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Foreword

When we, in the late 1980s, worked in a European ESPRIT project on what later
became the MUNIN network, expert systems and neural networks were the pre-
dominant new artificial intelligence techniques. However, we felt that the most
important ingredient of medical diagnosis, causality with inherent uncertainty, could
not be captured by these techniques.

Rather than trying to model the experts we felt that we should go back to
the ancient scientific tradition of modeling the domain, and the new challenge
was to incorporate causal uncertainty. We called our models causal probabilistic
networks (CPNs). They are now called Bayesian networks. The task, we thought,
is quite simple: determine a CPN through dialogues with the experts. The rest is
just mathematics and computer power.

We were wrong in two ways. It is not ‘just’ mathematics and computer power.
But even worse, to determine a CPN through dialogues with the experts is much
more intriguing than we anticipated. Over the two decades since the revival of
Bayesian networks, several books have addressed the first problem. Although the
need is widely recognized, no book has so far focused on the second problem.

This book meets the demand for an aid in developing Bayesian network models
in practice. The authors have done a great job in collecting a large sample of
Bayesian network applications from a wide range of domains.

Each chapter tells a story about a particular application. However, they do more
than that. By studying the various chapters, the reader can learn very much about
how to collaborate with domain experts and how to combine domain knowledge
with learning from databases. Furthermore, the reader will be presented to a long
list of advantages, problems and shortcomings of Bayesian network modeling and
inference.

The sample also reflects the two sides of Bayesian network. On the one hand, a
Bayesian network is a causal probabilistic network. On the other hand, a Bayesian
network is a way of decomposing a large joint probability distribution. In some of
the applications, causality is an important part of the model construction, and in
other applications, causality is not an issue.

I hope that this book will be studied by everyone who is about to model a
domain containing causality with inherent uncertainty: this book will teach him/her
if and how to use Bayesian networks.

Finn V. Jensen
Aalborg University





Preface

The spectacular improvements of the technologies to produce, transmit, store and
retrieve information are leading to a paradox: in many circumstances, making the
best use of the available information is much more difficult today than a few
decades ago. Information is certainly abundant and easily accessible, but at the
same time (and to a large extent, consequently) often inconsistent, contradictory,
and of uncertain traceability and reliability. The process of interpreting information
remains an essential one, because uninterpreted information is nothing else than
noise, but becomes more and more delicate. To mention only one domain covered
in this book, striking examples of this phenomenon are the famous criminal cases
which remain unsolved, despite the accumulation over years of evidences, proofs
and expert opinions.

Given this challenge of optimally using information, it is not surprising that
a gain of interest for statistical approaches has appeared in many fields in recent
years: the purpose of statistics is precisely to convert information into a usable
form.

Bayesian networks, named after the works of Thomas Bayes (ca. 1702–1761)
on the theory of probability, have emerged as the result of mathematical research
carried out in the 1980s, notably by Judea Pearl at UCLA, and from that time on,
have proved successful in a large variety of applications.

This book is intended for users, and also potential users of Bayesian networks:
engineers, analysts, researchers, computer scientists, students and users of other
modeling or statistical techniques. It has been written with a dual purpose in mind:

• highlight the versatility and modeling power of Bayesian networks, and also
discuss their limitations and failures, in order to help potential users to assess
the adequacy of Bayesian networks to their needs;

• provide practical guidance on constructing and using of Bayesian networks.

We felt that these goals would be better achieved by presenting real-world appli-
cations, i.e., models actually in use or that have been at least calibrated, tested,
validated, and possibly updated from real-world data – rather than demonstration
models, prototypes, or hypothetical models. Anyone who has constructed and used
models to solve practical problems has learned that the process is never as straight-
forward as in textbook cases, due to some ever-present difficulties: unability of the
model to capture some features of the problem, missing input data, untractability
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(model size/computing time), and non-validable results. Our aim in the book is,
also, to identify and document the techniques invented by practitioners to overcome
or reduce the impact of these difficulties.

Besides a brief theoretical introduction to Bayesian networks, based on some
basic, easily reproducible, examples (Chapter 1), the substance of this book is 20
application chapters (Chapters 2–21), written by invited authors.

In selecting the applications, we strove to achieve the following objectives:

1. cover the major types of applications of Bayesian networks: diagnosis,
explanation, forecasting, classification, data mining, sensor validation, and
risk analysis;

2. cover as many domains of applications as possible: industry (energy,
defense, robotics), computing, natural and social sciences (medicine, biol-
ogy, ecology, geology, geography), services (banking, business, law), while
ensuring that each application is accessible and attractive for nonspecialists
of the domain;

3. invite ‘famous names’ of the field of Bayesian networks, but also authors
who are primarily known as experts of their field, rather than as Bayesian
networks practitioners; find a balance between corporate and academic
applications;

4. describe the main features of the most common Bayesian network software
packages.

Chapter 22 is a synthesis of the application chapters, highlighting the most promis-
ing fields and types of applications, suggesting ways that useful lessons or applica-
tions in one field might be used in another field, and analysing, in the perspective of
artificial intelligence, where the field of Bayesian networks as a whole is heading.

A companion website for this book can be found at: www.wiley.com/go/pourret
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Criminelles – École des Sciences Criminelles, Institut de Police Scientifique, 1015
Lausanne-Dorigny, Switzerland

Andrea Bobbio Dipartimento di Informatica, Università del Piemonte Orientale,
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Introduction to Bayesian
networks

Olivier Pourret
Electricité de France, 20 Place de la Défense, 92050, Paris la Défense,
France

1.1 Models

1.1.1 Definition

The primary objective of this book is to discuss the power and limits of Bayesian
networks for the purpose of constructing real-world models. The idea of the authors
is not to extensively and formally expound on the formalism of mathematical
models, and then explain that these models have been – or may be – applied in
various fields; the point of view is, conversely, to explain why and how some
recent, real-world problems have been modeled using Bayesian networks, and to
analyse what worked and what did not.

Real-world problems – thus the starting point of this chapter – are often
described as complex. This term is however seldom defined. It probably makes
more sense to say that human cognitive abilities, memory, and reason are limited
and that reality is therefore difficult to understand and manage. Furthermore, in
addition to the biological limitations of human capabilities, a variety of factors,
either cultural (education, ideology), psychological (emotions, instincts), and even
physical (fatigue, stress) tend to distort our judgement of a situation.

One way of trying to better handle reality – in spite of these limitations and
biases – is to use representations of reality called models. Let us a introduce a basic
example.

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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Example 1. Consider an everyday life object, such as a DVD recorder. The life
cycle of the device includes its phases of design, manufacture, marketing, sale,
use, possibly break down/repair, and disposal. The owner of a DVD recorder is
involved in a temporally delimited part of its life cycle (i.e., when the object is
in his/her living-room) and has a specific need: being able to use the device. The
user’s instruction manual of a DVD recorder is a description of the device, written
in natural language, which exclusively aims at explaining how the device is to be
operated, and is expressly dedicated to the owner: the manual does not include any
internal description of the device.

In this example, the user’s instruction manual is a model of the DVD recorder.
The 20 application chapters of this book provide numerous examples of models:

models of organizations (Japanese electrical companies), of facts (criminal cases),
of individuals (students in a robotics course, patients suffering from liver disorders),
of devices (a sprinkler system), of places (potentially ‘mineralized’ geographic
areas in India), of documents (texts of the parliament of Andalusia), of commodities
(Chilean wines), or of phenomenons (crime in the city of Bangkok, terrorism threats
against US military assets). These parts of reality are material or immaterial: we
will use the word ‘objects’ to refer to them.

These objects, which are delimited in time and space, have only one common
point: at some stage of their life cycle (either before they actually occurred in
reality, or in ‘real-time’ when they occurred, or after their occurrence) they have
been modeled, and Bayesian networks have been employed to construct the model.

Example 1 suggests that the purpose of a model is to satisfy a need of some
person or organization having a particular interest in one or several aspects of
the object, but not in a comprehensive understanding of its properties. Using the
terminology of corporate finance, we will refer to these individuals or groups of
individuals with the word stakeholders . Examples of stakeholders include users,
owners, operators, investors, authorities, managers, clients, suppliers, competitors.
Depending on the role of the stakeholder, the need can be to:

• document, evaluate, operate, maintain the object;

• explain, simulate, predict, or diagnose its behavior;

• or – more generally – make decisions or prepare action regarding the object.

The very first benefit of the model is often to help the stakeholder to explicitly
state his need: once a problem is explicitly and clearly expressed, it is sometimes
not far from being solved.

The construction of a model involves the intervention of at least one human
expert (i.e., someone with a practical or theoretical experience of the object),
and is sometimes also based upon direct, uninterpreted observations of the object.
Figure 1.1 illustrates this process: in Example 1, the object is the DVD recorder;
the stakeholder is the owner of the device, who needs to be able to perform the
installation, connections, setup and operation of the DVD recorder; the model is
the user’s instruction manual, which is based on the knowledge of some expert
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Real-world
object Stakeholder

ModelExpert
knowledge

observations
theoretical
or practical
experience

model-supported
decision or action

Figure 1.1 Construction and use of a model.

(i.e., the designer), and describes the object from the stakeholder’s point of view,
in an understandable language; the model-supported action is the use of the device.

Based on the experience of the models discussed in this book, we may agree
on the following definition – also fully consistent with Example 1.

Definition 2 (Model) A model is a representation of an object, expressed in a spe-
cific language and in a usable form, and intended to satisfy one or several need(s)
of some stakeholder(s) of the object.

1.1.2 Use of a model: the inference process

Definition 2 specifies that models are written in a usable form. Let us analyse how
models are used, i.e., explicitly state the model-supported decision or action arrow
shown in Figure 1.1.

When the model includes an evaluation of the stakeholder’s situation, or a
recommendation of decision or action, then the stakeholder makes his decision on
the basis of the evaluation or follows the recommendation.

However, most models require – prior to their use – to be adapted to the spe-
cific situation of the stakeholder, by the integration of input data.

In Example 1, the input data are the type of the device, the information dis-
played by the device, and the actions already carried out by the user. The output
information is the next action to be done.

Models are thus used to produce information (evaluations, appropriate decisions
or actions) on the basis of some input information, considered as valid. This process
is called inference.
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Table 1.1 The inference process: given some input data, what can be inferred from
the knowledge of the melting point of gold?

Input data Inferred information

The ring is of solid gold. Temperature is 1000◦C The ring won’t melt.
Temperature is 1000◦C. The ring melts. The ring is not of gold.
Temperature is 1100◦C. The ring does not melt. The ring is not of gold.
Temperature is 1100◦C. The ring melts. The ring is possibly of gold.
The ring is of solid gold. It does not melt. The temperature is lower than Tm.

For example, if we assume that the statement

The melting point of gold is Tm = 1064.18◦C (1.1)

is true, then it constitutes a model which can be used in numerous ways, depending
on the available input data: Table 1.1 shows examples of information that can be
inferred using the model, on the basis of some input data.

The use of real-world models is not always as straightforward as in the example
of Table 1.1. For example, the model user may have some prior belief regarding
whether the ring is of gold or not. Also, whether the rings melts or does not melt
might be difficult to tell; finally, the temperature might not be known with a high
level of precision. In such cases, the use of the model will not produce definitive
‘true’ statement, but just modify one’s assessment of the situation. For instance, if
the ring is believed not to be of gold, the temperature estimated at 1100◦C, and
the ring seems not to melt, then the model output is that the ring is most unlikely
of gold. If the uncertainties in the input data can be quantified with probabilities,
then the use of the model increases the probability that the ring is not of gold. This
is an example of probabilistic inference.

1.1.3 Construction

Definition 2 is extremely general: the way a model is constructed obviously depends
on several factors, such as the nature of the object, the stakeholder’s need(s), the
available knowledge and information, the time and resources devoted to the model
elaboration, etc. Nevertheless, we may identify two invariants in the process of
constructing a model.

1.1.3.1 Splitting the object into elements

One of the precepts of Descartes in his famous Discourse on the Method is ‘to
divide each of the difficulties under examination into as many parts as possible
and as might be necessary for its adequate solution’ [126].

Indeed, modeling an object implies splitting it into elements and identifying a
number of aspects or attributes that characterise the elements.

Deriving a collection of attributes from one single object could at first glance
appear as a poor strategy, but this really helps to simplify the problem of satisfying
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the stakeholder’s need: on one hand, each of the attributes is easier to analyze than
the whole object; on the other hand, only the attributes which are relevant for the
need of the stakeholder are taken into consideration.

1.1.3.2 Saying how it works: the modeling language

To allow inference, the model must include a description of how the elements
interact and influence each other. As said in Definition 2, this involves the use
of a specific language, which is either textual (natural language, formal rules),
mathematical (equations, theorems), or graphical (plans, maps, diagrams).

The well-known consideration ‘A good drawing is better than a long speech’
also applies to models. Figures are more easily and quickly interpreted, understood
and memorized than words. Models which are represented or at least illustrated in a
graphical form tend to be more popular and commonly used. It is possible to admit
that, throughout history, most successful or unsuccessful attempts of mankind to
overcome the complexity of reality have involved, at some stage, a form a graphical
representation. Human paleolithic cave paintings – although their interpretation in
terms of hunting magic is not beyond dispute – may be considered as the first
historical models, in the sense of Definition 2.

1.2 Probabilistic vs. deterministic models

1.2.1 Variables

During the modeling process, the exact circumstances in which the model is going
to be used (especially, what input data the model will process) are, to a large extent,
unknown. Also, some of the attributes remain unknown when the model is used:
the attributes which are at some stage unknown are more conveniently described
by variables .

In the rest of the chapter, we therefore consider an object which is characterized
by a collection of numerical or symbolic variables, denoted X1, X2, . . . , Xn. To
simplify the formalism, we suppose that the domain of each of the Xj variables,
denoted Ej , is discrete.

One may basically distinguish two kinds of variables. The first category is the
variables whose values are specified (typically by the stakeholder) at some stage
of the model use. Such variables typically describe:

• some aspects of the context: the values of such variables are defined prior
to the use of the model and do not change afterwards (in Example 1: which
version of the DVD recorder is being installed?);

• some aspects of the object which are directly ‘controlled’ by the stakeholder:

– attributes of the object the stakeholder can observe (in Example 1: what
is displayed on the control screen of the device?);
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– decisions or actions he or she could carry out (in Example 1: what
button should be pressed?).

The second category of variables are those which are not directly or not com-
pletely controlled – although possibly influenced – by the stakeholder’s will (in
Example 1: Is the device well setup/out of order?).

At any stage of the practical use of a model, the variables under control have
their value fixed, and do not explicitly behave as variables anymore. We may
therefore suppose without any loss of generality that the model only comprises
variables which are not under control.

1.2.2 Definitions

A deterministic model is a collection of statements, or rules regarding the Xi

variables. A sentence (in natural language) such as

Elephants are grey (1.2)

is a deterministic model which can be used to identify the race of an African
mammal, on the basis of its colour. This model can be considered as a more
elegant and intuitive expression of an equation such as

colour(elephant)= grey,

or of the following formal rule:

if animal=elephant then colour=grey.

Also, if X1 and X2 are variables that correspond to the race and colour of a set of
mammals, then the model can be converted in the formalism of this chapter:

if X1 = ‘elephant’, then X2 = ‘grey’. (1.3)

If the number of variables and the number of possible values of each of them are
large, then the object can theoretically reside in a considerable number of states.
Let us suppose however that all of these configurations can be enumerated and
analyzed. Then the probabilistic modeling of the object consists in associating to
any object state (or set of states), a probability , i.e., a number between 0 and 1,
quantifying how plausible the object state (or set of states) is. We thus define the
joint probability distribution of the set of variables X1, X2, . . . , Xn, denoted

IP (X1, X2, . . . , Xn) .

The domain of this function is the Cartesian product E1 × · · · × En and its range
is the interval [0;1].
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1.2.3 Benefits of probabilistic modeling

1.2.3.1 Modeling power

As far as modeling capability is concerned, probabilistic models are undeniably
more powerful than deterministic ones. Indeed, a deterministic model may always
be considered as a particular or simplified case of probabilistic model. For example,
the model of sentence (1.2) above is a particular case of a slightly more compli-
cated, probabilistic one:

x% of elephants are grey (1.4)

where x = 100. This model can also be written using a conditional probability:

IP (X2 = ‘grey’ |X1 = ‘elephant’) = x. (1.5)

Incidentally, the probabilistic model is a more appropriate representation of reality
in this example, since, for instance, a rare kind of elephant is white.

1.2.3.2 The power of doubt – exhaustiveness

Doubt is a typically human faculty which can be considered as the basis of any
scientific process. This was also pointed out by Descartes, who recommended
‘never to accept anything for true which is not clearly known to be such; that is to
say, carefully to avoid precipitancy and prejudice, and to comprise nothing more in
one’s judgement than what was presented to one’s mind so clearly and distinctly as
to exclude all ground of doubt.’ The construction of a probabilistic model requires
the systematic examination of all possible values of each variable (each subset Ej ),
and of each configuration of the object (i.e., each element of E1 × · · · × En). This
reduces the impact of cultural and psychological biases and the risk to forget any
important aspect of the object. Furthermore, it is hard to imagine a more precise
representation of an object: each of the theoretically possible configurations of the
object is considered, and to each of them is associated one element of the infinite
set [0;1].

1.2.3.3 Usability in a context of partial information

In many circumstances, probabilistic models are actually much easier to use than
deterministic ones. Let us illustrate this with an example.

Example 3. A hiker has gone for a walk in a forest, and brings back home some
flashy coloured mushrooms. He wants to decide whether he will have them for
dinner, or not. Instead of consulting an encyclopedia of mushrooms, he phones a
friend, with some knowledge of the domain. His friend tells him that:

75% of mushrooms with flashy colours are poisonous.
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In this example, a deterministic model, such as an encyclopedia of mushrooms,
would certainly help identify the exact nature of the mushrooms, but this requires
an extensive examination, and takes some time. The probabilistic model provided
by the hiker’s friend is more suitable to satisfy his need, i.e., make a quick deci-
sion for his dinner, than the deterministic one. In fact, if the hiker wants to use
the only available information ‘the mushroom is flashy-coloured’, then a form of
probabilistic reasoning – possibly a very basic one – is absolutely necessary.

1.2.4 Drawbacks of probabilistic modeling

In spite of its benefits listed in the previous paragraph, the joint probability dis-
tribution IP (X1, X2, . . . , Xn) is rarely employed per se. The reason is that this
mathematical concept is rather unintuitive and difficult to handle.

Firstly, it can be graphically represented only if n = 1 or 2. Even in the in the
simplest nontrivial case n = p = 2 (illustrated in Figure 1.2), the graphical model
is rather difficult to interpret. When n ≥ 3, no graphical representation is possible,
which, as mentioned above, restrains the model usability.

Secondly, the joint probability distribution gives rise to a phenomenon of
combinatorial explosion. For instance, if each variable takes on p different val-
ues (p ≥ 1), then the joint probability distribution has to be described by the
probabilities of pn potential configurations of the object, i.e., ten billion values
if n = p = 10.

IP (X1 = x X2 = x )1
1; 1

2

IP (X1 = x X2 = x )2
1; 1

2

IP (X1 = x X2 = x )1
1; 2

2

IP (X1 = x X2 = x )2
1; 2

2

X2X1

x2
2

x1
2x1

1

x2
1

Figure 1.2 Representation of the joint probability distribution of a pair of random
variables (X1, X2).
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1.3 Unconditional and conditional independence

1.3.1 Unconditional independence

Following Descartes’s precept of dividing the difficulties, one may try to split the
set of n variables into several subsets of smaller sizes which can relevantly be
analyzed separately.

Suppose for example that the set of n variables may be divided into two subsets
of sizes j and n − j such as:

IP (X1, X2, . . . , Xn) = IP
(
X1, . . . , Xj

)
IP

(
Xj+1, . . . , Xn

)
. (1.6)

Then the modeling problem can be transformed into two simpler ones. One can
derive the joint probability of subset X1, . . . , Xj , then that of subset Xj+1, . . . , Xn,
and use Equation (1.6) to obtain the complete model.

The equality of two functions expressed by Equation (1.6) means that the sub-
sets of variables (X1, . . . , Xj ) and (Xj+1, . . . , Xn) are independent, or – to avoid
confusion with a concept which is defined below – unconditionally independent.
This means that any information regarding the (X1, . . . , Xj ) subset (for instance,
‘X1 = 7’ or ‘X1 + X2 > 3’) does not change the probability distribution of the
second subset (Xj+1, . . . , Xn).

However, unconditional independence between two subsets of variables is very
unlikely to happen in real-world models. If it does happen, the initial definition of
the object is not relevant: in such a case, it makes more sense to construct two
separate models.

1.3.2 Conditional independence

A more common – or at least much more reasonably acceptable in real-world
models – phenomenon is the so-called ‘conditional independence’. Let us introduce
this concept by two examples.

1.3.2.1 The lorry driver example

Example 4. A lorry driver is due to make a 600-mile trip. To analyze the risk of
his falling asleep while driving, let us consider whether (1) he sleeps ‘well’ (more
than seven hours) on the night before and (2) he feels tired at the beginning of the
trip.

In this example, there are obvious causal relationships between the driver’s sleep,
his perceived fatigue, and the risk of falling asleep: the three variables are depen-
dent. Let us suppose however that we know that the lorry driver feels tired at the
beginning of the trip. Then knowing whether this is due to a bad sleep the previous
night, or to any other reason is of no use to evaluate the risk. Similarly, if the lorry
driver does not feel tired at the beginning of the trip, one may then consider that
the quality of his sleep on the night before has no influence on the risk. Given these
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considerations, the risk of falling asleep his said to be conditionally independent
of the quality of sleep, given the lorry driver’s fatigue.

To express it formally, let X1, X2 and X3 be binary variables telling whether
the lorry driver sleeps well the night before, whether he feels tired at the beginning
of the trip, and whether he will fall asleep while driving. Then X3 is independent
of X1, for any given value of X2. In terms of probabilities, we have:

IP (X3 |X1 and X2) = IP (X3 |X2) . (1.7)

In such a case, knowing the values of X1 and X2 is not better than knowing only
the value of X2, and it is useless to describe the behavior of X1, X2, X3 by a
function of three variables; indeed, we may deduce from Equation (1.7):

IP (X1, X2, X3) = IP (X1) IP (X2 |X1) IP (X3 |X2) , (1.8)

which shows that the risk model can be constructed by successively studying the
quality of sleep, then its influence on the state of fatigue, and then the influence of
the state of fatigue on the risk of falling asleep.

1.3.2.2 The doped athlete example

Example 5. In a sports competition, each athlete undergoes two doping tests,
aimed at detecting if he/she has taken a given prohibited substance: test A is a
blood test and test B a urine test. The two tests are carried out in two different
laboratories, without any form of consultation.

It is quite obvious in Example 5 that the results of the two tests are not independent
variables. If test A is positive, then the participant is likely to have used the banned
product; then test B will probably be also positive.

Now consider a participant who has taken the banned substance. Then tests
A and B can be considered independent, since the two laboratories use different
detection methods. Similarly, tests A and B can be considered independent when
the participant has not taken the banned substance: the results of both tests are
conditionally independent, given the status of the tested athlete. Formally, if X1 is
a binary variable telling whether the athlete is ‘clean’ or not, X2 is the result of
test A, and X3 the result of test B, we can write:

IP (X3 |X1 and X2) = IP (X3 |X1) . (1.9)

Equation (1.9) can exactly be translated into ‘knowing whether the athlete has
taken the substance is enough information to estimate the chances of test B being
positive’. A symmetrical equation holds regarding test A:

IP (X2 |X1 and X3) = IP (X2 |X1) . (1.10)

Here again, it is useless to describe the behavior of X1, X2, X3 by a function of
three variables. Equations (1.9) and (1.10) yield:

IP (X1, X2, X3) = IP (X1) IP (X2 |X1) IP (X3 |X1) , (1.11)
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which means that considerations on the proportion of doped athletes IP (X1), and
on the reliabilities of each tests are sufficient to construct the model.

1.4 Bayesian networks

1.4.1 Examples

In the lorry driver and doped athlete examples, we have identified the most direct
and significant influences betweens the variables, and simplified the derivation of
the joint probability distribution. By representing these influences in a graphical
form, we now introduce the notion of Bayesian network.

In Example 4, our analysis has shown that there is an influence of variable X1

on variable X2, and another influence of variable X2 on variable X3; we have
assumed that there is no direct relation between X1 and X3. The usual way of rep-
resenting such influences is a diagram of nodes and arrows, connecting influencing
variables (parent variables) to influenced variables (child variables). The structure
corresponding to Example 4 is shown in Figure 1.3.

Similarly, the influences analyzed in Example 5 may be represented as shown
in Figure 1.4.

Quality
of sleep

Fatigue

X2 X3
X1

Driver
will fall
asleep

Figure 1.3 A representation of the influences between variables in Example 4.
Variable X3 is conditionally independent of X1 given X2.

Athlete
is doped

X1

Test B
positive

X3

Test A
positive

X2

Figure 1.4 A representation of the influences between variables in Example 5.
Variables X2 and X3 are conditionally independent given X1.
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Considering the graphical structures of Figures 1.3 and 1.4, and more precisely
the parents of each variable, we observe that both Equations (1.8) and (1.11) can
be written in the following form:

IP (X1, X2, X3) = IP (X1 |parents(X1)) IP (X2 |parents(X2)) IP (X3 |parents(X3)) .

(1.12)
Equation (1.12) is the formal definition of a Bayesian network, in the three-variable
case: through a process of analyzing and sorting out the unconditional indepen-
dences between the three variables, we have been able to convert IP (X1, X2, X3)

into a product of three conditional probabilities. This definition is generalized in
the next paragraph.

1.4.2 Definition

Definition 6 (Bayesian network) Let us consider n random variables X1, X2, . . . ,

Xn, a directed acyclic graph with n numbered nodes, and suppose node j (1 ≤ j ≤
n) of the graph is associated to the Xj variable. Then the graph is a Bayesian
network, representing the variables X1, X2, . . . , Xn, if:

IP (X1, X2, . . . , Xn) =
n∏

j=1

IP
(
Xj |parents(Xj )

)
, (1.13)

where: parents(Xj ) denotes the set of all variables Xi , such that there is an arc
from node i to node j in the graph.

As shown in the examples, Equation (1.13) simplifies the calculation of the joint
probability distribution. Let us suppose for instance that each variable has p possi-
ble values, and less than three parent variables. Then the number of probabilities in
the model is lower than n.p4, although the object can reside in pn configurations.
If n = p = 10, the reduction factor is greater than one hundred thousands.

A crucial point is that this simplification is based on an graphical, intuitive
representation, and not on some highly technical considerations. A diagram of
boxes and arrows can be easily interpreted, discussed and validated on a step-
by-step basis by the stakeholders: there is no ‘black box’ effect in the modeling
process.

Another important remark can be deduced from Definition 6.

Proposition 7. Any joint probability distribution may be represented by a Bayesian
network.

Indeed, we may formally express IP (X1, X2, . . . , Xn) as follows:

IP (X1, X2, . . . , Xn) = IP (X1) IP (X2, . . . , Xn |X1)

= IP (X1) IP (X2 |X1) · · · IP (X3, . . . , Xn |X1, X2)

= · · ·
= IP (X1) IP (X2 |X1) · · · IP (Xn |X1, . . . , Xn−1) . (1.14)
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X1 X2 X3 Xn...

Figure 1.5 ‘Generic’ structure of a Bayesian Network, suitable for any joint prob-
ability distribution of n random variables X1, . . . , Xn.

Equation (1.14) proves that the structure of Figure 1.5, with one arc from variable
Xi to Xj , whenever i < j , is suitable to represent any joint probability distribution
between n variables. In other words, there is no loss of generality in modeling a
set of random variables with a Bayesian network.

Proposition 7 helps to answer a frequently asked question: in Definition 6, why
has the graph to be acyclic? Besides the fact that Equation (1.13) would not make
sense in the presence of loops, the hypothesis of graphical acyclicity is not at all
restrictive: whatever the number and nature of the dependencies between the Xi

variables, there is always at least one acyclic structure (i.e., that of Figure 1.5) that
is suitable to represent the object.

Proposition 7 clearly shows the modeling power of Bayesian Networks. As
mentioned above, any deterministic model is a particular case of probabilistic
model; any probabilistic model may be represented as a Bayesian network.
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Medical diagnosis
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2.1 Bayesian networks in medicine

Medical decisions are hard. One of the reasons for this difficulty is that they often
have to be made on the basis of insufficient and uncertain information. Further-
more, the outcome of the decision process has far-reaching implications on the
well-being or even the very lives of patients. There is a substantial body of empir-
ical evidence that shows that human decision-making performance is far from
optimal. Furthermore, its quality decreases with the complexity of problems, time
pressure, and high stakes. Therefore, given the increasing diversity of treatments
and drugs, the accumulating body of knowledge about human health, the avail-
ability of diagnostic tests, including genetic tests, medical specialists often need
to be assisted in their decision-making. At the same time, increasing costs of
medical care and amounting risk of litigations following medical errors increase
the pressures on the medical community to become cost-effective and to make
fewer errors. Given all this, despite the fact that the medical community is rather
conservative and resists technological assistance, computer support for medical
decision-making is an inevitable fact. This is true in a number of aspects of medical
care, including its initial phase when a physician has to come up with a prelim-
inary prognosis or diagnosis and specify the possible directions for the patient’s
treatment.

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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Computer-based tools have the potential to make a difference in medicine.
Especially methods that are able to leverage on both available data and clinical
experience and are at the same time based on sound foundations that offers some
guarantees of accuracy, have a high potential. Bayesian networks are such tools
and are especially suited for modeling uncertain knowledge. It is not surprising
that some of their first applications are in medicine. These applications include
first of all the management of a disease for individual patient: establishing the
diagnosis, predicting the results of the treatment, selecting the optimal therapy.
This chapter will discuss these three in depth. One should not forget, however, that
other applications of Bayesian networks in medicine and related fields have been
proposed and many others may be conceived. Chapter 3 of this book discusses a
BN-based clinical decision support tool, and Chapter 4 is devoted to genetic mod-
els. Some other examples of applications are clinical epidemiology [183], disease
surveillance [101], BARD (Bayesian Aerosol Release Detector) [68], or predic-
tion of a secondary structure of a protein [399], or discovering causal pathways
in gene expression data [508]. A special issue of the journal Artificial Intelligence
in Medicine [288] is devoted to applications of Bayesian networks to biomedicine
and health-care and lists several interesting applications.

2.1.1 Diagnosis

Medical diagnosis is often simplified to reasoning that involves building hypothesis
for each disease given the set of observed findings that a patient is suffering from.
This reasoning results from choosing the hypothesis that is the most probable for
a set of observations. Formally, it may be expressed by Equation (2.1).

diagnosis = max
i

IP (Di |E) . (2.1)

IP (Di |E) is the probability of the disease Di given the evidence E that rep-
resents the set of observed findings such as symptoms, signs, and laboratory test
results that a patient is presenting with.

Application of Bayesian networks to medical diagnosis was proposed more than
a decade ago. The first expert system based on a Bayesian network model was Con-
vince [247]. Other early systems built based on a Bayesian network model were
Nestor, the system for diagnosis of endocrinological disorders [102], Munin, the
system to diagnose neuromuscular disorders [16], or the classic, Alarm monitoring
system [40]. Later systems are Pathfinder IV, the system for diagnosis of the
lymph system diseases [207] or the decision-theoretic version of Qmr, the system
for diagnosis in internal medicine that was based on the Cpcs model (Computer-
based Patient Case Simulation system) [428], [318]. Another diagnostic system
based on the Bayesian network model was Diaval, the expert system for echocar-
diography [130].
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2.1.2 Prognosis

Medical prognosis attempts to predict the future state of a patient presenting with
a set of observed findings and assigned treatment. Formally, it may be expressed
by Equation (2.2).

prognosis = IP (O |E, T ) . (2.2)

The variable E is the evidence, i.e., a set of observed findings such as symptoms,
signs, and laboratory test results; T stands for a treatment prescribed for a patient,
and the variable O is the outcome that may represent, for example, life expectancy,
quality of life, or the spread of a disease.

There are fewer applications of Bayesian networks to medical prognosis than
there are to medical diagnosis; for example, predicting survival in malignant skin
melanoma [429], or NasoNet, a temporal Bayesian network model for nasopharyn-
geal cancer spread [172].

2.1.3 Treatment

An extension of Bayesian networks, influence diagrams, allows us to model deci-
sions explicitly. This approach is capable of modeling different treatment decision
within their uncertain variables and preferences that usually represent costs and ben-
efits. Reasoning over possible treatment alternatives results in a selection of most
optimal therapy. Examples of applications are: the system for assisting clinicians in
diagnosing and treating patients with pneumonia in the intensive-care unit [286],
the model for patient-specific therapy selection for oesophageal cancer [469], or
the system for the management of primary gastric non-Hodgkin lymphoma [285].

2.2 Context and history

My experience in application of Bayesian networks in medicine covers diagnosis
of liver disorders, diagnosis of prostate cancer and benign prostatatic hyperplasia,
and a model for screening cervical cancer. The author of this chapter has been
using Bayesian networks as a modeling tool for last eight years. In this chapter
we will share with the reader our experience in building Bayesian network models
based on Hepar II, the model for the diagnosis of liver disorders.

2.2.1 The Hepar II project

The Hepar II project [350, 351] is a system for the diagnosis of liver disorders
that is aimed at reducing the number of performed biopsies. The main com-
ponent of Hepar II is a Bayesian network model capturing over 70 variables.
The model covers 11 different liver diseases and 61 medical findings, such as
patient self-reported data, signs, symptoms, and laboratory tests results. Hepar II is
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Figure 2.1 A simplified fragment of the Hepar II network.

quantified by 1488 numerical parameters. Figure 2.1 shows a simplified fragment
of the Hepar II model.1

2.2.2 Software

An invaluable resource in building and testing Bayesian network models have
been two software packages: GeNIe, a development environment for reasoning
in graphical probabilistic models, and SMILE, its inference engine; and Elvira,
software offering innovative explanation capabilities. Both software packages are
available free of charge for any use. GeNIe has several thousand users, including
universities, research centers and also industry.

GeNIe offers several useful facilities such as a module for exploratory data
analysis and learning Bayesian networks and their numerical parameters from data,
dynamic Bayesian networks. It has a special module that addresses problems related
to diagnosis. The program has a user-friendly graphical user interface that supports
model building and analysis, and runs both under Windows and Linux. SMILE
is its platform-independent inference engine that is available among others for
Windows, Linux, Sun Solaris, and even Pocket PC. The software is fast, reliable,
well documented, and well supported. GeNIe and SMILE were both developed at
the Decision Systems Laboratory, University of Pittsburgh, and are available for
download.2

Elvira is a software package for building and reasoning in graphical probabilis-
tic models [128, 260]. While Elvira is of somewhat academic appearance, speed,
and reliability, it has implemented several great ideas in its user interface. Its expla-
nation capabilities, for example, offered significant insight in refining the Hepar II
model [261]. Elvira allows for an explanation of the model (static explanation) and

1Full version of Hepar II can be found at http://genie.sis.pitt.edu/networks.html
2http://genie.sis.pitt.edu/
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explanation of inference (dynamic explanation). Elvira is written in Java and is,
therefore, fully platform-independent. Elvira is the product of a joint project of
several Spanish universities and is available for download.3

2.3 Model construction

There are two basic approaches to construct Bayesian network models: manual
building based purely on human expert knowledge and automatic learning of the
structure and the numerical parameters from data. Hepar II was constructed based
on a hybrid approach: the structure was built based on expert knowledge and avail-
able literature and the numerical parameters of the model, i.e., prior and conditional
probability distributions for all the nodes, were learned from the Hepar database.
The Hepar database was created in 1990 and thoroughly maintained since then by
Dr. Wasyluk at the Gastroentorogical Clinic of the Institute of Food and Feeding
in Warsaw. The current database contains over 800 patient records and its size is
steadily growing. Each hepatological case is described by over 160 different med-
ical findings, such as patient self-reported data, results of physical examination,
laboratory tests, and finally a histopathologically verified diagnosis. The version
of the Hepar data set that was used to quantify Hepar II consisted of 699 patient
records.

2.3.1 Interactions with domain experts

Manual constructing a Bayesian network model typically involves interaction of
the knowledge engineer, who is responsible for building the model, with domain
experts. In case of the Hepar II model, frequent short sessions with the expert
worked well. In between these sessions, the knowledge engineer focused on refining
the model and preparing questions for the expert. The refinement consisted of
analyzing positive and negative influences4 in the model when the model was
fully quantified, i.e., when the numerical parameters of the network were already
specified. It helps when the knowledge engineer understands the domain at least
at a basic level. It is a good idea to read at least a relevant section of a medical
textbook on the topic of the meeting with the expert, so the knowledge engineer
is familiar with the terminology, the variables, and interaction among them. It
is recommended, if the expert is comfortable with this, to record the sessions
with the expert because it is often hard to process all the medical knowledge
that is provided by a domain expert during a meeting. It is also recommended to
organize brainstorming sessions with the participation of knowledge engineers and
medical experts who are not directly involved in building the model. With respect

3http://www.ia.uned.es/~elvira.
4In causal models, most of the influences are positive, because usually the presence of the cause

increases the probability of the effect’s presence. Analogously, negative influences decreases the prob-
ability of the effect’s presence.
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to Hepar II there were a few such sessions, and they addressed important issues
and raised questions about the model.

2.3.2 Building the graphical structure of the model

The structure of the model, (i.e., the nodes of the graph along with arcs among
them) was built based on medical literature and conversations with the domain
experts, a hepatologist Dr. Hanna Wasyluk and two American experts, a patholo-
gist, Dr. Daniel Schwartz, and a specialist in infectious diseases, Dr. John
N. Dowling. The elicitation of the structure took approximately 50 hours of inter-
views with the experts, of which roughly 40 hours were spent with Dr. Wasyluk
and roughly 10 hours spent with Drs. Schwartz and Dowling. This includes model
refinement sessions, where previously elicited structure was reevaluated in a group
setting. The structure of the model consists of 70 nodes and 121 arcs, and the
average number of parents per node is equal to 1.73. There are on the average 2.24
states per variable.

2.3.2.1 Selecting variables and their domains

Building a model usually relates to the process of selecting the variables that rep-
resent certain features or events. In medical models, the variables are findings
describing a patient condition, i.e., risk factors, symptoms, signs, results of physi-
cal examination and laboratory tests, and disorders that a patient can be potentially
suffering from. Because the number of variables is typically large, it is often nec-
essary to perform data reduction. This usually consists of feature selection and
discretization of continuous variables.

2.3.2.2 Clarity test

One of the fundamental tools used in building decision-analytic models is the clarity
test [220]. Essentially, for each element of the model, such as a variable and its
states, clarity test probes whether it has been clearly defined. Vague and imprecise
definitions of model elements will generally backfire at some stage of modeling,
certainly when it comes to elicitation of numerical parameters.

When specifying states of a variable, the knowledge engineer should pay atten-
tion to whether the states represent mutually exclusive values. For example, in
the initial version of the Hepar II model, the possible disorders were modeled as
one node. This representation did not reflect faithfully the domain of hepatology,
because in practice liver disorders are not mutually exclusive. In case the possible
states of a certain variable are not mutually exclusive, they should be split into
several nodes.

A model is by definition a simplification of the real world. Most of the cate-
gorical variables in Hepar II were modeled as binary nodes. In some cases, this
simplification led to certain difficulties during the model building. The Hepar data
set that was available to me contained several simplifications that had impact on the
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model. For example, in case of the variable Alcohol abuse, the expert would have
preferred to distinguish several states indicating different degrees of alcoholism
depending on the amount, frequency, and duration of addiction. However, the vari-
able was represented in the model as a binary node with two outcomes: present
and absent. It is important to know that this kind of simplification often leads to
difficulties in parameter elicitation from a human expert. There is no real need
for this simplification from the point of view of the modeling tool, so one should
carefully weight the resulting simplicity of the model against its expressiveness.

One of the purposes of modeling is documenting the problem. It is important
for a software package to offer possibilities for entering comments into the model.
GeNIe offers the possibility of adding a comment to almost every part of the model.
In addition to on-screen comments, the knowledge engineer can add comments
to nodes, arc, node states, and even individual probabilities. It is very useful to
record in the model how a particular variable was elicited. The knowledge engineer
can then recall the source of information and the possible simplifying assumptions
made in the process. For example, findings describing physical features of the liver,
like its shape and density, can be elicited based on both ultrasound examinations
and palpation. The knowledge engineer should also pay attention to variables that
represent patient self-reported data. Some of these variables are not reliable enough,
for example, History of viral hepatitis or Alcohol abuse. In case of History of viral
hepatitis, it is possible that patients who suffer from an asymptomatic viral hepatitis
seldom know about the presence of the virus. With respect to Alcohol abuse, it is
a clinical rule of thumb that the patient usually consumes at least three times more
alcohol than he or she reports to the doctor. Therefore, when using clinical data it
is important to keep in mind that patient self-reported data may be unreliable. The
knowledge engineer should know how to capture them correctly in the model.

2.3.2.3 Single-disorder vs. multiple-disorder diagnosis model

One of the advantages of Bayesian networks, compared to other modeling tools, is
that they allow us to model the simultaneous presence of multiple disorders. Many
approaches assume that for each diagnostic case only one disorder is possible, i.e.,
various disorders are mutually exclusive. This is often an unnecessarily restrictive
assumption and it is not very realistic in medicine. The presence of a disorder often
weakens a patient’s immune system and as a result the patient may develop multiple
disorders. It happens fairly often that a patient suffers from multiple disorders and a
single disorder may not account for all observed symptoms. Worse even, a situation
can arise that a single disorder offers a better explanation for all observations than
any other single disorder, while the true diagnosis consists of, for example, two
other disorders appearing simultaneously.

Initially, Hepar II was a single-disorder diagnosis model (SDM). The model
was extended later to a multiple-disorder diagnosis model (MDM) (see Figure 2.2).
The model was transformed into a network that can perform multiple-disorder diag-
nosis with some benefits to the quality of numerical parameters learnt from the
database. The transformation from single-disorder to multiple-disorder diagnosis
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Figure 2.2 A simplified fragment of the Hepar II model: Single-disorder diagnosis
(left) and multiple-disorder diagnosis (right) version.

Table 2.1 Characteristics of SDM (single-disorder
model) and MDM (multiple-disorder model) ver-
sions of Hepar II.

Version Size Arcs Connectivity Parameters

SDM 67 78 1.16 3714
MDM 70 121 1.73 1488

model improved the diagnostic performance of Hepar II [350]. The multiple-
disorder diagnosis model is more realistic and has a higher value in clinical practice.

The structural changes of Hepar II had an impact on the quantitative part of
the model, i.e., they decreased the number of numerical parameters in the model.
It often happens in learning conditional probability distributions from data that
there are too few records corresponding to a given combination of parents of a
node. Breaking the original disorder node, modeled in SDM, into several nodes
representing individual disorders in MDM decreased the size of the conditional
probability tables. Additionally, this transformation increased the average number
of records for each combination of parents in a conditional probability distribution
table. The multiple-disorder version of Hepar II required only 1488 parameters
(µ = 87.8 data records per conditional probability distribution) compared to the
3714 (µ = 16.8 data records per conditional probability distribution) parameters
needed for the single-disorder version of the model. With an increase in the average
number of records per conditional probability distribution, the quality of the model
parameters improved. Table 2.1 presents characteristics of the two versions of the
Hepar II model.

2.3.2.4 Causal interpretation of the structure

During the initial modeling sessions of Hepar II experts tended to produce graphs
with arcs in the diagnostic direction. This was an initial tendency that disappeared
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after a few model-building sessions: the experts quickly got used to modeling the
causal structure of the domain. Causal graphs facilitate interactions among multiple
experts. Causal connections and physiological mechanisms that underlie them are
a part of medical training and provide a common language among the experts
participating in the session. The experts working on Hepar II rarely disagreed
about the model structure. A brief discussion of the pathophysiology of the disease
usually led to a consensus.

During the model building, it is important for the expert to understand that each
causal link in the graph represents a certain causal mechanism.5 Hence, when the
knowledge engineer poses a question to the expert, he or she should explicitly ask
about the existence and operation of such mechanisms. However, sometimes fol-
lowing the causal structure is difficult because of lack of medical knowledge – then
the model structure has to be simply based on the correlation between variables.
For example, due to lack of causal knowledge, there was some difficulty with mod-
eling the variable Elevated triglicerides. It is not known with certainty in medicine
whether the variable Elevated trigliceridies is a cause or a symptom of Steotosis
(fatty liver). Figure 2.3 presents two ways of modeling Elevated triglicerides that
were considered in the Hepar II model. The expert found it more intuitive to model
Elevated triglicerides as an effect of Steatosis.

There were several links in the model that were refined from probabilistic
to causal. For example, Elevated serum urea was modeled initially as an effect of
Cirrhosis and as a cause of Hepatic encephalopathy (see the left-hand side network
captured at Figure 2.4). Certainly, the link from Elevated serum urea to Hepatic
encephalopathy did not represent a causal mechanism, therefore, this fragment of
the network was refined into the right-hand side network in Figure 2.4.

Another example of refinement of causal structure is given in Figure 2.5. The
figure captures a family of nodes related to the causes of Hepatolmegaly (enlarged
liver size). It was not clear whether the link between Hepatotoxic medications and
Hepatomegaly had been modeled correctly. The expert found it initially unnec-
essary to model this relationship since there was a path between these variables

Obesity
ObesityHistory of

alcohol abuse

History of
alcohol abuseElevated

triglycerides

Elevated
triglycerides

Steatosis

Steatosis

Figure 2.3 Hepar II: Modeling the variable Elevated triglicerides.
5A causal mechanism is a mechanism describing the causal relations in the domain.
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through Reactive hepatitis node. The knowledge engineer explained to the expert
that if there is another causal mechanism that leads directly to enlarged liver size
due to taking Hepatotoxic medications, then the relationship between the node
Hepatotoxic medications and the node Hepatomegaly should remain.

2.3.3 Elicitation of numerical parameters of the model

Existing data sets of cases can significantly reduce the knowledge engineering
effort required to parameterize Bayesian networks. The numerical parameters of
the Hepar II model (there were 1488 parameters), i.e., the prior and conditional
probability distributions, were learned from the Hepar database that consisted of
699 patient cases. Unfortunately, when a data set is small, many conditioning cases
are represented by too few or no data records and they do not offer a sufficient
basis for learning conditional probability distributions. In cases where there are
several variables directly preceding a variable in question, individual combinations
of their values may be very unlikely to the point of being absent from the data
file. In such cases, the usual assumption made in learning the parameters is that
the distribution is uniform, i.e., the combination is completely uninformative. The
next subsection describes the approach that was applied to learn the numerical
parameters of Hepar II from sparse data sets such as Hepar.
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2.3.3.1 Enhancing parameters learned from sparse data sets

The proposed approach involved enhancing the process of learning the conditional
probability tables (CPTs) from sparse data sets by combining the data with structural
and numerical information obtained from an expert. The approach applied Noisy-
OR gates [129, 210, 356].

A Noisy-OR gate is one of the canonical model which applies when there are
several possible causes X1, X2, . . . , Xn of an effect variable Y , where (1) each
of the causes Xi has a probability pi of being sufficient to produce the effect in
the absence of all other causes, and (2) the ability of each cause being sufficient
is independent of the presence of other causes. The above two assumptions allow
us to specify the entire conditional probability distribution with only n parameters
p1, p2, . . . , pn. pi represents the probability that the effect Y will be true if the
cause Xi is present and all other causes Xj , j �= i, are absent. In other words,

pi = IP (y |x1, x2, . . . , xi, . . . , xn−1, xn) . (2.3)

It is easy to verify that the probability of y given a subset Xp of the Xis that are
present is given by the following formula:

IP
(
y |Xp

) = 1 −
∏

i:Xi∈Xp

(1 − pi). (2.4)

This formula is sufficient to derive the complete CPT of Y conditional on its
predecessors X1, X2, . . . , Xn.

Given an expert’s indication that an interaction in the model can be approxi-
mated by a Noisy-OR gate [129, 210, 356], the Noisy-OR parameters for this gate
were first estimated from data. Subsequently, in all cases of a small number of
records for any given combination of parents of a node, the probabilities for that
case as if the interaction was a Noisy-OR gate were generated. Effectively, the
obtained conditional probability distribution had a higher number of parameters.
At the same time, the learned distribution was smoothed out by the fact that in all
those places where no data was available to learn it, it was reasonably approximated
by a Noisy-OR gate.

This experiment has shown that diagnostic accuracy6 of the model enhanced
with the Noisy-OR parameters was 6.7% better than the accuracy of the plain
multiple-disorder model and 14.3% better than the single-disorder diagnosis model.
This increase in accuracy was obtained with very modest means – in addition to
structuring the model so that it is suitable for Noisy-OR nodes, the only knowledge
elicited from the expert and entered in the learning process was which interactions
can be approximately viewed as Noisy-ORs. The study showed that whenever
combining expert knowledge with data, and whenever working with experts in
general, it pays off generously to build models that are causal and reflect reality as
much as possible, even if there are no immediate gains in accuracy.

6The diagnostic accuracy of the model was defined as the percentage of correct diagnoses (true
positive rate) on real patient cases from the Hepar database.
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2.3.3.2 Handling missing data

Missing values of attributes in data sets, also referred to as incomplete data, pose
difficulties in learning Bayesian network structure and its numerical parameters.

Missing values in the Hepar data set have been a major problem in the Hepar II
project. There were 7792 missing values (15.9% of all entries) in the learning data
set. The Hepar data set contained no records that are complete.

There was a study that investigated and compared the diagnostic accuracy of
Hepar II for several methods for obtaining numerical parameters of a Bayesian
network model from incomplete data. The methods included the EM algorithm,
Gibbs sampling, bound and collapse, replacement by ‘normal’ values, missing as an
additional state, replacement by mean values, hot deck imputation, or replacement
based on the k-NN method.

The diagnostic accuracy for most of the methods that were tested was similar,
while ‘replacement by ‘normal’ values’ and the EM algorithm performed slightly
better than other approaches. Even though the Hepar data set contained many
incomplete values and one would expect even small performance differences to be
amplified, this did not happen.

The performance differences among methods virtually disappeared when a data
set in which data were missing truly at random was generated. This is consistent
with the observation made by Ramoni and Sebastiani [381], who found that per-
formance differences among various methods for dealing with missing data were
minimal. Their data set was real but the missing data were generated at random.

The advice to those knowledge engineers who encounter data sets with missing
values is to reflect on the data and find out what the reasons are for missing values.
In the case of medical data sets, the assumption postulated by Peot and Shachter7

seems very reasonable [360]. Even in this case, however, the advise is to verify it
with the expert.

2.4 Inference
The most crucial task of an expert system is to draw conclusions based on new
observed evidence. The mechanism of drawing conclusions in a system that is
based on a probabilistic graphical model is known as propagation of evidence.
Propagation of evidence involves essentially updating probabilities given observed
variables of a model (also known as belief updating).

For example, in case of a medical model without any observations, updat-
ing will allow us to derive the prevalence rate8 of each of the disorders. Once

7Peot and Shachter argued convincingly that data in medical data sets are not missing at random and
that there are two important factors influencing the probability of reporting a finding. The first factor is
a preference for reporting symptoms that are present over symptoms that are absent. The second factor
is a preference for reporting more severe symptoms before those that are less severe. In other words,
if a symptom is absent, there is a high chance that it is not reported, i.e., it is missing from the patient
record. And conversely, a missing value suggests that the symptom was absent.

8Prevalence rate is defined as the percentage of the total number of cases of a given disease in a
specified population. In other words, it measures the commonality of a disease.
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specific characteristics of a patient are entered, the model will produce the preva-
lence among the population group that the patient is coming from. Entering risk
factors, symptoms, and test results in the course of the interaction with the system
will further allow us to compute the probability distribution of each of the disorders
for this particular patient case. This distribution can be directly used in assisting
medical decisions, for example, by allowing the physician to focus on those disor-
ders that are most likely. The inference in the Hepar II model was performed with
a use of SMILE and GeNIe.

When a model is enhanced with measures expressing the benefits and costs
of correct diagnosis and misdiagnosis, respectively, the system can further suggest
the diagnosis that is optimal given the circumstances. The probabilistic approach
allows for application of such methods as value of information (VOI) computation
that essentially calculates the expected gain from performing various medical tests
and allows for prioritizing various steps of the diagnostic procedure. This feature is
implemented in the diagnostic module of GeNIe that is described in Section 2.4.1.

2.4.1 Diagnostic GeNIe

Figure 2.6 shows a screen shot of the user interface of diagnostic GeNIe. The right-
hand side of the window contains a complete list of all possible medical findings
included in the Hepar II model. The top right part of the window contains a list

Figure 2.6 Screen shot of a diagnostic GeNIe.
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of those possible findings that have not yet been observed along with an indication
of their diagnostic value for the pursued disorder (Primary Biliary Cirrhosis (PBC)
in this case). Those findings that have been observed are brought over to the right
bottom part of the window. Right-clicking on any of the finding brings up a pop-
up menu that lists all possible values of the selected variable. By choosing one of
these values the user can enter a finding. The top left column presents a ranked list
of the possible diagnoses along with their associated probabilities, the latter being
presented graphically. The probabilities are updated immediately after entering each
finding. Updating the probabilities and presenting a newly ordered list of possible
disorders takes in the Hepar II model a fraction of a second and is from the point
of view of the user instantaneous. This interface allows us further to save a patient
case in a repository of cases and to return to it at a later time.

2.5 Model validation

Validation of the model justifies whether the model that was built is correct.
Validation usually involves checking performance of the model and its further
improvement. The performance of the model can be expressed by various mea-
sures, for example, sensitivity (true positive rate), specificity (true negative rate),
false positive rate, or false negative rate.

2.5.1 Validation of the model with the clinical data

The Hepar II model was validated based on the clinical data. The diagnostic accu-
racy of the model was defined as the percentage of correct diagnoses (true positive
rate) on real patient cases from the Hepar database. Because the same, fairly small
database was used to learn the model parameters, the method of ‘leave-one-out’
was applied [323], which involved repeated learning from 698 records out of the
699 records available and subsequently testing it on the remaining 699th record.
When testing the diagnostic accuracy of Hepar II, we were interested in both (1)
whether the most probable diagnosis indicated by the model is indeed the cor-
rect diagnosis, and (2) whether the set of w most probable diagnoses contains the
correct diagnosis for small values of w (we chose a ‘window’ of w = 1, 2, 3,
and 4). The latter focus is of interest in diagnostic settings, where a decision sup-
port system only suggest possible diagnoses to a physician. The physician, who is
the ultimate decision-maker, may want to see several alternative diagnoses before
focusing on one.

2.5.2 Model calibration

Calibration helps to identify inaccuracies and inconsistencies occurring in the
model. Elvira software was used to calibrate the Hepar II model [261]. Elvira’s
explanation facilities allow us to calibrate the model in two modes: (1) static expla-
nation and (2) dynamic explanation.
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2.5.2.1 Analysis of influences

Elvira’s capabilities of static explanation involve coloring arcs of the model accord-
ing to the sign of influence. This feature allows the user to observe the qualitative
properties of the model. The positive influences are colored in red and negative
in blue. Analysis of influences in Hepar II concentrated on checking whether the
expected positive and negative influences appeared to be really red and blue.

2.5.2.2 Analysis of patient cases

Elvira allows us to work with several evidence cases simultaneously and then to
save them in files. Using this facility we performed the analysis of patient cases
selected from the Hepar data set. We were interested in observing the poste-
rior probability distribution of the diseases for each patient case given different
groups of evidence such as patient self-reported data, symptoms, results of physi-
cal examination and laboratory tests. This analysis has brought several corrections
to the model. For example, when observing the variable Enlarged spleen, the expert
noticed that the presence of the finding does not influence the probability distri-
bution of Toxic hepatitis and Reactive hepatitis. Therefore, the arcs from Toxic
hepatitis and Reactive hepatitis to Enlarged spleen were drawn.

One of Elvira’s facilities allows us to analyze the paths from the evidence to
the variable of interest. In other words, it helps to focus on one diagnostic hypoth-
esis and check whether the observed evidence influences the selected hypothesis.
Figure 2.7 shows an example of the explanation path that was generated for the

age
sex

PBC

cholesterol
ggtp

ama bilirubin

Figure 2.7 Elvira: Explanation paths for PBC (Primary Biliary Cirrhosis).
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selected hypothesis (Primary Biliary Cirrhosis (PBC) in this case). The figure cap-
tures all the findings that were observed and that had possibly contributed to the
hypothesis. Additionally, the nodes and links are colored, so it is easy to observe
whether an observed finding has a positive or negative influence on the hypothesis.

2.5.3 Analyzing model sensitivity

There was an empirical study performed in which we systematically introduced
noise in Hepar II’s probabilities and tested the diagnostic accuracy of the resulting
model [349]. This was a replication of an experiment conducted by Pradhan et al.
[373] and it showed that Hepar II is more sensitive to noise in parameters than the
Cpcs network that they examined. The results showed that the diagnostic accuracy
of the model deteriorates almost linearly with noise with a region of tolerance to
noise much smaller than in Cpcs. While the result is merely a single data point
that sheds light on the hypothesis in question, this is an indication that Bayesian
networks may be more sensitive to the quality of their numerical parameters than
popularly believed.

There are two possible explanations of the results of this analysis. The first
and foremost is that Pradhan et al. used a different criterion for model perfor-
mance – the average posterior probability of the correct diagnosis. In the exper-
iment with Hepar II we focused on the diagnostic performance of the model.
Another, although perhaps less influential factor, may be the differences between
the models. The Cpcs network used by Pradhan et al. consisted of only Noisy-OR
gates, which may behave differently than general nodes. In Hepar II only roughly
50% of all nodes could be approximated by Noisy-MAX [509]. The experiment
also studied the influence of noise in each of the three major classes of variables:
(1) medical history, (2) physical examination, (3) laboratory tests, and (4) diseases,
on the diagnostic performance. It seemed that noise in the results of laboratory
tests was most influential for the diagnostic performance of our model. This can
be explained by the high diagnostic value of laboratory tests. The diagnostic per-
formance decreases with the introduction of noise.

2.6 Model use
The Hepar II model has been used by general medicine fellows participating in
post-graduate training programs for physicians specializing in primary health-care
in the Medical Center for Postgraduate Education in Warsaw.

There was performed an evaluation study of Hepar II with a participation of its
users, 23 general medicine fellows. The first result of this study was that diagnosis
of liver disorders is far from trivial. On a subset of 10 cases randomly drawn from
the database, Hepar II was twice as accurate as the physicians (70% vs. 33.1%
accuracy) and 40% better than the most accurate physician.

The second and quite important result of this study was that a diagnostic system
like Hepar II can be very beneficial to its users: interaction with the system almost
doubled the medical doctors’ accuracy (from 33.6% before to 65.8% after seeing the
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system’s suggestion). In many test cases, a correct system’s suggestion influenced
the users to change their diagnosis. This improvement could still be potentially
amplified by further work on the user interface, such as enhancing it with an
explanation facility that would justify the results and help the user in judging
whether the system advice is correct or not.

Primary care physicians face the daunting task of determining the source of dis-
comfort based on patient-reported data and physical examination, possibly enhanced
with the results of basic medical laboratory tests. In addition to the quantitative
impact of the system on the quality of decisions, the experiment showed that the
reaction of the users to the system was favorable and several of them said that the
system had been understandable and that they had learned a lot from it. Therefore,
Hepar II may be a useful tool for general practitioners and could possibly improve
the quality of their decisions.

2.7 Comparison to other approaches

In collaboration with Peter Lucas and Marek Druzdzel [353], we performed a study
that has compared the Bayesian network approach with the rule-based approach.
It was a comparison with Hepar-RB,9 the rule-based system for diagnosis of liver
disorders [287]. The comparison of Hepar-RB and Hepar II showed that building
the models in each of the two approaches has its advantages and disadvantages. For
example, the rule-based approach allows us to test models by following the trace
of the system’s reasoning. This is in general possible with causal models, although
automatic generation of explanations in Bayesian networks is not as advanced yet
as it is in rule-based systems [258, 259]. An important property of the Bayesian
network approach is that models can be learnt from existing data sets. Exploiting
available statistics and patient data in a Bayesian network is fairly straightforward.
Fine-tuning a rule-based system to a given data set is much more elaborate.

Rule-based systems capture heuristic knowledge from the experts and allow
for a direct construction of a classification relation, while probabilistic systems are
capable of capturing causal dependencies, based on knowledge of pathophysiol-
ogy, and then enhance them with statistical relations. Hence, the modeling is more
indirect, although in domains where capturing causal knowledge is easy, the result-
ing diagnostic performance may be good. Rule-based systems may be expected to
perform well for problems that cannot be modeled using causality as a guiding
principle, or when a problem is too complicated to be modeled as a causal graph.

The experiments confirmed that a rule-based system can have difficulty with
dealing with missing values: around 35% of the patients remained unclassified by
rule-based system, while in Hepar II only 2% of patients remained unclassified.
This behavior is due to the semantics of negation by absence, and is in fact a
deliberate design choice in rule-based systems. In all cases, the true positive rate

9Actually, the system’s name is Hepar. Hepar is Greek for liver and this explains the similarity in
names of the systems. To avoid confusion here the name Hepar-RB will be used.
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for Hepar II was higher than for the rule-based system, although it went together
with a lower true negative rate.

2.8 Conclusions and perspectives
Bayesian networks are recognized as a convenient tool for modeling processes of
medical reasoning. There are several features of Bayesian networks that are spe-
cially useful in modeling in medicine. One of these features is that they allow
us to combine expert knowledge with existing clinical data. However, the con-
structors of medical Bayesian network models should be aware of biases that
can occur during combining different sources of knowledge [136]. Furthermore,
Bayesian networks allow us to model multiple-disorder diagnosis, which is more
realistic than some alternative modeling schemes. Other important advantage of
Bayesian networks is flexible inference based on partial observations, which allows
for reasoning over patient data during the entire course of the diagnostic proce-
dure. A Bayesian network allows for modeling causality. From the point of view
of knowledge engineering, graphs that reflect the causal structure of the domain
are especially convenient – they normally reflect an expert’s understanding of the
domain, enhance interaction with a human expert at the model building stage and
are readily extendible with new information.

On the other hand, Bayesian network models require many numerical param-
eters. If there are no data available or if the available data are incomplete it may
lead to problems with parametrization of the model.

Time is an important factor of reasoning in medicine. Use of dynamic Bayesian
networks and dynamic influence diagrams would bring modeling in medicine closer
to the real world [151, 506].

Much work in this direction has been done by Tze-Yun Leong and collabo-
rators, who, in addition to Bayesian networks and dynamic Bayesian networks,
successfully use a combination of graphical models with Markov chains to address
problems in different medical domains, including colorectal cancer management,
neurosurgery ICU monitoring, and cleft lip and palate management [277].
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3.1 Introduction

In this chapter we describe a clinical decision support tool which uses Bayesian
networks as the underlying reasoning engine. This tool, TakeHeartII, supports
clinical assessment of risk for coronary heart disease (CHD). CHD comprises
acute coronary events including myocardial infarction (heart attack) but exclud-
ing stroke. Improved predictions of cardiovascular deaths would allow for better
allocation of health care resources and improved outcomes. Amid burgeoning
healthcare costs (one billion per year is currently spent on anti-lipid and anti-
hypertensive medication in Australia), cost effectiveness has become a dominat-
ing consideration for determining which preventive strategies are most appropri-
ate. Improved assessment and better explanation and visualization of risk in a
clinical setting may also help persuade the patient to adopt preventive lifestyle
changes.

There have been many medical applications of BNs, including early networks
such as the ALARM network for monitoring patients in intensive care [40], diag-
nosing oesophageal cancer [469], mammography [75] and diagnosing liver disorder
[348]. Finally, the PROMEDAS medical decision support tool [155, 375] uses
Bayesian networks, automatically compiling both the network and an interface from

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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the underlying medical database (which currently covers the areas of endocrinology
and lymphoma diagnostics). Unfortunately too many of these applications appear to
have been ‘one-offs’, with long development times using (mainly) expert elicitation
and limited deployment. The lack of widespread adoption can be attributed to a
wide range of factors, including (1) not embedding them in a more general decision
support environment (rather than directly using BN software) that is more acces-
sible for users who are domain experts but have little understanding of Bayesian
networks and (2) the inability to easily adapt the parameterization of the network
to populations other than those considered during the construction phase. In the
development of TakeHeartII, we have attempted to address some of these issues.

To avoid the long development times required by expert elicitation, we have
built BNs for predicting CHD in two other ways. First, we knowledge engineered
BNs from the medical literature. Generally, ‘knowledge engineering’ means con-
verting expert knowledge into a computer model. Here, rather than querying domain
experts directly for information required to build a BN, we used published epidemi-
ological models of CHD, supplemented by medical expertise when we were unsure
of interpretation. The epidemiological models used were: (1) a regression model
from the Australian Busselton study [251] and (2) a simplified ‘points-based’ model
from the German PROCAM study [20]. Second, we applied a causal discovery pro-
gram, CaMML [479, 480], to learn BNs from data. In [461] we briefly described
the BNs knowledge engineered from the literature. Here, we provide more details
on their construction and justify the knowledge engineering choices we made. This
may assist others developing similar BN applications from the epidemiological lit-
erature for risk prediction of other medical conditions, as a case study in the steps
that need to be undertaken. We used the Netica software [342] to implement the
BNs; however, the approach described here should extend to any system allowing
equations to specify the probability distributions for each node.

We have designed TakeHeartII for clinicians who know nothing about BNs.
The clinical GUI is generated automatically from the underlying BN structure.
Therefore it is simple to update the GUI when the BN is changed (for example, by
adding a new node, or changing states). This separation also helps adapt the BN
to a new dataset, or to new priors that reflect the population seen in a particular
clinical environment.

3.2 Models and methodology

We begin with an overview of the two models we took from the epidemiological
literature and our knowledge engineering methodology.

We selected two studies which presented regression models for predicting CHD.
The first is the Busselton study [77], which collected baseline data every three years
from 1966 to 1981 and has resulted in hundreds of research papers. We used the
Cox proportional hazards model of CHD from [251]. The model has the form of
a regression: each risk factor has a coefficient, and the risk factors are assumed to
act independently. Therefore the structure of the model is a series of independent
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predictors leading to the target variable. The second study is the Prospective
Cardiovascular M ünster study, or PROCAM, which ran from 1979 to 1985, with
followup questionnaires every two years. PROCAM has generated several CHD
models. We use the ‘simplified’ model in [20]. Concerned that clinicians would not
use a full logistic regression model, they converted it into a points-based system
where the clinician need only add the points from each risk factor, and read the risk
off a graph. Therefore the authors had already discretized the continuous variables,
making it straightforward to translate to a BN. (However, this extra step designed
to ease clinician’s lives made for a more complicated model structure.) We refer
the reader to [461] for further discussion of the Busselton and PROCAM studies.

There are at least four reasons to convert existing regression models to BNs.
First, BNs provide a clear graphical structure with a natural causal interpretation
that most people find intuitive to understand. Clinicians who are uncomfortable
using or interpreting regression models should be much more amenable to working
with the graphical flow of probability through BNs. Second, BNs provide good
estimates even when some predictors are missing, implicitly providing a weighted
average of the remaining possibilities. Third, BNs clearly separate prior distribu-
tions from other model parameters, allowing easy adaptation to new populations.
Fourth, BNs can easily incorporate additional data, including (subjective) expert
knowledge.

It is generally accepted that building a BN involves three tasks [256]: (1)
identification of the important variables and their values; (2) identification and
representation of the relationships between variables in the network structure; and
(3) parameterization of the network, that is determining the CPTs associated with
each network node. In our CHD application, step 3 is complicated by the fact that
although many of the predictor variables are continuous, the BN software requires
them to be discretized. We divided the process into: (3a) discretization of predictor
variables; (3b) parameterization of the predictor variables; (3c) parameterization of
the target variables.

3.3 The Busselton network

3.3.1 Structure

Knuiman et al. [251] described CHD risks separately for men and women. Rather
than make two separate networks, we made Sex the sole root node in the network;
this allows us to assess risk across the whole population. The other predictor
variables in the study (such as Smoking) are conditional on Sex. This effectively
gives separate priors for men and women (although those priors do not always
differ much).

Figure 3.1 shows the full Busselton network. There is an arc from each predictor
variable to the Score variable, indicating the predictors determine a risk score. That
score is transformed into the 10-year risk of CHD event. Each state/value of this
risk node represents a range of percentages; in the example, we can see that for a
female patient with no other information provided, the BN computes a probability
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Figure 3.1 The Busselton network showing the prior distribution for females. The
target node CHD10 is highlighted in the lower right of the figure. Reproduced with
permission from the electronic Journal of Health Informatics.

0.749 of a 0–10% risk of a CHD event in the next 10 years, followed by 0.155
probability of a 10–20% risk, and so on. This risk assessment over percentiles is in
turn reduced to a yes/no prediction of a coronary heart disease event, represented
by the target node CHD10 (highlighted in the lower right of the figure); for this
example, this risk is 9.43%.1

We note that the clinician should not care about the ‘Score’ and ‘Ratio’ nodes,
as they are just calculating machinery. When embedding the BN in the clinical
tool, we use a cleaner view of the Busselton network (depicted in [460]), where
these have been absorbed away. This is a network transform (done using Netica’s
Node Absorption) that removes nodes from a network in such a way that the
full joint probability of the remaining nodes remains unchanged. We left 10-year
risk node in because clinicians may well prefer that to the binary CHD10, as the
former gives a much better idea about the uncertainty of the estimate. Indeed, this
is one of the benefits of using BNs.

3.3.2 Priors for predictor variables

Knuimuan et al. [251] reported summary statistics for their predictors. These
become the priors for our population: one set for men and another for women.
We generated parametric or multi-state priors from their summary statistics [251,
Table 1]. The priors for the multi-state variables were entered as tables. The priors

1Note that this is high because the average age for the survey Busselton population is 58.9.
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for continuous variables were specified using Netica’s equation facility, assuming
they were Gaussian distributions. To match their model, we also had to create
a variable for the HDL/Total ratio. That variable is the child of HDL and Total
Cholesterol.

3.3.3 Discretization of predictor variables

Seven predictors (including the computed BMI and Ratio) are continuous variables.
Table 3.1 summarizes the discretization levels we chose. The rest of this section
discusses our choices.2

Age: Knuiman et al. rejected those with baseline age <40 or ≥80, setting the
bounds. To be practical, we chose five-year divisions within that range and then
extended it to the limits of 0 and ∞.
Blood pressure: A general medical consensus discretization for blood pressure
is shown in Table 3.2. However, since those divisions preclude the possibility of
finding any harmful or helpful effects of low blood pressure, we added an extra
range so we could distinguish low from normal.
Cholesterol: For cholesterol, the American Heart Association (AHA) and US
National Cholesterol Evaluation Program (NCEP) websites gave guidelines for
total, HDL, and LDL cholesterol in mg/dL. For total cholesterol they are 0–199,

Table 3.1 Discretization levels for each variable.
See text for discussion.

Variable Ranges

Age 0, 40, 45, 50, 55, 60, 65, 70, 75, 80, ∞
SBP 0, 100, 120, 140, 160, ∞
DBP 0, 70, 80, 90, 100, ∞
Chol 0, 5, 6, ∞
HDL 0, 1, 1.5, ∞
Ratio 0, 0.2, 0.4, 1
BMI 0, 20, 25, 30, ∞
Smoking 0, 0, 1, 15, ∞
Alcohol 0, 0, 0, 20, ∞

Table 3.2 Standard blood pressure classifica-
tions in the medical literature (units mmHg).

Systolic Diastolic

Normal <120 <80
Pre-hypertension 120–140 80–90
Hypertension (Stage 1) 140–160 90–100
Hypertension (Stage 2) >160 >100

2Additional discussion of discretization in Netica is given in [460].
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200–239, and ≥ 240. For HDL they are <40, 40–59, and ≥60. Dividing by 39
gives mmol/L, and rounding gave the ranges above. Looking at the distribution, it
may be argued that perhaps we should make finer divisions.
Ratio: The ratio HDL/Chol has to be between 0 and 1, and cannot realistically get
near 1. The AHA said the ‘optimal’ Total/HDL is 3.5:1 (giving 0.28 for HDL/Tot)
and the ‘goal’ was <5:1 (in our case >0.2). Another medical website said the
average Tot/HDL was about 4.5 (0.22 for us), and a good ratio was 2 or 3 (for us,
0.5 or 0.33). From this, we decided to use the following divisions: anything <0.2
was bad, 0.2–0.4 were normal to good, and >0.4 was excellent. It seems unlikely
that anyone could get much above 0.5. The nonlinearities introduced by dividing
makes the use of ratios quite suspect. To prevent any strange errors, we forced
values to lie between 0 and 1.
BMI: Body mass index was similar to cholesterol. According to [497], a BMI
≥25 is overweight, and ≥30 is obese. There is also long-term evidence that if
BMI departs from about 23 in either direction, life expectancy goes down. So by
symmetry we presumed that ≤20 was underweight. However, BMI was not used
in the equation, as [251] did not find it to be a significant predictor.
Smoking and Alcohol: Discrete variables Smoking and Alcohol (Drinking) had
quantities associated with them: number of cigarettes per day, and grams of alco-
hol per day. We modeled them as continuous variables to allow more flexibility.
When defining discretising ranges, ‘Never’ and ‘Ex’ were 0 across the range. Light
smoking was 1–14 cigarettes/day, and heavy smoking was ≥15. Light drinking was
0–20 grams/day, and heavy drinking was ≥20, as defined in the Busselton dataset
and reported in [251]. Alcohol was excluded from the predictor variables because
the authors could find no significant effect, even at hazardous drinking levels (≥40
grams/day). The BN shows this by having no arc from Alcohol to CHD10.
Score and Risk: Discretising Score and Risk was straightforward. The multivariate
score ranged from 0 on up, though by the time it reached 80, risk had saturated at
100%, so we just made eight divisions: 0–10, . . . , 70–80. Similarly, Risk was 0%
to 100%, in 10 divisions.

3.3.4 Parameterizing the target variables

Score: Score is a continuous variable which is the weighted sum of all the predictor
scores. The weights correspond to the Cox proportional hazards regression and are
taken from [251, p. 750]. We have separate equations for men and women. Letting
the binary variables (e.g., AHT, LVH, CHD, etc.) be 1 for ‘yes’ and 0 for ‘no’,
these equations are:

Male: 0.53 × Age + 0.055 × SBP
−56.26 × Ratio + (0.43 × AHT)
+(3.83 × LVH) + (11.48 × CHD)
+(3.2 if Smoke ≥ 15, or 3.01 if 15 > Smoke ≥ 1)
+10
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Female: 0.846 × Age + 0.122 × DBP
− 33.25 × Ratio + (0.5.86 × AHT)
+ (2.97 × LVH) + (7.85 × DIABETES)
+ (7.99 × CHD)
+ (6.16 if Smoke ≥ 15, or 2.2 if 15 > Smoke ≥ 1)
+ 10

Risk: Knuiman et al. did not provide the equation for their risk curve. We could
just use their data points, but that would make the model fragile under a new
discretization. So we fit a curve to the data. Not knowing the precise parametric
form of the Cox model likelihood curve, we fit Weibull and logistic curves. As
Figure 3.2 shows, the fit was good, but both curves underestimated the risk for low
scores. We use the Weibull because it better accommodates the flat top, especially
the (70, 99%) point. The general equation for the cumulative Weibull is:

F(x) = k
(

1 − e−( x−m
a )

g
)

.

Our curve starts at x = 0, and goes up to y = 100%, so we know m = 0 and
k = 100, and don’t have to fit those. The fitted parameters are: a = 54.5415,

Risk vs Score (Knuiman et al 1998)
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Figure 3.2 Risk versus Score. Least squares fit on data points are from Knuiman
et al.’s Figure 3.
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g = 4.99288. The resulting curve underestimates slightly the risk % for scores in
the range 10–30, but this is a low risk category regardless. The actual curve may
come from a more broad-tailed family like the Levy. Obviously, the model could
be improved slightly by finding the correct family.

3.4 The PROCAM network

3.4.1 Structure

For PROCAM, CHD10 is a weighted sum of the eight risk factors. The full PRO-
CAM BN is shown in Figure 3.3(a). There is one root node for each risk factor.
Each of these root nodes has in turn one child, which is the associated scoring node.
For example, there is an arc from the Age root node to its associated score node
AgeScore. The eight score nodes are all parents of a combined score node, called
here ‘Procam Score’, which combines the scores. This combined score node is
then a parent of the 10 year risk node. However, although the scoring scheme was
designed to be simpler than logistic regressions, the extra scoring nodes complicate
the BN.

Figure 3.3(b) shows the essential structure, with the intermediate score nodes
‘absorbed’ away, as described earlier: eight nodes converging on a final score. It
also shows a hypothetical case where the most likely outcome (0.929 probability)
is a 10–20% risk of a CHD event.

Before moving on we note basic structural differences between the Busselton
and PROCAM models. Most obviously, this PROCAM model omits Sex, predicting
for males only. It also omits DBP, AHT, CHD, and LVH, but includes Family
History. Instead of the ratio of HDL to Total cholesterol, it uses HDL, LDL, and
Triglycerides individually. The discretization given in the next section came from
Assman et al.’s paper [20] and is usually slightly finer than the one we adopted
for the Busselton network. We discuss the details in the next section.

3.4.2 Priors for predictor variables

Assman et al. [20] reported summary statistics for their predictors. We generated
parametric or multi-state priors as appropriate. Table 3.3 lists the predictors in order
of importance in their Cox model, followed by the summary statistics reported
in [20, Table 2]. For completeness, the BN equation follows. The priors for the
multi-state variables were entered as tables. The priors for continuous variables
were specified using Netica’s equation facility. Except for Triglycerides, they were
assumed to be Gaussian distributions.
Age: Assman et al. [20] excluded patients younger than 35 or older than 65 at
baseline. We keep their exact range for now. In contrast, [251] used an age range
of 40–80, which is significantly older, especially as CHD risk goes up dramatically
with age.
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(a)

(b)

Figure 3.3 (a) The full PROCAM network; (b) with score nodes ‘absorbed.’ Repro-
duced with permission from the electronic Journal of Health Informatics [461].

Table 3.3 Variables and summary statistics from [20], Table 3.2, and corresponding BN equations.

Summary Stats BN Equation

Age 46.7 ± 7.5 years P(Age |) = NormalDist(Age,46.7,7.5)
LDL cholesterol 148.5 ± 37.6 mg/dL P(LDL |) = NormalDist(LDL,148.5,37.6)
Smoking 31.1% yes
HDL cholesterol 45.7 ± 11.9 mg/dL P(HDL |) = NormalDist(HDL, 45.7, 11.9)
Systolic BP 131.4 ± 18.4 mm Hg P(SBP |) = NormalDist(SBP, 131.4, 18.4)
Family history of MI 16.1% yes
Diabetes mellitus 6.7% yes
Triglycerides 126.2∗ ± 65.9 mg/dL P(Tri |) = LognormalDist(Tri, log(126.2), 0.45)

(∗ = Geometric mean)
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Triglycerides: Since the authors reported a geometric mean for Triglycerides, we
infer the data must have a lognormal distribution, meaning that log(Triglycerides)
would have a normal distribution. A look at the Busselton data confirmed the
assumption, as does the common practice of having a LogTriglycerides variable.
We then parameterize a lognormal distribution given a geometric mean m and a
standard deviation s, as follows.3 The NIST e-Handbook [333] says that a lognor-
mal distribution uses µ = log(m) as the scale parameter and has a shape parameter
σ . It also gives an expression for the standard deviation s, which can then be
inverted:

σ =
√√√√log

(
m ± √

m2 + 4s2

2m

)
(3.1)

Therefore m = 126.2 and σ = 0.4486, which generates a curve with the appropriate
parameters, shown in Figure 3.4. This provides the required Netica equation:

P(Tri|) = LognormalDist(Tri, log(126.2), .45). (3.2)

PROCAM curve and simulated data
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Figure 3.4 Lognormal curve for PROCAM m, σ , with simulated data superim-
posed. Standard deviation for the curve and data are 0.66.

3Note that (m, s) are the given geometric mean and sample standard deviation, while (µ, σ ) are the
scale and shape parameters that we are estimating.
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3.4.3 Discretization of predictor variables

The discretization levels were given in [20]. We reproduce them here in Table 3.4.
Age is in five-year bins, just like our Busselton network. LDL and HDL are mea-
sured in mmol/L instead of mg/dL and discretized more finely. The corresponding
breaks for HDL would be (0, 0.9, 1.15, 1.4, ∞), compared to the levels we adopted
in the Busselton network: (0, 1, 1.5, ∞). SBP inserts an extra level at 130, compared
to Busselton’s (0, 120, 140, 160, ∞).

3.4.4 Points

Here we describe the straightforward translation of the discretized predictor vari-
ables into scores, by assigning point values to each of the levels of the predictors.
In the BN, this means specifying the relationship between the Score node and its
corresponding predictor variable, as in Table 3.5.

3.4.5 Target variables

The PROCAM score is a continuous variable which is a simple sum of the indi-
vidual predictor scores. The work comes in translating this to probabilities. All
these risk models have a sigmoid component to convert the risk score to a real
risk. Therefore we can fit a logistic equation to ‘Table 4, Risk of Acute Coronary
Events Associated with Each PROCAM Score’ [20]. We used the Verhulst equation

v(x) = N0K

N0 + (K − N0) exp(−r(x − N1))
.

Table 3.4 Discretization levels for each variable. Values from [20], Table 3.3 and as implemented in
Netica.

Variable Levels (in paper) Levels in network

Age 35, 40, 45, 50, 55, 60, 65 (35, 40, 45, 50, 55, 60, 65)
LDL <100, 100, 130, 160, 190, ≥190 (0, 100, 130, 160, 190, INFINITY)
HDL <35, 35, 45, 55, ≥55 (0, 35, 45, 55, INFINITY)
Tri <100, 100, 150, 200, ≥200 (0, 100, 150, 200, INFINITY)
SBP <120, 120, 130, 140, 160 (0, 120, 130, 140, 160, INFINITY)

Table 3.5 Equations definining scores for each predictor. The conditional ‘if x then y else z’ is written ‘x ? y :
z’. Terms ‘L0’, ‘L16’, etc. are state names assigned to have the corresponding numeric values 0, 16, etc. This is
an artifact of the way Netica handles discrete variables that should have numeric values.

AgeScore Age<40 ? L0 : Age<45 ? L6 : Age<50 ? L11 : Age<55 ? L16 :
Age<60 ? L21 : L26

LDLScore LDL<100 ? L0 : LDL<130 ? L5 : LDL<160 ? L10 : LDL<190 ? L14
: L20

SmokeScore Smoking==yes ? L8 : L0
HDLScore HDL<35 ? L11 : HDL<45 ? L8 : HDL<55 ? L5 : L0
SBPScore SBP < 120 ? L0 : SBP <130 ? L2 :
FHScore FamHist==yes ? L4 : L0
DMScore Diabetes == yes ? L6 : L0
TriScore Tri<100 ? L0 : Tri<150 ? L2 : Tri<200 ? L3 : L4
SBP SBP<140 ? L3 : SBP<160 ? L5 : L8
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Risk of Acute Coronary Events (Assman et al 2002)
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Figure 3.5 Logistic curve fitted to Table 4 in [20].

The corresponding graph is shown in Figure 3.5. The fit is good over the data
range (20–60) and tops out at a 70% risk of an event in the next 10 years, no matter
how high the PROCAM score goes. As there is always some unexplained variabil-
ity, our domain experts consider this reasonable [283]. However, it conflicts with
the Busselton study risk curve [251, p 750, Figure 3] shown in Figure 3.2, which
goes up to 100%. [250] says his curve used the standard Cox formula involving
baseline survival and defends the high maximum risk. He notes that age is a very
strong determiner and the Busselton study included people who were up to 80 years
old at baseline. This PROCAM study, by contrast, included only those up to 65
at baseline. For now we presume that our fit is reasonable, showing a difference
between this PROCAM study and the Busselton study. To define the risk in Netica,
we make ‘Risk’ a child of ‘Score’ and set its equation:
Risk (Score) =

(30 * 71.7) / (30 + (71.7 - 30) * exp(-0.104 * (Score - 59.5))).

Table 4 in [20] tops out at ≥30, and is much finer near the bottom, so we defined
the following levels: (0, 1, 2, 5, 10, 20, 40, 100).

3.5 The PROCAM Busselton network

We wanted to know how well this simple PROCAM model predicts the Busselton
data. To do this we must adapt both the data and the network so that all correspond-
ing variables match. For example, some of the Busselton variables are measured
on a different scale, or do not conform precisely to those in the PROCAM model.
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Modifying the Busselton data Knuiman et al. used only the 1978 cohort, for
various reasons. So, first we selected the 1978 cohort from the original Busselton
data. Survey and CHD events were then merged into a single datafile. A number
of adaptations then had to be made to adapt Busselton variables to the PROCAM
Bayesian network. Specifically:

1. Remove females, because the PROCAM study didn’t include them.

2. Convert cholesterol from mmol/L to mg/DL. Multiply by 89 for triglyc-
erides, or 39 for total and HDL.

3. Create the variable LDL from the other cholesterols (see below).

4. Move the target variable, CHD10 to the end.

5. Remove inapplicable variables.

Although we exclude females because we have no way to know the PROCAM
model for females, we do not restrict the age to match the range used in the
PROCAM study, because there is a natural extension, discussed below.

The conversion to HDL is done according to the Friedewald equation [159]. If
the measures are in mmol/L, then the equation is: LDL = Total - HDL - TG/2.2. If
the equation is in terms of mg/dL, then divide by 5 instead of 2.2. The Friedewald
equation breaks down at high levels of Triglycerides. Above 200 mg/dL, 28% of
the estimates were more than 10% inaccurate, and above 400 mg/dL, 61% were
inaccurate [481]. We have accepted the inaccuracy, but another approach would be
to make such values missing/unknown.

Modifying the PROCAM network Having already transformed some of the
Busselton variables, it remained to extend the variables in the PROCAM network
to handle extended ranges, and optionally alter their priors to match our data.
Age: The Busselton baseline data includes people from 18 through 97 at baseline,
although there are few above 80. Although Assman et al. [20] used only males
aged 35–65 at baseline, we can see that age score is a linear function of age,
allowing a natural extension to higher ages. We extended Age with new levels:
0, 20, 30 and 70, 80, INFINITY.
AgeScore: A quick plot shows that AgeScore ≈ 26

25 Age − 41, with AgeScore = 0
for Age < 40. But as we will now allow age to be much lower, we allow AgeScore
< 0. We also get a slightly better fit to the PROCAM table by using a floor function,
so we defined:

AgeScore = floor

(
26

25
Age

)
,

where floor supplies the largest integer less than or equal to its argument. Now
AgeScore is automatically extended to any new ages. It is negative below 40,
as younger people should be at lower risk. It is the natural extension of the risk
function in the PROCAM model.
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CHD10: We added a new binary variable CHD10, as a child of Risk.
P(CHD10|Risk) = Risk/100.
Tri: We divided the highest range in two to better match the AHA categories found
via websearch: 0–150 normal; 150–200 borderline; 200–500 high; ≥ 500 very
high. So, levels = (0, 100, 150, 200, 500, INFINITY). Recall
that our calculated LDL values become suspect for high levels of Triglycerides.
TriScore: Was 0, 2, 3, 4, so we just gave ‘5’ to the new upper category.
Score: Because AgeScore can be negative, we have to allow this to be negative as
well. Because of sampling, the safest way is just to set the lower bound at −∞,
even though it should really be −41 or −42.

Modifying the priors We now have an adapted network that will work on Bussel-
ton data, but still using the original PROCAM priors from their German population.
However, even if the risk equation is exactly right for the Busselton population, this
model may perform badly if the baseline population is different. For that reason,
we may wish to modify the priors. Fortunately, in a Bayesian network, the priors
are explicit and easy to modify. Therefore models learned for one population can
be easily transported to another. Because we expect the prior distribution of risk
factors to differ from Germany to Australia, we modified the priors to match the
distribution in the 1978 cohort.

3.6 Evaluation

In previous sections we have described the construction of three BNs for CHD
risk assessment, which we call Busselton, PROCAM-German (German priors) and
PROCAM-adapted (Busselton priors). Evaluation of these networks, plus other
BNs learnt from the epidemiological data, is provided in [461]; we summarize the
evaluation here.

The evaluation used two metrics: ROC curves and Bayesian Information Reward
(BIR).4 ROC analysis applies to a set of binary (yes/no) predictions. One of the
classes (here, a CHD event) is chosen as the positive class for analysis and the
other is the negative (lack of CHD event). Each point on a ROC curve measures
a machine learner’s predictive performance (in terms of true positives) for a given
false positive rate. Thus the point (0,0) corresponds to the policy of always predict-
ing negative – no false positives, but no true positives either. Similarly, the point
(1,1) corresponds to always reporting positive. (0,1) is the best possible result:
correctly identifying all positive cases while completely avoiding incorrect classi-
fication of negatives. Intuitively, the closer to the top-left a curve is, the better the
learner’s performance. The area under the curve (AUC) averages the performance
of the learner, with a perfect learner having AUC = 1 and a random predictor hav-
ing AUC = 0.5 (a diagonal line). ROC analysis is meant to be used in lieu of a
cost-sensitive predictive analysis, when explicit costs are unavailable. BIR [217] is

4We also looked at accuracy, log loss and quadratic loss, but results were not included for reasons
of space. The results are much the same.
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one of the log loss family of metrics, rewarding learners not just for right/wrong,
but also for getting the probability of an event correct (i.e., calibration). It’s a
Bayesian metric, taking prior probabilities into account and maximally rewarding
algorithms which best estimate the posterior probability distribution over predicted
events.

In the first set of experiments, we compared the knowledge-engineered BNs –
Busselton, PROCAM-German and PROCAM-Busselton as described above in Sec-
tions 3.3–3.5 – and a BN learned by the CaMML program [480].

In the second set of experiments, we compared CaMML against the standard
machine-learning algorithms provided by Weka [501]: naı̈ve Bayes, J48 (C4.5),
AODE, logistic regression, and an artificial neural network (ANN) (all run with
default settings). For comparison, we also included Perfect (always guesses the
right answer with full confidence) and Prior (always guesses the training prior),
which set the upper and lower bounds on reasonable performance, respectively.

We found that PROCAM-German does as well as a logistic regression model
of the Busselton data, which is otherwise the best model. They had the same AUC,
with about the same curve. This means they ranked cases in roughly the same order.
We also found that PROCAM-German did just as well as the logistic regression
on BIR and related metrics, which suggests that it is well-calibrated, regardless of
the fact that the individual regression coefficients might be different.

3.7 The clinical support tool: TakeHeartII

3.7.1 The original Take Heart

Monash University’s Epidemiological Modeling Unit developed the original Take
Heart program [312] in conjunction with BP Australia’s Occupation Health Ser-
vices Department. Take Heart estimated CHD10 risk for approximately 900 BP
Australia employees, starting from 1997 and extending for over two and a half
years. Take Heart’s epidemiological model used equations from the Multiple Risk
Factor Intervention Trial (MRFIT) study [240], adjusted so that the background
risk factor probabilities fit the Australian population. It used a Microsoft Access
database to store cases, and Access macros for the calculations.

3.7.2 TakeHeartII architecture

Figure 3.6 shows the architecture for TakeHeartII, divided into the BN construction
phase (on the left) and its use in a clinical setting (right). The construction phase
depicts the general process described earlier in this chapter, with the BN built using
a combination of models from the epidemiological literature, expert knowledge and
data. It also includes an adaptation phase, where a BN (built using any method)
can be adapted for a different population (such as re-parameterizing the PROCAM
model from the Busselton dataset, described in Section 3.5).
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Figure 3.6 TakeHeartII Architecture: Construction and Adaptation (left) provide
BNs used for risk assessment in a clinical setting (right).

3.7.3 TakeHeartII implementation
We wrote the scripting language Modular Bayesian Network (ModBayes) to imple-
ment TakeHeartII. ModBayes links a Bayesian network to graphical controls such
as drop-down menus, buttons and check-boxes; as well as visualizations such as the
chart and risk displays of Figure 3.7. It also manages a case file associated with
the BN. ModBayes allows speedy organization of the controls and displays on
screen: someone knowledgeable in the scripting language could redesign the lay-
out in minutes. In addition, it automatically integrates with the powerful Bayesian
Network viewer, Causal Reckoner [219, 255]. Causal Reckoner inputs BNs in the
Netica .dne format, and uses Netica as the BN reasoning engine. It also provides
additional functionality for network layout, causal manipulation and causal power.
When evidence is entered in the Causal Reckoner, it appears on ModBayes’s con-
trols, and vice versa, which enables the BN display to change according to the
needs of the user.

The scripting language itself is a dialect of Lisp, and thus is a full-featured
programming language in its own right. This means that the scripting language can
be extended (by an advanced user) to create arbitrary Bayesian network interfaces.

3.7.4 TakeHeartII interface
TakeHeartII’s main interface, shown in Figure 3.7 is divided into two sections. The
top section is for case information about the patient being assessed, provided in a
survey form style. The clinician inputs information about the patient where known,
which is then entered as evidence in BN by the reasoning engine.

The case title (‘Cassy’ in the figure) is an editable text field. This title becomes
the case label on the risk assessment displays and on the case viewer (described
below). In the survey form, answers to multiple choice questions are entered with
drop-down boxes and yes–no answers are simple button clicks.
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Figure 3.7 The main GUI for TakeHeartII.

At any stage, the clinician can ask TakeHeartII to make a risk assessment of a
CHD in the next 10 years, by clicking the ‘Enter case’ button. If the clinician has
entered age information, then TakeHeart displays the extrapolated 10 year risk for
the current ‘case’, shown with label Cassy. The case is also saved (with its label)
in the case database. The clinician can then modify the current case, for example to
show the effect of a life-style change such as quitting smoking. The risk assessment
then shows the risk for both cases (see Figure 3.8). The higher curve is her current
projected risk, and the lower curve is her projected risk should she quit smoking;
clearly, smoking has increased her risk of heart attack substantially. There is no
formal limit to the number of cases that can be displayed together, however in
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Figure 3.8 Extrapolated 10 year for (above) two cases and (below) six cases.

practice the size of the screen will dictate a limit of 6–8 cases. At any time, the
clinician can clear the charts (to re-start) or show only risk given the current survey
case information.

TakeHeart also provides risk assessment by age. Figure 3.9 shows a category
plot of heart attack risk by age, again comparing smokers with nonsmokers (the
form was filled out the same as for Cassy, but with age left blank). Again, this
provides a clear visualization of the impact of smoking, almost doubling the risk
for each age group.
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Figure 3.9 Heart attack risk by age for a smoker and a nonsmoker

How are the risk assessment values calculated? The category display is simple:
the risk for each age group, given the other risk factors, is simply calculated in turn.
The extrapolated risk chart is more complex. An exponential curve (y = emx+c),
is fitted to two points: the current risk and the risk for someone five years older
(or five years younger if the person is in the oldest age range). The exponential
distribution is chosen because it matches observed data in how risk increases with
age [312].

There are two additional displays provided with TakeHeartII. The first is Causal
Reckoner’s BN viewer, which is fully integrated into TakeHeartII: when the clin-
ician enters evidence using the survey form, the BN display is also updated, and
conversely, if the clinician chooses to enter evidence directly into the viewer (by
clicking a value), the survey is updated. The BN viewer may also display non-
input (i.e., ‘intermediate’) nodes, whose values are not included in the main survey
form, such as the Score nodes in the full PROCAM BN (see Figure 3.3). Finally,
the Case Viewer allows the clinician to look at the history of cases entered into
TakeHeart.

Here we have only sketched TakeHeartII’s main features. Full details, including
the extrapolation algorithm/method, are provided in [218]. A prototype version of
TakeHeartII is currently being evaluated by our medical research collaborators and
a clinical evaluation is being planned.

3.8 Conclusion
In the first part of this chapter, we have provided a detailed description of the
construction of two Bayesian networks for cardiovascular risk assessment. These
networks were built using information available in the epidemiology literature, with
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only minor additional input from medical experts, avoiding much of the knowledge
engineering ‘bottleneck’ associated with expert elicitation. We have also justified
our knowledge engineering choices, providing a case study that may assist others
develop similar BN applications in this way for risk prediction of other medical
conditions.

We had to discretize our continuous variables. Often a tedious and uncertain
step, we were fortunate in being able to use established diagnostic ranges, either
from the models themselves or from other literature. Still, discretization introduces
edge effects, and it would be better to perform continuous inference (perhaps via
particle filter sampling), and discretize only at the end, if necessary to match diag-
nostic categories. Netica cannot yet perform ‘native’ continuous inference, but we
should point out that this is a limit of our choice of tools, not the models or theory
itself.

We then described our tool to support clinical cardiovascular risk assessment,
TakeHeartII, which has a BN reasoning engine. The modular nature of the Take-
HeartII architecture, and its implementation in the ModBayes scripting language,
means that it can incorporate different BNs (for example changing to a BN that is
a better predictor for a given population) without requiring major changes to the
interface.

We are currently directing our efforts in two directions. First, at evaluating the
TakeHeartII tool in a clinical setting, which may well lead to modifications of the
interface. Second, at using data mining to obtain more informative and predictive
BNs. For example, we have developed a method [346] for using expert knowledge
to provide more direction to the causal discovery process and are currently applying
that method to our CHD datasets.
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4.1 Introduction
The map of our chromosomes produced by the Human Genome Project has
documented similarities and differences between individuals and has shown that
people share approximately the same DNA with the exception of about 0.1%
nucleotide bases [452]. These variations are called single nucleotide polymorphisms
(SNPs) and occur when a single nucleotide (A, T, C, or G) in the genome sequence
is altered. Some of these variants may be the cause of ‘monogenic diseases’ in
which a single gene is responsible for causing the disease. This happens when the
gene is defective so that a mutation of the DNA sequence of the gene determines
a change in the associated protein. Our cells contain two copies of each chromo-
some and monogenic diseases are classified as ‘dominant’ or ‘recessive’ based on
the number of copies of the mutated variants that are necessary for the disease to
manifest. A dominant disease needs only one mutated variant to manifest while a
recessive disease needs two mutated variants to manifest and one mutated variant
makes a subject only a carrier of the disease. A carrier can transmit the mutated
variant to the offspring, but not the disease and a recessive disease can only be

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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transmitted when both parents are carriers. This classification changes when the
SNP is on chromosome X, so that one single variant can make an individual car-
rier or affected based on gender. Sickle cell anemia is a well known example of
a recessive disease that is caused by a single mutation of the β-globin gene that
determines a variant of the hemoglobin protein [442]. This was the first mono-
genic disease ever described and lead to Pauling’s theory of molecular disease that
opened a new chapter in the history of medicine [330].

Over the past decade, about 1200 disease-causing genes have been identified.
This success was facilitated by studying well characterized phenotypes – the physi-
cal manifestation of the genotype or the combination of variants in the chromosome
pair – and using specific techniques that are described in details for example
in [54, 263]. However, monogenic diseases are typically rare while there are com-
mon diseases that are thought to have a genetic component but do not follow the
rules of dominant or recessive disorders. Examples are many common age-related
diseases such as diabetes, cardiovascular disease, and dementia that are presumed
to be determined by the interaction of several genes (epistasis), and their interac-
tion with environmental factors (gene environment interaction). These diseases are
termed ‘complex traits’ and, as in general complex systems, they are characterized
by a high level of unpredictability of the output (the disease or trait) given the
same input (the genetic make up) [263].

While the discovery of monogenic disease-causing genes can be used to com-
pute the risk for offspring to be affected given the parent genotypes in pre-natal
diagnosis, discovering the genetic bases of common diseases and their interaction
with the environment is the first step toward the development of prognostic models
that can be used to compute the individual risk for disease and to suggest appropri-
ate prophylactic treatments or lifestyle. The potential benefits of these discoveries
on public health are immense, and the discovery of the genetic bases of common
diseases is one of the priorities of medical research that is nowadays made possible
by rapid innovations in biotechnology. Machine learning methods are providing an
important contribution to this endeavor and Bayesian networks in particular have
been shown to be ideal modeling tools to simultaneously discover the genetic basis
of complex traits and to provide prognostic models [422].

4.2 Historical perspectives

The use of Bayesian networks in biomedical sciences can be traced as far back as
the early decades of the 20th century, when Sewell Wright developed path analysis
to aid the study of genetic inheritance [504, 505]. Neglected for many years, Baye-
sian Networks were reintroduced in the early 1980s as an analytic tool capable
to encoding the information acquired from human experts [90, 356]. Compared
to decision-rule based ‘expert-systems’ that were limited in their ability to reason
under uncertainty, Bayesian networks were probabilistic expert systems that used
probability theory to account for uncertainty in automated reasoning for diagnostic
and prognostic tasks. This type of probabilistic reasoning was made possible by
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Figure 4.1 The Child network.

the development of algorithms to propagate probabilistic information through a
network. The first algorithm was limited to networks with simple polytree struc-
tures [356], and was followed by more complex algorithms that could be applied to
more general network topologies [86, 106, 273]. These algorithms placed Bayesian
networks at the forefront of artificial intelligence research and medical informatics
[44, 157, 434]. The toy network ‘Asia’ [106], the Child (or ‘blue baby’) system
described in Spiegelhalter et al. [435] and the ALARM network [103] are proba-
bly the best known applications of Bayesian Networks in medical diagnoses. The
Child network is the diagnostic system for telephone referrals of newborn babies
with possible congenital heart disease displayed in Figure 4.1. The network consists
of 20 nodes that include symptoms and clinical status of a newborn as well as labo-
ratory results. The network is used to compute the probability that a newborn with
sign of asphyxia has congenital heart disease by essentially using Bayes’ theorem.
Bayes’ theorem facilitates the quantification of how two or more events effect each
other in the production of one or more outcomes. To do this, the theorem updates
the prior (‘marginal’) probability of each event or node, independent of any of the
other events into the posterior (‘conditional’) probability of the event, which is
influenced by other events.

The directed acyclic graph of the Child network has a very simple structure,
with nodes that have only two parents or less so that at most tables of 4×2 condi-
tional probabilities need to be elicited from experts. However, David Spiegelhalter
acknowledged the difficulty in eliciting both the graphical structure and the con-
ditional probability tables of the network from experts [435], and admitted that
building the Child network was made possible by his very close relationship with
the expert, who is actually his life partner. It is not until the development of intel-
ligent statistical methods in the late 1980s, early 1990s that Bayesian networks
became more easily available modeling tools [103, 185]. These statistical meth-
ods allow the machine learning from data of both the graphical structure and the
set of conditional probabilities that define a Bayesian network. Popular algorithms
such as the K2 [103], and some variations that make the use of coherent prior
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distributions [206] are implemented in commercial software, for example Discov-
erer and Hugin, and software that is freely available. The web site of the Association
for Uncertainty in Artificial Intelligence1 has a comprehensive list of software for
learning and reasoning with Bayesian networks.

4.3 Complex traits
Complex traits are defined as diseases that are determined by the co-occurrence
of several to numerous genetic factors and their interaction with the environment
and/or diseases that are determined by several variables, as in the case of metabolic
syndrome. Therefore the search for the genetic bases of many complex traits faces
two major difficulties. The first difficulty is the challenge of discovering a poten-
tially very large number of genetic variants that are associated with the disease,
and their varying influences due to varying exposures to environmental conditions.
The second difficulty is the definition of the correct phenotype to be used in the
design of the study and the analysis of the data.

4.3.1 Genome-wide data

Until approximately 2004, genotyping costs limited the search for genetic variants
responsible for disease to sets of candidate genes that were selected based on an
educated guess. The ability to discover the genetic basis of complex disease was
therefore limited to the set of candidates. The introduction of economically feasible
high-throughput arrays for genome-wide genotyping in the last few years is now
moving the field to genome wide association studies that can interrogate nearly
the entire genome [193]. The technology allows the simultaneous genotyping of
hundreds of thousands of SNPs that are a small proportion of the estimated 10 mil-
lion existing SNPs but provide sufficient coverage of the variations. For example,
either the Sentrix HumanHap550 Genotyping Beadchip (Illumina, San Diego, CA)
or the Affymetrix GeneChip  Human Mapping 500K Set consists of more than
500 000 SNPs providing comprehensive genomic coverage across multiple popula-
tions. This coverage based on a relatively small number of variants is made possible
by the block structure of the human genome that is due to the patterns of linkage
disequilibrium (LD) [110, 170]. The latter is the effect of nonrandom association
of SNPs that results in the inheritance of blocks or ‘haplotypes’ of nearby SNPs
in the same chromosome. This linkage of genetic variants implies that SNPs in the
same haplotypes are mutually informative and that a subset of them is sufficient to
tag blocks of the human genome with a certain precision [228, 421].

4.3.2 Complex phenotypes

The difficulty in defining the phenotypes is apparent in the study of those diseases
that are determined by multiple variables contributing to the disease condition or
syndrome, for example diabetes, metabolic syndromes, neurological degenerative

1http://www.auai.org
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disorders such as Parkinson’s or Alzheimer’s disease, hypertension or various forms
of cardiovascular disease. Dissecting the genetic basis of these diseases requires
a phenotype to be defined as the response to different genetic characteristics. In
the case of diabetes, one could measure blood sugar level after a night fasting, or
base the diagnosis on the glucose tolerance test, and have the glucose level define
the phenotype as a quantitative trait. Alternatively, a blood sugar level higher than
140 mg/dl can be translated into a diagnosis of diabetes that is then used as a
binary phenotype in the genetic analysis. More complicated is the definition of
those phenotypes in which the diagnosis has to be based on the compilation of
different symptoms, like the diagnosis of Alzheimer’s disease. Such symptoms or
measurements are not independent because they are the result of the same disease,
so an alternative approach is to leverage on the mutual information that these
measurements bring about the same phenotype and use a multivariate model as
phenotype of a genetic study. The availability of large amounts of data available
from detailed cohort studies like the Framingham Heart Study2 would make this
idea feasible for a variety of complex diseases.

4.3.3 Genetic dissection: The state of the art
Quantitative strategies for the discovery of the genetic variants associated with
complex traits are still in their infancy and it is widely acknowledged that the
modeling of genotype/environmental factors/phenotype(s) data requires alternative
solutions to those currently available to genetic epidemiologists [512]. Reviews
by Risch [54], Cardon and Bell [82] and Hoh and Ott [213] survey the major
approaches to the statistical analyses of multiple genotypes in either case-control or
family based studies and highlight the limitations of the ‘one SNP at a time’ proce-
dure that is predominantly used to analyze these data. The procedure examines one
genetic variant at a time in relation to a presumably well-defined phenotype [234].
This reductionistic approach risks not capturing the multigenic nature of com-
plex traits and typically identifies too many associations because of dependencies
between SNPs in contiguous regions as a result of LD, and the evolutionarily
induced dependency between SNPs on different chromosomes [170]. A further
limitation of the one-at-time variant approach is the inability to discover associa-
tions that are due to interdependent multiple genotypes. Hoh and Ott point out the
case in which the simultaneous presence of three genotypes at different loci leads
to a disease. The three genotypes themselves have the same marginal penetrance
and would not be found associated with the disease in a one-at-a-time search. This
situation is an example of the well known Simpson’s paradox [492]: the fact that
marginal independence of two variables does not necessarily imply their conditional
independence when other variables are taken into account. These two situations are
described in Figure 4.2, which shows a possible dependency structure between a
phenotype represented by the node P and the four SNPs represented by the nodes
S1–S4 in the graph. The two SNPs S2 and S3 are associated with the phenotype
P and their association is represented by the edges between P and S2, as well as P

2http://www.framingham.com/heart



58 COMPLEX GENETIC MODELS

S1 S2 S3 S4

P

Figure 4.2 Example of redundant and missed association induced by a one-at-a-
time search. The SNP S1 is an older mutation in linkage disequilibrium with the
more recent mutation S2 and an association between S1 and the phenotype P would
be redundant and could potentially be misleading. The association between S4 and
P is only found conditional on S3.

and S3. The node S1 represents an older SNP that is associated with the SNP S2
through evolution. The two SNPs do not need to be necessarily on the same genes,
or on the same region of linkage disequilibrium. The SNP S4 is not associated
with the phenotype when considered individually, but only in conjunction with the
SNP S3. A simple one-at-a-time search would probably lead us to identify S1 as
associated with P and hence introduce redundancy, if S1 and S2 are in linkage
disequilibrium, or introduce a false association if S1 and S2 are not on the same
gene or region of linkage disequilibrium. Another limitation of the one-at-a-time
search is the likely loss of the association between S4 and P.

Multivariate statistical models, such as logistic regression, can circumvent these
limitations by examining the overall dependency structure between genotypes, phe-
notype, and environmental/clinical variables. However, traditional statistical models
require large sample sizes and/or experimental and control samples that are dis-
tinctly different enough in terms of the phenotype of interest to confer significant
power. Solutions proposed include efficient parameterizations of genotype proba-
bilities so that a two loci interaction models that would require eight parameters
can be estimated using two or three parameters [299], and multifactor dimension-
ality reduction (MDR). MDR reduces dimensionality by pooling combinations of
genotypes from multiple loci into a smaller number of groups so as to improve
the accuracy in the identification of SNPs that are associated with disease risk
[324, 397]. A software package for implementing MDR with up to 15 polymor-
phisms is freely available,3 and strategies are currently being explored to expand the
algorithm to genome wide association studies in which several hundreds thousands
of loci are investigated and data from related individuals can be analyzed [304].

Although these methods can help reduce the complexity of gene–gene and
gene–environment interaction models, the amount of data produced by the new
genotyping technology requires novel techniques that go beyond ‘traditional
statistical thinking’ in order to accommodate the complexity of genetic models.

3http://www.epistasis.org/software.html
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Machine learning methods used in data mining have the ability to extract infor-
mation in large databases [198] and, for example, classification and regression
tree (CART) [376] and Random Forests [61] have been proposed to model com-
plex gene–environment interaction when the phenotype is a well defined variable.
CART is a multivariate statistical technique that creates a set of if-then-rules linking
combinations of genotypes and environmental exposures to the phenotypes. The
if-then-rules are created with a recursive procedure that groups data in sets in order
to maximize the utility of all of the information [198]. Random forests have shown
particular promise for the analysis of genotype/phenotype correlations, taking into
account gene–gene interactions. The intuition is to use permutation methods and
bootstrapping techniques to create thousands of CART models. From the analy-
sis of these models structures, one can produce a summary importance measure
for each SNP that takes into account interactions with other SNPs influencing
the phenotype [291]. It has been shown that when unknown interactions among
SNPs and genetic heterogeneity exist, random forest analysis can be significantly
more efficient than standard univariate screening methods in pointing to the true
disease-associated SNPs.

Contrary to all these machine learning methods that require a well defined phe-
notype to be applied, Bayesian networks can model multiple random variables and
accommodate the complex structure of gene environment interactions together with
phenotypes defined by multiple variables. By using these models, the probability
distribution of the many variables describing a complex system is factorized into
smaller conditional distributions, and this factorization permits an understanding of
the entire complex system by examining its components [106, 271]. Compared to
standard regression models in which the correlation between the variables leads to
multicollinearity and lack of robustness of model fitting, Bayesian networks lever-
age on the mutual correlation between variables to define the conditional probability
distributions. These conditional distributions become the ‘bricks’ used to build a
complex system in a modular way. Specifically, the modularity provides the critical
advantage of breaking down the discovery process into the search for the specific
components of a complex model.

4.4 Bayesian networks to dissect complex traits

4.4.1 Bayesian learning

The modularity is one of the critical features to derive or learn Bayesian networks
from large data sets with many variables. There are several strategies for learn-
ing both the graphical structure and the tables of conditional probabilities, and
well-established techniques exist to induce BNs from data in an almost automated
manner. These strategies include standard association tests [111, 185, 271] and
Bayesian procedures that were proposed in [436] for the estimation of the condi-
tional probability tables, and subsequently model selection in [103] and [106, 202].
The underlying premise of a Bayesian model selection strategy is to assess each
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dependency model by its posterior probability and select the model with maximum
posterior probability [242]. The posterior probability is therefore the scoring met-
ric that is used to rank models. Its value is computed by using Bayes’ theorem to
update the prior probability with the marginal likelihood and, because it is common
to assume uniform probabilities on the space of models, the posterior probability is
proportional to the marginal likelihood that becomes the scoring metric for model
selection.

The marginal likelihood is the expected value of the likelihood function when
the parameters follow the prior distribution. The likelihood function is the joint
density of the data, for fixed parameter values, and it is determined by the nature
of the network variables and the assumption of marginal and conditional indepen-
dencies that are represented by the network graph. The prior distribution of the
model parameters, on the other hand, represents the prior knowledge about the
parameter distribution so that the marginal likelihood is an average value of the
likelihood functions determined by different parameters values. Compared to the
maximum likelihood that returns the likelihood function evaluated in the estimate
of the parameters, the marginal likelihood incorporates the uncertainty about the
parameters by averaging the likelihood functions determined by different parame-
ter values. This conceptual difference is fundamental to understanding the different
approach to model selection: in the classical framework, model selection is based
on the maximized likelihood and its sampling distribution to take into account
sampling variability for fixed parameter values. In the Bayesian framework, model
selection is based on the marginal likelihood which takes into account the parameter
variability for fixed sample values. Therefore, no significance testing is performed
when using this approach to model selection. Our experience with the Bayesian
procedure to model selection is that it is usually more robust to false associations.
This is due to the use of proper prior distributions that can tune the level of evidence
needed to accept an association.

As an example, suppose the network variables are all categorical, and there
are not missing values in the data set. We denote by yik the kth category of
the variable Yi in the network, k = 1, . . . , ki and i = 1, . . . , q, and by pa(yi)j
the j th configuration of the parents pa(yi) of the variable Yi , j = 1, . . . , ji .
Given a network structure, the model parameters are the conditional probabilities
θijk = IP

(
Yi = yijk|pa(yi)j

)
, and the hyper-Dirichlet distribution is the conjugate

prior [116, 179]. The marginal likelihood can be calculated in closed form and it
is given by the formula:

∏
i

∏
j

�(αij )

�(αij + nij )

∏
k

�(αijk + nijk)

�(αijk)

 (4.1)

where nijk is the frequency of (yik, pa(yi)j ) in the sample, nij = ∑
k nijk is the

marginal frequency of p(yi)j , the values αijk are the hyper-parameters of the
hyper-Dirichlet distribution, and αij = ∑

k αijk . With large networks it is conve-
nient to use symmetrical hyper-Dirichlet prior distributions that depend on one
hyper-parameter value α. By symmetry, this value is used to specify all the other
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Figure 4.3 Example of a network with 3 variables and parameters θijk , frequencies
nijk and hyper-parameters αijk . In this network, only the node Y3 has parents pa(y3)

defined by the joint distribution of Y1 and Y2. The table at the top shows the
marginal distribution of Y2, the frequencies n2k , and the hyper-parameters that are
determined by distributing the overall precision α in the 2 cells of the probability
table. The table at the bottom shows the parameters of the 4 conditional distributions
of Y3 given the parents. The last four columns show the frequencies and hyper-
parameters that are determined by distributing the overall precision α in the eight
cells of the table.

hyper-parameters as αij = α/ji and αijk = αij /ki = α/(ji × ki). The main intu-
ition is to use the value α – the prior precision – as an overall sample size, and
then distribute the counts in each conditional probability table as if the prob-
abilities were all uniform. Figure 4.3 provides an example. Once the best net-
work is identified, the conditional probabilities are estimated as
θ̂ijk = (nijk + αijk)/(nij + αij ).

In many studies, environmental, nongenetic factors, and phenotype may be
continuous variables and to fully extract information from epidemiological studies,
we need to induce BNs from data that consist of categorical variables (genotypes,
haplotypes), continuous or discrete phenotypes (survival time, or clinical mea-
surements), and continuous and/or discrete environmental variables. The challenge
posed by using a mix of continuous and categorical variables is that the calcula-
tion of the posterior probability of each model may not be possible in closed form
for some choice of probability distributions, and functional dependencies between
parents and children nodes. When the number of variables is small, we can resort
to stochastic methods to estimate the marginal likelihood, or some penalized forms
such as the Deviance information criterion (DIC) [433], or the Akaike information
criterion (AIC) or the Bayesian information criterion (BIC) [242]. The AIC of a
network M is given by the formula:

AIC = −2 log(l(θ̂ |M)) + 2np
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where l(θ̂ |M) is the likelihood function l(θ |M) evaluated in the estimate θ̂ of the
parameters, np is the number of parameters, and log is the natural logarithm. The
BIC is the modification of AIC given by the formula:

BIC = −2 log(l(θ̂ |M)) + log(N) × np

where N is the sample size. Compared to the AIC, the BIC penalizes models with
the extra term (log(N) − 2) × np that is positive as long as log(N) >2 and hence
the sample size is greater than exp(2) = 7.4. The DIC was introduced recently as
a way to penalize model complexity when the number of parameters is not clearly
defined. This criterion is defined as

DIC = −2 log(l(θ̂ |M)) + 2n̂p = −2E(log(l(θ̂ |M)) + n̂p

where log(l(θ̂ |M)) is defined as above and E(log(l(θ̂ |M)) is the expected log-like-
lihood. Both quantities can be computed using stochastic methods [433].

4.4.2 Model search

In building genetic models, the ‘common disease, common allele variants’ assump-
tion described in [374] would support that the risk for common diseases is mod-
ulated by particular combinations of alleles that are common in the population.
Individually, each allele would not be sufficient to predict the disease outcome,
which can be predicted only by their simultaneous presence. Therefore, in deci-
phering the genetic basis of complex traits, we expect to find a large number
of SNPs involved in modulating disease severity, each having a small effect on
the phenotype. This potential complexity makes building standard regression, or
prognostic models unfeasible because the associations between SNPs and possible
environmental variables with the phenotype are competitive and the presence of an
association between a SNP and the phenotype affects the association between the
phenotype and other SNPs. The consequence is a limit on the number of SNPs that
can be detected as determinant or parents of the phenotype and a potentially serious
limitation on the predictive accuracy of the model. This limitation is removed with
the use of diagnostic models, in which we model the dependency of SNPs and envi-
ronmental variables on the phenotype (see Figure 4.4) and the association of each
SNP with the phenotype does not affect the association of other SNPs with the phe-
notype. This structure has the additional advantage of representing the correct data
generating mechanism of a cross-sectional study via the ‘retrospective likelihood’
that models the distribution of the genetic causes conditional on the phenotypic
effect rather than the physical/causal process underlying the biological system that
relates genotype to phenotype. The prediction of the phenotype given a particular
genetic profile is not explicitly represented by this model structure, but needs to
be computed by using Bayes’ theorem using probabilistic algorithms [106]. A par-
ticular advantage of this ‘inverted’ dependency structure is the ability to represent
the association of independent as well as interacting SNPs with the phenotype and,
as shown in Figure 4.4, the structure allows to remove redundancy by conditional
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Figure 4.4 Network structure to build prognostic models (top) and diagnostic mod-
els (bottom). The node P represents the phenotype, while the nodes S, S1, . . . , S4

represent SNPs and/or environmental variables. In the prognostic model, the phe-
notype node is modeled as a child of the genotype nodes. In the diagnostic model,
the phenotype node can only be a parent of all the other nodes.

independence, but enriches the Markov blanket of the phenotypes by those nodes
that are only conditionally dependent on the phenotype given other nodes.

To search for prognostic models, we assume that the node representing the
phenotype in the network can only be a parent of any other nodes, while to search
for the dependency structure among the remaining variables we exploit the network
modularity that is induced by the marginal and conditional independencies to build
local models and join them. For this step we use the K2 algorithm introduced by
Greg Cooper [103] that requires an initial ordering on the variables to avoid the
introduction of loops. In practice we have observed that ordering nodes by their
marginal information content leads, on average, to better networks. The prediction
of the phenotype given a particular genetic profile is not explicitly represented as in
a traditional regression model but needs to be computed by Bayes’ theorem using
probabilistic algorithms [106].

This search strategy for the special case of categorical variables is implemented
in the program Discoverer. Continuous variables are automatically discretized using
either quartiles, or by dividing the range of definition into intervals of equal length.
The program has one algorithm for probabilistic reasoning that can be used to infer
the distribution of any variable in the network given information on other variables.
This reasoning tool is used to validate the predictive accuracy of networks induced
from data in independent data sets or by standard cross-validation.



64 COMPLEX GENETIC MODELS

4.5 Applications

In this section we report some applications of Bayesian network to model the
genetic basis of a complex trait, and to model complex phenotypes.

4.5.1 Calculation of stroke risk

The BN model developed in [422] for the genetic dissection of stroke in subjects
with sickle cell anemia is a small scale example of the successful and powerful use
of Bayesian networks to model the genetic basis of complex traits. This model was
based on a BN that captures the interplay between genetic and clinical variables
to modulate the risk for stroke in sickle cell anemia subjects. Available for this
study were about 250 SNPs in candidate genes of different functional classes in 92
patients with nonhemorrhagic stroke and in 1306 disease-free controls. The model
was inferred from data using the Bayesian model search strategy described earlier,
and the space of possible models was restricted to diagnostic models in which the
phenotype node can only be a parent of all the other nodes. A consequence of this
model restriction is that, during the model search, the phenotype node is tested
as a parent of each SNPs. To further reduce the complexity of the search, SNPs
were ordered by entropy so that less variable SNPs were only tested as parents of
more variable SNPs. This search favors more recent mutations as possibly impli-
cated with the phenotype. Intuitively, lethal older mutations are eliminated because
they lead to early death, therefore in our model search we privileged more recent
mutations as responsible for disease.

The network identified by this search is depicted in Figure 4.5 and describes
the interplay between 31 SNPs in 12 genes that, together with fetal hemoglobin
(a protein that is present in adult subjects with sickle cell anemia) modulate the
risk for stroke. The strength of the associations of each SNP in the Markov blanket
and the phenotype was measured by the Bayes factor of the model with the asso-
ciation, relative to the model without the association. For further details refer to
the original manuscript [422]. This network of interactions included three genes,
BMP6, TGFBR2, TGFBR3 with a functional role in the TGF-beta pathway and
also SELP. These genes and klotho (KL), a longevity-associated gene in animals
and humans [18], are also associated with stroke in the general population.

We initially validated the network by five-fold cross-validation and the network
reached 98.5% accuracy. However, the lack of reproducibility of genetic associ-
ations in different studies has made the genetic community very cautious about
associations found in one single data set. Therefore, we validated our model in a
different population of 114 subjects including seven stroke cases and 107 disease
free subjects. The model reached a 100% true positive rate, 98.14% true negative
rate and an overall predictive accuracy of 98.2%. This accuracy confirms the pre-
dictive value of the model that can be used for risk prediction of new sickle cell
anemia subjects based upon the genetic profile. The model can also be used as
a diagnostic tool, to identify the genetic profiles that modulate increase the risk
for stroke. This use suggested that genes in the TGFBeta signaling pathway could
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Figure 4.5 The Bayesian network describing the joint association of 69 SNPs
with stroke. Nodes represent SNPs or clinical factors, and the numbers after each
gene name distinguishes different SNPs on the same gene. SNP are represented
as blue nodes and clinical variables (HbF.G: fetal hemoglobin g/dL; HbF.P: fetal
hemoglobin percent; HbG: total hemoglobin concentration; THALASSEMIA: het-
erozygosity or homozygosity for α-thalassemia deletion) are represented by green
nodes. Twenty six nodes (HbF.P and 25 SNPs on the genes ADCY9, ANXA2,
BMP6, CCL2, CSF2, ECE1, ERG, MET, SELP, TGFBR3 and TEK) are children
of the phenotype, and seven more nodes are parents of the children node (BMP6,
BMP6.14, ANXA2.8, SELP.17, CAT, CSF2.3). These 32 nodes are the Markov
blanket and are sufficient to predict the risk for stroke.

play a crucial role in stroke and other vaso-occlusive complications of sickle cell
disease and triggered follow up work [33, 420].

4.5.2 Modeling exceptional longevity with Bayesian networks

Evidence is rapidly accumulating to support the existence of significant familial and
heritable components to the ability to survive to extreme old age [362, 363, 364].
This exceptional longevity (EL) can be defined as survival beyond a certain age
or percentile of survival but this definition does not take into account the physi-
cal status of subjects reaching exceptional ages. Many different paths depending
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upon secular trends in life expectancy, gender, social, environmental and behav-
ioral factors and their interactions with a spectrum of genetic variations lead to EL.
These paths generate exceptional survival (ES) phenotypes [361]. Definitions of ES
might include, for example, disability-free survival past a specified age, or disease-
free survival past a specified age. Figure 4.6 illustrates, albeit in a reductionist
manner, the complex interaction of disease predisposing and longevity enabling
exposures and genetic variations that lead to different patterns of ES and EL.
The need for a well characterized phenotype that goes beyond simple survival is
widely acknowledged. For example, based on the occurrence of the most com-
mon diseases of aging, Evert et al. noted that centenarians in the New England
Centenarian Study (NECS) fit into one of three categories: ‘survivors’, ‘delayers’
or ‘escapers’ [147]. Survivors were individuals diagnosed with age-related illness
prior to age 80 (24% of the male and 43% of the female centenarians). Delayers
were individuals who delayed the onset of age-related diseases until at least age
80 (44% of the male and 42% of female centenarians). Escapers were individuals
who attained their 100th year of life without the diagnosis of an age-related disease
(32% of the male and 15% of the female centenarians). In the case of cardiovascu-
lar disease (CVD) and stroke, which are typically associated with relatively high
mortality risk compared with more chronic diseases such as osteoporosis, only
12% of subjects were survivors and the remaining 88% of centenarians delayed
or escaped these diseases. In Figure 4.6, these categories are examples of ES
phenotypes.

Exceptional Survival
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ES2

ES1

ES3

Lack of good exposure

Bad exposure

Longevity enabling
genes

Disease
genes

Lack of disease
genes

Lack of bad exposure

Good exposure
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Figure 4.6 There are multiple paths (exceptional survival subphenotypes, ES1, . . . ,
ES?) composed of different combinations of deleterious, neutral and beneficial
exposures and genetic variations leading to exceptional longevity (EL).
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This classification of centenarians into the three morbidity groups survivors,
delayers and escapers was based on an ‘educated’ selection of disease and their age
of onset to help distinguish between different patterns of ES. Additional phenotypic
data suggest that there are several ES phenotypes that are associated with gender,
age, and other determinants of physical and cognitive functional status which could
provide more informative phenotypes in genome wide association studies. We are
currently using Bayesian networks to discover these patterns of ES from data in
two ways, using either unsupervised or supervised methods. In the unsupervised
procedure, patterns of ES are represented by sets of probability distributions of the
phenotypic data, and the analysis aims at grouping those subjects whose phenotypic
data follow the same probability distribution. In the supervised procedure, we use
survival to a certain age as the variable to be predicted, using information about
the other phenotypic data. Small scale examples of these two approaches follow.

4.5.2.1 Unsupervised approach

We use Bayesian network modeling to discover patterns of ES using data about
hypertension (HTN), congestive heart failure (CHF), stroke, and gender in 629
subjects from the NECS. We focus on a class of diagnostic models in which
the root node is a hidden variable that labels groups of subjects with the same
phenotypic patterns and has to be discovered from data. This model is known as a
mixture model with a hidden mixing variable [156], and it is commonly used for
clustering. Compared to traditional clustering methods that are mainly descriptive
techniques, this approach is based on a probabilistic definition of clusters and takes
into account sampling variability by computing the probability that each subject in
the sample belongs to one of the clusters. The mixture model can be represented
by the Bayesian network displayed in Figure 4.7 (left panel), and consists of the
hidden variable that represents the cluster membership (this is the root node in the
figure) and the other observable variables (the children nodes Gender, Stroke, HTN
and CHF) that are assumed to be independent, conditional on the hidden variable.
The states of the hidden variable define the cluster profiles as the set of conditional
distributions of the observable variables. By using this model to represent groups
of subjects, the objectives of the analysis become to estimate:

1. the number of clusters in the data that is represented by the number of
states of the hidden varable;

2. the cluster membership of each subject that is computed as the most likely
state of the hidden variable for each subject;

3. the cluster profiles that are characterized by the set of conditional distribu-
tions of the variables in each cluster.

Consistent with other approaches [91], we model the hidden variable with a multi-
nomial distribution with h categories, and the prevalence of disease and gender
using binomial distributions with parameters that change in each cluster. Because
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Figure 4.7 Left: Graphical description of a mixture model to cluster subjects
based on information about gender, history of stroke, hypertension (HTN) and
congestive heart failure (CHF). Each state of the hidden variable represents a cluster
that is characterized by the set of probability distributions of the four variables,
conditional on the hidden variable. Right: Profiles of the three clusters identified
by the Bayesian network modeling.

of the hidden variable, the estimation cannot be done in closed form and we
used the Markov Chain Monte Carlo methods implemented in the program Win-
Bugs 1.14 [453]. Given the data, the algorithm produces a sample of values from
the posterior distribution of the model parameters and the states of the hidden vari-
able. These quantities are used to estimate the states of the hidden variable and the
parameters of the conditional distributions of the phenotypic data that define the
cluster profiles. To identify the optimal number of clusters, we can repeat the anal-
ysis for different number h of states of the hidden variable, score each model using
the DIC, and choose the model with the minimum DIC as suggested in [433]. In
our analysis, a model with three clusters gives the best fit and it is characterized by
the profiles summarized in Figure 4.7: the barplots in light gray depict the profile
of Cluster 1 that is characterized by the probability distributions of CHF, Gender,
HTN and Stroke described in the figure. The barplots in dark gray and white depict
the profiles of cluster 2 and 3. Centenarians in cluster 1 have the highest risk for
CHF, HTN and are more likely to be females, compared to clusters 2 and 3. Cen-
tenarians in cluster 3 are at highest risk for stroke, but at lowest risk for HTN.
The three clusters suggest three different patterns of ES. The first two clusters are
characterized by a higher risk of cardiovascular disease (CHF and HTN), while
subjects in cluster 3 have a higher risk of cerebral-vascular accidents (stroke). The
analysis also provides the probability of cluster membership for each subject in the
study: for example the first subject in the data set has a 40% chance of being a
member of cluster 1, while the second subject has a 40% chance of being a member
of cluster 3. This score can be used as the phenotype of some genetic association
study to search for modulators of different patterns of ES rather than focusing on
a specific disease.
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4.5.2.2 Supervized approach

We can use Bayesian network modeling to describe inter-relationships between
being a centenarian, socio-demographic characteristics, sex, education, and the
health history of diseases in the same set of NECS subjects. Compared to the
previous analysis, we now consider the binary variable ‘age at death > 100’ (node
Centenarian) as the variable to be predicted. Figure 4.8 displays the network that
we generated using the computer program Bayesware Discoverer. To generate the
network, we limited attention to diagnostic models in which the age at death can
only be a parent node of all the other variables. We ordered the other variables
by entropy, so that more entropic variables can only be parents of less entropic
variables, and we used a hyper-Dirichlet prior distribution on the model parame-
ters, with α = 12. Our experience is that increasing the overall precision α makes
the network more robust to sampling variability, and in practice we use a value α

between 1 and 16, and assess the sensitivity of the network structure to different
prior distributions. This network was built using the program Bayesware Discov-
erer that provides validation tools to assess the goodness of fit of the network
learned from data. These tools include standard cross-validation techniques that
can assess the robustness of the network to sampling variability. The program has
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Figure 4.8 The Bayesian network that summarizes the mutual relations between
socio-economic, demographic and health variables in a samples of 600 subjects of
the NECS.
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different algorithms for probabilistic reasoning that can be used to infer the distri-
bution of any variable in the network given information on other variables. Using
one of these algorithms, we assessed the accuracy of the network to predict EL
given particular patterns of ES. The network reached 81% accuracy using five-fold
cross-validation in identifying those centenarians who lived past 100 years.

The network describes expected associations such as those between cancer,
years of education and age at death, or the association between HTN and cardio-
vascular and cerebro-vascular accidents (nodes stroke and circulatory disease).
Inspection of the probability distributions associated with these nodes shows that,
for example, centenarians with both circulatory problems and diabetes have 2.4
times the odds for stroke compared to centenarians with diabetes alone. These
associations change when we consider gender and history of HTN and show that
female centenarians with a history of HTN have a higher prevalence of stroke
than male centenarians, while no history of HTN makes the prevalence of stroke
in male centenarians higher compared to female centenarians. When we consider
profiles of centenarians by gender, male centenarians present with a healthier pro-
file characterized by a smaller prevalence of hypertension, congestive heart failure,
and a much smaller prevalence of dementia (21% compared to 34% in females)
and osteoporosis (8% compared to 34%). The complexity of these combinations of
disease or syndromes confirms that there are different patterns of survival leading
to EL. However, it also shows the challenge in summarizing them in prototypical
patterns. The multivariate model described by the BN provides a powerful approach
in which, rather than ‘labeling’ centenarians by some particular pattern of ES that
summarizes the information in many variables, we use this information in a model
that can be expanded by adding genetic information.

4.5.2.3 Directed or undirected graphs?

One of the major challenges we face in using Bayesian networks to model complex
traits is to explain the directed graph of associations between the variables. We
typically work with diagnostic rather than prognostic models because they are
better able to incorporate associations between several variables. The consequence
is that most of the directed arcs represent associations from effects to causes. In
Figure 4.8, for example, the focus on diagnostic model determines the directed arcs
from the node ‘Centenarian’ to the node ‘Marital.Status’ or ‘Years.of.Education’
and would inevitably raise the comment that those arc directions should be the
‘other way around’, regardless of the fact that they only represent a convenient
factorization of the joint probability of the network variables. We have realized
that the undirected graph associated with the directed graph of a Bayesian network
appears to be easier to communicate, and the undirected links between nodes can
be easily interpreted in terms of mutual associations. As an example, the network in
Figure 4.9 is the undirected graph that can be obtained from the Bayesian network
in Figure 4.8 using the moralization procedure [106]. This procedure allows to
drop the arc directions when all parents of each node are linked to each other, and
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Figure 4.9 The undirected graph obtained by the Bayesian network in Figure 4.8
using the moralization procedure, in which the arc directions are dropped once
all the parents of each node are linked to each other. The graphical display was
generated using the yEd graph editor.

this guarantees that the undirected graph shows the same Markov properties of the
directed graph.

The graphical display was generated using the yEd graph editor.4 This program
provides tools for annotating links between nodes and we are experimenting the
addition of labels that quantify some of the association displayed by the network.
For example, the graph in Figure 4.9 provides information about the relation of
gender and living to 100 years, as well as information about some disease preva-
lence by gender. This representation is more informative than a simple graph that
does not quantify the effects of the associations.

4.6 Future challenges

Bayesian networks provide a flexible modeling framework to describe complex
systems in a modular way. The modularity makes them the ideal tool for modeling
the genetic basis of common diseases and their interaction with the environment
but there are computational issues to address. With the availability of genome wide
data, we face the challenge to model hundreds of thousands of variables, and we

4http://www.yWorks.com
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need algorithms able to efficiently search for good models. Extending learning
algorithms to mixed variables is another important problem to be solved. In the
context of genetic analysis, the major challenge is to extend the learning algorithms
to family based data in which subjects in the same family cannot be considered
independent.

Another important challenge is to find a more informative way of displaying the
amount of information condensed in a Bayesian network. The graphical structure
displays the relations between the variables, but does not provide information about
the effects of these relations. While in regression models the parameters can be
interpreted directly in terms of effects, this synthesis is not so straightforward with
networks. A more informative display would help confer the ability of these models
to describe complex systems.
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5.1 Introduction

Throughout recorded history crime has been a persistent societal problem. With
increasing urbanization the problem has increased in both magnitude and complex-
ity. To provide effective crime control, with the limited resources available to them,
law enforcement agencies need to be proactive in their approach. Crime pattern
analysis can guide planners in the allocation of resources. Since both cities and
crime patterns are dynamic in nature, a system is required which can develop a
model that is not only able to make accurate predictions but can also be constantly
updated to accommodate changes in various parameters over time. This chapter
describes a model, using a BN, which was used in a pilot scheme to analyze the
factors affecting crime risk in the Bangkok metropolitan area, Thailand. In the pilot
project both spatial and nonspatial data describing populations of areas, locations
and types of crimes, traffic densities and environmental factors were collected.

BNs have become increasingly popular as decision support tools among those
researching the use of artificial intelligence, probability and uncertainty. The Baye-
sian paradigm has been adopted as a most useful approach for inference and
prediction in the crime problem domain [345]. A key feature of this approach is
the use of existing data to set up the initial model and the continuing enhancement
of the model’s predictive capabilities as new data is added. This is particularly
relevant to police work as there is always a large amount of data on hand to set
up the initial model and a continuous flow of fresh case information to constantly

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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refine the model. The system can provide a model for crime risk analysis that
constantly adapts in response to changes in the pattern of crimes in the area under
consideration. The ability to update the initial distribution on receipt of new data
makes the Bayesian approach a natural choice for the analysis of crime risk factors
in an area.

5.2 Analysis of the factors affecting crime risk

The series of steps used in the analysis of the factors affecting crime risk by means
of a BN are illustrated in Figure 5.1.

1. Identify crime pattern characteristics. The first step in the process was
the identification of crime pattern characteristics. This was carried out by
means of an intensive study of crime theory and a series of discussions
with a number of police officers with considerable experience in the fields
of crime investigation and suppression. The purpose of this step was to
identify the range of factors that were most likely to have an influence on
the crime risk in each district of the area under study.

2. Establish the relationships between various factors. After developing an
outline of the crime pattern, it was necessary to establish the relationships
between the various crime factors that were identified in the previous step.
Consideration was given to the various factors identified and the linkages

1. Identify crime pattern characteristics

2. Establish the relationships between various factors

3. Determine the crime risk level

4. Recognize the crime data patterns (structure learning)

5. Predict crime risk factors

Population statistics,

crime, and

geographic data

Figure 5.1 The process for analysis of the factors affecting crime risk. Reproduced
by permission of WSEAS.
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between them to determine which factors were likely to influence the crime
rate and the types of crimes likely to be committed in particular regions of
the study area.

3. Determine the crime risk level. The crime risk level must be determined.
After the establishment of the relationships, the crime risk level of each
factor needs to be decided. The results of steps 2 and 3 were derived from
expert elicitation in the field of crime control.

4. Recognize the crime data patterns (structure learning). In this step the
crime data patterns were recognized using structure learning. Hugin
Researcher 6.3 software was used to recognize the crime data patterns.

5. Predict crime risk factors. Finally, the results of predicting crime risk fac-
tors were obtained. The details of the model are explained in section 5.5.

5.3 Expert probabilities elicitation
To elicit probabilities from the experts involved some difficulties. In practice, the
police officers found it difficult to express their knowledge and beliefs in probabilis-
tic form, so it was necessary to apply the process for eliciting expert judgements of
Keeney and von Winterfeldt [244]. The formal process to elicit probabilities from
experts consists of seven components:

• Step 1: Identification and selection of the issues was achieved through a
broad review that included the opinions of police officers in the field of
crime control and stakeholders involved in the problem.

• Step 2: Identification and selection of experts; Clemen and Winkler [97]
suggests that five specialists are usually sufficient. The selection was based
on the need for diversity resulting in the selection of two crime control
experts, one expert in crime prevention, another in crime suppression and
one involved in crime control policy setting.

• Step 3: Discussion and refinement of the issues was conducted in the first
meeting of the experts. The aim of the meeting was to clearly define the
events and quantities that were to be elicited. After this meeting, the experts
were given some time to study the issue, think about the elicitation events
and variables. This process took two months and involved another meeting
among the experts to better define the events and quantities.

• Step 4: Training for elicitation, after the issues were clarified, involved a
one-day seminar in which the experts were trained in concepts of probability,
elicitation methods, and biases in probability assessment.

• Step 5: Elicitation was carried out at a second meeting of the experts. During
this process, the experts were interviewed individually by an analyst. The
elicitation sessions lasted three hours.
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• Steps 6 (Analysis, aggregation, and resolution of disagreements) and 7 (Doc-
umentation and communication). After, the elicitation, individual decompo-
sitions were analyzed and re-aggregated to obtain comparable probability
distributions over the relevant event or quantity for each expert. Subse-
quently, the experts’ probability distributions were aggregated by taking the
average of the individual distributions. Finally, the results were documented
by the researcher.

5.4 Data preprocessing

The purpose of the data preprocessing is to prepare the raw data for the subsequent
process of analysis. The three steps which were involved are described below.

Data consolidation is the process of gathering all the data from multiple sources
into one centralized location. In this research, the data were collected from the
National Statistical Office of Thailand, the Royal Thai Police, the Bangkok
Metropolitan Administration, and the Ministry of Transportation.

Data selection is the process of selecting, from the wide range of data collected,
a data collection suitable to be used in the next step. In this research, data from
January 2000 to December 2003 was selected.

Data transformation is the process of organizing data into the same format.
Since the data were gathered from multiple sources there was a need to transform
wide-ranging data into a set of variables with suitable formats that would be useful
for meaningful analysis.

As a result of the above steps of data preprocessing, a set of data consisting
of 1000 records was obtained. This set of data was used in the next step: the
recognition of the crime data pattern. These data consisted of 20 variables which
were classified into five groups of factors: population, crime locations, types of
crimes, traffic, and environment (see Figure 5.2).

The 20 variables were classified into a range of states as shown in Table 5.1.

Crime
Risk

Factors

Population

Crime Location

Types of Crime

Traffic

Environmental

Analysis

Figure 5.2 The set of variables for crime risk factors analysis.
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Table 5.1 The names and states of the variables used for the analysis.

Type of data Names and states Explanation of
of variables variable name

Population factor
– pop factor 0 = not sensitive, 1 = sensitive A group of population

factors
– pop density 0–4 Population density
– pop gender 0 = not sensitive, 1 = sensitive Population gender
– pop male 0–4 Male population
– pop female 0–4 Female population
– pop income 0–4 Population income level
– pop primary 0–4 Population employed in

primary sector
– pop secondary 0–4 Population employed in

secondary sector
– pop tertiary 0–4 Population employed in

tertiary sector
– pop age 0 = not sensitive, 1 = sensitive Population age
– infant 0–4 Infant population group
– young 0–4 Young population group
– working 0–4 Working population

group
– old 0–4 Elderly population group

Traffic factor
– traffic volume 0–4 Traffic volume
– low standard housing 0–4 Number of low standard

housing areas
Environment factor
– drugs sale 0–4 Number of drug–sale

areas
– lighting 0 = not enough, 1 = enough Lighting degree
– hiding 0 = cannot hide, 1 = can be hide

Crime factor
– rape 0–4 Number of rapes cases
– robbery 0–4 Number of robbery cases
– murder 0 = no, 1 = yes Status of murder, no =

no cases yes = one or
more cases

Location factor
– crime location factor 0 = not sensitive, 1 = sensitive Crime location factor
– nightclubs 0–4 Number of nightclubs
– shopping center 0–4 Number of shopping

centers
– movie theatre 0–4 Number of movie theatres
– bank 0–4 Number of banks
– hotel 0–4 Number of hotels

0–4 means: 0 = very low; 1 = low; 2 = medium; 3 = high; 4 = very high
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5.5 A Bayesian network model
The BN model developed for use in this particular research project was based on
the crime pattern analysis work carried out by Brantingham and Brantingham [60]
and the theory of crime control through environmental design [231, 393]. Pattern
theory focuses attention and research on the environment and crime, and maintains
that crime locations, characteristics of such locations, the movement paths that bring
offenders and victims together at such locations, and people’s perceptions of crime
locations are significant objects for study. Pattern theory synthesizes its attempt to
explain how changing spatial and temporal ecological structures influence crime
trends and patterns. The model was constructed and tested using Hugin software.
This software was also used to analyze the relationships within the data. Figure 5.3
illustrates the BN model for analysis of the factors affecting crime risk.

5.5.1 Conditional probability tables

The conditional probability tables (CPTs) and prior probabilities in the crime risk
factors analysis model’s BN were defined using the best estimates of a number of
experienced officers of the Royal Thai Police.

The model was constructed, and the probabilistic values were calculated and
stored in the Conditional Probability Table (CPT).

5.5.2 Sample of conditional probability table

The probability for each input node was calculated using the data contained in the
training examples for each state and is shown in Table 5.2. The variables have five

traffic_v...
lighting

hiding

rape

nightclubs

shopping...

movie_th...

bank

hotel

murder

robbery

pop_Fac...

pop_dens...

pop_male

pop_gen... pop_fem...

pop_pri...

pop_sec...

pop_terti...

pop_in...pop_age

Infant

Young

Working

Old

crime_loc...

low_stan...

drugs_s...

Figure 5.3 A BN model for crime risk factors analysis. Reproduced by permission
of WSEAS.
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Table 5.2 The partial conditional probability table (CPT) of Robbery
given Drug sales, Pop factor, Crime location, Robbery and Rape.

Drug sales 0
Pop factor 0
Crime location 0
Murder 0 1
Rape 0 1 2 3 4 0 1 2 3 4
0 1 0.5 0.2 0.2 0.2 0.75 1 1 0.2 0.2
1 0 0.5 0.2 0.2 0.2 0.25 0 0 0.2 0.2
2 0 0 0.2 0.2 0.2 0 0 0 0.2 0.2
3 0 0 0.2 0.2 0.2 0 0 0 0.2 0.2
4 0 0 0.2 0.2 0.2 0 0 0 0.2 0.2

states: 0 = very low, 1 = low, 2 = medium, 3 = high, and 4 = very high. For
instance, from Table 5.2, the probability of ‘robbery = low’ given ‘drug sales =
very low’ is 0.2.

5.5.3 Learning Bayesian network
The process of learning by a Bayesian network [86, 162, 232] is divided into three
parts as shown below in Figure 5.4.

1. Input. The input dataset consists of prior crime data and background knowl-
edge that reflects the human experts’ opinions as to which graphical and/or
probabilistic structure is more likely than others to represent the relation-
ships among the variables.

2. Output. The output is a revised Bayesian network that gives a much better
representation of the probability distribution, independence statements and
causality as a result of adjustments to the network to make it fit the data
more closely.

3. Learning algorithm. The learning algorithm involves two tasks. The first
is to determine which links are to be included in the DAG, and the second
is to determine the parameters.

Population
statistics,

Crime, Geographic
Data

Learning
algorithm

A B

C

Revising Bayesian network

Figure 5.4 Process of learning Bayesian network.
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Figure 5.5 The iteration steps of the Expectation Maximization algorithm.

5.5.4 The Expectation Maximization algorithm

The Expectation Maximization (EM) algorithm [86, 125] was used within the
Hugin software for learning the data. The EM algorithm is used to learn incomplete
data, which makes it particularly suitable for crime data which, by its very nature,
tends to be incomplete. In this study, since we have a complete set of data, the
EM algorithm is used to count the frequency of probabilities. The EM algorithm
consists of two iteration steps:

• Expectation step (E-step) calculates the expectation of the missing statistic.

• Maximization step (M-step) maximizes a certain function.

The two steps are performed until convergence (Figure 5.5).

5.6 Results

In Figure 5.6 the final model with initial probabilities is shown, and Figure 5.7
gives the posterior probabilities, given ‘Murder’ is ‘Yes’.

Figure 5.6 Initial probabilities.
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Figure 5.7 Crime risk probabilities given that murder is ‘yes’.

Table 5.3 The model probabilities given that Murder is Yes.

Posterior probabilities
Factor Name of variable

State ‘very low’ State ‘very high’

Environment drugs sale 0.2710 0.6935
low standard housing 0.0664 0.5795

Crime rape 0.1033 0.2762
robbery 0.0983 0.4268

Location nightclubs 0.0732 0.4548
shopping center 0.2135 0.3071
movie theatre 0.2874 0.2259
bank 0.2528 0.2538
hotel 0.1867 0.3547

Traffic traffic volume 0.1875 0.2797
Population pop density 0.1734 0.2334

pop male 0.0667 0.1933
pop female 0.0400 0.2000
pop income 0.0900 0.1293
infant 0.0733 0.1200
young 0.0400 0.1667
working 0.0400 0.1733
old 0.1667 0.0533

According to Table 5.3, the factors that considerably affected crime risk in the
Bangkok Metropolitan Area were environment, types of crimes, crime location,
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traffic and population, in that order. Of the environmental factors, the number of
drug-sale areas in a district was associated with the highest increase in probability
(very high state, 0.4438 to 0.6935) – see Figures 5.6 and 5.7. This means that it
has the most powerful influence on the expected increase in the murder rate. By
concentrating on the elimination of the drug trade, the government could greatly
reduce the murder rate.

Further analysis leads to the determination of the correlation coefficient of the
murder variable relative to the other variables (Table 5.4). It was calculated by
Pearson’s method [67]. The correlation coefficients (see Table 5.4) between the
murder variable and environment factors; number of drug-sale areas and number
of low standard housing areas are r = 0.617, and r = 0.589 respectively and the
correlation is significant at the 0.05 level. These results indicated that there is
a relatively high positive relationship between the number of murder cases and
number of drug sales areas. There is a moderate positive relationship between
the number of murder cases and the number of low standard housing areas. The
coefficients of correlation (denoted r) between the murder variable and type of
crime; number of rape cases and number of robbery cases in the area are r = 0.519,
and r = 0.470 respectively. The coefficients of correlation (r) between the murder
variable and location factors: number of nightclubs, number of shopping centers,
number of movie theatres, number of banks, and number of hotels in the area are

Table 5.4 Coefficient of correlation of the murder variable relative to other
variables.

Factor Name and state of Variables Coefficient of correlation (r)

Environment factor drugs sale 0.617
low standard housing 0.589

Crime factor rape 0.519
robbery 0.470

Location factor nightclubs 0.503
shopping center 0.438
movie theatre 0.529
bank 0.601
hotel 0.528

Traffic factor traffic volume 0.250
Population factor pop density 0.030

pop male 0.341
pop female 0.331
pop income 0.296
infant 0.215
young 0.286
working 0.304
old 0.328

Correlation is significant at the 0.05 level.
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r = 0.503, r = 0.438, r = 0.529, r = 0.601, and r = 0.528 respectively. These
results mean that there is a moderately positive relationship between the number
of murder cases and number of rape cases, number of robbery cases, number of
nightclubs, number of shopping centers, number of movie theatres, number of
banks, and number of hotels in the area. If the values of these variables are high,
the number of murder cases will also tend to be high. There is a weak relationship
between the number of murder cases and the traffic factor and population factor.

From the posterior probability of murder rate and the coefficient of correlation
results, we can see that the environment factors have the greatest effect on the
expected increase in murder rate and have a relatively high correlation to the
murder variable.

5.7 Accuracy assessment

The prediction accuracy of the model was evaluated using Rockit software, Beta
Version [400] to construct and analyze the Receiver Operating Characteristic (ROC)
curve. Rockit employs the LABROC5 algorithm, a quasi-maximum likelihood
approach, to analyze multiple value data. ROC analysis [491] comes from statisti-
cal decision theory and was originally used during World War II for the analysis
of radar images. From the computer science point of view, ROC analysis has
been increasingly used as a tool to evaluate discriminate effects among different
methods.

The ROC curve relies heavily on notions of sensitivity and specificity and
these values depend on the specific data set. It has the sensitivity plotted vertically

ROC Curve (0.5 = no discriminating capacity)

1.00

0.75

0.50

1.000.750.50

0.25

0.25

Specificity

Se
ns

iti
vi

ty

(Diagonal segments are produced by ties)

0.00
0.00

Figure 5.8 Receiver Operating Characteristic curve of ‘murder’ variable. Repro-
duced by permission of WSEAS.
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and the reversed scale of the specificity on the horizontal axis. The scale of the
horizontal axis is also called the false positive rate (Figure 5.8). The sensitivity
and specificity, and therefore the performance of the model, vary with the cut-off.
It simply looks at the area under the ROC curve. The pattern of the preferred ROC
curve is a curve that climbs rapidly towards the upper left-hand corner of the graph.
This means that the probability rate to reject bad items is high and the probability
rate to reject good items is low. A value of the area under the ROC curve close
to 1 indicates an excellent performance in terms of the predictive accuracy.

It should be noted that for forecasting purposes using ROC, the accuracy
required should be greater than 0.5. Therefore, the value of 0.77 (see Figure 5.8)
obtained for the area under the ROC curve for the murder variable indicated a
good performance of the model in terms of its predictive accuracy. This accuracy
suggests that this machine learning technique can be used to analyze crime data
and help in crime control planning.

5.8 Conclusions

The BN can provide useful information for crime risk factors analysis. The Baye-
sian technology has proved very flexible and suitable to the requirements of this
research project. The Hugin software used with the EM algorithm has made the cre-
ation of a sophisticated network relatively straightforward. In this research, some
factors that affect the crime risk in the Bangkok Metropolitan Area, were ana-
lyzed. The factors considered were classified into five groups. These groups were
population, crime location, crime type, traffic and environment. From the output
of the model, the factors that considerably affected crime risk in the Bangkok
Metropolitan Area were, in order of descending influence, environment, types of
crimes, crime location, traffic and population. The Receiver Operating Characteris-
tic (ROC) analysis was used to test the accuracy of the model. The area under the
ROC curve for the model is 0.77 which indicates that the model is performing well.

The result from this analysis can be used to help in crime control planning and
environmental design to prevent crime. Based on data from the study, the environ-
mental factor, the number of drug-sale areas in a district, had the most powerful
influence on the expected murder rate. By concentrating on the elimination of the
drug trade the government could greatly reduce the murder rate. The government
can apply the model to a specific area to analyse the crime problems. For instance,
if we know that an area in the district has high crime rate as a result of environment
factors, the government can solve the problem by increasing the number of patrol
officers or improving the lighting on the streets in that area.

For future work, the BN for crime risk prediction, which was tested only for the
crime of murder in the prototype, may, with further research, be extended to cover
the full range of criminal activities, and further refined to improve its performance.
With some modification it could also be applied to the study of road accidents
which are a major cause of death and injury in Thailand, eventually enabling the
police to adopt a proactive approach to accident prevention.
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6.1 Introduction

Modeling spatial dynamics through Bayesian networks is a challenging task, over
which research has been developed at the University of Nice-Sophia Antipolis
since 2003. In this chapter the example of modeling socio-demographic and urban
dynamics during the 1990s in the coastal region of South-Eastern France will be
shown. This application illustrates how spatial databases and a modeler’s previ-
ous knowledge can converge to produce synthetic models shedding light on the
complex dynamics characterizing European metropolitan areas in the last decades.
The study area encompasses three French departments (the Alpes-Maritimes, the
Bouches-du-Rhône and the Var) as well as the Principality of Monaco (Figure 6.1).
Two metropolitan systems have emerged during the last decades: the Metropoli-
tan Area of Provence, including Marseilles, Aix-en-Provence and Toulon, and the
Metropolitan Area of the French Riviera around Nice, Monaco and Cannes. The
basis of the formation of metropolitan areas resides in phenomena taking place at
the international level [474]: globalization, competition among international cities,
the development of inter-metropolitan networks, the concentration of rare urban
functions in the hubs of these networks, etc. Modeling these phenomena was not
the aim of this particular application. The goal was to analyze spatial dynamics
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Figure 6.1 The study area: Coastal South-Eastern France.

characterizing the emergence of metropolitan systems at a local level. The model
had to be able to reproduce the forms and the impacts of the territorial transforma-
tion of the case study. Gaining knowledge over the study area and offering support
to decision makers was the ultimate objective of this research. Several phenom-
ena contribute to this territorial transformation. Infrastructure offer, accessibility,
mobility behavior, socio-economic dynamics, urban sprawl, the development of
tourism and environmental impacts are all capital issues for the two metropolitan
areas of the region. Geographers and planners have analyzed several of these issues
individually, but a comprehensive model of their interaction within a regional space
is still missing. From this point of view, the metropolitan areas of coastal South-
Eastern France present peculiar situations which need attentive consideration. The
above mentioned interaction of phenomena is particularly problematic as it takes
place in a region marked by strong physical constraints, increased competition
among different land-uses and contrasted population patterns between the costal
area and the hinterland. In this application, we will focus on a limited number
of elements measured at the municipal level: population dynamics, housing, land-
use dynamics, transportation and population mobility. The reference period will
be limited by the last two French national censuses (1990 and 1999). Modeling
will be the key tool in dealing with the complexity of spatial dynamics. The com-
plexity will also be reduced through the use of indicator-based models. Indicators
are synthetic parameters describing the average situation of each spatial unit (here
the municipalities) for a more complex phenomenon. Indicators can only give an
approximate knowledge of real phenomena. Consequently, possible models have
to integrate uncertainty in the most direct and explicit way. The availability of
spatial databases at the municipal level, the opportunity to explore complex causal
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links among indicators and the necessity to integrate uncertainty, all make Bayesian
networks an extremely appropriate technique for the development of models.

6.2 An indicator-based analysis

6.2.1 The elements of the model

Overall, the study area is exerting a strong attraction for population and businesses
at the national level. Resident population and urban areas are growing steadily, from
3577 000 inhabitants in 1990 to 3778 000 in 1999. The growth rate between the
censuses is thus +5.62%, to be compared with a national average of +3.36%. The
positive migration balance accounts for three quarters of the demographic growth.
The total urbanized area has grown 70% over the same period, as a result of
strong urban sprawl. Population and more recently jobs, are increasingly attracted
by suburban and ex-rural locations. This scattering of urban functions over most
of the study area does not contradict the concentration process benefiting the two
metropolitan systems at the national level. The impacts of metropolization differ
according to the level of observation. At a global level, metropolization appears
as a process concentrating population and activities within the metropolitan areas
(centripetal forces). Nevertheless, at a local level, the trend is towards an increasing
diffusion from the metropolitan core to new suburbs and ex-rural areas (centrifugal
forces).

In order to reduce the complexity and the breadth of the analysis, we described
the socio-demographic and spatial phenomena through a limited number of key
indicators. An indicator is a parameter capable of apprehending more complex
phenomena in a synthetic manner. Indicators can give us an approximate knowledge
of the functioning of real systems [313, 367]. Calculating indicators for spatial units
always presents the problem of the ‘spatial resolution’ of information. In this study,
we have always opted for indicators calculated at the communal level, the commune
being the smallest scale for which information was available homogeneously.

Considering the characteristics of the study area and the databases available,
10 themes were chosen: the site of the commune, its location in relation to infras-
tructures, urban structures, spatial interaction, employment, migratory fluxes, char-
acteristics of the population, housing, daily mobility and the dynamics of the land
use. For each theme, a very limited number of indicators were selected (from two
to six). The 39 indicators retained are enumerated in Table 6.1. The indicators
were thus calculated for 436 spatial units: the 435 communes of the three French
departments and the Principality of Monaco. Two kinds of variables were chosen
as indicators: those describing the dynamics between 1990 and 1999 (dynamic
variables) and those describing the situation of the study area in 1990 (static vari-
ables). Our goal was to apprehend both the changes induced by the metropolisation
process during the 1990s and the situation at the beginning of this period.

Several sources and tools were used in order to create our database. The indi-
cators of employment, migratory fluxes, population, housing and daily mobility
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Table 6.1 The 39 indicators of the model.

Category and Label (*) Definition

Site:
(S): dist littoral Average distance of the commune from the shoreline

(km)
(S): Contrainte topo Proportion of surfaces having a slope ≥ 20% within

the municipal boundaries (%)
Situation:
(S): dist echangeur Average distance of the commune from the closest

highway interchange (km)
(S): temps aeroport Road access time to the closest international airport

(min)
Urban Structure:
(S): Pop AU Population of the Metropolitan Area in 1990 (for rural

communes outside of metropolitan areas, municipal
population)

(S): poss exp urb Proportion of the municipal territory free of strong
topographical constraints and not builtt up in 1988
(%)

(S): dens net Net population density in 1990 (inhabitants/urbanized
ha)

(D): Var dens net Variation of the net population density between 1990
and 1999 (inhabitants/ha)

Spatial Interaction:
(S): acc emplois Accessible jobs in less than 30 minutes through the

road network in 1990 (thousands)
(D): taux croiss acc emp Growth rate of the accessibity to jobs between 1990

and 1999 (%)
(S): pot emplois Urban job potential in 1990 (ad defined by INSEE

PACA)
(S): Pot habitat Urban housing potential in 1990 (ad defined by INSEE

PACA)
Employment:
(S): mix empl pop Jobs/resident population ratio in 1990 (%)
(D): taux croiss empl Job growth rate between 1990 and 1999 (%)
(D): var mix empl pop Variation of the jobs/population ratio between 1990

and 1999
Migration:
(D): part pop meme com Share of the population residing in the same dwelling

in 1990 and 1999 (%)
(D): part pop meme log Share of the population residing in the same commune

in 1990 and 1999 (%)
(D): taux var mig Migratory population growth rate between 1990 and

1999 (%)
Population:
(D): taux var pop Total resident population growth rate between 1990

and 1999 (%)
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Table 6.1 (continued )

Category and Label (*) Definition

(S): Vieillesse Old age index of the resident population (60 years old
and more/0–14 years old)

(D): var vieillesse Variation of the old age index of the resident
population between 1990 and 1999

(S): taille menage Average household size in 1990
(D): taux var taille men Variation rate of the average household size between

1990 and 1999 (%)
Housing:
(D): part log neufs Proportion of dwellings built between 1990 and 1999

(%)
(S): part res princ Share of main homes in the total housing stock in

1990 (%)
(D): var part res princ Variation of the share of main homes between 1990

and 1999
(S): part res sec Share of secondary homes in the total housing stock in

1990 (%)
(D): var part res sec Variation of the share of secondary homes between

1990 and 1999
(S): part log vac Share of unoccupied dwellings in the total housing

stock in 1990 (%)
(D): var part log vac Variation of the share of unoccupied dwellings

between 1990 and 1999
Mobility:
(S): Part navetteurs Share of commuters in the active population in

1990 (%)
(D): Var part navetteurs Variation of the share of commuters in the active

population between 1990 and 1999
(S): Part men plurimot Share of multi-motorized (having more than one motor

vehicle) households in 1990 (%)
(D): Var part men plurimot Variation of the share of multi-motorized households

between 1990 and 1999
(S): Part men no auto Proportion of households without a car in 1990 (%)
(D): Var part men no auto Variation of the proportion of households without a car

between 1990 and 1999
Land Use:
(D): poids exp urb Relative size of new urbanization between 1988 and

1999 (% of municipal surface)
(D): poids depr Relative size of agricultural shrinkage between 1988

and 1999 (% of municipal surface)
(D): poids stab Relative size of land use stability between 1988 and

1999 (% of municipal surface)

(*) (S) and (D) respectively denote static and dynamic variables
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were calculated from the data of the French national censuses. The indicators
concerning the other themes were produced through GIS applications and simula-
tions on graphs, using INSEE data [225], land use data [131, 182], IGN’s Carto
Database [227] and a digital terrain model of the study area. In general, indicators
were selected according to the characteristics of the study area. As far as the site is
concerned, topographical constraints and the attraction of the coastal area clearly
play a fundamental role in the ongoing formation of metropolitan areas [29] and
characterize differently the 436 communes.

The development of the highway network during the 1970s and the 1980s was
the only infrastructural support to the metropolitan expansion of Provence and
of the French Riviera for a long time. The present configuration of the network
(Figure 6.1) was completed at the end of the 1980s. This network has been a pow-
erful vector of urban sprawl, following both a North–South and East–West axis.
It also allowed a first, spontaneous phase of networking of the two metropolitan
areas among them and with metropolitan areas outside the study area.

The connection of the two metropolitan areas to world networks has been
traditionally assured by the two international airports of Marseilles and Nice, often
through connections to the Parisian hub. The strong dependence of the study area
on highway and airport infrastructures guided our choice of the two indicators
of geographical situation, whose objective is to evaluate the position of every
commune in relation to these two structuring features. In 1999, the Mediterranean
High-Speed Train (TGV Méditerranée) was put in service in the western part of the
study area. By 2020 a new high speed line should link the metropolitan areas among
them and within the rest of the French and European networks [392]. New forms
of metropolitan development could then arise. They could be less car dependent
and generate less urban sprawl, but perhaps more selective in the networking of
hierarchical metropolitan centres.

The indicators of urban structure describe the two main phenomena operating
in the study area: the integration of cities and villages in vast metropolitan areas
polarized by metropolitan centers and urban sprawl. As for the latter, the parameter
of net population density (that is population as referred to urbanized land only)
has often been pointed out as being the most pertinent indicator [169, 337]. This
indicator can only be calculated through the integration of census and land use
data.

Road accessibility and the reciprocal attraction among the communes of the
study area are the main indicators of spatial interaction. Among them, the two
potential parameters were drawn from previous work [226]. The urban job potential
measures the ability of a city, through the jobs it offers, to attract active population
residing in distant communes. It is a function of the mass of the commune (through
its total number of jobs), of the commuter distances of people working there, and
of regression coefficients which were calculated using the census data of 1990.
Similarly, an urban housing potential can be defined. The latter measures the ability
of a city, through the dwellings it offers, to attract the active population working
in distant communes.
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The indicators of employment, migration, population, housing and daily mobil-
ity are classical parameters drawn from census data. Their interest in the analysis of
regional dynamics of metropolitan development has already been pointed out [29].

As for land use, we will focus on the ongoing dynamics during the 1990s [182].
The analysis has been carried out through three broad land use classes:

• The first class encompasses all urban land uses (including industrial areas
and transportation infrastructure within rural areas);

• the second class covers all agricultural land;

• the third class corresponds to natural surfaces (forests, prairies, marshes,
rocks, inner water bodies, etc.).

The land use dynamics affecting our study area can be summarized by the
scheme in Table 6.2. Three main phenomena can be pointed out:

• stability within the three classes of land use (light gray in the scheme): urban,
agricultural or natural land in 1999 was already characterized by the same
land use in 1988;

• new urban development (medium gray): agricultural or natural land in 1988
became urban in 1999;

• agricultural shrinkage (dark gray): agricultural areas in 1988 have been aban-
doned becoming natural in 1999.

To conclude this section, a few remarks will be made on the advantages and
the shortcomings of the choice of the municipal level for calculating data.

In choosing to calculate indicators for every commune, a spatial viewpoint is
privileged. We can analyze how the metropolitan development affects each terri-
torial component independently from its population. A sociological study focusing
on the way the metropolisation process affects the population would have preferred
spatial units with comparable populations. The most populated cities would then
be divided in smaller districts, whereas rural communes would be aggregated to
form vaster territories. This method is currently used in mobility surveys within
metropolitan areas. In these works, carried out through sampling, suburban and
rural areas are always apprehended through a very limited number of spatial units,
producing what we could call a compression of geographical information in the

Table 6.2 Scheme of land use dynamics in the study area between 1988 and 1990.

Land use in 1988
Land use in 1999

Urban Agricultural Natural

Urban Stability
Agricultural Urban Development Stability Agricultural Shrinkage
Natural Urban Development Stability
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areas undergoing the most radical changes as a consequence of the metropolization
process.

Nevertheless, the choice of the municipal level poses a few problems. When
indicators describe phenomena linked to the population of the spatial unit (such as
the unemployment rate, the population growth rate, etc.), the values of the smallest
communes (25 communes in the study area have less then 100 inhabitants) can be
statistical outliers as they depend on a very small number of individuals.

6.2.2 Recent trends and the situation of coastal South-Eastern
France in 1990

6.2.2.1 Patterns of differentiated evolutions

As we could see in the previous section, metropolitan growth, urban sprawl and
the attraction of migratory fluxes are the general trend of the study area during the
1990s. Nevertheless, when the municipal level is considered, the picture is highly
contrasted.

Figure 6.2 shows the variation rate of resident population for the 436 communes
of the study area. Big cities at the core of the metropolitan process (Marseilles,
Nice, Toulon, Cannes) stagnate or lose population. Only Aix-en-Provence shows
a clearly positive evolution. Other areas with declining population are to be found
in the mountainous regions of the Alpes-Maritimes and in the Rhone delta. Areas
with steady demographic increases emerge around metropolitan areas: the Gardanne
district North of Toulon (around the metropolitan area of Provence), the close

Figure 6.2 Spatial dynamics in the study area between 1990 and 1999.
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hinterland North of Frejus, Cannes and Nice (around the metropolitan area of the
French Riviera).

As for urban development, city structures sprawl and become less dense in the
entire study area. Differences can nevertheless be found at the communal level.
Part (b) of Figure 6.2 shows the variation of net population density between 1990
and 1999. The loss of density is extreme in the areas which are the furthest from
the coast. The coastal area experienced a less pronounces loss of density, with a
few communes actually increasing the net density of their urban tissue.

The growing integration of rural areas in the daily functioning of metropoli-
tan areas is a main feature of the metropolitan process. Patterns of commuting
trips to jobs are a first symptom of this integration. The number of commuters
(i.e., of people having their job outside the commune of residence) grows almost
everywhere in the study area (Figure 6.2c). Only a few communes at the outer
margins of the mountainous areas show a stagnating or declining number of com-
muters. Commuter growth is the strongest around metropolitan areas: a large front
of metropolitan integration through commuting is taking shape East and North of
the metropolitan area of Provence and West and North of the French Riviera.

As for land use dynamics, Figure 6.2(d) shows the relative size of land use
stability in the communes of the study area. Different trends have emerged in the
area during the 1990s: stability in almost all the hinterland of the Var and Alpes-
Maritimes departments, moderate change (mainly urban development) around Nice
and Toulon, intense change (a combined effect of urban development and agricul-
tural shrinkage) almost everywhere in the Bouches-du-Rhone department.

6.2.2.2 The situation in 1990: A region with strong internal contrasts

In order to understand the changes observed during the 1990s, it is useful to
consider the situation of the study area at the beginning of the decade. Deep
differences were already shaping the region at the time, as shown in Figure 6.3 for
a limited number of elements.

The possibilities of urban development, for example, were not the same in
the East and in the West of the study area (Figure 6.3a). Besides urban plan-
ning and environmental regulations, strong topographical constraints and previous
urban developments were already limiting future urban developments in the Alpes-
Maritimes in 1990: only the Western section of the French Riviera still possessed
a significant amount of undeveloped land.

On the other hand, the entire Bouches-du-Rhône department (except for the
highly urbanized area of Marseilles and its topographically constrained northern
hilly suburbs), as well as the inner section of the Var department, could offer to
future urban development vast agricultural and natural surfaces. As far as spa-
tial interaction is concerned, the communes of the study area entered the decade
with completely different situations as well. Using the FRED software [124], we
calculated the accessibility level of every commune to the regional jobs through
the road network (Figure 6.3b). The cores of the two metropolitan areas appear
clearly as high accessibility areas, allowing significant agglomeration economies
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Figure 6.3 The situation of the study area in 1990.

to firms and household. From this point of view, the Marseilles/Aix-en-Provence
couple emerges as the real core of the metropolitan area of Provence, whereas
the Toulon area shows a relative accessibility deficit. The far hinterland of the
Var and Alpes-Maritimes departments, as well as the Maures massif and the outer
area of the Camargue are, in 1990, spaces suffering from a severe accessibility
handicap. Other remarkable differences within the study area emerge from 1990
census data. The space of main homes, for example, encompasses the Bouches-
du-Rhone department, the Toulon area and the close outskirt of the city of Nice
(Figure 6.3c). Several communes of the French Riviera show significant levels
of secondary homes and unoccupied dwellings: Antibes, Cannes, Menton, Fre-
jus, Saint-Raphael. In the far hinterland of the Var and Alpes-Maritimes depart-
ments, as well as on the Var coast, main homes only account for 11–43% of all
dwellings.

In a region where the networking of metropolitan components was mainly done
through the highway network, and where urban sprawl and commuting affect large
areas around the metropolitan cores, mass multi-motorization of households is an
essential element of the metropolization process (Figure 6.3d). In 1990, in the
suburban areas around Aix and Marseilles, in the West, and around Nice, Antibes
and Cannes, in the East, more than every other household already possessed several
motor vehicles. On the other hand, multi-motorization was marginal in the far
mountainous hinterland, as well as in the main coastal cities (Marseilles, Toulon,
Nice, Cannes, Antibes).
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6.3 The Bayesian network model

In the previous section, we analyzed a limited number of territorial variables
through thematic maps. The spatial distribution of these variables is clearly not
casual. Maps suggest the existence of links among the different phenomena. It is
the combination of these links that makes up the complex metropolization process
of coastal South-Eastern France. But how can these interrelations be apprehended
passing to all the 39 indicators?

Increasing the number of maps and diagrams would make a global view of the
process impossible. Only global models can handle the complexity of the interre-
lated phenomena we are studying. The approximate knowledge given by indicators
compels models to deal with uncertainty in the relationships among phenomena.
The availability of a large spatial database, the opportunity to explore possible
causal links and the necessity of integrating uncertainty, make Bayesian networks
an extremely appropriate technique for the development of models.

The capabilities of Bayesian networks in modeling are just beginning to be
discovered in geography. Bayesian networks’ probabilistic approach to causality
is particularly suited for representing links among territorial variables [169]. Rela-
tions among socio-demographic, economic and urban indicators are rarely strictly
deterministic. They are much more often fuzzy relations: variable A somehow influ-
ences variable B, but it is always possible that the value of the dependent variable
contradicts the general sense of the relationship linking it to the parent variable.

The first applications of Bayesian networks in geography concerned image pro-
cessing in GIS. Stassopoulou et al. [440] developed a Bayesian network to assess
the risk of desertification of areas subject to fire in the Mediterranean. The network
was not generated from data, as the modelers formalized directly their knowledge
of functional relations among variables. In France, Cavarroc and Jeansoulin [87],
within the works of the Cassini research group, evaluated the contribution of
Bayesian networks in the search of spatio-temporal causal links in remote sens-
ing images. Interesting applications have been developed at the Department of
Geography of the Pennsylvania State University: the group of C. Flint [152] in
electoral geography, W. Pike [366] in the analysis of water quality violations. In
Italy, F. Scarlatti and G. Rabino, at the Milan Politecnico, proposed the use of
Bayesian networks for landscape analysis [415]. These pioneer studies showed
the great potential of Bayesian networks in modeling systemic links among space
variables. As for the territory-transportation interaction, the interest of Bayesian
networks has been pointed out by P. Waddell [476] without producing any opera-
tional model. The models developed at the University of Nice [167, 168, 169] are
the first accomplishments in this direction.

6.3.1 Creating the network through structure and parameters
learning

One of the most interesting applications of Bayesian networks is causal knowledge
discovering, that is automatic research of possible causal links among the variables
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of a data base. With a set of observed variables at hand, even in the absence
of temporal information, powerful algorithms can determine the most probable
causal links among variables. The network thus produced can be a possible causal
model for the phenomena described in the database (nevertheless, the modeler
must always evaluate the pertinence of the network). Pearl and Russell [358] point
out that patterns of dependency in data, which can be totally void of temporal
information, are the result of certain causal directionalities and not others. Put
together systematically, such patterns can be used to infer causal structures from
data and to guarantee that any alternative structure compatible with the data is less
probable than the one(s) inferred. This task can be accomplished, probabilistically,
by Bayesian learning algorithms. The most complete algorithms can learn both
network structure and parameters from data.

The search for the most probable network given the database of 39 indicators
was accomplished through the software Discoverer [36]. Discoverer uses only dis-
crete variables. Every indicator was thus discretized in four classes according to the
Jenks algorithm (minimizing the sum of absolute deviations from class means). In
order to generate the structure and the parameters of the network, Discoverer uses
the K2 algorithm, developed by G. Cooper [103]. K2 selects the a posteriori most
probable network within a subset of all possible networks. This subset is defined
by the modeller who has to define a hierarchy among variables, thus constraining
the network search. The position of each variable in the hierarchy determined the
number of variables which will be tested as possible parents. Let X be the last vari-
able in the hierarchy. The implementation of the algorithm begins by this variable
and first calculates the log-likelihood of the model without any link towards X.
The next step is the calculation of the log-likelihood of all the models having one
link towards X. If none of these models has a higher log-likelihood than the model
without links, the latter is assumed as being the most probable in the explanation
of X, and the algorithm goes on evaluating the second lowest variable in the hier-
archy. If at least one of these models has a higher log-likelihood than the model
without links toward X, the corresponding link is kept and the search continues
by trying to add a second link towards X, and this until the log-likelihood stops
growing. Once a model has been retained for a variable, the algorithm searches the
most probable links explaining the next variable in the hierarchy using the same
approach.

K2 can be implemented through two different search strategies, mixing the
modeler’s knowledge and the knowledge acquired from data: Greedy and ArcIn-
version. In the Greedy strategy, the variables tested as possible parents of a given
variable are only those who have a higher position in the causal hierarchy. On the
other hand, the ArcInversion strategy allows variables who have a lower position
to be tested as possible parents as well, as long as this doesn’t produce a closed
cycle in the network structure. Contrary to other applications of Bayesian Network
modeling in geography [167, 168, 169], in this research, the ArcInversion strategy
was used. More probable links could thus be explored, even if they contradicted
the modeler’s starting hypotheses.
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Table 6.3 The hierarchy among the variables used to generate the network.

Indicator (S/D) Theme Indicator (S/D) Theme

1 dist littoral (S) Site 20 var vieillesse (D) Population
2 contrainte topo (S) Site 21 taille menage (S) Population
3 dist echangeur (S) Situation 22 taux var taille men (D) Population
4 temps aeroport (S) Situation 23 part log neufs (D) Housing
5 pop AU (S) Urb. Struct. 24 part res princ (S) Housing
6 poss exp urb (S) Urb. Struct. 25 var part res princ (D) Housing
7 dens net (S) Urb. Struct. 26 part res sec (S) Housing
8 acc emplois (S) Sp. Interact. 27 var part res sec (D) Housing
9 taux croiss acc emp (D) Sp. Interact. 28 part log vac (S) Housing

10 pot emplois (S) Sp. Interact. 29 var part log vac (D) Mobility
11 pot habitat (S) Sp. Interact. 30 Part navetteurs (S) Mobility
12 mix empl pop (S) Employment 31 Var part navetteurs (D) Mobility
13 taux croiss empl (D) Employment 32 Part men plurimot (S) Mobility
14 var mix empl pop (D) Employment 33 Var part men plurimot (D) Mobility
15 part pop meme com (D) Migrations 34 Part men no auto (S) Mobility
16 part pop meme log (D) Migrations 35 Var part men no auto (D) Mobility
17 taux var mig (D) Migrations 36 var dens net Dyn. Urb. Struct.
18 taux var pop (D) Population 37 poids exp urb (D) Land Use
19 vieillesse (S) Population 38 poids depr (D) Land Use

39 poids stab (D) Land Use

Table 6.3 shows the causal hierarchy among the 39 indicators which was used
by K2 in order to generate the network. Indicators of the site (the distance from the
coast and the topographical constraints) were considered as primordial elements,
followed by indicators of the situation of the commune and then by those of
urban structure and spatial interaction. Indicators of employment, of migration, of
population, of housing and of daily mobility are the next in the hierarchy. The
parameters of land use are considered to be the result of all the phenomena taking
place in the study area (only dynamic variables were considered for the land use,
describing its evolution over the decade). For every theme, static variables precede
dynamic variables in the causal hierarchy. According to the ArcInversion strategy,
modeling hypotheses are not binding for the network search: K2 can produce causal
links refuting the proposed hierarchy, as long as they don’t create cycles.

Several hypotheses were tested, resulting in different causal hierarchies. Here,
we focused on the hierarchy which produced the best Bayesian network in terms
of causal explanation of the phenomena which were to be modeled.

6.3.2 A well-connected network

The Bayesian network generated using the variable hierarchy of Table 6.3 is shown
in Figure 6.4. It is a completely connected network and it constitutes a convincing
causal model of the spatial dynamics within coastal South-Eastern France in the
last decade. No indicator of the dynamics between 1990 and 1999 ended up being
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Figure 6.4 The Bayesian network modeling spatial dynamics in coastal South-
Eastern France.

a parent of indicators of the 1990 situation, which would have clearly been a
modeling mistake of the learning algorithm. On the other hand, several dynamic
variables depend directly on the situation in 1990, as the analysis of the network
will show.

As the understanding of spatial processes is the main goal of exploratory Baye-
sian network modeling within our research, a detailed analysis of the network will
be of capital importance. In order to facilitate the reading of the network, different
colors were used to represent static and dynamic variables. We also indicated the
pattern of the causal relation modeled by an edge in the graph. This pattern is a
summary of the probabilistic information of the associated CPTs. A positive rela-
tion, for example, means that it is very probable that low (high) values of the child
variable correspond to low (high) values of the parent variable. Similarly, negative
relations can be defined, as well as U shaped relations (which are negative for low
values of the parent variable and positive for higher values) and reverse U shaped
(positive for low values of the parent variables and negative for higher values).
More complex patterns can finally be detected (they are represented in Figure 6.4
with the ± symbol).

6.3.2.1 The effects of site and transportation networks on employment
and demography

The starting point in the reading of the network are the two indicators of the
site, which are the only independent variables of the model (right lower corner of
Figure 6.4). Topographic constraints limit the possibility of urban expansion. On
the other hand, the distance from the coast has a positive effect on the possibilities
of future urban expansion (areas further inland were not exposed to the strong real
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estate pressure of coastal municipalities), apart from areas where topographical
constraints are extreme (as in the mountainous hinterland of the Alpes-Maritimes).
The distance from the coast also affects the distance from highway interchanges:
public authorities gave priority to coastal areas in the development of highway
infrastructures. In 1990 the distance of the commune from the coast is thus still
the first explicatory factor of its distance from the highway network. The distance
from highway interchanges also depends on the possibilities of urban expansion.
With the exception of the coastal areas (which were first and foremost connected
to the highway network), the probability of finding a highway interchange in the
hinterland is higher in areas lacking constraints from topography and previous
urban development.

The relations among the distance to highway interchanges, access time to
airports and job accessibility constitute the core of the impact of transportation
infrastructures over the functioning of the regional metropolitan systems. Access
time to airports grows for communes far away from interchanges, confirming the
strong dependence of the performance of the regional road network on highway
infrastructures. Accessibility to jobs decreases both with distance from highway
interchanges and with access time to airports, as the latter polarized much of job
localizations in the study area.

Job accessibility affects, in its turn, the population size of the metropolitan area
(big integrated metropolitan areas develop in areas characterized by high acces-
sibility levels, allowing consistent agglomeration economies), which also depends
on the possibilities of urban expansion. In areas with high accessibility levels, vast
opportunities of urban expansion favor the emergence of integrated metropolitan
areas (as is the case for the Aix-Marseille region). On the contrary, in areas with
low accessibility levels, vast spaces presenting few constraints from topography and
previous urban developments become an obstacle to territorial integration within a
metropolitan area (as is the case for the communes of the Rhone delta and central
Var).

The growth rate of job accessibility between 1990 and 1999 is the first dynamic
variable we find in the reading of the network. Significantly enough, it depends
negatively on the 1990 level accessibility. This means that the metropolisation
process in the region implies a catching up on accessibility level: areas with
lower accessibility in 1990 show the most significant relative gains during the
decade. Accessibility growth rate is also a consequence of the population size
of the metropolitan area: with an equal accessibility level in 1990, the growth
rate is higher in rural communes (outside metropolitan areas) and in those within
big metropolitan areas, whereas it is lower in communes within minor urban areas.
Another phenomenon of catching up concerns net population densities (in the lower
right corner of Figure 6.4). Communes with denser urban structures experience the
most severe density loss during the decade. Population density in 1990 was in
its turn a consequence of the possibilities of urban expansion. Density decreases
where land for urban development is abundant, but the relation inverts its sign for
the communes having the greatest land availability. These areas (the Rhone delta
and central Var) had not yet been affected by the metropolization process at the
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beginning of the decade. Lacking strong real estate pressure, urban sprawl was still
limited.

Going on with the analysis of the network, jobs accessibility is the main
explanatory variable of the urban jobs potential. The latter plays a fundamental
role in the functioning of the model, as it directly determines six other phenomena:

• the urban housing potential, through a positive relation;

• the jobs/population ratio, through a positive relation as well;

• the variation of the proportion of commuters between 1990 and 1999 (the
increase of commuting is one of the main aspects of the metropolization
process, as shown in Figure 6.2(c); nevertheless, the communes with the
highest job potential show a lower increase);

• the variation of the proportion of multi-motorized households (once again
through a negative relation, as multi-motorization grows the most in the new
residential areas where job potential is the lowest);

• the share of population residing in the same commune in the previous census
(this is a positive relation because residential migration occur seldom towards
areas with important job concentrations; they increasingly concern communes
with low job potential in the suburbs or even in the rural areas);

• job growth rate, whose relation is first positive (the communes with the
lowest job potential, either specialize in accommodating new residents or
get deserted, either way their jobs stagnate or diminish) but later becomes
negative (the communes with the highest job potential are already saturated
and can rarely increase their jobs significantly).

Not surprisingly, the share of the population residing in the same commune
in the last two censuses explains the migratory population growth rate (through a
negative relation) and the share of the population residing in the same dwelling
(through a positive relation). The latter relation implies that households seldom
move within the same commune and that their residential cycle increasingly con-
cerns the whole metropolitan region. Finally, the migratory population growth rate
is the main cause of inter-census population growth, confirming a demographic
trend that, for every commune as well as for the whole region, is mainly driven
by the arrival of new inhabitants.

6.3.2.2 Dwelling characteristics and land use dynamics

The Bayesian network gives an unexpected explanation of the dwelling character-
istics of the communes within the study area. The share of main homes depends,
through a negative relation, on the distance from highway interchanges. Households
residing in the study area prefer to live close to the nodes of the highway network,
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in order to benefit from the multiple opportunities of jobs, commerce and ser-
vices offered within the region. The highway network is thus the first agent of
the metropolization process within coastal South-Eastern France. The share of sec-
ondary homes decreases as the share of main homes increases (the third category,
unoccupied dwellings is seldom significant). This means that secondary homes are
relatively further away from highways, preferring the proximity to environmental
amenities to the access to transportation networks.

The explanation of land use dynamics is another interesting contribution of
the Bayesian network. The communes having the most important share of main
homes in 1990 are also those where new urban developments are the most impor-
tant. A specific trait of the metropolisation process within the study area is thus
urban sprawl alimented by new main homes and concentrated where main homes
were already predominant. Secondary homes drive urban sprawl only in a few
exceptional areas (as in the Eastern section of the French Riviera and in the Gulf
of Saint-Tropez). In both cases the result is an increased specialization of vast
territories as residential areas.

The perspectives of future urban expansion nourish the expectations of land
owners (agricultural shrinkage is directly linked to the possibilities of future urban-
ization). It is thus in the plain, where future capital gains linked to new develop-
ments are possible, that most agricultural activities shut down, and not in the
mountain, where the mechanization of agriculture is objectively most difficult.
The main exception to this rule comes from the Rhone delta, where agricultural
shrinkage takes place even without strong speculative pressure on the land.

6.3.2.3 Demography and changes of dwelling characteristics

Dwelling characteristics are also the basis of important socio-demographic phenom-
ena. The old age index of resident population depends on the share of second homes
through a positive relationship. Evidently, the residential and tourist municipalities
which offer plenty of second homes attract seniors and keep away households with
children, who cannot find affordable dwellings of an appropriate size. The negative
relationship between the old age ratio and the average household size confirms this
explanation. As far as demographic characteristics are concerned, some catching up
has taken place between 1990 and 1999: the Vieillesse→Var Vieillesse relationship
shows that the old age ratio grows in the youngest municipalities and diminishes
(or is stable) in the older ones. At the same time, a spatial fracture emerges: some
municipalities, characterized by a high old age index in 1990, keep on aging more
than the average of the study area, contradicting the general trend of catching up.
It is the case for a small number of villages in the mountain areas of the Var
and the Alpes-Maritimes, who are still untouched by the dynamics of metropolitan
integration.

The variation of the average household size follows the variation of the old age
index through a negative relationship. It also contributes to the homogenization of
population characteristics in the study area. This relationship is nevertheless more
fuzzy and shows a higher number of exceptions. The Bayesian network shows a
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positive link between the average household size and the share of households hav-
ing more than one motor vehicle, as well as a negative link between the latter and
the share of non-motorized households. These relationships describe the situation
in 1990 and illustrate an important aspect of an automobile dependent metropoliza-
tion process [141, 337, 494]. Going back up the causal links within the Bayesian
network, bigger households settled in municipalities served well by the highway
network, in order to take advantage of the most jobs, services and leisure facilities
offered within the metropolitan area. They also show the most significant and com-
plex mobility demand (with a lot of commuting), due to the presence of several
active members and children. Multi-motorization and an almost exclusively auto-
mobile mobility are the logical consequence for most of these households living
in peripheral residential areas where alternatives to private cars are hardly present.

Municipalities burdened by a higher proportion of unoccupied dwellings show
the higher share of households without a car. It is the case of the villages of the
mountainous areas which, in 1990, were still left out of the metropolization inte-
gration process. To a lesser degree, it is also the case of big cities (Marseilles, Nice,
Toulon, etc.). Here, public transit offer and high urban densities make the choice of
not having a car possible for some households. At the same time, complex urban
cycles produce a considerable number of unoccupied dwellings (these phenomena
have to be explained at an intra-urban level).

Finally, some catching up has taken place during the 1990s. The reduction of
the share of households without a car (which was observed everywhere in the study
area) was the strongest in the less motorized municipalities. Having a car becomes
a necessary condition for metropolitan life in the coastal region of South-Eastern
France. At the same time, the share of unoccupied dwellings diminishes where it
was the highest and increases where it was the lowest, showing a communicating
vessels effect within a real estate market becoming increasingly integrated at a
regional level.

The description of the changes of dwelling characteristics will be con-
cluded by taking into account the role of the population growth rate. Pop-
ulation growth leads to the construction of new dwellings (positive link
Taux Var Pop→Part Log Neufs) and increases the share of main dwellings (pos-
itive link Taux Var Pop→Var Part Res Princ). The strongest population growth
rates, observed at the edge of metropolitan areas, ignite a construction led econ-
omy seeking to accommodate a new active population. The latter settle in these
fast developing municipalities, keeping their jobs in the core of the metropolitan
areas (this reading also takes into account the causal chain

Acc Emploi → Pot Emploi → Part Pop Meme Com → Taux Var Mig).

In order to sum up the above mentioned phenomena, dwelling characteristics
are influenced by transportation networks and are at the basis of the main socio-
demographic dynamics. The latter feed back in the dwelling characteristics as
they produce, directly or through the automobile system, the main changes of the
dwelling characteristics.
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6.3.2.4 An overall vision

The Bayesian network generated from our geographic data-base models and sum-
marizes the relationship among spatial variables describing the municipalities of
coastal South-Eastern France. It is the synthesis of the metropolization dynamics
which marked the 1990s and the situation at the beginning of the decade. More
specifically, the links among static variables represent the heritage of systemic
relationships established within the study area before the 1990s. They could be
thought of as the structure of the regional system. The links among static variables
and dynamic variables represent the effect of this inherited structure on current
spatial dynamics.

There are, finally, a few links among dynamic variables. Some of them are
logic truisms, and put together they don’t give any understandable reading of
the spatial dynamics. This indicates that the spatial dynamics of the study area
cannot be explained without reference to the situation in 1990. The inertia of past
conditions is very strong. Observed dynamics often result in reducing the gaps
among territories, with respect to the initial conditions in 1990. From this point
of view, the metropolization process in the 1990s consists in the diffusion and
generalization of situations which would formerly distinguish cities, towards new
suburban and ex-rural areas within the region. The metropolisation process is thus
homogenizing the study area, countering strong inherited contrasts and geographical
situations (distance from the sea, topographical constraints) which cannot, even so,
disappear.

6.3.3 Evaluating the model

In this section the produced Bayesian network will be evaluated in three different
ways: through its likelihood given the data, through its predictive strength and
through its ability to model every spatial unit of the study area.

6.3.3.1 A globally robust model

Bayesian networks are normally evaluated through their likelihood, i.e., the a pos-
teriori probability knowing the data [39]. As this probability is extremely small, its
logarithm will be preferred, the log-likelihood. The Bayesian network of Figure 6.4,
though being the most probable given the data and the variable order, has a log-
likelihood of −18185.4 (Table 6.4). This corresponds to an average per variable
log-likelihood of −466.3. In order to assess these values, we will compare them
to those of the model of stochastic independence, where the 39 variables are com-
pletely unconnected and the co-occurrences are simply fortuitous (it is the zero
hypothesis of all significance tests of probabilistic models).

The log-likelihood of such a model is −22215.3, showing a difference of 4029.9
with the Bayesian network. This means that the produced model is 1.46×101750

times more probable than the model of stochastic independence, given our data.
In order to appreciate the robustness of the model better with respect to the

initial hypotheses, two more Bayesian networks were produced. The first uses only
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Table 6.4 The log-likelihood evaluation of the Bayesian network.

Complete St. Ind. BN 1990 St. Ind. BN 1990– St. Ind.
BN Mod. State Mod. 1999 Mod.

Number of
variables

39 39 19 19 20 20

Log-likelihood −18185.4 −22215.3 −8838.6 −11115.5 −9757.1 −11100.8
Log-likelihood

per variable
−466.3 −569.6 −465.2 −585.0 −487.9 −555.0

Log-likelihood
gain with
respect to the
St. Ind. Mod.

4029.9 2276.9 1343.7

St. Ind. Mod.: Stochastic Independence Model

the 19 indicators describing the situation of the study area in 1990, the second uses
the 20 indicators of the dynamics between 1990 and 1999. The first Bayesian net-
work contains exactly the edges linking the same 19 variables within the complete
Bayesian network of Figure 6.4. The per variable log-likelihood of this network is
nearly the same as the one of the complete Bayesian network (Table 6.4).

The second Bayesian network, on the other hand, has a per variable log-
likelihood considerably lower than the one of the complete Bayesian network
(−487.9 instead of −466.3). Albeit more probable than the model of stochastic
independence, this Bayesian network presents relatively fuzzy CPTs (representing
weaker relationships among variables than those of the complete Bayesian net-
work). This confirms the remark that it is impossible to explain the spatial dynamics
between 1990 and 1999 in coastal South-Eastern France, without considering the
condition of the spatial units in 1990.

Through the cross-validation test, Discoverer can assess the predictive force
of Bayesian networks using one database only. The test first divides the database
in k folds. Then, for every fold, it predicts the values of a subset of variables
using the CPTs estimated from the rest of the database. Our database was thus
divided in 10 folds and 39 cross-validation tests were performed in order to predict
every single variable given the other 38. By comparing the predicted value of
every record with its known value, a prediction accuracy rate could be calculated
for every variable (Table 6.5). Globally, the network’s accuracy rate is 64.84%
(but the accuracy varies between 45 and 84% according to the variable). This
value is sufficiently high for a large-scale geographical model of interaction among
land use, transportation, socio-demographic and housing indicators (the model of
the stochastic independence would have an average accuracy rate of 25%). The
perspective of using Bayesian networks for strategic simulation of spatial dynamics
is thus open.
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Table 6.5 The cross-validation test of the Bayesian network.
Cross validation results on 1 test

Corr. Incorr. Acc. σ Corr. Incorr. Acc. σ

Var Dens Net 194 242 45% 2.38 Var Vieillesse 289 147 66% 2.26
Var Part Navetteurs 199 237 46% 2.39 Taux Croiss Empl 298 138 68% 2.23
Part Log Vac 208 228 48% 2.39 Poids Exp Urb 309 127 71% 2.18
Part Navetteurs 211 225 48% 2.39 Var Mix Empl Pop 309 127 71% 2.18
Var Part Men Plurimot 222 214 51% 2.39 Pop Au 310 126 71% 2.17
Var Part Men No Auto 223 213 51% 2.39 Var Part Res Princ 311 125 71% 2.17
Part Log Neufs 225 211 52% 2.39 Taille Menage 313 123 72% 2.16
Dens Net 239 197 55% 2.38 Var Part Res Sec 320 116 73% 2.12
Pot Habitat 240 196 55% 2.38 Vieillesse 323 113 74% 2.10
Part Pop Meme Log 240 196 55% 2.38 Pot Emplois 331 105 76% 2.05
Taux Croiss Acc Emp 243 193 56% 2.38 Poss Exp Urb 334 102 77% 2.03
Mix Empl Pop 246 190 56% 2.38 Contrainte Topo 337 99 77% 2.01
Part Pop Meme Com 248 188 57% 2.37 Taux Var Mig 338 98 78% 2.00
Temps Aeroport 252 184 58% 2.37 Poids Stab 339 97 78% 1.99
Taux Var Taille Men 252 184 58% 2.37 Acc Emplois 343 93 79% 1.96
Dist Littoral 260 176 60% 2.35 Dist Echangeur 345 91 79% 1.94
Poids Depr 260 176 60% 2.35 Taux Var Pop 354 82 81% 1.87
Part Men Plurimot 266 170 61% 2.34 Part Res Princ 361 75 83% 1.81
Var Part Log Vac 279 157 64% 2.30 Part Res Sec 367 69 84% 1.75

Part Men No Auto 287 149 66% 2.27 Total 11025 5979 65% 2.29

6.3.3.2 General trends and particular behaviours

The Bayesian network model can finally be evaluated through its capacity to explain
every single record of the database. In our case this would mean evaluating how the
Bayesian network models every spatial unit of the study area following a model-
residual approach. The residual analysis is a classical practice in geographical
modeling, as residuals reveal the particular behavior of the different spatial units
with respect to the overall behavior described by the model [66, 409]. This approach
changes somehow using a Bayesian network model. The residuals with respect to
the predicted value of a given variable are not the most interesting quantities for a
global evaluation. A much more significant quantity is the overall probability that
the set of values characterizing every spatial unit can be produced by the Bayesian
network. This probability takes into consideration the prediction of all the variables
at the same time. The map of the probabilities of spatial units according to the
Bayesian network is shown in Figure 6.5(a). Some municipalities in the Northern
Var, the Eastern Alpes-Maritimes and in the West of the Bouches-du-Rhône seem
much less likely than the others (log-likelihood between −58.5 and −41.2). On
the other hand, the municipalities of the Aix-Marseilles metropolitan area are the
closest to the general behavior of the Bayesian network model.

Actually, we should evaluate the probability of producing the set of values
of every spatial unit through the Bayesian network, with respect to the intrinsic
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Figure 6.5 The probabilistic evaluation of spatial units.
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probability of every set of values. Some municipalities present combinations of
particularly rare values: the four classes of every variable do not have the same
marginal probabilities. Particular combinations of values could thus be much rarer
than the most common ones. The map in part (b) of Figure 6.5 shows the probabil-
ities of spatial units in the case of perfect stochastic independence among variables.
The villages of the mountainous hinterland of Var and Alpes-Maritimes have par-
ticularly rare combinations of values of the 39 indicators. Some incorrect data, due
to the extremely small populations of these spatial units could partly explain this
situation.

The ratio of the intrinsic probability of the spatial unit and the probability
according to the Bayesian network (it is a difference in logarithms) gives the like-
lihood gain of the Bayesian network model with respect to stochastic independence
(part (c) of Figure 6.5). The municipalities which are better described by the CPTs
of the Bayesian network are those of the Provence metropolitan area, those of
the mountainous hinterland of the Var and the Alpes-Maritimes and (with a few
exceptions) those in the Western part of the French Riviera.

The Bayesian network is a weaker model for some municipalities of the central
Var, of the Westernmost part of the Bouches-du-Rhône and, above all, of the
Eastern part of the French Riviera. In these areas, spatial dynamics are the farthest
from the overall behavior of the Bayesian network model. They are very peculiar
territories over which the metropolization process shows different outcomes. The
real estate market of the East of the French Riviera, for example, is deeply marked
by important cross-border interactions with the Principality of Monaco and the
metropolitan areas of North-Western Italy.

6.4 Conclusions

6.4.1 Results and comparison with other modeling approaches

The research presented in this chapter shows several innovations in the modeling
of spatial dynamics within a regional space. Spatial indicators derived from cen-
sus data (population, migration, jobs, housing, and mobility) have been coupled
with indicators derived from GIS applications and from modeling on transporta-
tion graphs. An overall model of interaction among indicators was then produced
using the Bayesian network technique. The model was derived from data but could
integrate soft hypotheses from the modeler (in the form of a hierarchy among
variables) and uncertainty in the relationships among indicators.

The Bayesian network model was used as an explanatory tool in geographi-
cal analysis. It simplifies, sometimes considerably, the complexity of causal links
among variables. Highlighting the most statistically significant links, it allows for
a clearer view of the main spatial phenomena. The metropolization process within
coastal South-Eastern France is thus reduced to the essentials and becomes much
more understandable.
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More particularly, the Bayesian network model highlights homogenization
dynamics related to the spatial diffusion of the metropolization process. It is the
case of urban densities, socio-demographic characteristics, dwelling characteristics
and mobility behavior.

Another result of the Bayesian network model is the importance of the 1990
situation in order to explain spatial dynamics in the study area between 1990 and
1999. This suggests that spatial dynamics are deeply influenced by the historic
heritage of the region.

Besides these general trends, specific areas show particular dynamics which are
not explained by the Bayesian network model. It is namely the case of the Eastern
section of the French Riviera. These dynamics are the consequence of peculiarities
in the socio-economic structure and in the geographical position of these areas.
Finally, transportation offer and accessibility indicators play a key role within the
Bayesian network model. This confirms that the metropolitan integration process in
the region is strongly driven by highway and airport facilities. A marked aspect of
the metropolization of coastal South-Eastern France is thus intense urban sprawl,
resulting from a spatial redistribution of inhabitants and economic activities within
a wider urban time-space, made possible by the automobile technology [494].

In what follows, we will compare our modeling experience using Bayesian net-
works with other techniques currently employed by modelers on wide geographic
databases.

Bayesian networks are much more powerful tools of knowledge discovery than
classical multiple regression models. Regressors can be discovered through appro-
priate step-wise procedures, but the model is calibrated for the prediction of one
or several pre-established dependent variables. Bayesian networks don’t need pre-
established target variables and can later be used to predict any variable from
any subset of other variables. Moreover, the interaction between the modeler and
the search algorithms allows for the construction of complex models taking into
consideration all possible links among variables (instead of needing independent
regressors).

Bayesian networks should also be compared to multivariate statistical mod-
els (hierarchical clustering, factor analyses, etc.), which are powerful tools of
knowledge discovery [408]. Bayesian networks have the advantage of producing
an explicit model of relations among variables which can later be used for proba-
bilistic simulations. On the other hand, Bayesian network packages should further
develop interfaces for batch evaluation of the database records. Record evaluation
is an important aspect of modeling in geography and the ability to discover relations
among both variables and statistical units is a strong point of classic multivariate
models.

Bayesian network could finally be compared to neural networks applications in
geography [127]. Both Bayesian networks and NNs give versatile models derived
from data which are suitable for probabilistic prediction. The advantage of Baye-
sian networks resides in the possibility of having an explicit model of relations
among domain variables. In this respect NNs almost constitute black boxes. It
would be impossible to conceive an application as the one carried out in this
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chapter using NNs, as the model was mainly used for domain analysis, and not for
simulation.

6.4.2 Perspectives of future developments

The Bayesian network model proposed in this chapter is the result of the first phase
of a wider research program on modeling spatial dynamics in a regional space. The
main goal of this application was to validate the new modeling approach through
Bayesian networks. This will be further developed in order to be applied to wider
spatial databases. Our work could thus highlight a certain number of desirable
improvements.

First of all, the geographic database should be developed to include the spatial
structure of daily and residential mobility (indicators should be calculated from
Origin/Destination matrixes). Indicators on economic activities, professional skills,
revenues and real estate market should also be included. These elements would
permit a better understanding of mobility phenomena and economic specialization
of certain geographic areas within the metropolization process. The geographic
database should also encompass a wider time span: spatial dynamics evaluated
over several decades (within the limits of available data) would be a much more
powerful tool for understanding today’s phenomena.

As far as the modeling technique is concerned, Bayesian networks provided
a first model of the interaction among the selected spatial variables. The model
could describe (and explain) important spatial dynamics in the coastal region of
South-Eastern France in a synthetic way.

More specifically, the ArcInversion search strategy made the modeler’s hypothe-
ses on variable order less constraining in the structure generation, when compared
to faster greedy strategies. The produced Bayesian network is statistically more
robust and can integrate unforeseen explanations of the phenomena taken into
consideration. Search strategies even less dependent on the modeller’s hypothe-
sis could be tested, as the generation of the essential causal graph based only on
conditional independence and dependence statements (it is an option available in
several Bayesian network packages like Hugin and BayesiaLab).

Integrating in the same Bayesian network geographic variables evaluated at
different dates allows for the detection of feedbacks among variables. This would
otherwise be impossible within the structure limitations of directed acyclic graphs.
In our model, a feedback was detected among population and housing variables.
These results open the perspective of using dynamic Bayesian networks to produce
dynamic regional models derived from longitudinal geographic databases. Such
models could eventually be used for strategic prospective simulation of regional
development.
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7.1 Introduction

7.1.1 Forensic science, uncertainty and probability

Forensic science can be considered as a discipline that seeks to provide expertise
that should assist both investigative and legal proceedings in drawing inferences
about happenings in the past. Such events are unique, unreplicable and remain
unknown to at least some degree, essentially because of mankind’s limited spatial
and temporal capacities. However, past occurrences may leave one with distinct
remains, in the context also referred to as scientific evidence, that may be discovered
and examined. For example, DNA profiling analyses may be applied to a blood
stain recovered on a crime scene and the results compared to those obtained from
a sample provided by a suspect. Or, fibers may be collected on a dead body and
compared to sample fibers originating from the trunk of a vehicle in which the
victim may have been transported.

Although forensic scientists can benefit from a wide range of sophisticated
methods and analytical techniques for examining various items of evidence, there
usually is a series of factors that restrain the inferences that may subsequently be
drawn from results. For instance, there may be uncertainty about whether the blood
stain on the scene has been left by the offender. On other occasions, the blood stain
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may be degraded or only of minute quantity. In a fibers case, the control samples
may not be representative or the characteristics of the fibers may not allow for
much discrimination. Thus, there currently is a great practical necessity to advise
customers of forensic expertise (lawyers, jurors or decision makers at large) about
the significance of findings in a case at hand. Forensic scientists need to qualify
and, where possible, quantify the states of available knowledge while relying upon
appropriate means in dealing with the sources of uncertainty that bear on a coherent
evaluation of scientific evidence.

According to a viewpoint maintained in a predominant part of both literature
and practice within forensic and legal areas, the management of such sources of
uncertainty should be approached through probability theory. There is a particu-
larity with that point of view which is worth mentioning at this stage. It is the
idea that forensic scientists assist the evaluation of scientific evidence through the
assessment of a likelihood ratio (V ), which is a consideration of the probability of
the evidence (E) given both, competing propositions that are of interest in a partic-
ular case – typically forwarded by the prosecution and the defense (for instance,
‘H, H̄ : the crime stain comes (does not come) from the suspect’) – and auxiliary
circumstantial information (habitually denoted I , but often omitted for brevity):

V = IP (E | H, I)

IP
(
E | H̄ , I

) . (7.1)

The term ‘proposition’ is interpreted here as a statement or assertion that such-
and-such is the case (e.g., an outcome or a state of nature). It is assumed that
personal degress of belief can be assigned to it.

A Bayesian framework is accepted so that the provision of prior probabilities
for the target propositions, as well as the calculation of posterior probabilities given
the evidence, is reserved to the recipient of expert information (e.g., a juror). The
main reason for this is that such calculations require assumptions to be made about
other (nonscientific) evidence pertaining to the case [229]. It is thought that this
segregation helps to clarify the respective roles of scientists and members of the
court. In addition, it is often argued that actors within judicial contexts should be
aware of probability because it is a preliminary to decision making and it can guard
one against fallacies and demonstrably absurd behaviour [389].

Thoroughly developed collections of probabilistic approaches are currently
available to assist scientists in assessing the evidential value of various kinds of sci-
entific evidence [9], but the practical implementation of probabilistic analyses may
not always be straightforward. Difficulties may arise, for instance, when one needs
to cope with multiple sources of uncertainty (with possibly complicated interrelated
structure), several items of evidence or situations involving acute lack of data.

Such issues are discomforting scientists and other actors of the criminal jus-
tice system, which illustrates the continuing need for research in this area. One
direction of research that has gained increased interest in recent years focuses on a
formalization of probability theory that consists of its operation within a graphical
environment, that is, Bayesian networks.
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7.1.2 Bayesian networks in judicial contexts

The study of representational schemes for assisting reasoning about evidence in
legal settings has a remarkably long history. In the context, the charting method
developed by Wigmore [495] is a frequently referenced – however essentially non-
probabilistic – predecessor of modern network approaches to inference and deci-
sion analyses that can be traced back to the beginning of the twentienth century.
But it is only about two decades ago that researches have begun to show interest in
graphical approaches with genuine incorporation of probability theory. Examples
include decision trees and a modified, more compact version of these, called ‘route
diagrams’ [163, 164]. Since the early 1990s, however, it is Bayesian networks
that have advanced to a preferred formalism among researchers and practicioners
engaged in the joint study of probability and evidence in judicial contexts, notably
because of that method’s efficient representational capacities and thorough com-
putational architecture. It thus seems interesting to note that – compared to other
domains of applications – researchers in law were among the pioneers who realized
the practical potential of Bayesian networks.

In judicial contexts, one can generally distinguish different ways in which Baye-
sian networks are used as a modeling technique. Legal scholars focus on Bayesian
networks as a means for structuring cases as a whole whereas forensic scientists
concentrate primarily on the evaluation of selected issues that pertain to scientific
evidence.

Many studies with an emphasis on legal applications thus rely on Bayesian
networks as a method for the retrospective analysis of complex and historically
important causes célèbres, such as the Collins case [144], the Sacco and Vanzetti
case [237, 418], the Omar Raddad case [281] or the O.J. Simpson case [451]. Other
contributions use Bayesian networks to clarify fallacious arguments [150].

Forensic applications of Bayesian networks range from offender profiling [6, 8],
single [7, 174] and complex [115, 449] configurations of different kinds of trace
evidence as well as inference problems involving the results of DNA analyses. The
latter is an imporant category that covers studies focusing on small quantities of
DNA [148], cross-(reciprocal-)transfer evidence [10], relatedness testing with or
without missing data on relevant individuals [117] or mixed stains [326].

These conceptual and practical studies represent a relatively rich variety of
inferential topics. The reported works jointly support the idea that graphical proba-
bility models can substantially improve the evaluation of likelihood ratios used for
the assessment of scientific evidence. In particular, they allow their user to engage
in probabilistic analyses of much higher complexity than what would be possible
through traditional approaches that mostly rely on rather rigid, purely arithmetic
developments. Moreover, the graphical nature of Bayesian networks facilitates the
formal discussion and clarification of probabilistic arguments [173]. Along with
accessory concepts, such as qualitative probabilistic networks and sensitivity anal-
yses, the range of applications can be extended to problems involving an acute
lack of numerical data [46].
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7.2 Building Bayesian networks for inference

7.2.1 General considerations

Although there is now a remarkable diversity of Bayesian network applications that
have been proposed for forensic purposes (Section 7.1.2), the respective reports
usually restrict themselves to present models in their final version. Generally, only
few explanations, if any, are given on how practitioners can use the method to build
their own models. This is so even though it is acknowledged that the derivation of
appropriate representations is crucial for reasons such as viability or computational
routines [117].

This is a frequently encountered complication which is not specifically related
to Bayesian networks, but appears to be a characteristic of modeling in general. To
some extent, (statistical) modeling is considered an art-form, but one that can be
guided by logical and scientific considerations [117]. Usually, it is not, however,
that one can state explicit and universally applicable guidelines. Rather, there are
some general considerations that may assist scientist in eliciting sensible network
stuctures. Below, these are discussed and illustrated in some detail.

7.2.2 Structural aspects

In forensic contexts, part of a reasonable strategy for eliciting network structures
should consist of a careful inspection of the inference problem at hand and the
kind of scientific evidence involved.

For the purpose of illustration, consider classic types of evidence, such as fibers
or toolmarks. Here, the number of relevant propositions that one can formulate may
be limited because of the complexity of the processus underlying the generation
of such evidence. The assessment of fiber evidence, for example, may require
consideration of factors such as transfer, persistence and recovery – in particular
where one’s interest is to evaluate the evidence with respect to particular actions
of interest (e.g., a contact between a victim and an assailant). According to the
current state of knowledge, however, the nature of such parameters is not yet very
well understood. A further example of this is mark evidence, where comparative
examinations between a crime mark and marks obtained under controlled conditions
with a suspect’s tool may be fraught with complications because of the changes that
the suspect’s tool may have undergone (e.g., through ongoing use or unfavorable
storage conditions). Within such contexts, the Bayesian networks models may thus
involve rather local structures that capture essentially global (and the sufficiently
well understood) aspects thought to be relevant to the inference problem of interest.

The scientist’s starting point may differ, however, according to the domain of
application. Consider, for instance, the problem of drawing inferences from results
of DNA profiling analyses. Within the branch of DNA evidence, an extensive body
of knowledge (accepted biological theory) is available and upon which one can rely
during network construction. For example, the consideration of Mendelian laws of
inheritance allows one to obtain clear indications on how nodes in a network ought
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(i) (ii)

cpg

cgt

cmg mpg mmg

mgtcmg

Figure 7.1 Basic submodels representing (i) a child’s genotype, cgt, with cpg
and cmg denoting, respectively, the child’s paternally and maternally inherited
genes, and (ii), a child’s maternal gene, cmg, reconstructed as a function of the
mother’s paternal and maternal genes, mpg and mmg, respectively mgt denotes the
mother’s genotype. The states of gene nodes represent the different forms (that is,
alleles) that a genetic marker can assume whereas the states of the genotype nodes
regroup pairs of alleles.

to be combined. In this way, basic submodels can be proposed and repeatedly
reused for logically structuring larger networks. Sample network fragments of this
kind, adapted from [117], are shown in Figure 7.1.

In the particular area of model specification for DNA evidence, it appears worth
mentioning that it has also been found useful to follow a hierarchical approach,
notably where analyses lead to large network topologies (e.g., when information
pertaining to different genetic markers needs to be combined). For this purpose,
object-oriented Bayesian networks, supported by certain probabilistic expert system
software packages, such as Hugin, are reported to be particularly well suited [114].

Yet another modeling approach proposed for forensic inference from DNA
evidence is based on a graphical specification language. Cowell [105] developed
a software tool, called finex (Forensic Identification by Network Expert systems),
which has built-in algorithms that use input in the specification language for the
automatic construction of appropriate Bayesian networks, useable in probabilistic
expert systems. Such an approach allows one to save time in setting up networks
and to reduce the potential of error while completing large probability tables. finex
appears to be among the sole reported forensic applications of Bayesian networks
where the construction process is, to some degree, automated. The approach rests,
however, restricted to the analysis of identification problems based on the results
of DNA profiling analyses.

At this point, it should be noted that the comments so far made on the advan-
tages that DNA evidence may present over more traditional kinds of evidence hold
essentially when the target problem is of a particular form. Examples include infer-
ences about genotypic configurations (e.g., during relatedness testing) or source-
level propositions (e.g., ‘the suspect is the source of the crime stain’). As pointed
out in [148], for instance, as soon as the focus of attention shifts from questions
of the kind ‘whose DNA is this?’ to questions of the kind ‘how did this DNA
get here?’, a series of issues pertaining to the generation of DNA evidence may
need to be addressed (e.g., modus operandi). This requires a careful examina-
tion of all relevant aspects of the framework of circumstances in the individual
case under consideration [9]. As may be seen, model construction in such contexts
tends to become less amenable to the invocation of repetitively useable building
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blocks. Here, structural issues such as the number of propositions, along with their
definition (e.g., level of detail), will rather depend on the extent of case-specific
knowledge that is available to the analyst. This then is an instance when model
construction for DNA evidence may become comparable to the kinds of evidence
mentioned at the beginning of this section.

For the most part, thus, the formal structuring of inference problems with a
forensic connotation involves ‘hand-constructed’ models, derived by or in collabo-
ration with domain experts. An imporant aspect of such personalized construction
processes is the way in which the principal propositions of interest are formu-
lated. In forensic science, there is established literature and practice that considers
that relevant propositions can be framed at different hierarchical levels [99]. For
example, in an inference from a source-level proposition (e.g., ‘the crime stain
comes from the suspect’) to a crime-level proposition (e.g., ‘the suspect is the
offender’), consideration needs to be given to the relevance of the crime stain (that
is, the probability of the crime stain being left by the offender). When addressing a
proposition at the activity-level (e.g., ‘the suspect physically attacked the victim’),
factors such as transfer, persistence and recovery will need to be taken into account.

Arguably, if the aim is to derive models that are in agreement with established
precepts of evidential assessment, then a consideration of hierarchical subtleties
should be part of one’s structural elicitation strategy (see also Section 7.2.4). Gen-
erally, scientists should also consult existing probabilistic inference procedures
(notably, likelihood ratios) from scientific literature. These too may provide use-
ful indications on the number of propositions, their definition as well as their
relationships [174, 449].

7.2.3 Probabilistic model specification

According to a general principle in forensic science, analysts should approach both
inferential and practical issues by following a procedure that goes from the general
to the particular. With respect to an inference problem, this may be interpreted to
mean that, prior to considering a full numerically specified network, one may start
by assigning qualitative expressions of probability. A useful collection of concepts
for this purpose is due to Wellman [490]. Qualitative probabilistic networks can
rapidly provide valuable preliminary information on the direction of inference with-
out the need to deploy possibly extensive elicitation efforts for specific numerical
values. It may also be that the query of interest may be sufficiently well answered
on a purely qualitative level [46].

Generally, the numerical specification of Bayesian networks for forensic infer-
ence problems can involve different kinds of probabilistic information. Among
the more common of them are – in analogy to many other domains of applica-
tion – logical assignments of certainty and impossibility, estimates derived from
relevant databases, subjective expert opinions or combinations of these.

As an example for logical assignments of certainty and impossibility, consider
the conditional probability IP (S | G, H), associated with a node S of a network
fragment H → S ← G. Logically, IP (S | G, H), the probability of the suspect
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being the source of the crime stain (proposition S), given that he is the offender
(proposition H ) and given that the crime stain is originating from the offender
(proposition G), is one [174]. Given that S is defined as a binary proposition, S̄,
that is, the negation of S IP (S | G, H), must therefore be zero.

The same network fragment H → S ← G is amenable to illustrate subjec-
tive assignments of probability. The (unconditional) probability required for the
nodes H may be formed in the light of previously heard evidence concerning the
suspect’s guilt. An assignment of a probability to the node G (i.e., evidential rele-
vance) may be the result of an evaluator’s consideration of the position in which
a crime stain was found, its freshness and abundance. Here, the proposition G

relates to a non-replicable real-world event that happened in the past, that is, the
crime. The respective probability is epistemic and can enjoy a wide inter-subjective
agreement [174].

Relevant databases may be consulted when the probability of interest relates, in
one way or another, to a countable phenomenon. Genetic data are typical examples
of this. For the purpose of illustration, consider again the network fragments dis-
played in Figure 7.1. Let us suppose that the node mpg (short for ‘mother paternal
gene’) covers the states 14, 16 and x, representing the number of short tandem
repeats (STR) at the locus D18 (whereas x is an aggregation of all alleles, that
is, repeat numbers, other than 14 and 16). The unconditional probabilities required
for the various states of the node mpg can be interpreted as (estimates of) the
frequencies of the respective alleles among members of a relevant population, that
is, information that may be obtained from databases (or, literature).

There may also be occasions where the scientist seeks to employ variables
whose probability distributions are thought to adhere to certain distributional and
functional forms. Some Bayesian network software offer means that facilitate the
specification of such forms through expressions, either manually or assisted by var-
ious interface boxes. In recent versions of Hugin, for instance, expressions can be
constructed using certain statistical distributions, mathematical functions, relations
as well as arithmetic and logical operators. An example of the use of an expression
is given at the end of Section 7.3.1.

7.2.4 Validation

What is an adequate Bayesian network? How is a Bayesian network to be validated?
Such questions are recognized and recurrent complications in many applications
of Bayesian networks, not just within forensic science. Notwithstanding, a close
inspection of the domain of interest may often allow one to set forth some viable
procedural directions.

Throughout the previous sections, the application of Bayesian networks to
forensic inference problems has been described as a reasoner’s reflection of the
essential aspects of a real-world problem or situation. There is no claim, how-
ever, that any proposed model will amount to a perfect problem description, or,
in some sense, a ‘true’ model. As noted earlier in Section 7.2.2, inferential analy-
ses in forensic science are, actually, strongly dependent on the extent of available
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information, the scientist’s aims as well as his position within the evaluative pro-
cess as a whole. These are factors that tend to preclude the possibility of a final or
ultimate way in which an inference is decomposed. Scientists thus need to argue
for the reasonabless of their models through the construction of arguments. These
assume a crucial role in the course of deciding whether a scientist’s analysis, based
on a given model, is one that can be trusted.

One particular means through which a model’s adequacy can be assessed are
established likelihood ratio formulae, currently used for evaluating scientific evi-
dence, and, accessible in specialized literature on the topic [9]. Extensive literature
is typically available on the application of algebraic calculations for solving var-
ious scenarios of relatedness testing. One can regard such existing approaches as
reference procedures and compare their output to that obtained for target nodes of
a Bayesian network after evidence has been propagated. It should solely be noted
that there is not necessarily a univocal correspondence between an existing proba-
bilistic inference procedure and a particular Bayesian network. That is to say, one
can obtain identical numerical results for specific queries of interest even though
the respective Bayesian networks are structurally different (e.g., in terms of the
number and/or definition of the propositions) [448].

Often, however, forensic scientists may not be in the comfortable situation of
having a well established reference procedure at their disposal. Sometimes, there
may be one, but the prototype Bayesian network for the problem of interest yields
results that diverge from that norm. To some degree, this is expectable but does
not necessarily need to be a cause of concern. The reason for this is that Bayesian
networks are a method that allows one to construct models whose underlying prob-
abilistic tenets may exceed the degree of complexity at which reference procedures
operate. What is important is that the inference analyst is prepared and able to
forward reasons to explain differences – if they occur.

This may be more difficult in contexts where no reference procedure exists
for the problem of interest, that is, the respective domain has previously not been
investigated from a probabilistic point of view, or, not in such a comprehensive
manner as it is feasible through a Bayesian network. In such cases, it may however
be possible to identify local network structures that can be separately validated as
selected issues of a larger problem. In a subsequent step, the logic of the way in
which the component network fragments are combined may be used to argue in
support of the reasonabless of the respective Bayesian network as a whole.

7.3 Applications of Bayesian networks
in forensic science

This section presents two applications of Bayesian networks with the intention
to illustrate the principal ideas outlined so far. The first example (Section 7.3.1)
discusses a Bayesian network for evaluating mark evidence according to an estab-
lished probabilistic reference procedure. It will provide an instance of the use of
an expression for defining particular statistical distributions, applicable as flexible
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means to account for results of comparative forensic examinations. The second
example (Section 7.3.2) focuses on a scenario involving DNA evidence and dis-
cusses the construction of Bayesian networks through distinct building blocks.

7.3.1 Application 1: Issues in the evaluation of mark evidence

Forensic scientists routinely examine footwear marks collected on crime scenes and
compare these with impressions obtained under controlled laboratory conditions
from soles of suspects’ shoes. For the ease of argument, and, in order to con-
form with habitual notation used in probabilistic evaluation of scientific evidence
in forensic science, the variables y and x are retained here to denote observations
relating to crime and comparison material respectively. In addition, each of these
descriptors will be divided into a component relating to traits that originate from,
respectively, the features of manufacture (subscript ‘m’) and acquired characteris-
tics (subscript ‘a’) of the shoe that left the mark or impression at hand. Observations
are thus described as y = (ym, ya) and x = (xm, xa). Let us note that shoes from
the same line of production may share the ‘same’ features of manufacture (e.g.,
the general pattern of a shoe sole) whereas acquired characteristics (e.g., accidental
damage through wear) are specific to each shoe.

When a suspect’s shoe is available for comparative examinations, then a subse-
quent inference problem may consist in constructing a probabilistic argument to the
proposition according to which that shoe (or some unknown shoe) is at the origin
of the crime mark. The latter is a so-called ‘source-level’ proposition, commonly
denoted F . On the basis of information pertaining to such a proposition, it may be
of interest to reason about H , that is, the proposition ‘the suspect (some unknown
person) is the offender’. This inferential step will need to give consideration to
evidential relevance, denoted G (a binary proposition of the kind ‘the crime mark
has been left by the offender’). Details are presented in [174]. A summary of the
defninition of the principal nodes, that is F , G and H , is given in Table 7.1.

As noted in Section 7.1.1, a scientist’s role in evaluating evidence usually
consists in eliciting a likelihood ratio. For the application considered here, there
is literature that proposed a probabilistic inference procedure involving variables
with definitions as given above. For an inference to a crime level proposition (H ),
that procedure involves a likelihood ratio, V , of the following form [149]:

V = IP (ym, ya, xm, xa | H)

IP
(
ym, ya, xm, xa | H̄

) = rw Vm Va + (1 − rw), (7.2)

Table 7.1 Summary of the definitions of the nodes F , G and H .

F(F̄ ) : the crime mark was made by the suspect’s
shoe (some other shoe)

G(Ḡ) : the crime mark has (has not) been left by the offender
H(H̄ ): the suspect (some other person) is the offender
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Figure 7.2 Bayesian networks for evaluating mark evidence (partially adapted
from [47]). The definition of the nodes are given in the text. Reproduced with
permission of Elsevier Ireland Ltd.

with r denoting IP (G), w denoting IP (F | G, H) and Vm and Va representing,
respectively, the following ratios:

Vm = IP (ym | xm, F )

IP
(
ym | F̄

) , Va = IP (ya | xa, F )

IP
(
ya | F̄

) .

Figure 7.2(i) shows a Bayesian network that appropriately encodes the various
conditional independence assumptions encapsulated in Equation (7.2).

A more formal demonstration of this can be found in [448].
A numerical specification of the Bayesian network is not pursued in further

detail here because the assignment of specific numerical values makes only sense
with respect to a particular scenario. The extent of considerations that this may
amount to is outlined in [149].

Although, at first glance, the proposed model is of rather unspectacular topol-
ogy, it captures a series of subtle considerations which may otherwise not be easy
to convey. Examples include the following:

• The component observations pertaining to features originating from a shoe-
sole’s features of manufacture and acquired characteristics contribute to the
overall likelihood ratio through multiplication.

• The absence of arcs between nodes with subscripts ‘a’ and ‘m’ reflects an
assumption of independence between features of manufacture and wear. The
validity of such an assumption depends on the type of wear and the way in
which it has been described [149].

• If some other shoe is at the origin of the crime mark (that is, F̄ being
true), then the probability of the observations pertaining to the crime mark
(nodes ym and ya) are not affected by knowledge of the patterns left by the
suspect’s shoe (nodes xm and xa).



INFERENCE PROBLEMS IN FORENSIC SCIENCE 123

The practical interest in the proposed network consists in its capacity to store a
basic inferential structure and to offer a way to interface probabilistic judgements
of different kind (including their updating as required). For example, the probabil-
ity IP

(
ym | F̄

)
, that is, the probability of the observed manufacturing features given

that the crime mark had been left by some other shoe, can be estimated from a
relevant database and/or information on sales and distribution obtained from a man-
ufacturer or supplier (provided that model and manufacturer has been identified).
Notice that the probability IP

(
ym | F̄

)
may also be investigated through sensitivity

analyses because of the effect it has on the magnitude of the likelihood ratio [47].
At other instances, such as the nodes G (evidential relevance) or H (‘prior’

probability of guilt), the Bayesian network involves probabilistic assessments that
typically require information in the hands of a recipient of expert information (e.g.,
a judge). Here, the Bayesian network can take the role of clarifying and delim-
iting the respective areas of competence of forensic scientists and recipients of
expert information. It allows one to show how these actors may draw their atten-
tion on how to collaborate towards a meaningful and complementary probabilistic
assessment without the need to care about various underlying lines of algebra.

Yet another feature of the model is its flexibility to accommodate – given only
minor changes in network specification – inference problems of similar kind. One
example is mark evidence on fired bullets [47]. Such marks are the result of a
bullet’s passage through a firearm’s barrel, a processus which may provoke sets
of distinct traits. These, too, can be described as originating from the respective
barrel’s manufacturing features and acquired characteristics. Figure 7.2(i) shows a
Bayesian network that is amenable for evaluating such evidence. One would solely
need to eliminate the node G (i.e., the relevance factor). In the context, uncertainty
about relevance is, usually, not an issue since bullets from crime scenes have been
selected precisely because they induced a particular damage.

It may be, however, that scientists wish to be more specific in the way in which
marks originating from a barrel’s acquired features are described. Specifically, a
concept frequently invoked in settings involving firearms is known as the number
of ‘consecutive matching striations’ (CMS), observable between marks present on,
respectively, a bullet in question and a bullet fired under controlled conditions
through the barrel of a suspect’s weapon. Within a Bayesian approach, such a
descriptor would require scientists to assess probabilities of observing a given
number of matching striations conditional on knowing F and F̄ , respectively.

The Bayesian network shown in Figure 7.2(i) can be modified to accommodate
CMS data by adopting a node with states numbered, for instance, 0, 1, 2, . . . , 10
[47]. Such a network is shown in Figure 7.2(ii). Following literature on the topic,
the probability of observing a given number of CMS can be expressed in terms
of a Poisson distribution. For the purpose of illustration, Figure 7.2(iii) shows a
Bayesian network with an expanded node cms (initialized state). Using sample
data from [69], the probability table of this node can be completed automatically
by means of the following expression (using Hugin language):

if(F==true,Poisson(3.91),Poisson(1.325)).
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This particular feature appears interesting insofar as it allows one to show that
one can readily refine selected parts of an existing model without the need to review
the derivation of the entire probabilistic inference procedure.

7.3.2 Application 2: Inference based on results of DNA
profiling analyses

DNA profiling analyses performed on genetic markers, most often short tandem
repeat (STR) markers (i.e., regions on DNA with polymorphisms that can be used
to discriminate between individuals; Section 7.2.3), currently represent the standard
means to obtain relevant information for investigating various questions of relat-
edness. For each marker included in an analysis, the genotype is noted. The latter
consists of two genes whereas one is inherited from the mother and the other from
the father (although one cannot observe which is which). Basic Bayesian network
fragments (due to [117]) that capture an individual’s genotype for a given marker
or the transmission of alleles to descendants (children) have earlier been mentioned
in Section 7.2.2 (Figure 7.1). The aim of this section is to illustrate how such sub-
models can be combined in order to approach more complex scenarios, typically
encountered in day-to-day laboratory practice (i.e., casework) or proficiency testing
(as part of laboratory quality assurance).

Let us imagine the following scenario. There are two individuals (offspring,
denoted here child c1 and child c2, respectively) who share the same two parents
(mother m1 and father f). A third individual, c3, known to have a mother m2
different from m1, is interested in examining the degree of relatedness with respect
to c1 and c2 (e.g., half-sibship versus unrelated). Notice that f is considered as a
putative father of c3. A particular complication of the scenario consists in the fact
that f is deceased and unavailable for DNA testing.

The currently considered scenario can be studied through a Bayesian network
as shown in Figure 7.3.

This network can accommodate DNA profiling results for a single marker. The
structure of the model can be explained as a logical combination of submodels
that themselves may be a composition of model fragments. Examplar submodels
denoted (a), (b) and (c) are highlighted through rounded boxes with dotted lines
(other submodels may be chosen).

The submodel (a) represents the genotypes of the individuals c1 and c2 as a
function of the genotypes of the undisputed parents m1 and f. As may be seen,
the submodel (a) is itself a composition of a repeatedly used network fragment
earlier mentioned in Section 7.2.2 (Figure 7.1(i)). The same network fragment is
invoked to implement the genotype of the individuals c3 (submodel (b)) and m2
(submodel (c)).

A noteworthy constructional detail connects the two submodels (a) and (b). As
there is uncertainty about whether f is the true father of c3, the paternal gene of c3,
c3pg, is not directly conditioned on f’s parental genes (that is, fmg and fpg). Such
uncertainty is accounted for through a distinct node tf = f ? that regulates the
degree to which f’s allelic configuration is allowed to determine c3’s true father’s
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Figure 7.3 Bayesian network for evaluating a relatedness testing scenario: c, f ,
m (in the first place) and tf denote, respectively, child, father, mother and true
father; nodes with names ‘. . . mg’ and ‘. . . pg’ denote, respectively, an individual’s
maternally and paternally inherited genes; nodes with names ‘. . . gt’ represent an
individual’s genotype; the node tf = f ? is binary with values ‘yes’ and ‘no’ in
answer to the question whether the undisputed father f of the children c1 and c2
is the true father of the child c3.

parental genes, represented here as tfmg and tfpg. Table 7.2 illustrates the way
in which the conditional probability tables of the nodes tfmg and tfpg need to
be completed. Notice further that the values γ14, γ16 and γx are relevant allelic
frequencies that are also used for specifying the unconditional probability tables of
the nodes m1mg, m1pg, fmg, fpg, m2mg and m2pg.

The use of Bayesian networks for the study of inference problems involving
results of DNA profiling analyses currently is a lively area of research with impor-
tant practical implications. In view of the fact that in forensic applications of DNA
typing technology one may need to handle degraded or incomplete sets of evidence,

Table 7.2 Conditional probability table for the node tfpg.
The nodes fpg and tfpg denote father and true father pater-
nal gene, respectively. The states 14, 16 and x are, as
outlined in Section 7.2.3, sample numbers of STR repeats
for a given marker. γ14, γ16 and γx are relevant population
frequencies of the alleles 14, 16 and x. The node tf = f ?
is a binary node with states ‘yes’ and ‘no’ as possible
answers to the question whether the individual f is the
true father of c3. An analogical table applies to the node
tfmg.

tf = f ? : yes no

fpg : 14 16 x 14 16 x

tfpg : 14 1 0 0 γ14 γ14 γ14

16 0 1 0 γ16 γ16 γ16

x 0 0 1 γx γx γx
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along with additional complications such as genetic mutation, inference modeling
may often require case specific analyses. The versatility of Bayesian networks
makes them particularly well suited for this purpose.

7.4 Conclusions

The evaluation of scientific evidence in forensic science requires the construction
of arguments in a balanced, logical and transparent way. Forensic scientists need to
clarify the foundations of such arguments and to handle sources of uncertainty in a
rigorous and coherent way. These requirements can be appropriately conceptualised
as reasoning in conformity with the laws of probability theory, even though the
practical implementation of such a view may not always be straightforward – in
particular where real-world applications need to be approached.

It is at this juncture that Bayesian networks can be invoked as a means to handle
the increased complexity to which probabilistic analyses may amount in forensic
applications. As a main argument, this chapter has outlined that the construction of
viable Bayesian network structures is feasible and, by no means arbitrary, because
of the ways through which the reasonabless of inference models may be argu-
mentatively underlined. Bayesian networks should not be considered, however, as
a self-applicable formalism and, generally, there is seldomly a uniquely ‘right’
model for an issue of interest. Often, a careful inspection of the inference problem
at hand is required, along with consideration to be given to possibly preexist-
ing evaluative procedures. These can provide useful indications on how to derive
appropriate network structures.

A sketch of the wide range of considerations that may be considered in the
construction of Bayesian networks for inference problems in forensic science is
given in this chapter in both, a rather general formulation (Section 7.2) as well as
in terms of two sample applications (Section 7.3). The proposed Bayesian networks
illustrate – with the advent of powerful Bayesian network software – the capacity
of the method as an operational tool and a way to provide insight in the static or
structural aspects of a model as well as in the ‘dynamics’ of probabilistic reasoning.
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8.1 Context/history

In this chapter I describe the application of BNs to conservation planning for a
threatened sea-bird, the Marbled Murrelet (Brachyramphus marmoratus), on the
coast of British Columbia, Canada. While spending most of its life on the ocean
this unusual species (family Alcidae) nests in forests, usually on large branches
of old-growth trees, widely dispersed at low densities as far as 50 km inland [71].
During the breeding season they commute twice daily from the ocean to incubate
or feed their young. This nesting strategy has resulted in a conflict with com-
mercial logging, historically considered the primary threat to the species and the
focus of the analyses presented here. Additional threats to the species while at
sea include changes in forage abundance and distribution with climatic change
and ocean exploitation, fishing by-catch, and oil spills. As a consequence of these
threats, the murrelet is listed as threatened under the Canadian Species at Risk
Act, and is the subject of conservation efforts and land-use planning in British
Columbia.

Setting quantitative conservation objectives for murrelets and conservation in
general has been an elusive goal [450]. To support conservation planning efforts
and land-use decisions involving this species, I led a team that developed

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd



128 CONSERVATION OF MARBLED MURRELETS IN BRITISH COLUMBIA

decision-support models using BNs as our analytical framework. The models were
used to examine the implications to murrelet abundance and viability (chances
of the population persisting through time) of alternative nesting habitat goals
(amount and characteristics), or alternatively the amount and characteristics of
habitat consistent with desired population size and viability targets. We applied
the analyses at the coast-wide scale to assist the setting of goals among six large
conservation regions [444, 445], and at a watershed scale (topographic units typi-
cally 10 000–50 000 hectares in size) to assess alternative land-use scenarios for a
1.7 million hectare area of the northern mainland coast region [443].

Our models are a form of habitat-linked population viability analysis (PVA).
PVA is a widely used methodology for assessing conservation priorities and risks
to species persistence [41]. PVA commonly uses population projection models
to estimate population longevity (mean length of time the population is pro-
jected to persist). Our application is habitat-linked in that nesting habitat quan-
tity and quality is directly linked to the population model. Usually, as I present
here, mean persistence time is converted to the probability that the population
will persist (persistence probability) over some particular time frame of inter-
est [191].

We confronted many of the challenges found in other applications of PVA, such
as defining the appropriate structure of the models, and a lack of data for param-
eterization [289]. PVA is therefore often best used to rank hazards and assess the
relative effectiveness of policy choices [62] and that is the main way we used it.
We treat persistence probability as a measure of population resilience: the abil-
ity of the population to recover from environmental variability and/or infrequent
catastrophes.

There were multiple users of the modeling results, and application is contin-
uing. Users included the Canadian Marbled Murrelet Recovery Team (CMMRT,
a multi-agency technical committee tasked with planning conservation strategies),
provincial resource management agencies, and the technical advisory team and
planning table for the multi-stakeholder North Coast Land and Resource Manage-
ment Plan (LRMP) land-use planning process.

We selected the BN approach as meeting several requirements. First, using a
BN approach enforces explicit consideration of the logic and assumptions in mod-
eling ecological systems and in making management recommendations. Second,
it allows an intuitive, visual approach to model building through influence dia-
grams. Third, it provides a means for combining direct use of field data, results of
statistical analyses, simulation output, analytical equations, and expert opinion in
one summary model. Fourth, uncertainty is explicitly incorporated and displayed
through the potential node state values (the values a node can assume), belief prob-
ability weightings for each state, and by the propagation of uncertainty through the
network. Fifth, the BN structure and software include useful functionalities for
sensitivity analyses, model updating/validation from case data, inducing reverse
findings, processing of management scenarios as case data generated by other types
of models, and rational model simplification through node absorption. I provide
examples of each of these features.
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8.2 Model construction

For the coast-wide policy assessment the modeling team first developed conceptual
models as influence diagrams (Figure 8.1). We divided the analyses into three
components:

1. a Habitat Quality Index BN applied at the forest site scale (1–1000 ha
of relatively homogenous forest) to predict relative nesting probability or
abundance;

2. a Nesting Capacity BN to estimate maximum nesting abundance at water-
shed and regional scales;

3. a Population Model BN (two versions) to estimate future population sizes
and viability at the region and coast-wide scales. This phase went through
multiple iterations until models acceptable to the team were in hand.

Forest Attributes Elevation and Slope

Access to Nesting Platforms

Nesting Habitat
Quality

Nesting Capacity

Population
Change

Nesting Platform Abundance

Distance from Ocean

At-Sea Conditions
Population Size/Viability

Nesting Capacity

Hectares of Habitat

Figure 8.1 Preliminary influence diagram of the murrelet analysis. Starting from
the bottom, risk to murrelet populations (Population Size/Viability) is a function
of At-Sea Conditions (survival and breeding condition) interacting with on-shore
Nesting Capacity, the number of nesting pairs the forest habitat can support. Nest-
ing Capacity is in turn conditional on Distance from Ocean, Hectares of Habitat,
Nesting Platform Abundance (occurrence of suitable nesting sites), and physical
Access to Nesting Platforms, the latter two in-turn predicted by biophysical inputs
such as Forest Age and Forest Height. The analyses was then broken into three
separate components for developing detailed BNs; Nesting Habitat Quality, Nesting
Capacity, and Population Change.
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The team then held workshops with the CMMRT and other species experts to
further revise the model structure and parameters. In the final stage, we conducted
policy scenario experiments and formally reported the results [444].

For the northern mainland coast land-use planning application, I modified the
coast-wide models which were then further reviewed by a technical committee,
revised, and applied to land-use scenarios [443]. These results were incorporated
into an overall environmental risk assessment presented to the land-use planning
team.

We applied a variety of methods to build the node contingency probability
tables (CPTs) in the models, including:

• expert opinion entered directly into CPTs or described by equations that were
then converted into CPTs by Netica;

• probabilistic equations developed through external statistical analyses (e.g.,
regression equations and their standard errors);

• the use of case files (tab delimited text files) of field data that populate the
CPTs based on observed state-value frequencies;

• the use of case files of results generated by external simulation modeling.

I illustrate the use of each of these approaches in the examples that follow.
The Habitat Quality Index (HQI) submodel (Figure 8.2) predicted a relative

nesting habitat suitability index (representing likelihood of use by murrelets) for
forest sites. The three key influences on nesting included abundance of potential
nesting platforms (horizontal, large diameter, moss covered tree limbs), physi-
cal access to those platforms through the forest canopy (the upper layer of tree
branches), elevation, and distance from the sea. The input nodes (those with no
arrows leading to them or only from the Biogeoclimatic Variant1 node) represent
the biophysical inputs considered predictive of platform abundance and physical
access, or are modifiers (i.e., Distance from Sea and Elevation) of over-all habi-
tat quality. An arrow from one input node to another input node (e.g., forest Age
Class → Height Class) indicates a correlation between them, with height class
(the top height of the main forest canopy) in part conditional on forest age (the
age of the trees dominating the main forest canopy).

If there were missing values for one variable, rather then assuming total igno-
rance the missing state value was inferred probabilistically based on those corre-
lations. All the forest attribute input nodes were conditional on the Biogeoclimatic
Variant which was also used as a predictor for elevation and distance from the sea
if those parameters were not directly available.

Platform Abundance/ha is an example of an intermediate node which had the
CPT populated directly from field data. Data sets from two areas on the coast
relating observed platform abundance to forest characteristics were applied through

1Ecological land classification applied in British Columbia [314]. Variants are geographical units of
similar climate.
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% Slope

% Edge

Canopy Complexity Canopy Closure Class
Gentle 64.4

Uniform 34.2 0 to 3 5.80
3 to 7 89.5
7 to 8 4.65

Complex 65.8
Moderate 24.4
Steep 11.3

0 to 20 50.0
20 to 100 50.0

30.8 ± 27

35 ± 30

Access to Platforms
Good 39.4

Platform Abundance/ha
0 to 25 46.0
25 to 100 10.8
100 to 150 11.6
150 to 200 12.2
200 to 400 11.6
> = 400 7.80

Moderate 31.1
Poor 29.5

0.82 ± 0.16

Distance to Sea (km)
0 to 20 96.1
20 to 40 3.84
40 to 60 .028
60 to 80 .028

10.8 ± 7

4.91 ± 1.5

122 ± 150

Habitat Quality Index

Elevation (m)

Biogeoclimatic Variant

0 to 600 81.3

ATp 0.11
CWHvh2 61.0
CWHvm 18.8
CWHvm1 0 +
CWHvm2 0 +
CWHwm 4.88
CWHws1 0.34
CWHws2 1.08
ESSFwv 0 +
MHmm1 6.43
MHmm2 1.52
MHwh1 5.90

600 to 1200 15.8
1200 to 1500 2.86

0.2 to 0.3 3.11
0.1 to 0.2 3.36
0. to 0.1 48.5

0.3 to 0.4 3.40
0.4 to 0.5 4.64
0.5 to 0.6 5.77
0.6 to 0.7 6.83
0.7 to 0.8 6.84
0.8 to 0.9 5.83
0.9 to 1 11.7

425 ± 3200.358 ± 0.35

Age Class
7 1.29
8 30.9
9 67.8

8.67 ± 0.5

Height Class

3 35.1
2 13.8

4 28.5
5 16.5
6 6.05

3.66 ± 1.1

Figure 8.2 Habitat Quality Index BN. The probability distributions shown here are
the starting conditions (circa 2001) for the North Coast planning land-use planning
area [443].

a case file. An important issue was the weighting to apply to the case file vs. the
prior probability of the node states, starting with equal probabilities representing
complete ignorance. Netica prompts for a weighting to apply to the case file vs. prior
probabilities. In this instance we chose to apply a very high weighting to the case
file data (109) and a very low weighting to the uniform prior probabilities (10−9),
in effect causing the CPT to reflect only the case data. In contrast, the Access to
Platforms node was parameterized using expert opinion entered directly in the CPT.

The final output node Habitat Quality Index was adapted from [32] as pre-
sented in [71, page 81]. We expressed the relationship as a probabilistic equation
(Figure 8.3), modified based on expert opinion by physical access to platforms,
distance to sea, and elevation.

For the spatially explicit application on the northern coast, each watershed was
processed through the HQI model. Case files were first output from a spatially
explicit landscape simulation model.2 These files provided the number of hectares
(the case weighting factor or NumCases field in Netica case file structure) by
watershed, biogeoclimatic variant, forest age class, height class, and canopy closure
class (the proportion of the land surface obscured by a vertical projection of the
forest canopy). These files were then processed through the BN (process cases
feature of Netica) creating an output case file of the expected value and standard
deviation of HQI by watershed.

2Simulates landscape change through time, recording forest condition for each hectare of the land-
scape.



132 CONSERVATION OF MARBLED MURRELETS IN BRITISH COLUMBIA

Figure 8.3 Node equations for Habitat Quality Index. Equations are similar to
Java or C++ programming language format. HQI is the product of a negative
exponential function of node Distance to Sea (equation variable Distance), linear
function of node Access to Platforms (equation variable Access), and a Weibull
function of node Platform Abundance/ha (equation variable Platforms). Platform
density in the Weibull function declines with node Elevation (equation variable
Elev), expressed as a 0.6 multiplier of platform abundance for Elevation state 1
(600–1200 m), and 0.8 for Elevation state 2 (1200 m +).

We then processed that case file through the Nesting Capacity BN (Figure 8.4).
This model applied regression equations (including standard error of the esti-
mates) to estimate the density of murrelets using each watershed (node Commuting
Birds/1000 ha (radar))3 as a function of the expected value of HQI (Mean Habi-
tat Quality) [443]. This was then multiplied by the proportion of birds that breed
(Proportion Nesting Females) to estimate Nesting Density. Finally, nesting density
was multiplied by both a weighting factor for watershed accessibility (existence
of potential murrelet flight paths to sea, node LU Accessible?) and by the hectares
of potential nesting habitat (Total Hectares of Habitat) to calculate the number of
nesting pairs the watershed will support (Nesting Capacity).

3Murrelets can be counted using marine radar as they enter or exit valleys to attend the nest [72]. If
the area accessed can be defined, an estimate of murrelet density can be inferred. Both sexes commute,
and not all commuting birds are actually breeding.
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Commuting Birds/1000 ha (radar)

<1
1 to 5
5 to 10
10 to 15
15 to 20
20 to 25
25 to 30
30 to 35
35 to 40
40 to 45
45 to 50
50 to 55
55 to 60
60 to 65
65 to 70
70 to 75
75 to 80
80 to 85
85 to 90
90 to 95
95 to 100
100 to 105
105 to 110
110 to 115
115 to 120
120 to 125
125 to 130
130 to 135
135 to 140
140 to 145
145 to 150

0.39
28.2
34.5
17.4
8.74
4.50
2.53
1.40
0.83
0.51
0.32
0.21
0.14
.095
.066
.047
.033
.024
.018
.013
0.01
.007
.006
.004
.003
.003
.002
.002
.001
.001
0 +

10.4 ± 9.2

LU Accessible ?

Yes
Maybe
No

100
0
0

1

Proportion Nesting Females

0.25 to 0.3
0.3 to 0.35
0.35 to 0.4
0.4 to 0.45

16.3
37.3
34.0
12.4

0.346 ± 0.047

Nesting Capacity

0 to 1
1 to 10
10 to 125
125 to 375
375 to 750
750 to 1000
1000 to 2000
2000 to 3000
3000 to 4000
4000 to 5000
5000 to 6000
6000 to 7000
7000 to 8000
8000 to 9000
9000 to 10000
10000 to 11000
11000 to 12000
12000 to 13000
13000 to 14000
14000 to 15000
15000 to 16000
16000 to 17000
17000 to 18000
18000 to 19000
19000 to 20000
20000 to 21000
21000 to 22000
22000 to 23000
23000 to 24000
24000 to 40000

11.2
0.19
7.52
40.7
27.2
8.76
4.00
0.36
.059
.013
.003
0 +

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

408 ± 380

Total Hectares of Habitat

Nesting Density/1000 ha

<1
1 to 5
5 to 10
10 to 15
15 to 20
20 to 25
25 to 30
30 to 35
35 to 40
40 to 45
45 to 50
50 to 55
55 to 60
60 to 65
65 to 70
70 to 75
75 to 80
80 to 85
85 to 90
90 to 95
95 to 100
100 to 105
105 to 110
110 to 115
115 to 120
120 to 125
125 to 130
130 to 135
135 to 140
140 to 145
145 to 150
150

14.3
63.8
17.4
3.18
0.82
0.26
.097
.041
.018
.009
.004
.002
0 +
0 +
0 +

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

3.73 ± 3.7

Mean Habitat Quality

Inventory Assumptions

Figure 8.4 Nesting Capacity BN.

Alternative or competing opinions can be applied in the BNs to determine
consistency of outcomes, or to allow explicit weighting of those competing views
as a source of uncertainty. This was done in the northern coast analysis, where
there was debate over the definition of potential habitat. One opinion was that only
Height Class 4 or greater (≥28.5 m forest height) should be considered possible
habitat. Evidence from elsewhere showed murrelets sometimes nested in lower
stature forests, but there was no evidence directly from the study area to support or
refute the notion. Rather then have a win–lose debate, the nesting carrying capacity
BN included both suppositions (node Inventory Assumptions), equally weighted.
As it turned out, this uncertainty made little difference to the relative ranking of
the land-use scenarios.

We then used the nesting capacity estimates, along with murrelet survival and
reproduction estimates, in the Population Model BNs to predict potential future pop-
ulation sizes and persistence probabilities. In [444] we populated the node CPTs
in the population model BN (Figure 8.5) using results from an external population
model (written in an Excel spreadsheet). In [445] we used a different approach to
the population model (Figure 8.6). Rather than using an external Monte Carlo pop-
ulation simulation model and importing the results as a case file, we used analytical
diffusion approximation equations to calculate persistence probability directly in
the BN.

With the external population model approach we conducted 200 Monte Carlo
population simulations for each combination of input node parameter values. The
Background Vital Rates node represents combinations of at-sea demographic param-
eter probability distributions for juvenile, subadult, and adult survival, and



134 CONSERVATION OF MARBLED MURRELETS IN BRITISH COLUMBIA

External

Population Model

Simulations

Persistence 300 Yrs

0 to 5
5 to 10
10 to 15
15 to 20
20 to 25
25 to 30
30 to 35
35 to 40
40 to 45
45 to 50
50 to 55
55 to 60
60 to 65
65 to 70
70 to 75
75 to 80
80 to 85
85 to 90
90 to 95
95 to 100

17.7
7.62
4.58
3.74
3.38
2.72
2.06
2.09
2.28
2.10
1.77
2.15
1.79
1.63
1.55
1.45
1.29
1.46
1.47
37.1

53.7 ± 40

Persistence 100 Yrs

0 to 5
5 to 10
10 to 15
15 to 20
20 to 25
25 to 30
30 to 35
35 to 40
40 to 45
45 to 50
50 to 55
55 to 60
60 to 65
65 to 70
70 to 75
75 to 80
80 to 85
85 to 90
90 to 95
95 to 100

1.53
0.36
0.37
0.63
0.80
1.13
1.42
2.14
2.46
2.51
2.93
3.05
3.06
3.26
3.61
3.94
4.44
5.59
7.50
49.3

80.8 ± 24

100 Year Population 300 Year Population

% Affected by Nesting Quality

0
0.25
0.5

16.6
45.3
38.1

0.304 ± 0.18

Years to Final "K" (decline rate)

0
30
60

100
0
0

0 ± 0

Change to Recruitment-to-Sea

0.76
0.88
1
1.05

30.0
40.0
25.0
5.00

0.883 ± 0.097

Max Nesting Capacity

0
250
500
1000
2000
3000
4000
5000
6000
7000
8000
9000
10000

0.43
0.89
1.71
5.26
23.6
38.9
23.6
5.26
0.43
.013
0 +
0 +
0 +

2930 ± 1100

Immigration Correlation

0
0.5

50.0
50.0

0.25 ± 0.25

Starting % Affected

Immigration

0.01
0.02

50.0
50.0

0.015 ± 0.005

Change to Adult / Sub-Adult Survival

0.975
1

50.0
50.0

0.988 ± 0.012

Background Vital Rates

1
2
3
4
5
6
7
8

12.5
12.5
12.5
12.5
12.5
12.5
12.5
12.5

4.5 ± 2.3

Rate

Figure 8.5 Population model BN of [444] parameterized using output from an
external Monte Carlo model as case data.

proportion of females breeding (described in detail in [444]. Results were output
as a case file with a record for:

1. each combination of input parameter values;

2. the resulting length of time 90% of the simulated populations persisted
(the 90% persistence time truncated at 500 years, node External Population
Simulations);

3. the associated population size and proportion (the NumCases field in Netica
case file format) of simulations that persisted at 100 year intervals (in the
BN we presented the 100 and 300 year results).

The analytical diffusion equations approach (Figure 8.6) conceptualized pop-
ulation trajectories as a stochastic process described by a mean (node Lambda
converted in node Mean r to loge(Lambda)) and variance (node Annual Variation
(Vr)) of annual population changes; the difference between annual birth and death
rates [153, 215]. The variance represents environmental variability among years,
modified (in node Corrected Vr (Vrc)) by temporal autocorrelation (node Temporal
Autocorrelation (p)). It is this variability that makes the future outcome probabilis-
tic (uncertain) rather than deterministic for any combination of input parameter
values [58, 153]. The population trajectory is also constrained by a ceiling on the
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Starting Proportion of K

1
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0
0
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1
2
3
4
5
6

16.7
16.7
16.7
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16.7

3.5 ± 1.7

Pop Correlation (R)

0.25
0.5
0.75

33.3
33.3
33.3

0.5 ± 0.2

Temporal Autocorrelation (p)
0.25
0.5
0.75

33.3
33.3
33.3

0.5 ± 0.2

Persistence Class

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1

0.60
0.60
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2.75
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6.11
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0.772 ± 0.19

Combined-Persistence Class

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1

0.45
0.20
0.39
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4.36
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Mean Persistence Time
(Te)
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(P)

Combined Persistence Probability
(P combined)

Corrected Vr (Vrc)

Figure 8.6 Diffusion analysis population model BN of [445].

maximum number of nesting pairs (nesting habitat capacity affected by land man-
agement policies), and a lower threshold (the extinction threshold) that acts as
an absorbing boundary (i.e., if it hits the lower boundary it is deemed effectively
extinct and cannot recover).

We also applied the bet hedging approach of [58] to combine estimates from
multiple subpopulations into a coast-wide joint persistence probability (node Com-
bined Persistence Probability, the probability that at least one subpopulation will
persist). This approach views individual subpopulations as linked through correlated
environmental variation (node Pop Correlation (R)) and dispersal. Greater correla-
tion of environmental variation among regions decreases the combined persistence
probability; i.e., the chance of all populations suffering the same fate simultane-
ously increases through coincident periods of poor survival or productivity at-sea,
and through reduced compensating dispersal among populations.

An advantage of this analytical approximation approach was the ability to read-
ily change parameter values directly in the BN, thus achieving immediate results.
Especially when working in an interactive workshop setting, I found it highly
advantageous to be able to modify the model and see the results almost immedi-
ately. With the external population simulation model approach, if a new parameter
value was desired we had to rerun the external model for that value in combina-
tion with all the potential values of the other parameters. This resulted in delays
of several days or longer to run the population simulations and the import the
new results into the BN as a case file. A discussion of the merits of alternative
population modeling approaches can be found in [445].
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Marine Influences

Population Variability (Vrc)

Hectares of Old-Growth Nesting Density Years (T)

Number of Pops

Combined-Persistence Class

0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
0.9 to 1

0.45
0.20
0.39
0.79
1.41
2.31
4.36
7.83
18.1
64.1

0.874 ± 0.14

Carrying Capacity
Nesting Females (K)

Edge Effects

Figure 8.7 Simplified (using node absorption) version of the diffusion analysis BN
of Figure 8.6.

Figure 8.7 shows a simplified summary version of the diffusion analysis PVA
BN, created through node absorption. Node absorption allows the removal of nodes
while maintaining the probabilistic relationship among the remaining nodes; the
same results are obtained with findings applied in the absorbed model as in the full
model. In this instance we removed most nodes that had static parameterization,
represented intermediate calculations, or had little influence on the outcome. Users
should be aware that equations are lost in this process, and if any subsequent
changes are made to the node state values or CPTs, the resulting model will no
longer represent the original model. The main use of node absorption was to reduce
a visually complex model to a more comprehensible presentation, and in some cases
to run faster when processing case files.

8.3 Model calibration, validation and use

8.3.1 Calibration and validation

Some relationships among nodes in our models were directly calibrated using field
data. For example, between the expected value of Habitat Quality Index and the
abundance of murrelets using a watershed was statistically calibrated in the Nesting
Capacity BN using regression analyses external to the BN [443]. This relationship,
including the estimated error around those predictions, was expressed as equations
converted to CPTs by Netica.
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Model validation requires testing the calibrated model against independent data,
often followed by model updating [300, 301]. Burger et al. [73] conducted an
independent aerial assessment by helicopter of 100 forest inventory polygons in
the northern mainland coast study area. Experienced observers visually rated the
quality of the habitat using a standardized protocol based on structural attributes
such as average tree height and vertical complexity (variability of tree heights),
and the number of trees with features suitable as potential nesting platforms. They
gave the sites a ranking of from 1 to 6, with 1 being the poorest habitat and 6
being the best. I processed the forest attributes of 94 sites4 through the HQI and
Nesting Capacity BNs, comparing the predicted nesting density (expected value)
of murrelets (node Nesting Density/1000 ha) with their helicopter-based habitat
rankings (Figure 8.8).

There was a general relationship of increasing mean predicted abundance with
helicopter-survey ranking, although ranks 3 and 4 were similar in predicted density,
as were ranks 5 and 6.

I then added the helicopter ranking as an output node (Helicopter Ranking,
Figure 8.13 below) in the Habitat Quality BN, conditional on Habitat Quality Index.
To do this I processed each helicopter site through the Habitat Quality BN, out-
putting the probability of each Habitat Quality Index state (the belief vector) for
each site. I then used that output to construct the CPT for Helicopter Ranking using
the normalized mean probability of helicopter ranking class by HQI class across
the 94 sites.

Direct validation could not be done for predictions of future population size
or persistence, for management policies not yet implemented. In such situations,
careful crafting of the models, peer review, and ensuring that a suitable range of
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Figure 8.8 Comparison of the BN predicted murrelet nesting abundance (mean
expected value and standard error) with independent helicopter-based habitat rank-
ings of 94 forest sites in the North Coast study area.

4The remaining six sites did not have forest attribute data.
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plausible parameter values and model structure are applied to capture uncertainty,
was particularly important. I could, however, examine the degree of consistency
between the two PVA analyses (the external Monte Carlo model approach and the
diffusion equations approach). I generated 1000 random cases (using the Simu-
late Cases feature in Netica) from the Monte Carlo BN for 100-year persistence
probability. That case file was then applied as test data to both that originat-
ing BN and the diffusion approximation BN (for 100-year persistence probability,
to be consistent). The results in the form of confusion matrices are shown in
Figure 8.9.

When the simulated files were tested through the BN that originated them there
was a 57% error rate (the proportion of cases whose predicted value differed from
the actual value). At first consideration this seemed odd; how could there be a clas-
sification error with the model that generated the test cases? This reflects the high
uncertainty of persistence probability among individual population projections. The
simulated cases represent individual population projections drawn from the proba-
bility distribution of all outcomes of the originating BN, each with a single actual
persistence probability state value. The predicted values, in contrast, represent the
most probable value of the persistence probability node given the combination of
input node values associated with each simulated case.

When the diffusion BN was tested with the same simulated case file, the error
rate was nearly the same (slightly higher). The error rate, however, doesn’t dis-
tinguish between different degrees of error; either the actual and predicted values
agree or they don’t. Although both models had essentially the same error rate, there
was a substantive qualitative difference between the two confusion matrices. With
the diffusion BN, many cases that were in the lowest predicted persistence class
(first column of confusion matrix) for the Monte Carlo BN, moved to the second
highest predicted class (second column from the right). Closer examination of the
case file data revealed that for the 476 simulated cases with a nesting capacity of
2000 or higher, the confusion matrices were identical with both BNs (error rate of
37%); the predicted value for all those cases, with both models, was a persistence
probability state value of 0.9–1.

Three additional validation scores are shown in Figure 8.9. The Logarithmic
loss score can vary between 0 and infinity with zero the best model performance;
quadratic loss can vary between 0 and 2 with 0 being best; spherical payoff can
vary between 0 and 1 with 1 being best [325]. The interpretation of these scores is
not as intuitive as the error rate, but they better account for the degree of spread of
predicted values among alternate states. In this instance, all three scores were (as
expected) somewhat better with the Monte Carlo BN than with the diffusion BN.

Close concordance between the two models was not particularly expected, as the
demographic assumptions (survival and reproductive rates) differed between them.
In the first analysis, several scenarios assumed that the mean rate of population
growth over 100 years could be either negative or positive, whereas in the second
analysis we set long-term mean growth rate to zero, and varied the annual variation
and temporal autocorrelation of the growth rate, to induce varying amplitude and
duration of population decline. The result was that, in contrast to the diffusion
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Figure 8.9 Confusion matrices and scoring rules results (as shown in Netica) for
simulated cases tested through the Monte Carlo population model BN (upper) and
diffusion model BN (lower). The Actual column is the simulated cases; Predicted
is the most probable state value prediction from processing the cases through the
model.
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analysis assessment, at lower carrying capacities the Monte Carlo analysis created
bi-modal persistence probability state distributions of either very low or very high
persistence, depending on the at-sea demographics scenario. Both analyses were
consistent, however, in the relative improvement in persistence with increasing
carrying capacity and as noted above the results of the two models converged
above a nesting carrying capacity of 2000 pairs.

8.3.2 Model use

We used the models in both reactive and proactive ways. Reactive use processed
externally proposed policy or land-use scenarios through the BNs and presented the
outcomes (nesting density and carrying capacity, median population size through
time, and persistence probability). Because there was voluminous output (a prob-
ability distribution for each node of interest for each combination of input node
values), we usually presented the expected value (the mean, or probability-weighted
state value) of output nodes in map or graphical form (Figures 8.10 and 8.11).
New scenarios were then proposed and similarly processed in an iterative manner.
Results of the Monte Carlo based modeling of [444], the diffusion analysis of [445]
and a multi-vertebrate analysis of minimum viable populations [390] were in broad
agreement that coast-wide population sizes of 12 000+ nesting pairs are resilient
(show high intrinsic tendency to persist) regardless of parameterization or model
structure.

Proactive use solved networks backwards to find combinations of input values
consistent with a desired outcome (i.e., persistence probability or nesting den-
sity). This provided up-front information to decision makers as opposed to strictly
reactive analysis.

Sensitivity analyses were also very useful for examining model behavior and
identifying which parameters are most influential on outcomes, and thus perhaps
most deserving of management attention, calibration/validation efforts, or research.
We applied the variance reduction measure [303, Appendix B] to examine the influ-
ence of individual nodes on persistence probability estimates. With this approach
each node was individually varied by applying a large number of findings weighted
according to the state probabilities and measuring change in the response node. All
other nodes remained static, applying their respective state probabilities. Alter-
natively, we could have set beliefs for some or all nodes to some other desired
distribution prior to conducting sensitivity analyses. Uniform distributions would
have implied all state values are equally realistic.

In some situations, sensitivity analyses may be the most useful application, espe-
cially for speculative models or in cases of extreme uncertainty. In our example, we
could seek on-shore nesting habitat policies that reduce sensitivity of persistence to
conditions at sea (Figure 8.12) rather than focusing on the persistence probability
estimates themselves that had high uncertainty (represented by the probability dis-
tribution among state values).

Proactive use proposes management solutions consistent with desired outcomes
rather than assessing externally proposed management policies. When a finding



CONSERVATION OF MARBLED MURRELETS IN BRITISH COLUMBIA 141

Figure 8.10 Map of the starting condition (circa 2000) for murrelet nesting density
in the North Coast Land and Resource Management Plan area. The darkest shaded
watersheds account for the highest density 20% of the landscape as predicted by the
nesting density BN, the lightest shading the lowest density 20%. This map helped
stratify the plan area in terms of importance as nesting habitat. Similar maps were
produced for alternate future landscape scenarios.
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Figure 8.11 Expected value of persistence probability (equal weighting of 100–500
year time-frames) as a function of amount of habitat and nesting density for a single
population (upper) and multiple populations (lower) for the diffusion analysis BN.
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improvement in expected value of persistence of 0.05. Intervals between contours
represent combinations of hectares and nesting density with similar persistence
probability. Figures are adapted from [445].



CONSERVATION OF MARBLED MURRELETS IN BRITISH COLUMBIA 143

0

2

4

6

8

10

12

3000 6000 9000 12000 15000 18000

Total Nesting Carrying Capacity (pairs)

V
ar

ia
nc

e 
R

ed
uc

ti
on

 (
/1

00
0)

P
er

si
st

en
ce

 P
ro

ba
bi

lit
y

2

3

4

5

6

N
um

. P
ops.

IUCN 'Vulnerable' CMMRT

Figure 8.12 Sensitivity of persistence probability to the weighting of at-sea demo-
graphic parameters (for the diffusion PVA BN) as a function of total nesting
capacity and number of subpopulations. Dividing the population among six sub-
populations was clearly more efficient at reducing sensitivity to at-sea demographic
uncertainty. With 4+ populations there appears to be minimal incremental benefit
above about 12 000 pairs. The dashed line is a fitted power function for six sub-
populations. The two vertical arrows represent the IUCN vulnerable threshold for
population size (10 000 mature individuals or 5000 pairs), and interim advice of
the Canadian Marbled Murrelet Recovery Team (CMMRT, 70% of 2001 estimated
population). This was conducted using the Sensitivity to Findings feature in Netica.

is entered in an output node the beliefs (the marginal posterior probabilities) of
intermediate and input nodes are automatically updated to be consistent with the
finding. I illustrate this in Figure 8.13, where my purpose was to pose a feasible
combination of input conditions consistent with a nesting capacity of 3500 pairs
for total habitat amounts of either 400 000 or 100 000 hectares. These solutions
could then be posed as potential management scenarios/targets in the northern
coast spatial-temporal landscape model.

It is important to examine the proposed solutions closely. With the 100 000 ha
scenario (Figure 8.13, bottom) we can see that the objective was only met if higher
quality forest is retained (i.e., Platform Density and Helicopter Ranking nodes are
weighted to higher value states). Height Class 3 forest was abundant in the circa
2000 landscape (Figure 8.2), but only 53% was predicted to be in the top four
platform density classes and thus potentially suitable for inclusion in the 100 000
ha scenario. Confirmation of the suitability of retained areas would be impor-
tant to achieving the objective, either using ground-based sampling of platform
abundance and/or the helicopter-based habitat ranking assessment method. For the
400 000 ha scenario, the range of platform densities and helicopter-based rankings
consistent with the outcome were wider, suggesting less importance (and cost) for
field confirmation.

Netica also has a Most Probable Explanation (MPE) function that determines
the relative likelihood for node states consistent with the chosen outcome. This
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Figure 8.13 Example scenarios for 400 000 ha (top) and 100 000 ha (bottom) con-
sistent with a nesting capacity of 3500 nesting pairs. Findings consistent with the
objective, from the Carrying Capacity model, were entered in the Habitat Qual-
ity Index node using the node Calibration feature of Netica. Not surprisingly, with
fewer hectares of habitat there was a necessary compensatory shift to higher quality
habitat.
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approach indicates the case state (or states) for each node that has the greatest
likelihood (shown in Netica with a probability bar of 100%) given findings entered
elsewhere in the network. Other state values have a smaller relative likelihood.
There is often more than one state value in a given node with a 100% probability,
indicating an ambiguous answer dependent on findings at other nodes, i.e., there is
more then one combination consistent with the chosen outcome. By sequentially
selecting 100% state-value findings in nodes of interest, one can explore possible
policy combinations.

I illustrate MPE for the diffusion PVA BN in Figure 8.14 where I sought a pol-
icy (hectares of habitat, nesting density representing habitat quality, and number
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Figure 8.14 Two Most Probable Explanation scenarios consistent with a persis-
tence probability ≥0.9. In both scenarios the at-sea demographics were assumed
worst-case, namely high inter-year variability and temporal autocorrelation of the
population change rate. Nesting densities >0.02/ha were given a likelihood of zero.
In (a) to meet the IUCN criteria for avoiding Vulnerable designation (≥90% prob-
ability of persistence over 100 years) the results suggest that ≥3 subpopulations of
≥350 000 ha supporting an average nesting density of ≥0.012/ha would be required
to maximise the likelihood of achieving the desired outcome. Also, we can see that
high persistence is less certain with increasing time scale (Years). In (b) the options
are narrowed by conservatively setting the time scale to 500 years. A minimum of
five subpopulations of 200 000 ha in each would be required to have any chance of
meeting the objective, with >300 000 ha (depending on habitat quality) required
to maximise the likelihood of success.
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Figure 8.14 (continued )

of populations) that would most likely achieve a persistence probability ≥90%.5

I conservatively set the at-sea conditions to the worst case scenario (high environ-
mental variability and autocorrelation) to bound the worst case as a starting point
towards setting a policy.

The MPE scenario was highly ambiguous (Figure 8.14a) until I narrowed the
range of possibilities for several influential nodes. In Figure 8.14b I assumed that
average nesting density will be less than or equal to half of recent coast-wide
estimates (due to lower economic cost of preserving lower quality habitat) and we
set the time frame to 500 years. The results narrowed such that at least 200 000 ha
in each of five subpopulations was required, most likely ≥300 000 ha in each. Note
that the MPE solution does not necessarily mean that high persistence probability
is assured, but rather indicates the state values most consistent with the desired
outcome.

Selecting a policy requires subjective choices of state values among the inter-
acting nodes. There were multiple combinations of hectares of habitat, quality of
habitat, and number of subpopulations consistent with the same outcome.

5The International Union for the Conservation of Nature (IUCN) threshold for Vulnerable sta-
tus is <90% persistence probability over 100 years. However, they do not provide a definition for
Least Concern. Persistence probability declines exponentially with the length of the assessment period,
thus 90% persistence probability over 100 years implies only 59% persistence probability over 500 years
(0.9500/100).
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8.4 Conclusions/perspectives

I have found BNs to be a useful tool in exploring and presenting ecological issues.
They are generally intuitive to build, apply and explain; the ability to visually
display and rapidly manipulate models is a very useful property of BN shells such
as Netica. As with any modeling technique and associated software, however, there
is a substantive learning curve to becoming proficient.

Many of the issues we encountered are common to modeling in general, center-
ing on the credibility of the models rather than technical issues of BN construction.
While the graphical representation of BNs is more intuitive than many other
multivariate approaches, this does not necessarily mean they are credible with
stakeholders. A quote from Varis and Kuikka, authors who have applied BNs in
many fisheries related and other conservation problems, resonates with me: ‘It is
not enough that one has learned and applied a methodology; it has also to be
comprehended and accepted by many others who often are not all that devoted
to methodological challenges; and launched to responsible institutions’ [473]. The
model development guidelines of [303] are crucial in this regard: careful framing
of objectives including upfront involvement of the targeted users of the results,
involving influential peers in model development so they have ownership of the
results, and formal peer review.

We also began to develop a formal decision model incorporating utility nodes
[444], but found there was little appetite for this approach among stakeholders at
the time. I think this stemmed, in part, from a reluctance to express utilities in
advance of seeing outcomes, and then having to live with the results. This was
perhaps perceived as ceding too much authority to the model and, by extension,
to the modelers. It may also reflect the fact that most stakeholders had little or no
training and experience with formal decision science. Despite those impediments,
I think formal decision models could play a useful role in many applications [343]
and is an area I would like to pursue further.

Some limitations we encountered specific to building BNs included the lim-
itation to acyclic models (i.e., no feed-back loops), and inability to cross spa-
tial/temporal scales within the same model. For simple models the former limitation
can be overcome in Netica using the time-delay links feature, but in our experience
this became unwieldy for practical application. Another solution is exporting the
probability outcomes of a network as a case file and using those as input to the
same BN in an iterative manner.

The spatial-scale limitation stems from the basic underlying concept of BNs
representing cases or entities with probability distributions of state values for each
node. Crossing scales (e.g., forest sites to watersheds) within a BN would make
the case identity ambiguous. In multi-scale analyses, separate BNs are usually
constructed for each spatial scale, with the results at one scale used as input to
another scale [302]. For our northern mainland coast application, the HQI case scale
was 1-ha raster cells output from a spatial simulation model. Each watershed was
processed through the HQI BN with the expected value for HQI and watershed ID
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exported as an output file. These were then input as cases to the Nesting Capacity
BN to estimate the nesting capacity for the plan area (expected value and standard
deviation of the Nesting Capacity node). One potential limitation this may impose is
applying decision models where the result at one scale may affect decision making
at another scale, which cannot be done simultaneously in a single BN.

There is a significant learning curve for those unfamiliar with probabilistic
reasoning. This may be worsened by cognitive factors, such as the difficulty many
people have understanding probability [15]. These problems can be minimized
through appropriate presentation (such as percentages rather than probabilities)
and elicitation of expert belief weightings [15, 301]. We did not fully recognize
these factors in our model building process, which may have hindered acceptance
of results by some stakeholders.

While ours is the first BN application I am aware of that combined spatial
modeling output, habitat assessment models, and quantitative population models,
BN’s have seen increasing application in environmental assessment and resource
management, predicting habitat supply, species distributions, population modeling,
and PVA. [472] provides a summary of the basic methodology and early history of
application. [302] presented practical model building advice that greatly influenced
our adopting the approach.

Raphael et al. [383] and Marcot et al. [301] are examples of expert-opinion
driven PVA and species conservation status assessments, while McNay et al. [311]
is an example of combining empirical data and expert models for assessing cari-
bou habitat and populations, and possible forest management and predation impacts.
Marcot et al. [301] is a good example of testing and updating expert models (pre-
dicting species occurrence) with field data. Lee and Rieman [276] used BNs to
examine viability of salmon populations in the northwest USA, and Schnute et
al. [417] used a BN-type approach to assess management options for Fraser River
(British Columbia) salmon stocks, directly incorporating stock recruitment data.
Reckhow [387] applied BNs to prediction of water quality, and gives a good dis-
cussion of their construction. Newton et al. [338] is an interesting example of
ecological models and socio-economics combined in a BN approach, examining the
impacts of the commercialisation of non-timber forest products on local livelihoods
in tropical forests of Mexico and Bolivia.
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9.1 Mineral potential mapping

9.1.1 Context

Classification and allocation of land-use is a major policy objective in most coun-
tries. Such an undertaking, however, in the face of competing demands from different
stakeholders, requires reliable information on resources potential. This type of infor-
mation enables policy decision-makers to estimate socio-economic benefits from
different possible land-use types and then to allocate most suitable land-use. The
potential for several types of resources occurring on the earth’s surface (e.g., forest,
soil, etc.) is generally easier to determine than those occurring in the subsurface (e.g.,
mineral deposits, etc.). In many situations, therefore, information on potential for
subsurface occurring resources is not among the inputs to land-use decision-making

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd



150 CLASSIFIERS FOR MODELING OF MINERAL POTENTIAL

[85]. Consequently, many potentially mineralized lands are alienated usually to, say,
further exploration and exploitation of mineral deposits.

Areas with mineral potential are characterized by geological features associ-
ated genetically and spatially with the type of mineral deposits sought. The term
‘mineral deposits’ means accumulations or concentrations of one or more useful
naturally occurring substances, which are otherwise usually distributed sparsely in
the earth’s crust. The term ‘mineralization’ refers to collective geological processes
that result in formation of mineral deposits. The term ‘mineral potential’ describes
the probability or favorability for occurrence of mineral deposits or mineraliza-
tion. The geological features characteristic of mineralized land, which are called
recognition criteria, are spatial objects indicative of or produced by individual geo-
logical processes that acted together to form mineral deposits. Recognition criteria
are sometimes directly observable; more often, their presence is inferred from one
or more geographically referenced (or spatial) datasets, which are processed and
analyzed appropriately to enhance, extract, and represent the recognition criteria
as spatial evidence or predictor maps. Mineral potential mapping then involves
integration of predictor maps in order to classify areas of unique combinations of
spatial predictor patterns, called unique conditions [51] as either barren or miner-
alized with respect to the mineral deposit-type sought.

9.1.2 Historical perspective

Methods for mineral potential mapping, based on the Bayesian probability concept,
exist. The PROSPECTOR expert system, which was developed by the Stanford
Research Institute, uses a series of Bayesian inference networks for evaluating mineral
deposits [140]. In PROSPECTOR, pieces of evidential information are propagated in
a network by application of fuzzy Boolean operators for Bayesian updating of prior to
posterior probability. Originally, spatial data were not supported by the PROSPEC-
TOR, but it was later modified to do so. It has been demonstrated by Duda et al. [140]
to predict occurrence of the Island copper deposit (British Columbia, Canada) and
by Campbell et al. [81] to map potential for molybdenum deposits in the Mt. Tol-
man area (Washington State, USA). Implementations of the PROSPECTOR system
using a geographic information system (GIS) were demonstrated by Katz [243] and
Reddy et al. [388]. A more popular GIS-based technique for mineral potential map-
ping, based on Bayes’ rule, is weights-of-evidence or WofE method [3, 52]. It was
developed to make use of spatial exploration datasets to derive posterior probability
of mineral occurrence in every unit cell of a study area. The WofE method has been
applied by many workers, e.g., by Carranza and Hale [84] to map potential for gold
deposits in Baguio district (Philippines), and by Porwal et al. [370] to map poten-
tial for base-metal deposits in Aravalli province (India). In WofE, prior probability of
mineral occurrence is updated to posterior probability using Bayes’ rule in a log-linear
form under assumption of conditional independence (CI) among predictor patterns
with respect to known occurrences of a target mineral deposit-type. It should be noted
that although the PROSPECTOR and WofE are based on the Bayesian probability
concept, they are not examples of Bayesian networks.
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9.1.3 Bayesian network classifiers

The objective of this chapter is to explain and demonstrate applications of Bayesian
networks as another tool for mapping and classifying potential for mineral deposit
occurrence. In application of Bayesian network to mineral potential mapping, each
unit cell of land is evaluated as barren or mineralized, in a continuous scale of [0,1]
interval (i.e., completely barren = 0; completely mineralized = 1), with respect to
occurrence of target mineral deposit-type based on a number of predictor patterns.
These predictor patterns are spatial attributes representing the recognition criteria,
and each unique condition is considered a feature vector containing unique instances
of such spatial attributes. A Bayesian network classifier is trained with a set of a
priori or pre-classified feature vectors (i.e., unique conditions that are associated
with known mineralized unit cells and known barren cells), and the trained classifier
is then used to process all feature vectors. The classification output is an estimate of
mineral occurrence for each unit cell in the [0,1] interval, which then can be mapped
either as continuous or binary variable, using a geographic information system
(GIS) (see [51]), to portray spatial distribution of potentially mineralized land.

A simple Bayesian network classifier that can be used in mineral potential
mapping is naı̈ve classifier [139, 264]. This classifier assumes complete CI among
predictor patterns with respect to target pattern, which is unrealistic for geological
features associated with mineralization. A naı̈ve classifier performs well, however,
in several other application domains [132, 160]. It bas been shown, nonetheless,
that the CI assumption can be relaxed in using a naı̈ve classifier [161]. Several
other Bayesian network classifiers unrestricted by the CI assumption are described
in the literature: semi-naı̈ve classifier [254]; multinet classifier [178, 201]; tree-
augmented naı̈ve classifier [161]; and augmented naı̈ve classifier [161]. If the CI
assumption must be obeyed strictly, then a selective naı̈ve classifier could be
used [265]. For mineral potential mapping, we describe below algorithms for three
Bayesian network classifiers: (1) naı̈ve classifier; (2) augmented naı̈ve classifier;
and (3) selective naı̈ve classifier. These Bayesian network classifiers are demon-
strated to map regional-scale base metal potential in part of the Aravalli province
in western India.

9.2 Classifiers for mineral potential mapping

Consider a Bayesian network B = 〈G, �〉 in which D is at the root, i.e., �D = ∅
(the notation � denotes here the set of parents of a node) and every predictor has
D as its one, and only one, parent, i.e., �i = D and �iD̄ = ∅. The joint probability
distribution of B is given by

{α ∗ IP (D) ∗
I∏

i=1

IP (PI |D)}, (9.1)

where α is a normalizing constant. This is a naı̈ve classifier as defined for example
in [264].
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Let fm = [p1j , p2j , . . . , pIj ] be an I -dimensional feature vector to be classified
as either d0 (barren) or d1 (mineralised). A naı̈ve classifier estimates the posterior
probabilities of d0 and d1 for fm by a sequential updating for every predictor:

IP
(
d1|p1j , p2j ..pIj

) =
IP

(
d1|p1j ,p2j ,..p(I−1)j

)
IP

(
pIj |d1

)
IP

(
d1|p1j ,..p(I−1)j

)
IP

(
pIj |d1

)
+IP

(
d0|p1j ,..p(I−1)j

)
IP

(
pIj |d0

) . (9.2)

If IP
(
d1|p1j , p2j ..pIj

)
is greater than 0.5, fm is classified as d1, otherwise as d0.

Augmented naı̈ve classifiers are obtained from naı̈ve classifiers by relaxing the
restriction that every predictor can have the target mineral deposit-type as the one,
and only one, parent, i.e., �iD̄ need not necessarily be a null set. An augmented
naı̈ve classifier estimates the posterior probabilities of d0 and d1 for fm using an
updating procedure similar to the one used by a naı̈ve classifier. However, while
updating the probability for every Pi , an augmented naı̈ve classifier also takes �iD̄

into account:

IP
(
d1|p1j , p2j ..pIj

) =
IP

(
d1|p1j ,p2j ,..p(I−1)j

)
IP

(
pIj |�

iD̄
,d1

)
IP

(
d1|p1j ,..p(I−1)j

)
IP

(
pIj |�

iD̄
,d1

)
+IP

(
d0|p1j ,..p(I−1)j

)
IP

(
pIj |�

iD̄
,d0

) . (9.3)

Selective naı̈ve classifiers are obtained by removing conditionally dependent
predictors from a naı̈ve classifier. They have an identical functional form as naı̈ve
classifiers. The above relations can be easily expanded for multi-state class vari-
ables. Bayesian network classifiers can therefore be applied to any generalized
classification problem in earth sciences.

9.2.1 Training of Bayesian network classifiers
The training of B involves estimation of the parameters � and the DAG G that
together provide the best approximation of conditional dependencies in U∗. Obvi-
ously, naı̈ve and selective naı̈ve classifiers are special cases of augmented naı̈ve
classifiers when G is predefined and only � is required to be estimated.

9.2.1.1 Estimation of parameters

Consider the augmented naı̈ve classifier described above. Assuming that G is given,
� can be decomposed into {�i}, where �i = {�i1,.., �iK} is the set of parameters
containing the conditional probability distribution of Pi |�i , and estimated using
conjugate analysis [380]. Because �i = {D} in the case of naı̈ve and selective
classifiers and �i = {D, �iD̄} in the case of augmented naı̈ve classifiers, these
probabilities can be directly used in Equations (9.2) and (9.3), respectively, to esti-
mate the posterior probabilities of d0 and d1.

Let T = |t1, . . . , tM| be a set of M (I + 1)-dimensional training vectors. Let
�ik = [θi1k,.., θiJk] be the parameter vector containing conditional probability dis-
tribution of Pi |πik and θijk = IP

(
pij |πik

)
be the conditional probability of pij |πik .

Let n(pij |πik) be the frequency of pairs pij |πik and n(πik) = ∑J
j=1 n(pij |πik) be

the frequency of πik in T. Assuming that �ik and �i′k are independent ∀i �= i ′
(global independence) and �ik and �ik′ are independent ∀k �= k′ (local inde-
pendence), the prior probability of pij |πik can be estimated as prior expectation
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of θijk|T0:

E(θijk|T0) = IP
(
pij |πik

) = αijk

αik

,

where T0 symbolizes ‘prior to seeing the training set T’, and the posterior proba-
bility of (pij |πik) can be estimated as posterior expectation of θijk|T:

E(θijk|T) = IP
(
pij |πik

) = αijk + n(pij |πik)

αik + n(πik)
, (9.4)

where αijk and αik are the prior hyper-parameters and local prior precisions, respec-
tively, that encode the modeler’s prior belief and are interpreted as frequencies of
real or imaginary instances of pij |πik the modeler has seen prior to the training set
T [161]. These are estimated using the following equations:

αijk = α

J ∗ K
, (9.5)

αik =
J∑

j=1

αijk, (9.6)

where J is the total number of states of the predictor Pi , K is the total number of
parents in �i and α is the global prior precision encoding the certainty in the prior
belief. Friedman et al. [161] describe criteria for selecting the value of global prior
precision. In order to avoid bias due to the prior precision, a value much smaller
than the number of training occurrences should be used (a global prior precision
of 1 is a reasonable starting point).

Thus the information conveyed by T is captured by a simple update of the
prior hyper-parameters αijk by adding the frequency of the pairs (pijk, πik) in
T. Consequently, IP

(
pij |πik

)
can be estimated directly from a contingency table

of frequencies of child-parent dependencies (for example, Table 9.1) using the
following algorithm.

Algorithm 1

1. Based on the confidence in the prior belief, select a value of the global
prior precision (α).

2. Given G and T, construct a contingency table for P1 by collecting the
frequency distribution of the child–parent dependencies.

3. Calculate prior hyper-parameters (α1jk) using Equation (9.5).

4. Substitute every [n(p1j |π1k)] by [α1jk + n(p1j |π1k)] and recalculate
marginal row totals.

5. Divide every [α1jk + n(p1j |π1k)] by the corresponding marginal row total.
Substitute every [α1jk + n(p1j |π1k)] by the result to obtain �i .

6. Repeat Steps 2–5 for every predictor Pi (i = 2 to I ) to obtain �.
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Table 9.1 Contingency table.

Pi Marginal
�i pi1 · · · pij · · · piJ row total

πi1 n(pi1|πi1) · · · n(pij |πi1) · · · n(piJ |πi1) n(πi1)
...

...
...

...

πik n(pi1|πik) · · · n(pij |πik) · · · n(piJ |πik) n(πik)
...

...
...

...

πiK n(pi1|πiK) · · · n(pij |πiK) · · · n(piJ |πiK) n(πiK)

9.2.1.2 Estimation of DAG

In the case of naı̈ve and selective naı̈ve classifiers, the DAG G is completely
predefined, i.e., it is known that (a) �D = ∅ and (b) �i = {D}. In the case of
augmented naı̈ve classifiers, G is only partially predefined, i.e., it is known �D = ∅
and {D} ∈ �i , the members of �iD̄ are not known.

In order to select the most probable DAG, it is sufficient to estimate and com-
pare the marginal likelihood of all DAGs that model all possible dependencies
in an augmented naı̈ve classifier [380]. The marginal likelihood of the DAG Gg

(g = 0 to G, where G is the total number of possible DAGs) is estimated (see
also [103]) as:

IP
(
T|Gg

) =
I∏

i=1

K∏
k=1

�(αik)

�(αik + n(πik))

J∏
j=1

�(αijk + n(pij |πik))

�(αijk)
,

where �(·) is the Gamma function [498]. The marginal likelihood of Gg can be
decomposed into local marginal likelihood g(Pi, �i) of the predictor Pi given �i

in Gg:

g(Pi, �i) =
K∏

k=1

�(αik)

�(αik + n(πik))

J∏
j=1

�(αijk + n(pij |πik))

�(αijk)
. (9.7)

Because the value of g(Pi, �i) is very small, its natural logarithm can be used:

ln[g(Pi, �i)] =


K∑
k=1

ln[�(αik)] +
J∑

j=1

ln[�(αijk + n(pij |πik))]


K∑

k=1

ln[�(αik + n(πik))] +
J∑

j=1

ln[�(αijk)]

 . (9.8)

Local log-likelihood of each predictor given a set of parents can be calculated
by substituting values for various frequencies in Equation (9.8). These values can
be read directly from a contingency table of frequencies of various parent–child
dependency (for example, Table 9.1).
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Equation (9.7) decomposes the global search for the best DAG into the com-
putationally more tractable local searches for the best sets of parents for individual
predictors. However, for a large number of predictors, even the local search for
parents can become intractable [94] and therefore conceptual genetic models are
used to limit the search space (a) by specifying a search order on the predictors,
so that the search space for the parents of a predictor is limited to its predecessors
in the search order and (b) by forbidding certain dependencies. Additionally, an
upper limit to the number of parents can be defined.

Let P = {P1, P2, . . . , PI } be the set of I predictors and let SOP = {P1 �
P2 � P3 � ... � PI }, where �i ⊆ {P1, P2, . . . , Pi−1}, be the search order on P .
Let FPi

(⊂ P ) be a set of predictors that are forbidden to be parents of Pi . The best
set of parents for Pi is estimated by adapting the K2 algorithm [103] as follows:

Algorithm 2 (Pseudocode)
Input: global prior precision (α); set of training occurrences of target deposit-type (T),
target deposit-type (D), number of predictors (I ); search order (SOP ); forbidden parents
(FPi

, i = 1 to I ) and maximum number of parents (MAX).
Output: �i(i = 1 to I )

1: START
2: set �D = ∅ {set D at the root of DAG}
3: for i = 1; i = I ; i + + do {starting with P1, iterate for every predictor in SOP }
4: �i = D {add directed arc from D to Pi}
5: calculate αijk {use Equation (9.5) to calculate prior hyper-parameters}
6: calculate αik {use Equation (9.6) to calculate local prior precision}
7: calculate ln[g(Pi,�i)] {use Eq. (9.8) to calculate likelihood of �i = {D}}
8: max{ln[g(Pi,�i)]} = ln[g(Pi,�i)] {set current likelihood as maximum likelihood}
9: for i′ = 1; i′ < i; i′ + + do {starting with P1, iterate for every predecessor of Pi}

10: while n(�i) ≤ MAX do {verify that current number of parents is less than max-
imum allowed}

11: if Pi′ /∈ FPi
then {if Pi′ is not forbidden parent of Pi}

12: �i = �i + Pi′ {add directed arc from Pi′ to Pi}
13: calculate ln[g(Pi, �i)] {use Equation (9.8) to calculate likelihood of current

�i}
14: if ln[g(Pi, �i)] > max{ln[g(Pi,�i)]}) then {if current likelihood is more

than current maximum likelihood}
15: max{ln[g(Pi, �i)]} = ln[g(Pi,�i)] {set current likelihood as maximum

allowed likelihood and save directed arc from Pi′ to Pi}
16: else
17: �i = �i − Pi′ {else remove directed arc from Pi′ to Pi}
18: end if
19: else
20: �i = �i {if Pi′ is forbidden parent, do not add directed arc from Pi′ to Pi}
21: end if
22: end while {if current number of parents is already equal to maximum allowed,

abort nested FOR loop}
23: end for {end of nested FOR loop}
24: end for {end of main FOR loop}
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9.2.1.3 Validation of classifiers: n-fold cross-validation

Most published studies on mineral potential mapping use hold-back validation,
which involves using a part (at least three quarters) of known occurrences of target
deposit-type for model training and holding back the rest for model validation. The
method, although computationally efficient, has several limitations, for example,
(a) it requires a large number of training occurrences for minimizing uncertainty
and avoiding over-fitting, (b) the validation is biased by the selection of training
and validation occurrences and (c) it does not make an optimal use of available
data. These limitations are addressed by leave-one-out validation, which involves
leaving only one occurrence out, training a model with the rest of the occurrences
and validating the model with the left-out occurrence. The process is implemented
iteratively for all sets of training occurrences. This method is extremely accurate
but computationally expensive and, in some situations, impracticable. It is pro-
posed to use n-fold cross-validation, which retains the advantages of leave-one-out
validation and, at the same time, is computationally more efficient. Given the set of
training data (T) containing M occurrences, the following algorithm can be used
to implement n-fold cross-validation.

Algorithm 3

1. Partition T into n subsets Ti (i = 1 to n), each having (M/n) samples.

2. Leave T1 out and pool remaining (n − 1) subsets to generate a new set T1̄

for training a classifier.

3. Train the classifier on T1̄.

4. Validate the classifier on T1 and record the number of correct classifications.

5. Repeat steps 2–4 for all Ti (∀i = 2 to n).

6. Report percent correct classifications for all subsets.

Clearly, the higher the value of n, the higher the accuracy of validation (at
n = M , the method becomes leave-one-out validation) and the higher the compu-
tational expense.

9.2.2 Software packages used

The above algorithms were implemented using the software package Bayesian
Discoverer [382]. ArcView GIS package was used for spatial data compilation,
processing and mapping.



CLASSIFIERS FOR MODELING OF MINERAL POTENTIAL 157

9.3 Bayesian network mapping of base metal
deposit

The methodology followed in this case study for base-metal potential mapping
in the Aravalli province using Bayesian network classifiers involves several steps
(Figure 9.1).

Step 1: Identification of base-metal deposit recognition criteria. A con-
ceptual approach [369] was used for identifying regional-scale (1:250 000)
recognition criteria for base-metal deposits in the study area and represent-
ing them as predictor maps as inputs to the Bayesian network classifiers. A
conceptual model of formation of base-metal deposits in the study area was
defined based on published studies coupled with new interpretive syntheses
of regional-scale exploration data [372]. Based on the conceptual model,
controls on mineralization and recognition criteria for base metal deposits
in the study area were identified and represented as predictor maps by pro-
cessing, interpretation and reclassification of the exploration datasets in a
GIS [369].

Step 2: Generation of unique conditions grid. A ‘unique conditions
grid map’ was generated by digital superposition of predictor maps using
ArcSDM software [245]. An attribute table associated with a unique con-
ditions grid map (unique conditions table) contains one record per unique
condition class and one field for each predictor map. In the context of a
Bayesian network classifier, each unique condition is considered a feature
vector whose attributes are defined by the attributes of the unique condi-
tion. The predictor maps were input to the Bayesian network classifiers in
the form of feature vectors.

Step 3: Modelling with Bayesian network classifiers. The Bayesian net-
work classifiers were implemented outside the GIS using the software
package Bayesian Discoverer. Each Bayesian network classifier was first
trained by estimating the model parameters from training data. The trained
classifiers were then used to process all feature vectors. The outputs for
each feature vector were imported back and joined to the respective unique
condition in the GIS.

Step 4: Generation of continuous-scale favorability maps. The outputs of
the Bayesian network classifiers for the unique conditions were mapped in
the GIS to generate continuous-scale [0,1] favorability maps. For each unique
condition, the outputs were interpreted as relative favorability values.

Step 5: Generation of binary favorability maps. Continuous-scale favor-
ability maps are cumbersome to interpret for demarcating areas of
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Figure 9.1 Flowchart of the steps used for base-metal potential mapping using
Bayesian network classifiers. Small rectangular boxes contain knowledge or maps
created at various stages and small elliptical boxes contain procedures/algorithms
used for creating the objects. Area in the dotted box represents steps/outputs per-
formed/created using a GIS environment.
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base-metal potential because they represent favorability in a continuous
scale from 0 (minimum) to 1 (maximum). A threshold of 0.5 was applied
to reclassify the continuous scale favorability maps into binary favorability
maps.

Step 6: Validation of binary favorability maps The binary favorability
maps were validated by overlaying locations of known deposits on the
binary favorability maps. This step determines the usefulness of a binary
favorability map as a guide for further mineral exploration in a study area.

9.3.1 Study area

The study area forms a part of the Aravalli metallogenic province in the state of
Rajasthan, western India (Figure 9.2). Its area is about 34 000 km2 and it is located
between latitudes 23◦30′ N and 26◦ N and longitudes 73◦ E and 75◦ E.

The province is characterized by two fold belts, viz., the Palaeo-Mesoprote-
rozoic Aravalli Fold Belt and the Meso-Neoproterozoic Delhi Fold Belt, which are
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Figure 9.2 Location map of study area in state of Rajasthan, India. Small black
circles are locations of occurrences of base metal deposits.
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ingrained in a reworked basement complex that contains incontrovertible Archaean
components [196, 211, 403]. Our work on geophysical data [372] indicates that the
province comprises a number of subparallel and linearly disposed belts (Figure 9.3),
which broadly coincide with the tectonic domains proposed in [446].

The Aravalli province holds substantial reserves of base metal deposits, partic-
ularly lead and zinc. The lead–zinc reserves in the province stand at 130 million
tones with 2.2% lead and 9.2% zinc with an additional 30 million tonnes of re-
sources in producing mines and deposits under detailed exploration [197].

A majority of the lead–zinc deposits of the province are contained in the study
area (Figure 9.3). Rampura-Agucha is a world-class zinc–lead–(silver) deposit
containing the highest amount of lead and zinc metals amongst all deposits of India.
The Bhilwara belt contains a large majority of the base metal deposits of the study
area, mainly in the Bethumni-Dariba-Bhinder and Pur-Banera areas. In the Aravalli
belt, low-grade copper, gold and uranium mineralizations occur in the oldest rocks,
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Figure 9.3 Generalized geological map of study area. Mineralized zones are out-
lined in white. White circles are locations of occurrence of base-metal deposits.
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whilst the younger rocks host the zinc–lead deposits of the Zawar area. The Jharol
belt hosts a copper–(zinc–lead) deposit at Padar Ki Pal. The South Delhi belt hosts
copper–(zinc) deposits in the Basantgarh area. The deposits of the Bhilwara and
Aravalli belts are so-called ‘sedimentary-exhalative’ (SEDEX)-type [187], while
those of the South Delhi belt show a closer affinity to the so-called ‘volcanic-hosted
massive sulfide’ (VMS)-type deposits [122]. Porwal et al. [372] identified (1) host
rock lithology, (2) stratigraphic position, (3) association of synsedimentary mafic
volcanic rocks,1 (4) proximity to regional tectonic boundaries and (5) proximity to
favorable structures as the most significant regional-scale recognition criteria for
base-metal deposits in the province.

9.3.2 Data preprocessing

In the case of mineral potential mapping, the training target variable is generally
binary with the labels ‘mineralized’ and ‘barren’. The feature vectors associ-
ated with known mineralized or with known barren locations constitute training
occurrences, which are referred to as deposit or nondeposit training occurrences,
respectively.

Appropriate preprocessing of the exploration database and selection of training
occurrences is important for a successful implementation of Bayesian classifiers.
The following two factors required especial consideration in this case study.

Firstly, conditional dependencies are generally ‘state specific’ and seldom ‘map
specific’. Consider, for example, multi-state maps of lithologies and stratigraphic
groups. In the absence of ubiquitous chronological data, stratigraphic classifica-
tions are generally made on the basis of lithological associations, which results in
significant correlations between stratigraphic groups and lithologies. These correla-
tions, however, are state specific, i.e., a particular stratigraphic group is correlated
with specific lithologies. If each map is used as a single multi-state predictor
in an augmented naı̈ve classifier and Algorithm 2 estimates a significant likeli-
hood of the map of lithologies being a parent of the map of stratigraphic groups,
then every state (lithology2) of the map of lithologies is indiscriminately included
in the set of parents of every state (stratigraphic group3) of the map of strati-
graphic groups. This may result in a large number of erroneous dependencies.
More importantly, it results in manifold increase in the number of parameters,
which may lead to over-fitting. It is therefore preferable to use 1-of-n encod-
ing [307] for transforming an n-state map into n binary maps before inputting
into an augmented Bayesian classifier. This forces the algorithm to search for
dependencies amongst individual states and hence only true dependencies are iden-
tified.

1Dark-colored rocks rich in magnesium and iron.
2A rock unit defined on the basis of diagnostic physical, chemical and mineralogical characteristics.
3A group of rock units closely associated in time and space.
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Secondly, exploration data sets are highly imbalanced and biased towards the
barren class. If deposit and nondeposit occurrences are represented in the training
set in the same proportion as they are expected to occur in the general population,
then the performance of a Bayesian classifier is optimized for recognizing nonde-
posit occurrences rather than deposit occurrences. This may give rise to a large
number of type II errors, which have severe consequences in mineral potential
mapping. The problem can be addressed by using ‘one-sided selection’ [257] to
balance the number of deposit and nondeposit occurrences in the training set. Both
data-driven and knowledge-driven approaches can be used to select nondeposit
occurrences. In a data-driven approach, nondeposit occurrences can be randomly
selected from feature vectors that have been modeled previously (e.g., via Weights
of Evidence method) as having very low probability of occurrence for mineral
deposit-type of interest. In a knowledge-driven approach, feature vectors that are
least likely to be associated with the target mineral deposit-type are selected based
on expert knowledge of genetic mineral deposit models.

9.3.3 Evidential maps

A regional-scale GIS was compiled by digitizing the lithostratigraphic map [194],
the structural map [195] and the map of total magnetic field intensity [181]. Loca-
tions of 54 known base metal deposit/occurrences were compiled from various
sources. The digitized maps were converted into grid format, processed, interpreted
and reclassified to create evidential maps for the recognition criteria. In all, five
evidential maps were generated: two multi-state evidential maps of (1) lithology
and (2) stratigraphy; and three binary evidential maps of (1) mafic igneous rocks
(2) buffered regional lineaments (3) buffered fold axes were generated.

The multi-state evidential maps of lithologies and stratigraphic groups were
transformed into 13 binary evidential maps through 1-of-n encoding. Of these, 13
binary evidential maps, 11 were used in subsequent processing (two binary maps
comprising lithologies and stratigraphic groups that have no known relationship
with the base metal mineralization in the province were not used). The resulting
14 binary maps were superposed and unique combinations of the maps in unit areas
of 1 km2 were mapped to generate a map constituting 519 feature vectors. As the
operation was carried out in a GIS environment, an associated database table was
automatically generated, which held the components of the feature vectors. In the
table, each feature vector is described by a unique identification number and 14
components representing each evidential map encoded as either present or absent.

9.3.4 Training of Bayesian network classifiers

The feature vectors associated with known occurrences of base metal deposits were
extracted to create a subset of 54 deposit occurrences. An equal number of feature
vectors, which were considered, on the basis of expert knowledge, least likely to
be associated with base metal deposits were extracted to create a subset of 54
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nondeposit occurrences. The two subsets were merged to generate a training set
containing 108 deposit/nondeposit occurrences.

Algorithm 2 was implemented using Bayesian Discoverer software to train an
augmented naı̈ve classifier using the training set to determine the DAG that best
simulates the dependencies in the data. To limit the search space, (a) dependencies
amongst the binary maps of lithologies and amongst the binary maps of stratigraphic
groups were forbidden, (b) the maximum number of parents for each predictor was
set to three and (c) the following search order was specified:

Buffered regional lineaments � Lithologies � Buffered fold axes

� Mafic igneous rocks

� Stratigraphic groups.

The above search order is based on the following considerations:

• The regional lineaments represent fundamental tectonic features (extensional
faults) in the Aravalli province [372]. Therefore there is little possibility
of the map of buffered regional lineaments being dependent on any other
predictor.

• A (metamorphosed)-sedimentary rock is a product of its basin environment,
which, in turn, is controlled by basin tectonics [365]. Therefore there exists
a possibility of dependence of the maps of lithologies on the map of buffered
regional lineaments. However, there is little possibility of the maps of litholo-
gies being dependent on any of the other predictors.

• Folding obviously postdates rifting and sedimentation and therefore there can
be no possibility of the map of buffered fold axes being a parent of either
the map of buffered regional lineaments or the maps of lithologies.

• The regional lineaments mark the extensional faults that could be possible
conduits for the mafic rocks in the province [372]. Therefore there exists a
possibility of the map of buffered regional lineaments being a parent of the
map of mafic igneous rocks.

• Stratigraphic classification of the province in various groups is largely based
on regional tectonic boundaries, lithological associations and deformation
patterns [196]. Therefore there exists a strong possibility of the binary maps
of stratigraphic groups being dependent on several of the other predictors.

After determining the DAG of the augmented naı̈ve classifier, a selective naı̈ve
classifier was constructed by removing the conditionally dependent predictors.
The DAGs of the trained naı̈ve, augmented naı̈ve and selective naı̈ve classifiers
are shown in Figures 9.4–9.6. In the figures, nodes and directed arcs represent
binary predictors and conditional dependencies, respectively. Parameters associated
with Rajpura-Dariba group are shown for illustration. The parameters (conditional
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Figure 9.4 Trained Bayesian network classifiers for base-metal potential mapping
in study area: naı̈ve classifier.

probabilities) associated with every node in each classifier were estimated using
Algorithm 1. A 25-fold cross-validation was implemented to validate each clas-
sifier. The augmented naı̈ve classifier performs the best, followed by the naı̈ve
classifier and then the selective naı̈ve classifier (Table 9.2).

Table 9.2 Results of 25-fold cross validation.

Classifier Correctly-classified deposits

Naı̈ve 86.8%
Augmented naı̈ve 88.7%
Selective naı̈ve 83.0%
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Figure 9.5 Trained Bayesian network classifiers for base-metal potential mapping
in study area: Augmented naı̈ve classifier.

9.3.5 Mineral potential maps

The trained classifiers were used to process all feature vectors. The output pos-
terior probability of d1 (mineralized class) for each feature vector is interpreted
as a measure of favorability or potential for occurrence of base-metal deposit in
every feature vector. The outputs of the three classifiers were mapped to generate
continuous-scale favorability maps, which depict the posterior probabilities of the
occurrence of a base-metal deposit in various parts of the study area in a scale of
0 to 1. However, to facilitate interpretation and validation of these continuous-scale
maps, they were reclassified into binary favorability maps by using a threshold
probability of 0.5 (Figures 9.7 to 9.9). Table 9.3 shows that (a) the naı̈ve classi-
fier demarcates favorable zones occupying 7% of the study area and containing
89% of the known deposit occurrences (b) the augmented naı̈ve classifier demar-
cates favorable zones occupying 11% of the study area and containing 93% of the
known deposit occurrences, and (c) the selective naı̈ve classifier demarcates favor-
able zones occupying 11% of the study area and containing 83% of the known
deposit occurrences.
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Figure 9.6 Trained Bayesian network classifiers for base-metal potential mapping
in study area: Selective naı̈ve classifier.

Table 9.3 Validation of favorability maps.

Classifier Zone Percent of Percent of
study area Deposits

(Total area: 34,000 km2) (Total deposits: 54)

Naı̈ve High favorability 7.1 88.9
Low favorability 92.9 11.1

Augmented
naı̈ve

High favorability 11.3 92.6

Low favorability 88.7 7.4
Selective

naı̈ve
High favorability 11.2 83.3

Low favorability 88.8 16.7

9.4 Discussion

The formation and localization of mineral deposits are the end-results of a complex
interplay of several metallogenetic processes that exhibit signatures in the form of
geologic features associated with the mineral deposits. These geological features,
called recognition criteria, are characterized by their responses in one or more data
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Figure 9.7 Binary base-metal potential map derived with a naı̈ve classifier. Tri-
angles are known occurrences of base-metal deposits. Reprinted with permission
from Elsevier.

sets that are used as predictors in mineral potential mapping. It is unrealistic to
assume conditional independence (CI) amongst the predictors with respect to target
mineral deposit occurrences because (a) a particular geologic feature can partially
respond in two or more geodata sets, (b) a particular metallogenetic process can
be partially responsible for two or more geologic features or (c) two or more
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Figure 9.8 Binary base-metal potential map derived with an augmented naı̈ve
classifier. Triangles are known occurrences of base-metal deposits. Reprinted with
permission from Elsevier.

metallogenetic processes can be related. In addition, the response of a geologic
feature in one geodata set may be conditioned by the response of another geologic
feature in a different geodata set. Considering that violations of the CI assump-
tion is unavoidable in mineral potential mapping, the following paragraphs discuss
the results of the Bayesian network applications described above in terms of CI
violation in Bayesian approaches to mineral potential mapping.
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Figure 9.9 Binary base-metal potential map derived with a selective classifier.
Triangles are known occurrences of base-metal deposits. Reprinted with permission
from Elsevier.

In general, the naı̈ve classifier performs well in the predictive mapping of
base metal potential in the study area (Tables 9.2 and 9.3), which suggests that a
naı̈ve classifier can tolerate significant violations of the conditional independence
assumption (see also [132, 133]). This also implies that a weights-of-evidence
model, which can be compared to a naı̈ve classifier (although with some significant
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differences and simplifications4), may not be seriously hampered by the violation
of the conditional independence assumption provided that its output is interpreted
as a measure of relative favorability rather than absolute posterior probability (see
below). This also explains the widespread and generally successful application of
weights-of-evidence models to mineral potential mapping.

The results (Tables 9.2 and 9.3) also indicate that the performance of the naı̈ve
classifier is improved if the CI assumption is relaxed by recognizing and account-
ing for some of the dependencies in the training data. The naı̈ve classifier returns
higher values, however, for the deposits of the Bhilwara belt (where there are
strong dependencies amongst favorable predictors), which suggests a significant
influence of dependencies amongst predictors on the output of a naı̈ve classifier.
The augmented naı̈ve classifier, in contrast, identifies several zones of high favor-
ability in the Jharol belt that are missed by the naı̈ve classifier. Moreover, the
high favorability zones tend to cluster around known deposits with the naı̈ve and
selective classifiers, which suggests that the augmented naı̈ve classifier has better
generalization capability compared to the naı̈ve classifier. This is further evidenced
by comparing the outputs of the three classifiers for the misclassified deposits
(Table 9.4), which shows that the augmented naı̈ve classifier returns a higher value
for all deposits misclassified by the naı̈ve classifier. Because the geological settings
of the misclassified deposits are different in many respects from the geological set-
tings of majority of deposits in the study area, it indicates that the generalization
capability of a naı̈ve classifier is improved by recognizing and accounting for
dependencies amongst predictors.

Table 9.4 Outputs for misclassified∗ deposits.

Deposit Belt Naı̈ve Augmented Selective
naı̈ve naı̈ve

Padar-Ki-Pal Jharol 0.002 0.534 0.009
Rampura-Agucha – 0.056 0.091 0.102
Baroi Aravalli 0.067 0.910 0.374
Anjani Aravalli 0.076 0.206 0.196
Basantgarh South Delhi 0.406 0.482 0.352
Bara Aravalli 0.429 0.637 0.615
Wari Lunera Bhilwara 0.946 0.931 0.200
Dariba Bhilwara 0.985 0.973 0.470
Dariba Extn. Bhilwara 0.985 0.973 0.470
Rajpura A Bhilwara 0.985 0.973 0.470

∗ Threshold favorability score of 0.500 is used for classification.

4In a weights-of-evidence model, all feature vectors that are associated with the unit areas that do not
contain a known mineral deposit are indiscriminately used as nondeposit samples. In a naı̈ve classifier,
on the other hand, only the feature vectors that are associated with the unit areas that are reasonably
well known to be barren are used as nondeposit samples.
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The selective naı̈ve classifier misclassifies all but one deposit misclassified by
the naı̈ve classifier (Table 9.4, Figure 9.4). In addition, it also misclassifies several
deposits of the Bhilwara belt, which is clearly a result of the rejection of condi-
tionally dependent maps of stratigraphic groups. Evidently, conditionally dependent
predictors could make a significant independent contribution to the information con-
tent of a naı̈ve classifier (except when there is a perfect correlation) and therefore the
rejection of conditionally dependent predictors affects its performance adversely.
It is also possible that a dependent predictor makes only a minor independent con-
tribution to the information content, yet that contribution is crucial for making a
correct classification. Therefore, in order to minimize the bias due to dependencies
amongst predictors, it is preferable to augment a naı̈ve classifier by relaxing the CI
assumption and accounting for the dependencies instead of abridging it by rejecting
conditionally dependent predictors.

9.5 Conclusions

Bayesian network classifiers are efficient tools for mineral potential mapping. They
are easy to construct, train and implement. In the study area, the Bayesian network
classifiers successfully demarcated favorable zones that occupying 7–11% of the
area and containing 83–93% of the known base metal deposits. This is a significant
result both in terms of reduction in search area and number of deposits predicted.

Although a naı̈ve classifier is based on the assumption of conditional indepen-
dence of input predictor patterns with respect to known occurrences of mineral
deposit-type of interest, it shows significant tolerance for the violations of the
assumption and performs well in classification of areas as mineralized or barren.

The performance of a naı̈ve classifier is significantly improved if the con-
ditional independence assumption is relaxed by recognizing and accounting for
dependencies amongst the predictor patterns in an augmented naı̈ve classifier.

Rejection of conditionally dependent predictor patterns in a selective naı̈ve
classifier degrades the performance of a naı̈ve classifier.
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14380, México

10.1 Introduction
An intelligent tutoring system (ITS) tries to emulate a human tutor by adapting
itself to the learner. A key element of an intelligent tutor is the student model, that
provides to the ITS knowledge about each particular student, so its behavior can be
adapted to the student needs. In the student model, the cognitive state (the student’s
knowledge of the subject matter) of a learner is inferred from: (i) previous data
about the student, and (ii) the student’s behavior during the interaction with the
system. Student modeling, and in general user modeling, is a complex task which
involves uncertainty. On one hand, there is still not a clear understanding on how
people learn and how to represent their knowledge in a computer. On the other
hand, usually the information available to build and update the student model is
very limited. Although there have been several approaches for student modeling, in
the last few years Bayesian networks have become one of the preferred methods.

Bayesian networks provide a natural framework for student modeling, which is
basically a diagnosis problem. Under this framework, the different knowledge items

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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Table 10.1 Categories of student models based on Bayesian networks.

Type Description

Expert-centric An expert specifies either directly or indirectly the
complete structure and conditional probabilities of
the Bayesian student model.

Efficiency-centric The model is partially specified or restricted in some
way, and domain knowledge is ‘fitted’ to the model.

Data-centric The structure and conditional probabilities of the
network are learned from data.

related to the domain, and the information obtained from the student’s interactions
are represented as random variables; and their relations are represented as depen-
dencies in a directed acyclic graph. Based on partial knowledge of the student given
by a subset of variables, the cognitive state – represented by another subset – is
inferred using probabilistic inference.

Several authors have developed students models based on Bayesian networks
[70, 98, 305, 329]. Mayo [309] classifies these models into three categories,
described in Table 10.1.

There are two main drawbacks of using standard Bayesian networks for student
modeling:

1. Knowledge acquisition: building a Bayesian network model for a domain
is a difficult and time consuming process.

2. Complexity: in some cases the model can become too complex, and con-
sequently the inference process could be slow for some applications, in
particular those that require a real time response, as virtual laboratories.

Probabilistic relational models (PRMs) [252] are an extension of Bayesian net-
works that help to overcome these problems. They provide a more expressive,
object-oriented representation that facilitates knowledge acquisition and makes it
easier to extend a model to other domains. In case of a very large model, only part
of it is considered at any time, so the inference complexity is reduced.

A particularly challenging area for student modeling are virtual laboratories
[478]. A virtual lab provides a simulated model of some equipment, so that students
can interact with it and learn by doing. A tutor serves as virtual assistant in this lab,
providing help and advice to the user, and setting the difficulty of the experiments,
according to the student’s level. In general, it is not desirable to trouble the student
with questions and tests to update the student model. So the cognitive state should
be obtained just based on the interactions with the virtual lab and the results of the
experiments.

We have developed a student model based on PRMs for a tutor that helps
students while they interact with a virtual laboratory. The model infers, from the
student’s interactions with the laboratory, the cognitive state; and based on this
model, it gives personalized advice to the student. It has been applied in a virtual



STUDENT MODELING 175

laboratory for mobile robotics, and has been evaluated in a robotics undergraduate
course, showing that students that interact with the lab with help of the tutor have a
better performance. The models for four different experiments in a virtual lab were
easily adapted from a general template based on PRMs, showing the advantage of
this type of model.

10.2 Probabilistic relational models
The basic entities in a PRM are objects or domain entities. Objects in the domain
are partitioned into a set of disjoint classes X1, . . . , Xn. Each class is associated
with a set of attributes A(Xi). Each attribute Aij ∈ A(Xi) (that is, attribute j

of class i) takes on values in some fixed domain of values V (Aij ) [252]. The
dependency model is defined at the class level, allowing it to be used for any
object in the class. PRMs explicitly use the relational structure of the model, so
an attribute of an object will depend on some attributes of related objects. A PRM
specifies the probability distribution using the same underlying principles used in
Bayesian networks. Each of the random variables in a PRM, the attributes x.a of
the individual objects x, is directly influenced by other attributes, which are its
parents. A PRM therefore defines for each attribute, a set of parents, which are the
directed influences on it, and a local probabilistic model that specifies probabilistic
parameters. An example of a PRM in the school domain, based on [252], is shown
in Figure 10.1. There are four classes, with two attributes each in this example:
Professor: teaching-ability, popularity.

Student: intelligence, ranking.

Course: rating, difficulty.

Registration: satisfaction, grade.

Professor

Teaching-Ability

Popularity

Student
Intelligence

Ranking

Course
Rating

Difficulty

Registration

Satisfaction

Grade

AVG

AVG

Figure 10.1 An example of a PRM structure for the school domain [252]. Dashed
edges represent relations between classes, and arrows correspond to probabilistic
dependency. The AVG in a link indicates that the conditional probabilities depend
on this variable.
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This representation allows for two types of attributes in each class: (i) infor-
mation variables, (ii) random variables. The random variables are the ones that are
linked in a kind of Bayesian network that is called a skeleton. From this skeleton,
different Bayesian networks can be generated, according to other variables in the
model. For example, in the student model we describe below, we define a general
skeleton for an experiment, from which particular instances for each experiment
are generated. This gives the model a greater flexibility and generality, facilitating
knowledge acquisition. It also makes inference more efficient, because only part
of the model is used in each particular case.

The probability distribution in the skeletons are specified as in Bayesian net-
works. A PRM therefore defines for each attribute x.a, a set of parents, which
are the directed influences on it, and a local probabilistic model that specifies the
conditional probability of the attribute given its parents. Once a specific network
is generated from a skeleton, the inference mechanism is the same as for Bayesian
networks.

10.3 Probabilistic relational student model

PRMs provide a compact and natural representation for student modeling. They
allow each attending student to be represented in the same model. Each class
represents the set of parameters of several students, like in databases, but the
model also includes the probabilistic dependencies between classes for each
student.

In order to apply PRMs to student modeling we have to define the main objects
involved in the domain. A general student model oriented to virtual laboratories
was designed, starting form a high-level structure at the class level, and ending
with specific Bayesian networks for different experiments at the lower level. As
shown in Figure 10.2, the main classes, related with students and experiments,

Student Knowledge
theme

Knowledge
Sub-theme

Experiments
Experiments

results
Student
behavior

Academic
background

Knowledge
items

Figure 10.2 A high-level view of the PRM structure for the student model, showing
the main classes and their relations.
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were defined. In this case there are eight classes, with several attributes for each
class, as listed below:

Student: student-id, student-name, major, quarter, category.

Knowledge Theme: student-id, knowledge-theme-id, knowledge-theme-known.

Knowledge Sub-theme: student-id, knowledge-sub-theme-id, knowledge-sub-
theme-known.

Knowledge Items: student-id, knowledge-item-id, knowledge-item-known.

Academic background: previous-course, grade.

Student behavior: student-id, experiment-id, behavior-var1, behaviour-var2, . . .

Experiments results: student-id, experiment-id, experiment-repetition, result-
var1, resultvar2, . . .

Experiments: experiment-id, experiment-description, exp-var1, exp-var2, . . .

The dependency model is defined at the class level, allowing it to be used for
any object in the class.

Some attributes in this model represent probabilistic values. This means than an
attribute represents a random variable that is related to other attributes in the same
class or in other classes, as shown in Figure 10.3. The structure in Figure 10.3
shows a more detailed view of the general model in Figure 10.2, specifying some
attributes for each class and their dependencies.

The main advantages of PRMs can be extended to relational student models.
First, from a PRM model we can define a general Bayesian network, a skeleton, that
can be instantiated for different scenarios, in this case experiments. Second, it is
easy to organize the classes by levels to improve the understanding of the model.
From the model in Figure 10.3, we obtain a hierarchical skeleton, as shown in
Figure 10.4. We partitioned the experiment class, according to our object of interest,
creating two subclasses: experiment performance and experiment behavior, which
constitute the lowest level in the hierarchy. The intermediate level represents the
different knowledge items (concepts) associated to each experiment. These items
are linked to the highest level which groups the items in subthemes and themes, and
finally into the students general category. We defined three categories of students:
novice, intermediate and expert. Each category has the same Bayesian net structure,
obtained from skeleton, but different CPTs are used for each one.

From the skeleton, it is possible to define different instances according to the
values of specific variables in the model. For example, from the general skeleton for
experiments of Figure 10.4, we can define particular instances for each experiment
and student level, as it is shown in Figure 10.5. In this case, we illustrate the
generation of nine different networks, for three experiments and three student levels.
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Figure 10.3 A more detailed view of the PRM structure for the student model,
with some of the attributes and their dependencies.

Figure 10.4 A general skeleton for an experiment derived form the PRM student
model for virtual laboratories.
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Figure 10.5 Different instances of Bayesian network models are generated from
the skeleton. In this case we illustrate nine instances, for three different experiments
and three student levels [341]. Reprinted with permission from IJEE.

The parameters of the model are defined with the help of an expert, that is an
experienced professor in the area. There are basically two types of parameters that
have to be defined:

• The influence of each aspect that is evaluated in each experiment (behavior
and experiment result variables) on the basic concepts or items in the domain.

• The relations between themes, subthemes and items in the hierarchical knowl-
edge structure.

Both are relatively easy to specify by an experienced teacher in the area covered
by the experiment. We consider that the exact value of each parameter is not very
important, although a sensitivity analysis experiment will be required to verify this
hypothesis.

Once a specific Bayesian network is generated, it can be used to update the
student model via standard probability propagation techniques. In this case, it is
used to propagate evidence from the experiment evaluation to the knowledge items,
and then to the knowledge subthemes and to the knowledge themes. Based on this
evidence and the accumulated evidence from previous experiments, the system
decides to re-categorize the student. After each experiment, the knowledge level
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at the different level of granularity–items, subthemes and themes–is used by the
tutor to decide if it should provide help to the student, and at what level of detail.
For example, if in general the experiment was successful, but some aspect was
not very good, a lesson on a specific concept (item) is given to the student. While
if the experiment was unsuccessful, a lesson on a complete theme or subtheme is
recommended. Based on the student category, the tutor decides the difficulty of the
next experiments to be presented to the student.

10.4 Case study

We have applied the student model based on PRMs to a virtual laboratory for mobile
robotics. The objective of this virtual lab is that the students explore the basic
aspects of mobile robots, such as mechanical configuration, kinematics, sensors and
control. The students can easily explore different mechanical and sensors configu-
rations before they start building their robot. The laboratory also includes facilities
for practicing basic control programming. The virtual laboratory is designed as a
semi-open learning environment and incorporates an intelligent tutor. Learners can
experiment with different aspects and parameters of a given phenomenon inside
an open learning environment, but in this kind of environment the results strongly
depend on the learner ability to explore effectively. A semi-open learning environ-
ment provides the student with the opportunity to learn through free exploration,
but with specific performance criteria that guide the learning process. That is, it
provides the flexibility of open learning environments; but at the same time, it
has specific goals that the student has to achieve, enabling a more effective and
guided exploration. A view of the user interface for one experiment is depicted in
Figure 10.6.

To define the experiments, we consider a line following competition, which
requires some basic knowledge on mechanical design, sensors, control theory and
programming from the students. We defined a sequence of specific experiments so
that the students learn incrementally; and at the same time to enable the assessment
by the tutor of the knowledge items, step by step. There are four experiments:

Experiment 1: the robot has to follow the line with manual control, exploring
different types and configurations of robots. It involves mechanical design
and kinematics.

Experiments 2 and 3: the robot has to follow the line based on infrared sensors,
the number and position of the sensors can be modified. Knowledge about
sensors is required.

Experiment 4: the student has to write a control program so that the robot fol-
lows a line. Basic knowledge on robot programming and control theory is
required, as well as the integration of the concepts practiced in the previous
experiments.
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Figure 10.6 A screen view of the interface of the virtual lab for mobile robotics.
The bottom windows show the performance of the student, during (left) and at the
end (right) of the experiment. The right windows provide the exploration (top) and
control (buttom) commands.

For all the experiments, a set of behavior (exploration) and result (performance)
variables are defined, which are evaluated and sent to the student model.

This environment is designed as a general architecture for virtual laboratories
that incorporate intelligent tutors, so it can be easily extended to other domains.
The generic architecture is depicted in Figure 10.7. There are three basic elements
in this architecture:

• User interface: it provides a 3-D visualization of the experiment, a set of
commands to explore the lab, and feedback from the tutor.

• Simulator: it includes a mathematical model of the equipment (in this case
a robot and its environment).

• Intelligent tutoring system: an intelligent assistant that monitors the perfor-
mance of the student in each experiment and gives personalized help.

The core of the intelligent tutor is the student model based on PRMs, as
described in Section 10.3. The model includes two parts: (i) initial categorization,
and (ii) experiments.

To provide a personalized environment from the beginning, the model does
an initial categorization. Following the philosophy of virtual laboratories of being
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Figure 10.7 A generic architecture for virtual laboratories. Three main compo-
nents are shown: learning environment, simulator/virtual laboratory and intelligent
tutoring system.

noninvasive (avoiding direct questions or tests), we used the academic background
of the student for an initial categorization as: novice, intermediate or expert. This
categorization is based on a probabilistic model that links previous courses with
the different knowledge concepts relevant for the experiments in the laboratory.
An initial category is obtained for each student, and this is updated after each
experiment based on the second part of this model. This category is used to define
the exercise complexity for each experiment and to select the type of lesson given
after each experiment, if required.

The second part of the model updates the student model according to the results,
in terms of exploration and performance, in each experiment. This part is based on
the structures described in the previous section.

10.5 Experimental evaluation

We incorporated the robotics virtual laboratory to an introductory course in mobile
robotics [341]. The course is based on project-oriented learning, so the students
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have to build and program a small mobile robot for a competition. They form
multidisciplinary teams and work during the term in the project. The virtual lab
is used in the first part of the course to practice the basic concepts and explore
different robot configurations, before they start building their robot.

The virtual lab was evaluated in an undergraduate course with 20 students,
with majors in Computer Science or Electrical Engineering. The class was divided
into two groups, 10 students each: control group and test group. The control group
experimented in the virtual laboratory without a tutor. The test group used the
virtual laboratory with the help of the intelligent tutor (based on the PRM student
model).

In the experiment, all subjects used the virtual laboratory. We introduced the
academic background of each student to the system. The system, using the prob-
abilistic model, applied the initial categorization process for each student. Both,
control and experimental group students were divided in two categories: novice
and intermediate. We then applied a pretest after a 60 minutes lecture on basic
robotics concepts. The pretest is a paper and pencil test designed to evaluate the
learners knowledge of the objects target by the virtual laboratory. It consisted of
25 questions organized in the same way as the knowledge objects of the student
model. Both, control and experimental groups participated in several experimental
sessions with the virtual laboratory. The post-test consisted of a test analogous to
the pretest.

Two aspects were analyzed in this evaluation:

• Initial categorization. We compared the knowledge level predicted by the
student model based on the student background, to the scores in the pretest.

• Intelligent tutor. We compared the performance in the post test of the students
that experimented in the lab without tutor (control group) vs. the students
that have the help of the tutor.

We present the results for the intermediate students, which are similar to the
other categories. Figure 10.8 shows the initial categorization results (predicted)
versus the pretest. The predictions of the model are very good for almost all the
knowledge items. Figure 10.9 summarizes the results after experiments 1, 2, 3
and 4, for the control and experimental groups. The results show that the students
who explore the virtual environment with the help of the intelligent tutor have a
significant improvement in their knowledge of the relevant concepts, in comparison
with the students that use the virtual lab without assistant.

We consider that there are two main factors that determine this difference.
We recorded the number of experiments performed by each student, and the ones
that have the tutor, performed two or three times more experiments. It seems that
the students who experiment without any help or feedback, get bored and do not
continue using the lab; while the students that have a virtual tutor are motivated
to continue until they reach a higher category. The other factor could be that the
lessons and questions given by the tutor help the students connect their experience
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Figure 10.8 A comparison of the pretest scores and the predictions of the PRM
model for each knowledge item. The graphs show the average grade (scale 0
to 100) per knowledge item.
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in the lab with the concepts in the domain. Although these lessons are available to
all students, we think that the students without tutor did not access them frequently.

These results depend not only on the student model, but in general in the tutor
and learning environment. However, the student model is a key element in this
system, and the object oriented representation of Bayesian networks, provides a
good framework to design and use these models.

10.6 Conclusions and future directions

Bayesian networks provide a general and effective framework for knowledge rep-
resentation and reasoning under uncertainty. However, in some complex and large
domains this representation is not sufficient. The object oriented paradigm facili-
tates building (the subject is singular) large complex systems via abstraction and
reuse. PRMs combine the advantages of BNs and object oriented representations,
by providing the effective management of uncertainty of BN and the organizational
benefits of object oriented systems.

In this chapter we have shown the use of PRMs for student modeling, exploiting
the advantages of this framework for defining a general student model for virtual
laboratories. By defining a general framework based on the PRM student model,
this can be easily adapted for different experiments, domains and student levels.
This reduces the development effort for building and integrating ITS for virtual
laboratories.

Based on the general model, we designed and implemented a tutor, together
with a virtual lab, for mobile robotics. The students are categorized using PRMs
to provide a personalized environment from the beginning. The model keeps track
of the students’s knowledge at different levels of granularity, combining the per-
formance and exploration behaviour in several experiments, to decide the best way
to guide and to recategorize the student. The virtual lab with the tutor were used
and evaluated in a robotics course, with promising results.

We are currently implementing other virtual labs based on the same framework,
for multiple robots and physics. In the future we plan to create an authoring tool
(which helps to build intelligent tutors for different applications, in an analogous
way as expert systems shells for expert systems) based on these models so that
teachers can build their own tutors and virtual labs in different domains.
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11.1 Introduction

Computers are playing an increasingly important role in many activities related
to human daily life. Environments like finance in banks, medicine in hospitals,
communication in telephones are obvious examples of this. Other domains using
computers, less related with our daily life are industry, transportation and man-
ufacturing. Also, other applications described in this book are good examples of
computer-controlled processes. In general, all these computer controllers receive
information, process it and provide an output or take a decision.

Imagine a decision taken or a command issued based on erroneous information.
Consider for example an intensive care unit of a hospital. Complex equipment and
instrumentation are used to constantly monitor the status of a patient. Suppose that
the body temperature and the blood pressure must be kept under certain levels.

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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However, given that the sensors are working constantly under different patient
conditions, there is some potential for them to produce erroneous readings. If this
happens two situations may arise:

• a sensor indicates no changes in temperature even if it increments to dan-
gerous levels;

• a sensor indicates a dangerous level even if it is normal.

The first situation may cause severe damage to the patient’s health. This is called
in the literature a missing alarm. The second situation may cause emergency treat-
ment of the patient that can also worsen his/her condition. This is called in the
literature a false alarm.

This chapter presents a sensor validation algorithm based on Bayesian networks.
The algorithm starts by building a model of the dependencies between sensors rep-
resented as a Bayesian network. Then the validation is done in two phases. In the
first phase, potential faults are detected by comparing the actual sensor value with
the one predicted from the related sensors, via propagation in the Bayesian net-
work. In the second phase, the real faults are isolated by constructing an additional
Bayesian network based on the Markov blanket property [356]. This isolation is
made incrementally or any time, so the quality of the estimation increases when
more time is spent in the computation, making the algorithm suitable for use in
real-time environments. The sensor validation algorithm is applied to validate the
temperature sensors of a gas turbine in a power generation unit.

11.2 The problem of sensor validation

In the context of this work, a sensor is a device that receives an input Vv which is
considered unknown and inaccessible, and provides an output which is a measure-
ment Vm. A sensor is considered faulty when the measurement Vm gives an incorrect
representation of Vv . In the case of power plants, Vv may be temperature, or pres-
sure, or flow of gas of a turbine. In other domains, there can be different sources
of information like human reports or complex instrumentation. Thus, the challenge
is the determination of the validity of Vm in real time. This section presents an
overview of the different forms proposed for the determination of the validity of Vm.

11.2.1 Traditional approaches

The traditional method to validate information is the use of redundancy. This
means the use of different sources of the same information in order to make some
kind of majority voting. The sources that provide similar values are considered
correct. The question is, what kind of different sources can be used? There are
four basic approaches:

1. Hardware redundancy: duplicate physical instrumentation.

2. Analytical redundancy: calculate the value using mathematical models.
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3. Temporal redundancy: repeat measurements and apply statistics.

4. Knowledge based methods: use of human expert knowledge.

Hardware redundancy is not always possible for economical, spatial or security rea-
sons. For example, adding new sensors might weaken the walls of pressure vessels.

Analytical redundancy refers to the creation of mathematical models based on
the static and dynamic relations between measurements. This technique predicts a
sensor’s value by using measures from other sensors in known or empirical rela-
tions among all the variables. However, this approach becomes inefficient when
there are many sensors, and when the complexity of the model increases. Addition-
ally, the validation of sensors using analytical redundancy is adapted exclusively
for a given process. A slight modification is extremely expensive and demands an
enormous amount of expertise.

Temporal redundancy is difficult to apply in dynamic environments where
parameters vary in time and there is no sense in repeating a measurement in
different time periods.

11.2.2 Knowledge based and neural network approaches

An alternative approach is to use knowledge based techniques to detect inconsis-
tencies in measured data. Knowledge based systems model the knowledge that a
human expert employs to recognize inconsistencies in the reported measurements.
Using this knowledge, the system can reason to infer the state of the set of sensors.
In this classification, there are also approaches from computational intelligence like
neural networks or fuzzy logic.

A neural network consists of a network whose nodes are arranged in layers.
The arcs resemble the interconnection between neurons (the nodes) in the brain.
Figure 11.1, left, exemplifies this method. The first layer is the input layer with
the number of nodes as the number of input variables. The output layer produces
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Figure 11.1 A basic neural network. Left: a typical network. Right: a perceptron
or basic neuron.
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the output of the network. In the figure there is only one output: the predicted
signal. There can be none or several hidden layers. Figure 11.1, right, represents
the j th neuron of the p layer. This neuron receives n inputs from layer p − 1 and
produces one output that will be connected to neurons in layer p + 1. The output
level will be the sum of all the inputs multiplied by a weight w

p

ij , and modified
by a sigmoidal function.1 These weights are learned during a training phase. To
train the network, several examples of a learned concept are presented and several
examples of what is not the concept are also presented. Consequently, the weights
are defined so that future examples receive a similar conclusion. This is a typical
method for parameter estimation. Several authors utilize this method in their sensor
validation approach [308, 511].

Since knowledge based sensor validation involves imprecise and uncertain
human knowledge, some authors utilize fuzzy logic. Here, measurements are
assigned a membership function where certain sensor value belongs to a certain
fuzzy set in some degree and maybe, belongs to another set with different degree.
For example, a set of cool, and a set of hot temperatures can be defined. Using
these sets, fuzzy rules can be used to infer the membership of a measurement to
the fuzzy set of correct values [214].

Other approaches include hybrid methods that combine some of the approaches
mentioned above. For example, Alan and Agogino developed a methodology for
sensor validation that includes four steps [12]. The first step creates redundancy in
the signals with some method, e.g., analytical redundancy or neural networks. The
second step includes a state prediction with time series. The third step fuses this
information and detects faulty behavior, and finally the fault is detected comparing
the fused estimate and the sensor reading.

11.2.3 Bayesian network based approach

The approach presented in this chapter estimates the value of a variable given
the related ones, using a Bayesian network formalism. The algorithm utilizes a
two phase approach analogous to the methodology used in industry for diagnosis,
namely Fault Detection and Isolation or FDI. This approach resembles the reason-
ing process of an expert operator when revising the set of all sensors in the control
room. The operator may say: this probably is a wrong measurement from this sen-
sor given the readings of these other related sensors. Thus, probabilistic models
are captured (automatically or manually) and the prediction is obtained through
probabilistic propagation of one sensor given the related signals. The resulting
probabilistic distribution is compared with the real measure and an apparent fault
can be detected. A second Bayesian network isolates the faulty sensor among all
the apparent faulty sensors. This isolation is made incrementally, i.e., a probabil-
ity of the failure vector is provided at any time, so the quality of the estimation
increases when more time is spent in the computation. This characteristic makes
the algorithm suitable for use in real time environments.

1A sigmoidal is an S-shaped function equivalent to 1/(1 + e−x).
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The contributions of this approach are several as follows.

1. The model can be easily learned automatically with data obtained from the
process. It is important to note that we need only data from the process
working properly for the operating range. It is not necessary to simulate
faults to recognize them later. On the contrary, neural networks require a
training phase with data without faults and data with faults, in order to
classify the output.

2. Most of the learning algorithms for Bayesian networks allow the partici-
pation of human experts in the formation of the models. This means that
it is possible to build very efficient models relating all the variables, using
human experience. Neural networks are closed in this sense.

3. All the sensors that are represented in a model can be validated. In the
neural network case, every single sensor requires its own network. Also,
our approach can detect multiple faulty sensors.

4. Bayesian network models work well even with incomplete information.
The resulting probabilities may not be very accurate but they often provide
useful information. On the contrary, neural networks require complete input
information to provide good responses.

5. The isolation of faults is made with a second Bayesian network that is
directly constructed from the first one using the Markov blanket property.
This phase produces a vector with the probability of fault for all the sensors.

6. The algorithm proposed here performs in real time environments thanks to
an any-time scheme. We can get an idea of the state of the sensors even
with little time and incomplete information from other sensors.

11.3 Sensor validation algorithm
This section presents the proposed sensor validation algorithm based on Bayesian
networks. The basic idea is the estimation of a certain sensor value in order to
compare it with the real observed value. In this chapter, estimation means the
calculation of a posterior probability distribution of a single variable, when related
variables have been read and considered evidence in the Bayesian network.

It is assumed that it is possible to build a probabilistic model relating all the
variables in the application domain. Consider for example the network shown in
Figure 11.2. It can represent the most basic function of a gas turbine. The power
generated in a gas turbine (node MW ) depends on the temperature (node T ) and
pressure in the turbine (node P t). Temperature depends on the flow of gas (node
Fg) and this flow depends on the valve of gas position (node Pv) and the gas fuel
pressure supply (node Ps). The pressure at the turbine depends on the pressure at
the output of the compressor (node Pc). This model can be obtained from domain
experts or by automatic learning algorithms based on historical data [336].
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Figure 11.2 A basic probabilistic model of a gas turbine.

Suppose that it is required to validate the temperature measurements in the
turbine. Reading the values of the rest of the sensors, and applying a propagation
algorithm, it is possible to calculate a posterior probability distribution of the tem-
perature given all the evidence, i.e., P (T | MW, P t, Fg, P c, P v, P s). We obtain
a certain probability distribution. We assume that all the variables are discrete or
discretized if continuous. Thus, if the real observed value falls in this probability
distribution, then the sensor is considered correct, and faulty otherwise.

The basic validation algorithm or detection function is the following:

Algorithm 4 Basic validation or detection algorithm
Require: A node n.
Ensure: Either correct or faulty.

1: assign a value (instantiate) to all nodes except n

2: propagate probabilities and obtain a posterior probability distribution of n

3: read real value of sensor represented by n

4: if P (real value) ≥ p value then
5: return(correct)
6: else
7: return(faulty)
8: end if

The parameter p value is a threshold chosen appropriately for each application.
This procedure is repeated for all the sensors in the model. However, if a valida-

tion of a single sensor is made using a faulty sensor, then a faulty validation can be
expected. In the example above, what happens if T is validated using a faulty MW

sensor? How can we know which is the liar sensor? Thus, making this validation
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procedure, we may only detect a faulty condition but we are not able to identify
the real faulty sensor. This is called an apparent fault. An isolation stage is needed.

The isolation phase utilizes a property of Bayesian networks called the Markov
Blanket (MB). By definition [356], the Markov blanket of a node X, (MB(X)),
is the set of nodes that make X independent of all other nodes in a network. In
Bayesian networks, the next three sets of nodes conform the Markov blanket of
a node: (i) the set of parents, (ii) the set of children, and (iii) the other parents
of the children nodes (spouses). For example in the network of Figure 11.2, the
Markov blanket of T , MB(T ), is {MW, Fg, P t}, and the Markov blanket of Pv,
MB(Pv), is {Fg, P s}. The set of nodes that constitute the MB of a sensor can be
seen as a protection of the sensor against changes outside its MB. Additionally,
we define the Extended Markov Blanket of a node X, (EMB(X)), as the set of
sensors formed by the sensor itself plus its MB. For example, the extended Markov
blanket of Fg, EMB(Fg), is formed by {Fg, Pv, P s, T }.

Utilizing this property, if a fault exists in one of the sensors, it will be revealed
in all the sensors on its EMB. On the contrary, if a fault exists outside a sensors’
EMB, it will not affect the estimation of that sensor. It can be said then, that the
EMB of a sensor acts as its protection against others faults, and also protects others
from its own failure. We utilize the EMB to create a fault isolation module that
distinguishes the real faults from the apparent faults. A more formal description of
the algorithm can be found in [223].

After a cycle of basic validation of all sensors is completed, a set S of apparent
faulty sensors is obtained. Thus, based on the comparison between S and the EMB
of all sensors, the theory establishes the following situations:

1. If S = φ there are no faults.

2. If S is equal to the EMB of a sensor X, and there is no other EMB which
is a subset of S, then there is a single real fault in X.

3. If S is equal to the EMB of a sensor X, and there are one or more EMBs
which are subsets of S, then there is a real fault in X, and possibly, real
faults in the sensors whose EMBs are subsets of S. In this case, there are
possibly multiple indistinguishable real faults.

4. If S is equal to the union of several EMBs and the combination is unique,
then there are multiple distinguishable real faults in all the sensors whose
EMB are in S.

5. If none of the above cases is satisfied, then there are multiple faults but
they cannot be distinguished. All the variables whose EMBs are subsets of
S could have a real fault.

These situations occur after the basic validation function described in algorithm 4.
This algorithm utilizes the model like the one shown in Figure 11.2, and is called
the detection network. For example, considering the Bayesian network model in
Figure 11.2, some of the following situations may occur (among others):
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• S = {T , P t, MW }, which corresponds to case 2, and confirms a single real
fault in MW ;

• S = {T , P c, P t, MW }, which corresponds to case 3, so there is a real fault
in P t and possibly in Pv and MW ;

• S = {Pv, P s, Fg}, which corresponds to case 4, so there are real faults in
Pv and Ps.

The isolation of a real fault is carried out in the following manner. Based on the
EMB property described above, there will be a real fault in sensor X if an apparent
fault is detected in all its EMB. Also we can say that an apparent fault will be
revealed if there exists a real fault in any sensor of its EMB. With these facts, we
define the isolation network formed by two levels. The root nodes represent the real
faults, and there is one per sensor or variable. The lower level is formed by one node
representing the apparent fault for each variable. Notice that the arcs are defined by
the EMB of each variable. Figure 11.3 shows the isolation network for the detection
network of Figure 11.2. For instance, the apparent fault node corresponding to
variable MW (node Amw) is connected with the nodes Rmw , RT and RPt , which
represent the real faults of the EMB nodes of MW . At the same time, node Rmw is
connected with all the apparent faults that this real fault causes, i.e., to nodes Amw,
AT , and APt . This is carried out by the isolation function described in algorithm 5.

Algorithm 5 Isolation algorithm using the isolation network
Require: A sensor n and the state of sensor n.

1: assign a value (instantiate) to the apparent fault node corresponding to n

2: propagate probabilities and obtain a posterior probability of all nodes Real fault
3: update vector Pf (sensors)

The vector Pf (sensors) updated in this function corresponds to the set of real
fault nodes in the isolation network. In the example developed in this section,
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Apt
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Amw

Rt

At

Rfg

Afg

Rpv

Apv
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Figure 11.3 Isolation network of the example in Figure 11.2.
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Pf (P c) corresponds to the posterior probability of node Rpc in Figure 11.3, Pf (P t)

to Rpt and so on.
This algorithm works well in batch mode, i.e., a conclusion can be obtained

after the whole validation has been executed. However, for real time environments,
this sometimes is not possible, as a response could be required before the validation
cycle is completed. In these situations, it is better to obtain an answer at any time,
even if the quality of the results is not the best. Any-time algorithms provide a
result at any time and the quality of the result increments as more time is spent
in the computation. The sensor validation algorithm can also work in an any-time
fashion.

Algorithm 6 Any time sensor validation algorithm
1: Initialize Pf (si) for all variables si .
2: while there are unvalidated variables do
3: select the next variable to validate
4: validate the selected variable
5: update the probability of failure vector Pf

6: measure the quality of the partial response
7: end while

First, at the beginning of a validation cycle, the ignorance condition is assumed
and the vector of Pf (si) for all variables si are set at 0.5. Next, we need to
put emphasis on the any-time behavior of the algorithm. This is achieved if we
provide a partial response at each step. And this response must be the best possible.
This can be done if we select the sensor that provides more information. For
example, in Figure 11.2 it is easy to see that validating node Fg would provide
more information than the validation of Pc. If no apparent fault is presented in
Fg, then it is considered that there will be no fault in Pv, Ps, Fg, nor in T . On
the contrary, if an apparent fault is found in Fg, then the suspicious real fault is
between Pv, Ps, Fg, or in T .

One efficient way to measure the amount of information provided by an exper-
iment is the entropy function I proposed by Shannon for communication the-
ory [425]:

I (p1, p2, . . . , pn) =
n∑

i=1

Pi log2 Pi

where pi represents the probability of the outcomes of an experiment. If a single
validation of a sensor si is taken as an experiment, then the entropy function I (si)

is defined by:
I (si) = −p log2(p) − (1 − p) log2(1 − p) (11.1)

where p refers to the failure probability Pf (si) of sensor si (the value of node
Ri of the isolation network). When I (experiment) = 0 the function can safely
assumed to be 0. This function has its maximum when the ignorance is at a
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maximum, and it is zero when the information is maximum and ignorance is
minimum.

In the sensor validation problem, the system’s entropy function IVAL(S) is
defined as:

IVAL(S) = − 1

n

n∑
i=1

Pf (si) log2 Pf (si) + (1 − Pf (si)) log2(1 − Pf (si))

Notice that IVAL(S) = ∑
I (si), so its maximum is when all functions I in the

system are at their maximum, and the minimum IVAL(S) is when all I are zero.
Therefore, in case of single failures, the expected value of the function IVAL(S) is
zero, either because there were no faulty sensors (Pf = 0 for all sensors), or one
of the sensors is faulty (Pf = 1 for some sensor). Consequently, IVAL(S) can be
utilized as a scheduling criterion for the selection of the sensor that, after validation,
provides the more information, i.e., reduces the updated IVAL(S). Also, IVAL(S)

can be used as a quality measure for the evaluation of partial results provided by
the validation of single sensors.

For example, consider the network shown in Figure 11.2 and its corresponding
isolation model shown in Figure 11.3. Suppose that there is a failure in the value
of sensor Fg. Table 11.1 shows the probability vector, Pf , for all the stages in
this example. The first row indicates the initial state in a cycle when assumed
maximum ignorance. Assume that the selection of a sensor to validate follows this
ordering: P t , T , Fg, MW , Pv, Ps, and finally Pc. First, the basic validation of
P t will produce an apparent fault given that its estimation was made using an
erroneous value. This implies the assignment of the value true to node AP t in
Figure 11.3. By propagating in the isolation model, the probability of a real fault
for all the sensors is updated, as shown in the second row in Table 11.1. Then,
the second sensor is validated, T , and the real failure probabilities are updated.
Following the procedure for all nodes will result in the detection of a definite real
fault in node Fg with 99% of probability, and a suspicious fault in Pv and Ps with
54% of probability. This confirms the conditions mentioned above about indistin-
guishable double faults. However, it is clear in this case that the faulty sensor is
simply Fg.

Table 11.1 Example of the values of the probability vector Pf (in %).

Step / Pf (Pv) (P s) (Fg) (P c) (T ) (P t) (MW)

initial state 50 50 50 50 50 50 50
P t = OK 50 50 50 9 9 9 9
T = Fault 50 50 80 9 15 15 15
Fg = Fault 52 52 83 9 15 13 13
MW = OK 51 51 97 9 2 2 2
Pv = Fault 53 53 98 9 2 2 2
Ps = Fault 54 54 98 9 2 2 2
Pc = OK 54 54 99 1 2 0 2
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11.4 Gas turbines

Gas turbines have become one of the most popular methods throughout the world
for generation of electricity due to their efficiency and low pollution. This section
briefly describes what kind of power plants utilize gas turbines, how gas turbines
operate and the importance of measuring temperatures around the turbine.

11.4.1 Power plants using gas turbines

Gas turbines generate electricity in two kinds of units. The first kind and more
efficient is the combined cycle power plant [355]. This kind of plant uses the gas
turbines coupled with electric generators to obtain part of the production. In addi-
tion, the hot gases expelled from the turbine are recovered in a special boiler called
the heat recovery steam generator or HRSG. This equipment generates steam and
then feeds a steam turbine also coupled with other generator. Usually, there are
two gas turbines per steam turbine. The second kind consists of turbogas units,
i.e., the gas turbine alone coupled to the generator. These units are mainly used as
backup in peak hours given their fast response. In Mexico for example, there are
12 combined cycle plants, generating 42 000 gigawatthour (GWh) a year, corre-
sponding to 45% of the national production. The turbogas units generate 350 GWh
a year, corresponding to just 0.4% of the national production.2

11.4.2 Operation of a gas turbine

Figure 11.4 shows a schematic of a gas turbine. The turbines generate power as
follows. Air at ambient conditions enters the compressor through inlet air valves.
Air is compressed to reach some higher pressure. At this point, compression
raises the air temperature so the air at the discharge of the compressor is at higher

Generator

combustion
chamber

turbinecompressor

Inlet Air
Fuel

Exhaust Air

Figure 11.4 Schematic diagram of a gas turbine. Air enters and is compressed at the
compressor and combined with fuel at the combustion chamber. The combustion
produces hot gases flowing through the blades of the turbine producing work.

2Information obtained from the Federal Commission of Electricity (CFE) in Mexico, at www.cfe.
gob.mx.
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temperature and pressure. When leaving the compressor, air enters the combustion
chamber, where fuel is injected and mixed with the air and combustion occurs.
Here at the combustion chamber, high temperatures are reached. Thus, by the time
the combustion mixture leaves the combustion chamber and enters the turbine, it is
at its maximum temperature. In the turbine section, the energy of the expanded hot
gases is converted into work. This conversion actually takes place in two steps. In
the nozzle section of the turbine, the hot gases are expanded and a portion of the
thermal energy is converted into kinetic energy. In the subsequent bucket section
of the turbine, a portion of the kinetic energy is transferred to the rotating buckets
and converted to work. Some of the work developed by the turbine is used to drive
the compressor, and the remainder is available for useful work at the output flange
of the gas turbine. Typically, more than 50% of the work developed by the turbine
sections is used to power the axial flow compressor. The rest is used to drive the
electric generator [63].

Summarizing, electric power is obtained through the conversion of mechanical
work in the electric generator. Mechanical work is obtained with the expansion of
hot gases moving through the blades of the turbine. Hot gases are obtained with
the combustion of the mixture of gas and compressed air. In this cycle, thermal
efficiency is the key for optimum turbine performance.

11.4.3 Temperature measures of a gas turbine

Increasing the temperature provides power increases and hence, a decrement in the
fuel costs. However, there exist security levels for the maximum allowed temper-
atures. If these limits are exceeded, the operating life span of some components is
reduced, and for extreme conditions the entire equipment is at risk. Additionally,
there are many external factors that also contribute to the thermal efficiency of the
turbine. Some of them are air ambient temperature and humidity, site elevation,
input fuel temperature, and the heat energy associated to the kind of fuel used.
Thus, temperatures in several parts of the turbine are the most important variables
for the control of the plant.

Several temperature sensors participate in the decisions taken by the control
system. If one or more sensors fail, this could make the control system take incorrect
decisions that could affect the efficiency or safety of the power plant. So it is very
important to detect and isolate errors in the temperature sensors.

The next section presents the empirical evaluation of the algorithm in the power
plant domain.

11.5 Models learned and experimentation

This section describes the application of the sensor validation algorithm explained
in Section 11.3, with the application domain revised in Section 11.4. First, expe-
rience with the learning process are presented. Later, the experiments and results
are commented.
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11.5.1 Learning models of temperature sensors

The sensor validation algorithm was applied to a set of 21 temperature sensors of
a gas turbine in the CFE’s Gómez Palacio combined cycle plant in Mexico.

Figure 11.5 shows the physical location of some of the temperature sensors
used in the turbine. It shows six sensors across the beadings of the shaft (CH1,
CH2, . . . , CH6), i.e., the places where the shaft is supported. Three sensors are
included in the turbine blades (EM1, EM2 and EM3), and two sensors of the
temperature of the exciter air (AX1 and AX2). The experiments were carried out
over a set of 21 sensors (though not all are shown in Figure 11.5). These sensors
can be grouped into the following sets of measurements: six beadings (CH1–CH6),
seven disk cavities (CA1–CA7), one cavity for air cooling (AEF), two exciter air
(AX1–AX2), three blade paths (EM1–EM3), and two lube oil (AL1–AL2).

The instrumentation of the plant provides readings of all the sensors every
second. The data set utilized in the experiments corresponds to the temperature
readings taken during approximately the first 15 minutes after the start of the
combustion. This corresponds to the start-up phase of the plant, where the ther-
modynamic conditions change considerably. Therefore, the data set consists of 21
variables and 870 instances of the readings.

The first step in the experiments was the acquisition of the model using the data
set and the Hugin software package [14]. For learning, Hugin includes the NPC
algorithm [441]. NPC stands for Necessary Path Condition, and it is a method that
generates a proposed structure derived through statistical tests for conditional inde-
pendence among all the nodes. In this process, some uncertain links may appear that
are presented to the user for taking the final decision. With no human participation
and the Hugin NPC algorithm, we obtain the network shown in Figure 11.6.

However, the structure is a multiply connected network, and the validation
phase may take too long time to compute for real time applications. Notice, for
example, node CH1 in Figure 11.6, that has six parents, two children and eight
spouses, so its EMB has 17 nodes. To avoid the problem of computational com-
plexity in the validation phase, we opted for simpler structures, in particular for
tree-structured networks. In this kind of network, all the nodes can have at most
one parent. This allows using propagation algorithms that are linear with respect
to the number of nodes. Consequently, we wrote a computer program that uses the
tree learning algorithm [96] for acquisition of the network shown in Figure 11.7.

generatorx CH1    x CH2     x CH3     x CH4    x CH5     x CH6

x EM1

x EM2
x EM3

x AX1

x AX2
combustion chamber

blade path

Figure 11.5 Location of the sensors in the turbine.
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Figure 11.6 Bayesian network learned with the data set.
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Figure 11.7 Tree Bayesian network learned with the data set.

11.5.2 Discussion on structure learning

Structure learning for on-line applications like the sensor validation, becomes a cen-
tral issue. Expressive models represent closely the probabilistic relations between
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the variables in the application. However, these models are usually very intercon-
nected. This interconnection makes bigger extended Markov blankets resulting in
computationally expensive models. On the other hand, a tree algorithm is faster to
compute but some important probabilistic relations may be missing. In the middle,
most of the learning algorithms commercially available allow human participation.
For example, in the Hugin·s NPC algorithm mentioned above, the human expert
is presented with some uncertain links for the final decision: to delete a link, or to
include it with certain direction. Beside this, the expert may indicate some present
links (and some absent links) that the application demands even if these relations
are not represented in the data.

For the sensor validation application, we required a tree model, given the speed
requirements. The experiments presented next give reasons for this choice.

11.5.3 Experimental results

Two measures were considered in the empirical evaluation of the algorithm. First,
we evaluated the number of false alarms. This means the number of times that
the validation algorithm detected an alarm that did not exist. Second, we evaluated
the missing alarms. This means the number of times that the validation algorithm
did not detect an alarm that did exist. Table 11.2 shows the percentage of missing
alarms and false alarms for two kind of faults. A severe fault was simulated by
changing the real measure in 50% of its value, while a mild fault consisted of a
change of 25% of its original value.

False alarms imply that most of the sensors in a EMB present apparent false
alarms. This is more common as can be seen in Table 11.2. That is, there are
cases where the existence of an invalid apparent fault, together with the valid ones,
completes the EMB of a misdiagnosed sensor. Hence, a false alarm is produced.
On the contrary, missing alarms are detected at this stage when most of the sensors
of a EMB present misdiagnosed apparent faults. This is very improbable as the
results of Table 11.2 confirm. The percentages are obtained comparing the average
number of errors with the total number of experiments.

The parameter for changing these numbers is the p value defined in algorithm 4,
and may change according to the application. There may be applications where a
false alarm is not very important compared with a missing alarm of an important
abnormal event. On the contrary, some applications prefer to miss some alarms but
when an alarm is detected, drastic action can be taken.

Table 11.2 Percentage of errors for severe
and mild faults.

Fault False alarms Missing alarms

Severe 2.9 % 0.4 %
Mild 6.5 % 5.8 %
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The any-time characteristic of the sensor validation algorithm was also consid-
ered in the experiments. We compared the performance of the sensor validation
algorithm with the entropy criteria for selecting the next sensor to validate, against
a random selection. This comparison indicates that, when the random criterion
reaches 20% of accuracy, the entropy criteria had already reached 50% of accu-
racy in the results. When the random criterion reaches 60%, the entropy criterion
reaches 80%.

11.6 Discussion and conclusion

This chapter has presented an application of Bayesian networks in the validation
of sensors in an industrial environment. Specifically, the experiments considered
the temperature sensor of a gas turbine, one of the most popular machines for
electricity generation around the world.

We utilize two Bayesian networks for the any-time sensor validation system.
The first network is a model representing the probabilistic relationship between
all the signals in the application. This is called the detection network and can
be learned from historical data, and expert participation if needed. The second
Bayesian network is a causal model formed by real and apparent faulty nodes.
If the detection function observes a fault, the corresponding apparent fault node
is instantiated and propagation is called to update the real fault nodes. This set
of nodes forms the output vector. At every step of validation, a more accurate
response is produced, giving the system an any-time behavior, appropriate for real
time applications.

One advantage of this approach is that it is only necessary to acquire information
while the process (a turbine in this case) is working properly. It is not necessary to
simulate faults in order to identify them later. Another advantage in this validation is
in the complexity of the system when the number of nodes increases. As established
in Section 11.3, the problem of complexity is located in the size of the largest
Markov blanket among the models. This signifies that we can have as many nodes
or variables that the process may require, if the interconnection between them is
not too high. This may be a characteristic of the domain, or it can be forced by
the learning algorithm, considering simple models such as trees.

The sensor validation presented in this chapter can be also applied in a general
diagnosis of equipment where the requirement is the detection of abnormal behav-
ior of the system. This abnormal behavior is immediately shown in the behavior of
the signals. Other applications include the detection of false information even when
this information is not provided by sensors. It can detect liar agents that manipu-
late information. Additionally, this technique is being used in the construction of
virtual sensors, i.e., by estimating the value of an unobservable sensor based on
the readings of related sensors.
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12.1 Introduction

One of the main objectives of a democracy is that citizens know what their repre-
sentatives in the parliament are dealing with at each moment. Therefore, national
and regional parliaments, in particular those in Spain, are obliged to publish the
work developed in these houses of representatives in order to make public all the
matters being discussed. They have to offer the transcriptions of all the sessions,
containing all the participations (reports of proceedings or session diaries), as well
as all the text and documents generated by the parliamentary activity whose pub-
lication is mandatory (official bulletins). A few years ago, these texts were printed
versions sent to all the official organizations or libraries, but nowadays the new
information technologies have changed the method of publishing: given the devel-
opment of new standards to represent and exchange documents electronically and
the applications to work with them, as well as the spread of Internet use, parliaments

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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have combined these two complementary facets to create an alternative publishing
method: electronic documents published on the web. This means three important
advantages with respect to the old system: a faster spreading of the discussions
carried out in the sessions, a cheaper way of publishing and an easier way of
accessing the diaries and bulletins.

In the specific case of the regional Parliament of Andalucı́a, the southern Span-
ish region, when any of the different types of sessions (plenary, commissions, . . .)
are held, a transcription of all the speeches given in the sessions is obtained. After
an editing process, a document in Portable Document Format (PDF) is obtained
and published on the Parliament website.1 The official bulletins are also edited,
converted to PDF and published in the website. Then, these documents can be
accessed through the web by means of a database-like query, knowing the number
of session, the date of holding or the legislature to which they belong to. This is
an important drawback for a fast and easy access to the required documents. The
user must know all that information to get a set of documents and after (s)he has
to inspect them in order to find what (s)he is looking for.

Therefore, in order to fully exploit all the potential of this new system, we need
not only an easy way of accessing the diaries and bulletins but also an easy way
of accessing the specific information contained in them. So, the goal is to endow
the website with a real search engine based on content, where the user expresses
her/his information need using a natural language query (for instance, ‘money given
to agriculture in the budgets of 2005’) and obtains immediately the set of relevant
documents, sorted according to its degree of relevance. This problem falls within
the scope of the so-called Information Retrieval field. Moreover, we also want to
take advantage of the structure of the session diaries and official bulletins, in order
to better determine which documents or which parts of these documents are truly
relevant. So, the output of the system for a given query (e.g., ‘information about
bills relative to infrastructure and transport policies’ or ‘oral questions answered
by Mr. Chaves – the prime minister of the autonomous government – in plenary
sessions of the sixth legislature’) will be a set of document components of varying
granularity (from complete document to a single paragraph, for example), also
sorted depending on its degree of relevance. In this way the user only sees the more
relevant parts, avoiding the (manual) search of the requested information within the
complete documents. The subfield of information retrieval dealing with documents
having a well-defined structure is known as structured information retrieval or
structured document retrieval.

This work describes both the theoretical foundations and practical aspects of a
software system that has been designed and implemented for storing and accessing
the document collections of the Parliament of Andalucı́a, taking into account their
specific features, with the aim of bringing these texts nearer to the people, in an
effective and efficient way. An outstanding feature of our system is that its search
engine is based on probabilistic graphical models, namely Bayesian networks and
influence diagrams.

1www.parlamentodeandalucia.es
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12.2 Overview of information retrieval and
structured information retrieval

Information retrieval (IR) is concerned with representation, storage, organization,
and accessing of information items [406]. An information retrieval system (IRS)
is the software that implements these tasks in a computer. A great number of
retrieval models, i.e., specifications about how to represent documents and queries
and how they are compared, have been developed [31]. Given a set of docu-
ments in their original format, the first step is to translate each document to a
suitable representation for a computer. That translation is called indexing, and
the output is usually a list of words, known as terms or keywords, extracted
from the text and considered significant. Sometimes, and previously to the index-
ing, a preprocess is run, removing words that are not useful at all for retrieval
purposes2 (stopwords), and/or converting each word to its morphological repre-
sentative3 (stemming), in order to reduce the size of the vocabulary. The terms
usually have associated weights expressing their importance (either within each
document or within the collection, or both). The IRS stores these representations
instead of the complete documents. The user expresses his/her information needs
formulating a query, using a formal query language or natural language. This
query is also indexed to get a query representation and the retrieval continues
matching the query representation with the stored document representations, using
a strategy that depends on the retrieval model being considered. Finally, a set of
document identifiers is presented to the user sorted according to their relevance
degree.

Standard IR treats documents as if they were atomic entities, so usually only
entire documents constitute retrievable units. However, more elaborate document
representation formalisms, like XML, allow us to represent so-called structured
documents, whose content is organized around a well defined structure that enables
us to describe the semantics of complex and long documents [93]. Examples of
these documents are books and textbooks, scientific articles, technical manuals,
etc, and also official bulletins and session diaries in a parliament. The structure
of documents is therefore ‘flattened’ and not exploited by classical retrieval meth-
ods. Structured information retrieval views documents as aggregates of interrelated
structural elements that need to be indexed, retrieved, and presented both as a
whole and separately, in relation to the user’s needs. In other words, given a
query, a structured IR system must retrieve the set of document components that
are most relevant to this query, not just entire documents. Structured IR models
exploit the content and the structure of documents to estimate the relevance of doc-
ument components to queries, usually based on the aggregation of the estimated
relevance of their related components [262].

2Because they carry little meaning, as articles, prepositions, conjunctions, etc.
3For example the words conspirant, conspirator, conspirators, conspire, conspired, conspirers, con-

spires, conspiring are all converted to their common morphological root ‘conspir.’
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12.3 Bayesian networks and information retrieval

Probabilistic models constitute an important kind of IR model. They have been long
and widely used [108], and offer a principled way of managing the uncertainty that
naturally appears in many elements within this field. These models compute the
probability of relevance given a document and a query (the probability that a
document satisfies a query). Bayesian networks, which nowadays are one of the
most important approaches for managing probability within the field of artificial
intelligence, have also been used within IR as an alternative to classical probabilistic
models.

Bayesian networks were first applied to IR at the beginning of the 1990s [456,
457], with the so-called inference network model developed by Croft and Turtle.
From this original model, the InQuery retrieval system was developed [80], which
at present is one of the main experimental and commercial software packages in
this area. Since then, many models and applications have been developed. We shall
mention only another two of the most representative approaches (for a more detailed
account of the use of BNs within IR, see [119]): Ribeiro-Neto and co-researchers
developed the belief network model [394] and, more recently, we designed the
Bayesian network retrieval model [1, 118].

These three models have several features in common: each index term and each
document in a given collection are represented as nodes in the network, and there
are links connecting each document node with all the term nodes that represent the
index terms associated to this document. Figure 12.1 displays an example of this
basic topology. However, these models also differ in many aspects: the direction
of the arcs (from term nodes to document nodes or vice versa), the existence of
additional nodes and arcs (e.g., to represent term relationships as well as document
relationships), the way of computing the probability distributions stored in the
nodes of the graph, and the way in which they carry out the retrieval of documents
(computing the probability of a query node being satisfied by a given document
or computing the probability of a document node being relevant given either the
query node or the index terms appearing in the query).

In any case, the development of solutions for IR problems has been very chal-
lenging and imaginative, because of two, a priori, drawbacks of Bayesian networks:
firstly, the time and space required to assess the distributions and store them (the
number of conditional probabilities per node is exponential with the number of the

T2T1 T3 T4 T5 T6 T7 T8 T9

D1 D2 D3 D4 D5

T10 T11 T12

Figure 12.1 Basic network topology common to several BN-based retrieval models,
connecting terms (Ti) and documents (Di) where they appear.
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node’s parents); secondly, the efficiency of carrying out inference, because general
inference in BNs is an NP-hard problem [100]. For example, if we want to rep-
resent a document collection using a BN, where the nodes represent documents,
terms and queries, and there are, among others, arcs linking terms with the doc-
uments where they appear, this representation will be very expensive in terms of
space and time: if a document is indexed by, say 500 terms, or a term is used to
index 500 documents (depending on the direction of the arcs), the computation and
storage of all the probability distributions are simply intractable tasks. But even in
the case of coping with it, the retrieval of the documents relevant for a given query
would take a long time, a fact that is not allowed in interactive environments. This
means that a direct approach where we propagate the evidence contained in a query
through the whole network representing a collection is clearly unfeasible even for
small collections. Therefore, research effort has been necessary to overcome these
problems, in order to obtain efficient and effective BN-based solutions for the IR
context. The first problem can be fixed by defining and using new canonical models
of multicausal interaction, whereas the second requires the development of infer-
ence algorithms able to take advantage of both these canonical models and the
restricted network topologies being considered.

Given that BNs are powerful tools to represent and quantify the strength of
relationships between objects, they have also been applied to structured docu-
ment retrieval. The hierarchical structure of the documents may be qualitatively
represented by means of a directed acyclic graph, and the strength of the rela-
tions between structural elements may be captured by a quantitative probabilistic
model [107, 120, 189, 368]. The propagation through the network would give the
relevance probability of all the structural elements comprising the document as
a result. This problem is even more challenging, because the BN representing a
collection of structured documents is much greater than that representing a ‘flat’
document collection.

In the next section we shall describe in more detail the model underlying the
search engine implemented in our application, which is based on Bayesian networks
and influence diagrams [120, 121].

12.4 Theoretical foundations

First, we describe a BN model for structured document retrieval and next extend
it to an influence diagram.

12.4.1 The underlying Bayesian network model for structured
documents

We start from a document collection containing M documents, D ={D1, . . . , DM},
and the set of the terms used to index these documents (the glossary or lexi-
con of the collection). Each document Di is organized hierarchically, representing
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structural associations of elements in Di , which will be called structural units.
Each structural unit is composed of other smaller structural units, except some
‘terminal’ units which do not contain any other unit but are composed of terms
(each term used to index the complete document Di will be assigned to all the
terminal units containing it). Conversely, each structural unit, except those cor-
responding to the complete documents, is included in only one structural unit.
Therefore, the structural units associated to a document Di form an
(inverted) tree.

For instance, a scientific article may contain a title, authors, abstract, sections
and bibliography; sections may contain a title, subsections and paragraphs; in turn
subsections contain paragraphs and perhaps also a title; the bibliography contain
references; titles, authors, paragraphs, abstract and references would be in this case
the terminal structural units (see Figure 12.2).

The BN modeling the document collection will contain three kinds of nodes,
representing the terms and two different types of structural units. The former will
be represented by the set T = {T1, T2, . . . , Tl}. The two types of structural units
are: basic structural units, those which only contain terms, and complex structural
units, that are composed of other basic or complex units, Ub = {B1, B2, . . . , Bm}
and Uc = {S1, S2, . . . , Sn}, respectively. The set of all the structural units is
U = Ub ∪ Uc. To each node T , B or S is associated a binary random variable, which
can take its values from the sets {t−, t+}, {b−, b+} or {s−, s+}, respectively, rep-
resenting that the term/unit is not relevant ( – ) or is relevant (+). A unit is relevant
for a given query if it satisfies the user’s information need expressed by it. A term
is relevant in the sense that the user believes that it will appear in relevant units/
documents.

Index Terms

Document1

Section2 BibliographySection1AbstractAuthorTitle

Title Parag1 Subsection1 Subsection2 Ref1 Ref2

Parag1TitleParag2Parag1Title

Figure 12.2 The structure of a scientific article.
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Figure 12.3 Bayesian network representing a structured document collection.

Regarding the arcs of the model, there is an arc from a given node (either term
or structural unit) to the particular structural unit node it belongs to.4 It should
be noticed that terms nodes have no parents and that each structural unit node
U ∈ U has only one complex structural unit node as its child, corresponding to the
unique structural unit containing U , except for the leaf nodes (i.e., the complete
documents), which have no child. We shall denote by Sch(U) the single child node
associated with node U (with Sch(U) = null if U is a leaf node). Formally, the
network is characterized by the following parent sets, Pa(.), for the different types
of nodes:

• ∀T ∈ T , P a(T ) = ∅.

• ∀B ∈ Ub, ∅ �= Pa(B) ⊆ T .

• ∀S ∈ Uc, ∅ �= Pa(S) ⊆ Ub ∪ Uc, with Pa(S1) ∩ Pa(S2) = ∅, ∀S1 �= S2 ∈ Uc.

Figure 12.3 displays an example of the proposed network topology.
The numerical values for the conditional probabilities have also to be assessed:

IP
(
t+

)
, IP

(
b+|pa(B)

)
, IP

(
s+|pa(S)

)
, for every node in T , Ub and Uc, respec-

tively, and every configuration of the corresponding parent sets (pa(X) denotes a
configuration or instantiation of Pa(X)).

In our case, the number of terms and structural units considered may be quite
large (thousands or even hundreds of thousands). Moreover, the topology of the
BN contains multiple pathways connecting nodes (because the terms may be asso-
ciated to different basic structural units) and possibly nodes with a great number of
parents (so that it can be quite difficult to assess and store the required conditional
probability tables). For these reasons, to represent the conditional probabilities, we

4Therefore the relevance of a given structural unit to the user will depend on the relevance values
of the different elements (units or terms) that comprise it.
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use the canonical model proposed in [118], which supports a very efficient infer-
ence procedure. We have to consider the conditional probabilities for the basic
structural units, having a subset of terms as their parents, and for the complex
structural units, having other structural units as their parents. These probabilities
are defined as follows:

∀B ∈ Ub, IP
(
b+|pa(B)

) =
∑

T ∈R(pa(B))

w(T , B) , (12.1)

∀S ∈ Uc, IP
(
s+|pa(S)

) =
∑

U∈R(pa(S))

w(U, S) , (12.2)

where R(pa(U)) is the subset of parents of U (terms for B, and either basic or
complex units for S) relevant in the configuration pa(U), i.e., R(pa(B)) = {T ∈
Pa(B) | t+ ∈ pa(B)} and R(pa(S)) = {U ∈ Pa(S) |u+ ∈ pa(S)}. So, the more
parents of U are relevant the greater the probability of relevance of U . w(T , B)

is a weight associated to each term T belonging to the basic unit B and w(U, S)

is a weight measuring the importance of the unit U within S. These weights can
be defined in any way, the only restrictions are that w(T , B) ≥ 0, w(U, S) ≥ 0,∑

T ∈Pa(B) w(T , B) ≤ 1, and
∑

U∈Pa(S) w(U, S) ≤ 1.
With respect to the prior probabilities of relevance of the terms, IP

(
t+

)
, they

can also be defined in any reasonable way, for example an identical probability for
all the terms, IP

(
t+

) = p0, ∀T ∈ T , as proposed in [120].

12.4.2 The influence diagram model

Once the BN has been constructed, it is enlarged by including decision and util-
ity nodes, thus transforming it into an influence diagram. We use the following
topology:

(a) Chance nodes: those of the previous BN.

(b) Decision nodes: one decision node, RU , for each structural unit U ∈ U .
RU represents the decision variable related to whether or not to return the
structural unit U to the user. The two different values for RU are r+

U and
r−
U , meaning ‘retrieve U ’ and ‘do not retrieve U ’, respectively.

(c) Utility nodes: one of these, VU , for each structural unit U ∈ U , will measure
the value of utility of the corresponding decision.

In addition to the arcs between chance nodes (already present in the BN), a
set of arcs pointing to utility nodes are also included, employed to indicate which
variables have a direct influence on the desirability of a given decision, i.e., the
profit obtained will depend on the values of these variables. As the utility function
of VU obviously depends on the decision made and the relevance value of the
structural unit considered, we use arcs from each chance node U and decision
node RU to the utility node VU . Another important set of arcs are those going
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from Sch(U) to VU , which represent that the utility of the decision about retrieving
the unit U also depends on the relevance of the unit which contains it.5 This last
kind of arc allows us to represent the context-based information and can avoid
redundant information being shown to the user. For instance, we could express the
fact that, on the one hand, if U is relevant and Sch(U) is not, then the utility of
retrieving U should be large; on the other hand, if Sch(U) is relevant, even if U

were also relevant the utility of retrieving U should be smaller because, in this
case, it may be preferable to retrieve the largest unit as a whole, instead of each
of its components separately.

We use another utility node, denoted by �, that represents the joint utility
of the whole model, having all the utility nodes VU as its parents. These arcs
represent the fact that the joint utility of the model will depend (additively) on the
values of the individual utilities of each structural unit. Figure 12.4 displays an
example of the topology of the proposed influence diagram model, associated to
the BN model shown in Figure 12.5.

Moreover, the influence diagram requires numerical values for the utilities.
For each utility node VU we need eight numbers, one for each combination of

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

R1 B1
B2 R2 R3 B3 B4 R4

V1
V2 V3 V4

Rs1
S1

Vs1

Rs2S2

Vs2

Figure 12.4 Topology of the influence diagram model associated with the Bayesian
network in Figure 12.5.

5Obviously, for the units which are not contained in any other unit these arcs do not exist.
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T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

B1
B2 B3 B4

S1

S2

T1

Figure 12.5 Basic Bayesian network topology underlying the influence diagram in
Figure 12.4.

values of the decision node RU and the chance nodes U and Sch(U). These values
are represented by v(rU , u, sch(U)), with rU ∈ {r−

U , r+
U }, u ∈ {u−, u+}, and sch(U) ∈

{s−
ch(U), s+

ch(U)}.

12.4.3 Retrieving structural units: Solving the influence
diagram

To solve an influence diagram, the expected utility of each possible decision (for
those situations of interest) has to be computed, thus making decisions which
maximize the expected utility. In our case, the situation of interest corresponds to
the information provided by the user when (s)he formulates a query. Let Q ⊆ T
be the set of terms used to express the query. Each term T ∈ Q will be instantiated
to t+; let q be the corresponding configuration of the term variables in Q. We
wish to compute the expected utility of each decision given q, i.e., EU(r+

U | q)

and EU(r−
U | q). In the context of a typical decision making problem, once the

expected utilities are computed, the decision with greatest utility is chosen: this
would mean retrieving the structural unit U if EU(r+

U |q) ≥ EU(r−
U |q), and not

retrieving it otherwise. However, our purpose is not only to make decisions about
what to retrieve but also to give a ranking of those units. The simplest way to do
it is to show them in decreasing order of the utility of retrieving U , EU(r+

U |q),
although other options would also be possible. In this case only four utility values
have to be assessed, and only the computation of EU(r+

U |q) is required.
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As we have assumed a global additive utility model, and the different decision
variables RU are not directly linked to each other, we can process each indepen-
dently. The expected utility for each U can be computed by means of

EU(r+
U | q) =

∑
u∈{u−,u+}

sch(U)∈{s−
ch(U)

,s
+
ch(U)

}

v(r+
U , u, sch(U)) IP

(
u, sch(U)|q

)
. (12.3)

According to Equation (12.3), in order to provide to the user with an ordered list
of structural units, we have to be able to compute the posterior probabilities of rele-
vance of all the structural units U ∈ U , IP

(
u+|q)

, and also the bi-dimensional pos-

terior probabilities, IP
(
u+, s+

ch(U)|q
)

. Notice that the other required bi-dimensional

probabilities, IP
(
u+, s−

ch(U)|q
)

, IP
(
u−, s+

ch(U)|q
)

and IP
(
u−, s−

ch(U)|q
)

, can be eas-

ily computed from IP
(
u+, s+

ch(U)|q
)

, IP
(
u+|q)

and IP
(
s+
ch(U)|q

)
. The specific char-

acteristics of the canonical model used to define the conditional probabilities will
allow us to efficiently compute the posterior probabilities.

The unidimensional posterior probabilities can be calculated as follows
[118, 120]:

∀B ∈ Ub, IP
(
b+ |q) = IP

(
b+) +

∑
T ∈Pa(B)∩Q

w(T , B)
(
1 − IP

(
t+

))
. (12.4)

∀S ∈ Uc, IP
(
s+ |q) = IP

(
s+) +

∑
U∈Pa(S)

w(U, S)
(
IP

(
u+ |q) − IP

(
u+))

. (12.5)

So, the posterior probabilities of the basic units can be computed directly, whereas
the posterior probabilities of the complex units can be calculated in a top-down
manner, starting from those for the basic units. However, it is possible to design a
more direct inference method for the complex units. Let us define the set Ab(S) =
{B ∈ Ub |B is an ancestor of S}, ∀S ∈ Uc. Notice that, for each basic unit B in
Ab(S), there is only one path in the graph going from B to S. Let us define the
weight w′(B, S) as the product of the weights of the arcs in the path from B

to S. Then, the posterior probabilities of the complex units can be calculated as
follows [121]:

∀S ∈ Uc, IP
(
s+|q) = IP

(
s+) +

∑
B∈Ab(S)

Pa(B)∩Q�=∅

w′(B, S)
(
IP

(
b+|q) − IP

(
b+))

. (12.6)

Equations (12.4) and (12.6) are the basis for developing an inference process able
to compute all the posterior probabilities of the structural units in a single traversal
of the graph, starting only from the instantiated terms in Q, as we shall see later.

The other required probabilities are the posterior bi-dimensional probabilities

IP
(
u+, s+

ch(U) |q
)

,
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for any structural unit U ∈ U and its unique child Sch(U), provided that Sch(U) �=
null. Although they can be computed exactly and in a way much more efficient than
using a classical BN inference algorithm [121], even this process could be expen-
sive in terms of memory and time for very large document collections. For that
reason we can use two approximations: the simpler is to assume the independence
between each structural unit and the one which contains it [120], i.e.,

IP
(
u+, s+

ch(U)|q
)

= IP
(
u+|q)

IP
(
s+
ch(U)|q

)
. (12.7)

The other, which is finer and can be computed as efficiently as the previous one,
is based on the exact formulas developed in [121]:

IP
(
u+, s+

ch(U)|q
)

= IP
(
u+|q)

IP
(
s+
ch(U)|q

)
+ w(U, Sch(U)) IP

(
u+|q)

(1 − IP
(
u+|q)

) . (12.8)

In any case the computation of these approximations of the bi-dimensional prob-
abilities can be done starting from the corresponding unidimensional probabilities
and the weight of each unit U within its child unit Sch(U).

Example
To illustrate the inference mechanism, let us consider a simple example, where
there are three documents, corresponding with Sections 12.2, 12.3 and 12.4 of
this chapter. Moreover, we use as indexing terms only the words appearing in the
titles of these sections and the corresponding subsections (performing stemming6

and excluding stopwords and words appearing only once). The Bayesian network
representing this ‘collection’ is displayed in Figure 12.6. This collection contains
eight terms, five basic and one complex structural units (excluding the leaf node
representing the complete collection). We shall use the weighting scheme pro-
posed in [120] (see Subsection 12.5.2 for details). The resulting weights of the
arcs are also displayed in Figure 12.6, and the prior probability of relevance of
all the terms has been set to 0.1. The utility values are v(r+

U , u+, s+
ch(U)) = 0.5,

structured

Section2

Section4

Collection

Subsection4.3Section3

model influence diagram

0.152

Subsection4.2Subsection4.1

bayesian networkinformation

0.281
0.157

0.281
0.281

0.304
0.544

0.157
0.2810.281 0.281 0.333 0.333 0.333

0.321
0.3210.179

0.179

0.3220.368
0.310

0.217

0.211
0.572

retrieval

Figure 12.6 The Bayesian network representing part of this chapter (number 12 is
omitted).

6So that the words ‘retrieving’ and ‘retrieval’, ‘networks’ and ‘network’, ‘structural’ and ‘structured’
become single terms.
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Table 12.1 Posterior probabilities and expected utilities for queries Q1 and Q2.

Section Section Subsec. Subsec. Subsec. Section
12.2 12.3 12.4.1 12.4.2 12.4.3 12.4 Collection

IP
(
u+ |q1

)
0.863 0.494 0.100 0.700 0.839 0.524 0.591

EU(r+
U |q1) 0.540 0.076 −0.381 0.392 0.557 0.159 –

IP
(
u+|q2

)
0.100 0.606 0.606 0.700 0.678 0.658 0.526

EU(r+
U |q2) −0.390 0.265 0.191 0.305 0.278 0.368 –

v(r+
U , u+, s−

ch(U)) = 1, v(r+
U , u−, s+

ch(U)) = −1, v(r+
U , u−, s−

ch(U)) = 0 for all the
structural units.

Let us study the output provided by the model for two queries Q1 and Q2, where
Q1 is ‘information retrieval, influence diagrams’ and Q2 is ‘Bayesian networks,
influence diagrams’. After instantiating to relevant these terms, we propagate this
evidence through the network. The posterior probabilities of the structural units
are displayed in Table 12.1. For Q1, Section 12.2 and Subsection 12.4.3 are the
most relevant structural units (as Section 12.2 speaks mainly about information
retrieval7 and Subsection 12.4.3 speaks about influence diagrams and retrieval).
For Q2, Subsection 12.4.2 is the most relevant unit (it is devoted exclusively to
influence diagrams), although Section 12.3 and Subsection 12.4.1 (which speak
about Bayesian networks) and Subsection 12.4.3 (dealing with influence diagrams)
also gets a relatively high probability (lower than that of Subsection 12.4.2 because
they also speak about other topics outside the query). However, for Q2 it seems
to us that retrieving Section 12.4 as a whole would be more useful for the user
than retrieving its subsections. If we compute the expected utilities (Table 12.1
also displays all the utility values) using the approximation in Equation (12.8), we
can see that Section 12.4 gets the highest value for Q2, whereas Section 12.2 and
Subsection 12.4.3 maintain the highest value for Q1, as desired.

12.5 Building the information retrieval system

PAIRS8 is a software package specifically developed to store and retrieve docu-
ments generated by the Parliament of Andalucı́a, based on the probabilistic graph-
ical models described in the previous section. Written in C++, following the
object-oriented paradigm, it offers a wide range of classes and a complete set of
utility programs. Basically, this system allows us, on the one hand, to index the doc-
ument collections and manage the created indexes and, on the other hand, retrieve
relevant (parts of) documents given a query formulated by a user. Figure 12.7
shows a general scheme of PAIRS.

In the following sections we shall study some characteristics of the document
collections as well as the architecture of PAIRS from the indexing and querying
points of view.

7Notice that the words ‘information’ and ‘retrieval’ appear twice in Section 12.2.
8Acronym of Parliament of Andalucı́a Information Retrieval System.
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Figure 12.7 General scheme of PAIRS.

12.5.1 The document collections

As we mentioned earlier, the documents we are dealing with (session diaries and
official bulletins) have a high degree of structuring, so that we decided to represent
them using XML (Extensible Markup Language), which at present is the most
standard format for structured documents and data interchange on the web.

The internal structure of all the session diaries is basically as follows:

(a) Information about the session: date, number, legislature, type, etc.

(b) Agenda of the session: headlines of all the points to be discussed, organized
by types of initiatives.

(c) Summary: detailed description of the agenda, specifying those deputies who
took part in the discussions and the results of the votes (added once the
session is finished).

(d) Development of the session: exact transcription of all the speeches.

On the other hand, the official bulletins are composed of two sections. The first one
is a summary of the content included in the second part. A brief reference to each
parliamentary initiative developed in the main body of the document is included in
the first part, as a kind of table of contents. There exists a well defined and static
hierarchical taxonomy of initiatives designed by the Parliament (e.g., law projects,
oral and written questions, motions, . . .) so all the initiatives presented in each
document are arranged in the corresponding place of the hierarchy. The second
part, the body of the document, is organized around the same taxonomy presented
in the table of contents, but developing the content of each initiative. Inside each
text, basically the structure is the following: number of the initiative, title, who
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presents it, who answers (in case of a question to the regional government, for
example), date, and the text itself explaining the request or the answer. Then,
we designed the corresponding DTDs (document type definitions) to capture the
structure of both types of documents in detail.

As all the documents are in PDF format but we need to manage plain text, we
have used tools that extract the text of a PDF document. PDFBox and Pdftotext,
are two free source libraries able to manipulate PDF documents. Once we have
extracted the text of the documents, the next step is to identify the textual content
associated with the structural units found in these documents, i.e., to transform the
plain text into structured XML text conforming the specifications of the previously
defined DTDs. The identification of this information is a quite difficult task which
is carried out basically by means of the use of regular expressions trying to find
the corresponding patterns in the text.

12.5.2 Indexing subsystem

The objective of the indexing process is to build the data structures that will allow
fast access to those documents and structural units where query terms occur and
their associated weights, in order to enable efficient retrieval.

Within the IR field, there are several approaches for tackling the problem
of indexing structured documents,9 mainly marked up in XML [290]. Basically,
they either store the tree representing the document collection or use the classical
approach of inverted file containing the occurrences of the terms in XML tags and
any kind of data structure to represent the internal organization (hierarchy) of the
documents, as in [455]. This is the philosophy that PAIRS implements, differing
in the data structure used.

12.5.2.1 Application level

Obviously PAIRS is able to manage heterogeneous collections (having documents
with different DTDs), and also different indexes over the same collection. Thus,
it provides a software module, makeIndex to do this task. It can choose among
different stopword lists and use (if desired) a stemming algorithm. This task is
carried out by the SnowBall linguistic analyzer for the Spanish language, which
applies a set of rules adapted to this language in order to remove prefixes and
suffixes and extract the stems.

The performance on an IRS depends heavily of the weighting scheme being
used, in our case the weights w(T , B) of terms in the basic structural units and the
weights w(U, S) of units in the broader units containing them. In PAIRS several
valid weighting schemes can coexist. As a consequence, indexing does not compute
the weights (setting all of them to be zero). Instead of that, there is the possibility
to calculate weights (following a certain weighting scheme) for previously built
indexes without inserting into them, and store them in files – the so-called weight

9Other alternatives are based on storing documents in tables of relational databases and using the
tools given by database management systems to retrieve documents, for instance, the SQL language.
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files. So, records of that precomputed weight files are kept, and a fast way to insert
one into the index itself is provided, in order to carry out the retrieval using it. To
achieve these two tasks two separate program modules, makeWeightFile and
insertWeightFile, are provided.

The specific weighting scheme that we are currently using is the follow-
ing [120]: first, ∀U ∈ U , let us define At(U) = {T ∈ T | T is an ancestor of U},
i.e., At(U) is the set of terms that are included in any of the basic units which form
part of U .10 Given any set of terms C, let tf (T , C) be the frequency of the term T

(number of times that T occurs) in the set C and idf (T ) be the inverse document
frequency of T in the whole collection, which is defined as idf (T ) = ln (m/n(T )),
where n(T ) is the number of basic units that contain the term T and m is the
total number of basic units. We define ρ(T , C) = tf (T , C) · idf (T ). Then, the
weighting scheme is:

∀B ∈ Ub, ∀T ∈ Pa(B), w(T , B) = ρ(T , Pa(B))∑
T ′∈Pa(B)) ρ(T ′, P a(B))

; (12.9)

∀S ∈ Uc, ∀U ∈ Pa(S), w(U, S) =
∑

T ∈At (U) ρ(T , At (U))∑
T ∈At (S) ρ(T , At (S))

. (12.10)

It should be observed that the weights in Equation (12.10) are the classical tf-
idf weights, normalized to sum one up. The weights w(U, S) in Equation (12.10)
measure, to a certain extent, the proportion of the content of the unit S which can
be attributed to each one of its components U .

12.5.2.2 Physical level and data structures

In PAIRS we have emphasized querying time over indexing time, even storing
some redundant information. Let us briefly describe the data structures associated
to indexing.

To store textual information (terms and identifiers of the basic units where
they appear), we use inverted indexes [502]. While the lexicon is kept entirely in
memory (both while indexing and querying), the postings or lists of occurrences
of terms are read from disk (for each term, a list of identifiers of basic units where
this term appears, together with information about frequency and weight of the
term within each unit). We use another file to write the list of relative positions
of each term inside a unit, in order to answer queries containing either proximity
operators or phrases.11

To maintain information about the structural units, we use several files, the two
most important being: (1) A large direct access file that contains data of each unit
itself (identifier, tag, position, ...), as well as the identifier of the container unit (i.e.,
its single child unit) and the corresponding weight; (2) another file containing the
XPath route of each unit, i.e., the complete path from this unit to the root of the
hierarchy (the unit representing the complete document). The first file is necessary

10Notice that At (B) = Pa(B), ∀B ∈ Ub.
11This functionality is not yet implemented.
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to efficiently traverse the network at propagation time, whereas the second is useful
to provide to the user access to the units selected for retrieval after propagation.

To reduce the storage requirements of the files representing the indexed col-
lection, some of these files are compressed (including both the postings and the
XPath files, among others).

12.5.3 Querying subsystem

The query subsystem, once it receives a query, carries out the following steps:

1. The query is parsed, and the occurrences of the query terms are retrieved
from disk.

2. For each occurrence, the implied basic units and their descendants are read
to memory (if they were not already there).

3. Inference is carried out, computing first the posterior probabilities of the
structural units and next the expected utilities; then units are sorted in
descending ordering of their expected utility, and the result is returned.

It is worth noticing that the Bayesian network and the influence diagram underlying
the search engine are never explicitly built; their functionality can be obtained by
using the data structures that contain the structural and textual indexes.

The propagation algorithm used to efficiently compute the posterior probabil-
ities, traversing only the nodes in the graph that require updating (those whose
posterior probability is different from the prior), is shown here (Algorithm 7). It
is assumed that the prior probabilities of all the nodes are stored in prior[X]; the
algorithm uses variables prob[U] which, at the end of the process, will store the cor-
responding posterior probabilities. Essentially, the algorithm starts from the items
in Q and carries out a width graph traversal until it reaches the basic units that
require updating, thus computing p(b+|q) progressively, using Equation (12.4).
Then, starting from these modified basic units, it carries out a depth graph traver-
sal to compute p(s+|q), only for those complex units that require updating, using
Equation (12.6).

The algorithm that initializes the process by computing the prior probabilities
prior[U] (as the items T ∈ T are root nodes, the prior probabilities prior[T] do not
need to be calculated, they are stored directly in the structure) is quite similar to
the previous one, but it needs to traverse the graph starting from all the items in
T instead from the items in Q.

In order to compute the expected utilities, the parameters representing the utility
values of the structural units have to be assessed. One easy way to simplify this
task is to assume that these values do not depend on the specific structural unit
being considered, i.e., v(r+

U , u, sch(U)) = v(r+
U ′, u′, sch(U ′)). In this way only four

parameters are required.12 However, PAIRS also uses another information source

12Another option so far not implemented in PAIRS would be to use different utility values for different
types of units, reflecting user preferences about the desirability of more or less complex structural units.
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Algorithm 7 Algorithm implemented in PAIRS to compute the posterior probabil-
ities of the basic and complex structural units, IP

(
b+|q)

and IP
(
s+|q)

1: for each item T in Q do
2: for each unit B child of T do
3: if (prob[B] exists) then
4: prob[B] += w(T,B)*(1 − prior[T]);
5: else
6: create prob[B]; prob[B] = prior[B]+w(T,B)*(1 − prior[T]);
7: end if
8: end for
9: end for

10: for each basic unit B s.t. prob[B] exists do
11: U = B; prod = prob[B] – prior[B];
12: while (Ch(U) is not NULL) do {Ch(U) is the child of U}
13: S = Ch(U);
14: prod *= w(U,S);
15: if (prob[S] exists) then
16: prob[S] += prod;
17: else
18: create prob[S];prob[S] = prior[S]+prod;
19: end if
20: U = S;
21: end while
22: end for

to dynamically define the utility values: the query itself. We believe that a given
structural unit U will be more useful (with respect to a query Q) as more terms
indexing U also belong to Q. We use the sum of the idfs of those terms indexing
a unit U that also belong to the query Q, normalized by the sum of the idfs of all
the terms contained in the query:

nidfQ(U) =
∑

T ∈At (U)∩Q idf (T )∑
T ∈Q idf (T )

. (12.11)

These values nidfQ(U) are used as a correction factor of the previously defined
constant utility values, so that:

v∗(r+
U , u, sch(U)) = v(r+

U , u, sch(U)) · nidfQ(U). (12.12)

Finally, in order to reduce at maximum the amount of disk accesses while pro-
cessing a query, thus giving a shorter response time, PAIRS also stores in memory
several unit objects (containing information about some units) in two caches, one
for basic and other for complex units. Using a hash-function-like scheme,13 we

13Identifier mod N , with N the size of the cache.
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store in each cache slot either one basic or complex unit selected from all the
candidates obtained doing the inverse of the hash function of its identifier. For
complex units we choose the one closest to a leaf unit, whereas for basic units we
select that one containing the greatest number of terms. In both cases the idea is
to store in memory those units having more prior chance of being visited during
the graph traversal carried out by the propagation algorithm.

12.5.4 Performance measures

In order to analyze the retrieval capabilities of an IR system, in terms of effective-
ness, the standard approach is to generate a representative set of queries, determine
the corresponding relevance judgements, i.e., the set of documents/units which
would be truly relevant for each query, and compare the sets of retrieved docu-
ments/units against the relevant ones, thus obtaining several performance measures,
such as precision (the proportion of retrieved documents that are relevant) and recall
(the proportion of relevant documents retrieved).

From the point of view of efficiency for the tasks of indexing and retrieving,
we have evaluated PAIRS in terms of disk space required by the indexes, and
time to index the collection and to retrieve. The current number of documents
in the collection of the Parliament of Andalucı́a (it is continuously growing) is:
3 097 official bulletins and 2 248 session diaries. The PDF versions of these docu-
ments take up around 6 gigabytes. The corresponding XML versions occupy around
1.2 gigabytes.

The last row in Table 12.2 displays several measures about the whole collec-
tion concerning sizes and times: the size of the collection and also the sizes of the
weight file and the index file, all of them measured in Mbytes; the times required to
index the collection, compute the weights and insert them into the index, measured
in minutes, as well as their sum (the total indexing time); the average time (and the
standard deviation) required to process a query and retrieve, measured in seconds.
The first three rows in the table show the same measures for subcollections com-
prising around 25%, 50% and 75% of the whole collection, in order to get some
insight about how these measures would increase when the size of the collection
also increases. Figures 12.8 and 12.9 display plots of the collections sizes versus
the total indexing times and average retrieval times, respectively.

Table 12.2 Index sizes, indexing and retrieval times for the whole collection (last
row) and several sub-collections.

Size (Mbytes) Time (min.) Time (sec.)

XML Weight Index In- Computing Inserting Total Average Std. dev.
collection file file dexing weights weights indexing retrieval retrieval

301 34 262 4.67 0.95 0.67 6.28 0.12 0.32
611 96 826 15.10 3.27 2.08 20.45 0.44 0.65
913 126 1080 21.83 5.40 2.35 29.58 0.82 1.15

1240 174 1481 31.12 8.10 3.25 42.47 1.26 1.18
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We can observe that the size of the indexes is only a bit larger than the size of
the original XML collections. The indexing times are clearly affordable (remember
that indexing is a task that is not very frequently carried out) and the retrieval times
are quite low. It can also be observed that both the indexing and retrieval times
are roughly linear with the size of the collections, so that the collection can still
grow considerably without compromising the efficiency of the system.

12.6 Conclusion

In this chapter we have presented a system to retrieve legislative documents
belonging to the collections of the Parliament of Andalucı́a, based on probabilistic
graphical models. The main objective of this development is to bring nearer what
politicians discuss in this chamber to general society, allowing normal users access
to the documents by means of a query expressed in natural language. The system,
which has been proved to be efficient in terms of indexing and retrieval times,
also serves to illustrate how, through a combination of theoretical research effort
and careful implementation, BN-based technologies can be employed in problem
domains whose dimensionality would a priori prevent its use.

The system should not be regarded as a finished product; it is still open to sev-
eral possible improvements that we plan to incorporate in the near future. Among
them, we would stress the development of a more powerful query language, which
allows users to formulate queries using exact phrases and also structural restrictions.
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13.1 Introduction

Recent work performed by several researchers working in the dependability field
have shown how the formalism of Bayesian networks can offer several advantages
when analyzing safety-critical systems from the reliability point of view [49, 57,
266, 454, 483]. In particular, when the components of such systems exhibit dynamic
dependencies, dynamic extensions of BN can provide a useful framework for the
above kind of analysis [320, 321, 322, 483].

Traditionally, in order to deal with dynamic dependencies, the reliability engi-
neer can resort to two different approaches:

• exploiting a state-space approach based on the generation of the underlying
stochastic process;

• exploiting a dynamic extension of a combinatorial model.

Among the first category of approaches, we can find Markov chain models (both
discrete and continuous), as well as the use of high level models like Petri nets
or BNs where primitive entities are not the (global) states of the modeled system,

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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but partial state descriptions like places, transitions and tokens in Petri nets or
random variables in BNs. In the case of Petri nets (and their stochastic extensions
like generalized stochastic Petri nets (GSPN) [11] and stochastic colored well-
formed nets (SWN) [95]) the global system states are obtained by generating all
the reachable combinations of tokens in the places according to the enabling and
firing rules of the Petri net semantics. In BN the global system states are obtained
by considering the Cartesian product of the primitive random variables. For this
reason, BN models are often referred to as ‘factorized models’ as well.

The most important approach in the second category is probably the formalism
of a dynamic fault tree (DFT) [37] where, in addition to the usual combinatorial
gates of a plain fault tree (FT) [416], several kinds of so-called ‘dynamic gates’
are introduced, in order to capture dynamic dependencies.

One of the advantages of the second category stands in the fact that the complex-
ity underlying the generation (and the analysis) of a state-space model is restricted
only to the portion of the model showing the dynamic dependencies. However, if
dynamic dependencies involve a large portion of the model, the state space genera-
tion and analysis can still be problematic. This may be alleviated if the state-space
model is generated resorting to a Petri net, either GSPN or SWN [50]. The standard
measures that are computed from a fault tree or a dynamic fault tree DFT are the
unavailability (or unreliability) of the root of the tree (the top event), or of any
subtree, given the failure probability of each basic event, and criticality indices for
the basic components given the top event has occurred [143].

In order to augment the modeling capabilities of the DFT approach and to
provide a more extensive set of characterizing measure, we have developed an
approach based on the generation of a dynamic Bayesian network (DBN) [327]
model of the system to be analyzed. DBNs are a factorized representation of a
stochastic process, where dependencies are modeled at the level of the net primi-
tives, without the need of providing a global state description.

The approach has been implemented in a software tool named Radyban (Reli-
ability Analysis with DYnamic BAyesian Networks) that is described in detail
in [321]. The tool is able to:

• allow the user to implement the dependability model by resorting to an
extension of the DFT formalism;

• translate the user model into an underlying DBN model;

• provide the analyst with a set of DBN inference algorithms implementing
several reliability analysis.

A screenshot of the Radyban tool is shown in Figure 13.5 on page 237.
The present chapter aims at showing the advantages of such an approach,

by illustrating several possible computations of reliability measures, as well as
a comparison among some such measures as computed by our tool and by other
reliability tools relying on standard DFT analysis (Galileo [38] or DRPFTproc [50,
379]).
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13.2 Dynamic fault trees

13.2.1 Presentation

Dynamic fault trees (DFT) [37, 38], are a rather recent extension to FTs able to treat
several types of dependencies. In particular, DFTs introduce four basic (dynamic)
gates: the warm spare (WSP), the sequence enforcing (SEQ), the functional depen-
dency (FDEP) and the priority AND (PAND) gate. A WSP dynamic gate models
one primary component that can be replaced by one or more backups (spares), with
the same functionality (see Figure 13.1(a), where spares are connected to the gate
by means of ‘circle-headed’ arcs). The WSP gate fails if its primary component
fails and all of its spares have failed or are unavailable (a spare is unavailable if it
is shared and being used by another spare gate). Spares can fail even while they
are dormant, but the failure rate of an unpowered (i.e., dormant) spare is lower
than the failure rate of the corresponding powered one. More precisely, λ being
the failure rate of a powered spare, the failure rate of the unpowered spare is αλ,
with 0 ≤ α ≤ 1 called the dormancy factor. Spares are more properly called ‘hot’
if α = 1 and ‘cold’ if α = 0.

A SEQ gate forces its inputs to fail in a particular order: when a SEQ is found
in a DFT, it never happens that the failure sequence takes place in a different order.
SEQ gates can be modeled as a special case of a cold spare [295].

In the FDEP gate (Figure 13.1b), one trigger event T (connected with a dashed
arc in the figure) causes other dependent components to become unusable or inac-
cessible. In particular, when the trigger event occurs, the dependent components
fail with probability pd = 1; the separate failure of a dependent component, on
the other hand, has no effect on the trigger event. FDEP has also a nondependent
output, that simply reflects the status of the trigger event and is called a dummy
output (i.e., not used in the analysis).

We have generalized the FDEP by defining a new gate, called the probabilistic
dependency (PDEP) gate [320]. In the PDEP, the probability of failure of dependent
components, given that the trigger has failed, is pd ≤ 1.

Finally, the PAND gate reaches a failure state if and only if all of its input
components have failed in a preassigned order (from left to right in the graphical

(a) (b) (c)

FDEP

T A B

G

A B

PAND

G

WSP

P S1 Sn

G

Figure 13.1 Dynamic gates in a DFT.
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notation). While the SEQ gate allows the events to occur only in a preassigned
order and states that a different failure sequence can never take place, the PAND
does not force such a strong assumption: it simply detects the failure order and
fails just in one case (in Figure 13.1c) a failure occurs iff A fails before B, but B
may fail before A without producing a failure in G).

13.2.2 DFT analysis

The quantitative analysis of DFTs typically requires us to expand the model in
its state space, and to solve the corresponding continuous time Markov chain
(CTMC) [37]. Through a process known as modularization [142, 192], it is possi-
ble to identify the independent subtrees with dynamic gates, and to use a different
Markov model (much smaller than the model corresponding to the entire DFT) for
each one of them. In [50, 379], the modules are first translated into a GSPN or
a SWN by a suitable graph transformation technique, and then the corresponding
CTMC is automatically generated from the Petri net. Nevertheless, there still exists
the problem of state explosion.

In order to alleviate this limitation, as stated above, we propose a conversion of
the DFT into a dynamic Bayesian network (DBN) [327]. With respect to CTMCs,
the use of a DBN allows one to take advantage of the factorization in the temporal
probability model. As a matter of fact, the conditional independence assumptions
implicit in a DBN enable us to confine the statistical dependence to a subset of
the random variables representing component failures, providing a more compact
representation of the probabilistic model. The system designer or analyst is faced
with a more manageable and tractable representation where the complexity of
specifying and using a global-state model (like a standard CTMC) is avoided;
this is particularly important when the dynamic module of the considered DFT is
significantly large.

13.3 Dynamic Bayesian networks

13.3.1 Presentation

DBN extends the standard Bayesian network formalism by providing an explicit
discrete temporal dimension. They represent a probability distribution over the pos-
sible histories of a time-invariant process; the advantage with respect to a classical
probabilistic temporal model like Markov chains is that a DBN is a stochastic
transition model factored over a number of random variables, over which a set of
conditional dependency assumptions is defined.

Given a set of time-dependent state variables X1, . . . , Xn and given a BN N

defined on such variables, a DBN is essentially a replication of N over two time
slices t and t + � (� being the so-called discretization step), with the addition of
a set of arcs representing the transition model. A DBN defined as above is usually
called a 2-TBN (2-time-slice temporal Bayesian network). Letting Xt

i denote the
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copy of the variable Xi at time slice t , the transition model is defined through a
distribution P [Xt+�

i |Xt
i , Y t , Y t+�] where Y t is any set of variables at slice t other

than Xi (possibly the empty set), while Y t+� is any set of variables at slice t + �

other than Xi . Arcs interconnecting nodes at different slices are called interslice
edges, while arcs interconnecting nodes at the same slice are called intraslice edges.
For each internal node, the conditional probabilities are stored in the conditional
probability table (CPT) in the form P [Xt+�

i |Xt
i , Y t , Y t+�].

The conversion of the dynamic gates of Figure 13.1 into a DBN is considered
at length in [321, 322], where it is shown that Y t+� is nonempty only in the case
of the PDEP gate conversion.

Of course a DBN defined as above (i.e., a 2-TBN) represents a discrete Marko-
vian model. The two slices of a DBN are often called the anterior and the ulterior
layer. Finally, it is useful to define the set of canonical variables as

{Y : Y t ∈
⋃
k

parents[Xt+�
k ]}; (13.1)

they are the variables having a direct edge from the anterior layer to another variable
in the ulterior layer. A DBN is in canonical form if only the canonical variables
are represented at slice t (i.e., the anterior layer contains only variables having an
influence on the same variable or on another variable at the ulterior layer).

Given a DBN in canonical form, interslice edges connecting a variable in the
anterior layer to the same variable in the ulterior layer are called temporal arcs;
in other words, a temporal arc connects the variable Xt

i to the variable Xt+�
i . The

role of temporal arcs is to connect the nodes representing the copies of the same
variable at different slices. It follows that no variable in the ulterior layer may have
more than one entering temporal arc.

In previous work [320, 321, 322], we have shown that a DFT characterized
as above can be translated into a DBN in canonical form and the software tool
Radyban [321] has been developed to automate this process, as well as to edit and
work with the resulting DBN for possibly augmenting the modeling features.

13.3.2 Algorithms for DBN analysis

Concerning the analysis of a DBN, different kinds of inference algorithms are
available. In particular, let Xt be a set of variables at time t , and ya:b any stream of
observations from time point a to time point b (i.e., a set of instantiated variables
Y t

i with a ≤ t ≤ b). The following tasks can be performed over a DBN:

• Filtering or monitoring: computing IP
(
Xt |y0:t

)
, i.e., tracking the probability

of the system state taking into account the stream of received observations.

• Prediction: computing IP
(
Xt+h|y0:t

)
for some horizon h > 0, i.e., predicting

a future state taking into consideration the observation up to now (filtering
is a special case of prediction with h = 0).
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• Smoothing: computing IP
(
Xt−l |y0:t

)
for some l < t , i.e., estimating what

happened l steps in the past given all the evidence (observations) up to now.

In particular, the difference between a filtering and a smoothing inference relies
on the fact that in the former case, while computing the probability at time t (0 ≤
t ≤ T ), only the evidence gathered up to time t is considered; on the contrary,
in the case of smoothing the whole evidence stream is always considered in the
posterior probability computation. It should also be clear that the specific task of
prediction can be obtained by asking for a time horizon T greater than the last
time point considered for an observation.

The classical computation of the unreliability of the top event of a (D)FT is a
special case of filtering, with an empty stream of observations (i.e., it is a filtering
assuming y0:0).

Smoothing may be, for instance, exploited in order to reconstruct the history
of the system components for a kind of temporal diagnosis (e.g., given that the
system has been observed failed at time t , to compute the probability of failure of
basic components prior to t).

Different algorithms, either exact (i.e., computing the exact probability value
that is required by the task) or approximate, can be exploited in order to implement
the above tasks and some of them are available in Radyban (see [321] for more
details).

13.4 A case study: The Hypothetical Sprinkler
System

In order to illustrate the previously described approach, we take into consideration
a slight variation of a simple case study introduced in [315]: the Hypothetical
Sprinkler System (HSS).1 HSS is a computer-aided sprinkler system composed
of three sensors, two pumps, and one digital controller (see the block scheme in
Figure 13.2).

Each pump has a support stream composed of valves and filters; each pump
requires that the pump stream be operational in order to start (so if the stream is
down, the pump is down as well). The sensors send signals to the digital controller,
and when temperature readings at two of the sensors are above threshold, the
controller activates the pump. HSS is operational if the controller is operational, at
least two of the sensors are operational, and at least one of the pumps starts and
operates. If a pump is activated on demand, then the filters and valves in the pump
stream are in working condition.

The number of pumps is two, because one of the pumps is considered as a
backup pump which runs if the primary pump fails. Since the backup pump is
activated only if the primary pump fails, the former is considered to be a ‘cold
spare’. As said above, a system failure occurs if both pumps fail.

1We just consider the case where there is no distinction between the system being in demand or in
stand-by mode, resulting in the first DFT model introduced in [315].
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Figure 13.2 The block scheme of the HSS.

SystemFault

Pump1 Pump2 VF2VF1

PumpFault

2 : 3

Sensor1 Sensor2 Sensor3

DigCon

SensorFault

Figure 13.3 The dynamic fault tree (DFT) for the HSS system.

The component dependencies and the failure mode of the system can be mod-
eled using the DFT in Figure 13.3.

In the DFT, the functional dependence of each pump on its associated valves
and filters is captured by a PDEP gate with probability pd = 1 (i.e., a FDEP gate);
dashed arcs are used to identify the trigger event. A WSP gate with dormancy
factor equal to 0 is used to model the cold spare relationship between the two
pumps, with the circle-headed arrow to indicate the spare component (Pump2).
The k:n gate over the sensors is actually a 2:3 gate and the whole system fault
occurs when either the sensor subsystem fails or the digital controller (DigCon)
fails or the pump subsystem fails.

The time to fail of any component in the system is considered to be a random
variable ruled by the negative exponential distribution; Table 13.1 shows the failure
rate of every component.

Figure 13.4 shows the canonical form DBN, for the HSS system, obtained from
the DFT of Figure 13.3.
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Table 13.1 The failure rates in the HSS
example.

Component Failure rate (λ)

Sensors 10−4 h−1

Valves and filters (VF) 10−5 h−1

Pumps 10−6 h−1

Digital controller
(DigCon)

10−6 h−1

The nodes of the DBN derive from the translation of the basic events and of
the gates (both static and dynamic) inside the DFT; we just show in Figure 13.4
the structure of the DBN and not the conditional probability tables of the nodes,
which are however automatically constructed by Radyban as well (see [321] for
the details of such a construction). Thick arcs in Figure 13.4 represent temporal arcs
(i.e., arcs connecting the copies of the same variable at the different time slices), and
nodes at the ulterior layer are shown with the ‘#’ character at the end of the name.

It is worth remembering that the DBN formalism is a discrete-time model, in
contrast with formalisms like CTMC (either explicitly specifies or generated by
means of GSPN or SWN) which are continuous-time models. Indeed, one of the
parameters that is possible to set in Radyban is the discretization step �: this
parameter represents the amount of time separating the anterior and the ulterior
layer of the DBN and is the minimum interval at which the measures of the model
are computed. Of course, the smaller the discretization step, the closer the resulting
model is to a continuous-time model. However, it is worth noting that a trade-off
between computation time and result precision exists: if a looser approximation
is sufficient, a quicker DBN inference can be obtained, by choosing a relatively
large discretization step. In the following examples, we will always assume a
discretization step of one hour.2

We have then performed different computations on the obtained model. First of
all, the system unreliability (defined as the probability of the system fault at a given
mission time) has been evaluated up to a mission time t = 1000; in Table 13.2 the
results are visualized every 200 hours. Since this is the usual analysis in DFT, we
have compared the results of Radyban with those obtained by other two tools:
the DRPFTproc tool [50, 379] (based on modularization [142] and SWN) and
Galileo [38] (based on modularization, Binary decision diagrams (BDD) [384]
and CTMC). To perform such a computation in Radyban, we just used a filtering
algorithm by querying the node SystemFault without providing any observation
stream; in other words we have performed a standard prediction.

As we can see from Table 13.2, there is almost complete agreement among the
values computed by the different tools for the system unreliability as a function of
the time, even if Radyban uses a time-discrete algorithm.

2This means that if t is the time of the anterior layer, t ′ the time of the ulterior layer and C is a
system component, IP

(
C(down at time t′)|C(up at time t)

) = 1 − e−λ.
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Figure 13.4 The dynamic Bayesian network (DBN) corresponding to the DFT in
Figure 13.3.

As already mentioned, BNs also offer additional analysis capabilities with
respect to Markov models and Petri nets. The most important one is the possi-
bility of performing computation conditioned on the observation of some system
parameters (i.e., a posteriori computation). Let us suppose that in the HSS system
some sensors are monitorable and in particular Sensor2 and Sensor3. The sta-
tus of such sensors can be gathered every 100 hours, but only one at a time. We
decide to gather Sensor2 first (at time t = 100), then Sensor3 (at time t = 200)
and so on until a failure is detected. The observations allow us to discover a fault
in Sensor2 at time t = 500 and a fault in Sensor3 at time t = 600. Let St

i be
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Table 13.2 The unreliability results obtained by
Radyban, DRPFTproc and Galileo.

Time (h) Radyban DRPFTproc Galileo

200 0.0013651 0.0013651 0.0013651
400 0.0049082 0.0049083 0.0049083
600 0.0104139 0.0104139 0.0104140
800 0.0176824 0.0176826 0.0176826

1000 0.0265295 0.0265295 0.0265295

the observation that the ith sensor is down at time t , and S
t

i be the observation
that the ith sensor is up at time t (i.e., no fault in sensor i); we get the following
stream of observations

σ1 = {S100
2 ; S

200
3 ; S

300
2 ; S

400
3 ; S500

2 ; S600
3 }.

Radyban is then able to perform two different kinds of analysis:

• standard unreliability analysis of the system at mission time t conditioned on
the stream gathered up to time t : this corresponds to executing a monitoring
algorithm on the DBN model;

• given a mission time t , diagnosing the status of the system up to time t ,
given the observations gathered so far: this corresponds to the execution of
a smoothing algorithm on the DBN model.

The results corresponding to stream σ1 from mission time t = 100 to time
t = 1000 are reported in Table 13.3, both for the monitoring and the smoothing
analysis.

By analysing Table 13.3, we can interpret the different values provided by mon-
itoring and smoothing. Until time t = 300 the monitoring unreliability is larger than

Table 13.3 Computation of the unreli-
ability of HSS given the observation
stream σ1, under monitoring and under
smoothing.

Time Monitoring Smoothing
unreliability unreliability

100 0.0002001 0.0001011
200 0.0004016 0.0002046
300 0.0006043 0.0003103
400 0.0008083 0.0201133
500 0.0587333 0.5270140
600–1000 1.0000000 1.0000000
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the smoothing unreliability, since the smoothing procedure takes into account the
future information about the operativity of the sensors. For instance, at time t =200,
the monitoring unreliability is the probability of having a system fault, given that
we know that Sensor2 was operational 100 hours before and that Sensor3
is currently operational. The smoothing unreliability considers, in addition to the
above information, the evidence provided by the knowledge about the sensors status
at future time instants with respect to t = 200. This means that, provided that we
are doing the analysis at least at time t = 600 (i.e., the last time instant for which
we have information), the entry of the third column of Table 13.3 corresponding
to t = 200 represents the following measure: the probability that the whole system
was down at time t = 200, knowing not only the sensor history until t = 200, but
in addition also the remaining sensor history until the analysis time. Since we know
that at time t = 300 and t = 400, Sensor2 and Sensor3 were still respectively
operational, the value that we read from the table for such a measure is smaller
than the corresponding value from the monitoring column. In other words, in the
time interval [200,300], the smoothing procedure knows for sure that Sensor2
will not break down (we do not assume repair or maintenance here), while the
monitoring procedure has to take into account also the possibility of Sensor2
breaking down.

On the contrary, at time instant t = 400, the smoothing unreliability becomes
larger than the monitoring one, since we know that in the interval [400,500], the
component Sensor2 will definitely break down. An even more consistent increase
in the smoothing unreliability is evident at time t = 500, since we know that in the
interval [500,600] the system will definitely fail, because of the failure of Sen-
sor3. Of course, for the remaining time instants, both monitoring and smoothing
determine an unreliability measure of 1, because of the certainty, gathered from
the observations, of a system fault.

Another possibility of analysis offered by DBN consists in performing a diag-
nosis over the status of the components, given again a stream of observations.
Let us consider gathering information about the whole system (i.e., by monitoring
its global operativity) every 200 hours. Suppose we get the following stream of
observations (where SF stands for SystemFault):

σ2 = {SF
200; SF

400; SF 600}.

This means that the system has failed in the interval [400,600]. We can now ask
for the probability of fault of the system components, given the evidence provided
by σ2. As before, we can perform monitoring as well as smoothing. Results are
reported in Table 13.4, and in Table 13.5, respectively.

These results allow us to concentrate on the analysis of single components for
diagnostic purposes. For instance, by analyzing smoothing results, we can notice
that the DigCon component cannot be failed before mission time t = 400; this
is consistent with the fact that a failure of such a component will cause a sys-
tem failure (see the DFT of Figure 13.3) and that we have observed the system
being operational until such a mission time. This is not reported in the monitoring
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Table 13.4 Computation of the probability of fault of the HSS components,
given the observation stream σ2, under monitoring.

Time Monitoring
Sensors DigCon valves/filters Pump1 Pump2

100 0.0099502 0.0001000 0.0009995 0.0010994 0.0009995
200 0.0190470 0 0.0019938 0.0021930 0.0019936
300 0.0288077 0.0000100 0.0029913 0.0032900 0.0029914
400 0.0363592 0 0.0039753 0.0043720 0.0039745
500 0.0459476 0.0000100 0.0049709 0.0054666 0.0049706
600 0.6450366 0.0361441 0.0096857 0.0106514 0.0100596
700 0.6485684 0.0362408 0.0106757 0.0117392 0.0110499
800 0.6520652 0.0363369 0.0116644 0.0128256 0.0120391
900 0.6555275 0.0364330 0.0126522 0.0139109 0.0130274
1000 0.6589551 0.0365291 0.0136390 0.0149949 0.0140148

Table 13.5 Computation of the probability of fault of the HSS components,
given the observation stream σ2, under smoothing.

Time Smoothing
Sensors DigCon valves/filters Pump1 Pump2

100 0.0657449 0 0.0013842 0.0015225 0.0013841
200 0.1308356 0 0.0027672 0.0030436 0.0027669
300 0.1952788 0 0.0041483 0.0045631 0.0041483
400 0.2590806 0 0.0055294 0.0060811 0.0055283
500 0.4530237 0.0180732 0.0076176 0.0083774 0.0077854
600 0.6450363 0.0361446 0.0096859 0.0106516 0.0100598
700 0.6485685 0.0362407 0.0106757 0.0117392 0.0110499
800 0.6520653 0.0363368 0.0116644 0.0128256 0.0120391
900 0.6555274 0.0364328 0.0126522 0.0139109 0.0130274
1000 0.6589551 0.0365291 0.0136390 0.0149949 0.0140148

analysis, where the DigCon component can be assumed operational only at the
instants when we gather the information about the system being up (i.e., t = 200
and t = 400); for the other time instant before t = 400, the monitoring analysis
predicts a possibility of fault for such a component. Of course, since we do not
assume component repair in the present example, once we gather the information
that the system is failed (t = 600), then the results from monitoring and from
smoothing will coincide.

Finally we would like to remark that the results shown in Tables 13.4 and 13.5
are just the marginal probability of fault of the various system components; DBN
algorithms are able to provide even more detailed information, by computing the
joint probability distribution of a set of query variables. This means that we can
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ask for the probability of a given scenario, where some components are operational
and some component are not. Since the case study of Figure 13.2 has eight basic
components, the joint distribution of the system components is composed by 28 =
256 entries for each mission time. As an example we can report that Radyban
has computed that, at the time of the discovery of the system fault (t = 600),
the probability that this fault is caused by the fault of the DigCon component,
only (all the other components working) is p = 0.0003001. Since the system fault
cannot be ascribed only to this component, the corresponding entry in Tables 13.4
and 13.5 is larger, corresponding to the marginalization of the joint distribution on
the considered component (which in this case is p′ = 0.0361441).

13.5 Conclusions

In this chapter, we have described how the use of a formalism like DBN can
augment the analysis capabilities of a reliability tool, while still maintaining a
compact modeling framework. We have pursued this goal by considering a tool
where the system to be analyzed is modeled by means of a well-known formalism
like DFT and then analyzed by means of a conversion into a DBN. This allows us to
take into account all the dynamic dependencies that can in principle be addressed
by a DFT model or by a state-space model. Standard inference algorithms for
DBN, like monitoring and smoothing, can then be adopted to perform interesting

Figure 13.5 A screenshot of the Radyban tool.
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reliability analyses. We have shown the suitability of the approach by considering
a case-study taken from the literature (the Hypothetical Sprinkler System) and
by running different reliability analysis with the Radyban tool. Our experimental
results therefore demonstrate how DBNs can be safely resorted to, if a sophisticated
quantitative analysis of the system is required.
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14.1 Introduction

Recent events underscore the need for effective tools for managing the risks posed
by terrorists. The US military defines antiterrorism as the defensive posture taken
against terrorist threats. Antiterrorism includes fostering awareness of potential
threats, deterring aggressors, developing security measures, planning for future
events, interdicting an event in process, and ultimately mitigating and managing
the consequences of an event. These activities are undertaken by government and
private security services at military, civilian and commercial sites throughout the
world. A key element of an effective antiterrorist strategy is evaluating individual
sites or assets for terrorist risk. Assessing the threat of terrorist attack requires
combining information from multiple disparate sources, most of which involve
intrinsic and irreducible uncertainties.

Following the bombing of US Air Force servicemen in Khobar Towers in Saudi
Arabia and the bombings of the US Embassies in Africa, investigations revealed
inadequacies in existing methods for assessing terrorist risks and planning for future
terrorist events. Interest in improved methods for assessing the risk of terrorism
has grown dramatically in the wake of the World Trade Tower bombings of 2001.
Because of its inherent uncertainty, terrorist risk management is a natural domain of
application for Bayesian networks. This chapter surveys methodologies that have
been applied to terrorism risk management, describes their strengths and weak-
nesses, and makes the case that Bayesian networks address many of the weaknesses
of other popular methodologies. As a case study in the application of Bayesian
networks to terrorism risk management, we describe the Site Profiler Installation
Security Planner (ISP) suite of applications for risk managers and security plan-
ners to evaluate the risk of terrorist attack. Its patented [45] methodology employs
knowledge-based Bayesian network construction to combine evidence from ana-
lytic models, simulations, historical data, and user judgements. Risk managers can
use Site Profiler to manage portfolios of hundreds of threat/asset pairs.

14.1.1 The terrorism risk management challenge

Events such as the New York, Madrid, London, and Mumbai public transportation
bombings vividly demonstrate the global reach of terrorism. Terrorists present an
asymmetric threat for which neither domestic civil security forces nor the conven-
tional military are well suited. Terrorists exploit the freedom of open, democratic
societies to hide their planning, training, and attack preparations ‘below the radar’.
By attacking when least expected using unconventional means, terrorists exploit the
weaknesses of conventional military forces organized and trained to fight clearly
defined enemies in definitive engagements.

Although vulnerabilities cannot be eliminated, risks can be contained by identi-
fying exploitable vulnerabilities, estimating the likelihood that these vulnerabilities
will be targeted, evaluating the magnitude of the adverse consequences if they
were exploited, and prioritizing risk mitigation efforts. Assessing the likelihood of
an event and the severity of the consequences requires integrating disparate data
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sources. Information about terrorist intent and targeting preferences, usually the
province of intelligence staff, is largely subjective and highly uncertain. Vulnera-
bilities and mitigation options, typically areas for physical security specialists, are
often based on experience or best judgement. Estimating the consequences of an
attack requires sophisticated models used by engineers and scientists. The antiter-
rorism planner at each site is responsible for assimilating all of this information
for all assets and managing a dynamic risk portfolio of potentially thousands of
threat-asset pairs. Although a limited number of experts may be able to understand
and manage a given risk, no human can manage all of the components of thousands
of risks simultaneously.

14.1.2 Methodologies for terrorism risk management

Risk is commonly defined as the possibility of suffering some type of harm or loss
to individuals, organizations, or entire societies. Risk management is the discipline
of identifying and implementing policies to protect against or mitigate the effects
of risk. Degree of risk is typically quantified by multiplying the likelihood of a
catastrophic event by a measure of the adverse effect if the event occurs. Adverse
effect is typically measured in a standard unit such as monetary loss. Nonmonetary
adverse consequences such as death, suffering, or aesthetic damage are commonly
assigned a monetary value to facilitate comparison. Traditional risk assessment uses
historical data to estimate correlations between observable variables catastrophic
events, and to predict future events from observable variables. However, historical
data on terrorist events is scarce, and an intelligent and continually adapting adver-
sary is unlikely to repeat past behaviors. Thus, straightforward forecasts based on
historical data are poor indicators of future terrorist events.

Prior to the attacks of 9/11 and the establishment of the Department of Home-
land Security (DHS), antiterrorism planners in the US military employed manual
procedures derived from conventional military doctrine or special forces targeting
criteria and supported by paper and pencil tools. Since 2001, a proliferation of
tools and methods has emerged, signifying both the intense interest in evaluating
terrorism risk and the failure of any single tool to satisfy the need. Similar risk
factors appear across the myriad methods, suggesting that they are important risk
drivers. The unsatisfactory element in most of the models is how the factors are
quantified and combined into a single risk metric. A brief review of some of the
most prominent risk analysis methods follows.

14.1.2.1 Risk mnemonics

Mnemonics are simple tools to help a practitioner remember a more compli-
cated framework. The oldest risk mnemonic is CARVER, which stands for
Criticality, Accessibility, Recognizability, Vulnerability, Effect (on the populace),
and Recoverability [468]. CARVER was developed by US special operations forces
during the Viet Nam conflict to optimize offensive targeting of adversary installa-
tions. Originally, it provided a framework for subjective analysis by highly trained



242 TERRORISM RISK MANAGEMENT

operators. It has since been applied to asset risk evaluations by scoring each
CARVER factor on a ten point scale and adding the scores. This approach is non-
specific to particular threats, labour-intensive, and not scaleable to many assets.
CARVER has been extended and customized by adding or redefining terms in the
acronym [59], [359].

DSHARPP is a subjective risk assessment process developed by the US mil-
itary to identify assets at highest risk for terrorist attack. An installation planner
assigns a score from 1 to 5 for each term – Demography, Susceptibility, History,
Accessibility, Recognizability, Proximity, Population. Points are summed to rank
potential targets on a scale ranging from 7 to 35 points [4]. Similar approaches
include M/D-SHARPP, the Homeland Security Comprehensive Assessment Model
(HLS-CAM) [332] (used at both the Democratic and Republican National Conven-
tion sites in 2004), and the Navy’s Mission Dependency Index (MDI) [335].

The Force Protection Condition (FPCON) System is a military risk management
approach that is based on compliance with a set of prescribed standards [235], the
Force Protection Condition Measures. Five FPCON levels (Normal, Alpha, Bravo,
Charlie, and Delta) represent an increasing level of terrorist threat, as determined
by military intelligence. As the FPCON level increases, the installation employs
FPCON Measures. Though these measures make it easy to develop consistent plans,
they have been shown to be inadequate [462].

14.1.2.2 Algebraic expressions of risk

Many probabilistic approaches to risk use algebraic = expressions to represent risk:
e.g., Risk = Threat × Vulnerability × Consequence. Depending on their intended
audience and usage, these methods sometimes make simplifying assumptions, such
as that the probability of the Threat and/or Vulnerability is 1. They also typically
give rise to static equations that are difficult to update as new information about
terrorists’ intent and capabilities is obtained. In addition, despite their apparent
mathematical rigor, most of these models suffer from an inability to accurately
quantify Threat, Vulnerability, and Consequence.

Direct or decomposed assessments of Threat, Vulnerability, and Consequence
are commonly provided by experts, who rate the values on a scale. Ordinal values
(e.g., Low/Medium/High) are typically converted to cardinal values for combina-
tion. It is our experience that most subject matter experts do not evaluate subjective
quantities well on cardinal scales. If they are asked to rate a collection of assets
on a scale of 1–5, the results will be at best ordinal. For instance, it is unclear
whether an asset with a visibility rated a ‘2’ is really twice as visible as another
rated a ‘1’ by subject matter experts, yet the mathematical treatment of the scores
often assumes it is.

The Special Needs Jurisdiction Tool Kit (SNJTK) [466], was developed for
DHS by the Office of Domestic Preparedness (ODP, formerly part of the US
Department of Justice). Several variations share a similar approach. SNJTK is
an asset-based risk approach that uses Critical Asset Factors (CAFs) to evalu-
ate the risk of threat-asset scenarios. CAFs represent characteristics of assets that
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would result in significant negative impact to an organization if the asset were
lost. Examples include Casualty Impact, Business Continuity, Economic Impact,
National Strategic Importance, and Environmental Impact. Through expert elicita-
tion, each CAF is assigned a weight for its relative importance to the organization;
each asset is assigned a score for its impact on each CAF; and each threat-asset sce-
narios is assigned a CAF score indicating how much that scenario would impact the
CAF. The SNJTK approach is similar to a Bayesian network in that expert judge-
ment is used to construct new variables and assign them weights. SNJTK could
in principle be updated as new threats emerge or as asset characteristics change.
Since threat likelihood is not considered, the output of SNJTK is a conditional
consequence, not a true risk metric; however, threat likelihood could be included
in a relatively straightforward way. Because of the reliance on expert opinion each
time an assessment is made, the methodology does not lend itself to large numbers
of assets or to process automation. To date, models have only been developed and
customized for transportation sectors.

The Texas Domestic Preparedness Assessment document [347] was produced
under the ODP 2002 State Domestic Preparedness Program (SDPP) and was
designed to help standardize asset vulnerability assessments. A limited number
of high-risk assets are assessed for visibility, criticality to jurisdiction, impact out-
side the jurisdiction, potential threat element (PTE) access to target, target threat
of hazard, site population, and collateral mass casualties. The assessor assigns each
factor a rating on a 0–5 scale; ratings are summed to create the Vulnerability
Assessment Rating.

The Critical Asset & Portfolio Risk Analysis (CAPRA) methodology [306] was
developed at the University of Maryland and will be used by the Maryland Emer-
gency Management Agency (MEMA) for data input into MEMA’s Critical Asset
Database. CAPRA is an asset-driven approach that measures risk with a paramet-
ric equation using variables estimated by subject matter experts. CAPRA employs
a five phase expert evaluation process: (1) define mission-critical elements; (2)
match critical elements to applicable hazards to form hazard scenarios; (3) estimate
consequences and select high-consequence scenarios for vulnerability assessment;
(4) solve for the probability of adversary success; (5) incorporate consequences
to compute the conditional risk of each hazard scenario. Though informed by
expert opinion, it is unclear how the CAPRA risk equation was derived or vali-
dated.

The CREATE Terrorism Modeling System (CTMS) [475], developed by the
University of Southern California’s DHS-funded Center for Risk and Economic
Analysis of Terrorism Events (CREATE), is both a methodology and a software
system. It is based on threat-asset scenarios built and evaluated by expert judge-
ment, and supports the assessment of risks within a framework of economic analysis
and structured decision-making. A threat assessment is used as a filter to select
likely scenarios. The model defines threat as the likelihood of a successful terrorist
attack. Threat factors considered are (1) criticality to the economy or government,
(2) human occupation and vulnerability, (3) damage vulnerability, (4) symbolism
worldwide and to the US population, and (5) existing protection measures. The
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highest threat scenarios are evaluated for human, financial, and symbolic conse-
quences, which are rated on a logarithmic Terrorism Magnitude Scale (TMS).

The Risk Analysis & Management for Critical Assets Protection (RAMCAP)
framework was developed by DHS to analyze and manage risk of terrorist attacks
on critical infrastructure [467]. RAMCAP includes a seven-step process of data
collection and analysis on a number of risk management dimensions, including
assets, attack consequences, threats, and vulnerability. RAMCAP defines Risk as
the product of vulnerability, consequence, and threat for a specified attack scenario
on a particular asset with a defined asset failure mode. Owners of assets can
use either expert elicitation or a simple event tree to estimate vulnerability and
consequence. RAMCAP provides more of a risk framework than a risk metric. It
does not specify how to collect the data for vulnerability and consequence, and
does not detail how DHS will estimate threat. Instead, it provides suggestions of
viable alternatives, such as a worked example showing how a multi-node event
tree and an expert elicitation approach can be used to obtain the same vulnerability
estimate in the case of a truck bomb attack against a refinery.

Beginning in 2006, DHS decided to move from a population-driven to a risk-
based methodology for infrastructure protection grant funding under certain of
their grants programs. The DHS Risk Management Division (RMD) developed the
Risk Analysis Calculator (RASCAL) as a universal asset-based risk methodology,
applicable across DHS grant programs [391, 464, 465]. RASCAL computes a sum
of normalized asset-based and geographic-based risk terms. The asset-based term
sums risks for each identified critical asset in an entity of interest (state, urban
area, etc.). For each of 48 asset types, risk is considered for each of 14 threat
scenarios, but for most assets only the ‘most-likely, worst’ scenario is used to
estimate risk. The geographic-based component considers features that cannot be
captured in the asset-based risk component. For both asset and geographic terms,
risk is estimated as the product of consequence, threat, and vulnerability variables,
which are obtained as sums of normalized observables collected from various public
and private databases. Subjective data is avoided in RASCAL, so expert elicitation
is not required. The validity and practicality of the RASCAL construction have
been challenged, and DHS is moving away from the geographic plus asset risk
formulation for the 2007 grant allocations.

The US Coast Guard (USCG) created the Port Security Risk Assessment
Tool (PSRAT), and its successor, the Maritime Security Risk Assessment Model
(MSRAM) for port risk assessments [134]. DHS has incorporated MSRAM scores
into risk analysis for the Port Security and Transportation Security Grant Programs.
MSRAM quantifies risk to an asset as the product of consequence, threat, and vul-
nerability. The risk variables for each asset are evaluated subjectively and scored
by the relevant captain of the port (COTP). In order to minimize variances and
reduce potential biases among the different COTPs, a national-level quality review
is conducted. MSRAM is a port-specific risk methodology, but it could in principle
be extended to other domains. Because the data is collected qualitatively by sector
experts, however, it would be problematic to compare risk scores from one sector
with those from another.
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14.1.2.3 Fault trees

Fault tree analysis assumes a threat baseline (often assuming the probability of
occurrence is unity) and uses decision paths to evaluate the probabilities and mag-
nitudes of different outcomes. Fault trees are used in industrial safety applications
to perform failure analysis of complex systems. Because probabilities are usually
estimated from historical data, fault trees are of limited use when dealing with an
intelligent, adaptive agent. Nevertheless, fault tree structures can provide insight
into important risk factors.

The Operationally Critical Threat, Asset, and Vulnerability Evaluation
(OCTAVE) [83] is a risk-based information systems security analysis tool orig-
inally designed for large organizations and sponsored by the US Department of
Defense. OCTAVE uses expert-assessed event trees to identify threats and create a
threat profile. The output of an OCTAVE assessment is a written summary of the
team’s findings; there are no quantifiable risk measures. Other fault tree analyses
tailored for specific types of terrorism risk analysis include Sandia National Lab-
oratory’s RAM-D program for dam security, and Argonne National Labs’ ERSM
program for event response assessment [17, 410, 411].

14.1.2.4 Simulations

Several simulation packages have been developed to inform terrorism risk analy-
sis. Most of these focus on the consequences of a terrorist attack, although some
physical models can calculate asset vulnerabilities as well. Detailed simulations
tend to be cumbersome to set up and use, and therefore do not lend themselves
to easy updates when new information about terrorist intentions is received. In
addition, most simulations are specific to certain types of assets or threat scenarios,
and cannot incorporate the full range of terrorism scenarios.

The Critical Infrastructure Protection Decision Support System (CIP/DSS)
national infrastructure interdependency model [463] was developed for DHS by
Sandia National Laboratories, Los Alamos National Laboratory, and Argonne
National Laboratory to simulate the effects of a disruption in one CI/KR sector on
others. It is a highly-specific model of the economic interdependencies among 14
of the nation’s CI/KR sectors. CIP/DSS does not evaluate the direct consequences
of any particular terrorist attack, nor does it consider threats nor vulnerabilities. It
is therefore not a risk model, but it could be used to help inform the evaluation of
the broader consequences from a terrorist attack.

Geospatial Information Systems (GIS) (e.g., [154, 224]) are commonly used by
the emergency management community to perform natural hazards risk analysis,
and are being extended to incorporate man-made hazards as well. GIS systems
can identify the areas most at risk from predictable area-wide catastrophes, and
can locate damage profiles for large-scale terrorist attacks. However, GIS systems
cannot evaluate the likelihood of terrorism threats because these do not correlate
strongly with geography.

The US Environmental Protection Agency (EPA) has developed the Threat
Ensemble Vulnerability Assessment (TEVA) Modeling program to study
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contamination threats to drinking water and wastewater systems [328]. TEVA is a
physics-based software package that simulates water flow and quality behavior in
pipes under various detection and response scenarios. It appears to be well-suited
to evaluating alternative sensor placement schemes and mitigation strategies.

14.1.2.5 Other non-Bayesian tools

Automated Critical Asset Management System (ACAMS) [267, 398] is an asset
inventory system developed by the City of Los Angeles and DHS for use by state
and local governments in conducting risk assessments as part of an overall risk
management program as mandated by HSPD-8 [76]. Although ACAMS is an asset
catalog and not a risk methodology, it could serve as the asset database for other
asset-based risk analysis algorithms.

The DoD employs dozens of expert teams to conduct risk assessment. Each
team is composed of eight to ten experts in terrorist options, structural engineering,
chemical weapons, law enforcement, and disaster response. During a site visit, the
team interviews and observes, selects several likely targets and potential threats, and
prepares a report and briefing that discusses the risks and mitigation options. The
installation commander is then responsible for addressing these findings. Since the
findings of the expert teams are based solely on their judgement and experience,
the analytical integrity of their assessments is subjective and their results are not
repeatable. While expert assessment is a powerful tool, it must be structured to
produce repeatable, high confidence results.

14.1.3 The Site Profiler approach to terrorism risk
management

Site Profiler was initially designed to provide tools for antiterrorism planning at
the site level. Since initial deployment, the system has been extended for use as
the analytical foundation for an asset portfolio risk management program at the
municipality, state, or national level. Site Profiler has been deployed in a num-
ber of settings for antiterrorism planning at individual sites and for terrorism risk
management across larger portfolios of assets. A generic application development
environment enables new deployments to be constructed rapidly by tailoring the
knowledge base and user interface to new sites and/or asset portfolios.

14.1.3.1 Requirements for a new terrorism risk management system

Our initial research identified a broad consensus among both experts and policy
makers that incremental improvements to existing methods would not be sufficient.
Rather, a truly revolutionary approach to terrorism risk management was needed.
Our research identified the following requirements for Site Profiler.

1. Individuality of risk scenarios : A ‘one size fits all’ approach is unaccept-
able. Each asset, each threat, and each potential terrorist attack situation
has its own unique characteristics. Site Profiler must be able to account for
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the large number of factors that need to be considered in evaluating any
given risk assessment problem.

2. Intrinsic uncertainty : Site Profiler must be capable of accounting for the
intrinsic uncertainty in the identities of the terrorists, their capabilities, the
factors that make an asset attractive, the method of attack, the consequences
of an attack, and how all these factors combine to affect risk.

3. Defensible methodology : The methodology used to combine inputs and
produce an overall risk assessment must be transparent and analytically
defensible. It must be possible to construct a clear and credible rationale
for the results of analysis.

4. Flexibility : The system must be capable of accepting and combining inputs
from a wide variety of sources. These include expert judgement, direct user
observation, results from models and simulations, and data from external
sources such as facility databases.

5. Modifiability, Maintainability, and Extensibility : The system must be
designed to be easily maintained and updated, and to adapt as the terrorist
threat adapts.

6. Customization: The system must be easily customized to a range of facility
types, threat types, and threat scenarios.

7. Usability : The user interface must be cognitively natural for analytically
unsophisticated users, must economize on data entry, and must support a
workflow that fits the thought processes and organizational environment of
the end user population.

8. Portfolio management : Security managers must be able to assess risks for
a single site, or to analyze and manage a large portfolio of risks simultane-
ously. The system must be capable of storing and managing data for large
numbers of threats and assets.

9. Tractability : The system must be capable of producing accurate results in
a timely fashion when assessing a large portfolio of risks.

14.1.3.2 Bayesian networks for analyzing terrorism risk

These requirements led us to consider Bayesian networks as the analytical method-
ology for quantitative assessment of risks. At the time Site Profiler was designed,
we found no other applications of Bayesian networks to risk analysis. Recently, a
number of applications have appeared (e.g., [190, 275]), but to our knowledge, Site
Profiler is unique in using Bayesian networks to quantify the risk of terrorism. Other
approaches we considered suffer from the lack of a coherent means to combine
objective and subjective data, and from the inability to update a risk assessment
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as new threat information is received. Furthermore, analytical approaches tend to
be based on a historical understanding of threat and risk, and do not account for
subjective assessments of how intelligent adversaries will modify future attack
strategies to be different from the historical pattern. Bayesian networks overcome
these limitations. They are well suited to complex problems involving large num-
bers of interrelated uncertain variables. Unlike ‘black box’ technologies such as
neural networks, the variables and parameters in a Bayesian network are cogni-
tively meaningful and directly interpretable. Unlike traditional rule-based systems,
Bayesian networks employ a logically coherent calculus for managing uncertainty
and updating conclusions to reflect new evidence. Tractable algorithms exist for
calculating and updating the evidential support for hypotheses of interest. Bayesian
networks can combine inputs from diverse sources, including expert knowledge,
historical data, new observations, and results from models and simulations.

The knowledge engineering process uncovered natural clusters of variables that
matched our users’ domain concepts. These clusters were used to define Bayesian
network fragments [269, 270] to represent uncertainty about the attributes of and
relationships among entities in the domain. For example, there was a natural grouping
of variables that corresponded to characteristics of a valuable asset that must be
protected from an attack. We created a fragment consisting of variables pertaining to
the concept of an asset. Some uncertain variables pertained to more than one type of
entity (e.g., the accessibility of fragment consisted of relational information regarding
threat/asset pairs). In this case, we defined a relational entity type to represent the
pairing, and a fragment to represent uncertain relational variables for the pairing. Each
fragment was developed using information from a small number of sources, and could
be tested as a unit independent of the other modules. Thus, our modular approach
supported a manageable knowledge engineering and model evaluation process.

Site Profiler uses an object-oriented database to store the Bayesian network
fragments, and to manage information about individual entities (e.g., individual
assets). The database schema was based on the entities, attributes and relation-
ships we identified in developing the Bayesian network fragments. We have reused
the network fragments and database schema across applications with minor tailor-
ing. For each Site Profiler application, the database is populated with data from a
variety of sources, including managers’ subjective and objective assessments, his-
torical information from databases external to Site Profiler, analytic model results,
and simulation results. Whenever possible, information is obtained directly from
external sources without direct user intervention. For example, Site Profiler inter-
faces directly to simulations and executes them without user intervention as needed.
For each type of entity, values for some attributes must be obtained directly from
users. Our design kept the number of such attributes to a minimum. We developed
an intuitive graphical user interface for users to enter the required information.

In addition to information about attributes of entities, the model included rela-
tional information regarding threat/asset pairs. Because the number of risks scales
roughly as the number of assets times the number of threats, manual entry of
relational information for each threat/asset combination was infeasible. We were
able to model the relational aspects so that all relational information could be
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calculated from a complete characterization of threats and assets. Many of these
calculations were computed from external simulations external invoked automati-
cally. For example, a simulation calculates the accessibility of an asset to a threat,
and a physics-based model predicts the consequences of a given explosive against
a structure or a chemical weapon against a group of people.

14.1.3.3 Interacting with end users

To perform a risk assessment using Site Profiler, a risk manager specifies the
scenarios to be evaluated, tasks the system to perform the evaluation, and views
the results. Optionally, the user can drill down to obtain details and/or adjust
inputs to see the impact on results. A threat scenario is defined as an attack by a
particular threat against a specific asset. To specify scenarios, the user identifies
a set of assets to be evaluated and a list of threats to be considered. For each
threat/asset pair, the system retrieves the relevant Bayesian network fragments and
combines them at run-time into a Bayesian network tailored to the scenario. In
Site Profiler, this run-time Bayesian network is called the Risk Influence Network
(RIN). Variables for which the database contains a value are entered as evidence to
the RIN. For variables that correspond to the results of simulations and models, Site
Profiler interfaces directly to the relevant simulations, executes them without user
intervention, and applies the results as evidence to the RIN. Additional judgemental
and/or observational evidence is obtained directly from users through the graphical
user interface. The system propagates the evidence, computes probabilities for
variables of interest, and displays the results to the user.

Because our users are not analysts, they needed a tool they could learn simply,
use effectively, and trust. We wanted to avoid a black box into which the user
feeds information and out of which an answer magically appears. Users invoke the
model via a natural and understandable interface to describe their assets, specify
characteristics of their installation, and select threats to consider. The system con-
structs RINs for each threat/asset combination, runs offline simulations and database
queries as needed, applies evidence, and computes risks which are presented back
to the user in tables formatted for understandability. At this high level view, a
utility function is used to reduce the probability distributions to single indicators
such as High, Medium, or Low, as shown in Figure 14.1. Users are then able to

Figure 14.1 The risk table allows the user to view and sort by key network nodes.
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drill down into the components of the risk by clicking on rows in the risk table and
walking down the Bayesian network. This ultimately takes them to leaf nodes at
which the information may have come directly from a question they answered or
from the results of a model calculation. We present users with a graphical view of
risks and probability distributions for each node in the RIN. Users can adjust inputs
as necessary but can feel confident that they understand the underlying components
of a given risk score.

The structure of the network and domain fragments facilitates the risk manage-
ment process. Users can easily see the threat that is most plausible, or the asset
that has the highest consequences, or a common element among many risk scenar-
ios. Countermeasures, procedures, and other adjustments can be applied to the site
baseline to address issues identified in the risk influence network.

14.2 The Risk Influence Network
The heart of the Site Profiler risk methodology is the Risk Influence Network
(RIN). The RIN is a Bayesian network, constructed on the fly from a knowledge
base of Bayesian network fragments, and used to assess the relative risk of an attack
against a particular asset by a particular threat. Depending on the configuration of
fragments in the network, the number of nodes in the RIN can range from 35 to 60.
The nodes of the RIN contain information about the installation as a whole, the
asset, the threat (tactic, weapon system, and terrorist organization), the threat/asset
target pairing, and the attack event.

14.2.1 Knowledge representation

As work on Site Profiler progressed, it became clear that developing a single,
all-encompassing Bayesian network would not be a viable solution. First, the size
and complexity of the network would make maintenance and extensibility nearly
impossible. Second, the network would have to be constructed from inputs provided
by a diverse collection of individuals (e.g., intelligence analysts, physical security
specialists, civil engineers, facility managers). Each individual is very knowledge-
able about his or her own specialty, but may know little about the other specialties
required for building the model. The process of identifying the relevant inputs to
be obtained from each specialist, collecting the inputs, and assembling them into
a single monolithic network would be an unmanageable task. In addition, once the
network was constructed, testing and debugging the model would be nearly impos-
sible. Finally, because the relevant features are not the same for all scenarios, the
RIN structure itself differs from problem to problem. Because a traditional Bayesian
network has a fixed number of variables related according to a fixed dependency
structure, no single Bayesian network could represent our problem. Greater expres-
sive power is required for complex problems like the one for which Site Profiler
is designed. Site Profiler uses multi-entity Bayesian networks (MEBNs) [268],
a language for specifying knowledge bases consisting of generic Bayesian net-
work fragments. Each MEBN Fragment (MFrag) represents a relatively small,
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repeatable, conceptually meaningful part of a total model structure. Site Profiler
uses knowledge-based model construction [489] to construct a Bayesian network to
represent features pertaining to a given scenario. The constructed Bayesian network
is called a Risk Influence Network, or RIN. The ability to represent a large number
of Bayesian networks that vary in both structure and evidence, and to construct
models on the fly for any scenario of interest, is key to the power of Site Profiler.

14.2.2 Knowledge base development
Following a network engineering process [294], we iteratively moved from initial
concepts and definitions to a set of reusable MFrags that could be combined into
an asset-threat specific RIN. The effort proceeded in six stages, as described below.

Stage 1: Concept definition. All the categories of data needed to support the
system were identified. This data fell cleanly into two categories: physical and
domain data. Physical data includes information necessary to describe the state of
a physical object, such as position, size, shape, and weight. Domain data represents
abstract concepts such as attractiveness, risk, and plausibility. These two types of
data suffice to develop a complete model of the terrorist realm.

Data elements were clustered according to the domain structure. Each clus-
ter represents information regarding a type of entity, (e.g., a building, asset, or
threat) or information regarding relationships between entities (e.g., accessibility
of an asset to a threat). MFrags were defined for seven types of entity: assets
(including seven sub-types), threats, tactics, weapon systems, targets (defined as
threat/asset pairs), attacks, and attack consequences. There were also entity types
that did not explicitly represent uncertainty. For example, Countermeasures, or risk
mitigation actions, represent contextual factors affecting some of the likelihoods in
our model. Countermeasures can be turned off and on to perform what-if analysis,
but the model treats them as deterministic variables. The core knowledge represen-
tation consists of a set of Bayesian network fragments expressing information about
attributes of and relationships among entities of these seven types, conditioned as
appropriate on nonprobabilistic entity types.

Stage 2: Formal definition and analysis. The next stage of developing the knowl-
edge base was formal definition of the structure and probability distributions for
the MFrags. Working with a combination of documents and experts, we drew an
initial graph for the RIN. Nodes in the network included both evidence nodes and
measures of aspects of the risk. Because the RIN was a new concept to our experts,
initial definitions for many nodes (e.g., Accessibility, Recoverability) were informal
and imprecise. To develop a computational model, we needed formal definitions
for the allowable states of each node. To define state spaces, we worked with the
experts to construct concrete examples for each state. These examples helped us to
decide how many states were appropriate for each node. The examples also made
it much easier to communicate the concepts to the experts who later reviewed the
network. Concurrently with defining the state spaces, we identified inferentially
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interesting network fragments of five to a dozen nodes, revised their structure, and
populated their conditional probability tables with rough guess values based on
information we had obtained from domain experts and literature.

Stage 3: Subsection review with experts. We reviewed subsections of the RIN
with three different groups: threat experts, damage experts, and accessibility experts.
Each review took two days. Most of the effort was spent communicating and revis-
ing the terminology. We used Netica to display the fragments, one fragment at a
time. Rather than explicitly asking for probability distributions, we elicited relative
strengths of influence. As noted above, we had already populated the probability
tables with rough guess values. Elicitation was speeded up by presenting results
from the rough guess model and allowing experts to make adjustments as appropri-
ate. We entered distributions consistent with the judgements experts provided, and
displayed the inferential results to the experts for additional feedback. The process
concluded when experts were satisfied with the results.

There is a common view in the literature that elicitation of structure is relatively
straightforward relative to the difficult problem of eliciting probabilities [135]. In
our experience, the most difficult and time consuming part of the knowledge engi-
neering process was establishing a common understanding of terminology and
definitions. Once we had reached agreement on terminology and definitions, we
found that obtaining consensus on the quantitative aspects of the model was far less
contentious. We found that experts had little difficulty understanding and suggesting
improvements to network fragments we presented to them.

One reason for the relative ease of specifying the probability distributions may
have been that we made no attempt to elicit probabilities directly from experts.
Instead, we adopted and developed an initial model based on a review of the litera-
ture, reviewed the model with experts, and obtained feedback. We asked experts for
relative strengths of influence rather than for probabilities. We found this process
to be an efficient and effective approach for rapid knowledge engineering.

In a purist view, our approach would be an unacceptable compromise: proba-
bilities in a Bayesian network should reflect the knowledge of experts and not be
contaminated by the judgements of knowledge engineers. Our elicitation method
could give rise to anchoring bias [458], in which elicited values are biased toward
an ‘anchor’, or initial value used as a starting point for elicitation. It is quite possi-
ble that a more thorough and extensive knowledge elicitation process would have
resulted in changes to the RIN, and that the rough guesses we used to populate
the initial model had an influence on the probabilities in the final model. However,
if we had adopted the purist view, Site Profiler would not have been built. Even
under the dubious assumption that we could have induced the experts to cooperate
in a more extensive elicitation process, we would not have been able to build the
system within reasonable budget and time constraints. Furthermore, it is not at all
clear more extensive elicitation would yield a better model. Our expert reviewers
felt much more comfortable critiquing our initial model and assessing the quality
of the results than with providing direct judgements of structure and probabilities.
The purpose of Site Profiler is to provide an analytically defensible risk analysis, a
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problem for which there is no established correct solution. The process we followed
was the best we could do within available resources, and in our view represents an
improvement over alternative methodologies. This view is supported by our expert
evaluators and the clients who have purchased Site Profiler.

Stage 4: Scenario elicitation and revision. After developing an initial set of
fragments and reviewing them with experts, we held additional sessions for expert
review of the overall model. In these sessions, we elicited evaluation scenarios
from a cross-section of experts, analyzed the scenarios, and presented the results
to the experts. Due to time constraints, our initial evaluation focused on a rela-
tively small set of threat/asset combinations, and focused primarily on scenarios
the experts considered exceptional. We discovered that we could present the con-
structed networks to users to give them a clearer picture of the factors influencing
risk. They felt comfortable with evaluating the plausibility of the overall conclu-
sions, and with evaluating the plausibility of the reasoning chains they examined
while inspecting the constructed network. The experts were satisfied with the initial
evaluation. In their judgement, the RIN appeared to order asset-threat pairs sensibly
for the small set of scenarios we evaluated during initial validation of the model.

Our initial evaluation was conducted in 2000, and included a scenario involving
a terrorist attack on the Pentagon by means of a mortar shot from the Potomac
River. At the time, this was intended to represent an exceptional case to stretch
the limits of the model, rather than as a realistic scenario that might reasonably be
expected to occur. In our evaluation, the model results indicated that the Pentagon
was vulnerable to terrorist attack.

In the years since the initial development, Site Profiler has been deployed in a
range of settings. Each new deployment requires the collection of data specific to
the problem setting. The test and evaluation process for new deployments involves
developing and evaluating new test scenarios relevant to the new setting.

Stage 5: Implementation and operational revision. After our initial evaluation
of the RIN, we incorporated the model into an implemented system. This provided
our experts with the full capabilities of the Site Profiler graphical user interface
for examining model results and drilling down to explore the reasons for model
conclusions. Figure 14.2 shows a view users can access through Site Profiler’s RIN
viewer. We call this view the uRIN. The uRIN shows the nodes of the Bayesian
network, color coded according to the fragment type. Each node is labeled with
a summary value chosen by means of a utility function, and an icon indicating
whether its distribution is obtained via user input, database lookup, belief propaga-
tion, or analytical computation. If desired, users can see details such as belief bars
and confidence measures.

The Bayesian network used to compute results, which we call the cRIN, has
the same connectivity as the uRIN, but many of its arcs are oriented differently.
We found it necessary to reorient some arcs when depicting the uRIN, in order to
make the diagram understandable to users who are not quantitatively sophisticated.
Our users found it natural to trace evidential flows from observable indicators to
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Figure 14.2 The RIN viewer allows users to mine through the uRIN in detail.

inferred measures, but found it confusing when arcs were oriented in the opposite
direction from the flow of inference. Although the uRIN graph does not correspond
to the dependence structure of the internal system model, it does reflect the experts’
intuitive concept of the flow of evidence. Figure 14.3 shows a portion of the cRIN
corresponding to a subset of the nodes shown in Figure 14.2. Many, but not all, of
the arcs are oriented differently in the two graphs.

We are still using the set of MFrags developed for the initial implementation,
with little modification. It is encouraging that our initial set of domain entities,
attributes and relationships and features seems to capture essential structural fea-
tures of the domain that are robust and stable over time. Of course, there is
considerable variability in the information for specific assets and threats relevant to
a given deployment. But the basic structure we identified in our initial development
has remained remarkably consistent. This suggests that we have been successful
in identifying essential structural characteristics relevant to assessing the risk of
terrorist attacks on the kinds of assets included in our model.

14.3 Software implementation
Site Profiler uses an object-oriented database to manage the MFrags used to
construct the RIN, the evidence to be applied to the constructed RIN, and the
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Figure 14.3 The cRIN has the same connectivity as the uRIN but some arcs are
oriented differently.

probability distributions computed by the inference algorithm. We designed the
database architecture to support knowledge based Bayesian network construction.
The database contains domain objects that represent information about entities in
the domain, including the current probability distribution of attributes that corre-
spond to nodes in the RIN. The database also contains the information necessary
to construct the RIN. Given a scenario to be evaluated, Site Profiler’s knowledge-
based model construction module uses the information represented in an object-
oriented database to construct the RIN. After constructing the RIN, Site Profiler
applies evidence where available, uses the inference algorithm to calculate prob-
ability distributions for nonevidence nodes, and stores the resulting probability
distributions back into the database as values for their corresponding Bayesian
attributes. These results can be viewed by the user through the GUI.

14.3.1 Bayesian attributes and objects

We defined a special type of attribute, called a Bayesian attribute, to represent
attributes of a domain object that appear as nodes in the Bayesian network. For
example, because the RIN has a node for criticality of an Asset, the Asset domain
object has a Bayesian attribute to represent its criticality. Bayesian attributes store



256 TERRORISM RISK MANAGEMENT

current belief values for nodes in the RIN. Belief values represent either evidence
entered into the network, or propagated belief generated by queries against the
network. Each Bayesian attribute has an associated Bayesian object. A Bayesian
object contains the data necessary to represent a node in the RIN, such as the states
of the node, the probability distribution, and the parents of the node. Together,
the set of Bayesian objects associated with a domain object represents an MFrag
corresponding to the subset of RIN nodes pertaining to that object.

Bayesian attributes and objects drive the knowledge-based RIN construction
process. Bayesian objects are building blocks that define the structure and local
distributions of the RIN. Although designed to be generic, our Bayesian objects are
optimized for use with IET’s Quiddity*Inference, which is the Bayesian inference
engine used by Site Profiler. Bayesian attributes provide persistent storage for a
snapshot in time of the RIN. In addition, the values of the Bayesian attributes can
be displayed to users through the GUI.

Figure 14.4 depicts the RIN construction process. When a domain object con-
taining Bayesian attributes comes into existence, the Bayesian objects associated
with its attributes are also created. The collection of Bayesian objects, defining an
instance of the domain object’s MFrag, remain with the object during its life cycle.
During RIN construction, all nodes in the MFrag for each applicable domain object
are brought into the RIN as a group. When one domain object becomes associated
with another, such as when an Asset and Threat form a Target, the MFrags are also
associated with one another, based on the parent/child relationships identified by
the network structure. These associations control how the MFrags are connected
to construct an instance of the RIN. They also control the construction of the local
probability distributions of the constructed Bayesian network. The conditional prob-
ability table for the Bayesian object is imported into the RIN, in a manner that
may depend on the scenario. For example, the Asset domain object has a Baye-
sian attribute representing its accessibility. The distribution for the associated RIN

Figure 14.4 Fragments associated with domain objects combine to form the RIN.
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node depends on the type of threat: an asset may have very different accessibility
depending on whether it is attacked from the air, from a ground vehicle, or on foot
In some cases, constructing a scenario-dependent local istribution may involve a
simple look-up; in other cases, we used simulations or physics-based models to
obtain local distributions.

14.3.2 RIN structure

The structure of the RIN is determined by the schema for our object-oriented
database. The schema is organized around the domain model developed through the
knowledge engineering process. The domain objects reflect concepts our experts use
in reasoning about the domain. Bayesian attributes represent attributes of domain
objects about which there is uncertainty. The Site Profiler domain objects combine
in fundamental relationships to describe risk. Assets and Threats combine to form
Targets. When Targets are created from Threat-Asset pairs, an instance of the RIN
is created. The RIN is composed of network fragments from the Asset, the Threat,
and other domain objects.

For Assets, the MFrag contains nodes that represent how critical the Asset is
to the organization’s mission, how desirable it is to an enemy, and how soft or
accessible the Asset is. For Threats, the MFrag describes how plausible the tactic
and weapon are, the likely intent of an actor to target the organization, and the asset
types the actor is most likely to target. These risk elements combine to contribute
to the key risk nodes associated with a Target: Likelihood of event, Susceptibility
of an Asset to the event, the Consequences of the event, and ultimately, the Risk of
the event. Countermeasures can act to mitigate any of the positive influencers of
risk. These Bayesian attributes and their associated Bayesian objects represent the
critical elements of risk for each threat-asset pair.

In traditional Bayesian network applications, a single, fixed Bayesian network
is used for every problem and only the evidence varies from problem to problem. In
contrast, the RIN is constructed from small collections of nodes (MFrag instances)
that are attached and detached to form different networks. For instance, consider
the case in which a single asset A may be attacked by two separate threats (T1 and
T2). This results in two different instances of the RIN, one solving the risk to A
from T1, and the other solving for the risk to A from T2. The network fragment
structure for A is the same in both cases, and this structure is shared by both
RIN instances. This reconfigurability of fragments not only allows the RIN to be
flexible, but it reduces the input requirements from the user, because information
about A can be entered once and reused in multiple scenarios.

The local distribution for a node may depend on characteristics of the entity
to which it is related. In such cases, the structure is shared by RIN instances, but
the local distribution is not. For example, the local distribution for accessibility of
an Asset depends on characteristics of the threat. Thus, in the example above, the
structure of the RIN relating A and T1 is the same as the structure of the RIN
relating A and T2, but the local distribution for some of the nodes, including the
accessibility node, is different in the two RIN instances. Additionally, Site Profiler
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includes seven subtypes of assets, each with its own MFrag that represents type-
specific concepts. For instance, a Building Asset includes different factors from a
Person Asset. Similarly, Site Profiler supports different threat types as well, and
the number of nodes for these types varies. Although these fragments are different,
they can still combine with other domain objects to form a RIN. When they involve
different subtypes of threats and assets, different RIN instances will have different
structures as well as different local distributions. Depending on the combinations
of assets and threats, the number of nodes in a particular RIN instance can range
from 35 to 60. The flexibility of the RIN and its fragments allows for a tailored
risk analysis based on information appropriate to each scenario.

14.3.3 Evidence from other modules

Along with the database, RIN, and user interface modules of Site Profiler, we
developed a 3D Modeling environment for building a site in 3D, an intelligent
terrorist module that attempts to infiltrate the site in order to identify physical
vulnerabilities, and analytic models for simulating weapons effects. These three
modules provide evidence that can improve users’ understanding of their risk.
Integrating these results into the RIN was another requirement of Site Profiler.

Evidence in the Site Profiler architecture is supplied through the Risk Evidence
Interface, which is an application programmer interface (API) for accessing various
data sources. As shown in Figure 14.5, this allows the RIN to fuse information
from the graphical user interface, models and simulations, an historical database,
a corporate information system, or a real-time information source. This interface
allows the RIN to consider new and existing evidence sources for evaluating risk
contributors.

Figure 14.5 The RIN uses evidence from a wide range of sources to evaluate risks.
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14.3.4 Confidence measures

In order to differentiate between the various types of RIN evidence, we devel-
oped a confidence model that recognizes the difference between subjective user
evidence and objective analytical/historical evidence. Using credibility nodes, we
apply softer evidence to the RIN when the data is subjective in nature. When apply-
ing analytic data, however, we only soften the evidence if the analytic model itself
is less credible than other models. This not only allows for greater confidence in
analytic versus user evidence, but also for recognition of the levels of fidelity in
analytic models. This approach also works for our historical data, in that we vary
the credibility of the data depending upon the reliability of its source. We use a
very simple heuristic credibility adjustment. More sophisticated explicit credibility
models (e.g., [503]) could be included in a future version of Site Profiler.

14.4 Site Profiler deployment

The preliminary validation of the Site Profiler RIN is encouraging. Our generic
environment provides the ability to rapidly develop and deploy decision support
systems employing knowledge based Bayesian network constructions across a wide
range of application domains. In the past five years, we have deployed the Site Pro-
filer system in military installations, seaports, municipalities, and states. Additional
deployments are planned. Applications break into two broad categories: individual
site assessments and risk assessments of a portfolio of assets.

14.4.1 Site assessments

Initially, Site Profiler deployments were focused on military installations and facil-
ities within the United States and overseas. These sites represented a single, co-
located collection of assets that were typically enclosed within a well-defined
perimeter. This site-based model matched very well with the original philoso-
phies of the RIN, especially in the areas of threat, attractiveness, accessibility,
and consequences. The numbers of assets were constrained, as were the types of
threats that were normally considered. The physical countermeasures in place were
easy to identify and catalog, and the standard method of security represented an
‘outside-in’ approach to keeping threats at bay outside the walls of the site. Over
time, this model evolved into also considering the areas surrounding the installation
(referred to as a ‘buffer zone’, incorporating the risk posed to the site from the sur-
rounding area as well as the risk posed to the surrounding community in the event
of an incident (e.g., chemical release at the site). For each facility, Site Profiler
would construct a collection of RINs for the relevant asset-threat combinations,
from which installation security planners could analyse and make decisions. There
was seldom a need to aggregate risk results to a higher level (e.g., across sites,
cities, counties, states), and the number of scenarios was small and manageable
(normally less than a hundred). In some instances, we made modifications to the
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basic model to handle special scenarios (such as drug trafficking through a seaport),
but the underlying approach remained relevant.

As our customer base expanded and Site Profiler began to be used by states and
local governments, several assumptions and design decisions had to be reconsidered.
At first, our state and local customers used Site Profiler to assist in the assessment
and management of the assets and risks within their jurisdictions. These users,
mostly made up of law enforcement and counter-terrorism specialists, appreciated
the structured assessment workflow and processes within Site Profiler. As these
customers built up large data sets of assets and risks, spanning multiple counties
and jurisdictions, it became clear that we needed to shift the focus of our appli-
cations. These larger data sets introduced the need to manage a portfolio of assets
and the risks posed from a wide array of threats.

14.4.2 Asset portfolio risk management

Congress has mandated that DHS allocate some of its antiterrorism grant funds
according to risk. In addition, HSPD-8 and other directives have called for state
and local governments to begin risk management programs of their own. With this
trend toward quantifying risk at the jurisdictional level, we have seen increased
interest in using the Site Profiler application to measure and manage the risk across
large groups of assets.

Managing the risk across a large portfolio of assets is a very different problem
from that faced by a site security officer. Not only can the numbers be vastly
different, from a single structure to a small handful on a military base to tens of
thousands of critical assets in a large state, but the threats and assets themselves
are different. In a single site implementation, the assets tend to be similar: similar
construction, similar usage, similar environment. In addition, sites such as ports or
military bases or other campuses tend to have some sort of perimeter barrier which
filters out certain types of attack. Thus, the attack types of concern for assets at one
site tend to be similar. For instance, at a port one might be concerned with ramming
a ship into a terminal or pier, or an explosive attack on a docked ship from a small,
fast-moving boat or a swimmer or diver; at a military base, one might be more
concerned with a vehicle-borne improvised explosive device (VBIED) attacking a
command center or barracks. In contrast, across a larger jurisdiction a risk manager
must be concerned with a wide range of possible weapons and attack types, and
the targets of these attacks could vary from food processing plants to high-rise
office buildings to chemical plants to railroad tunnels. In addition, the assets can
be located in densely populated urban areas or in more sparsely populated areas;
they can have varying levels of defensive measures in place; and they can have
different intrinsic abilities to withstand certain types of attacks.

The Bayesian network construction of the Site Profiler application has allowed
us to use the same application to manage thousands of assets as we use to assess
a handful. The MFrag representation allows our application to handles both the
comparative and the combinatorial problems. The risk to a chemical facility from
a VBIED attack can be directly compared with the risk to a tall building from
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an anthrax spore release in the ventilation system because the fundamental risk
fragment is the same in both cases, with only the asset and threat fragments being
different. The application recognizes this fundamental risk association and is able to
evaluate, manage, and present the various combinations in a coherent and effective
manner. Similarly, the RIN can easily be configured to calculate the risk to an asset
from multiple attack types by swapping out the threat network fragments. Automat-
ing this across all the assets in a portfolio allows the straightforward calculation of
all the combinatorics associated with a large asset portfolio and a significant col-
lection of relevant threats. Site Profiler deployments have operated in environments
with up to 5000 assets and up to 19 different threat types.

14.5 Conclusion

Site Profiler’s knowledge based Bayesian network construction module is an essen-
tial component of a decision support system for assessing terrorist threats against
military installations and civilian sites. Site Profiler uses a coherent, repeatable,
and efficient methodology to give risk managers and security planners a com-
plete picture of risks due to terrorism. By embedding the RIN in Site Profiler’s
intuitive interface, users can perform complex data analysis without the need to
develop expertise in risk management or Bayesian reasoning. The network frag-
ments provide flexibility in reconfiguring the network, validating with different
expert communities, and tailoring to a variety of application types. The modu-
lar structure of Site Profiler offers a minimally intrusive pathway to updating the
network to accommodate different risk algorithms or updated information.

The Bayesian network approach to thinking about risk has influenced our
recommendations about risk Modeling to DHS. For instance, there has been a
general reluctance to use expert elicitation to inform risk algorithms because of
the perception that such subjective information could not be sufficiently quanti-
fied. Our experience constructing and validating the network fragments in the RIN
has demonstrated that this is not necessarily the case. In the 2006 grant cycle, for
the first time DHS has begun to incorporate quantified expert judgement into the
eligibility risk equations. DHS has developed several risk methodologies, none of
which takes a Bayesian network approach, but our experience with Site Profiler
suggests that this would be a viable approach for an asset-based risk model.

Our experience with Bayesian networks with a nonexpert user community has
yielded insights that may prove helpful with other Bayesian network applications.
First, although there are clear advantages to using a Bayesian network approach,
we have found that clients care more about price, ease of use, and the defensibil-
ity/intuitiveness of the results of a risk analysis application than about the technical
details of the calculations. Although we believe the Bayesian network approach is
superior to other risk approaches, we have not found it to be an effective selling
point.

Second, if Bayesian networks are to become more widely used, tools will be
needed to quickly and easily construct, populate, and validate network fragments.
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The power of Bayesian networks – that they can incorporate both objective data
and subjective expert judgement into a consistent data model – is also a formidable
barrier to their use. It took six months to construct the RIN used in Site Profiler,
primarily due to the difficulty of extracting useful data from experts. We often
found ourselves building tools from scratch. Some decision support tools, such
as implementations of the analytical hierarchy process [405], are simple to use
and require judgements users find natural. However, tools designed to construct
Bayesian networks tend to be cumbersome to use and to demand a high degree of
technical sophistication. Addressing this issue would, we believe, encourage wider
application of Bayesian networks.

Third, many casual observers and even some users in the terrorist risk manage-
ment field do not take maximum advantage of the Bayesian network because they
are asking the wrong questions of it. Many people want to ask questions about the
future, such as ‘When and where will the next terrorist attack occur?’ Accurately
forecasting specific plans of an intelligent, resourceful and adaptive adversary is
something no model can do. The power of our Bayesian network comes from its
ability to answer questions such as: ‘What are the factors that make the risk high or
low?’ and ‘Which of these proposed mitigation actions results in the greatest reduc-
tion to risk?’ Bayesian networks are especially well suited to Modeling complex
and uncertain relationships among the many factors that contribute to the risk of
terrorism. We chose to apply Bayesian networks because they provide a powerful
tool to help risk managers to make comparisons of relative risks, and to analyse
the benefits of proposed mitigation actions. For this purpose, they are unmatched
by any of the other methodologies we considered.

We have successfully implemented a Bayesian-network-based risk analysis
toolkit and deployed it in antiterrorism environments at the state and local gov-
ernment levels. The system has many advantages over other risk models, and we
believe there is great opportunity to expand its use. However, we have found sig-
nificant barriers to more application development using Bayesian techniques, and
we have found that the user community does not fully exploit the power of the
construction. In our view, the most promising applications are those that rely on
expert judgement and must adapt to new information on a regular basis.

Dedication

This chapter is dedicated to the memory of journalist Daniel Pearl, murdered by
terrorists in Pakistan in February 2002, and to the pioneering research of his father
Judea Pearl, inventor of the Bayesian network representation language and com-
putational architecture. Daniel Pearl’s spirit will live on in the work of those who
apply his father’s research to protecting the open society for which he gave his life.
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15.1 Introduction

Credit-rating or appraisal of companies is the evaluation of desirability of compa-
nies as targets of investment. It provides important information not only to investors
but also to companies themselves because it has a crucial influence on stock
prices. They are published regularly and as circumstances demand by economists
of credit-rating agencies, security firms and business journals. Credit-ratings are
based primarily on much current financial data on performance of companies. But,
frequently, unofficial or insider information, current market conditions and past
data are also important. As such, credit-ratings are after all objective judgements
of economic experts. Different economists may give different ratings on the same
company.

In this chapter, we try to predict (classify) actual credit-ratings of experts based
solely on several typical items of financial data of companies. The working data set
used is of Japanese electric and electronic companies for the terms 2000 – 2003.
It consists of 523 complete cases consisting of credit-rating data by experts and
15 official financial indexes. We will use the Bayesian network model as a clas-
sification tool. Applications of Bayesian networks are numerous in almost every
field and, in particular, in finance, there are applications as a general inference
tool [180], or a classification tool [30, 414, 426].

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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In the following, we construct and apply several Bayesian networks to our
credit-rating problem. Some are constructed following financial experts’ points of
view. Also simple type of Bayesian networks, naive Bayesian networks [133, 161,
203], are examined. We perform the leave-one-out cross-validation test on each
model to check its classification accuracy. As a conclusion, a naive Bayesian net-
work with probability parameters adjusted so that a weighted mean squared errors
of leave-one-out cross-validation prediction is minimized is shown to have the best
performance. For comparison, several traditional classification methods were also
applied.

15.2 Naive Bayesian classifiers

Let X1, X2, . . . , Xn be observable feature variables and let X0 be the class variable
to be predicted. It is easily seen that as either the number of nodes n or the number
of involved links among nodes increases, the number of structural parameters which
should be estimated increases rapidly. Hence it becomes difficult or impossible to
get reliable estimates of parameters from a given limited amount of data.

One possible remedy to overcome this difficulty is the so-called naive Bayes
assumption, which assumes that all the feature variables are conditionally indepen-
dent on each other given the class variable [133, 161]. With this assumption, we
have the following simple structural relation:

IP (x0, x1, x2, . . . , xn) = IP (x0) ×
n∏

i=1

IP (xi |x0) . (15.1)

Figure 15.5 below (p. 271) is the graphical representation of a naive Bayesian
network.

This network seems too simple to be a realistic model. Nevertheless, it is known
to be useful for the classification task. One additional merit is that the calculation
of the posterior marginal density of IP (x0) is quite easy. It should be thought of as
an operational model rather than a descriptive model.

15.3 Example of actual credit-ratings systems

It is instructive to show an actual example of credit-ratings of companies. The most
well-known and comprehensive example in Japan is called the NEEDS-CASMA
(Corporate Appraisal System by Multivariate Statistical Analysis of Nikkei Eco-
nomic Electronic Databank System) of Nihon Keizai Shimbun Inc. which is the
most influential financial press in Japan.

The NEEDS-CASMA system covers almost all companies (2275 companies in
the 2005 ratings) the shares of which are listed on Japanese stock exchanges. The
employed procedure in 2005 is as follows:

1. Fifty economic journalists of Nihon Keizai Shimbun listed 10 excellent
and 10 risky companies each.
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2. From their opinions, excellent and risky company groups were selected.
The total was about 80 companies.

3. Sixteen financial indexes which discriminate two groups best were selected.

4. Applying factor analysis, these 16 indexes were factored into four major
factors. They can be interpreted as ‘profit performance’, ‘financial security’,
‘growth potential’ and ‘ firm size’.

5. Factor loadings of each factor for 2275 companies were calculated and,
then, scaled so that the highest is 100 and the mean is 50.

6. Applying discriminant analysis to factor loading data, a discriminant func-
tion was selected which can discriminate distributions of the excellent and
the risky group best.

7. From the thus obtained discriminant function, scores of each companies
were calculated.

8. Scores were finally scaled so that the highest is 1000 and the mean is 500.

The NEEDS-CASMA system can be explained schematically by the network
in Figure 15.1 and relevant financial indexes are shown in Table 15.1.

profit 1

profit 2

profit 3

profit 4

security 1

security 2

security 3

security 4

growth 1

growth 2

growth 3

growth 4

size 1

size 2

size 3

size 4

profit performance

financial security

growth potential

firm size

rating

Figure 15.1 NEEDS-CASMA system network. Reproduced with permission from
Inderscience.
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Table 15.1 Sixteen financial indexes employed in NEEDS-
CASMA system.

Profit Performance

profit 1 ROE (return on equity)
profit 2 ROA (return on assets)
profit 3 operating income margin
profit 4 business interests per employee

Financial Security

security 1 business liquidity ratio
security 2 ratio of funded debt to assets
security 3 ratio of interest expenses to

interest-bearing debt
security 4 equity capital ratio

Growth Potential

growth 1 increase in overall sales
growth 2 increase in equity capital
growth 3 increase in gross capital
growth 4 increase of employees

Firm Size

size 1 total capital employed
size 2 number of employees
size 3 amount of sales
size 4 operating cash flow

15.4 Credit-rating data of Japanese companies

The data studied in the present chapter is the data set of Japanese electric and
electronic companies listed on the first section of the Tokyo Stock Exchange during
the period 2000 – 2003. The number of relevant companies is about 200. Since
some of corresponding financial data need two consecutive years to be calculated
and several items of data are missing, the data set consists of 523 complete cases.
One company corresponds to three cases on average.

Since a convenient and complete list of credit-rating data was not available, the
actual credit-rating data were gathered mainly from investment analyst reports of
several securities firms and business journals. Therefore, they are never consistent.
These data were finally categorized into ratings ec (= ‘risky’, ‘ordinary’ and ‘excel-
lent’) which are denoted in the following by 1, 2 and 3 respectively for convenience.

Also financial data corresponding to these 523 cases were gathered. They are
all official and disclosed by companies. Although there exist various (over 100)
kinds of financial indexes, we employed 15 indexes which are most commonly
referred. They are all real-valued. If necessary, each of the indexes are classified
into three rates, ‘bad’, ‘moderate’ and ‘good’, which are denoted in the following
by 1, 2 and 3 respectively. Actually, these rates simply divide the range of each
index into three equal portions.

Table 15.2 shows 15 indexes employed in the present study. They can be
grouped into four groups. Clearly there are functional relationships among these
variables which are never independent.
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Table 15.2 Fifteen financial indexes employed in the present study.

Profit Performance p1 = ROE (return on equity)
p2 = ROA (return on assets) p3 = operating income margin
Financial Security
s1 = equity capital ratio s2 = ratio of funded debt to assets
s3 = D/E ratio s4 = interest coverage ratio
s5 = free cash flow s6 = liquidity ratio
Growth Potential g1 = increase in overall sales
g2 = increase in operating profit g3 = increase in ordinary profit
Efficiency and Productivity e1 = overall sales per employee
e2 = ordinary sales per employee e3 = total assets turnover

15.5 Numerical experiments

In this section, we apply Bayesian networks to predict (classify) credit-rating data.
The used data is that of Section 15.4. Fifteen feature variables are discretized
as 1, 2 and 3. In the following, we explain the employed classification methods
BN1, BN2, nBN, nBN* and several classical methods and compare their per-
formances. Performances of each method are examined using the leave-one-out
cross-validation. We exclude one case from the data in turn, construct a predic-
tor from the remaining 522 cases, and predict the ec value for the excluded case.
Thus we can get 523 prediction results for which ‘true’ values are known. Results
are summarized in Tables 15.3 and 15.4. Table 15.3 displays classification errors
(= true value of ec – estimated value of ec) for all 523 cases.

Classifications are done by applying the junction tree algorithm for the first two
networks whereas the last two are based only on Equation (15.1). For checking pre-
dictive performance of four networks, the leave-one-out cross-validation technique
is used. Summaries are shown in Tables 15.3 and Table 15.4.

Table 15.3 Overall performances of all the methods for all cases.

method
classification errors: number of cases

−2 −1 0 1 2

qda 2 (0.4%) 21 ( 4%) 255 (49%) 233 ( 45%) 12 (2%)
lda 0 46 ( 9%) 423 (81%) 54 ( 10%) 0
nnet 0 51 ( 10%) 412 (79%) 60 ( 12%) 0
lm 7 (1.3%) 103 ( 20%) 286 (55%) 123 ( 24%) 4 (0.8%)
BN1 0 109 ( 21%) 329 (63%) 85 ( 16%) 0
BN2 0 96 ( 18%) 366 (70%) 61 ( 12%) 0
nBN 1 (0.2%) 75 ( 14%) 353 (68%) 94 ( 18%) 0
nBN* 0 47 ( 9%) 429 (82%) 47 ( 9%) 0
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Table 15.4 Errors of all the methods according to the true ec.
Numbers of cases and their percentages.

method
true ec = 1 (59 cases)

−2 −1 0 1 2

qda 1 (2%) 22 ( 37%) 36 (61%)
lda 0 20 ( 34%) 39 (66%)

nnet 0 28 ( 47%) 31 (53%)
lm 7 (12%) 41 ( 69%) 11 (19%)

BN1 0 40 ( 68%) 19 (32%)
BN2 0 59 (100%) 0
nBN 1 (2%) 10 ( 17%) 48 (81%)

nBN* 0 5 ( 8%) 54 (92%)

method
true ec = 2 (342 cases)

−2 −1 0 1 2
qdq 34 (10%) 270 (79%) 38 (11%)
lda 26 ( 8%) 298 (87%) 18 ( 5%)

nnet 23 ( 7%) 299 (87%) 20 ( 6%)
lm 62 (18%) 237 (69%) 43 (13%)

BN1 69 (20%) 241 (71%) 32 ( 9%)
BN2 37 (11%) 305 (89%) 0
nBN 65 (19%) 210 (61%) 67 (20%)

nBN* 42 (12%) 261 (77%) 39 (11%)

method
true ec = 3 (122 cases)

−2 −1 0 1 2
qda 74 (61%) 48 (39%) 0
lda 86 (70%) 36 (30%) 0

nnet 82 (67%) 40 (33%) 0
lm 38 (31%) 80 (66%) 4 ( 3%)

BN1 69 (57%) 53 (43%) 0
BN2 0 61 (50%) 61 (50%)
nBN 95 (78%) 27 (22%) 0

nBN* 114 (93%) 8 ( 7%) 0

15.5.1 BN1: Clustering by principal component analysis

One of the current rating methods of economists is to summarize feature variables
first through factor analysis or principal component analysis. An obvious way to
do this with Bayesian networks is to include these summary variables as new
intermediate nodes of the Bayesian network, along with feature variable nodes and
the class variable node. In the present experiment, we applied principal component
analysis to each of the feature variable groups ‘profit performance’ (p), ‘growth
potential’ (g) ‘corporate efficiency and productivity’ (e) and ‘financial security’ (s).
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Figure 15.2 Bayesian network BN1. Reproduced with permission from Inder-
science.

It was found that, for categories p, g and e, only the first two principal components
are sufficient. However, we could not reduce the dimension for s and they were
left as is. Other feature variables are connected to respective principal components
nodes (Figure 15.2). For example, P1 and P2 are two principal components to p1,
p2 and p3 and so on in Figure 15.2. Values of principal component nodes were
discretized into 1 (bad), 2 (moderate) and 3 (good) as values in original feature
variable nodes. The structure parameters were estimated using MLEs.

15.5.2 BN2: Clustering by measuring conditional dependencies

Next we tried to cluster feature variables according to conditional dependencies
among them given ec. We built a hierarchical cluster tree which arranges strongly
conditionally dependent variables into the same cluster. We used the Matusita dis-
tance rather than the conditional mutual information. The Matusita distance [385],
between two discrete probability distributions φ and ψ , is

M(φ, ψ) =
{∑

x

∣∣√φ(x) −
√

ψ(x)
∣∣2

}1/2
. (15.2)

It is a true metric and can be used to measure a degree of (conditional) dependence.
In order to measure the strength of the conditional dependency between X1 and X2

given X3, we let φ(x) = IP (x1, x2 given x3) and ψ(x) = IP (x1|x3) IP (x2|x3) in
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Figure 15.3 Dendrogram of conditional dependencies among feature variables.
Reproduced with permission from Inderscience.

Equation (15.2). The smaller the distance, the weaker the conditional dependency.
In particular, zero distance implies conditional independence. As the hierarchical
cluster tree brings dependent variables together according to the degree of the
dependency, the reciprocals of the Matusita distance were used. Figure 15.3 shows
the hierarchical clustering where the y-axis refers to reciprocal distances.

As a result, we found five clusters:

{p1, p2, p3, e2, s4}, {s1, s3, s5, s6, e1}, {g1, g2, g3}, {s2}, {e3}
when we cut the cluster tree at height 15. The hierarchical clustering using the
conditional mutual information gave a slightly different network BN2 from those
preferred by economists, see Figure 15.4.

15.5.3 nBN: Naive Bayesian network

A straightforward way to build a Bayesian network appropriate for a given data set
is to learn a structure from the data using mutual and conditional mutual information
or any other method, see, e.g., [92, 106, 204]. However, such Bayesian networks
as classifiers are often reported not to increase the prediction accuracy, see [161].
Moreover, they are likely to become densely connected complex networks. More
edges in the network increase the number of parameters and require even more
data for reliable estimation.

The naive Bayesian classifier shown in Figure 15.5, having the simplest network
structure, assumes the conditional independence of feature variables given the class
variable even though most real-world data sets do not support such a property.
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Figure 15.4 Bayesian network BN2. Reproduced with permission from Inder-
science.
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Figure 15.5 Naive Bayesian network nBN. Reproduced with permission from
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Nevertheless, it has been observed that naive Bayesian networks frequently show
considerable accuracy in prediction. This may not be so surprising if we take note
of the usefulness of multiple linear regression models for many data sets for which
linear dependency of an object variable on explanatory variables is dubious. One
merit of naive Bayesian network models is that they have the minimum number
of structure parameters and, therefore, we can get more reliable estimates from a
limited amount of data.

15.5.4 nBN*: Improved naive Bayes model

We tried to increase the classification accuracy of the nBN method by modifying
its conditional probability densities as follows:

• initialize (un)conditional probability densities by MLE (maximum likelihood
estimation);

• iterate an optimization procedure by changing conditional probability densi-
ties so that we get better classification accuracy.

For this purpose, we used the simulated annealing tool of R to minimize the
following objective function:

obj(θ) =
N∑

i=1

(|eci − 2| + 1)2(êci − eci)
2 (15.3)

where θ stands for the logarithm of all the conditional density parameters except
IP (ec) and êci is the leave-one-out prediction of the classifier for the ith case
based on the current system parameters θ . The weight (|eci − 2| + 1)2 = 1, 4 was
added so that classification errors when true ec values are either 1 or 3 should
be exaggerated. We did not alter the parameter for the density p(ec) since it is
desirable that classifications with no evidence on feature variables should be based
on the true sample distribution of the class variable.

The simulated annealing procedure was iterated 10 000 times and the parameters
θ which gave the smallest value of the object function was selected. This may be
by no means optimal but nearly optimal hopefully.

15.5.5 Classical classification techniques

In order to examine the performance of Bayesian classifications, the main subject of
this research, we also apply the following typical classical classification techniques
for comparison:

1. quadratic discriminant analysis (QDA);

2. linear discriminant analysis (LDA);

3. neural network (NNET);

4. multiple linear regression (LM).

Since all these methods suit real-valued data, we used raw feature variables.



CREDIT-RATING OF COMPANIES 273

15.6 Performance comparison of classifiers

We performed the leave-one-out cross-validation test for all the methods. The clas-
sification results are summarized in Tables 15.3 and Table 15.4 and displayed in
Figure 15.6 for nBN*. We list brief summaries of the performance of each tested
methods in the following:

BN1: Although it gives no errors = ±2, rates of error = ±1 is fairly high, in
particular, for the case ec = 1.

BN2: It has a similar overall performance to BN1. But rates of error = ±1 is
high. In particular, it always gives êc = 1,2 when ec = 3. It has a tendency
to classify many cases as êc = 2 which leads to a superficial overall accuracy.
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Figure 15.6 Bar plots of classification error percentages of nBN∗. All cases (top
left), cases ec = 1 (top right), ec = 2 (bottom left) and ec = 3 (bottom right).
Shades of bars become darker as error varies from 2 to −2. Reproduced with
permission from Inderscience.
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nBN: It has a moderate overall accuracy. In particular, those for cases with the
true ec = 1, 3 are fine. On the other hand, the accuracy for the cases with
the true value of ec is 2 is not so impressive.

nBN*: It has the best overall classification accuracy and it is also the best for
cases with the true ec = 1,3. The classification accuracy for cases whose true
value of ec = 2 is slightly lower.

Classical methods: Both NNET and LDA have fairly good overall accuracies
whereas both LM and QDA do not. In particular, LM and QDA made several
disastrous misclassifications, that is, êc = 1 when ec = 3 and êc = 3 when
ec = 1.

It is seen from Table 15.3, that both LDA and NNET give very close figures
to that of nBN* at least for the overall classification accuracy. BN1, BN2 and
nBN have moderate overall classification performances. The relative sparsity of
data compared with the abundance of parameters to be estimated for these models
seems to lessen their performance.

It is important to note that the ‘conservative’ classifier which classifies every
case as êc = 2 has overall performance 0, 59 (11.28 %), 342 (65.39%), 122
(23.33 %), 0 corresponding to Table 15.3. This misleading feature comes from
the fact that 65.39% of cases belong to the class ec = 2. This type of problem is
refereed to as ‘credit card fraud detection’ in [88]. The main interest of credit card
companies is to predict a relatively minor group, i.e., potential deceitful applicants,
as much as possible. In terms of investors, it is desirable to have a classifier which
has very good classification performances for the cases with the true ec is either 1
(risky) or 3 (excellent), see Table 15.4.

Of the methods tested, nBN* has the best performance for cases ec = 1, 3. Note
that this feature is naturally expected since the relevant parameters were chosen so that
they gave a heavy penalty for misclassifications when ec = 1, 3. Also this causes its
performance for ec = 2 relatively worse than those of LDA, NNET and BN2. How-
ever, the good performances of lda, nnet and BN2 for the case ec = 2 comes from the
fact that they have a conservative tendency to classify cases ec = 1, 3 as êc = 2.

The superiority of nBN* can be seen also from Table 15.5 which shows
weighted mean squared errors corresponding to (15.3), mean absolute errors and

Table 15.5 Weighted mean squared errors, mean absolute errors and mean
squared errors for each method.

QDA LDA NNET LM BN1 BN2 nBN nBN*

WMSE 0.704 0.512 0.602 1.46 0.706 2.85 0.566 0.254
MAE 0.275 0.191 0.212 0.474 0.321 0.533 0.327 0.180
MSE 0.279 0.191 0.212 0.516 0.321 0.767 0.331 0.180
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Figure 15.7 Bar plots of weighted mean squared errors (left), mean absolute errors
(middle) and mean squared errors (right) for each method. Reproduced with per-
mission from Inderscience.

mean squared errors. nBN* is also the best in the sense of both mean absolute
errors and mean squared errors, see Figure 15.7.

Note that all the preceding models classify a given company to either 1, 2
or 3 according to the mode of the posterior density. But, sometimes, this type
of rating may be misleading. For example, consider the case where the posterior
density is 0.01, 0.44 and 0.45 for ec = 1, 2, 3, respectively. The MAP estimate is
ec = 3 but ec = 2 is also very probable. Therefore, a better summary of results
may be the posterior mean 1 × 0.01 + 2 × 0.44 + 3 × 0.45 = 2.24. The scaled
score 50 × [posterior mean − 1] = 62 that varies from 0 to 100 may be easier to
interpret.

Figure 15.8 shows the histograms of posterior means of ec for the nBN* clas-
sification. Kernel-type density estimate curves are superposed. Means have sharp
peaks at ec = 1, 2 and 3 as expected. The superiority of the nBN* method can be
clearly seen from histograms drawn separately for each true ec-value.
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Figure 15.8 Frequency histograms of posterior means of nBN∗ (estimated density
curves are superposed). All cases (top left), cases ec = 1 (top right), ec = 2 (bottom
left) and ec = 3 (bottom right). Reproduced with permission from Inderscience.

15.7 Conclusion

Our analysis shows the usefulness of naive Bayesian networks, in particular, that
of nBN*, for credit-rating. An important feature of Bayesian network models
is that their structures are more transparent than that of, say, neural networks.
This allows efficient interactive communication between modelers and application
domain users. Further, for discrete variables, Bayesian networks assume no distri-
butional restriction. Also Bayesian network models may work even if evidence for
several feature nodes is missing, which happen sometimes. We can also calculate
the posterior density of the class variable, although it may cause more probabilistic
ambiguity.

It should be noted that nBN* as well as all our Bayesian network based methods
used only partial information, i.e., discretized value of original data. This feature
makes them ‘robust’ even if feature variables are erroneous. Also this discretization
makes it unnecessary to preprocess feature variables, say, by logarithmic transfor-
mations, which is often necessary for other methods since feature variables have
often extremely different scales.

Credit-ratings may be eventually objective judgements of financial specialists
and our experiments tried to imitate existing experts ratings as faithful as possible.
Nevertheless, the fine performance of nBN* suggests that judgements of economists
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are fairly subjective based in principle on typical official financial data. Hence it
is likely that the classification based on nBN* trained for a certain period can also
be useful for future periods unless economic fundamentals changes. Moreover,
although no comparison were made so far, it may also be applicable to ratings of
industry sectors other than electric and electronic companies.
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16.1 Introduction

During the last two decades several papers have been written on wine classification
using different approaches and methodologies. Previous work [5, 79, 145] used for
wine classification the concentrations of some chemical compounds present in the
wine obtained through liquid or gas chromatograms. In the chromatograms the
concentration of a substance is given by the area under the peaks of the curve,
each peak representing a specific compound.

In [43] and [78], a different approach is presented where it is not necessary
to quantify the concentration and to identify each peak (compound) but the whole
information contained in the chromatograms is used and analyzed. The database
used in [42] and [43] is composed of 111 wine chromatograms from high per-
formance liquid chromatography (HPLC) for phenolic compounds, distributed as
27 samples of Cabernet Sauvignon, 35 samples of Merlot and 49 samples of
Carménère. The chromatograms last 90 minutes and contain 6751 points. Due
to the high dimensionality of the input data a dimension reduction process is first
attempted using resampling and feature extraction techniques, including the fast

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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Fourier transform (FFT) [482], discrete wavelet transform (DWT) [199], Fisher
transform (FT) [482] and typical profiles (TP) [42, 78]. Then several classifica-
tion methods were analyzed and compared, including linear discriminant analy-
sis (LDA) [482], quadratic discriminant analysis (QDA) [2], K-nearest neighbors
(KNN) [482] and probabilistic neural networks (PNN) [2]. The best performance
was attained when using the wavelet extraction with a classifier based on PNN. With
a cross-validation process of the type leave-one-out (LOO), an average percentage
of correct classification of 92.5% was obtained.

On the other hand, scientists and engineers are electronically reproducing some
of the human senses with significant advances in seeing, hearing, tasting and
smelling. Detecting aromas or odorants is, at the date of printing this book, being
done with commercially available systems with applications for quality assurance
of food and drugs [13, 65], environmental monitoring, military uses, security, med-
ical diagnosis [284] or safety. Today there is a growing market for electronic noses
(e-nose) for different applications.

Traditionally, human panels backed by sophisticated gas chromatography or
mass-spectroscopy techniques quantify odors, making these methods expensive and
time-consuming. The beauty of using an e-nose is that the information is obtained,
for all practical purposes, on-line [176].

An e-nose is a system where an aroma sample is pumped into a small cham-
ber housing the electronic sensor or an array of them. Then the sensor is exposed
to the aroma sample giving an electrical response by using the transduction sen-
sor properties, originated in the interaction of both the volatile organic compound
(VOC) and the sensor active material. The response is recorded during the acqui-
sition time of the signal processing subsystem of the e-nose. The stage ends
with a sensor cleaning step for resetting the active material for a new measure-
ment.

Recently, an e-nose based on metal oxide semiconductor thin-film sensors has
been used to characterize and classify four types of Spanish red wines of the
same grape variety [175]. Principal component analysis (PCA) and probabilistic
neuronal networks (PNN) were used with satisfactory results. In [378] is studied the
effect of ethanol, the major constituent of the head-space of alcoholized beverages,
which generate a strong signal on the sensor arrays used in e-noses, impairing
aroma discrimination.

Results of aromatic classification of three wines of the same variety but differ-
ent years are presented in [507]. The input data for classification is obtained from
an e-nose based on six sensors of conducting polymers [413]. Thus each pattern
generated by the e-nose has six points. For classification purposes a multilayer
perceptron (MLP) trained with the backpropagation algorithm (BP) [200] and a
time delay neural networks (TDNN) trained with the Levenberg–Marquadt algo-
rithm [200], were used. The database contained 5400 patterns, divided into sets for
training (50%), validation (25%) and test (25%). It was shown that by incorpo-
rating a temporal processing the classification rate improved, i.e., the TDNN had
better performance than the MLP. Other wine classification results using e-noses
are reported in [171] and [412].
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Figure 16.1 Block diagram of the proposed methodology for wine classification.

The first stage of the proposed methodology is concerned with the dimension
reduction of the patterns preserving the original information. This is done using
feature extraction methods like principal component analysis (PCA) [48] and the
discrete wavelet transform (DWT) [199]. Once the dimension of the input data
has been reduced the information is introduced to a classification stage where BN
techniques are used [331, 500]. A technique based on radial basis function neural
networks (RBFNN) [48, 184] is used for comparison purposes. Finally, a classifier
based on support vector machines (SVM) [109, 317, 470, 471] was also studied
and compared. Figure 16.1 shows a block diagram of the used methodology.

16.2 Experimental setup

In this section we describe the experimental setup used to perform the study on
wine classification. All the studies were carried out at room temperature and for
each sample 10 aroma profiles were obtained from the electronic nose.

16.2.1 Electronic nose

The most important operating parameters of the e-nose are the temperature of the
SAW detector in ◦C (sensor), the temperature of the GC column in ◦C (column),
the temperature of the six positions valve in ◦C (valve), the temperature of the input
gas in ◦C (inlet) the temperature of the trap in ◦C (trap), the slope the temperature
ramp in ◦C/s (ramp), the time duration of the analysis in seconds (acquisition time)
and the rate at which the information is registered in seconds (sampling period).
This set of parameters defines the method under which the instrument operates.
After a series of tests and experiments it was determined that the best values of
the parameters for our study are those shown in Table 16.1.

To obtain an aroma profile, 40 ml of each wine sample were introduced into
a 60 ml vial with septa cap avoiding sample exposure to oxygen in the air. The
measurements were done immediately after the bottle was opened, maintaining the
room temperature at 20 ◦C. Figure 16.2 shows a photograph of the e-nose during
the measurement of a wine sample.



282 CLASSIFICATION OF WINES

Table 16.1 Operation parameters for the e-nose. See [146] for
more details.

Parameter Value Units Parameter Value Units

Sensor 60 ◦C Trap 300 ◦C
Column 40 ◦C Ramp 10 ◦C/s
Valve 140 ◦C Acquisition time 20 s
Inlet 175 ◦C Sampling rate 0.01 s

Figure 16.2 Electronic nose model Fast GC Analyzer 7100 from Electronic Sensor
Technology (EST).

16.2.2 Database

The database used in the study is formed by 100 commercial samples of Chilean
wines of the type Cabernet Sauvignon, Merlot and Carménère. These wines belong
to 1997–2003 vintages coming from different valleys of the central part of Chile.
The distribution of the samples is shown in Table 16.2 while a complete description
of the database is contained in [432].

The information from each sample was obtained by setting the e-nose param-
eters to the values given in Table 16.1. Ten runs were carried out for each one of
the 100 wine samples generating a total of 1000 profiles (chromatograms).

16.2.3 Data preprocessing

A typical wine chromatogram obtained from the e-nose is a 12 s measurement
with 0.01 s sampling period, containing 1200 points in total. From preliminary
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Table 16.2 Distribution of wine samples.

Class Type Number Percentage

1 Cabernet Sauvignon 36 36%
2 Merlot 44 44%
3 Carménère 20 20%

classification tests it was determined that using a sampling period of 0.02 s, similar
results were obtained as in the case of a 0.01 s sampling period, in terms of
the information content (Nyquist frequency). Therefore, for classification purposes
chromatograms of 12 s composed of 600 points were considered. Another important
factor on the signal preprocessing is the normalization. The amplitude of the profiles
is variable around zero with positive and negative values. To minimize errors
coming from measurement uncertainties a scale factor was applied to normalize
the amplitude in the interval [−1, 1]. To this extent the maximum amplitude was
used to normalize the signal according to the relationship x ′

i = xi/xmax where xmax

is the maximum amplitude of all profiles. With this procedure typical normalized
profiles are shown in Figure 16.3 for Cabernet Sauvignon, Merlot and Carménère
samples.

16.2.4 Methodology

In order to classify the profiles described in Section 16.2.2, Bayesian networks were
used and compared with two other classification techniques: radial basis function
neural networks (RBFNN) and support vector machines (SVM). As already men-
tioned, due to high data dimensionality previous to the classification process, a
feature extraction procedure of the original data was performed, using principal
component analysis (PCA) and wavelet analysis (WA).

Once the data dimension was reduced, the total database of 1000 profiles (360
Cabernet Sauvignon or Class 1, 440 Merlot or Class 2 and 200 Carménère or
Class 3) was divided into two sets; one for training-validation (containing the 90%
of the samples) and the remainder for test (containing the 10% of the samples).
The sample distribution is the following.

• Training-validation set: 900 profiles corresponding to 90 wine samples, dis-
tributed as 330 profiles Cabernet Sauvignon (33 samples), 390 profiles Merlot
(39 samples) and 180 profiles Carménère (18 samples).

• Test set: 100 profiles corresponding to 10 wine samples, distributed as 30
profiles Cabernet Sauvignon (3 samples), 50 profiles Merlot (5 samples) and
20 profiles Carménère (2 samples).

The samples for each set were randomly selected and proportionally to the
number of samples contained in each class of the original data.
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Figure 16.3 Typical normalized chromatograms for wine samples (12 s duration,
sampling period 0.02 s and 600 points.

As a measure of the behavior of the method and to obtain the optimal values
of the parameters for each method, cross-validation was used [166, 396, 419]. The
database was divided into n sets, using n − 1 for training and the remainder for
validation. The process is repeated n times so that all n sets are used once for
validation.

Since 10 profiles were measured for each wine sample, the size of cross-
validation sets will be 10 and therefore the training-validation base will be divided
into 90 subsets of 10 elements, each one representing one wine sample. Thus, for
each method the training is done using 890 profiles and one simulation for valida-
tion having 10 elements. The process is repeated 90 times so that each subset of
10 elements is used once to validate the method. The measure of the behavior is
the average and the standard deviation of the percentage of correct classification
in validation

Finally, once the cross-validation stage is done and the optimal parameters
for each method are determined, a simulation with the test set is carried out for
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performance evaluation of each method when unknown samples are presented to
the trained classification system. The behavior is measured again in terms of the
average and the standard deviation of the percentage of correct classification using
the test set. It is important to notice that the test set is never used in the training
stage and therefore it will be completely unknown to the classifier.

16.3 Feature extraction methods

The main goal of feature extraction techniques is to reduce the dimension of data
input to make the data analysis simpler. These techniques are usually based on
transformations from the original data space into a new space of lower dimen-
sion. In this study we will use wavelet analysis (WA) and principal components
analysis (PCA).

16.3.1 Feature extraction using wavelet analysis

Wavelet analysis is a mathematical tool of great importance due to its multiple
applications and it is an interesting alternative to the popular Fourier transform
(FT) [395]. In particular, the wavelet transform (WT) is a good tool in analyz-
ing nonstationary signals since it uses variable size windows, i.e., small windows
(detail windows) for a fine analysis of high-frequency signals and large windows
(approximation windows) for a coarse analysis of low-frequency signals.

Wavelet analysis is based on a function ψ(t) called the mother wavelet func-
tion, through which by means of shifting and scaling the signal, the signal can
be decomposed. Scaling corresponds to a simple signal compression or signal
stretching given by a scale factor a = 2−m. The shifting is equivalent to a tem-
poral displacement of the signal and it is determined by a shift constant denoted
as b = n2−m, where n denotes the number of points and m is the decomposition
level. A criterion to determine the optimal decomposition level is to choose the
level having minimum entropy [230].

The mother wavelet ψ(t) chosen in this study is the orthonormal Haar basis.
This choice is due to the simpliciy of the Haar wavelet and because there are no
free design parameters to be chosen by the user, as suggested in [230] and [354].

In this study, different decomposition levels are analyzed by choosing the
values 2, 3, 4 and 5, considering the approximation coefficients for the classi-
fication, because they contain most of the energy signal [230, 395]. Since each
chromatogram has 600 points, the first decomposition level generates a curve with
300 points with the initial profile approximation coefficients. At the second level it
has 150 points and so on. Figure 16.4 shows the profiles obtained after a wavelet
analysis for decomposition levels 2, 3, 4 and 5, corresponding to a Cabernet Sauvi-
gnon sample. Note that the profile shape is preserved but having fewer points.
For example, the profile of the fifth decomposition level contains only 19 points
(600/25 �19) showing clearly the compression effects exhibited by the wavelet
transform [354, 395, 493].
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Figure 16.4 Cabernet Sauvignon profiles obtained after a wavelet analysis for
decomposition levels 5, 4, 3 and 2, containing 19, 38, 75 and 150 points, respec-
tively.

16.3.2 Feature extraction using principal components analysis

In this method the main idea is to transform the original feature space P into a
space P ′ in which the data is not correlated, i.e., the variance of the data is a
maximum. This is achieved by computing the eigenvalues and the eigenvectors
of the of covariance matrix of the initial data and selecting those eigenvectors
that have the largest eigenvalues. These components represent the axes of the new
transformed space. By projecting the initial data onto these axes the largest data
variance is obtained [48].

In our case the profiles can be seen as characteristic vectors belonging to
R600 and the database as a matrix of 600×1000, where the 1000 columns cor-
respond to each profile and the 600 rows to the points (that are going to be
reduced). Considering the training-validation set we have a matrix of 600 × 900
(900 profiles (columns) of 600 points (rows)); then the covariance matrix of the
training-validation set is

�X = X ∗ XT (16.1)
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with X the training-validation matrix and �X the covariance matrix of X of 600 ×
600. Then computing the eigenvalues and the eigenvectors of �X and selecting the
eigenvectors with the largest eigenvalues, the principal components transformation
matrix will be determined. One way of choosing the eigenvalues (and the associated
eigenvectors) is considering the contribution to the global variance [104, 396] of
each eigenvalue, γi , as:

γi = λi

N∑
j=1

λj

(16.2)

where N = 600 is the total number of eigenvalues of the covariance matrix �X.
It should be remarked that the parameter associates to each eigenvalue (and each
eigenvector or principal component) a factor of relative importance considering its
contribution to the total variance. When computing the eigenvalues of the covari-
ance matrix �X, these are ordered in ascending order [104, 396], thus the last
components are those contributing most to the information (in terms of the covari-
ance), whereas the first can be considered as noise and therefore disregarded.
Figure 16.5 shows the contribution of the last 25 eigenvalues of the training-
validation covariance matrix and it is observed that these retain practically all
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Figure 16.5 Contribution of the last 25 eigenvalues of the training-validation
covariance matrix.
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the information in terms of the covariance. When computing the contribution of
the last 20 eigenvalues to the global covariance using Equation (16.2), the contri-
bution to the total information is 99.87% and the last 10 eigenvalues contribute
99.46%. Therefore we will choose the matrix transformation composed by the 20
eigenvectors associated to the last 20 eigenvalues, generating a 600 × 20 matrix
(the 600 rows represent the initial characteristics or points and the 20 columns the
eigenvectors or new characteristics).

16.4 Classification results

Classification and pattern recognition techniques can be classified into three groups.
In the statistical methods patterns are classified according to a model or statistical
distribution of the characteristics. Neural methods perform the classification by
means of a network formed by basic units (neurons) responding to an input stimulus
or pattern. Finally, in the structural methods the patterns are classified based on
a measure of structural similarity. In this section the results using the two feature
extraction methods (PCA and Wavelets) together with BN as a classification method
are presented. For comparison purposes results using RBFNN and SVM are also
discussed.

16.4.1 Classification results using Bayesian networks

In this particular case we will use BN to classify Chilean wines in order to show
its power when compared with other classification techniques.

The software used in this application is Weka [56, 500], which is the name
of a large collection of machine learning algorithms developed by the University
of Waikato (New Zealand) and implemented in Java. These are applied to data
through the interface provided or to be incorporated inside another application.
Weka has also tools to perform data transformation, classification, regression, clus-
tering, association and visualization tasks. Its license is GPL (GNU Public License)
and can be used freely. Since Weka is programmed on Java, it is independent of
the architecture and runs over any platform where Java is available.

In a Bayesian network, learning is done in two steps; first structure learning and
then probability table learning. For this study we have chosen a structure learning
based on local score metrics [56] with the TAN (tree augmented Naı̈ve Bayes)
search algorithm [500], where the optimum tree is found using the Chow–Liu
algorithm [96].

For structure learning, a network structure BS can be considered as an optimiza-
tion problem where a quality measure of a network structure given the training data
Q(BS |D) needs to be maximized. The quality measure can be based on a Bayesian
approach, minimum description length, information or other criteria. Those metrics
have the practical property that the score of the whole network can be decomposed
as the sum (or product) of the score of the individual nodes. This procedure allows
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for local scoring and thus local search methods. A more detailed explanation about
the metrics can be found in [56] or [500].

Once the network structure has been learned, we choose how to adjust probabil-
ity table learning. In this case the SimpleEstimator class produces direct estimates
of the conditional probabilities and with the BMAEstimator, we get estimates for
the conditional probability tables based on Bayes model averaging of all network
structures that are substructures of the network structure learned [55]. The structure
of the BBN used in this study is given in Figure 16.6. The upper most node is
associated with the wine class and the other nodes correspond to the 38 components
of the feature vector in both cases (wavelet and PCA extraction). Initially all the
node probabilities were set to 0.5.

16.4.1.1 Results with wavelet extraction

In this study a wavelet transform was applied to the original 600 points signals
with mother Haar wavelet function, using a decomposition level 4 to reduce the
dimension of the vectors to 38 points. Then the preprocessed information (38
dimensional vectors) was introduced to the BBN classifier. The results are pre-
sented in Table 16.3 for five different local score metrics; minimum description

Figure 16.6 Structure of the BN used in the study.
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Table 16.3 Classification results using wavelet+BBN for dif-
ferent metrics.

Local % of correct Standard % of correct Standard
score classification deviation classification deviation
metric Training-validation set Test set

MDL 90 0.3015 85 0.3589
Bayes 94 0.2387 91 0.2876
BDeu 93 0.2564 85 0.3589
Entropy 95 0.2190 89 0.3145
AIC 96 0.1969 88 0.3266

Table 16.4 Confusion matrix for the best case (91%)
when using wavelet+BBN.

Cabernet Merlot Carménère

Cabernet 33 (91.66 %) 3 (8.33 %) 0 (0 %)
Merlot 3 (6.82 %) 41 (93.18 %) 0 (0 %)
Carménère 2 (10 %) 1 (5 %) 17 (85 %)

length (MDL), Bayesian metric, Bayesian–Dirichlet likelihood equivalent uniform
(BDeu), entropy metric and Akaike information criterion (AIC). The best result in
the test set is obtained for the case when the Bayesian metric is used achieving
91.0% correct classification with a standard deviation of 0.2876. The confusion
matrix for the best case (Bayesian metric) obtained in the test set is shown in
Table 16.3. Three Merlot samples are misclassified as Cabernet Sauvignon and
vice versa. Only two Cabernet Sauvignon samples are confused with Carménère
and one Merlot sample is erroneously classified as Carménère.

16.4.1.2 Results obtained using PCA extraction

To compare this result with that obtained using the wavelet transform (in terms
of data dimension), 38 principal components were chosen. These 38 components
represent 99.997% of the original variance information.

The results are presented in Table 16.5 for the five local score metrics studied.
The best case in the test set is obtained for BDeu and entropy metrics with only
60.0% correct classification, far from the 91.0% obtained when wavelet extraction
is used. The confusion matrix for the best case obtained in the test set (BDeu
metric) is shown in Table 16.6. From this matrix it can be seen that the classifier
makes a lot of errors.

16.4.2 Classification results using RBFNN
Artificial neural networks (ANN) are mathematical models inspired by brain func-
tioning and have the ability to perform determined tasks. Taking the brain as a
model, ANN use a large number of interconnection of basic units called neurons.
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Table 16.5 Classification results using PCA+BBN for differ-
ent metrics.

Local % of correct Standard % of correct Standard
score classification deviation classification deviation
metric Training-validation set Test set

MDL 71 0.4560 59 0.4943
Bayes 71 0.4560 56 0.4989
Bdeu 71 0.4560 60 0.4924
Entropy 74 0.4408 60 0.4924
AIC 71 0.4560 59 0.4943

Table 16.6 Confusion matrix for Bdeu and Entropy met-
rics (60%) when using PCA+BBN.

Cabernet Merlot Carménère

Cabernet 16 (44.44 %) 6 (16.66 %) 14 (38.88 %)
Merlot 7 (15.91 %) 31 (70.45 %) 6 (13.63 %)
Carménère 6 (30 %) 1 (5 %) 13 (65 %)

Radial basis function neural networks (RBFNN) constitute the main alternative
to the multi-layer perceptron (MLP) for data interpolation and pattern classification
problems. They use functions with symmetry around a center c in the n-dimensional
space of the input patterns instead of using a linear activation function. The output
of the neuron in a RBFNN is given by the general equation

yk(x) =
M∑

j=0

wkjφj (x), (16.3)

where φj (.) are the RBF and wkj are the weights in the output layer. In a clas-
sification problem, the objective is modeling the a posteriori probability densities
IP (Ck|x) for each of the k classes. These probability densities can be obtained
through the Bayes theorem [396], using the a priori probability densities of each
class IP (Ck). It can be proved that the a posteriori probabilities of each class can
be expressed as

IP (Ck|x) =

M∑
j=1

IP (j |Ck) p(x|j)IP (Ck)

M∑
j ′=1

p(x/j ′)IP
(
j ′)

P (j)

P (j)
=

M∑
j=1

wkjφj (x) (16.4)

where IP (Ck|x) is the a posteriori probability density of each class given a pattern x.
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The previous expression can be interpreted as a RBFNN where the normalized
basis functions are given by

�j(x) = p(x|j)IP (j)

M∑
j ′=1

p(x|j ′)IP
(
j ′) = IP (j |x) (16.5)

and the weights of the second layer are given by

wkj = IP (j |Ck) IP (Ck)

IP (j)
= IP (Ck|j) . (16.6)

In this way the results of the basis functions φj (x) = P (j |x) can be seen as
the a posteriori probabilities indicating the presence of specific characteristics in
the input space. Similarly, the weights wkj = IP (Ck|j) can be interpreted as the a
posteriori probabilities of the members of a class given specific input characteristics.
That is the reason why it is natural to apply RBFNN to pattern classification
problems [396].

In this study basis functions φ(x) of Gaussian type were chosen for each neuron
with

φ(x) = exp

( ||x − c||2
2σ 2

)
(16.7)

where c determines the center and the parameter σ determines the size of the
receptive field. σ is also known as the spread and 1/σ defines the selectivity of the
neuron. A small σ implies a high selectivity whereas a large value of σ makes the
neuron less selective. Then for a RBFNN it is necessary to define the spread σ and
the centers c, of the neurons forming the receptive fields of the network. The usual
way is to set the center c at each one of the training patterns of the problem. Thus,
if we have p training patterns the network has p neurons centered at each pattern.
This strategy guarantee zero error in the training set and the freedom to choose σ

that generates a controlled spatial overlapping to guarantee a good generalization.
Depending on the computational implementation utilized, σ can be equal for all
neurons or have different values for each unit.

The next step is to choose the weight vector w ∈ Rm. To this extent the RBFNN
is evaluated at the p training patterns

φji = φ
(||xi − xj ||

) ∀i, j = 1, 2, ..., m (16.8)

where the symbol ||.|| corresponds to the Euclidean norm of a vector. We define
the matrix �, composed by all the φji , as the interpolation matrix of the prob-
lem [316], from which the weights can be obtained through the relationship

�w = T (16.9)

where w ∈ Rm is the weight vector and T is the objective vector (target) containing
the desired outputs. Then if � is nonsingular the weights are obtained as

w = �−1T . (16.10)
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Michelli’s theorem [316] guarantees that if all vectors xi used to compute �

are all different, then � will be nonsingular. For all simulations the neurons were
located at each training pattern [184]. Thus when cross-validation is carried out
the network has 890 neurons corresponding to each profile. Recall that the NN
has two layers; the first has radial basis activation functions and the second linear
activation functions. Simulations were carried out making cross-validation with the
training-validation set for different values of the selectivity σ , and computing the
performance. The same was done for the test set.

16.4.2.1 Results using wavelet extraction

To study the performance of the classifier based on RBFNN, different wavelet
decomposition levels and different values of σ were analyzed. The results are
presented in Table 16.7 for the training-validation set. From Table 16.7, the best
classification rate (76.8%) is obtained for a Wavelet decomposition level 5 and
for a selectivity 0.02 (σ = 50). The results obtained for the test set are shown in
Table 16.8, where the best result reaches 88.0%.

Simulations were performed with Matlab 6.0 using the Neural Network Tool-
box, the Wavelet Analysis Toolbox and the Signal Processing Toolbox. Table 16.9
shows the average processing time considering three runs.

Table 16.7 Average percentage of correct classification in validation using
wavelet+RBFNN.

Selectivity = 0.1 Selectivity = 0.02 Selectivity = 0.01

Wavelet % correct Standard % correct Standard % correct Standard
decomposition classification deviation classification deviation classification deviation
level in validation in validation in validation

5 (19 points) 75.6 0.33879 76.8 0.3289 76.5 0.3198
4 (38 points) 75.6 0.3388 76.5 0.3385 72.7 0.3732
3 (75 points) 74.8 0.34027 76.6 0.3464 75.4 0.3315
2 (150 points) 72.3 0.3594 75.4 0.3538 74.1 0.335

Table 16.8 Average percentage of correct classification for the test set using
wavelet+RBFNN.

Selectivity = 0.1 Selectivity = 0.02 Selectivity = 0.01

Wavelet % correct % correct % correct
decomposition classification classification classification
level in validation in validation in validation

5 88 82 83
4 77 78 79
3 71 79 78
2 63 60 69
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Table 16.9 Average processing time for the
simulations of wavelet+RBFNN.

Wavelet level t[s] Standard deviation

5 553.49 9.651
4 635.32 11.477
3 1129.19 10.544
2 1236.44 9.279

16.4.2.2 Results using PCA extraction

For this method 20 principal components containing 99.86% of the total information
of the training-validation data were considered. Different values of the selectivity
were chosen in the interval [2−9, 10]. The results are presented in Table 16.10,
where the best results are 71.4% in validation and 76.0% in test.

Simulations were carried out using Matlab 6.0, the Neural Network Toolbox and
the Signal Processing Toolbox. The average processing times for each simulation
over three runs are shown in Table 16.11.

Table 16.10 Classification results using PCA+RBFNN,
obtained in validation and test sets, employing 20 principal
components.

Selectivity % correct standard % correct
classification deviation classification
in validation in test

10 39.8 0.4913 30.0
1 36.6 0.4845 50.0
0.1 60.8 0.4402 52.0
0.02 35.3 0.3557 63.0
0.01 53.5 0.3846 67.0
0.0078125 61.3 0.3641 65.0
0.00390625 66.1 0.3853 76.0
0.00195313 71.4 0.3776 60.0

Table 16.11 Average processing time employed in
simulations of PCA+RBFNN.

Number of principal t[s] Standard deviation
components

5 891.82 4.517
10 905.64 4.498
15 968.37 4.209
20 998.22 4.008
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16.4.3 Classification results using SVM

Support vector machines (SVM) is a technique introduced by Vapnik and his col-
laborators [470] as a powerful classification and regression method. The main idea
is that SVM minimizes the empirical risk (defined as the error in the training
set) and minimizes the generalization error. The main advantage of the SVM
applied to classification models is that it supplies a classifier with a minimum
Vapnik–Chervonenkis dimension [470], which implies a small error probability in
generalization. Another characteristic is that SVM allows us to classify nonlinearly
separable data, since it does a mapping of the input space onto the characteristic
space of higher dimension, where data is indeed linearly separable by a hyperplane,
introducing the concept of optimal hyperplane.

For a classifier based on SVM it is necessary first to choose a kernel to carry
out the mapping of the input data space. In [74] and [221] it is suggested to use a
radial basis function (RBF) type of kernel defined as

K(x, x ′) = exp

(
− 1

2σ 2
||x − x ′||2

)
. (16.11)

The parameter σ is determined by the user, but the number of RBF and their
centers are automatically determined by the number of support vectors and their
values. The choice of the value of the regularization parameter C that penalizes
the training errors is another parameter to be chosen [471].

16.4.3.1 Results using wavelet extraction

Several tests with different values of C and σ , for different decomposition levels
were carried out. Tables 16.11 and 16.13 show the results obtained with the SVM
classifier, using an RBF kernel, for different values of C and σ for a wavelet decom-
position level 5. After running a series of simulations, the values 213 = 8192 and
2−3.2 � 0.1 were selected for C and σ respectively. Table 16.12 shows the results
fixing σ at 0.1 and varying C for a decomposition level 5, whereas Table 16.13
summarizes the results fixing C at 8192 and varying σ for a decomposition level
5. From a series of test experiments, it was observed that the best classification
rates were obtained for decomposition level 5 in test.

An analysis of the results in Tables 16.12 and 16.13 gives that the best classifi-
cation rate in validation was 84.8%, whereas in test this rate was 90%, highlighting
the good generalization property of the SVM.

In this case the simulations were performed using Matlab 6.0, with the OSU
Support Vector Machines Toolbox version 2.33 [89], the Wavelet Analysis Toolbox
and the Signal Processing Toolbox. Table 16.14 shows the average processing time
employed in the simulations, without including wavelet decomposition.

16.4.3.2 Results using PCA Extraction

In this case 20 principal components were considered containing 99.864% of the
total information of the training-validation database (in terms of the variance). The
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Table 16.12 Classification results as a function of C, for decom-
position level 5 and σ = 0.1, using Wavelet+SVM in validation
and test.

C σ % correct % correct
classification Standard deviation classification
in validation in Test

128 0.1 76.6 0.38336 80.0
256 0.1 77.3 0.36896 83.0
512 0.1 79.5 0.34312 84.0

1024 0.1 81.3 0.32333 88.0
2048 0.1 82.2 0.31293 90.0
4096 0.1 83.3 0.30354 89.0
8192 0.1 84.0 0.30011 89.0

16384 0.1 84.8 0.29575 88.0
32768 0.1 84.8 0.28961 84.0

Table 16.13 Classification results as a function of σ , for C = 213 = 8192
and decomposition level 5, using Wavelet+SVM, in validation and test.

C σ % correct % correct
classification Standard deviation classification
in validation in Test

8192 0.5 81.8 0.30645 82.0
8192 0.25 84.6 0.29536 87.0
8192 0.125 83.6 0.3044 90.0.
8192 0.0625 83.4 0.30691 88.0
8192 0.03125 81.4 0.31357 90.0
8192 0.015625 81.3 0.3254 86.0
8192 0.0078125 81.1 0.3296 85.0
8192 0.00390625 77.4 0.35776 82.0
8192 0.00195313 75.0 0.37842 77.0
8192 0.00097656 74.3 0.40086 72.0
8192 0.00048828 69.7 0.41717 64.0
8192 0.00024414 53.8 0.46678 39.0

Table 16.14 Average Processing time for three runs using
Wavelet+RBFNN for different decomposition levels.

Wavelet decomposition level t[s] Standard deviation

5 33.61 3.145
4 35.32 3.737
3 55.93 3.951
2 66.14 4.279
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performance was measured as a function of the parameters C and σ of the RBF
kernel. Fixing one of them at its best value (C = 8192 and σ = 0.1) and varying
the other around the best value, the results obtained are shown in Tables 16.15
and 16.16 for each case.

The best classification results (83.5% and 51.%) are reached for C = 8192
and σ = 0.00781 in validation and C = 8192 and σ = 0.00391 in test. Using PCA

Table 16.15 Classification results obtained in the validation and test
sets using PCA+SVM, for C = 8192 and different values of σ .

C σ % correct % correct
classification Standard deviation classification
in validation in Test

8192 50E-01 81.3 0.3349 49
8192 2.50E−01 81.3 0.3428 40
8192 1.25E−01 80.1 0.3554 44
8192 6.25E−02 80.4 0.3499 54
8192 3.13E−02 82.0 0.3369 54
8192 1.56E−02 83.2 0.3193 55
8192 7.81E−03 83.5 0.3200 55
8192 3.91E−03 82.4 0.3274 59
8192 1.95E−03 75.8 0.3659 52
8192 9.77E−04 77.4 0.3646 47
8192 4.88E−04 80.1 0.3426 48
8192 2.44E−04 81.7 0.3373 42
8192 1.22E−04 80.4 0.3515 40

Table 16.16 Classification results obtained in the validation and test
sets using PCA+SVM, for σ = 0.1 and different values of C.

C σ % correct % correct
classification Standard deviation classification
in validation in Test

128 0.1 83.5 0.3254 58
256 0.1 82.4 0.3402 54
512 0.1 80.8 0.3517 49

1024 0.1 79.8 0.3586 43
2048 0.1 80.0 0.3619 42
4096 0.1 80.3 0.351 46
8192 0.1 80.4 0.3528 47

16384 0.1 79.7 0.3537 46
32768 0.1 79.7 0.3537 46
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Table 16.17 Average processing time employed in simulations of
PCA+SVM for different pattern size.

Number of principal components Standard deviation

5 1121.24 5.175
10 1129.46 8.117
15 1130.73 9.937
20 1149.61 9.808

extraction leads to much lower classification rates as compared with wavelet extrac-
tion. The simulations were performed using the software Matlab 6.0, and the Signal
Processing Toolbox. Table 16.17 shows the average processing time considering
three runs for each simulation when using PCA+SVM. These times include the
computation of the principal components.

16.5 Conclusions

Chilean wine classification of the varieties Cabernet Sauvignon, Merlot and Carmé-
nère, from different vintages and valleys, was successfully performed based on
aroma information (gas chromatograms) measured by an electronic nose, by using
Bayesian networks.

Two feature extraction techniques were analyzed to reduce the original data
dimension: principal component analysis and wavelet analysis. Then three classifi-
cation techniques; Bayesian networks, radial basis function neural networks (RBF)
and support vector machines were studied and compared. For all six combinations
the performance was measured as the average percentage of correct classification
in the validation set as well as in the test set, using cross-validation. The best
parameters for each method were obtained from a cross-validation process with
the training-validation set.

The results show that BN with the Bayesian local score metric gave the best
performance (91.0% of correct classification in the test set) when wavelet extraction
with decomposition level 4 is used.

The second best classification rate (90.0% in the test set) was obtained using
wavelet extraction with decomposition level 5 together with SVM with a RBF type
of kernel with parameters C = 8192 and σ = 0.03125. The best result of RBFNN
in the test set was 88.0%, reached using wavelet extraction with decomposition
level 5 and a selectivity of 0.1.

For all three classifiers the performance notoriously decreased when PCA was
used as extraction method.
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The results obtained in this study are promising and the first on Chilean wines
using gas chromatograms supplied by an e-nose. They provide the basis for future
work on the classification of Chilean wines.
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17.1 Introduction

Infrastructure management systems are designed to provide information and useful
data analysis so that engineers and decision makers can make more consistent,
cost-effective, and defensible decisions related to preservation of the infrastructure
network. This chapter will focus on pavement and bridge management. In pave-
ment management systems, the problem setting often involves a large number of
uncertain, interrelated quantities, attributes, and alternatives based on information
of highly varied quality.

Pavement management is generally described and developed at two levels: the
network level (overall road network, with no detailed technical analysis) and the
project level (when work/maintenance is to be done on a specific road section).
There is also a third level, known as the project selection level, which ties the
network and project levels together. The primary differences between network-
and project-level decision-making tools include the degree or extent to which
the decision is being made and the type and amount of data required. Gener-
ally, network-level decisions are concerned with programmatic and policy issues
for an entire network, whereas project-level decisions address the engineering and

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
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economic aspect of pavement management [26]. Traditional decision support tech-
niques used in pavement management systems include a decision tree and linear
programming methods.

Bridge management includes all activities related to planning for design, con-
struction, maintenance, and rehabilitation. Bridge management systems are a rela-
tively new approach developed after the successful implementation and application
of pavement management. The essential elements of bridge management systems
are as follows:

• data collection on bridge inventory and bridge element conditions;

• information management systems including a database and other data storage;

• analysis schemes for determining bridge condition and predicting bridge per-
formance;

• decision criteria for ranking bridge projects for maintenance, rehabilitation,
and repair (MR&R);

• strategies for implementing bridge MR&R.

Therefore bridge management systems also function as a decision support sys-
tem. Bridge management involves a variety of activities that are carried out at
different levels; these activities are primarily aimed at answering the following
questions [112]:

• What, if anything, needs to be done to the bridge now?

• Are correct maintenance procedures being carried out effectively?

17.2 Pavement management decisions

Pavement management decision making has traditionally suffered from a lack
of suitable analytical tools dealing with vagueness and ambiguity of the human
decision process. The main objective in solving a decision problem in pavement
management is the computation of an optimal strategy. This is achieved through
a two-step process: computation of maximum expected values of the utilities and
computation of an optimal strategy that gives the maximum expected value.

Attoh-Okine developed valuation-based systems and networks [427] in pave-
ment management decision making [23]. Figure 17.1 shows the graphical repre-
sentation of valuation-based systems. The valuation networks provide a compact
representation of the decision making process emphasizing the qualitative features
of decision making. The authors compared the decision tree analysis with that of
the valuation-based systems. The weakness of the decision trees includes a proper
method of addressing information constraints, combinatorial explosiveness and the
preprocessing of probabilities that may be required prior to the tree representation.
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n = Potential(C1) r = Potential(C2 | C1, M )

C1, C2 ∈{good, fair, poor}
M ∈ {routine maintenance, 1 inch overlay, 3 inches overlay}

Figure 17.1 Valuation network for pavement management system decision making.

A brute force computation of the desired conditionals from joint distribution for
all the variables is needed.

Figure 17.1 (VBS) consists of two decision nodes (R and M), and two random
variables, C1 (pavement condition at year 1) and C2 (pavement condition at year 2).
There are two ‘potentials’1: ν is a potential for C1, ρ is a potential {C1, C2, M}
and one utility valuation in the network. The valuation network can be used to
compute the maximum expected utility value and an optimal strategy given by the
solution M .

17.2.1 Pavement maintenance

In 1993, Attoh-Okine [24] proposed the use of influence diagrams in addressing
uncertainties in flexible pavement maintenance decisions at project level. The Baye-
sian influence diagram is proposed as a decision-analytic framework for reasoning
about flexible pavement maintenance; the influence diagram connects performance-
related factors, historically related factors of the pavement, policy-related factors
in maintenance, and environmental and cost-related issues. The following points
are highlighted:

• identifying the key points of the pavement maintenance decision problem;

1As defined in [86]: If C1, C2, . . . , Cm are subsets of a set of variables X1, X2, . . . , Xn, and the
joint probability distribution of X1, X2, . . . , Xn can be written as a product of m functions � �i(Ci )

(i = i, . . . , m), then the �i functions are called potentials of the joint probability distribution.
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• establishing the guidelines for quality decision making in pavement mainte-
nance;

• quantifying uncertainties in pavement maintenance;

• assessing the judgment probabilities from pavement engineers and policy
makers;

• estimating the value of information during flexible pavement maintenance at
the project level.

Figure 17.2 is the model used. In the analysis, each probabilistic node was
assigned an equal chance. The data input from the model comes from a pavement
inventory database. The author did not present a final solution for this model; it
was used for illustration purposes.

17.2.2 Pavement thickness

Attoh-Okine and Roddis [28] used influence diagrams to address uncertainties of
asphalt layer thickness determination. The thickness of pavement layers is an impor-
tant parameter in pavement management systems. The thickness data are used for
pavement condition assessment, performance prediction, selection of maintenance

Pavement
conditions

Pavement condition
variable

Defect
initiation

Environmental
conditions

Impact on
traffic

Threshold on
traffic

Data
cost

Admin
cost

Maintenance

Payoff

Figure 17.2 Bayesian influence diagram of a pavement maintenance decision
model. Reproduced with permission from ASCE.
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strategies and rehabilitation treatments, basic quality assessment, and input to over-
lay design. Negative consequences of both underestimating and overestimating
actual thickness may be seen in terms of increased cost and reduced service life.
For direct overlay projects, underestimation of existing pavement thickness will
result in a conservative overlay design with excessive cost. An overestimate will
result in a design that will not achieve the desired service life.

Layer thickness may be determined from historical records such as pavement
network databases, direct testing such as core samples, or nondestructive testing
such as ground- penetrating radar. The suitability of these procedures depends on
factors including the intended use of thickness data, the nature of the test method,
traffic patterns, and the cost of obtaining the data. Historical records normally
assume the same pavement thickness for pavement segment lengths of several
kilometers, coring is an inherently point-based method, and radar provides a con-
tinuous measure of thickness for the entire length of the pavement segment under
study. The nature of the test method affects the accuracy of the thickness value,
with the direct core being the most accurate, and historical records least accu-
rate.

The influence diagram for pavement thickness assessment was represented at
three levels – graphical, dependence, and numeric. The graphical and dependence
level have qualitative (symbolic) knowledge and information flow. The numeric
level has quantitative knowledge. The influence diagram is shown in Figure 17.3.

Traffic

Database

D1 D2

Benefit

K

C

E H

M

Figure 17.3 Pavement thickness layer modeling (D1: application of thickness (deci-
sion node), D2: thickness assessing methodology (decision node), E: estimated
thickness (probabilistic node), H : actual thickness (probabilistic node); M: benefit
of the estimated thickness (probabilistic node)).
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Figure 17.4 Value of Information analysis.

The influence diagram consists of 10 nodes connected by a direct arc. There are
seven probabilistic nodes, two decision nodes, and one expected value node.

Expert elicitation procedures were used to obtain the probabilities. The prob-
abilities were based on interviews with Department of Transportation and Federal
Highway Administration officials. Optimization was performed by maximizing the
expected value which represents the net benefit. Node removal and arc reversals
are used in the evaluation of the probabilistic node [423]. Commercial software,
India [123], was used for the analysis. Sensitivity analysis and value of perfect
information were performed, Figure 17.4. The sensitivity analysis was used to
determine which variables ‘drive’ the model and answers the question ‘What mat-
ters in this decision?’ The value of information analysis is the model that determines
how much money one is willing to pay to obtain more information.

17.2.3 Highway construction cost

Attoh-Okine and Ahmad [25] present a risk analysis approach to solving highway
cost engineering problems. The economic analysis for highway projects is based
on uncertain future events.

Attoh-Okine and Ahmad used an influence diagram for the cost analysis. There
are seven probabilistic nodes and one payoff node. The probabilistic nodes are as
follows, Figure 17.5:

• Environmental regulation cost;

• Highway design cost;
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Figure 17.5 Global representation of the bridge deterioration problem. Reproduced
with permission from Thomas Thelford Publishers.

• Directed labor cost;

• Material cost;

• Other labor cost;

and the utility node is highway construction cost. The authors presented steps on
how to solve the problem.

17.3 Bridge management

Sloth et al. [431] proposed condition indicators within the framework of a Bayesian
probabilistic network as a basis for bridge management decision making. The pro-
posed method develops condition indicators for individual bridge components and is
formulated in terms of time-dependent conditional probabilities. The authors show
causal relationships between uncertain variables, including concrete mix, exposure
conditions, and reinforcement in concrete bridges.

Bridge deterioration is a major component in making bridge management deci-
sions. Attoh-Okine and Bowers [27] developed a Bayesian network model for
bridge deterioration. The model is based on bridge elements including deck, super-
structure and substructure conditions. LeBeau and Wadia-Fascetti [274] used a
fault tree analysis to model bridge deterioration. A belief network representation
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of bridge deterioration was specified at three levels: graphical, dependence, and
numeric. Figure 17.5 is a Bayesian network representation. The overall bridge
deterioration is conditionally dependent on the deck condition, superstructure con-
dition, and substructure condition. The deck condition is conditionally dependent
on the condition of joints and deck material. The superstructure condition is condi-
tionally dependent on the conditions of girders and bearings, and the substructure
condition is conditionally dependent on the condition of abutments.

The probability updating method used for the analysis is based on the one pro-
posed by Jensen in [232]. The algorithm does not work directly with the network,
but on a junction tree, which is created by variables clustered into the tree. Various
inferences can be made from the network:

• Predictive inference – given a particular model, what might happen?

• Posterior computation – given evidence, what is the model that explains the
outcomes?

• Most likely composite hypothesis – given evidence, what is the most likely
explanation?

The input (probabilities) used is obtained from experts. A series of questions to
elicit probabilities was obtained from bridge engineers and inspectors with varying
levels of experience. To eliminate the subjectivity, each expert’s responses were
weighted according to his or her own past experience, and the results were then
reviewed by a selected expert.

Attoh-Okine and Bowers [27] used Netica software for the analysis. The authors
investigated various scenarios. It was concluded that the Bayesian network is more
appropriate than fault tree analysis, which is more appropriate for catastrophic
failure. A Bayesian network is more appropriate for both catastrophic and non-
catastrophic events. Development of the belief network model presented in [27]
was limited to only a small amount of bridge element deterioration data available.
The predictions made from this model are limited by the knowledge and experience
of the experts involved.

Wadia-Fascetti [477] introduced a bidirectional model to bridge load rating
based on a methodology following codes. [477] addresses both a prognostic and a
diagnostic component which identifies the deficiencies. The author used a Bayesian
network for the development of the model.

17.4 Bridge approach embankment – case study

A bridge approach embankment to be constructed in Delaware is presented. The
bridge was 18 feet (5.49 m) thick, and it was required to be constructed in three lay-
ers, two of the layers constituting the top and bottom layers comprised of tire shreds
and the middle layer consisting of normal soil. The top layer measured 10 feet
(3.05 m) thick, the middle layer measured 3 feet (0.915 m) thick, and the bot-
tom layer was five feet (1.525 m) thick. The reason for using tire shreds, otherwise
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called tire-derived aggregates (TDA), was its light weight and the resulting low lat-
eral pressures it produces. Both of these are desirable qualities in this case, since the
foundation soil is weak and low lateral pressure on the abutment wall is required.

The model that was developed using the Analytica decision analysis software
program to simulate the critical characteristics of the embankment, namely, the
temperature, leachate concentrations, horizontal pressures, and settlements, is as
shown in Figure 17.6. These factors greatly influence its performance; hence, they
are represented by four nodes, the outputs of which were compared with the analysis
results of data obtained from the sensors in the field.

On the other hand, the input variables upon which the embankment character-
istics are based were analyzed under the embankment simulation module. In the
case of the temperature characteristic, the following variables were considered: the
heat conductivity of the tire shred layer (Hct), the conductivity of the soil (Hcs),
layer increment (Li), heat liberated (Hl), rate of transfer (Rot), and temperature
per hour (Tphr) flowing through the embankment. Figure 17.8 below shows the
submodel developed for simulating the temperature response.

Next, the submodel to analyze leachate characteristics of the embankment was
developed based on the observed maximum leachate response of scrap tire fills as
studied by Humphrey [222] at four major locations in the US and as documented
in [22]. Some of the parameters tested for include pH, cadmium, manganese, sul-
phate aluminum, iron, chloride and zinc.

The major input variables considered in simulating the embankment settlement
response included the surcharge load, normal stresses (3c3) at the point where the
settlement is of interest, coefficient of compressibility of the embankment layer,
and other variables like the layer thickness and the embankment height. Figure 17.7
shows the submodel used for simulating the settlement response.
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TEMPERATURE
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CONCENTRATIONS
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PRESSURES

SETTLEMENTS

MATERIAL ROAD TYPE

COMPARISON WITH
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Figure 17.6 Model for embankment simulation.
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Figure 17.7 Diagram illustrating the settlement model for the embankment.
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Figure 17.8 Diagram illustrating the output model.
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Finally, the horizontal pressures exerted by the embankment on the abutment
wall of the bridge were simulated as passive pressure during the hot season and
active pressure during the cold season. The general variables considered in con-
structing the model for the horizontal pressures are friction angle, layer increment,
surcharge, type of climate, coefficient of passive earth pressure, and coefficient of
active earth pressure.

The simulation process was carried out by analyzing the output submodel as
shown in Figure 17.8 under the ‘comparison with specifications’ module. The vari-
ables labeled MEAN and STDDEV give the average and standard deviation of the
random values of the corresponding characteristics. The distribution nodes convert
the mean and standard deviations calculated into probability distributions that best
represent them, while the nodes labeled ‘max’ run a query through each set of
distributions to identify the maximum probability density.

The index nodes LT, Pd, SETTLEMENT and CHARACTERISTICS specify
the labels for the depths, probability density, settlements, and leachate properties
respectively. The nodes labeled CO1, CO2, CO3 and CO4 are the maximum proba-
bility density of each simulated characteristic with that measured in the field, while
the RISK LEVEL node gives the condition of the embankment using a ‘SAFE’ or
‘FAIL’ criterion.

The submodel then compares the maximum probability density of the embank-
ment materials corresponding to the particular characteristic of settlements, tem-
perature or horizontal pressure with that obtained from analysis of data obtained
from the field. The output specifies a failure if the latter exceeds the former. In the
case of the leachates, the maximum concentrations computed for the embankment
based on the literature are used as the limiting criteria.

Based on the model analysis and the results obtained, it was observed that a
greater proportion or density of the embankment was at lower temperature at the
surface than further within it due to the low conductivity of scrap tire and soil.
This means more sensors or highly sensitive sensors will be required at the surface
to capture the temperature, while only a few will be required within it. For the
embankment considered, the overall maximum probability density obtained for the
temperatures is considerably high at 0.9703. This indicates that the possibility that
temperature variations within an embankment of similar geometry on site could
pose any reasonable risk is unlikely.

Some of the leachate substances such as lead, zinc, cadmium, selenium, chloride
and sulphates whose characteristics were simulated using the model showed little
possibility of their maximum probability of concentrations being exceeded by their
corresponding values in the actual embankment. This is based on the fact that the
simulated responses were very minimal.

In terms of the settlements, it was observed that at any particular depth, the
relative settlements of points within the embankment measured at 0.1 m intervals
decrease the further into the embankment the settlement is observed. On the other
hand, the overall settlement varies nonuniformly from one layer to the other. In
addition, a smaller proportion or density of the embankment experiences higher set-
tlements near the surface of the embankment than further within. Since the relative
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settlements are highest near the surface of the embankment and the corresponding
density of the tire shred materials is lowest here, very sensitive sensors will be
needed to capture the information at these locations. For the embankment con-
sidered, the overall maximum probability density obtained for the settlements is
0.492.

In terms of the horizontal pressures, it was observed that in both cases, the
pressures increase linearly with depth through the embankment. The active pres-
sures are much lower than the passive pressures. Hence, the horizontal pressures
under a hot climate should be considered critical when designing the abutment
wall, since they are greater in magnitude than the horizontal pressures under a cold
climate. For the embankment considered, the overall maximum probability density
obtained for the horizontal pressures is 0.00344. Overall, the characteristics of the
embankment which require critical assessment are the settlement and horizontal
pressures because their corresponding maximum probability densities simulated by
the model are considerably low at 0.492 and 0.0034 respectively.

Bayesian networks can thus be a tool in the planning and designing stages
of road embankments. It will aid engineers in developing various risk scenarios,
thereby reducing the amount of time for field trials.

17.5 Conclusion

The purpose of this chapter is to demonstrate how graphical probabilistic mod-
els and influence diagrams can be applied to pavement and bridge infrastructure.
Although some of the ideas have been implemented, some of the topics are still
academic exercises. The chapter illustrates both the formulation and method of
analysis. The graphical model is appropriate for these kinds of problems, since it
is capable of capturing both qualitative and quantitative knowledge, which are the
major characteristics of pavement and bridge management decision making. The
correct physical understanding of the inputs and the engineering interpretation of
the results for decision making is the key in using Bayesian networks for bridge
and pavement management.



18

Decision support on complex
industrial process operation

Galia Weidl
IADM, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart,
Germany

Anders L. Madsen
HUGIN Expert A/S, Gasværksvej 5, 9000 Aalborg, Denmark

and

Erik Dahlquist
Department of Public Technology, Mälardalen University, S-721 78
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18.1 Introduction

In order to determine the origin of a process disturbance or fault, the need for a
quick and flexible guidance tool for decision support at higher automation level has
emerged. This includes analysis of process conditions and advice on cost-efficient
actions. The technology of probabilistic graphical models has turned out to be the
right choice out of several alternatives, when high diagnostics capabilities, explana-
tion of conclusions for transparency in reasoning, and trustworthy decision support
are expected by the users (process engineers, operators and maintenance crew).
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 2008 John Wiley & Sons, Ltd
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Due to the existence of a number of first level diagnostic tools, the aim has been
to provide decision support on process operation. The framework of probabilistic
graphical models includes Bayesian networks and influence diagrams. It has been
found to be an efficient and flexible tool in overall-level process operation anal-
ysis, since not all conditions are measurable or computable in real time, and the
combinatorial reasoning procedure is subject to uncertainty.

In this chapter, we focus on key aspects of process monitoring and root cause
analysis for complex industrial processes. If only a classification of the failure type
is required, neural networks or statistical classifiers may be more adequate. How-
ever, if decision support is needed, Bayesian networks support reasoning under
uncertainty while influence diagrams support decision-making under uncertainty.
In a pre-study, we have considered alternative approaches for diagnosis of indus-
trial processes, e.g., the neuro-fuzzy approach [334], however, these techniques do
not give the same advantages as probabilistic graphical models as discussed in
Section 18.3.

A probabilistic approach to fault diagnostics in combination with multivariate
data analysis was suggested in [278] and [279]. Arroyo-Figueroa and Sucar [19]
have been using temporal (dynamic) Bayesian networks for diagnosis and predic-
tion of failures in industrial plants. For decision support (DS), we have combined
an algorithm for decision theoretic trouble-shooting with time critical decision
support [205, 238]. We have applied influence diagrams [487] for advice on the
urgency of competitive actions for the same root cause. Model reusability, simple
construction and modification of generic model-fragments, reduction of the overall
complexity of the network for better communication and explanations, were other
selection criteria in favor of probabilistic graphical models [253].

This chapter contributes with a description of an application based on a com-
bined object-oriented methodology, which meets the system requirements in indus-
trial process control. The application development has been closely related with
the integration of the methodology into the ABB Industrial IT platform. The ABB
Industrial IT platform is an automation and information platform that integrates
diverse IT applications for process control and management. Monitoring and root
cause analysis of the digester operating conditions in a pulp plant has been selected
as the real world application for testing purposes. ABB has managed the reuse
issues through a generic approach including object-oriented Bayesian networks
modeling (reflecting the process hierarchy) supported by the Hugin tool.

18.2 A methodology for Root Cause Analysis

Industrial systems grow in their complexity. A sophisticated industrial process can
generate output from hundreds or thousands of sensors, which should be monitored
continuously. In the case of deviations from normal process conditions, the relevant
information should be singled out, the cause of the failure should be found and
appropriate corrective actions should be taken.
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The huge amount of data and the continuity of the process demands a high level
of automation of operation and maintenance control. But not all operations can be
completely automated. Often it is necessary to let a human operator manually con-
trol the process in critical situations. This poses a formidable challenge on the con-
centration and capability of the human being and on the efficiency of his decisions.

To support the operator in the task of disturbance analysis, an adaptive system
for root cause analysis (RCA) and decision support will collect the data from the
sensors and transfer it into structured and relevant information. Simultaneously,
the process overview should be maintained and relevant explanations provided
with advice on corrective actions. Then the operator can make educated deci-
sions, based both on artificial intelligence and human experience. This should help
avoid unplanned production interruption or at least ensure that the lost production
is minimal.

Early abnormality warnings, RCA and process safety are different aspects of
condition monitoring and diagnostics for industrial process operation under uncer-
tainty. One can define as the problem domain the overall plant performance and
output quality, any of its processes, process sections, equipment or basic process
assets, within which the actual failure is located, fault, abnormality or in gen-
eral, any deviation from desired prerequisites. Moreover, the problem domain may
include the operating and maintenance conditions of the process.

The generic mechanism of disturbance (or failure) build up includes a root
cause activation, which causes abnormal changes in the process conditions. The
latter represents effects or symptoms of abnormality. Abnormal changes in process
conditions are registered by sensors and soft sensors. If not identified and corrected,
these abnormal conditions can enable events causing an observed failure.

18.2.1 Decision support methodologies

In general, a decision support system for industrial process operation should satisfy
the following requirements listed in [113]: early detection and diagnosis; isolability;
robustness, multiple fault identifiability; explanation facility; adaptability; reason-
able storage and computational requirements. These requirements are satisfied by
the methodology and systems described in this chapter.

In a pre-study we have considered neural networks, fuzzy logic, neuro-fuzzy
systems, and Bayesian neural networks as alternative methods for root cause anal-
ysis and decision support. In this section we discuss briefly the advantages and
disadvantages of these methods.

Typical examples for suitable applications of neural networks include auto-
matic classification, pattern recognition, pattern completion, determining similari-
ties between patterns or data. Neural networks can provide refined classifications
of complicated patterns, which can be specified by a large number of parameters,
e.g., several hundred variables. The main weaknesses of neural networks for RCA
is their inability to integrate domain knowledge in the connections between input
and output patterns and that users perceive neural networks as black boxes. Neural
networks do not explain the reasoning nor do their internal quantitative parameters
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have a real-world interpretation. Thus, neural networks are not an appropriate
choice for decision support tasks, which would require background information
on the underlying mechanism of undesired events or failure build-up.

The strength of fuzzy logic lies in the knowledge representation via fuzzy if-
then rules, operating with linguistic variables. They are well suited for applications
where the knowledge is incorporated via direct input–output correlations. Fuzzy
logic has been implemented with success in consumer electronics, i.e., systems
of relatively small size and complexity as compared to large industrial processes.
Most applications of fuzzy logic are in the area of control engineering. The con-
struction of fuzzy systems requires delicate tuning of membership degrees to reach
satisfactory and robust system performance. In complex fuzzy systems, manual
optimization of membership degrees is practically impossible. Therefore one needs
automated learning algorithms for the specification of membership degrees.

Neuro-fuzzy systems combine the advantages of the fuzzy logic knowledge
representation with the adaptive learning capability of neural networks. This com-
pensates for the drawbacks of the individual approaches – the black box behavior
of neural networks and the membership determination problems for fuzzy logic.
The resulting model allows interpretation of inference conclusions and one can
incorporate prior knowledge on the problem domain. Neuro-fuzzy systems still
have some problems with the interpretation of their solutions [334]. Some of them
can indicate an error, but cannot fully diagnose the situation. The fuzzy variables
should not be used in long chains of inference calculations, since a small change
in one value might have great influence on the final result. Therefore, they are
not the first choice of technology for decision support, where explanation of the
underlying causal mechanism of failure build-up is expected from the user.

A hybrid combination of Bayesian statistics and neural networks has proved to
provide good solutions for classification tasks in adaptive learning systems [216].
They have been used to explain which inputs mean most for the outputs, but not
for causal explanation of inference conclusions to the user.

More traditional methods for fault diagnostics of industrial processes include
quantitative and qualitative model-based fault diagnostics and principal compo-
nent analysis. The immense number of possible combinatorial configurations of
causes and consequences as well as the inability to resolve ambiguities are the
weak points of qualitative models which rule them out for large scale industrial
fault diagnostics. In deterministic qualitative models, the problems appear from
the system’s incapability to handle contradicting impacts due to different variables.
That is, the impact might be a combination of increasing and decreasing impact
due to different root cause variables on the same measurable variable. Moreover,
in deterministic qualitative models, the variables are divided into qualitative states
with fixed thresholds, which are difficult to define and do not allow any flexibility
in the signal classification. The last is making the system rigid to natural changes
in normal process behavior. A solution to this problem has been provided by fuzzy
sets, where the thresholds allow smooth transition between the states [334].

We find that Bayesian networks are in particular suitable for root cause analysis
and decision support on complex process operation. Bayesian networks are compact
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and intuitive graphical models supporting stochastic modeling of chain causality
structures in the problem domain. Bayesian networks may be constructed based on
qualitative knowledge, experience and expertise on the causal structure of industrial
processes. The observed events (abnormalities or failures) in the domain are well-
defined and can be represented efficiently in the models. Furthermore, probabilistic
inference on the state of the system is possible under few or no observations.
The reasoning process and the results of inference are simple to explain given the
model and observations made. Finally, the decision-making is time critical and
alternative corrective actions for the same root cause are utility (cost) dependent.
Thus, influence diagrams are suitable to estimate the optimal corrective action for
utility maximization.

Based on the evaluation of the previously discussed methods and their suitability
for RCA and DS, we have chosen to use Bayesian networks and influence diagrams.

18.2.2 Root cause analysis using Bayesian networks
The developed RCA system uses Bayesian inference. Its system architecture is
given in Figure 18.1.

The system architecture for RCA is built on the following main modules:

• A database for gathering evidence obtained from various sources of relevant
information.

• Creation of Bayesian networks (off-line) as knowledge bases for RCA.

• Signal preprocessing and classification of variables into discrete states. The
DCS-signals classification is adaptive to changes in operation mode (e.g.,
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changes in production rate or grade). The combination of signal levels and
trends allows for estimating the risk of abnormality. This provides an early
warning of abnormality in the process operation, which allows for performing
a corrective action before any actual failure has occurred.

• The adaptive signal classification into states provides evidence for inference.

• Bayesian probabilistic inference supports the root cause analysis (on-line).

• Presentation of inference results and acquisition of operator feedback for
update, explanation facility, advice as optimal sequence of corrective actions
and adaptivity to process changes [486, 488].

18.2.3 Model development methodology
The main task of root cause analysis is to identify the possible root causes of
process disturbances. A causal representation of the process disturbance mechanism
produces a chain of events and transitions, which is of interest for root cause
analysis under uncertainty and for the purpose of decision support on corrective
actions, as shown in Figure 18.2, column 1.

A Bayesian network model for root cause analysis should reflect the causal chain
of dependency relations as shown in Figure 18.2, column 2. The causal dependency
relations are between the three symbolic layers of random variables, i.e.,

{Hi}, {Sj }, {F }, (18.1)

where i = 1, . . . , n and j = 1, . . . , m. In (18.1), the set of root causes {Hi} con-
tains all possible failure sources or conditions, which can enable different events
{Sj }, which precede a failure F or its confirming events {Sck

}. The set of variables
{Sj } contain also early abnormality effects and symptoms, which are observed,
measured by sensors or computed by simple statistical or physical models (e.g.,
mass and energy balances). The three sets of variables {Hi}, {Sj }, {F }, can be

fa
ilu

re
←

ef
fe

ct
←

ca
us

e

R
oo

t 
C

au
se

 A
na

ly
si

s

Bayesian Network for RCA

Passive/Active Root Cause
(Normal/Abnormal Conditions)

Lack of information/control

Hold/Loos of control

Enable Event (Effects or Symptoms)

Prevent/Allow Failure
Confirming Events

H1 H2 H3 Hn

S1 S2 Sm

F

...

...S3

Sc1 Sc2

Figure 18.2 The conceptual layers of the Bayesian network for RCA (column 1)
and the corresponding variables in each layer of the Bayesian network. Reproduced
with permission from Elsevier.



COMPLEX INDUSTRIAL PROCESS OPERATION 319

viewed as three conceptual layers of variables in the Bayesian network (i.e., root
cause → effect → failure), see Figure 18.2.

Several root causes can share the same effects or symptoms, which is expressed
by multiple dependency relations between the layers. This qualitative structure is
the starting point of all Bayesian network models used for RCA and DS. Each
model is constructed from process knowledge. To this initial structure are added
more dependency relations extracted by analysis of data from normal and abnormal
process operation.

The root causes of abnormality may originate from various levels in the plant
hierarchy:

• basic assets (e.g., sensors, actuators (valves, pumps), screens inside digester);

• equipment units (e.g., heat exchangers, evaporators, pulp screens, etc.);

• maintenance conditions;

• process operation conditions;

• plant conditions.

A number of data-driven packages for diagnostics of basic assets exist and
form the base of available information for RCA, see Figure 18.1. Therefore, the
Bayesian network is using a hybrid cross-combination of their outputs as evidence
of the uncertainty or reliability of input information for RCA. The value added by
root cause analysis is at process and plant level, especially since it can provide
reusable design of process sections within the same process industry. The reusable
design can be ensured by the use of object-oriented Bayesian networks (OOBNs).
Moreover, the domain uncertainty and the need of adaptive treatment (within the
same process section or at different levels of plant hierarchy) require a number
of modeling assumptions and specifically developed OOBNs, which are used as
building blocks in large and complex models.

A model of a problem domain, where all process variables are interconnected,
can have very complex dependency relations. A large connectivity of the Bayesian
network graph often results in huge conditional probability tables and/or complex
inference. Therefore, the structure and/or parameter learning task become infeasi-
ble as there is simply not enough data from faulty operation. Even if enough data
were available, processing huge conditional probability tables (CPTs) would be too
slow for on-line inference. Instead of a pure data-driven approach, we have chosen
to model the qualitative Bayesian network structure based on process knowledge.
If there was data from faulty operation, we could have combined it with structural
learning and/or parameter learning. For complex processes, this may imply complex
multi-variable dependency relations. This means that the resulting CPTs can still
be huge and become the source of inefficient probability calculations. Even if the
probability calculation with huge CPTs were efficient, the knowledge acquisition
would become a tedious time consuming task. To ensure feasibility of inference,
we apply a number of simplifying assumptions. These also simplify the knowl-
edge acquisition task. Moreover, the dependence properties of the problem domain
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allow for using a number of different modeling techniques to simplify the model.
Notice that these modeling techniques are not approximations, if their simplifying
assumptions are reflected by the underlying structure of the problem domain.

The use of OOBN models facilitates the construction of large and complex
domains, and allows simple modification of Bayesian network fragments. We use
OOBNs to model industrial systems and processes, which are often composed of
collections of identical or almost identical components. Models of systems often
contain repetitive pattern structures (e.g., models of sensors, actuators, process
assets). Such patterns are network fragments. In particular, we use OOBNs to
model (DCS and computed) signal uncertainty and signal level-trend classifications
as small-standardized model classes (a.k.a. fragments) within the problem domain
model.

We also use OOBNs for top-down/bottom-up RCA of industrial systems in
order to simplify both the construction and the usage of models. This allows dif-
ferent levels of modeling abstraction in the plant and process hierarchy. A repeated
change of hierarchy is needed partly due to the fact that process engineers, oper-
ators and maintenance crew discuss systems in terms of process hierarchies and
partly due to mental overload with details of a complex system in simultaneous
causal analysis of disturbances. It also proves to be useful for explanation and
visualization of analysis conclusions, as well as to gain confidence in the sug-
gested sequence of actions. The modeling and system requirements are all met
by the developed methodology. This is further supported by the integration of the
methodology and the Hugin tool into the ABB Industrial IT platform.

18.2.4 Discussion of modeling methodology
The development of the methodology incorporated the following system require-
ments and modeling issues:

• root cause analysis of industrial processes with adaptation to process opera-
tion/grade changes, aging and wear;

• reusable system design for various process applications;

• reusable modeling of repetitive structures, e.g., sensors, control loops, assets
such as pumps and valves;

• risk assessment of disturbances by analysis of signal level-trend, adaptive to
changes in process operation mode;

• ease of communication and explanations of conclusions at different process
levels.

In addition, the Bayesian network modeling techniques used for RCA exploit the
underlying structure of the problem domain. These are summarized below:

• modeling of root causes under the single fault assumption, where the single
fault assumption is enforced by mutually exclusive and exhaustive states of
the root cause variables.
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• modeling of multiple root causes, where the single fault assumption is
enforced by constraints on all root cause variables.

• noisy OR/AND, parents divorcing, modeling of expert disagreement.

• discretization of continuous signals on soft intervals

• mixture models.

• conditional independence of the effect or symptom variables given their com-
mon cause variable.

This reduces the complexity of the RCA model structure and its CPTs. For more
details, see [485] and [488]. The issue of model reusability in different process
sections or at different hierarchy levels is naturally realized by use of OOBNs.

18.3 Pulp and paper application

18.3.1 Application domain

For the proof of concept and to demonstrate the capabilities of the framework
of Bayesian networks, a number of pulp and paper application examples have
been developed. Next, to demonstrate a real world application, the monitoring and
root cause analysis of the digester operating conditions in a pulp plant has been
chosen, see Figure 18.3. The pulp mill is producing high yield unbleached pulp. It
includes a continuous digester, a fiber line with washing and screening, a chemical
recovery as well as utilities, e.g., a bark boiler. The pulp itself is obtained as a
result of cooking of the wood chip in the digester. The preparation of the chips
before digestion can also be crucial for eventual deviation from normal process
conditions. Therefore, both chip preparation and actual digesting conditions are
monitored. The RCA system is connected to the mills distributed control system
(e.g., ABB’s DCS), where from it reads sensor values and actuator settings. By
monitoring sensor readings and control actions, disturbances are detected at an
early stage. This makes it possible to adjust problems before they become serious.

The process is usually operated at several normal operation modes dependent
on production rate, process load, etc. During normal operation modes, the variations
of process variables should be within specified limits. Faulty change of operation
mode, faulty process operation as well as equipment faults can be the root causes
of abnormal process deviations. This can cause degradation of process output (e.g.,
quality) or failure in process assets, when exploited under improper conditions.

The above application has been used for testing the system performance in a
simulated scenario with historical data from a real pulp plant. The structure of
one of the developed Bayesian networks is shown in Figure 18.4. More details are
provided in [488]. The application is being implemented in a Swedish pulp mill,
but results have not yet been achieved when this is written.
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Figure 18.4 An OOBN version of the RCA for digester hang-up. Reproduced with
permission from Elsevier.
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18.3.2 Information, knowledge and data sources

One can rarely find an industrial process with an extensive database including a
large number of cases from faulty operation with all variables needed to perform
Bayesian network learning. One can use training simulators to simulate data on
some faulty operation and their parameter configurations, but they do not cover
all root causes, effects and failures listed by experts during knowledge acquisition.
Instead, the RCA developer often has to rely on other approaches for initial estima-
tions of probability distributions. The knowledge acquisition on the parameters of
the Bayesian network model may use a mixture of different acquisition strategies
for different fragments of the network. This becomes essential for large Bayesian
networks modeling root causes of failures in large and complex industrial processes.
For RCA on industrial processes, the knowledge acquisition is a mixture of:

• subjective estimates from process experts.

• Scientific theories for knowledge acquisition like fluid dynamics (for vari-
ables calculated from physical models, in the simplest case: mass, flow and
energy balances, using DCS signals as inputs).

• Statistical model fragments based on a large number of database cases (appli-
cable only for few root causes, which are the most frequent source of a
problem).

• Subjective estimates on probability distributions. Striving from the beginning
to estimate the Bayesian network parameters might not be efficient. There
might be different sources of uncertainty:

— The process behavior might be drifting over time as in the case of pulp
plant commissioning when the production rate is sequentially increased
over time and the mill is evaluating different suppliers of wood chips
both for quality and economical reasons. All these natural process vari-
ations require model parameters that are able to adapt and follow the
changes.

— It might also be relevant for multivariable correlations, which are not
measurable and difficult to estimate or calculated indirectly from DCS
signals. In additions, even if these multivariate correlations are estab-
lished for one piece of equipment, they are not generally applicable to
complex equipment of the same producer and type, even when used at
the same process stage. Different equipment units often exhibit indi-
vidual behavior with different faults distributions. Even more variety
is observed when the same type of screen is placed in sequence or in
different process sections.

• Mathematical formulas describing the underlying physics and control strat-
egy. For many processes, such simulations might take too long time to
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calculate on-line. Then, the simulations can be performed off-line for a
properly reduced number of parent configurations and combined to estimate
the probability distributions. The number of estimated parent configurations
could be reduced by the design of experiment methodology, while exploiting
symmetry properties of the matrix.

18.3.3 Model development

A case study on digester process operation has been the source of typical repetitive
structures incorporated in the developed OOBN models. The general applicability
of this methodology has been proved by its easy migration to a case study of pump
operation problems in evaporation process.

References [485, 487, 488] present the learning algorithm and a number of
OOBN models, combinations of which we have also used in the RCA of digester
operation. For example, a generic Bayesian network model for adaptive signal
classification is used as a generic building block in the RCA models. Such generic
building blocks are typical examples of repetitive patterns in the Bayesian network
model development. It is natural to represent them as OOBNs, e.g., the OOBN
for adaptive signal classification provides information on the degree of reliability
of sensor readings and reduces the degree of sensor uncertainty. In the OOBN for
RCA of control loops the associated asset is the loop actuator. It models control
loops of general interest to the process industry, e.g., pressure, flow, tank level and
temperature control. The model output class signal shows whether the control loop
is providing the target value for a process variable or its set points are wrong for the
operation mode, alternatively its assets (sensors and actuators) are malfunctioning.
A malfunctioning actuator (i.e., valve or pump) is a root cause from the set of
basic assets. The OOBN for basic process assets is obtained from the OOBN
for control loops by a simple extension incorporating root causes due to related
equipment (e.g., screen status) and other basic components (e.g., pumps and tanks).
On the other hand, this model allows under present evidence to reason about the
performance of a selected diagnostic agent by pointing to that agent as a root cause
that needs treatment. The OOBN model for risk assessment of process abnormality
indicates improper operation conditions, recognized in changed level-trend pattern.

The OOBN models incorporate the causality steps of the basic mechanism of
a failure build-up, e.g., an OOBN model of an event (e.g., pump plug), which
is enabled by abnormal process conditions (e.g., high flow concentration) and is
confirmed by another event (e.g., low pump capacity). Another type of OOBN
evaluates simultaneously several events (e.g., various pump problems), which can
cause process faults or failures (e.g., if a pump fails and it is indispensable for
process operation, the plant should be shut down).

18.3.4 Validation

A detailed description of the validation for the above described methodology, BN
models and application has been published in [488]. Here, we summarize only a few
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main features. The qualitative testing of the BN models included: (1) domain expert
validation of the (in)dependency relations of the Bayesian network models; (2)
design tests have been used to determine whether the Bayesian network is modeling
correctly the expert and causal relations obtained from data analysis and to provide
consequent revision of consistency in knowledge, experience and real plant data; (3)
historical data analysis was used to set the allowed normal variations for measured
signals, to examine expert opinions and to adjust the Bayesian network structure.

In addition, statistical tests were performed while exploiting the knowledge
represented in the Bayesian network. The Bayesian network models have been
evaluated based on simulated data and by off-line testing and calibration with real
process data. The model-testing experiment proceeds in a sequence of steps. In the
first step we sample the data to be used in the subsequent steps of the experiment.
The second step of the testing phase is to process each of the sampled cases and
determine the output from the model on the case. The third and last step is to
determine the performance of the model based on the generated statistics.

We consider two different scenarios. The first scenario considers situations
where no faults have occurred whereas the second scenario considers situations
where a single fault has occurred. This experiment is used to generate statistics on
error detection and correct RCA of all possible faults. The experimental results are
described in [488].

The validation study indicated that the system actually works as designed, which
has been a crucial ingredient in the proof of system concept and performance.
Thus, this methodology represents an improvement (as automation technology)
over existing techniques for manual root cause analysis of nonmeasurable pro-
cess disturbances and can be considered as a powerful complement to industrial
process control.

The sequence of repair actions can be considered as an improvement over exist-
ing policies, since it can provide on-line assistance to the operators and thus, it can
save process operation time. Because of the wide applicability of this methodology,
we expect that the results described will be of interest to other system designers
who are considering similar problems.

This application demonstrates that fast and flexible disturbance analysis (RCA
and DS) is feasible in industrial process control. It need not be a time-consuming
task, if a computerized troubleshooting system is deployed. Thus, it has the potential
of reducing substantially the production losses due to unplanned process break-
downs.

18.4 The ABB Industrial IT platform

The ABB Industrial IT platform is an automation and information platform that
integrates diverse standardizations of global processes and has a greater return on
process assets. The developed RCA methodology has been intended as an advice
functionality on process level in pulp and paper mills and as a part of the ABB’s
Smart Enterprise concept. The RCA application is connected to the mills distributed
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control system, wherefrom it reads sensor values and actuator settings. By mon-
itoring sensor readings and control actions, disturbances are detected at an early
stage. This makes it possible to adjust problems before they become serious.

The object-oriented Bayesian network framework fits naturally into the ABB
Industrial IT environment, which utilizes aspect objects as containers of different
applications communicating via the aspect integration platform in order to allow
overall process optimization. ABB is utilizing for RCA the advanced Hugin tool
from Hugin Expert A/S for implementing decision support into the Industrial IT
platform.

The application development has been closely related with its integration on
the Industrial IT platform and has required the development of special modeling
conventions, such as variable names as well as conventional classes for mea-
sured/computed/observed, diagnosed or status variables.

In addition, history handler (for the filtered computation of signal trends) and
state handler (for classification of raw data into states of evidence) have been
developed and linked with the models through the Hugin application programming
interface (API). The history and state handler have also been essential for the tests
of the models on historical data and to simulate and evaluate the performance of
the RCA system in an Industrial IT environment.

Thus, the infrastructure for applying this methodology in different domains
is ready for immediate use, i.e., any new application of Bayesian networks is
automatically integrated on the ABB Industrial IT platform.

The requirement of customization has also been addressed. Most measurements
are real continuous data. The classification level (e.g., low, high) of the signals is
customizable, i.e., they can be changed by the user, see Figure 18.5 and Figure 18.6.
The extension of system functionality will include an automated classification of
the signal limits as described in [488]. This will be of advantage for a higher level
of automated system configuration.

18.5 Conclusion

The benefits of Bayesian networks relate in the first place to the advantages of the
developed RCA methodology, which meets the requirements for operator decision
support. As a consequence, any suitable RCA application will also benefit from
the methodology based on Bayesian network.

With the growing size of domain applications, it might be preferable to have a
simpler classifier (e.g., based on PCA or neural networks) for a binary decision on
whether a fault is present or not. Once abnormality is detected, the RCA system
will find the root cause and explain its underlying mechanism.

In any real process application, RCA needs adaptation to incorporate the ongo-
ing changes in process behavior. Sequential learning is performed on the actual
root causes and evidence for that particularly observed case. This is based on feed-
back from DCS and on operator/maintenance reports. A detailed discussion on
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Figure 18.5 Source: ABB, RCA. HMI for presentation of the most probable root
causes, acquisition of user feedback and following update of most probable root
causes. Reproduced with permission from Elsevier.

Figure 18.6 Source: ABB, RCA. GUI for configuration of the measurement instru-
ments (sensors) and its status. Reproduced with permission from Elsevier.
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adaptation and on issues related to the prediction of process dynamics is given
in [488].

The scalability and modification of an existing system is feasible due to the
OOBN-approach deployed in our tools. It will require the development of a new
Bayesian network model only for a new process. This overall process model will
use OOBNs for all standard components with default probabilities, which can adapt
either with historical process data or by in situ cases during operation to the new
process environment and its typical operation. This scalability is feasible as long as
the qualitative structure of the process remains similar to the previously developed
application.

For practical use we expect that six man-months is a reasonable estimate on
the effort required for an industrial group to develop a new application by using
the proposed framework and tools described in this work. The estimated work
effort includes the development and verification of a Bayesian network model for
a problem domain described by 200–500 relevant process variables, provided data
and knowledge on the problem domain are available or acquirable.

In summary, the task of failure identification during production breakdown, its
isolation and elimination is a troubleshooting task. On the other hand, the task
of detecting early abnormality is a task for adaptive operation with predictive
RCA and maintenance on demand. It also gives the operator an early warning of
possible future problems, so that counter-actions may be taken before it is too late.
Therefore, these two tasks have different probability-cost function. We combine
both tasks under the notion of abnormality supervision. It aims at predicting both
process disturbances and unplanned production stops, and to minimize production
losses. Thus, the priority is to determine an efficient sequence of actions, which
will ensure the minimal production losses and will maximize the company profit.
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19.1 Introduction

19.1.1 The Basel II Accord

Management of uncertainty is an important and significant part of doing any type
of business in a modern economy. Uncertainty, as an inherent part of doing busi-
ness, cannot be ignored or completely eliminated. Efficient handling of uncertainty
is especially important in the financial services industry (e.g., banking and finance,
investment, insurance, real estate, etc.). The new Capital Accord of the Basel Com-
mittee on Banking Supervision (Basel II) stresses the importance of handling risk.

The need for advanced tools for handling uncertainty in the financial services
industry, and in particular risk management, is of the utmost relevance and impor-
tance. From January 2007 the Basel II Accord is a requirement for over 30 000
banks and financial institutions in over 100 countries. In order to comply with Basel
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Figure 19.1 The advanced internal rating model for credit risk management under
the Basel II Accord gives diversified capital requirements.

II, banks must have deliberate and transparent risk management initiatives in place
by the end of 2006. In addition to the interest in advanced solutions originating
from Basel II, there is an increased demand for reducing costs and cutting losses
in all business areas.

Different models can be used to calculate the capital requirements for risk. The
standard approach is the simplest approach, and can be characterized as the method
used today to calculate capital requirements. Under the intermediate approach, the
financial institution calculates the rating/probability of default of each customer
on its own, and an external ratings authority provides an assessment of security
collateralization. The advanced model is when both the customer rating and the
security collateralization value of a given default situation is calculated on the basis
of statistical models.

Under Basel II, banks are required to hold a capital charge based on an estimate
of their risk exposure. The capital adequacy of credit, market, and operational risks
can be adjusted by means of risk management. The quality of the capital charge
assessment will depend on the measurement approach selected, with the simplest
approach requiring a higher capital charge than the more advanced approaches. In
the more advanced approaches there will be lower capital requirements for some
customers, and larger for others. The estimates of the different parameters should be
used in the daily business, for example for pricing and rating. This induces a capital
incentive to use sophisticated internal risk modeling techniques with a prospect of
benefiting from a more risk-sensitive and significantly reduced capital requirement
(see Figure 19.1). The common interest of decision makers, supervisors and the
like is to identify, assess, monitor, and control or mitigate risk.

19.1.2 Nykredit

Nykredit is one of Denmark’s leading financial groups with activities ranging from
mortgage banking and banking, to insurance and estate agency services. Nykredit
is in particular a leading player in the Danish market for property financing.
Nykredit’s primary activity is providing mortgage credit products to customers in
the private, commercial, agricultural, and subsidized housing sectors. In addition,
Nykredit offers a wide range of financial services, including banking, insurance,
asset management and real estate services. Nykredit has almost 500 000 private
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customers and 80 000 business customers, and in 2004 had recorded profits before
tax of DKK 4.4 billion.

The Nykredit Group is Denmark’s largest mortgage provider having lent DKK
622 billion, and having a market share of 40.6% of total Danish mortgage lending
at year-end 2004. Total Group lending (banking and mortgage banking) amounted
to DKK 645 billion, equal to a market share of 32.8% at year-end 2004. The
Nykredit Group is therefore the second largest lender and the largest mortgage
provider in Denmark, as well as one of the largest private bond issuers in Europe.1

Nykredit decided early on that it would calculate capital requirements based
on the advanced model. Nykredit would employ statistical models both to rate
customers, and to assess capital charges. Employing statistical models in connection
with customer credit ratings, and subsequently in connection with capital allocation,
provides an unprecedented degree of homogeneity in the customer rating process
compared to the overall guidelines and general attitudes that characterize the credit
process today.

The decision to adopt the advanced approach was made based partly on the fact
that, as the second largest credit institution in Denmark, Nykredit has a particular
obligation to strive for the advanced model. But also because Nykredit expects to be
able to benefit from the risk assessment capability of doing so, both in connection
with the direct capital assessment, and in connection with the overall evaluation
of Nykredit as an institution and the evaluation of its loan portfolio by external
ratings authorities.

At Nykredit, Group Risk Management is responsible for risk models, risk anal-
ysis, risk control and risk reports. It consists of a Risk Secretariat, a Risk Analysis
Department and a Capital Management Department. The development of credit and
other models is located in the Risk Analysis Department, whereas calculating and
managing capital is the domain of the Capital Management Department. The Risk
Secretariat makes sure that Nykredit is compliant with regulatory guidelines, etc.

In the mid-1990s Nykredit began to develop credit-scoring models in the pri-
vate customer area. Initially, the models were developed to rate the credit risk
of customers wanting to secure a mortgage loan on 80–100% of their property
value. Because Danish mortgage finance legislation imposes a mortgage lending
limit of 80% on the value of residential property, this type of loan must be secured
through a bank. The implementation of credit scoring on home loans of this kind
was an absolute success, and work to develop credit-scoring models for other bank
products continued. In 2001 Nykredit introduced credit scoring on mortgage loans,
thus ending the development of scorecards for private customers.

Therefore, when the new proposals to the Basel Accord saw the light of day at
the beginning of the millennium, there was never any doubt that Nykredit would use
the expertise accrued from mortgage lending as the launching pad for developing
models for the other lending areas within the organizaton, namely the commercial,
agricultural and subsidized housing areas.

1Parts of this and the above paragraph have been taken from [344].
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19.1.3 Collaboration with Hugin Expert A/S

The Risk Analysis Department has traditionally collaborated with universities and
external consultants. In this case Nykredit contacted Aalborg University to assist
with project assessment. Initially, the collaboration took place as a part Virtual Data
Mining – an EU supported research project on the application of alternative meth-
ods of data analysis. This project was the link to the university, and subsequently
to Hugin Expert A/S (Hugin).

A working group consisting of members from the university and the Risk
Analysis Department was established to look at the possibilities of using Bayesian
networks to model the credit risk of commercial customers. Relatively quickly – six
months later – a model prototype was developed from a Hugin model that was
then tested, both statistically and by credit experts. Later the model was modified
and expanded, and today it is used in all areas, and Nykredit’s cooperation with
Hugin is ongoing. For instance, when developing a more advanced model for retail
customers, Hugin was consulted on how to use different features of the technology
to optimize the calculation.

19.2 Model construction

19.2.1 Probability of default – PD models

When handling uncertainty in the financial sector a default event is defined. The
event can be described as a situation where the borrower fails to meet his/her obliga-
tions. PD models most often calculate a probability of default within a year. The use
of statistical default models gives a homogeneous and objective credit assessment
and makes it possible to perform simulation and stress testing at portfolio level.

19.2.2 Data sources

A key requirement in the choice of technology and tool for implementing an
advanced internal rating model is that the technology and tool should support
the fusion of historical data and expert knowledge. The two main sources of data
and/or knowledge for constructing a model are expert knowledge or models and
historical data. Bayesian networks are well suited for combining different sources
of information into a single model.

A wide range of data sources may be used in model development. For instance,
in Figure 19.2 the potential data sources include financial statements, provision
information and arrears data. These data sources should be combined to form a
single united source of information for the model development as illustrated in
Figure 19.2.

Both external and internal data can be used to form a model. Internal data con-
sists of basic information on each corporate, whereas external data consists mainly
of information about accounts. Some of the external data consists of bankruptcy



PROBABILITY OF DEFAULT FOR LARGE CORPORATES 333

Financial
Statements

Provision
Information

Arrears
Data

...

Modeling
data

Figure 19.2 Multiple data sources are available and should be combined into a
single data set of model development.

information and standard financial key ratios, and some of the internal data con-
sists of arrears, provision and size of exposure. Both the internal and external data
sources include expert knowledge as well as benchmark information about the
corporate.

Figure 19.3 illustrates how different sources of information are combined to
produce a single data source of information used for the model development. Once
the models enter production, they start to produce additional information or data
for use in model revisions and the development of additional models.

19.2.3 Computing probability of default

As a Bayesian network is an (efficient) encoding of a joint probability distribution,
it can be used for computing the posterior probability of events and hypotheses
given observations. That is, a Bayesian network can, for instance, be used for
computing the probability of default for a given corporate given observations on
the corporate. In the Nykredit application the probability of default is the single
event of interest. The remaining variables are either hidden (i.e., never observed)
or observed. The observations will be indicators of the event that a corporate will
default within the next year. In general, the construction of a Bayesian network
can be in general a labor-intensive knowledge elicitation task. For this reason
Bayesian networks with restricted structures are often used. In addition, historical
data and expert knowledge on the relation between variables are often exploited in
the assessment of the parameters of a model.
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Figure 19.3 Internal and external sources are combined with feedback from Bayes-
Credit in order to obtain the data source for model development and refinement.

The naı̈ve Bayes model [249] (also known as naı̈ve Bayesian network) is a
particular simple and commonly used model. The naı̈ve Bayes model is a popular
choice of restricted model due to its simplicity, its computational efficiency and its
performance. The model has complexity linear in its size. A naı̈ve Bayes model
consists of a hypothesis variable and a set of feature variables. Given observations
on a subset of the features, the posterior probability distribution of the hypothesis
variable is computed. Figure 19.4 illustrates the structure of a naı̈ve Bayes model
where Health is the hypothesis variable and the remaining variables are feature
variables representing financial factors. The financial factors are indicators of the
health state of a corporate. The structure encodes pairwise conditional independence
between each pair of financial factors given the Health variable.

Health

Financial
Factor

Financial
Factor

Financial
Factor

Financial
Factor

Figure 19.4 A naı̈ve Bayes structure where financial factors are assumed to be
pairwise independent given the health state.
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The naı̈ve Bayes model produces a particularly simple factorization of the joint
probability distribution over its variables on the following form:

IP (H, F1, . . . , Fn) = IP (H)

n∏
i=1

IP (Fi |pa(Fi)) = IP (H)

n∏
i=1

IP (Fi |H) ,

where H is Health and Fi is a financial factor. The factorization consists of the
marginal distribution over Health and one conditional probability distribution given
Health for each financial factor Fi . In addition to identifying the variables and
the structure of the model, it is necessary to identify the states of each variable
and to quantify the model by specifying the conditional probability distribution of
each variable in the model given its parent as defined by the graphical structure
of the model. In general, variables may be discrete or continuous. The initial
models in BayesCredit contained only discrete variables. This implied that some
variables in the model represented discretized entities. For instance, capital equity
was represented as a variable with six states where each state represents an interval
of values (e.g., from DKK 678 millions to DKK 1 170 millions). The current set of
models in BayesCredit includes discrete Bayesian networks and conditional linear
Gaussian Bayesian networks with non-naı̈ve Bayesian network structure.

19.2.4 Model development and production cycle

Figure 19.5 illustrates the model development cycle and its relation to the produc-
tion cycle. The networks used when calculating PDs are developed, maintained
and tested at a desktop PC using Hugin Developer. The use of the networks in
Nykredit’s production environment is solely on the mainframe. When a network is
developed it is stored in a file on the desktop PC using the Hugin network speci-
fication language, i.e., the NET-format. By an in-house developed application the
net-file is uploaded to the mainframe where it is stored in a DB2 table. This in-
house developed application assigns a unique identifier and handles the versioning
of the more than 40 networks used. Thereby the use of the networks in different
scenarios is clear. The individual network is accessed by methods in the Hugin C
API. Nykredit’s application complex on the mainframe contains logic to identify
the above-mentioned naming convention. A system component on the mainframe
retrieves the relevant data used as arguments in the network. Methods in the Hugin
C API are used for retrieving the value of the variables defined as output. All
calculations are stored in DB2 tables along with information on which network is
used, and input and output to and from the network. The results of the calculations
are used in many of the front end systems in Nykredit.

19.3 BayesCredit

BayesCredit is a decision support system based on Bayesian networks. The system
consists of a set of models for computing the probability of default for a large
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Figure 19.5 The model development and production cycle.

corporate. Using a single model for all types of corporates is unrealistic due to
the diversity of the corporate portfolio. With this in mind, corporates have been
divided into several segments, and today BayesCredit consists of three models, one
for each of the segments industry, commerce and property.

Subsequently, models have been developed for calculating the credit risk of
agricultural customers. These models have also been segmented according to the
type of agricultural production of the customer (pig, cattle or crop production).

The construction of the BayesCredit model for computing the probability of
default consists of a number of steps such as selecting the set of variables, identify-
ing the states of each variable, specifying the structure of the model, and estimating
or specifying of the (conditional) probability distributions as defined by the struc-
ture of the graph of the Bayesian network. Notice that the structure of the graph
of the Bayesian network is more or less given by the choice of the naı̈ve Bayes
model.

19.3.1 Variable selection

The model consists of a health variable and a set of variables specifying finan-
cial factors. The financial factors are assumed to be independent given the health
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state of the company. This implies a naı̈ve Bayes model. The naı̈ve Bayes model
encodes conditional pairwise independence between any pair of financial factors
given the health variable. The purpose of the model is to predict the financial health
of a corporate when the values of a number of financial factors are known. The
financial health is represented using a variable Health with states corresponding
to how healthy a corporate is. For instance, the states may be ‘bad’ and ‘good’.
In practice Health has a larger number of interval states reflecting the financial
health of a company 0 − x1%, x1 − x2%, . . . , x(n−1) − xn%. Each interval corre-
sponds to a quantile such that the state 0–x1% is the x1% of the corporates with
lowest health. The remaining states are defined in a similar way. The quantile
intervals are finer grained for the lowest quantiles because the differentiation of
corporates is particular important for the lower quantiles. Unobserved factors are
given the ‘average’ value 0. The health of a corporate is computed by the sum of
the transformed financial factors.

For each corporate the value of the heath variable is computed and stored in
such a way that it can be used at the next analysis of the corporate. Thus, the health
state of the company captures and represents the state of the corporate at the point
where the analysis is performed. This health state becomes the previous health at
the next analysis.

The variables representing financial factors are selected by single factor analysis
on factors selected by credit experts, adviser knowledge, etc. The financial factors
should have a high correlation with the health of a corporate in order to give
good predictions of default. In addition to the financial factors, earlier arrears were
found to have a high discriminatory power between defaulted and nondefaulted
corporates. For example, Figure 19.6 shows the default rate given different values
for earlier arrears across the considered segments.

0
0

10

20

30

40

50

60

70

80

1 2 3 4+ New cust.

D
ef

au
lt 

ra
te

Earlier Arrears

Industry Commerce & Service Property companies

Figure 19.6 The default rate given earlier arrears across segments Industry, Com-
merce & Service, and Property companies.
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Figure 19.7 The general structure of the model.

19.3.2 Model structure

Based on the variable selection the model consists of variables representing finan-
cial factors, a variable representing the health of a corporate, a variable representing
the health of a corporate at the previous time-step, a variable representing earlier
arrears and the variable Default with two states ‘no’ and ‘yes’ indicating whether
a corporate will or will not default within the next year.

The structure of each model is based on the naı̈ve Bayes model as illustrated
in Figure 19.7.

19.3.3 Assessment of conditional probability distributions

All conditional probability distributions have to be assessed before a fully spec-
ified model is obtained. This includes the conditional probability distribution of
each financial factor given the health variable, the prior distribution on the health
variable, the conditional distribution of health given health at the previous time-
step, the prior distribution on earlier arrears, and the conditional distribution of
default given health and earlier arrears.

Figure 19.8 shows the diverse information sources and illustrates how the dis-
tributions of the Bayesian network are assessed by fusion of multiple information
sources. The assessment of conditional probability distributions includes estimation
from data, logistic regressions and questionnaires.

Figure 19.9 shows an example of a conditional probability distribution of a
financial factor given Health. Health has states one to nine while the financial
factor has states one to six. For each state of Health a probability distribution over
the states of the financial factor is specified. As the figure shows, the value of the
financial factor increases as the value of health increases.

The conditional probability distribution IP (D |H, EA) of default given earlier
arrears and health is approximated using a logistic regression model:

logit(Dj = 1) = αEA + βEAHj ,
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Figure 19.8 The estimation and specification of the conditional probability distri-
bution use diverse information sources.
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Figure 19.9 The conditional probability distribution of a financial factor given
health IP (FF |H)

where Dj = 1 is the event that the customer will default and αEA and βEA are real
valued coefficients conditional on earlier arrears and Hj is the state of health. The
coefficients of the logistic regression are estimated from data.

19.3.4 BayesCredit model example

Figure 19.10 illustrates the structure of one of the core models of BayesCredit.
The model is based on an augmented naı̈ve Bayes structure. The Health variable
is the key variable of the model. The model consists of the Health variable, a
variable representing the health of the corporation at the previous analysis, a set of
financial factors, a variable representing earlier arrears, and a variable representing
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Figure 19.10 A naı̈ve Bayes structure over health and a subset of financial factors
augmented with three variables capturing the previous health state, earlier arrears,
and default (for illustrative purpose).

the event whether or not the corporate will default within the next time period. The
time period is one year.

The model structure shown in Figure 19.10 produce the following factorization
over its variables:

IP (H, PH, EA, F1, . . . , Fn) = IP (PH) IP (H |PH) IP (D |EA, H) P (EA)

n∏
i=1

IP (Fi |pa(Fi))

where H is health, PH is previous health, EA is earlier arrears, D is default,
and Fi is a financial factor. The model is constructed based on a naı̈ve Bayes
model structure between the health variable and the financial factors. The naı̈ve
Bayes model structure is augmented with a variable representing the previous
health of the company as this captures the historical performance of the company.
The variable representing whether or not the company will default has Health
and Earlier Arrears as parents.

The model supports efficient computation of the probability of default given
observations on any subset of variables in the model including the empty set. This
flexibility to handle missing observations is one of the key properties of Bayesian
networks and was a determining factor in Nykredit’s selection of Bayesian networks
as the appropriate technology for the advanced internal rating model. Figure 19.11
shows an example of the computation of probability of default given incomplete
knowledge about the corporate.

The figure shows the probability of default conditional on equity capital and
earlier arrears. The equity capital is DKK 4420–13 500 millions and the earlier
arrears is 0 to 1 months. The conditional probability of default is computed to
be 1.6%.
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Figure 19.11 Given equity capital of DKK 4420–13 500 millions and earlier
arrears is 0 to 1 months, the probability of default is 1.6%.

19.4 Model benchmarking

BayesCredit has been tested by the credit analysis agency Standard & Poor’s, where
BayesCredit attained a high score compared to other commonly used risk models.
The graph in Figure 19.12 presents a comparative measure of the accuracy of the
model. In this case, Nykredit’s new model is compared with Standard & Poor’s
benchmark models.

As can be observed, Nykredit’s model has a higher accuracy than Standard
& Poor’s benchmark models. Based on Standard & Poor’s own evaluation of
BayesCredit, the following conclusions on the performance of the model have
been reached:

• Definition of risk profiles: based on the result of extensive tests, we believe
that Nykredit’s new model is able to differentiate different risk profiles
when evaluating the creditworthiness of companies through the probability
of default.

• Benchmark evaluation: the overall performance of Nykredit’s new model is
as good (or better) than that of the benchmark models developed by Standard
& Poor’s based on the same database.
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Figure 19.12 Comparison of accuracy of different models with the performance
of the new Nykredit model.

Overall, in our opinion, Nykredit’s new model is efficient and well suited to
the bank.

19.5 Benefits from technology and software
A number of benefits from using Bayesian networks and Hugin software to compute
the probability of default have materialized during the development, the integration,
and the usage phase. Some of the main benefits are listed below:

• A Bayesian network is a powerful communication tool. One of the benefits
of Bayesian networks is that a lot of knowledge is captured in the graph-
ical structure. Without the need to compute probabilities, many important
properties of a model can be recognized. This makes Bayesian networks a
powerful communication tool during the initial discussion of a problem as
well as when explaining results after analysis. Because the Bayesian network
is hierarchical with the numbers hidden within the nodes, attention is focused
on the relationship among variables.

• A Bayesian network combines expert knowledge and data. Because default
data is so sparse, it is unlikely that Nykredit can build a strong statistical
model based on data alone. During the development of BayesCredit, Nykredit
used knowledge from credit specialists to a great extent, and the two sources
of information – expert knowledge and data – were combined in a flexible
and elegant manner.

• A Bayesian network can efficiently handle missing observations. Hugin soft-
ware contains algorithms that handle missing observations in an exact way
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since basic axioms of probability are used to compute the probabilities. The
handling of missing observations is crucial for BayesCredit because Nykredit
must compute the probability of default even in cases where a part of the
financial data is not available.

• The algorithms in Hugin software are highly efficient because they exploit
properties of the algebra of multiplication and marginalization of probabil-
ity tables. This is important for Nykredit, because BayesCredit is applied
in real time that necessitates a fast computation of probability of default.
BayesCredit is also applied offline on the entire customer database. This too
requires efficient calculations.

• Integration and maintenance of models into existing software is straight-
forward. The integration of the Hugin Decision Engine into the existing
mainframe system was simple. Similarly, the maintenance of models and
software is straightforward.

In general, a main advantage of Bayesian network technology for handling
uncertainty is that the same model, based upon the same fundamental understand-
ing of the domain, is able to solve different tasks, such as identifying, assessing,
monitoring, and mitigating risk. The main advantages of the technology include,
but are not limited to:

• Probabilistic graphical models are generally easy to understand and interpret
as relationships are represented graphically rather than textually.

• Probabilistic graphical models illustrate the cause – effect relations in an
efficient, intuitive and compact way. In general the model represents (con-
ditional) independence and dependence relations (for instance, between key
risk indicators, key risk drivers, risk factors, losses, activities, business lines,
event types, controls, etc.).

• Probabilistic graphical models offer a mathematical coherent and sound han-
dling of reasoning and decision making under uncertainty.

• Probabilistic graphical models may be constructed by fusion of historical
data and domain expert knowledge.

• A cost–benefit analysis of controls can be performed using decision theory
to identify the optimal controls based on a scenario analysis.

19.6 Conclusion

The framework of Bayesian networks is a valuable tool for handling uncertainty
in Nykredit’s line of business. Bayesian networks support the integration of mul-
tiple data sources and provide a graphical model representation, which is easy to
interpret and analyze. Since September 2003 BayesCredit has successfully been
used in production at Nykredit. BayesCredit computes the probability of default
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for each corporate in three different segments (Industry, Commerce and service,
and Property) based on internal and external data on the corporate. Due to differ-
ences between the types of corporates in the three segments, there is a separate
model for each segment.

Not only is BayesCredit efficient with a high performance, the use of Bayesian
networks and Hugin software have implied a number of other significant improve-
ments in Nykredit. The integration of models into the existing mainframe system
was and still is very efficient and straightforward. Maintenance on and updates of
models are simple tasks to perform as they amount only to replacing an existing
file containing the outdated model specification with a file containing the new or
updated model specification.

In addition to using Bayesian networks for computing the probability of default
for different segments of customers, we see a number of opportunities for applying
Bayesian networks to different types of problems.

Hugin Expert A/S was a natural choice for Nykredit when the decision to
develop internal risk models was made. The company is well established on the
market for software for advanced model-based decision-making under uncertainty.
Hugin software is known to be very reliable, efficient and user-friendly. Finally, the
Hugin software package is equipped with a variety of functionalities that Nykredit
has found to be very useful. Data conflict analysis is one such example. Another
determining factor in the selection of software provider was that, besides their core
technology, Hugin also provides excellent services, such as training, consultancy
and effective technical support.
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20.1 Introduction

One of the main objectives of the ADVOCATE project (acronym for Advanced
On-board Diagnosis and Control of Autonomous Systems)1 was to increase the per-
formance of unmanned underwater vehicles in terms of availability, efficiency, and
reliability of the systems and in terms of safety for the systems themselves as well
as for their environments. The main objective of the ADVOCATE II project2 was to
improve and extend the general-purpose software architecture to cover Autonomous
Underwater Vehicles (AUVs) and Autonomous Ground Vehicles (AGVs) and to
apply it on three different types of autonomous vehicles. Based on the software
architecture the aim is to increase the degree of automation, efficiency, and relia-
bility of the vehicles.

1ADVOCATE was formed in 1997 under the ESPRIT programme of the European Community.
2ADVOCATE II was formed in 2001 under the IST programme of the European Community.

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd
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The software architecture is designed in a highly modular manner to support
easy integration of diverse artificial intelligence techniques into existing and new
control software. The basic idea is that the artificial intelligence techniques will
perform diagnosis on the state of the vehicle and in the case of malfunction suggest
appropriate recovery actions in order to recover from this situation.

Three end-user partners were involved in the ADVOCATE II project: University
of Alcalá designs modules for AGVs for surveillance applications, Ifremer designs
AUVs for scientific applications, and Atlas Elektronik designs AUVs and semi-
AUVs for industrial applications. Each end-user partner presented diagnosis and
control problems related to a specific vehicle.

In this chapter, we focus on the new type of AUV designed by Atlas Elektronik
in 2005. The vehicle, called DeepC, is designed to allow unsupervised autonomous
mission durations of up to 60 hours. The diagnosis and control problems considered
are detection of corrupt sensor signals and identification of corresponding appropri-
ate recovery actions. Corrupt sensor signals can be caused by sensor malfunctions
or noise.

The sensor is a sonar (= sound navigation and ranging), which is used to detect
obstacles in the vicinity of the underwater vehicle in order to avoid collisions. As a
sonar emits and receives sound pulses, any ambient noise might have an influence
on the functionality of the system and thus on the safety of the vehicle.

Based on an assessment of properties of the problem, we decided to use proba-
bilistic graphical models to support the detection of failure situations and to suggest
appropriate recovery actions in case of (high probability of) a failure situation. The
main reasons for this choice are that the problem domain is highly structured and
that it is subject to a large amount of uncertainty.

20.2 DeepC
Atlas Elektronik has developed a new type of underwater vehicle operating with
autonomous mission durations of up to 60 hours. This vehicle is referred to as
DeepC (see Figure 20.1).

Figure 20.1 The DeepC underwater vehicle.
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The DeepC vehicle – developed under the support and promotion of the Fed-
eral Ministry of Education and Research of Germany 2000–2005 – is a fully
autonomous underwater vehicle with specific payload for oceanographic and ocean-
logic applications. The vehicle is supposed to operate up to 60 hours without
supervision. To master this challenge one of the outstanding features of the DeepC
is its reactive autonomy. This property allows situation-adapted mission and vehicle
control on the basis of multi-sensor data fusion, image evaluation and higher-level
decision techniques. The aim of these active and reactive processes is to achieve a
high level of reliability and safety for longer underwater missions in different sea
areas and in the presence of different sea bottom topologies.

The long mission durations impose the need for advanced artificial intelligence
techniques to detect, avoid, and recover from dysfunctions. Atlas Elektronik was
faced with problems, which could not easily be solved by existing systems. The
current approach to handle mission faults is to abort the mission, which is, however,
very expensive.

As a fully autonomous system, the DeepC vehicle has to rely on its sensors to
survive operationally. The DeepC is equipped with an advanced object detection
and obstacle avoidance system. The object detection system consists of a mechan-
ically scanning, forward looking sonar and its control electronics. In principle a
sonar operates similar to a radar. It emits short pulses of ultrasound and records
any echoes from the environment. The intensity of the echoes can be scaled into
brightness of a gray-scale image. One axis of the image represents the time or
distance from the sonar, the other axis the relative direction into which the sonar
is pointing. Any objects are detected by means of image analysis.

This system works well when the sonar image is of sufficient quality. The
problem considered is to construct a model for assessing the sonar image quality
and for suggesting actions to avoid object collisions in case the quality is degraded.

Figure 20.2 illustrates the problem domain in some detail. The vehicle is
equipped with a forward looking sonar located at its nose. The sonar image
(when of significant quality) will show possible objects which the vehicle should
circumnavigate in order not to damage itself. Noise and reverberation may reduce
the quality of the sonar image in which case the object detection system may fail
to identify objects. When the sonar image is of insufficient quality this should be
detected and appropriate actions to increase the quality of the sonar image should
be suggested.

20.2.1 Critical and safe detection distance

The critical detection distance is the specific distance at which an obstacle must
be identified. It is the range the AUV needs physically to avoid a collision by
changing the course or making a full stop. The critical distance varies with size of
the object. The minimal turning radius of DeepC is 30 meters. From this geometric
constraint, the critical range for small objects can be computed. It is necessary to
add a fixed time tr (e.g., tr = 6 seconds) for image analysis and reaction time
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Figure 20.2 An illustration of the problem domain.

(from receiving the image until start of an avoidance manoeuvre) to calculate the
speed dependent minimal distance for reaction.

The safe detection distance (SDD) is quite similar to critical detection distance.
They may be used synonymously because the safe detection distance is necessary to
avoid an infinitely wide obstacle. An operational sonar range less than this distance
is considered unsafe as only small obstacles could be avoided. We have assumed
the critical detection distance to be equal to the safe detection distance.

The effect of reverberation of sound from the bottom or sea surface can be
compared to the effect of fog on visibility: a distant object may be hidden in the
reverberation. If the necessary safe detection distance is larger than the distance of
reverberation onset, then any objects hidden in the fog are detected too late to be
avoided. In general, the larger the SDD, the greater the risk of a collision.

Regarding countermeasures the safe detection distance is fortunately a function
of speed (see Figure 20.3, which explains the concepts).

If the distance of reverberation onset is smaller than the safe detection distance,
then the speed has to be reduced so that the distance of reverberation onset is equal
to or larger than the safe detection distance. Alternatively, the altitude above the
sea bottom may be increased to reduce the probability of the presence of obstacles.

For the application the probability of bottom and surface reverberation has to
be assessed. The range of bottom reverberation onset (BRO) can be calculated from
the vertical opening cone of the sonar which is ±10 degrees. Figure 20.4 illustrates
bottom reverberation onset. The concept of surface reverberation onset is similar.

Note, that the bottom effect may not be present, depending on the physical
properties of the sea bottom. The image analysis must assess whether or not rever-
beration is present. The BRO is an indicator only. Surface reverberation onset
(SRO) behaves in the same way as BRO.
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Figure 20.4 An illustration of bottom reverberation onset.

20.2.2 Sonar image generation
The sonar used in this context is a mechanical sector scanning sonar. This means
that the emitted and received sonar pulse (ping) covers a very small area – the
horizontal beam width is about two degrees and the maximum range is 100 meters.
After each ping the sonar head turns around the vertical axis by two degrees and
sends its next pulse. The sonar turns and sends ping by ping to cover a wider area.
For instance, to cover 40 degrees of the horizon, the head has to send and receive
20 pulses.

After sending the pulse the sonar switches to receive mode and performs an
analog-to-digital (A/D) conversion of the received sound intensity at a defined
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sampling rate. This rate defines the amount of data samples in the radial direction
(distance).

The received sound intensity of the single samples is converted into a number
with a range of 0 to 255 (one byte). The higher the value the more return signal
(echo) has been received. The range and angle parameters of the sonar image span
up a matrix: range versus orientation of the sonar head. Typically, there are about
20–40 angular positions of orientation (rows), each of them containing about 650
data samples (columns).

The intensities or echoes in each cell of this matrix, which may be displayed
as an image, may have different sources. In the ideal case there is only the echo
of objects. But in practice these are overlaid by noise and reverberation from
the bottom or sea surface. There is also a volume reverberation, but this can be
neglected here as it is of no significance for far-field assessments. There is a wide
range of sources of noise. There may be natural sources as, e.g., rain, sound of
waves, or the among acoustic scientists well known shrimp-snapping, there may
be artificial sources as, e.g., ships, or generated own-noise and there may be noise
from electrical influences during the signal processing.

Figure 20.5 shows five examples of typical images. The first exhibits some
artefacts due to electrical noise, the second has a closed area object, the third has
the same closed area object with bad noise, the fourth displays an object larger
than the image, and the fifth has bottom reverberation.

Figure 20.5 Typical examples of five different types of sonar images.
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Any high noise intensities are clearly visible as bright spots. The classification
into objects, artefacts, or noise is a difficult task even for a skilled sonar operator.
But it is possible to recognize even an object hidden in clutter. The human decision
is based on presence, distribution and structure of intensities, as well as on contrasts.
Therefore it is important to develop indicators for the analysis of sonar images.

20.2.3 Sonar image analysis

The sonar image can be viewed as a typical gray-scale image. Thus, some important
quality indicators can be extracted from mathematical features as image mean value,
entropy, and substance.

The use of the image mean value is quite clear; it indicates the level of noise,
if there are no objects present. If there are objects in the image, the mean value
increases dependent on the spatial proportion of the object. The image mean M is
defined as

M = N−1
∑

j

ij , (20.1)

where ij denotes the pixel value of pixel j (i.e., ij is a value from 0 to 255) and
N is the number of pixels.

Entropy is a measure of disorder of a system. In our setting image entropy H

is related to the amount of information an image contains. A highly ordered sys-
tem can be described using fewer bits of information than a disordered one. For
example, a string containing one million ‘0’ can be described using run-length
encoding as [(‘0’, 1E6)] whereas a string of random symbols will be much harder
to compress. Hence, high entropy means a uniformly distributed noisy image. The
image entropy H can be expressed as

H =
255∑
i=1

pi · log (1/pi) , (20.2)

where i denotes the pixel value (i.e., a value from 0 to 255) and pi is the probability
of a pixel value (relative pixel count) within the image. Both symbols can be
represented in an image histogram.

The histogram of an image refers to a histogram of the pixel intensity values.
This histogram is a graph showing the number of pixels in an image at each
different intensity value found in that image. In our case we have an eight-bit
gray-scale image. There are 256 different possible intensities, and so the histogram
will graphically display 256 numbers showing the distribution of pixels amongst
those gray-scale values. See Figure 20.6 for an example of pixel count as a function
of pixel value.

As the third image quality indicator, we introduce the notion of image substance
S as an expression for weighted high valued echo pixels. The image substance can
be expressed as

S =
∑

i

pi · ilog i . (20.3)



352 RISK MANAGEMENT IN ROBOTICS

127Pixel Value0

Pixel Count

Figure 20.6 Pixel count as a function of pixel value.

Typically, high valued echoes are more sparse in the image than values near the
mean. Substance gives clear evidence that there are significant echoes (reverberation
or objects) in the image. The higher the number of high valued pixels the larger
the substance.

In the assessment of sonar image quality is it important to distinguish between
noise and reverberation. Noise may be present in the sonar image due to noise
from the vehicle or other sources of noise. Noise from the vehicle may be due to,
for instance, payload activity or acoustic noise.

If the sonar beam strikes the ground or the water surface, then there may be a
reflection from theses surfaces. This reflection produces reverberation. The intensity
of reverberation depends on the roughness of the surface. Whether the condition
for a potential reverberation onset is geometrically fulfilled, can be calculated from
the sonar parameters and the distance to the surface.

In essence the sonar image assessment problem is a tracking problem in the
sense that we want to monitor the time variant quality of the sonar image. In
case of degraded image quality an appropriate recovery action shall be determined.
To solve the sonar image quality assessment problem and the decision making
problem, we developed a probabilistic graphical model.

20.3 The ADVOCATE II architecture

The purpose of a system based on the ADVOCATE II architecture is to assist the
operator or a robot’s control system (piloting system) in managing fault detection,
risk assessment, and recovery plans under uncertainty. One of the design main goals
was to allow easy integration of different artificial intelligence techniques into pre-
existing systems. The decision to support the simultaneous use of diverse artificial
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Figure 20.7 The communication architecture.

intelligence techniques was made to allow these techniques to collaborate on the
task of reasoning and making decisions under uncertainty. This raises the question
of how to most efficiently integrate different artificial intelligence techniques into
new and existing systems. We have found that this is most efficiently done through
an open and generic architecture with a sophisticated communication interface. The
generic communication protocol is based on SOAP/XML technology implementing
HTTP for communication between different types of modules (see Figure 20.7).

The architecture is widely generic, open, and modular consisting of four dif-
ferent types of modules.

20.3.1 Robot piloting module

The robot piloting module is the main interface between a robotic system and the
ADVOCATE modules. It has access to mission plans, sensor and actuator data.
This module also has the permission to interrupt the initially planned behavior of
the robot to enforce recovery actions (recovery plans) received from the decision
module. A recovery action may be moderate as, e.g., changing some parameter,
but it may also be a drastic action as, e.g., an emergency surfacing manoeuvre.

20.3.2 Decision module

As indicated above the decision module communicates with the piloting module,
but also with intelligent modules, receiving diagnoses and recovery actions, and
the user. Thus, it is the central point of the architecture. The decision module
manages the diagnosis and recovery action processes. This includes integration of
information provided by different intelligent modules, user validation of diagnosis
and recovery actions when required by the system, and translation of recovery
actions into recovery plans.
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20.3.3 Intelligent module

The role of an intelligent module is to provide possible diagnoses, suggestions for
recovery actions, or both. A typical diagnosis on an operational vehicle corresponds
to identification of system state while a recovery action corresponds to performing
a sequence of actions on the vehicle (e.g., to avoid collision or to recover from
a dysfunction). To reach this aim an intelligent module encapsulates a knowledge
base to a specific problem domain and an inference engine.

The intelligent module communicates with the robot vehicle piloting module
and the decision module. The robot vehicle piloting module supplies the intelligent
module with data. These data are used in conjunction with the knowledge base
to generate diagnoses and recovery actions. The diagnosis or recovery action is
communicated to the decision module.

20.3.4 Directory module

The directory module is the central point of inter-module-communication in the
sense that it maintains a list of registered and on-line modules and its addresses.
When registering at the directory module, each module obtains this list to initiate
communication.

20.4 Model development

The sonar quality assessment problem concerns reasoning and decision making
under uncertainty. First, the quality of the sonar image should be assessed based
on navigation data and a number of image quality indicators. Second, an appro-
priate action to reduce noise in the sonar image has to be suggested based on an
assessment of the sonar image and the development of the system over time. A
single model to assess the sonar image quality and to suggest an appropriate action
was to be developed. For this reason we use influence diagrams.

The traditional influence diagram is useful for solving finite, sequential decision
problems with a single decision maker who is assumed to be non-forgetful. The
limited-memory influence diagram relaxes some of the main constraints of the
traditional influence diagram. The limited-memory influence diagram is well suited
for representing (and solving) the sonar quality assessment problem.

The Hugin tool [14, 233, 292] was used to construct and deploy the probabilistic
graphical model developed.

20.4.1 Limited memory influence diagrams

Probabilistic graphical models are well-suited for reasoning and decision making
in domains with inherent uncertainty. The framework of probabilistic graphical
models offers a compact, intuitive, and efficient graphical representation of depen-
dencies between entities of a problem domain [249]. The graphical structure makes
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it easy for nonexperts to understand and interpret this kind of knowledge represen-
tation. We use a limited memory influence diagram (LIMID) to describe multistage
decision problems in which the traditional non-forgetting assumption of influence
diagrams is relaxed [272].

Let VD be the decision variables and VC the chance variables of the influence
diagram such that V = VC ∪ VD . The influence diagram is a compact representation
of a joint expected utility function (EU):

EU(V ) =
∏

X∈VC

P (X |pa(X)) ·
∑

Y∈VU

f (pa(Y )), (20.4)

where VU is the set of utility nodes. The solution to an influence diagram is an
(optimal) strategy specifying the (optimal) decision policy for each decision in VD

as a function of each possible observation. In principle it is necessary to solve an
influence diagram only once as this produces the (optimal) strategy.

The traditional influence diagram assumes a non-forgetting decision maker and
that there exists a linear order on all decisions. The non-forgetting assumption
implies that all previous observations are recalled at each decision. The linear order
on decisions implies a partial order on chance variables relative to the decisions.
The traditional influence diagram is solved by performing a sequence of rollback-
and-collapse operations (also known as variable eliminations) where decisions are
eliminated by maximization and chance variables are eliminated by summation.
The rollback-and-collapse procedure iterates over variables in reverse order of the
partial order. In some cases the non-forgetting assumption introduces very large
decision policies as each decision is a function of all previous observations and
decisions.

The two aforementioned assumptions of the traditional influence diagram are
relaxed in the LIMID interpretation. This implies that it is possible to represent and
solve decision problems where there is no total order on the decisions and where
the decision maker may be assumed to be forgetful. In a LIMID representation
it is necessary to specify the information available to the decision maker at each
decision.

20.4.2 Knowledge elicitation

The construction of a probabilistic graphical model can be a labor intensive task
with respect to both knowledge acquisition and formulation. The resources available
for the model development consisted of domain experts with limited knowledge
on probabilistic graphical models and knowledge engineers with limited domain
knowledge. In this setup, model development usually proceeds as an iterative pro-
cess where the model is refined in each step of the iteration. The knowledge
engineer elicits the necessary information from domain experts and tries to capture
the knowledge of the domain expert in a model. At each iteration the knowledge
engineer and domain expert assess the quality and performance of the model in
order to focus the resources available at the next iteration on the most sensitive
parts of the model.
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In the ADVOCATE II project the knowledge engineer and domain expert
had limited opportunities for face-to-face meetings. For this reason we developed
a knowledge acquisition methodology to support the knowledge extraction pro-
cess [248]. The knowledge elicitation method should not rely on familiarity with
probabilistic graphical models and it should be applicable to problems where the
knowledge engineer and the domain expert are situated at different locations.

Following the knowledge acquisition approach, we start out by breaking down
the overall problem (called sonar image) into subproblems/causes, subsubcauses,
etc. This gives us a hierarchy of causes, which serves as a basis for identifying the
diagnoses (or root causes), which are the leaves of the causes hierarchy, and gives
us a structured way of relating available observations and background information
to these root causes. In this process it is important to ensure that the subcauses of
a given cause are mutually exclusive and exhaustive.

The scheme is based on building a problem hierarchy for an overall problem.
The problems (or causes) of the hierarchy relate to the states of the different parts
of a vehicle and its environment.

Figure 20.8 shows such a cause hierarchy related to the sonar image assess-
ment problem. The causes of the hierarchy are grouped into causes that qualify as
satisfactory explanations of the overall problem and causes that do not. The first
group of causes are referred to as permissible diagnoses. The subset of these that
can actually be identified based on available information are referred to as possible
diagnoses. Only possible diagnoses are present in Figure 20.8 and they are marked
with a ‘+’ symbol.

The cause hierarchy acts as a road-map for describing the relevant diagnos-
tic information and the possible recovery actions. A cause of a subtree of the
cause hierarchy that does not contain any possible diagnoses is unlikely to provide

Figure 20.8 Cause hierarchy for the sonar image assessment problem.
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relevant diagnostic information or error recovery information. Thus, if there are no
observable manifestations of the cause strong enough to identify a possible diag-
nosis for the cause, we need not worry about it when eliciting the diagnostic and
error recovery information.

The domain expert provides the relevant diagnostic information and the recov-
ery actions in matrix form with one row for each cause and one column for each
kind of diagnostic information (i.e., background information and symptoms) and
one column for possible recovery actions.

The qualitative knowledge elicited following such a scheme provides a suffi-
cient basis for a knowledge engineer to construct the structure of a probabilistic
graphical model, on the basis of which the quantitative knowledge can then be
elicited.

For a detailed description of the knowledge acquisition scheme, we refer the
reader to [248].

The cause hierarchy and its diagnostic information provides a sufficient basis
for constructing an initial structure of a model for this problem.

20.4.3 Probabilistic graphical model

It is clear that the amount of disturbance in the sonar image and the presence of
objects will be time dependent. Time is discretized into intervals of eight seconds,
which is equal to the time the image analysis component needs to analyze a single
sonar image. Currently, the model consists of three time-slices, i.e., the suggested
recovery actions are based on a 16 seconds look-ahead.

We model the problem as a discrete time, finite horizon partially observed
Markov decision process. The model is dynamic in the sense that it models the
behavior of the system over time. The state of the system at any given point in time
is only partially observed as navigation data and sonar image data are available,
but not all entities of the problem domain are observed.

The development of the system is represented as a time-sliced, limited memory
influence diagram. As such the model will produce a diagnosis or set of diagnoses
and an appropriate recovery action or set of recovery actions given a set of obser-
vations on the exact state of the system. The model may produce a diagnosis given
any subset of observations whereas a set of recovery actions is determined based
on the observations on the navigation data and image quality data. Navigation data
consists of vehicle depth, altitude, pitch, and speed, while image quality data con-
sists of pixel intensity mean, substance, and entropy of the digital version of the
sonar image.

Figure 20.9 shows the time-sliced model with three time slices where each time
slice is represented using an instance of the LIMID class shown in Figure 20.10. In
the model, time progresses from left to right. Each instance node is an instantiation
of the model representing the system at any given point in time. Thus, the model
represents the system at three consecutive time steps separated in time by eight
seconds.



358 RISK MANAGEMENT IN ROBOTICS

T0 T1 T2

Figure 20.9 The top-level LIMID class for sonar image assessment consists of
three instances of the model (class) shown in Figure 20.10.
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Figure 20.10 The generic time-slice model for sonar image assessment.

The LIMID class shown in Figure 20.10 is a decomposed representation of the
system at any given point in discrete time. The nodes with dashed, shaded borders
are input nodes, while the nodes with shaded borders are output nodes (input nodes
are typically shown at the top or left of a figure and output nodes are typically
shown at the bottom or right of a figure). Input and output nodes are used to link
time slices together. The output nodes of one time-slice are connected to the input
nodes of the subsequent time-slice. An input node of time slice Ti+1 is equal to (or
a placeholder for) the linked output node of time slice Ti . These nodes are used
to transfer the belief state of the system from one time slice to the next and are
referred to as the interface variables Ii .

In total, when considering all models, there are seven groups of nodes:

1. diagnosis variables;

2. variables representing background information;

3. symptom variables;

4. auxiliary variables;

5. intervention variables;
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6. decision variable(s);

7. utility functions.

The diagnosis, background information, symptom, auxiliary, and intervention
variables are all discrete random variables (i.e., which can be in one of a finite
set of mutually exclusive and exhaustive states). The states of the variables are
specified by the domain expert.

The structure of the model specifies that altitude, depth, pitch, and speed are
observed prior to the decision recovery action. This implies that the policy for the
recovery action is a function of state space configurations of these nodes to the
domain of the decision. Notice that no other informational links are present in the
graph. Hence, at the next decision only the most recent observations on altitude,
depth, pitch, and speed are used.

The decision has a potential impact on speed, altitude, and depth of the vehicle.
Deciding on a recovery action changing any of these properties will impact the
quality of the next sonar image.

The instance node Sonar Image Analysis, which is an instance of the network
class shown in Figure 20.11, models the sonar image assessment process. The three
image quality indicators are represented in this class by the nodes Entropy, Mean,
and Substance. The quality indicators are influenced by the presence of disturbance
or objects in the sonar image. Disturbance may be caused by reverberation or noise.

The sonar image analysis model is based on a naive Bayes structure over image
disturbance, image quality indicators and image quality where image disturbance
is the hidden variable, the image quality indicators are observed, and image quality
is the variable being predicted.

Since the image quality indicators are observed each time a sonar image is
analyzed, we need to resolve the LIMID with the observations on the image quality
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Figure 20.11 The model (class) representing the sonar image assessment process.
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indicators entered as evidence in conjunction with the navigation data in order to
compute the expected utility of each decision option.

The possible outputs of the model are a set of diagnoses quantified by a prob-
ability, a set of recovery actions quantified by an expected utility, a collision risk
indicator, and a prediction of the future development of the system under optimal
behavior (according to the model). The possible diagnoses are good image qual-
ity and bad image quality. The possible recovery actions are no action, warning,
change speed, increase altitude, and increase depth. Out of the possible outcomes
of the model, only the quantified diagnoses and recovery actions are used.

The conditional probability distributions of the models have been specified
based on a combination of assessment by interviewing a domain expert, estimating
parameters from observational data, and using mathematical expressions relating
configurations of parent variables to states of their common child variable. Some
parameters of the sonar image analysis class, shown in Figure 20.11, have been
estimated from observational data. That is, the sonar image assessment model has
been constructed based on information fusion of domain expert knowledge and
observational data. A database of 1048 sonar images have been assembled. Each
image has been classified as good or bad by a domain expert.

Utility functions have been assessed from the expert. Utility functions have
been assessed based on the cost of damage to the vehicle, the cost of mission
abort, and the cost of delays.

The entire model consists of 124 variables with 3556 probability parameters
most of which have been assessed from the domain expert.

The total clique size of an optimal junction tree representation of the LIMID is
108 841. This is significantly smaller than the total clique size of an optimal junc-
tion tree representation of the model interpreted as a traditional influence diagram.
The total clique size of an optimal junction tree representation of the traditional
influence diagram is greater than 232 − 1. Thus, the LIMID representation has made
it tractable to represent and solve the sonar image assessment problem as a prob-
abilistic graphical model.

20.4.4 Model verification

The model has developed over a significant number of iterations of structure and
parameter assessments. The model has been verified by a domain expert at sched-
uled technical meetings including reviews.

The model has been verified based on test cases developed by a domain expert,
on simulated data, and real world data. The entire ADVOCATE II system including
all modules have been tested in a real-life setting at the Atlas Elektronik test pond
in Bremen, Germany.

20.5 Model usage and examples
In combination, Figures 20.12–20.14 give an example of how the developed model
is used to diagnose a possible malfunction of a sensor, i.e., a bad sonar image, and
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Figure 20.12 A bad sonar image with noise.

Figure 20.13 Given the observations the optimal decision is to give a warning
indicating that noise is present in the sonar image.

to give warnings or suggest recovery actions that will help to improve the image
quality or decrease the probability of damage to the vehicle.

Figure 20.12 shows a typical bad image with noise. Figure 20.13 shows the
expected utilities given the navigation data and the values of the image quality
indicators for each possible recovery action.

Figure 20.14 shows the posterior probability of the variable representing image
quality given observations on navigation data and image quality indicators. The
altitude and depth of the vehicle both are between 5 and 10 meters while the pixel
mean of the image is 12.128, the substance is 59.438, and the entropy is 0.579.
The posterior probability of a bad image is high.

The option with the highest expected utility is the (locally) optimal decision
given the observations and the model. Thus, given the navigation data and values
from the bad quality image, the model suggests giving a warning that there may
be noise present in the sonar image. The vehicle is neither close to the surface nor
close to the bottom. Hence, the assessment is that the image is most likely bad due
to noise.

20.6 Benefits from using probabilistic graphical
models

Probabilistic graphical models naturally capture, represent, and take the inherent
uncertainty of the problem domain into account. There are a lot of uncertainties
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Figure 20.14 Given the values of the image quality indicators the image is classi-
fied as bad.

present in the domain of autonomous underwater vehicles. It is important to assess
and efficiently represent this uncertainty. The graphical structure of a probabilistic
graphical model makes the independence assumptions of the model explicit and
easy to comprehend for domain experts with limited knowledge of the technology.

The hierarchical construction of the LIMID enforced by the object-oriented
paradigm has simplified the knowledge acquisition phase considerably as it is easy
to focus on well-defined subparts of the model in isolation.

Using instance nodes, it is a simple task to create and maintain multiple
instances of the same LIMID class. Furthermore, it is a simple task to change
the class of an instance node to another class. This is particularly useful in the
knowledge acquisition phase where each LIMID class has been revised and updated
multiple times. This also supports efficient version control.

Probabilistic graphical models is one of three artificial intelligence techniques
considered in the ADVOCATE II project. The other two techniques considered are
neuro-symbolic systems and fuzzy logic. The decision module of the ADVOCATE
II architecture serves the central role of translating and merging the results from
different intelligent modules. The artificial intelligence modules need to agree on
common scales in order to be able to compare and integrate diagnoses and recovery
actions. The probability of an event and the expected utility of a decision option
are simple to translate into the common scale used by the decision module.

20.7 Conclusion

The quality assessment of sonar-images has been performed successfully using a
probabilistic graphical model. The problem is quite complex; the size of the optimal
junction tree of the traditional influence diagram representation is greater than the
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address space on a 32-bit computer. By the introduction of the limited memory
influence diagrams (LIMID) it was possible to reduce the size to a manageable
amount.

Furthermore, we have assumed the image indicators not to be available at the
next decision in order to reduce the size of the decision policies and to increase
the computational efficiency. The cost of this assumption seems to be negligible.
But by doing so, it is necessary to resolve the LIMID at each time-step.

Since the technology does not support infinite horizon and continuous time
decision problems, we have discretized time into three time steps. This enables us
to perform an analysis with 16 seconds look-ahead. To perform an analysis with a
longer look-ahead amounts to including additional time slices in the model.

Notice that it is not possible to solve the problem using a non time-sliced model.
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21.1 Introduction

Foreknowledge is the ability to construct meaning and interpretation before fully
acquiring a complete set of stimuli. Contrary to its folkloric acceptation, foreknowl-
edge is a usual, though essential, component to all human communications. Human
perception is continuous. Most of the filtering that occurs between the reception and
the interpretation of stimuli is unknown to individuals; interpretation itself directs
which stimuli we perceive or fail to perceive without our full awareness [439, 484].
As where the cursor is placed between applying schemata to stimuli, or vice versa,
building schemata from stimuli, has been left to philosophers. Rosset [401] has
a definitive answer: human perception is similar to grass: it grows, it transforms,
may retract, indistinctively for the human eye.

This issue might be less trivial than it seems when it comes to designing infor-
mation systems that emulate human communications. As Tversky and Kahneman
suggested, the principle of invariance that underlies the rational theory of choice
does not genuinely represent the reality of human decision-making [459]. Although
preconceived rules are normatively essential, they inherently fail to be descriptively
accurate. Hence, individuals create rules on the fly as stimuli emerge, as much as
they distort stimuli to fit the newly created rules. Most Bayesian filtering or mining

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd



366 ENHANCING HUMAN COGNITION

technologies, on the contrary, tend to artificially separate rules from knowledge,
stimuli from framework, hence assuming there exists a normative, rational and
stable theoretical corpus that describes human communication behavior.

This chapter describes an experiment that further led to a prototype, and ended
in a patented technology.1 The initial objective of this research, following a work on
individual and group tacit knowledge [34] was simply to emulate implicit knowl-
edge within an information system. At first, the finding seemed self-evident as a
machine without natural sensors could not generate its own knowledge, and further-
more its own implicit knowing. If one considers that machine-generated learning,
based on human rules, with or without human inputs, can be considered ‘machine
knowledge’, then part of this knowledge could be ‘unknown’ to the machine, either
because it has not been yet computed, or it is not currently acted or in use. Hence,
machines could hold ‘tacit knowledge’, i.e., knowledge that they cannot express,
in the faults that separate exploration and exploitation, as defined by March [296].

However, and contrary to human beings, machines exploitation doesn’t bias
their exploration, as exploration has been designed with an exploitative purpose. As
Starbuck and Miliken noted, much exploration is conducted within the experimental
realm of exploitation, and vice versa [439]. We can therefore assume that the
condition of the existence of implicit learning resides in the need of discovery; and
consequently, that we need to emulate an imperfect discovery process if we want
to get close to the simulation of human implicit learning.

21.2 Human foreknowledge in everyday settings

Most human cognition is experiential, either that we look forward, or we look
backward. As Gavetti and Levinthal put it [177, p. 113], ‘cognition is a forward-
looking form of intelligence that is premised on an actor’s beliefs about the linkage
between the choice of actions and the subsequent impact of those actions on out-
come’. Foreknowledge of potential outcomes develop with experience, not related
with age, but more so related to similarities in patterns and design of the com-
plexity of the situation being apprehended [158, 246]. People naturally rate the
outcomes of their predictions accordingly to their results, either positively or neg-
atively. This experiential wisdom generates itself ‘rules of thumb’ and experiential
memory that can be contrary to rational models or individual mental models [280].
The variability of preferences, the volatility of aspirations over time and according
to contexts, make it difficult to generalize ex ante normative rules of cognition for
an individual. Prior experiences influence how stimuli are selected and perceived,
and in turn, new stimuli can revise previous experience. We conclude from these
theoretical findings that a Bayesian model aiming at simulation human cognition
should have two arrows, i.e., should not prefer the value of models over data. A
new and scarce configuration of data may well become the new model, while all
sets of previous models can no longer handle new stimuli. Hence, both models and

1US Patent No 7,251,640. ‘Method and system for measuring interest levels of digital messages’,
published on July 31st, 2007



ENHANCING HUMAN COGNITION 367

stimuli should display mortality, the latter being either trigger by data or by the
model itself.

The valuation of cognition results is itself problematic, as people do not have
absolute rules to value knowledge. In fact, most informational behavior of human
beings is somehow ‘positional’, in Hirsch’s terms [212]. People seek to gain infor-
mation that allows them to gain a positional perspective, i.e., to position their own
past experience in regard of the new one, while asserting their own position towards
the new situation. Information superiority is hence more a theoretical construct
than an organizational reality. People do not see information as having absolute
superior value, but rather an immediate, practical leverage for their on-going pro-
grams. Rather than challenging information being used and articulated to on-going
programs, people favor collateral and ad hoc organizations, which would leave
their main programs untouched, and their deeds unchallenged [510]. For instance,
secrecy that can turn banal information into a highly destructive one follows a
social psychology that is more embedded into ignorance than malignity [430].
Human inferences are imperfect, and turn genuine interpretations into misleading
and contaminating shortcuts [339]. Moreover, most information is unconsciously
processed by individuals, so that people would generally not be able to identify how
they gathered, assimilated and transformed information that leads to their acts and
deeds [282, 340, 386]. People in organizations do not discriminate between gen-
uine information and its many doubles. Reality is taken for granted, until proven
otherwise. Artifacts are as much instrumental as the real itself, for realities are
known as genuine only when they get dismantled [401, 402]. From this, we con-
cur that context is an undifferentiated element of knowing, as it participates both
in the filtering and in the construction of knowledge.

Thus, there is an ‘information-generating’ behavior, as much as there is an
‘action-generating’ behavior in organizations [438]. People generate information
whilst listening upwards; they document ex post an action-generation whose ratio-
nale they surely lost; they fine-tune their past commitments with the new criteria
for approval; they reuse uncompleted achievements that have bred frustration and
translate them into the new set of core beliefs. From these findings, we concur that
each individual communication behavior is unique. We hence reject the hypoth-
esis that accuracy of a computer simulation of human cognition can be attained
by collaborative filtering. The objective is therefore to capture the incongruities
of the communication behavior of an individual, rather than seeking an emulated
communication behavior statistically congruent with others.

While decision theorists try to improve and rationalize what they would opti-
mistically call the ‘human thinking system,’ in real life, ‘people do not know all
of the sources of stimuli, nor do they necessarily know how to distinguish rele-
vant from irrelevant information’ [439, p. 41]. People act according to ‘criteria’
that they view as important, sometimes quite unable to define why these crite-
ria are important, sometimes totally ignoring, or forgetting why they decided that
these criteria were important, for individuals have the tendency ‘to deal with a
limited set of problems and a limited set of goals’ [297, p. 117]. Human beings
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constantly struggle with incomplete stimuli, uncertain beliefs and limited rational-
ity. Consequently, ‘interpretations are generated within the organization in the face
of considerable perceptual ambiguity’ [298, p. 19]. Robotic research has adequately
integrated this dimension while pursuing the goal of minimizing or eradicating
classical direct human–machine interface, however stalling on the problem of
machine intention [447]. On possible solution has been suggested, and applied,
by Brooks [64, p. 291]. It consists of grounding the system design in an evolu-
tionist perspective, i.e., the reasoning system should not have any preconceived
determinants or rules, and should therefore be ‘born’ with the user. Brooks calls
it the subsumption architecture, and defines it with three key ideas: ‘Recapitulate
evolution, or an approximation thereof, as a design methodology (. . .). Keep each
layer added as a short connection between perception and actuation, Minimize
interactions between layers’ [64, p. 291]. We concur from these findings that our
system should not have any preconceived model about human communication, and
derives the construction of the individual model from an evolutionist learning of his
or her communication behavior. This also implies that the system should have an
autonomous self-designing capability, hence assuming by itself, with all the repli-
cated weaknesses, biases, discretionary characteristics of the individual cognition
it is emulating.

Last but not least, human beings have a skill that does find any competition in
machines. Individuals are truly skilled at self-deception, and self-deception plays
a major part in the on-going and resilient nature of their perception [186]. When
faced with the problem described in the above paragraph, i.e., conflicting between
belief and evidence, human beings can lie to themselves about the stimuli as to
temporarily protect the defaulted, albeit vital, model. Or, to the contrary, human
beings can temporarily alter their core beliefs in order to accept a stimulus that
potentially invalidate the model itself. Concurrently, human beings have a built-in
system that allows them to escape Laing’s paradox, or as he put it himself: ‘The
range of what we think and do is limited by what we fail to notice. And because
we fail to notice that we fail to notice, there is little we can do to change, until
we notice, how failing to notice shapes our thoughts and deeds’ (quoted in [186,
p. 24]). Truncated, missing or contradictory stimuli can be replaced on the fly by
self-deceptive ones, that do not allow accuracy, but preserves the on-going flow
of reasoning. Such a phenomenon is not solely individual, as Ruddick [404] sug-
gested. People with whom we interact do the same, and therefore, self-deceptive
stimuli also contribute to maintain the continuity of interaction with others. Thrown
into perception [484], we need those real-time and self-deceptive adjustments to
continue interaction, without forsaking the goal of achieving sense-making in the
longer run. We then later ‘unlearn’ [208] what we previously accumulated on
the sake of interaction continuity (e.g., ‘action generators’, [438] or internal or
psychological consistency [186]. Moreover, self-deceptive stimuli are essential to
the processes of exploration and discovery as they constitute the core mechanism
behind the discovery of incongruities [236]. We concur from these findings that a
system willing to emulate human cognition should display two essential character-
istics: first, it should be able to generate, carry, apply and discover rules that may be
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self-deceptive, i.e., internal logical consistency of the model should not be expected
to be related, or influence, an external consistency of the contents. This postulates
of course that we should not seek an accuracy in semantics, neither should we try to
use contents as a classifier of the Bayesian network. Second, and most importantly,
the targeted system should be able to ‘unlearn’, i.e., temporarily or permanently
discard generated rules and/or stimuli, accordingly to the congruity or incongruity
of the flow of reasoning in which they are inserted.

21.3 Machine foreknowledge

My first encounter with Bayesian belief networks took place in 1997. The first
experiment consisted in emulating very simple strategic planning flows of reason-
ing: measuring a competitive asymmetry, or the level of a threat of entry on a
given market. These first experiments were published with J.A. Benvenuti [35],
and some samples are available on the Hugin website.2 In those attempts, canonic
strategic models were drafted from literature, and the operator simply informed the
models with data relative to the situation being analyzed. Such traditional Baye-
sian belief networks do not posses any kind of machine foreknowledge: they can
merely apply a truncated body of beliefs, or ‘expertise’, and improve over time the
reliability of the initial models based on incoming data. These first experiments cor-
roborated Druzdzel and Simon’s findings that showed that conditional probability
tables in a Bayesian network were capable of representing reversible causal mech-
anisms [138]. The models could accurately suggest initial entry variables values
for an expected result, e.g., ‘success of entry’.

The idea that a similar design could be applied to human cognition, or com-
munication, was swiftly abandoned. Such a model would require a stability and
equilibrium in human communication over time, which was contrary to organiza-
tional behavior literature findings. Spirtes et al. [437] suggested imposing externally
a value on any node in a graphical model, which implies an exogenous manipula-
tion of the network, e.g., removing the arcs of the network. This issue was detailed
by Pearl [357] who suggested that imposing a value on a variable renders the vari-
able independent of its direct causes. Although this strategy corroborates Jones’
description of incongruity and self-deception mechanisms [236], it doesn’t ponder
the existence of the cause. As Druzdzel and Van Leijen put it: ‘wearing a raincoat
protects one from getting wet but it does not make the rain go away’ [137, p. 51].

Inspired by [64], a radically different design was therefore adopted. Starting
with a prior model of human communication would impede the sought character-
istics of the system. For instance, human motivation to swiftly trash an incoming
message does not necessarily relate to a negative opinion of the sender. To the
contrary, a very important message that requires discretion can be immediately
trashed, the user preferring to use his or her own memory rather than being vulner-
able in keeping such data in his or her computer. Bayesian-based filtering systems
often failed to recognize such patterns because they are based on preconceived

2http://www.hugin.com/developer/Samples/Comp\_analysis/
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‘communication theories’ that don’t take into account the inseparability of con-
tents, context and purpose. The only way around such an obstacle is to ignore all
pre-conceived rules or theorems of human communication altogether. Although,
if willing to conceive even an auto-generated Bayesian network, we needed an
objective classifier as a source of network generation. I started to work with a very
simple classifier, that was later revealed as a pertinent intuition. I chose ‘intensity
of communication’ as this classifier, as intensity is always relative to context, time
and people. Hence, the value of this classifier is not instructed to the network, but
learned over time, by measuring the relative frequency and density of interactions
between a pair of individuals, relatively compared to the median intensity of inter-
relation with all other individuals. This intensity, in turn, is used to build arcs,
indifferently between contents (chunk of signals), individuals and contexts.

Chow and Liu [96] suggested a method to learn probabilistic graphical mod-
els directly from data. The problem with such a method is to achieve a trade-off
between the accuracy of the model and the complexity of the approximation. We
substituted this trade-off with a combination of incongruity and mortality. We define
mortality of an arc as its net overall contribution to the variance of communication
intensity. Like human filtering processes [439], the system should simply be able
to disconnect or discard an arc with high mortality, which doesn’t mean that this
mortality would have the same value with another combination of nodes and arcs.
The incongruity measurement was inspired by [236]: Jones defines incongruity as
a relative value of a match or mismatch with an individual expectations. Hence, if
incongruity is expected, and incongruity is served, then the individual would eval-
uate the incoming information as ‘congruous’. Jones, who was Churchill’s advisor
for counter-intelligence during World War II, intensively used such a phenomenon
to deceit German forces. For our system, it meant that incongruity should be mea-
sured in regard of the user’s expectations concerning the emitter of information.
Here again, the variable had to adopt relative values of incongruity levels with
previous messages of the same emitter, compared with the overall median incon-
gruity that the receiver is used to handle. This approach is the exact opposite of
seeking Shannon’s entropy [424], and then, for instance, comparing entropies of
different chunks of information to deduct a level of ‘mutual information’ [165]. It
is not the mutuality of information that is being sought, such as in collaborative
filtering systems, but the mutuality of communication intensity. The latter can be
achieved with completely different sets of information on the receiver and the emit-
ter sides, either because people do not always use the same words to qualify a same
object (e.g., ‘love’ and ‘desire’), or because a mutual intensity can be triggered by
simultaneous, although different or opposite concepts (e.g., ‘love’ and ‘hate’).

The second step was to adopt a recurrent design to allow the self-generation of
a Bayesian network based on Chow and Liu’s findings [96]. We decided than an
evolutionist design should not comprise any form of either handcrafted teaching,
nor predefined handcrafted features. The main obstacle was to then design a pro-
gram that would comprise subroutines for separating knowledge from inferences,
therefore allowing the subroutines for auto-generating the Bayesian network. The
objective was to design a system that would emulate the user’s foreknowledge of
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his or her own interest in an incoming message, or another individual’s level of
interest in an outgoing message from the user. The level of interest was measured
by the predicted level of communication intensity that the outgoing or incoming was
likely to trigger based on the history of interactions of the two users. The purpose
of the Bayesian network is first to self-generate a network to multiple interactions,
with multiple signals and multiple individuals based on the intensity of communi-
cation classifier, and then to be able to predict the most probable receiver of a
message or signal in a large population of other interlocutors, and vice versa, the
most probable contents or signals for a given population of other interlocutors.

The overall design of the system was founded on a postulate that implicit mem-
ory does not exist, following a suggestion of Willingham and Preuss [499]. Based
on previous work from Graf and Schacter [188] – that defines implicit memory as
a set of memory tasks – Willingham and Preuss [499] assert that ‘implicit memory
tasks make no reference to the initial encoding episode and are not necessarily
associated with awareness of engaging in recall’. Our question was: why do indi-
viduals display a higher propensity to communicate with certain individuals rather
than others? Previous work on tacit knowledge [34] suggested that people do not
need to fully articulate a body of knowledge to act upon it. This suggested that an
individual’s propensity to communicate with another is most likely embedded in
a body of past experiences, knowledge, past stimuli that he or she cannot express.
It was then possible that a system that would record and remember over time
‘intense’ moments of communication, and their related combinations of contents,
contexts and individuals, would adequately emulate the functioning of individual
tacit knowledge. The assumption was that we tend to forget the combinations of
contents, personas and contexts that triggered previous intensity because (a) those
experiences are too many, (b) because of our bounded rationality [297] that tend
to reduce those past experiences as simpler sets, and (c) a natural ‘mortality’ of the
memory of those events occur over time. The graph of Figure 21.1 (patent excerpt)
shows the on-going interaction between contents, context and individuals. Mortality
is estimated as the relative probability of (211), knowing the relative conditional
probability of (210) in conjunction with the relative probability of (212).

As the graph of Figure 21.1 illustrates on steps (200) and (201), there is no
previous knowledge, nor model, of the individual’s communication behavior; this
includes generic communication theories of rules. The system builds the implicit
rules of interpersonal communications of the individual as they are captured and
learned. Hence, the second postulate behind the construction of this experimental
Bayesian network was that if an individual encounters an unknown individual,
where past experience and past interaction are absent, he or she would then assess
a propensity or willingness to communicate based on previous experiences of other
individuals. Therefore, when unknown individuals or stimuli are presented to the
Bayesian network, it operates with truncated data, and propagates evidence on all
other available variables. For example, the individual may be unknown, but the
topic of conversation, i.e., the signals being exchanged, might have been the object
of other past interactions with other individuals. In that case, two operations are
conducted: the first one is the autonomous teaching of previous arcs and nodes
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Figure 21.1 Overall design of interest-level of interpersonal communications Baye-
sian network (from patent).
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relating to those new contents, and the second one is the automated generation of
arcs and nodes specific to the new individual.

What occurs at the individual level is even more salient at the organizational
level. If an individual may possibly remember critical relations between people,
contents and contexts, an organization cannot, as those experiences are dispersed
between hundreds of individuals. This is a well known obstacle to a theory of ‘orga-
nization mind’ [407]. One of the correlate objectives of the technology becomes the
emulation of ‘organization mind’, given that all employees are equipped with the
client-technology, and that legal constraints does not forbid the implementation of
a server technology to compile, compare and run all gathered Bayesian networks
without the awareness of the users. In such conditions, all individual networks
being run ‘at a distance’ from their users, the technology would allow them to
detect high probabilities of willingness to communicate between individuals who
ignore each other, and never had a single contact. Conversely, the same interro-
gation of centrally gathered networks would of course allow to detect individuals
who display very high asymmetries in propensities and willingness to communi-
cate. Given the reverse causal probability capacity of the network, it would also
allow us to determine groups of individuals more likely to be interested in a given
data or combination of signals.

21.4 Current application and future research needs

We crafted a prototype on the postulate that human communication behavior is
idiosyncratic and unique to each individual. The prototype is able, for instance, to
predict which individual in the network of people of the user, might probably be
interested in what is currently typed on the keyboard. We thus achieved a real-
time ‘scoring’ of outgoing communications that can eventually display unforeseen
correspondents who are not in the list of addressees, or, in a server version, dis-
cover an unknown individual that might display a strong interest in the chunk of
knowledge being created.

The current application is to simulate, and eventually replace, an individual’s
communication behavior, by being able to emulate its reactions, according to the
time of the day, his or her personal status of cognitive overload, and his or her
communication habits, relatively to other individuals, and relative to exchanged
stimuli. One advantage, and simultaneously inconvenient, of the current applica-
tion is that it is not based on semantics or interpretation of the meaning of the
contents, signals, or stimuli exchanged between individuals or machines. The cur-
rent system has no knowledge of the meaning given to the messages. While it is
advantageous for privacy concerns, it also means that the system handles synonyms
independently.

Another characteristic of our prototype resides in the deliberate choice of
crafting a ‘mute’ and autonomous technology. Users cannot teach handcrafted fea-
tures. Such handcrafted features, such as ex ante communication rules or values
of discrete or continuous variables have also been deliberately discarded from its
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design. One significant advantage is that the system continuously learn from human
behavior, to build its own ‘implicit’ memory, and record discovered conditional
probabilities that relate people, contents and context. One obvious backdrop is that
such a system does not benefit from the human capability of radical change. The
system does not have any form of psychology, and therefore, is not capable of
paradigmatic and brutal change of its own learning (even if this point is still in
discussion by behaviorists concerning human beings). It presents a double-edge
characteristic of the system. Long forgotten or overlooked intensities between con-
tents and people are signaled by the system, even if such relations have been
discarded by the human being. On the contrary, being deprived of semantic learn-
ing, the system is currently incapable of self-revising relations based on semantic
proximity between chunks of knowledge.

The prototype currently learns every single action and reaction of a single
individual in relation with his or her interlocutors. In some sense, it is more effi-
cient than human beings themselves, whose filtering acts on the detection of signals
themselves [439]. The current prototype does not discard a stimulus for being oppo-
site – i.e., for triggering a too high value of incongruity – of previously learned
relations. However, as intensities of communication vary over time, and with indi-
viduals, the filtering is being learned by the Bayesian network through its current
classifiers.

Another limitation resides in the fact that the current system is only cogni-
tive and limited to electronic communications. It does not capture, and does not
take into account the behavioral attributes of individual preferences of communi-
cation with other individuals. It also does not take into account all other forms of
interpersonal communication that may occur outside the realm of electronic inter-
change. However, as further electronics interchanges may reflect experiences that
have taken place in the physical world, the technology will of course learn from
the improvement or degradation of the physical interaction, if it has consequences
on the mutual or asymmetric cognitive perceptions of individuals.

As it is currently designed, the application is capable of absorbing relational
databases representing a history of communication in the industry standards. For
instance, we ran experiments with existing e-mail software databases that allows the
retrospective construction of an initial Bayesian network. After rerunning chrono-
logically all interactions stored between the targeted individual (the user) and all
its interlocutors, the prototype becomes immediately operational, and thus able to
predict the attractiveness of the next received or emitted message. However, this
learning is not complete because individual behaviors regarding storage of previous
e-mails vary considerably. Some people are true archivists, and collect an exhaus-
tive treasury of their former interactions; others use electronic interactions as they
would do with voice devices, and systematically erase every communication. The
absence of initial handcrafted teaching, and further absence of human supervised
teaching, is thus double edged. On one hand, without any importation of previous
history of interactions, the system learns over time in ideal conditions. In the begin-
ning, its accuracy is poor, due to the scarcity of signals and discovered relations.
In the long run, its accuracy strengthens, and allows the discovery of unsuspected



ENHANCING HUMAN COGNITION 375

interests in a given chunk of knowledge, or inversely, overlooked interlocutors that
might show a great interest in a given information. On the other hand, when import-
ing an e-mail, or instant message, database, we consequently import the biases that
occurred when the user discarded or retained old interactions. More research is
thus needed in improving the importation of historical databases of interactions.

21.5 Conclusion

Tastes of human beings vary according to their humor, the context in which they
communicate, and the individuals with whom they interact. The objective of this
experiment was to learn in real time all the conditional probabilistic links and nodes
between all stimuli, contexts and people, as they interact with the targeted human
being. The objective is to tend, over time, to faithfully reproduce in a belief network
technology, a complete clone of the communication behavior to the human being
observed. The current prototype represents an application of lifelong learning of a
predictive user modeling [241]. On the contrary for Kapoor and Horvitz’s example
of BusyBody, we tried to achieve such lifelong learning without direct supervision,
or handcrafted previous teaching and modeling. We learned a few things on the
way. First, it is possible to capture the communication behavior of an individual
without prior model, prior handcrafted features of teaching. The learning output
is idiosyncratic, and cannot be applied to another individual. It is a computer
emulation of a given individual’s communication behavior, inwards and outwards.
We discovered two main advantages.

First, human cognition is limited, whilst the emulated computer implicit mem-
ory knows no limit. It does not display any form of creativity, but it is capable of
discovery by ‘third-party’ linking. For instance, it will discover an individual that
might contribute to the current generation of an individual knowledge, given the
learning system of another individual granted access to its own learning. Future
research will therefore focus on agent-learning based on the same technology.

Second, we surely learned that there is much interest in studying intense rela-
tions amongst few samples, rather that trying to generalize from numerous relations
of weak intensity. As Bayesian technology showed in the past its pertinence for
knowledge mining, it should in the future accomplish similar breakthroughs in
human communication mining and eventually, cloning. Finally, machine fore-
knowledge is achievable. Of course, machines are currently incapable of inventing
independent reasoning with the same subtlety and speed as human beings. Discov-
ery is achieved by means of self-generating rules on the basis of the observed rel-
ative intensities of interaction between contents, people and context. The machine,
in producing this foreknowledge, benefits from its intensive capability of exhaust-
ing potential relations between stimuli and individuals. In this matter, Bayesian
technologies probably achieve results that could not be reached by traditional rule-
based AI. While the current prototype shows expected outcomes at the individual
level, we believe that the most interesting findings will come from organizational
and inter-organizational applications.
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A conclusion is usually some sort of prospective analysis. The question we would
generally ask is ‘where do we go from here?’. This would address actually two
separate questions: where do you go from here, and where does the Bayesian
network technology go?

We will answer both questions by trying to understand what we exactly do
when we use Bayesian networks. This should help you, the reader, to understand
whether you should consider this approach for your applications, and also allow us
to understand if Bayesian networks are different from other techniques, and how.

22.1 An artificial intelligence perspective

Bayesian networks are part of artificial intelligence. According to AAAI, artificial
intelligence is ‘the scientific understanding of the mechanisms underlying thought
and intelligent behavior and their embodiment in machines’ [21].

Artificial intelligence (AI) was 50 years old in 2006,1 and it can be said at the
same time that it exceeded our expectations – if you consider computerized chess
programs, pattern recognition applications, and that it failed to fulfill the dreams
of pioneers of the field, to build machines behaving in an ‘unexpected’ way, even
to their creators.

This contradiction may have something to do with our expectations for ‘magic’
in AI. AI is now present everywhere – computer games, credit card authorizations,
face recognition, robots, etc. – but none of these applications seems magic. Simply
because, as Marvin Minsky put it [319], ‘Even though we don’t yet understand how

1The field is considered to have been born at a conference on the campus of Dartmouth College in
1956 [310].
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 2008 John Wiley & Sons, Ltd
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brains perform many mental skills, we can still work toward making machines that
do the same or similar things. “Artificial intelligence” is simply the name we give to
that research. But as I already pointed out, this means that the focus of that research
will keep changing, since as soon as we think we understand one mystery, we have
to move on to the next’.

This is the theoretical, scientist perspective on AI. From the point of view of
an engineer having used AI for almost 25 years in different applications, here is
a simplified perspective. In the 1980s, AI was generally synonymous with expert
systems. What we were trying to do was to put experts in computer programs.
Experts are supposed to solve problems better and faster than you and me. And,
to make a long story short, we, simply, were asking them to explain how they did
so. This was incredibly naı̈ve. More or less, we were asking the expert to describe
how he or she succeeded in solving a problem, for instance a medical diagnostic
problem, or an air traffic control problem, and to write it down. So you had to find
‘the expert’, to assume he or she would agree to share his or her expertise, and
finally to assume that he or she would succeed in doing so.

In most situations, this failed. In the favorable situations where we succeeded
to identify an expert, performing the knowledge elicitation under a deterministic
constraint was a true challenge. Indeed, expert systems are based on a formal
approach of knowledge. Knowledge is seen as a special type of data, handled by a
computer program called an inference engine. Expert systems use formal logic of
order 0 or 1, but always assume a deterministic causality. Starting from a known
situation, or facts P, and rules in the general form If P, then Q, an expert system
will produce new facts (Q), using the syllogism as an inference engine.

It is really difficult in practice to force an expert to formulate a deterministic
rule. Indeed, part of the superiority of experts compared to generic problem solving
methods is their ability to handle rules with a limited validity domain. In other
words, these rules tolerate exceptions. When prompted to express such rules, an
expert is put in a very difficult situation. Either he or she formulates as deterministic
and universal a partial and context-dependent rule that would yield false conclusions
when used within an inference engine. Or he or she has to identify and describe in
full detail the context that would make the rule actually exact and applicable with
no exception, which is, in practice, impossible.

In my experience, I remember only one spectacular success of expert systems
in an application to commercial airline pilot mission scheduling. The airline expert
was regularly doing better that sophisticated optimization programs, and the team
building the expert system succeeded in capturing his expertise. In most other
nontrivial situations (air-traffic control, defence, civil security), experts were simply
unable to express how they would resolve a given problem, given that in most cases,
they were asked to describe how they would address a severe, and, generally,
unprecedented, situation.

The technology and algorithms used in expert systems, inference engines, have
not disappeared. They live now an independent existence with business rules
engines. Business rules usually implement organization strategies in detailed tactics,
for instance in pricing policies. Business rule-sets may be arbitrarily complex, and
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subject to frequent revisions. The ability of inference engines to properly separate
the inference logic from the rules has been determinant for this type of application.
The good news here is that the rules are, by nature, immediately available and
explicit. There is no need to torment an expert to collect them. But this is another
story, some sort of a happy side-effect of AI research.

Some years later, in the early 1990s, neural networks became the popular alter-
native in artificial intelligence applications. Neural networks indeed had a decisive
advantage compared to expert systems. The knowledge acquisition phase, which
caused most expert system-based projects to fail, was nonexistent, or, at least, very
simplified. Indeed, instead of asking experts how they actually address a problem,
we simply needed to collect cases the expert solved in the past, and the neural
network will learn them. By learning the cases, we mean here that the neural net-
work will try to reproduce the input–output association contained in the provided
set of resolved cases. For instance, when dealing with a diagnostic problem, the
neural network would build on a history of couples (observed symptoms, diagnos-
tic), and try to find a mapping that would fit most expert conclusions. Hopefully
this mapping would also show some generalization performance, i.e., will perform
reasonably well on new examples.

From my experience again, neural networks applications were usually more
successful. This is not due to some sort of superiority of the technique, but simply
to the fact that the initial exigence of neural networks was clearer, and was naturally
eliminating ill-specified problems. In order to consider applying neural networks to
your problem, you had to have a reasonably large set of solved cases at hand, with
all the cases represented with the same input–output structure. This worked quite
well for expert-based pattern recognition problem, whatever the pattern involved:
diagnosis, signature identification, fault detection, etc.

The main problem with neural networks was that they were considered as black
boxes. This means that, even if they succeeded to mimic the expert behavior, in
most cases it was not possible to undertand how they did so. This was a strong
limitation when using them in ‘mission-critical’ applications. Some attempts have
been made to ‘open the black box’. This would have been a smart way to overcome
both the limitations of neural networks and expert systems: when the expert cannot
explicitly state his or her problem-solving method, a neural network will learn to
replicate it, and then be translated into an expert system. The neural network would
have behaved as an artificial knowledge engineer. Again, in my experience, this
did not succeed in practice.

22.2 A rational approach of knowledge

Now we are coming to Bayesian networks. Even if this book demonstrates that
Bayesian networks have a broad application scope, it is probably too early to
assess the success of this technique in practical engineering problems. It has been
exactly 10 years since I first attended UAI in 1997 in Providence, RI (Uncertainty
in Artificial Intelligence, the ‘official’ BN conference). I remembered that I was
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traveling with a friend working with a bank. I used to introduce him as a potential
‘user’, and he really felt as a strange species among BN researchers. Today, after
training hundreds of people to use Bayesian networks, in fields as diverse as risk
management, roofing, planning military aircrafts missions, formulating lubricant
additives, etc., I believe that BN really have some features that can make them a
powerful and practical AI tool.

22.2.1 Using expert knowledge

First, a Bayesian network model uses expert knowledge. The contribution expected
from an expert is generally limited to domain knowledge, not problem solving
knowledge. In principle, this does not require the same level of introspection
required when using expert systems. In other words, Bayesian networks simply
require knowledge on the domain, while expert systems would usually require
knowledge on the expert herself.

Expert knowledge can be used to build the causal structure of the model, the
graph, or to quantify the probabilities used in the model. In theory, several experts
can coexist in a model, at least as far as probability assessment are concerned.
There is no need to reach a consensus between experts, or to average their opinion.

22.2.2 Acquiring knowledge from data

A Bayesian network model can also use the knowledge stored in data. Bayesian
networks can learn, a feature they share with neural networks. But various forms
of learning can be considered. There is no need to structure the problem into a
stimulus–response scheme, as in neural networks. Learning can be implemented
from the simplest level, to update a probability table of a node from an augmented
database, up to a general level, to create the model structure from data. Most of
the applications described in this book discuss some type of learning. Parameter
learning, i.e., learning conditional probabilities tables from data, is used for instance
in the Hepar network (Chapter 2), or crime risk factor analysis in Chapter 5, or
the Nykredit network in Chapter 19. Structure learning – i.e., causal relationship
discovery, is used for instance in Chapter 6 for spatial dynamics modeling, and in
Chapter 11, for sensor validation.

22.2.3 Assessing uncertainty

A Bayesian network model also recognizes uncertainty, i.e., lack of knowledge.
Indeed, assessing probabilities in a model is the most natural way to do so.

From a scientific viewpoint, causation is the foundation of determinism: identi-
fying all the causes of a given phenomenon would allow predicting the occurrence
and unfolding of this event. Similarly, probability theory is the mathematical
perspective on uncertainty. Even in situations where an event is totally unpre-
dictable, the laws of probability can help to envision and quantify the possible
futures. Knowledge is the reduction of uncertainty; when we gain a better and



CONCLUSION 381

better understanding of a phenomenon, the random part of the outcome decreases
compared to the deterministic part. Some authors introduce a distinction between
uncertainty and variability, the latter being an intrinsic randomness of a phe-
nomenon that cannot be reduced. In the framework of deterministic physics, there is
no such thing as variability, and apparent randomness is only the result of incom-
plete knowledge. Invoking Heisenberg’s uncertainty principle in our discussion
may seem disproportionate. But should we do it, we understand the principle as
stating that ultimate knowledge is not reachable, rather than that events are random
by nature ‘In the sharp formulation of the law of causality (if we know the present
exactly, we can calculate the future) it is not the conclusion that is wrong but the
premise’ [209].

Although other artificial intelligence techniques proposed various ways to deal
with uncertainty, none used a plain probability assessment. Expert systems used
to deal with uncertainty using confidence values for rules, but the way these con-
fidence values were combined during the inference process was not always clear.
Usual neural network models (feed-forward, or stimulus–response models) will
never give a 100% sure response when shown a specific pattern in a real life
application, and the strength of the response can be interpreted as a probabiliy
under specific conditions. However neural networks are unable to properly handle
uncertain or missing inputs.

22.2.4 Combining knowledge sources

Finally, and this is probably the most important, a Bayesian network allows us to
combine different sources of knowledge (multiple experts, data), together with lack
of knowledge recognized to a given extent, into a consistent model, and makes it
usable for different types of problem solving.

For this reason, Bayesian networks really are a knowledge engineering tool.
This is made particularly clear in some applications presented above. For instance,
in the clinical decision support application, presented in Chapter 3, the development
of TakeHeartII was based on the combination of ‘published epidemiological models
of CHD, supplemented by medical expertise when [. . .] unsure of interpretation’.

The complex industrial process operation application, presented in Chapter 18,
reports combination of several knowledge sources: expert subjective estimates,
scientific theories, fragments of statistical models, based on a large number of
cases.

The terrorism risk management application, presented in Chapter 14, shows
possibly the most advanced use of this ability of Bayesian networks to assemble
knowledge pieces. This is made necessary by the nature of the application, since
‘although a limited number of experts may be able to understand and manage a
given risk, no human can manage all of the components of thousands of risks
simultaneously’. The authors have here developed a specific framework to allow
several submodels into a RIN (Risk Influence Network): ‘a set of reusable net-
work fragments that could be combined into an asset-threat specific RIN’. Other
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implementations, not documented in this book, of expert cooperation within a sin-
gle knowledge models have been developed in military applications (effect based
operation2) and generalized to decision making involving several expertises in civil
contexts.

22.2.5 Putting knowledge to work

A significant part of the applications presented in this book implement more or
less a form of diagnosis. Actually the Bayes theorem itself simply relates the
probability of a cause given an effect to the probability of an effect given a cause.
All the models created are based on causal knowledge. In other words, the initial
knowledge of experts is expressed in a forward mode, i.e., from causes to effects.
This is therefore not a surprise that the first nontrivial use of this knowledge is to
use it backwards, i.e., to identify the likely causes of an observed situation. This is
of course the case for the medical diagnosis application presented in Chapter 2, and
for several other applications such as student modeling (Chapter 10), or complex
industrial process operation (Chapter 18).

When multiple causes interact, Bayesian networks can also be used to perform
simulation, i.e., to use knowledge in the forward direction: what would be the
typical consequences of a given combination of causes? This type of use is discribed
in Chapter 8, on conservation of a threatened bird.

However, Bayesian networks offer more sophisticated types of inference
(Table 22.1) to use the knowledge collected in the system. In the medical con-
text, prognostic models also exist, even if they are less represented than diagnostic
models. As explained in Chapter 2, ‘Medical prognosis attempts to predict the
future state of a patient presenting with a set of observed findings and assigned
treatment’. A prognostic model would typically include a diagnostic (backward
analysis) and a simulation subpart. In medical applications, Bayesian networks can
also be used to recommend additional investigations in order to support the diagno-
sis. In a situation when no clear diagnosis emerge, a Bayesian network model can
identify the piece of information (typically, an additional test) that would clearly
differentiate the possible causes of the observed symptoms.

Table 22.1 Types of inference.

Simulation Computation of the probability distribution of an outcome
given assumptions on the causes.

Diagnosis Computation of the probability of possible causes given an
observed situation.

Hypothesis evaluation Comparison of different assumptions given an evidence.
Sensitivity analysis Evaluation of the impact of an evidence on the conclusion.
Information gain Expected impact of an additional investigation on the present

diagnosis.

2See for instance the SIAM tool of SAIC: http://www.saic.com/products/software/
siam/
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In Chapter 7, on inference problems in forensic science, a more subtle type of
inference is discussed. The ‘likelihood ratio is a consideration of the probability
of the evidence (E) given both, competing propositions that are of interest in a
particular case typically forwarded by the prosecution and the defense.’ This ratio
can be computed directly from the model. Bayesian networks offer other different
ratios that can support decision, such as sensitivity analysis or information gain.

Inference in Bayesian networks cannot however address directly problems such
as planning, i.e., finding an optimal sequence of actions. Specific architectures
can be designed for such a task, as shown in Chapter 20, on risk management in
robotics, but it must be recognized that other AI techniques such as neural networks
are usually better suited to help solving temporal control problems.

22.2.6 Knowing your knowledge

Making knowledge explicit increases knowledge. Using expert knowledge in actual,
decision support systems helps reducing approximations and the resulting frus-
tration usually experienced in qualitative discussions with experts. This effect is
expected with any knowledge based systems, provided it is not a black box. Learn-
ing from data is part of a this knowledge awareness process, which is particularly
easy when using Bayesian networks.

For instance, in Chapter 2, a systematic procedure of model validation was
applied in order to validate the model. In the application, the model was built
from clinical data and revised with experts: ‘This analysis has brought several
corrections to the model. For example, when observing the variable ‘Enlarged
spleen’, the expert noticed that the presence of the finding does not influence
probability distribution of ‘Toxic hepatitis’ and ‘Reactive hepatitis’. Therefore,
the arcs from ‘Toxic hepatitis’ and ‘Reactive hepatitis’ to ‘Enlarged spleen’ were
drawn.’ This particular example show that knowledge used in a Bayesian network
can be easily edited, even when learnt from data. Improving expert knowledge
from data is also possible. The easiest way to do so is simply to learn a local
probability table when the structure has been defined by an expert.

Chapter 6, on spatial dynamics in geography, also exhibits an interesting
example of how Bayesian networks can be used to improve knowledge about a
given domain, and to discover causal relationships. A database of indicators mea-
sured across several communes in the coastal region under study has been learnt
by a Bayesian network. The resulting model allows us to interpret the main drivers
of urbanization, some of them being unexpected from the author’s initial point of
view.

22.2.7 Limitations

Unfortunately, and as any other tool, Bayesian networks have limitations. It is
not always easy to detect limitations in an application book, since only feasible
applications can be described in such a book.
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Computational complexity is one of the strongest limitations of Bayesian net-
works. Bayesian networks algorithms are of nonpolynomial complexity. This means
that the computation time grow exponentially as the network complexity grows.
Network complexity is not measured by the number of nodes, but by a more tech-
nical quantity, which has to do with the connectivity of the network. In practice,
however, we can see in the applications presented that most networks had rea-
sonable sizes: 70 nodes for the medical diagnosis network in Chapter 2, about 20
nodes for the different networks used in clinical decision support in Chapter 3, 39
nodes for the spatial dynamics modeling network in Chapter 6, from 35 to 60 nodes
in risk influence networks used for terrorism threat assessment in Chapter 14, and
124 nodes in the autonomous vehicle network described in Chapter 20.

This limitation is generally not a difficulty in expert based networks, since most
knowledge bases expressed by human expert will generally stay within reasonable
size limits. This can be more of a problem when dealing with several networks
brought together, such as RIN used in Chapter 14, although in this particular case
network sizes remain small. This complexity issue becomes crucial when deal-
ing with temporal reasoning. Applications in robotics for instance require a causal
model explicitly dealing with temporal dependencies: information gathered now
determines present action, while present action is one of the causes of future exter-
nal feedbacks. Planning, i.e., optimal selection of a sequence of actions, therefore
requires us to unfold the model through time, hence increasing its size, and gener-
ally its complexity and connectivity. This type of application – and its limits – is
addressed in Chapter 20, on risk management in robotics.

22.3 Future challenges

Although Bayesian networks are certainly not the Holy Grail of artificial intelli-
gence, they definitely are a solid basis for knowledge engineering. They allow us
to use various sources of knowledge, even contradicting ones, to make knowledge
embedded in data explicit, to use this knowledge for various types of problem
solving, and finally to improve it through online learning.

Artificial intelligence remains a challenge for the next decades. Indeed, intelli-
gence cannot be limited to inference and learning, but requires action. Embedding
artificial intelligence systems in the real world is probably the next challenge of
artificial intelligence, far beyond simply connecting an offline ‘artificially intelligent
system’ to external sensors and actuators.



Bibliography

[1] S. Acid, L. M. de Campos, J. M. Fernández-Luna, and J. F. Huete. An infor-
mation retrieval model based on simple Bayesian networks. International
Journal of Intelligent Systems, 18:251–265, 2003.

[2] S. Aeberhard, O. de Vel, and D. Coomans. Comparative analysis of sta-
tistical pattern recognition methods in high dimensional settings. Pattern
Recognition, 27:1065–1077, 1994.

[3] F. Agterberg, G. Bonham-Carter, and D. Wright. Statistical pattern inte-
gration for mineral exploration. In Computer Applications in Resource
Estimation Prediction and Assessment for Metals and Petroleum, pages 1–21.
Pergamon Press, Oxford and New York, 1990.

[4] Air Force Instruction 31-210. The Air Force Antiterrorism/Force Protection
(AT/FP) Program. 1 July 1977.

[5] J. Aires-de Sousa. Verifying wine origin: A neural network approach. Amer-
ican Journal of Enology and Viticulture, 47:410–414, 1996.

[6] C. G. G. Aitken, T. Connolly, A. Gammerman, G. Zhang, D. Bailey,
R. Gordon, and R. Oldfield. Statistical modelling in specific case analysis.
Science and Justice, 36:245–255, 1996.

[7] C. G. G. Aitken and A. Gammerman. Probabilistic reasoning in evidential
assessment. Journal of the Forensic Science Society, 29:303–316, 1989.

[8] C. G. G. Aitken, A. Gammerman, G. Zhang, T. Connolly, D. Bailey,
R. Gordon, and R. Oldfield. Bayesian belief networks with an applica-
tion in specific case analysis. In A. Gammerman, editor, Computational
Learning and Probabilistic Reasoning, pages 169–184. John Wiley & Sons,
Chichester, 1996.

[9] C. G. G. Aitken and F. Taroni. Statistics and the Evaluation of Evidence for
Forensic Scientists. John Wiley & Sons, Inc., New York, 2nd edition, 2004.

Bayesian Networks: A Practical Guide to Applications Edited by O. Pourret, P. Naı̈m, B. Marcot
 2008 John Wiley & Sons, Ltd



386 BIBLIOGRAPHY

[10] C. G. G. Aitken, F. Taroni, and P. Garbolino. A graphical model for the
evaluation of cross-transfer evidence in DNA profiles. Theoretical Popula-
tion Biology, 63:179–190, 2003.

[11] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschini.
Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel
Computing, John Wiley & Sons, Ltd, New York, 1995.

[12] S. Alag, A. Agogino, and M. Morjaria. A methodology for intelligent sensor
measurement, validation, fusion, and fault detection for equipment monitor-
ing and diagnostics. Artificial Intelligence for Engineering Design, Analysis
and Manufacturing (AIEDAM), Special Issue on AI in Equipment Service,
15(4):307–319, 2001.

[13] S. Ampuero and J. O. Bosset. The electronic nose applied to dairy products:
A review. Sensors and Actuators B: Chemical, 94(1):1–12, August 2003.

[14] S. K. Andersen, K. G. Olesen, F. V. Jensen, and F. Jensen. HUGIN – a shell
for building bayesian belief universes for expert systems. In Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence, Detroit,
N.S. Sridharan (editor) pages 1080–1085, Morgan Kaufmann 1989.

[15] J. L. Anderson. Embracing uncertainty: The interface of Bayesian statistics
and cognitive psychology. Conservation Ecology, 2(1):27, 1998.

[16] S. Andreassen, M. Woldbye, B. Falck, and S. K. Andersen. MUNIN – A
causal probabilistic network for interpretation of electromyographic findings.
In J. McDermott, editor, Proceedings of the Tenth International Joint Con-
ference on Artificial Intelligence, pages 366–372, Los Altos, CA, Morgan
Kaufmann Publishers, 1987.

[17] Argonne National Laboratory. Argonne software helps emergency respon-
ders plan and prepare. http://www.anl.gov/Media\_Center/
News/2003/news030404.htm.

[18] D. E. Arking, G. Atzmon, A. A. Arking, N. Barzilai, and H. C. Dietz. Asso-
ciation between a functional variant of the KLOTHO gene and high-density
lipoprotein cholesterol, blood pressure, stroke, and longevity. Circulation
Research, 96:412–418, 2005.

[19] G. Arroyo-Figueroa and L. Sucar. A temporal Bayesian network for diagno-
sis and prediction. In Proceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence, Stockholm, K. B. Laskey, H. Prade (editors) pages
13–20, Morgan Kaufmann, 1999.

[20] G. Assmann, P. Cullen, and H. Schulte. Simple scoring scheme for cal-
culating the risk of acute coronary events based on the 10-year follow-up



BIBLIOGRAPHY 387

of the Prospective Cardiovascular Münster (PROCAM) Study. Circulation,
105(3):310–315, 2002.

[21] http://www.aaai.org.

[22] ASTM International. Standard practice for use of scrap tires in civil engi-
neering applications. ASTM Standard Design D6270–98, 2004.

[23] N. O. Attoh-Okine. Valuation-based systems for pavement management
decision making. In Uncertainty Analysis in Engineering and Sciences, B. M.
Ayyab and M. M. Gupta, chapter 11, pages 157–176. Springer, Berlin, 1997.

[24] N. O. Attoh-Okine. Addressing uncertainties in flexible pavement mainte-
nance decisions at project level using Bayesian influence diagrams. In J. L.
Gifford, editor, Infrastructure Planning and Management, pages 362–366.
American Society of Civil Engineers, 1993.

[25] N. O. Attoh-Okine and I. Ahmad. Application of Bayesian influence dia-
grams to risk analysis of highways construction costs. In, Proceedings
Computing in Civil Engineering, J. P. Mohsen, editor, ASCE, 1995.

[26] N. O. Attoh-Okine and A. K. Appea. Probabilistic graphical networks in
pavement management decision making. In N. O. Attoh-Okine, editor, Artifi-
cial Intelligence and Mathematical Methods in Pavement and Geomechanical
Systems, pages 119–133. A.A. Balkema Publishers, Rotterdam, 1998.

[27] N. O. Attoh-Okine and S. Bowers. A Bayesian belief network model of
bridge deterioration. Bridge Engineering, 159(2):69–76, 2006.

[28] N. O. Attoh-Okine and W. Roddis. Uncertainties of asphalt layer thick-
ness determination in flexible pavements-influence diagram approach. Civil
Engineering Systems, 15:107–124, 1998.

[29] AUPA DRE PACA. La métropolisation dans l’espace méditerranéen français.
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réalisée pour le Conseil Régional de Provence-Alpes-Côte d’Azur, Sophia
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418 BIBLIOGRAPHY

[413] M. Santos. Construction of an artificial nose using neural networks. PhD the-
sis, Centre of Informatics, Federal University of Pernambuco, Brazil, 2000.

[414] S. Sarkar and R. S. Sriram. Bayesian models for early warning of bank
failures. Management Science, 47(11):1457–1475, 2001.

[415] F. Scarlatti. Statistiche testuali, mappe concettuali, reti Bayesiane e valu-
tazioni del paesaggio. In XXIII Conferenza Italiana di Scienze Regionali,
Reggio Calabria, Italy, AISRE (Associazione Italiana di Scienze Regionali),
CD-ROM, October 2002.

[416] W. G. Schneeweiss. The Fault Tree Method. LiLoLe Verlag, Hagen, Ger-
many 1999.

[417] J. T. Schnute, A. Cass. and L. J. Richards. A Bayesian decision analysis to
set escapement goals for Fraser River sockeye salmon (oncorhynchus nerka).
Canadian Journal of Fisheries and Aquatic Sciences, 8(3):219–283, 2000.

[418] D. A. Schum. Evidential Foundations of Probabilistic Reasoning. John
Wiley & Sons, New York, 1994.

[419] J. Schurmann. Pattern Classification: A Unified View of Statistical and Neu-
ral Approaches. John Wiley & Sons, New York, 1996.

[420] P. Sebastiani, L. Wang, V. G. Nolan, E. Melista, Q. Ma, C. T. Baldwin and
M. H. Steinberg. Fetal hemoglobin in sickle cell anemia: Bayesian model-
ing of genetic associations. American Journal of Hematology. 2007 Oct 4.
[Electronic publication ahead of print].

[421] P. Sebastiani, R. Lazarus, S. T. Weiss, L. M. Kunkel, I. S. Kohane, and
M. F. Ramoni. Minimal haplotype tagging. Proceedings of the National
Academy of Science of the United States of America, 100:9900–9905, 2003.

[422] P. Sebastiani, M. Ramoni, V. Nolan, C. Baldwin, and M. Steinberg. Genetic
dissection and prognostic modeling of overt stroke in sickle cell anemia.
Nature Genetics, 37(4):435–440, 2005.

[423] R. D. Shachter. Evaluating influence diagrams. Operations Research,
36(4):589–604, 1986.

[424] C. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–390, 1948.

[425] C. Shannon and W. Weaver. The Mathematical Theory of Communication.
University of Illinois Press, Urbana, Illinois, 1949.

[426] C. Shenoy and P. P. Shenoy. Bayesian network models of portfolio risk
and return, 1999. https://kuscholarworks.ku.edu/dspace/
bitstream/1808/161/1/CF99.pdf.



BIBLIOGRAPHY 419

[427] P. P. Shenoy. A valuation-based language for expert systems. International
Journal of Approximate Reasoning, 9:383–411, 1989.

[428] M. Shwe, B. Middleton, D. Heckerman, M. Henrion, E. Horvitz,
H. Lehmann, and G. Cooper. Probabilistic diagnosis using a refor-
mulation of the INTERNIST–1/QMR knowledge base: I. The probabilistic
model and inference algorithms. Methods of Information in Medicine,
30(4):241–255, 1991.
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