


Network Security
Ali Shakiba

Vali-e-Asr University of Rafsanjan

ali.shakiba@vru.ac.ir

www.1ali.ir



172 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned



173 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

The RSA Cryptosystem

• Martin Hellman and Whitfield Diffie published their landmark public-
key paper in 1976

• Ronald Rivest, Adi Shamir and Leonard Adleman proposed the 
asymmetric RSA cryptosystem  in1977

• Until now, RSA is the most widely use asymmetric cryptosystem 
although elliptic curve cryptography (ECC) becomes increasingly 
popular

• RSA is mainly used for two applications

• Transport of (i.e., symmetric) keys (cf. Chptr 13 of Understanding 
Cryptography)

• Digital signatures (cf. Chptr 10 of Understanding Cryptography)



174 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Encryption and Decryption

• RSA operations are done over the integer ring Zn (i.e., arithmetic 
modulo n), where n = p * q, with p, q being large primes

• Encryption and decryption are simply exponentiations in the ring

• In practice x, y, n and d are very long integer numbers (≥ 1024 bits)

• The security of the scheme relies on the fact that it is hard to derive 
the „private exponent“ d given the public-key (n, e)

Definition

Given the public key (n,e) = kpub and the private key d = kpr we write

y = ekpub(x) ≡ xe mod n

x = dkpr(y) ≡ yd mod n

where x, y ε Zn. 

We call ekpub() the encryption and dkpr() the decryption operation.



175 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Key Generation
• Like all asymmetric schemes, RSA has set-up phase during which 

the private and public keys are computed

Remarks:

• Choosing two large, distinct primes p, q (in Step 1) is non-trivial

• gcd(e, Φ(n)) = 1 ensures that e has an inverse and, thus, that there 
is always a private key d

Algorithm: RSA Key Generation

Output: public key: kpub = (n, e) and private key kpr = d

1. Choose two large primes p, q

2. Compute n = p * q

3. Compute Φ(n) = (p-1) * (q-1)

4. Select the public exponent e ε {1, 2, …, Φ(n)-1} such that
gcd(e, Φ(n) ) = 1

5. Compute the private key d such that d * e ≡ 1 mod Φ(n)

6. RETURN kpub = (n, e), kpr = d



176 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Example: RSA with small numbers

ALICE

Message x = 4

y = xe ≡ 43 ≡ 31 mod 33

BOB

1. Choose p = 3 and q = 11

2. Compute n = p * q = 33

3. Φ(n) = (3-1) * (11-1) = 20

4. Choose e = 3

5. d ≡ e-1 ≡7 mod 20

yd = 317 ≡ 4 = x mod 33

Kpub = (33,3)

y = 31



177 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned



178 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Implementation aspects

• The RSA cryptosystem uses only one arithmetic operation (modular 
exponentiation) which makes it conceptually a simple asymmetric 
scheme

• Even though conceptually simple, due to the use of very long 
numbers, RSA is orders of magnitude slower than symmetric 
schemes, e.g., DES, AES

• When implementing RSA (esp. on a constrained device such as 
smartcards or cell phones) close attention has to be paid to the 
correct choice of arithmetic algorithms

• The square-and-multiply algorithm allows fast exponentiation, even 
with very long numbers…



179 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Square-and-Multiply
• Basic principle: Scan exponent bits from left to right and 

square/multiply operand accordingly

• Rule: Square in every iteration (Step 3) and multiply current result 
by x if the exponent bit hi = 1 (Step 5)

• Modulo reduction after each step keeps the operand y small

Algorithm: Square-and-Multiply for xH mod n 

Input: Exponent H, base element x, Modulus n

Output: y = xH mod n

1. Determine binary representation H = (ht, ht-1, ..., h0)2

2. FOR i = t-1 TO 0

3. y = y2 mod n

4. IF hi = 1 THEN

5. y = y * x mod n

6. RETURN y



180 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Example: Square-and-Multiply

• Computes x26 without modulo reduction

• Binary representation of exponent: 26 =(1,1,0,1,0)2=(h4,h3,h2,h1,h0)2

• Observe how the exponent evolves into x26  = x11010

Step Binary exponent Op Comment

1 x = x1 (1)2 Initial setting, h4 processed

1a (x1)2 = x2 (10)2 SQ Processing h3

1b x2 * x = x3 (11)2 MUL h3 = 1

2a (x3)2 = x6 (110)2 SQ Processing h2

2b - (110)2 - h0 = 0

3a (x6)2 = x12 (1100)2 SQ Processing h1

3b x12 * x = x13 (1101)2 MUL h1=1

4a (x13)2 = x26 (11010)2 SQ Processing h0

4b - (11010)2 - h0 = 0



181 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Complexity of Square-and-Multiply Alg.

• The square-and-multiply algorithm has a logarithmic complexity, i.e., 
its run time is proportional to the bit length (rather than the absolute 
value) of the exponent

• Given an exponent with t+1 bits
H = (ht,ht-1, ..., h0)2 

with ht = 1, we need the following operations 

• # Squarings = t

• Average # multiplications = 0.5 t

• Total complexity: #SQ + #MUL = 1.5 t

• Exponents are often randomly chosen, so 1.5 t is a good estimate 
for the average number of operations

• Note that each squaring and each multiplication is an operation with 
very long numbers, e.g., 2048 bit integers.



182 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Speed-Up Techniques

• Modular exponentiation is computationally intensive

• Even with the square-and-multiply algorithm, RSA can be quite slow 
on constrained devices such as smart cards

• Some important tricks:

• Short public exponent e

• Chinese Remainder Theorem (CRT)

• Exponentiation with pre-computation (not covered here)



183 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fast encryption with small public exponent
• Choosing a small public exponent e does not weaken the security of 

RSA

• A small public exponent improves the speed of the RSA encryption 
significantly

• This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA 
the fastest asymmetric scheme with regard to encryption!

Public Key e as binary string #MUL + #SQ

21+1 = 3 (11)2 1 + 1 = 2

24+1 = 17 (1 0001)2 4 + 1 = 5

216 + 1 (1 0000 0000 0000 0001)2 16 + 1 = 17



184 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fast decryption with CRT

• Choosing a small private key d results in security weaknesses! 

• In fact, d must have at least 0.3t bits, where t is the bit 
length of the modulus n

• However, the Chinese Remainder Theorem (CRT) can be used to 
(somewhat) accelerate exponentiation with the private key d

• Based on the CRT we can replace the computation of 

xd mod Φ(n) mod n

by two computations 

xd mod (p-1) mod p and xd mod (q-1) mod q

where q and p are „small“ compared to n



185 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Basic principle of CRT-based exponentiation

• CRT involves three distinct steps

(1) Transformation of operand into the CRT domain

(2) Modular exponentiation in the CRT domain

(3) Inverse transformation into the problem domain

• These steps are equivalent to one modular exponentiation in the 
problem domain

x

xp

xq

Xp
d mod (p-1) mod p

Xq
d mod (q-1) mod q

xd mod nProblem
Domain

CRT Domain



186 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 1 – Transformation

• Transformation into the CRT domain requires the knowledge of p
and q

• p and q are only known to the owner of the private key, hence CRT 
cannot be applied to speed up encryption

• The transformation computes (xp, xq) which is the representation of x
in the CRT domain. They can be found easily by computing

xp ≡ x mod p and      xq ≡ x mod q



187 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 2 – Exponentiation

• Given dp and dq such that

dp ≡ d mod (p-1)      and dq ≡ d mod (q-1)

one exponentiation in the problem domain requires two 
exponentiations in the CRT domain

yp ≡ xp
dp mod p      and yq ≡ xq

dq mod q

• In practice, p and q are chosen to have half the bit length of n, i.e., 
|p| ≈ |q| ≈ |n|/2



188 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

CRT: Step 3 – Inverse Transformation

• Inverse transformation requires modular inversion twice, which is 
computationally expensive

cp ≡ q-1 mod p      and cq ≡ p-1 mod q

• Inverse transformation assembles yp, yq to the final result y mod n in 
the problem domain

y ≡ [ q * cp ] * yp + [ p * cq ] * yq mod n

• The primes p and q typically change infrequently, therefore the cost 
of inversion can be neglected because the two expresssions

[ q * cp ]  and [ p * cq ]
can be precomputed and stored



189 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Complexity of CRT
• We ignore the transformation and inverse transformation steps since 

their costs can be neglected under reasonable assumptions

• Assuming that n has t+1 bits, both p and q are about t/2 bits long

• The complexity is determined by the two exponentiations in the CRT 
domain. The operands are only t/2 bits long. For the exponentiations 
we use the square-and-multiply algorithm:

• # squarings (one exp.): #SQ = 0.5 t

• # aver. multiplications (one exp.): #MUL = 0.25t

• Total complexity: 2 * (#MUL + #SQ) = 1.5t

• This looks the same as regular exponentations, but since the 
operands have half the bit length compared to regular exponent., 
each operation (i.e., multipl. and squaring) is 4 times faster! 

• Hence CRT is 4 times faster than straightforward exponentiation



190 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned



191 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Finding Large Primes

• Generating keys for RSA requires finding two large primes p and q 
such that n = p * q is sufficiently large

• The size of p and q is typically half the size of the desired size of n

• To find primes, random integers are generated and tested for 
primality:

• The random number generator (RNG) should be non-predictable 
otherwise an attacker could guess the factorization of n

RNG Primality Test
p' „p‘ is prime“

OR
„p‘ is composite“

a

candidate
prime



192 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Primality Tests

• Factoring p and q to test for primality is typically not feasible 

• However, we are not interested in the factorization, we only want to 
know whether p and q are composite

• Typical primality tests are probabilistic, i.e., they are not 100% 
accurate but their output is correct with very high probability

• A probabilistic test has two outputs:

• „p‘ is composite“ – always true 

• „p‘ is a prime“ – only true with a certain probability

• Among the well-known primality tests are the following

• Fermat Primality-Test

• Miller-Rabin Primality-Test



193 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Fermat Primality-Test

• Basic idea: Fermat‘s Little Theorem holds for all primes, i.e., if a 
number p‘ is found for which ap‘-1 ≡ 1 mod p‘, it is not a prime

• For certain numbers („Carchimchael numbers“) this test returns „p‘
is likely a prime“ often – although these numbers are composite

• Therefore, the Miller-Rabin Test is preferred

Algorithm: Fermat Primality-Test

Input: Prime candidate p‘, security parameter s

Output: „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. IF ap‘-1  ≡ 1 mod p’ THEN

4. RETURN „p‘ is composite“

5. RETURN „p‘ is likely a prime“



194 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Theorem for Miller-Rabin‘s test

• The more powerful Miller-Rabin Test is based on the following 
theorem

• This theorem can be turned into an algorithm

Theorem

Given the decomposition of an odd prime candidate p‘ 

p‘ – 1 = 2u * r

where r is odd. If we can find an integer a such that

ar ≡ 1 mod p‘ and       ar2j ≡ p‘ - 1 mod p‘

For all j = {0,1, ..., u-1}, then p‘ is composite. 

Otherwise it is probably a prime.



195 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Miller-Rabin Primality-Test

Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate p‘ with p‘-1 = 2u * r security parameter s

Output: „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. z ≡ ar mod p’

4. IF z ≠ 1 AND z ≠ p’-1 THEN

5. FOR j = 1 TO u-1

6. z ≡ z2 mod p’

7. IF z = 1 THEN

8. RETURN „p‘ is composite“

9. IF z ≠ p‘-1 THEN

10. RETURN „p‘ is composite“

11. RETURN „p‘ is likely a prime“



196 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned



197 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 1/3

• There are two distinct types of attacks on cryptosystems

• Analytical attacks try to break the mathematical structure of the 
underlying problem of RSA

• Implementation attacks try to attack a real-world 
implementation by exploiting inherent weaknesses in the way 
RSA is realized in software or hardware



198 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors

• Mathematical attacks

• The best known attack is factoring of n in order to obtain Φ(n)

• Can be prevented using a sufficiently large modulus n

• The current factoring record is 664 bits. Thus, it is recommended 
that n should have a bit length between 1024 and 3072 bits

• Protocol attacks

• Exploit the malleability of RSA, i.e., the property that a ciphertext
can be transformed into another ciphertext which decrypts to a 
related plaintext – without knowing the private key

• Can be prevented by proper padding



199 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 3/3

• Implementation attacks can be one of the following

• Side-channel analysis

• Exploit physical leakage of RSA implementation (e.g., 
power consumption, EM emanation, etc.)

• Fault-injection attacks

• Inducing faults in the device while CRT is executed can 
lead to a complete leakage of the private key

More on all attacks can be found in Section 7.8 of Understanding Cryptography



200 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Attacks and Countermeasures 2/2

• RSA is typically exposed to these analytical attack vectors (cont’d)

• Protocol attacks

• Exploit the malleability of RSA

• Can be prevented by proper padding

• Implementation attacks can be one of the following

• Side-channel analysis

• Exploit physical leakage of RSA implementation (e.g., 
power consumption, EM emanation, etc.)

• Fault-injection attacks

• Inducing faults in the device while CRT is executed can 
lead to a complete leakage of the private key



201 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned



202 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

Lessons Learned

• RSA is the most widely used public-key cryptosystem

• RSA is mainly used for key transport and digital signatures

• The public key e can be a short integer, the private key d needs to 
have the full length of the modulus n

• RSA relies on the fact that it is hard to factorize n

• Currently 1024-bit cannot be factored, but progress in factorization 
could bring this into reach within 10-15 years. Hence, RSA with a 
2048 or 3076 bit modulus should be used for long-term security

• A naïve implementation of RSA allows several attacks, and in 
practice RSA should be used together with padding



• Diffie–Hellman Key Exchange

• The Discrete Logarithm Problem 

• Security of the Diffie–Hellman Key Exchange 

• The Elgamal Encryption Scheme 

 Content of this Chapter

203/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



• Proposed in 1976 by Whitfield Diffie and Martin Hellman

• Widely used, e.g. in Secure Shell (SSH), Transport Layer Security (TLS), and Internet Protocol 

Security (IPSec)

• The Diffie–Hellman Key Exchange (DHKE) is a key exchange protocol and not used for 

encryption

(For the purpose of encryption based on the DHKE, ElGamal can be used.)

 Diffie–Hellman Key Exchange: Overview

204/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



Diffie–Hellman Key Exchange: Set-up

1. Choose a large prime p.

2. Choose an integer α ∈ {2,3, . . . , p−2}.

3. Publish p and α.

205/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



Alice

Diffie–Hellman Key Exchange

Bob

Choose random private key
kprA=a ∈{1,2,…,p-1}

Choose random private key
kprB=b ∈ {1,2,…,p-1}

Compute corresponding public key
kpubA= A = αa mod p

Compute correspondig public key
kpubB= B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

yy = AESkAB(x) x = AES-1
kAB(y)

206/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

We can now use the joint key kAB
for encryption, e.g., with AES



Alice

Diffie–Hellman Key Exchange: Example

Bob

Choose random private key
kprA= a = 5

Choose random private key
kprB=b = 12

Compute corresponding public key
kpubA= A = 25 = 3 mod 29

Compute correspondig public key
kpubB= B = 212 = 7 mod 29

Compute common secret
kAB = Ba = 75 = 16 mod 29

Compute common secret
kAB = Ab = 312 = 16 mod 29

A

B

Domain parameters p=29, α=2

207/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

Proof of correctness:

Alice computes: Ba = (αb)a mod p
Bob computes:  Ab = (αa)b mod p 

i.e., Alice and Bob compute the same key kAB ! 



Discrete Logarithm Problem (DLP) in Zp*

• Given is the finite cyclic group Zp* of order p−1 and a primitive element α ∈ Zp* and another 

element β ∈ Zp*. 

• The DLP is the problem of determining the integer 1 ≤ x ≤ p−1 such that

αx ≡ β mod p

• This computation is called the discrete logarithm problem (DLP)

x = logα β mod p 

• Example: Compute x  for 5x ≡ 41 mod 47

Remark: For the coverage of groups and cylcic groups, we refer to Chapter 8 of Understanding 

Cryptography

 The Discrete Logarithm Problem

208/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



• Given is a finite cyclic group G with the group operation ◦ and cardinality n. 

• We consider a primitive element α ∈ G and another element β ∈ G. 

• The discrete logarithm problem is finding the integer x, where 1 ≤ x ≤ n, such that: 

β = α ◦ α ◦ α ◦. . .◦ α = αx

 The Generalized Discrete Logarithm Problem

x times

209/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



The following discrete logarithm problems have been proposed for use in cryptography

1. The multiplicative group of the prime field Zp or a subgroup of it. For instance, the 

classical DHKE uses this group (cf. previous slides), but also Elgamal encryption or 

the Digital Signature Algorithm (DSA). 

2. The cyclic group formed by an elliptic curve (see Chapter 9)

3. The multiplicative group of a Galois field GF(2m) or a subgroup of it. Schemes such as 

the DHKE can be realized with them. 

4. Hyperelliptic curves or algebraic varieties, which can be viewed as generalization of 

elliptic curves. 

Remark: The groups 1. and 2. are most often used in practice.

 The Generalized Discrete Logarithm Problem

210/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



• Security of many asymmetric primitives is based on the difficulty of computing the DLP in cyclic 

groups, i.e.,

Compute x for a given α and β such that β = α ◦ α ◦ α ◦. . .◦ α = αx

• The following algorithms for computing discrete logarithms exist

• Generic algorithms: Work in any cyclic group

• Brute-Force Search

• Shanks‘ Baby-Step-Giant-Step Method

• Pollard‘s Rho Method

• Pohlig-Hellman Method

• Non-generic Algorithms: Work only in specific groups, in particular in Zp

• The Index Calculus Method

• Remark: Elliptic curves can only be attacked with generic algorithms which are weaker than non-

generic algorithms. Hence, elliptic curves are secure with shorter key lengths than the DLP in 

prime fields Zp

 Attacks against the Discrete Logarithm Problem

211/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



Summary of records for computing discrete logarithms in Zp*

 Attacks against the Discrete Logarithm Problem

Decimal digits Bit length Date
58 193 1991
68 216 1996
85 282 1998

100 332 1999
120 399 2001
135 448 2006
160 532 2007

212/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

In order to prevent attacks that compute the DLP, it is recommended to use primes 
with a length of at least 1024 bits for schemes such as Diffie-Hellman in Zp*



• Which information does Oscar have?

• α, p

• kpubA = A = αa mod p

• kpubB = B = αb mod p

• Which information does Oscar want to have?

• kAB = αba = αab = mod p

• This is kown as Diffie-Hellman Problem (DHP)

• The only known way to solve the DHP is to solve the DLP, i.e.

1.Compute a = logα A mod p

2.Compute kAB = Ba = αba = mod p

It is conjectured that the DHP and the DLP are equivalent, i.e., solving the DHP 

implies solving the DLP.

• To prevent attacks, i.e., to prevent that the DLP can be solved, choose

p > 21024

 Security of the classical Diffie–Hellman Key Exchange 

213/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



• Proposed by Taher Elgamal in 1985

• Can be viewed as an extension of the DHKE protocol

• Based on the intractability of the discrete logarithm problem and the Diffie–Hellman problem

 The Elgamal Encryption Scheme: Overview

214/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



 The Elgamal Encryption Scheme: Principle

Alice Bob

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute ephemeral key
kE = kpubA= αi mod p

compute kM = kE
d mod p

compute kM = βi mod p

encrypt message x ∈ Zp*:
y = x·kM mod p

kE

y

β

decrypt x = y·kM
-1 mod p

215/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

This looks very similar to the DHKE! The actual Elgamal protocol re-orders 

the computations which helps to save one communication (cf. next slide)



 The Elgamal Encryption Protocol

Alice Bob
choose large prime p

choose primitive element  α ∈ Zp*
or in a subgroup of Zp*

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute kE = kpubA= αi mod p

compute masking key  kM = βi mod p

compute masking key kM = kE
d mod p

encrypt message x ∈ Zp*:
y = x·kM mod p (kE, y)

kpubB = (p, α, β)

decrypt x = y·kM
-1 mod p

216/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



• Key Generation

• Generation of prime p 

• p has to of size of at least 1024 bits

• cf. Section 7.6 in Understanding Cryptography for prime-finding algorithms

• Encryption

• Requires two modular exponentiations and a modular multiplictation

• All operands have a bitlength of  log2p

• Efficient execution requires methods such as the square-and-multiply algorithm 

(cf. Chapter 7)

• Decryption

• Requires one modular exponentiation and one modulare inversion

• As shown in Understanding Cryptography, the inversion can be computed from the 

ephemeral key

 Computational Aspects

217/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



• Passive attacks

• Attacker eavesdrops p, α, β = αd , kE = αi, y = x· βi and wants to recover x

• Problem relies on the DLP

• Active attacks

• If  the public keys are not authentic, an attacker could send an incorrect public key 

(cf. Chapter 13)

• An Attack is also possible if the secret exponent i is being used more than once (cf. 

Understanding Cryptography for more details on the attack)

 Security

218/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl



• The Diffie–Hellman protocol is a widely used method for key exchange. It is based on cyclic 

groups.

• The discrete logarithm problem is one of the most important one-way functions in modern 

asymmetric cryptography. Many public-key algorithms are based on it.

• For the Diffie–Hellman protocol in Zp*, the prime p should be at least 1024 bits long. This 

provides a security roughly equivalent to an 80-bit symmetric cipher.

• For a better long-term security, a prime of length 2048 bits should be chosen. 

• The Elgamal scheme is an extension of the DHKE where the derived session key is used as a 

multiplicative masked to encrypt a message.

• Elgamal is a probabilistic encryption scheme, i.e., encrypting two identical messages does not 

yield two identical ciphertexts.

 Lessons Learned

219/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl


