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Preface

This book is devoted to (a) multivariate models for non-normal re-
sponse, an area of probability and statistics with increasing activity
and applications, and (b) dependence concepts that are useful for
analysing properties of multivariate models. It also adds to the
knowledge of the space of multivariate distributions.

By a multivariate model, I mean a parametric statistical model
for a multivariate response, possibly with covariates. Examples are
models for multivariate or longitudinal count, binary and ordinal
response data. My approach consists of the modelling of the uni-
variate margins followed by adding the appropriate dependence
structure, with considerations of positive or negative dependence,
and exchangeable, time series or general dependence structure. 1
find that dependence concepts and dependence analysis are neces-
sary to understand a model and when it might be applicable. This
includes analysis of the range of dependence that a model permits
and whether the dependence of the model increases as multivariate
parameters increase.

This book’s special features include:

e methods for constructions of multivariate non-normal distribu-
tions and copulas;

o the topics of Fréchet classes and dependence concepts;

e an introduction to new statistical inference theory for multivari-
ate models — the method of inference functions for margins is
presented in Chapter 10;

e data analysis examples with comparisons of models, diagnostic
checking and sensitivity analyses;

e exercises and unsolved problems at the end of chapters;

e some supplementary results in the Appendix, in order to make
the book more self-contained.
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This book has minimal overlap with earlier books on bivariate and
multivariate distributions.

The methods and models of this book extend commonly used
univariate models to multivariate models in which parameters of
the models can be considered as univariate parameters or depend-
ence parameters, and allow one to make a variety of inferences as
well as assess assumptions, do diagnostic checks, make model com-
parisons and perform sensitivity analyses. These are not all poss-
ible with the method of generalized estimating equations (GEEs),
which is based on partly specified probability models. There have
been many advances in research in multivariate non-normal distri-
butions since researchers proposed methods like the GEE approach
partly because of a lack of existing models. The models and meth-
ods here are more general and more flexible, and less dependent
on assumptions, than are GEEs.

The topics in the book have been largely motivated by applica-
tions. Because of space limitations, I cover only the main concepts
and ideas that can be used to construct and analyse multivari-
ate distributions and models. There is by no means an exhaustive
coverage of what has appeared in the probability and statistics
literature in multivariate models and dependence concepts, and
there are no comparisons for analysis of multivariate or longitud-
inal non-normal response data with methods that do not fall within
the theme of the ‘multivariate’ approach. Only the most relevant
references are cited and these are mainly in the sections entitled
‘Bibliographic notes’.

There is no real linear ordering of the material in this book,
so that the more foundational results are given earlier. Different
sections are cross-referenced in order that the reader can more
easily move around non-linearly. Some features to help the reader
are as follows.

e Section 1.3 consists of notation, abbreviations and conventions
used throughout.

o Those sections that provide a basic introduction to multivariate
models and dependence concepts are indicated with a ° sym-
bol in the section title and those that are very advanced are
indicated with a * symbol.

e There is an appendix at the end to make the book more self-
contained. :

e The index is arranged so that the first page number listed is
usually the definition of a term.
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Audience

This book is written for a number of audiences: (i) those who work
with and analyse multivariate or longitudinal non-normal response
data; (i) those interested in methods for constructing multivariate
non-normal distributions; (iii) researchers (or those who want to
become researchers) in multivariate non-normal statistics; and (iv)
those who need a reference for multivariate models and dependence
concepts.

This book can be read or used in several ways. The reader who
is more interested in the theory and foundations can start from the
beginning. The reader who is more interested in applications and
how the theory applies can start with the examples of data analyses
in Chapter 11, and then read the sections with the relevant theory
for the multivariate models and inference. This book can also be
used as a reference or as a starting point for further research (there
are pointers throughout on further research that could be done, for
example, in the exercises and unsolved problems).

This book assumes that the reader has some background in
mathematical statistics and probability. To implement or to ana-
lyse the models, the reader should be able to write out the prob-
ability distributions based on stochastic representations. Some-
times the model is given only in terms of stochastic representations
because this takes less space and makes properties of the model
more evident. In a few places, terminology from measure theory or
other areas of mathematics 1s used; the usage is explained in the
Appendix.

This book could be used for a graduate course on multivariate
non-normal statistics or as a supplementary book for courses in
multivariate statistics, time series, categorical data, and longitud-
inal data analysis.

Acknowledgments
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CHAPTER 1

Introduction

This book is devoted to multivariate models for non-normal re-
sponse (e.g., binary, ordinal, count, extreme value), an area of prob-
ability and statistics with increasing activity and applications. It
also contributes to the understanding of the space of multivariate
distributions. Important ideas in the book include:

e construction of multivariate models to cover various types of
dependence structure;

o development of dependence concepts and their use to analyse
multivariate models;

e use of stochastic representations, mixtures and latent variables
to construct parametric models with nice dependence proper-
ties;

e use of the copula as a summary of the dependence in a multi-
variate distribution, independent of the univariate margins;

e Fréchet classes with given marginal distributions;
o time series models with given univariate margins;

o the emphasis on properties of multivariates models to decide
their applicability;

o the estimation method of inference functions for margins, con-
sisting of parameter estimates from likelihoods of marginal dis-
tributions of a multivariate model, together with the jackknife
method for standard error estimates;

e comparison of models in examples of data analysis.

In this first chapter, an overview of the book is given in Section
1.1, the style and format are described in Section 1.2, notation and
abbreviations are summarized in Section 1.3, some basic results
are given in Sections 1.4 to 1.6, and a point of view for statistical
modelling is set out in Section 1.7.



2 INTRODUCTION

1.1 Overview and background

This is a book on multivariate models in which there is a multivari-
ate response vector and possibly a vector of covariates, explanatory
variables or factors. For a multivariate response, we will include the
cases of

(i) repeated measures, time series or longitudinal data, in which
a response variable is measured sequentially at several points
in time (with covariates possibly changing with time);

(i) measurements on m different variables;

(iii) measurements of a variable for each member of a cluster,
family or litter;

(iv) combinations of (i), (ii) and (iii).
Concrete examples are the following.

1. For a study of the risk factors of cardiac surgery, binary re-
sponse variables measured after cardiac surgery are indicators
of low-output syndrome and renal, neurological and pulmonary
complications (these indirectly measure the quality of life af-
ter surgery), and covariates include age, sex, and indicators of
chronic obstructive pulmonary disease, prior myocardial infarc-
tion, renal disease and diabetes.

2. For an epidemiological study on the effects of air pollution on
health, response variables which are measured daily are number
of hospital emergency room visits (for respiratory, cardiac and
other types of visits), absenteeism and mortality count (for com-
bined, respiratory and other causes of death). Inhalable particu-
late matter, ozone and organic dust are the principal pollutants
of interest, and other covariates are meteorological variables.

3. For extreme value inference concerning air quality in a region
with several monitoring stations, measurements are daily max-
ima of hourly averaged concentrations of several pollutants (e.g.,
ozone, sulphur dioxide, oxides of nitrogen) at each station.

4. For a study on the psychological effects over time after a disas-
ter, subjects are measured for stress (an ordinal response vari-
able) at several time points; one covariate is the distance from
the site of the disaster.

There is a well-developed theory for the case in which the multi-
variate response vector can be assumed to have a multivariate nor-
mal distribution. There is relatively little on multivariate models
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for non-normal response variables, such as multivariate or longit-
udinal ¢ount, binary and ordinal response data. This is perhaps
due to the mathematical intractability of reasonable models and
computational problems in statistical inference with the models.
The generalized estimating equation (GEE) approach with a partly
specified model (some moments and/or marginal distributions but
no joint distributions are specified) has been developed since the
mid-1980s. However the GEE approach has several disadvantages,
including limited types of inferences that can be made, and the
lack of a clear accompanying means of diagnostic checking and
assessment of implicit assumptions.

This book concentrates on models that can be applied to non-
normal multivariate data, with one chapter devoted to multivariate
discrete models, for use with binary, ordinal categorical or count
data, another chapter devoted to multivariate extreme value mod-
els, etc. Rather than starting with a complex model that can cover
many situations, we start by building from the simple cases. The
simplest case is that of no covariates, and this reduces to the study
of multivariate distributions (with given univariate margins). Then
there are several approaches to allow for covariates, including let-
ting parameters in a family of multivariate distributions be func-
tions of the covariates.

The study of multivariate distributions is not easy because one
cannot just write down a family of functions and expect it to satisfy
the necessary conditions for multivariate cumulative distribution
functions (see the conditions in Section 1.4). We will mainly be
constructing multivariate distributions through methods such as
mixtures, latent variables and stochastic representations, to avoid
the need for tedious and perhaps impossible checks on the necessary
conditions. Different general methods to obtain families of multi-
variate distributions are given in Chapter 4, together with their
dependence properties, and some parametric families are given
in Chapter 5. (Nonparametric multivariate inference requires far
more data than parametric multivariate inference; the ‘curse of
dimensionality’ is a problem with the former.) Until recently, lit-
tle research had been done in the area of multivariate non-normal
distributions.

The approach of multivariate models in this book is that of gen-
eralizing univariate models or distributions, and obtaining models
for which univariate margins belong to a given family. Time series
models with univariate margins in a given family are a special case,
in which there is a special dependence structure for the response
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variables. This is different from defining a class of multivariate
models or time series models and then asking what are the possible
univariate margins (e.g., elliptically contoured distributions, which
are discussed briefly in Section 4.9). The construction of multivari-
ate models becomes an existence problem if certain dependence
structures are desired.

Methods for obtaining a multivariate family include the follow-
ing,.

1. From a characterizing property of a parametric univariate fam-
ily, generalize to the multivariate case. Examples are min-
stable multivariate exponential distributions and multivariate
distributions with univariate margins in a convolution-closed
infinitely divisible class.

2. For continuous variables, make use of the probability transfor-
mation, so that the multivariate dependence or structure is in-
dependent of univariate margins. The copula, which summar-
izes the dependence structure, is a multivariate distribution
with uniform (0,1) margins. It is introduced and some of its
properties studied in Section 1.6.

For non-normal random variables, correlation is not the best
measure of dependence. More generally useful dependence concepts
are introduced in Chapter 2. These are necessary for analysing the
type and range of dependence in a parametric family of multivari-
ate models. A parametric family has extra interpretability if some
of the parameters can be identified as dependence or multivariate
parameters. More specifically, for some general concept of positive
and negative dependence, one would like to say that some range
of the parameters corresponds to positive dependence and some
to negative dependence, and furthermore; it - would be desirable to
have the amount of dependence increasing as parameters increase.

Chapter 3 contains results on Fréchet classes, including Fréchet
bounds, which sometimes are the most dependent multivariate dis-
tributions given knowledge of univariate margins and possibly some
higher-dimensional margins. For a given parametric family, to know
whether it is applicable to given situations, one needs to know the
range of dependence that is covered. This can be compared relat-
ive to the Fréchet bounds for the magnitude of dependence, and
relative to the full range of {6;; : ¢ < j} over all multivariate
distributions, where 6;; is a bivariate dependence measure for the
(%, 7) bivariate margin. From the latter, one can assess the type of
dependence in a parametric family of multivariate distributions.
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For example, special types of dependence pattern are: (i) permu-
tation symmetric or exchangeable, in which all bivariate margins
are the same (and é;; does not depend on (%, j)); (il) partially ex-
changeable, in which there are only a few distinct bivariate margins
among the set of all bivariate margins; (ili) decreasing in depen-
dence with lag, suitable for time series or longitudinal data, in
which the amount of dependence in a bivariate margin decreases
as |7 — i} increases.

This book does not contain an encyclopaedic or exhaustive list of
what have been proposed for families of multivariate distributions.
The aim is to concentrate on techniques to obtain parametric fam-
ilies of models that (i) cover the types of dependence mentioned
above, (ii) have parameters that are all interpretable, (iii) apply to
multivariate discrete data (e.g., binary, ordinal, count) or multi-
variate non-normal continuous data (e.g., extreme value, exponen-
tial). The techniques as well as listings of parametric families are
given in Chapters 4 to 9. Multivariate survival data are not covered
other than the frailty models for survival times associated with
members of clusters. Despite the literature on multivariate sur-
vival functions as models for lifetimes of components of a system,
it is not clear what this means in practice when components are
replaced or repaired — perhaps stochastic process models rather
than multivariate models are more appropriate.

The hardest part of statistical inference for multivariate non-
normal responses has been the multivariate modelling and the rel-
evant dependence concepts. Hence most of this book (Chapters 1
to 9) is devoted to these topics, starting with simpler cases which
can serve as building blocks for more complex models. Much of
classical inference (e.g., sufficiency, ancillarity, unbiasedness), apart
from asymptotic likelihood theory, does not apply to estimation in
multivariate models. However, there are some new ideas associ-
ated with estimation and data analysis in multivariate models, in
particular, parameter estimates from likelihoods of marginal distri-
butions of a multivariate model. Chapters 10 and 11 are devoted to
inference, computing and data analysis (and comparisons of models
for some real data sets).

1.2 Style and format

Each chapter is divided into sections, some of which have subsec-
tions. Most chapters have sections entitled ‘Bibliographic notes’,
‘Exercises’ and ‘Unsolved problems’. The exercises are roughly or-
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dered by level of difficulty, starting with more basic exercises. Some
exercises contain material that supplements results in the text.
Generally, background and references for each chapter are given in
the sections on ‘Bibliographic notes’, with the complete citations
in the References section at the end of the book. The mention of
references and authors in the text is rare. There are results in this
book that are definitely new, and other results that may be new;
in the latter case, I do not know of any published references. Some
results that are conjectured to be true or seem to be true based on
some numerical experience are listed in the sections on ‘Unsolved
problems’.

It will be observed that equations and theorems are numbered by
chapter and not by section. Most theorems are combined together
into subsections on dependence properties. Key words of definitions
are given in bold face.

To make the material in this book easier to read, ideas are pre-
sented in simpler cases and then extended to more general cases.
This book is mostly self-contained, with some background mater-
ial in the Appendix, and has minimal overlap with other books on
bivariate and multivariate distributions (because of the large void
in knowledge about multivariate non-normal distributions).

Short proofs of results are included if they are illuminating, and
there are examples throughout the book to illustrate the import-
ant concepts. On the other hand, some things that may become
repetitive or straightforward to check are left as exercises. The
style of the book is partly influenced by the plan to keep it within
a certain length. Sometimes, for example, in order to save space,
only a stochastic representation and not a probability distribution
is given.

There is no real linear ordering of the material in this book, so
that results that are more foundational are given earlier. Different
sections of the book are cross-referenced in order that the reader
can more easily move around non-linearly. Sections that provide a
basic introduction to the topic of multivariate models and depend-
ence concepts are indicated with a ° symbol and sections that are
very advanced are indicated with a * symbol.

This book can be read or used in several ways. The reader who is
more interested in the theory and foundational issues and concepts
can start from the beginning. The reader who is more interested
in applications and how the theory applies can start with the ex-
amples of data analyses in Chapter 11, and then read the sections
with the relevant theory for the multivariate models and inference.
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This book can also be used as a reference or as a starting point for
further research (there are pointers throughout on further research
that could be done).

1.3 Notation, abbreviations and conventions

This section consists of notation, abbreviations and'conventions
that are used throughout the book.

First, multivariate as an adjective refers to results that are
valid in two or more dimensions. Bivariate as an adjective refers
to results that are valid in two dimensions, but may not extend
to higher dimensions, and similarly for trivariate. This usage is
not always consistent in the statistical literature; there are papers
which use the word multivariaie but contain only bivariate results
that are not extendible.

Second, unless stated otherwise, a multivariate ‘x’ distribution
means that all univariate margins are in the class ‘x’, e.g., multi-
variate Poisson or multivariate exponential. This is common usage
in the statistical literature, but the property does not hold for all
existing multivariate distributions that are named.

Other items are enumerated below.

1. Simplifying assumptions, such as existence of derivatives, are
used at times for convenience of presentation of ideas and to
avoid too much technical detail.

2. All functions involved in integrals (or expectations) are as-
sumed measurable with respect to the appropriate measure.

3. The words ‘non-increasing’ and ‘non-decreasing’ are not used;
instead ‘increasing’, ‘strictly increasing’, ‘decreasing’ and
‘strictly decreasing’ are used.

4. cdf is the abbreviation for cumulative distribution func-
tion, pdf is the abbreviation for probability density func-
tion, and pmf is the abbreviation for probability mass
function.

5. rv is the abbreviation for random variable.

6. iid is the abbreviation for independent and identically
distributed.

7. BVN and MVN are the abbreviations for bivariate normal
and multivariate normal; BVSN and MVSN are used when
the univariate margins are standard normal, i.e., zero mean
vector and unit variances.
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. GEV is the abbreviation for the generalized extreme value

(univariate) distribution.

. BEV and MEYV are the abbreviations for bivariate extreme

value and multivariate extreme value, respectively.

MSMVE is the abbreviation for min-stable multivariate
exponential; it is mainly used in Chapter 6.

The abbreviations AR(p) for autoregressive of order p,
MA(k) for moving average of order k, and ARMA for auto-
regressive moving average are used, mainly in Chapter 8.

LT is the abbreviation for Laplace transform. Some results
on Laplace transforms are given in the Appendix. All LTs
in this book are assumed to have a limiting value of 0 at oo
unless otherwise stated.

ML and MLE are the abbreviations for maximum likeli-
hood and maximum likelihood estimate or estimation.

IFM is the abbreviation for inference functions for mar-
gins. This is a method for the estimation of parameters in
multivariate models that is based on the log-likelihoods of
marginal distributions of the model. The theory is given in
Chapter 10 and the method is used in Chapter 11.

SE is the abbreviation for standard error.
AIC is the abbreviation for Akaike information criterion.

R? is the symbol for Euclidean space of dimension d, and
the real line is denoted by R.

~ is the symbol for distributed as, < is the symbol for
equality in distribution or stochastic equality, —, is
the symbol for convergence in distribution or law, =

is the symbol for equality in sign, 4 is the symbol for
defined as, { is the symbol for increasing, | is the symbol
for decreasing, s (lst) is the symbol for stochastically
increasing (decreasing).

<, with possibly a subscript or superscript, is used to denote
a partial ordering or pre-ordering.

<*! denotes the stochastic ordering for cdfs. For univariate
cdfs F, F', F <** F' if F(z) > F'(z) for all z € R; for mul-
tivariate cdfs, F <** F' if [ gdF < [ gdF' for all increasing
functions g for which the expectations exist.

0 is used for the empty set.
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22.
23.

24.

25.

26.
217.

28.

29.
30.

31.

32.
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The cardinality of a finite set S is denoted by |S|.

The complement of a set or event A is denoted by A® unless
indicated otherwise.

The transpose of a vector or matrix is indicated with a su-
perscript T. Vectors are usually row vectors. Whether a vector
is a row or column vector will be clear from the context.

m is used for the dimension of the multivariate response
vector or multivariate distribution.

8 = S, is used for the set of non-empty subsets of {1,...,m}.

Italic Latin upper-case letters, often X,Y,Z, usually with
subscripts, are used for random variables; bold Latin upper-
case letters, often X,Y,Z, are used for random vectors.

Bold Latin lower-case letters are used for vectors, and the
components are written in italic form with subscripts, e.g.,
a=(a,...,am).

1m is used for an m-vector of 1s.

Y=M,...,Ym)ory =(¥1,...,Ym) is used to denote a re-
sponse vector. A vector of explanatory variables or covariates
is usually denoted by x or z.

Script Latin upper-case letters are used for classes of sets or
functions, e.g., £, F.

Greek lower-case letters, often with subscripts, are used for
parameters of families of distributions, e.g., 8, 6. Usually 7
is used for Kendall’s tau, p for Spearman’s rho or Pear-
son’s correlation, A for tail dependence. Bold Greek let-
ters are used for parameter vectors, e.g., 8, p.

¢, 1, often with subscripts, are used mainly for Laplace trans-
forms or strictly decreasing differentiable functions. Classes
of such functions that are used are denoted by:

L ={¢:[0,00) = [0,1] | $(0) =1, ¢(o0) =0,

(-1Y¢U) >0, j=1,...,m}, (1.1)

m = 1,2,...,00, with L, being the class of Laplace trans-
forms (with 0 value at co). Other classes are:

Ly, ={w :[0,00) = [0,00) | w(0) =0, w(o0) = oo,
(-1 >0 j=1,...,n}, (1.2)

n=1,2,...,00. The functions in £} are usually compositions

of the form ! o ¢ with ¥, ¢ € L;.
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. The following notation is used for certain special distribu-
tions and random variables: U(a,b) for uniform on [e,b];
N (g, 0?) for univariate normal with mean gz and variance
o2; N (p, ) for m-variate normal with mean vector g and
covariance matrix ¥; Gamma(a, o) for gamma with shape
parameter o and scale parameter o (and mean ao); NB (4, p)
for negative binomial with probability parameter p and
mean 8(p~! - 1).
F, G, H are the common symbols for a (multivariate) cdf;
sometimes M is used as the cdf of a mixing variable.
For an m-variate cdf F, the set of its marginal distribu-
tions is denoted by {Fs : S € Sp}; for a specific S, the
subscript is written without braces, e.g., Fi, Fi2, Fi23, etc.
If the density of a cdf F' and its margins exist, they are
denoted by f and fs, S € S.
Conditional cdfs and densities derived from a multivari-
ate cdf are written in the form Fs,|s,, fs,|s,; the latter is
equivalent to fs,us,/fs,-
The survival function corresponding to a cdf F is denoted
by F; its margins are {Fs}. If (Xi,...,Xm) ~ F, then
F(x)=Pr(X; >z;,i=1,...,m).
For m = 1, F(z) = 1 - F(z). For m = 2, F(z1,23) =
1 — Fi(z1) — Fa(z2) + F(21,22); for m = 3, F(z1,22,23) =

1 — Fi(z1) — F2(z2) — Fa(z3) + Fia(z1, 22) + Fia(zy, z3) +
Faa(z3,z3) — F(z1,z2,z3). For general m,

F(x) =14 Y (-1)¥Fs(z;,5 € S). (1.3)
Ses
A related formula is:
F(x)=1+Y (-)S!Fs(zj,j € 9). (1.4)
Ses

For a univariate cdf F', F~! denotes the quantile or inverse
cdf. It is defined as usual to be left-continuous, i.e., F~(v) =
inf{z : F(z) >v},0<v<]1.

The symbol F is used for Fréchet classes given a set of
margins, e.g., F(Fy, ..., F,) denotes the class of multivariate
distributions with the given univariate margins Fi,..., Fp,
and F(Fi2, Fa3) denotes the class of trivariate distributions
with given (1,2) and (2,3) bivariate margins F12, Foa.
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1.4 Conditions for multivariate distribution functions

This section consists of the conditions that a function must satisfy
in order to be a multivariate cdf. The simpler bivariate case is
presented first.

To prove that a function F' is a multivariate cdf, it is often neces-
sary to construct rvs Y7, ..., Yy, through latent variables, mixtures
and limits, etc., and then show that Y ~ F. In general, it is dif-
ficult or impossible to show that a function F' is a proper cdf by
making use of the conditions given in this section; of course, lower-
dimensional cases are easier to handle analytically.

1.4.1 Properties of a bivariate cdf F

Necessary and sufficient conditions for a right-continuous function
F on R? to be a bivariate cdf are:

1. limg; oo F(21,22) =0,5=1,2;
2. lim,;j_.oovj F(:El,.’vg) = l;

3. (rectangle inequality) for all (a1, az), (b1, b2) with a; < b1, a2 <
bz’

F(bl,bz) —_ F(a;,bg) — F(bl,ag) + F(al,ag) > 0. (15)

Note the following observations:

(i) If F has second-order derivatives, then condition 3 is equi-
valent to 8% F/8z,0z2 > 0.

(i1) Conditions 1 and 2 imply that 0 < F < 1.

(iii) Let a; — —oo in (1.5); then F(by,52) — F(a1,b2) > 0 and
F' is increasing in the first variable. Similarly, from letting
ay — —o0, F is increasing in the second variable.

(iv) The univariate margins Fi, F, of F(z,, z3) are obtained by
letting x93 — 0o and z; — oo, respectively.

1.4.2 Properties of a multivariate cdf F

Necessary and sufficient conditions for a right-continuous function
F on ™ to be a multivariate cdf are:

L limg oo F(Z1,...,2m)=0,7=1,...,m;

2. ‘imgpj_.oov‘j F(mly .. 'yxm) = 1;



12 INTRODUCTION

3. (rectangle inequality) for all (ay,...,am), (b1,-..,by) with
a; <b;,i=1,...,m,

2 2
S Y Foy,8min) 20, (16)
i1=l im=l
where zj; = @, Tj2 = b;.
Note the following:

(i) If F has mth-order derivatives, then condition 3 is equivalent
to 9™ F [0z, ---0xm > 0.

(ii) Let as,...,am — —oo in (1.6); then
F(bl,bz,...,bm)—F(al,bz,...,bm) __>_ 0

and F is increasing in the first variable. Similarly, by sym-
metry, F is increasing in the remaining variables.

(iii) Let S € Sm. The margin Fs of F(x) is obtained by letting
z; —oofori¢S.

1.5 Types of dependence

As mentioned earlier, a multivariate model should be analysed for
the types of dependence structure that it covers as well as the range
of dependence. These dependence properties are important in order
for one to know whether a particular model might be suitable for
a given application or data set. Types of dependence include: (i)
singularities on some curves or surfaces; (ii) positive and negative
dependence; (iii) exchangeable dependence or flexible dependence;
(iv) dependence decreasing with lag if there is a time index.

Sometimes the type of dependence for a multivariate model-and
whether the model can be used in a specific instance can be under-
stood from stochastic representations and derivations of the model,
so analysis of a model should include the search for one or more
stochastic representations.

1.6 Copulas

For continuous multivariate distributions, the univariate marginals
and the multivariate or dependence structure can be separated, and
the multivariate structure can be represented by a copula.

The copula is a multivariate distribution with all univariate
margins being U(0,1). Hence if C is a copula, then it is the dis-
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tribution of a multivariate uniform random vector. For an m-
variate distribution F' € F(F,..., Fyn), with jth univariate mar-
gin F;, the copula associated with F' is a distribution function
C :[0,1]™ — [0, 1] that satisfies

F(x) = C(Fi(z1), ..., Fn(zm)), x € R™. (1.7)

If F is a continuous m-variate distribution function with univariate
margins F, ..., Fy,, and quantile functions Fl“l, ..., F-1 then

C(u) = F(F7 (w), ..., Frl (um))

is the unique choice in (1.7). This result essentially follows from two
properties: (i) if H is a univariate cdf with inverse c¢df H~! and
U ~ U(0,1), then H~Y(U) ~ H; (ii) if H is a continuous univariate
cdf and X ~ H, then H(X) ~ U(0,1). That is, if X ~ F and F is
continuous, then (F1(X1),..., Fn(Xm)) ~ C, and if U ~ C, then
(F7YUy), ..., Fal(Um)) ~ F.

The copula can be considered ‘independent’ of the univariate
margins, since if C' is a copula, then

G(y) = C(Gl(yl)’ R Gm(ym))

is a distribution (survival) function if Gy, ..., Gy, are all univariate
distribution (survival) functions. If C is parametrized by a (vector)
parameter 8, then we call # a multivariate parameter.

Example 1.1 For § > 0, the distribution
F(z,y) = exp{~[e™"+e7¥ — (¥ +)7/°]}, —co<z,y< o0,

is obtained as a limiting distribution in Section 5.1. By letting
y — oo and £ — oo in turn, its univariate margins are Fy(z) =
exp{—e~7} and F,(y) = exp{—e~¥}. By substituting v = Fi(z)
and v = Fy(y), or z = —log(—logu) and y = — log(— logv), one
obtains the copula

C(u, ) = wwexp{[(~logu)~’ + (= logv)~*}71/%},

which is in the family B7 in Section 5.1. A bivariate survival func-
tion with exponential marginsis G(s,t) = C(e™*,e™") = exp{—s—
t+(s"8+t=4-Y%}) . o

If F is an m-variate distribution of discrete rvs, then the copula
associated with F' is not unique. The above argument does not
work because if H is a non-continuous or discrete univariate cdf
and X ~ H, then H(X) does not have a U(0,1) distribution.
An example of a copula that satisfies (1.7) in the discrete case is
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given below. The main idea is that the copula is defined over a
discrete grid of points and assumed to be conditionally uniform in
between; it can be shown that this leads to a multivariate density
with U(0, 1) margins.

For the purely discrete case, let the points of support for the
jth margin be z;;., where %; is in the ordered index set Dj;, j =
1,...,m. Suppose that each Dj; is a consecutive sequence of inte-
gers. Let Fj(7;) and fj(¢;) be the univariate cdf and pmf for the
jth margin. Let P(i1,...,in) and p(iy, ..., in) be the cdf and pmf
for the joint m-variate distribution. A copula C associated with P
satisfies

P(ih'--,im) = C(Fl(z'l),...,Fm(z'm)), 1€ D1 W oeee X Dm~

To define the remaining values of C, suppose that C is uniform in
the rectangle xi1<j<m[Fj(i; — 1), F;(4;)], i.e., the multivariate pdf
of C in this rectangle is p(i1, . . ., im)/ [1;=; fi (4)- For Fi(i1—1) <
u; < Fi(41), integrating over the margins j = 2,..., m leads to

=[AGE)T 20 2Pl im) = 1.

Hence the first univariate margin is U(0, 1); by symmetry, the other
univariate margins can also be deduced to be U(0,1).

The non-uniqueness comes from the fact that the copula C sat-
isfying (1.7) need not be uniform over rectangles. The details are
left as an exercise.

We now move on to other properties of copulas. Since a copula
C is the distribution of a random vector, U = (U4, ..., Um), where
each U; ~ U(0,1), C is a continuous function. However C' need
not be absolutely continuous (there may not be density with re-
spect to Lebesgue measure on ™), in which case it has a singular
component. Often, in cases where C is not absolutely continuous,
the singular component can be identified through a functional re-

lationship. For example, if Cy(u) = min{u,,...,un}, defined as
the Fréchet upper bound copula in Section 3.1, then Cy is the
distribution of U such that U; = ... = U,,; this is the functional

relationship causing the singularity. (If necessary, please consult

the Appendix for background on the concepts referred to here.)
A copula is continuous and increasing, so right derivatives of

first order, i.e., 3C(u)/0u;, j = 1,...,m, exist. Hence if U ~ C,
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conditional distributions of the form

Cijm1,j1mli (V15 e W1, U1, - - oy U |5)
exist, and C has a singular component if one or more of these
conditional distributions has a jump discontinuity. A similar result
holds if C has mixed derivatives of kth order everywhere, 2 < k <
m. A bivariate result, for identifying the total mass of the singular
component, is the following.

Theorem 1.1 Let F be a continuous bivariate distribution with
univariale margins Fy, F2 and condilional distribution Fy)y of the
second variable given the first. Suppose that Fy1(-|z) has jump dis-
continuities totalling @ mass of a(z), and a(-) is continuous and
positive on an interval. Then F has a singular component and the
mass of the singular component is [ a(z)dFi(z). A similar result
holds for the conditional distribuiion Fyjo of the first variable given
the second.
Proof. Let fa1(-|x) be the derivative of Fy;(-|z) where it exists.
Because of the jump discontinuities, [ fo;(y|z) dy = 1 —a(z). The
conclusion follows. [J

Example 1.2 Consider C(uj,u2) = [min{u;, ua}}?[uius]t~?,
where 0 < ¢ < 1 (this is the family B12 in Section 5.1). The
conditional distribution is

-6
Copi(uzjur) = {ilé_—_;f?)uzul ’ 2;;;:;?

Therefore Cy);(-|z) has a jump discontinuity at z, a(z) = 1~ —
(1 -8)z'~% = 92'~? and the mass of the singular component is
8/(2 — 0). If (U,,Us2) ~ C, the singular component corresponds to
the relationship U; = U, occurring with probability /(2 — ¢). O

Next, some results on associated copulas are given. Note that
for a given m-variate copula, there are 2™ — 1 associated copulas.

For m = 2 and (U;,Uz) ~ C, the associated copulas come from
the distributions of

(1-U1,1=-U3), (Uy,1=U,y) and (1-Uy,Us).
Hence they are
C'(uy,u2) = uy +uz — 14+ C(1 —uy, 1 — uy)
C"(u1,u2) = u1 — Cluy, 1 — uy)

)

and
C”,(UI,UQ) = U — C(l — ul,u;z).
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So if a bivariate copula C is applied to survival functions 71, Fq,
the copula associated with C(F;, F¢) is C'. The multivariate exten-
sion is obvious. If C is permutation-symmetric in the m arguments,
then there are m distinct associated copulas.

Copulas have many uses. In this book, they are used for con-
struction of models for various types of multivariate data; however,
they can also be used for simple examples and counterexamples of
dependence properties of rvs. Highlights of applications of copulas
are the following.

1. Parametric families of copulas with a logistic univariate margin
are used to obtain multivariate logit models for multivariate
binary or ordinal data with covariates (Sections 7.1.7, 7.3, 11.1,
11.2).

2. The extreme value limit of copulas is used to construct paramet-
ric families of extreme value copulas (Sections 6.2, 6.3); extreme
value copulas with generalized extreme value univariate margins
are models for multivariate maxima (Section 11.3).

3. Copulas are used to construct Markov chains and k-dependent

stationary time series with an arbitrary univariate margin (Sec-
tions 8.1, 8.2, 11.5, 11.6).

1.7 View of statistical modelling

Statistical modelling usually means that one comes up with a
simple (or mathematically tractable) model without knowledge of
the physical aspects of the situation. The statistical model need
not be ‘real’ and is not an end but a means of providing statist-
ical inferences, such as percentiles, exceedance probabilities, pre-
dictions and forecasts, etc. The availability of modern computers
has been an important factor in the types of multivariate models
that can now be used. My view of multivariate modelling, based
on experience with multivariate data, is that models should try to
capture important characteristics, such as the appropriate density
shapes for the univariate margins and the appropriate dependence
structure, and otherwise be as simple as possible. The parameters
of the model should be in a form most suitable for easy inter-
pretation (e.g., a parameter is interpreted as either a dependence
parameter or a univariate parameter but not some mixture); this
form of parametrization also helps a lot in the estimation of the
parameters, which must typically be done numerically. This and
other desirable properties for multivariate models are given in Sec-
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tion 4.1. The properties of a multivariate model are a factor in
whether the model is useful in a given situation. For a given data
set, I usually like to carry out sensitivity analyses by comparing
inferences from several models. If there is much sensitivity, then
one must think a lot more about the assumptions in the models.
The examples in Chapter 11 all involve comparisons of models for
each data set. )

1.8 Bibliographic notes

An early reference for copulas is Sklar (1959). The copula is called
a uniform representation in Kimeldorf and Sampson (1975) and a
dependence function in Galambos (1987) and Deheuvels (1978). A
recent historical account of copulas is given in Schweizer (1991).
Scarsini (1989) studies copulas for more general probability meas-
ures.

Early books on bivariate and multivariate distributions are Mar-
dia (1970) and Johnson and Kotz (1972), and these do not mention
copulas. More recent books on bivariate distributions are Hutchin-
son and Lai (1990) and Kocherlakota and Kocherlakota (1992).

The ideas in Shaked and Shanthikumar (1993) may be useful
in the construction of models for multivariate survival in reliabil-
ity theory. A recent book that includes the generalized estimating
equations approach is Diggle, Liang and Zeger (1994).

1.9 Exercises

1.1 For the following bivariate cdfs or survival functions, find
the univariate margins and copula:

(a) F(z,y;6) =1—(e757 +e7 200 — = 8(=+200)1/6 3 4 > 0,
§>1.

(b) F(z,y;6) = exp{—(e™ + e )1/} —c0o < z,y < oo,
5> 1.

(c) Gz, y;0,m) = (1+2"+y")"/°, 2,y>0,0 >0,7> 0.
(d) Fz,y)=(1+e " +e¥) ! —0< 2,y < 0.
1.2 Show that the family B10 in Section 5.1 consists of proper
bivariate distributions if and only if |§] < 1.

1.3 Write out the associated copulas for the family B10 in Sec-
tion 5.1.
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1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

INTRODUCTION

Obtain the copula for the multivariate normal distribution.
What are its parameters?

Let S;, S2 be two non-empty subsets of {1,...,m}. S; and
S2 can have empty or non-empty intersection. If Fy(z;:i €
S1) and Fy(y; : j € Sa) are cdfs, prove that the product

F(zr : k€ S1US;) = Fi(z; : 1 € S1)Fa(zj : j € S2)

is a cdf. [Hint: in the case of a non-empty intersection, it
may be useful to construct a stochastic representation.]

Suppose {F,} is a sequence of m-variate cdfs such that
F,, —4 F. What conditions must be checked to show that F
is a proper cdf?

Find the mass of the singular component for the trivariate
copula

C(uy, u2,us; 8) = [min{ul,uz,ua}]‘s[ulugu;;]l“’, 0<é6<L1.

Given a bivariate copula C, outline a general approach to
simulating (U, V) from C7 Extend this approach to a mul-
tivariate copula C.

Find two copulas associated with the bivariate binary pair
(Y1, Y2) with probabilities Pr(Y; = Y2 = 0) = 0.25, Pr(Y1 =
O,Yg = 1) = PI(Y1 = 1,Y2 = 0) = 0.15, PI(Y] = Yg = 1) =
0.45. For example, can a bivariate normal copula be used?

Prove that the copula is not unique in the case of a multi-
variate distribution of discrete rvs.

What is the most dependence that one can obtain for two
dependent Bernoulli rvs, with respective parameters p;, p2?
What are the maximum and-minimum-possible correlations
for two such rvs?

Suppose two Bernoulli rvs Y;, Y2 depend on a covariate vec-
tor x. Consider a model in which Y3, Y> have constant cor-
relation p over x. If (p1(x), p2(x)) = (Pr(Y1 = 1|x), Pr(Y2 =
1|x)) takes on all values in (0,1)% as x varies, what are
possible values for p? What if (p;(x), p2(x)) lies in a set
{(my,m2) : 7§ < w2 < 1 —(1 - m)*} as x varies, where
a € (1,00)?




CHAPTER 2

Basic concepts of dependence

For non-normal random variables, Pearson’s correlation and con-
cepts based on linearity are not necessarily the best concepts to
work with. More generally useful concepts of positive and neg-
ative dependence and measures of monotone dependence are given
in Section 2.1. Dependence (partial) orderings which compare the
amount of (monotone) dependence in two different random vectors
of the same length are studied in Section 2.2. Included are prop-
erties that should be satisfied in order for a partial ordering to be
considered a dependence ordering.

The dependence concepts that are presented in this chapter are
those that are needed and used in analysis of multivariate models
in subsequent chapters. There is no attempt to be exhaustive in
mentioning all dependence concepts that have ever been proposed
in the literature. Highlights of the important use of dependence
concepts are the following,.

e The concepts of positive quadrant dependence (in Section 2.1.1)
and the concordance ordering (in Section 2.2.1) are basic to
the parametric families of copulas in Chapter 5 in determining
whether a multivariate parameter is a dependence parameter.
The concordance ordering is also used in Section 7.1.10 to ob-
tain the most negatively dependent multivariate exchangeable
Bernoulli distribution.

o The concept of stochastic increasing positive dependence (in
Section 2.1.2) is a key concept in the analysis of the decrease in
dependence with lag for stationary Markov chains (Section 8.5).

o The concepts of TP, dependence (in Section 2.1.5) and max-
infinite divisibility (in Section 2.1.8) are necessary for the
method in Section 4.3 of constructing families of closed-form
copulas with a wide range of dependence.

e The concept of tail dependence (in Section 2.1.10) is crucial
to the construction and analysis of multivariate extreme value
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distributions and copulas.

e Kendall’s tau and Spearman’s rho (in Section 2.1.9) are used as
summary measures of dependence for bivariate copulas in Sec-
tion 5.1; Kendall’s tau is also used for compatibility conditions
in Sections 3.4 and 3.6.

e The more stochastic increasing ordering (in Section 2.2.4) is use-
ful in the analysis of the Fréchet classes in Sections 3.3 and 3.4,
and in the analysis of the range of dependence of the construc-
tion method in Section 4.5.

2.1 Dependence properties and measures

Bivariate dependence concepts, properties and measures are easier
to define and have appeared more often in the probability and
statistics literature than multivariate counterparts. This section
consists of a number of dependence concepts; for each, the bivariate
version is given first, followed by the intuition behind it, and then a
multivariate extension is given if there is one. Examples illustrating
the concepts are combined together into a separate subsection.

2.1.1 Positive quadrant and orthant dependence °

Let X = (X, X3) be a bivariate random vector with cdf F. X or
F is positive quadrant dependent (PQD) if

Pr(Xy > a1, X2 > a3) > Pr(X; > a1) Pr(X2 > a2) Vaj,az €R.
(2.1)
Condition (2.1) is equivalent to

Pr(X; < a1, X2 < a2) > Pr(Xy < a1)Pr(Xz < a3) Vay,a2 €R.
(2.2)

The reason why (2.1) or (2.2) is a positive dependence concept is
that X; and X, are more likely to be large together or to be small
together compared with X! and X}, where X; £ X!, X, 4 X5, and
X} and X5 are independent of each other. Reasoning similarly, X
or F is negative quadrant dependent (NQD) if the inequalities
in (2.1) and (2.2) are reversed. '

For the multivariate extension, let X be a random m-vector (m >
2) with edf F. X or F is positive upper orthant dependent
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(PUOD) if
Pr(X; > a;, i=1,...,m) > []Pr(Xi>a;) Vae®™, (23)
i=1
and X or F is positive lower orthant dependent (PLOD) if

m
Pr(X; <a;,i=1,...,m) 2 [[Pr(Xi < a;) VaeR™. (24)
i=1
If both (2.3) and (2.4) hold, then X or F is positive orthant
dependent (POD). Note that for the multivariate extension, (2.3)
and (2.4) are not equivalent.

Intuitively, (2.3) means that X,,..., X, are more likely simul-
taneously to have large values, compared with a vector of independ-
ent rvs with the same corresponding univariate margins. If the
inequalities in (2.3) and (2.4) are reversed, then the concepts of
negative lower orthant dependence (NLOD), negative up-
per orthant dependence (NUOD) and negative orthant de-
pendence (NOD) result.

2.1.2 Stochastic increasing postlive dependence

Let X = (X;,X,) be a bivariate random vector with cdf F €
F(Fy, F3). X5 is stochastically increasing (SI) in X; or the
conditional distribution Fy); is stochastically increasing if

PI‘(Xz > 9 f X = .’L‘l) =1~ F2|1(:n2|:c1) T z; Vza. (25)

By reversing the roles of the indices of 1 and 2, one has X; SIin X,
or Fj SI. The reason why (2.5) is a positive dependence condition
is that X5 is more likely to take on larger values as X increases.
By reversing the direction of monotonicity in (2.5) from  to |, the
stochastically decreasing (SD) condition results.

There are two dependence concepts that could be considered as
multivariate extensions of SI; they are positive dependence through
the stochastic ordering and conditional increasing in sequence.

'Definition. The random vector (X, .. ., Xm) Is positive de-
pendent through the stochastic ordering (PDS) if {X; : i #
J} conditional on X; = z is increasing stochastically as z increases,
forallj=1,...,m.

Definition. The random vector (Xi,...,Xn) is conditional
increasing in sequence (CIS) if X; is stochastically increasing
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in X;,..., Xicifori =2,...,m,ie, Pr(X; >z | X; =25,) =
1,...,4—1) is increasing in z, ..., ;- for all z;.

Note that for m = 2, PDS is the same as X5 SI in X; and X,
SIin X2, and CIS is the same as SI.

2.1.83 Right-tail increasing and lefi-tail decreasing

Let X = (X;,X2) be a bivariate random vector with cdf F €
F(Fy, F3). X, is right-tail increasing (RTI) in X, if

Pr(Xz >z | X1 > 2y) = —F.(zl,xg)/fx(zl) 1z1 Vza.  (2.6)
Similarly, X is left-tail decreasing (LTD) in X, if
Pr(Xs <z, | X1 <z) = F(ml,zg)/Fl(:cl) | z1 Vz,. (2.7)

The reason why (2.6) and (2.7) are positive dependence conditions
is that, for (2.6), X2 is more likely to take on larger values as X,
increases, and, for (2.7), X> is more likely to take on smaller values
as X; decreases. Reversing the directions of the monotonicities lead
to negative dependence conditions.

A multivariate extension of RTI for an m-vector (X 1y-+yXm)
is: X;,1€ A%, is RTl in Xj;,j € A, if

Pr(X; >z,i€ A° | X; >z, €A) T, k€A,

where A is a non-empty subset of {1,...,m}. Similarly, there is a
multivariate extension of LTD.

2.1.4 Associated random variables

Let X be a random m-vector. X is (positively) associated if the
inequality

E[9:(X)g2(X)] > E [9:(X)]E [92(X)] (2.8)
holds for all real-valued functions g;, g2 which are increasing (in
each component) and are such that the expectations in (2.8) exist.
Intuitively, this is a positive dependence condition for X because it
means that two increasing functions of X have positive covariance
whenever the covariance exists.

It may appear impossible to check this condition of association
directly given a cdf F for X. Where association of a random vector
can be established, it is usually done by making use of a stochastic
representation for X. One important consequence of the association
condition is that it implies the POD condition; see Section 2.1.7
on relationships between concepts of positive dependence.
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For a random variable (with m = 1), inequality (2.8) holds when-
ever the expectations exist.

Lemma 2.1 Forarv X, E[g1(X)g2(X)] > E[g1(X)]E [g2(X)] for
all increasing real-valued funclions g1, g2 such that the expectations
exist.

Proof. For binary increasing functions ¢;(z) = I(a;,00)(2), the left-
hand side of (2.8) becomes Pr(X > max{a;,az}) and the right-
hand side becomes Pr(X > a;)Pr(X > a3) so that inequality
(2.8) holds and is equivalent to Cov [g;(X), g2(X)] > 0. For general
increasing functions gi, g2 such that the covariance exist, Hoeff-
ding’s identity (see Exercise 2.15) leads to

Cov [g1(X), g2(X)) (2.9)
= /; /_ COV [I(n.oo)(gl(X)),1(32,00)(92(){))] dsads,

= / / Cov [I(gl—‘(sl),oo)(X)’I(g;l(sz),oo)(X)] dSzdSl,
o0 J —00

and the integrand is always non-negative from the binary case. U

There exists a definition for negative association but it will not
be given here as it is not needed in subsequent chapters.

2.1.5 Total posilivity of order 2

A non-negative function b on A%, where A C R, is totally positive
of order 2 (TP, ) if for all z; < y1, 2 < ya2, with z;,y; € A,

b(z1, z2)b(y1,y2) > b(z1, y2)b(y1, 2). (2.10)
The ‘order 2’ part of the definition comes from writing the differ-
ence b(z1,22)b(y1,y2) — b(z1,¥2)b(y1, z2) as the determinant of a
square matrix of order 2. Total positivity of higher orders involves
the non-negativity of determinants of larger square matrices. If the
inequality in (2.10) is reversed then b is reverse rule of order 2
(RR2).

For a bivariate cdf F with density f, three notions of positive
dependence are: (i) f is TP2; (ii) F is TPy; (iii) F is TPy. The
reasoning behind (1) as a positive dependence condition is that for
1 < Y1, 2 < y2, f(21,22)f(v1,92) > f(z1,y2)f(y1,22) means
that it is more likely to have two pairs with components matching
high-high and low-low than two pairs with components matching
high-low and low-high. Similarly, f RR; is a negative dependence
condition.
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It is shown later in Section 2.1.7 that f TP, implies both F
and F TP, and either F TPy or F TP, implies that F is PQD.
Hence both (ii) and (iii) are positive dependence conditions. A
direct explanation for (ii) as a positive dependence condition is as
follows. The condition of F' TP, is given by:

F(z1,22)F(y1,y2) — F(z1,92)F(y1,22) > 0, V23 < 4,22 < 2.

This is equivalent to:

F(z1,22)[F(y1,¥2) — F(v1,22) = F(z1,y2) + F(z1,22)]
—[F(z1,y2) — F(z1,22)][F (31, 22) — F(21,22)] 2 0, (2.11)
Vz1 <y,72 < y2.

If (X1,X2) ~ F, then the inequality in (2.11) is the same as

Pr(X,; <z1,X2 < z2)Pr(z; < X <41,22 < X2 < y2)
~Pr(X; < z1,22 < X2 S 42) Pr(z1 < X1 < 91, X2 < 22) 20,

for all £; < y1, T2 < y2. This has an interpretation as before
for high-high and low-low pairs versus high-low and low-high.
Similarly, the inequality resulting from F TPs can be written in
the form of (2.11) with the survival function F replacing F.

The conditions of F TP, and F TPz occur as necessary and
sufficient conditions for a bivariate cdf or survival function to be
max- or min-infinitely divisible; see Section 2.1.8.

A multivariate extension of TP, is the following. Let X be a
random m-vector with density f. X or f is multwarnate totally
positive of order 2 (MTPy) if

fxVy)f(xAy) Z f(x)f(y) (2.12)
for all x,y € R™, where

xVy = (max{zi,y},max{z2,v2},..., max{zm,ym}),
xAy = (min{z;,y}, min{zs,y2},...,min{zy, ym}).

An important property of MTP, is that if a density is MTPs,
then so are all of its marginal densities of order 2 and higher (see
the proof in Section 2.1.7).

If the inequality in (2.12) is reversed, then f is multivariate
reverse rule of order 2 (MRR,). This is a weak negative depend-
ence concept because, unlike MTP,, the property of MRR; is not
closed under the taking of margins. (An example of non-closure is
given in Section 9.2.1.)
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2.1.6 Posttive function dependence

Positive function dependence is a concept of dependence for the
special case in which all univariate margins are the same, i.e., for
F(Fi,...,Fn), with F} = --. = F, (= Fy, say). For the bivari-
ate case, let X, X2 be dependent rvs with cdf Fy and suppose
(X1, X2) ~ F.Then (X, X3) or F is positive function depend-
ent (PFD) if

Cov [h(X1), h(X2)] > 0, V real-valued h (2.13)

such that the covariance exists. The multivariate extension with
Xi,..., Xm being dependent rvs with cdf Fy and (Xi,...,Xm) ~
F is that (X,...,Xm) is positive function dependent if

E [ﬁ h(x,-)] > ﬁ E [h(X;)], Vreal-valued h (2.14)
i=1 i=1

such that the expectations exist. If m is odd, then there is the
further restriction that h be non-negative.

In the statistical literature, this concept has been called ‘pos-
itive dependence’, but here we use the term ‘positive function de-
pendence’ in order to avoid confusion with the general notion of
positive dependence (i.e., many definitions in Section 2.1 are con-
cepts of either positive or negative dependence). In Section 8.5, we
show an application of positive function dependence to inference
for stationary dependent sequences.

Similar to the definition of association, it looks as if (2.13) and
(2.14) would be difficult to establish analytically in general. Again,
where PFD can be established, it is usually done by making use
of a stochastic representation for X. For example, a condition that
implies PFD in the bivariate case is positive dependent by mix-
ture, which means that F(z;,z2) (or F(z,z,)) has the repres-
entation [G(z1;@)G(zz; @) dM(e) (or [G(z1;a)G(z2; @) dM(a)),
where M 1s a mixing distribution and G(-; ) is an appropriately
chosen family of distributions so that the representation holds. The
proof is left as an exercise.

2.1.7 Relationships among dependence properties

In this subsection, invariance results and results on relationships
among dependence properties are given. The first theorem is trivial
so its proof is omitted.
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Theorem 2.2 All of the dependence properties in Sections 2.1.1
to 2.1.6 are invariant with respect to strictly increasing transfor-
malions on the components of the random vector. For example, if
(X1, X2) is PQD then so is (a1(X1), a2(X2)) for strictly increasing

functions a;, as.
Theorem 2.3 Relations in the bivariate case are:
(e¢) TP, density = SI = LTD, RTI;
(b) LTD or RTI = association = PQD;
(¢) TPy density = TP, cdf and TP, survivel function;
(d) TPy cdf = LTD, and TP, survival function = RTI.

Proof. TP2 density = SI: Let (X3, X2) ~ F with density f. We
need to show Pr(X; >y | X1 = 2) < Pr(Xe > y | X1 = ') for
arbitrary z < z’. This is equivalent to showing

/yoof(:c,z) dz[if(z',w) dw < me(z',z) dz[_if(x,w) dw

or
/ / [f(z', 2)f(z,w) — f(z, 2)f(z',w)] dwdz > 0.
v —o00
But the left-hand side of the above inequality simplifies to
oo ry
[ [ 1@ 25w - o056, w) duds
y —00

and the integrand is non-negative for all (z, w) € (y, 00) x (—00, y]
by the TP, assumption. ”

SI = RTI (SI = LTD is similar): Let z < 2’ and let (X;, X3) ~
F. Since Fap(zalz1) = Pr(X2 > z2 | X3 = z,) is-increasing
in z;, there is an inequality for the weighted averages when this
conditional probability is weighted against the density of X, i.e.,

f:o -F-2|1(_:l_:_2|:81)dF1(-'31) < J;)o lel(j’_ﬂxl)dFl(ml).
Fy(z) - Fy(z')
This inequality is the same as
Pl‘(X2 > Ty I X > :L‘) < PI(XQ > 9 |X1 > :L")

and this is the RTI condition.

LTD or RTI = association: The proof of this is lengthy and re-
quires technical details. It is omitted here but is given in Esary and
Proschan (1972). We give instead a simple proof of the implication
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‘SI = association’, since this gives an indication of how to work
with the concept of associated rvs.

SI => association: Let a and b be increasing functions on R2.
Assuming that second-order moments exist,

Cov [G(Xl,Xz), b(X;, Xg)] =E {COV [a(Xl,Xz),b(Xl,Xg) l Xd}

+Cov (E [a(X1, X2) | X1], E[b(X1, X2) | X1)). (2.15)
Let a*(Xl = E[G(Xl,Xg)le], b*(Xl) = E[b(Xl,XQ)IXl] Then
a* and b* are increasing functions since @ and b are increasing and
X is Slin X, so that the second term on the right of (2.15) is non-
negative, by Lemma 2.1 in Section 2.1.4. For the first term on the
right of (2.15), a(z, X2), b(z1, X2) are increasing in X, for each
fixed z, so that the conditional covariance is non-negative for each
z, (again by Lemma 2.1). Hence unconditionally the expectation
in the first term is non-negative.

Association = PQD: The bivariate case is a special case of the
multivariate result of ‘association = POD’, which is proved in the
next theorem.

TP, density = TP, cdf (TP2 density = TP, survival function
is similar): Let (X, X2) ~ F with density f. Let z; < ¥, 22 < ya.
Then f TP, implies that

Ty T2 Y1 fy2
/ / //[f(sl;Sz)f(tl,t2)—f(31;t2)f(t1a32)]dt2dt1d32d31

T

is non-negative or
F(z1,22)[F(y1,92) — F(y1,z2) = F(z1,92) + F(21, z2)]

> [F(z1,y2) = F(z1, 22)][F(y1, 22) — F(z1, 22)].
This is equivalent to the TP condition for the cdf (see inequality
(2.11) in Section 2.1.5).

TP3 cdf = LTD (TP, survival function = RTI is similar): Let
y2 — oo and suppose z; < y;; then the TPy cdf condition im-
plies F'(xq,z2)/F(z1,00) > F(y1,z2)/F(y1,00), which is the LTD
condition. O

Theorem 2.4 Relations in the multivariaie case are:

(a) e random subvector of an associated random veclor is asso-
ciated;

(b) association = PUOD and PLOD;
(c) PDS = PUOD and PLOD;
(d) CIS = association.
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Proof. (a) Let (X1,...,Xm) be associated and X*=(X;,,...,X;,)
be a subvector, with 1 < k < m and ¢; < --- < 4. Let g;, g2 be
increasing functions on %*. Then

E [91(X*)g2(X*)] 2 E [9:(X*)]E [92(X*)]

provided the expectations exist since ¢;,g> can be considered as
functions of X3,...,Xnm.

(b) Let (X4, ..., Xm) be associated. Fix real numbers ay, . . ., am.
Let g1(%1, -+, Zm-1) = I(a;,00)x - X(ame1,00) (%15 - - -, Tm—1) and let
g2(¢m) = I(a,,,00)(Tm)- Then g1, g2 are increasing functions. In-
equality (2.8) leads to

Pr(X; > a;, i <m) > Pr(X; > a;, i <m— 1) Pr(Xy, > am).
By (a) and making use of induction,
Pr(X; > a;,i1<k)>Pr(X; > a;, i <k—-1)Pr(Xi > ar)
for k=m—1,...,2. Therefore

m
Pr(X; > a;, i = 1,...,m)ZHPr(X,- > a;)

i=1
or X is PUOD.
Similarly, to show the conclusion of PLOD, use the functions
gl(zla ceey mm—-l) = "'I(-oo,al]xmx(-oo,am_;](‘cls Ty "L'm—-l) and

92(-"’m) = ‘I(—w.am](xm)-
(¢) (X1,...,Xm) PDS implies
Pl’(Xz >Z2,...,Xm > &m ‘Xl = 2:1)
>Pr(X2>z9,...,Xm >2m | X1 =2)

for all z; > z} and for all z4,...,z,,. Then

Pr(X2> z2,...,Xm > 2z | X1 > z))

(=]

(v
= Pr(Xs >zo,..., Xm >zpm|X1 =2) dFl(z)/ dF(z)

z)
[oe] co
> / PI‘(Xz >z9,...,Xm >22le1 = Z) dFl(z)// dF1(Z)
T 3'1
= Pr(X2>z2,...,Xm > zm | X1 > z7),
for all z; > z]. Letting 2§ — —oo yields

Pr(X; > zj, j <m) > Pr(X1 > z1) Pr(X2 > z2,..., X > Zm)-
(2.16)
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Since a subset of a vector that is PDS is also PDS, (X;,...,Xm)
is PDS for j = 2,...,m — 1 and by induction Pr(X; > z;,j =
1,...,m) >[I/~ Pr(X; > z;) or (Xy,...,Xm) is PUOD.

The conclusion of PLOD follows similarly since (X1,...,Xm)
PDS implies PI’(XZ S {L‘g,...,Xm S Tm I X1 = .’L‘1) Z PI(X2 S
z9,...,Xm <z, | X3 = z) for all z; < z{. A similar inequality
then holds conditional on X; < z; and X; < z{. An inequality
like (2.16) results by letting 2} — oo.

(d) The proof is similar to that of ‘SI = association’ in the
preceding theorem.

0

Note that as a consequence of part (d) of Theorem 2.4, independ-
ent rvs are associated since they clearly satisfy the CIS condition.

Theorem 2.5 Let (X1,...,Xm) have density f which is MTP,.
Then all of marginal densities of f of order 2 and higher are also
MTP,.

Proof. This proof is modified from Karlin and Rinott (1980a). Sup-
pose densities for X; exist relative to the measure v. Because of
symmetry and induction, it suffices to show that the density of
(X1,...,Xm=-1) is MTPy, or that

/ U Comm, et St ) (s, ] o) o)

< / [f(xm—-l V}'m—lys)f(xm-—l /\ym-—ht) (2'17)
s<t

+f(Xm—1 V Ym-1,t) f(Xm=1 A Ym-1, 5)] dv(s) dv(t)
where X;m_1 = (Z1,...,Zm-1), ¥Ym-1 = (Y1,---,Ym=1). (For the

‘discrete’ case, the inequality

[ et ) (rmm1,8) + £, 8)f(mm,8)] o) o)

<2 / f(Xm-1V ¥m-1,8)f(Xm-1 AYm—1,8)] dv(s)dv(t),
s=t
follows easily from the MTP; property of f.) In (2.17), let
a = f(Xm-1,8)f(ym-1,1), b= f(xm-1,8)f(¥m-1,5),
¢ = f(Xm-1VYm-1,8)f(Xm-1 Aym-1,1),
d = f(xm-l VYm—l,t)f(xm—l /\Ym—l,s);

with s < t. From the MTP; property for f, d > a,b and ab < cd
(the latter from matching up terms with s and ¢ separately). Then
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(c+d)—(a+b) = d~1[(d—a)(d—b)+ (cd— ab)] > 0 and inequality
(2.17) holds. O

2.1.8 Maz-infinite and min-infinite divisibelity

For a univariate cdf F, all positive powers Y (F7), v > 0, are cdfs
(survival functions). This need not ‘be the case for multivariate
cdfs. In general, for an m-variate cdf F, FY (F7 ) is a cdf (survival
function) for all v > m — 1. If FY is a cdf for all ¥ > 0, then
F is max-infinitely divisible (max-id), and if F7 is a survival
function for all v > 0, then F is min-infinitely divisible (min-
id).

The explanations for these definitions are as follows. If F' is max-
id and X = (Xi,...,Xm) ~ F, then for all positive integers =,
FYUn is a odf. If (X, ., x™)), i = 1,...,n, are iid with cdf
F1/7 then

X £ (maxX,-(?), ce m?'XXi(r?z))
3 8

where the maxima are over the indices 1 to n. For min-id, replace
max by min and cdf by survival function.

The max-id and min-id conditions are equivalent respectively to
being a TP; cdf and TP3 survival function in the bivariate case,
and hence they are (strong) dependence conditions. These proofs
are given next and then conditions are given in the multivariate
case.

Theorem 2.6 Let F be a bivariate cdf.

(e) F is maz-id if and only if F is TP,.

(b) F is min-id if and only if F is TP,.
Proof. (a) Let R(z,y) = log F(z,y), so that R is increasing in
z and y. Then F TP, implies that for §,¢ > 0, R(z + 6,y + ¢) >

R(z,y+¢€)+ R(z+6,y)— R(z, y). Since e* is convex and increasing
in z, for y > 0,

eYB(@y+e) _ o 7R(zy) «  R(zyt)HR(z+8,y)-R(z.9)] _ o7R(z+4.y)
< VR(zty+e) _ YR(z+é6y)

This is equivalent to FY(z+6,y+¢)— F(x+6,y)— F(z,y+¢)+

F"(a: y) > 0 for all ¥ > 0. Hence, from the rectangle mequahty,

F7isa cdf for all 7 >0.
For the converse, if F' is max-id, then

w(7) = FY(z+8,y+¢) - F'(z+6,y) - F'(z,y+e¢)+ FT(z,9) 2 0
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for all 6,6,y > 0. Since w is continuous and differentiable and
w(0) = 0, the right derivative of w(7y) at 0 is non-negative. This

leads to
Fz+6y+e)F(z,y)
1 >0
F(z+68,y)F(z,y+¢€)
for all §,¢ > 0. Equivalently, F' is TP,.
The proof of (b) is similar and is left as an exercise. []

For a multivariate distribution F' to be max-id, a necessary con-
dition is that all bivariate margins are TP;. Hence max-id is a
(strong) positive dependence condition.

A general condition for max-id, which generalizes the above bi-
variate result to any dimension m, is given next.

Theorem 2.7 Let m > 2. Suppose F(x) is an m-variate distri-
bution with a density (with respect to Lebesque measure) and let
R=logF. For a subset S of {1,...,m}, let Rs denote the partial
derivative of R with respect toz;, 1 € S. A necessary and sufficient
condition for F 1o be maz-id is that Rs > 0 for all (non-empty)
subsets S of {1,...,m}.

Proof. We look at the derivatives of H = FY = 7 with respect
to z1,...,Zm, ¢ = 1,...,m, and then permute indices. All of the
derivatives must be non-negative for all ¥ > 0 if F' is max-id. The
derivatives are:

0H/0zy = vyHR,,
02H/08z,0zy = Y?HR\ Ry + vH Ry2,
33H/8:c18x26m3 = ~v3HR\RyR3z + 72H[R1R23 + RoRji3+
R3R12] + vH Rj23, etc.
For the non-negativity of &S1H/ [lics Oz: for v > 0 arbitrarily
small, a necessary condition is that Rs > 0. From the form of the

derivatives above, it is clear that Rg > 0 for all S is a sufficient
condition. [

For multivariate distributions which have special forms, simpler
conditions can be obtained. These are obtained in Section 4.3 where
mixtures of powers of a max-id or min-id multivariate distribution
are used to obtain families of multivariate distributions.

2.1.9 Kendall’s tau and Spearman’s rho °

Kendall’s tau (denoted by 7) and Spearman’s rho (denoted by ps or
p) are bivariate measures of (monotone) dependence for continuous
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variables that are (i) invariant with respect to strictly increasing
transformations and (ii) equal to 1 for the bivariate Fréchet up-
per bound (one variable is an increasing transform of the other)
and —1 for the Fréchet lower bound (one variable is a decreasing
transform of the other). These two properties do not hold for Pear-
son’s correlation, so that 7 and ps are more desirable as measures
of association for multivariate non-normal distributions. Another
property (Exercise 2.10) is that 7 and ps are increasing with re-
spect to the concordance ordering of Section 2.2.1.

Definition. Let F be a continuous bivariate cdf and let (X;,X32),
(X1, X}3) be independent random pairs with distribution F. Then
Kendall’s tau is

7= Pr((X1 — X1)(Xz = X3) > 0) = Pr((X; — X1)(X2 — X3) < 0)
= 2Pr((Xy — X!)(Xz — X3) > 0) = 1 =4/de- 1.

Definition. Let F' be a continuous bivariate cdf with univariate
margins Fy, F and let (X;,X3) ~ F; then Spearman’s rho is
the correlation of F;(X;) and F(X3). Since F1(X1) and F2(X?)
are U(0,1) rvs (under the assumption of continuity), their expect-
ations are 1/2, their variances are 1/12, and Spearman’s rho is

ps = 12//Fl(:I?;)Fg(:Ez)dF(ml,xg)—-3: 12//.F—dF1dF2—3.

The condition (X1 — X{)(X2 — X}) > 0 corresponds to (X1, X2),
(X1, X5) being two concordant pairs in that one of the two pairs
has the larger value for both components, and the condition (X; —
X1)(X2 — X3) < 0 corresponds to (X;,X2), (X1, X3) being two
discordant pairs in that for each pair one component is larger than
the corresponding component of the other pair and one.is smaller.
Hence Kendall’s tau is the difference of the probability of two ran-
dom concordant pairs and the probability of two random discord-
ant pairs. If there is an increasing (decreasing) transform from one
variable to the other, the probability of a concordant (discordant)
pair is 1 and the probability of a discordant (concordant) pair is 0.

Because 7 and pg are invariant to strictly increasing transfor-
mations, their definitions could be written in terms of the copula
C associated with F'. That is,

T = /CdC—l and

12//ude(u v)-3= 12//C(u v)dudv - 3.

ps
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The relation to the sample version of pg can now be seen. For
bivariate data, ps is the rank correlation and the rank transforma-
tion is like the probability transform of a rv to U(0, 1).

2.1.10 Tazil dependence °

The concept of bivariate tail dependence relates to the amount of
dependence in the upper-quadrant tail or lower-quadrant tail of a
bivariate distribution. It is a concept that is relevant to depend-
ence in extreme values (which depends mainly on the tails) and in
the derivation of multivariate extreme value distributions from the
taking of limits (see Chapter 6). Because of invariance to increasing
transformations, the definition will be given in terms of copulas.
The symbol used for a tail dependence parameter is .

Definition. If a bivariate copula C is such that
lirri Clu,u)/(1 —u) =My

exists, then C has upper tail dependence if Ay € (0,1] and no
upper tail dependence if Ay = 0. Similarly, if

linr(l)C(u,u)/u = AL

exists, C has lower tail dependence if A\ € (0, 1] and no lower
tail dependence if A\ = 0.

The reasoning behind these definitions is as follows. Suppose
(U1,U3) ~ C. Then

Ay = lirr} Pr(Uy >u | U > u) = lirr} Pr(Us > u | Uy > u).
U— U -

A similar expression holds for Ar. These expressions show that
the parameters Ay, AL are bounded between 0 and 1 inclusive. If
Ay > 0 (Mg > 0), there is a positive probability that one of Uy, U,
takes values greater (less) than u given that the other is greater
(less) than u for u arbitrarily close to 1 (0).

2.1.11 Ezamples

In this subsection, a few examples are used to illustrate the depend-
ence concepts in the preceding subsections.

Example 2.1 Let f(z1,22;p) = (27)71(1 — p?) "1 2 exp{—1(z?
+z3—2pz125)/(1—p?)}, =1 < p < 1, be the BVSN density. Then it
is straightforward to show that f is TP2 (RR2) if and only if p > 0
(p < 0). Also the conditional distribution of the second variable
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given the first is Foy(z2|z1) = @((x2 — px1)/+/1 — p?), and this is
decreasing in z; for all z, if and only if p > 0. Hence this shows
directly that Fy; is stochastically increasing (decreasing) if p > 0
(p<0). 0

Example 2.2 For the MVSN distribution with mxm correlation
matrix R = (pi;), the PDS condition is equivalent to p;; > 0 for all
i,j. Also the association condition is equivalent to p;; > 0 for all
i,j. Let A= R™! = (a;;); then the MTP, condition is equivalent
to a;; < 0 for all 7 # j.
Proof. Let (X1,...,Xm) be MVSN with correlation matrix R =
(pij)- Note that the mean vector of (Xa,...,Xp) given X; = z; is
(P12, - - -, P1m)T1, so that the stochastic increasing property holds
only if py; > 0 for j = 2,...,m. By permuting the indices, all
correlations must be non-negative if (X;,..., Xy) is PDS.

The proof of association is non-trivial; see Joag-dev, Perlman
and Pitt (1983).

It is easy to show that the MVN density ¢r(x), with correlation
matrix R, is TPz in z;, z;, for all ¢ # j, if a;; < 0 for all 7 # j.
This implies the MTP, condition. [

Example 2.3 Consider the family B5 of bivariate copulas in
Section 5.1. Withu=1—u, v = 1 — v, the family is

Clu,v;6)=1— (@ +7° —[@)°)/%, 1<b<oo0. (2.18)
The corresponding family of densities is
c(u,v;6) = (@ +7° — [@0)°) "2+ (@)’ 1[6 — 1+ 7° +7° — wT0).

Note that the case of § = 1 corresponds to the independence copula

Cr(u,v) = uv.
The conditional cdf,
Coyi(vly; 6) = 1 +7Pa~% — 7]+ — 77, (2.19)

is decreasing in u for each v, so this proves directly that Cy); is SI
for each 6 > 1.

The demonstration that the density c is TPy reduces to showing
that h(z,y) = (1 — zy)~2*1/%(6 — 2y) is TP, in 0 < z,y < 1 or
that ho(s,t) = (1—e~*=*)"2+1/é(§ —e=9-*) is TPy in s,t > 0. The
inequality ho(sy,t1)ho(s2,12) > ho(s1,t2)ho(s2,%1) holds for 0 <
51 < 52,0 <ty < t2if g(z1+y1)+9(z2+y2) > 9(z1+y2)+9(T2+11)
for 0 < z1 < 22, 0 < y3 < y2, where g(z) = log(é6 —e™?) +
(—241/6)log(1 — e~*). But g(z) is convex for z > 0 and then the
inequality follows from (z; + y2, T2 + ¥1)<m(Z1 + v1, 22+ ¥2) (<m
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is the majorization ordering in Marshall and Olkin 1979; see also
the Appendix). To show the convexity, g”(z) = —6e*(6e* — 1)~ %2 +
(2—-1/6)e*(e* —1)~2 = e*(8e” —1)~2(e* —=1)"%(6— 1)w($, z), where
w(8,z) = 26e?* —2e* —1+ 6. Note that w(6,0) = 6~ 1(26 —1)(6—
1) > 0 and Ow/dz = 46e?* — 2e* > 0, so that ¢g""(z) > 0 for all
> 1.

The upper and lower tail dependence parameters are respectively
2 —21/¢ and 0, so that (2.18) has upper tail dependence for § > 1.

The PFD property follows from Exercise 2.4 and results in Sec-
tions 4.2 and 5.1. O

Example 2.4 Consider the family B10 of bivariate copulas in
Section 5.1:

Cu,v;0) = wo[l+6(1—u)(1-v)], -1<6<1. (2.20)

This family is just a perturbation of the independence copula
Ci(u,v) = uv. The distribution in (2.20) is PQD (NQD) for 0 <
§ < 1(-=1 <8 < 0). It has a limited range of of dependence
which is why it is not useful as a model; simple computations show
that Kendall’s tau is 260/9 and Spearman’s rho is /3 so that r is
bounded in absolute value by 2/9 and ps 1s bounded in absolute
value by 1/3. O

Example 2.5 A family of bivariate exponential survival func-
tions due to Gumbel (1960b) is:

-F-(xl,zrg;ﬁ) =e T TmTIT: 4 5 0,2,>0,0< 0 < 1.

This has negative quadrant dependence and limited range of de-
pendence so that it is not useful as a model. The amount of negative
dependence increases as @ increases; for @ = 1, Kendall’s tau and
Spearman’s rho are ~0.361 and —0.524, respectively. O

2.2 Dependence orderings

Positive dependence concepts such as PQD, SI and LTD, in the
preceding section, result from comparing a bivariate or multivari-
ate random vector with a random vector of independent rvs with
the same corresponding univariate distributions. That is, if F €
F(Fy, ..., Fy), the class of m-variate distributions with given uni-
variate margins Fy, ..., Fy,, a positive dependence concept comes
from comparing whether F' is more positive dependent in some
sense than the cdf H;.n:l Fj. For example, the PUOD concept com-

pares Pr(X; > a;,i=1,...,m) for X ~ F with X ~ [Ti_, F}.
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However, for a parametric family of multivariate distributions,
one would be interested in more information than just positive
or negative dependence (or indeterminate type of dependence). A
parameter in the family is interpretable as a dependence para-
meter if the amount of dependence is increasing (or decreasing)
as the parameter increases. This is one motivation for comparing
whether one multivariate cdf is more dependent than another cdf
based on some dependence concept. Comparisons can be made
via dependence orderings that are partial orderings within a class
F(Fy,...,Fy). Because of the result (1.7) on copulas, dependence
orderings or comparisons should hold the univariate margins fixed,
at least in the continuous case.

In this section, we first give the concordance ordering corres-
ponding to the dependence concept of PQD and POD. Then, we
discuss and list the types of properties that would be desirable for
a dependence ordering; one property is that the bivariate concord-
ance ordering should hold for all sets of corresponding bivariate
margins. (There are references to the Fréchet bounds, which are
studied in detail in Chapter 3.) Following this, we list some depend-
ence orderings that generalize the concepts in Section 2.1.

2.2.1 Concordance ordering °

We first give the definition of the concordance ordering in the bi-
variate case.

Definition. Let F,F’ € F(Fy, F;) where Fy and Fy are uni-
variate cdfs. F' is more concordant (or more PQD) than F,
written F<.F', if

F(zy,z2) < F'(z1,22) V21,22 € (—00,00). (2.21)

From the relation between a survival function and a cdf in the
bivariate case (see equation (1.3)), (2.21) is equivalent to

75(:1:1,:1:2) < F'(z, z3) Vzy,z2 € (—00,00). (2.22)

Note that if (X;,X3) ~ F and (X{, X}) ~ F”, then the concord-
ance ordering means that

Pr(X: < 21, Xz < 22) < Pr(X] < 21, X3 < 23) V22
and

Pr(X1 > z1,X2 > z2) < Pr(X] > 21, X} > z3) Vazi,z0.
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For random vectors, we may use the notation (X, X2)<c(X], X3%)
instead of F<.F".

In the multivariate case with dimension m > 3, the orderings of
cdfs and survival functions are not equivalent (i.e., the multivariate
extensions of (2.21) and (2.22) are not equivalent). Hence there are
various versions that could be considered as simple multivariate
dependence orderings.

Definition. Let F,F' € F(F,...,Fy) where Fy,..., F, are
univariate cdfs. F’ is more PLOD than F, written F< F’, if

F(x) < F'(x) Yx€e®R™. (2.23)
F' is more PUOD than F, written F<.yF’, if
F(x) <F'(x) Vx€ER™. (2.24)

F’ is more concordant or more POD than F, written F<.F’,
if both (2.23) and (2.24) hold.

The use of the term concordant here means that if X’ ~ F’
and X ~ F, then the components of X’ are more likely than those
of X to take on small values (or large values) simultaneously.

For the bivariate ordering in F(Fi, F3), the most concordant
or maximal distribution is the Fréchet upper bound Fy(z1,z2) =
min{Fi(z1), F2(z2)} and the most discordant or minimal distri-
bution is the Fréchet lower bound Fr(z;,z2) = max{0, Fi(z1) +
Fy(z2)—1}. For the general multivariate ordering in F(F1, ..., Fp,),
the maximal distribution is the Fréchet upper bound Fy(x) =
min; Fi(z;).

A nice property of the concordance ordering is that if F, F' are
continuous bivariate distributions with Kendall taus v(F), r(F’),
Spearman rhos ps(F), ps(F"’), tail dependence parameters A(F),
A(F'), and F<cF’, then 7(F) < 7(F’), ps(F) < ps(F’) and
A(F) < A(F'). (The proof is left as an exercise.) The next the-
orem is a consequence of the <. ordering that is used later and its
proof is also left as an exercise.

Theorem 2.8 Suppose that sy,.. ., st are all non-negative increas-
ing or all non-negatlive decreasing funciions on the real line and
that F, F' are two m-variate cdfs. Lel ¢(zy,...,2m)= H;"zl sj(z;).
Then F<.F' implies [ ¢dF < [ ¢dF' provided thal the integrals

exist.

Other properties appear in the next subsection as part of an
axiomatic approach for defining what properties are needed for an
ordering on distributions to be considered a dependence ordering.
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2.2.2 Azioms for a bivariate dependence ordering

In this subsection, we list properties or axioms that an ordering
of distributions should have in order that higher in the ordering
means more positive dependence. '

Let < be a bivariate dependence ordering (for cdfs in F(Fy, F3)
or random vectors that have the same corresponding univariate
marginal distributions). Desirable properties or axioms for < are:

P1. (concordance) F < F' implies F(z,z3) < F'(21,z2) for all
T1,T2;

P2. (transitivity) F < F' and F' < F" imply F < F";

P3. (reflexivity) F < F,

P4. (equivalence) F < F' and F' < F imply F = F’;

P5. (bounds) Fr, < F < Fy, where Fy is the Fréchet upper
bound and Fr, is the Fréchet lower bound;

P6. (invariance to limit in distribution) F,, < F,, n = 1,2,...,
and F,, —4 F, F} —4 F' as n — oo, imply that F' < F';

P7. (invariance to order of indices) (X, X2) < (X1, X}) implies
(X2, X1) < (X2, X1);

P8. (invariance to increasing transforms) (X1, X2) < (X3, X3)
implies (a(X1), X2) < (a(X1), X3) for all strictly increasing
functions a;

P9. (invariance to decreasing transforms) (X, X2) < (X1, X3)
implies (6(X1), X3) < (b(X4),X2) for all strictly decreasing
functions b.

If property P1 is satisfied, then the bivariate dependence or-
dering is stronger than the concordance ordering <.. Property P5
implies that the Fréchet upper (lower) bound is the most (least)
dependent in the ordering. Properties P6 to P9 are fairly natural
invariance requirements.

An ordering that satisfies the nine properties is called a bivari-
ate positive dependence ordering (BPDO). The concordance
ordering is a BPDO and it is the weakest one in that if FF < F'
for any other BPDO <, then F'<.F'. Other orderings are given in
later subsections.

2.2.83 Azioms for a multivariate dependence ordering

In this subsection, we generalize the properties or axioms of the
preceding subsection to the multivariate case. Let < be a multi-
variate dependence ordering (for cdfs in F(Fy,..., Fy;) or random
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vectors that have the same corresponding univariate marginal dis-
tributions) that is defined for all dimensions m > 2. Desirable
properties or axioms for < are:

P1. (bivariate concordance) F' < F’ implies that, for all 1 <7 <
j < m, Fij(zi,z;) < Fli(2i,25) Vi, 25, where Fij, Fy; are
the (7, j) bivariate margins;

P2. (transitivity) F < F” and F/ < F" imply F' < F";

P3. (reflexivity) F' < F

P4. (equivalence) F < F' and F' < F imply F = F';

P5. (bound) F < Fy, where Fy is the Fréchet upper bound;
P6. (invariance to limit in distribution) F,, < F;, n = 1,2,...,
and F, —¢ F, F} —; F' as n — oo, imply that F < F’;
P7. (invariance to order of indices) (X1,..., Xm) < (X1,-.., X))
implies (Xi,, ..., Xi,.) < (X{,,..., X} _) for all permutations

(il,...,im) of(l,...,m);

P8. (invariance to | transforms) (X1,...,Xm) < (X1,..., X})
implies (a(X1), X2,...,Xm) < (a(X}), X3,...,X],) for all
strictly increasing functions a;

P9. (closure under marginals) (X1,..., Xn) < (X1,...,X},) im-
plies (Xi,,..., Xs,) < (X{,,..., Xj,) for all 4; < .-+ < i,
2<k<m.

Note that bivariate property P5 does not extend completely be-
cause there is no Fréchet lower bound in general for dimensions
m > 3. Similarly, the use of a decreasing transformation to reverse
the ordering of dependence does not extend to the multivariate
case. So property P9 from the bivariate case is replaced by the
natural property of closure under marginals.

An ordering that satisfies these properties is called a multi-
variate positive dependence ordering (MPDO). The pair-
wise concordance ordering, which is defined next, satisfies all of

“the properties except for property P4.

Definition. Let F,F’ € F(Fy,...,F,), where Fy,..., Fy, are
univariate cdfs. F' is more pairwise concordant than F, written
F<EVF' if forall 1 <i<j<m,

Fij(zi,z;) < Fij(zi,z5) V(zi,z5) € R?,
where Fj, Fj; are the (7, j) bivariate margins of F, F”, respectively.

It is simple to show that for any MPDO <, F < F' implies
F<P"F’ Tt is also straightforward to show that <., <.y and <.
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are MPDOs. An MPDO which is stronger than <. is given in
Section 2.2.5. It will be seen from the families of multivariate dis-
tributions given in Chapters 4 and 5 that the <. ordering is dif-
ficult or impossible to show analytically, whereas <B" and one of
~<cu orF =cr, is not difficult to establish. The reason can be seen
in the formulas for obtaining a survival function from a cdf and
vice versa (equations (1.3) and (1.4)). If one has a parametric fam-
ily F(x;8) in F(F,..., Fy) that is increasing in 8 for all x (so
that the <[, ordering holds), then the ordering in 8 holds for all
marginal distributions, but this need not imply (analytically) that
the survival functions are ordered because of the alternating signs
in (1.3). Where the multivariate <. ordering has been established,
it is through stochastic representations (e.g., Theorems 2.21 and
4.7 to 4.10).

2.2.4 More SI bivariate ordering *

In this subsection, we define a bivariate ordering <sj such that if
F € F(F, F,), then F1F3<g1F is equivalent to Fy; SI. This or-
dering has been called the ‘more regression dependent’ or ‘more
monotone regression dependent’ ordering in the statistical liter-
ature. There are several equivalent versions of the definition. Here
we use the forms that will be the most useful in subsequent chap-
ters. Also we impose some conditions, such as Fy, F» continuous
and differentiable, to avoid technicalities.

Definition. Let (X3, X2) ~ F, (X1,X3) ~ F' with F,F' €
F(F1,F2). Let G = Fyp, G' = éll be .the respective condi-
tional distributions of the second rv given the first. Suppose that
G(z2|z1) and G'(z2|z,) are continuous in z; for all z;. Then Fy, is
more SI than Fy); (written F<g F’ or F2|1-=<51F2’|1) if Y(z1,22) =
G'~Y(G(z2|z1)|z1) is increasing in z;. (Note that ¥ is increasing
in z, since, for each fixed z;, it is a composition of increasing
functions.)

We go through a sequence of theorems to establish properties
and equivalences for the <g; ordering.

Theorem 2.9 Suppose X, = X{, X1 ~ F1, (X1,X2) ~ F and
(X1, X3) ~ F'. Also suppose Fyi(z2|z1) and Fyp (z2lz1) are con-
tinuous in x4 for all zy. Then a stochastic representation is

(X1, X5) £ (X1, %(X1, X2))
where P(z1,22) = F;i'll(an(a:gI:cl)lml).
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Proof. Let G = Fo)y and G’ = Féll' Given X; = zy, X2 ~ G(+|z1).
Since G(z2|x1) is continuous in z2, G(X2|z1) is uniform conditional
on Xy = z;. Also if U ~ U(0, 1), then, conditional on X; = =z,
G'~Y(U|zy) has distribution G’(z2|z1) by the continuity of this
function in 5. Hence (X1, &'~ (G(X2|X1)|X1)) 2 (X1, X3). D

Note that by symmetry another stochastic relationship is
(X1, X2) = (X1, (X1, X3)),
where ((z1,22) = F{Ill(Fz’Il(mﬂxl)]x;).

Theorem 2.10 With G = Fy;, G' = Féll’ such that G(za|z,)

and G'(zq|zy) are continuous in x5 for all z,, equivalent forms for
F2|1'<SIF£|1 are the following:

(a) For any z; < z3 and u,v in (0,1),
G ulze) > G wlz1) = G Yulzz) > G v]|z).

(b) For any z; < z2 and any y,y with y in the support of G(+|z1)
and y' in the suppori of G'(+]z2),

Glyln) 2 G'(Y|l21) = G(ulz2) 2 G'(¥'|z2).  (2.25)

(c) ¢(z1,z2) = FZ‘III(Fé“(zQIm)]ml) is increasing in o and de-
creasing in .

Proof. We prove the equivalence of (a) and (b) in the case where
G(z2|z1) and G'(z2]z,) are strictly increasing in zo. This assump-
tion can be relaxed with some extra technical details.

For (b) = (a), the proof is by contradiction. Suppose (b) holds
and (a) does not. Then there exist u, v, z1 < 25 such that G~1(u|z;)
> G~ (v|z1) and G'"(ulz2) < G'~!(v|z1). Let y = G~ (v|z1)
and ¥y = G""(u|z2) so that v = G(y|z1) and u = G'(¥'|22). The
inequalities become G~ !(u|z2) > y or G(y|z2) < G'(¥']22) and
¥y < G'"Yv|z1) or G'(¥'|21) < G(y|z1). From the assumption of
strictly increasing G,G’, there exists ¢ > 0 such that G'(¥'|z;) <
G(y—€]z1) and G(y — €]z2) < G'(y'|22). This contradicts condition
(b).

The proof of (a) = (b) is similar. Suppose (a) holds and (b) does
not. Then there exist y,y, z1 < 23 such that G(y|z1) > G'(¥']|21)
and G(ylz2) < G'(¥'|z2). Let v = G(y|z1) and v = G'(¥'|z2) so
that y = G~!(v]z1) and ¥ = G’~(u|z2). The inequalities become
v > G'(V]21) or G~ Y(v]z1) > G'"(ulz2), and G(y|zz) < u or
G~!(v|z1) < G~}(u|zz). From the assumption of strictly increasing
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G, G, there exists ¢ > 0 such that G~!(v]2;) < G~(u — ¢]z2) and
G'"Y(v]z1) > G'~}(u — €|22). This contradicts condition (a).

Next we show the equivalence of condition (b) and the definition
of <gy, again under the assumption of strictly increasing condi-
tional cdfs. (This corrects part of the proof of Theorem 2.2 in
Fang and Joe (1992).) Assume that (2.25) holds for z; < z3. Let
¥(z,y) = G'~YG(y)z)|z). It suffices to show that ¥(z,y) is in-
creasing in z. Let 23 < z3 and fix y. Let ¥ satisfy G(y|z1) =
G'(y'|z1)- Then (2.25) implies that ¥(z2,y) = G~ (G(y|z2)|22) >
GG [m)lz2) 2 ¥ = GG |m)lz1) = G- HGlyler)|) =
¢(zlay)'

For the converse, suppose that (2.25) does not hold for some
¥,y"* and some z; < 2;. That is,

G(ylz21)) 2 G'(y"|z1) and G(ylz) < G'(y"]22).

Let y' satisfy G(y|z1) = G'(¥'|21) so that ' > y*. Then G(y]z2) <
G'(y'|22). Furthermore,

¥(21,9) = G~ (G(ya1)lz1) = G~ HG (¥ |a)l1) =

and
¥(22,9) = GG (y|22)| 22) < G UG (Y 2a)lz) =¥,

so that ¥(z1,y) > ¥(22,y) and ¢ is not increasing in z for all y.

For the equivalence of condition (c¢) to the definition, we provide
a proof in the case where ¥ is strictly increasing and differen-
tiable. The general case then follows by a limit of approximations.
The transformation from the definition is (z;,z2) — (z},2%) =
(z1,¥(z1, z2)) and the inverse transformation is (2}, z5) — (21, z2)
= (2}, {(=4, #3)). The Jacobian matrices of the two transformations
are inverses of each other, i.e.,

AR A R P

where ;,(; are the partial derivatives with respect to the jth
variable, j = 1,2. Hence (3(z%, 2%) = —¥1(x1, z2)/92(z1,22) or {3
and v, are opposite in sign (i.e., the monotonicities of ( and ¥ in
the first variable x; are opposite in direction). [

Theorem 2.11 Lel F € F(F,F2). Then FyFa<g1 F if and only
if Fypp is SL .

Proof. F1Fo<siF <= Fz"ll(Fg(:cg)lml)Tazl Vo < F.;,ll(u]a:l)
Tz VO<u<l < Fgu(mglxl) lz; V2, <= F2|1 isSI. 0O
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Theorem 2.12 F<g F' implies F< F'.

Proof. Let (X1, X3) ~ F, (X}, X3) ~ F', with X; £ X}, j = 1,2.
From Theorem 2.9, (Xi,Xé)g(Xl,z/)(Xl,Xz)) with ¥(z1,z2) =
Fz'al(qu(zzlxl)]ml). The assumption here implies that 1 is in-
creasing in both z,,z;. To prove the concordance ordering, we
consider two cases.

Case 1. Suppose that z,,z2 are such that ¢(z, ;) < z2. Then

F'(z1,22) = Pr(X] < 21, X3 < )
Pr(X; < z1, ¥(X1,X2) < z2)
Pr(X; < zy, ¥(z1, X2) < z2)
Pr(X; < z1, X2 < z2) = F(z1,z2),

v v

where the last inequality results since X» < z implies (21, X2) <
Y(z1, z2) < z2 under the starting assumption.

Case 2. Suppose that z;,z2 are such that ¥(z1,z3) > z2. Then
X2 > z9 = YP(z1,X2) > ¥(z1,22) > z20r YP(z1,X2) < z2 = X2 <
z2. Therefore, Pr(X; > z1, X2 < z3) > Pr(X1 > 1, 9¥(21, X2) <
:62) > PI‘(Xl > :Bl,’l,b(X],Xz) < :1!2) = Pl‘(X{ > fL‘l,Xé < :L‘z), S0
that F(z1,z2) < F'(z;,z2). O

We next extend the definitions of <gsp in order to incorporate the
Fréchet upper and lower bounds in the ordering of distributions in
F(F1, F3). Then we comment on the properties of a BPDO, and
whether they are satisfied for <sj.

The Fréchet upper bound does not have continuous conditional
cdfs but the condition in the definition of <gy still holds. Let
F € F(F1,F;) and let F' = Fy be the Fréchet upper bound
in F(Fy, F3). Then Fj (zz|21) = 1if 23 > F;' o Fi(z;) and 0
otherwise, and Fé,’;l(ulzl) = F;' o Fi(2;), 0 < u < 1. Hence
P(zy,22) = Féﬁl(F2|1(-’E2l$1)|-"31) = F;! o Fi(z;) is increasing
in z;. Furthermore, if (X,,X2) ~ F and (X}, X3) ~ Fy, then
(X1, X5) £ (X0, Fy o Fy(Xy)).

Next let F' € F(Fy, F;) and let F = Fp be the Fréchet lower
bound in F(Fy, Fp). If (X;,X2) ~ Fr and (X7, X}) ~ F’, there
is no stochastic representation for (Xi, X}) in terms of (X1, X3)
because of the relationship X; = F; '(1 — Fy(X;)). For incorpor-
ating the Fréchet lower bound into the <s; ordering, we make
use of the equivalent condition (¢) in Theorem 2.10. Note that
Fop(zolzy) = 1if 2, > F; (1 — Fi(z,)) and 0 otherwise, and
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F.ill(ulml) = F;1(1 = Fi(z1)), 0 < u < 1. Hence
(21, 22) = Fyy (Fyyi(22]21)|21) = F5 (1 = Fi(=1)).

Also (X1, X2) 2 (X],¢(X4, X5)).
Theorem 2.13 The (ertended) <g1 ordering satisfies all proper-
ties of a BPDO except for P7. P7 is not salisfied because the def-

inition of <g; is not symmetric in the lwo variables. P7 is satisfied
within the subfamilies of permutation-symmetric distributions.

An approach that is useful for showing the <s; ordering for a
one-parameter family C(-; ) of copulas, when Cy;(v|u; 6) does not
have a closed-form inverse, is provided by the following theorem.
Theorem 2.14 Let C(u,v;é) be a family of bivariale copulas. Let
B(u,v,8) = g(Co1(v|u; 6)), where g is an arbitrary strictly increas-
ing real-valued function. Assume that B is continuously differen-
tiable in all variables up to second order. The family C is increasing
in <sp as 6 increases (i.e., C(u,v;61)<s1C(u, v;82) for 6, < é2) if

0B 0B _ 9B 0B
Ovlu 86 B60u Bv — ‘
Proof. Let §; < 8. Then C{u, v; 61)<s1C(u, v; 62) if v* (u) = v*(862)

= v*(u; b1, 62, v) is increasing in u with v* being the root of

B(u,v*,&z) = B(u, v, 51) (226)
Taking the derivative of (2.26) with respect to u leads to
B
08 (u,07,62) + G2 (u, 0", ) e () = 2 (1,0, 81).

Si:lce 48 o, %’; > 0 if 42(u,v",8) — H(u,v,él) < Oorif
2L (u,v*(5), 6) < 0. This is equivalent to

ov*  0°B .
(u, ) m(u,v ,6) S 0. (2.27)
From (2.26), w:th § = &3, 2 _5'6" = —8B /2B Hence (2.27) is equi-
valent to the condition in the statement of the theorem. O

2.2.5 More TPy bivariate orderings *

This subsection is on orderings involving the TPs condition. It
is mainly included for theoretical interest and completeness. The
orderings here are not used subsequently, whereas the more SI or-
dering is used; they are also difficult to check analytically.
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Some notation is needed in order to present the orderings in
a simplé form. For intervals Iy, I, of real numbers, the notation
I; < I, means that z; € I and z5 € I, imply ¢, < z,. If I =
(a,b), J = (c,d) are intervals and F' is a bivariate cdf, the notation
F(I,J)is shorthand for the rectangle probability F'(b,d)—~F(a,d)—
F(b,¢)+ F(a,c).

Definition. Let F, F' € F(F), Fy), where F} and F; are univari-
ate cdfs. F’ is more TP, than F with respect to rectangles
(written F<rpprF”’) if, for all intervals I, I, J1, Jo, with I} < Jy,
I, < Jo,

F(I, LYF(Jy,J2)F'(Ih, J2)F'(Jy, I2)
< F'(Iy, I)F'(Jy,J2)F (11, J2) F(Jy, I2). (2.28)
F’ is more TP, than F with respect to lower quadrants
(written F<ppLF"') if (2.28) holds for all intervals Iy, I, Jy, J2 with
I) < Jy, I < Jy and the extra restriction that I, I, have lower
limits of —co. Similarly, F’ is more TP, than F with respect to
upper quadrants (written F<tpyF"’) if (2.28) holds for all in-

tervals I, Iz, Jy, Jo» with I} < Jy, I < J2 and the extra restriction
that Jy, J2 have upper limits of oo.

For <7p, and <tpy, inequality (2.28) could be written respect-
ively as
F(z1,22)[F(y1,¥2) — F(y1,22) — F(z1,92) + F(z1,22)]
[F'(z1,y2) = F'(z1, 22))[F' (11, 22) — F'(2y, 22)]
< F'(zy,22)[F'(v1,92) — F'(y1,22) — F'(zy,2) + F'(21, 22))
[F(z1,y2) — F(z1, 22)}[F (91, 22) — F(z1, 22)]

and

F(zy, :82)[?(!/1 yY2) — F(yz ,T2) = .F’(xx, y2) + 7(21 ,Z2)]
[F' (21, 22) = F'(21, 92)l[F' (21, @2) — F' (31, 22))]
< Fl(z1,22)[F (1, v2) — F'(y1,22) = F'(z1,52) + F'(21, 22)]
[F(z1,22) = F(z1, y2)][F(21, 22) = F(y1, 22)]
where z; < y;, T2 < Ya.
We go through a sequence of theorems to establish properties of

the orderings.

Theorem 2.15 Let F € F(Fy, Fy) and suppose F has density f.
Then F\ Fo<rprF tf and only if f is TP,.
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Proof. For comparing Fy Fy with F', (2.28) is equivalent to
F(I,J2)F(I2,J1) < F(Ly, J1)F(I2, J2). (2.29)

Let z1 < y1, 22 < y2 and let € > 0 be sufficiently small. Let
Il = (-’B],.’L‘l+f], 12 = (ylxyl+£]7 Jl = ((L'2,$2+f], ']2 - (y21y2+€]~
Divide both sides of (2.29) by ¢ and let ¢ — 0 to get

f(z1,92)f(y1,22) < f(z1,22) f(v1, 92), (2.30)

so that F} Fo<TprF implies that f is TPy. If f is TP3, so that
(2.30) holds for all z; < 3, 22 < y2, then (2.29) holds for all
I, < I, J; < J2 by integration. O

Theorem 2.16 F<1prF’' = F<ypuF' and F<ppLF’'. Both
F<rpuF' and F<tpLF' = F<.F'.

Proof. The first statement is obvious. For the second, take I; =
(=00, 21], J1 = (21,00), Iz = (—00, 23], J2 = (z2,00). Then (2.28)
becomes

F(a:l, zg)ﬁ(ml ) .’Bz)(F](:L‘l) — F’(:L'l,.‘ltg))(Fg(:L‘z) e F'(.’El ) .’L‘g))
< F'(z1, 22)F' (21, 22)(F1(21) = F(21, 22))(Fa(22) — Flz1,22)),

and this implies F(z,z2) < F'(z;,%2) since h(w) = log{[w(l —
Fy — Fy+w)]/[(F1 —w)(F2 —w)]} is increasing in w € [max{0, F1+
F3 — 1}, min{ Fy, F>}] (its derivative is w™ !+ (1 — F; — Fo +w)~ 1 +
(Fl—w)'1+(F2-—w)"1 >0). O

Remarks. Although a bivariate cdf F' with TP, density satis-
fies the SI property, the <Tpr, <TpL and <pr orderings have
not been shown to imply the <gj ordering. There is no obvious
connection between the TP, orderings and the <gy ordering.

Theorem 2.17 <tpr, <TPL and <TpU are BPDOs.

Proof. The proof for <pr is given in Kimeldorf and Sampson
(1987). The proof for the other two orderings is very similar (see
also Metry and Sampson 1991). O

2.2.6 Posilive function dependence ordering *

The ordering that generalizes the dependence concept of PFD is
given in this subsection.

Let the rvs Xi,...,Xm,X!},..., X}, have a common distribu-
tion, say Fy, and let X ~ F, X’ ~ F'. Then X’ or F’ is more
positive function dependent than X or F' (written X< X' or
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F-<p{d F') if
E[A(X1) - h(Xm)] < E[R(X) - h(XL,)]

for all real-valued functions h such that the expectations exist. In
the case of m odd, there is the extra constraint of h being non-
negative.

This ordering has some applications to multivariate models, but
the following results show that it is not a BPDO when m = 2.
Also a result below shows that two multivariate distributions can
be ordered in <. but not in <pg and vice versa. Generally, the
<pra ordering is useful only for exchangeable and some partially
exchangeable multivariate distributions.

Theorem 2.18 Let Fy be a given univariale cdf and let F €
F(Fo, Fy). Furthermore, let Fy(zy,z2) = min{Fo(z1), Fo(z2)} be
the Fréchet upper bound in F. Then F<yq Fu.

Proof. Let (X1, X2) ~ F so that (X1, X) ~ Fy. Then E[h(X;) —
h(X2))? > 0 implies 2E [h?(X;)] > 2E[R(X1)R(X2)]. O
Theorem 2.19 Let Fyy be a given univariate cdf and consider the
Fréchet class F(Fo, Fo); let Fr(zy,z2) = max{0, Fo(z1)+ Fo(z2)—
1} be the Fréchel lower bound. Then it is not true that Fp<,uF
fOT‘ all F € f(Fo,Fo).

Proof. Let us simplify to the case where Fy is the cdf of a U(0, 1)
rv. Let (Uy,U2) ~ F and then (U;,1 — Uy) ~ Fr. The <pgq or-
dering would require E [h(U1)h(1 — U1)] < E[h(U,)R(U2))] for all
h. However, with h(z) = z(1 — z) on [0,1], E[UZ(1 — U,)?] = 1/30
and, for Uy, U> independent, {E[U;(1 - U;)]}2=1/36. O
Theorem 2.20 The <pgg ordering need not imply the <. ordering,
and vice versa.

Proof. To get a simple example of a family of copulas C(-; #) which
is ordered by <. but not by < g, the symmetry in the two vari-
ables is eliminated. Let by, b2 be functions on [0,1] which satisfy
Jo bi(u)du =0, j = 1,2, and [ by(u)du [¥ bo(v)dv > 0 for all z,y
in [0,1]. Then c¢(w,v;8) = 1 + 0b;(u)bz(v) is a proper density on
[0,1])% for 8 in a neighbourhood of 0, and the cdfs C(-;6) are in-
creasing in <. as 6 increases. Now let by, b5, h be piecewise constant
with

i

b1(u) -1 if05<u<l,

bo(e) = 1 if0<u<0.25 05<u<0.75,
2 T -1 if0.25<u<05,075<u<l,

{ 1 ifo<u<0.5,
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0 if0<u<0.25 075<u<],
h(u) = { hy if0.25 <u<0.5,
hy if 0.5 < u <0.75,

and hy # hs. Then [ [5 h(w)h(v) c(u, v;0) du dv = [(hy+hs)/4]*—
B[(ha — h3)/4]? is decreasing in 6.

The above example can be modified to get a family of copulas
C(+;0) which is ordered by <pgq but not by <. Let b be a function
on [0,1] such that {b] < 1, and fol b(s)ds = 0. Then c(u,v;8) =
1+ 0b(u)b(v) is a proper density for —1 < 8 < 1. Let k be an inte-
grable function on [0,1]. Note that fol fol h(u)h(v) ¢(u, v;0) dudv =
[fol h(u)du)? + H[fol b(u)h(u)du)? is increasing in 8, so that

U v
C(u,v;0) =uv+ 0/ b(s) ds/ b(t) dt
0 0
is increasing in the <pgq ordering as @ increases. Now let

puy= [ ~1 H0<u<0.25,078<u<l,
=11 if0.25<u<0.75,

so that

z -z if 0 < z <0.25,
/ b(s)ds = {a‘: -0.5 if0.25 < z < 0.75,
0 l—z if075<z<]l.
For u=1/8,v=5/8, C(u,v;8) = (5— 8)/64 is decreasing in 8, so
that C(-;8) is not increasing in the <. ordering. [

2.2.7 Ezamples: bivariate

This subsection consists of bivariate examples that illustrate the
dependence orderings.

Example 2.3 (continued). The family B5 of copulas in (2.18) is
increasing in concordance as § increases and the limit is the Fréchet
upper bound as § — oo. To show the concordance ordering, one
needs 6! log(u® 4+ v’ —u®v?) to be decreasing in 6 for all 0 < u,v <
1 or aloga + blogb — ablog(ab) — (a + b — ab)log(a + b — ab) <0
for all 0 < a,b < 1 (a = u®, b = v*, § > 1). The last inequality
follows from the majorization ordering (a, b)<,,(ab, a + b — ab) and
the convexity of the function wlogw for w > 0.

The family B5 satisfies the stronger <sj ordering as é increases.
The following is a proof based on Theorem 2.14. Let B = log Cy1,

where Cy); is given in (2.19). Let U = W, V=2 U= 8U/86 =
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§~UlogU, and V = §7'V log V. Then
B(u,v,8) = (=146 ) log(U+V—-UV)+(1—6"1) log U-+log(1-V).

Derivatives are:

9°B _  (6=1)UV
dvou — (U+V-~-UV)2uv’

U -vY+v(a-=-U
9B — =1llog(U+V — UV)+———-———+(6 1 )iu+>v U(V )
528 _ V(U+V-UV)+(-DUV-UV(1- V)]

B66u w(U+V-UV)?

8B _ VI[(1-U)(Q-V)-¢]
5y — v(1-V)U4V-UV)"

e 9°B 9B _ 98°B 98B
The condition 35-5% — 5550 5. simplifies to

(U +V - UV)_s(U'U)“ [A1 +As + A3],

where 4, = V2 (U +V -UV)§-(1-U)1-V)]/1-V)>0,
Ay ==6"Y6-1)UVlog(U+V-UV)>0and A3 = (6-1)U(U+
V-UVWWQA=-V)=616-1DNUV(U+V-UV)(1-V)loglU <0.
The sum As + Az can be negative. However A; + A2+ A3 > 0 since
VIU+V-UV)?/(1=V)+U[-log(U+V =UV)+(U+V -UV)(1-
V)logU] > 0 for all 0 < U,V < 1. This last inequality has been
verified by numerical computation and a study at the boundaries.
m]

Example 2.6 The <gs; ordering is shown for the family B3 in
Section 5.1, using a direct application of the definition of <gj.
Consider the family of copulas

Clu,v;6) = =67 log[1—(1—e™")(1=e~*")/(1=¢"*)), 0 < & < co.

Let 0 < &; < é2. We show that C(+;61)<s1C(+; 62). Let G(v|u; )
= Cyop(v|u;6) = [1 — 7% — (1 — e~ ®¥)(1 — e~ )]~ L84 (1 — e~ %?)
=e %[(1—-e %) (1 —e %) — (1 —e~%%))~!. Then

P(u,v;61,82) = G~H(G(v]u; &1)lu; &2)
1-exp{~é2
“312 log {1 - (w—l_1§§;£{..51u}+1} '
where w = G(v|u;é,). Here 9(u,v; 61, 62) is increasing in u since

(w™t=1)e %% = elbr=02)u(] _g=41v)~1(g=81v _¢—01) i5 decreasing
in ¢ for fixed v. O

Example 2.7 Numerical checks seem to indicate that the <py
(and <TpL) ordering holds for the one-parameter families B1-B8
of copulas in Section 5.1. Note that by numerical checks we mean
that conditions are evaluated over a (fine) grid of values of the
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relevant variables. The <Tpg ordering has been shown numerically
and analytically not to hold for the families B2-B8, by comparing
the special case of densities (intervals in the definition collapsed to
points). The <rpr ordering seems to hold for the BVN family from
numerical tests. The <sj ordering holds for the families B1-B6; for

the families B7 and B8 the <gs; ordering has not been checkable " - \

analytically. O

Example 2.8 Let (X1, X2), (X1, X}) have BVSN distributions =~

with respective correlations p, p’ such that 0 < p < p’ < 1. Then
(X1, X2)<pra(X1, X3). This result generalizes to equicorrelated
MVN random vectors with positive correlations.

Proof. Let g(u,v,w) = /1= p'u++/p' — pv+,/pw. Then we can
write

(X1,X2) = (9(Ur, V1, W), g(Ua, V2, W)),
(X;lXé) = (g(UI’ ‘/1’ W), g(U27 ‘/1) W)))
where Uy, Uy, V1, Vo, W are iid standard normal rvs. Let h*(v, w) =
E[h(g(U:,V1,W)) | Vi = v, W = w]. Then
E[h(X1)h(X2)] = E[R*(Vi, W)™ (V2, W)]
< E{[p"(Vi, W))’} = E [R(X])R(X3)],
by making use of Theorem 2.18 for the inequality. [0

2.2.8 Ezamples: multivariate

This subsection consists of multivariate examples that illustrate
the dependence orderings.

Example 2.9 The following is a result on the concordance or-
dering for elliptically contoured distributions, which include MVN
distributions as a special case.

Theorem 2.21 Let P be the set of non-negative definile correl-
atton matrices. Lel Z have a spherically symmelric distribution,
and let XT = AZT where AAT = £ = (0i;) is the Cholesky
decomposition of & € P, with A lower iriangular. Then, for all
b e ®™,

Pr(X; <b1,...,Xm < bm) (2.31)

is tncreasing in oy for all i # j.

Proof. Since a spherically symmetric distribution is a mixture of
distributions that are uniform on the surfaces of spheres of different
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‘radii, it suffices to prove the result for the uniform distribution on
‘the surface of a sphere with radius 1.

{ In the bivariate case, the representation from the Cholesky de-
.lcomposition is Xy = Z1, X2 = pZ1 +(1 —p2)1/2Z2 as p varies from
11 to 1. Then Pr(Xa < by) = Pr(Z2 < (b2 — pZ1)/(1 — p*)V/?)
is a constant; the line y = (by — pz)/(1 — p?)}/? divides the cir-
cle 2 + y?> = 1 in the same proportions for all p between —1
and 1. Hence it is clear from a diagram that Pr(X; = Z; <
b1,Z9 < (ba — pZ1)/(1 — p*)!/?) is increasing in p because the
slope —p/(1 — p?)!/? is decreasing in p. Therefore the case m = 2
has been proved.

For m > 2, it suffices by symmetry to show that (2.31) is in-
creasing in p = 0,—1,m With other o;; held fixed. Let Z be uni-
form on the surface of a sphere of radius 1. From the Cholesky
decomposition, only am m-1 and amm depend on p and @y m-1 =
(p'“z:;n=_12 am—l,jamj)/am—l,m—l ifClm—l,m--l > 0 and Amm-1 = 0
if am_1,m—1 = 0 (in this case the upper (m — 1) x (m — 1) sub-
matrix of ¥ is singular and p is fixed given the other o;;). If
@m-1m-1 > 0, Pr(Xy < by,...,Xm < bp) becomes a weighted
integral over zy,...,zn-2 of

Pr(Zm-1 < e1(21,. -, Zm=2),p" Zm-1 + (1 = p"*)!/2 Z,,

S 62(21, ey zm_g) I (ZI) ceey Zm..z) = (Zl, ey Zm_z)), (232)
where p* = a,, ;m—1/D is increasing in p, and

m-2

01(21, .. -,Zm—z) = [bm-l - Z am—l,jzj]/am-l,m—l,

i=1

c2(21, -y Zme2) = [b— 377" @mjz]/D, D = [1= 37577 apmj]1/2.
Hence the monotonicity of (2.32) follows from the general m = 2
case, since in (2.32), (Zm—-1,Zm) has a density with circular con-

tours. [

Example 2.10 Suppose Fy3, Fy3, Fa3 are compatible (1,2), (1,3)
and (2,3) bivariate margins. Consider the set of trivariate cdfs
f(Flz, Fis, F23). If F,F' e f'(Flg, Fis, Fzg) then F<.yF’ implies
F'<.LF so that F<.F' implies that F = F'. This follows from the
relationship between a trivariate cdf and survival function. O

Example 2.11 (Multivariate Fréchet upper bound and <pgq.)
Suppose X is such that X; 2 .. £ X,,. Then X~<pa(X1, ..., X1).
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Proof. Consider the case where h is a non-negative function. First
let Xq,..., Xm be exchangeable rvs. Then it suffices to prove that

E(h(X1) - - - h(Xm)] € E[A™(X1)). (2.33)

Note that h(X;) are exchangeable rvs and then (2.33) follows from
Muirhead’s theorem (Marshall and Olkin 1979, p. 87). For the non-
exchangeable case, note that if X ~ F and F has density f relative
to some measure, then the F' can be symmetrized to F* with den-
sity f*(x) = (m)™!' 3, f(Zx(1), - - -» Ta(m)), Where the sum is over
the permutations of {1,...,m}. If X* ~ F*, then

E[A(X}) - h(X)] = E[R(X1) - - A(X )]

Hence in general, X< 4 (X,,..., X1).

Next consider the case where m is even and A can have positive
and negative values. It is necessary to show (2.33) above for ar-
bitrary h. Similarly to the proof in Theorem 2.18, we start with
E{[R(X1) - h(Xmy2) = h(Xmj241) - h(Xe)J?} > 0. We can as-
sume (by symmetrization) that X,,..., X,, are exchangeable rvs.
Then E[h(X1)---h(Xm)] < E[A%(X1)---h*(Xm/2)]- The latter
term is dominated by E [A™(X;)] from the preceding case. [1

2.3 Bibliographic notes

Early references for the concepts of PQD, POD, SI, RTI, LTD,
TP, density, association and CIS are Barlow and Proschan (1981),
Lehmann (1966), Esary and Proschan (1972) and Esary, Proschan
and Walkup (1967). Papers that include negative association, not
used in this book, are Alam and Saxena (1981) and Joag-dev and
Proschan (1983). A reference for multivariate dependence concepts
is Block and Ting (1981). A reference for the concept of PDS is
Block, Savits and Shaked (1985). The multivariate extension of
LTD is from Alzaid and Proschan (1994). For the concept of TP,
survival functions and generalizations, see Shaked (1977a). Shaked
(1977a) shows that the condition of a TP, bivariate survival func-
tion is the same as an earlier definition of right corner set in-
creasing (RCSI) in Harris (1970). The relation between min-id and
TP, surivival functions is proved in Marshall and Olkin (1990).
The concepts of MTP2, and MRR; are from Karlin and Rinott
(1980a; 1980b). Results on max-id and min-id are from Joe and
Hu (1996). For further results for max-id for bivariate distribu-
tions, see Balkema and Resnick (1977).

Original references for Spearman’s tho and Kendall’s tau are
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Spearman (1904) and Kendall (1938); a later reference with con-
nections to copulas is Schweizer and Wolff (1981). The concept of
tail dependence is from Joe (1993).

The axioms of a bivariate positive dependence ordering and a
framework for positive dependence are given in Kimeldorf and
Sampson (1987; 1989). The bivariate concordance ordering is pre-
sented in Yanagimoto and Okamoto (1969), Tchen (1980) and
Cambanis, Simons and Stout (1976), and the multivariate concord-
ance ordering is presented in Joe (1990c). The more SI ordering,
although called the more regression dependent or more mono-
tone regression dependent ordering, is studied in Yanagimoto and
Okamoto (1969), Schriever (1986; 1987) and Fang and Joe (1992).
Schriever has a more associated ordering and a different equiva-
lent condition for the more SI ordering; these are not given here
because they are not needed for the results in this book. The more
TP, orderings are studied in Kimeldorf and Sampson (1987) and
Metry and Sampson (1991); the latter has more versions of more
TP2 orderings than given in this chapter.

Property P9 in Section 2.2.2 is an extension of Kimeldorf and
Sampson (1987) from a sign change to a decreasing transforma-
tion. Section 2.2.3 consists of new results. However, the usefulness
of multivariate positive dependence orderings other than the vari-
ations of the concordance ordering seems to be limited because of
the difficulty of analytic checking. Theorem 2.14 is new, and the
proof of Theorem 2.21 is from Joe (1990c).

The PFD condition and orderings, known as positive dependence
and more positive dependent, respectively, are studied in Rinott
and Pollak (1980), Gleser and Moore (1983) and Tong (1989).
Related ideas, including positive dependence by mixtures, are in
Shaked (1977b; 1979).

A comprehensive reference for stochastic orderings is Shaked
and Shanthikumar (1994). A reference on total positivity is Karlin
(1968). Dependence concepts have many other applications besides
those in this book; several dependence concepts arise from reliabil-
ity (see Barlow and Proschan 1981) and Boland et al. (1996) study
dependence properties of order statistics.

2.4 Exercises
2.1 Show the equivalence of (2.1) and (2.2).
2.2 Show that (2.3) and (2.4) are not equivalent for m > 2.
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2.3

2.4

BASIC CONCEPTS OF DEPENDENCE

Show by means of counterexamples that there are no other
implications among the bivariate positive dependence con-
cepts of PQD, SI, LTD, RTI, associated, TPy density and
TP2 cdf.

Show that if F(zy,z2) = [;° G(z1;@)G(z2; &) dM (), then
Fis PFD.

2.5 For an m-variate cdf F, show that F¥ (F7)is a cdf (survival

function) for all y > m — 1.

2.6 Suppose F € F(Fy, F,) has a covariance of 0 but F' # Fy Fs.

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

Prove that F is neither PQD nor NQD.

For a bivariate copula C, let C'(uy, u3) = u1 +u2—14+C(1-
uy, 1 — uz), C"’(uy,u2) = u; — C(uy,1 — uz) be two of the
associated copulas. Show that if C is PQD, then C’ is PQD
and C” is NQD. Show that if C has upper tail dependence,
then C’ has lower tail dependence.

For the bivariate normal density with correlation p, establish
the condition for a TP, density and association.

Let (X1, X2) have a BVSN distribution with correlation p <
1. Show that Pr(X; > 2z | X; > z) — 0 as £ — oo so that
the BVN copula does not have tail dependence for p < 1.

Let F<.F', where F, F' are continuous cdfs. Show that the
Kendall tau, Spearman rho and tail dependence values for
F' are respectively greater than or equal to those of F.

Prove Theorem 2.8.

Let C(u,v;6) = (u=® + v~ % = 1)~ 0 < 6§ < oo. This
is the bivariate family B4 of copulas in Section 5.1. Check
whether the dependence concepts in Section 2.1 hold. Also
check whether C is increasing with respect to the <. and
<1 orderings as § increases.

For a bivariate cdf F, prove that F TP, is equivalent to F
being min-id. (Marshall and Olkin 1990)

For the bivariate normal density with correlation p, show
that Kendall’s tau is 7 = (2/) arcsin(p) and Spearman’s rho
is ps = (6/m)arcsin(p/2). (See Kepner, Harper and Keith
1989, for the quadrant probability calculation.)

Let (X1, X3) ~ F, where F € F(F}, F2), and suppose that
the covariance of X;, X, exists. Hoeffding’s identity, which
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2.16

2.17

2.18

2.19

2.20
2.21

2.22

2.23

1s
Cov (X1, X2) :/"C’ /°° (F(z1,z2)~ F1(21) F2(z2)]) dzadzy,

is used in (2.9). Verify it. [Hint: use the positive and negative
parts of a 1v.] (Hoeffding 1940; Shea 1983)

Find an example of a random vector (X, X2, X3) which is
not PFD but has pairs (X1, X2), (X1, X3), (X2, X3) that are
are PFD. Also find an example where (X, X2, X3) is PFD
but (X;, X») is not PFD. [Hint: consider trivariate families
that are like the family B10 in Section 5.1.]

Prove that if an m-variate density f is MTP,, then its cdf
F and survival function F are also MTP,.

Let X1, X9 be continuous rvs such that X, is RTI in X1 and
Xo i1s LTD in X,. Prove that the Spearman rho value for
X1, X5 is larger than the Kendall tau value.

(Capéraa and Genest 1993)

(Interpretation of £~ for a MVN distribution, see Example
2.2.) Let A = (a;;) be the inverse of the m-dimensional
correlation or covariance matrix £. Let £(4¥) be the ma-
trix obtained from ¥ by removing the uth, vth rows and
columns. Let o;;., be the partial covariance of the ith and
jth variables given the remaining m—2 variables. Show that
aij = —0;;.-|SE)||S|7! for i # j, so that X ~ N(0, ) has
MTP;, density if and only if, for all ¢ # j, the partial correl-
ation of X;, X; given any subset of the remaining variables
1s non-negative.

Show that the orderings <., <cu and <., are MPDOs.

Let F,F' € F(Fy,...,Fs) be m-variate distributions, with
respective continuous densities f, f'. Prove that a necessary
condition for F<pq F' is that f(z,...,z) < f'(z,...,z) for
all z in the support of Fj.

Let ®3(-; p12, P13, p23) be the family of trivariate standard
normal cdfs with means 0 and correlations p;;. If p;; > 0,4 <
7, and if the inequality p12p23 < p13 < 1—|p12—p23| does not
hold, then show that ®3(-; p12, p13, p23) and ®3(:; p12, P13 +
€, p23) are not ordered by <prg, where ¢ > 0 is arbitrarily
small.

Let F, F' € F(Fy, F2) be such that F<.F’. Let Fy, F},, be
the corresponding conditional distributions. For a fixed zo,
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show that the number of sign changes of the function s =
Fop(zal) - Féll(“l') is odd and s(z,) is negative (positive)
for z1 near zr (zy), the lower (upper) end point of support.

2.24 Show by means of a counterexample that the converse of the
result in the preceding exercise is not true.

2.25 Let F,F' € F(F1, F3) and let Fpp1, Fy;, be the (continuous)
conditional distributions. Suppose F'<siF’. Show that there
is a function b(z2) such that Fy)i(x2|z1) — Fyp (z2]z1) > 0if
and only if b(z2) < z;.

2.26 Let F\, F' € F(F1, Fy) and let Fyy, F2I|1 be the (continuous)
conditional distributions. Suppose that there is a function
b(z2) such that Foj;(z2|z)) — Fén(xglxl) > 0 if and only if
b(x2) < z;. Show that F<.F'.

2.27 Consider the ordering for F, F' € F(Fy, F3) defined by F <
F' if there exists a real-valued function b(z2) such that
Fop(zz2|z1) — F2'|1(-"32l~‘”1) > 0 if and only if b(z2) < z;.
Show that < is not transitive.

2.5 Unsolved problems

2.1 Verify or disprove the <Tpgr ordering for the BVN family.

2.2 Verify or disprove the <tpp, and <ppy orderings for the
families B1 to B8 in Section 5.1.

2.3 Consider the ordering with definition F' < F' if [¢dF <
fwdF’ for all L-superadditive functions . A real-valued

function ¥ on RN™ is L-superadditive or lattice super-
additive if

Y VY)+P(xAY) > ¥(x) +¥(y), Vx,y €R™.

Is this an MPDO for m > 37 It is equivalent to the concord-
ance ordering for m = 2 (Tchen 1980). For m > 4, the L-
superadditive ordering is strictly stronger, and form = 3 it is
unknown if the L-superadditive ordering is strictly stronger.

(Joe 1990c¢)




CHAPTER 3

Fréchet classes

This chapter is concerned with results on the extremes of and
bounds on Fréchet classes (or classes of multivariate distribu-
tions with some given margins). If the indices of the margins being
fixed are overlapping, then one first has to determine whether the
margins are compatible. Section 3.1 is devoted to the class of m-

variate distributions F(F1,..., Fy,), in which the univariate mar-
gins Fy,..., F,, are given or fixed. Subsequent sections are devoted

to other Fréchet classes, starting with classes of trivariate distribu-
tions with some fixed bivariate margins. Specifically, F(Fiz, F3),
.’F(F}g,Fl,’;), f(Flg,F13,F23), f(Fij,l S 1 < ] S m), etc., are
studied. For something like F(F)z, F13), it is assumed that the
first univariate margin of Fy, and Fy3 are the same. The study of
the class F(Fi;,1 < i < j < m) is important but not easy; one
first has to determine if the set of bivariate margins are compatible
and, if so, come up with methods to construct a multivariate dis-
tribution with the given margins. Some non-compatibility results
for F(Fij,1 < i < j < m) are based on the set {é;; : 7 < j}, where
6;; is a measure of bivariate association for Fj;.

We can also consider Fréchet classes of survival functions given
marginal survival functions, e.g., F(Fy,...,Fn), F(Fi2,F13),
F(F12,F13, F23). In some cases, because of the relationship be-
tween multivariate cdfs and survival functions, an upper (lower)
bound cdf becomes a lower (upper) bound survival function.

For a given Fréchet class F, natural questions to ask are the
following.

1. What are the bounds for the multivariate distributions in F7?

2. Do the bounds correspond to proper multivariate distributions,
and if so, is there a stochastic representation or interpretation
of the extremes?

3. Are the bounds sharp if they do not correspond to proper
multivariate distributions?
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4. What are simple members of F?

5. Can one construct parametric subfamilies in F with desirable

properties?

The results in this chapter mainly concern 1 to 4, and later
chapters deal with 5. The discussion of the classes F(Fy2, F13),
F(Fi2, F13, Fa3) and F(Fj;,1 < i < j < m) is crucial to the de-
velopment of the construction methods in Sections 4.5, 4.7 and
4.8.

3.1 F(F1,...,Fm) °

Let F}y,..., Fn, be given univariate distribution functions, each of
which can be continuous or non-continuous. The Fréchet bounds for
F = F(F1,...,Fy) are given by the inequalities in the following
theorem. They depend on simple inequalities involving probabil-
ities of sets.

Theorem 3.1 Let F € F(F,...,Fy). Then for all x € ™,
max{0, Fi(z1)+ -+ Frn(zm) - (m — 1)} < F(x) < mjinF,-(:cj).

Proof. Let p; = Pr(A;), where A; = {X; < z;} with X; ~ Fj,
t=1,...,m. Then from Lemma 3.8 below,

max{0,p1 + -+ pm — (m—-1)} < Pr(41N---NAR) < minp;.
7
O

Let the Fréchet upper bound, min; F;(z;), be denoted by Fy(x)
and let the Fréchet lower bound, max{0, Fy(z1) + - - + Fin(zm) —
(m — 1)}, be denoted by Fr(x).

Theorem 3.2 The Fréchet upper bound Fy is a cdf.

Proof. Let X; ~ F;, j = 1,...,m. If one of the univariate cdfs is
continuous, say Fj, then Fy is the joint distribution of X with the
stochastic representation X; = Fj"l(Fl(Xl ), i=2,...,m.

If all univariate cdfs have some discontinuity points, then ap-
proximate Fy by a sequence Fy, such that Fy, —4 F} (this is al-
ways possible by, for example, convoluting X, with a N(0,n™!) rv).
From the preceding paragraph, min{ Fi,(z1), F2(z2),..., Fn(zm)}
is a cdf for all n, and the rectangle inequality (1.6) holds for
it. Hence the rectangle inequality holds for min; Fj(z;) for all
(1, Zm, 1+ h1,...,Tm + hym) such that z;,z; + hy are con-
tinuity points of Fj. For the remaining case where z; (or z1 + hi)
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is not a continuity point of Fy, a limit based on zix (z1 + hix)
decreasing to z; (z; +h;) can be used. The other necessary condi-
tions for a multivariate cdf can easily be checked for min; Fj(z;),
hence Fy is always a cdf. [

Theorem 3.3 The Fréchet lower bound Fi is a cdf for m = 2.

Proof. The proof is similar to that in the preceding theorem. Let
X; ~ F;, 7 =1,2.If at least one of the Fj is continuous, say F},
then Fp(zy,z2) = max{0, F1(z1) + Fa(z2) — 1} is the joint distri-
bution of X;, X2 with the stochastic represention X, = Fz"l(l -
Fy(X4)). If neither F; nor F, is continuous, the idea in the second
paragraph of the preceding proof works. Alternatively the rectangle
inequality (1.5) can be checked directly for the few cases. [J

With replacement by U(0, 1) margins and survival functions, the
following two results are easily obtained.

Theorem 3.4 The copula of the Fréchetl upper bound is Cy(u) =
min{uy,...,um}. Form = 2, the copula of the Fréchet lower bound
is Cr(u) = max{0, u; +uy — 1}.

Theorem 3.5 The upper bound forf(?l,...,_fm) is —@(x) =
min; {Fj(z;)} and the lower bound is Gr(x)= max{0,}; Fj(z;)—
(m - 1)}. —G‘_U is the survival function of Fy, and when Fr is a
proper cdf, Gy is the survival function for F.

Proof. The bounds are proved in a similar way to before. The
proof of the relationships between GU,FU and GL,FL is left. as
an exercise. An identity that can be used is

max z; = E (=114 min 2,
1<j<m i€S
S€ESm

O

For m > 3, Fr is in general not a proper cdf. An example for
illustration is given next before further results are obtained.

Example 3.1 Consider the symmetric situation with Fy, Fy, F3
each corresponding to a Bernouilli rv with parameter p. That is,
Fi(z) =0ifz <0, Fi(z)=¢=1-pif0<z < 1land Fj(z) = 1
if z > 1. Then Fy, is a cdf if and only if p < 1/3 or p > 2/3.
Proof. For p > 2/3, the positive probability masses are

Pr({(1,1,0)}) = Pr({(1,0,)}) = Pr({(0, 1, 1)}) = ¢
and Pr({(1,1,1)}) = 1 — 3¢. For p < 1/3, the positive masses are
Pr({(1,0,0)}) = Pr({(0,1,0)}) = Pr({(0,0,1)}) = p
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and Pr({(0,0,0)}) =1 - 3p.

For 1/3 < p < 2/3, F = Fy, satisfies F(0,0,0) =0, F(1,0,0) =
F(0,1,0) = F(0,0,1) = max{0,1— 2p}, F(1,1,0) = F(1,0,1) =
F(0,1,1) = 1 -p, F(1,1,1) = 1. Hence F(1,1,1) - F(1,1,0) -
F(1,0,1)=F(0,1,1)+F(0,0,1)+F(0,1,0)+F (31,0, 0) equals 1—3p
if p < § and equals 3p — 2 if p > ;. Since both of these quantities
are negative, the rectangle inequality (1.6) does not hold. [

Continuing with this example, Fy can be shown to be sharp
for 1/3 < p < 2/3. For p > 3, the distribution F with positive
masses Pr({(0,1,0)} = Pr({(1,0,1)}) = 1—pand Pr({(1,1,1)}) =
2p — 1 takes care of the lower bound at six vertices of the cube:
F(1,1,0)= F(1,0,1)= F(0,1,1)=1-p, F(1,0,0)= F(0,0,1) =
0 and F(0,0,0) = 0. By permuting the indices, Fr(0,1,0) =
0 can also be achieved. Next suppose p < 1. The distribution
F with positive masses Pr({(0,1,0)} = Pr({(1,0,1)}) = p and
Pr({(0,0,0)}) = 1-2p takes care of the lower bound at five vertices
of the cube: F(1,1,0) = F(1,0,1)= F(0,1,1) = 1-p, F(1,0,0) =
F(0,0,1) = 1 — 2p. By permuting the indices, Fr(0,1,0)=1-2p
can also be achieved. Finally, the distribution F’ with positive
masses Pr({(0,1,0)}) = Pr({(1,0,0)}) = Pr({(0,0,1)}) = (1-p)/2
and Pr({(1,1,1)}) = (3p—1)/2 takes care of lower bound at (0,0,0):
F'(0,0,0)=0.0

Next we obtain conditions for F, to be a cdf for m = 3 (and then
we generalize the result to m > 3). Suppose all univariate margins
Fj are not degenerate. Clearly, Fr is not a cdf if Fy, Fy, F3 are
continuous. (In this case, by applying the probability transform,
F; can be taken to be U(0,1), and if (Uy,Us,Us) ~ Fi, then all
three bivariate margins are two-dimensional Fréchet lower bounds.
Hence Uy + Uy = Uy + Uz = Us + Uz = 1 from Theorems 3.3
and 3.4, leading to a contradiction.) Similarly, if one of the three
distributions is continuous, say Fj, then FL cannot be a cdf. (If
(X1,X2,X3) ~ Fr, then X; = F{ (1 - F1(X1)), j = 2,3; X2, X3
are then positively associated and this is a contradiction.) Hence
a necessary condition is that each Fj has a discrete component.

Theorem 3.6 A necessary and sufficient condition for the Fréchel
lower bound Fy of F(Fy, Fa, F3) to be a cdf is that either

(¢) Fi(z1) + Fa(z2) + Fa(zs) < 1 whenever 0 < Fj(z;) < 1,
i=1,23; or :

(b) Fi(z1) + Fa(z2) + Fs(z3) > 2 whenever 0 < Fj(x;) < 1,
i=12,3.
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Note that (a) and (b) cannot both occur together.

Proof. Let zj < z}, pj = F(z;), p; = F(z}), j = 1,2,3. Also let

(v)+ = max{0,y}.
First we prove the sufficiency of (a). The rectangle condition
(1.6) for Ff leads to

(Py + P2+ P35~ 2)+ = (P) + P2+ p3 = 2)4 — (Py + 2+ P53 — 2)4
—(pr+Py+p3—2)4 +(Py+ P2+ P3—2)4 +(Pr + Py +p3—2)4

+(p1 + p2 + P5 — 2)4 — (pr + P2+ p3 — 2)4. (3.1)
Assume that (z1,z2,z3) satisfies condition (a). If p},p%,p5 < 1,
then (3.1) becomes 0 since each term is 0. If p{ = 1, p},p5 < 1,
then (3.1) is still 0 because p) + p5 < p; + p5 + p5 < 1 from (a)
and hence pj + ph + py < 2. If p{ = p, = 1, p§ < 1, then (3.1)
becomes p5 — p3 > 0 since only the first two terms are non-zero. If
py = ph = p3 = 1, then (3.1) becomes 1 — p3 — p — p1 > 0. Each
of the remaining cases is symmetric to one of these. Hence Fp, is a
cdf.

Next we prove the sufficiency of (b). Assume that (zi,z%,24)
satisfies condition (b). If py, p2, p3 > 0, then (3.1) becomes 0 since
all of the terms are non-negative. If p; = 0, p2,p3 > 0, then the
four terms with p; are 0 and (3.1) becomes 0. If p; = py = 0,
ps > 0, then only the first two terms may be non-zero and (3.1)
becomes p3 — p3 > 0. Each of the remaining cases is symmetric to
one of these. Hence Fy is a cdf.

Finally we prove the necessity of (a) or (b). If neither (a) nor (b)
holds then there is a vector (), zo, z3) such that 1 < py+p2+p3 <
2,0 < pj <1,j =123 Let pf = py) = p5 = 1. Then (3.1)
simplifies to

1—p1—p2—pa+(p1+p2—1)++(p1+p3—1)4 +(p2+ps—1)4. (3.2)

This will be shown to be negative in all cases and hence F is not a
cdf. If p;+p; < 1 for all three pairs, then (3.2)is 1—p, —p2—p3 < 0.
Ifpi+p2 21, p1+ps <1,pa+ps <1, then (3.2) becomes —p3 < 0.
I pr+p2 > 1, pt +p3 > 1, p2 +p3 < 1, then (3.2) becomes
p1 — 1 < 0. 1f p; + p; > 1 for all three pairs, then (3.2) becomes
mt+pa+p3—2<0. O

The generalization to higher dimensions is as follows. The ideas
are clearer in the proof of the special case of m = 3.

Theorem 3.7 A necessary and sufficient condilion for the Fréchetl
lower bound Fr, of F(Fy, ...,Fm) lo be a cdf is that either
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(a) 3°;Fj(z;) < 1 whenever 0 < Fi(z;) <1,j=1,...,m; or
(b) 3_;Fi(zj) 2 m—1 whenever 0 < Fj(z;)<1,j=1,...,m
Proof. Let z; < 7, pjo = F(zj) and pj1 = F(z}), j = 1,.
Let (y)4+ = max{0, y} as before.

First we prove the sufficiency of (a). The rectangle condition
(1.6) for Fr leads to

Z (_l)m—zjfj [ijt,‘ —_ (m - 1)]+ (33)
(€1, ...€m):€5=0 or 1 J

Assume that (z3,...,zy,) satisfies condition (a). Then by elimin-
ating the zero terms in (3.3), we get:
(P11t -+ pm —(m = 1))
(Pro+pa+ - +pm1—(m=—1))4
— (pPru+po+pan+- - +pm—(m-1))4—---

- (puu+ -+ Pm-1,1 +Pmo — (m—1))4. (3.4)
(Note that from (2), a term is zero if two probabilities in it are less
than 1.)If p1; = -+ = pm1 = 1, then (3.4) becomes 1 —pjg—---—
Pmo 2 0.1fp13 = = pp-11 =1, Pm1 < 1, then (3.4) becomes

Pm1 — Pmo 2> 0. If at least two of the p,,; are less than 1, then (3.4)
is zero. Hence Fy, is a cdf.

Next we prove the sufficiency of (b). Assume that (z1,...,2},)
satisfies condition (b). If pjo > 0 for all j, then (3.3) is zero. If
at most m — 2 of the pjo are zero, then (3.3) is zero because the
signs (—1)™~ %3¢ of piq, p;i1 for the non-zero terms balance out for
all i. If p1o = -+ = pm—1,0 = 0 and pymo > 0, then (3.3) becomes
Pm1 —Pmo > 0. If p1o = -+ = pmo = 0, then (3.3) becomes
P11+ -+ Ppm1— (m—1) > 0. Hence Fy is a cdf.

Finally, for the necessity of (a) or (b), we will use induction with
the m = 3 case from the previous theorem as the starting point.
Suppose m > 4 and the result is true for all dimensions less than m.
Suppose there is a point (y1,...,Ym) such that 1 < 3. F;(y;) <

m—1and 0 < Fj(y;) <1 for all j.

If Fy, is a cdf then its lower-dimensional margins are also Fréchet
lower bounds. Hence, by the induction hypothesis, it is not possible
that 1 < 3, Fj(yj) — Fi(yi) < m — 2 for any i. Therefore for each
i, either Z Fi(y;) = Fi(y) < 1or )2, Fi(y;) = Fi(w) > m - 2.
The same Jlrectlon for the 1nequahty must hold for all i’ because
if, for example, Fa(y2) + -+ + Fin(ym) > m — 2 with ¢ = 1 then
Z;n=2 Fi(y;) — Fu(yir) > m — 3 for ¢ = 2,...,m and hence it is
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impossible for Fy(y1) + 37w, Fj(y;) — Fo(yir) < 1 to hold.

If 57, Fi(yi) — Fi(ys) < 1 for all 4, then take (z1,...,2m) =
(v1,...,ym) and (z4,...,2,,) = (00, ...,00). The rectangle condi-
tion (3.3) becomes 1 — pjo— -+ — pmo =1 — Ej F;(y;) < 0 since
pio + piro < 1 for all 2 # 7/,

If Zj Fi(y;) — Fi(y:) > m — 2 for all i and m is odd, then take
(z1,--,2Zm) = (11, -, Ym) and (z4,...,2,,) = (00,...,00). The
only zero term in (3.3) is when ¢; = 0 for all j and hence (3.3)
becomes (—1)"[(m — 1) — pro = --- = pmo] < 0. If 3~ Fi(y;) —
Fi(y;) > m — 2 for all 7 and m is even, then take (z1,...,zZm) =
(—o00,y2,.--,ym) and (z,...,2),) = (y1,00,...,00). All of the
terms in (3.3) with g = 0 are zero and the term with ¢ = 1,
€; = 0, j > 2, is also zero. Hence (3.3) becomes

> (=ymTiTERs [;pjej ~ (m - 1)]+

€e;=0 or 1,
i>1,6=1
= (—l)m—l[m— l1—pi1 —p2o— - — Pmo)
(—l)m—l{m -1- Fl(yl) - -Fm(ym)] <0.

Hence the necessity of (a) or (b) has been proved for dimension
m. [

An interpretation of the preceding theorem is the following. Con-
dition (a) means that there is a finite upper support point &; for
Fj, and & is a point of mass of F};, j = 1,...,m. The masses
1 — F(&;~) are such that }_;[1 — F(&—)] > m — 1. Similarly, con-
dition (b) means that there is a finite lower support point £; for
F;,7=1,...,m,such that Zj F(&)y>m-1.

The next theorem concerns the sharpness of the Fréchet lower
bound for m > 3. The following lemma is used.

Lemma 3.8 Let Ay,...,An be events such that Pr(A;) =a;, i =
1,...,m. Then

max{O,Zaj —~(m - 1)} <Pr(Ain---NAL) < rr;inaj
j

and the bounds are sharp.
Let A? be the complement of A; and let A} = A;, i=1,...,m.
Then it is possible to assign probabilities 1o
AN NA™, e=0o0rl, i=1,...,m,

(in a continuous way over a;) such that Pr(A; N--- N Ap) =
max{0,)"; a; ~(m— 1)} and a; = }_ ..oy Pr(4}* n--- N ASr).
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Proof. The second inequality follows from the law of inclusion,
and the first inequality follows from the law of addition applied to
the complement: Pr(A; N ---NA,) =1-Pr(AuU---u A4Y) >
1— }:j Pr(A}). The upper bound is sharp from the case where one
event is a subset of the remaining events. There are two cases to
consider for the sharpness of the lower bound. Let b; = 1 — ay,
t=1,...,m.

The first caseis Y z,a; > m—1or Z:’;l b; < 1. The events A?
can then be made incompatible Hence Pr(AjU- - -UAD) = Yim, bs,
Pr(A1 ‘NAp) = Y v, a0 — (m=1), Pr(ﬂ,=1 m,izjAi) =
Z =10 aJ"‘(m 2) Pf((nrl---.m:#JA)nA)—l aj, j =
1,...,m, and Pr(A7* N---N A5) = 0 if at least two of the ¢; are
zZero.

Next suppose there is an integer 1 < k£ < m such Zf__ﬂ b; <1,
Zf:ll b; > 1. The events A?,..., A? can be made into incompat-
ible events, and an event E, incompatible with A9,..., A?, with

probability 1 — 5 b; can be added. Let D be an event incom-
patible with E, with probability Ek'H b; — 1. Then define A}, =
E v D; this has probability bz4;. Define the remaining events
Agt2,...,An to be independent of each other and of Ay, ..., Ag41.
Then Pl‘(Aln' . -nAk+1) = Pl‘(Aln' . -nA,,) = 0, Pr(Alﬂ- . -nAkn
ARy,) = Pr(E) = zi-; ai = (k=1), Pr((Nizt,.. k41,15 A:) N A7) =
Pr(A) N D%, j = ..k, where D° is the complement of D,
Pr((Ni=1,....k,izj A )ﬂAD N A? +1) = PK(AD ND),j=1,...,k and
Pr(Af'n---nASHN) =0if 2:—1 —¢;) > 2. Finally, Pr(Afl N
' nAfe'r,ln) - Pr(AGI n- NA;TI‘) n;=k+2 i (1 - a’)l “. 0

Theorem 3.9 If the cdfs Fy,..., Fy, are continuous, then the Fré-
chet lower bound Fr(y) is sharp at each y € R™.

Proof. Without loss of generality, take F; to be U(0,1) for each 7.
(This is possible since one can always transform from the U(0, 1)
cdf to a general continuous Fj.)

Let Us,...,Un be U(0,1) rvs with a joint distribution to be
defined constructively. Fix (y1,...,ym) with 0 < 7 < 1. Let 4; =
{U: < yi}, i =1,...,m. Other notation is the same as in Lemma
3.8. By Lemma 3.8, it is possible to assign probabilities to the
regions AN - -NASe such that Pr(4:N---NA4,,) = max{0, : Yj—
(m — 1)} Next assign probabilities uniformly within each region
A N ---N ASe. Then the resulting univariate margins of the U;
are in fact uniform on (0,1) and hence Fy, is sharp at (y1,...,Ym)-
The uniform distribution can be established as follows for U;, and
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then the other margins are also uniform by symmetry:

o Pr(Uy <) =3, . (2/y))Pr(AhNAZN---NAR) =
(z1/y1) Pr(A1) = 21, 0 < 21 S,

o Prii <z)=wu+ 2., . l(z1=n)/(1-un)]Pr(A) N AF N
o NA) =g+ [z = y) /(A= y)] Pr(A}) = z1, 1 <21 < 1.
O

By approximating discrete distributions by a sequence of contin-
uous distributions, the Fréchet lower bound should in general be
sharp.

3.2 F(Fi2, F13)

In this section, we obtain some results on the class of trivariate dis-
tributions F = F(Fi2, F13) for which the (1,2) and (1,3) bivariate
margins are given or fixed. We assume that the conditional distri-
butions Fy); and F3; are well defined. F is always non-empty since
it contains the trivariate distribution which is such that the second
and third variables are conditionally independent given the first,
i.e., the cdf defined by F(x) = [} Fy(z2|y)Fa(zsly) dFi(y).
Similarly, perfect conditional positive and negative dependence
lead to the Fréchet bounds in F. The ideas in this section are
extended to the method of mixtures of conditional distributions in
Section 4.5.

Theorem 3.10 The Fréchet upper bound of F = F(Fi2, Fi3) is
given by Fy(x) = 2 min{Fy(z2ly), Fap(z3ly)} dF1(y) end the
Fréchet lower bound is given by Fi(x) = [*} max{0, Fyi(z2ly) +
Fa)1(z3ly) — 1} dFy(y), and both of these bounds are proper cdfs.

Proof. Let F € F. Then write F(x) = f_x;o Faspi(z2, zaly) dFi(y),
where Fy3); is the bivariate conditional distribution of the second
and third variables given the first. The results follow from Theo-
rems 3.1 to 3.3. [

The above theorem extends to the Fréchet class F consisting
of m-variate distributions given two different (m — 1)-dimensional
margins (these two marginal distributions have m — 2 variables
in common). For example, F € F(Fi..;m—1, Fi..m—2,m), can be
written in the form:

x Tme2
F(x) = / / Fm—-l,mll"-m-—z(xﬂh—ly:Bmlyly'"rym—-z)
- 00 —o0

‘Fl---m—?.(dyly tey dym—?)-
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The bivariate conditional distribution can be bounded by the bi-
variate Fréchet upper and lower bounds.

For the Fréchet class of survival functions f(Flg, F13) and its
extensions, the Fréchet bounds GL, Gy satisfy G = Fr and Gy =
Fuy.

3.3 f(Flz, Fg)

In this section, we obtain some results on the class of trivariate
distributions F = F(Fi2, F3) for which the (1,2) bivariate margin
and the univariate margin for third variable are given or fixed.

Similar to Theorem 3.1, an upper bound of the class F is Fy(x)=
min{ Fy2(zy,z2), Fa(z3)}. In general, Fy is not a proper distribu-
tion. The simple intuitive proof is that the (1,3) and (2,3) mar-
gins are both bivariate Fréchet upper bounds so that Fy cannot
be a proper distribution unless Fy; is a bivariate Fréchet upper
bound distribution. As an illustration, we also use the rectan-
gle condition of Section 1.4.2 to show that Fy is in general not
a cdf, when Fj2 and F3 are continuous. Let the arguments be
< 1:'1, g9 < 1?'2, 3 < :Bf;, and let Fijs = Flz(a:l,:cg), Fio =
Fia(z1,25), Fia = Fiao(z), 22), Frre = Frao(z), 25), F3 = Fs(z3),
F3» = F3(z%). We assume without loss of generality that F3 > F3
and Fyrg > Fyig > Flgr > Fyp. Because Fia(-,-) is a proper distri-
bution, Fyig — Fyi9 — Fyg 4+ Fyo > 0. There are 15 ways of ordering
F3:, F3, Frig1, Fyia, Fyo/, F12 that could be considered. One of them
is Fyiar > Fyig > Far > Fyar > F3 > Fyo, in which case the rectan-
gle condition leads to F3r — F3r — Fyo1 — F3+ F3+ F3+ F12—F12 < 0.

A lower bound for F is Fr(x) = max{0, F12(z1, z2)+ F3(z3)—1}.
It is left as an exercise to show that this is not a cdf in general.
The intuitive argument is that the (1,3) and (2,3) margins of Fi
are bivariate Fréchet lower bounds, so that Fy is a proper cdf only
if Fy4 is the Fréchet upper bound. V

These results clearly extend to ¥(Fs,, ..., Fs,), where S1,..., Sk
is a partition of {1,...,m} with |S;| > 2 for at least one ¢. The
Fréchet bounds are generally not proper cdfs.

Next we go on to other results for F = F(Fy3, F3) when Fy = F3
and F}5 is continuous, such as the extremal elements of the set, and
the concordance and more SI orderings on F.

If F35 is chosen so that F33<.F)2 and Fja3 is the Fréchet upper
bound given Fis, F32, then Fia3 € F(Fi2, F3) and Fy,3 is smaller
than Fy,3(z1, z2,23) = Fi2(21 A z3,22) in the concordance or-
dering. Note that F{,q is the Fréchet upper bound given F2, F3,
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when F3y = Fi, and it is in F(Fy2, F3) when Fy = F3. The
proof follows from Fiaa(z1, T2, z3) < min{F2(z1, 22), Fa2(z3, z2)}
and Fsz(z3,z2) < Fiz(zs, z2), and similar inequalities for the sur-
vival functions. If F3, is chosen so that Fy3<s1F32 and Fya3 is the
Fréchet upper bound given Fis, F39, then for X ~ Fa3, there is the
stochastic relation X3 = g(X1, X2) with g (strictly) increasing in
its two arguments. Note that Pr(X; < z;, X2 < z2, 9(X1,X2) <
z3) = Pr(Xy < z1, X2 < x3) = Fia(z1, z2) if g(21, 22) < 23, and
this is larger than Fy3(z; A z3,z2) when z3 < z;. The inequality
g(z1,z2) < 3 < z; holds if z5 is sufficiently small and z; is suffi-
ciently large. Hence, the distribution of (X3, X2, 9(X1, X32)) is not
dominated by FY,s.

The above results suggest that when F} = F3, maximal elements
in F include those for which Fjs is strictly larger than Fy in the <.
or <gj ordering and Fj,3 is the Fréchet upper bound in F(Fy2, Fa3).

We show next that if Fy2<s1F32<s1F4, (with strict inequalities)
and Fyj3(-|y), Faj2(-1y), Félz(~ly) are continuous for all y, then the
Fréchet upper bounds

T2
Fma(-'ﬂl,m:z,ms):/ min{ Fyj2(z1]y), Fay2(z3ly)}dFa(y)
and
T3
Fizs(zs,22,99) = [ min{Fya(e11s), Fi(zal)}dFa(s)

are not comparable in the <. ordering, i.e., neither function domin-
ates the other uniformly over R®3. (If F3; and F}, are both strictly
more concordant than Fys but are themselves not ordered by con-
cordance, then the trivariate distributions Fia3, F{45 are clearly not
ordered by concordance.) The assumptions imply that F3z(z3,22) <
F3,(z3,z2) for all z3,z9, so it remains to show that there exists
(21,22, z3) such that F{,3(zy, z2,23) < Fi23(1, 2, £3). From The-
orem 2.10, if z;, z3 are fixed, there exist yo, yp, yg such that

[(F1j2(z1]y) — Fa)2(z3ly))(y — yo) > 0,
(Fr2(z1]y) = F3a(zsly)](y — ) > 0,

[Faja(zsly) — Faya(zaly)l(v — vo) > 0.
Therefore if yo, ¥, ¥4 are bounded away from the upper and lower
end points of support, then Fyj5(z1|y) < Fapa(zaly) < Fy(z3ly)
for y small enough (less than min{y,, v}, v5}) and Fya(zily) >
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Fajo(zaly) > F:;'z(a:gly) for y large enough. If ¥, < yo, then

Yo Yo
Fl23(x11y0)$3)=/ Fija(21ly) dFa(y) + IF1|2(m1Iy)dF2(y)

- vh

Yo Yo
> / Fys(zi1ly) dFa(y)+ | Fap(zaly) dFa(y) = Fras(21, ¥, 23).
—00 v

The conditions where y < yo can be investigated.

For illustration, consider the special case of BVN distributions
for Fyg, Faa, F{y. Let Fyg, F3q, F§, be BVSN with correlations 0 <
piz < paz < phy. Then for zy,z3 fixed, yo = [z3\/1 - p?y —

z1v/1 = p3,1/[p3z/1 — p}s—p12+/1 — p3s) and yp = [z3\/1 - p3,—
z1v/1 = p)/[p32V/1 = pia—p121/1 — ph]. Hence gy < yo for some
choices of z;, 3, e.g., z; = 0 < z3.

The general approach for finding z;, z3 such that yf < yp is as
follows. Fyj2(z1]y) is increasing in z; for all y, so that if z; is chosen
to be small enough relative to 3, then yo,yp > yg . If Fapa(zsly) >
F3a(zaly) for y > yg and Fip(z1|y) < Fap2(zsly), Fy)p(zsly) for
y < yp, then Fyjz(z1(-) must intersect F:;|2(“’3|') before Fja(za|)
or y5 < Yo.

If one weakens the assumption of Fj3~<syFaz<s1F5, to Fia<c
F32<.F3,, then the above argument is essentially still valid; details
are a bit messier because the conditional distributions can have
more crossings.

Similarly, minimal distributions in F can be studied.

3.4 F(Fy2, Fi3, Fa3)

In this section, we study classes of trivariate distributions with
three given bivariate margins, i.e., F = F(Fi2, F13, F23). Here there
is clearly a need to check for compatibility of the three bivariate
margins, if they are arbitrary. For example, if the Fy4, Fi3, Fa3 are
BVSN cdfs with respective correlations p; 2, p13, p23, then the com-
patibility condition is that the correlation matrix with these p;;
is non-negative definite. Assuming that the three bivariate mar-
gins are compatible, we can obtain upper and lower bounds in
a simple form and study them in the continuous case (all bi-
variate margins continuous). We show that these bounds are in
general not proper cdfs, but we do obtain some conditions for
which they are proper cdfs. We also obtain some conditions for
which there is a unique F € F. Note also a difference compared
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to the class F(Fy,...,Fy) in that an upper (lower) bound cdf
for F = F(F12, F1a, F23) becomes a lower (upper) bound survival
distribution for F = T(Flg, Fi3, F23) Compatibility conditions,
based on the bounds and other criteria, are also given. Some ex-
tensions are given in Section 3.6 on F(F;;,1 < i< j < m).

The results of this section and their extensions in Section 3.5 are
crucial to the understanding of the construction method in Section
4.8.

3.4.1 Bounds

In this subsection, we obtain and analyse upper and lower bounds
fOl' F = f(Flz, F13, F23)

Theorem 3.11 Let a; = Fyo, ay = Fy3, a3 = Fa3, a9 =1 — F; —
Fo=F3+Fig+ Fia+Fa3, by = Fra+ Fiza— Fy, ba = Fla+ Faz — Fy,
b3 = Fiz+ Fa3 — F3. A lower bound is Fr, = max{0, by, by, b3} and
an upper bound is Fy = min{a1, az, as,aq}. For Fiy, Fi3, Fa3 to be
compatible, Fi, < Fy must hold everywhere.

Proof. The last statement is obvious. Suppose F)3, Fi3, Fos are

compatible and let F' € F. Clearly, F < min{F)2, Fi3, Fa3}. The

fourth term a4 in Fy comes from F =1 — Fy — Fy — F3 + Fy5 +

Fiz+ Fa3 — F: since F > 0, F < a4. For the lower bound, suppose

X ~ F. Then for a permutation (7,7, k) of (1,2,3), 0 < Pr(X; <

e, X; >, Xp >z)=Fi— Fij— Fix+ For F > Fj;+ Fyp — F;.
O

The bounds in Theorem 3.11 will be called the Fréchet bounds
because they are simple and the analysis in Section 3.4.2 shows
that for some choices of Fq, Fi3, Fa3 they can both be equal to the
unique distribution in F(Fy2, F13, F23).

Both of the bounds Fy, Fy have the right bivariate margins as
Fy — 1, Fy — 1, F3 — 1. From analysis of the derivatives of first,
second and third order, a requirement (in the continuous differen-
tiable case) for the upper bound to be a proper distribution is that
F2|1 -+ F3|1 -1 Z 0, Fl|2 + F3|2 -1 _>_ 0, F1'3 + F2|3 -1 2 0 when
a4 < min{Fi2, F13, Fo3}. Similarly, a requirement for the lower
bound to be a proper distribution is that Fyj; + F3); —1 > 0 when
Fia+Fia—Fy = F, F2+F32—12> 0 when Fi2+4 Fas — F2 = F,
and Fyz + Fo3 —1 > 0 when Fy3 + Fo3 — F3 = Fi. These are
necessary conditions, and other necessary conditions which come
from the rectangle inequality (1.6) are studied below.
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As an example, consider the case of pairwise independence (F;; =
F;F; for i < j). For the upper bound, note that if as < Fy2, then
(1-F3)(1—F,—F3) < 0, which implies Fy+ Fp—1 = Fyj3+Fo3—1 2>
0. Similarly the other two requirements are met when a4 is the
minimum. For the lower bound, supposing F = Fyi(Fo+F3—-1) >
0, then Fy; + F33 — 1 = F3 + F3 — 1 > 0; the other cases are
covered by symmetry However some other conditions are not met,
with details given below.

A general analysis is given for the upper bound Let X ~ F with
F € F. The condition

1 — Fy — F3 — F3 + Fi2 + Fi3 + Fo3 < min{ Fy2, Fi3, Fa3}, (3.5)
when evaluated at (z1, 22, z3), implies that
1-F;-F;—F. + F; + Fy <0, (3.6)
for all permutations (%, 7, k) of (1,2,3). Inequality (3.6) is equivalent
to
F; — F;;  Fp— Fy
J 1y k

1-F; 1-F;
which in terms of probabilities for the rvs is

Pr(X; <zj | Xi>zi) +Pr(Xp Lz | Xi > z) - 12> 0.' 3.7)

Note that (3.7) holds for all permutations (i,7j,k) of (1,2,3) if
z;, z;, ¢ are sufficiently large. The conditions that (3.5) must im-
ply in order for the Fréchet upper bound to be a distribution are

Fji+ Frp—12>0, (3.8)

for all permutations (%, j, k) of (1,2,3). In terms of probabilities for
the rvs, (3.8) is

Pr(Xj <z; | Xi=2)) + Pr(Xp <z | Xs=25) - 1> 0. (3.9

If the bivariate margins are such that each conditional distribution
Fyj,1 # 7,18 SI, then (3.7) implies (3.9). If they are such that each
conditional distribution Fjj;, ¢ # j, is strictly SD, then one can
come up with values of (z1, z2, £3) for which (3.7) does not imply
(3.9). The reasoning is that if X is SI (SD) in Xj, then

Pr(X; <zj | Xi=2;) >2(L) Pr(X; <z | X; > ).
The proof is that
o0 .
PrX; S 2| Xi> ) = (Rl [ Fyutesl) dR)
< (2) Fjilzlz:)

-12>0,
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if Fj)i(z;]y) is decreasing (increasing) in y.

A similar analysis can be given for the lower bound. Fy, cannot
be identically equal to 0. If F, = F}; + Fix — F; > 0, evaluated at
(21, z2, z3), for some permutation (i, j, k) of (1,2, 3), then in terms
of probabilities for the rvs,

Pr(X; <z | X; <zi)+ Pr(Xg <zp | X; <z;)—1>0. (3.10)

The condition that (3.10) must imply in order for the Fréchet lower
bound to be a distribution is (3.8) or (3.9). Using a similar argu-
ment to above, if the bivariate margins are such that each condi-
tional distribution Fy);, 1 # j, is SD, then (3.10) implies (3.9), and if
each conditional distribution is SI, then one can come up with val-
ues of (1, ¢2, z3) for which (3.10) does not imply (3.9). This follows
because Pr(X; < ;1X; < z:) = [Fi(z:)) 1 2L, Fjii(z;ly) dFi(y) <
() Fjji(zjlz:) if Fji(xjly) is increasing (decreasing) in y.

A summary here is that if the bivariate margins are all SI (SD),
then the Fréchet lower (upper) bound is not a proper distribution.

Next we study another condition which essentially shows that
Fr and Fy are not proper distributions when all bivariate margins
are PQD.

For the upper bound, consider first the case where the three
bivariate margins are the same (and symmetric), and consider the
rectangle condition based on the cube with corners (z,z,z) and
(¢/,2’,z’) and 2’ = z + ¢ for a small ¢ > 0. Let F = Fi(z),
F' = Fi(z"), C1z = Fiz(z,z), Cly = Fra(z,2') = Fi2(2’, ), Cy =
Flz(w',.'lt’). Thenay = 1-3F +3C12 > Ci12if 1-3F+2C13 > 0. If
Fi21s PQD, then Cy, > F? and 1-3F4+2C;, > 1-3F4+2F2 =
(1-F)(1-2F) > 0if F < L. Suppose F, F' < 1 and e is sufficiently
small; then the rectangle ‘probability’ is C{, — 3C1,+ 3C12— C12 =
(C19—2C134+C12)+(C12—C1,) < 0, since the second negative term
dominates when the expression is divided by €? and € — 0. For the
more general case of arbitrary bivariate margins, take z,, 3, z3 so
that Fio, Fi3, Fo3 are equal and small.

Now for the lower bound, consider again the symmetric case
and use the same notation. The lower bound is greater than zero
if 2C12 = F > 0. If Fy2is PQD, 2C12 — F > F(2F -1) > 0 if
F > . Suppose F > 1 and ¢ is sufficiently small; then the rectangle
‘probability’ is (2C7y — F') — 3[C{, + max{C}, — F',C{, — F}] +
3[C1, + max{C{y — F',Ci2 — F}] = (2C12 — F) = 2C!, — 3C}, +
Cia — F' + F since F~Ci2 < F' = C},, F-C}, < F' - Cl,
always hold (the probabilities correspond to Pr(X; < z, X2 > z'),
Pr(X; <2/, X3 > 2') in the latter case). Next, 2C},—3C{,+Ci2—
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F'4+ F = 2(C{y—2C 3+ C12) + [(F — C12) — (F' — C13)] < 0, since
the second negative term dominates when the expression is divided
by ¢ and € — 0. For the more general case of arbitrary bivariate
margins, take z,z2,z3 so that Fyg + Fiz — Fy, Fia + Fa3 — F,
Fi3 + Fa3 — F3 are equal or approximately equal and greater than
0.

3.4.2 Uniqueness

In this subsection, we study the cases where the three bivariate
margins Fy2, Fi3, F23 uniquely determine a trivariate distribution
F, and analyse whether the Fréchet bounds Fp and Fy are equal
to F'.

Examples are the following.

1. Suppose all three bivariate margins are Fréchet upper bounds.
The unique trivariate distribution in F(Fys, Fi3, Fo3) is F =
min{ Fy, F3, F3}. For F} < F3 < F3, the upper bound is Fy =
min{Fy, F1,F2,1 — F3 + F1} = F, and the lower bound is
Fr = max{0, F1, F1, F\ + F; — F3} = Fy. After considering all
cases, by symmetry, F = Fy = Fy.

2. Suppose two bivariate margins are Fréchet lower bounds and
one is a Fréchet upper bound. Assume Fi, = min{Fy, F3},
Fiz = max{O, Fy + F3 — 1}, Foz = max{O,Fg—i- F3 — 1}. The
unique trivariate distribution in F is F =max{0, min{ F}, Fo}+
F3 — 1}. Cases to consider are:

(a.) F1 S Fz S 1- F3: FU = min{FL,O,O,l—-Fz - F3} =0
and Fy = max{0,0, F} — Fy,-F3} = 0;

(b) 1 <1-F3< Fy: Fy = min{Fl,O,F2+F3-— 1,0} =0
and Fr = max{0,0,F, + F3—-1,F; — 1} = 0;

(C) 1-F3< kA <Fy: Fuzmin{Fl,F1+F3—1,F2+F3—
1,Fi+F3—1} = Fy+ F3—1 and Fg = max{0, F} + F3—
1,F1+F3—'1,F1+F2+F3*-2}=F1+F3—'1.

Other cases are covered by symmetry. Hence F = Ff = Fy.

General results on when there is a unique F' € F are given next.
We assume that the univariate margins are all continuous, so that
they could be taken to be U(0, 1) without loss of generality. Let
ry < i, £2 < z5, r3 < x5 be support points of the univariate
margins Fi, F, F3, respectively. Let F' = Fip3 € F(Fy2, Fi3, Fa3).
Let py2a, P123, - - -, P1'2r3’ be the masses or accumulated density val-
ues in neighbourhoods of (zi, z2, z3), (2}, z2, 23), ..., (2}, 4, 25),
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respectively. The eight triplets can be viewed as being on the cor-
ners of a cube. If all of the eight probabilities are positive, then one
can make small shifts of masses or density to get a new trivariate
disribution with the same bivariate margins. The shifts are:

P123 — P123 + €, P13 — pra3+ €, Proea — pries e,
Pi2:3r — pi12:3r + €, Piraz — p1a3 — €, P13 — P123 — €,
D123’ — D123 — €, Pr23r — P11ty — €,
where ¢ is small enough in absolute value that all of the new prob-

abilities exceed zero.

If at least one of pj23, p1/2:3, P17237, P1273 1s zero and at least one
of pii23, p12:3, P123r, P1/2rar 1s zero, no matter what are the choices
of zj,z;, j = 1,2,3, then F is the unique distribution with the

given bivariate margins. For U(0, 1) margins, examples where this
occur are:

(a) the mass is totally on one of the four diagonals of the unit
cube (corresponding to the case where each bivariate rhargin
is a Fréchet upper or lower bound);

(b) the mass is on one of the planes z; = zj orz; +x; =1,i# j
(corresponding to the case where one of the bivariate margins
is the Fréchet upper or lower bound and one of the bivariate
margins could be any copula);

(¢) the mass is on the surface y3 = g(y1, y2), where g is strictly
increasing in yq,y2 (this happens in the case where Fy3, F3
are such that Fiy~<siFaz and F is the Fréchet upper bound
given Fy,, F3z; the function ¢(y1, y2) is F3"'21 (Fr2(v1ly2)ly2)),
or g is strictly decreasing in y,ys;

(d) the mass is on the surface y3 = g(y1, y2), where g is strictly
decreasing in y; and strictly increasing in y» (this happens in
the case where F), Fi32 are such that Fy,, F35 are ST and F is
the Fréchet lower bound given Fy3, F32; the function g(y1, y2)
is F3'|21(1 — Fij2(n1ly2)ly2)), or g is strictly increasing in y;
and strictly decreasing in y,.

Consider the cube with the eight points from {z, z}} x{z2, z}} x
{z3,z4}. The proof for example (c) with strict increase is as fol-
lows: if (z,z2, z3) and (z}, 25, %) are on the surface, then there
can be no mass or density on the other six vertices of the cube;
if (z1, 9, z3), (¢], 2, z5) and possibly (z, x5, z5), by appropriate
choice of z!, are on the surface, then there can be no mass or



74 FRECHET CLASSES

density on the other five vertices of the cube. The proof for ex-
ample (d) with strict increase in y, and strict decrease in y; is: if
(z1, 2, z3) and (z1, 25, z4) are on the surface, then there can be no
mass or density on (z1, 2%, z3), (¢}, 22, 23), (21, T2, 25), (2}, z2, 25)
and (z,z}, z5); if (z},z2, £3) and (2}, 5, z5) are on the surface,
then there can be no mass or density on (z1, z3,z3), (21,25, z3),
(2, x5, z3), (2, z2, z5) and (zy, 25, z5).

In the case in which the mass is on the surface y3 = g(v1,92)
and no monotonicity in y2 exists, no general conclusion can be
drawn. The specific ¢ would have to be studied to check what
happens on cubes. This is because if there are masses at (z1, 2, z3)
and (z},z5,z3), then there is the possibility of masses at both
(=}, z2, z5) and (z1, =5, x5).

Now we look at the Fréchet bounds where there is a unique
F € F. In the case Fi3 = min{Fy, F3} with U(0,1) univariate
margins, Fis = F35. If F < F3, then Fy = min{Flz,ng, Fy A
F3,1— Fp — F3 + Fo3 + Fi2} = Fi3 and Fp = max{0, F13, F1z +
(Foa 5 F2), Fy + Fa3 — F3} = Fy3 since Fiz3 — F) — Foa + F3 =
Pr(X; < z3,X2 > z3) — Pr(X; < z3,X2 > z2) > 0. The case
Fy > F3 can be handled symmetrically. Hence Fy = Fy and these
must equal the unique trivariate distribution in F.

Next consider the case Fi3 = max{0, Fy + F3 — 1} with U(0,1)
margins, so that Fog(ze,z3) = Fa(zz) — Fi2(1 — z3,20). If Fy +
Fa—-l SO, then FU = F13=Oa.nd FL = 0 since F12+F23—'F2 =
Flz(:b‘l,z‘g) - Flz(l - .’273,172) <0.If i + F3—-1> 0, then Fy =
min{F1 + F3— 1=z, 4+ 23~ 1, F12, Fa(z2) — F12(1 — 23, 22), F12+
Fag — Fy = Fia(z1,22) — Fi2(1 — 23, 22)} = Fia(z1, 22) — F12(1 -
r3,z2) and Fp = max{0, Fio+ F3 — 1, Fos + Fy — 1, Fia(z1,22) —
Fia(1—z3,22)} = Fia2(z1, 23)—F12(1—2z3, 22) since Fio+Fa3—Fy >
Fos+ Fy —1if Fy 4+ Fo — 1 < Fi5. Again Fr = Fy and these must
equal the unique trivariate distribution in F.

Next consider the case Fy3 # F32, with Fi3 coming from the
Fréchet upper bound given Fjj, F3,. From case (c) above, there is
a unique F € F. If Fyj3<s1F3)2, then from Theorem 2.10, for fixed
z1, z3, there exists yo(z;, z3) such that

Fia(z1ly) < Fapa(zsly), for y < yo(z1, z3), (3.11)

Fyja(z1ly) > Fapa(zsly), for y > yo(z1, 3). (3.12)
Let ’

Fo) = [ min{F(alo), Palzsla)} Fa(dy)
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Then from (3.11) and (3.12), F(x) = Fia(z1,22) if 22 < yo(z1, Z3)

and

Yo T2
F(X) = F1|2dF2+ F3'2dF2
- 00 Yo
Yo o o0
= / -Fl|2 dF2+/ F3|2 sz— F3|2 dF2
-0 Yo T2

= Fis(z1, z3) — [Fa(z3) — Fas(z2, z3))

if ) 2 yo(wl,.’l’ta). Hence FU = F12(121,.’l:2) if i) S y0($1,$3) and
Fr = Fia(z1,23) + Faa(z2, 23) — F3(z3) if 22 > yo(z1,23), and
one of the bounds is always reached. If £y > yo(z1,2z3), then F =
Fi3+ Fa3 — Fs is less than Fys, Fo and Fip = [72 FppdFy. Also
Fis+ Fo3— F3< 1 —F) — Fy — F3 + Fy3+ Fi3 + Fa3 is equivalent
to 0 < 1—F; — Fy 4+ Fip so that FF = Fr < Fy in this case.
If zo < yo(zy,23), then F = Fy, is greater than Fi2 + Fi3 — F
and Fip + Foz — Fy. Also F > Fi3 + Fa3 — F3 is equivalent to
Pr(X; > z1, X2 > 22, X3 < z3) > 0 so that F, < Fy = F in this
case. This illustrates examples where there is a unique F' € F but
neither F nor Fy is equal to F'.

3.4.3 Compatibility conditions

For F = F(F\a, F13, Fa3), compatibility conditions for Fya, Fy3, Fo3
are obtained by considering two of the three bivariate margins to
be arbitrary, and the third bivariate margin to have constraints
given the other two. Throughout this subsection, (3, j, k) will de-
note a permutation of (1, 2, 3). Methods for obtaining compatibility
conditions are:

(1) comparison of Fjx with the Fréchet bounds in F(F;;, Fix);
(ii) sets of bivariate Kendall’s tau (712, 113, 723) in the continuous
case;
(iii) sets of bivariate tail dependence parameters (A12, A13, A23).

For method (i), we make use of results from Section 3.2 to get
(three) inequalities of the form:

[e0] o0
/ max{0, Fj; + Fyj; — 1} dF; < Fi < / min{ Fy;, Fy|; } dFj.
-—00 -~ 00

In practice, for given Fy3, F13, F23, these inequalities can only be
checked numerically over a grid of points.

Next consider the range of possible vectors ({2, (23,(13), where
jr is a measure of dependence for the (j, k) bivariate margin. We
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derive results only for ( = 7, Kendall’s tau, and { = A, the upper
tail dependence parameter, but the ideas can be applied to other
bivariate measures of association.

Theorem 3.12 Let F € F(F12, Fas, F13) and suppose Fi, j <k,
are continuvous. Let Tjp = 7i; be the value of Kendall’s tau for Fjy,
j# k. Then the inequalily

~1+4|mj + k) < Tk < 1= |7j — Ty (3.13)

holds for all permutations (i,j,k) of (1,2,3) and the bounds are
sharp. Therefore if F;; are bivariaie margins such that 7;; is the
Kendall tav value for Fij, 1 < i < j < 3, and (3.13) does not
hold for some (1,j,k), then the three bivariale margins are not
compatzble.

Proof. The proof of (3.13) will be given in the case of (i, j,k) =
(1,2,3). The other inequalities follow by permuting indices. Let
(Xs1,Xs2, Xs3), s = 1,2, be independent random vectors from F.
Then 7jx = 295, — 1,1 < j < k£ <3, where
ik = Pr((X1; — X2;)(X1e — Xa2x) > 0).
Then
ms = Pr((X11 — X21)(X12 — X22)*(X13 — Xa3) > 0)

= Pr((X11 = X21)(X12 — X22) > 0, (X12 — X22)(X13 — X23) > 0)

+ Pr((X11 — X21)(X12 — X22) < 0, (X12 — X22)(X13 — X23) < 0).
Hence, from Lemma 3.8, an upper bound for 7;3 is min{n;2, 723} +
min{1l — 72,1 — 23} and a lower bound is max{0,mz+ 723 — 1} +
max{0, (1 — g12) + (1 — n23) — 1}. After substituting for 7j; and
simplifying, inequality (3.13) results. The sharpness follows from
the special trivariate normal case given next.

For the BVN distribution, 7 = (2/7) arcsin(p) (Exercise 2.14).
Hence, for the trivariate normal distributions, the constraint —1 <
p13.2 < 1 (for the partial correlation) is the same as

p12p23—[(1=p3)(1=p3a)]"? < p1s < przpaa+[(1—p1,)(1-p35))'
or

— cos(1m(712 + 723)) < sin(}n7i3) < cos(in(riz — 723))
or equivalently (3.13) with (i,j, k) = (1,2,3). O

Theorem 3.13 Let (X1, Xs2, X53), s = 1,2, be independent ran-
dom veclors from the conlinuous distribution F. For a permuta-
tion (3,5, k) of (1,2,3), let the events Ey, E, be defined as {(X1: —
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XZi)(Xl.j - ij) > 0} and {(Xlk - .X;gk)(le - ij) > 0}, Te-
spectively. The upper bound in (3.13) is atlained if By C Eg or
E, C E,, and the lower bound in (3.13) is atlained if Ey C E§ or
Ey C E§ or Ef C Ey or E§ C E) (equivalently, Ey N Ey = 0 or
EiNES= @)

Proof. The proof in the preceding theorem for (3.13) is based on

max{0, Pr(E)) + Pr(£2) — 1} + max{0, Pr(E5) + Pr(E3) — 1}
< Pr(E; N Ey) + Pr(ES N ES)
< min{Pr(Ey), Pr(Ey)) + min{Pr(E), Pr(ES)).

The conclusion follows. [

Unlike Kendall’s tau, it does not appear possible to obtain closed-
form sharp bounds for the range of A;x given M, Ajx. However,
simple bounds can be obtained.

Theorem 3.14 Let F € f(Flz,Fzs,Fla). Let Ajr = /\kj be the
upper tail dependence parameter value for Fjr, j # k. Then the
inequalily

max{O,,\,-j + /\jk — 1} <Ap <1- ‘)\,'j - Ajk’ (3.14)

holds for all permutations (3,4, k) of (1,2,3). Hence if F;; are bi-
variate margins such that );; is the upper tail dependence value for
F;;,1<i<j<3, and (8.14) does not hold for some (i, j, k), then
the three bivariate margins are not compatible.

Proof. The proof of (3.14) will be given in the case of (¢,j,k) =
(1,2, 3). The other inequalities follow by permuting indices. Let C
be the copula associated with F' and, for i < j, let Cj; be the (i, )
bivariate margin of C. Let U = (U;,Us,Us) ~ C. Then

Pr(Us > u|U; > u)
= Pr(Us>u,Us>u|U;>u)+Pr(Usz>u,Us<u|U >u)
Pr(Us > w, Uy >u | Uz > u)+ Pr(Usz > u,Us < u | Uy > u)
min{Pr(U; > u | Uz > u),Pr(Us > u | Uz > u)}
+1—=Pr(Us > u | U > u).

fl

IA

By taking limits as u — 1, A\;3 < min{A;2, A3} +1— ;3. Similarly,
by interchanging the subscripts 1 and 3, A\13 < min{A;2, A2z} +1—
A23. From combining these two upper bounds, A3 < 1—|Aj2—A23].
For the lower bound on A3,
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Pr(Us > u | U1 > u) = Pr(Us > u, U1 > u)/ Pr(Us > u)
> Pr(Us>u, Uy >u|Usz > u)
> max{0,Pr(Us > u | Uz > u)+ Pr(Uy > u | Uy > u) — 1}.

By taking the limit as u — 1, the lower bound in (3.14) obtains.
O

To end this subsection, we give two examples of applications of
the preceding two theorems.

Example 3.2 Consider the bivariate family B4 of copulas in
Section 5.1: C(u,v;6) = (u=% +v~% —~1)~1/% 0 < é < oo. From
Theorem 4.3, the Kendall tau associated with this copula is 7 =
6/(6+2). Now consider Cj;; = C(+;6;5),1 <1< j < 3,s0 that 74; =
5,'j/(5,'j -+ 2) or (5,']' = 27‘,'_,‘/(1 - T,'j). From Theorem 3.12, if ;2 =
623 = &, then bounds on §;3 for compatibility are max{0,§/2—1} <
813 < oo. In Section 5.3, there is a construction of a trivariate
family of copulas with bivariate margins in B4 with parameters of
the form (612, 813, 623) = (6,0,6) with § > §; so far, no trivariate
distribution with max{0,6/2 — 1} < # < 6 has been constructed.
a

Example 3.3 Consider the bivariate family B5 of copulas in
Section 5.1: C(u,v;6) = 1 — (@ +7° — [@0]®)¥/%,1 < 6 < oo,
where ¥ = 1 — u, ¥ = 1 — v. From Example 2.3, the upper tail
dependence parameter is A = 2—2!/%. Now consider C;; = C(:; &;;),
1<i<j<3,so0that A = 2—~2% or §;; = [log2]/[log(2— Aij)]-
From Theorem 3.14, if ;2 = 623 = &, then bounds on é;3 for
compatibility are max{1, [log2]/[log(2'+1/% — 1)]} < 613 < co. The
construction in Section 5.3 covers the multivariate extension of B5
as well, so there is a trivariate distribution with bivariate margins
in B5 with parameters of the form (62,613, 623) = (6,0,6) with
§>6.0

3.5 F(Fi23, F124, F134, Fa34) ™

The results of Section 3.4 can be extended to Fréchet class of
4-variate distributions with given trivariate margins. Bounds of
F = F(Fias, Fi24, F134, Fa34) are a simple extension of the bounds
in Section 3.4, and they extend to the Fréchet class of m-variate
distributions given the set of m margins of dimension (m—1). The
2™=1 terms involved in each of the bounds Fr, Fiy appear with the
method in Section 4.8 for constructing a multivariate distribution
based on bivariate margins. As in Section 3.4, the bounds Fy, Fy
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are referred to as the Fréchet bounds. ;

The bounds can be obtained based on the non-negativity of the
16 orthant probabilities in four dimensions. Let a3 = F; — Fyp —
Fia — Fig + Fi2a + Fi24 + Fia4, az = Fo — Fyg — Foz — Faq +
Fyo3+ Fiog+ Faq, a3 = F3 — Fi3 — Foz — F34+ Fio3+ Fiag + Faaa,
a4 = Fy — Fry— Fog — F34+ F124 + F134+ F334. The Fréchet upper
bound Fy is .

Fy = min{ Fy23, F124, F134, F234,a1, a3, a3, a4}. (3.15)

Let a;; = Fijp + Fijn— Fy5, for i < jand k # 1 # 4,7, and let
ap = Fiaa+ Froa + Fias + Faza — Fia — Fi3 — Fiq — Foz — Foy —
F34+ Fy 4+ Fy + F3+ F4y — 1. The Fréchet lower bound Fp, is

Fr = max{0, a1z, a13, @14, 23, @24, a34, Ao }. (3.16)

For Fi33, Fi24, F134, Fa34 to be compatible, Fi < Fy must hold ev-
erywhere. Let (2, j, k, ) be a permutation of (1, 2, 3, 4). Conditions
for the upper bound to be a proper distribution (in the continuous
differentiable case) include:

e if a; = Fu, then 1 — Fjli - Fkh‘ - F”i + ijji + Fjl]i + Fklli 2> 0
and Fyy;+ Fij;5—1 2 0, Fipie+ Fijie —1 2 0, Fjja+ Frja—1 2> 0.

Conditions for the lower bound to be a proper distribution include:

o ifa;; = Fi >0, then Fjpi+Fii—Fj1i > 0, Fygj+Fuj—Fy; 2 0
and Fipi5 + Fijij — 12 0;

e if ag = F, > 0, then for all permutations (¢, j, k,{), Fjr)i+ Fji+
Fri— Fjji— Fep— Fiji+ 120, Frpij+ Fig; — 1 > 0.

3.6 f(Fij,l_<_’I:<jSm)*

In this section, we consider extensions from Section 3.4 to m-variate
distributions given the set of m(m — 1)/2 bivariate margins. The
Fréchet class is F = F(Fi;,1 < ¢ < j < m). There are many
conditions needed for the compatibility of Fj;, 1 < i < j < m.
Clearly for each triple (73,2, i3) from {1,...,m}, the compatibility
conditions from Section 3.4 must hold for F(F;,;,, Fs,i5, Fisi,)- For
example, if 7;; = 73 is the Kendall tau value for Fji, j < k, then

-1+ |Ti1i2 + Tizfal < Tiyis < 1- iTt'xiz - Tizisl (317)

for all triples (1, iy, i3).
However we have not successfully obtained extensions of (3.17) or
(3.14) that depend on r(r—1)/2 bivariate margins with 4 < r < m.
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3.7 General F(Fs:S€S8*), $* CS8n *

In this section, let §* C S,,. We state a condition on S* which
ensures that F(Fs : S € §*) is non-empty. Let k = |S*| > 2. The
condition is that there is an enumeration Sy, . .., S; of $* such that

Sj N (UicjSi) € Uicj2%, j=2,...,k,

where 25 denotes a power set (all subsets of the set in the expo-
nent).

Example 3.4 Cases to illustrate this result are the following.

1. Lete m=5,k=3,5 ={1,2,3}, S2 = {2,3,4}, S5 = {1,4,5}.
Then S2 NSy = {2,3} C 51 but SsN(S1US7) = {1,4} is not a
subset of either S; or S,. A similar situation occurs for the other
two relevant indexings of the three sets: SN (S;USs) = {2, 3,4}
is not a subset of Sy or S3, and S; N (S, U S3) = {1,2,3} is not
a subset of Sz or S3. Hence the compatibility of Fs,, Fs,, Fs,
need not hold in general, and further checks would have to be
done for specific given margins.

2. Letm =7k =4 5 = {1,2,3}, S: = {2,3,4,5}, S5 =
{3,5,6}, Sy = {3,6, 7} Then S3 N (Sl U Sg) = {3,5} Cc S,
and Ss N (S; US2USs) = {3,6} C Ss. A simple construction
of Fi..7 € F(Fs;,i=1,2,3,4) is as follows. First take the con-
ditional distributions Fyj23 and Fy5p23 and use conditional in-
dependence to construct Fioaqs = [ Fi)23F4s5)23 dF23. From this
Fi2345 and F3s6, next take Fyz4)35 and Fg35 and use conditional
independence to construct Fi23sse = [ Fi24)35F6j35 dF3s. Finally,
take the conditional distributions F) 24536 and F7j36 to construct
Fi334567 = [ Fi245)36F 7136 dF36.

In the first case, one cannot simply construct Fjs34 from the
conditional independence of Fyj23 and Fjyjz3 because there is no
guarantee that the (1,4) margin of this distribution is the same as
the (1,4) margin of Fy45. O

3.8 Bibliographic notes

Early papers on Fréchet classes and bounds include Fréchet (1935;
1951; 1957). For an alternative direct proof of Theorem 3.2 based
on the rectangle inequality, see Dall’Aglio (1972). The main idea
there is based on F; = Fj(z;), F] = Fj(z}), z; <<z}, j=1,...,m,
with I} < Fp < ... < F,,. The notation is a bit cumbersome.
Theorems 3.4 and 3.5 and their proofs are based on Dall’Aglio
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(1972). The results in Section 3.4.3 on sets of bivariate Kendall tau
or tail dependence parameters are from Joe (1996a). The result in
Section 3.7 is from Kellerer (1964). Results such as Theorem 3.9
and results in Sections 3.3, 3.4 and 3.5 are probably new (at least
in the method of presentation).

3.9 Exercises

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

If I = F, are continuous univariate cdfs of rvs that are
symmetric about zero, what is the stochastic representation
for the Fréchet lower bound in F(Fy, F3)?

For j = 1,2, let Fj be the cdf for the Binomial (2, p;) distri-
bution. For some special cases of p;, p2, deduce the pmf for
the Fréchet upper and lower bounds. Of the nine probability

masses, what is the minimum number of zeros in the Fréchet
bounds?

Let U ~ U(0,1). Compute the correlation of U and a(U) for
the following real-valued monotone functions a: a(u) = u®,
a > 0;a(u) = (1-1u)?, B>0; a(u) =e™, —00 < v < o0,
v # 0. Note that (U,a(U)) has the Fréchet upper or lower
bound copula.

For the bivariate Fréchet upper bound (respectively, the
lower bound), show by taking appropriate univariate mar-
gins Fi, F, that the correlation can take any value in the
interval (0,1] (respectively, [—1,0)).

Establish the identity

max z; = E (=1)H! min z;,
1<j<m i€S
= 5€Sm

and prove Theorem 3.5.

In the bivariate case, show that the Fréchet upper bound
has TP, cdf and survival function, and the Fréchet lower
bound has RR, cdf and survival function.

Do some checks (possibly numerical) on compatibility con-
ditions for parameters for trivariate distributions with bi-
variate margins in one of the families B2-B7 in Section 5.1.

Show that the lower Fréchet bound for F = F(Fia, F3),
Fr(x) = max{0, Fi3(z1,z2) + F3(z3) — 1}, is not a cdf in
general.
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3.9 For a bivariate copula C, with (U;,Us3) ~ C, Blomgqvist’s

g can be defined as 2Pr((Uy — £)(Uz — %) > 0) — 1. Now
let F € .7:(012,013,023), where C,'j, t < j, are compatible
bivariate copulas. Let ¢;; be Blomqvist’s q¢ for Cj;, i < j.
Show that

=1+ |gij + gjl < qix < 1= |gij — gjil
for all permutations (i, j, k) of (1,2,3).

3.10 For the bounds of F(Fia3, Fi24, Fi34, F234), do an analysis

similar to that on the bounds of F(Fiz, Fi3, Fa3).

3.11 Generalize the bounds for the classes F(Fi2, F13, F23) and

F(F123, Fi24, F134, Fa34) to the Fréchet class of m-variate
distributions given the set of m margins of dimension (m—1).

3.10 Unsolved problems

3.1

3.2

3.3

3.4

3.5

Improve on the Fréchet lower bound for exchangeable rvs. See
Scarsini (1985) for partial results.

Improve on the Fréchet lower bound for (strongly) station-
ary sequences of rvs. That is, given a stationary sequence
X1, X2, ... with univariate margin Fo, what is an improved
lower bound for the cdf of X;, X;4x, £ > 17

Consider F(F;; : 1 < i < j < m). For i < j, let 75 be
the Kendall tau value for F;; and let );; be the upper tail
dependence value for Fj;. Obtain better results for bounds or
compatibility for sets of 7;; and A5, 1 <i< j<m, m>3.
Obtain better compatibility conditions for {Fj; : 1 < i <
J < m} to be the set of bivariate margins of an m-variate
distribution.

Suppose $* does not satisfy the condition in Section 3.7. Ob-
tain some compatibility conditions (preferably checkable) for
{Fs : S € 8"} to correspond to marginal distributions of a
multivariate distribution.




CHAPTER 4

Construction of multivariate
distributions

In this chapter, some methods for construction of multivariate dis-
tributions are given, with different approaches separated into dif-
ferent sections. As mentioned in Chapter 1, one cannot just write
down a parametric family of functions with the right boundary
properties and expect them to satisfy the rectangle condition of a
multivariate cdf. Generally a family of multivariate distributions
must be constructed through methods such as mixtures, stochastic
representations and limits. The methods in Sections 4.2 to 4.6 and
Section 4.9 are based on mixtures and stochastic representations.
Families of multivariate extreme value distributions (see Chapter
6) are often obtained through the ertreme value limit. The meth-
ods in Sections 4.7 and 4.8 consist of constructions of m-variate
objects given the set of m(m — 1)/2 bivariate margins.

Families of bivariate distributions are easier to obtain and the
bivariate rectangle condition can usually be checked analytically.
There has been much more in the statistics and probability liter-
ature on families of bivariate distributions (e.g., the book on bi-
variate continuous distributions by Hutchinson and Lai 1990, and
the book on bivariate discrete distributions by Kocherlakota and
Kocherlakota 1992), but many of the families do not have obvious
or nice multivariate generalizations. Parametric families of bivari-
ate copulas that have nice properties are summarized in Section
5.1. Nice properties include a range of dependence covering inde-
pendence and the Fréchet upper bound, and extendibility to higher
dimensions. Desirable properties are given in Section 4.1 below.

A summary of the highlights of this chapter is the following.

e Laplace transforms play an important role in construction of
copulas; they are linked to the mixing distributions.

e Section 4.3 has mixtures of max-id distributions that lead to
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parametric families of copulas with wide dependence structure
and closed-form cdfs.

e Copulas with closed-form cdfs and having the property of all
bivariate margins in the same one-parameter family have limited
dependence structures (Section 4.2).

¢ Extensions of LT families are used in Section 4.4 to extend fam-
ilies of copulas to include negative dependence.

e Mixtures of conditional distributions in Section 4.5 generalize
the MVN family.

e Objects with given bivariate margins are proposed in Sections
4.7 and 4.8, although it is unknown under what conditions they
are proper distributions.

4.1 Desirable properties of a multivariate model °

Some desirable properties for a parametric family of multivariate
distributions are:

A. interpretability, which could mean something like a mixture,
stochastic or latent variable representation;

B. the closure property under the taking of margins, in partic-
ular the bivariate margins belonging to the same parametric
family (this is especially important if, in statistical modelling,
one thinks first about appropriate univariate margins, then
bivariate and sequentially to higher-order margins);

C. aflexible and wide range of dependence (with type of depend-
ence structure depending on applications);

D. a closed-form representation of the cdf and density (a closed-
form cdf is useful if the data are discrete and a continuous
latent random vector is used), and if not closed-form, then
a cdf and density that are computationally feasible to work
with.

A stronger version of property B is that not only do margins
belong to the same parametric (dimension-independent) family but
also all parameters are associated with or are expressed in some
marginal distribution. We refer to this as property B’.

Generally, it is not possible to satisfy all of these desirable prop-
erties, in which case one must decide on the relative importance of
the properties and give up one or more of them. Actually another
property that could be given up is the additive property of the
probability measure associated with a multivariate distribution;
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see Section 4.7 for multivariate objects that have given bivariate
margins.
The properties are discussed below for some examples.

1. MVN distributions satisfy properties A, B and C but do not
have closed-form cdfs. The latter is an inconvenience when a
MVN latent vector is used such as in the multivariate probit
model (see Sections 7.1.7 and 7.3). For high dimensions, good
approximations can be used in place of time-consuming numer-
ical integrations for evaluation of the MVN cdf.

2. The families of partially exchangeable copulas given in Section
4.2 do not satisfy property C, but satisfy the other properties.

3. The copulas in Section 4.5 satisfy property C and can lead to
extreme value copulas, but have only partial closure under the
taking of margins, and can be computationally harder to work
with as the dimension increases.

4. The multivariate Poisson and other distributions in Section 4.6
satisfy property B but not property B’.

There is no known multivariate family that has all of the prop-
erties but the family of MVN distributions may be the closest.
Because of its wide range of dependence, it is used as a latent
distribution in multivariate models.

Using theory from this chapter, some parametric families of mul-
tivariate copulas with a wide range of dependence are given in
Chapter 5. The starting point for construction of multivariate cop-
ulas are the MVN copula and bivariate families of copulas, and
things like mixtures, latent variables and stochastic representa-
tions. The models in Sections 4.3, 4.5, 4.7 and 4.8 build on bivariate
families of copulas. Within each section or construction method, it
1s stated which of the properties A to D are satisfied.

4.2 Laplace transforms and mixtures of powers °

To illustrate the main ideas in the use of Laplace transforms (LTs)
and mixtures of powers of univariate cdfs or survival functions to
construct multivariate distributions, we start with the univariate
and bivariate cases. Let M be a univariate cdf of a positive rv (so
that M(0) = 0) and let ¢ be the Laplace transform of M, i.e.,

é(s) = /Ome"“’dM(w), 60,
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Some properties of LTs are given in the Appendix. Note that
throughout this book, unless otherwise stated, LTs correspond to
positive rvs (no mass at 0). The reasoning is given in the next
paragraph.

For an arbitrary univariate cdf F, there exists a unique cdf G
such that

Fz) = /0 " G(z) dM(c) = b~ logG(z).  (4.1)

Rewriting (4.1) leads to G = exp{—¢~(F)}. (If M has positive
mass 7 at 0, then lim,_, o ¢(s) = 7o, and (4.1) cannot be solved for
G(z) when F(z) < m9.) There is a similar relationship for survival
functions:

(> ]
F)= [ Ho@)aM(e) = ¢(-log (),
0
if H = exp{—¢~1(F)}.
Next consider the bivariate class F(Fy, F2). For j = 1,2, let
Gj = exp{—¢~1(F;)}. Then the following is a cdf in F(F}, F»):

/0 G2GS dM(a) = ¢(— log Gy —log G2) = ¢(¢~(F1)+¢~1(F2)).

(4.2)
The copula (which obtains from taking U(0, 1) cdfs for Fy, F3) is
Clur,uz) = $(¢7 (w1) + ¢7 ' (u2)). (4.3)

This rather simple form has been called an Archimedean copula.
For (4.3) to have closed form, both ¢ and ¢~ need to have closed
forms; there are plenty of examples satisfying this and other nice
properties (see the Appendix). One could construct other bivariate
distributions from general mixtures of the form

/Gl(ml, a) Ga(z2; a) dM(a),

but other than G;(-;a) in the form of powers, closed-form cop-
ulas are generally not obtained. These mixtures usually result in
distributions with positive dependence; see Exercise 4.1 for some
conditions.

Similarly, one could work with survival functions to get

Amﬁgﬁng(a)= ¢(—log Hy—log Ha) = ¢(¢™ ' (F1)+6~(F2)),

where H; = exp{—¢~'(F;)}, j = 1,2. This is an associated copula
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of (4.3); see Section 1.6. For multivariate extensions, we use the cdfs
rather than survival functions, but keep in mind that there are the
associated copulas.

With m univariate cdfs Fy, ..., Fj,, a simple extension is to the
multivariate cdf F = ¢(§:;."=1 ¢~ 1(F})), with Archimedean cop-
ula

clwy = 8(3- 47 (w)). (1)
i=1

This multivariate copula is permutation-symmetric in the m argu-
ments so that it is a distribution for exchangeable U(0, 1) rvs.

To get more general types of dependence, extensions which are
written in the form of copulas are:

C(u) = /(;OOI{(exp{—a¢“l(u1)}, ...,exp{—ad™(um)}) dM(a),
(4.5)

C(u):/ooo---/ooo K(GS,...,G) Mm(das, ..., da), (4.6)

where K is a multivariate copula, G;(u;) = exp{—qSJTl(uj)} and
M., is a multivariate distribution such that jth univariate margin
has LT ¢;,5=1,...,m.

Because we do not have multivariate families of copulas with
a wide range of dependence structure, (4.5) is not immediately
useful. So with K in (4.6) being the independence copula, for (4.6)
to be useful in getting copulas that are not permutation-symmetric,
convenient choices of M,, must be made in order to simplify the
multivariate integral and get a simple form for the copula.

Examples of these choices are given next. The result is that if LTs
are chosen so that certain conditions are satisfied, then multivariate
copulas can be obtained such that each bivariate margin has the
form of (4.3) for some LT. However, the number of distinct LTs
among the m(m —1)/2 bivariate margins is only m—1, so that the
resulting dependence structure is one of partial exchangeability.

The construction makes use of Theorem A.l in the Appendix.
Let L7, be the class of infinitely differentiable increasing functions
from [0, 00) onto [0, 00), with alternating signs for the derivatives;
see (1.2) in Section 1.3.

The general multivariate result is notationally complex, so we in-
dicate the pattern and conditions from the trivariate and 4-variate
extensions of (4.3). The trivariate generalization of (4.3) is:

C(u) =9(p~" o ¢[¢™ (w1) + ¢ (ua)] + ¥ (us)),  (4.7)
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where ¢,¢ are LTs and v = ¢~ ! 0 ¢ € L},. Note that (4.7) has
(1,2) bivariate margin of the form (4.3) with LT ¢, and (1,3) and
(2,3) bivariate margins of the form (4.3) with LT . Also (4.4) is
a special case of (4.7) when 9 = ¢. The mixture representation for
(4.7) that generalizes (4.2) is

cw=[" [ " 68 (w) GB(uz) dMa(B; ) G (us) dMi(a), (4.8)

where G1 = G3 = exp{—¢~'} and G5 = exp{—y ™!}, M; is the
distribution corresponding to ¥, Mj(-;a) being the distribution
with LT Xa, and xq is defined by x;!(z) = v~} (—a~1logz).

The derivation is as follows. Equation (4.7) has the formal rep-
resentation

o0
[ Gt u) G (un) aMia),
0
where M; and G3 are as defined above, and

Gi2(u1,uz) = exp{—v[¢™ (1) + ¢ (u2)]}

In the bivariate case, the power of a cdf need not be a cdf so
that it must be proved that G{, is a cdf. We show this by giv-
ing Fp = G§, the mixture representation in (4.8). The univariate
margins of F, are Fjo(u;) = exp{—ay~1(y;)}, j = 1,2. Hence
Uj = 1/)(_0—4 IOgF}'a), j= 1,21

Fy =exp{—av[y™(—a"tlog Fia) + v~} (~a " 'log F24)]}
and
v (=a"llog Fy) = v~} (—a"log Fio) + v~ (~a~" log Fas).
With y, defined as above,

Fo = Xa[X3' (F1a) + x5 (F2a)] (4.9)

Therefore xo = ™% = x*, where x = x;. From (4.2) and (4.3),
(4.9) is a cdf for all @ > 0 if xo is @ LT for all @ > 0 or if
v € L3, (using Theorem A.1). The representation (4.8) holds with
M,(-; a) being the distribution with LT x® and, for all « > 0 and
j =12 Gj = exp{~x5'(Fja)} = exp{~r~}(~a"'log Fja)} =
exp{~vt o971} = exp{~¢~'}.

There are two generalizations or nestings of LTs for four di-
mensions. In higher dimensions, there are many possible nestings.
At each level of nesting of LTs, ¢, within ¢, say, the condition
¢7! 0 ¢, € L%, must be satisfied in order for the result to be a
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multivariate distribution. Let ¥, ¢,( be LTs. The first LT repres-
entation is

C(u)= ¢[¢'1°¢(¢‘1°C(C'l(ul)"‘C"l(uz))+¢"1(U3))+¢'1EU4)]),

4.10
where ¥~ ! o¢ and ¢~ 1o are in L, . A second distinct LT repres-
entation is

Cu)=9(¥ oglp™ (ur)+¢ (ua)l+ ¥~ o[ (ua)+¢ ™ (ua))),
(4.11)

where ¥~ lo¢ and ¥y~ 1o arein L%, . Note that all trivariate margins
of (4.10) and (4.11) have form (4.7) and all bivariate margins of
(4.10) and (4.11) have form (4.3). Clearly the idea of (4.10) and
(4.11) generalizes to higher dimensions.

The mixture representions for (4.10) and (4.11) have the respect-
ive forms:

[T [ 6161 ama(i 6 ama(s;09 63 dhts(a)
0 0 0
and

f / Gngsz(ﬁ;a)/ G1GY dM3(y; o) dMy(a).
0 0 0

With reference to the properties in Section 4.1, (4.4), (4.7), (4.10)
and (4.11) are interpretable from their mixture form, they are
closed under the taking of margins, but have a limited type of
positive dependence. They have closed-form cdfs if families for the
LTs are chosen appropriately; see Sections 5.1 to 5.3.

4.2.1 Dependence properties *

In this subsection, we analyse how the various bivariate margins of
(4.7), (4.10), (4.11), etc., compare with each other in the concord-
ance ordering. One key result is that all of these constructions pro-
duce positively dependent random vectors only. (Generalizations to
achieve negative dependence are given in Section 4.4.) Other pos-
itive dependence results for the various constructions are obtained,
and some results on the multivariate concordance and PFD order-
ings for (4.7), (4.10), (4.11) and their generalizations are given.

Theorem 4.1 Let Ci(uy,us) = ¢i(¢{1(u1) + ¢,—'1(u2)), where ¢;

is a LT, i = 1,2. Then C1<.Cy if and only if w = ¢5' 0 ¢; is
superadditive (w(z +y) > w(z) + w(y) for all z,y > 0). Similarly,
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for the multivariate extensions, Cim(u) = ¢i(2§n___1 ¢;1(u,-)), i =
1,2, Cim=cLCom if and only if w is superadditive. Since w(0) = 0,
sufficient conditions for w to be superadditive are w conver and w
star-shaped with respect to the origin (w(z)/z increasing in z).

Proof. Let uj = ¢1(z;), 3 = 1,2. Then
C1<cCo

& w(¢r (w) + 67 (u2)) = 631 (wa1) + 63 (u2) VO S ur,uz < 1
& w(zy +z2) > w(zy) + w(z2) V1,22 > 0.

The sufficient conditions for superadditivity are left as an exercise.

]

Corollary 4.2 Let C;(uy,uz) = ¢i(¢; (w1) + 67 (uz)), where ¢;
is @ LT, i=1,2. Suppose v = ¢7"' o 2 € L%, then C1<.Cs.

Proof. v has non-negative first derivative and non-positive second
derivative, and satisfies #(0) = 0. Therefore v is concave and v~! =
b3 1 0 ¢, is convex, and the preceding theorem applies. [

As a result of this corollary, the trivariate copula in (4.7) has
a (1,2) bivariate margin copula which is more concordant than
the (1,3) and (2,3) bivariate margin copulas (which are identi-
cal). However, there are applications, such as the construction of a
second-order Markov chain time series (see Section 8.1), in which
one would like the two bivariate margins that are identical to be
more concordant than the third margin. Trivariate copulas with
this property are constructed in Section 4.3. Similarly, for (4.10),
(4.11) and their multivariate extensions, bivariate copulas, asso-
ciated with LTs that are more nested, are larger in concordance
than those that are less nested. For example, for (4.11), the (1,2)
and (3,4) bivariate margins are more concordant than the remain-
ing four bivariate margins (but there need not be any concordance
ordering between these two margins).

The types of dependence that are possible from (4.7), (4.10),
(4.11) and their generalizations are similar to those from hierar-
chical or random effects normal models. Analogies to (4.7), (4.10),
(4.11) are respectively:

() i=pt+tbhitea, Yo=p+é&+e,Ys=p+E + e, with
#,61,€2, €1, €2, €3 independent zero mean normal rvs with re-
spective variances a, f,6,1—-a—-f,1—a—- 3,1 —a—p. The

1 at+f a
correlation matrix for (Y3,Y2,Y3)is |a+ 8 1 a

o o 1
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(i Yi=p+b&+M+e,Yo=p+6+ A+ 6, Ya=p+
€1+ Xa+ €3, Ya = p+ & + A3 + €q, with p, &, i, € being
independent zero mean normal rvs, g with variance a, §;
with variance (3, A; with variance vy and ¢; with variance
1 — @ — B — v. The correlation matrix for (Y7, Y2, Ys, Ya) is

1 a+B4+y a+f «
a+fB+y 1 a+f «
a+f a+p 1 o
o o « 1

(i) i=p+&+e,Yao=p+&i+e,Ya=p+€tes, Y=
p+Er+e€q, with p, &, €; being independent zero mean normal
rvs, u with variance a, £, with variance 3, £, with variance
B and €; with variance 1 —a = f; (j = 1 for i = 1,2 and
j=2fori=3, 4) The correlation matrix for (Y1, Y2, Ys, Ya)

1 a+ﬁ1 « o
s a+ B 1 @ Q

«@ o 1 a+

o o a+ 1

Next we give some results on association, Kendall’s tau, positive
dependence and dependence orderings.

Theorem 4.3 For the copula (4.3), Kendall’s tau can be written
as the one-dimensional integral:

T= / & 11)((1)dt+1—1 4/ s[¢'(s))*d

Proof. This proof is a modification of that in Genest and MacKay
(1986), making use of the present notation. From Section 2.1.9,
Kendall’s tau is

1 1
T=4/ / C(ul,uz)dC(U],Ug)—l.
0 Jo

The double integral (without the factor of 4) becomes
11
L[ e )+ 67 ) ¢ (67H w) + 67 wa)

4" 0 67 (w1)] 7 ' 0 ¢ (uz)] " duy dus (4.12)
Make the transformation z = ¢(¢~ (u1) + ¢~ 1(u2)), t = u; with

Jacobian 6_?11(%% equal to ¢' (¢~ (u1)+ ¢~ (u2)) - [¢' 0 p™H(uz)] !
Since z < t from the Fréchet upper bound, (4.12) becomes



92 CONSTRUCTION OF MULTIVARIATE DISTRIBUTIONS
A 1 / 1 2¢" 0971 (2)[¢ 047N ()] 0 ¢TI ()] dt dz
= j{) 24 o 6T 0 67 (A -7 (] de
= /0 ” s(s) - ¢"(s) ds.

With integration by parts, this becomes
o0
s (s) - 4'(s) s

- [T +s#@ ) ds=3- [ sl
0 0 0

The conclusion of the theorem follows. [

Theorem 4.4 The copula in (4.3) has TP, density. Hence it is
also PQD.

Proof. This follows easily from the mixture representation. With
U(0,1) margins in (4.2), G, G are differentiable, say with respect-
ive densities g1, g;. Hence C(uy,uz) = f0°° G (u1)G3 (uz) dM(a)
has density

e(uy,u2) = a®g1(u1)ga(uz) /000 G;"l(ul)Gg"’l(uz) dM(a).

In the integrand, G{~!(u;) and G¥~'(uz) are TP, so the integral
is TP from the total positivity results in Karlin (1968). (D(z, 2) =
J A(z,y)B(y, z)do(y) is TPy inz,z if A is TPz in z,y and B is
TPz in y, z and o is a sigma-finite measure.) The property of PQD
follows from Theorem 2.3. [

Theorem 4.5 The copula in ({.6) is associatled if K and M, are
cdfs of associated rvs.

Proof. K(x) associated implies K(GY!,...,G3r) is associated for
all (ey,...,am) € (0,00)™, because association is invariant to

(strictly) increasing transforms on rvs. Let U ~ K and A ~ M,
with U, A independent. Then a stochastic representation of a ran-
dom vector with the distribution in (4.6) is

(X1yee 0y Xm) = (GTHOY ™), GRHUNA™)).

We show that X is associated using the usual conditioning argu-
ment. Let h;(X), ho(X) be increasing functions in X. Assuming
the covariance exists, then

Cov (h1(X), h2(X)) = E [Cov (h1(X), h2(X) | A)]
+ Cov (E[h1(X) | A], E[R1(X) | A)).
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The first term is non-negative given each A, because of the first
statement in this proof. Since Gj'l(Ujl/A") is increasing in A; for
each j and h;, hy are increasing, E [h;(X)|A], i = 1,2, are increas-
ing in A. Therefore the second term is non-negative because A is
associated. [J

Theorem 4.6 Suppose ¥, ¢ are LTs .such that y='o¢ € LZ,.
Let Ci(u) = (7 ¥~ H(y;)) and Ca(n) = ¢(37L; 671 ())
be as defined in (4.4). Then Cy1=<paCa. If ¥(s) = e™*, so that
Ci(u) = Cr(u) = [[iZ, uj, then Cr<paC> (without needing fur-
ther conditions).

Proof. Let Gi(u) = exp{—¢~1(u)}, G2(u) = exp{~¢~!(v)}, 0 <
u < 1, with respective densities g;, go. Let My, My be the distribu-
tions with respective LTs 9, ¢, and let M, (-; &) be the distribution

with LT exp{—av}, where v = ¥~ ! o ¢. Then it is straightforward
to verify that

cawy= [ [ TI62 ) am.(8i ) dMy(a)

and

Ch(u) = /0 - [163(w)dMy(a),

with G§(u) = [;° G§(u) dM, (B; @) (see Theorem A.3). The dens-
ities ¢y, ¢z of Cy, Co are obtained by replacing Gg by ,BGg_Igz in
the integrals defining C, and G{. Let h be a bounded function on
[0,1], with an extra non-negativity constraint if m is odd; let U
have density ¢; and U’ have density ¢z. Then

p[Tawa] = [ [ w @) amuisse)] "anry@) @13
i=1 o ~Jo

where h*(8) = f [, G5~ (u) g2(u) h(x) du. From Theorem 2.18
and Example 2.11, the right-hand side of (4.13) is dominated by

I [ wenramaamy@ = [ghw;)].

The case of h unbounded and integrable can be handled by taking
a limit. Hence U< U’ or C1<pia Co.

Finally, let (s)=e~*. Then the above condition becomes — log ¢
€ L7,. However, the condition is actually not needed. Let U ~

Co. It suffices to prove that E[[];~, h(U;)] > {E [h(U})]}™ for all
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bounded h (with an extra non-negativity constraint if m is odd),
or

E [ﬁ h(Ui)] = Awkm(a) dMy(a) > [Amk(a) dM¢(a)]m’

where k(a) = « fgl G5~ Y (u)g2(w)h(u) du. This follows from Ex-
ample 2.11 and inequality (2.33) (with independent rvs on the left-
hand side of (2.33)).

|

Theorem 4.7 Suppose ¥, ¢ are LTs such that =1 o¢ € L%, . Let
C1,C: be as defined in the preceding theorem. Then C1<cCo.

Proof. Let U ~ C}, U’ ~ C,. To establish the concordance order-
ing, it is necessary to show that

Pr(Uj <ej,j=1,...,m)<Pr(Uj <aj,j=1,...,m) (4.14)
and
Pr(U; > a;,j=1,...,m) <Pr(Uj > a;,j=1,...,m) (4.15)

for all a € (0,1)™. From the representations in the preceding proof,
the left-hand sides of (4.14) and (4.15) have the form

/{>w ﬁj ]Ow k;(B)d M. (B; a)] dMy(e) (4.16)

and the right-hand sides have the form
A H 5(0) dML(Bi0) dMy(@),  (4.17)

where k;(8) = G5(a;) for (4.14) and k;(8) = 1—G¥ (a;) for (4.15).
The k;(B) are decreasing in 8 > 0 in the former case and increasing
in the latter case. A (bounded) decreasing function in [0, c0) can
be taken as a limit of finite sums of the form ), ¢; Ijo,;,) for positive
constants ¢;, z;; similarly, an increasing function can be taken as a
limit of finite sums of the form )_; ¢;](;; o) for positive constants
¢i, zi- Since the quantities in (4.16) and (4.17) are linear in each
k;(B), to show that the quantity in (4.16) is less than or equal to
that in (4.17), it suffices to prove the inequality with k;(8) replaced
by Ijo,y;)(8), 5 = 1,...,m, or by Iy, )(B), i = 1,.. ST, where
yj are positive constants. Fix « and let B,,..., B, be iid with
distribution M, (-; a). Then (4.14) and (4.15) follow since Pr(B; <
yj,j = 1,...,m) < Pr(B; < min; y;) = min; Pr(B; < y;) and
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Pr(B; > yj,j = 1,...,m) < Pr(B; > maxjy;) = min; Pr(B; >
y;) by the Fréchet upper bound inequality. [

Theorem 4.8 Suppose ¥, ¢y, d2 are LTs such that (a) v; = ¢~ lo
dieL:,i=1,2, and (b) 7' o ¢a € LZ,. Let C; be as defined in
(4.7) with ¢ = ¢;, i = 1,2. Then C1<.Ch.

Proof. For & = 1, ¢1, ¢2, let G¢ = exp{—£~1} and let M, denote
the cdf with LT €. Let v = 45;1 o ¢2 and let M,(-; B) denote the
distribution with LT exp{—fv}. For u = vy, vs, let M,,(+; @) denote
the distribution with LT exp{—ap}. Then using Theorem A.3,
representations for Cy, Cy are:

/ / G2 (u1) G (u2) dM,,, (5; &) G3(us) dMy(c0),

/ / G;z(ul)G"z(uz) dMy,(7; @) Gg(us) dMy(e),
with Ga(u) fo Glszuz(7;a)a Gg,(u)=f0°° Glng,,('y;ﬂ) and

/0 /0 RY dM, (v; B) dM,, (B; o) = /;oo Y dM,, (7; )

for all positive constants h.
Let U ~ Cy, U’ ~ C;. The concordance ordering is proved in a
similar way to the preceding theorem; it is necessary to show

Pr(U; Saj,jz1,2,3)_<_PI(UJ{Saj,j=1,2,3) (4.18)
and
Pr(U; > a;,j =1,2,3) < Pr(U] > aj,j =1,2,3) (4.19)

for all a € (0,1)3. From the representations given above, the left-
hand sides of (4.18) and (4.19) have the form

/ooo[/om( / Er(7)dM, (v; f”) (/ Fa7)dM (7 ﬂ)) A (B a)]

. (/Ooo ka(y) dM., (7; a)) dMy(a),

and the right-hand sides have the form

LU ([ sk s) a6

([ vt ditnti ) amty (@),
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where k;j(7) = G} (a;) for (4.18) and kj(y) = 1 — G} (a;) for
(4.19). The k;j(y) are decreasing in ¥ > 0 in the former case and
increasing in the latter case. Inequalities (4.18) and (4.19) now
follow from

([ wmam o) ([ wmanms)

< " k() ka(y) M, (v B)
0

for all 3; this last inequality comes from (Z;, Z2)<c(Z1, Z,), where
Z1, 2y are iid with distribution M, (-;8). O

Theorem 4.9 Suppose V1,2, ¢ are LTs such that (o) w; = 1,bz?‘1 o
peLy,i=1,2 and (b) Y7  ops € LZ,. Let C; be as defined in
(47) with Y = ;, i = 1,2. Then C1<.Cs.

Proof. The proof follows the methods of the preceding theorem.

Using the same notation, a result that is needed for the upper
orthant probabilities is that

hi(7) = 1- Gy (a1) = G} _(a2) + exp{—yw2(¢™"(a1) + ™" (a2))}

(4.20)
is increasing in . A proof of this that generalizes to higher dimen-
sions is the following.

One can write hy(7)= f;°(1 = G4(a1))(1 - G4(a2)) dM., (B; 7).
Since (l-Gﬁ(al))(l-—Gg(az)) is increasing in 8 > 0 and M,,,(B5; )
is stochastically increasing in 4 > 0 (Theorem A.3), then hy(y) is
increasing iny > 0. O

Theorem 4.10 Suppose 1, %2, $,( are LTs such thal w; = 1/),?'1 o
peLlii=12v=y7 oy € L, and ¢~ o € LL,. Let C; be
as defined in (4.10) with Y = ;, i =1,2. Then C;<C3.

Proof. We use similar notation to the preceding two proofs. Rep-
resentations for C; are

e = [ ([ [ 617 ) dMyrracti ) Gtua)
M Bim) M) ) - ([ G ) aM( ) ) M, (),
Cs(u) = /Doo /ooo (/ooo /Ow GY(u1) GY(u2) dMy-10¢(7; B) G (ua)

Mo, (5; n>) LG (ug) dM, (7; &) dMiyg, ().
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Let U ~ Cj, U’ ~ C3. The harder step for establishing the
concordance ordering is the inequality for the upper orthant prob-
abilities. These are:

Pr(U; > aj,j =1,2,3,4) = (4.21)
I (Js ha(mdMy(m; @) (fy~ ha(n)dM, (n; @) dMy, (<),
Pr(U] > a;,j=1,2,3,4)= (4.22)

Joo (fs” h(mha(m)dM, (n; @) dMy, (@),
where hy(n) =1 - G, (aq) and

hi(n) = /:o /000(1 - GZ(GI)) (1 - GZ(Gz)) dM¢—lo((7;ﬂ)

(1 = G5 (as))dM., (B 7).
Similar to the proof that (4.20) is increasing, [;°(1 — G¥(a1))(1 -

("'(ag)) dM¢ 15¢(7; B) is increasing in 8. Also 1 — Gﬁ(aa) is in-
creasing in f, so that hy(n) is increasing in 7 > 0. Trwnally, ha(n)
is increasing in 1 > 0. Therefore, by Lemma 2.1,

/ " ha(n) dM, () / " ha(n) dM, ()

< [ b ha(n am, ),
0
and (4.21) is less than or equal to (4.22) foralla. O

The ideas in the above theorems generalize for multivariate ex-
tensions of (4.7), (4.10) and (4.11) (even though the notation is
messy for the general case).

4.2.2 Frailty and proportional hazards

If survival functions F—j are substituted into the arguments in (4.4),
then one gets

C(Fr(a1), ., Fm(am) /HH“(F,(w,))dM(a)

Similarly, survival functions can be substituted into (4.7), (4.10),
(4.11) and their extensions. These models have been used for mul-
tivariate survival data in a familial or cluster setting; the para-
meter « is interpreted as a frailty parameter. These models also
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have a proportional hazards interpretation since H®(F;(z;)) =
exp{—a®~1(Fi(z:))} is a family with cumulative hazard propor-
tional to A(z;) = ¥~ }(F;(z;)), where 3 is the LT of M; the pro-
portionality constant « of the proportional hazards is random with
distribution M. If there are m = 2 subjects in a cluster with sur-
vival times T3, T3, then Pr(T} > t;,T2 > t;) becomes

/oo e—a[A(tl)'i'A(tz)] dM(a) = 'l,b(A(tl) + A(t2))
0

4.3 Mixtures of max-id distributions

Let M be the cdf of a positive rv and let its LT be 1. Another
extension of (4.2) and (4.4) is:

F= / B dM(a) = $(~log H) (4.23)

where H is a max-id m-variate distribution. (See Section 2.1.8 for
max-id.) Section 4.3.1 consists of conditions for max-id so that
we know about possible choices of H in (4.23). Section 4.3.2 is
devoted to dependence properties of (4.23). Some special cases are
given next before these subsections.

We look at cases of (4.23) that can lead to parametric fam-
ilies of multivariate distributions or copulas with closed-form cdfs,
flexible dependence structure and partial closure under the taking
of margins. Specific parametric families are given in Section 5.5.

Let K;;, 1 <i < j < m, be bivariate copulas that are max-id.
Let Hy,..., Hy be univariate cdfs. Consider the mixture:

o m
J7 I xg,m [Tareame)
0

1<i<j<m i=1

m
= z/)(—— Z logff;j(H;,Hj)~ Zu,-logH;), (4.24)
1<i<j<m i=1
where usually the v; are non-negative, though they can be nega-
tive if some of the copulas Kj; correspond to independence. This
special construction builds on bivariate copulas, of which there are
several parametric families with nice properties in Section 5.1. The
univariate margins of (4.24) are "

F; = zb(-—(u,' +m —1)log H,-).

Hence (4.24) is a copula, if H;(u;) is chosen to be exp{—p;¢~!(u;)}
with p; = (i + m—1)~1, i = 1,..., m. With these substitutions,
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the copula 1s

C(u) = (= I log Kij (7P (41, e=ps¥ ™ (w2))
i<j

+Zl/ipi'(,b"1(ui)). (4.25)
i=1

An interpretation is that the LT 1 leads to a minimal level of (pair-
wise) dependence, the copulas Kj; add some individual pairwise
dependence beyond the global dependence, and the parameters v;
lead to bivariate and multivariate asymmetry (the asymmetries are
represented through v;/(vi+v;), i # j). Also the parameters v; are
included in order that the family (4.25) is closed under margins.
For example, if H,, — 1 in (4.24), then (4.24) becomes

oo m_]
/ IT &g, By T B dM(a)
0 1gi<jgm-1 i1
m~1
= ¢(“ Y. logKij(Hi Hy)= > (vi+ 1)logH,-),
1<i<j<m=1 pyr

and the resulting marginal copula is

C1mm_1(u) = z,b(- Z 10g I\’ij (e—p;:p““(ui), e"Pj?,b"l(uj))

1<i¢j<m~1

m-1
+ 3+ D (w)).
i=1

(Hence the ‘parameters’ K;; remain the same but the parameters
v; change with taking margins; this can be shown notationally by

v = 0™ 41 and vf® = ™ 4+ m — 2.) The (4, j) bivariate
marginal copula of (4.25) is

Cij(ui, u5) = (= log Kyj (e7P¥™ (), e=p5¥ ™ (43))
+(vi +m— 2)p,‘1/)‘l(ui) + (v +m-— 2)pj'(,[)—l(uj)) . (4.26)
The copula (4.26) is more concordant than
Cy(uiyuj) = p($~" (w) +¥7' (), (4.27)

and it increases in concordance as Kjj increases in concordance;
this explains the above interpretation for % and Kj;;. These results
are proved in Section 4.3.2.
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Interesting and useful special cases of (4.23) and (4.24) are the
following.

1. Let m = 3, K13(z,y) = 2y, 1 = vo = v3 = 0, Ki2(u,v) =
Ka3(u,v) = K(u,v), where K is symmetric in u, v. Then (4.24)
becomes

/ Ke(Hy, Hs)K®(Ha, Ho) HEHS dM(a),  (4.28)
0
with copula

C(u) = $(~log K (e~ ™" (41) ¢=05¥7"(v2))

_ logl{(e—o.&p—l(u:,)’6—0.51/,-!(“2)) + %"l}'—l(ul) + %qb'l(ua));
(4.29)

if Hy, Hy, Hy are chosen appropriately so that the univariate
margins of (4.28) are all the same, then the (1,2) and (2,3) bi-
variate margins of (4.28) are the same and are more concordant
than the (1,3) margin. Hence this model would be appropriate
for generating a second-order stationary Markov chain.

2. Let m =3, Kia(z,y) = zy, 1 = vz = =1, v, = 0, K12(u,v) =
Ka3(v,u) = K(u,v). Then (4.24) becomes
oQ
/ K®(Hy, Ha)K®(Hs, Ha) dM(a),
A :
with copula

C(u) = P(—log K(e¥ (¥1) 0597 (ua)y

—log K(e™¥7 (#3) =089 (ua)y), (4.30)

The (1,2) and (3,2) bivariate margins of (4.30) are the same
and are more concordant than the (1,3) margin; with j = 1,3,
they are

p(~log K e~V (49, =05V M)y 4 1y=1(y,)).

3.Let vy = vy = =1, v3 = -+ = vy = 0, K12(2,y) = zy,
pr=p2=(m—2)"1, pg=---=pm = (m—1)"1. Then (4.24)
becomes

(o]
/ 11 &5, Hy) dM(e)
0 1<igj<m,
(.)#(1,2)
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with copula

C(u) = 'c,b<- Z log Ii',-j(e_p‘w-l("‘),e"p"w_l(""))>.
1<igj<m,
(2,4)#(1,2)
(4.31)
If 4 is a one-parameter family of LTs and each Kj; is a one-
parameter family of copulas, then this is a family with m(m —
1)/2 parameters. The labelling is such that the indices 1,2
are assigned to the pair of variables with the least amount
of pairwise dependence. The (1,2) bivariate margin has the
copula in (4.27).

With reference to the properties in Section 4.1, (4.25) is inter-
pretable from its mixture form, is in part closed under the tak-
ing of margins, has a wide range of positive dependence, and has
closed-form cdf if parametric families for 9 and Kj; are chosen
appropriately (see Section 5.5).

4.3.1 Maz-infinile divisibilily condilions

In this subsection, we obtain conditions for the distributions in
Section 4.2 to be max-id, so that we have candidates for (4.23)
and (4.24).

First, with LT 4, we consider the Archimedean copula C(u) =
$(2je1 ¥ (). Then C(u) = exp{yo(3;L, x(u;))}, where
x = v~ and o = logy. Note that o' = '[9, o = (V"¢ —
¢r2)/w2, o = [2(¢/)3 _ 3¢¢/¢// + ¢2¢,m]/¢3’ 0(4) — [*6(1/)')4 +
12¢(¢1)2¢//_4¢2¢/¢111_3¢2(¢n)2 +¢3¢(4)]/¢4' With X; — Xl(ui)y
the mth-order mixed derivatives ¢y...,, of C7 for m = 2,3, ... are:
o c12 = e xix5[v?0"? + y0"],

e cio3 = €7 x XA x5[Y30" + 3y20 " + v, etc.

From the pattern of the derivatives, C" is max-id for up to dimen-
sion m if —o € L}, and C" is max-id for all m if —¢ € L7, where
Ly, m > 1, are defined in (1.2) of Section 1.3.

Next we turn to max-id for the partially symmetric copulas in
Section 4.2. For the trivariate case, let

Clu) = (¥ od(¢7 (w)+ ¢ (uz)) + ¥ (us))

def Y (w(x(u1) + x(u2)) + x(u3)).

Let H = C" and let o = log, so that
H(u) = exp{y o (w(x(u1) + x(u2)) + x(ua)) }.
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Suppose w € L35 and —logy € £3. Then the mixed derivatives up

to third order are non-negative since each term of the derivatives

is non-negative. The derivatives are:

e OH[Ousz = yHx50',

o O2H[0ui0us = YHxX ) x4[v0"%w' + ¢'w'],

o 83H [0uy0uz0us = YH X\ x5 X5 [P0 w + 30" 0w + o' 2w +
o.mwlz + o”w”].

For higher-dimensional copulas in this class, write
C(u) o exp{vyg(wl Owy0 .- owk(. . .) + .o .)}

and let xi = xi(u;). Suppose —logy = —o € L}, and the w; are
in Ly, for sufficiently large n; (greater than or equal to the num-
ber of terms in the argument of w;). Then the copula is max-id. As
above, differentiation of a term will lead to terms that are each non-
negative. For example, differentiation of H = C7 in a term with
respect to u; leads to a factor like yHo'w] - - -w} xi > 0, differentia-
tion of [¢())¢ in a term leads to a factor £[o()]¢=10U+Dw] ... 0t x!

which has the same sign as [0(/))%, and differentiation of w{) in a
term leads to a factor wg" Uy +1° " WeX; which has the same sign
as wi@)

l -

More generally, consider
F(u) = (-~ log K ()

where K is max-id and —logy € L;,. We use Theorem 2.7 to
prove that F' is also max-id. Let ¢ = logy and & = log K, so that
F = ¢(—~log K) = exp{o(—«)}. Let H = exp{yo(—«)}, and let ks
denote the partial derivative of k with respect to u;, i € S. Then
e 0H/0u; = —yHo'k; 2 0,
o 02H/0u0us = Y’ Ho?k1k3 + YHo" k1Kkg — YHo' K12 > 0, etc.,
since each term is non-negative. The pattern of derivatives of each
term being non-negative continues for higher-order partial derivat-
ives of H. For example, differentiation of H in a term with respect
to u; leads to a factor like —yHo'k; > 0, differentiation of [o()]¢
in a term leads to a factor —£[o{))]¢-150+1)k; which has the same
sign as [0()]¢, and differentiation of ks in a term leads to a non-
negative factor.

4.3.2 Dependence properties *

This section consists mainly of results on concordance and tail
dependence.
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Theorem 4.11 The bivariate copula (4.26) is increasing in < as
Kij increases in <c. Hence (a) ({.25) is increasing in <%, and
(b) the bivariate copula given in (4.26) is more concordant than

that given n (4.27).

Proof. The proof of the first statement is easy. Then (a) follows

from results in Sections 2.2.1 and 2.2.3, and (b) follows because

K;; max-id implies it is TP, and hence PQD (see Section 2.1.7).
O

Let K be a bivariate copula and 9 be a LT. With (7, j) = (1, 2)
and m = 2, (4.26) becomes

Cl(uy, uz) = ¢(~log I{(e-PH"—l(“x), e—pzw"(ug))

+p1y ™ (w) + vape ™! (uz)), (4.32)
where vy, vy > 0 are arbitrary and p; = (v; + 1)1, i =1,2.

Theorem 4.12 If 4'(0) is finite, the copula

Cy(u,v) = (™ (u) + 971 (v))

in (4.27) does not have upper tail dependence. If Cy has upper tazl
dependence, then ¢'(0) = —oo and the tail dependence parameter
18

My = 2 — 2 hm{a(25)/9(5)] (4.33)
Proof. We begin by writing:
lim Ty (u, u)/(1 = ) = lim[1 — 2u+ $(20~ (W)}/(1 - v)

=22 lim 929 (w)/¥/ (¥} (v)) = 2 — 2 lim(y'(25)/¥'(5)].

If ¥’(0) € (—o0,0), then the limit is zero and Cy does not have up-
per tail dependence. ¥’(0) cannot equal 0 because it is the negative
of the expectation of a positive rv. The rest of the result follows.

0

Theorem 4.13 The copula (4.32) has upper tail dependence only
if either '(0) = —oo or K has upper tail dependence or both. (The
details of the tail dependence parameter are in the proof.)

Proof. Suppose that the copula K in (4.32) has upper tail depend-
ence parameter 3 € [0, 1] (8 = 0 implies no tail dependence). We
consider first the case p; = py or v; = v3. Subsequently, for the
case of p; # ps, bounds will be obtained.
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For z less than and close to 1, K(z,z) ~ B(1 — z) so that
K(z,z2) ~20 -1+ p8(1—-2) =1-(2-08)(1 - z). Let p; =
p2 = p= (v +1)~. Then for u near 1,

- log[K(e“P‘/"l(“), C—pw"(u))] +2up ,/,—l(u)

~ —log{l = (2= B)(1 — ™" )] 4 2up ¢y~ (u)
~ —log[l—(2—Bp¥~'(v)] +2vp 9y~ (v)
~ (2= B)pY ™ (u) + wpp~(u) = y¥ (),

where v = 2(v+ 1) = Blp = 2 - B/(v + 1) € [1,2]. Hence, for u
near 1,

[1 = 2u+ C(u, w)]/(1 - u) ~ [1 = 2u+ P(y¥~" ())}/(1 - v)

~ 2= (1~ (W) /Y ($ (w)
and the upper tail dependence parameter of C in (4.32) is Ay =
2 — ylim,—o 9'(75)/9' (s)-

If Cy does not have upper tail dependence, then Ay =2 -y =
B/(v + 1) and C has upper tail dependence if and only if K has
upper tail dependence (and the tail dependence parameter of K is
larger since v > 0).

If Cy has upper tail dependence, then +lim,_o9'(ys)/¥'(s)
should be increasing and Ay decreasing as < increases or as v
increases (this follows from Theorem 4.14 below and Theorem
2.3(d)). If B = 0 so that v = 2, then éy = 2—2lim,_.o ¢¥'(25)/¥'(s)
is the tail dependence parameter of Cy. If # = 1 and » = 0 so that
v =1, then Ay = 1. Hence the tail dependence parameter of (4.32)
is greater than or equal to that of Cy.

For the asymmetric case with p; < p2 (11 > v2),

K(e-mﬂl"’(“),e-Pﬂb"(“)) < K(e—mﬂl}"(u),e~P2¢"("))
< K(e-Plfl'"(“),e-Px'l‘"("))

so that from above, the tail dependence parameter Ay is bounded
as follows:

2 — 73 lim ' (129)/4(s) < d <2 lim o (ra)/9/(s),
where v; = (2= 8)/(vi + )+ ni/(r1 + 1) + v /(2 + 1), i = 1,2.
Note that v; < 73.

For the next theorem, LTD1 refers to the second variable LTD
in the first variable and LTD2 refers to the first variable LTD in
the second variable.
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Theorem 4.14 Let C be as given in (4.32). (a) Then C increases
in concordance as py increases (from 0 to 1) and vy decreases if K
salisfies the LT D1 property. (b) Also C increases in concordance as
po increases and vo decreases if K satisfies the LT D2 property. (c)
If pp = ps = p and vy = vy = v, then C increases in concordance
as p increases if K satisfies both LTDI and LTD2.

Proof. Details will mainly be given for case (a). Let 0 < p} =
(Vi +1)"' < py <1and v > vy > 0. Then with y = e"”’J’_l(“?),

P (" lOgK(fi'pl"‘b—l(u’), y) + vy (u) + V2P2¢_1(U2))

< (—- log K (e7P**™" () ) vapr g~ (wy) + V2P211’_1(U2)) )
for all uy, uq, if

[\,(e“p’l‘/'_l(“!)‘y) e"";}"ﬂ/’—l(“l) < ]X’(C*Pltﬁ_’(u;),y) e—l/xpxl/!—‘(u)),

for all uy,y, or if (with z = e~ ¥ () and v = 1y, V' = Vi)
K(a:l/("'+1),y) x,,'/(,,l_,_]) < A—(xl/(x/+1), y) :Eu/(u-}-l)’ Vz, yE (0’ l).

This is the same as K (z1/(*+1) y) £”/(*+1) decreasing in v > 0 for
all z,y or K(z2'7¢,y)z¢ = [K(z'¢,y)/z'~¢] z decreasing in & €
[0, 1]. Finally, this is the same as the LTD1 condition of K(z,y)/z2
decreasing in z for all y.
For (c), the concordance ordering is equivalent to
{K(='=% ' =8/ P2y LE€0,1]

for all z,y. This follows from the LTD1 and LTD2 conditions be-
cause if 0 < € < £’ < 1, then the conditions imply

K@,y )y < K6y oty
< K(z'6 g8 28yt

a

Note that from Theorems 2.6 and 2.3(d), if K is max-id, then it
satisfies the LTD1 and LTD2 conditions.

Analagous results for lower tail dependence are given next.
Theorem 4.15 The copula Cy(u,v) = PP~ (u) + v~ (v)) has
lower tail dependence parameter equal to

Ao = 2 Jim ['(29)//(5) (4.31)

Proof. The proof is similar to that of Theorem 4.12 and is left as
an exercise. [
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Theorem 4.16 If py = p2 = p (and vy = v, = v) in (4.32) and
the lower tail dependence parameter of K is f € (0,1], then the
lower tail dependence paremeter of C in (4.32) is

Ao =7 lim /(= log B +75)/¥(s), (4.35)

where ¥ = p(142v) > 1. If the lower tail dependence parameter of
K is 0, then the lower tail dependence parameter of C is less than
the right-hand side of (4.35) for all B > 0 (with v = p(1 + 2v)).
If the behaviour at the lower tail is K(z,z) ~ fz" as x — 0 with
r > 1, then the lower tail dependence parameter of C is given by
(4.85) with v = p(r + 2v) > 1.

Proof. This is left as an exercise. [J

Illustrations of tail dependence for the LT families LTA to LTD
(in the Appendix) are given in the following examples.

Example 4.1 Upper tail dependence for (4.3) with different
families of LTs.

LTA. ¢/(s) = —01s'/9-lexp{—s'/%} and ¥/(0) = —oo. The
limit in (4.33) is Ay = 2 — 2lim,_o[¢'(25)/¥'(s)] = 2 —
2.91/0-1 =9 _91/6

LTB. ¢/(s) = —071(1 4+ 5)~2/%=1 and ¢'(0) = —0~'. So Ay = 0.

LTC. ¢'(s) = —0~'(1—e~*)}/?-1e=* and ¢’(0) = —oo. The limit
in (4.33) is Ay = 2 — 21/¢,

LTD. ¢'(s) = 0711 —e™®)e™*/[1 — (1 — e~ %)e ] and ¢'(0) =
—6=1e?(1 —e~?). So Ay = 0.

Example 4.2 Lower tail dependence for (4.3) with different
families of LTs.

LTA. From (4.34), Ap = 2lim,— o [¥'(25)/¢'(s)] =
lim, o 21/ exp{—(2!/¢ — 1)s'/°} = 0.

LTB. Ar = lims_.o0 2(1 + s[1 + 5]~1)~1/0-1 = 2-1/6,

LTC. AL = limy00 2(1 4 e~ *)1/¥-1e=5 = 0,

LTD. AL = lim;_0 2¢™*[1—(1—e~%)e™*)/[1=(1—e"%)e~2*] = 0.

O

Example 4.3 Lower tail dependence for (4.32) with vy = vy = v
for different families of LTs.

LTA. The limit in (4.35) is lim, y[—s~! log B+ 9]/%~! exp{s'/?}
-exp{—[—log B+ s]'/°} = AL.If v > 0 so that ¥ > 1 then
Ar=0,andify=1(and v =0, = 1) and B > 0, then
Ap=1for@>1and A =pBforf=1.
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LTB. The limit in (4.35) becomes lim, y[y + (1 — 7 — log B)(1 +
§)7" Vel = 4/ = Ap. Ifr=0and r =1, then y =1
and Ay = 1. If r = 2, as for the case of the independence
copula, then v = 2 and Ay = 27!/¢ the same as the copula
B4 with parameter 4. If 1 < r < 2, then 1 < v < 2 and
there is more lower tail dependence than the copula B4
with parameter 6. For example, let KX be the copula B6
with parameter § > 1; then K(z,z) ~ 2" with r = 21/8 5o
that A\p, = 2709 ify =0andp=1(and y = 7). If K
is the copula B7 with parameter § > 0, then K(z,z) ~ z”
with r = 2 — 214 If K is the copula B3 with parameter
—00 < 6 < o0, then K(z,z) ~ —61log[l — 6%z2/(1
e%)] ~ 6z%2/(1 — e~%) and y = 2. Note that the copula
families B3, B4, B6, B7 are in Section 5.1.

LTC. The limitin (4.35)is Ay = lim, 7[(1—Be~7*)/(1—e~*))}/¢-1
Pe=(-Ds Thisis0ify > 1and Bif y = 1.

LTD. The limitin (4.35)is Ay = lim, Be~ (= 1*[1—(1—e~%)e*]/
[1-(1—e"%)Be ). Thisis0ify>1and Sify=1.
. .

From Theorem 4.11, the (1,2) and (3,2) bivariate margins of
(4.29) and (4.30) are more concordant than the (1,3) margin. This
is different from (4.7) in which the bivariate margin that is different
is more concordant than the other two. In (4.30), the dependence of
the (1,2) and (3,2) margins increases in concordance as K increases
in concordance. Letting K be the Fréchet upper bound leads to the
greatest possible dependence for these two bivariate margins. In
fact, in this limiting case, the upper bound of the inequality (3.13)
on Kendall’s tau is attained.

Theorem 4.17 Let K be the bivariate Fréchet upper bound in
(4.30), to oblain

C(u)=4(max{sp™" (1), §¥7" (u2)} + max{p~ (us), §¥ 7" (u2)}).

Let 7;; be the Kendall tau value for the (i, j) bivariale margin. Then
Ti2 = To3 > T13 and the upper bound 112 = 1 — (793 — 113) of (3.13)
s atltained.

Proof. In Theorem 3.13, let (Z,7,k) = (1,3,2) and let X, X’ be
independent triples with ¢df C. Let £y = {(X; —X1)(X3—X}%) > 0}
and E, = {(X2 — _Xé)(,X:; - Xé) > 0} Let 7 = 712 = 793. By
Theorem 3.13, the upper bound in (3.13), 7 = 1 — 7 + 73, is



108 CONSTRUCTION OF MULTIVARIATE DISTRIBUTIONS

attained if E£; C E;. A representation for C is

o0
[ min{H (), 53 (ua)) mind B (us), 55 (u2)} dM (@),
0
with Gl(-;a)d:?fH{’ = H§ = exp{—ay~!} and Gz(-;a)qngg =
exp{—Lay~'}. Note that

Gr ! (Ga(y; a);0) = ¥(397 (u)) E b(u),
independently of a. Hence for X, X', there is the representation
X1 =0(X21), Xa=b(X32), X2=max{Xa,Xs]},

X1 =b(X3), X3=05b(X3), X;=max{X3,Xsn},
where X321, X272 are independent with distribution H§ given a,
X3, X%, are independent with distribution A ¢’ given o/, and a, o
are independent rvs with distribution M. Since b is strictly increas-
ing, X; > X1, Xa > X3 implies X3, > X3,, X22 > X3,, which im-
plies X2 > X3 and (X2 — X3)(X3 — X3) > 0. The same conclusion
holds starting from X; < X{, X3 < X4 and hence E; C E,. 0O

4.4 Generalizations of functional forms

Extensions to multivariate distributions with negative dependence
usually come from extending functional forms, especially when
mixture and stochastic representations do not extend. An example
to illustrate this is the MVN distribution with exchangeable de-
pendence structure. If the equicorrelation parameter is p, then, for
p > 0, a stochastic representation is

Yi=\pZo+\/1=-p2Z;, j=1,...,m,

where 2y, 21, ..., Zm are iid N(0,1) rvs. This does not extend to
the range of negative dependence.

Larger classes of functions, generalizing LTs, are £, m > 1,
which are defined in (1.1) in Section 1.3. Related classes of func-
tions are £;,, n > 1, which were also used in Section 4.3.1. With the
classes £,; and £, multivariate distributions with some negative
dependence can be obtained. The multivariate distributions in the
two preceding sections have positive dependence only.

We extend the permutation-symmetric copulas, then the par-
tially symmetric copulas of Section 4.2, and finally the copulas
with general dependence structures in Section 4.3. We get copulas
with negatively dependent bivariate margins. Hence we get families
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of multivariate copulas with a wider range of dependence; however,
the extensions do not necessarily have a mixture representation.
Consider a copula of the general form (4.4):

C(u) = ¢(i ¢"(u,-)), (4.36)
i=1

where ¢ : [0,00) — [0, 1] is strictly decreasing and continuously
differentiable (of all orders), and ¢(0) = 1, ¢(oo0) = 0. Then it is
easily verified that a necessary and sufficient condition for (4.36)
to be a proper distribution is that (_1)_1'4,(1‘) >0,7=1,...,m,i.e.,
the derivatives are alternating in sign up to order m, or ¢ € L. If
(4.36) is a copula for all m, then ¢ must be completely monotone
and hence be a LT.

One can extend (4.36) further by allowing strictly decreasing
functions ¢ which are defined from [0, B] onto [0,1] for some 0 <
B < oo and satisfy ¢(B) = 0. For (4.36), ¢ is defined to be 0 on
(B, 00). If ¢ is continuously differentiable in (0, B) and the deriva-
tives alternate in sign up to order m, then (4.36) is a proper dis-
tribution. In Section 5.4, there is one example of a family with ¢
in this extended class. However this extension of L,, is not use-
ful for applications because the support of (4.36) is not all of
(0,1)™. (Note that ¢(> v, ¢~ H(w)) = 0if S iv, ¢ Y (w) > B
or if ui, ..., un are all sufficiently close to 0.)

In (4.36), C has negative lower orthant dependence (NLOD) if

S 6 (ug) 2 7 (ur - um)
j=1
or if
S 6 ) 2 47 explm1 — -~ zm))
j=1

forz; > 0,7 =1,...,m. Let n(z) = ¢~1(e”*), z > 0; then the
condition on ¢ is equivalent to 7 being subadditive. Since (0) = 0
and 7 Is increasing, the subadditivity condition will be satisfied
if n 1s concave. The concavity of 7 is equivalent to the convexity
of 7! = —log¢ and the subadditivity of 7 is equivalent to the
superadditivity of —log ¢. If C is NLOD, then note that all of its
bivariate margins are NQD. Similarly, C is PLOD if 5 is super-
additive or if —log ¢ is subadditive.

Now let C;,C3 be two copulas of the form (4.36) based on dif-
ferent functions ¢@,, #». In terms of the functions ¢;, Cy is more
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PLOD than C, if and only if w = ¢! o ¢; is superadditive. (The
result in Theorem 4.1 still holds.)

Next consider copulas with the functional forms of (4.7), (4.10),
(4.11), where the functions ¢,%,{ are in £,, for some n (to be
determined). What other conditions are needed for these to be
proper copulas? These can be seen from taking derivatives up to
the dimension of the copula.

From the derivatives, sufficient conditions are that the compo-
sition of the form ¥~! o ¢ is in £}, with n being the number of
summands in the argument of this function. Specifically, for (4.7)
in the notation C(u) = Y(w(x1(u1) + x1(u2)) + x2(us)),

o 8C/dus = ¥'x},

o 82C/duz0us = P x4w'x)(u2), and

o 83C/0u10uz0us = [P"'xhw'? + " xhw]x) (uz)x’ (u1).

These derivatives are non-negative if ¥y € L3, ¢ € £, and w =
Y~ log¢ € L5. Similarly, (4.11) is a copula if ¥ € L4, ¢, € L, and
Yv~lo¢, ¥~ o € L5, and (4.10) is a copula if ¥ € L4, ¢ € L3,
CeLly, v lopeLyand ¢~10( € L3

Let ¥, ¢ € £1. If =1 o ¢ € L3, ¥ € L3 and —log is convex or
superadditive, then the (1,3) and (2,3) bivariate margins of (4.7)
are NQD. If also — log ¢ is convex or superadditive, then the (1,2)
bivariate margin is NQD but it is more concordant than the (1,3)
margin. That is, a non-permutation-symmetric trivariate copula
with all NQD bivariate margins results. Similar analyses apply in
higher dimensions. Note that if ¥, ¢ are not in Lo, or if ¥~ o ¢,
etc., are not in L7, then (4.7), (4.10), (4.11) and their extensions
do not have representations as mixtures.

More generally, from (4.23) in Section 4.3, F'(u) = ¥(—log H(u))
is a multivariate cdf if H is max-id and —logvy € L;,. This form
includes (4.7), (4.10), (4.11) and their multivariate extensions as
special cases. Copulas with all bivariate margins distinct can be
obtained and copulas with some NQD bivariate margins can result
if —log is convex. Hence the general form allows a fairly wide
range of dependence structures.

Specific parametric families illustrating the ideas in this section
are given in Section 5.4. These families better satisfy property C
in Section 4.1, because of attaining a wider range of dependence
including negative dependence; this is done at the expense of prop-
erty A, as the mixture representation is lost. '

Next we consider multivariate copulas that are mixtures of inte-
ger powers of multivariate distributions. Suppose ¥ is the LT of a
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distribution with support on the positive integers. Then the mul-
tivariate family, F = v(—log H), in (4.23) extends to arbitrary
H (not necessary max-id) since a representation is Y oo, T H™,
where 7, is the probability mass at the integer n for the distribu-
tion M with LT 1. Some of the LTs in the Appendix have support
on the positive integers.

Now take the form of (4.24). If K;; is chosen to be NQD, then the
(i,7) bivariate margin of (4.24) is less concordant than Cy(u,v) =
Y(¥~1(u) + ¥~ 1(v)). That is, bivariate margins of (4.24) can be
either more dependent or less dependent than Cy instead of being
just more dependent for the general LT. This possibility should
add extra flexibility for modelling, but from the results in Section
4.3.2 on tail dependence no new multivariate extreme value copulas
come from allowing négative dependence in the K;;.

When m = 2, py = pp =1, v; = v9 = 0 and K = K, is the
Fréchet lower bound, (4.24) becomes

Clur, uz) = (= log(e™ ™ (1) &7 () 1)),
where (y)+ = max{0, y}. This is NQD if and only if
(e"‘[’-l(“’) + e—¥ M (u2) _ 1)4 < =¥ (1au2)

for all 0 < u;,u; < 1. (Note that PQD is not possible because
C(u,u) = 0 if u is such that 0 < e™¥7 () < L) Let g(z) =
exp{—1~1(e~?)}; then the NQD condition becomes g(2;)+g(z2) <
g(z1 + 22) + 1 for all z;, 23 > 0. Finally, let h(z) = 1 — g(z) so that
h(0) = 0 and h(co0) = 1 and h is increasing. The condition becomes
h(zy + 22) < h(z1)+ h(22) for all 21,22 > 0 or h is subadditive. The
condition of subadditivity is satisfied here if h is concave or anti-
star-shaped (the region below the curve y = h(z) is star-shaped
with respect to the origin). The anti-star-shaped condition can be
written as z~1h(z) decreasing in z.

An example is the family LTD in which ¢(s) = —6~!log[l —
ce™*], where ¢ = 1 —e~?% 60 > 0. Then exp{—9~1(t)} = ¢~ !(1 —
e~y and h(z) = ¢ exp{—fe~*} — e~ ?]. The second derivative
is h""(z) = ¢ '0e* exp{—0e~?} (fe~* — 1) and this is uniformly
non-positive if 0 < 8 < 1.

4.5 Mixtures of conditional distributions

One main object in this section is to construct families of k-variate
distributions based on two given (k — 1)-dimensional margins
(which must have k — 2 variables in common), e.g., F(Fi2, Fa3),
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F(F1,. k-1, F2,. k). The families can be made to interpolate be-
tween perfect conditional negative dependence and perfect condi-
tional positive dependence with conditional independence in the
middle. That is, this is an extension of Theorem 3.10 in Sec-
tion 3.2. If one is given Fy3, Fa3,...,Fn_1,m, m > 3, one can
build an m-variate distribution starting with trivariate distribu-
tions Fjit1,i42 € F(Fji41, Fig1,i42), then 4-variate distributions
from F;,  it+3 € F(Fii41,i42, Fit1,i42,i+3), etc. There is a bivari-
ate copula Cj; associated with the (i, j) bivariate margin of the
m-variate distributon. For (%,j) with |j —i| > 1, C;; measures
the amount of conditional dependence in the ith and jth variables,
given those variables with indices in between. Hence this is another
construction method that builds on bivariate copulas.
For m = 3, the trivariate family is
Y2

Fios(y) = | Crs(Fra(nile2), Fapa(uslz2)) Fa(dz2),  (4.37)
-OQ

where F)2, F3)2 are conditional cdfs obtained from Fiy,, Fa3. By
construction, (4.37) is a proper trivariate distribution with univari-
ate margins Fy, Fy, F3, (1,2) bivariate margin Fy2, and (2,3) bivari-
ate margin Fy3. C13 can be interpreted as a copula representing the
amount of conditional dependence (in the first and third univariate
margins given the second). C13(u1, ua) = u u3 corresponds to con-
ditional independence and Ci3(u1,us) = min{u;, us} corresponds
to perfect conditional positive dependence.

For m = 4, define Fy34 in a similar way to Fya3 (by adding 1
to all subscripts in (4.37)). Note that F.3, F234 have a common
bivariate margin Fo3. The 4-variate family is

Y2 Y3

Fia34(y) = / Cr4(F1)23(v112), Faj23(ya|2)) Fa3(dz2, dz3),
-0 J—c0
(4.38)

where Fij23, Fyj23 are conditional cdfs obtained from Fyjs, Faa4,
and z = (z2, 23).

This can be extended recursively. Assuming Fj...,—1, F2..., have
been defined with a common (m — 2)-dimensional margin Fy...p,—1,
the m-variate family is

Y2 Ym-—1
Fir.m(y) =/ / Cim (Fij2-.m-1(m1lz2, . . -, Zm=1)s
-0 - 00 .

Fm‘z...m..l(ym lzz, ceey Zm._l)) ° F2...m._1(d22, “aey dZm.._l), (4-39)
where Fyj2..m-1, Fiuj2..m-1 are conditional cdfs obtained from
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Fl-wm-l,, Foom.

Similar to (4.37)—(4.39), one can define a family of m-variate
distributions through survival functions, Fgs. Let _Fj =1—-F; be
the univariate survival functions. The bivariate margins with con-
secutive indices are F; ;j11(y5, yj+1) = Ci; 1, (Fi(95), Fi+1(¥j+1)),
where Cj ; ., is the copula linking the univariate survival functions
to the bivariate survival function. The m-variate case is like (4.39)
with all F replaced by F and the integrals having lower limits y;,

j=2,...,m—1, and upper limits co. This leads to
Fl-.-m(Y)= / Cfm(F1|2~~m—1(y1|22,---,Zm«l).
Y2 Ym-—2

Frojzme1(¥mlz2y - o, 2m=1)) Faoom—1(d22, . .., dzm-1). (4.40)
It is straightforward to show that this family is the same as that
from (4.37)—(4.39) with C}y(u,v) =u+v—1+ Cjp(l — u,1 - v)
or Cjk(u,v) =u+v—14CH(l —u,1-0).

Models (4.39) and (4.40) are a unifying method for constructing
multivariate distributions with a given copula for each bivariate
margin. The MVN family is a special case of (4.39). Other special
cases are given in Sections 5.5 and 6.3.

Example 4.4 (MVN.) Let F; = ®, j = 1,...,m, where ® is the
standard normal cdf. For j < k, let Cjx = Fy,, (971 (u;), = (wr)),
where Fp, is the BVSN cdf with correlation ;. Then for (4.39),
with k — j > 1, 05 = pjr.j41,...,k—1) is the partial correlation
of variables j and k given variables j + 1,... k — 1. This type of
parametrization, which is not unique because of the indexing, of
the MVN distribution may be useful for some applications because
each fjr can be in the range (—1,1) and there is no constraint
similar to that of a positive definite matrix.

Proof. Starting with Fj ;11 being BVN, we show that if Fj _ jin-2
(2<n<m, j<m-—n+2)are (n — 1)-dimensional MVN, then
Fj . j+n-1(j £ m —n+1) are n-dimensional MVN. It suffices to
show that Fy ., in (4.39) is MVN assuming that Fy -1 and
Fy ..m are MVN, for m > 3.

Let ®q, ¢q respectively denote the MVN cdf and pdf with zero
mean vector and covariance matrix . Let

deft | 1 pim I X Lo Lom
R= [le 1]’ {221 222] and [Em2 1]

be the covariance matrices associated with Cim, Fi, . m-1 and
Fy . m, respectively. Also let ), = [1 — 2122;21221]1/2, A =
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[1- Emgzg;z:m]l/z and z3 = (22,...,2m=1), 2 = (21,.-+,2m)-
With BVN copulas and univariate standard normal margins, (4.39)
simplifies to

T2 Tme-1 - —
/ / O (xx z2221, Tm zzzzm)cﬁzn(m)dzz.
—o0 — 00 a Cmm
(4.41)

Writing ® g as an integral, (4.41) becomes

21— 29291 Z Zo X
(allamm / / ( 1 2 21’ m ™ 42 2m)¢222(22)dz.

11 Imm
(4.42)
Clearly, the integrand of (4.42) is a constant multipied by the expo-
nential of a quadratic form in 2, ..., zy,, so that (4.42) corresponds

to an m-dimensional MVN cdf. Let the covariance matrix of the
resulting MVN distribution be denoted by

1 212 Oim
221 T Xom

Oim Lm2 1 ¥

The squared reciprocal in (4.42) of (27)™/2 times the constant is
|Z22](1 — p3,,)a%,a%,,,.; it is also equal to

1 b)) -
[anu allm] - [E:z] 22 [B21 Zom]|.

Hence (1 plm)allamm = a%la'mm (alm—212222 Ezm) or plm =

{(o1m — T12275 2m)/[@11amm]}?. Since o1, must be increasing
as p1m increases, pim = (O1m — 212222 E2m)/[a11(1mm] which is
the partial correlation of the variables 1 and m given variables
2,....,m=1. O

Example 4.5 A special case consists of the multivariate distri-
butions arising from a first-order Markov chain based on a copula
C and a marginal distribution F. That is, Cj ;41 = C for all j and
Cjx corresponds to the independence copula if £ — j > 1. In this
case, for m > 4, (4.39) can be more simply written as

Y2 Ym-~1
F1,...,m(3’) ’-"-/ . / Fllz(y1|22)

Frgm-1(Um|2m=1) Fo,. .m-1(dz2, ..., dzm_1),
with transition distribution Fjj;_,(zilzi—1) = B(F(zi=1), F(2:)),
where B(u,v) = 8C(u,v)/0u. These Markov chains are studied
further in Section 8.1. O

[Za2] -
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Special parametric families from this construction method are
given in Section 5.5. With reference to the properties in Section 4.1,
these families have interpretability and a wide range of dependence,
closure only for some margins, densities without integrals through
the recursions but no simple forms for cdfs (the behaviour is similar
to MVN distributions).

4.5.1 Dependence properties *

It should be clear from the construction method of (4.37)-(4.39)
(and from the MVN example) that a wide range of dependence
can result, by allowing the copulas Cji, j < k, to range from the
Fréchet lower bound to the Fréchet upper bound. A result for the
trivariate case shows that the bounds for the Kendall tau values
T12,T13, 723 in (3.13) of Section 3.4.3 can be achieved when the
Fréchet bounds are used in (4.37).

Theorem 4.18 Let Fyz3 be defined as in (4.37). Let 1jr be the
Kendall tau value for the (j,k) bivariate margin, j < k. If Ci3
in (4.37) is the Fréchet upper bound copula and Fy3<gs1F3z (that
is, F;{;(Fllz(yllyz)lyz) is (sirictly) increasing in yz), then 13 =
1 — |m2 — 723|. Similarly, if Cy3 is the Fréchet lower bound copula
and F3721(1—F1|2(y1|y2)|y2) is (strictly) increasing in ys, then 13 =
=14 |m2 + 23l

Proof. Let (Xq1, X12,X13),t = 1,2, be independent random vectors

from the distribution Fjz3. With C;3 being the Fréchet upper and
lower bound, (4.37) becomes respectively

Fo(v)= [ min{Fip(ule), Fpslo)) Fdz)
and
Fily) = [ max{Fualusl2) + Foa(uele) - 1,0} Fifd).

For Fy, representations for the two vectors are X3 = r(X11, X12)
and X3 = r(X21, X22) where r(z1,z2) = F;,;(Fm(:cllxg)lxg). Let
Ey, E be as defined in Theorem 3.13 with (3, , k) = (1,2, 3). The
function r is increasing in z;, and if r is also increasing in x4, then
(X11—X21)(X12— X32) > 0 implies (X13— X23)(X12— X22) > O or
E) C E5, and the upper bound in (3.13) is attained. For F, rep-
resentations are X3 = s(X11, X12) and X253 = 5(X21, X22), where
s(zy,z9) = Fzgl';(l — Fya(z1|z2)|z2). If s is increasing in 3, then
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(Xn -— le)(Xlz - Xzz) < 0 implies (X13 - Xga)(Xu - Xzz) > 0.
That is, Ef C E,, and hence the lower bound in (3.13) is at-
tained. A sufficient condition for s to satisfy the given condition is
that both Fyj(-ly) and F32(-|y) are SI. More generally, the condi-
tion on s is equivalent to the <s; ordering on Fy, and F3z, where
Fiy(z,y) = Fa(y) — Fr2(F7H(1 = Fi(e)),y). O

The next results concern concordance and tail dependence.

Theorem 4.19 As Cji increases in concordance, with other bi-
variate margins held fized, then Fj..) increases in the <y, ordering
and hence Fj increases in concordance.

Proof. This is obvious. [

It can be checked (for example, with the MVN family) that a
stronger concordance property such as ‘Fi3 increases in concord-
ance as (), increases in concordance’ does not hold.

Theorem 4.20 For the trivariate disiribution given in ({.37), if
Ch2 and Co3 have upper tail dependence and some regularily con-
ditions hold, then Fi3 has upper tail dependence. For the general
m-dimensional distribution in (4.89), if Cjj41, j=1,...,m—1,
have upper tail dependence and some regularily conditions hold,
then Fji, k— 3 > 1, all have upper tail dependence. (The tail de-
pendence conditions appear in the proof).

Proof. To stress ideas and concepts, we assume the existence of
derivatives and other regularity conditions as needed. Some equi-
valent conditions for bivariate tail dependence are given first. Some-
times it is more convenient to be working with exponential margins
than uniform margins. For a bivariate copula C, let

G(z,y)=C(1—e"",1-¢7Y). (4.43)
The definition of upper tail dependence in Section 2.1.10 becomes
e“G(z,z) — A€ (0,1], z — oo.

Now assuming that G has derivatives up to second order, let
Gja(zly) = eyﬁ%ﬂ and Gyj; =1 — Gyj2. Then

o] oQ
e®G(z,z) = €° / Ghja(zly)e Ydy = / Giplzlz + v)e v dv.
z 0

Assuming that e*G(z, z) converges as £ — oo and that

Gij2(z)z + v) — a(v) (4.44)
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for all v (v < 0 is needed below), where a is continuous and a < 1,
then by the bounded convergence theorem,

ex_é(:v,a:)——»/ a(v)e "dv.
0

Tail dependence holds if and only if a is not identically 0 almost
surely (a.s.) on (0, 00).
Now let g be the density of G. Then

e*G(z,z) = e”/ / 9(y1,y2) dy1 dyz

= / / e“g(z + vi,z + vg) dvy dvy.  (4.45)
o Jo
Assuming that
e g(z + v1, z + v2) — b(v1, v2)

and that the Lebesgue dominated convergence theorem can be used
in (4.45),
o0 o0
e” 5(::;, z) — / / b(v1, v2) dvy dvg
: o Jo
and tail dependence holds if and only if b is not identically 0 (a.s.)
on (0, 00)2.

Next suppose that C}2, Ca3 have upper tail dependence and that
the Lebesgue dominated convergence theorem can be applied to
(4.46) below. Then Fj3 in (4.37) has upper tail dependence and
the tail dependence parameter is given in (4.47).

Let Fy3, Fo3 be defined as in (4.43) with Ci2, C23, respectively.
Let a be defined as in (4.44) with subscripts 12 or 32 for the (1,2) or

(3,2) bivariate margin, respectively. Putting exponential margins
in (4.37) leads to

Y2

Fra3(y) = Cr3(F112(y1]22), Fap2(y3l22)) €2 dzz

0
and
Fi3(z,z) = 1 - Fy(z) — Fa(z) + Fia(z, z)
= 1—/ Fya(z|2) e“zdz—-/ F3z(z|2) e " dz
0 0
+/ Cl3(F]'2((E|Z),E’;'2(.’E'2)) e ?dz

0

- /0 513(F1]2(xlz),Falg(zlz))e"zdz.
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Hence

(o 0]
e“Fi3(z,z) = Cra(Fijz(z|z + v), F3|2(x|a: +v))e~"dv (4.46)

-T

— /oo C13(1 — a12(v),1 — a32(v)) e ?dv (4.47)

assuming the Lebesgue dominated convergence theorem can be
used and a2, azs are the limits for -F_llz,.ﬁ;glz as in (4.44).

Next for the multivariate extension. Suppose that Cjj4+1, j =
1,...,m— 1, have upper tail dependence and that all copulas Cj;
have densities. For (4.39) with exponential univariate margins, sup-
pose for j, k, with £ > j, that the following pointwise convergences
hold as z — oo:

(@) Fipjsr,. k(@2 +vjp1,. .+ vk) = aj 41, 6 (V41,0 V),
(b) Fryj,..k-1(zlz+vj,...,2+vk-1) = ak .. k=1(vj, ..., Vk-1),
(c) efj,. . (z+v,....,z+vE) — bj'._‘,k(vj, ce ey UE),
and that the functions on the right-hand sides of (a), (b), (c) are not
identically 0 (a.s.). The remainder of the proof, which is omitted,
makes use of these limits in an inductive manner. The Lebesgue

dominated convergence theorem is assume to hold for the limits of
integrals with terms from (a), (b) and (¢). O

For the result in the above theorem, positive dependence for the
copula Cj, k — j > 1, is not necessary. For example, even if C3
corresponds to the Fréchet lower bound, Fi3 can have upper tail
dependence — under regularity conditions, the tail dependence
parameter is A;3 = ff; e”¥ max{a12(v) + a32(v) — 1,0} dv. The
assumptions given in above theorem are not really too strong since

they do hold in special cases such as those in Section 6.3.1.

4.6 Convolution-closed infinitely divisible class °

For parametric families of univariate distributions that are convolu-
tion-closed and infinitely divisible, there is a multivariate extension
that makes use of these properties. It leads to positively dependent
multivariate distributions only. These distributions are applied to
time series models for count data, etc., in Section 8.4.

A family Fy is convolution-closed if Y; ~ Fp,, 7 = 1,2, and
Y1,Y> independent implies the convolution Y; + Y2 ~ F;, , where 7
is a function of 81,62, usually the sum. A univariate distribution
F is infinitely divisible if Y ~ F and for all positive integers
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n, there exists a distribution F() and iid rvs Yy, ..., Yan with
distribution F(™) such that Y £ Ypy + -+ + Yan. If Fy, 0 > 0, is a
convolution-closed infinitely divisible parametric family such that
Fy, % Fg, = Fy, 14,, where * is the convolution operator, then Fe(")
can be taken to be Fyp. It is assumed that Fp corresponds to the
degenerate distribution at 0.

Examples of convolution-closed infinitely divisible parametric
families are Poisson (§), Gamma(#,0) with o fixed, and N(0,6);
others are given in Section 8.4. A convolution-closed parametric
farnily that is not infinitely divisible is Binomial (8, p) with p fixed.
A parametric family that is infinitely divisible but not convolution-
closed is the lognormal family.

Definition. Let Zs, S € Sy, be 2™ — 1 independent rvs in the
family Fy such that Zs has parameter 85 > 0 (if the parameter is
zero, the random variable is also zero). The stochastic representa-
tion for a family of multivariate distributions with univariate
margins in a given convolution-closed infinitely divisible
class, parametrized by {05 : S € S}, is

Xi= Y Zs, j=1,...,m (4.48)
5:5€8
X; has distribution F},;, where n; = ZSesm:jeS fs.
In the bivariate case, the stochastic representation becomes

X1 =21+ 212, Xo=Zs+ Zya, (4.49)

where Z,,Z2,7,2 are independent rvs in the family Fp with re-
spective parameters 1,05, 015. For j = 1,2, the distribution of X;
1s ng+912.

The parameters of the above family can be interpreted as mul-
tiples of multivariate cumulants, which are defined next.

Definition. Let (Xi,...,Xm) ~ H, with moment generating
function M(ty,...,tm) = E(exp[ti X1+ - -+t Xm]) and cumulant
generating function K(t) = log M(t). The multivariate mixed
cumulant of mth order is

K12 = 5;‘?21{-{;(0,...,0).

L0
When m = 2, the bivariate mixed cumulant x;, is a covariance.
Similarly, if S is a non-empty subset of {1,...,m}, one can obtain

the mixed cumulant kg of order |S| from the marginal distribu-
tion Hg. The set {xs : S € S,,} contains information about the
dependence in H.
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For a convolution-closed infinitely divisible family of cdfs Fy,
let Ry be the corresponding family of cumulant functions. As-
suming that enough moments exist, the rth cumulant of Fy is

nﬁ,')".—i‘ Kér)(()), the rth derivative evaluated at 0. Since Ky(t) =
NKgn(t) for all positive integers N, there are constants v, such

that :cg') = v.0, r = 1,2,.... The joint cumulant generating
function of (X1, X2) in (4.49) is K(t1,t2) = Ko, 0,,0,,(t1,12) =
Kg,(t1) +Ko,(t2) + Ko, (11 +12). Hence the bivariate cumulant is
Kig = "(92’ the second cumulant of Zy,. For (4.48), the joint cumu-
lant generating function of (Xi,...,Xn) is K(t) = K(t;0s,S €
Sm) =Y s Kos(3 ;¢ ti)- Hence the mth-order mixed cumulant is
Klom = fcg';f_)_m, the mth cumulant of Z;...,n.

With reference to the properties in Section 4.1, these families of
distributions are interpretable, closed under the taking of margins,
have a wide range of positive dependence, but the densities and cdfs
involve multi-dimensional sums or integrals that grow quickly in
dimension as m increases. See Exercise 4.16 on an algorithm to find
rvs of the form (4.48) that yield a given (non-negative) covariance
matrix, when all univariate margins are in a given family in the
convolution-closed infinitely divisible class.

Replacing the summation symbol + by the minimum symbol A,
one can define multivariate families from Fy that are closed under
independent minima. This is the main idea in Marshall and Olkin
(1967), for exponential distributions, and Arnold (1967). See also
Chapter 6 on min-stable multivariate exponential distributions.

4.7 Multivariate distributions given bivariate margins

In preceding sections, families of multivariate distributions, some
with a wide range of dependence structure, have been constructed.
However, no method has been given that constructs a multivariate
cdf from the set of bivariate margins. In this section we mention
some approximate methods. One method, based on regression with
binary variables, is a formula for constructing a multivariate ob-
ject that has the right bivariate margins, but it cannot be shown
analytically that the object is a proper cdf (it has been shown nu-
merically in some cases). A second method is based on maximum
entropy given the bivariate densities; this method generally does
not have closed form and must be computed numerically as an ap-
proximation. These two methods are outlined in the following two
subsections. A third method is given in Section 4.8.
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4.7.1 Regression with binary variables

Let m > 3 be the dimension and let X ~ F' with only the bivariate
margins Fy;, 1 < i < j < m, known. What is constructed in this
subsection can be thought of as an approximation to F' based on
the set of bivariate margins. The approximation should be good
when F' is approximately maximum entropy given the bivariate
margins or the information about F is contained almost entirely
in the bivariate margins. For multivariate probabilities concerning
X, we need rectangle probabilities of the form

Pr(wy < X1 < z1,.. ., Wm < X;p < Ty ). (4.50)

This can be decomposed as the product of conditional probabil-
ities:
Pr(w; < X; < 1, ws < X2 < z3) (4.51)
s Pr(wg < Xp < zp |wj < Xj<zj,j=1,....k—=1).
Let I; = I(w; < X; < z;),t=1,...,m, where I(A) denotes the

indicator of the event A. Note that E(I;) = Fi(z;) — F;(w;).
The first step is an approximation of

Pr(wp < Xp <zplw < Xy <21y, wimy < Xpo1 < 2p-1)
=E(k | L =1,..., 1 =1) (4.52)
by
E(Ik) + QuQ(1 = E(h),...,1 = E(Ix-1))T, (4.53)

where {23; is a row vector consisting of the entries Cov (I, I;) =
E(ItI;)-E(Ix)E(L),i=1,...,k—1,and Qisa (k—1)x (k—1)
matrix with (2, j) element Cov (I;,I;) = E(I;I;) - E(L)E(I;),1 <
i,j < k— 1. Note that E(;I;) = Pr(w; < X; < z;,w; < X; <
.'L‘j) = F,'j(:l:,-, xj)—F;j(x;, wj)—-F,-j (w,-, .'L‘j)+Fij(w;, ‘LUj). It is easily
verified that (4.52) and (4.53) are identical if k = 2. The use of
(4.53) as an approximation to (4.52) is analogous to the formula

E(Y2|Y1=y1) = pha + Z01 S0 (y1 — 1)

for a MVN random vector (Y7,Y7)T with mean vector (u7, uT)7T
i Xi2
Yo1 Daa|

Expression (4.53) can be substituted into (4.51) to get one ap-
proximation to (4.50). However, the decomposition into conditional
probabilities is not unique and different decompositions lead to dif-
ferent approximations in general. That is, (4.50) is also equivalent

and covariance matrix [
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to
Pr(w,-, < Xi, L2, w, < X, < m,-,)

'H;cn=3 Pr(wik < X;, L z4 l wg; < Xij < zij)j =1,...,k- 1):

where (Z1,...,im) is a permutation of (1,...,m) with #; < 3.
There are m!/2 permutations that could be considered. For each
permutation, an approximation of the form (4.53) can be used for
each conditional probability. An overall approximation, denoted by
P = P(w,x), for (4.50) is the average of the m!/2 approximations.
For a permutation, if (4.53) happens to exceed 1 or be less than 0,
it is replaced by 1 or 0, respectively.

A conjecture is that the approximation should be reasonable if
the dependence is not too large and if the multivariate distribution
is close to maximum entropy given the bivariate margins.

Another use of the approximation formula given a set of bivariate
margins is for computing multivariate probabilities. The bivariate
margins of P are as given (take wg,z; to be —oo, 00 except for
k = 1, 7), but the additivity property of a probability measure is
not satisfied. Hence, to get a formula here for a multivariate object
given the set of bivariate margins, we are giving up the additivity
property. For some applications, this may be acceptable.

Next let w; — —o0, 5 = 1,...,m, so that P = P(x) is an
approximate cdf; it has the bivariate margins Fj;, ¢ < j, but need
not correspond to a proper probability measure. The formula P in
the trivariate case for lower orthant probabilities can be written
explicitly by expanding the matrix inverse.

With m = k = 3 in (4.51)—(4.53), one gets

D(FlzyFla,an)dgFlea
+  Fia{(Fia = F1F3)(1 = F2)(Fy — Fi2)
+(Fa3 — Fo F3)(1 — F)(Fy — F12)]/
[FiF2(1 = Fy — F3 + Fi2) + Fia(F1F2 — F12)),

where the arguments are 1, £3, 3. This looks like a perturbation of
Fy4F3; it can be shown that convergence as F; — 1,71 =1,2,3,leads
to the right bivariate margins (use I’Hospital’s rule for : = 1,2).
This can now be averaged over the three permutations to get

= [D(F12, Fis, F23) + D(Fi3, F1a, Fa3) + D(Fas, F1a, F13)] /3. )
(4.54

This is a reasonably simple formula for a trivariate object with
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bivariate margins F12, Fy3, Fas.

It can be shown analytically that (4.54) is a trivariate distri-
bution in some cases. For example, it is correct for independence
and Fréchet upper bound margins, and combinations of Fréchet
upper/lower bounds for the bivariate margins. Some numerical
computations in the trivariate case seem to suggest that P is a
proper cdf if Fj; is not too far away from F;F; for all ¢ < j. Ex-
pression (4.54) can have negative rectangle ‘probabilities’ for small
rectangles, but the use of P(w,x) leads always to non-negative
‘probabilities’ (that are not additive).

4.7.2 Mazimum entropy given bivariaie margins *

Generally maximum entropy problems refer to maximizing

- [ f1ogsar,

subject to some constraints on f, where f is a density with respect
to the measure v. The maximum entropy density can be inter-
preted as the density that is ‘smoothest’ given the constraints. In
this subsection, we apply ideas of maximum entropy to the case
where constraints are the given bivariate margins. The Appendix
has some background results on maximum entropy.

For simplicity of notation, consider first the trivariate discrete
case. Let pijr, 1 <1< 71,1 <7< J,1<k< K, be a trivariate
discrete pmf. The solution (if one exists) to the maximum entropy
problem of maximizing — 3°; . | pijk logpijr subject to 3. pijk =
My ki, k, 305 pijk = migk Vi k, 30y pijk = mij4 Vi, j, has the form

Pijk = exp{Ayjrditkdij1 )

for some constants Ay jk, Aiyk, Aij+. This can easily be shown using
the Lagrange multiplier method. The extension to the multivariate
discrete case is straightforward.

To generalize to the continuous multivariate pdfs with given
compatible bivariate margins, the method of calculus of variations
can be used. The maximum entropy problem becomes that of max-
imizing — [ f(x)log f(x) dx subject to [ f(x)dx_; —; = fij(zi, z;)
for all 1 < i< j < m, where f;; is the (4, j) bivariate marginal pdf
and x_; _; is x without the ith and jth components.

To determine the solution, let J(¢) = [(f(x)+eg(x))log(f(x)+
€g(x)) dx. Then for the maximum entropy solution f = f*, we must
have J'(0) = 0 for all functions g(x) satisfying [ g(z)dx—;_; =0
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for all 7, j. This reduces to [ g(x)log f*(x)dx = 0 for all such g.
(Note that J”(0) = [[g%(x)/f*(x)]dx.) It is then easily verified
that the solution f* has the form f*(x) = []; ; hij(zi, z;) for a set
of functions h;;, where h;; is positive whenever f;; is positive.

An example (possibly the only one) where the conditions can be
verified is the MVN density. The MVSN density with correlations
pij, 1 £ i < j < m, is a maximum entropy density given BVSN
margins f;; with respective correlations p;; (that result in a positive
definite correlation matrix), since it can be decomposed into the
form of the density in the preceding paragraph. For example, with

= (p*) and f(x) = Bexp{—1 3 pYz;z;}, take h,,(a;,,w,) =
Bz/['"(’"’l)] exp{—i(m— 1)"1[p“a: +pizd) - piaiz;} for 1 <i<
J<m.

In the discrete trivariate case, the maximum entropy solution
can be put in the form p;j; = @;;firvjr for non-negative constants
a;j, Bik, Vi k- These can be solved numerically with the proportional
iterative rescaling method. The iteration has the form:

(r+1) = pij /Z (;)71(;)’ B = py /Z o +1)71(2),

'ng+1) = Py k/z a('“)ﬂ(,:“),

starting with a(o) = ﬁ(o) = z(Jo ) = N-? , for example. For a set
of three bwanate margins Cjs, C}3,C23 in the form of copulas,
discretization can be applied to bivariate copulas to get an ap-
proximation to the continuous (trivariate) maximum entropy dens-
ity. Numerical experience is that the convergence is usually fast,
with more iterations required as the dependence in Cjiz, Ci3,Coas
increases or as these copulas become more different. This numer-
ical approximation generalizes to higher dimensions, but computa-

tional complexity increases exponentially with the dimension m.

4.8 Molenberghs and Lesaffre construction

In this section, we extend the ideas in Molenberghs and Lessafre
(1994). Let F;;,1 < i < j < m, be given (compatible) bivariate
margins, not necessary Plackett distributions as in the cited refer-
ence. We build up trivariate objects F; ;,i,, 1 < 73 < i < i3 < m,
first and then extend to multivariate objects in higher dimensions,
one dimension at a time. There are applications for multivariate
binary and ordinal data (see Chapters 7 and 11).
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Let a; = Fla2, ag = Fi3, a3 = Fa3, a4 = 1 — F} — F — F3 +
Fyo + Fig+ Faz, by = Fio+ Fi3 — F, b9 = Fig+ Faz — F3, b3 =
Fy3 + Fa3 — F3. A trivarniate object Fia3 can be constructed from
the Fy,, F\3, F23 as a solution to the ‘product ratio’

Fr93(F123 — b1)(F123 — b2)(Fi23 — b3)

(a1 — Fi23)(a2 — Fi23)(as — Fi23)(aq — Fis3)
The eight terms in (4.55) must be non-negative, so that a constraint
on the bivariate margins is that b < a, where b = max{0, by, b2, b3}
and a = min{a,, as, a3, as}. Note that these are the Fréchet bounds
for F(F12, F13, Fa3) (see Section 3.4). Interpretations for the ratio
(4.55) are given below.

Note that (4.55) must be solved pointwise for each x € %2 in
order to get Fya3(x). If the solution yields a proper cdf Fjs3 and

X ~ Fya3, then for a given x, the ratio can be expressed in terms
of orthant probabilities. With I; = I(X; > z;), j = 1,2,3, let

Po++ = F1 = Fy(zy) = Pr(l; = 0),
p+o+ = Fa = Fa(x2),
P++0 = F3 = F3(z3),
poo+ = Fia = Fig(z1,22) = Pr(l; = I, = 0),
Po+o = Fi3, pyoo = F23, and
Pooo = z = Fia3 = Pr(l; = I, = I3 = 0).
Then
proo=Pr(ly =1,Ib=13=0) =
poro=Pr(l;=1,11 =13 =0) =
poo1 =Pr(ls=1,1 =L =0)= Flz -2z,
)=
)

Y = Y13 = (4.55)

Pro=Pr(l =l =1,I3=0) = F3— Fi3— Fo3 + z,
pron=Pr(li =3 =11 =0)=F, — Fi3 — Fa3+ z,
poi1 = Pr(l; =13 =1, =0) = F; — F12 — Fi3+ 2, and
pim1=Pri=h=~L=1)=1-F — F— F3+ Fi3+ Fi3+
Fog — 2.
Hence (4.55) is the same as

Y123 = [PoooPo11P101P110)/ [Poo1Po10pr00P111])-

Equation (4.55) can be written so that z = F)3 is the root of

P(ar ~ 2)(az — 2)(az — 2)(as — 2) — 2(z — by )(z = b2 )(z — bs) % h(2).
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h(z) has exactly one root in the interval [b, a], by checking the end-
point values and the monotonicity. Clearly, h(b) > 0, h(a) < 0 and
h'(z) < 0, if b < a. However, what has not been shown is that
the solution results in a proper cdf, i.e., the non-negativity of the
rectangle evaluations in (1.6). Even the monotonicity of Fj23 has
not been shown.

In (4.55), the indices (1,2,3) can be replaced by (i, i2,13), so
that, for example, the parameters 23, ¥124, Y134, Y234 in (4.55)
correspond to the four trivariate margins of a 4-variate distribution.
For m > 4, the extension can be made for the multivariate object
F\...m given m compatible (m — 1)-dimensional marginals, defined
through the ‘product ratio’, which has 2™~1 orthant probabilities
in the numerator and 2™~! orthant probabilities in the denomi-
nator. Assuming that the result is a proper cdf and X ~ Fy..;p,
define I; = I(X; > z;j), j = 1,...,m. The terms in the numerator
have r = mmod 2 I; equal to 0 and the terms in the denominator
have » = (m — 1) mod2 I; equal to 0.

For example, for m = 4, with z = Fj334, the ‘product ratio’ is:

z(z — aq) H155<554(Z — aij)
(Fi23 — z)(Fiz24 — 2)(F13s — 2)(Fa3a — 2) [Ti2, (@i = 2)’
where the a; and a;; are defined near the equations (3.15) and
(3.16).

Next we turn to some interpretations of (4.55); these extend to
higher dimensions but the notation is cumbersome.

A first interpretation of (4.55) is in terms of cross-product ra-
tios for bivariate Bernoulli distributions: with probabilities 7,; =
Pr(Yy1 = =, Yy = s), r,5 = 0,1, for a random binary pair (Y1, Y),
the cross-product (odds) ratio is mgom11/[m01710]. A continuous bi-
variate distribution can be discretized into bivariate binary distri-
butions for pairs of cutoff points so that there is a cross-product
ratio associated with each pair. 123 is the ratio of cross-product
ratios of conditional bivariate distributions, and Fi23 is defined so
that this ratio is constant over x, i.e.,

Vras = Figi3[1 — Fyj3 — Fy3 + Figjs)
T [Fys — Fiyal[Fys — Figa)

Fygar[l — Fjar — Fypar + Figa']
(Fya — Figya)[Fae — Figa]

where the first (numerator) cross-product ratio is conditional on
X3 < z3 and the second (denominator) cross-product ratio is con-

Y1234 =

(4.56)
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ditional on X3 > z3. The second ratio can be simplified to

Fia=Fia [ _ Fi=Fi _ Fa=Fa 4 Fiz=Fix
1=F; 1=Fs 1-Fs 1-F,
Fy=Fis _ Fia=Fiz | [Fa=Foa _ Fi2=Fiza

1=F3 1-F; 1-Fs 1-F,

_ (Fra= Fig3)(1 = F1 = Fy = F3+ Fiz + Fi3 + Fa3 — Fia3)
(F1 — Fia — Fia+ Fi3)(F2 — Fia — Faz + Fi23)
The first cross-product ratio simplifies to

Fi23(F3 — Fi3 ~— Fa3 + Fi23)
(Fiz — F123)(F23 — Fi123)

so that (4.56) simplifies to (4.55). Note that that (4.55) is symmet-
ric in the three bivariate margins and (4.56) is not.

A second, maximum entropy, interpretation of ¥ in (4.55) can be
given, based on the binary variables Iy, I, I3. Let py r,r,, 75 = 0,1,
Jj =1,2,3, be defined as earlier. Consider the problem of maximiz-
ing the entropy H(z) = =3, _ . _g ) Prirars 108 Pr ryry subject to
the constraints of the three bivariate margins. (See the Appendix
for some background on maximum entropy.) z is constrained so
that each of the eight probabilities p,,r,r, is non-negative. Then
H'(z) = 0 if and only if logz — logpoo1 — logpoio — logpioe +
log po11 + log p1o1 + log pr1o — logp11n = log =0 or ¥ = 1.

Hence the interpretation of the parameter ¥ = i;23isthaty =1
for the maximum entropy trivariate Bernoulli distribution given
the three bivariate binary margins, and ¥ > 1 [¢ < 1] for a larger
[smaller] pooo (and a smaller [larger] p111) compared with the max-
imum entropy distribution. Note that a different maximum entropy
trivariate Bernoulli distribution results for each x. This intepreta-
tion extends to higher dimensions. For the ratio %234 involving 4-
variate probabilities, 9234 = 1 for the maximum entropy 4-variate
Bernoulli distribution given the four trivariate margins.

In (4.55), the Fréchet lower and upper bounds of F(Fy2, Fi3, Fa3)
are attained as ¢ — 0 and ¢ — oo, respectively. It is analytically
shown in Section 3.4 that these Fréchet bounds are generally not
proper distributions, and this is also true for the multivariate ex-
tension. This suggests that (4.55) and its extensions do not yield
proper distributions if ¢ is too small or too large (and this has been
verified numerically). In any case, the useful thing about these for-
mulas is that they are multivariate objects with margins equal to
those given even if rectangle inequalities are not always satisfied.
For example, (4.55) could be considered as a formula of an object
that has bivariate margins Fy, F13, Fa3.
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With reference to the properties in Section 4.1, these distribu-
tions are partially interpretable, can have closure under the tak-
ing of margins, have a wide range of dependence, and have cdfs
that are not in closed form but not time-consuming to compute
from recursions. It may be difficult to code the recursion for higher
dimensions. The ‘objects’ from the construction can be used for
multivariate binary and ordinal data but not continuous data as
the densities do not have a simple form.

4.9 Spherically symmetric families: univariate margins

In this section, we work in an opposite direction from the other sec-
tions in this chapter. Given the easily constructed class of spheric-
ally symmetric distributions (which extend to elliptically contoured
distributions), we study the possible univariate margins in this
class (note that LTs reoccur). This then provides some information
on when the class might be useful. With reference to the properties
in Section 4.1, they are all satisfied except for a closed-form cdf,
but the class of possible univariate margins is limited.

Spherically symmetric distributions are mixtures of distri-
butions that are uniform on surfaces of hyperspheres (with varying
radii). Their densities have contours that are spheres. If a density
exists with respect to Lebesgue measure, then the density has the
form h(xT x) for a non-negative function h.

The first result below is on the univariate margins of uniform
distributions on unit hyperspheres.

Theorem 4.21 Suppose that Z is uniform on the surface of the
unit hypersphere {z : 22 +...+ 22 = 1}. Then the marginal distri-
bution of Z, has density

gm() = [B(}, =) (1 - )™, ul <1, (457)

where B is the beta function. More generally, for 1 < k < m,
(21, ..., 2Zx) has density

[(m/2)
LE(3)T((m - k)/2)

gm (U1, ..., ux) = (1—ul—- . —qd)m-k-2)/2

(4.58)

Proof. Consider first the marginal distribution of Z7. This is the
same as the conditional distribution of Z? given Z2+-- -+ 22, =1,
when Z3,...,7Zn, are iid N(0,1) rvs. Since Z2 has the chi-square
distribution with one degree of freedom or the Gamma(},2) dis-

tribution, the conditional distribution is Beta (1, 2-1). Hence the
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density of Z; is
m=1y]"1,,21-1/2 2\(m—3)/2
(B3, =) )3 - )
The generalization is left as an exercise. [1

The density (4.57) is increasing in # > 0 if m = 2, constant
in u if m = 3, and decreasing in u > 0 if m > 4. Therefore,
univariate marginal densities of spherically symmetric distributions
are mixtures of densities of the form r~!gp, (u/r)I(—, ry(x), with
gm given in (4.57). Let M, be the set of possible univariate
margins of spherically symmetric distributions of dimension
m; then a density fn1 in M, has the form

fn(2) = / " 1 gn(2) Lioriy(2) dG(r) = /l:lor"gm(f) dG(r),
(4.59)

where G(r) is the probability that the radius is less than or equal
to r (we are assuming that G has no mass at zero).

Let G be the distribution of the radial direction of the spher-
ically symmetric distribution. If the spherically symmetric dis-
tribution has density ¢q,(xTx), where x = (z1,...,Zm)7, then
G(r) = [y ¢m(t?)Smt™1dt, where Sy = 27™/2/T(m/2) is the
surface area of the unit hypersphere in £™. Hence the necessary
condition (on ¢,,) of

/w $m(z?) 2™ dz = /oo bm(y) y™/*"Vdy < 00
0 0

arises. Let R have the distribution G and let U be uniform on
the surface of the unit hypersphere in ®™; then a stochastic rep-
resentation for X with density ¢,(xTx) is X = RU. From this
representation, X; has moments of order k if R has moments of
order k (k > 0 can be a non-integer). The necessary condition is
[o r*dG(r) < oo or [T rktm=lg, (r?)dr < oo.

Next we return to the study of M,, for all m > 2. Lower-
dimensional marginals of a spherically symmetric distribution are
spherically symmetric so that M,, C M,,_; for m > 3. Also
lower-dimensional marginals always have densities with respect to
Lebesgue measure, even if the spherically symmetric distribution
has mass on some surfaces of hyperspheres. If there is a density in
R™ and if ¢; (22 + - - -+ 27) is the marginal density of (X1, ..., X;)
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for 2 < j < m, then

oo 0o
¢j(y2) =/ / ¢m(y2+$]?+l+"'+ 2,?,1)d:8j+1-“d:l,‘m.
(4.60)

If the spherically symmetric distribution has mass on some surfaces
of m-dimensional hyperspheres, say mass p; for the radius of r;,
i =1,2,..., and if ¢,, is the absolutely continuous part of the
density, then

o0 o0
6@ = [ [ bn tda bk aR) oy den
-o0 —00

+ > P gh (07 /7)o (8P,
:

where g;, ;(z) obtains from the right-hand side of (4.58), with ar-
gument z in place of u? + ...+ u?.

From (4.59) and (4.57), densities in M, for m > 3 are decreasing
on [0,00) (and symmetric about zero). For m = 3, all symmetric
densities that are decreasing on [0, co) are in M3. From (4.57) and
its derivation, gm(u) = [B(%, Z52)]~ (1 -u?)(™=3/2[_, y)(u) isin
M, but not in My, 1. More generally, if a spherically symmetric
distribution has mass on some surfaces of m-dimensional hyper-
- spheres, then its univariate marginal density is not in My, 41.

An interesting problem is the characterization of

Moo = n'io:an.

This can be studied using a recursion formula for ¢,,-2 from ¢m.
Let A be the upper bound of support for the radial variable; A
could be finite or infinite. From the above, we can suppose that
there is no mass at the point A. For j = m — 2 in (4.60), making
a polar coordinate transform from (zm,m—1,2m) to (s,8) leads to

$m—2(y?) = 2?/

A
¢m(y2 + 82) sds = 211'/ ¢m(u2) udu.
0

y

Hence ¢/, _o(¥?) = =7 ¢m(v?) of ¢ (¥?) = =771, _,(¥?). Ifm =
27 + 1 is an odd integer greater than 2, then by recursion,

ois1 = (=1y 7P, . (4.61)

where ¢{/ is the jth derivative of ¢; and ¢1(y?) = f(y) is the
univariate marginal density. (Note that the recursion in (4.61) still
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holds for lower-dimensional margins if a spherically symmetric dis-
tribution has mass on some surfaces of hyperspheres.) For example,
if ¢1(w) = (2m)~1/2e~*/2 for the standard normal density, then
b2541(w) = (2m)~i=H2e=w/2 and if ¢;(w) = ¢, (1 + w/v)~(+1)/2
for the t distribution with v degrees of freedom, then ¢a;41(w) =
c,,7r“'j[ ;?':1({1’_ + 2;;1 ](1+w/u)-—(u+2j+l)/2_

Since the left-hand side ¢34 of (4.61) is non-negative for a
proper density, if f(y) = #1(y?) is in My, then ¢; is completely
monotone (see the Appendix for the definition). If A = oo and
#1 > 0 on [0,00), then it is a multiple of a LT of a non-negative
rv and has the form ¢;(w) = ¢1(0) f;° e"**dP(z), where P is the
cdf of the non-negative rv. Hence

f(y) = (231(0) /Ooo e"a:y’ dP(IL') (4.62)

is a scale mixture of normal densities with mean 0. There are some
conditions for the mixing distribution P in order that f € M.
From (4.62) and the necessary condition for the radial density,
[ wi=Y2¢9; 41 (w) dw < oo implies

o0 o0
/ :cj/ wi =12 =7V du d P(z)
0 0
=fo T+ 327712 dP(z) < co

or [ z7Y2dP(z) < 00. Also ¢ojpq(w) = 779 [[7 zie " dP(z) <
oo for all j > 1, which implies that the jth integer moment of the
mixing distribution P must exist in order for ¢2;+1(0) to be finite.
Equation (4.62) can be written more clearly as a scale mixture of
normal densities, i.e.,

hw =0 [T ep(-tud}eda),  (16)

for a distribution Q. If X has density f(y) = ¢1(y?), (4.63) cor-
responds to the stochastic representation X = Z/S, where Z is
standard normal and S is a positive rv with distribution Q. Now

drjaa(w) = w3 (2m) 17 [ exp(~hua?} (@/2V 0 dQ(a)

and ¢3;4+1(0) is finite only if the moment of order 2j + 1 of Q is
finite. The condition [~ w/~1/2¢4;4(w) dw < co becomes

/ow(“z/ 2y aT(j + 1) (a®/2)~~/2dQ(a) = VAT(j + 1) < o0
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so that it is always satisfied.

Hence a density in M, which is positive everywhere must be a
scale mixture of normal densities. It is easily verified directly that
if X = Z/S where Zy,...,Z, areiid N(0,1) and S is a positive rv,
then X has a spherically symmetric distribution and the univariate
marginal density is that of Z;/S for all m. The density of X is

(2r)~™/? /oo a exp{— 1q? i xf} dFs(a),
0

i=1

where Fg is the cdf of S and the univariate marginal is

(271')"1/2/0 aexp{—1La®z?} dFs(a).

For example, for the t distribution with v degrees of freedom,

= /U/v, where U ~ x2. Since U/v ~ Gamma(v/2,2/v), the
density of S is fs(a) = 2[[(v/2)]~ v /2)*/2a*~1e-va*/2,

Now suppose 0 < A < oo. What are the completely monotone
functions ¢; in this case? It turns out there are none if the re-
quirements of (—1)7¢U) > 0 on [0, 4) and ¢U)(A4A) = 0, j > 1, are
to be met. We next show that ¢()(A4) = 0 is needed to extend
to densities of higher dimensions by making use of the recursion
formula.

If the m-variate density ¢, is given, the (m — 1)-variate density
Pm—1 satisfies

/VAi—v

Sm-1(v) =2 S (v + 2%) dz.
0

Taking the derivative,

AZ—v
‘@) =2 / ! @+ 22) dz — $um(A%) (A2 — v)"1/2.

Then ¢py2 = —¢,, /7> 0and ¢py1 = —@,,_; /7 > 0 are together
possible only if ¢(A42%) = 0. (This condition is automatically sat-
isfied if A = 00.) Therefore if one tries to extend for a function
#1 on [0, A] by defining ¢aj4+1 = (—l)jr'qu(lj) as in (4.61), then a
necessary additional condition is ¢(j )(A) =0,j>1.

Example 4.6 A few cases are listed to illustrate the ideas in
the two preceding paragraphs.

1. (Uniform on surface of hypersphere of dimension m > 3.) Let
é1(w) = [B(3, 2517 (1 — w)(™=3/2 If m = 2n + 1 is odd,
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then the derivatives of ¢; alternate in sign up to the (n —
1)th derivative and the nth derivative is a constant, and hence
(4.61) cannot be extended beyond dimension m. If m = 2n
is even, then the derivatives of ¢, alternate in sign up to the
(n — 1)th derivative and then do not change sign, qb(l")(l) =0
forj<n-—1,and qﬁ(]n”l)(l) = 00, and hence (4.61) cannot be
extended beyond dimension m.

2. Let ¢1(w) = ¢s(1 — w)?, 0 < w < 1, where 8 > 0. The deriv-
atives of ¢; alternate in sign up to the [B]th derivative, where
[B] is the ceiling integer function. Also ¢(11)(1) = 0 for j < [A].
Hence f(y) = ¢1(y?) is in Myg)41 and at most Moy 3.

3. Let ¢1(w) = cafl —w?), 0 < w < 1, where 0 < o < 1. The
derivatives of ¢; alternate in sign, but ¢}(w) = —acqw®™! =
—~acq # 0 when w=1.

0O

Next we return to some conditions for a density to be in M,,.
Because of the boundary condition for density with support on
a bounded interval, consider only densities that are continuously
differentiable up to some order (for bounded support, this means
the density and its derivatives at the end point of support are
0). From (4.61), f(y) = ¢1(y?) is in Mo,y but not Mo,z if
(—l)jqﬁgj) >0,57=1,...,n, and (—1)"+1¢§n+1)(w) < 0 for some
w. Since one also has the recursion ¢g542 = (=1) 7r"j¢(2’) for a
spherically symmetric distribution in 2j + 2 dimensions, f(y) =
61(1?) € My is in My, but not Moo if (=1Y¢5) > 0, j =
1,...,n—1, and (=1)"¢{)(w) < 0 for some w.

Example 4.7 For some symmetric densities f which are de-
creasing on [0, 00), we check for the largest m such that f € M,,.

1. fa(z) = caexp{—|z|®}, —0 < = < oo, where @ > 0, and
$1(w) = coexp{—w*?}, w > 0. For 0 < o < 2, ¢; is a
multiple of a LT so that f, € M. In particular, for & = 1, the
double exponential density is in M. The second derivative of
1 is cola/2)w™/ 2~ 2 exp{—w*/?}aw*/?/2 + (1 — a/2)]; it can
be negative if & > 2 and w is near 0. Therefore for a > 2, fq is
not in Ms. ¢, can be obtained from ¢3 using (4.60) and then
¢4 = —m~'¢4. It has been checked numerically that ¢4(w) is
not non-negative for all w > 0 when a > 2, so that f, is also
not in My for o > 2.

2. (Logistic.) f(z) = e7®/(1 + e™%)? is in Moo, and ¢1(w) =
(eV¥/2 4 e~VW/2)=2 = (94 V¥ 4 e~V¥)~1ig 5 LT.If X has a
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standard logistic distribution and Z ~ N(0, 1), then X 4 ZlV,
where V' has density

§() = 23 (=1 203 exp{~k2/(207)}.
k=1

(2V)~! has the asymptotic distribution of the Kolmogorov dis-
tance statistic.

O

4.10 Other approaches

Other approaches that have been used for constructing multivari-
ate families but which are not discussed or used in this book are:

(i) multivariate generalizations of univariate moment or proba-
bility generating functions, e.g., several families of multivari-
ate gamma distributions in Krishnaiah (1985) and compound
bivariate Poisson distributions in Kocherlakota (1988);

(ii) multivariate characteristic functions, e.g., multivariatestable
distributions in Press (1972);

(iii) multivariate functional equations generalizing those satisfied
by univariate distributions, e.g., families of multivariate ex-
ponential survival functions in Ghurye and Marshall (1984)
and Marshall and Olkin (1991);

(iv) infinite series expansions — there are some for the bivari-
ate case without multivariate extensions, e.g., the bivariate
gamma distribution of Kibble (1941) and other distributions
in Lancaster (1969).

4.11 Bibliographic notes

Variations of the property of closure of multivariate models under
the taking of margins are presented in Xu (1996). This includes the
concept of model parameters being marginally expressible, which
is given in Section 4.1, as well as the concept of parameters being
expressible from or appearing in univariate and bivariate margins.

The families in Section 4.2 are from Marshall and Olkin (1988)
and Joe (1993); the dependence results in Theorems 4.6 to 4.10 are
new (thanks are due to T. Hu for help in the completion of these
proofs). See Genest and MacKay (1986) for some background on
bivariate Archimedean copulas and results on orderings of these
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copulas. In the literature for Archimedean copulas, sometimes ¢
(or some other symbol) denotes a LT (or a function in £;) and
sometimes it denotes the inverse of a function in this class, so
the reader should be careful in using these results. Frailty models
for a special type of multivariate survival data in the familial or
cluster setting are studied in Oakes (1989), Hougaard (1986) and
Hougaard, Harvald and Holm (1992).

References are Joe and Hu (1996) for Section 4.3, Joe (1996a) for
Section 4.5, Joe (1996b) for Section 4.6 and Joe (1995) for Section
4.7.1. The special case of the multivariate Poisson distribution is
given in Teicher (1954). The application in Joe (1995) is for the
MVN distribution; an improved approximation based on having all
of the trivariate and 4-variate margins is also given. A reference for
Section 4.8 is Molenberghs and Lesaffre (1994); this does not prove
that the multivariate extension is a proper distribution, and neither
does Plackett (1965) for the bivariate case. A reference for Section
4.9 is Kelker (1970); see also Chapter 2 of Fang, Kotz and Ng (1990)
for a different treatment. A reference for the infinite divisibility
of the lognormal distribution is Thorin (1977). See Andrews and
Mallows (1974) and Stefanski (1991) for the logistic distribution
as a scale mixture of normals.

For results and construction methods for multivariate distribu-
tions with given non-overlapping multivariate margins, see Marco
and Ruiz-Rivas (1992), Genest, Molina and Lallena (1995) and Li,
Scarsini and Shaked (1996).

4.12 Exercises

4.1 Let M be a univariate cdf. Let G;(+; ) and G2(+; @) be fam-
ilies of distributions indexed by a real-valued parameter «.
Define F(z,,z2) = [ G1(z1; @)Ga(z2; @) dM (o).

(a) Show that if G; and G+ are both stochastically increas-
ing or both stochastically decreasing as « increases,
then F' is positively dependent in several senses (e.g.,
association, PQD).

(b) Show that if G, increases stochastically and G5 de-
creases stochastically as o increases, then F is neg-
atively dependent in the sense of NQD.

What results generalize to m dimensions with

F(x)= /Gl(:cl;a) ~Gm(2m; o) dM (a)?
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4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

4.11
4.12

4.13
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Let H be a univariate cdf. Show that H* is stochastically
increasing in @ > 0.

Show that (4.4) is invariant to scale changes in the LT. That
is, if in (4.4) ¢(s) is replaced by the function ¢*(s) = ¢(s/o)
for o > 0, then the same copula results.

In Section 4.6, take Fy to be the family of Poisson distribu-
tions. Obtain the pinfs for the bivariate and trivariate Pois-
son distributions with the representations given by (4.48)
and (4.49).

Show that the multivariate Poisson distribution (Section
4.6) satisfies property B of Section 4.1 but not property B'.
In (4.37), let Fy5, Fys be copulas in the family B10 with para-
meters ), 093 respectively and let Cy3 be the independence
copula. Obtain F,3 and its (1,3) bivariate margin. Extend
this to a result for (4.39). (Joe 1996a)
For the partially symmetric copulas in Section 4.2, show
that there are three distinct forms for m = 5 that generalize
(4.7), (4.10) and (4.11). How many distinct forms are there
for dimension m = 67

In (4.3), substitute in the Poisson LT (s) = e~ exp{ge—*},
6 > 0. Even though ¢~ is defined only on [e~¢, 1], show that

(4.3) leads to the function
U U2 exp{B“l logu; logus}.

Show that this is not a proper cdf, even though it has the
U(0, 1) margins (compare (5.18) in Section 5.4).

Show that the distribution (4.40) is equivalent to that from
(4.37)-(4.39) with Cj,(uv,v) = u+9 =14 Cjr(1 — u, 1 —v).
For the distribution in (4.37), show th.at a stronger concord-
ance property such as ‘Fi3 increases in concordance as Cia
increases in concordance’ does not hold.

Derive (4.58).

Let g be an increasing function on [0, 00) satisfying 9(0) = 0.
Show that g convex implies that g is star-shaped (z=1g(z)
increasing in z) which in turns implies that g is superadditive
(9(z1 + 22) > g(z1) + g(z2) for all 1,25 > 0).

Obtain the tail dependence parameters for (4.3) for other
families of LTs (in the Appendix).
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4.14

4.15

4.16

4.17

Analyse the concordance properties of (4.4) with m = 2 and
the LT family LTM in (4.4).

Consider the function
Flu,v,w) = %o (¥3" 0 %s(v5 ' (u) + 95 ' (v))

+95 o dp(yt (u) + 5 (w)) - ¥3 ' (u),

where 9 is a family of LTs. Let C(u,v;0) = v,bg(tl;;'l(u) -+
zp;'l(v)). Show that F(u,v,w) is a formula with bivariate
margins C(v, w; &), C(u, w; ), C(u,v;8) as u, v, w respect-
ively tend to 1, but that it is not a proper copula in general.

Suppose we want to generate rvs with a multivariate dis-
tribution of the form (4.48) with a given (feasible) covari-
ance matrix ¥ when all univariate margins are in a family
Fp that is in the convolution-closed infinitely divisible class.
Assume that Fy has been rescaled so that the variance is 1
when 8 = 1, or that Fy is parametrized by the variance. Let
Xi~Fq,,i=1,...,m,and let Zg ~ Fy,, S € Sy. Then
a; =0; + ZS:iES,IS >2 fs and o = ZS:i,i'ES fg for 1 # i
The algorithm which follows yields the desired constants as
well as determining whether a given covariance matrix is
possible with form (4.48). Verify the details.

(a) Let Q=Y = (w,-,-:). Set v — min; i wipr. If v > 0, set
011,...m} =7, S={1,...,m}, and go to step (c).

(b) If minjcirwiir =0, set v — min{w;y :wier > 0,7 < '}
If v = wgxr > 0, let S be a maximal set that contains
k,k', with maximal meaning that if j,j/ € S, then
wjjr > 0. Set 85 = . If v = 0, go to step (d).

(c) Set @ — Q—~C, where C = (e;i) with ¢;; = I(i € S),
and ¢ = I(,7' € S) for i # i'. If Q is such that
wipr > [wiwi)/?, for some i # #, then the initial
matrix ¥ is not feasible. Otherwise, go to step (b).

(d) Set oy = wys, i =1,...,m.

If f € My, has cdf F and finite second moments, and
h(x;E) = |27 '¢m(xTZ"'x) is the corresponding family
of elliptically contoured distributions, then the full range of
correlation matrices (of order m) is possible. If the distri-
bution F' cannot result from the location-scale transform
of a density in M,,, then the full range of correlation ma-
trices, in the class F(F,..., F) of m-variate distributions
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with all univariate margins equal to F, cannot be achieved.
The full range of correlation matrices for all dimensions is
achievable only if f € M. As an example, the full range
for U(—1,1) and U(0, 1) margins is possible for dimension 3
but not m > 3.

4.18 Modify Theorem 4.17 to obtain a family of trivariate copulas
such that (i) the (1,2) and (3,2) bivariate margins are the
same and are negatively dependent; (ii) the (1,3) bivariate
margin is positively dependent; and (iii) the Kendall tau
value T2 = 793 is the most negative possible given n3.

4.19 Prove the results in Theorems 4.15 and 4.16 on lower tail
dependence. (Joe and Hu 1996)

4.20 Let C(u) = ¢(3_72; 671 (u;)) as in (4.4).

(a) Show that C is MTP; if and only if log¢ is L-super-
additive (see Unsolved Problem 2.4 for the definition of
L-superadditive). Note that because ¢ is differentiable,

the condition is equivalent to 82 log(¢(z + y))/dz8y >
0

(b) Show that the density of C is MTP; if and only if
(-1)™¢(™)(z + y) is TP; in z,y.

(¢) Check whether the LT families in the Appendix lead to
families of copulas with the MTP, property for either
the cdf or the density.

4.21 Do some analysis on (4.54) with various bivariate margins
including the Fréchet bounds.

4.13 Unsolved problems
4.1 Find parametric families of copulas that satisfy all of the
desirable properties in Section 4.1.
4.2 Obtain conditions for (4.54) and extensions to be proper cdfs.
4.3 Obtain conditions for (4.55) and extensions to be proper cdfs.

4.4 Prove or disprove the <p¢q ordering for C) and C3 in Theo-
rems 4.8, 4.9 and 4.10.




CHAPTER 5

Parametric families of copulas

This chapter is intended as a reference of useful parametric families
of copulas together with their properties. The inclusion of proper-
ties is important because, in a given situation or application, the
choice of appropriate models can depend on the properties.

Many of the parametric families of multivariate copulas make
use of the theory in Chapter 4, and are useful for multivariate
models in subsequent chapters. Some of the families are also re-
ferred to earlier in this book. A summary of the sections, including
the highlights, is the following. Section 5.1 consists of bivariate
one-parameter families of copulas with nice dependence proper-
ties and Section 5.2 consists of two-parameter families of copulas;
these families can be used to build multivariate copulas. Section 5.3
has multivariate extensions to symmetric and partially symmetric
copulas; these are the only known class of parametric families of
copulas that have closed-form cdfs, are closed under the taking of
margins (in the stronger sense of property B’ in Section 4.1), and
extrapolate between the independence and Fréchet upper bound
copulas. Section 5.4 has extensions of families in Sections 5.1 to
5.3 to include negative dependence. Section 5.5 consists of para-
metric families of copulas that cover general dependence structures,
including some that have closed-form cdfs.

5.1 Bivariate one-parameter families °

Listed in the first part of this section are known simple one-para-
meter families of copulas that: (i) interpolate between indepen-
dence and Fréchet upper bound; (ii) are absolutely continuous;
and (iii) have support on all of (0, 1)2. Also these families are sym-
metric in the two arguments. If these conditions are relaxed, there
are (infinitely) many other one-parameter families, and a few are
listed in the last part of this section. One-parameter families of
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copulas are parsimonious models that are good starting points for
modelling. They are useful for bivariate data, as well as a compo-
nent of the multivariate copulas in Sections 4.3, 4.5, 4.7 and 4.8,
and of the first-order Markov time series in Sections 8.1 and 11.6.

The notation C(u,v;6) is used for a family of copulas, with the
dependence parameter & increasing as the dependence increases.
The original source of each family of copulas is given, as well as the
density and some properties. Besides dependence properties, other
properties include reflection symmetry, extreme value copula, ex-
istence of a LT so that the family has form (4.3), and multivariate
extendibility. Reflection symmetry for a copula C means that
if (U,V)~ C, then (1-U,1- V) ~ C;, this property is convenient
for latent variable models for multivariate binary data. A bivari-
ate copula C is an extreme value copula if C(u?,v') = C*(u,v)
for all ¢ > 0. After transferring to unit exponential survival mar-
gins, with G(z,y) = C(e%,e~¥), the extreme value copulas are
easily recognized from A(z,y) = —log G(z,y) being homogeneous
of order 1, i.e., A(tz,ty) = tA(z,y) for all ¢ > 0. (With details
in Chapter 6, a G of this form is a min-stable bivariate expo-
nential distribution.) Some families of extreme value copulas are
obtained as the extreme value limits of other families (see Chapter
6). The extreme value limits from the lower and upper orthant
tails are the copulas associated with the limits of

[C*(1—n"'e™®,1=n"1e7¥)]" and [C(1-n"le %, 1—-n"le7¥)"

respectively, where C*(u,v) =u+v—-1+C(1—-u,1-v).

The verification of the dependence properties and the limits at
the end points of the parameter space are left as exercises. Depend-
ence properties that.are-conjectured but not proved are listed in
the section on unsolved problems. A visual representation of what
tail dependence means for the contours of the density with N(0,1)
margins is given in Figures 5.1 and 5.2 for the copulas B3 and B6
with parameter values corresponding to a Kendall tau value of 0.5.

The following notation is used in several families: 7 = 1 — u,
T=1-v, 4= -logu, ¥ = —logv. Also Cy, Cy,Cyr are used for
the Fréchet upper bound, independence and Fréchet lower bound
copulas, respectively.

Family Bl. Bivariate normal. For 0 < § < 1, C(u,v;6) =
@5(®~ (), ®1(v)), where & is the N(0,1) cdf, @~ is the func-
tional inverse of @ and ®; is the BVSN cdf with correlation §. With
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r=® '(u), y= @ !(v), the density is
e(u,v;8) = (1 — 6%)~Y2exp{-1(1 = 62)" [z + y* — 26zy]}

-exp{3[z” + y”]}.

Properties. Increasing in <., increasing in <sy, TPz density, re-
flection symmetry, multivariate extension, extension to negative
dependence. Cy for § = 1, Cy for § = 0, Cr for 6 = —1. A non-
standard upper extreme value limit leads to family B8.

Family B2. Plackett (1965). For 0 < § < oo,
Clu,v36) = 30~ {1+ nu +v) — [(1 + n(u+v))? — 48mua]*/2},
where n = 6 — 1. The density is
e(u,v;8) = [(1 4 n(u.+ v))? — 46nuv] =281 + n(u + v — 2uv)].

Properties. Increasing in <., increasing in <gi, SI, reflection sym-
metry, extension to negative dependence. Cy for § — oo, Cy for
6—1,Cy for 6 — 0.

Family B3. Frank (1979). For 0 < 6 < oo,
C(u,v;8) = =6~ log([n — (1 ~ e™™)(1 = e~*)}/n),
where n = 1 — e~%. The density is
o(u,v; 8) = 67 e ¥*) f[n — (1 — e=8)(1 — e=5))2

Properties. Increasing in <., increasing in <sj, TPy density,
reflection symmetry, partial multivariate extension, extension to
negative dependence, mixture of powers with LT (s;6) =
—6"log[l — (1 — e~%)e™*] (family LTD in the Appendix). Cy for
§ — oo, Cy for § — 0, C, for § — —oo0.

Family B4. Kimeldorf and Sampson (1975). For 0 < § <
OO)

C(u,v;8) = (=¥ +v=% = 1)~1/¢,
The density is

c(u,v;8) = (14 &)[uv] Y u"t +0v7° - 1)-—2—1/6.

Properties. Increasing in <., increasing in <gsj, TPs density,
lower tail dependence, partial multivariate extension, extension
to negative dependence, mixture of powers with LT ¢(s;6) =
(1 + s)~Y/% (family LTB). Cy for § — o0, Cr for § — 0. The
lower extreme value limit leads to family B7.

Family B5. Joe (1993). For 1 < § < oo,
Clu,v;6) =1 — (@ +5° — ww?)1/?.
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The density is
c(u, v;8) = (@ +7° —wl7d) -2+ og8 19015 — 1 4+ 7° +7° - T°7).

Properties. Increasing in <., increasing in <gj, TP2 density,
upper tail dependence, partial multivariate extension, mixture of
powers with LT ¢(s;6) = 1 — (1 — e~*)*/? (family LTC). Cy for
§ — oo, Cy for 6 = 1. The upper extreme value limit leads to
family B6.

Family B6. Gumbel (1960a). For 1 <6 < oo,
C(u,v;6) = exp{—(@’ + 3°)'/*}.
The density is
(av)b-?
(@6 + 9%)2-1/8

Properties. Increasing in <., increasing in <g1, TP, density, up-
per tail dependence, extreme value copula, partial multivariate ex-
tension, mixture of powers with LT v¥(s;6) = exp{—s!/%} (family
LTA). Cy for 6 — oo, Cy for § = 1.

Family B7. Galambos (1975). For 0 < § < o0,
C(u,v;8) = wvexp{(a~? + %)~ 1/%}.
The density is
c(u, v; 6) = [C(u, v; 6)/uv] - [1 - (&~° +t7"6)"1"1/‘5(ﬁ'6“1 +37% 1)
(@ + 52 Y (7)1 4 6+ (570 + ,5—6)—1/6}].
Properties. Increasing in <, SI, upper tail dependence, extreme

value copula, partial multivariate extension. Cy for § — oo, C; for
6 — 0.

Family B8. Hiisler and Reiss (1989). Let ® be defined as
in family B1. For § > 0,

C(u,v; ) =exp{—a®(6~! + 18 log[ii/]) — 9®(6~ + 16 log[v/i])}.

With z = 4/, the density is

c(u, v;6) = (uv)~"1C(u,v; 6) - [®(6~ 1+ L6log 2~ 1)B(6~ + L6 log 2)
+16571¢(671 + L6log2)],

where ¢ is the standard normal univariate density.
Properties. Increasing in <, SI, upper tail dependence extreme
value copula, multivariate extension. Cy for 6 — oo, Cy for 6 — 0.

c(u,v;6) = C(u,v; 6)(uv)™! [(@° + %) +6—~1].
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Figure 5.1. Contours of density for family B3 with normal margins, § =
5.7.

A few remarks on the families are the following.

1. A proof of reflection symmetry for the family B3 is as follows.
The property is equivalent to c(u,v;6) = ¢(1 — u,1 — v;6),
0 <uv<lLetz=c¢e y=e® v =¢e% The non-
constant part of the density is zy/[z +y—zy—~]?. The changes
u—1—uandv — 1—v become z — yz~! and y — yy~! and
it is straightforward to check that y?z=1y=1/[yz~! 4+ yy~! —
v2z=ly~! — 9]2 = zy/[z + y — zy — 7)?. Frank (1979) showed
that the family B3 of copulas are the only ones of the form
#(¢~1(v) + ¢~ 1(v)) that have the reflection symmetry prop-
erty. The reflection symmetry property does not hold for the
permutation-symmetric multivariate extension of the family B3
(see Section 7.1.7).

2. Suppose (U, V) is a bivariate U(0,1) random pair; the Plackett
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Figure 5.2. Contours of density for family B6 with normal margins, § =
2.

family B2 is constructed from the cross—broduct ratio:

Pr(U < u,V<v)Pr(U > u,V > v)
Pr(U < u,V > v)Pr(U > u,V <v)

_ C(u,v)[1 = u—v+C(u,v)]

T [u=C(w,v)llv - C(u,v)]
for all u,v € (0,1), where é > 0. Perhaps amazingly, this leads
to a distribution for all 6 > 0, with special cases as given ear-
lier. The above equation is quadratic in C; the appropriate root
of the quadratic is given in the preceding list. The proof that
the second-order mixed derivative is non-negative is left as an
exercise. The property of reflection symmetry for this copula is
clear from the above derivation from the cross-product ratio.

=4,

3. We illustrate extreme value limits in some cases. To check that
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a limit is a proper distribution, one needs to check the boundary
conditions but not the rectangle condition in Section 1.4.1.

BI1.

BS5.

B4.

B8.

Let a,, b, be sequences of reals such that ®"(a, +b,z) —
exp{—e~%}. Then A

2

®%(an + bnz1, a0 + bpza) — H exp{—e~ %/}
ji=1

if the correlation p is less than 1. An interpretation is
that for BVN distributions, the tails are asymptotically
independent.

With exponential margins, F(z,y) = C(1—e™%,1—-e7¥;6)
=1—[e75% 4 e — g7~ 8¥]1/¢ and

F™(z +logn,y+logn) ~[1 — n~1(€—6r + e—-&y)l/&]n

— exp{—(e”%" + 6’69)1/&}

The copula of the limiting BEV distribution is in the fam-
ily B6; in min-stable bivariate exponential form G(z, y; §)
= exp{—A(z,¥;8)}, with A(z,y;6) = (z* +¢)"/°.

With exponential margins, F(z,y) = C(1—e™%,1-e7Y;6)
=[(1-e®) b+ (1—-e¥)=%-1]"1/¢ and

F™(z +logn,y+logn) ~[1+6én"1(e " + e’y)]"‘/"

—exp{—e " —eV}.

Hence the upper extreme value limit is the independence
copula. For the lower extreme value limit, we apply the
copula to exponential survival margins, i.e., F(z,y) = 1—
e —e ¥ + (%" +e% — 1)~V/%, Then F(z + logn,y +
logn) ~ [1 —n~le™® — n~le¥ 4 n=1(ef% 4 ef¥)-1/4)n
— exp{—e~% — e~ ¥ + (e%% + €¥)~1/8} and the copula of
the limiting BEV distribution is in the family B7.

This is obtained from a non-standard extreme value limit
for the BVN distribution. To get a limit which is not the
independence copula, the correlation in Bl is allowed to
increase to 1; i.e., im®7 (an + bn 21, an + bpza), with p,
increasing to 1 at an appropriate rate, leads to the family
B8. There is a multivariate extension from this extreme
value limit for the MVN distribution and it has a para-
meter for each bivariate margin.
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Table 5.1. Parameter values corresponding to given Kendall tau values

T B1 B2 B3 B4 B5S B6 B7 B8

0 0 1 0 0 1 1 0 0
0.1 0.156 1.57 091 022 1.19 1.11 0.34 0.66
0.2 0309 248 186 050 144 1.25 0.51 0.87
0.3 0.454 4.00 292 086 1.77 1.43 0.70 1.11
04 0.588 6.60 4.16 133 2.21 1.67 0.95 1.41
05 0707 114 574 200 2.86 2.00 1.28 1.80
0.6 0809 21.1 793 3.00 3.83 250 1.79 239
0.7 0891 44.1 114 467 546 3.33 2.62 3.34
0.8 0.951 115, 18.2 8.00 B8.77 5.00 4.29 5.24
09 0.988 530. 209 180 144 100 9.30 109

1 1 fols) 00 00 oo 00 oo 00

To give an indication of the amount of dependence that exists
as the 6 increases for the families B1 to B8, the values of 6§ that
correspond to Kendall tau and Spearman rho values from 0 to 1 in
steps of 0.1 are given in Tables 5.1 and 5.2, respectively. Theorem
4.3 applies to yield a simple form for 7 for the families B4 and B6,
with r=6/(6+2),6 > 0,and r = (6 — 1)/6, § > 1, respectively.
Also there is a simple form for 7 and ps for the BVN distribution
(see Exercise 2.14). All other values of 7 and ps were obtained by
one- or two-dimensional numerical integration, or by Monte Carlo
simulation. These tables suggest that Spearman’s rho is greater
than Kendall’s tau for these families (see Exercise 2.18).

We list below the conditional distributions Cy3(v|v) = $<(u,v)
corresponding to the families B2 to B8. These are useful for simu-
lating random pairs from the copula families, among other things.
If U,Q are independent random U(0,1) variates, then (U,V) =
U, ;HI(QIU )) has distribution C. If Cz'ﬁ does not exist in closed

form, then v = C;ill(qlu) can be obtained from the equation ¢ =
Coj1(v|u) using a numerical root-finding routine. Of the families
B2 to BS, C’;l} has closed form only for the families B3 and B4.
With the notation 4 = —logu, ¥ = —logv, the list of conditional
distributions Cyy; 1s: .
B2. Cop(vlu;6) = 3 — 3l + 1 — (g + 2)9)/[(1 + n(u + v))* -
46muv]'/?,
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Table 5.2. Parameter values corresponding to given Spearman rho values

ps B1 B2 B3 B4 BS B6 B7 BS

0 0 1 0 0 1 1 0 0
0.1 0.105 1.35 0.60 0.14 1.12 1.07 0.28 0.58
0.2 0.209 1.84 1.22 0.31 127 1.16 0.40 0.73
0.3 0313 252 188 051 146 1.26 0.51 0.88
04 0.416 354 261 0.76 1.69 1.38 0.65 1.05
0.5 0518 5.12 345 1.06 1.99 154 0.81 1.24
0.6 0.618 7.76 4.47 151 239 1.75 1.03 1.50
0.7 0.717 12.7 5.82 214 3.00 207 1.34 1.86
0.8 0813 24.2 790 3.19 4.03 258 1.86 2.45
0.9 0.908 66.1 122 556 6.37 3.73 3.01 3.73

1 1 00 o0 00 00 00 o) lore)

B3. Con(vl|u;6) = 6_6"[(1 — 6‘6)(1, - 6“6")‘1 -(1- 6‘6“)]‘1,
Cyilglu;6) = =67 log{l — (1 — %) /[(¢7" = 1)e=% + 1]};

B4. Cop(vfu;6) = [1 4+ ub(v=% = 1)]7171/8,
Coi(glu; 6)=[(g=%/0+ — 1)u=? + 1}71/5;

B5. Cop(v]u;6) = [1+(1-v)0(1—u)~8 - (1=0)?)" /91— (1 -
v)®);

B6. Coyi(vlu;6) = u=texp{—(a® + 99} L [1 4 (3/a)°)-1H1/8,

BT. Copa(vlu;8) = vexp{(a=0+5=%)~ ¥} {1~ [1+(#/5)") 1~ /o),

B8. Coj1(vlu;6) = C(u,v;6) - u~1®(6~! + 16 log(@/7)).

A few one-parameter families of bivariate copulas that are not as

simple or do not have properties that are as nice as those already
listed are given in the remainder of this section.

Family B9. Raftery (1984; 1985). For0 <6 <1,
C(u,v;6) = B(u Av,uV v;é),

where

B(z,y;6) =z - [H_g] xl/(l—é)[y—é/(l—é) _ yl/(l..g)].

The density is ¢(u,v;6) = b(u A v,u V v;§) where
b(a,138) = (1 = 62) 241005y 01=0) 4 #101-9),
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Properties. Increasing in <, lower tail dependence, Cy for § — 0,
Cy for 6 = 1.

Family B10. Morgenstern (1956). For -1 <6 <1,
C(u,v;6) = uv[l +6(1 — u)(1 - v)].
The density is
c(u,v;6) = 1+ 6(1 — 2u)(1 — 2v).

Properties. Increasing in <, increasing in <gj, TP, density for
§ > 0, reflection symmetry, positive dependence for § > 0 and neg-
ative dependence for § < 0, Cy for é = 0, multivariate extension.

Family B11. For 0< 46 <1,
C(u,v;6) = dmin{u, v} + (1 — 8uw.

Properties. Increasing in <, reflection symmetry, Cy for § =0,
Cy for 6 = 1, multivariate extension, singular component with
mass 8.

Family B12. For 0 <6< 1,
C(u,v;8) = [min{x, v}]*[uv]'~%.

Properties. Increasing in <, reflection symmetry, C; for § = 0,
Cy for & = 1, multivariate extension, singular component with
mass §/(2 — 6).

Remarks on these additional families are the following.

1. The family B9 has not been included with the preceding eight
one-parameter families of bivariate copulas because its form is
not quite as simple (it is a function of u V v and u A v).

The derivation of the family B9 is from a bivariate exponential
distribution based on the stochastic representation:

X = (1 -—5)21 +12y,, Xo= (1 - 5)22 + 17,9, (51)

where I, Zy, 22, Z12 are independent rvs, the Zs have unit ex-
ponential distributions, and I ~ Bernoulli (6). This leads to the
bivariate exponential survival function:

e"z_ .l."_‘se—z/(l-é)[ey‘s/(l—é) -— e—y/(l-‘s)] x > y
)= 13 » T2
Glz,y;8)= {e—y - __..i;g e=¥/(1=0)[gz6/(1=8) _ ==/(1-8)] £ < y.

and it becomes the given copula after the transform to U(0,1)

margins. The derivation of G from the representation comes
from the sum of integrals: (1 - 8)e~(+¥)/(1-9) 1§ f: exp{—(z—
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2)/(1—8)} exp{—(y—~2)/(1=8)}e~*dz+6 [ exp{—(y—2)/(1 -
8)}e *dz46 fyoo e *dz,ifx < y.

By extending the stochastic representation, the <. ordering can
be proved (see Exercise 5.8 for some details).

The multivariate extension in Raftery (1984) covers a wide range
of dependence but the parameters are not easily interpretable.

2. The family B10 is convenient for illustrating dependence con-
cepts because of its simple form. However, because of its limited
range of dependence (see Example 2.4), it is not a useful model
for data. A convenient multivariate extension is:

Cluibjp, 1 <G <k <m)=w - oun 143 §(1-u;)(1-u)].
i<k
(5.2)
Constraints include |6;x| < 1 for all 7,k and there are also other
joint inequality constraints in the parameters to achieve a non-
negative density (see Exercise 5.7).

3. The families B11 and B12 have limited applications because of
the singular component. Possibly they have more uses for dis-
crete univariate margins. The family B12 is the copula associ-
ated with the Marshall-Olkin bivariate exponential distribution
when both univariate margins have the same mean. The mass
of the singularity can be computed using Theorem 1.1.

5.2 Bivariate two-parameter families

Two-parameter families might be used to capture more than one
type of dependence. Examples are one parameter for upper tail
dependence and one for concordance, or one parameter for up-
per tail dependence and one for lower tail dependence. One gen-
eral approach for two-parameter families is the use of (4.32) with
v; = vy = 0 (see (5.3) below). From the tail dependence results in
Section 4.3.2, the use of the LT families LTA, LTB, LTC leads to
copulas with tail dependence; the properties of the copulas for LTC
are similar to those for LTA. The examples given in this section
show various possible types of behaviour for upper and lower tail
dependence.
Below are some two-parameter bivariate families of the form

Clu,v) = P(=log K(e™¥™ W) =¥ (™)), (5.3)

where K is max-id and 9 is a LT. Two-parameter families result
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if K is parametrized by a parameter § and v is parametrized by a
parameter 8 (denoted by ). If K is increasing in concordance as
6 increases, then clearly C increases in concordance as § increases
with @ fixed. The concordance ordering for é fixed and 6 varying is
harder to check. If K has the form of an Archimedean copula (4.3),
then, from (5.3), C also has the form of an Archimedean copula.
That is, if K(z,y;6) = ¢5(¢;1(a,‘) + ¢;1(y)) for a family ¢s, then

C(u,v;60,8) = ¢0("1°g¢6[¢3'1(6""’;!(“))+¢;1(e“”§'(”))])
= 19,6(ng5(u) +15,5(v)), (5.4)

where 79,5(s) = ¥o(—log ¢s(s)). For 6 fixed and 0, > 6; with
i = 7e;s, ¢ = 1,2, the concordance ordering of C(-;6y,6) and
C(-;82,6) could be established by showing that w = 57! o g is
superadditive (Theorem 4.1).

Family BB1. In (5.3), let K be the family B6 and let ¥ be the
family LTB. Then the resulting two-parameter family of the form
(5.4) is

-1/6
C(u,v;6,8) = {1 + [(w™ =1) 4 (v = 1)6]1/6}
= n(n'(w)+n77'(v)), 6>0,621, (5.5)
where n(s) = 7p,5(s) = (1 + s1/¢)~1/? (family LTE in the Ap-
pendix).
Some properties of the family of copulas (5.5) are:

(a) The family B4 is a subfamily when 6 = 1, and the family B6
is obtained as § — 0. Cy obtains as @ — 0 and § — 1 and Cy
obtains as § — oo or § — oo.

(b) The lower tail dependence parameter is 2-1/(%%) while the
upper tail dependence parameter is 2 — 2!/%, independent of
0. The extreme value limits from the lower and upper tails
are the families B7 and B6, respectively.

(c) Concordance increases as @ increases because w(s)/s is in-
creasing, where w(s) = 770‘;6(179“5(3)) = [(1 + st/%)? — 119,
0, < 8y; and p=02/91 > 1.

Family BB2. In (5.3), let K be the family B4 and let ¥ be the
family LTB. Then the two-parameter family of the form (5.4) is

C(u,v; 0,6 [1 +6~1log (eé(u“’-)) _*:85(,,—0_1) 3 1‘)]-—119

n(n~ (uw) + 77 (v)), 6,6>0, (5.6)

]
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where 7(s) = 7g.5(s) = [1+ 6~ log(1 + 5)]~*/% (family LTF in the
Appendix).
Some properties of the family of copulas (5.6) are:
(a) Cr obtains as § — 0, Cy obtains as § — oo or § — co. The
limit as § — 0 leads to the family B4.
(b) The lower tail dependence parameter is 1, while there is no
upper tail dependence.
(c) Concordance increases as f increases because w is convex,
where w(s) = 17.5(na, 5(5)) = exp{6([1 + 571 log(1 + 5))° —
1)} — 1,60 <6y,and p = 92/91 > 1.
Family BB3. In (5.3), let K be the family B4 and let 3 be the
family LTA. Then the two-parameter family of the form (5.4) is

C(u,v;0,8) = exp{-[6~" log(ef® + 87 — 1))/}
= 7MW +a7(v), 021,6>0, (5.7)
where 7(s) = ng.5(s) = exp{—[6""log (1 + 5)]'/?} (family LTG in
the Appendix), & = —logu and ¥ = —logv.
Some properties of the family of copulas (5.7) are:
(a) The family B4 is a subfamily when 6 = 1, and the family B6
is obtained as § — 0. Cy obtains as § — oo or § — 00.

(b) The lower tail dependence parameter is 271/¢ when 6 = 1 and
1 when 6 > 1, while the upper tail dependence parameter is
2 — 2'/% independent of 6. The upper extreme value limit is
the family B6.

(c) Concordance increases as ¢ increases if and only if
—Dé Y log(D/8)+[e*"zlogz + e ylogy]/(e’® +e%¥ —1) <0

for all z,y > 0 and 6§ > 0, where D = log(e’® + €% — 1).
This condition holds from numerical checks but has not been
confirmed analytically. With a change of parametrization to
(8, «) with & = §'/®  the family of copulas has been shown to
be increasing in concordance with both parameters # and «.

Family BB4. In (5.3), let K be the family B7 and let 9 be the
family LTB. Then the two-parameter family is

Ol i0,8)= (w407 =1 = (™= )70+ (0™ = )7 H) 7

6>0,6 >0. (5.8)
Some properties of the family of copulas (5.8) are:

[
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(a) The family B4 is obtained when § — 0, and the family B7
obtains as § — 0. Cy obtains as § — oo or § — oo.

(b) The lower tail dependence parameter is (2—271/%)=1/¢ while
the upper tail dependence parameter is 2~1/%, independent
of 8. The lower extreme value limit leads to the min-stable
bivariate exponential family exp{—A(z,y)}, with A(z,y) =
z+y—[z70 +y~f — (2% + 3P°)~1/%]=1/¢ and this is a two-
parameter extension of the family B7. The upper extreme
value limit is the family B7.

(c) Concordance increases as 6 increase if and only if [z +y—1—
(2= 1)~ + (y = 1)=)=¥]loglz +y — 1 — ((z — 1)~* + (y -
1)=6)=1/%) g log z —ylog y +[(a—1)~+(y—1)~*]- Y= [(z—
1)~%zlogz + (y — 1)~ %ylogy] > 0 for all z,y > 1 and 6 > 0.
This condition holds from numerical checks but has not been
confirmed analytically.

Family BBS5. In (5.3), let K be the family B7 and let 3 be the
family LTA. Then the two-parameter family is

C(u,v;0,6) = exp{—[@° + & — (&~ 4 5~99)"1/8M/%)  (5.9)

#>1,6 >0, where 2 = —logu, o = —logv.
Some properties of the family of copulas (5.9) are:

(a) The family B6 is obtained when § — 0 and the family BT is
obtained when # = 1. Cy obtains as § — oo or § — co.

(b) The lower tail dependence parameter is 0 and the upper tail
dependence parameter is 2 — (2 — 2™/ 6)1/ 8. The upper ex-
treme value limit leads to the min-stable bivariate exponen-
tial family exp{—A(z,y)}, with A(z,y) = [z? +¢° — (7% +
y~89)~1/8]1/8  and this is a two-parameter extension of the
family B6.

(c) Concordance increases as # increases if and only if [z + y —
(z734y~%)" ) log[z+y—(z~*+y~%)~'/*] -z log z—y log y+
(70 +y~ %)~ Yo"Yz %logz +y ®logy) > 0 forall z,y > 0
and 6 > 0. This condition holds from numerical checks but
has not been confirmed analytically.

Family BB6. In (5.3), let K be the family B6 and let ¢ be the
family LTC. Then the two-parameter family of form (5.4) is

C(u,v;0,86)=1- (1—-exp {—[(—— log(1-a%))’+ (- log(1 —-5"))6]%}) $
=9 (w)+77 (), 0>1,6>1, (5.10)
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where @ = 1 —u, 2 = 1 —v and 5(s) = s s(s) = 1 —[1 —
exp{—s!/4}]1/¢ (family LTH in the Appendix).
Some properties of the family of copulas (5.10) are:

(a) The family B6 is obtained when 6 = 1, and the family B5 is
obtained when 6 = 1. Cy obtains as § — oo or § — co.

(b) The lower tail dependence parameter is 0, and the upper tail
dependence parameter is 2—2!/(#%)_ The upper extreme value
limit is the family B6.

(¢) Concordance increases as f increases because w(s) is convex
in s > 0, where w(s) = 77;';6(175,,5(5)) = [o(s/%)]%, 6, < 62,
and o(t) = —log(1 — [1 — e7%)?), with p = 02/6; > 1.

Family BB7. In (5.3), let K be the family B4 and let ¥ be the
family LTC. Then the two-parameter family of the form (5.4) is

- 1/6

C(u,v;8,8) = 1— (l -1 - )+ (1-3%)% - 1 1/6)
= g (uw) +97'(v), 2>1,6>0, (5.11)
where 7(s) = 19 5(s) = 1 — [L — (1 4 s)~1/¢]/® (family LTI in the

Appendix).
Some properties of the family of copulas (5.11) are:

(a) The family B4 is obtained when # = 1, and the family B5 is
obtained as 6 — 0. Cy obtains as # — oo or § — oo.

(b) The lower tail dependence parameter is 2-1/% independent
of 8, and the upper tail dependence parameter is 2 — 21/¢,
independent of 6. The extreme value limits from the lower
and upper tails are, respectively, the families B7 and B6.

(c) Concordance increases as 6 increases when 8 < 1; the proof is
non-trivial. It is conjectured that concordance is also increas-
ing in § when 6 > 1.

Other two-parameter families of copulas of the form (4.3) are
based on two-parameter families of LTs that do not come from a
composition of the form (5.4).

Family BB8. A family of copulas based on a two-parameter
family of LTs, ¢(s) = 671 — {1 —[1 ~ (1 — 6)?]e~*}1/%], 6 > 1,
0 < 6 <1 (family LTJ in the Appendix), is:

Clu,v;0,6)=6" [1—{1-[1~(1-6)*]}[1=(1=6u)*][1- (1-6v)°]} #],

(5.12)
6 > 1,0 < 6 < 1. Some properties of the family of copulas (5.12)
are:
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(a) Cr obtains as § — 0 or § — 1. The family B5 is obtained
when 6§ = 1, and the family B3 is obtained as § — oo with
v =1—(1—6)® held constant (or with 6§ = 1 — (1 — v)/9).

(b) The family is derived as a power mixture family with the
above LT. The family does not have tail dependence except
when 6 = 1. It extends to the multivariate case for each fixed

6.

(c) Concordance increases as # or § increases. The proof of the
concordance ordering is non-trivial.

Family BB9. From the two-parameter family of LTs, ¢(s) =
exp{—(e® +5)/*+a}, a > 0,8 > 1 (family LTL in the Appendix),
the two-parameter family of copulas is

C(u, 030, @) = exp{[(a — logu)’ + (a — logv)® — &*]"/° + a},
(5.13)

6 > 1, a > 0. Some properties of the family of copulas (5.13) are:

(a) Cy obtains as a — oo or for § = 1, and Cy obtains as § — co.
The family B6 is a subfamily when a = 0.

(b) Concordance increases as either @ increases or a decreases.

The next example is one of a two-parameter family in which
concordance is not monotone in both parameters. It is not clear if
the concordance ordering in two parameters can be obtained after
making a parameter change. For example, with a reparametrization
of LTL to exp{—(6 + 5)'/¢ 4 §1/%}, the reparametrization of (5.13)
is not always increasing in concordance in @ for fixed 6.

Family BB10. The LT of the negative binomial distribution
is ¢(s) = [(1 —6)e*/(1 — 6e~*)]* = [(1 - 8)/(e* — 6)]*, where
0 <0 <1anda>0 (family LTM in the Appendix). The inverse
is ¢~1(t) = log[(1 — 8)t~1/* 4+ 4]. The family of copulas is

C(u,v;0, ) = uv[l — (1 — u?/*)(1 = v/ )], (5.14)
0 <6 <1, a > 0. Some properties of the family of copulas (5.14)
are:

(2) Cr obtains as a — oo; Cy obtains as @ — 0 when ¢ = 1, but
Crobtainsasa — 0 for 0 <0 < 1.

(b) Concordance increases as 6 increases for a fixed «. The con-
cordance is decreasing in a for § = 1. For 0 < & < 1 fixed,
there is no concordance ordering as « increases.
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5.3 Multivariate copulas with partial symmetry

A multivariate parametric family of copulas is an extension of a
(one-parameter) bivariate family if: (i) all bivariate marginal cop-
ulas of the multivariate copula are in the given bivariate family;
and (ii) all multivariate marginal copulas of order 3 to m — 1 have
the same multivariate form. ~

There is no proven general multivariate extension of a bivari-
ate parametric family that has a dependence parameter for each
bivariate margin (but see Section 4.8). This section has the mul-
tivariate extension for copulas having the forms in Section 4.2.
After possibly permuting the indices, the form of the multivariate
extension is that the (¢, j) bivariate margin has parameter §;;, with
6ij = Ba;,a; if {as,...,a;} is the smallest cluster of consecutive in-
dices that contain indices ¢ and j. There are m — 1 parameters
with the form f,, a < b, and the f,; satisfy Ba, 3, > Bayp, if
az < aj < by £ by. There are no constraints for 8,5, », and B, », if
by < a2 or by < ay. The labelling for the m — 1 parameters f, is
such that a; < as < by < by or a2 < ay < by < by is not allowed.
That is, clusters (of indices) are hierarchical or nested, and cannot
overlap. (Compare the data analysis technique of hierarchical clus-
tering; see also the comparison with hierarchical normal models in
Section 4.2.1.)

Examples are:

e m = 3. Parameters 3, 3 > B1,3 with ;5 = B3, 613 = b23 = b 3.

e m = 4. Parameters ,@1'2 2 ﬂ1’3 Z ,81,4 with 612 = ﬁl,Z, 613 =
823 = 1,3, and 614 = 624 = 634 = P1,4.

e m = 4. Parameters B2, 83,4 > B1,4 with 612 = B12, 634 = B3 4,
and 613 = 614 = 023 = 624 = F1 4.

e m > 5. There are three different structural forms for m = 5.
The number of different clustering forms increases rapidly with
m.

The permutation-symmetric subcase obtains when all of the G,

are the same.

Below we list some (trivariate) families with this partially sym-
metric dependence structure; this will suggest the form of the
higher-dimensional copulas, without the tedious notation of the
latter. In referring to properties of parametric families of copulas,
an m-variate copula is a multivariate extreme value (MEV)
copula if

Ct, ..., ut)=C%uy,...,um) Vt>0.
1 m
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After converting to unit exponential survival margins, with G(x) =
C(e~*1,...,e"*m), the MEV copulas are easily recognized from
A(x) = —logG(x) being homogeneous of order 1, ie., A(tx) =
tA(x) for all t > 0. Extreme value limits (upper and lower)
refer to the limit of

[K(1=n"lte™™ ..., 1—=n"te™®)]*, n— oo,

where K is either C or the associated copula C* when C is applied
to survival functions (see Section 1.6).

For the families LTA, LTB, LTC and LTD of LTs ¢y, the prop-
erty of ¢o-,1 o ¢g, € L3, 01 < 82, is satisfied using results in the
Appendix. Therefore the constructions in Section 4.2 apply to yield
copulas of the form (4.7), (4.10) and (4.11) and their extensions.
The increasing in concordance property for these parametric fam-
ilies follows from theorems in Section 4.2.1. Hence the <. ordering
holds but its verification is not easy; however, the <E" ordering
follows easily from the <. ordering of the bivariate margins.

For the trivariate case, with 8; = £, 3 < B;,2 = 02, copulas have
the form

0, (85, © b0. (85, (1) + 67, (u2)) + 85, (u3)), (5.15)

Theorems 4.8 and 4.9 then imply that (5.15) is increasing in con-
cordance as 8, or f; increase with 6, < 6,.

Family M3. A generalization of family B3. Let ¢y¢(s) =
—6~1log[t — (1 —e~%)e*], 6 > 0 (family LTD in the Appendix).
For 6; < 02, the family (5.15) becomes

C(u;01,62) = —07'log{l —c7'(1—-[1—c5l(1—e )

.(1 - 8—02142)]91/82) (1- 6—91"3)}’
where ¢; =1—e¢ % and ey = 1 — 7?2,
Family M4. A generalization of family B4. Let ¢4(s) =

(1+45)~% 0 > 0 (family LTB in the Appendix). For 8, < 03, the
family (5.15) becomes

Clu1, uz, uz;01,02) = [(u7* + uz? — )71/ oz —7]71/0
The lower extreme value limit of this family is the family M7 which

generalizes B7 (see Section 6.3.1).

Family M5. Generalization of families B5 and BB8. With
é fixed in (0,1), the family BB8 has the same multivariate gener-
alization. Let ¢p(s) = 6711 — (1 — ¢(8)e~*) /%], 8 > 1, where
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e(f)=1—-(1- 6)? (family LTJ in the Appendix). For 8, < 63, the
family (5.15) becomes

C(u;6y,8,) = 6 (1 —[1={1=[1 - A(u1,65)
A(uz, 02)/(02)]/ "} Alus, 01)/e(01)] /"),
where A(u,0) =1 — (1 — éu)?. The limit as § — 1 leads to

C(w;01,02) = 1 = {[o82(1 — 8) + o210/ %2(1 — o) + 1}/,
(5.16)
where v; = 1 — uj, j = 1,2,3. The copula resulting from the
extreme value limit of (5.16) is the family M6.

Family M6. A generalization of family B6. Let ¢4(s) =
exp{—5'/°}, 8 > 1 (family LTA in the the Appendix). For 6; < 65,
the family (5.15) becomes

C(u;b4,0,) = exp{—([(—- log ul)o"" + (- log UQ)92]01/02

+(—log ’l.l.3)0’)1/al } .

The generalization of the family B7 to M7 is given in Section
6.3.1.

5.4 Extensions to negative dependence *

In this section, we use the theory of Section 4.4 to extend some
families in the previous two sections to negative dependence. The
extension comes from extending families of LTs ¢4 to functions in
L, for different n (see (1.1) in Section 1.3). From Section 4.4, a
condition needed for negative dependence is the subadditivity of
the function 7(z) = ¢~ !(e™?), with concavity of 7 or equivalently
convexity of n~! = —log ¢ being a sufficient condition.

Details are shown for several parametric families to study the
range of negative dependence that can be achieved with theory of
Section 4.4. It is not known what is the most negative dependence
that can be obtained with this approach. A number of the tedious
calculations were done with the aid of symbolic manipulation soft-
ware.

Family M4E. Extension of B4, M4 and LTB. Write the
gamma family of LTs as ¢(s) = ¢g(s) = (148s)"1/¢,0 > 0. The LT
$o(s) = e~* is obtained as § — 0, and the family ¢y extends to 8 <
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Table 5.3. Most negative values of 7 and ps for family M4FE and MVN.

Am T ps 7(MVN) ps(MVN)

1 -1 -1 -1 -1
1/2 -0.3333 -0.4667 —0.3333 —0.4826
1/3 -0.2000 -0.2930 -0.2163 —0.3198
1/4 -0.1429 -0.2119 -0.1609 —0.2394
1/5 -0.1111 -0.1656 -0.1282 —0.1913
1/6 —0.0909 -0.1359 —0.1066 —0.1593

B = RETSCR NN s

0 by writing ¢e(s) = (1 +05);"/?, 9 < 0, where (2)4 = max{0, z}.
(The extended family ¢4 is the family of generalized Pareto survival
functions.) Let A = —6 so that ¢¢(s) = (1 — As)/*, 0 < s < AL,
A > 0. The function 7(z) = ¢;'(e*) equals A~}(1 — e~**) and
has second derivative 5”(z) = —Xe~** < 0, so that it is concave.
It is easily verified that

. -1
(—=1)1¢§(s) = [ (1- kA)](l —As) A =12,

k=0

and this is non-negative if and only if A < (j—1)~!. Hence ¢y € L1,
and (4.4) exists if @ > —(m—1)"! = —A,;. The Fréchet lower bound
obtains for A =1 (8 = —-1).

Table 5.3 lists the bivariate Kendall tau and Spearman rho values
for the most negatively dependent permutation-symmetric copula
of form (4.4) from this family of ¢ in the cases m = 2,...,7.
The Kendall tau value is —A/(2 — A). For comparison, the val-
ues of 7, ps for the most negatively dependent exchangeable MVN
distributions are given in the last two columns of Table 5.3. The
formulas are 7 = Zarcsin(pm) and ps = £ arcsin(pm/2), with
pm = —(m — 1)71. The extended family has a good range of ex-
changeable negative dependence compared with the MVN distri-
butions but the drawback is that zero density exists in a certain
region (see Section 4.4).

Family M3E. Extension of B3, M3 and LTD. The loga-
rithmic series family of LTs is ¢g(s) = —8log[l — (1 — e~%)e™?]
for # > 0. The limit as 6 — 0 is ¢o(s) = e~ *. The family extends to
functions in £, for all negative parameter values; in this case, write
do(s) = A=t log[l+ (e* — 1)e?], with A = —8 > 0. Then ¢;(t) =
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Table 5.4. Most negative values of T and ps for family MSE.

Ym Arn, T pPs

m

2 fo’a) o0 —1 -1

3 1 0.69315 —0.0766 —0.1148
4 0.26795 0.23740 -—0.0264 —0.0395
5 0.10102 0.09624 -0.0107 -0.0160
6 0.04310 0.04219 —-0.0047 -0.0070

—log[(e* —1)/(e*~1)] and 7(z) = ¢; " (e7*) = ~ log[(exp{Ae~* } ~
1)/(e* = 1)]. It is straightforward to obtain 7(z) = (exp{Ae™*} —
1)1 xe % exp{re™?} > 0 and 7(z) = (exp{re™?} — 1)72)e~?
-exp{Ae~*}[1 + de™? — exp{Ae~*}] < 0. Therefore 7 is concave.

Next we study (—1)7 ngJ)(s). Let y = (e* —1)e~* so that dy/ds =
—y. Then

(1Y ¢(s) = A1 4;(0) /(L +w), G=1.2,...,

where A4;(y) is a polynomial in y (of degree j — 1 for j > 2). The
recursion for the A; is

Ajp1(y) = yl(1 + ) A5 (y) ~ §4;(¥)),

with Al(y) = Axy) = y. If A;(y) = Zk Ia]ky J > 2,it can
be shown that aj411 = aj1 = 1, aj41; = —ajj-1 = (— 1)-’ by
induction, and @41,k = kajr — (J+1—k)ajr_1for2 <k <j—1.
The polynomials A;(y) are positive for y near zero, with the first
positive root of A; decreasing as j increases. Let y; be this root
and let A; = log(l + y;). Then ¢y € L if A < Ay, For m = 2,
As(y) = y so that yo = Ay = oo. That is, bivariate copulas of
the form (4.3) exist for the entire extended parameter range. The
Fréchet lower bound copula obtains as § — —oco (A — 00). In Table
5.4, for m = 2,...,6, are listed ¥, A;m and the bivariate Kendall
tau and Spearman rho values for the most negatively dependent
permutation-symmetric copula of the form (4.4) from this family
of ¢¢. From the table, this family does not allow much extension
into the negatively dependent range for m > 3; the range is much
smaller than that of the family M4E.

Next we consider partially symmetric copulas of the form (4.7),

(4.10) and (4.11). Let w = ¢! 0 ¢y, with 6 < 6. With p = 0;/65,
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Table 5.5. Lower bounds (LB) on parameters for functions in L3 (family
MSE).

o -1 -2 -3 -4 -5 —6
6,(LB): -1 -1.11 -1.00 -0.89 -0.81 -0.75

ci=1—e% i=1,2

w(s) = —log{[l - (1 - c2¢™*)"]/c1}.

For 8, > 0,wisin L. For §, = —) < 0, consider the three cases of:
(i) 82 > 0; (ii) 62 = 0; and (iii) 82 < 0. For (i), p < 0,0 < ¢ < 1 and
w(s) = —log[(1 — y)* — 1] +log|e1|, with y = cae™* < ¢z (dy/ds =
—y). For (ii), w(s) = —log(e? —1)+log(e* —1), with y = de™* < A.
For (ii1), p > 1, ¢1,¢2 < 0 and w(s) = —log[(1 + y)? — 1] + log|e1],
with y = —cge™* < |eg].

The analysis of w is not simple. For (ii), w'(s) = ye¥/(e¥ — 1) =
y/(1 —e7¥) > 0,w"(s) = y(1 - e ¥) 2 [(y+ 1)e~¥ — 1], w"'(s) =
y(1—e ¥)3[e~2(y? +3y+1)+e ¥(y? —-3y—2)+1]. w"(s) < Osince
y+1<e¥. w(s)>0if and only if e"2¥(y? +3y + 1) +e ¥ (3% —
3y—2)+1>0,0rg(y) =y’ +3y+ 1+e¥(y* — 3y —2) + % > 0.
Since g(0) = 0 and ¢'(y) > 2y+3 +¢¥(28® +y — 3) = g1(v), it
suffices to show g;(y) > 0. This is true since g,(0) = ¢7(0) = 0 and
g7 > 0.

For (i), let wy = ¢;11 o¢g and wg = ¢6‘1 o ¢a,, where ¢o(s) = e™*.
Then w = wy owsy. Let y = —f1¢7°. Then'wj = y/(1 —e"¥) >0,
wi = —ye¥(e? —1)7%[e? —y—1] <0, i’ = ye¥(e¥ — 1)73[¥*(1 +
e¥)+3y(1—e¥)+(1—e¥)?] > 0 and (—l)j‘lng) >0,j > 1. Henceit
follows that v’ = w{(w2)wh > 0, w" = W (wW2)(Wh)? +w)(w2)wh <0
and w”’' > 0.

For (iil), w'(s) = py(1+3)?~* /[(149)°=1] > 0, " (s) = —py(1+
4P~ 2((1+9)P 1]~ [(1+5)P—1-py] and w"(s) = py(1+3)>~3[(1+
y)? = 1[(1—y)2* + 2(p*y* + (2= 3p)y—2) +(p*y* + (3p— 1)y +1)]
where z = (1+y)?. w"(s) < Osince (1+y)? —1—py = p(p—1)y3/2 >
0 for some 0 < yo < y. w'(s) — 0 as y — 0 (or s — o0) and
w'’(s) > 0 for y near 0. A conjecture based on some numerical
computations is that w’”’(s) > 0 for all s > 0 if w"’(0) > 0.

For fixed 6;, there should be a lower bound on the possible value
of 62 so that w € £3. These values are given in Table 5.5 for a few
cases; they were obtained numerically.
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Extension of B6, M6 and LTA. The positive stable LTs
$o(s) = exp{—s'/%}, 6 > 1, extend to decreasing functions in £,
for 0 < 8 < 1. The second derivative of ¢y is

U(s) = exp{—s"IAs* 2 [As* — X + 1),

where A = 6~!. This derivative can be negative near s = 0if 6 < 1
or A > 1, so that ¢g € L2 for 0 < & < 1. Hence no copulas of the
form (4.3) result from the extension.

Extension of B5, M5 and LTC. Let the LT family be ¢5(s) =
1—(1—e~*)/#,6 > 1. This can be extended to decreasing functions
in £, for 0 < 8 < 1. Then 5(z) = ¢~ 1(e~?) = —log[l — (1 —e~%)?],
7'(2) = 0(1 —e~*)%"1e"?/[1— (1 —e~%)%] and
n(z) = [1-(1—e"?)?]720(1 —e ?) " 2e2 {(1 —e™?)" + 0% — 1}.
The term g(w) = (1 — w)? + 6w — 1 is non-positive, for w = e™* €
[0, 1], since g(0) = 0 and ¢'(w) = 6[1 — (1 — w)?~!] < 0 for 0 <

w,# < 1. Therefore n is concave. With y = e™*, dy/ds = —y and
A = 0", the second derivative of ¢y is

¢35 (s) = Ay(1 — y)*"2(1 = Ay),

and this can be less than 0 if A > 1 (# < 1). Therefore for this
family of ¢, there are no negatively dependent copulas for (4.3).

We study one more family that has more negative dependence
than the family M3E.

Family MBOE. Extension of family BB9 and LTL. A two-
parameter LT family is ¢(s) = ¢ q(s) = exp{—(a® + 5)1/¢ + o},
6 > 1, a > 0. This can be extended into a family in £, for § > 0,
> 0.Let A =60"!. H(s) = —log¢(s) = (a’ + s)* — a is convex
for 0 < 8 < 1. With y = o® 4+ 5 > of, the first four derivatives of
¢ are:

$'(s) = —d(s)\ 71 <05 ¢(s) = B(s) M I - A+ 1;
$"'(5) = =(s)Ay* 2 [A2 = BAA = Dyt + (A - 1)(A - 2)];
$(s) = d(s)AP AP — 627 (A = 1)y
+AA = DA =11y = (A = 1)(A = 2)(A = 3)].
#"(s) > 0forall s > 0,if M(a—=1)+1>0.If0 < A <1,
then ¢go € Ly for all @ > 0, and if A > 1, then ¢po € Ly for
a>1—-=0=1—X"!. The third and fourth derivatives are harder

to analyse. Let z = y*. The roots of A222—3X(A—=1)z+(A—1)(A=2)
in ¢" are [3(A = 1) £ /(A = 1)(5X = 1)]/(2)). If the roots are real
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Table 5.6. Lower boundary values of « for given 8 for family MBIE.

1 2 3 4 5 oo

0 0.5 0.6667 0.75 0.80 1
La: 0 1.5 1.8819 2.0687 2.1798 2.6180

0 2.7247 3.3333 3.6287 3.8037 4.4909

(A< 1/50r X > 1), let zp be larger root with the + sign. Then
¢" < 0forall s> 0if @ > 2 or if both roots are complex. If
0<A<1/5,20<0<a. IfX>1, 2 is positive so that there is
a lower bound on « in order that ¢ o € L3. Similarly, the lower
bound on a for £4 can be computed numerically. For some selected
values of A > 1, a table of the lower bounds on « for ¢y o to be in
L2, L3, L4 is given in Table 5.6.

For0<f<landa>1-0,C(u,v)=¢(¢ H(u)+¢71(v)) is a
copula with negative dependence. The formula is

C(u, v) = exp{—[(e — log u)? + (a —log v)? — &®}/® + a}, (5.17)
and as @ — 0, the copula becomes
C(u,v) = vwwexp{—a~(logu)(logv)}, o> 1. (5.18)

The distribution in (5.17) is increasing in concordance as 6 in-
creases for all fixed a, and it is decreasing (increasing) in concor-
dance as « increases for fixed § > 1 (6 < 1). Expression (5.18)
represents the family of copulas for the family of bivariate expo-
nential distributions in Example 2.5. Note that (5.17) does not
depend on « for § = 1 (the independence copula). The distribu-
tion in (5.18) is increasing-in-concordance as « increases and the
independence copula obtains as @ — oo; (5.18) has the form of
(4.3) with 9. (s) = exp{a(1 —e*)}, « > 1. This family of functions
in L2 comes from a limit of ¢¢ o as § — 0 if scaling is done with the
limit, i.e., it is the limit of ¢g o(a®0s) = exp{—a(l + 05)}/° + a}.

For (5.18), the Kendall tau and Spearman rho values correspond-
ing to the a values in the last column of Table 5.6 are given in Table
5.7. These are the smallest possible values for the permutation-
symmetric copulas (4.4) with ¢ in this family. For m = 3,4, a
greater range of negative dependence obtains compared with fam-
ily M3E. :

It is not known how to find LT families with extensions such
that (4.4) has positive density on (0,1)™ and has more negative




MULTIVARIATE COPULAS WITH GENERAL DEPENDENCE 163

Table 5.7. Most negative values of v and ps for family MBIE.

m o T PSs

2 1 -0.3613 —0.5240
3 26180 -0.1637 —0.2435
4 4.4909 -0.1010 -0.1511

dependence than the examples given in this section. Also unknown
are results that can quantify the range of negative dependence that
can be achieved with the approach of Section 4.4.

5.5 Multivariate copulas with general dependence

In this section, we list five families of parametric multivariate cop-
ulas that have flexible general positive dependence structure. Some
are extensions of families in Section 5.2. The ideas of Sections 4.4,
4.5 and 5.4 can be used to extend some of them into the range
of negatively dependent bivariate margins. The first three families
are based on the theory of Secton 4.3 and have closed-form cdfs;
two are families of extreme value copulas, and in the third a lim-
iting family of extreme value copulas is obtained in Section 6.3.1.
Repeating from Section 5.3, an m-variate copula C' is a (multivari-
ate) extreme value copula if C(u!,...,ut,) = C*(uy,...,un) for
all £ > 0. The last two families are based on Section 4.5 and their
extreme value limits are also given in Section 6.3.1.

Family MM1. In (4.25), let K;; be the family B6 with para-
meter 6;; and let 1 be the family LTA with parameter . The result
is the family: for § > 1 and §;; > 1,1 < j,

C(w) = exp{— [ ((0is!)™ + (s + Yowsmiat] ),
j=1

i<j
(5.19)
where z; = —logu;, v; > 0,p;j = (v +m—-1)"1, j=1,...,m.
This is a family of extreme value copulas since the exponent in
(5.19) is homogeneous of order 1 as a function of zi,...,2;,. The
bivariate margins are:
Cij(us,u) = exp{=[((p:!)’ + (pj2])*i)/%

+(vi +m - Z)pizf +(vj+m-— Q)pjz(-’]l/g}.
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When p; = p; = 1 or v; = v; = 2 — m, this bivariate copula
corresponds téo the 6family B6. The tail dependence parameter is
Mij = 2= [(p;" +p;") % + (vi + m = 2)pi + (vj + m - 2)p;]Y*;
it increases as §;; or @ increases. Further tail dependence analysis
of this family is given in Section 6.3.1.

Family MM2. In (4.25), let K;; be the family B7 with para-
meter 4;; a,nd let 1 be the family LTB with parameter 6. Let
g = pi(u;® —1),p; = (+m—1)"4, 5 20,5 =1,

The result is the family: for § > 0 and é;; > 0, i < j,

m
- ambi; N TR . -1/8
Cw = [Yu’ —(m=1= 3 (@ 4yt o]
i=1 1<i<j<m
(5-20)
The specxal case [ u7® — (m~1)]"Y/% arisesas p; — 0, j =

1,...,m. The bivariate margins are:

Cz‘j(Ui,uJ') = [u;? + uj—a —1-(a% + &;6‘5)‘1/6‘f]'1/0.
When p; = p; = 1, this bivariate copula corresponds to the family
BB4. This copula has both lower and upper tail dependence. Using
the approximations u;® — 1 ~ 6(1 — u;) and @; ~ p;f(1 — u;)
as u; — 1, j = 1,..., m, the upper tail dependence parameters
can be computed as \jju = (p,.a'” +p —6‘j )‘1/6"" The lower tail
dependence parameters are Ajj L = [2 (p bis 4 p—a" y~1/8i5]-1/6
The tail dependence parameters are increasing as 6,, increases. The
upper tail dependence parameters do not depend on §; the lower

tail dependence parameters increase as § increases.
The upper tail extreme value limit is

exp{ Ze T4 E(p‘ 6.13601'. +P 065.,.1:1) 1/6”}

z<J

It is not so interesting as it does not depend on 8. The lower tail
extreme value limit is more interesting. It is similar to (5.19) and
generalizes the family B7 (see the family MMS8 in Section 6.3.1).

Family MMS3. In (4.25), let K;j; be the family B7 with para-
meter 6;; and let ¢ be the family LTA with parameter 6. Let z; =
—loguj, pj = (vj+m—1)"1,»; >0,j=1,...,m. The result is
the family of extreme value copulas:

w=enof- 55  -Flrt +5y%)) ,

i<j
(5.21)




MULTIVARIATE COPULAS WITH GENERAL DEPENDENCE 165

6 >0andé; >0,:< 7.
The bivariate margins are:

b 86 —bi; —08ii\—1/6:s
Cij (s, ug) = exp{ —[ef +2] —(p; 727 " 4p; " 2 YISO

’ (5.22)

When p; = p; = 1, this bivariate copula corresponds to the family

BB5. The upper tail dependence parameter for (5.22) is A;; =

2—[2—(p; °" +p;6'j)‘1/é'f]l/o. It is increasing as é;; or 6 increases.

For m = 3, with 613 — 0, 812 = b3 =6, vy =3 = -1, vy =0,
p1=pa=1,ps=3,(5.21) becomes

Clu)=exp{=[#]+23+25 — (a7 "+2%3 ) (25 4225 ) 313 ).

(5.23)
The bivariate margins of (5.23) are Cja(u;,u2) = exp{—[z{ + 2§ —
(::JT""s + 2027 0%)=1/8)1/6} 5 = 1,3, and Cia(u1, us) = exp{—(z{ +
28)}/%}. The tail dependence parameters are Aj = 2 —[2 — (1 +
20)-1/88 i = 1,3, and A3 = 2 — 2% As § — oo, Nj2 —
2 — (1.5)1/8,

Family MM4. Consider the construction in (4.37)-(4.39) for
mixtures of conditional distributions with the associated copulas
in the family B4, i.e., Cj;(u;, u;) = C(us, uj; 655) = ui+u;—14+[{(1—
w;) "0 (1 —uy)~ %5 — 1)-1/%5, 6;; >0,1< i< j<m. From The-
orem 4.20, the resulting copula family has upper tail dependence
for each bivariate margin and has a wide range of dependence. This
family leads to a family of MEV distributions (see Section 6.3.1).

Family MMS5. Consider the construction in (4.37)-(4.39) for
mixtures of conditional distributions with the family B5 for the
bivariate copulas, i.e., Cij; = C(+; 6;;), 6;; > 1, is in the family B5
for all 1 < 7 < j < m. The resulting copula family has similar
dependence properties to the family MM4, and it also leads to a
family of MEV distributions.

From Theorem 4.11, 4.14 and results in Section 5.1, the families
MM1-MM3 are increasing in the <" ordering as the é;; increase or
v; decrease; it is conjectured (with support from numerical checks)
that they also increase in <E" as § increases. For the families MM4—-
MMS5, for i < j with j — i > 2, the conditional dependence of the
ith and jth variables, given variables ¢ + 1,...,7 — 1, increases as
6;; increases; the <E" ordering need not hold as the §;; increase,
but the (7, j) bivariate margin increases in concordance for §;; in-
creasing (Theorem 4.19).
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As can be seen from the parametric families in this section, one
motivation for the development of the theory in Chapter 4 has been .
the construction of parametric families of MEV distributions with
general dependence structure. There is more on the topic of MEV
distributions in the next chapter.

5.6 Bibliographic notes

For the families Bl to B8, refer to Joe (1993) for some background
and multivariate extensions. Without all of the properties of Sec-
tion 5.1, there are many parametric families of bivariate copulas;
see Hutchinson and Lai (1990) for a fairly exhaustive compilation.
B3 has been studied in Nelsen (1986) and Genest (1987), and B4
has been studied in Clayton (1978), Cook and Johnson (1981),
and Oakes (1982). B12 is studied in Cuadras and Augé (1981) and
Nelsen (1991). Of the properties in Section 5.1, one of the hardest
to check is the SI ordering. This property is shown in Fang and Joe
(1992) for some families of copulas, and is included in the examples
in Section 2.2.7 for others; for B2, Theorem 2.14 can be applied
with symbolic manipulation software.

The families in Sections 5.2 to 5.5 are mainly from Joe and Hu
(1996) and Joe (1994; 1996a). The extension to negative depend-
ence for the bivariate case has been known for B4; see Ruiz-Rivas
(1981) and Genest and MacKay (1986). Regarding M3E, this model
has been used in Meester and MacKay (1994), but without men-
tioning that there is a limit to the range of the parameter space
for negative dependence. For a more general multivariate version
of B10 than (5.2), see Johnson and Kotz (1975) and Shaked (1975).

5.7 Exercises

5.1 Verify directly the SI property for the families B2 to B7 (in
the range of positive dependence).

5.2 For the family B2, show that u—C(u, v;8) = C(u, 1—v;671).
For the family B3, show that u—C(u,v; 8) = C(u, 1—-v;—0).
(See Sections 7.1.7 and 1.6 for the interpretation.)

5.3 Verify the density for the Plackett copula in the family B2
and show that it is non-negative.

5.4 For the family B11 with copula C(u,v;68) = §(u Av) + (1 —
8)uv, 0 < 6 < 1, show that if (U,V) ~ C(;6) and Y1 =
I(U < ), Y, = I(V < z), then the correlation of Y7,Y>
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9.5

9.6
5.7

5.8

5.9

is § for any 0 < ¢ < 1. Does this property hold for other
families?

Verify the properties listed for the families B1-B8. Also ver-
ify the copulas (independence or Fréchet bounds) that are
obtained at the end points of the parameter ranges.

Verify the properties listed for the families BB1-BB10.
For the multivariate copula in (5.2), show for m = 3 that
the constraints on the parameters are:

—1 < 612,613,623 < 1,

=1+ 612 + b23] < 613 < 1~ |b12 — 623

Determine the constraints on the parameters for m = 4.

Prove that the family B9 is increasing in <., by filling in de-
tails in the following (proof due to T. Hu). Let Z,, Z2, Z3, Z4,
Z12, 274, Wi2, Wi, be rvs with unit exponential distribu-
tions. Let I5, Is:, Iy, I; be Bernoulli rvs with respective para-
meters 6, 8’, 1, 7. Let £(-;6) be the bivariate exponential cdf
for the stochastic representation in (5.1):

X = (1 — 6)Z1 + 1549, Xq = (1 - (5)22 + 15719, (524)
where Is, 2, Z3, Z12 are independent. Suppose §' > 6 > 0
and set n = (6’ — 8)/(1 — 6). Let (Y7,Ya2) ~ F(-;¢') with
stochastic representation:

Yi=(1=8)V+ 1527, Yo=(1-06)244 1527,
where I/, Z3, Z4, Z1, are independent. Substitute Z; = (1 -
)23 + InWhz, Z3 = (1 — 0)Z4 + I; W}, into (5.24) to get

X = (1 - 5’)Z3 + [(1 —_ 5)I,JW12 -+ 16Z12],

Xo = (1=-8Za+[(1-8)I;WH + IsZ12), (5.25)
with Iy, I, I}, Z3, Za, W12, Wi5, Z12 independent. Also,

Y, = (1=8)23+ [(1 = 8) I, Wha + I5212),

Y, = (1 - 6')Z4 + [(1 - 6)],, Wia + 15212], (526)

since (1 — §)I, Wiz + Is 2102 Is: Z7, (this can be shown us-
ing moment generating functions). Using the representations
(5.25) and (5.26), it follows that (X, X2)<c(Y1,Y2) or that
F(-;8)<cF(;6"). '

For specific cases of (5.15) for the families M3, M4 and M6,
show that (5.15) is not a proper copula if &, > 5.
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5.10 Study the two-parameter family of Archimedean copulas

5.11

5.12

based on the family LTK in the Appendix.

Study the multivariate and negative dependent extensions of
the family BB8 of bivariate copulas by extending the families
LTJ, LTK of LTs to L.

Verify the details below which show that the property of a
TP, density does not hold for é > 2 for the family B2. Let
c(u,v;6) be the density of the family B2. Consider

c(uy,v1;6) c(ug, ve; 6) — c(ug, v2;6) c(ug,v1;6),  (5.27)

for u; < ug, v1 < vsg. This expression is negative when 6 > 2,
u1, ug are close to zero and vy, vy arecloseto 1. Let 7 = 1-—v;
expanding ¢ to second order near u = 0,v = 1 leads to

c(u,v;8) = 67 [1 + 2p(u + 7) + 3p°(u® + 7°) + auv],

where p = (6 — 1)/6 and o = 46~2(262 — 56 + 3). Therefore
(5.27) is equal in sign to (4p? — a)(u1 — ua2)(vy — v2) =
46=%(6 ~ 1)(2 — 8)(u1 — u2)(v1 — v2)-

5.8 Unsolved problems

5.1
5.2
5.3

5.4

5.5

5.6

Verify or disprove the property of a TP density for the fam-
ilies B7 and B8. Numerical checks seem to suggest that the
property holds.

Numerical checks seem to suggest that the property of a TP2
density holds for 1 < 6§ < 2 for the family B2. Also, numeri-
cally it appears that the property of a TP; cdf holds for the
family B2. Can these properties be shown analytically?

Find other parametricfamilies of Laplace transforms that can
lead to interesting copulas.

For the families BB3, BB4 and BB5, show analytically the
properties of the concordance ordering.

Find a parametric family of copulas of the form (4.4) that
have positive density on [0,1]™ and more negative depend-
ence than the families M3E and MBYE for m > 3.

This problem may be helpful to solve the preceding problem.

Find the infimum of 7 = 1 — 4 f;° s[¢'(s)]?ds (the value of
Kendall’s tau from Theorem 4.3) subject to ¢ € L.




CHAPTER 6

Multivariate extreme value
distributions

This chapter is devoted to multivariate extreme value (MEV) mod-
els and their applications. A main goal is the construction of para-
metric families of MEV distributions with wide dependence struc-
ture. A typical example that provides some motivation for MEV
models is given in Section 11.3.

A summary of the sections, including the highlights, is the follow-
ing. Section 6.1 gives the brief background from univariate extreme
theory that is relevant to statistical inference. Section 6.2 contains
the background in MEV theory, including Pickand’s representa-
tion and characterization for min-stable multivariate exponential
(MSMVE) distributions, and shows the contrast between MEV
limit theory and MVN limit theory. To relate to earlier chapters,
we show that MEV distributions are one setting for naturally using
copulas and exploiting the properties of copulas. Section 6.3 con-
tains parametric families of MEV copulas in the form of MSMVE
distributions; several families are derived from the extreme value
limit of families of copulas that are given in Chapter 5. Section
6.4 is on the point process modelling approach for inference with
multivariate extremes. Section 6.5 is on choice models and the use
of MEV models in the psychology and econometrics literatures.
Section 6.6 is devoted to mixtures of MEV distributions, which
include max-geometric stable multivariate distributions.

6.1 Background: univariate extremes

Let X, X3,... be iid rv’s with continuous distribution function F.
Let S, = X1+ +Xn, M, = max{Xl,...,Xn} =X,V---VX,,
and L, = min{X;,..., X} = X;A---AX,,. Paralleling the central
limit theorem and stable laws based on S,,, one can consider the
possible limiting distributions for (M,, ~a,)/b,, and (L, —c¢,)/d, as
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n — oo for suitably chosen sequences {a.}, {bn}, {¢n}, {dn}. (The
sequences need not be unique.) One needs only to study the case
of maxima as the theory for minima is similar due to the identity
min{Xy,...,Xn} = —max{-Xy,...,—-Xn}.

The main well-known result or the ‘three-types’ theorem, with
contributions from Fisher, Tippett, von Mises, Gnedenko and de
Haan, is that the only possible limits are the location—scale families
based on the cdfs:

1. Ho(z) = exp{—e~7}, —0o < z < 0o (Gumbel or extreme value
distribution);

2. Hy(z;0) = exp{—2~%}, £ > 0,0 > 0 (Fréchet distribution);

3. H_y(z;0) = exp{—(-z)%}, z < 0,0 > 0 (Weibull distribu-
tion).

Necessary and sufficient conditions are given in books on extreme
value theory, for example, Galambos (1987) and Resnick (1987). F
is said to be in the domain of attraction of the Gumbel, Fréchet
or Weibull distribution if one of these distributions is the extreme
value limit.

By reflection, the possible limits for minima are the location-
scale families based on the cdfs:

1. H{(z) =1 — Ho(—z) = 1 — exp{—e®}, —00 < £ < 00;
2. Hi(z;60) =1 — Hy(—z;0) =1 —exp{—(—2)"%}, 2 < 0,0 > 0;
3. H*(z;0) =1 — H_1(—2;0) = 1 —exp{—2°}, z > 0,0 > 0.

After location/scale changes, the three types can be combined

into the generalized extreme value (GEV) family:

H(z;v) = exp{—(1 +7.'z:)_;1/"}, -0 < £ < 00, —00 < ¥ < 00,

where (y)+ = max{0,y}. v — 0 yields Ho(z), v > 0 yields H,(1+
vz;1/7), and v < 0 yields H_ (-1 — yz; —1/7).

Example 6.1 (Some special cases.) Note that Pr((M,—a,)/b, <
z) = Pr(M,, < ap + byz) = F*(a, + b, z). For illustration, some
examples are the following.

(a) Exponential. F(z) = 1 —-¢e7%, z > 0. Let a, = logn =
F~1(1-n"1), b, = 1; then F*(ap+b,2) = (1—n"le"?)" —
exp{—e™?}, —o00 < z < o0, the Gumbel distribution.

(b) Pareto. F(z) =1—2"%7 2 > 1,9 > 0. The tail gets heavier
as v increases. Let a, = 0, b, = n¥ = F~}(1 — n"!); then
F(an +bpz) = (1 —n~1z717)" o exp{—2z"1/7}, 2 > 0, the
Fréchet distribution.
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(c) Beta. F(z) = 1—(1-z)"'/7, 0 <z < 1, v < 0. The tail
gets heavier as 7 increases or —v decreases and the upper
end point of support is finite. Let a, = 1, b, = n" =1 -
F=1(1 — n~1); then F*(a, + bpz) = [l — n~}(=2)"1/]" —
exp{—(—2)"1/7}, z < 0, the Weibull distribution.

(d) F(z) = 1 — (logz)™!, z > e. This has a heavier tail than
the Pareto distributions and there is no extreme value limit
based on linearity.

O

Since Pareto distributions are heavier-tailed than exponential
distributions which in turn are heavier-tailed than distributions
with finite upper end point of support, v can be interpreted as a
tail parameter that is larger for a heavier tail. For another example,
the domain of attraction for a normal distribution is the Gumbel
distribution but the sequences of constants are not simple in form
(see the references cited earlier).

An application of univariate extreme value theory is as follows.
For data My,,..., My, consisting of (approximately) iid maxima
based on n observations each, the three-parameter GEV model
H((y — p)/0o;7) is used as an approximation F™(y), assuming n
is sufficiently large. From this, an approximation for the tail prob-
ability F(y), y large, is

1-F(y)=1—HY(y-p)/o;7)
=~ —-logH”"((y—#)/‘TE’Y)
= n 1+9ly - pl/o)77,

and for a large threshold T,

P T) [ Tofe] ey

1 - F(T) 14+ (T = p)/o

where 0* = 14 (T — p)/0. This is the generalized Pareto approx-
imation to the conditional tail distribution of a distribution that is
in the domain of attraction of an extreme value distribution. The
multivariate extension of this is given in Section 6.4.

A data analysis error is to fit a parametric family to data and
extrapolate to extreme such as the 99th percentile. For these ex-
treme value inferences, it is better to apply extreme value theory
and the generalized Pareto distribution to the largest data values
(say, less than the top 10%).

-+
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6.2 Multivariate extreme value theory

Let (Xi1,...,Xim) be iid random vectors with distribution F,
i=1,2,.... Let Mj, = maxici<n Xij, j = 1,...,m, be the com-
ponentwise maxima. From a sample of vectors of maxima, one can
make inferences about the upper tail of F' using multivariate ex-
treme value theory.

MEYV distributions come from limits (in law) of ((M1,—a1,)/b1n,
ooy (Mmn — @mn)/bmn). If a limiting distribution exists, then each
univariate margin must be in the GEV family. The multivariate
limiting distribution can then be written in the form

C(H(z1;7m), - - H(zm; Ym))s

where H(zj;7v;) are GEV distributions and C is a multivariate
copula. Further properties of MEV distributions and a method
for constructing MEV distributions are given after the following
univariate result on transforms and extremes.

Lemma 6.1 Let Xy, Xs,... be tid with distribution function F
and let v(X;) = X7, i =1,2,..., be iid with distribution function
F*, where r is strictly increasing. Let M, = max{X,,...,Xn},
M; = max{X3,..., X;}. Suppose Pr((M, — a,)/b, < z) — H(2)
and Pr((M; — a})/b;, < z*) — H*(z"), where H and H* are ez-
treme value distributions. Note thet Pr((M, — a})/b;, < z°) = -
Pr(My < r=(a} +b22%)) = Pr((Mo —an) /by < [+~ (ah +b52") —
an)/bn). Hence lim,[r=1(a}, + b},2°) — @,]/bn ezists. Let s(z*) be
the limit. Then H*(z*) = H(s(z*)).

Now, returning to the multivariate setting, let (Mi,, ..., Mpnn)
be a vector of componentwise maxima of the iid random vectors
(Xi1,---,Xim) from F, and suppose

G(z) = li'EnF"(al,, +b1n21, - s mn + bmnzm)
= lmPr(Min < a1n +b1n21,- - s Mimn < @mn + bmn2m)
= C(H(z1;m)-- -, H(zmiTm)), (6.1)
where C is a copula. Let r; be a strictly increasing transform of

the Xj;, and let the transformed variables and maxima be X,}'j

and M;,. Suppose the transforms are such that (M}, ~ aj,)/bj,
converges in distribution as n — oo for all j. Let

G*(z") = HmPr(M;, < a5, +bia2i, -, Min < G + B 200)

=C*(H(z1;71)s- - H(zps 7))
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for a copula C*. Also, by Lemma 6.1,
li'{nPr((Mjn - ajn)/b]-n < [rj”l(a;n + b;nz;) - ajn]/bj,,, Vi)

=G*(z") = C(H(s1()im)s - -, H(sm(zmm); Tm)
for some functions si,...,sn. Hence H(sj(z;);'yj) = H(z};7}),
j=1,...,m, and C = C*. The importance of this result is for
obtaining MEV distributions through the taking of limits, since
one can take univariate margins and constants ajn,bj, that lead
to easier calculations (see Section 6.2.2).

The next result gives conditions that MEV copulas must satisfy
and shows the relationship to MSMVE distributions, which are
defined below.

Suppose (6.1) holds and let k be a positive integer. Then the
sequences @jn,bjn, j =1,...,m, are such that

lirI;nPr(Ml,kn < a;n+ binzy,..., Mm,kn < amn + bmnzm)

=G*(z1,. . 2m) = C*(H(z15m)s - o H(Zmi 1m)). (6.2)
Also
Pf(Ml,kn <aye + binzy,..., Mm,kn < amn + bmnzm)
=Pr([Mj kn—ajkn}/bj kn < [0 +bjnzj — @5 kn]/bjkn, 1 < j < m)

— G([zr = pl/or, .. [2m = pm)/om)

= C(H([z1 — 1l/ov;m), -« H(zm — #m]/0mi ¥m)) (6.3)
for some constants p;, 05, and Pr(M; xn < @jn+bjnz;) — H¥z;,7;)
for each j. Hence

GH(z) = C*(H*(z13m), - - ., H* (213 71)) (6.4)

for some copula C*. From univariate extreme value theory, it fol-
lows that H*(z;;7v;) = H([z; — p;1/o;;7;) for each j, and hence
C = C* from matching equations (6.2), (6.3) and (6.4).

Next, let u; = H(zj,7v;). Then from (6.2) and (6.4)

C*(u1,. .., um) = C(uf,...,ufn , k=1,2,...
or A
C(ui/r, ouny=cYrw), r=1,2,....
Hence
C'k/'(u) = Ck(ui/r, . .,u,l,{') = C(uf/r, . .,uﬁ{")

for all positive integers k,r. This can be extended to

C(u},...,u,) =C'u) V>0,
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by continuity and approximation of a real number by a sequence of
rational numbers. Let D(y) = C(e™¥*,...,e"¥™) be a multivariate
distribution with unit exponential survival margins. Then

C(e~",...,e7 ") = D(ty) = C'(e™¥,...,e"¥) = D'(y).

Hence A = —log D satisfies A(ty) = tA(y) which implies that D
is a MSMVE survival function as given in Theorem 6.2 below.

Definition. Let X be an m-dimensional random vector with
survival function G. Suppose X; is exponential with mean v;, i =
1,...,m. X (or G) is min-stable multivariate exponential
(MSMVE) if for all w € (0,00)™, min{X;/w,...,Xnm/wm} =
(X1/w1) A--- A (Xm/wm) has an exponential distribution.

Note that the property of closure under weighted minima is ana-
logous to the property of closure under linear combinations for
the MVN family, with the operator A replacing the + operator.
The explanation of the term ‘stable’ is given later in this section.
The next theorem shows that MSMVE distributions have survival
functions G such that —log G is homogeneous of order 1.

Theorem 6.2 Let G be ¢ MSMVE survival function. Then A =
—log G is homogeneous of order 1, i.e., A(tx) = tA(x) for all
t > 0, x € (0,00)™. Conversely, if G is a multivariate ezponential

survival function and —logG is homogeneous of order 1, then G
is MSMVE.

Proof. Let X be MSMVE with survival function G. From the def-
inition, for w € (0, c0)™,

Pr(min X fw; > t) = Pr(X; >tw;, 1< j < m) = G(tw) = e~ tA(w)
j

for a constant A which depends on w. Hence A(w) = —log G(w)
for all w (by letting ¢t = 1). Therefore A(ltw) = —logG(tw) =
tA(w) for all t > 0 and w € (0, 00)™.

The converse is easy to prove, based on the preceding paragraph.

0

Survival functions satisfying the homogeneity condition of The-
orem 6.2 can be obtained from some families in Chapter 5, after
substituting exponential survival margins into the copulas. The
next two theorems show that the class of MSMVE distributions
is infinite-dimensional (this is a contrast to the finite-dimensional
MVN family that arises from limit theory of sums of random
vectors with finite second moments). However for statistical in-
ference, parametric inference is easier than nonparametric infer-




MULTIVARIATE EXTREME VALUE THEORY 175

ence for the multi-dimensional situation, so that a goal is to find
finite-dimensional parametric subfamilies that cover well the en-
tire family represented by (6.5). Parametric families of MSMVE
distributions, equivalently MEV copulas, are given in Section 6.3.

Theorem 6.3 (The Pickands representation of a min-stable mul-
livariate exponential distribution). Let G(x) be a survival func-
tion with univariaie exponential margins. G satisfies — log G(tx) =
—tlog G(x) for allt > 0 if and only if G has the representation

—log G(x) = / [ max (¢;z;)}dU(q), =z:>0,i=1,...,m,
5, 1Sism

(6.5)
where Spy = {q : ¢s > 0,i = 1,...,m, > ;¢ = 1} is the m-
dimensional unit simplex and U s a finile measure on S,,.

Proof. This is a result of Pickands and an alternative statement of
Theorem 5.4.5 of Galambos (1987); the proof is given in Galambos
(1987). O

Remarks. If X has an exponential distribution with mean 1, then
Y = 1/X has a Fréchet distribution with cdf exp{—y~'}, y > 0.
For maxima, sometimes it 1s more convenient to work with the

representation for a max-stable multivariate Fréchet distri-
bution. This has cdf:

F(y)=exp{—-/s [lrgf&(qz’y{l)]dU(q)}, v 20,i=1,...,m,

(6.6)
with S, and U as defined above.

In the bivariate case, a simplification of the characterization is
possible; the condition involves convexity.

Theorem 6.4 Suppose B is a continuous non-negative funciion
on [0,1] with B(0) = B(1) = 1. Suppose that B has right and
left derivatives up to second order except for al most a couniable
number of points. Then G(z,y) = exp{—(z + y)B(z/(z + y))} is
a bivariate exponential survival function if and only if B is conver
and max{w,l —w} < B(w) <1 for0 <w < 1.

Proof. The first-order derivatives are —9G/0z = G(z, y)[B(w) +
(1 = w)B'(w)] and —0G /0y = G(z,y)[B(w) — wB'(w)], with w =
z/(z + y). These equations hold for right and left derivatives.
Because G must be decreasing in z,y in order to be a survival
function, necessary conditions are: (i) B(w) + (1 — w)B'(w) > 0
and B(w) — wB'(w) > 0, for all w € [0,1]}; and (ii) B'(w+) >
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B'(w-) if B’ is discontinuous at w. Note that (ii) follows from
—28(z,y+) < —§2(z,y—) and —§Z(2+,y) < —§E(z—, y). Hence
B'(0) > —1 and B’(1) < 1. The second-order mixed derivative
(treat as right and left derivatives if B’ is not continuous every-
where) is G{[B + (1 — w)B'][B — wB’] + (1 — w)wB" /(z + y)}.
This must be non-negative in order for G to be a survival function.
Letting z,y — 0 with z/(z+y) — w € (0, 1), a necessary condition
is B”(w) > 0 whenever B’ is continuous at w. Putting everything
together, B must be convex and max{w, 1 - w} < B(w) < 1.
Next for sufficiency, from convexity and the lower boundary
constraint, B'(w) > (B(w) = 1)/w > (1 —w - 1)/w = -1 and
B'(w) < (1 - B(w))/(1-w) < (1-w)/(1—-w) = 1. Hence
B(w)+(1-w)B'(w) > (1 —w)—(1—w) = 0 and B(w)—wB'(w) >
w—w = 0 and the first-order derivatives have the right signs. If B
has a corner at point wg with B/(wo+) > B'(wo—) (this must be
the direction of the inequality from the convexity condition), then
the first-order monotonicity is fine. Therefore if B’ is continuous,
the second-order mixed derivative is non-negative if B” > 0. If B
has some corners, so that G has a singular component, then the
above second-order mixed derivative is non-negative and the abso-
lutely continuous component is fine. Hence G is a survival function.

O

Theorem 6.5 Let G be given by the preceding theorem. If B has a
corner point (or more than one), then G has a singular component.

Proof. The survival function Gyj2(zly) is given by

¢'G(z,9)[B(z) - FHB' (H)]-
If B has a corner point at wg € (0, 1) so that B'(we+) > B'(wp—),
then Gyj2(z|y) has a jump discontinuity at z-= woy/(1—wo), when
wp = z/(z+y). The conclusion now follows from Theorem 1.1. [J]

From earlier in this section, MSMVE distributions have MEV
copulas. When the copulas take on univariate GEV cdfs, the results
are MEV distributions for maxima (which can arise as extreme
value limits). When the copulas take on GEV survival margins for
minima, the results are MEV survival functions for minima.

The MEV distribution is max-stable (min-stable) for multivari-
ate maxima (minima). (A multivariate distribution F is max-
stable if for each t > 0, F*(x) = F(a1 + buiz1,. . -, @mt + bmzZm)
for some vectors a;,b;, and it is min-stable if for each ¢t > 0,
Fi(x) = F(ay + b1z, . ., Gme + bmiZm) for some vectors aq, by.
With ¢ being a positive integer n, this means that the vector of
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componentwise maxima (minima) has the same distribution up to
location-scale changes.) If G(x) = e~4(*) and A is homogeneous
of order 1, then G'(x) = G(tx) so that the min-stability property
holds.

The final result in this section concerns the density of a MSMVE
survival function. Note that maximum likelihood estimation for the
MEV or MSMVE models requires the density.

If G = e~4 is a survival function, then the density g, which is
(=1)™ times the mth-order mixed derivative, is

k

— 1Pl A
9(z) = exp{-A(z)} > (=] m(z) :
{P1,...Pc}€P i=1 L4jER VY
where P is the set of partitions of {1,...,m}. From this, we have
the following theorem.
Theorem 6.6 For j=1,...,m, let a;,b; be reals with co < a; <

bj < 0o. Let G be a function from x7L,(aj,b;) to [0,1], which is de-
creasing in each of the m arguments and satisfies (a) lim,; .5, G(z)
=0 and (b) lim;; _.4;v;G(z) = 1. Let A = —logG. Then G is a
survival function if for every subset S € S,
s
(_1)1+I5I_ﬁl_'ﬁ_.(z) >0 Va.
[lies 0z

6.2.1 Dependence properties

MSMVE distributions are max-id (since if G is MSMVE then
G'(x) = G(tx), t > 0), and hence so are MEV copulas. By The-
orem 2.6, MEV copulas are positively dependent, being TP, for
example, when m = 2. Furthermore, the stronger positive depend-
ence property of association holds.

Theorem 6.7 IfC is an MEV copula, then C is associated. Hence
any MEV distribution is assoctated.

Proof. This is summarized from Proposition 5.1 of Marshall and
Olkin (1983).

Because the dependence concept of association is preserved un-
der strictly increasing or decreasing transformations of variables, it
suffices to show that MSMVE distributions are associated. Because
assoclation is preserved under limits in distribution, and because
of Pickand’s representation (Theorem 6.3), it suffices to show asso-
ciation in the case where U(q) in (6.5) consists of a finite number
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of masses. For this case, suppose qx = (¢k1,---,qkm), k= 1,...,7,
are the support points with respective masses a; > 0. Then (6.5)
becomes

A) =) o max qxi;. (6.7)
k=1 - =

Hence e~4 is the distribution of X with X; = minj<k<, ar;j Z,
where ar; = (qrjar)™!, and Zi,. .., Z, are iid exponential rvs with
mean 1. Note that

Pr(X; > z;,j=1,...,m) = Pr(Z > Ig}%%mj/akj,kz 1...,7)

.
= ex {-— E max z; ak-}.
P “1gi<m i/ ak;

Since (23, ..., Z,) is associated by Theorem 2.4(d) and X consists
of increasing functions of independent rvs, X is associated. [J

The next result shows that for a bivariate copula with tail de-
pendence, the extreme value limit has the same tail dependence
parameter A. Hence, the BEV limit is not the independence cop-
ula. In Section 5.1, the BEV limits are indicated for those families
that have tail dependence. The result also applies to the bivariate
margins of a multivariate copula.

Theorem 6.8 Let C be a biveriate copula and let F(zy,z3) =
C(1—e~%1,1—e~%3). Suppose limy.; C(u,u)/(1 —u) = A, where
A € (0,1] and limy oo F*(z1 + logn, z; + logn) = H(zy,z2) =
exp{—n(z1,z2)} wilh univariale margins exp{—e~%i}, j = 1,2.
Let C*(uy, uz) = H(—log[— log u,], — log[— loguz]). Then

lim T (w,w)/(1 - w) = A,
Proof. From (6.9) below,
Wz, z) = nlirxgo n[l — F(z + logn,z + logn)]
= ,.li“é‘a nfe™®718" 4 e"18" _ F(z 4 logn, x + logn))
= 27 -Ae”".

Now, with @ = — log[~ logu],

C (v, u)/(1-u) = [1-2u+exp{-n(2,a)}]/(1-u)
~ [1=2u+u? /(1 —u)— A

asu—1. O
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6.2.2 Eztreme value limitl resulls

In this subsection, to avoid technicalities, limits are written under
the assumption that they exist. In particular applications, one does
have to check for their existence. General conditions for existence of
limits can be found in Galambos (1987, Chapter 5), Resnick (1987,
Chapter 5) and Marshall and Olkin (1983). Note that to check that
a limit is a proper distribution, one needs to check the boundary
conditions but not the rectangle condition of Section 1.4.2.

Theorem 6.9 Let (Mi,,...,Mmn,) be a veclor of mazima from
itd random vectors (Xiy,...,Xim) from F and suppose
Fn(aln +binzy, .. oy @mn + bmnzm)

= lim, Pr(Mln <ain+binzy, .., Mpmn < @pn + bmnzm)
converges weakly to H(z). Suppose the limils
im nFg(ajn +bjnzj,j €S) =rs(z,j € S)

n—00

are finite for all S € Sy, If
exp{ Z (—1)|5|r3(zj,j (= S)}

SESm
is a non-degenerale distribution function, then it is equal to H.

Proof. This is part of Theorem 5.3.1 in Galambos (1987). An out-
line of the proof is as follows. We use the notation a,, + b,z for the
vector (@1n+binz1, . .., @mn+bmn2zm). If z is such that F"(a,+bnz)
converges to a value in (0,1), then F(a, + b,z) — 1. Hence,

F™(an+b,z)=exp{nlogF(a,+b,2z)} ~ exp{—n[l-F(a,+b,z)]}.
The conclusion now follows with the use of equation (1.4). [

A general approach for deriving MEV distributions is based on a
family of copulas. From earlier results in this section, the univariate
margins can be conveniently taken to be exponential with mean 1
in order to derive the limiting MEV distribution, since the MEV
copula that results does not depend on the univariate margins. Let
the starting multivariate exponential distribution be denoted by
F. The limiting MEV distribution is

nlingo F*(zy +logn,...,z,m + logn); (6.8)

the linear transform z; + log n comes from Example 6.1. This can
be converted to a MSMVE survival distribution with the trans-
forms z; = ™%/, j = 1,..., m, of the Gumbel univariate margins.
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If F has bivariate tail dependence then the limit has dependent
margins. If F does not have bivariate tail dependence such as for
the MVN distribution or copula, then the limiting MEV distribu-
tion corresponds to the independence copula. If F is a member of a
parametric family, then a parametric family of MEV distributions
can result.

From the preceding theorem and its proof, (6.8) is the same as

eXP{—nlllIgo n[l — F(zy+logn,...,zm + logn)}}, (6.9)
or
m
exp{—Ze"’-' + E (=1)i8! li’?lnﬁg(xj +logn,j€ S)}
i=1 SESm,|S5]|>2
(6.10)

Let X ~ F. Another form is based on using the identity

1-F(x)= Zm:Pr(X,- > z;)
i=1

~ T igickem PH(Xj > 5, Xp > 2, Xi < 24,5 < i < k),
in (6.9). With limnexp{—z; — logn} = exp{-z;},i=1,...,m,
Gi+i(2s,zi0) E im n[l - Fj(z; + logn, zj41 + logn)),
and
Cir(zj, .. .,.:r:k)d:ezf nl_i_.ngonPr(Xj >z + logn,
X >zp+logn, X; <zi4logn, j<i<k),
for j <k, k—j > 1, then |

nlgrgo n[l — F(x+logn)] = Zexp{-—z;} - chk(zj, cey Tk)

i<k
(6.11)
is the exponent in (6.9). Special cases are given below and in the
next section.
For example, consider application to the limiting MEV distri-
bution for (4.39) in Section 4.5. If 1 — Cj has simple form for all
J < k, then for (4.39),

1-F, . m(xX)=1=-F3,_ m-1(z2,...,Tm-1) (6.12)
+fo7 o 1 = Cim(Fue,..;m=1, Frmj2,...m=1)] dF2, m—1,

so that a recursion formula is possible for the limit in the exponent
of (6.8). Let M =logn and z = (23,..., zm-1). Then n times the
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integral in (6.12), with argument x 4+ M, leads to:

o+ M Tmer+M
n/ / [1 - Cim(Fu)2,.,m—1(z1 + M|z),
0 0

,,,, me1(Zm + MI2))] - f2, m-1(z) dza -+ dzm_y
=-/ / i [l”clm(Fllz,...,m—l(z1+M}v2+M1‘"’vm-l"'M)’
-M J-m

Fm’2,...,m—-1(mm + Ml’UZ +M,.. . V1 + M))]
'erz,...,m—l(UZ +M,.. . vm_1+ M)dvy--dvpm_q

T2 Tm—1
——*/ / [1—Clm(l"al,2...,m-—1(v2_$1;-~-avm--l"’l'l))
-o0 —00

1- am,2...,m—1(”2 —Zmy.-y, Vm—1 — mm))]
-bz,,__,m_l(vz,...,vm_l)dvz‘--dvm_l (613)
under conditions similar to those in Theorem 4.20 (note that the
functions @1,3..m~1, @m,2..,m—1 and bz, ;m_; are defined in the
proof of Theorem 4.20). For 1 < j < k < m with k—j > 1,
let n;(zj,. .., zx) be the limit similar to (6.13) starting with Cj
instead of C),,, and for 1 < j < m, let

5,5+1(2f, Zjr1) = Hm n[l = Fjj11(2; +logn, zj41 +log n)).

Then limn[l — Fy (x4 logn)], in the exponent of (6.9), is

Z:n:/f ’7i,m+1—i(1‘i, chey -’13m+1-£) m even,
ST e g1—i(Zis o, Tt +exp{—2(m+1)/2} m odd.
(6.14)

A simpler form of the limit may result from (6.11), with
ImnPr(X; > zj+logn, X > zr+logn, X; < z;+logn,j < i < k)
Ti+1 Th—1 __
=/M /M Cik(Fjtis1,ak-1 (25 + Mlvj 1+ M, .. ve1+M),

Frpjar,.p-1(Ze + Mlvjr + M, ... ve_y + M))
-erj+l,...,k-1(vj+1 -+ M, ceny Vg1 + M) dvj+1 .. -dvk_l

Tj41 Trk-y
—*/ / Cjk(l“aj,j+1,...,k-l(vj+1"'xj,---yvk—l"zj),
- 00 - 00

- ak,j‘l‘l,...,k-—l(vj-}'l — Tkye. oy, Vg1 — mk))
i, k=1(Vi41, -, vE—1) dvjyy - - - dogoy
:Cjk(xj,...,xk). (6.15)
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The functions aj j41,. k-1, @k j+1,..k—1 and bj41,. r—1 are defined
in the proof of Theorem 4.20.

6.3 Parametric families

A MEYV distribution with univariate margins transformed to expo-
nential survival functions becomes a MSMVE distribution. Let G
be a min-stable m-dimensional exponential survival function. From
Theorem 6.2, the exponent A = —log G satisfies

A(tz) = tA(z) Vt>0. (6.16)

Let Gs be a marginal survival function of G, with S € S,,,. Then
Gs(zs) = exp{—As(zs)}, where Ag is obtained from A by setting
z; = 0 for j ¢ S. The notation in this section is such that the
arguments of A are shown through a subset S when more than one
A is used.

In this section, in terms of the exponent A, we list some paramet-
ric families of MSMVE distributions that interpolate from indepen-
dence to the Fréchet upper bound. As mentioned in Section 4.1,
desirable properties are a wide range of dependence structure and
closure under the taking of margins, etc. The families in Section
6.3.1 are such that each parameter has a dependence interpreta-
tion. Most of these families make use of the methods of construction
in Chapter 4 and Section 6.2. Other parametric families are given
in Section 6.3.2; for these the interpretation of parameters may not
be as straightforward.

6.3.1 Dependence families

This subsection includes a listing of parameter families of MSMVE
distributions with good dependence properties and is intended as
a reference of useful parametric MSMVE families. We start with
three one-parameter bivariate families and then go on to families
that could be considered as multivariate extensions.

The three bivariate families B6, B7 and B8 in Section 5.1 are
families of MEV copulas; in the min-stable exponential form, the
exponents — log G are:

Alz1,22;8) = (+ )%, 621, (6.17)
A(Z], 22, 6) = 21 + 22 — (21—_-6 + 22—6)—1/51 6 2 0: (618)
A(z,22,8) = 21®(67 + 16[log(21/22)]) (6.19)

+22‘I’(5_1 + .:—,5[10g(22/21)]), 6 >0.
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The independence case (A(z,22) = 21 + 22) obtains when 6 =1, 0
and 0 in (6.17), (6.18) and (6.19), respectively; the Fréchet upper
bound (A(z,22) = max{z;,z2}) obtains when 6§ = co in all these
cases.

Multivariate extensions of these bivariate models are given next
together with some discussion and interpretations. Equation (6.19)
derives from a (non-standard) extreme value limit of the BVN dis-
tribution and has a multivariate extension with a parameter for
each bivariate margin. Equations (6.17) and (6.18) have two dif-
ferent parallel multivariate extensions, although the extension of
having the bivariate family with a different parameter for each bi-
variate margin does not exist (or has not been constructed). The
extensions that have been obtained satisfy different properties: (i)
each bivariate margin is in the family (6.17) or (6.18), but there
are only m—1 distinct bivariate parameters among the m(m—1)/2
bivariate margins (see Section 5.3); (ii) m — 1 of the m(m — 1)/2
bivariate margins are in the family (6.17) or (6.18), with differ-
ent parameters possible, and the remaining bivariate margins are
not of the same form, but overall there is a flexible dependence
structure.

Family M8. The multivariate extension of (6.19) is closed under
margins and has (6.19) with parameter 6;; = §;; for the (¢, 7) bi-
variate margin. The dependence structure is like that of the MVN
(except that there is no negative dependence). Let a;; = 61-;1, 1#£7.
Let prij = [o? + aj?k — a?j]/[Qaikajk] for i,j, k distinct. A sym-
metric form is given followed by a recursive (non-symmetric) form;
the latter is more suitable for numerical computations in maximum
likelihood estimation.

The symmetric form is:

Ar.m(z; 65,1 <i<j<m)=214+ ...+ 2 — Z {z,--{-zj
1<i<j<m

5 ®(65 + 365 lloa(x /) — %5 + 165 llog(z3/%)]) }

+ 3 ()i € 56,0 < i G € S),
S:|S|1>3
where for S = {i1,..., 4} with i} < -+ < 4,
Ts(z,',i S S;(Sij:i < jv i)j € S)
= [ 5k_1(]0g(y/z£j)+25i;§k,j =1,....,k—1;T)dy,
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®@_1(+;T) is the MVN survival function with covariance matrix
[, and T = I'(&;,,,5,7 = 1,.. Ic—-l)isthe(k—l)x(k—l)
matrix with (j,j') element equal to 2(6z Gt 6:1 e~ 6;’ y ,) for

1< 34,5’ <k—1,and §;' is defined as zero for all i

Proof. See Hisler and Reiss (1989). The derivation was essentially
based on Theorem 6.9 with the correlation parameters of a MVN
distribution approaching 1. The sequences aj, = ay, bj, = b, come
from univariate extreme value theory. [1

With parameters listed in lexicographic order, the exponent, in
recursive form for m > 3, is:

Alm(z; 612, .. .,6m_l'm)
= Al,...,m_l(zl, vy Zm-1; 612, . -,6m-—2,m—1)+ (620)

/ ®rm-1(6; m + $0i,m[log(£)], i < m — 1; (pmijJicigm—-1) da.
0

By permuting the indices of (6.20), alternative representations are
possible. The constraints on the §;; are that they are non-negative
and the covariances matrices in all possible representations are
positive definite.

Proof. The proof of the simpler form of the three-dimensional case
is given here. The proofs for higher dimensions are similar.
For m = 3,

A123(z1, 22, 23; 612, 613, 623) = 21 + 22 — Ba(21, 22; 612) + 23

—B3(z1, 23; 613) — Ba(22, 235 623) + Ba(zx, 29, 23; 612, 813, 623),
(6.21)
where

Ta .
Ba(er,anid)= [ 367 + 36 logle/a) dy
0

= z1+ 22— 218(87" + 36{log(w1/x2)]) — 22@(67" + L6[log(z2/x1)])
and

Ba(z1, 22, 23; 612,613, 623) =

/0 2(875' + 261llog(a/21)], 655 + L623[log(a/z2)]; par2) da,

with p3;2 as defined above.
Now, Ba(z2j, z3; 6;3) for j = 1,2 can be rewritten as

/ (675 + Lé13log(g/21)], —o0; pa12) dg
0
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and ]
/ T52(‘00»‘52-31 + %523[108(‘1/22)];17312) dq
0

respectively, and hence the last four terms of (6.21) simplify to the
last term in (6.20) when m =3. [J

For the first generalization of (6.17) and (6.18), a derivation is
given for a specific choice of clustering; the proof in general is
the same, but there is no simple notation to cover all cases (see
Section 5.3). We give one general form of clustering, followed by
the second possibility for m = 4. The general form consists of root
clusters {1,2} and {j+1},j = 2,...,m—1, and derived hierarchical
clusters {1,...,k}, k¥ = 3,..., m. In the notation of Section 5.3, the
parameters are written as £ 2,51,3,...,81,m-

Family M6. (This is a continuation of family M6 in Section
5.3.) With A;s given by (6.17), the exponent, in recursive form,
for m > 3, 1s:

Ar.m(z; 512, 813,...,61,m) = (6.22)

1/81,m
([A1,..m=1(21, .- oy Zm=1; Br2, - - -, Brm—1))Pm + 250m) /s

Pr22Prz2 2 bim 21
The other case for m = 4 has root clusters {1,2} and {3,4}, and

the derived hierarchical cluster {1,2,3,4}; the parameters are £ 2,
P3,4, B1,4- The exponent is

A1234(2; P12, 03,4, P1,4) = (6.23)

3

1,2 B1,27\B1,4/B1,2 B34 B3,4\B1,4/P3,4
(777 + 23"7) + (237" +2577)

1< B1,4 £ F1,2, P34

)l/ﬁl,q

H

Family M7. (A generalization of family B7.) The way to use a
model that generalizes (6.17) to get one that generalizes (6.18) is
as follows. The generalization of (6.18) is a sum of terms, with a
term for each non-empty subset of 23,..., 2,,. The sign of a term
is (=1)I51+! for a subset S. The last term with all m variables
can be obtained from (6.22) by changing all 8 to —f. The term
with variables z;,7 € S, can be obtained from this last term by
crossing out variables z;; with ¢/ € S and then simplifying. For
example, with the right-hand side of (6.22) now denoted by Bj...,m,
and with the same clusters as in (6.22), the generalization of (6.18)
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has exponent Aj..,, given by

1
=B1,; =B\ B1;
Al .m(Z B2, Prm) = E zj — E : (z.‘h 112+zj2 112) 1,32
3 :

J1<j2

+ D0 (=D " Bralzin - Zis =Briar - —Brgi),

3<k<m J1<<Jx
Pr,22 -2 P1,m = 0. (6.24)

Similarly, there is an extension of (6.18) with dependence structure
analagous to the model in (6.23).

The derivation of (6.24) and its extensions comes from the lower
extreme value limit of the family M4 (or the upper extreme value
limit applied to the associated copula of M4 when survival func-

tions are used for the univariate arguments), using Theorem 6.9
and (6.10).

For 1 < j; < j2 < m, the bivariate margin of (6.22) (respectively
model (6.24)) is family (6.17) ((6.18)) with parameter é;,;, = B1,j,.
Hence for fixed 1 < k£ < m, the bivariate dependence between vari-
ables j and k is the same for all j < k. Also the bivariate depend-
ence is decreasing with k. Hence to use (6.22), (6.23), (6.24) and
their extensions, the variables have to be indexed in an appropriate
order. All higher-order margins (for m > 3) of (6.22) and (6.24)
are within the same family. For model (6.23), the (1,2), (3,4) bi-
variate margins are (6.17) with parameters f; 2, 83 4 respectively,
and the remaining four bivariate margins have parameter 3, 4. The
trivariate margins of (6.23) are in the family (6.22).

Next we turn to the second generalization of (6.17) and (6.18),
which has m(m — 1)/2 distinct bivariate dependence parameters,
with m — 1 of the m(m — 1)/2 bivariate margins being (6.17) or
(6.18). For some parameter vectors, the remaining bivariate mar-
gins are close to (6.17) or (6.18). The models that have these prop-
erties are given for m = 3 and 4 dimensions explicitly rather than
in a general form because the form of the model is too complex. The
general multivariate version can be obtained following the steps in
Section 6.2.2, especially (6.14) and (6.11) respectively for general-
izations of (6.17) and (6.18).

Family MM6. This family comes from the upper extreme value
limit of the family MM5 (see Section 5.5) and some of the bivariate
margins have the form of (6.17). With lexicographic ordering of the
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parameters, the exponents for m = 3,4 are:
Ay23(z1, 22, 23; 012, 013, 023) (6.25)
-1 6 6 613,60 -
=222+ f-—ooog 32[71153 + 73° — 77153713:123]1/9”‘3 V2 dvs,

where 712 = n(z1,€772,012), N3z = 1(z3,e7¥2,023) and n(s,1,0) =
1—-[1+ (s/t)e]“l“/”; and

Ar234(2; 012, - - ., 034) = (257 + 2572)1/ 02 (6.26)

—logzz p—1 ] ] 614 8
(023 = 1) 2,57 S it + miyh — mibmads] /e

,(e-‘923112 + e—ﬂzava)—z-i-l/@zae-923(vz+va) dvsdvs,

where 1123 = 7/(n12, 132, 013), Ma32 = 7' (43, 733, 024), '(5,1,0) =
1—[(s/1)° +1 =77 1401 = 6%), m3, = mle™¥®, €72, 023), ma3 =
M(24,€7Y3,034) and 033 = n(e™"2, 773, f23).

In (6.25) and (6.26), the 6;; are greater than or equal to 1. The
models are such that the (7,7 4+ 1) margins, j = 1,...,m —1, are
in the family (6.17) with parameters 6; j4+;. The remaining para-
meters have interpretations in terms of conditional dependence.
The (1,2,3) and (2, 3,4) margins of (6.26) are (6.25) with respect-
ive parameter vectors (012,013, 023) and (023, 624, 034). The para-
meter f;3 measures the amount of conditional dependence of the
first and third univariate margins given the second, and 6,4 has
a similar interpretation. A larger value of the parameter means
more conditional dependence. Similarly, ;4 measures the amount
of conditional dependence of the first and fourth univariate mar-
gins given the second and third margins. Numerical comparisons
indicate that the (j, j') bivariate margins with j' — j > 1 become
closer to (6.17) as the parameters, 6;;:, j' — j > 1, get closer to
1. This suggests that one way to assign variables to the indices
1,...,mis such that the strengths of dependence for the resulting
adjacent variables are greater.

Family MMT. This family comes from the upper extreme value
limit of the family MM4 (see Section 5.5) and some of the bivariate
margins have the form of (6.18). With lexicographic ordering of the
parameters, the exponents for m = 3,4 are:

_ _ —8 —8127—1/6
Ar23(21, 22, 233012, 013, 023) = 21 + 29 + 23 — (27 712 4 25 012) =1/ b1z

—logz2

(2507 4 25 020) "1/ _ / [n72* 4035 2 = 1710136 v2duy,
—00

(6.27)

with 712 = 1(z1,e772,012), 132 = 1(23,e7Y2,6023) and 7(s,t,0) =
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[1+ (¢/5)°]"1-1/%; and

A1234(2; 012, . . ., 034) = A123(z1, 22, 23; 012,013, 023) + 24

—logza
_(23—934 + z4—934)-1/934 __/ [77;3324 + 774—3924 _ 1]—1/9“6-"341’03

fe o]
—log22 p~logas
~(1+02) / / (75 + may* — )70
-0 —00

,(eozavz + 692303)—2—1/9236923(1'24-"3) dvgd'v;g, (628)

where 7123 = 7'(M12, 132, 013), n432 = 7' (M43, 33, 024), 0'(5,8,0) =
[(s/t)—a +1- tO]-l~1/0’ 7’;2 = n(e-‘vs, 6'02,023)’ M43 = 77(24: e—va,
034), M35 = n(e~"2,e7"2, 023) and 723 = 7(22, €773, f33).

In (6.27) and (6.28), the 6;; are greater than or equal to 0. The
interpretation of the parameters and the relations for the different
dimensions are the same as for the models in (6.25) and (6.26).

Remarks. Equations (6.25) and (6.26) are of the form (6.14) and
the family of copulas used for (4.37)—(4.39) in Section 4.5 is the
family B5, i.e., C(u1,u2;60) = 1 = [(1 —w3)® + (1 —u2)? — (1 -
u1)?(1 — u2)®)/%, 6 > 1. Equations (6.27) and (6.28) are of the
form (6.11) and (6.15) and the family of copulas used for (4.37)-
(4.39) is the associated copulas of the family B4, i.e., C(u), u2,0) =
uy +ug— 14 [(1— 1)~ + (1 —up)~% —1]71/¢, 0 > 0. The details
are mostly straightforward but care must be taken in dominating
the integral to use the Lebesgue dominated convergence theorem
before collecting terms and arriving at the terms in (6.25)—(6.28).
The two families of copulas are chosen because in the bivariate case
they have extreme value limits corresponding to (6.17) and (6.18),
respectively.

Next, the families MM1 and MM3 from Section 5.5 are listed
here in the form of the exponent of the MSMVE distribution. The
family MMS is also listed and derives from the lower extreme value
limit of the family MM2 in Section 5.5.

Family MM1. In MSMVE form, the exponent is:

Arem(@ = [ 30 (@) + (i)) % 4 Y v

]1/0
1<i<j<m i=1

¥

(6.29)
where p; = (v; + m — 1)71. The (¢, j) bivariate margin is:

Az, 27) = [((pizf)™ + (py2f)P9)1/%
+(vi + m— 2)p,-zg + (Vj +m-— 2)szf] 1/0.
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Table 6.1. Tail dependence parameters in a special trivariale case of

family MM1.

6 2-2Y% 3-2(15)1/¢

1 0 0
1.25 0.259 0.234
1.5 0.413 0.379
1.75 0.514 0.479

2 0.586 0.551
2.5 0.680 0.648

3 0.740 0.711

4 0.811 0.787

6 0.878 0.860

8 0.909 0.896
00 1 1

With m = 2, p; = p; = 1 or v; = v; = 0, this is the exponent
in the family B6. The upper tail dependence parameter is A;; =
2— [(pf‘j+p;")l/6‘f + (vi+m=2)p; + (v; + m—2)p;]/?; it increases
as 6;; or @ increases.

In a special case of m = 3, we check for the range of dependence
that is possible for the bivariate tail dependence parameters. With
b13 = 1,612 =063 =6, vi=v3=-1,v2=0,and p) = p3 =1,
p2 = %, (6.29) and (4.25) become

- _ 9
Aj23(21, 22, 23) = [(2 6236‘*‘3?6)1/6'*‘(2 6236'*'2:‘3”)1/6]1/ . (6.30)

The bivariate margins are Aja(zj, z2) = [(27°2§% +28%)/ 04 L28)1/°,
j=1,3, and Ais(z1, 23) = (2f + 28)!/. The bivariate tail depend-
ence parameters are A1z = Az = 2 — [(27% 4 1)}/¢ 4 1]}/ and
Aa=2-2Y8 As 6§ — 00, A\ja = Aoz — 2—(1.5)1/%_ A comparison
of A1z with the non-sharp lower bound max{0, A2 + A3 — 1} =
max{0, 3 — 2(1.5)1/%} is given in Table 6.1. The table shows that
there is a lot of flexibility in how small A3 can get given A5 = Aq3.
Also from Theorem 4.17, (6.30) has a wide range for the triple of
bivariate Kendall taus.

Family MMS8. (Lower extreme value limit of family MM2.) The
lower tail extreme value limit of the family MM2 is given below;
it is analogous to (6.29) and generalizes the family B7. Let Cs
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denote the margin of C in (5.20) with indices in S € S,,. Using
Theorem 6.9, the function rg(z;,7 € S) is defined as the limit of
nCs(n~'e™*,i € S) asn — oo, with z; > 0,i=1,...,m. It is
straightforward to verify that

rs(z,i € §) = [Ezi-o_ Z (p7 %22 P 4 py 8ij 96:1) 57 ]

i€S i<j,i€S,jES

©f
.

The limiting MEV copula has exponent

Ai.m(@)=214++2z2m+ Z (=151 pg(2,i € S). (6.31)
' Ses.|S|>2

Many of the dependence properties of this family are the same as
for the family MM2.

Some special cases are given next. Form = 2, with v = 1, =0,
(and hence p1 = pg = 1) and 6 = 6,2, (6. 31) becomes A(z1,22) =
21+ 22— [zl 4257 — (288 4 288)—1/4}=1/% which appears from the
BEV limit in the famxly BBA4.

For m = 3, with 513 — 0, 612 = 523 = 6, v = vz = —1, Vg = 0,
(6.31) becomes

A123(z) = 21 + 22 + 23 — (270 + 25°)~Y/¢
_ [zl-a + z;o _ (zfé + 26236)——1/6]-—1/0
_ [Za—o + zg& _ (zgd + 26236)-—1/6]—1/0
o[ 2y 4 2y f — (280 4 28 288) 1/
—(28° 4 20,85)-1/8)-1/8,
The bivariate margins (by letting one of the .z,- go to zero in turn)
are Aja(zj,22) = zj + 22 =[]0 + 2570 — (2§ + 28285)-1/6]-1/e,
i = 1,3, and Aya(z1,23) = 21 + 23 — (z{'o + z“e)“”o The cor-
responding tail dependence parameters, 2 — A;x(1,1), are Ajz =
[2— (14255~ 18 j = 1,38, and A\j3 = 271/¢ As § — oo,
A2 = Az2 — (1.5)~ 1/ o . The calculations, given in Table 6.2, show

that A3 is close to the non-sharp lower bound max{0, A\12+ X235 —
1} = max{0,2(1.5)~1/% — 1} = Ly, for part of the range of 4.

Family MM3. In MSMVE form, the exponent is
061761110
Al...m(Z) [ZZ — Z ( ' 'J+ IJ J 96:1) .1/6”] .
i=1 1<i<j<m
(6.32)

Note that the v; appear only implicitly in the p;.
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Table 6.2. Tail dependence parameters in a special trivariate case of

family MMS8.

9 2-1/8 L

0 0 0
0.25 0.0625 0
0.5 0.250 0
0.75 0.397 0.165

1 0.500 0.333

1.5 0.630 0.526
2 0.707 0.633
3 0.794 0.747
4 0.841 0.807
5 0.871 0.844
00 1 1

In a special trivariate case, the tail dependence analysis is similar
to the family MM]1, because from Section 5.5, A3 = 2 — 21/¢ and
as 6 — 00, \j2 = Ag3 — 2 — (1.5)'/? and these are the same as for
the family MM1.

6.3.2 Other parametric families

This subsection is devoted to existing parametric families where
parameters are not all dependence parameters and individual
parameters are harder to interpret.

An alternative representation, from de Haan (1984), for MSMVE

distributions has the exponent A = —logG in the form:
1
A@) = [ [ max 500 dv, (6.33)
p lSism

where the g; are pdfs on [0,1]. (This essentially follows from the
definition of MSMVE and a limit on (6.7) as r — oo, with aqy;
being (multiples) of g;(vx) for some points v in (0,1).) The families
B6 and B7 (or (6.17) and (6.18)) can be unified with this form with
1(v) =(1—a) ™, g2(v) = (1 =B)(1 —v)?, with0<a=8<1
for (6.17) and @ = 8 < 0 for (6.18). With «, 8 both less than
1, a two-parameter extension of (6.17) and (6.18) obtains. But its
interpretation is not as easy; the magnitude of the difference of «
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and  measures asymmetry, and the average of & and  measures
dependence. For & > 0, # > 0, expansion of the integral in (6.33)
leads to

Alz(Zl,ZZ;a,ﬂ) = (Z1 + ZZ)B(Z2/(ZI + ZZ);O’, ﬁ)s 0< a’)ﬂ < 11
(6.34)
where B(w;o,f) = (1 —w)u!"*+ w(l —u)!~?,0 < w < 1, and
u = u(w; a, B) is the root of the equation (1 — a)(1 — w)(1 — u)? —
(1= Bwu® =0. For a = —ag < 0, f = —fp <0, one obtains

Als(21, z2; @0, Bo) = (21 +22) B*(22/(21 + 22); @0, Bo), @0, Bo > 0,

(6.35)
where B*(w; ap, fo) = 1 —w(l—u)!tPo— (1 —w)ul** 0 <w <1,
and u = u(w; ao, Po) is the root of the equation (1+ao)(1—w)u*°—
(14 Bo)w(1 —u)P* = 0. There is an obvious multivariate extension
of (6.34) and (6.35), using more g; of the same form in (6.33).

The distributions from (6.34) are increasing in concordance as
a or 3 decreases for a, 8 > 0; the Fréchet upper bound obtains in
the limit as @ = f# — 0 and independence obtains as o = f — 1.
The distributions from (6.35) are also increasing in concordance as
ag or Py decreases; the Fréchet upper bound obtains in the limit
as ap = fo — 0 and independence obtains as ag = fy — oo.
Independence obtains more generally as one of &, 8 (or ap, o) is
fixed and the other approaches 1 (c0). Different limits occur as one
of the parameters approaches 0, for example, as § — 0 in (6.34),
or as By — 0 in (6.35).

Next we list the family of Marshall-Olkin (1967) multivariate
exponential distributions and some of its extensions. Let S be an
index variable over § = S,,,. Let ag > 0 for each S and let vs =
Y r.scr ar- For |S| = 1, simplifying notation such as o; and v; will
be used. For S € S, let Zs be an exponential rv with rate parameter
as (mean agl), and suppose {Zs} is a set of independent rvs. For
j=1,...,m let X; = min{Zs:j € S}.

As before, let the survival function be G = e~“. The exponent
A of the Marshall-Olkin distribution is

. — _ _1\ISl+1 P
A(x;as5,5€8) = Zas max z; = Z( 1) vs minz;.

Ses Ses
(6.36)
The exponent in the last term in (6.36) can be rearranged to get
Alx;as5,S€S8) = Z asas(z;,i € S), (6.37)

Ses
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where -
as(zi,z € S) = — DT+ min ;). 6.38
sens€8)= LDl (639)

The derivation from the stochastic representation is left as an ex-
ercise.

General families of MSMVE distributions can have the form of
(6.37), where as is replaced by something other than (6.38) or
as = max;es Z;. These include

Axes,5€5,6)= Y as(3 xf)w, (6.39)

Ses €S

where 1 < § < oo, with § = oo meaning (6.39) is equivalent to
(6.36), and

Alx;as5,5€8,6) = Z(_I)KSIHVS [Z xi_es]-—l/&
Ses ieS

= Z asag(:c,-,i € S; 5), (640)
Ses

ag(z;,i € S;6) = Z(_I)ITHI [Zz’:-&]—lﬁ
TCS i€T

generalizes (6.38) and 0 < § < oo, with § = co meaning that
(6.40) is equivalent to (6.36). Note that if 6 = 1 in (6.39) or if
5 — 0 in (6.40), then G becomes a product of the univariate mar-
gins, i.e., exp{— Y i, v;z;}. Hence § in both (6.39) and (6.40) is
a global dependence parameter and ag or vg for |S| > 2 are para-
meters indicating the strength of dependence for the variables in S.
The univariate survival functions for (6.36), (6.39) and (6.40) are
Gj(z;) = exp{—vjz;},j = 1,...,m, and each family has k-variate
(2 < k < m) marginal survival functions of the same form. By
rescaling, one gets MSMVE distributions with unit means for the
univariate margins. Special cases of (6.39) and (6.40) include the
families B6 and B7 and their permutation-symmetric extensions
(take a5 =0 if S # {1,...,m} and oy, m} =1).

Another approach is to use Pickand’s representation with para-
metric families of densities on the simplex S,,. An example is the
Dirichlet distribution (or beta distribution for m = 2). After rescal-
ing to get unit exponential margins, the exponent is:

AG) = [ max fwse/v)0es) [Tl ™ Do) dw,
S, 1Si<m ici

where
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where a; > 0, j = 1,...,m, are the parameters of the Dirichlet
distribution, ay =y + -+ am, and ¥; = ajfay, j=1,...,m.
The independence and Fréchet upper bound copulas obtain when
ay goes to 0 and oo respectively, with a;/ay — m; > 0, 7 =
1,...,m. For the bivariate case, there is the simplification to

A(zla 22) = 21[1 - B(y;al + 1,&'2)] + z2B(y;alaa2 + 1))

where y = (z2/v2)/[21/v1 + 2z2/v2] and B is the incomplete beta
function. The interpretation of the parameters of the Dirichlet dis-
tribution in the resulting MSMVE distribution is not simple.

6.4 Point process approach *

Inference with multivariate extremes can be in the form of compon-
entwise maxima (or minima), in which case the models in the pre-
vious section can be used directly. In addition, there is a point
process approach for inference with multivariate tail probabilities;
this may be more natural if data are not in the form of maxima.
The background for this approach is given in this section.

Let (X;1,...,Xim) be iid random vectors from the distribution
F,i=1,2,.... Let Z;; = tj(X;;) be (one-to-one) transforms such
that Pr(Z;; > z) ~ 271, as z — oo. (This is essentially a transform
to a tail that is like the Fréchet distribution with parameter of
1.) Let M;, = maxici<n Zij, j = 1,...,m, be the componentwise
maxima.

Let P, denote the point process in " from {n~1Z;,...,n~1Z,}.
From multivariate extreme value theory, under some regularity
conditions, P, converges weakly to a non-homogeneous Poisson
process on [0,00)™\{(0, ...,0)} asn — oo, with the intensity meas-
ure A of the limiting process satisfying A(B/c) = cA(B) for all
¢ > 0 and all measureable sets B that are bounded away from the
origin. Let

V(Z) = A({[(O’ 21) Xoeee X (0’ zﬂl)]c})y

so that V is homogeneous of order —1, i.e., V(cz) = ¢~V (z) for
alle> 0, z € (0,00)™.

If A(w) is a possible exponent of a MSMVE distribution, then
V(z) = A(zY,...,2;}) is a possible intensity measure function.

Proof. Let M}, = M;;} = minicicn Z;', j = 1,...,m. Then for
z >0,

Pr(Mj, < nz) ~ (1 =[n2] )" = e 1*, n — oo,
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or for w > 0, Pr(M}, > w/n) — e~ as n — oo. If the sequence
n{Mj,,..., M} ) converges in distribution as n — oo, then the
limiting distribution is in the MSMVE class, say with exponent
A(w), and n™!(Myy, ..., My,) converges in distribution to a max-
stable multivariate Fréchet distribution (cf. (6.6)), with exponent
Azt 20h).

Next we look at the limit by taking a point process approach.
Let B =[(0,21) X -+ % (0,2m)]¢. Then

Pr(n~'Z; ¢ B,i=1,...,n) = e AB) = ¢~V (@) (6.41)

since the event on the left-hand side of (6.41) involves a count of

0 for the point process P, and the limiting count is a Poisson rv

with mean A(B); this follows from the limiting non-homogeneous

Poisson process result. However the left-hand side of (6.41) is also

Pr(n~'Mj, < 2;,j = 1,...,m). Hence V(z) = Az, z0h).
o

The method of maximum likelihood can be used to obtain estim-
ates of model parameters, including parameters of the functions ¢;
used to transform to the form of the assumed univariate tail.

Assuming that the point process does not have mass in lower-
dimensional spaces (otherwise, see the references in Section 6.7),
the likelihood given the transformed data is as follows. Let x; =
(zi1,. .-, &im), t = 1,...,n, denote the original data and let z; =
(zi1,-.-,2%im), i = 1,...,n, denote the transformed data which have
the required tail frequency distribution. The x; are iid realizations
of a random vector X and the z; are treated as iid realizations of a
random vector Z. If the n~1z; which lie in a set B are a realization
of a non-homogeneous Poisson point process with measure A(-;0)
and intensity function A(-;8), where 8 is a parameter vector, then
the likelihood for 8 is

L(6) = [ H )\(n“lzi;a)] exp{—A(B;0)}.
i:z;/n€B
Note that (—1)™ times the mixed derivative of V is the intensity
function associated with the non-homogeneous Poisson process. Let
M1, ..., 0, be vectors of univariate marginal parameters. Then we
may write z; = (t1(zi1; M), -, tm(Zim; Mm)), ¢ = 1,...,n, where
t1,...,tm are strictly increasing transformations. The full likeli-
hood for 8,1y, ...,n, (with asymptotic approximations) is then

L(,m,...,%m) = exp{—A(B;0)} (6.42)
’ Hx;:z.'/nGB [A(n—lzi; 9) H_;'nzl n—l —g% (xij ; ?7.7 )]'
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A weak assumption is that univariate distributions are in the
domain of attraction of a GEV distribution. Then the transforma-
tions of the variables come from assuming that the upper tails are
generalized Pareto with unknown parameters, with the remainder
of the distributions being arbitrary but known or estimated with
an empirical distribution (alternatively rank approximations can
be used for the remainder).

This leads to the following transformations for the ¢;. Assume
that the sample size n is large. For j = 1,...,m, assume that
the cdf of X; is known below the threshold u; and conditionally
generalized Pareto with unknown parameters ; = (v;,0;) above
the thresholds. That is, the jth cdf is

F'(xj)’ Zj <Uj,

1—(1 = Fj(u;))(1+ 75 [=; ““J]/‘TJ)+1/W’ zj 2 uj,

where y; = max{0,y}. The transformation Z; of X; is such that
Z; has the Fréchet distribution G(z) = exp{—1/z}, z > 0. Note
that G(z) ~ 1 —1/2z for z large, as required from the point process
derivation. Therefore,

Z; = t;(X;) = [-log Fj(X;;m)I”",  X; = F; Y (exp{-1/Z;};n;)

and, for X; > u;, Z; = [~log{l — (1 — Fj(¢;))(1 + % [(X; —
Uj)/O'j]);I/-ﬁ}]-l. For z; > uj, 8t;/dz; evaluated at z = tj(z;)
becomes o} 'z%(1 — e~ Z) 147 (1 — Fj(u;)) e/,

For (6.42), there is a simplification if B = (x7%,[0, n=12;(4;)])°,
since in this case ¢; depends on 7; only if z;; > u;

The intensity function is A(z) = (-1)mo™V/ Hazj. For (6.29)
and (6.32), V is of the form D¢, with D in turn taking the form
iz Di + i Dij. For (6.31), A comes from the last term
(=1)™*1ryy . .m} and r{q, .} has the form D¢ of the preceding
sentence. The mixed derivative of V can then be obtained from the
derivatives of the D; and D;; and ) obtains in a reasonable form.
Let Dj; = D;; for i < j, and let

oD 0D;;
Wi = 8z = Z Bz,J

Piaing) ={ |

and
320 32 D’] . .
0%;0z; = 9z 0z; Vi g

Wi =
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The mth-order mixed derivative of D¢ is

omv = - — {—~m - .
3o o, =D (C=m+ D I=11W (6.43)
+ =1 (= m+ 2D (oW T] W)
i<j k#i,j

+ C(C-— m+3)DC—m+2 <Z*Wi1,j|Wi2.j2 H Wk)’

k#iy,i2,51.52

where " is over the set {i) < ji,12 < jo,7; < i2}. Note that the
third term on the right-hand side of (6.43) is null if m < 4.

6.5 Choilce models

In this section, we illustrate the use of MEV distributions for choice
models. This is just one of many possible families for choice models
that has appeared in the econometrics and mathematical psychol-
ogy literature. One of its advantages is that closed-form choice
probabilities obtain if a closed-form parametric family of MEV
distributions is used.

In general, a choice model for m items consists of an absolutely
continuous multivariate distribution for rvs Xy, ..., X, where X
is a utility or merit rv associated with the jth option or item. (The
assumption of absolute continuity is needed here to eliminate the
possibility of a positive probability of ties among weighted maxima
or minima.) A choice probability has the form 7; s = Pr(X; >
Xi,1 € S,i# j), where S € Sin, |S] > 2; 7},5 is interpreted as the
probability that option j is the preferred or chosen option among
the choice set S of options.

Additional notation and background ideas are needed before we
get to the calculation of choice probabilities for MEV distributions.

Let G(x) = e~A(*) be an absolutely continuous min-stable m-
variate exponential survival function and let X ~ G. For 7 =
1,...,m, let A; be the partial derivative of A with respect to z;.
(We retain the notation of Section 6.3, with Ag denoting the S-
margin of A for |S| > 2, so that Ag; for j € S refers to the
Jth partial derivative of As.) Then —8G/8z; = GA;. By writing
A(x) = z1A(1, z2/21, ..., 2m/z1) (cf. condition (6.16)), —0G/ 8z,

is also equal to

G[A(l,l‘g/.’tl, ceTm/Ty) — Z(.’E,’/C[!I)Ai(l,mz/xl, . ..,wm/wl)].
T=2
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Therefore

Ar(x) = A(x/z1) = Y (2:i/21)Ai(x/x1) = Ar(x/z1).

=2
That is, A1(x) depends only on the ratios z;/z; and is homogen-
eous of order 0. Similarly, for j = 2,...,m, A;(x) depends only on
the ratios z;/zj, i =1,...,m.

Conditional survival functnons are Pr(X; > z;,1 # j|X; = z;) =
—e%i3G [0z, = €®iGAj,j=1,...,m. Let X* =min{X,,..., Xm}.
Then

o0
Pr(X* > 4, X* = X;) = / e AGI) Ai(zlm)dr  (6.44)
t

= [ A0 A (Ln) do = [A; (Lm)/A(L)JeAC),

(This shows that E 1 Aj(1m) = A(1m).) But the right-hand side
of (6.44) is also equal to Pr(X* = X;)Pr(X* > t), so that the
events {X* = X;} and {X* > t} are mdependent for all j. How-
ever, this independence criterion does not characterize MSMVE
distributions among the class of multivariate exponential distri-
butions. If (X1,...,Xm) is a vector of exchangeable exponential
rvs, then Pr(X* > ¢, X* = X;) = m~'Pr(X* > t) = Pr(X* =
X;)Pr(X* > t) for all j by symmetry.

Now suppose that e~4 is a MSMVE survival function and V has
the MEV distribution F(x) = exp{—A(e™*!,...,e~*™)}. Suppose
also that there are location parameters p;, which are merit para-
meters, associated with the jth option, j = 1,..., m, and option
Jj is preferred to the other m — 1 options if V; + p; > Vi +
for all i # j. Let w;, j = 1,...,m, be the probability that the jth
option is preferred (or chosen). These are the choice probabilities
with a MEV distribution as a choice model when the choice set is
S={1,....,m}. Let wj =e* and Z; = e~ Y, j = 1,...,m, and
let pij = pi — pj, wij = e# = w;fwj for i,j = 1,...,m. Then

M = My ,.,m) = Pr(Vi > Vi pa,i=2,...,m)
= PV, < Vi —pi1,2<i<m)=Pr(Z; > winz;,2<i<m).
Using properties of MSMVE distributions,

o0
T = / e’A("‘“"‘z"""”"‘“)Al(1,wzl,...,wml)dz
0 .

= Al(l, W,y -« .,wml)/A(l,UI21, . .,wml)
= Ai(w)/[w A(wW)] = wiAi(w)/A(w).
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Similarly,

T = T q1,..m) = wiA;(w)/A(w), (6.45)
J =2,...,m. For other S € S, probabilities m; s have a similar
form with Ag;, As replacing A;, A in (6.45), since the class of
MSMVE distributions is closed under margins.

Logit-type probabilities result when the permutation-symmetric
copula M6 is used (see case 1 in Example 6.2 below). Other choice
models occur from other MEV copulas. Note that the models de-
riving from max-stable MEV distributions are convenient in that
closed-form expressions are obtained for the choice probabilities
7;5. The parameters y; can be functions of covariates when the
options have a factorial or regression structure.

Example 6.2 Some cases, using MSMVE distributions from
Section 6.3.1, are:

1. A(z) = (zf R zfn)1/0> ] ..>.. 1. Then
Aj(z) = (2 4 - 4 28 ) 1H1/e0-1

j
and, from (6.45),

m
T =w;?/(w§+"-+wz,)=60"5/26‘9”", i=1,...,m.
i=1

2. Az1,22) = z1+22"(2;0+z;0)—1/0, 6 > 0. Then, for j = 1,2,
Aj(zl)zﬂ) =1- 2‘7_"9“'1(21—0 + z;9)—1_1/9
and

5 = [wj—w]* (w]’+wy®) YO/ [wy Hw —(wi f +wy f) )

3. A2y, 22, 23) = [(2] + 25)%7° + 28]/%, with 1 < 6 < 6. Then,
mj = {wi/(w] +wg)} - {(w] +wd)"*/[(w] +w))? +wi]},

j=1,2,and 73 = w§/[(w§ + w§)*/? + wi].
0O

In the remainder of this section, we look further at a generalized
‘independence’ criterion. Let cy,...,¢,, be positive constants and
let X*(c) = min{X;/c;i : 1 =1,...,m}. This is equivalent to the
maximum of the shifted extreme value rvs given above. If X is
MSMVE with survival function G, then the events {X*(c) > t}
and {X*(c) = X;/c;} are independent. Since G = =4, where A
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is homogeneous of order 1, it is straightforward to obtain:
Pr(X*(c) > t,X*(c) = X /c;)

o0
= /c exp{-—A( %‘-,..., 9—23,—’—)}Aj az .., Eg;i)dl:

it 7
(A0 2,0, =)A= exp{—citA(Z, .., =)}

= ¢j[Aj(c)/A(c)) exp{-tA(c)}

= Pr(X"(c) = X; /e) Pr(X*(c) > ),
j=1,...,m. (Hence Y v, ciAi(c) = A(c) for all ¢ € (0,00)™.)

The generalized ‘independence’ criterion need not hold for other

exchangeable exponential rvs. This can be verified directly for some
specific cases (e.g., with the copula B10).

The theorem below shows that the above is a characterization
of MSMVE distributions.

Theorem 6.10 If X is (absolutely continuous) multiveriate ez-
ponential and {min; X;/c; > t} is independent of {min; X;/c; =
Xj/cj} forallt >0, j€{l,...,m}, c € (0,00)™, then X must be
min-stable multivariate ezponential.

Proof. The proof follows that in Robertson and Strauss (1981) for
the most part.

Let G(x) be the survival function of X, let G; = —-0G/0z;,
j=1,...,m, and let X*(c) = {min; X;/¢;}. Then

Pr(X*(c) >t,X"(c) = Xj/cj) = /oj Gj(glz/Cj,. ., emzfc;) de

0o
= Cj/ Gj(cl:z:, .o .,cmz) d.’L‘, ] = 1, ceay M, (646)
t

Pr(X*(c) = Xj/cj) = ¢; ‘/:o Gi(erz,...,cmz)dz, j=1,...,m.
If
Pr(X*(c) > £, X*(c) = X; /¢;) = Pr(X" () = X; /ej) Pr(X"(c) > 1)
for all £, j, then for : # 7,

Pr(X*(c) >t,X*(c) = Xi/e;)/ Pr(X*(c) > t,X"(c) = Xj/c;)

=Pr(X"(c) = Xi/c;)/ Pr(X"(c) = Xj/c;) -  (6.47)
does not depend on ¢. Let the right-hand side of (6.47) be denoted
by pij(c). Then p;; is increasing as ¢; increases and decreasing as
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¢j increases. Differentiating ratios of the right-hand side of (6.46)
implies

[c,‘G,‘(Clt,...,cmt)]/[CjGj(clt,...,Cmt)] = p,-j(c), Vt. (648)
Rewrite (6.48) as
¢iGi(eit, .. .,emt) = ¢;Gj(art, ..., cmt) pij(c), Vi (6.49)

Let Gox = 8G¢/0zr = —0%G/0z40zy, for 1 < £,k < m. Then
differentiation of (6.49) with respect to ¢ yields ¢; Y ;- ckGix =
pij(€) ¢j L=y ek Gjk o

G; zCkGik = GiZCijk- (6.50)
k=1 k=1

Let t = 1; then (6.50) holds for all arguments ¢ € (0, co0)™. This im-
plies ), cxGir(c)/Gi(c) = n(c) for some function 7 that does not
depend on the index i, or ), cxGir(c) = 9(c)Gi(c), i=1,...,m.
This has a solution only if n(c) = ¢'(G(c)) for some function ¢
with first derivative ¢’, and then by integration

> exGi(c) = ¢(Glc)). (6.51)
k

(The proof is as follows: Let L(c) = 3, cxGk(c); then Li(c) =
>k ckGik(c) = n(c)Gi(c), i = 1,...,m, so that L;G; — G;Lj =0
for all i # j. Hence the Jacobian 0(G, L)/8(¢c;, ¢c;) vanishes for
all 7 # j. For m = 2, this means that L and G are functionally
related. For m > 3, let c¢_;; or x_;; be ¢ or x respectively without
the ith and jth components. Then there are functions ¢;;(u,x_;;),
i < j, such that L(c) = ¢;;(G(c),c-;j) for all i < j and Ly =
%‘Gk+m-l(k#i,j). Hence for k # 1, j,

Ox)

oz

L; .?.giél -G G;

00 8¢i;
L %GB g,

only if %‘f— = 0. This implies that ¢;; = ¢ for all 1 < j and
that G and L are functionally related.) Since G;; < 0, G; > 0,
i,k=1,...,m, then ¢' <0 and ¢ > 0.

Replace ¢ now by zjy. The first-order partial differential equa-
tion (6.51) can be solved by the method of characteristics (Bluman
and Cole 1974) to get the only possible solutions. This means first
solving
_dzy dG

d(L‘l

TS =Gy



202 MULTIVARIATE EXTREME VALUE DISTRIBUTIONS

to get independent solutions u;(x) = a@1,...,uUm(X) = a@m, where
ai,...,am are constants, so that the solution to (6.51) has the form
Bluy,...,um) = 0 or up = a(uy,...,um-1) for some functions

a, B. From solving dz,/zy = dz;y1/zis+1, one has u; = z;41 /21 =
ai, i = 1,...,m — 1. From solving dz;/z; = dG/$(G), one gets
Um = ((G)/zy = am, where log((G) is the anti-derivative of
[6(G)]!. Since ¢’ < 0, then ( is a decreasing function. Therefore
C(G(x))/z1 = a(z2/zy,...,Tm/z1), OF

C(G(x)) = zia(z2/z1,. .., Zm/21) = A(X)
where A is a homogeneous function of order 1, or
G(x) = (™1 o A(x) = P(A(x)) (6.52)

with ¢ = ¢~!. The homogeneity condition means that A has mar-
gin A(0,...,0,2;,0,...,0) = b;z; for a constant b;, i = 1,...,m.
To get exponential survival distributions as margins, {~1(t) = e~*
or {(s) = —logs, and hence G is a MSMVE distribution. [

Other solutions G to (6.51) (or other survival functions with the
generalized independence property) have the form of (6.52) with
some other decreasing function 9. Sufficient conditions are: (i) ¥
is a LT (see Section 4.3); (ii) —logy € L;, (see Section 4.4); and
(iii) ¥ € Ly (see (1.1) in Section 1.3) if A satisfies
oIStA
m(x) Z 0 VS € Sm.

(__1)1+ISl

We return to this in the next section.

6.6 Mixtures of MEV distributions *

In this section, we study the class of mixtures of powers of a MEV
distribution. This is a special case of the larger class of mixtures of
powers of a max-id distribution, as given in Section 4.3. This class
has some closure properties that the larger class need not have. It
is these closure properties and other properties that make the class
interesting.

The three types of univariate extreme value margins are Gum-
bel, Weibull and Fréchet (see Section 6.1). Since maxima can be
transformed into minima and vice versa, we will consider Weibull
survival margins with minima, and Fréchet and Gumbel margins
with maxima so that we can work on either [0, c0) or (—o0, 00) for
each univariate margin. Without loss of generality, we assume that
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the univariate margins are identical and standardized. As shown
in Section 6.2.1, a property of a MEV distribution G is that all
positive powers of G are also distributions.

Let G be a min-stable m-variate exponential survival function
with unit exponential margins and let A = —logG. Since A is
homogeneous of order 1, A(z;,...,2m) = z; if all arguments are
zero except zj, and G'(x) = exp{—tA(x)} = exp{—A(tx)} is a
survival function for all ¢ > 0.

By making the transformations z; — z, with @ > 0, the result-
ing min-stable m-variate Weibull survival function is

Gi(x;a) = exp{—A(z],...,z3)}. (6.53)
If X has the distribution in (6.53), then
Pr(min{Xj/e1,..., Xm/em} > t) = exp{—A((tc1)%, ..., (tem)*)}

= exp{—t¥A(cy,...,cx)}, t>0,
for all ¢ € (0,00)™. That is, min{X,/cy,..., Xm/em} has a scaled
Weibull distribution for all ¢ € (0, c0)™.
Similar results hold for transforms to other extreme value mar-
gins. By making the transformations z; — x;ﬁ, with g > 0, the
resulting max-stable m-variate Fréchet distribution function is

Ga(x; B) = exp{—A(z]”,...,2;9)}. (6.54)
If X has the distribution in (6.54), then
Pr (max —}&, e Xm < t) = exp{—A((te))™?, ..., (tem) ™)}
C1 Cm

= exp{—t"P A(c;?,...,c;P)}, t>0,
for all ¢ € (0,00)™. That is, max{X,/e¢i1,..., Xm/cm} has a scaled
Fréchet distribution for all ¢ € (0, 00)™.
By making the transformations z; — e~%, the resulting max-
stable m-variate Gumbel distribution function is

Ga(x) = exp{—A(e™™,...,e”"™)}. (6.55)
If X has the distribution in (6.55), then
Pr(max{Xi—ci,..., Xm—cm} < t)=exp{—e tA(e™%,...,e" ")},

—o0 < t < 0o, for all ¢ € (0,00)™. That is, max{X; —¢1,..., Xm—
¢m }, a maximum of shifted random variables, has a location-shifted
Gumbel distribution for all ¢ € (0,00)™. The weighting is done
with additive rather than multiplicative constants in this case.
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Note that a positive power of (6.53), (6.54) or (6.55) is a survival
or distribution function since either a scale or location shift occurs.
By taking mixtures of powers of one of these MEV distributions,
we get distributions with other univariate margins which satisfy
the closure property of weighted minima or maxima in the same
scale or location family. Let M be the distribution function of a
positive rv and let its LT be . The mixtures of powers of (6.53),
(6.54) and (6.55) lead to:

/000 exp{—7A(z$,...,z2)}dM(y) = ¥(A(zf, ..., z2)), (6.56)

/Ooo exp{—vA(z7?,...,z;P)}dM(y) = ¢(A(=z]?,...,257))

(6.57)
and
/o exp{—7A(e™™",...,e™"")}dM(7) = $(A(e™™,...,e7"")).
(6.58)

The univariate survival margins in (6.56) are ¥(z5) and the uni-

variate cdfs in (6.57), (6.58) are respectively 1/)(a:;ﬁ ) and ¢(e~%3). If
X has the distribution in (6.56), min; <i<m{X:/c;} has the survival
function ¥([t/o(c)]®), t > 0, with o(c) = [A(cS,...,c3)]" Ve If
X has the distribution in (6.57), max;<i<m{Xi/¢;} has the dis-
tribution ¥([t/n(c)]~?), t > 0, with n(c) = [A(cT?, ..., czP)/P,
and if Y has the distribution in (6.58), maxi<i<m{Yi — ¢i} has
the distribution ¢(exp{—[t — p(c)]}), —o00 < t < oo, with p(c) =
log A(e~%,...,e~°m). :

A special case of (6.58) or (6.57) arises when (s) = (1+s)~!. For
H = e~ being a general max-stable distribution, FF = [ HYdM(7)
is a max-geometric stable distribution. A multivariate distribution
F is max-geometric infinitely divisible if for X ~ F, then for
any 0 < p < 1, there exist iid random vectors X, ;, independent of

Ny, such that x max;<n, Xp: (with componentwise maxima),
where Np is a geometric rv with parameter p (Pr(N, = k) =
p(1 —p)f~!, k = 1,2,..), and F is max-geometric stable (a
stronger property) if for all 0 < p < 1, X, 1 is in the location-scale
family generated by F. Hence as a consequence of this definition,
F/[p+(1—p)F] must be in the location-scale family generated by F’
for any 0 < p < 1. It is easy to show that this property is satisfied if
F(x) =1+ ~=,...,e"*=)]~! where A(is homogeneous of order
1. With H being the Gumbel distribution and %(s) = (1 + s)71,
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the univariate margins of (6.58) become the logistic distribution
(14+e7%)"! and F is a max-geometric stable multivariate logistic
distribution.

In the remainder of this section, some dependence properties and
characterizations are given.

Theorem 6.11 Let F = [° HYdM () be the survival function or
distribution function given in (6.56), (6.57) or (6.58). Then F is
the distribution of associated rvs.

Proof. The proof is similar to that of Theorem 4.5 and is left as
an exercise. [

We mentioned above that (6.58) could result in multivariate dis-
tributions with univariate logistic marginals with the choice of the
LT %(s) = (1 + s)~!. However, for logistic margins, only strictly
positively dependent multivariate distributions can result; it is eas-
ily checked that the multivariate distribution with independent
univariate logistic margins does not satisfy the property of clo-
sure under weighted maxima. This division of independence versus
positive dependence is true in general. We show below that multi-
variate distributions with the independence copula can arise from
(6.56), (6.57) and (6.58) only if the univariate margins are Weibull,
Fréchet and Gumbel, respectively.

Theorem 6.12 Suppose that Y(A(zg,...,z2)) in (6.56) is equal
o H;"zl P(z§) for all x € (0,00)™. Then all possible solutions are

covered by taking ¥(s) = exp{—As'/?} for some positive constants
Aando.

Proof. Let Xy,..., Xm be iid with survival function F(z) = #(z®).
Then F'(t) = Pr(X; > £, X3 > t) = p((ta)*) = F(ta) for all
t > 0, where a* = A(1,1,0,...,0) is a constant (exceeding 1). Let
r(t) = —log F(t). Then r(0) = 0, r(c0) = oo, r is increasing and
2r(t) = r(at) for all t > 0. Let ¢ be a constant satisfying a = 2°
so that 2977(t) = ar?(t) = r7(at). Next, let n(t) = r°(t) so that
an(t) = n(at) for all ¢ > 0. Since the LT v is differentiable, 7 is
differentiable and an/(t) = an’(at) for all ¢ > 0. The conditions on
r and 7 then imply that 7 is a constant and 7 is linearly increasing.
Since 7(0) = 0, n(t) = A7t for a positive constant A. Hence r(t) =
At'/? and o = loga/log 2, or F(t) = exp{—At'/} for some positive
constants o, A.

Theorem 6.13 Suppose Y(A(z7”,...,z:F)) in (6.57) is equal to
H;-n:l 1/)(:31-_‘6) for all x € (0,00)™. Then all possible solutions are
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covered by taking (s) = exp{—As'/?} for some positive constants
A and o.

Proof. The proof is accomplished by a similar argument to that of
the above theorem. We omit the details. [J

Theorem 6.14 Suppose YP(A(e™"*,...,e~*™)) in (6.58) is equal
to [Tj=, ¥(e=%3) for all x € R™. Then all possible solutions are

covered by taking ¢(s) = exp{—As1/?} for some positive constants
A and 0.

Proof. Let X have the distribution $(A(e™**,...,e7*")). Set ¥; =
exp{—Xj/a},j=1,...,m, where @ > 0. Then (V3,...,Ys) has
the survival function

Pr(Y; >y, 1<j<m)=Pr(Xi<-alogy,...,Xm< —alogym)

= P(A(Ys - -, ¥m))
for all y € (0,00)™. If X1, X2,...,Xn are independent with sur-
vival function ¢(e~%), then Y1,Ys,...,Y,, are independent with
survival function ¥(y®). From the proof of Theorem 6.12, we get
that ¥(s) = exp{—As!/?} for some positive constants ), o. This
completes the proof.

Choice probability properties from Section 6.5 hold for (6.56) to
(6.58). The independence criterion also holds for scale mixtures of
MSMVE distributions, i.e., survival functions of the form F(x) =
f:° e~ 7A(®)dM(v) where M is the distribution of a non-negative
rvILIfX ~ Fand X* = min{X,,...,Xn},thenforj=1,...,m,

o0
Pr(X* > 1, X" = X;) = / Pr(X* >4, X" = X; | T = 7) dM()
0

_ Ai(ln) @
A(lm) Jo
Also the same probability as (6.45) results if (Vi, ..., V) ~ F with
F given by [;° exp{—vA(e™**,...,e""")}dM ().

e~ 740m) dM(y) = Pr(X* = X;)Pr(X* > t).

6.7 Bibliographic notes

Books on extreme value theory include Galambos (1987) and Res-
nick (1987). Representations of multivariate extreme value distri-
butions are given in Pickands (1981), Deheuvels (1983) and de
Haan (1984). For copulas and multivariate extreme value distri-
butions, see also Deheuvels (1978). The definition of min-stable
multivariate exponential is from Pickands (1981).
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References for the BEV and MEV families in Section 6.3.1 are
Hiisler and Reiss (1989), Tawn (1988; 1990), Joe (1994; 1996a).
The family B6 (and its extension to M6) is called a logistic model
in Tiago de Oliveira (1980) and Tawn (1988; 1990). The adject-
ive ‘logistic’ comes from the fact that the difference of dependent
Gumbel or extreme value rvs with the copula family B6 has the
logistic distribution; this also relates to the choice model results in
Section 6.5. The models are not called logistic here because logistic
regression comes up later in the book.

References for the families in Section 6.3.2 are Smith (1990),
Joe (1990a; 1993) and Coles and Tawn (1991). The models of Joe
(1990a) have not been successful in fitting multivariate extreme
value data, partly because the parameters ap of (6.39) and (6.40)
are not interpretable as solely dependence parameters.

For the point process approach, see Joe, Smith and Weissman
(1992) for the bivariate case and Coles and Tawn (1991) for the
multivariate case. The presentation in Section 6.4 is a little bit
different from that in Coles and Tawn, where the densities of the
point process measure are emphasized more.

References for choice models are McFadden (1974; 1981). See
the comment in McFadden (1974, p. 108) on the general difficulty
of specifying a joint distribution in order to get closed-form choice
probabilities. For a property of coverage of choice probabiiities from
MEV choice models, see Dagsvik (1995).

The results from Section 6.6 are mainly from Joe and Hu (1996).
See Rachev and Resnick (1991) for max-geometric multivariate dis-
tributions and Arnold (1996) for max-geometric multivariate logis-
tic distributions.

6.8 Exercises

6.1 Find the parameter of the extreme value distribution in which
the ¢ distribution with v degrees of freedom is in the do-
main of attraction. The t distribution has density of the form:
f(z) = ¢,(1 4 2%/v)~+1/2_ [Hint: approximate the tail of
the density and hence the survival distribution, and then com-
pare with Example 6.1.]

6.2 If e=4(2) and e~B(%) are MSMVE survival functions, show
that e=A(2)=PB(z) i5 also MSMVE for all a,f>0.

6.3 Derive the survival function for the Marshall-Olkin multivari-
ate exponential distribution from the stochastic representa-
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6.4

6.5

6.6

6.7
6.8

6.9
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tion in Section 6.3.2.

If X = (X1,...,Xm) is MSMVE, then show that Z with
Zi = min<i<m 6ij X;, ag; 2 0, k,j=1,...,m, is MSMVE.
Consider the min-stable trivariate exponential survival func-
tion G = e~4 with A(z1, 22,23) = [(2f +28)%/% + 2§]'/%. Show
that G is not a proper survival function if § > 6 > 1.

Take the extreme value limit of the bivariate copulas in the
families B2 to B6 and B9 to B11 in Section 5.1.

Prove Theorem 6.11.

Verify that the extreme value limits for the families MM4,

MMS5 and MM2 are respectively the families MM6, MM7 and
MMS.

Suppose (Vi,...,Vmn,T) has an absolutely continuous MEV
distribution, ‘

F(:l:l, ooy Tim, mm+l) = eXP{—A(e"”, o ’e-—a:.n, e-z'm-n)}’

where T is a threshold random variable and the V; have a
similar interpretation to that in Section 6.5. Let S be a non-
empty subset of {1,...,m}. Show that

Pr(ggg{Vj +upi}>T > max{V; + /z;})

has closed form based on A and its margins. This is an ex-
ample of a subset choice probability. [Hint: start with m = 3,4
to see the pattern.]

(A.J.J. Marley, personal communication, 1996)

6.9 Unsolved problems

6.1

6.2

Find other approaches to deriving parametric families of MEV
copulas with better dependence and closure properties.
Conjecture: For a multivariate distribution of the form (6.58),
the only possible symmetric univariate distributions that can
result over all LTs ¢ are the scaled logistic distributions. This
is equivalent to showing that

Y(s) =1—-9(s7Y), Vs>0,
holds only for the LTs ¢(s) = (1 +s'/%)~!, § > 1. -

TIEEE I ®




CHAPTER 7

Multivariate discrete
distributions

This chapter is devoted to multivariate discrete distributions for bi-
nary, count, ordinal categorical and nominal categorical responses
(Sections 7.1 to 7.4, respectively), and extensions to models that
include covariates. Included are models that could be considered
as multivariate logit models for multivariate binary and ordinal re-
sponse data. Dependence structures that are covered are exchange-
able and general dependence, with both positive and negative de-
pendence. The time series dependence structure is discussed in
Chapter 8; it can be obtained from some models as a special case
of the general dependence structure. The data analyses in Sections
11.1 and 11.2 make use of the theory in this chapter.
Approaches for multivariate models include:

(a) mixtures over Bernoulli or Poisson parameters for multivari-
ate binary or count data;

(b) latent variable models from copulas with discrete probability
distributions for the univariate margins;

(c) conditional independence models and random effects models.

The types of models that can be constructed depend on the re-
sponse type. For some types of models, it is not possible to sepa-
rate out the dependence from the univariate parameters, i.e., the
range of dependence depends on the univariate margins. Because
of the discreteness, this separation may not be as critical.

7.1 Multivariate binary

An exchangeable multivariate binary model may be reasonable for
some familial or cluster data, where the same binary variable is
measured for each member of a family or cluster. If there is no
reason to assume exchangeable dependence, then one should use a
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Table 7.1. Bivariate Bernoulli distribution
Y1\Y; 0 1

0 DPoo  Por  Po+
1 Pio P11 Pi4

P+o P41 1

model that can cover as general a dependence structure as possible.
An example is the measurement of a vector of different binary
outcomes (at the same time) on each individual in a study. In
this section, we start with simple models for multivariate binary
response and proceed to more complex models.

7.1.1 Bivariate Bernoulli and binomial ®

Table 7.1 shows the natural bivariate Bernoulli or binary distri-
bution. In it, Pr(Y; = 1,Y2 = 1) = p1y, Pr(Yy = 1) = p1gp =
w1, Pr(Yo = 1) = py1 = mg, etc. The bivariate Bernoulli dis-
tribution can be parametrized to have two univariate parameters
w1, 72, and one bivariate parameter p;; (or the correlation p =
(p11 — m1m2)//m1 (1 = m1)wa(l — w2) ). From the Fréchet bound in-
equalities in Section 3.1,

max{0,7r1 + Ty — 1} S P11 S min{')rl, 7!'2},

so that

[mim /71' T g l-m
max{ 1742 1 2} < < mm( ma.x), (7.71)
1 1I'2 m T2 7"max(l Wmin)
where T; = 1 -, j = 1,2, Tmin = min{m, 72}, and Tmax =
max{m;, w2}. Because the range depends on the univariate margin
parameters, the correlation is not a good dependence measure to

use except possibly for the case 7 = my.
For the bivariate binomial, let (Y;1,Yi2),7=1,...,n, be iid with

the distribution in Table 7.1. Then (51, S2) = def (Z?:l Yit, 30-, Yi2)
has a bivariate binomial distribution with pmf

n $1—a, S2—a, n—sy—szxta
Poo
;(0,31—a,Sz—a,n_sl_32+a)p11p10 Poi 00 )

s1,82=0,1,...,n
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7.1.2 ngeml multivariate Bernoulli °

Let (Y1,...,Ym) be a multivariate binary vector with the dis-
tribution Pr(Y; = y;,7 = 1,...,m) = p(y), yj =0or 1, j =
1,...,m. This has 2™ — 1 parameters and generalizes the bivariate
Bernoulh distribution; it is the most general possible. Note that
Y; ~ Bernoulli (), where

1 1 1
= Z Z Z Z p(y)
n=0  y;-1=0y;n=0  ym=0
with y; = 1 for each y in the sum. The sum Y7 +---+ Y, is a
correlated binomial rv.

This model can be considered as a special case of a multinomial
distribution. It has too many parameters for applications, unless
one has a sufficiently large sample (the sense of ‘large’ depends on
m). Hence it is useful to obtain parametric subfamilies which can
cover different types of dependence pattern.

7.1.3 Ezchangeable mizture model °

We start with a fairly general model for exchangeable binary rvs.
This comes from a conditional independence or mixture model in
which the Bernoulli parameter p is random with some density, and
given p, the m binary rvs Y; are conditionally iid. The model is

1
fy)=Pr(Y; =y;,j=1,. m)=/0 p*(1-p)™*dG(p), (7.2)

where k = E;.n:l yj, each y; 1s 0 or 1, and G is a distribution with
support on [0,1].
Properties of (7.2) are the following.

1. Marginal probabilities include 7 = Pr(Y; = 1) = folpdG(p),

J=1,...,m and n = Pr(Y; = 1,Y;: = 1) folpsz(p),
I# 7. Then for] # 75, Cov(Y;,Y; )_77—7r = Var(P) > 0,
where P is a rv with cdf G. That is, only positive dependence
1s possible. The case of zero covariance can occur only if G is
degenerate, in which case Y7, ...,Y;, are independent.

2. The pairwise correlation is (n—w2)/(m—n?). It can vary from 0
to 1. The correlation of 1 (or Fréchet upper bound) is achieved
only if G has support on the points 0 and 1, since this is the
only case in which n = =.
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If G is a Beta (a, #) distribution, with density
9(p) = [B(a, /) 'p (1 - p)P7t, 0<p<1,
then (7.2) becomes
f(y;e,8,m)= B(a+k,f+m—k)/B(e,8),  (7.3)

a two-parameter family (reparametrization to one parameter for
marginal probability and one for equicorrelation is possible). Fur-
thermore, # = af(a + 8), 1 = ala + 1)/[(a + B)(a + B + 1)],
and the correlation is p = (@ + 8 + 1)~!. Hence correlation of
1 or the Fréchet upper bound is achieved if «, 8 — 0 such that
af(a+ B) — w. If g is a Beta(a, ) density, then } . Y; has a
Beta-binomial (o, 8) distribution.

In some cases, such as when G is the beta distribution, the func-
tional form, but not the mixture representation, of (7.2) can be
extended to include negative dependence.

With the parameters m for the probability of occurrence of a 1
and p for correlation, the extension of (7.3) is given in Theorem
7.1. It is shown in Theorem 7.2 that p = (1 + y~!)~!, where 7 is
the parameter in (7.4) below.

Theorem 7.1 The function

[iso [ + i) [ieg 11 = m) + 9]
Tiso [ + 4]
kz(),...,m, Y1+ Ym ::k: Yj =0,1V],

with 0 < 7 < 1, —00 < ¥ < 00, ts the pmf of m exchangeable

binary rvs, if r+(m~1)y >0 and (1 —7)+ (m —1)y > 0 (or

v > —(m—1)"'min{w,1 - 7}).

Proof. The conditions on =, v, m are clearly necessary in-order-for

(7.4) to be non-negative for £ = 0,...,m. Let fs be equal to

(%) times the right-hand side of (7.4); we will show that fs is

the pmf of a rv S which is a count made from m draws in an

urn model. Expression (7.4) then results if, given S = k, binary
variables Y1, . .., Yy, are defined so that k of the m Y; are randomly
chosen to have unit values and the remainder are given zero values.

Consider an urn with two types of matter, called type 1 and type

2. There are m draws and each draw results in either type 1 or type

2. Then fs is the probability distribution of the total number of

draws of type 1 in the m draws, when the following sequential

scheme is used. Start with 7 units of type 1 and 1— 7 units of type

2. Forr=1,...,m— 1, after the rth draw, v units of type j are

fly;m,v,m) = , o (74)
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added if the rth draw was type j, j = 1, 2. (If ¥ < 0, this means that
a negative amount is added or something is subtracted.) Let I, be
the number of draws of type 1 in the first » draws. The probability
of type 1is 7 on the first draw. The probability of type 1 on draw
r+1(r=1,...,m—1) conditional on I, is (7 + I,7)/(1 + r7v),
and the probability of type 2 is hence [(1 - )+ (r = I, )v]/(L +rY).
Putting everything together, the probability of exactly k£ draws of
type 1 in m draws is

(m) mr+y) - (m+[k-1y)(A=-7) - (1=7+[m—k—1]y)
k 1(147)--(1+[m=1]y) " 5’)

and this is the same as fs. Note that all sequences with exactly &
draws of type 1 have the same probability. [

We show four special cases of fg, which in the above proof is
defined to be () times the right-hand side of (7.4). These are the
beta-binomial, hypergeometric, binomial and Pélya-Eggenberger
distributions.

From (7.3), the beta-binomial pmf is fs{k) = (7)B(a + k,8 +
m—k)/B(a,83), k=0,...,m, a,f > 0. This can be expanded as:

(m) i (e~ = 1)+ [Ty (1 = ) (p~t = 1) + 4]
k st = 1414

(m) i br+ i 72 11 = m) + i)
k 125 L+ ’
where 7 = /8,0 = a+f = v, y=(p7? =11 > 0 (or
o =m(p'—=1) = 7y and B = (1 = 7)y~!). In this case, p =
(1497171 = (14 6)~! is the pairwise equicorrelation parameter
for the m binary rvs that lead to the beta-binomial distribution.
We continue with the same definitions of 0, e, 8. If v is negative,
then p is negative and the hypergeometric distribution becomes a
special case of fs if a and § are positive integers. The hypergeo-
metric distribution, with a items of type 1, B items of type 2 and
m draws without replacement, has pmf

m) ol ! 0 — m)!
(k)(a-—k)!(ﬂ—iM)!( ! L k=01,m,
This can be rewritten as:
(m) 15 [m = i/0) 17"~ (L = = — i/6)

£ [T (1 = i/6) !
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and this is the same as (7.5) with v = —1/6. The Bernoulli vari-
ables, Y1,...,Ym, with Y; being the indicator variable for whether
the jth draw is of type 1, have pairwise equicorrelation parameter
p=—(0-1)"1 = (1+7-1)L.

The binomial distribution is a special case when v = 0. This is
well known to be at the boundary of the families of beta-binomial
and hypergeometric distributions.

The Polya—Eggenberger distribution is

(m)b(b+s)---(b+[k~—l]s)w(w+s)---(w+[m-—-k—l]s)
k b+w)(b+w+s)--(b+w+[m—1]s) ’

k = 0,...,m, where b, w are the starting number of black and
white balls in the urn, and s is the number of additional balls
added, of the same colour as the rth draw, after the rth draw.
Letting b, w, s — oo such that b/(b + w) — 7 and s/(b + w) — 7,
then (7.5) results.

Theorem 7.2 For (7.4), the univariate marginal distributions are
Bernoulli(w), and the equicorrelation parameter is (1 4+ y~)7L.

Proof. Let (Y1,...,Yn) have the pmfin (7 4) and let S =
have the pmf, denoted by fs(-;m,v,m), in (7.5). Then E(YS =
m~lE(S), j=1,...,m, and

Cov (Y;,Yj)) = [Var (S) — mVar M))/[m(m — 1)], j#7',
by exchangeability. Using the standard method,

B o PP e SR
E(S)_mwg::lfs(k ey 1_*__’Ym 1)_m7r,

and

E[S(S -1)]=m(m - Dra(r+7)(1+7)!

- T+2y v
= m(m—1)r(r+7)(1+7) ;Zéf s (k=2 e TR ™ 2).
Therefore, E(Y;) = « and Y; is Bernoulli (7) since it is binary.
Next, after some elementary algebra, Var(S) = mn(1 — m)(1 +
m7)/(1 +v) and Cov(Y1,Y:) = #(1 — w)y/(1 + 7). Finally, the
correlation p of ¥;,Y/ for j # j' isy/(1+7) = (1+771)". O

Theorem 7.3 The family in (7.4) is closed under the taking of
margins.
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Proof. This result is obvious for the cases of ¥ = 0 (independent
case) and ¥ > 0 (from the mixture construction). For the gen-
eral proof, let (7.5) be denoted by fs(-;m,v,m). Without loss of
generality, we show that if (Y1,...,Ym) has a pmf of the form
(7.4), then so does (Y1,...,Ym_1). The pmf of (Y1,...,Ym_1) at
(Y1,.+-yYm-1) When k =y, +. tYm-1 is

-1 -1
(7) ssthimmm (7)) sok+ 1im,m)

(m-1\"' [(1=7)+ (m—k—1)y]+ [r+ k7]
= (") stesmme 1+ (m—1)y

m—1\""!
=( i ) fs(kym,y,m—1).
O

How does the family (7.4) do in terms of range of negative de-
pendence? Some comparisons are made with other multivariate
exchangeable Bernoulli distributions in Section 7.1.10.

7.1.4 FEztensions to include covariaties

We consider extensions of models in Section 7.1.3 to include co-
variates. Exchangeable dependence may be reasonable for familial
data such as when (Yi,...,Ys,) are responses from the same fam-
ily or cluster. If there is a covariate x common to the family, then
model parameters can be functions of x. If covariates x; exist at
the individual level within a family, then one can consider models
that are modifications of models with exchangeable dependence.

For notational convenience in the following models, xs are col-
umn vectors and fs are row vectors.

If covariates are at the cluster level, an extension of (7.3) is:

./Hﬁﬂ~PWWMMawm‘M“%1W““@

= Blai1(x) + y4, oa(x) + m — y4 )/ Ble1(x), ea(x)),
for some choices of oy (x), a3(x), where y4 = >"i~, y;. For example,
if a1(x) = 6;6P1*, as(x) = f2eP2*, then Pr(Y; = 1|x) = n(x) =
ay(x)/[er(x) + az(x)],

log[n(x)/(1~m(x))] = log ay(x)~log ar2(x) = log[01 /02]+(B1~B;)x
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and
p(x) = (a1(x) + aa(x) + 1)1 = (616Pr* 4 93eP>* + 1)1,

If covariates are at the individual level, there could be many
modifications or extensions, one of which is given below.

With covariate x; for the jth individual, j = 1,...,m, an exten-
sion of (7.3) is:

/ H[”("J’Pﬂy’ﬂ h(xj, P)]* ¥ [Blas, a2)] '™ " (1-p)* dp,
(7.6)

for some function h with range in [0,1]. An example is h(x,p) =
p*P{-Fx} Since only one-dimensional integrations are required,
model (7.6) is fairly easy to work with computationally. A larger
family of functions is h(x,p) = F(F~!(p) + fx), where F is a
univariate cdf. Note that if # = 0 or x = 0, then (7.3) obtains.
If F(z) = exp{—e~?}, then F~1(p)= —log[—logp] and h(x,p) =
exp{—e~P*(—logp)} = p=*P1=Fx} If F(z) = (1+e~%)"! islogistic,
then h(x,p) = (1+ ce’p")‘ , where ¢ = (1 - p)/p.

For the case of h(x,p) = p**P{~Px} expected values and covari-
ances of the Y; are easily obtained. Calculatmns are:

(2) E(Y;) = B(a1 + e7P%, a3)/B(a1, @2) = E(Y{);
(b) E(Y;Y:) = B(ay + e~P*i 4 e=P*r ay)/B(ay,a3), j # k;
(c) Cov(Y;,Yx)=[B(ay1+e P*i +eP* ay)B(a,a)— B(a; +
e P%i  a3)B(ay + e7P** | a3)]/ B*(a, ag).
Note that

E(Y;) = [[(e1 +e7#5)/T(a1 + a2 + e™#%5)][[ (o1 + a2)/T(a1)]

and I'(a1 +t)/T (a1 + a2 +t) is decreasing in ¢ > 0, so that E(Y;)
is increasing in fx;. Furthermore, E(Y;) — 0 as fx; — —oo and
E(Y;) — 1 as fx; — oo. ‘

7.1.5 Other exchangeable models

There are many other possible exchangeable models for multivari-
ate binary data, including those which are special cases of the gen-
eral dependence models in Section 7.1.7. Simple exponential family
models also exist but they have some undesirable properties. We
analyse an exponential family model here and illustrate the typ-
ical problem of non-closure that exists in general for non-normal
multivariate exponential family models.
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Let

Fyivr2) = e, 72)) ™! exr>{71 Yyt yjyjl}, (71.7)
j=1 i<y’

for y € {0,1}™, where ¢ is a normalizing constant and —oco <

71,72 < 00. Let Y be a random vector with this pmf. The marginal

pmfs are not of the same form and the parameter 7 = Pr(Y; = 1)
depends on both v, and 7,. For example,

Pr(Y; =g,1<j<m—1)= [1+§exp{*n +72§yf}]
i=1

m-—1
febm ) ew{n Y v+ Y yjyj'}-
ji=1 j<i'<m
This non-closure property may make this model and other expo-
nential family models harder to use. Because 7 does not have simple
form, the extension to include covariates is not easy. However the
parameters 3,72 can be given interpretations:

Pr(Y; =1,Y; =1, Y = g,k # j,5')
Pr(Y; =1,Y; =0, Y = wi, k # 5, 5')
Pr(Y; =0, =0, Ye =y, k # 4, 5')
Pr(Y; =0,Yy =1, Y =w,k #3,5")

612

for 7 # ', and

CPr(Y;=1,Y =0,k#j)
TPrY; =0, Ys =0,k £ j)

e’Yl

Next we study some dependence properties including the range
of dependence. For i = 0,...,m, let a; = ai(11,72) = exp{im +
i(i — 1)y2/2} and let p; = ¢7'a; = f(¥;71,72) when i = Z?___l i
With this notation, ¢(71,72) = Y izo (T)a:. Then m; = Pr(Y; =
)= Z:r__l__l (?:ll)p; and 72 =Pr(Y; =1,Y, = 1) = Z:’;z (?:22)}7,'.
Let h(y1,72) = Yoimy (To))pi = [y (7)) ai(yn, 12))/ e(71,72)-

We show below that h is strictly increasing in v;, 2. For fixed 79,
h — 0 as v, — —oco (since py,...,pm — 0,po — 1) and h — 1 as
71 — oo (since pm — 1 and py,...,pm—1 — 0). Hence for a fixed =
and 72, there exists a unique t(7y2, ) such that = = h(t(y2, 7),72),
and t is decreasing in v;. The model (7.7) could be reparametrized
in terms of v and 7,. With this new parametrization vy, can be
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considered a dependence parameter since w2 = mi2(7,72) is in-
creasing in 2. Furthermore, the Fréchet upper bound obtains in
the limit as 92 — oo and the most negative exchangeable multi-
variate binary distribution obtains in the limit as 99 — —oo. The
former result is shown in the next paragraph and the latter result
is proved in Section 7.1.10 (in order to compare with other ex-
changeable multivariate binary distributions). Also when v, = 0,
the distribution has independence of the univariate margins.

Fory2 — o0, let y2 = N and 3 ~ —3(m—1)N +¢ with N — oo
and € a fixed real; then iy; + (¢ — 1)72/2 = ie + }i(i — m)N,
ap = 1, a; ~ exp{ie + }i(i — m)N}, i = 1,...,m. Hence ay ~
e™ and ¢; — 0,: = 1,...,m — 1. Therefore po — 1/(1 + e™*),
pi =+ 0,i=1,...,m—1 and p,, — e™¢/(1 + e™¢). By choosing
¢ appropriately A(v1,92) ~ pm can have a limiting value of any
m € (0,1).

Now we prove that h is increasing in 73, v2. Since da; /071 = ia;
and da; /072 = i(i — 1)a;/2, then

8h T fm-—-1 T (m
2_...._. fomerd y PR .
“ Z(z’—l)’“' : (a‘)“’

i=1 j=0
T [/m=-1 . (m
- R (P )e (o
and
oh = fm -1 = (m
200 1N\ .
2 972 g(z 1)z(z 1)au, ;(j)aj
m —1 m .
- }:(m l)a‘.Z("f)](]—l)a,-. (7.9)
im NPT j=o \J

It is straightforward to show that both (7.8) and (7.9) are positive.
Finally, we outline the proof that (7, 72) is increasing in 72; the
details of this result are more tedious. Let

" _m m-—2 ____m m—-2a. c
h*(11,72) -; (i_2)pz = [; (i_ 2) =(71.72)]/ (71:72)s
so that m2(m,v2) = h*(t(y2, 7),¥2). Then
Om2/072 = [0h*[871]}[0t/072) + [OR" [ O72] . (7.10)
= [0h"/011][~0h/87:]/[0k/0m] + [0k /87:]
E [9h/0m][0h" /672] - [0h/O72][0R" /6m].
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With the help of symbolic manipulation software, this can be shown
to be non-negative.

7.1.6 Miziure models °

A mixture model that generalizes (7.2) to a general dependence
structure is:

fly) = / Hpj{j(l — p;)}~¥ G(dp), (7.11)

[0,1]"‘ i=1

where G is a cdf with support in [0,1]™. Compared with (7.2),
this generalization has m distinct probability parameters that are
mixed instead of one.

To get a parametric family with flexible dependence structure,
one choice for G is the multivariate logit-normal family; P is mul-
tivariate logit-normal with parameters g and £ = (oj), if

(log[P1/(1 = P1)}, ..., log[Pm/(1 = Pm)}) ~ Nm(ps, £).  (7.12)

The univariate logit-normal density with parameters p,o? is:

¢({loglp/(1 = p)] = p}/0) - [op(1 = p)] ™}, O <p<1,

where ¢ is the standard normal pdf. This univariate family has
the approximate shapes of the family of beta densities; the density
is unimodal if o is small and U-shaped if o is sufficiently large
(except the density approaches 0 at the end points of 0 and 1).
The log of the density is a constant plus —1o~2{log[p/(1 — p)] —
p}? —log o — log[p(1 — p)] and this has derivative equal in sign to
—{log[p/(1—p)] — n} +?(2p—1). Hence the above description of
the density follows.

If P has cdf G and Y has the pmfin (7.11), then E(Y;) = E(F7;),
Var(¥;) = Var(P)) + E[P(1 - P)] = E(P)[1 - E(P)], j =
1,...,m, and Cov (Y}, Yy) = Cov (P}, Px), j # k. Hence the model
is not identifiable, unless some univariate parameters are fixed, e.g.,
o2;. For further analysis of this model, we assume that oj; = o?
for all j. In this case, p; is the parameter for the jth univariate
margin and the correlation pjx = o;i/0? is the parameter for the
(4, k) bivariate margin for j # k.

Let ¥ = 0?R, where R is a correlation matrix, and let Z ~
Nm (0, R). Assuming (7.12), a stochastic representation for P is
P; = [1+exp{—(cZ; + 1;)}]7*, j = 1,...,m. The resulting mul-
tivariate binary distribution in (7.11) has univariate parameters
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7; = E(P;) = Pr(Y; = 1), and

Pr(Yj’—'yj,j:l,---,m):E[ }Z?j(l_]aj)l—yj]
j=1

m
=E {H[l + exp{(1 — 2y;)(¢Z; + pj)}}"l}. (7.13)
j=1
Marginal distributions of (7.11) have a similar form. For 1 < j < m,
w; is an increasing function of p; with o2 fixed. As 0 — co with p;
fixed, 7; — 1, and as 62 — 0 with y; fixed, 7; — (1+e~#5)~!. The
(7, k) correlation of (7.11) is Corr (Y;, Yi) = [Pr(Y; = yj, Y& = wi)—
wjme)/\/mj(1 — m;)me(l — we). For fixed p; and m;, i = 1,...,m,
Corr(Y;,Y}:) increases as pjr increases. A wider range exists for
Corr (Yj, Y;) as o2 increases. For example, as o2 — 0, Corr (Yj, Yz)
goes to 0 for all j # k. Hence for application of model (7.11), it
might be best to fix 0 at a large enough value in order to allow a
wide range of dependence.
The multivariate probit model (see the next subsection) is in-
cluded as a special limiting case of (7.11). Let p; = vjo, j =
1,...,m. Then as 2 — oo, the limit of (7.13) is

Pr((=1)¥iZ; < —(=1)¥iv;, i =1,...,m).

A given w; is achieved in the limit if v; is chosen to be ®~!(=;)
where @ is the standard normal cdf.

A special case of (7.11), which compares with (7.6) and the model
in Exercise 4.1, is

/ ﬁ{[ﬂj(a)ly’ [1- p,-(a)]l—yj} dM(c), (7.14)
j=1

where M is the distribution of a rv A. If Y has the distribution
in (7.14), then Yj,...,Y,, are conditionally independent given A.
If the functions p;(-) belong to the same parametric family p(-;9),
then (7.14) can be written as

/ ﬁ{[l’(a; 0;)13[1 - p(es 9,-)]"'”"} dM (), (7.15)

Conaway (1990) has a model of form (7.15), with M being a gamma
distribution and — log[— logp(a;8)] = a + 6.
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7.1.7 Latent variable models °

A general approach is to assume that there is a continuous la-
tent vector, or equivalently the latent variable model comes
from the discretization of a continuous m-variate family F(-;8) €
F(Fo,...,Fp). We use a stochastic representation to present the
model. Let Z ~ F, with each Z; ~ Fy. Define a binary random vec-
tor Y with Y; = I(Z; < «j), j =1,...,m. This corresponds to a
discretization of F or Z, and 7Z is a latent vector. (Alternatively, one
could define Y; = I(Z; > «; ), but the former usage corresponds to
that in univariate logistic and probit regression.) There are m uni-
variate parameters: a; for cutoff points or m; = Fo(e;) for binary
probability parameters. The number of dependence parameters is
equal to the dimension of 8. If F(-;8y) is the Fréchet upper bound,
then the distribution of Y is the Fréchet upper bound with uni-
variate Bernoulli (7;) margins. If there is a covariate vector x, then
the parameters a; and @ can depend on x.

To generalize the probit model for a binary response to a mul-
tivariate probit model, Fy is the standard normal cdf and F is
a MVSN cdf with correlation matrix R = 8 (with m(m — 1)/2
parameters). The multivariate binary probabilities are:

Pr(Y;=y;,j=1,...,m)
=Pr((-1)1-¥2Z; < (-1)!"%a;, j=1,...,m), (7.16)

for y € {0,1}™, where Z ~ Nj,(0, R).

Usually, in the multivariate probit model, «; is linear in the
covariates and # is constant over the covariates. Extensions such
that the correlation matrix is a function of the covariates are not
easy. An example is given in the next subsection, and other possible
extensions are also left as an unsolved problem.

To generalize the logit model or logistic regression to a mul-
tivariate logit model, Fy is the (standard) logistic distribution,
Fo(z) = (1+e7*)"1, and a family of multivariate logistic distribu-
tions is needed for F. There is no obvious or natural choice, but
candidates are F' = C(Fy, ..., Fo;0) for families of copulas C(-;8)
with a wide range of dependence. Additional desirable properties to
yield a multivariate logit model are: (i) closed form for the copulas
(since one reason for the popularity of the logit model in compar-
ison to the probit model is the closed form of the former); and (ii)
reflection symmetry.

For the bivariate case, perhaps the families B2 and B3 of cop-
ulas are better because of the reflection symmetry property. These
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families of copulas C have the possibly desirable property of
C(ui,ug;0) = uy +uz — 1 + C(1 — u;,1 — uy;0), which means
that the latent variable model does not depend on the orientation
of the discretization, i.e., Y; = I(Z; < a;) and Y; = I(Z; > «;)
are equivalent in use. Also they extend to negative dependence,
and if (U,V) ~ C(;6), then (U,1 — V) has a copula within the
same family, since u — C(u, 1 — v;6) = C(u,v;67!) for the family
B2 and u — C(u,1 — v;8) = C(u,v;—0) for the family B3. There
are no known extensions of these families that have similar invari-
ant properties in higher dimensions. Hence possible copulas in the
multivariate case are those from Section 4.3 or 5.5 that have a wide
range of dependence, or from the construction in Section 4.8.

To get a model with copulas with the exchangeable type of de-
pendence, one can consider Archimedean copulas. With ¥(s) =
—0~1log(1 —[1 —e~%]e~*), 6 > 0, the permutation-symmetric ex-
tension of the family B3 is

m . — p—0u;
C(u;0) = «/)(]2_; 7 (w;)) =~ log (1~ Ig’fle_f)m_l))-
(7.17)
This extension does not have the property of reflection sym-
metry, which would hold if U ~ C and U 21— U. We show the
lack of the property for m = 3, and this then follows also for m > 3.

We now refer to the copula in (7.17) as Cp,, to show explicitly
the dimension m. We will show that

—63(1—u1,1—u2,1-u3)=u1+uz+ua-—,2+02(1—u1,1-—u2)

+Cz(1—U1,1—U3)+Cz(1-—'u2, 1 —u3)—C3(1—-u1, 1 —U2,1—U3)
(7.18)

is not the same as (7.17). Let o = 1 — e~%. Expanding (7.17) and
(7.18) about v = 0 when u; = us = u3 = u, leads to:

e Cs(u,u,u) ~ —0"1log[l — 83u3/a?] ~ 6%u3/a?;
o 1—e %1% ~ o — (1 - @)fu[l + Ou/2 + 62u2/6);

o 1—(1—e%C-%)2/q ~ =%l + 20u + 6220 — 1)~ u? +
(3a)™163(4a — 3)u3);

e Co(l1—u,1—u)~1-—2u+fau? - 02a1ud

o 1—(1—e00-u)3/a% ~ =01 4 30u + 362~ 1 (=2 + 3a)u?/2+
62a~%(2 - 10a + 9a?)u/2);

e C3(1—u,l-u,1—u)~1-3u+3a"1u? - 02a~?(4a+ 1)ud;
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o Ca(l—u,1—u,1—u) ~ 3u—2+3[1-2u+fo~'u? - 02a v’ -
[1 - 3u + 30~ 1u? — 020~ 2(4a + D)ud] = 0207 2u(1 + ) =
02~ 2u3(2 — e7f).

Since 2 —e~% > 1 for § > 0, —0-3(1 ~u,1—u,1—1u) > Cs(u,u,u)
for 8 > 0 and u near 0. The inequality is reversed for the range
of negative # for which Cj3 is a negatively dependent copula (see
the family M3E in Section 5.4). For the expansions, a result that
is used is

log(l + a1z + asz? + a3:z:3) ~ bz + boz? + 0323, -0

with b, = a3, by = as —a?/2, b3 = a3 — ajay + a?/3.

The generalization of (7.17) to allow for a more flexible depend-
ence structure is obtained by substituting a family of max-id cop-
ulas for the K;; in (4.25) or (4.31) with this 1. The result is

C(u) = —0‘Ilog[1——(l——e"”) H Kij(ﬂi,ﬁj)nﬁ?], (7.19)

1<i<j<m

where 4; = [(1 — e7®)/(1 - e ®)Pi, pj = (vyj+m—1)"}, j =
1,...,m. Also other families of LTs, such as LTA, LTB LTC in the
Appendix, can be used in (4.25) or (4.31), so that many combina-
tions of families for 1 and Kj; exist.

Another choice for the distribution of the latent random vector
1s the multivariate copula with general dependence structure from
the Molenberghs and Lesaffre construction in Section 4.8 with bi-
variate copulas in the family B2 or B3. Actually the multivariate
objects in Section 4.8 have not been proved to be proper multi-
variate copulas, but they can be used for the parameter range that
leads to positive orthant probabilities for the resulting probabilities
for the multivariate binary vector. With the choice of the bivariate
copula family B2 or B3, and with parameters s = 1 for |S| > 3,
the property of reflection symmetry holds.

For all of these models, for the extensions to include covariates,
the univariate cutoff parameters can be made linear in the covariate
as in logistic regression, and the dependence parameters of the
multivariate copulas could be taken as constant or as functions of
the covariates (as in the multivariate probit model, the latter may
not be easy or obvious to specify).

For applications of the models in this section, see Sections 11.1
and 11.2.
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7.1.8 Random effects models

This subsection combines some of the ideas in the preceding two
subsections, by introducing random effects in which parameters
of a simpler model are assumed random. The resulting models
could be considered as mixture models as well as random effects
models. This type of model is reasonable if subjects each have out-
comes that follow the simple model but with different parameters.

Let Y be an m-variate binary vector. Suppose Y; = I(Z; < «;)
where the «j are random, the Z; have distribution Fp, and the Y;
are conditionally independent given the a;. Hence

Pr(Y; = 1, Vj) = / Fo(as) - - Fo(am) G(davy, - . ., datm),
mm

where G is the cdf of (ay,...,am).
For the case of a covariate column vector x, write Y; = I(Z; <
@; + B;x), where the a; and f§; are random and the Y; are condi-

tionally independent given the a; and B;. (The B; are row vectors.)
Then

Pr(Y1=1,....Y, = 1)=/F(a1 + B1x) - - F(am + Brx)

-G(day, ..., doam,dB,, ..., dB,).

In the remainder of this subsection, we specialize to the case
of a MVN latent vector. First consider the case of no covariates.
If Zy,...,Zn are iid N(0,1) and (ai,...,am) ~ N(#,Q) with
Q = (wij), then Y; = I(Z} < p;), where (Z1,...,2},) is MVN with
zero mean vector and covariance matrix I = (o35), 0j; = 1 + wjj;,
i=1,...,m, and 0;; = w;j, i # j. As the parameters p, Q vary, all
MVN distributions are possible for the latent vector (Zi,...,2},)
(by letting p;, w;; be arbitrarily large).

Next consider the case of a scalar covariate and m > 2. Suppose
Z ~ Nn(0,R) where R = (p;;). Let Y; = I(Z; < aj + Bjz),
j=1,...,m, with

(a )~ Hm (6 0. (F )

independently of Z, where & = (ay,...,am), 8 = (B1,---,8m),
and Q = (wj;), 2° = (v§;), T = (%;) are m x m matrices. Then
forj=1,...,m,Y; = I(Z] < pj +vjz), with

Var(Z]) = 0j;(z) = 1 + wjj + z%w; + 2z7;;.
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The covariance of Z;, Z; for i # j is
Cov(Z;, Zj) = 0ij(x) = pij + wij + z°wf; + 2(%ij + %54)-

This model is equivalent to the stochastic representation Y; =
I(Z}' < (uj+v;iz)/\/0;i(z)), where Z}' have variances of 1 and the
correlation of (Z}', Z}') is 05 (z)/+/0ii(z)o;j;(x). The special case of
Q =Q° =T = 0 leads to the usual multivariate probit model. The
univariate margins are ®((p; + v;z)/+/0;;(z)) so that the cutoff
points are non-linear functions of £ and do not necessarily have
limits of 0,1 as £ — 4o00. This model has a lot of parameters, but
some of the latent covariances can be set to 0 for simplification.

Note that the derivations given above lead to ‘natural’ forms for
correlation matrices that are functions of the covariates, but also to
univariate margins that are not probit models. However, one could

still consider a multivariate probit model with covariates with a
correlation matrix of the form in the preceding paragraph.

7.1.9 Other general dependence models

There are many other possible models for multivariate binary re-
sponse. For example, the exponential family models of Section 7.1.5
can be generalized to accommodate more general dependence, but
still have the undesirable property of non-closure under the taking
of margins. An exponential family for a multivariate binary re-
sponse with covariates is derived in Section 9.2.3 from conditional
logistic regressions. Another approach comes from a representation
of the multivariate Bernoulli distribution; this is given below with
the bivariate case first.

Let p(y1,92) = Pr(Y1 = 1,Y2 = y2) and let py(y1) = Pr(Y1 =
1), p2(y2) = Pr(Ya = w2), y1,y2 = 0, 1. If the correlation is fixed
as p, then for y;,y, = 0,1,

)= py(u1)os ) yi—pi(l) || _y2—pa(1)
p(y1,y2; ) =p1(11)p (yz){1 ke [\/pl(l)m(o)][\/Pz(l)l’z(o)]}.

(7.20)

This parametrization may not be very desirable because from (7.1)

max{~/p1(1)p2(1)/[p1(0)p2(0)], —v/p1(0)p2(0)/[pr (1)p2(D]} < p
< min{y/p1(1)p2(0)/[p1(0)p2(1)], v/P1(0)p2(1)/[p1(1)p2(0)]}-

There are further modelling problems if p;(y;;x), j = 1,2, are
functions of the covariate vector x (either p depends on x or it is
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constant over x with further constraints).

Next let p(y) = Pr(Y; = y;,4 = 1,...,m), and let p;(y;) =
Pr(Y; = y;), 1; = pi(1) and z; = (y; — )/ /7l —m;), j =
1,...,m. A multivariate extension of (7.20) is

m
p(y;m, ps,S €Sp) =[] 7’ (1- Wj)l‘y’{l + > s ]l zk}-

j=1 S:|S|>2 keS

(7.21)

There are constraints on the parameters pg in order that (7.21) is
non-negative for all y, but all multivariate Bernoulli distributions
have this representation. It is straightforward to show that (7.21)
is closed under margins with no change to the parameters {ps}.
For example,

P(yly---,ym—l:o;m:PS:SESm)‘f'P(yl,--‘,ym-l, l;m;PS,SESm)
=p(y1)' oy Ym—-1;, M — I,PS,S E‘Sm—l)°

Let Z; = (Y; — 7j)/+/7j(1 — 7;), = 1,...,m. From the closure
property, it follows that for S with |S| > 2,

E [};[Szk] =E*[£[Szk{1+;prgzr}] = ps,

where E” is an expectation assuming the Y; are independent Ber-
noulli rvs with respective parameters 7; (and hence Z3, ..., Z,, are
independent rvs with mean 0 and variance 1). In particular, the
parameter ps is the correlation of Y, Yj. if S = {4, j'}.

There are too many parameters for (7.21) to be useful as a model
for multivariate binary data, unless m is small, such as 2 or 3.
Also it may not be a convenient form for extensions to include
covariates. However, its closure property makes it better than an
exponential family model with high-order moment terms. If (7.21)
is truncated after the bivariate or trivariate terms (i.e., |S] < 2
or |S| < 3), the result may not cover much range of dependence.
For example, for the Fréchet upper bound when the univariate
margins all have a mean of , the representation (7.21) has pg =
[(@ = )81 4 7lSI=1 (1)1 /[ (1 = 7)]I51/2-2 (the details are left
as an exercise).

7.1.10 Comparisons

In this subsection, we make some comparisons of the multivari-
ate binary distributions in the preceding subsections. The first is a
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comparison of the most negatively dependent distribution among
exchangeable families of multivariate Bernoulli distributions. For
this comparison, we derive the most negatively dependent distri-
bution among all multivariate exchangeable Bernoulli distributions
with marginal probability 7 (of getting a 1). A second comparison
is for the trivariate case and considers the range of one bivariate
margin given the other two bivariate margins are fixed; this uses
the bounds of the Fréchet class F(Fy, Fo3) in Section 3.2. A third
comparison for the trivariate case considers the range of the trivari-
ate margin given the three bivariate margins; this uses the bounds
of the Fréchet class F(Fy3, F13, F23) in Section 3.4. For both the
second and third comparisons, summaries are given for the trivari-
ate probit model. Other (numerical) comparisons of these types
can be done for the models in Section 7.1, although we do not do
so because of space considerations.

For the most negatively dependent multivariate exchangeable
Bernoulli distribution, first suppose that m = 3. We give more
details for the trivariate case, as the solution in this case led to the
conjecture of the solution in the multivariate case. Let ¥ = 1 — .
Consider the three-way table, such that the (1,2), (1,3) and (2,3)
T+0 7T -0

T—0 w40
distribution with f;;x = Pr(Y1 = 4,Ys = j, Y3 = k), the bivariate
constraints lead to fooo = z, foor = foro = froo = T +0—z, for1 =
fior1 = firo = mT—T2 =204z, f11; = 724+ T2 —a7T+30—z. The non-
negativity of each term impliesz > 0,z —0 < 7%,z —20 > T2 — 77
and z — 30 < 7% 4+ 72 — 77. An analysis of the inequalities in an
(x,8) graph leads to a minimum of § = (x7 — #% — 72)/3 (z = 0),
a correlation of (1 — n/7 — T/7), if 1/3 <7 < 2/3; to § = —n?
(z = 37— 2), a correlation of —7/F if ¥ > 2/3; and to § = —72
(z = 0), a correlation of =7 /7 if 7 < 1/3.

Hence for @ > 2/3 or m < 1/3, the non-zero probabilities are
fooo =37 —2=1-3m, foor = foro = fioo = 7. This is a Fréchet
lower bound distribution, and also if X is the number of 1s among
Y:,Y,,Ys5, then X hasa (generalized) hypergeometric distribution.
If # = n~! where n Z 3 is an integer, then the hypergeometric
dnstrlbutlon is (;) (320)/ /(5 ) k = 0,1, or respectively, (n — 3)/n =
1—-3mrand3/n= 37r If 7 is not the reciprocal of an integer, then

Nn-1D---(n~- n(n - 1)(n —
(k>( 1)(3-(k)'3+k)/( 1)( 2)

leads to the same distribution as in the preceding sentence. Sim-

bivariate margins are . Then for the trivariate

, k=01,
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ilarly, if # > 2/3, the non-zero probabilities are fi;; = 37 — 2,
foir = fin = firo=1—m If 1/3 < 7 < 2/3, the non-zero
probabilities are foo1 = foro = fio0 = 2/3 — 7 and fo11 = fio1 =
firo = ™ — 1/3. There is no Fréchet lower bound distribution for
7 in this range (see Example 3.1). Also, there is no relation to a
hypergeometric distribution except when 7 = 1.

For the general multivariate situation, the most negatively de-
pendent m-variate exchangeable binary distribution has pmf

(1'+1-—m7r)/(';'), ify i =r,
firizgi = § (mm — r)/(r':_'!), ify 4 =r+1, (7.22)
0, otherwise,

when r < m7m < r+ 1. Let Y be such that f;,..; = P(\h =
i1,- -+, Ym = im). Then E(1Y3) = r(2mn —r —1)/[m(m — 1)] and
the pairwise correlation of rvs is

p= [———r————(Qmw —r—1)- 7r2] /[7r(1 — ).

m(m — 1)

An outline of the proof is as follows. To obtain f correspond-
ing to a most negatively dependent distribution (in the multivari-
ate concordance ordering), one should minimize fo...o followed by
fo...01, €tc., as well as minimize f;...; followed by f;...10, etc. Hence
fiyigei, is non-zero for at most two distinct values of ) i;; the
distinct values are unique for a given 7.

Next we show that (7.22) is at the boundary of the exponential
family model (7.7) in Section 7.1.5. Using the notation there, (7.22)
obtains when y3 — —oo. The proof is divided into cases with = €
[r/m,(r+1)/m), r=0,1,...,m — 1. Let ¢ be a (fixed) real.

(a) First suppose 92 = —N and 7, — ¢, with N — oo. Then
a; - Qfori=2,...,m,ay =1 and a; — e°. Hence ¢ —
14 me, pg — [1 +me]™!, p1 — e/[1+ me] and h(71,72) ~
p1 — e°/[1 + me€] = w. As ¢ varies from —co to oo, 7 can be
in the range (0,m™!) for this case (of r = 0).

(b) For r > 0, suppose 92 = —N and 93 ~ N + ¢, with N — oo.
Then a; ~ exp{ie + N[ri— (i —1)/2]},i=0,...,m. Since
ri — (¢ — 1)/2 is maximized at r(r + 1)/2 for ¢ = = and
r+1,thenp; = 0fori# r,r+1,p — [(7) + (,,'_:_‘l)e‘]“l,
pras — (") + (7)o and

m-—1 m—1 (T:;)"'(m:l)ee _
""’"”)”(r—l)p’*( r >”’“~ D+ (e -
(7.23
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Table 7.2. Correlations of most negatively dependent multivariate ex-
changeable Bernoulli distributions within some parametric families.

o (122)  (14)  (7.16)

0.1 -0.111 -0.063 -0.103
0.2 -0.250 -0.111 -0.197
0.3 -0.429 -0.176 -0.271
0.4 -0.389 -0.260 -0.317
0.5 -0.333 -0.333 -0.333

0.1 -0.111 -0.034 -0.083
0.2 -0.250 -0.071 -0.143
0.3 -0.270 -0.111 -0.184
04 -0.250 -0.154 -—0.208
0.5 -0.333 -0.200 -0.216

0.1 -0.111 -0.026 -0.068
0.2 -0.250 -0.063 -0.111
03 -0.190 -0.081 -0.139
04 -0.250 -0.111 -0.155
0.5 -0.200 -0.143 -0.161

crortern ot ot o A e w3

The right-hand side of (7.23) is an increasing function of € so
that = can be in the range [r/m, (r + 1)/m].

Hence the form of the limiting cases with y3 — —oo0 is the same as
(7.22).

We next compare the negative dependence of other models to
(7.22). Table 7.2 lists the correlation of the most negatively depen-
dent multivariate exchangeable Bernoulli distribution for certain
values of m and =, as well as the correlation of the most negatively
dependent distribution in the family (7.4) and in the multivariate
probit model (7.16). For the probit model, the correlation in Table
7.2 comes from using —(m — 1)~! for the latent equicorrelation
parameter. There is symmetry about 0.5, in that the correlations
for m are the same as those for 1 — 7, so Table 7.2 has only 7 in
the range of 0 to 0.5. The table shows that the multivariate probit
model attains a greater range of negative dependence than (7.4).

A second comparison is made in the trivariate case for the range
of the third bivariate margin given the other two bivariate margins.
Some calculations are done with the trivariate probit model. Let
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Table 7.3. Bounds for w13 = p13(1,1) given my, w2, T3, 12, W23 nonpara-
metric versus trivariate probit.

Nonpar. Probit
U
™ W2 T3 M9 T3 7r{‘3 {3 Wf’;; 1r§j3*

0.3 03 0.3 0.090 0.090 0.000 0.300 0.000 0.300
03 03 03 0.157 0.157 0.014 0.300 0.033 0.300
03 03 03 0.115 0.211 0.026 0.204 0.041 0.200
0.3 03 03 0.033 0.033 0.000 0.300 0.033 0.300
03 03 0.3 0.066 0.005 0.000 0.239 0.042 0.200
03 03 03 0.033 0.157 0.000 0.176 0.000 0.157

05 05 05 0250 0.250 0.000 0.500 0.000 0.500
05 05 05 0.333 0.333 0.166 0.500 0.166 0.500
05 05 05 0.282 0398 0.180 0.384 0.180 0.384
05 05 0.5 0.167 0.167 0.166 0.500 0.166 0.500
05 05 05 0218 0.102 0.384 0500 0.180 0.384
05 05 0.5 0.167 0.333 0.000 0.334 0.000 0.334

0.1 05 0.7 0.050 0.350 0.000 0.100 0.000 0.100
0.1 05 0.7 0.084 0.422 0.006 0.100 0.035 0.100
0.1 05 0.7 0.064 0471 6.035 0.100 0.040 0.100
0.1 05 0.7 0.016 0.278 0.006 0.100 0.035 0.100
0.1 05 0.7 0.036 0.229 0.035 0.100 0.040 0.100
0.1 05 0.7 0.010 0422 0.000 0.100 0.000 0.094

(Y1, Y2, Y3) be-a trivariate binary random vector, and, for j-# k, let
pik(yi, yx) = Pr(Yj = y;,Ye = wi) and 75 = pjr(1,1). Given 7; =
Pr(Y; =1),7 = 1,2,3, and w13, 723, we compare the maximum and
minimum value of 7,3 for the probit model with the nonparametric
bounds. Let pjj2(yjly2) = Pr(Y; = y;|Y2 = y2) for j = 1,3; these
can be written in terms of my, wq, 73, ™12, 723. Using Theorem 3.10,
the nonparametric bounds are:

1
ol S lpia(1ly) + paa(1ly) — 114 Pr(Ye = y) < mis
y=0

def

1
< Zmin{P1|2(1|y),P3|2(1|y)} Pr(Yz = y) = ni5.

y=0
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Table 7.4. Bounds for pi123(1, 1, 1) given my, 72, 73, T2, 13, 23 non-
paramelric versus trivariate probit.

L U
™ T2 T3 T2 m3 23 Ti23 123 T123

03 03 03 0.090 0.090 0.090 0.000 0.027 0.090
0.3 03 03 0.157 0.157 0.157 0.014 0.101 0.157
03 03 03 0.115 0.100 0.211 0.026 0.078 0.100
03 03 03 0033 0.100 0.033 0.000 0.002 0.033
03 03 03 0.066 0.100 0.005 0.000 0.001 0.005
03 03 03 0.033 0.100 0.157 0.000 0.025 0.033

05 0.5 05 0.250 0.250 0.250 0.000 0.125 0.250
05 05 05 0.333 0333 0.333 0.166 0.250 0.333
05 05 05 0.282 0.282 0.398 0.180 0.231 0.282
05 0.5 05 0.167 0.333 0.167 0.000 0.083 0.167
0.5 0.5 05 0.218 0.282 0.102 0.000 0.051 0.102
05 05 05 0.167 0.167 0.333 0.000 0.083 0.167

0.1 05 07 0.0560 0.070 0.350 0.020 0.035 0.050
0.1 05 07 0.084 0.080 0.422 0.064 0.071 0.080
0.1 0.5 07 0.064 0.070 0.471 0.035 0.058 0.064
0.1 05 07 0.016 0.080 0.278 0.000 0.009 0.016
0.1 05 07 0.036 0.070 0.229 0.006 0.012 0.035
0.1 05 07 0.016 0.050 0.422 0.000 0.012 0.016

The bounds 75 and 73 within the trivariate probit distributions
come from using the bounds for p;3 in the inequality:

P12P32 — \/1 - P%z\/l — p3y < 13 < prapa2 + \/1 - sz\/l — P32

where o; = <I>"1(7rj), J = 1,2,3, and pj2 is the unique root of
®y(cj, an;pj2) = mj2, 7 = 1,3, with &5 being the BVSN cdf.
The bounds for w3 are given in Table 7.3 for selected values of
Ty, T2, T3, W12, T23. LThe values suggest that the trivariate pro-
bit model achieves a wide range of (bivariate) dependence among
trivariate Bernoulli distributions.

A third comparison is made for the range of the trivariate distri-
bution given the three bivariate margins. We again use the trivari-
ate probit model to illustrate the comparisons and use the same
notation as before. Let p123(y1,y2,¥3) = Pr(Yy =y, Yo = g2, Ya =
y3). Given m; = Pr(Y; = 1), j = 1,2,3, and compatible prob-
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abilities w1z = plg(l, 1), w13 = pla(l, 1), and w3 = pza(l,l), we
compare the value of 7123 = p123(1,1, 1) for the probit model with
the nonparametric bounds. From the proof of Theorem 3.11, sharp
bounds on 723 are

L def
Mio3 = max{0, T12 + T3 — 7y, T12 + T3 — W2, M3+ W3 — W3} <

123 < min{wia, 713, w23, 1 — 71 — w2 — W3+ T2+ W1z + w23} &of 703
However, for the trivariate probit model, there is a unique value
of 723 given my, w2, T3, M2, T3, 723, since the given quantities
uniquely determine the parameters o), as, as, p12, p13 and pa3z of
the trivariate probit distribution. Hence the trivariate (and the
general multivariate) probit model does not allow a range of third-

and higher-order dependence. The bounds for w33 are given in
Table 7.4 for selected values of m;, 72, 73, 712, 713, T23.

7.2 Multivariate count

Models for univariate count data are the Poisson distributions and
larger families that include the Poisson distributions. One such
family combines the negative binomial, Poisson and two-parameter
binomial distributions into a two-parameter family. For distribu-
tions for count data, an important summary is the index of dis-
persion or variance to mean ratio. This is 1 for Poisson distribu-
tions; if it is larger (less) than 1, then the distribution is said to be
overdispersed (underdispersed) relative to Poisson.

Models for multivariate count data include mixture models and
copula-based models. ‘

7.2.1 Background for univariate count data °

Let the negative binomial, Poisson and two-parameter binomial be
parametrized by the mean g and v, where D = v + 1 is the index
of dispersion. Then the negative binomial distribution has pmf:

. — r(k+”/u) k ~k=-ufv — .
f(k,/.l,l/)- lc!I‘(p/u)V(1+V) 3 k—-O,l,...,

it has mean p = 0q/p, variance o? = q/p® and v = p~! — 1. The
two-parameter binomial distribution has mean y = np, variance
0% = npq and v = —p; its pmf is ‘

r(1-
flkip,v) = Ic!l‘((l — ,:T;)/V

)(_l’)k(:l + V)_k-“/u»
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=0,1,...,—pu/v. These can be combined together as one family
(including the Poisson distribution when v = 0), if written as

flksp,v) = (k!)—lu(# +v)(p+ k= 1)1+ U)-k_,./,,’

k=0,1,..., min{oco, —p/v}.

The negative binomial distribution obtains as a Gamma(g/v, v)
mixture of Poisson distributions. That is, let Y ~ Poisson («) given
A = a and A ~ Gamma(g/v,v). Then for y=10,1,...,

o I(u/v) y!

F(y+p/l/) y(1+y)—y—-u/u'

Pr(Y =y)

Il

VT

Other mixing distributions for overdispersed Poisson models in-
clude the lognormal and inverse Gaussian distributions. More gen-
erally, consider f(y) = fooo (v la¥e~*dM(a), y = 0,1, ..., where
M is a distribution function on (0, c0). Let A ~ M and let Y have
the pmf f. Then E(Y) = E(A) and Var(Y) = E[Var(Y|A)] +
Var [E(Y|A)] = E(A) + Var(A). Hence D = Var(Y)/E(Y) > 1,
with equality only when A has a degenerate distribution. Therefore
general mixtures of Poisson distributions are overdispersed relative
to Poisson.

Another model with overdispersion is the generalized Poisson
family (see Problem 7.2).

7.2.2 Multivariate Poisson °

A natural bivariate Poisson distribution has the stochastic rep-

resentation (Yl,Yg)f’i (21 + Z12, Z2 + Z12), where Z), 23,212 are
independent Poisson rvs with parameters 8y, 05, 0,2, respectively.
This, together with its m-variate extension to a construction based
on 2™ — 1 independent Poisson rvs, is a special case of the mul-
tivariate models given in Section 4.6. A Markov chain time series
model based on this multivariate distribution is given in Section
8.4, with a data analysis example in Section 11.5.

Other multivariate Poisson distributions obtain from copulas
with univariate Poisson margins. These may not as interpretable,
but copula-based models with appropriate families of parametric
copulas can cover a wide range of dependence, including negative
dependence, whereas the bivariate and multivariate Poisson distri-
butions from Section 4.6 have positive dependence only.
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7.2.8 Mizture models and overdispersed Poisson °

In this subsection, we parallel the development in Section 7.1, with
mixtures of independent Poisson rvs instead of Bernoulli rvs to ob-
tain multivariate distributions. We start with exchangeable mix-
tures and then go on to general mixtures.

An exchangeable mixture model is:

fy) = / H —a2 ]dM(a) (7.24)

The main drawback with thls model is that the univariate mar-
gins cannot be separated from the dependence. (For the mixture
of Bernoulli distributions, the problem did not occur because a
mixture of Bernoulli distributions is still Bernoulli.) If A ~ M,
then for (7.24), E(Y;) = E(A4), Var(Y;) = E(A) + Var(4), j =
1,...,m, and Cov (Y}, Yj:) = Var(A4), j # j'. The equicorrelation
parameter is p = Var (A)/[E (A) + Var(A)] = D/(1 + D), where
D = Var(Y;)/E(Y;). Hence the correlation is increasing as the
index of dispersion D increases.

For example, if M is the Gamma(f,o) distribution, (7.24) is a
multivariate negative binomial distribution with pmf

T(0+ys) y.;.) o=?
fy)= O %!
where y; = > 7=, yj. The expectations, variances and covariances
are: E(Y;) = b0, Var(Yj) = 0o(o + 1), Cov (Y;,Y;)) = Var(A4) =
8a2. Therefore p = Corr (Y;,Y;:) = /(0 + 1), j # j/, and both
D = o + 1 and p are increasing as o increases.

One can also take gamma mixtures of an exchangeable multi-
variate Poisson distribution in order to get an exchangeable nega-
tive binomial multivariate distribution. Take Y given A = a to
have the stochastic representation Z + Zy, where Z; are inde-
pendent Poisson (ab;) rvs, j = 0,1,...,m, 6, = ... = 0, = 0
and A ~ Gamma(g/v,v). Then the pmf of Y is:

(67! + m)~0-v+, ¥y =0,1,...,

Ymin

— v T (yy — [m = 1)i + p/v) m  pyi—i
fy)= ; (mé + 6o + 1/-:;)y+ =(m=1)i+s/vD(u/v) Kl H (y )

(7.25)

where y4 = Z;’;_l Yjs Ymin = min{yl, <. -»ym}-

With (7.25), E(Y;) = (0+60)p, Var (Y;) = (0+00)*pr+(0-+60)p
and Cov (Y;,Y;s) = (0 + 60)2pv + fop, j # j. The sum 6 + 6y can
be taken to be 1 without loss of generality. Then D = v + 1 and
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p = Corr (Y;,Y;) = (v +00)/(v + 1), j # f, where 0 < 6o < 1.
This family is still quite restricted in the range of dependence;
the confounding between the index of dispersion and the range of
dependence has not been eliminated.

A mixture model, which includes (7.24) and allows the univariate
margins to be different, is:

| TH{exo (=t oo/ Jans @), (126)
ji=1

where y(«,8) > 0 and M is the mixing distribution of a rv A. If
Y has the distribution in (7.26), then Y;,...,Y,, are conditionally
independent given A; compare (7.15) and Exercise 4.1.

To get a model with greater flexibility in dependence structure
and indices of dispersion, consider using an m-variate mixing dis-
tribution. This leads to the pmf

y —./Doo)"‘H —QJ

A concordance study is not possible but through conditional ex-
pectations one can study correlations. Let (A4,,..., Am) ~ G, and

suppose (Y1,...,Yn) has pmf f. Then E (Y;) = E(A4;), Var (V;) =
Var(A4;) + E(4;),j =1,...,m, and Cov (Y;,Yr) = Cov (4;, Ax),
J # k. Therefore the correlation of Y;, Y is
Cov (4;, Ar)

[Var (4;) + E(A4;)]1/?[Var (Ax) + E (Ag)]/2
Hence negatively correlated A; imply negatively correlated Y; but
to a lesser extent. The upper limit p;; — 1 is reached if A; = Ag
and Var (4;)/E(4;) — oo.

The choice of multivariate lognormal mixing distribution for G

is a special case, with a wide range of dependence. This leads to
the multivariate Poisson-lognormal distribution. Let

9(6; 1,5) = (20)"™/2(8, - --0,0) " B[H?
-exp{—%(logh — p)=~(logf — p)T}, 6; >0, 1 < j < m,
be the m-variate lognormal density, with mean vector g and co-
variance matrix ¥ = (0y;), where log8 = (log#,...,log#,,). The
multivariate Poisson-lognormal distribution is
Pe(Yi=y1,-. . Ym =uym) = f(y;8, %)

]G(dal, odam).  (1.27)

Pik =
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yi =0,1,2,..., 5 =1,...,m, where p(y; a) = e “a?/y!. There is
no simpler form, but moments have closed forms:
def

E(Y;) = exp{p; + 30j;} = Bj, Var(¥;) = B; + B} [exp(vj;) — 1],
Cov (¥, Yi) = BiBelexploge) — 1], §# k.
The (j, k) correlation pj is
Y/ ) |
JEFB o — DI T Ao = 1)

The range of correlations depends on the univariate parameters

pik =

1j,05i,J = 1,...,m. For example, if p; = px = p, 0j; = ok = 02,
ojr = wo?, B = P = P, then
-0? _ o? _
-‘é[—e——z—}l‘SijS Ble 31] .
14+ B(e?® - 1) 1+ B(e’? — 1)

A multivariate gamma distribution would be needed to get a
multivariate distribution in (7.27) with negative binomial margins,
but there is no known multivariate gamma distribution with con-
venient form for the pdf or cdf that leads to a simple form for
(7.27).

For addition of a covariate vector x, the parameters of the mixing
distribution G can depend on x. For example, for the multivariate
Poisson-lognormal distribution, g can depend on x, say through a
linear function. As for the multivariate probit model, the depend-
ence of the covariance matrix £ on x is harder to specify.

7.2.} Other models

The mixture models in the preceding subsection have univariate
margins and an amount of dependence that depends on the mixing
distribution. Although perhaps not as interpretable, copula mod-
els with dependence separated from the univariate margins (say,
negative binomial or generalized Poisson) could be used as models
for multivariate count data. The parametric families of copulas in
Chapter 5 could be used.

7.3 Multivariate models for ordinal responses °

Latent variable models from Section 7.1.7 generalize with more cut-
off points and so can also be used for ordinal categorical response
variables. These models also are physically meaningful because one
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can usually assume that there is a continuous latent variable associ-
ated with an ordinal categorical variable. A data analysis example
with latent variable models for a multivariate ordinal response is
given in Section 11.2.

The other models for a multivariate binary response vector do
not extend to a multivariate ordinal random vector. One could mix
multinomial distributions, but the ordinal feature of the categorical
variable would not be used; such models are given in the next
section on multivariate models for nominal responses.

For a latent variable model, we discretize a continuous m-
variate family F(-;0) € F(Fo,...,Fp). We first use a stochastic
representation to define the model. Let Z ~ F, with each Z; ~ Fp.
Define a random vector Y of ordinal categorical components with

Yj=kifajr1<Z; <aji, k=1,...,r;, where r; is the number
of categories of the jth variable, j = 1,...,m. (Without loss of
generality, assume aj o = —oo and aj; = oo for all j.) From this
definition,

Pl‘(Y] = kl,. . .,Ym = km)
= Z?::k,—l e Z?::km—l(_‘l)zj(kj‘ij) F(alin Ty amim;a)'

There are ;. (r; — 1) univariate parameters or cutoff points.
Univariate probability parameters are 7j; = Fo(ajx) — Fo(ejk-1),
k=1,...,7—1,j=1,...,m. The number of dependence para-
meters is the dimension of 8.

If there is a covariate vector x, then the parameters a; ; and 8
can depend on x, with the constraint that a;;_1(x) < e k(x).

To generalize the probit model to a multivariate probit model,
Fy is the standard normal cdf and F is a MVSN cdf with correl-
ation matrix R =  (with m(m — 1)/2 parameters). Usually, in the
multivariate probit model, «; ; is linear in the covariates (this is
acceptable with different regression coefficients for different cutoff
points of the same variable if the range of x is not too large) and 8 is
constant over the covariates. A multivariate logit model obtains
if Fy is the logistic cdf.

7.4 Multivariate models for nominal responses

Classes of models that extend those in Section 7.1 are mixtures
of multinomial distributions. A multinomial distribution could in-
clude something like a bivariate Bernoulli distribution, since the

categories, which could be labelled as (0,0), (0,1), (1,0), (1,1), are
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not ordered. Consider first the exchangeable case in which the nom-
inal rvs Y7,..., Y, take valuesof 1, .. ., r for categories 1 to r (with
r>2). Let iy =I(yj =k),j=1,...,m k=1,...,r. Then a
multivariate model is

fly) = / [T I1 #»* Gedp),

j=1k=1
where G is a distribution on the simplex S, = {p : i, pi =
1: Pi _>. 0}‘
A possible mixing distribution G is the Dirichlet distribution

with density {T'(ay+---+a,)/[T(a1) - - T(er)]} [Tz, pe* " This
leads to

|| 1 H;:—Bl(ak + £)

fy;on, .., 0r,m) = =3 , ¥y e{l,...,r}
t=o (a4 +2)
where s; = E}’;l Ik is the number of occurrences of category

k among the m responses, a4y = ) ;_, a; and a null product is
defined to be 1. Analogous to (7.4) and with a similar proof, this
extends to

I, TIete (e + £9)
(I+7)---(1+[m=-1}y)’
where the parameters satisfy mx > 0 and 7 + (m — 1)y > 0,
k=1,...,r,and 3 _, m = 1.

With the coefficient (, ™ ) in front of the right-hand side of
(7.29), the Dirichlet-multinomial distribution obtains for ¥ > 0, the
multinomial distribution obtains for ¥ = 0 and some multivariate
hypergeometric and multivariate Pélya-Eggenberger distributions
obtain for vy < 0.

A model for nominal rvs Yj,...,Y,, with the same r categories,
but without necessarily the same univariate margins, is

F(yim, -, y,m) = (7.29)

10) = [T el ot am(@),  (130)

i=lk=1

where 51 _, Pr(,0) = 1 for all & and 6. This model generalizes
(7.15) and has conditional independence. If A has distribution M
and Y has the distribution in (7.30), then (7.30) is equivalent to

m
Pr(Yh =wn,..., Yy ::y,,J:/HPr(Y,- =yj | A= a)dM(a),
j=1
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where Pr(Y; = k| A = a) = pr(«, 0;).

For a general dependence model, with r; categories for the nom-
inal variable Y}, one can use a more general mixing distribution. Let
Lx=Iy; =k),j=1,...,m, k=1,...,7;. Then a multivariate
model is

m T
I.
fly)= / I1 I P Gdpy, - - ., dpm),
j=lk=1
where p; = (pj1,...,pjr;) and G is a distribution on the product
of simplices Sp; x -~ x Sy, .

7.5 Bibliographic notes

An early paper on the analysis of multivariate binary data is Cox
(1972). Prentice (1986) has the extension of the beta-binomial
distribution without mention of the hypergeometric and Pélya-
Eggenberger distributions; see Johnson and Kotz (1977) for the
latter. The representation in Section 7.1.9 is given in Bahadur
(1961). The most negatively dependent exchangeable multivariate
Bernoulli distribution in Section 7.1.10 was obtained by T. Hu.

References for the multivariate probit model are Ashford and
Sowden (1970) and Lesaffre and Molenberghs (1991) for binary
responses, and Anderson and Pemberton (1985) for ordinal re-
sponses. Meester and MacKay (1994) make use of the exchangeble
extension of the copula family B3 as a latent variable distribution
for clustered correlated ordinal response. More on multivariate log-
istic distributions can be found in Arnold (1991; 1996).

Connolly and Liang (1988) generalize (7.3) to include covariates
for the case of cluster or familial data, with the exponential family
type model: A exp{log f(y; a1, @2, m)+ >_;(B;xi)yi}, where Aisa
normalizing constant and f is given by (7.3).

The gamma mixture of bivariate Poisson distributions is given
in Kocherlakota and Kocherlakota (1992). See Aitchison and Ho
(1989) for the multivariate Poisson-lognormal distribution. A uni-
fication of mixture and random effects models for count and binary
data is given in Xu (1996).

Section 7.2 has multivariate negative binomial distributions that
arise from the generalization of gamma mixtures of Poisson distri-
butions. Other multivariate negative binomial distributions come
from multivariate waiting times that generalize the waiting time to
the rth success; see Marshall and Olkin (1985) and Kocherlakota
and Kocherlakota (1992). Also there are multivariate negative bi-
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nomial distributions that come from generalizing the univariate
probability generating function; see for example Doss (1979).

For m = 2, McCloud and Darroch (1995) have the model (7.30)
in Section 7.4 with a special form for pi(«, ;).

There are other classes of models for multivariate binary and
discrete data in the statistics literature. They are not mentioned
here because they do not fit within the framework of the approach
in this book. One class that may overlap is that in Glonek and
McCullagh (1995). In the bivariate case, their model is equivalent
to the use of the copula B2 in Section 5.1 with the dependence para-
meter linear in covariates. Their multivariate extension appears
to overlap with that of Molenberghs and Lesaffre (1994), but the
approach is different from that in Section 7.1.7. The framework
of generalized linear models (McCullagh and Nelder 1989) is not
used, as it is tied to exponential families and does not seem to lead
to a unified approach for models for multivariate responses.

7.6 Exercises

7.1 Show that any bivariate Bernoulli distribution obtains as a
latent variable model with the family B3 of copulas (with
extension to negative dependence), but that not all trivariate
Bernoulli distributions obtain as latent variable models from
the trivariate family M3 of copulas in Section 5.3.

7.2 Consider a non-homogeneous Poisson process N in %2 with
intensity function A and mean value function p. Let Ry, R2
be regions in ®? with non-empty intersection. For j = 1,2,
let Y; = N(R;) be the count of the process in region R;.
What is the joint distribution of (Y}, Y32)?

7.3 Verify the derivation of the first- and second-order moments
for the multivariate Poisson-lognormal distribution.

7.4 Study the range of dependence for the multivariate Poisson-
lognormal distribution.

7.5 Consider a bivariate Poisson distribution with the BVN cop-
ula with correlation p and univariate Poisson(y;) margins,
7 = 1,2. Let (Y3,Y2) be a random pair with this distribu-
tion. Investigate (analytically and computationally) how the
correlation of Y3, Y2 varies as p, p3, o vary. For p = —1, how
does the correlation of Y;,Y> vary with py, g2 and what is
the minimum correlation?

7.6 Verify the special cases of the family in (7.29).
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7.7
7.8

7.9

7.10
7.11

7.12

Show that (7.21) is closed under margins.

For the Fréchet upper bound when the univariate margins
are Bernoulli(w), show that the representation (7.21) has

ps = [(1 = m)SI=1 4 2lSI=1 )81 /(1 = mISV/2-1,
for S € Sm, |5] > 2.

Compare different choices of the bivariate family K;; in
(7.19). Are there other choices of LTs and bivariate cop-
ulas in (4.25) or (4.31) that would be lead to a suitable
multivariate copula for the latent random vector for binary
rvs?

Show that (7.8), (7.9) and (7.10) are non-negative.

Do a dependence analysis of latent variable multivariate bi-
nary models that come from using the Molenberghs—-Lesaffre
construction with the bivariate family B2 or B3; obtain a
summary comparable to that in Table 7.3.

(Construction of a negatively dependent bivariate Poisson
distribution.) Let f(y1,y2;n1, n2, Poo, Po1, P10, P11) be a bi-
variate binomial pmf with univariate Binomial (n;, 7;) mar-
gins, j = 1,2, where 7 = p1o+p11, 72 = po1+p11- (Assume
that a Binomial (0,7) distribution means a degenerate distri-
bution at 0.) Let N;, N2 be random variables taking values
on the non-negative integers. Suppose that Pr(Yy = y,,Y2 =
y2 | N1 = ny, N2 = n2) = f(y1, y2; 71, n2, Poo, Po1, P10, P11)-

(a) Show that if Nj ~ Poisson (;), j = 1,2, with N; inde-
pendent of N3, then Y; ~ Poisson (67;), j = 1,2.

(b) Show that if pgo, po1, P10, P11 are such that the bivari-
ate binomial distribution is negatively dependent for all
ny,nz, then the unconditional distribution of (Y1, Y?) is
negatively dependent (say, as measured by the covari-
ance or correlation).

(c) One possible bivariate binomial distribution has the
stochastic representation:

nijAnsg ny
(Sl,Sg) = Z (X,'l,Xiz)“i'I(nl > 'ng)( Z X,'l,O)
i=1 i=ng41

+1(n; < ng) (0, i X,-z),

i=n1+l
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where (X1, Xi2),t = 1,2, ..., are iid bivariate Bernoulli
random pairs with parameters poo, po1, P10, P11 (see Sec-
tion 7.1.1). Obtain the pmf for this distribution.

(d) Show that if p;; — 772 < 0, then the distribution in (c)
has negative correlation.

7.13 Study the dependence structure of the models in (7.14) or
(7.15).

7.14 Study the dependence structure of the model in (7.26).

7.7 Unsolved problems

7.1 The generalized Poisson distribution (see Consul 1989, for
details) has pmf:

f(z) =000 +nz)* e " /!, £=0,1,...,6 >0,7>0.

This is based on the identity e/ = 3772 (1)~ 16(8+in)i~te~in.
An unknown property is whether this family of distributions
is a mixture of Poisson distributions (when 5 > 0,6 > 0).

7.2 Consider a multivariate probit model in which the correl-
ation matrix depends on the covariates. What are choices of
functions for the correlation matrix? Or, what are functional
forms that guarantee a positive definite correlation matrix in
the range of the covariates? [Note that one example is given
in Section 7.1.8.]

7.3 Let Y; = I(Z; < o), j = 1,2, with (Z), Z2) being BVSN with
correlation p. Let pp(aj,as;p) be the correlation of Y, Ys.
Numerically the behaviour of pp is as follows:

(i) for p > 0, pp(e, a, p) decreases as || increases;
(ii) for p < 0, pp < 0 and |pB(a,a, p)| decreases as |q|
increases;
(1) for p > 0, pB(dl,ag,p) is unimodal in ay with a; fixed
and the mode is between 0 and a;;
(iv) for p < 0, |pB(a1, a2, p)| is unimodal in a2 with ¢;
fixed and the mode is between 0 and —a;.

Establish these properties analytically. Note that these results
imply that for p > 0, pp(a1, a3, p) is maximized at a; = oz =
0 with a value of 2 arcsin(p) (see Exercise 2.14).




CHAPTER 8

Multivariate models with serial
dependence

In this chapter, we present some (multivariate) models for time
series, longitudinal or repeated measures (over time) data when
the response variable can be discrete, continuous or categorical.
The multivariate dependence structure is time series dependence
or dependence decreasing with lag. Stationary time series mod-
els that allow arbitrary univariate margins are first studied and
then generalized to the non-stationary case, in which there are
time-dependent or time-independent covariates or time trends. It
is considerations of having univariate margins in given families that
make the models here different from the approach of much of the
research in the time series literature.

For time series with normal rvs, standard models are autore-
gressive (AR) and moving average (MA) models. These can be
generalized for the convolution-closed infinitely divisible class (see
Section 8.4). In allowing for time series models with arbitrary uni-
variate margins, auloregressive is replaced by Markov and moving
average is replaced by k-dependent (only rvs that are separated by
a lag of k or less are dependent). These are studied in Sections 8.1
and 8.2, respectively. In particular, the case of Markov of order 1
as a replacement for autoregressive of order 1 is a simple starting
point, and these types of models can be constructed from families
of bivariate copulas. For these Markov models, general results on
the decrease in dependence with lags are given in Section 8.5.

In Section 8.3, latent variable models, mainly based on the MVN
distribution with correlation matrix of the form of stationary auto-
regressive moving average (ARMA) time series, are considered.

The models in this chapter are applied in the data analysis ex-
amples in Sections 11.4, 11.5 and 11.6.

The following is a summary of the main ideas of the chapter.
Let {Y; :t=1,2,...} denote a stationary time series. For Markov
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models, let {¢;} be an iid sequence of rvs such that ¢, is independent
of {Yi-1,Yi-2,...}. A classification is:
(a) Markov of order 1: Y; = g(Y;-1, €;) for some real-valued func-
tion g;
(b) AR(1): Y; = aY;_1 + €, where « is a scalar;
(¢) convolution-closed infinitely divisible univariate margin: Y; =

Ay(Yi-1) + €, where A; are independent realizations of a
stochastic operator.

For 1-dependent models, let {¢;} be an iid sequence of rvs. A clas-
sification is:
(a) 1-dependent: Y; = h(ey, €;—1) for some real-valued function k;
(b) MA(1): Y; = €; + Be;—1, where B is an appropriate scalar;
(c) convolution-closed infinitely divisible univariate margin: Y; =

€ + Ai(€t—1); where A, are independent realizations of a
stochastic operator.

Obviously, given Y; ~ F| the possible choices of ¢; depend on F'.

8.1 Markov chain models

For time series with non-normal response variables, one possible
class of models consists of Markov chains, with the simple case
being those of order 1. If the order of the Markov chain is not
mentioned, then it may be taken to be 1.

8.1.1 Stationary lime series based on copulas °

A (stationary) Markov chain of first order with any given univari-
ate margin can be constructed from a bivariate copula. (This is
an important application of copulas.) This is a generalization of
the normal AR(1) time series to those which admit any possible
univariate margin, since the normal AR(1) time series arises as a
special case with the bivariate normal copula and a univariate nor-
mal margin. A Markov chain of second order, with any given uni-
variate margin, can be constructed from a trivariate copula which
has the property that the (1,2) and (2,3) bivariate margins are the
same. This generalizes the AR(2) normal time series. Extensions
to Markov chains of higher order require multivariate copulas with
the obvious constraints on the margins. '

The description of the stationary Markov chain time series based
on a (twice differentiable) bivariate copula C(u,v) is given next,
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separately for the absolutely continuous case and the discrete case
of non-negative integers. Let the time series be denoted by Y;,Y>, . ..

or{V;:t=1,2,...}.

(a) Absolutely continuous case. Suppose Y; ~ F, where F is a
continuous univariate cdf with density f. Then Fy»(z,y) =
C(F(z), F(y)) is a bivariate distribution with univariate mar-
gins both equal to F'. Let Cy)(v|u) = (8C/0u)(u,v) denote
the conditional distribution of the copula. The transition dis-
tribution of {Y;} is

H(ytiyt_l) =Pr(Y: < lYic1 = y—1) = Czu(F(?/t)]F(yt—l))-

(b) Discrete case. Suppose Y; takes values on the non-negative
integers. Let F' and f be the cdf and pmf, respectively. As
above, Fi2(z,y) = C(F(z), F(y)) is a bivariate distribution
with univariate margins both equal to F'. The transition dis-
tribution of {Y;} is

H(ylyi-1) = Pr(Y: <y | Yio1 = yi-1)

= [C(F(y-1), F(v:)) — C(F(yr-1 — 1), F(v:))] / f(we-1).

If a bivariate distribution in Fy, € F(F, F) is not conveniently
specified through a copula, then the equivalent of (a) or (b) can still
be obtained directly from Fiyy. This is done in Section 8.4 for mul-
tivariate distributions with univariate margins in a convolution-
closed infinitely divisible class.

If a parametric family of copulas, such as one of those in Section
5.1, that interpolates between independence and the Fréchet upper
bound is chosen, then one has a parametric family of time series
models, which includes an iid sequence at one boundary and a
perfectly dependent (or persistent) sequence at the other boundary.

Stationary Markov chains of order m — 1 can be constructed
from an m-variate copula C that satisfies the following conditions:
(i) the bivariate margins C;; are such that Cj;4¢ = Ci14¢, £ =
1,...,m—=2,7=2,...,m—{¢; (ii) the higher-dimensional margins
are such that C;, ;. = Ciis—i41,. iw-ip41 for 1 <43 < -+ <
iy <m,3 <k <m-—1;and (iii) C is differentiable in its first m—1
arguments.

For the trivariate case, these conditions become Ci5 = C23. Can-
didates for families of trivariate copulas with these conditions are
in Sections 4.3 and 4.5.

If Fy..o = C(F,...,F) is an m-variate cdf, such that F is ab-
solutely continuous and C' is a copula with the above properties,
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then the transition cdf of the stationary Markov chain is:

a(F(yt-m+1),-- -, Fy))
b(F(yt-m+1)s - -» F(y-1))’

H(yt|yt-m+1,-- .,yt-l) =

where gm-10
a(uy,...,um) = m(u)
and om-10
b(ul)"')um—l): lmm—l(ul)"'ium-l))

aul tee aum-—l
with C}..;m-1 being an (m — 1)-dimensional marginal of C.

8.1.2 Binary time series

We look at simple Markov chains of order 1 for binary time series,
and consider several ways to extend these to include covariates. Of
particular interest is how logistic regression can be incorporated.
The models that can be constructed depend on the nature of the
data, such as whether: (i) there is one time series, or time series for
many different subjects; (ii) the time series are short, moderate-
length or long, and equal or unequal in length, if there are many
different subjects; and (iii) covariates are time-varying or time-
independent.

We start with the simple stationary case with the marginal prob-
ability of 1 being p = 1 — q. Consider the Markov chain based on
the bivariate distribution

pP= [Poo Pm] _ [q2+0 P‘I—g]
Po Pn pg—0 pP+6]’

where — min{p?, ¢} < 6 < pq (0 is the covariance). The transition
matrix is

He [Po]o puo] _ [q+0/q p- 9/‘1] .
Poj1 Pi q—0/p p+90/p
If {Y:} is a stationary Markov chain with transition matrix H, the
joint distribution of (Y1,Y;) is P; = PH'=2 = P;_1H, j > 3, with

2
+0;_ -0;_
P, = P.Suppose Pj_; has the form [zq _ 0-;__1 §3+ aj_i] ; then
Pi H = [q’ +6;-10/(pg) pg— ej-la/(pq)]
= pq—0;-10/(pq) P’ +08;-10/(pa) ]’
so that P; has the same form as P;_; with 6; = 6;_.6/(pg). Since
02 = 0, then 8; = 8/=1/(pg)i~2, j > 3. Note that if 0 < 8 < pg then
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the dependence on P;j is decreasing as j increases. More specifically,
6;/(pq) is the correlation and its absolute value is decreasing geo-
metrically. In the form of a fixed lag 1 correlation p, the transition

g 1 1=p(1=p) p(1-p)
matrix is H = (1= p)g P+ pg }

To get a parametric family of models, one can take P to come
from a family of discretized bivariate copulas, i.e., popo = C(a, a; 6)
or p11 = C(a, a; 6) for some « for a family C(+;6). For this model,
the correlation p of two binary variables will not be constant over
« (or marginal probability p) unless C is the family B11 in Section
5.1 with C(u, v; p) = pmin{u,v} + (1 — p)uv.

If the Markov chain depends on a time-independent covariate
vector x, then one can have p = p(x) and p = p(x). If p is constant
over x, then py; = (1 — p)p(x) + p is increasing as p(x) increases.
For example, with a logistic regression margin, p(x) = e*+#* /(1 +
e®*+Px) where x is a column vector and S is a row vector,

Pr(Y, = 1]Yo1 = 0,x) = (1 - p)e®P*/(1 + e +Px)
and
Pr(Y; = 1| Yiey = 1,x) = (p + e*P¥) /(1 + ¢*+P%).

The constraint on p is that p > —e®*+P* for all x. Note that the
conditional probabilities are not logits.

For the situation in which there are time-dependent covariates
or there is non-stationarity, we can look at transition matrices
that take (1,ef*1)/(1 + ™) to (1,eP*2)/(1 + €P*2), or (q1,p1)
to (q2,p2). With the correlation p fixed, the transition matrix

has the form [;:(Ij Z], with @ = py — p/P1P292/q1 and b =

p2 + p\/q192p2/p1. Therefore if p;, p2 depend on time-varying co-
variates, the transition probabilities depend on the covariates at

the current and next time points. This may be reasonable, but the
assumption of the correlation being fixed over all possible marginal
probabilities is unlikely to be so.

Next consider the situation of specified conditional probabilities
with covariates that are not tirne-varying. If one requires the con-
ditional probabilities to be logits, then what is the marginal sta-
tionary probability p(x) = Pr(Y; = 1]x)? Let p;j;(x) = Pr(Y: = j |
Y1 = i,x),1,7 = 0, 1. Suppose log[p1|y(x)/pojy (x)] = a+Bx+7y.
(This form is chosen so that pyj;(x) — p1jo(x) has the same sign for
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all x.) The transition matrix (p;;(x)) is

1/(14e*¥Px)  exthx/(1 4 exthx)
1/(1+ ea+1+ﬁx) ea+'y+ﬂx/(1 + ea+-y+ﬂx)

The condition v > 0 corresponds to positive serial dependence and
¥ < 0 corresponds to negative serial dependence of lag 1. The
stationary probability p(x) satisfies

eatfx eatr+px
(1-p(x ))m +p(x )m = p(x),

so that

p(x) = pio(x)/[p1jo(x) + pop (x))
— ea+ﬂx(1 + ea+7+ﬁx)/(1 + 9 +Px + 620+-y+2ﬂx).

Hence the marginal probability is not logit or close to logit. Let
b = e*+P* and ¢ = €. Then p(x) increases as Bx increases since
Pllo(x)/Poll(x) = b(14bc)/(1+d) is the product of two terms that
are increasing in b.

Note that in general, any two of the functions p(x), pijo(x),
p1j1(x) determine the third for a stationary binary Markov chain
with time-independent covariate (assuming compatibility). Altern-
atively, p(x) and the correlation (or another dependence measure)
p(x) determine pyjo(x), p1j1(x).

We next consider what might be done if there are observed bi-
nary time series on many subjects. The type of modelling that is
possible might depend on the lengths of the series (see the begin-
ning of Chapter 10). If one has a long stationary binary time series
for each subject, one could estimate the parameters, such as p and
p, by subject, and then regress these on the covariate vector x be-
fore combining everything. Another possibility is a Markov chain
random effects model, with parameters that vary with subjects. If
there are many subjects and short series, it might be harder to
use a random effects model, and one possibility for an initial data
analysis is to aggregate subjects by clustering of covariates and
estimate parameters within each group (cluster).

8.1.83 Categorical response

If the response is a categorical variable, either nominal or ordinal,
then the ideas in the preceding subsections can be extended to a
Markov chain with more than two states. That is, one can start
with a stationary Markov chain and then make modifications to




MARKOV CHAIN MODELS 249

include covariates. If there are r categories for the categorical re-
sponse, then the transition matrix has potentially r(r — 1) para-
meters if there are no covariates, and more parameters if there are
covariates. If the response is ordinal, it may be possible to reduce
the number of dependence parameters by using a copula-based
Markov chain model, as given in Section 8.1.1.

In the statistical literature, Markov models have been commonly
used, but not usually with considerations of both the univariate
marginal distributions and the transitional probabilities. The spe-
cific details of the modelling depend on the nature of the data and
the types of inferences of interest. Factors include: (i) whether the
data are aggregated at each time point or consist of individual time
series; and (ii) whether a stationarity assumption can be made or
whether there is non-stationarity such as a progression through a
sequence of states.

8.1.4 Ezireme value behaviour

This subsection is concerned with extreme value dependence be-
haviour for stationary Markov chains with state space . This be-
haviour is relevant for extreme value inference from time series.

If the bivariate copula has (upper) tail dependence (see Section
2.1.10), then the time series {Y;} with continuous univariate mar-
gin F" has clustering of observations above high thresholds (extreme
value dependence). The property of upper tail dependence implies
that the extremal index [ of the time series is less than 1 (in fact,
less than 1 — A, where A is the upper tail dependence parameter).
The extremal index can be interpreted roughly as the reciprocal
of the mean length of clusters of consecutive values above high
thresholds. More rigorously, for a stationary dependent sequence,
the extremal index is defined as

FE lim —log F(yn)/[~nlog F(3)]

with y, T oo at an appropriate rate, where F is the univariate
marginal cdf and F, is the distribution of max{Y;,...,Yi4n-1}
With this definition, F,,(y) ~ F"™?(y) for large y and n. For ARMA
normal time series, the extremal index is 8 = 1. See the two simu-
lated time series in Figure 8.1 for a comparison of an AR(1) normal
time series and a time series with a normal univariate margin based
on the copula C'(u,v;6) = u+v—14+C(1 — u,1 — v;§), where
C is in the family B4 (C’ has upper tail dependence) with param-
eter chosen so that the Kendall tau value is approximately that
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of the BVN distribution with a correlation of 0.75. The property
of tail dependence shows itself clearly. Markov chain models based
on bivariate copulas with tail dependence can be used to model a
variety of extreme value (clustering) behaviour.

For the Markov chains based on bivariate copulas, we will use
the function

Ba(y) = —log Fa(y)/[—nlog F(y)]

and the limit 8 = limg_.o0 limy—.00 Bn(y) as the measures of (up-
per) extreme value dependence or clustering. Properties of G,(y),
including inequalities, bounds, limits and monotonicities, which re-
late to (serial) dependence in the stationary sequence, are studied
as they help in determining what patterns are possible for 8,(y).

For a stationary dependent sequence {Y;} with univariate margin
F,let a1(y) = F(y) and let

a(y) =Pr(Y;i<y|"1 <y,.... Vi1 <y) (8.1)
for i=2,3,.... Then F,(y) = []i=, @i(y) and

Ba(y) =7~ Y _[-logai(y)}/[~ log as (v)).
i=1
It should be intuitive that a;(y) converges as ¢ — o0, especially if
the sequence {Y;} does not have long-range dependence. If a;(y)
converges t0 aoo(y), then

Ba(y) — [=logaee (1))/[-log e1(#)] E Boo(y), 7 — co.

A dependence condition implying the monotonicity (and hence
convergence) of a;(y) in i is given below.

A rough connection between-the-extremal index and reciprocal
cluster size of large exceedances comes from the following results.
We begin with the inequality:

Be(y) > [1—F(¥)/lr(1 = F(y))] (8.2)
(1-F@)+F@ —Fay) +...+ (Fr-a(y) —Fr(v)
r(1- F(y))

> (Fe-1(y) - F())/(1 = F(y)).

The first inequality comes from [~ log a]/[— logb] > (1—a)/(1-b) if
0 < a < b < 1; the difference of the two quantities in this inequality
gets smaller as @, b increase towards 1. The second inequality comes
from the sequence F;_1(y)-Fi(y) = Pr(Y1 > 4, Y2 <y,...,Yi <y)
decreasing in . For fixed r and y, with r large, Leadbetter (1983)
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(a) AR(1) normal
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(b) Markov chain based on copula B4 with normal margin
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Figure 8.1. Comparison of extreme value properties for Markov chains
based on different bivariate copulas; parameters are (a) p = 0.75 and (b)
5 =2.34.
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interprets the reciprocal of the second term in (8.2) as the expected
number of exceedances above y in a block of r consecutive Y; given
that at least one of the Y; exceeds y. That is,

j+r—1 j4r—1
(1-F() _ BXHTIM>y )
1-F(y) Pr(4) = ; Pr(¥ >y [ 4)
j4r—1
_ BT > yin4)
Pr(A) ’
where A is the event {max{Yj,...,Yj4r-1} > y}. The exceedances

in a block can be considered as a cluster.

Properties of Bn(y):

(a) (Bound based on a positive or negative dependence condi-
tion.) If the positive dependence condition F,, > F™ holds for
all n, then G,(y) < 1. Similarly, B,(y) > 1 if {Y:} exhibits
enough negative dependence such that F,, < F".

(b) (Bounds on f,(y): Bn(y) can be larger than 1 but not f3.)
From the Fréchet upper and lower bounds for a multivariate
distribution with given univariate margins, max{0, nF(y) —
(n = 1)} < Fa(y) < F(y). The upper bound results when
Y; = Y1 for all i. The lower bound is probably quite crude
when considered as a bound for multivariate distributions
that come from stationary dependence sequences. From these
bounds, Bn(y) > n™%, Bu(y) < —log(np—n+1)/[—nlogp]ify
is such that F(y) = p > 1—n""! (and there is no upper bound
if F(y) < 1-n"1). Since lim,_.; — log(np—n+1)/[-nlogp] =
1, then limsup, ., Ba(y) < 1.

(c) (Monotonicity of a;(y) in ¢.) If Fry1(y) > Fa(y)F(y) for all
n, then a,(y) > a1(y) for all n (and-hence £,(y) < 1 for-all
n). The preceding statement is also valid with all inequalities
reversed. Under some stronger positive dependence assump-
tions, a;(y) is increasing in ¢ (which implies that 8,(y) is
decreasing in n). Similarly, there are negative dependence as-
sumptions for which a;(y) is decreasing in i. Sufficient condi-
tions for monotonicity of a;(y) are given in Glaz and Johnson
(1984). By Theorem 2.3 of Glaz and Johnson, a;(y) is increas-
ing in i for all y, if for all n the density f, of (Y1,...,Ys) is
MTP-.

Next are two examples where a;(y) is monotone in 4. -

Example 8.1 If (Y3, ...,Y,) is MVN with covariance matrix £,
and inverse covariance matrix A, = £;! = (a;;), then a necessary
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and sufficient condition for the density of (Yi,...,Y,) to be MTP,
is that all off-diagonal elements of A,, are non-positive. For {V;}
being a stationary AR(1) normal sequence with lag 1 autocorre-
lation p > 0, A, has the form a;; = apn = (1 — p?)71, a;; =
(1+p2)/(1— 2) fOI‘2< 2<Tl—‘1 Aii4+1 = Qip1r, = -—p/(l—' 2)
i=1,...,n—1, and a;; = 0 for |z—-]|>2 Hence the MTP,
condltlon holds and a;(y) is increasing in ¢ for all y. O

Example 8.2 Let {Y;} be a Markov chain of order 1 with contin-
uous marginal distribution F. Let h(y:—1,¥:) = p(yt|ye-1) be the
transition pdf. From Proposition 3.10 in Karlin and Rinott (1980a),
the density of Yy, ...,Y, is MTP; for all n if h is TP3. Let C be the
bivariate copula associated with (Y;—1,Y;). Then h is TPy if the
density ¢ of C is TPy since h(yi—1,¥:) = c(F(yi-1), F(y:)) f ().
The property of TP, density holds for a number of the families of
bivariate copulas in Section 5.1.

8.2 k-dependent time series models

MA (k) normal time series models are examples of k-dependent se-
quences. In this section, we look at k-dependent sequences, based
on copulas, that allow for arbitrary univariate margins. These mod-
els are probably less useful for applications compared with Markov
models; however, they are included for theoretical completeness.

8.2.1 1-dependent series associated with copulas

Let C(u,v) be a bivariate copula with conditional distribution
Co(vlu) = 0C(u,v)/du. The inverse conditional distribution is
denoted by C2|1(s|u) Let F' be a (continuous) univariate cdf and

let €o,€1,... be a sequence of iid U(0,1) rvs. (The development
could be extended to discrete distributions F.) A 1-dependent se-
quence with stationary distribution F is:

Y: = h(eg-r,€), t2>1, (8.3)
where
h(u,v) = F~[C5 (olu)].
The marginal distribution is:
Pr(F[Cy (erlei-1)] < y) = Pr(es < Cop(F(w)ler-1))
= [o Pr(e: < Cop(F(w)lw)) du = [y Copy(F(y)lw) du = F(y).
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The joint distribution of (Y;—1, Yz), Pr(Y:—; < z,Y: < y), becomes
Pr(fz-l < Czll(F(f)lft—z), € < Czll(F(y)lft—l))

1 g1
= /0 /é Pr(uz < Cop(F(z)|w1), & < Cop(F(y)|uz)) duadu,
1 pCon(F(x)luy)
/0 /0 Con(F(y)|uz) duzdu,

1
= [ clomFEm, Fu) du. (84)
For the independence copula, note that Y; = F~1(¢,), t > 1, is

an 1id sequence. For a BVN copula C(u,v) = ®,(®~(u), ®~1(v)),

Can(elu) = B([@7'(v) — p&~1(w)]//I=72), and Cyl(slu) =

D(pd~!(u)+ /1 —p?2®~1(s)). If F = ®, the sequence becomes

Yi=par1+ V1-p?ay,

where a; are iid N(0,1) rvs. The lag 1 correlation is py/1 — p?,

which reaches a maximum of ; when p = \/_;: and a minimum of
—1 when p = — /1. The joint distribution from (8.4) is

| o= o @) VI= 72, 0)
= [ e rVT R da(e)

= Pr(\/l—p2X+pZ§2:?Y§y), (8.5)

0 01
Hence the bivariate distribution in (8.5) is a BVSN distribution
with correlation p/1 — p2.
For the upper Fréchet bound copula, Cyp(v|u) = 0if v < u
and 1 if v > u. Hence C';I;(slu) = u and the sequence reduces

to Y; = F~1(€;-1), an iid sequence. For the lower Fréchet bound
copula, Cop(vju) = 0if v < 1 —uwand 1 if v > 1 — u. Hence
Cy1(slu) = 1—u and the sequence reduces to ¥y = F~}(1-€-1),
another iid sequence.

Not all 1-dependent stationary sequences have a copula repres-
entation. One example consists of the MA sequences in Section

8.4.2 with univariate margins in the convolution-closed infinitely

1 p O
where (X,Y,Z) is normal with covariance matrix |p 1 0}.
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divisible class. Another example is that if £;,&2,... are iid, then
the sequence X; = max{£;,&4+1},1 = 1,2,..., does not have the
form of (8.3).

Next we state some properties of the distribution in (8.4). If the
copula C is PQD, then the distribution in (8.4) pointwise exceeds
[} Copn(F(2)|u)F(y)du = F(z)F(y) so that (8.4) is also PQD. Sim-
ilarly, (8.4) is NQD if C is NQD. A comparison of the copula
in (8.4) and C is as follows. Let C*(z,y) = fol C(Con(z|u),y) du
be the copula in (8.4). Notice that fo1 Cop(z|u)du = z so that
if C(-;y) is concave for all y, then C*(z,y) < C(z,y) for all
0 < z,y < 1. This follows because the condition of concavity is the
same as Cy|;(y|u) decreasing in u for all y, or equivalently Cyy(-|u)
is SI as u increases. Similarly, if Cy1(-|u) is stochastically decreas-
ing as u increases, then C*(z,y) > C(z,y) forall0 < z,y < 1.

8.2.2 Higher-order copulas

Let C' be a trivariate copula that is differentiable with respect to
the first two arguments. For stationary 2-dependent sequences with
univariate margin F, based on a trivariate copula C, the general-
ization of (8.4) is:

},t =h(€t._2,€t_.1,€g), t= 1,2,..., (86)

where
h(u1, uz, u3) = F~1(Cyp5(uslur, C3f (uzlu1))).

It is easily checked that the special case of the independence copula
leads to an iid sequence.

Let £ = (p;;) be a trivariate correlation matrix. For the trivari-
ate normal copula, C(u) = &5 (P~ (vy), @~ (us), @~ (ua)),

Csj12(va|vy, v2) = ®([@ 7 (v3) — 1@ (v1) — a2®7 ' (v2)] /as),

where a, = (p13 = p12023)/(1 = pis), a2 = (p23 = p12p13)/ (1 = pla),
as = [(1-p}y—pls—p3s+2p12p13p23)/(1—p3,)]*/%. The model (8.6)
becomes equivalent to Y; = (a; + a2p12)Z1-2 + aa/1 — p2, Zy_1 +
a3z, where Z; are iid N(0,1) rvs. If p12 = p13 = p23 = p — 1,
then @y = a3 — },a3 = 0and Yy = Z,_,.

The generalization of (8.6) to k-dependent sequences based on a
(k + 1)-dimensional copula C' that is differentiable with respect to
the first k£ arguments is obvious.
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Table 8.1. Correlations for binary discretization of extremne 1-dependent
normal sequences.

porg 0.1 0.2 0.25 0.3 0.4 0.5
6=05 0249 0.295 0.308 0.318 0.330 0.333
6 =-0.5 -0.103 —-0.197 -0.237 -0.271 -0.317 —-0.333

8.2.3 I-dependent binary series

In this subsection, we study some special forms for 1-dependent
stationary binary time series {Y;}, in order to obtain bounds on
the maximum and minimum lag 1 correlations, as a function of p =
Pr(Y; = 1) = 1 — q. This then provides a comparison for studying
the range of dependence of 1-dependent binary time series.

From consideration of the non-negative definite correlation ma-
trix for an infinite 1-dependent stationary sequence, the maximum
correlation is less than or equal to 1 and the minimum correlation
is greater than or equal to —%. We have the exact maximum and
minimum only for some p values and leave the other cases as an
unsolved problem. The extension to k-dependent stationary binary
series is also left as an unsolved problem; for the generalization, one
has to consider an appropriate quantification of ‘most dependent’
and ‘least dependent’ over lags.

Candidates to consider for obtaining bounds are the discretiza-
tions of the extreme 1-dependent normal sequences {Z;} that have
lag 1 correlations § = +1; ie, Y, = I(Z > & 1(1 — p)), with
0 < p < 1. For Bernoulli (p) margins, the lag 1 correlation of {Y;}
is [®5(®'(g), 27" (¢)) — ¢*]/(pg) withg =1—pand § = } or —3.
This leads to the correlation values in Table 8.1 (there is symmetry
about p=¢=1).

Next we consider some 1-dependent sequences given by:

(a) Y: = I(max{&, &1} > s);

(b) Yi = I(min{&;, &1} > s);

(¢c) Yy = I(max{l — &-1,&} > s);

(d) Y: = I(min{l — &-1,&:} > ).
In (a) and (b), & are iid continuous rvs, and in (c¢) and (d), & are
iid U(0, 1) rvs. In each case, with 0 < p < 1 fixed, s can be chosen
so that Y; is Bernoulli (p). Let p2 = Pr(Y; = Yi41 = 1), so that the
correlation is p = (p2 — p?)/(p — p?).
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Table 8.3. Mazimum correlations over the 1-dependent binary sequences

in (a) and (b).

porq 0.1 0.2 0.25 0.3 0.4 0.5
p 0.487 0.472 0.464 0.456 0.436 0.414

Table 8.3. Minimum correlations over the 1-dependent binary sequences

in (c) and (d).

porg 0.1 0.2 0.25 0.3 0.4 0.5
p —0.111 —-0.250 -0.333 -0.292 -0.225 -0.172

For (a), pz = 1 -27v% 443 with y = (1=p)1/2. For (b), p; = p*/%.
For (a) with p < 7 and (b) with p > %, the correlations exceed
those in Table 8.1; these are given in Table 8.2 (there is symmetry
in the maximum correlations about p = ¢ = ).

For (c),p=1—-52ifs=(1=p)/2 pp=1-2s2if s < % and
p2=1-2s+s*2s—1)if s > 1. For s < 1 or p > 0.75, this
leads to p = —s%/(1 = s?) = —(1 — p)/p. For (d), p = (1 — s)? if
s=1-p"2 pp=0if s > 1 and py = (1 -5)?(1-2s) if s < L. For
s > 3 or p < 0.25, this leads to p = —p/(1 — p). Table 8.3 has the
minimum correlations that are possible from (c) and (d) (there is
symmetry in the minimum correlations about p = ¢ = 1).

An upper bound on the maximum correlation and a lower bound
on the minimum correlation for a 1-dependent stationary binary
sequence can be obtained by considering three-way tables, four-
way tables, etc., with appropriate margins. Consider the three-
way table such that the (1,2) and (2,3) bivariate margins are

2 2
[fyq:’:z gg;g] and the (1,3) bivariate margin is [;q gg]
Then for the trivariate distribution with p;;x = Pr(Y; = 4,Yi41 =
J,Yi42 = k), the bivariate constraints lead to pgoo = z, poo1 =
Proo = ¢° + 60 — z, poro = ¢* — &, por1 = pr1o = pg— ¢> — 0 + 2,
pio1 = pg — ¢*> — 20 + z, pi1 = p* + ¢* — pq + 20 — z. The non-
negativity of each term implies 0 < z < ¢%, ¢2 —pg < z — 0 < ¢2,
g2 — pg < z — 20 < ¢* — pg + p®. The maximum and minimum of
¢ are now reduced to linear programming problems. The inequal-
ities can be drawn in the (z,8) plane. The maximum is § = 1pg
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Table 8.4. Bounds on extreme correlations for 1-dependent binary se-
guences.

porg 0.1 02 025 03 04 05
UB(max) 0.5 05 05 0.5 05 05
LB(max) 0.487 0.472 0464 0.456 0436 0.414
UB (min) —0.111 —0.250 —0.333 —0.292 —0.317 —0.333
LB (min) —0.111 —0.250 —0.333 —0.420 —05 —0.5

(when = = ¢? on the line z — 20 = ¢ — pqg), and the maximum
1

correlation is 3. The graph for the case ¢ < 1 and ¢ < p? leads
to the minimum 6 value of —g? (correlation equal to —q/p), from
the intersection of £ = 0 and z — 6§ = ¢2. The graph for the case
g < % and ¢ > p? leads to the minimum 8 value of 1(—¢? + pg—p?)
(correlation equal to 3(1 — ¢/p — p/q)), from the intersection of
z = 0 and £ — 20 = ¢? — pg + p*. The graph for the case ¢ > z
and p < ¢° leads to the minimum 8 value of —p? (correlation
equal to —p/q), from the intersection of z — 20 = ¢% — pq + p? and
z — 0 =q*—pq (z = q*> + pg — p*). The graph for the case ¢ > %
and p > ¢? leads to the minimum 6 value of 1(—¢* + pg — p?) (cor-
relation equal to (1 — ¢/p — p/q)), from the intersection of z = 0
and z — 20 = ¢q% — pg + p. The constraint p = ¢? corresponds to
g =(-~1+5)/2 =0.618 and p = (3 — /5)/2. The bound for the
minimum correlation is —% at ¢ = } and dips below —2 for ¢ from
1/3 to 2/3.

A summary for all of the bounds is given in the Table 8.4. Note
that the sequences from (c) with p > 0.75 and for (d) with p < 0.25
attain the lower bound on the lag 1 correlation. The derivation of
sharp bounds in the remaining cases is left as an unsolved problem.

8.3 Latent variable models

Models from Chapter 7 that have the MVN distribution, as a mix-
ing distribution or for latent variables, can be used for longitud-
inal data, if the correlation or covariance matrices have patterns
of correlations depending on lags, i.e., pi; = ¥~ for i # j, for
a sequence 7. Examples are the multivariate Poisson-lognormal
distribution, the multivariate logit-normal distribution, and the
discretization of ARMA normal time series for binary and or-
dinal response (equivalently, multivariate probit model with pat-
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terned covariance matrix). Simple patterned matrices that could
be used for initial modelling are the AR(1) and AR(2) correlation
structures. For AR(1), p;; = p~% for some —1 < p < 1. For
AR(2), pij = pjj—i}, with pr being the autocorrelation of lag k;
the autocorrelations satisfy pr = ¢1pr—1 + d2p|k—2), k¥ > 3, where
¢1= (1= p2)/(1 = p}), b2 = (p2 — p})/(1 — p}), and are deter-
mined from p;, p2. Note that if Yy = I(Z; < «), where {Z,} is a
dependent AR sequence, then {Y;} is not a Markov chain.

8.4 Convolution-closed infinitely divisible class

A unified approach for time series models with non-negative serial
dependence can be obtained for the case where the response vari-
able has a distribution in the convolution-closed infinitely divisible
class. The class includes Poisson, negative binomial (with fixed
probability parameter), gamma (with fixed scale parameter), gen-
eralized Poisson (with one fixed parameter), inverse Gaussian (with
one fixed parameter) and normal. The models are the same as or
have similar form to the autoregressive moving average (ARMA)
time series models in the case of a normal univariate margin, but
only a subclass of the ARMA normal models is obtained. Following
the usage in the statistical literature, we will refer to the models
here as ARMA models for non-normal distributions. A Poisson,
negative binomial or generalized Poisson margin can be used for
count data and a gamma or inverse Gaussian margin can be used
for a positive response variable.

Stationary first-order Markov or AR(1) time series models are
stochastically described in Section 8.4.1, along with some prop-
erties and interesting special cases. Extensions to AR(p), MA(q)
and ARMA models are covered in subsequent subsections. A non-
stationary extension is mentioned briefly in Section 8.4.4.

The ideas in this section do not seem to extend to models with
negative dependence for lags.

8.4.1 Stationary AR(1) time series °

The theory here is a special case of the stationary Markov chain
time series in Section 8.1.1; the joint distribution of a consecut-
ive pair of observations has one of the bivariate distributions in
Section 4.6. However, the time series models are best presented
through stochastic representations rather than through transition
probabilities.
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Let Fp, @ > 0, be a convolution-closed infinitely divisible para-
metric family such that Fy, « Fy, = Fy, 14,, where * is the convolu-
tion operator. It is assumed that Fy corresponds to the degenerate
distribution at 0. For Z; ~ Fy,, j = 1,2, with Z;, Z, independent,
let Gg, 4,,: be the distribution of Z; given that Z; + Z; = 2. Let A
be a random operator such that A(Y) given Y = y has distribu-
tion Gag,(1-a)e,y, and A(Y) ~ Fae when Y ~ Fy. (In later subsec-
tions, the operator is denoted by A(:; a) to show the dependence
on a.) A stationary time series with margin Fg and autocorrelation
0 < a < 1 (of lag 1) can now be constructed as

Y = A(Yic1) + €, (8.7)

where the innovations ¢; are iid with distribution F(;_q)9, Y; ~ Fp
for all ¢, and {A; : t > 1} are independent replications of the
operator A. (The term innovation is used because ¢; need not
have a mean of 0; rather ¢, is new or innovative at timet.)

Here is the intuition reasoning behind the operator A(-). A con-
secutive pair (Y;-1,Y:) has a common latent or unobserved com-
ponent X, through the representation:

Yi-1 = X2+ Xy, Yi=X12+4 Xo,

where Xi3, X3, X2 are independent rvs with distributions Fgy,

F1-a)s, F(1~-a)s, respectively. The operator A(Y:-1) ‘recovers’ the

unobserved Xj2; hence the distribution of A(y) given Y;—1 = y

must be the same as the distribution of X9 given X312 + Xy = y.
Interesting examples are the following.

(a) If Fy is Gamma(#,£) with ¢ fixed, then Gag (1-a)s,y is the
distribution of y times a Beta (af, (1 — «)f) rv. That is, the
model could be represented as

Yi=AY1+e6, (8.8)

where the A, are iid Beta (o, (1 — «)8) rvs and the ¢, are iid
Gamma((l — «)8,€) rvs.

(b) If Fy is N(0,0), then Gog,(1-a)s,y is N(ay, a(1—a)f), and the
usual normal AR(1) model results, since A(Y) ~ N(0, af).

(¢) If Fy is Poisson (6), then Gug,(1-a)s,y is Binomial(y, ).

(d) If Fy is Negative Binomial (8, p), as given in (8.10) below, with
p fixed, then Gag,(1-a)s,y is Beta-binomial(y, a8, (1 — «)6)
(with pinf given in (8.11) below).
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(e) If Fy is inverse Gaussian with parameters 6, A () fixed), mean
6, variance 62, and density of the form

foly) = exp{—07/(2y)*)—y/(2)*)+6/X*}, y > 0,
(8.9)

then the inverse Gaussian subfamily is infinitely divisible. The
density of Ga6,(1-a),y is given in (8.12) below.

6
(27 y?)1/2)

(f) If Fy is generalized Poisson with parameters 8,7 (7 > 0 fixed)
and density of the form

fo(y) =00 +ny)Y eyl y=0,1,...,

then the generalized Poisson subfamily is infinitely divisible,
and Gag (1-a)s,y 15 @ quasi-binomial distribution (given in
(8.13) below).
By relaxing the condition of infinite divisibility, one gets the
following additional interesting example.

(g) If Fy is Binomial (8, p) and « is restricted to a multipleof -1,
then Gag (1-a)s,y is Hypergeometric (a6, (1—«)8,y) (the pmf
is given in (8.14) below).

The models in (c), (d), (f) and (g) could be used for count data,
with (d) and (f) for overdispersed counts relative to Poisson, and
(g) for underdispersed counts relative to Poisson. The model in (g)
might be useful for inferences when # is large and unknown.

Some details for the specific examples of interest are given next.
(b) (Normal.) Let Z; ~ N(0,0;) independently, j = 1,2. Let ¢

denote the standard normal density. Then the density of Zy,
given that Z, + Zp =y, is

(6102)"" /%4 (w/v/61) ¢ ((y — w)/V/02)
(01 + 62)~1/2¢(y/V0r + 02)
= [8/(6102))'%¢ ((w — ay)/Vea(1 - 2)f),
with § = 0; + 02, @ = 0, /6. Equivalently, Z; | Z, + Zy =y is
N(ay, a(1—a)f). Hence, for (8.7), a stochastic representation

is Y = aYi_y + wy + €, where w,; are iid N(0,a(1 — a)f)
independently of the {¢;}, and w; +¢; are iid N(0, (1 - a?)8).

(d) (Negative binomial and beta-binomial.) For the negative bi-
nomial (NB) distribution with parameters 8, p, we mean the

g(w; 8,05, v)
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distribution with pmf
f(k;6,p) = {T(O+k)/[R!T(O]}p’e*, k=0,1,..., ¢=1 —p)-
(8.10

If Z, ~ NB(61,p), Z2 ~ NB(02,p), and Z;, Z, are independ-
ent rvs, then

Pr(Zi =k 214+ 22 = =
"2 |5+ 22=9) f(y; 61 + 62,p)

_ (y) B0y + k,02+y—k)
~\k B(6,,62) ’
This is the beta-binomial pmf, which is a Beta (61, 8;) mixture
of Binomial(y, p) distributions.

(e) (Inverse Gaussian.) Let Z;, Z; be independent inverse Gauss-
ian rvs with respective parameters 6y,0,. Using (8.9), the
conditional density of Z; given Z) + Z2 = y, fs,(w)fe,(y —
w)/ fo,+6,{y), simplifies to

- Y 3/2 6,0,
S [w(y - w)] X6 + 02)

2 2 2
- exp {-—gi-g- [%}“ + yi}w - (olzozl]} ) (8.12)

for 0 < w < y. From this, the conditional density for Z, /(Z1+
Z3) given Z1+ Z2 = y depends on y, so that there is not a
simpler stochastic representation for (8.7), as for the case of
gamma margins.

(f) (Generalized Poisson and quasi-binomial.) Let Z;, Z3 be in-
dependent generalized Poisson rvs with respective parameters
8, ,0-. The conditional density of Z; given Z; + Z; = y is the
quasi-binomial distribution with pmf given by

_ (y> p(1—p) [P-l-(k]k—l [1 —P+((y—k)]y"k"1
gr = k) 14+Cy |14y 1+ Cy ,3)
1

k=0,1,...,y, where p = 6, /(8, + 62), ¢ = n/(61 + 62).

(g) (Binomial and hypergeometric.) If Z; ~ Binomial(d;, p) and
Za ~ Binomial (62, p), and Z;, Z, are independent, then 7,
given Z) + Z2 = y is hypergeometric with pmf

_ 04 04 0 _
gk“(k)(y—k)/(y)’ k—-O,l,...,y,

k=0,1,...,y. (8.11)
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where 6 = 6 + 02. To make this appear similar to the beta-
binomial distribution, the pmf can be rewritten as

(v 0! f,! (8 — y)!
9= (k) G - 1! (05 -;+ 0l (8:.14)

Theorem 8.1 Properties of the process (8.7) are the following.

(a) The process is Markov of order 1 and is time-reversible.

(b) If Fy has moments of second order, then the autocorrelation
oflagjisal, j=1,2,....

(c) An iid sequence is obtained ifa — 0 and a perfectly dependent
sequence is obtained if a — 1.

Proof. The proofs are left as exercises. [

The final result of this subsection concerns the bivariate margins
for the AR(1) time series. For the Poisson margin, the bivariate dis-
tribution of (Y1, Yj4+1) is the standard (and most natural) bivariate
Poisson distribution (see Section 7.2.2).

Theorem 8.2 For the AR(1) Poisson time series of the form
(8.7), the bivariate distribution of (Y1,Yj41) is bivariate Poisson
with parameters 0,0,a70, i.e., the pmf is

§ C—Au/\llcz e—)\l—{—/\,g(Al _ /\lz)y—k e-—)\z'*'/\m(/\z _ /\lz)z-—k
R w—F) e

y,z2=0,1,..., with A\; = Ay =0, A\j2 = a76.

Proof. The proof is based on a stochastic representation. Let e,
t > 2, be iid Poisson ((1 — o)) rvs, and let 6;;; be iid Bernoulli («)
rvs which are independent of the ¢; and Y;. Then the Poisson AR(1)
series of the form (8.7) can be represented as:

o Yo=Y bai+ €2,
Y
o Ya=3 ;1) 6216631 + ;2 632 + €3,

o ...,

y .
o Yitr = XidiGariv Siwnni + hoa ik Okrkic o Ganpi +
Ci+1
Since the rvs Y7,e€s,...,¢j41 are independent, Yj4; is stoch-
astically equal to A7, (Y1) + ¢, where ¢ is independent of Y; and
A3, ,(y) has the Binomial (y, o/ ) distribution. Hence (Y7, Yj41) has

distribution similar in form to the distribution of (¥1,Y2) with &
replaced by /. O
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Remark. There is not a similar result for the negative binomial
or gamma distributions. For example, using (8.8) as the stochastic
representation for the gamma AR(1) time series, Y3 = AzA4.Y; +
Agzea+ €3, where Az, Az are iid Beta (af, (1 —«)f) rvs, independent
of Y1, €2, €3. AzA2Y1 is stochastically equal to A*Y; with A* having
a Beta (%0, (1 — a?)0) distribution, and Ages + €3 is stochastically
equal to €*, a Gamma(l — a?,€) rv. The pair (Y, A*Y; +€¢*) has a
form stochastically equal to that in (4.49) in Section 4.6 (assuming
Yi, A*® and €* are independent), but (Y3, Y3) does not since 434.Y;
and Ageg + €3 are dependent.

8.4.2 Moving average models

There are versions of the models in preceding subsection for sta-
tionary moving average (MA) models. For the MA(1) models, if
Y ~ Fyand 0 < # < 1, let A(Y';B) denote a rv that, given Y = y,
has distribution Ggg,(1-pys,y- Let €, =0,1,2,..., be iid rvs with
distribution F;,. An MA(1) time series with marginal distribution
Fy has the form

Yi=¢ +A;(€¢_1V;a), t=1,2,..., (815)

where 0 < o < 1 and 9 = /(o + 1). As before, 4;, t > 1,
are independent operators. Assuming that F, has finite second
moment o2, Cov (Y:,Yi41) = Cov (E [er]e:], E[Aeg1(es; @)]er]) =
Cov (e, a€er) = ano? = aba?/(a+1), and the correlation is a/(a+
1) which is bounded above by i (when a = 1, 7 = 6/2). The lower
bound is 0 when a = 0. ,

The MA(g) model, with Y; ~ Fy, has the form

q

Y =) Ajle-ji o),
j=0

where ag =1,0< a; <1, j=1,...,q, € are iid with distribution
F, and 0 = n3_§ @;. The operators A, ; are independent over ¢
and j.

For 1 < k < ¢, the autocovariances and autocorrelations are

q
Cov (¥, Yigr) = Cov (3 Asi(er-ji ),

j=0
g-k

gk
. _ 2
Z At+k’jl+k(€¢_jl,ajl+k)) = Za’jaj+k710'
jmk i=0
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and Zj;g ajejik/ 23 —p @), Tespectively.
Combining the ideas for the AR(1) and MA(¢) models, one can
get an ARMA(1,q) model. This has the form

I

q

Wt~q+ZAt,j(€t+1~j;aj), t>1, (8.16)
i=1

Wy = A(Wei-r;8)+ea, t21-g,

Yy

where {W,} is the autoregressive component, W; ~ F,, 0 < f < 1,
0<eao; <1,5=1,...,q, ¢ are iid with distribution Fy, € is
independent of W,_y, W;_3, ..., A j, A; are independent operators
over different ¢, j, ¥y = n/(1-8) and n = 8/[(1-B)" 1+ 7 a;]. Note
that this form of the ARMA model is not the same as the usual one
for an ARMA time series with normal rvs. In general, convolution
of dependent rvs, each with distribution in the family Fp, need
not result in a rv in the same family. In (8.16), the autoregressive
component W;_, is independent of €;,..., €441 in order that Y;
is the sum of independent rvs and Y; ~ Fy.

The form of the autocorrelation function for (8.16) has a
simple form, like that for the usual ARMA(1,q) normal model, only
in cases where the operators have an additive property, as given
below. Let p; be the autocorrelation of lag j. If the decomposition

Cov (A(X1 + X2; B1), A*(Y; B2))
= Cov (A(X1; £1), A*(Y; B2)) + Cov (A(X2; B1), A*(Y'; B2))

makes sense for independent operators A, A* and arbitrary 5, 32 €
(0,1), then a formula (with the proof left as an exercise) is:

iz

g—k g
Pk = [ﬁk')’-i-nzaiai.q-k +7 Z ﬁ’"”""lail/ﬁ, k=1,...,q,
1

i=q—k+1

Pe+k = ﬂpq+k—1, k= 1)2)" ..

8.4.3 Higher-order autoregressive models

The generalization of the AR(1) models to AR(p), p > 1, is not as
straightforward. There is the possibility of more than one general-
ization. Our extension is based on the multivariate generalization
of a family of univariate distributions in the convolution-closed
infinitely divisible class. That is, the joint distribution of p + 1
consecutive observations has one of the multivariate distributions
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in Section 4.6. These higher-order AR models do not have con-
ditional linearity except for the special case of the normal dis-
tribution. We next state the general AR(2) model that extends
(8.7). From this, the extension to AR(p), p > 2, is straightforward
conceptually, although the notation is a bit cumbersome. The ex-
tension to ARMA(p, ¢) models then combines the ideas in (8.16)
and (8.17). Note again that the AR models are examples of the sta-
tionary Markov chain time series models in Section 8.1.1; stochastic
representations can be given for the transition probabilities.

For the AR(2) model, we make use of the distribution of Z;3 +
Zoa+Z193 given 21+ 212+ Z13+ 2133 = Y1, Do+ Z12+ Zaz+ Z123 =
Yo, Where 2y, 22, Z12, £13, Z23, Z123 have distributions in the family
F with respective parameters § -6, —0, —03, 0 —268, — 63, 0,, 64, 01,
03 (0 is defined so that the first two parameters are non-negative).
Let this distribution be denoted by Gy, 4,,6,,6,9,,y and let a rv
with this distribution be denoted by A(y1,y2). Let ¢; be iid rvs
with distribution Fg_g,_¢,-¢,. The AR(2) time series is defined as

}’t = At(Yt-z,Yt—l)'l'ft, t= 3v4a"'7 (8'17)

where A, t > 3, are independent replicates of the operator A. To
get a stationary series, let Y; ~ Fy and Y5 = A3(Y;) + €2, where
A3 (y) has distribution Gy, 4¢;,6-6,-6s,y (from Section 8.4.1) and
€2 ~ Fg_g,—4,. By construction Y; ~ Fy.

Here is some of the intuition reasoning behind the operator A(:).
A consecutive triple (Y;_2,Y;_,,Y:) has common latent or unob-
served components X235, X12, X13, X23 through the representa-
tion:

Yi—2 = Xioa+ X2+ Xis+ Xy,

Yie1 = Xioa+ X124+ Xas + Xo,
Yi = X+ Xiz+ Xoz + Xs,

where Xj23, X12, X13, X923, X1, X2, X3 are independent with dis-
tributions corresponding to the Zgs defined above. The operator
A(Y;—2,Y:—1) ‘recovers’ the unobserved sum Xi23 + Xi3 + Xo3;
hence the distribution of A(y1,y2) given Yi—2 = y1 and Vi1 = y2
must be the same as the distribution of X533 + X135 + X23 given
X123+ X12 + Xh3 + X1 = 1 and Xy23 + Xi2 + Xoz + X2 = pa.

By comparison with the stochastic representation of (Y;—2,Y:-1,
Y;) in the AR(1) model of Section 8.4.1, the AR(1) model is a spe-
cial case of (8.17) when (01, 02, 3) has the form (6a[l — ], 0,0a?),
where 0 < a < 1. The details are left as an exercise.
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Let Cl =0 —-91 —92 —93, Cz =f— 291 -—93. Let fo be the density
of Fy with respect to the measure v. The density g associated with
Go,,82,83,0,91,92 is:

9(z) = / / / Fos () for (9) oy () foo (3 = w=0) fo, (31 — £+ v—w)

feo(y2 — u— v — w) dududu/h(yl,yg),
where h is the joint density of (Z1 + Zio+ Zi3+ 2123, 22+ Z12 +
Z23+ Z123). This density does not simplify unless Fy is the normal
family (with parameter @ for the variance).
In the special case of the normal margin, let X = Z134 22342123,
Yy = Z1 + Z12+ Ziz + Zy23, Yo = Z3 + Zy2 + Zoz + Z123. The
joint distribution of (Y3, Y2, X) is trivariate normal with zero mean

6 & b9
vector and covariance matrix | 6; 0 o , Where 6, = 0, +
b2 b6 61402

3, 62 = 09 + 03. The conditional distribution of X given Y; = y,
Y> = y is normal with mean ¢;y; +c¢2y, and variance V = é; +6,—
Cy 52-—0251, where c; = (962-—512)/(92—5%), Cy = 51(9—62)/(92—6f)
Therefore, A(Y1,Y?) 4 1 Y1+ Yo + W, where W ~ N(0,V), and
Var (A(Y1,Y2)) = (¢ + c2)0 + 2c1¢261 + V = 6; + 02. Also one can
verify that Cov (Y3, Y2) = Cov (e1Y1 + ¢2Y2,Y2) = 161 + c20 = 6,
and COV (Yg,yl) - 019 + 0251 = 62.

Properties that are discussed briefly are: (i) multivariate cumu-
lants; (ii) time reversibility; and (iii) no general form for the auto-
correlation function.

(1) For the model (8.17), the parameters are related to multivari-

ate cumulants (see Section 4.6). There are constants 72,73
such that k12 = 72(0) + 03), kK13 = 72(02 + 03), K123 = 7303,
where k192, K13, K123 are respectively the mixed cumulants of
(Y, Yee1), (Ye, Yiq2) and (Y3, Yiqa, Yeg2).

(i) By construction, the joint distribution of (Y, Yi41, Yi42) is
the same as that of (Z1 + Z12+ Z13 + 2123, Z2 4+ Z12+ Zos +
2123, Z3+ Zy3 + Za3 + Z123), where Z1, 23, Z3, Z13, Z13, 233,
Z123 have distributions with respective parameters (;, (2, (1,
61,02,01,03. The joint density of (Y;, Yiq1, Yego) is

Frza(v, v2, v3) = / / /w / Fou () fo, (v) for () for (2)

'fo(yl —Uu—-v- x)ffz(y2 —UuU—-v-— w)f(1 (y3 —uU—-w- .'l:)
dv(z) dv(w) dv(v) dv(u).
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This density is symmetric in y;,y3 so that the process {Y;}
is time-reversible.

(iii) The approach for the AR(1) and MA(g) models of using con-
ditional expectations to obtain the autocorrelation function
does not work for (8.17) because there is no general result
for the conditional expectation E(Y;42]Y:, Y:41). This con-
ditional expectation is non-linear in general and would have
to be evaluated separately for different families { Fy}.

8.4.4 Models for longitudinal data

In this subsection, we first indicate one approach to obtaining a
non-stationary extension of the AR(1) model in (8.7). In some
applications, the parameter § may depend on time. There could be
a time trend, or the time series may consist of repeated measures
or longitudinal data with the parameter § depending on (time-
varying) covariates. In the former case, we could have the model
8, = g(t) for a positive-valued function g, and in the latter case,
we could have the model 8; = g(x;), where g is positive-valued
and x; is the covariate (column) vector at time ¢. For covariates, a
convenient choice of g to ensure that #; is non-negative is g(x;) =
exp{Bo + Bx.} for a constant Gy and a row vector g.

Because Yy, A:(Yi-1; @), € in (8.7) are in the same convolution-
closed family, (8.7) can be adapted to a changing @, as follows:

Y:; = Ai(Yeo1;0) + €, (8.18)

with Y; ~ Fy,, ¢ ~ Fy,, 7y = 0y — af;_; > 0. In particular, if F
corresponds to the Poisson, generalized Poisson, negative binomial
or binomial distribution, (8.18) is a potential model for longitudinal
count data with covariates.

Similarly, one can extend (8.17) as follows. We use the distribu-
tion of Z13 + Zaz + Z123 given 2y + Z12 + Z13 + Z123 = 11, Z2 +
Z12+ Zoz+ Zy23 = y2, Where 24, Zo, 212, 13, Z23, Z123 have distri-
butions in the family F' with respective parameters § — 6, — 65 — 03,
0 — 0, — 0, —03, 8,02, 0, 05 (0,6 are defined so that the first two
parameters are non-negative). Let this distribution be denoted by
Go,,67 62,05,0,0',y1,9; and let a rv with this distribution be denoted
by A(yl,yz; ©) with © = (6,0}, 02,03,0,0'). Let a3, a2, @3 be non-
negative constants such that 0 < a; + a2 + az < 1; as is a mea-
sure of dependence in three consecutive observations Y;_»,Y;_1,Y:,
while a; is a measure of extra dependence in two consecutive ob-
servations Y;_1,Y;, and a3 is a measure of extra dependence in two
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observations lagged by 2, Y;_3,Y;. Fort > 1, let Y; ~ Fj,, and for
t > 3, let ¢, have distribution Fy,_¢,,-6,,-6s,, With 61y = a10,_1,
O = aoli_2, 03y = azmin{f,_1,0:-2}, and 6; — 6, — 03, — 03, > 0.
The AR(2) non-stationary time series is defined as

Y,:At(}’,_g,Yt_l;G)t)-{—et, t=3,4,..., (819)
where A, t > 3, are independent operators with parameter vectors
O = (a1bi—2, @161, a2by_2, azmin{b;_y1,0,_3}, 6:_2, 6:_1).

The start of the time series for Y;,Y> is the same as (8.18).

The models presented here are used in the data analysis example
in Section 11.5. Alternative ways of making the parameters depend
on covariates are possible, particularly when univariate marginal
family, such as the negative binomial or generalized Poisson, has
another parameter besides 8, which can depend on the covariate.
For example, for count data, a statistical modelling consideration
is the variance to mean relationship.

8.4.5 Other non-normal time series models

There are other classes of stationary non-normal time series models
that exist in the probability and statistics literature, but they do
not necessarily have nice extensions to non-stationary time series
(because of unusual innovation rvs) or to higher-order autoregres-
sion (stationary univariate margin does not have simple form).

One general approach is for univariate distributions in the class
of self-decomposable distributions, a subset of infinitely divisible
continuous distributions. The main drawback of these models is
that the distribution of the innovation term in the time series can
have a mass at 0, leading to a singularity that is usually not reas-
onable for modelling time series of continuous response variables.

A rvY isin the self-decomposable class if for every 0 < a < 1,
there exists a rv € = €(a), mdependent of Y, such that aY + €¢(a)
is equal in distribution to Y.

If Yy, t > 1, have the same distribution as Y, the time series is

leay’t-l'*‘eta t:1)27""

where ¢; are iid with the appropriate distribution. {Y3} is iid if
a — 0 and perfectly dependent if o — 1.
Some special cases are the following.
(a) If Y is Exponential (1), then, with probability «, ¢, is zero,
and with probability 1 — a, €; is an Exponential (1) rv.
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(b) f Y is Gamma(#,1), and @ is a positive integer, then with
probability o, ¢, is zero, and with probability p; (1 < j < 9),
€: is a Gamma(j, 1) rv, where the p; are probabilities from a
Binomial(f, 1 — a) distribution.

(¢) f Y is Gamma(#,1), and @ is not a integer, then with prob-
ability af, €, is zero, and with probability p; (j > 1), &
is a Gamma(j, @) rv, where the p; are probabilities from a
NB(6, @) distribution (p; = {T'(8 + j)/[7!T(8)]}?(1 — a)).

(d) IfY is N(0,a?), the usual normal AR(1) time series results.

Note that, for examples (a) to (c), ¥; = aY;—; with positive
probability. This is an undesirable property as one does not expect
this behaviour for time series encountered in practice. This shows
that linearity (Y} linear in Y;_1) is not an appropriate assumption
to use in general for non-normal rvs.

There are time series models for discrete response variables,
based on operators different from those in Section 8.4.1. For ex-
ample, there is an operator for the negative binomial distribution
in the following model. Let {Y;} be a sequence of NB(#, p) rvs. An
autoregressive-like sequence satisfies

y't=a*y'i—l+€t) t=1)2)'~"

where v * Y given Y = y is a Binomial(y, @) rv and e¢; has the
probability generating function g(1 — s) = [a + (1 — a)A/(A +
s)]?, where A = p/(1 — p). If 0 is a positive integer, then ¢ is a
Binomial (4, 1 — a) mixture of NB(j, p) distributions (j = 0,...,8)
and ¢; is zero with positive probability.

8.5 Markov chains: dependence properties *

It may be intuitive that the dependence decreases with lag for sta-
tionary Markov chains, i.e., for a stationary Markov chain, {Y:},
(Y:, Yi4+j) has less dependence as j increases. In this section, con-
ditions for which this is true for first-order Markov chains are ob-
tained. Different notions of dependence are considered, some of
which depend on the form of the state space of the Markov chain.

In applications to Markov chain models it is useful to know
the conditions needed for the behaviour of decrease in dependence
with lag for different notions of dependence. This behaviour then
roughly holds for Markov chains not starting in a stationary dis-
tribution, if the convergence to the stationary distribution is fast.

The following notation will be used. The distribution of ¥; is F'.
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If the state space is the real line or the integers and the correspond-
ing measure is Lebesgue or counting measure, then the density is
denoted by f if it exists. For m > 2, the bivariate distribution for
Y1, Ym is denoted by Fi,, or Fy, y, and its density is denoted by
Sim if 1t exists. In addition, let F(Z)(yl,yg) = F(y1)F (y2); this is
the limit of Fy,, as m — oo. The transition distribution, which is
F3)1, is also denoted by H(:]-); its density, if it exists, is denoted
by h(:]).

We now prove a sequence of dependence results. The first result
involves the bivariate concordance ordering, i.e., (Y1, Ym) decreas-
ing in concordance as m increases. This then implies that meas-
ures of association for Y7, Y,,, such as Spearman’s correlation and
Kendall’s tau, decrease as m increases (see Exercise 2.10). Since the
concordance ordering is a positive dependence ordering, a positive
dependence requirement is required on the transition distribution.
A sufficient condition is SI, and from counterexamples it can be
shown that it cannot be weakened to PQD, LTD or RTI (the de-
tails are left as an exercise).

Theorem 8.3 Let Y,Y5,... be a stationary Markov chain with
state space in R. If H is SI, then (a) Yj 1« Y1, 1 =2,3,..., and
(b) F<2)'<c o '*cFlm'<c e ‘<CF13"<CF12'

Proof. (a) By Lemma 5.4.8 of Barlow and Proschan (1981), since
H is SI, there is an increasing function g(-,-) such that

(Yi-1,Y) £ (Yio1,9(Y5-1,U5)), 5> 1,

where Us, Us, ... is a sequence of independent rvs with U; inde-
pendent of Yj_;. Let g1 (y, u2) = ¢9(y, u2) and recursively define

gk(yv Uz, .. 'yuk-i-l) = g(gk-l(y’ Uz,.. "u’c)yuk-(-l)) k > 1.

By induction, gi is increasing in each of its arguments. From the
structure of the Markov chain,

)/}:ci:gj—l(ylyU2)"'sUj)y jzz

Hence Y; Te Y forall j > 2.
(b) For a first-order Markov chain, Y; and ¥;, are conditionally
independent given Y,,_;. Hence,

Fym(u,v) = Pr(Yh < v, Y, <v)

u o0
/ | Pttt O19) P, )
y -0

1 =—00

ll
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= /; [j: H(v|2) Fim-1(dy1,dz2)

U [o o]
< / / H(v|z) F1,m-2(dy1,dz)
[ee) - OO0

= PI‘(Yl S U,Ym_1 S 'U) = Fl)m..l(u, 'U),

if (Y1, Ym—-1)<c(Y1, Ym—2), since H is SI and the function ¢(y1, z) =
H(v]|2)I(~co,u)(¥1) satisfies the condition of Theorem 2.8. To start
the induction, we need Fig(u,v) < Fi2(u,v) for all u, v. But

Fis(u,v) = / /—0:0 H(v|2) Fi2(dy1, dz)

Yr1=—©

= E[H(vly2)1(—oo,u](yl)] < E[H('”IYI)I(—OO.u](Yl)] = Fiz(u,v),
since (Y1,Y2)<:(Y1,Y1). O

If the transition distribution is negatively dependent, then in-
tuitively one may have the property that (Y;,Yn) is negatively
dependent if m is even and positively dependent if m is odd with
the overall dependence decreasing in m. A sufficient condition for
this is given in next theorem.

u

Theorem 8.4 Lel Y1,Y2,... be a stattonary Markov chain with
state space in R. If H is stochastically decreasing then

(a) l/273 1st Yi and Y2n+1 Tst Yl; n= 1)2y'° ¥ and

(b) F12'<cFl4'<c et <CF(2)'<C e ‘<cF15‘<cFl3-
Proof. Note that Y3,Ys,Ys,... i1s a Markov chain with transition
kernel H*(ylz) = Pr(Y3 < y|Yi1 = ). The second parts of (a) and
(b) now follow from parts (a) and (b) of Theorem 8.3 if H* is SI. A
stochastic representation argument that shows that H* is SI is as
follows. Similar to Lemma 5.4.8 of Barlow and Proschan (1981), H
stochastically decreasing implies that there exists a function g such
that Ys gg(Yl, Uz), Y3 4 g(Y2,Us), where (i) Ua, U3 are independ-
ent rvs and are respectively independent of Y3, Y2, and (ii) g(u, v)
is decreasing in u and increasing in v. Hence Y3 < 9(9(Y1,U3),Us)
and Y3 Tst Yl°

Similarly, ¥5,Yy,... is a Markov chain with transition kernel
H*(y|z). Hence Yan, {s¢ Y2 from part (a) of Theorem 8.3. From
Lemma 5.4.8 of Barlow and Proschan (1981), there is an increasing
function g2, in two real arguments such that Ya, 'g-'g:!n(Yz,Ugn).

Hence Yan = gon(g(Y1, Ua), Uzn) and Yan la Y1 and the first half of
(a) is established.
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Finally, the proof of the first half of (b) is similar to the proof
of Theorem 8.3. Since two rvs in a first-order Markov chain are
conditionally independent given intermediate rvs in the sequence,
Y7 and Ys, are conditionally independent given Y3,_2. Now

Fyon(u,v) = Pr{Yi <u,Ys, <v)

u (e e] .
= / / Fy?nIYQn-2(UIZ) FY),YZn—2(dy1 ) dz)
yy=—o0 J —co

u -0
- / / H* (o]2) Fi gm—2(dys, d2)
00 J OO

u - 00
' Z / / H*(UIZ) Fl'zn..q,(dyl,dz)
= Pr(Y1 < u,Yzn-2 < v) = Fi 20-2(u, )

if (Y1,Y2n—4)<c(Y1, Y2n-2) since H* is SI and the function
#(v1,2) = H*(v]2)](—c0u)(1) satisfies the condition of Theorem
2.8. To start the induction, we need Fy4 > Fy5. Now

F14(‘U.,'U) = /u [_oo H(UIZ) F13(dy1,d2)

y1=—00

= E[H(v]Y3) [(~o0,u)(Y1)] 2 E[H (v|Y1) I~ c0,u)(¥1)] = F12(u, v),

since (Y1, Y3)<c(Y1,Y1) and —H(v|2) I(_ou)(¥1) is lattice super-
additive in y;, z (see Tchen 1980, for this condition).

Finally, Fy 2n<cF (2)-<CF1,2,,+1 follows from (a) and Theorem
2.3. O

The next result is valid for arbitrary state spaces whenever all
densities exist (including marginal and transition ‘densities). The
notion of dependence used is a measure of dependence based on
directed divergence. Let p, ¢ be probability densities on a space
‘H with measure v, and let ¥ be a convex function on [0, 00), strictly
convex at 1 and satisfying ¥(1) = 0. Then the 3-divergence of p
from q is

wmw=£ﬂwmww. (8.20)

A measure of bivariate dependence is obtained when g is the prod-
uct of univariate marginal densities and p has these univariate mar-
gins. The special case ¥(u) = ulogu leads to the relative entropy
measure of dependence. The next theorem concerns the decrease in
lag with dependence for measures of dependence based on (8.20).
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Theorem 8.5 Let Y1,Ys,... be a stationary Markov chain on a
state space H with meesure v. Let f be the density of Y1 and let
fim be the density of Yy,Ym. For a fized conver function ¢ on
[0, 00), strictly convez at 1 and satisfying (1) = 0, let

b1m = /H £(@) 1) ¥ Fim (2, )/ (@) F()]) dv(z)dv(y)

form =2,3,.... Then éy,, decreases as m increases.

Proof. With the conditional density A(™~1)(y|z) = fim(z,y)/f(2),

b1m = / £(2) / F(5) $(R™V(y12)/ £(3)) dv(y)dv(z).
H H

Hence 61 > 61,m41 ifforall zeH, m > 2,

L £ $(A™D(5l2)/ £(9)) dv(y)
> [ F) ¥ (h™)(yl2)/ f(v)) dv(v). (8.21)

This inequality obtains from results in Joe (1990b) as follows.

The function k(z,y) = h(ylz) on H x H satisfies k(z,y) > 0,
[ k(z,y)dv(y) = 1 for all z, [ f(z)k(z,y)dv(z) = f(y) for all
y, and h(™(y|2) = [h("=VD(z|2)k(z,y) dv(z) for all y,z. Hence
h(™)(.]z) is r-majorized by h(™~1)(.|z) with respect to f (the in-
terpretation is that h(™)(-|2) is closer to f than h(™-1)(.|z)) and
(8.21) holds. [

The next result is for a state space that is discrete and finite.
The dependence measure is the Goodman-Kruskal A and no other
conditions are needed for the decrease in dependence with lag.

Theorem 8.6 Let Y),Y5,... be a stationary Markov chain with e
finite discrete state space H (of unordered states). Lel fim denote
the joint pmf for Yy, Yn and let f denote the pmf for each Y;. Let
A1m be the Goodman-Kruskal X for Yy, Yy, i.e.,

Ay = Z;eu fim (3, %) — f(*)
im 1 — f(*) :

where f(x) = maxjen f(j) and fim(i,*) = maxjen fim(s, ). Then
Aim ts decreasing in m.

m=23,...,

Proof. This is straightforward and left as an exercise. [J

The next two results strengthen the conclusion of Theorems 8.3
and 8.4 to the <gs; ordering. The stronger dependence conditions
that are needed are the TP, and RR, conditions, respectively.
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Theorem 8.7 Let {Y;:¢=1,2,...} be a stationary Markov chain
with state space R and let fi» denote the density of (Y1,Y2). If
fiz2(z1,z2) is TPy in zy, 29, then forn > 2,

FP g F1 ny1<s1F1n<s1 - - - <s1F12.

Proof. Let Fp,j, fm); denote the conditional distribution and pdf
of Y, given Y;. For any real y, v/,

oo

Fan(yle) — Fop(y'|z) = / [F2|1(y(u) - I(—OO,y’](u)] fai(u|z)du.

- 00

Since fi12(y1,y2) is TPy in y1,y2, fo(ulz) is TP2 in v and z.
By the variation diminishing property (Karlin 1968), the one sign
change of Fy1(y|u) — I(~co,y/)(¢) in u implies that the number of
sign changes of Faj;(ylz) — Fo1(¥'|z) in  is at most one, and if
there is a sign change it is from — to + as z goes from —oo to co.
By Theorem 2.10, Fy3~<s1F12.

Now we proceed by induction. Let n > 3 and suppose that
F1n<s1F) n-1<s1 - - - <s1F12. Then

o

Fn+1|1(y|17)—17'n|1(y'|$)=/ (Frpn(ylu)=Fuo1n (¥ [u)] fo1 (ulz)du.

- 00

By induction and using Theorem 2.10, Fyj1(y|u) — Fy_1j1(¥'|u) has
at most one sign change in u. Using the same argument as before,
Fropin(ylz) = Fopu(¥'|z) has at most one sign change in z (from —
to +) as ¢ goes from —oo to 00, and Fy p41<51F1n-

Finally, the proof of F(z)—<sx,F1,n+1 follows from Theorems 8.3,
2.3(a) and 2.11. O

Theorem 8.8 Let {Y;:1=1,2,...} be a stationary Markov chain
with stale space R and let fi5 denote the densily of (Y1,Y2). If

f12(y1,92) ts RRy in yy,ya, then forn > 1,
Fi 9n<s1 F an42<s1 PP <51 F) 20 43<s1F1 2n41.

Proof. Let Fp;, fm|; be as defined in the proof of Theorem 8.7.
Let fia(y1,u3) = [ o fr12(v1lv2) faj2(yslyz) dF (y2). By the basic
composition theorem of Karlin (1968), fis(y1,y3) is TPy in y, ys.
Since {Yap41 : » = 0,1,2,...} is a Markov chain (based on the
bivariate density fi3), the second half of the conclusion follows
from Theorem 8.7. The proof of the first half is similar to the
proof of Theorem 8.7. We have
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Fon(ylz) — Fagnynyn(¥']z)
[o2e]
= / [an-lu(yl"‘) - F2n+1|1(3l'|“)] f2|1(u|-"3) du
—~00

= /°° [Fan-111(y] — ©) = Fonq1i(¢] — u)] fopn(—ulz) du.

- 00

By assumption, f);(—u|z) is TP2 in u and z. Applying the varia-
tion diminishing theorem of Karlin (1968) and Theorem 2.10 com-
pletes the proof. [

Next we compare two Markov chains with different transition
probabilities.
Theorem 8.9 Let F, F' be two bivariate distributions in F(Fy, Fy)
and suppose that F<.F'. Suppose that the conditional distributions
Fap, Fi’!il’ Fyya, Fl’lz are all SI. Let Y1,Ys, ... be a Markov chain with
transition distribution Fo), and let Y{,Y3,... be @ Markov chain
with transition distribution Fy), (both with state space in ®). Then
(Y1,Y5)<c(Y{,Y]) forj =2,3,....
Proof. Let _F—'gll =1- Fy, -F-’le =1- Féll, etc..

First consider j = 3. Fix u;, uz. Then

Pr(Yl' > 'ul,Y3' > Ua) - Pl‘(Yl > uy, Y3 > 'lla)

= [ Fiaalo) Py (sl = Fua(nlolFon solo)] R0

-=00

il

| P ) [Fyp (ualo) - Fa(walo)] dFa(0)

+/°° [Fyp(u1lv) = Frpa(u1]v)] Fapr (ualv) dFy (v).

- 00
The last two summands are similar so we only show that the first
is non-negative. Using Exercise 2.23, suppose that there are 2r — 1
sign changes (r > 1) in Fy3(y|-) — Fy;(yl-). Let the locations of
the changes be denoted by b;, ¢ = 1,...,2r — 1. Let bg = —o0,
bor = 0. Then

/:: -F—’llz(ullv) [ﬁgll(ualv) — Fo(uslv)] dF1(v)
2r by . .
=3 / T 1y (u1fo) [Flyy (ualo) — Fapa (uslo)] dF (v)
i=1Ybi-1 .

r ba,
> 3Ty (unlbany) j{ [Fyu(ualv) — Fapa(ualv)] dFy().

i=1 2i=2
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This is 0 if r = 1, and for 7 > 2 it is

5: [Fya(ualbai1) = Fypp(uslb2i-)]
2y

. /°° [Fyyy (usle) = Fapp(usle)] dFi(v)} > 0

bai-2
since F’llz(ullbzi_l) llz(ullbz,_ ) > 0 from the SI assumption
and the integral is non-negative from the concordance assumption.
Now we proceed by induction. Let j > 4. Suppose we have
(Yo, Ym)=c(Ys,Y,) for m < j. Let Fjjq, F 712 denote the conditional
distributions of Y; given Y and Y/ given Y;, respectively. Then

Pr(Yy > u1,Y] > u;) = Pr(Yy > u1,Y; > u;)
= [0 [F (w1 0) Fj 5 (u [v) = Fapa(ua |[v) Fjpa(uj|v)] dFi(v).

The above argument can be applied to conclude that this difference
of probabilities is non-negative, since F’|2 and Fjj are also SI,
(Yq,Y; )-<C(Y2',Y’) by induction, and Exercise 2.23 can be applied
to F' 2~ ”2 O

Finally, we have a result involving the PFD concept (see Sec-
tion 2.1.6) that is relevant to likelihood inference for dependent
sequences. Mainly, we show that (asymptotic) standard errors com-
puted based on an assumption of time independence for a station-
ary time series are too small when in fact there is time dependence
(in the form of Markov chains which satisfy certain conditions).
An example with data that illustrates this is given in Section 11.6.

Given (differentiable) parametric families of bivariate copulas
C(-;6) and univariate cdfs F(-;9),

G(z,;5,8) = C(F(x:8), F(y; 6); 6)

is a bivariate family with univariate margins F'. For the Markov
chain based on G, the Markov transition density is

9%G(z,y;6,8) /0F(z;0
0, 8) = SOt JOTED)

= c(F(z:;O),F(y, ))6)f(y70))

where ¢(u,v;6) = 82C(u,v;6)/0udv and f(y;0) = OF(y;0)/0y.
The likelihood for observations vy, . .., y, based on this transition
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density is f(y1;0) [[i=2 P(vtlyi-1;0,6). The log-likelihood is

L(5,0) = log f(y;:8)+ ) _log c(F(yi-1;8), F(w; 6); 6). (8.22)

Assuming that the standard regularity conditions hold, then from
Billingsley (1961) (see also Section 10.4), the maximum likelihood
estimate (MLE) of (6, 8) from (8.22) is asymptotically normal and
the inverse Hessian matrix (matrix of second-order derivatives) for
L evaluated at the MLE (§,0) is the inverse Fisher information,
and it can be used for SEs for functions of # such as quantiles.

For comparison, we also consider the MLE of § and its asymp-
totic covariance matrix based on the log-likelihood

L(6) =) log f(u:; ), (8.23)
t=1

i.e., the log-likelihood assuming data are iid from the density f(-; #).
Theoretically, if the true dependence structure for the sequence is
Markov with any of the families B1, B3, B4, B5, B6, B7 of cop-
ulas in Section 5.1, then the use of (8.23) for maximum likelihood
estimation leads to SEs that are too small, although the MLE of
@ from (8.23) is consistent. An outline of the proof of this result
is given below. We conjecture this result to be true for the family
B2 and for other models for the time dependence. It is similar to
the well-known property for the variance of a sample mean — the
variance is larger with positive dependence of the rvs than with
independence because of the additional positive covariance terms.

Proof. LetY),...,Y, be astationary dependent sequence. Suppose
the marginal density is in the parametric family f(y;6), where 8
is a column vector, and let F(y;8) be the family of cdfs. Assume
that the usual regularity conditions of asymptotic likelihood the-
ory hold (see Serfling, 1980). Let £(8;y) = log f(v;8), S(8;y) =
0£(8;y)/00 (the score vector) and S; = S(8;Y;). Let Z(8) =
—E[32£(0;Y,-)/6069T] = Var(S;) be the Fisher information ma-
trix.

The asymptotic normality for 6 comes from the approximation

n/2(0 - 0) ~T-1(8)[n~12) " S,

where Z~!(6) is the matrix inverse of Z(8). Let g() be a real-
valued function. From the delta (Taylor expansion) method for a
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function of the parameter,
nl/?(g(8) — g(8)) ~ (89/86)TI1(9)[n /2 Si].

The asymptotic variance of n'/2(g(8) — g(8)) for an independent
sequence is (0g/08)TT~1(0)(89/88). The asymptotic variance of
nl/2(g(8) — g(8)) for a dependent sequence is

(09/08)TT71(6)(89/88) + n™' > Cov(B;, Bir),

ii!
where B; = (8¢/00)TI~1(8)S: = (89/06)TI~1(8) S(8;Y7), i =
1,...,n. Therefore, for all real-valued g, from the PFD condition,

the asymptotic variance of g(#) is greater than under independence
if, for all ¢ # ¢,

Cov (h(Y:), h(Yir)) > 0, V real-valued h (8.24)

such that the covariances exist (compare Gleser and Moore, 1983).

Now suppose {Y;} is a reversible Markov chain based on a copula
C that satisfies C(u,v) = C(v,u) for all u,v. The joint distribu-
tion of Y;, Yiq1 is C(F(wi;0), F(yi+1;8)). If (8.24) is satisfied for
Y;, Yi41, then it is satisfied for Y;, Yi4; for all § > 2. The proof is
by induction on the lag j:

Cov ((Y2), h(Yi4)) = B{Cov (h(Ys), h(Yeas) | Yias, -, Yerjor) }
+Cov (E[A(Y:) | Yit1, ..., Yigj—1) E[B(Yis) | Yig, ..., Yigi-1))

= 0+ Cov (a(Yi41), a(Yipj-1)) > 0, (8.25)
where a(y) = E[a(Y;) | Yic1 = y] = E[h(Y?) | Yig1 = y]. The first

term in (8.25) is 0 since two rvs in a Markov chain are conditionally
independent given intermediate rvs in the sequence. The second
term follows from the Markov property and reversibility.

For the families B3-B6, (8.24) follows from Theorem 4.6. For the
family B1, the positive dependence by mixture condition in Section
2.1.6 can be used to obtain (8.24) (Exercise 8.3). For the family
B7, (8.24) can be shown via an extreme value limit (Exercise 8.13).

O

In conclusion, for some Markov time series based on bivariate
copulas, the estimation of the univariate parameter 6 from the
likelihood, assuming independence, leads to a consistent estimate of
6 but the SEs of functions of # are too small. The main result used
is the positive dependence condition in (8.24). Since (8.24) may
hold even for non-Markov models or Markov models of order more
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than 1, we can expect more generally that SEs are too small when
there is positive dependence in the time series and the likelihood
assuming independence is used for estimation.

8.6 Bibliographic notes

References for Markov chains and binary time series include Cox
and Snell (1989) and Muenz and Rubinstein (1985). Binary Markov
chains with a time-independent covariate vector x are studied in
Darlington and Farewell (1992), but in one model, there is an in-
consistency in the definition of p = p(x). Markov chain random
effects models are considered in Gardner (1990). A more compli-
cated model for random effects is given in Stiratelli, Laird and
Ware (1984). The results in Section 8.2 for 1-dependent and k-
dependent sequences are new. Latent variable discrete time series
models based on the MVN distribution have been mentioned in
the econometrics literature; see, for example, Heckman (1981).

References for Markov chain transitional models for categorical
data include Diggle, Liang and Zeger (1994), Albert (1994), Foll-
mann (1994) and Gottschau (1994). For longitudinal data, another
class of Markov-like models uses previous responses as covariates.
Some references for this approach are Bonney (1987) and Fahrmeir
and Kaufman (1987). These models do not consider the joint dis-
tribution of subsets of {Y;}.

References for the extremal index relevant to the material in
this chapter are Leadbetter, Lindgren and Rootzén (1983), O’Brien
(1987), Smith (1992) and Smith and Weissman (1994).

Some references for non-normal AR and ARMA models are Joe
(1996b), McKenzie (1988), Lewis, McKenzie and Hugus (1989),
Al-Osh and Alzaid (1993; 1994) and Alzaid and Al-Osh (1993). In
Section 8.4.4, with a negative binomial margin, the dependence of
the parameters on the covariates is different from that in Lawless
(1987), as can be seen in the variance to mean relationship. Refer-
ences for Section 8.4.5 are Bernier (1970), Gaver and Lewis (1980)
and McKenzie (1986).

Further results on the decrease in dependence with lag for sta-
tionary Markov chains are given in Fang, Hu and Joe (1994) and
Hu and Joe (1995). Theorems 8.7 and 8.8 are due to T. Hu; he also
assisted in the proof of Theorem 8.9, which is new.
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8.7 Exercises

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9
8.10

Obtain the transition density for a stationary Markov chain
associated with the trivariate copula (4.29) in Section 4.3,
when K is in the family B6 and 1 is in the LT family LTA.

Let Y7,Y5, ... be the Markov chain based on the copula fam-
ily B10. Obtain the copula for (Y1,Y,,), m > 1. [Hint: use
induction and show that it is within the same family B10.]

Show that the BVN distribution with positive correlation
has a representation of the form [ P(u;a)P(v;a)dM(a) for
appropriately chosen P, M.

In (8.4), consider a 1-dependent series based on the copula
family B10 in Section 5.1. What is the copula for (¥7,Y3)?

Study the tail dependence properties of the 1-dependent
series associated with copulas in Section 8.2.1.

Prove the properties in Theorem 8.1 for AR(1) time series
with univariate margin in the convolution-closed infinitely

divisible class. (Joe 1996b)

Show that the AR(1) model in Section 8.4.1 is a special case
of the AR(2) model in Section 8.4.3 when (61, 02, 63) has the
form (e[l — af, 0, 0a?), where 0 < @ < 1.

Relating to Section 8.1.4, let {Y;} be a stationary AR(d)
(d > 2) normal sequence. Let p; be the autocorrelation
coefficient of lag k, let £;; be the d x d correlation ma-
trix with pj;_j) in the (7,j) position for i # j, and let
Y = (pd,pd_.l,...,pl)T be a column vector of length d.
The coefficients of 2;11212 = (¢a..., ¢2,61)T are the co-
efficients in the linear representation Y; = Z?;_l ¢:Yii +
€;. Show that a necessary and sufficient condition for the
density of (Y3,...,Yn) to be MTP, for all n > d is that
¢; > 0,1 = 1,...,d (which is equivalent to the partial
autocorrelations y, . .., 74 of {Y:} being non-negative), and
¢i = 021 6+ 2 0,i=1,...,d— 1. [Hint: let A, be the
inverse correlation matrix for Yj,...,Y,. Obtain conditions
for all of the off-diagonal elements of 4, to be non-positive.)

Prove Theorem 8.6. (Fang, Hu and Joe 1994)

For stationary AR(p) normal sequences, obtain conditions
for the autocorrelations to be decreasing with lag.

(Fang, Hu and Joe 1994)



282

MULTIVARIATE MODELS WITH SERIAL DEPENDENCE

8.11 If the SI condition of Theorem 8.3 is weakened to PQD,

LTD or RTI, then the conclusion need not hold. Show this
through counterexamples. (Fang, Hu and Joe 1994)

8.12 Construct a Poisson time series with negative autocorrel-

ation of lag 1 based on the bivariate Poisson distribution in
Exercise 7.12.

8.13 Prove the PFD property for the Markov chain based on the

copula family B7 (a result due to T. Hu). [Hint: from Section
8.5, it suffices to prove the PFD property for the family
B7. The idea is to use a stochastic representation from the
extreme value limit of the copula family B4, since the PFD
property is closed under weak convergence.}

8.8 Unsolved problems

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

Conjecture: Assuming that {Y;} is a stationary sequence with
marginal distribution F', the sequence a;(y) defined by (8.1)
converges as ¢ — 0o, under minimal conditions.

Find the maximum and minimum lag 1 correlation for 1-
dependent stationary binary sequences with marginal prob-
ability p for the occurrence of a 1. (See Section 8.2.3.)

For k > 1, among k-dependent stationary binary sequences
with marginal probability p for the occurrence of a 1, find the
most and least dependent sequences.

Can the approach for AR models with univariate margins in
the convolution-closed infinitely divisible class be extended to
allow for negative autocorrelations?

Prove (or disprove) the PFD property for the Markov chain
based on the copula family B2 (see Section 8.5).

Extend some of the results in Section 8.5 on decrease in de-
pendence with lag to higher-order stationary Markov chains.

Prove some results on the <p¢q ordering for (Y3, Y;) associated

with a Markov chain from a bivariate copula, 1.e., stronger
results than PFD.

Develop some theory for spatial processes with given univari-
ate margins.




CHAPTER 9

Models from given conditional
distributions

This chapter complements and supplements Chapters 3 and 4, in
that we study the construction of multivariate models from fam-
ilies of conditional distributions (with compatibility conditions on
the conditional distributions). This approach has been considered
in the statistical literature partly because of the difficulty of con-
struction of families of multivariate distributions with given mar-
gins. The type of dependence that can arise is surprising in some
cases. :

Examples that are illustrated in some detail are: (i) conditional
distributions in exponential families; and (ii) multivariate binary
response with conditional logistic regressions. The examples are in
Section 9.2, following some theory in Section 9.1. The model of
type (i1) is applied in the data analysis example in Section 11.1.

9.1 Conditional specifications and compatibility
conditions

Throughout this section, we assume that all densities exist with
respect to appropriate measure spaces.

Consider first the bivariate case. Suppose the conditional dens-
ities f|2(-|y) are given for all y and fo)1(-|x0) is given for a partic-
ular value zo. Assume that fi)2(zoly) > 0 for all y. Then for the
joint density f2,

fi2(zly) fon (ylzo)
f1[2($0|y) ,

with the proportionality constant equal to

ftzo) = { [ [1nelo)fos(elzo)/ fuataoly)] dv(@) v}

frz2(z,y) ox (9.1)
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where v is the appropriate measure. That is, for two rvs, the set
of conditional densities given one variable, plus one conditional
density given the other variable, determines the joint bivariate dis-
tribution.

Now if the conditional densities fi)2(:|y) are given for all y and
fap1(+|z) are given for all z, then from (9.1) a condition for com-
patibility is that

f1|2($ly)f2|1(y|1?1)/f1|2(1’|y)f2|1(yl$2) _ Jye(z2ly) fon (ylz)
fij2(z1ly) fij2(z2]y) B f1|2(x1|y)f2|1(y'w(29) 2

does not depend on z, y for all choices of z; # z2. (Another com-
patibility condition is that there exist non-negative functions a(z),
b(y) such that a(z)fop (yl2) = b(y) f1j2(zly) for all z,y.)

As an example, consider exponential conditional distributions:
fiely) = M@ e M=, fi(yla) = do(z)e =W, 2,y > 0,
A1(y), A2(z) > 0. Condition (9.2) becomes

Pa(z1)/Ae(z2)] e~ 21 WE2=21] g=y[Aa(21)=Aa(22))

and this is independent of z, y if and only if A1, A; are linearly non-
decreasing with a common slope (A2(z) = a + vz, A1(y) = B+ 7y,
a,B,v72>0).

The trivariate extension is as follows. Suppose the conditional
densities fyj2a(-|y, z) are given for all y,z, faj13(-|zo,2) are given
for all z and a fixed zo, and fa)12(+|Z0, yo) is given for some fixed
Yo (and the same zg as for fy;3). Assume that fij23(xoly, z) > 0 for
all y,z and fy13(yolz0, 2z) > O for all z. Then for the joint density
fl 23, ‘

f23(zly, 2) fapa(ylzo, 2) fajia(z]zo, vo)
f1123(zoly; z) foj13(wol 20, 2)
with the proportionality constant equal to fi2(zo, yo). If the con-
ditional densities fy)23(-|y, z) are given for all y, z, fo13(:|z, 2) are
given for all z, z, and faj12(:|z, y) are given for all z, y, then a con-
dition for compatibility is that
fi2a(221y, 2) fopna(y2lz2, 2) fopna(ylzr, 2) fapna(2z]z1, 1)
Siza(z1ly, 2) fopna(yi |z, 2) fopua(ylz2, 2) fana(zlz2, y2)
does not depend on z,y, z for all choices of (z1,y1) # (22, y2)-
The ideas in the preceding paragraph clearly extend to higher

dimensions, when one has the set of conditional distributions of
each variable given the remainder. The result is as follows and the

fr2a(z,y,2)

b
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proof is left as an exercise. Let fi..,, be the joint density of rvs
Yy,...,Ym and let f;, be the conditional density of Y; given the
remaining variables Y;, j # i. Then

n:::] filr(yi,y?7 .- -’y?—lyyi+1a o -;ym)
H:T;l ler(y?iy?: .. -,y?.1,yi+1, .. 7ym)

flmm(}') e 8 (93)

for a given y? for which all of the conditional densities in the above
expression are positive. The compatibility condition for given sets
of conditional densities fj}, is that

Ty Fur iyl ¥ Vit ts - s Um)
T, far @219, - ¥ty Yid s e e oy Ym)

H:n=1 fip‘(z?'z?’ Ty zzp—l’ Yitiy .- oy ym)
12 far(ilads 020 viaas - Ym)
does not depend on y for y° # z°.

Note that results symmetric to (9.3) and (9.4), with the indices
of y permuted, also hold. This symmetry is useful for getting a
general form in cases of specific conditional distributions.

More generally, one can consider other sets of conditional distri-
butions. A result from Gelman and Speed (1993) is the following.
Let zy,..., 2z, be dummy variables associated with random vari-
ables Zy,...,Zm. If a set of conditional densities uniquely deter-
mines a joint density, then there is a permutation (y1, ..., ym) of
(21,...,2m) such that the set is of the form {fia,u(r:k>i}(¥ilye,
LE Ai Yig1,--yYm) : t = 1,...,m}, where A; is a subset, poss-
ibly non-empty, of {1,...,i—1}. Unless all of the sets A; are empty,
the conditional densities must be checked for consistency.

(9.4)

9.2 Examples

We illustrate the theory from the previous section with a few ex-
amples: exponential conditional densities, exponential family con-
ditional densities, binary conditional densities that are logistic re-
gressions, and more general binary conditional densities. The model
with conditional logistic regressions is used in Section 11.1.

9.2.1 Conditional exponeniial densily

Let y_; denote y with the ith element y; deleted. Suppose Y is an
m-dimensional random vector of non-negative rvs, with conditional
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densities of the form:

Far@ily=i) = Xi(y=i) e H0=d¥% 1 <i<m, y1,...,ym 20,
with the functions A; being positive and differentiable. The com-
patibility condition (9.4) simplifies to

m

Y m =) M@, v Uit - Um)

i=1

m
+Z(zio"'yi))\i(ztl))--'Jz?—lxyi-l-l’"-;ym) (95)
i=1
not depending on y for y° # 2°. Expression (9.5) actually does not
depend on y; because terms with y; cancel out. The terms of (9.5)
with yp are

2 =y M(v2y- - Ym) + (v2 — ¥ A2(¥2, 93y -, Um)

+(Zg - y2) A?(z?: Y3y .-y ym)-
Hence differentiation of (9.5) with respect to y, followed by equat-
ing to O leads to:

oM

222,93, .., Um) = A2(¥, ¥, - - .,
5._.(yz,._.,!,,m)_____ 2(21, Y3 Ym) — A2(¥3, U3 ym).
Y2

0 )
1Y

Since the left-hand side does not depend on y?, z?, A2(y-2) must
be linear in y, i.e., A2(y-2) = a2(y3, -, ¥m) + 72(¥3,-- -, Um) %1
for some functions a2, v2. Hence by integration,

A(y-1) =a1(yz, .-, Ym) + 12(Y3, - -, Ym) Y2 (9.6)

for some function a;. By symmetry, A;(y-1) must have the linear
form of (9.6) when y; is exchanged with y;, j > 3. Hence ), is
multilinear in y,, ..., ym with the form:

M(y-1)=a1+ Z Pis Hyj-
sc{2,...m}  j€S
By symmetry, A; has the form:
Nly-d=ait+ D> Bis[[w
Sc{i,...mN\{:} JES

Finally we can substitute back into (9.5) to check on the condi-
tions for the « and f coeflicients in order to achieve compatibility.
From comparing coefficients of terms of the form

0 0 0 0
Vi ViViarcYe and oz Ui U,
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one can determine that the constraints on the fs are that, for
all 3, S with i ¢ S, the value of 8;5 depends only on the indices in
SuU{i}. For example, if m > 3, the coefficient of y{y2ys is f213—F123
and this must be zero in order that (9.5) does not depend on y for
any y° # z°.

From (9.3), the multivariate density fi...,,(y) of Y has the form
proportional to:

exp{—-i(yi"y?)[ai”" Z Plijus H y;-’ H yj]}

sc{1,...m}\{i} JESj<i  jES >i
o< exp{-— Z s H yj} (9-7)
SESm JjES

for some constants ys, S € Sm. In order that (9.7) is a proper dens-
ity (with finite integral), the parameters vs must be non-negative,
and, for each ¢, there is a set S containing 7 such that ys > 0.

If fi.m(y) = Aexp{~2 ses,. 75 [l;es ¥i}, where A is a nor-
malizing constant, then it is straightforward to verify that the
conditional densities are exponential. That is, with a null prod-
uct being equal to 1,

frm(y)
AL siies 18 nj_e#-'i_. yi)~! exP{—Zs:iqs'YS Hjes v}
J 7+

=( > s H y]-)exp{—yi Z s H yj},

S€Sni€S  jESj#i SESn:i€S  jESj#i
1=1,...,m.
We next show that (9.7) has negative dependence in the sense
of RRy (see Section 2.1.5). For the bivariate case, (9.7) becomes

fir(wily-i) =

fi2(va, y2) = Aexp{—m1¥ — Y2¥2 — T12%1¥2}, %,¥2 >0, (9.8)

for v1,72,712 > 0. For 712 > 0, this density is RRs so that it
has negative dependence. The univariate margins of (9.8) have the
form f;(y;) o« (v3=j + 712yj) "' exp{—7;y;}. More generally, for
m > 3, the density 1s MRR; or RR; in any two variables with the
remainder fixed, but this condition does not imply that all bivariate
margins are RRy. An analysis of the trivariate case shows that it
is possible for one bivariate margin to be TP, (but not all three).
For m = 3, (9.7) becomes

f123(y) = Aexp{—71tn — 72¥2 — Y3Y3 — 2% Y2 — N13V1Y3
—Y23Y2Y3 — T123Y1Y2Y3},
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for y1,y2, ys > 0. The (1,2) bivariate margin has density

fz2(n,v2) = A(ys+ 71891 + 723Y2 + T123v192) "}
-exp{—mu — T2¥2 — N2v1¥2}-

It is straightforward to show that (y3+713y1 +y23y2 + 71231 92) !
is RR2 if ¥37123 > 713723 and TP3 if v37123 < Y13723- Since the
exponential term is RR2, y37123 > 713723 is a sufficient condition
for fi2 to be RRa. If v12 = 0 and y37123 < 713723, then fi3 is TP,
Symmetric conditions (by interchanging subscripts) hold for the
(1,3) and (2,3) bivariate marginal densities fy3, f23. For example,
12 =713 =7123=0and 71 =72 = 113 = 723 = 1, then fi2 is
TPz, and f13, f23 are RR2

This example of negative dependence arising from conditional
densities within a given family is not unusual. Another example is
given in the next subsection.

9.2.2 Conditional exponential families

Let family j (for j = 1,...,m) be the exponential family

9 (v:0;) = r;(v)B; (8;) exp{0] a; ()},

where 8; and q; are column vectors of length ¢;. Let (Y3,...,Yn)
be our random vector. Suppose we want to consider the model
where the density of Y; given Y; = y;, ¢ € {1,...,m}\{j}, is in
the family j with parameter 8;(y-;), where y_; is y with the jth
element deleted. The joint density f then must necessarily be of
the form

fy)= Hn(y,)exp{m Za G+ oF () Miyiai, (ui,)
i=1 i1 <ia

ll‘ lt: la

+ Z Z Z Z legggs(klakzlka) Qisky QiskoQisks + -

11<82<i3 ky=1 ka=1k3=1

‘ tm
+ z‘: S Ml,..m(kl,...,km)qlk,-"ka,,.}, (9.9)

k1=1 le,,.:l

for suitable choices of vectors a;, matrices Mj,;,, and higher-order
arrays M;,...;;, 11 < --- < ij, 3 £ j < m; the term B is a normal-
izing constant.

The proof of the sufficiency of the form (9.9) is not difficult. If
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(9.9) holds, then
f132,,‘.,m(y1|.1/2, . e ,ym) = f()’){f‘z(yz) . 'rm(ym)]—-l

m
~exp{—-B'(yz, o ym) = Y aT ai(w:)
=2

- Z qg;(yix)Mi;ig(liz(yig)—-...}

2<iy1<i2

= ri(v1) exp{=B'(v2, . -, ¥m) + 01 (¥2,- - -, ¥m) @1 (¥1)},
where

01(3/2;---;ym) = a +ZM1.7qJ(yJ)+
j=2 :

t tm
+2"' E Ml---m(')ka---,km)‘hkg"'ka,,.-
k2=1  km=1
By symmetry, one can obtain the other conditional distributions.

We outline the proof of necessity for rn = 2. From (9.2), we want

Ju2(5 lv2) fo11 (v2lv1) /[ f112(v1 |y2) f21 (v2]97)] to be independent of
y2 for all y; # yi. This reduces to the condition of

07 (v2)la1 (¥}) — @a ()] + [B2(y1) — O2(v1)) T a2(ve)  (9.10)

being independent of y;. Hence if 8, and 6§ are not constant func-
tions, they must be of the form:

01(y2) = a1 + Mi12q2(y2), 02(v1) = az + M2:1q1 (1),

for some matrices M;3, Mo, with respective dimensions ¢; x {5
and {3 x £,. Furthermore, after substitution of these functions into
(9.10), one must have My, = MJ; in order for (9.10) to be inde-
pendent of y,. Now apply (9.1) to get

F(yr,y2) o frj2(vnly2) fan (v2lvi)/ fry2(yi 1)

_ m()B1(61(w2)) exp{(a] + a3 (v2)Mi5la1(n1)}
r1(y1)81(01(y2)) exp{[al + a3 (v2) M{)au(v7)}

mo(y2)B2(82(v1)) exp{[a3 + ai (y7)M1z2]qa(y2)}
oc 71(y1)r2(y2) exp{al qi(v1) + a3 q2(v2) + af (1) M12q2(v2)}-




290 MODELS FROM GIVEN CONDITIONAL DISTRIBUTIONS

Some special cases are the following.

1. (Normal.) m = 2, ¢;(y) = (v, ¥*)7, r; =1, = 1,2. Then (9.9)
has the form

F(1,y2) = exp{B + c11y1 + @127 + a1y + o2yt + 1110192

+M29195 + 12197 ¥2 + 12293 13 ) (9.11)
Some constraints are needed on the parameters in order to get
a density, including 922 < 0. The univariate margins of this
density do not have a simple form.
2. (Poisson.) m = 2, ¢;(y) = v, rj(y) = (y))7!, j = 1,2. Then
(9.9) has the form

f(y1,92) = [n'y2) L exp{B + a1y1 + a2y2 + 73132}, (9.12)

for y1,y2 = 0,1,..., where ¥ must be non-positive. Again the
density has the RR» property. The univariate margin has the

form fi(y1) = [n !]'1 exp{B + a1y +e*3t1},

9.2.3 Conditional binary: logistic regressions

In this section, we suppose that there is a multivariate binary re-
sponse vector Y and a covariate (column) vector x (say of dimen-
sion 7). These are measured for each subject. We look at condi-
tions for which Pr(Y; = 1|z = w, k # j, x) = G(oj + Bjx +
Zk# Yik¥&), § = 1,...,m, for some cdf G, where the B; are row
vectors of length r. The case of G being the logistic distribution,
leading to conditional logistic regressions, is.studied before the gen-
eral case.

Consider first the case of two binary response variables Y3, Y>
and a covariate vector x. Suppose that Y; conditional on x and
Ys = ys is logit and that Y> conditional on x and Y; = y; is logit,
ie.,

logit [Pr(Y; = 1|Y2 = y2,%)] = 1og[

Pr(Y; =1|Y2 = yz,x)]
Pr(Y; = 0}Y2 = y2,x)

= a3 + B1x + 11292, (9.13)

) Pr(Ys = IIY =4,X
logit [Pr(Yz = 1|Y) = 41, x)) = IOB[I),E}'Z = 0|Yi = yi x;]
= az -+ ﬁzx + Y2141 ' (914)

What are necessary and sufficient conditions for (9.13) and (9.14)
to be compatible conditional distributions? The answer, from (9.2),
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is that the conditional distributions are compatible if and only if
912 =721, in which case the joint distribution, from (9.1), is:

p12(y1, y2|x) = [e(x)] 7! exp{(e1+B1x)y1 +(az+B2%)y: +7121(/§ Y2 })»
15

where ¢(x) = 1+exp{a+p1x}+exp{az+Box}+exp{(ar+az)+
(B1 + B2)x + 712}

The model as given in (9.13)~(9.15) generalizes for dimension m.
For the general multivariate case with binary response variables
Y1, ..., Ym, suppose that for j = 1,...,m, Y; conditional on x and
Yr = yi, k # J, is logit with parameters o;, B8;, vjk, k # j. That is,
forj=1,...,m,

logit [Pr(Y; = 1Y = yk, k # j, )] = oj+8;x+ Y _vjkwe. (9.16)
k#j

The necessary and sufficient conditions for compatibility of the
conditional distributions are ¥;; = v;i, ¢ # j. The resulting joint
distribution is

px‘..m(yIX)=[C(X)]'lexp{Z(ai+ﬂ;X)yi+ > 'Yijyiyj},

i=1 1<i<j<m
(9.17)
y; =0,1, j=1,...,m, with normalizing constant
C(X) Z Z CXP{Z(Q’, +ﬁtx)y! + Z%; yty]}
y1=0 Yym=0 i<y

Proof. For k=1,...,m, let p_;(:|x) be the marginal distribution
of (Y1,...,Ye_1,Yk41,...,Yn). Given the model (9.17) with v;; =
Yji, t # J, we have

p—k(yls e Yk-1, Y41, - - -)ymlx) ’ C(X)

= exp{(ak + Brpx) + E(ai + Bix)y; + Z TkiY;

iZk 2k
+ Z Yij¥Yi y]} + CXP{Z(Q, + ﬁ:x)yz Z Yij yiyj}
i<j,i,j#k i<j,i,j#k
= exp{z (@i + Bix)y: + Z 7ijy£yj}
ik i< 0,5 #k

'[1 + exp{ap + Brx + Z YijY; }]
ik
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Hence, we obtain

. pr-m(Y1, Y2, ..., Ym|x)
Pr(Ye =wl|Y; = y;, i # bk, x) =
( ' I J 7 ) p—k(yln---syk—hyk-i-ly---:ymlx)

exp{} i~ (ci + Bix)y; + 21 <i<j<m Vij viy; }
exP{Ei;ék(ai + Bix)y; + 215i<j <mi,j#k ViiYiYi }
1

1+ exP{a’k + Brx+ Zj#k ')’kjyj}
exp{(ak + Brx + D ;. 75 ¥5) vk }
L+exp{or 4+ Bex+ 3, . 1wivi}
This equation indicates that the conditional probability distribu-
tions Pr(Ye = e | Y; = y;,7 # k,x) for k = 1,..., m are logistic
regressions.

Next we turn to the proof of the necessity. The notation f;, is
used for the pmf of Y; given x and the rest of the Y's. From (9.3)

Pr(Yi=w, .-, Ym=ym | x)
fllr(yl ly2) . '1ymax) f?lr(y2ly(l)’y3s R ymyx)
Fur(Wlyz, - Ums %) fo1r (93100, v3y - - -, Um, X)
f3|r(y3ly(l)ly(2))y4:7---,ym:x) fmlr(ymlygv"')ygn—lax)

.f3|7'(yg'yga yga Y4y-- - yﬂhx) . fmlr(ygn ‘y(l)i teny ygq—l» X)
for a fixed and arbitrary y®. This simplifies to

Pr(Y