 113
for bivariate probability

distributions, 169
distribution free, 112
proportions, 331, 332
for random variables, 111–113
standard deviation, 23, 24f,

112–113
Chi-square cumulative distribution

function, 350
Chi-square distribution, Pearson

multinomial. See
Multinomial chi-square
statistic

Chi-square probability density
function, 350

Chi-square probability distribution,
349, 350–354, 350f, 352f,
353f, 368–370, 449, 459–460,
543–544, 636

freedom, degrees of, 350, 351, 354
key properties of, 350f, 351–352,

352f
normal population, 353

reproductive (additivity)
property, 353–354

Chi-square values, 517
Collectively exclusive categories, 5
Combinations, 191–193
Complete sufficient statistic, 403
Completeness, 401–403
Compound event, 60, 61f
Conditional distribution, 284
Conditional expectation (mean),

167–168
Conditional probability, 67–70
Conditional probability density

function, 159–160
Conditional probability distribution,

153, 154t
Conditional probability mass

function, 152–154
Conditional variance, 167–168
Confidence band, 684–687, 686f, 687t
Confidence coefficient, 440–441, 442
Confidence interval(s), 439, 473–481,

660–661, 685, 689, 703
central, 441–442
for difference

of means when sampling from
two dependent paired
populations, 464–469, 469t

of means when sampling from
two independent normal
populations, 458–464, 464f

of proportions when sampling
from two independent
binomial populations,
470–471

half-width, 453
joint estimation of family of

population parameters,
455–458

for µ under random sampling
from normal population

with known variance, 443–446
with unknown variance,

446–447, 448f
for p under random sampling

from binomial population,
451–455

population variances
known, 461
unknown but equal, 461–462
unknown but unequal, 462–464,

464f
for probability (p) of success, 452
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for ratio of two variances when
sampling from two
independent normal
populations, 471–473

for σ 2 under random sampling
from normal population with
unknown mean, 447–451,
448f, 450f, 451f

for variance (σ ), 449
width (w) of, 445

Confidence probability, 440
Confidence statement, 442, 456, 702
Consistent asymptotically normal

estimator. See
Asymptotically normal
estimator, best

Consistent estimator, 411–416, 414f,
429, 622, 633

carried forward, 416
Chebyshev’s inequality, 412–413
key properties of, 415–416
maximum likelihood estimator,

429
mean-squared-error-, 414–415,

417
Slutsky Theorem, 416
unbiased, 413–414
weakly, 415

Contingency tables. See
Goodness-of-fit test,
contingency tables

Continuity correction, normal
approximation, 255–256

Continuous bivariate probability
distributions, 154–162

Continuous parametric probability
distributions

beta distribution, 270–276
exponential distribution, 258–264
gamma and beta functions,

264–265
gamma distribution, 266–270
introduction, 235–236
logistic distribution, 279–280
lognormal distribution, 276–279
normal approximation

to binomial probabilities,
253–257

to Poisson probabilities, 257
normal distribution

introduction, 238–240
moments, quantiles, percentage

points and, 249–253
normal curve error and, 253
Z transformation and, 240–249

uniform distribution, 236–238,
285–286

Continuous variable, 6–7
Convergence concepts, 319–321

almost sure (a.s.) convergence,
321

in distribution, 409, 416
limiting distribution function, 319
in mean square, 416
of moment-generating functions,

340–341
probability limit, 319–320
stochastically convergent, 319–321

Convergent, absolutely, 107
Corollary, 64
Correlation model, 695–697
Count parameter, 188
Counting, problems in, 188–194
Covariance

of random variable, 164
X and Y of, 38–39

Cramér-Rao inequality, 387, 388
Cramér-Rao lower bound (CR),

387–394, 403, 415, 418
exponential family of probability

density function, 388–389
information number, 388
key properties of, 388–389
maximum likelihood estimator,

428, 430
uniformly most efficient

estimator, 388
Cramer’s phi-squared statistic,

657–658
Critical regions, 489, 493–495, 493f,

494f, 529–531, 533, 535, 539,
540, 542–544, 613

Cumulative bivariate probability
distributions

bivariate cumulative distribution
function, 157–159, 158f

bivariate probability density
function, 154–158

independent variables, 161–162
Cumulative density function,

gamma, 267–268
Cumulative distribution function,

409, 614
associated, 311
beta, 271–272
binomial, 199–200
central limit theorem, 323
chi-square, 350
cumulative random variable,

104–106, 105f, 110–111

discrete probability distribution,
97–98, 98f, 100, 100f

exponential distribution, 262
geometric, 207–208
logistic, 279
negative binomial, 210–211
probability density function,

101–104, 102f, 103f, 106,
107f

properties of, 105–106, 105f
proportion sampling distribution,

327
standard normal, 241–243, 242f,

244f
Student’s t distribution with, 358
uniform probability distribution,

236–237
Cumulative frequency distribution,

12, 15t
Cumulative frequency function,

12, 16f
Cumulative probability distribution,

lognormal, 277–278
Curve

error, normal, 253
normal, 238
power, 520–521, 521f, 523f, 526f
regression, 284–285

D
Data generating process

experimental/nonsampling error,
295

measurement, 295
observed data, 295
sampling scenarios, 294–299,

296f
sequential two-stage, 295, 296f
systematic error, 295

Deciles, 25, 26
Decision rule, 489, 496, 551f, 581, 589
Decision tree, 71, 72f
Decomposition, of sample variation

of Y, 691–695, 691f, 693f,
693t, 695t

DeMoiver-Laplace-Gauss Limit
Theorem, 254–255, 257, 332,
452, 470, 512–513, 612

DeMorgan’s Law, 457
Density, 214
Dependent variable, 58
Descriptive statistics, 1
Determination, outliers of, 10f, 11
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Deviation
estimated standard, 684
estimated standard, of forecast

error, 688
from sample regression line, 673

Dichotomous variable, 5
Different means, 33–34
Discrete bivariate probability

distributions, 147–154
Discrete parametric probability

distributions
Bernoulli distribution, 195–197,

206, 209–211
binomial distribution, 197–202,

204
counting rules, 188–194
discrete uniform distributions,

194–195
generalized hypergeometric

distribution, 225–226
geometic distribution, 206–208
hypergeometric distribution,

218–224
introduction, 187–188
multinomial distribution, 202–206
negative binomial distribution,

208–212
Poisson distribution, 212–218

Discrete probability distribution,
107–108, 116, 116t, 123, 131

associated, 98
cumulative, 97–98, 98f, 100, 100f
probability mass function, 94–95,

94f, 96f, 99, 99t
uniform, 95–96

Discrete uniform distributions,
194–195, 195f, 195t

Discrete variable, 6, 152
Dispersion

average speed, 22
mean, median, mode and, 34–35,

35f
measures of, 9, 10f, 21–38, 49–50
moments, 29–31, 30t
quantiles, 25–26
range, 22
relative variation, 33–34
sample variation, standard

deviation and, 35–38
skewness, kurtosis and, 31–33, 31f,

33f
standard deviation, 22–23, 23t

of frequency distribution,
23–24, 25t

standardized variables, 26–29, 27f

Distributional hypothesis, 569–570,
609. See also Goodness-of-fit
test

assessing normality via sample
moments, 634–638, 635t, 637t

Distribution-free statistic, 624–625
Distributions

empirical, 187
theoretical, 187

Diversity
high, 50
measure of, 49–50

Domain, 58, 59f
Dominance, 51

E
Efficient estimator, 383–385, 384f,

400
maximum likelihood method, 428
relative efficiency, 384–385
unique, 403

Elementary sampling unit, 4
Empirical distribution function,

622–624, 623f
Empirical distributions, 187
Empirical regularity, 319
Empirical Rule, 247–249, 248f
Erlang probability distribution,

268–269
Error(s)

bound, 439–440, 445, 447
estimated proportionate reduction

in probability of, 658–659
estimated standard deviation of

forecast, 688
experimental/nonsampling, 295
homoscedastic, 671
mean square, 692, 693t, 694, 695t
mean squared, 381–383
nonsampling, 7
normal curve of, 253
sampling, 7, 307, 329t, 330, 374,

376
standard, 328

of estimates, 678
of point estimator, 380
of regression coefficients, 678

systematic, 295
Type I α, 489, 491, 496, 504, 519,

521, 528
Type II β, 490, 491–492, 504–510,

505f, 507f, 512, 519, 520, 527,
529

Estimation, family of population
parameters and joint,
455–458

Estimator(s), 3, 431–438. See also
Point estimator

alternative, 657
asymptotic expectation, 410
asymptotic mean and variance of,

410–411
asymptotic (limiting) properties,

408–409
asymptotically efficient, 416–418
asymptotically most efficient, 418
(best) asymptotically normal,

418–419, 430
asymptotically unbiased, 410, 416
average loss/risk of, 381
average property of, 379
best, 376, 382–383, 452, 468, 555
best linear unbiased, 404–405, 430
biased, 377–379, 377t, 379f,

381–383
closeness of, 376, 382
complete family, 401–403
consistent, 411–416, 417, 429, 622,

633
Cramér-Rao lower bound and,

387–394, 403, 415, 418, 428
desirable properties of, as

statistical properties,
375–376

efficient, 383–385, 384f, 400, 403,
428

good, 374–376, 381, 382, 411, 418,
430, 489, 570

interval, 3–4, 439–441
jointly sufficient statistics

developing, 405–408
large sample/asymptotic

properties of, 376, 408–419
least squares, 674–679, 677
least squares method for, 419,

430–431
maximum likelihood, 421–430,

431, 617, 675
maximum likelihood method for,

419–430
mean squared error, 381–383
mean-squared-error-consistent,

414–415, 417
minimal sufficient statistics

developing, 398–399
minimum variance, 380–381, 383
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minimum variance bound (most
efficient), 385–394, 399–401,
403, 418

most efficient, 385–394, 399–401,
403, 418, 430

pooled, 460, 556
a priori behavior, 375, 420, 422
single prior estimate made, 36
small sample properties of,

376–408
standard error of, 380
sufficient statistics developing,

394–398, 399–401
techniques for finding, 419–431
unbiased, 376–380, 377f, 383,

391–392, 400, 402–405,
404–405, 408, 410, 413–414,
416, 684, 687

Events, 53
certain, 63–64
classification of, 72–77, 74f, 75f
collectively exhaustive, 73, 74–75,

74f, 75f
compound, 80, 81f
conditionally independent, 76
dependent, 73–74, 75
independent, 73, 75, 75f
mutually exclusive, 72–73, 74–75,

74f, 75f
open/closed interval, 101
probability of, 64
supplements, 75–76

Expectations (mean)
bivariate probability distributions,

162–169
conditional, 167–168

Experiment, 2
Experimental design

completely randomized design,
465

group comparisons, 466
outcomes of, 466
paired, 466–467
treatment, 465

Experimental values, 489
Exponential probability density

function, 259–260, 259f
gamma probability density

function reducing, 268–269
minimal/sufficient statistics,

388–389, 398
Exponential probability distribution,

258–264, 289–290
continuous, 258, 259f
key properties of, 260–261

memoryless property, 261
negative, 259
Poisson process, 261–262
sources of, 258–260
uses of, 261–264

F
F distribution. See Snedecor’s F

distribution
Factorial-generating. See

Probability-generating
function

Factorization criterion, 546
for jointly sufficient statistics,

406–407
for sufficient statistics, 396–397

Failure, 650, 650t
binomial distribution, 198
hypergeometric probability

distribution, 219–220, 222f
negative binomial distribution,

209–210, 212
probability density function, 262

Family confidence coefficient, 456
Family, joint estimation of, of

population parameters,
455–458

Finite population, 299–301, 302, 336
correction factor, 313–314, 328
sampling with replacement,

299–300
sampling without replacement,

300–301
Fisher-Neyman Factorization

Theorem, 396, 427–428, 546
Generalized, 406–407

Fisher’s ξ transformation, 701–702
Freedom, degrees of, 620

chi-square random variable with
degrees of, 350, 354

chi-square stochastically
increasing in, 351

correction for degrees of, 35
pooled degree of, 460
Snedecor’s F distribution with

degrees of, 363–364
student’s t distribution with

degrees of, 357–358
Frequency

expected cell, 650–651
expected/theoretical, 613
observed, 610–611, 610t, 613,

620
observed cell, 651, 657

Frequency distribution
arithmetic mean of, central

location, 18–19, 19t
discrete probability distribution,

95–96
dispersion and standard deviation

of, 23–24, 25t
relative, 12, 13t, 14t

Frequency limit principle, 78, 319

G
Gamma cumulative density function,

267–268
Gamma functions

continuous parametric probability
distributions, 264–265

incomplete, 265
ratio, incomplete, 267–268

Gamma probability density function,
267, 267f

Erlang probability distribution,
268–269

exponential probability density
function reduced by, 268–269

negative binomial probability
distribution, 270

reproductive property of, 270
Gamma distribution, 266–270,

290–291
key properties of, 268–270

Gaussian distribution. See Normal
distribution

Gauss-Markov Theorem, 674,
676–677, 684, 688

Generalized Fisher-Neyman
Factorization Theorem,
406–407

Generalized Lehmann-Scheffé
Theorem, 407–408

Generalized likelihood ratio tests
asymptotic distribution, 544
power function, 544–545

Generalized Rao-Blackwell
Theorem, 408

Geometic cumulative distribution
function, 207–208

Geometic probability distribution,
206–208, 229–230

key properties of, 207–208
Goodness, 374, 491

of fit, 670, 674, 676
Goodness-of-fit test, 638–642

Kolmogorov-Smirnov, 621–630,
623f, 625f, 626f, 628t, 629t
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Goodness-of-fit test (continued )
for two independent samples,

632–634
Lilliefors, for normality, 630–631,

631t
Pearson’s

and complete (H0), 609–616
and incomplete (H0), 616–621

Shapiro-Wilk, for normality,
631–632

test of normality, 619–620,
629–630, 629t

two-tailed, 626
Goodness-of-fit test, contingency

tables, 664–667
Cramer’s phi-squared statistic,

657–658
McNemar test, 662
measuring strength of association

in, 655–661, 656t, 661t
Pearson/multinomial chi-square

statistic extension, 643
predictive association, 658–660
testing

for homogeneity, 651–655,
652t, 654t

independence (association),
643–649, 644t, 648t, 649t,
652, 655–661

k proportions, 649–651, 650t,
651t

with nominal-scale paired
samples, 661–664, 662t,
663t, 664t

Yates’ continuity correction,
647–648, 662–663

Group comparisons, 466
Group, richness, 50

H
Heterogeneity, 51
Homogeneity

hypothesis, 653
testing for, 651–655, 652t, 654t

Hypergeometric cumulative
distribution function, 221

Hypergeometric probability
distribution, 218–224, 219f,
221t, 222f, 232–233

generalized, 225–226
key properties of, 223–224

Hypergeometric recursion formula,
222

Hypothesis. See also Distributional
hypothesis; Randomness
hypothesis; Statistical
hypothesis, parametric

alternative, 484–486, 490, 493,
495–496, 510, 512, 517, 518f,
521, 523–524, 523t, 526t, 546,
558, 569, 571t, 577, 579,
590–591, 597–599, 621, 644,
653, 681, 683, 694, 700–701

alternative, two-sided, 514–515,
517, 518f, 524–525, 525t,
537, 573

null, 484–486, 490, 493, 495–496,
503, 504, 506–510, 511, 521,
532, 539, 543, 545–546, 557,
571t, 573, 574, 577, 579,
590–591, 596–599, 645, 653,
655, 659, 680–683, 694,
700–701

simple vs. composite, 484
Hypothesized distribution function,

622

I
Identifiers, 5
Improper integral, 264
Incomplete beta function ratio, 272,

274
Incomplete gamma function ratio,

267–268
Incomplete information, 293
Independence, 643–649, 644t, 648t,

649t, 652, 655–661
Independent variable, 58. See also

Random variables
Induction, mathematical, 87
Inductive inference, 293–294
Inductive statistics, 1

as decisionmaking under
uncertainty, 3

Inference
good, 374
inductive, 293–294
statistical, 1, 293, 483–484

Inferential coin, 483
Infinite population

sampling distribution of mean,
309–311

sampling distribution of variance,
and finite, 336–337

sampling scenarios, 294–299, 296f
weak law of large numbers, 317

Inherent natural variation, 294

Integral
improper, 264
proper, 265

Intensity, 214
Interval(s), 473–481

central confidence, 441–442
confidence, 439, 441–473
pivotal quantity method, 442–443,

452
random, 440

Interval data, 6
Interval estimator, 439–441, 440f
Interval ratio. See Ratio scale

J
Joint estimation, of family of

population parameters,
455–458

Joint marginal probability mass
function, 312, 386

Joint moment-generating function
bivariate normal distribution, 285
bivariate probability distributions,

169–174
Student’s t distribution, 357

Joint probability, 66–67, 158, 158f,
645

Joint probability density function,
362–363, 386

Jointly sufficient statistics, 405–408
factorization criterion for,

406–407
Generalized Fisher-Neyman

Factorization Theorem,
406–407

Generalized Lehmann-Scheffé
Theorem, 407–408

Generalized Rao-Blackwell
Theorem, 408

K
K-fold alternative, 203
Kolmogorov-Smirnov (KS)

goodness-of-fit test, 621–630,
623f, 625f, 626f, 628t, 629t

any sample size in, 622, 625–626
continuous data with, 621–622
empirical distribution function,

622–624, 623f
KS statistic, 624, 625t
K-S two-sample test statistic, 634
null hypothesis and, 621–622
Pearson chi-square goodness-of-fit

test vs., 621–622, 625, 727
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for two independent samples,
632–634, 633t

two-tailed, 626
KS test. See Kolmogorov-Smirnov

goodness-of-fit test
Kurtosis

coefficient of, 33, 116, 197, 207,
212, 217, 223, 237, 240, 260,
268, 273, 351, 360, 365,
634–635

dispersion, 31–33, 33f
measures of, 9, 10f

L
Lagrangian function, 405
Least squares

method, 419, 430–431
principle of, 674, 675f

Least squares estimators, 674–675
mean, variance and sampling of,

676–679
precision of, 679–680, 684–687

Least squares regression equation,
677f

precision of, confidence band,
684–687, 686f, 687t

Lehmann-Scheffé Theorem, 398–399
Generalized, 407–408

Length, 59, 60f
Less informative scale, 6
Likelihood function, 387, 396–398,

407, 536. See also Maximum
likelihood method

generalized likelihood ratio tests,
537–546

logarithm, 421
Lilliefors goodness-of-fit test for

normality, 630–631, 631t
Limiting distribution function, 319,

323
Limiting properties, estimator,

408–409
Linear association, 39–40, 39f
Linear relationship, 164
Linear unbiased estimator, best,

404–405, 430, 674–675
Location parameter, 188, 235, 260
Logistic cumulative distribution

function, 279
Logistic probability density function,

279–280
Logistic probability distribution,

279–280
Log-likelihood function, 387

Lognormal cumulative probability
distribution, 277–278

Lognormal probability density
function, 277

Lognormal probability distribution,
276–279

Lower α-percentage point, 251–252,
251f, 252f, 367

Lower percentage point of t
distribution, 360–361, 360f,
367

M
Maclaurin’s series expansion, 121,

126, 171, 342
Mann-Whitney (rank-sum) test for

two independent samples,
590

asymptotic relative efficiency of,
596–597

small-sample, 591–592, 592t
within-process/between-process,

594–595, 595t
Mapping

into/onto, 58, 59f
point-to-point, 58, 59, 59f
set-to-point, 59, 60f, 63, 63f

Marginal distribution, 283
Marginal probability, 67, 69,

645–646
Marginal probability density

function. See Marginal
probability mass function

Marginal probability distribution,
151, 152t

Marginal probability mass function,
150–151, 159, 386

joint, 312, 386
Marginal tools, 645
Maximum likelihood estimator,

421–430, 431, 617, 675
consistent, 429
Cramér-Rao lower bound, 428,

430
Fisher-Neyman Factorization

Theorem, 427–428
invariance property of, 428–429
key properties of, 427–430
most efficient, 430

Maximum likelihood method,
419–430, 422t, 423t, 424f,
538, 540, 545

best explains realized sample, 44f,
423–424, 423t

efficient estimator, 428
key properties of, estimator,

427–430
maximum likelihood estimator,

421–430
most likely, 422
most often, 421
principle of, 420–421

McNemar test, 662
Mean (µ), 48, 351, 359, 364. See also

Arithmetic mean
α-trimmed, 28
bivarate probability distribution,

162–169
conditional expectation, 167–168
confidence interval

for σ 2 under random sampling
from normal population with
unknown, 447–451, 448f,
450f, 451f

when sampling from two
dependent paired
populations for difference of,
464–469, 469t

when sampling from two
independent normal
populations for difference of,
458–464, 464f

of discrete random variable,
106–107

dispersion, 34–35, 35f
geometric, 49
harmonic, 49
hypothesis test for difference of

means when sampling from
two dependent paired

populations, 553–555, 555t
two independent normal

populations, 546–552, 551f
hypothesis test for µ under

random sampling from
normal population

with known variance, 496–501,
498f

with unknown variance,
510–512

least squares estimators, variance,
sampling and, 676–679

limiting, of estimator, 410
probability mass function, 326,

326t
sample, 362, 385
sampling distribution of, 308–315,

316t, 317f, 317t
standard deviation, 27f, 34
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Mean (µ) (continued )
standard error of, 310, 314
standardized sample, 322, 323

Mean square, convergence in, 416
Mean square error, 692, 693t, 694,

695t
Mean squared error estimator,

381–383
Mean-squared-error-consistent

estimator, 414–415, 417
Mean-square-successive difference

(MSSD)
von Neumann ratio test, 577–578

Measure of diversity, 49–50
Measurement scales, 5–7
Median, 25, 49

central location, 19–21, 20f
dispersion, 34–35, 35f
large-sample sign test for, 583
runs above and below sample,

575–576
sign test for, 582–583
symmetry test, 586
Wilcoxon signed rank test of,

583–586, 585t, 587t, 599–602,
602t, 603t

Memoryless property, 261
Minimal sufficient statistics, 398–399

Lehmann-Scheffé Theorem,
398–399

Minimum variance bound estimator,
385–394, 403, 418

Cramér-Rao lower bound,
387–394, 403, 418

joint probability mass function,
386–387

likelihood function, 387, 397–398
sufficient statistics use, 399–401

Minimum variance estimator,
380–381, 383

Minimum variance unbiased
estimator. See Efficient
estimator

Mode, 49
central location, 21, 21f
dispersion, 34–35, 35f

Moment(s)
about zero, 113–115, 127, 163, 339
assessing normality via sample,

634–638, 635t, 637t
bivariate probability distributions,

162–169
central, 29–30, 113–115, 125–127,

339
coefficient of skewness, 114, 116

dispersion, 29–31, 30t
factorial, 128–129
joint, about the mean, 163
normal distribution, 249–250,

280–281
of random variable, 113–117, 116t
sample, 338–340
sample central, 339
standard, 29–31

Moment-generating function,
119–127, 123t

convergence of, 340–341
joint, 169–174, 285, 357
limiting, 341
for normal distribution, 280–821

Monotome fashion, 42
Most efficient estimator, 385–394
Most efficient estimator. See

Minimum variance bound
estimator

Multinomial chi-square distribution,
Pearson, 611

Multinomial chi-square statistic,
611–612

cautions/comments on, 620–621
complete specification of null

hypothesis (H0), 609–616,
610t, 616t

incomplete specification of null
hypothesis (H0), 616–621,
618t, 619t

Kolmogorov-Smirnov Test vs.,
621–622

for test of association, 646–647
test of normality, 619–620

Multinomial coefficient, 193, 194f
Multinomial goodness-of-fit test, 612
Multinomial probability distribution,

202–206, 229
Multiplication law

counting technique, 188–189
for probability mass function,

153–154
for probability theory, 68, 73

Mutually exclusive categories, 5

N
Negative binomial cumulative

distribution function,
210–211

Negative binomial probability
distribution, 208–212,
230–231

gamma probability density
function, 270

key properties of, 212
Negative exponential distribution,

259
Neyman-Pearson-Lemma, 529–530,

532–537, 546
Nominal scale, 5
Nominal-scale paired samples,

661–664, 662t, 663t, 664t
Nonautocorrelation, 672
Nonmetric scales, 6
Nonparametric statistical

techniques, 603–608
Mann-Whitney (rank-sum) test

for two independent
samples, 590–597

parametric methods vs., 569–570,
570t–571t, 587t, 603t

randomness’ tests of single
sample, 572–579

runs tests, 572–576
for two independent samples,

587–590
sign test when sampling from two

dependent paired
populations, 597–599

single-sample sign test under
random sampling, 580–583

Wilcoxon signed rank test
of median, 583–586, 587t
when sampling from two

dependent paired
populations, 599–603

Nonrejection region, 489
Nonsampling error, 7
Normal approximation

to binomial probabilities, 253–257,
288

continuity correction, 255–256
DeMoiver-Laplace-Gauss Limit

Theorem, 254–255, 257
to Poisson probabilities, 257,

288–289
Normal curve, 238
Normal distribution, 286–288

bivarate, 281–285
introduction to, 238–240, 239f,

240f
key properties of, 238–240
lower α-percentage point,

251–252, 251f, 252f
moment-generating function for,

249–250, 280–281
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moments, quantiles, percentage
points and, 249–253, 250f,
251f, 252f

normal curve error, 253
standard deviation, 23, 24f
upper α-percentage point,

251–252, 251f, 252f
Z transformation, 240–249, 241f,

243f–246f, 248f
Normal population(s)

chi-square probability
distribution, 353

confidence interval
for difference of means when

sampling from two
dependent paired
populations, 464–469, 469t

for difference of means when
sampling from two
independent, 458–464, 464f

for µ under random sampling
from, with known variance,
443–446

for µ under random sampling
from, with unknown
variance, 446–447, 448f

for ratio of two variances when
sampling from two
independent, 471–473

hypothesis test
for difference of means when

sampling from two
dependent paired, 553–555,
555t

for difference of means when
sampling from two
independent, 546–552, 551f

for difference of variances
when sampling from two
independent normal
populations, 557–559

for µ under random sampling
from normal population with
known variance, 496–501,
498f

for µ under random sampling
from normal population with
unknown variance, 510–512

for σ 2 under random sampling
from, 516–519, 518f

population variances
equal and known, 547
known, 461
unequal and known, 547–548

unknown but equal, 461,
548–549

unknown but unequal, 462–464,
464f, 549

sampling distribution of variance
from, 354–356

sign test when sampling from two
dependent paired, 597–599

Student’s t distribution, 357–358
unequal and unknown, 460
Wilcoxon signed rank test when

sampling from two
dependent paired
populations, 599–603

Normality
assessing, via sample moments,

634–638, 635t, 637t
goodness-of-fit test of, 619–620,

629–630, 629t
Lilliefors goodness-of-fit test for,

630–631
Shapiro-Wilk goodness-of-fit test

for, 631–632
tests of, 10f, 11

Null hypothesis (H0), 484–485, 490,
493, 495–496, 503, 504, 506,
511, 521, 532, 539, 543, 545,
557, 590–591, 597–599, 629,
645, 653, 655, 659, 680–682,
694, 700–701

composite, 534, 631
of independence, 577
joint, 683
multinomial chi-square statistic

and complete specification
of, 609–616, 610t, 616t

multinomial chi-square statistic
and incomplete specification
of, 616–621, 618t, 619t

of normality, 630, 635
not rejecting, 506–510, 574
parametric vs. nonparametric

methods, 571t

O
Observable random variable, 430
Observed data, 295
Observed frequencies, 610–611,

610t, 613, 620
Occurrence, 212

probability of, 63–64
Odds (cross-product) ratio, 655
Omnibus/composite sample

statistic, 635

Ordinal scale, 5
Outcomes

cell/class, 610, 615, 620–622
decision, 487–488, 488t
more effective and preferred, 597
point, 329t
specific assortment of, 203–204
universal set of, 60–61

Outlier, 27–29
Winsorization, 29
Z-scores, α-trimmed mean and,

27–29

P
Paired experiment, 466–467
Pairs, possible ordering of, 302, 303f
Parameter, 187, 306–307

location, 188, 235, 260
scale, 235
space, 485

Parametric family, 187
Parametric hypothesis, 484, 569.

See also Statistical
hypothesis, parametric

Partition, of space, 66, 69t
Partitioned sum of squares. See Sum

of squares
Part, the, 2
Pascal’s triangle, 193, 194f
Pearson chi-square goodness-of-fit

test
cautions/comments on, 620–621
complete specification of null

hypothesis (H0), 609–616,
610t, 616t

incomplete specification of null
hypothesis (H0), 616–621,
618t, 619t

Kolmogorov-Smirnov Test vs.,
621–622, 625, 627

of normality, 619–620
Pearson chi-square statistic, 611–612

for test of association
(independence), 646–649,
652

for test of homogenity, 651–655
Pearson product moment correlation

coefficient, 39f, 697
Pearsonian coefficient, 45

of skewness, 31
Pecking order, 6
Percent distribution, 12, 14t
Percent distribution function, 12, 15t
Percentiles, 25, 26
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Permutations, 189–192
combination vs., 191

Pivotal quantity method, 442–443,
450, 452

Point estimate, 373
Point estimator, 307. See also

Estimators
data reduction, 373
sampling error, 374
statistics as, 373–374

Point-to-point mapping, 58, 59, 59f
Poisson probability, 213–214
Poisson probability distribution,

212–218, 216t, 231–232, 389,
615–616, 6189

gamma probability density
function, 268–269

key aspects of, 217–218
normal approximation to, 257,

288–289
Poisson process, 261–262
Poisson recursion formula, 214–215
Population. See also Normal

population
as common distribution, 298
definition of, 2, 295
finite, 299–301, 302, 313–314, 328,

336
infinite, 294–299, 309–311, 317,

336
parameter, 3
sample vs., 2–4, 3f
sampled population vs. target,

4, 5t
Population correlation coefficient

(p), 696, 702
estimating, 697, 698f
inferences about, 698–705, 699t

Population parameters, 455–458, 670
Population probability distribution,

645–646
probability density function of,

296–298
sampling with replacement,

302–304, 304t
sampling without replacement,

304–306, 306t
Population regression line,

estimating slope and
intercept, 673–676, 673f,
675f, 676t, 677f, 685

Power functions, 519–528, 529
alternative hypothesis, 521,

523–525, 523t, 525t, 526t

generalized likelihood ratio tests,
544–545

high, 522
main factors influencing, 526–528,

526f, 526t, 527f
one-tailed vs. two-tail test,

526–528, 526t, 527f, 528f
power curve, 520–521, 521f, 523f,

526f
Precision, 2

degree of, 445–446, 453
Probability

joint, 66–67, 158, 158f
of Type II Error β, 504–510, 505f,

507f
Probability density function,

235–236, 262, 355. See also
Probability mass function

associated, 258
bivariate, 154–158
chi-square, 350, 353
complete family of, 401–402, 403
conditional, 159–160
continuous random variable and,

101–104, 102f, 103f, 106, 119,
123–124

exponential, 259–260, 259f,
268–269, 388–389, 398

gamma, 267, 267f
joint, 362–363, 386
logistic, 279–280
lognormal, 277
marginal, 159
Poisson, 389
of population distribution,

296–298
standard normal, 241–242, 241f,

250, 277
uniform, 106, 107f, 124–125,

236f
variance sampling distribution,

335
Probability distribution, 132–144,

671, 671f. See also Bivariate
probability distribution;
Random variables

conditional, 153, 154t
continuous, 101–106
discrete, 94–100
mean and variance of random

variable, 106–111
moment-generating function and,

119–127, 123t
probability-generating function,

127–132

quantiles of, 117–119, 118t
uniform, 95–96

Probability limit, 319–320
Probability mass function, 204

Bernoulli, 195–197, 196f
bivariate, 148, 149t, 150t, 151, 152
conditional, 152–154
discrete probability distribution,

94–95, 94f, 96f, 99, 99t
discrete uniform distribution,

194–195, 195f, 195t
generalized hypergeometric

distribution, 225–226
marginal, 150–151
multiplication theorem for,

153–154
proportion sampling distribution,

326–327, 330f
sampling distribution of mean,

315, 317f
uniform, 325, 325t, 326t
variance, 338, 338f

Probability (p) of success, 452
confidence interval for p under

random sampling from
binomial population,
451–455

hypothesis test for p under
random sampling from
binomial population,
512–516

pooled estimate of common
proportion of, 650–651

p-value of test of hypothesis,
501–504, 503f, 519, 579

Probability theory, 53, 82–91
(general) addition rule for, 65–66,

65f
axiomatic development of, 62–64,

63f
Bayes’s rule, 79–82
classical/a priori, 77, 79f, 681
empirical-frequency/a posteriori,

78, 79f
event’s classification for, 72–77
joint, marginal, conditional

probability and, 66–71, 72f
law of total probability, 68–69, 68f
likelihood, 80
mathematical (set) foundations,

53–59
multiplication law for, 68, 73
occurrence, probability of event

and, 64
prior, 80
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random experiment, events,
sample space, random
variable and, 59–62

sources of, 77–79
subjectivist/intuitivist, 77, 79f

Probability-generating function,
127–132

factorial moment, 128–129
Problems in counting, 188–194

binomial coefficient, 192–193, 194f
binomial expansion, 192–193, 198
combinations, 191–193
multinomial coefficient, 193, 194f
Multiplication Principle, 188–189
Pascal’s triangle, 193, 194f
permutation, 189–192
recursion formula, 193
tree diagram, 189, 190f

Proper integral, 265
Proportion(s)

confidence interval for differences
of proportions when
sampling from two
independent binomial
populations, 470–471

finite population correction
factor, 328

hypothesis test for difference of
proportions when sampling
from two independent
binomial populations,
555–557

outcome point, 328, 329t
probability mass function,

326–327, 330f
sampling distribution of, 326–333,

329t, 330f
sign test for, 580–582
standard error of sample, 328
strong law of large numbers for,

331
testing k, 649–651, 650t, 651t
weak law of large numbers for,

328
Proportion parameter, 188

Q
Qualitative, categorical variable, 5
Quantified degree of belief, 77
Quantiles

dispersion, 25–26
left-tailed, 360–361, 360f, 367
of probability distribution,

117–119, 118t

right-tailed, 360, 360f
Snedecor’s F distribution,

365–367, 366f
two-tailed, 361

Quantitative characteristics, 16
Quantitative summary

characteristics
central location, 16–21
dispersion, 9, 10f, 21–38, 49–50

Quantitative variables, 6
Quartiles, 25

R
Random experiment, 59–60
Random interval, 440
Random phenomenon, 60
Random sample, 293–294, 297–298

arithmetic of, 301–306, 303f, 304t
distribution of, 298
not, 300
with replacement, 293–294,

299–300, 302–304, 304t
without replacement, 300–301,

304–306, 306t, 311–314
simple, 294, 300, 301

Random variable(s), 61–62, 93,
132–144, 153

asymptotic distribution, 321
Bernoulli, 196, 325, 327, 331, 332,

393, 425
binomial, 201–202, 254–255, 332
for Chebyshev’s Theorem,

111–113
chi-square, 350, 354, 459–460
coefficient of correlation between,

164–165
continuous, 93, 110, 119, 161, 164,

173, 622
covariance, 164
cumulative, 104–106, 105f,

110–111
dependent, 154
discrete, 93, 106–108, 130–131,

167, 173, 326
estimator, 375
exponential, 261
geometric, 207
hypergeometric, 223
identically distributed, 97
independent, 161–162, 165–167,

173, 279, 309–310, 324, 327,
333, 340, 354, 356

lognormal, 277, 278
mean and variance of, 106–111

moment-generating function,
119–127, 123t

moments of, 113–117, 116t
mutually independent, 153–154,

297, 299, 300–301
nearly independent, 301
negative binomial, 212
normal, 239
observable, 430
Pearson/multinomial chi-square

statistic, 611–612
Poisson, 215, 217, 258, 616
realization of, 296
sample, 296–297, 338, 340
standard normal, 241
Student’s t distribution, 365
uniform, 238

Randomness, 3, 603–608
lack of, 572
Mann-Whitney (rank-sum) test

for two independent
samples, 590–597

runs tests, 572–576
for two independent samples,

587–590
sign test when sampling from two

dependent paired
populations, 597–599

single-sample sign test under
random sampling, 580–583

tests of, 10f, 11
tests of single sample, 572–579
von Neumann ratio test, 576–579
Wilcoxon signed rank test

of median, 583–586, 587t
when sampling from two

dependent paired
populations, 599–603

Randomness hypothesis, 569–570
Range, dispersion, 22
Rank-sum. See Mann-Whitney

(rank-sum) test
Rao-Blackwell Theorem, 399–400

Generalized, 408
Rate parameter, 188
Ratio scale, 6

descriptive techniques for
summarizing sets of, 9–11,
10f

Realizations, 630, 662, 662t
Reciprocal property, Snedecor’s

F distribution, 367
Rectangular probability distribution.

See Uniform probability
distribution
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Recursion formula
hypergeometric, 222
Poisson, 214–215
problems in counting, 193

Regression coefficients, standard
errors, 678

Regression curve, 284–285, 669
Regression mean square, 694, 695t
Regression model, 669–670, 705–716

best fit of, 670
correlation model and, 695–697
decomposition of sample

variation of Y, 691–695, 691f,
693f, 693t, 695t

hypothesis testing of population
parameters (β0), (β1),
680–684

least squares estimators (β0), (β1)
mean, variance and sampling

of, 676–679
precision of, 679–680

least squares regression equation,
677f

precision of, confidence band,
684–687, 686f, 687t

partitioned sum of squares and,
691–692, 693t, 694, 695t

population correlation coefficient,
696, 702

estimating, 697, 698f
inferences about, 698–705, 699t

population regression line,
estimating slope and
intercept, 673–676, 673f,
675f, 676t, 677f

prediction band, 689
prediction of particular value of Y

given X, 687–691
sample regression line, 673, 673f,

675f, 676, 689
strong classical linear, 670–673,

671f, 675
Relative efficiency (RE), 384–385
Relative frequency distribution, 12,

13t, 14t
Relative variation, dispersion, 33–34
Reliability, 2

coefficient, 100(1 − α)%, 445–446
degree of, 445

Reproductive (additivity) property
chi-square probability

distribution, 353–354
Risk, of wrong decision, 487–488,

488t
Runs tests, 572–576

large sample, 574–575
runs above and below sample

median, 575–576
small sample, 573–574
too few and too many runs, 572
for two independent samples,

572–576

S
Sample

behavior of, 444
definition of, 2, 295
elementary sampling unit, 4
mean, 362, 385
population vs., 2–4, 3f
random variable, 296–297
statistic, 3
typical, 3
variance, 379

Sample regression line, 673, 673f,
675f, 676, 689

Sample size requirements formula,
446, 454

Sample space, 60–62, 62f, 154, 196,
325, 387

effective, 67
three-dimensional, 99, 99f

Sample variation, standard
deviation, dispersion and,
35–38

Sampled population, 294
target vs., 4, 5t, 294

Sampling, 1. See also Random
sampling

common distribution of, 298
error, 7, 307, 329t, 330, 374, 376
with replacement, 3, 299–300,

302–304, 304t, 333
without replacement, 3, 299–300,

304–306, 306t
Sampling distribution, 342–346

central limit theorem, 322–326
convergence concepts, 319–321
exact, 357
of proportion, 326–333
sample moments note on, 338–340
of statistic, 306–308
of variance, 333–338

from normal population,
354–356

weak law of large numbers,
316–319, 321

Sampling distribution, of mean,
308–315, 316t, 317f, 317t

additivity theorem, 308–309
from finite population, 311–315,

316t, 317f, 317t
finite population correction

factor, 313–314
from infinite population, 309–311
normal, 311–312
probability mass function, 315,

317f
standard error of mean, 310, 314

Sampling frame, 4
Sampling scenarios

data generating process, infinite
population and, 294–299,
296f

finite population drawings,
299–301

Scale, measurement, 5–6
Scale parameter, 188, 235
Serial correlation, 576–577
Set(s), 54, 54f

countable, 93
difference of, 55, 56f
functions, 59, 60f
information, 55–58, 57f, 58f
intersection, 55, 55f
null/empty, 54
relationship, 54–55, 54f
universal, 54–55, 55f, 56f, 60

Shape parameter, 188
Shapiro-Wilk goodness-of-fit test for

normality, 631–632
Shapiro-Wilk (SW) test static, 632
Sign test, 580–583. See also Wilcoxon

signed rank test of median
large-sample, for median, 583
for median, 582–583
for proportion, 580–582
when sampling from two

dependent paired
populations, 597–599, 599t

Simple random sample, 294, 300, 301
Single prior estimate made, 36
Sins, multitude of, 670
Skewness

Bowley’s coefficient of, 32
coefficient of, 114, 116, 197, 207,

212, 217, 223, 237, 240, 260,
268, 273, 351, 359–360, 364,
635

dispersion, 31–32, 31f
measures of, 9, 10f
Pearsonian coefficient of, 31
standard, 32

Slutsky Theorem, 416
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Small sample distribution, 359
Snedecor’s F distribution, 349,

362–368, 363f, 366f, 368f,
370–371

freedom, degrees of, 363–364
joint probability density function,

362–363
key properties of, 364–365
quantiles, 365–367, 366f
reciprocal property, 367

Space. See also Sample space
partition of, 66, 69t

Spearman rank correlation
coefficient, 42–45, 559–560

Standard deviation, 48, 249, 351, 359
Chebyshev’s Theorem, 23, 24f,

112–113
of discrete random variable, 109,

109t
dispersion, 22–23, 23t, 27f
dispersion and, of frequency

distribution, 23–24, 25t
mean in, 27f, 34
normal distribution, 23, 24f
sample variation, dispersion and,

35–38
Standard normal cumulative

distribution function,
241–243, 242f, 244f

Standard normal probability density
function, 241–242, 241f, 250,
277

Standardized interquartile range, 28
Standardized ordered realization,

630
Standardized sample mean, 322, 323
Standardized variables, dispersion,

26–29, 27f
Statement confidence coefficient,

456
Statistic, 307, 373
Statistical hypothesis, parametric,

483, 561–567. See also
Hypothesis

best/powerful test criterion for,
528–537

decision outcomes on, 487–488,
488t

decision rule, 489, 496, 551f
fundamental concepts for testing,

484–485
generalized likelihood ratio tests,

537–546
good tests for, 537–538

nonparametric methods vs., 570,
570t–571t, 587t, 603t

power functions/operating
characteristics tests for,
519–528, 529

probability of Type II Error β,
504–510, 505f, 507f

p-value of test, 501–504, 503f, 519
research question for, 486
test

for p under random sampling
from binomial population,
512–516

for σ 2 under random sampling
from normal population,
516–519, 518f

for Spearman’s rank correlation
coefficient, 557–559

test for difference
of proportions when sampling

from two independent
binomial populations,
555–557

of variances when sampling
from two independent
normal populations, 557–559

test for difference of means
when sampling from two

dependent paired
populations, 553–555, 555t

when sampling from two
independent normal
populations, 546–552, 551f

test for µ under random sampling
from normal population

with known variance, 496–501,
498f

with unknown variance,
510–512

test results, 501–504, 503f
testing, classical approach,

491–493, 491f, 492f, 501,
521–522

testing essentials, 495–496
testing of, 488–490
tests types/critical regions, 489,

493–495, 493f, 494f, 529–531,
533, 535, 539, 540, 542–544

“too much” in, 497–499
Statistical inference, 1, 293, 483–484
Statistical significance, 495
Statistical stability, 319
Statistics

complete sufficient, 401–403
defined, 1

minimal sufficient, 398–399
point estimator as, 373–374
sufficient, 394–398, 399–401
types of, 1–2

Step function, 13, 16f
Stirling’s formula, 50, 190
Stochastically convergent, 319–321
Strong law of large numbers, 321

for proportions, 331
Student’s t distribution, 349,

357–362, 358f, 360f, 361f,
362f, 370, 541

cumulative distribution function,
358

freedom, degrees of, 357–358
key properties of, 358–360
upper and lower percentage point

of, 360–361, 360f
Success. See also Probability (p) of

success
binomial distribution, 198, 227,

254
as coin shows heads, 325t, 328, 330
geometric distribution, 206
hypergeometric probability

distribution, 219, 222f
negative binomial distribution,

209, 212
Poisson distribution, 213
probability (ρ) of, 452
proportions of, 470
relative frequency of, 327

Sufficient statistics
complete, 403
definition, 394–396
estimator developed with,

394–398
factorization criterion for,

396–397
Fisher-Neyman Factorization

Theorem, 396–397
jointly, 405–408
known, 395
Rao-Blackwell Theorem, 399–400
use of, 399–401

Sum of faces showing, 61, 256
Sum of squares

explained/unexplained, 692
partitioned, 691–692, 693t, 694,

695t
Summarizing sets of ratio scale,

9–11, 10f
Systematic component, 670–671
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T
t distribution. See Student’s

t distribution
T. See Point estimator
Tabular methods, 11–16
Target population, 294

sampled population vs., 4, 5t, 294
Theoretical distributions, 187
Time, 576
Tree diagram, 189, 190f

U
Unbiased estimator, 376–380, 377f,

383, 391–392, 675, 684, 687
asymptotically, 410, 416
best linear, 404–405, 430, 674–675
better, 400, 402, 408
consistent, 413–414
of zero, 402–403

Uniform probability density
function, 236f

Uniform probability distribution,
236–238, 286

key properties of, 237
Uniform probability mass function,

325, 325t, 326t
Upper α-percentage point, 251–252,

251f, 252f
Upper percentage point of t

distribution, 360–361, 360f

V
Value, long-run stable, 78, 107
Variable, 2

Bernoulli, 196
explained, 670
explanatory, 670
nonrandom, 672
transformation of, 241

Variance (σ ), 364
confidence interval, 449

for µ under random sampling
from normal population with
known, 443–446

for µ under random sampling
from normal population with
unknown, 446–447, 448f

for ratio of two variances when
sampling from two
independent normal
populations, 471–473

for σ 2 under random sampling
from normal population with
unknown mean, 447–451,
448f, 450f, 451f

hypothesis test
for difference of variances

when sampling from two
independent normal
populations, 557–559

for σ 2 under random sampling
from normal population,
516–519, 518f

hypothesis test for µ under
random sampling from
normal population

with known, 496–501, 498f
with unknown, 510–512

least squares estimators, mean,
sampling and, 676–679

limiting, of estimator, 410
mean-square-successive

difference to, 577–578
population variances

equal and known, 547
known, 461
unequal and known, 547–548
unknown but equal, 461–462,

548–549
unknown but unequal, 462–464,

464f, 549
probability mass function, 338,

338f
sample, 379
sampling distribution, 333–338,

337t, 338f
from normal population,

354–356
weak law of large numbers for,

335
Variation, coefficient of, 34
Venn diagram, 54, 54f, 57, 58f
Volume, 59, 60f
von Neumann ratio test, 576–579,

579t
discrete time series, 576
mean-square-successive

difference to variance,
577–578

serial correlation, 576–577

W
Weak law of large numbers,

316–319, 321

for proportions, 330
strong law of large numbers vs.,

321
for variance, 335

Weighed mean, central location,
17–18, 18t

Whole, 2
Wilcoxon signed rank test of

median, 583, 587t
large-sample, 585–596, 601–602,

602t
small-sample, 584–585, 585t,

600–601
when sampling from two

dependent paired
populations, 599–603

Winsorization, 29

X
X and Y

correlation between, 38–42
covariance of, 38–39, 164–165
expected value of, 107
linear association of, 39–40, 39f
linear relationship of, 164
rank correlation between, 42–45,

45t
regression model and prediction

of particular value of Y given
X, 687–691

regression model, decomposition
of sample variation of Y,
691–695, 691f, 693f, 693t,
695t

scales, 247–248, 248f
variance of, 165

Y
Yates’ continuity correction,

647–648, 662–663

Z
Z transformation

normal distribution, 240–249,
241f, 243f–246f, 248f

standard normal cumulative
distribution function,
241–243, 242f, 244f

standard normal probability
density function, 241–242,
241f
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