# How Accurately Can Z-score Predict Bank Failure?

# By Laura Chiaramonte, (Frank) Hong Liu, Federica Poli, and Mingming Zhou

Bank risk is not directly observable, so empirical research relies on indirect measures. We evaluate how well Z-score, the widely used accounting-based measure of bank distance to default, can predict bank failure. Using the U.S. commercial banks' data from 2004 to 2012, we find that on average, Z-score can predict 76% of bank failure, and additional set of other bank- and macro-level variables do not increase this predictability level. We also find that the prediction power of Z-score to predict bank default remains stable within the three-year forward window.

**Keywords:** Z-score, bank failure, financial crisis. **JEL Classification:** E37, G01, G21.

# I. INTRODUCTION

This paper assesses the validity of Z-score proposed by Boyd and Graham (1986) as a bank risk measure. Z-score has been widely applied as an indicator of bank's distance-to-default in both academic research and practice. It is calculated as the sum of bank's return on assets and equity to assets ratio divided by the standard deviation of return on assets. It is an estimate of the number of standard deviations below the mean that bank's profits would have to fall to make the bank's equity negative. Higher values of Z-score are thus indicative of low probability of insolvency and greater bank stability. The attractiveness of Z-score relies on the fact that it does not require strong assumptions about the distribution of returns on assets (Boyd and Graham, 1986; Hannan and Hanweck, 1988; Strobel, 2011), which represents an especially interesting advantage from the practitioner's point of view. The popularity of Z-score also originates from its relative simplicity and the capability to compute it using solely accounting information. Contrary to market-based risk measures which are computable just for listed financial institutions and may raise estimation concerns stemming from the size of available samples, Z-score is applicable when dealing with an extensive number of unlisted as well as listed entities.

Despite the advantages attributable to the Z-score, however, it is not immune from some caveats. First, its reliability depends on the quality of underlying accounting and auditing framework. Such an issue is more prominent in crosscountry studies due to the degree of each country's institutional development. Second, as banks may smooth out accounting data over time, the Z-score may offer an excessively positive assessment of the risk of bank insolvency. Third,

Corresponding author: Federica Poli, Banking at the Università Cattolica del Sacro Cuore, Milan, Italy. Email: federica.poli@unicatt.it.

<sup>© 2016</sup> New York University Salomon Center and Wiley Periodicals, Inc.

by definition, Z-score is highly sensitive to the standard deviation of ROA.<sup>1</sup> In addition, given the tendency of the dominance of equity to assets ratio in calculating bank's Z-score, the magnitude of the differences in Z-scores may not correspond linearly to the differences in bank risk, since the variation of ROA is only a minor part of the calculation in the numerator.<sup>2</sup> Furthermore, as suggested by Huizinga and Laeven (2012), banks tend to overstate their value of distressed assets and regulatory capital during the U.S. mortgage crisis, and the calculation of Z-score based on the accounts reported by the bankers may thus be biased upward towards a safer ratio. Hence, despite the popularity of Z-score in banking literature as a proxy for distance-to-default given its soundness in theory, how well it perms in forecasting default is still unknown.

In this study, we examine two research questions. First, we analyze whether Z-score is a sufficient statistic to predict bank failure. Second, we investigate whether the predicting power of bank failures could significantly increase by adding additional bank-specific and macro variables in the forecasting model. We test these empirical questions in the following ways. We incorporate various versions of Z-score into a complementary log-logistic (clog-log) model that determines US bank failure from 2004 through 2012. Considering both Type I and I errors, we compare the performance of three bank failure prediction models that: (i) include Z-score as the only predictor, (ii) include a set of bank- (other than Z-score) and macro-level variables as the predictors, and (iii) include only the combination of the set of bank- and macro-level variables as the predictors. Further, we compare the short-term, out-of-sample forecasting ability of Z-score to that of the combination of Z-score and a set of other bank- and macro-level variables. Finally, we examine the ability of Z-score to explain Merton Distance-to-default, a market based bank risk measure.

We find strong empirical evidence to provide affirmative answer to both questions. First, we find that on average, Z-score together with time fixed effects are able to predict bank failures with the accuracy of 76% (based on Type I errors), while adding a set of other bank-specific and macro variables do not increase the predictability accuracy. Besides, the out-of-sample forecasting performance of Z-score shows that the lowest two deciles of Z-score can predict on average 74% of bank failures across the whole sample. We also find that Z-score is a significant determinant factor of Merton DD measure, indicative of high correlation between the two widely used bank risk measures. Finally, we show that the prediction power of Z-score remains stable within the forward three-year window.

<sup>&</sup>lt;sup>1</sup>For example, consider two banks A and B, both with equity ratio being 0.04. Bank A has average ROA being 0.01 and standard deviation of ROA being 0.001, hence the Z-score for Bank A is 50. While Bank B has higher ROA of 0.02, however, its standard deviation of ROA is also significantly higher, with being 0.002. Thus Bank B's Z-score is 30. Although both banks have proportional ROAs (0.01 vs. 0.02) and its standard deviations (0.001 vs. 0.002), Z-score shows that Bank A is twice as safe as Bank B.

<sup>&</sup>lt;sup>2</sup>Our data shown in Table 2 indicates that average equity to assets ratio is 11% while average ROA is only 0.9%. Therefore, unless a bank has consistently considerable loss over time, Z-score is more likely to be dominated by changes in equity to asset ratios than changes in ROA.

Assessing the Z-score's accuracy in measuring bank risk is important for several reasons. First, since a bank's risk is not directly observable, the empirical literature finds itself having to rely on indirect proxies, which should be sound both theoretically and empirically. Even though Z-score is a widely used bank risk measure among many researchers and practitioners, its statistical properties are not yet known. It is hence important to demonstrate the validity of this measure, and whether it can indeed reflect the underlying bank risk. Second, given the simplicity and transparency of the calculation of Z-score, establishing its predictive power for bank failures would have extensive implications for both policy makers and practitioners, who are currently looking for effective measure of bank risk in their policy making process or risk management of the banking sector. Third, given that our measures of Z-score does not rely on whether the bank is publicly traded, it can be widely applied to both publicly listed banks and private banks, and this is an important advantage over most systemic risk measures proposed so far that are heavily based on stock price information of the bank (see, e.g., Acharya et al., 2012; Billio et al., 2012). Fourth, establishing Z-score as an effective predictor for bank failure in our empirical study also implies that the disclosure quality regarding bank's earnings and equity is crucial to improve information environment for banks, and that any managerial incentives or regulations that give rise to earnings smoothing in the banking industry might lead to under-estimation of default risk by outsiders.<sup>3</sup>

Our paper also contributes to the current surging literature on various factors that may lead to bank failure. These literature examine both micro-level factors such as bank ownership and corporate governance, subprime lending and loan securitization, as well as macro-level factors such as bank competition and regulations (see, e.g., Akins *et al.*, 2014; Beck *et al.*, 2013; Brown and Dinc, 2011; DeYoung and Torna, 2013; Erkens, 2012; Gorton and Metrick, 2012; Ivashina and Scharfstein, 2010; Martinez-Miera and Repullo, 2010; Repullo and Suarez, 2013).

Finally, our research also complements to Altman's (1968) Z-score based on multiple discriminant analysis (Balcaen and Ooghe, 2006). Altman proposes a model of five variables to predict bankruptcy up to "two years prior to distress and that accuracy diminishes substantially as the lead time increases" (Altman, 2000).<sup>4</sup> However, as well spelled out in these studies, the Altman's (1968) Z-score

<sup>&</sup>lt;sup>3</sup>In this sense, our study is also related to Jin *et al.* (2011) who develop six and ten accounting and audit quality variables to predict whether banks failed during the financial crisis starting from 2007. For recent studies on managerial incentives that give rise to earnings smoothing for financial industries, see Cheng *et al.* (2011) and Eckles *et al.* (2011), and for discussions on how regulations could change earnings smoothing incentives for bank managers, see Kilic *et al.* (2012).

<sup>&</sup>lt;sup>4</sup>The variables used in his 1968 seminal study are: (1) working capital/total assets, (2) retained earnings/total assets, (3) earnings before interest and taxes/total assets, (4) market value equity/book value of total liabilities, and (5) sales/total assets. Given that the initial model was developed to predict failure of publicly traded listed manufacturing firms, later in Altman (2000), Altman modified his original model to predict failures in private and in publicly traded listed non-manufacturing firms (1984), known as the "revised" or "alternative" Z-score model.

(along with the Altman *et al.*'s (1977) Zeta credit risk model, or the 2000 modified Z-score) is mostly applicable to industrial corporations instead of banks.

We organize the remainder of this paper as follows. Section II describes the data sample and how we identify failure events. Section III discusses the methodology as well as the variables used in our paper and their descriptive statistics. Sections IV and V present empirical results and robustness tests. Section VI concludes.

#### II. DATA

We obtain fourth-quarter data from 2003 to 2012 on private and public commercial banks in the U.S. from the Reports on Condition and Income ("Call Reports") submitted by insured banks to the Federal Reserve.<sup>5</sup> Following Berger *et al.* (2004), we study only commercial banks and exclude savings banks, savings and loan associations, credit unions, investment banks, mutual banks, and credit card banks We use bank-level data and treat each individually chartered bank as a separate entity.

Our final sample consists of 8,478 unique banks (there are totally 58,017 bankyear observations), out of which 552 failed and 7,926 are active. The information on bank failure is obtained from the inactive bank data provided by Federal Deposit Insurance Corporation (FDIC). The FDIC lists all banks that were closed owing to bankruptcy, merger and acquisition (M&A) and change of charter among other causes of closure, and provides a structural change coding for the reason for closure and the date of closure. We define these bank closures as failure. Table 1 presents the sample distribution by bank status (active versus failed banks) in each year during the sample period 2004–2012. It shows that the majority of bank failure events in the U.S. took place during the 2007–09 financial crisis. Specifically, in our sample, more than 400 commercial banks under FDIC supervision failed after (or during) 2007 compared to less than 80 between 2004 and 2006. In light of the numerous bank failure events in the recent years, in our empirical analysis we investigate the suitability of the Z-score as a measure of bank failure not only in the whole period (2004–2012), but also on the crisis and post-crisis period (2007 - 2012).

### **III. METHODS**

DISCRETE-TIME PROPORTIONAL HAZARDS MODEL

To empirically investigate whether and to what extent the Z-score is an informative measure of bank risk, we use a discrete-time representation of a continuoustime proportional hazards model, the so-called complementary log-log model where the dependent variable (the failed bank dummy) is a binary variable that takes value 0 when a bank is still active and 1 when it failed.

<sup>&</sup>lt;sup>5</sup>We use yearly data instead of quarterly data to minimize the seasonal effects of bank performance.

|       |        | Bank-year observation |        |
|-------|--------|-----------------------|--------|
| Year  | Failed | Active                | Total  |
| 2004  | 9      | 6,985                 | 6,994  |
| 2005  | 4      | 6,779                 | 6,783  |
| 2006  | 26     | 6,607                 | 6,632  |
| 2007  | 40     | 6,453                 | 6,493  |
| 2008  | 134    | 6,350                 | 6,484  |
| 2009  | 154    | 6,265                 | 6,419  |
| 2010  | 96     | 6,178                 | 6,274  |
| 2011  | 68     | 6,936                 | 6,004  |
| 2012  | 22     | 5,912                 | 5,934  |
| Total | 552    | 57,465                | 58,017 |

 Table 1: Distribution of Failed and Active Banks Over the Sample Period

 From 2004 to 2012

This table shows the sample distribution by bank status (active banks versus failed banks) in each year. The numbers reported in the table refers only to those banks with data available to compute our main variable of interest (the natural logarithm of the Z-score). We obtain fourth-quarter data from 2004 to 2012 on private and public commercial banks in the US from the Reports on Condition and Income ("Call Reports") submitted by insured banks to the Federal Reserve.

Complementary log-log model is frequently used when the probability of an event is very small or very large, as the logit and probit models are inappropriate under such circumstances. Complementary log-log model belongs to the discrete-time functional specifications applied when survival occurs in continuous time, but spell length are observed only in interval as it is the case for bank failure recorded on annual basis in our sample. Guo (1993) observes that time-varying covariates offer an opportunity to examine the relation between the failure probability and the changing conditions under which the failure happens. The complementary log-log model with time-varying covariates has the following form (Männasoo and Mayes, 2009):

$$log(-log[1 - h_{j}(X)]) = \gamma_{j} + \beta' X$$
(1)

where X contains time-varying covariates for each bank at time t - 1. Traditional complementary log-log model assumes duration independence, i.e., the probability of surviving or failing at any point in time is always the same. In order to deal with time dependency problems arising when using these models, we use robust standard errors clustered on the unit of analysis and include in the vector X temporal dummy variables for each period or 'spell'. In addition, the complementary log-log model yields estimates of the impact of the indicators on the conditional probability of failure, which means that we obtain failure probabilities, conditional on surviving to a certain point in time.

In order to examine whether the model is able to correctly identify failed banks, we compute two types of errors: Type I and Type II errors. Type I error occurs when the model fails to identify the failed banks (that is a missed failure). It is computed as the ratio of false negative (FN) events to the sum of false negative and true positive (TP) events. Type II error occurs when a healthy bank is falsely identified as failure (that is a false alarm). It is computed as the ratio of false negative. Type II error occurs when a healthy bank is falsely identified as failure (that is a false alarm). It is computed as the ratio of false positive (TP) events to the sum of false positive and true negative (TN) events.

To assign a particular bank into one of the two categories (failed versus active), we set up a cut-off point in terms of the probability of bank failure. All banks above (below) that cut-off point are considered as failed (healthy) banks. A higher cut-off point results in a lower number of banks on the blacklist of failed banks, which tends to increase the Type I errors. Setting a lower cut-off point can reduce the Type I errors, but at the expense of generating more Type II errors. The optimal cut-off point depends on the relative weights that an advisable puts on Type I and Type II errors (Persons, 1999), because supervisors are primarily concerned about missing a failed bank (Poghosyan and Čihák, 2011). This implies a preference for relatively low cut-off points, which limit the Type I errors. For these reasons, we primarily focus on the Type I error results obtained using the cut-off point equal to 1%.

The analysis based on Type I and II errors is based on the arbitrary decision of the cut-off point. To overcome this problem, we also assess the accuracy of failure forecasts using the empirical distribution of the predicted probabilities of failure generated by complementary log-log model. We assign each observation to a decile of this empirical distribution, and we count how many genuine failure events fall into each decile. The accuracy of the model increases when a high fraction of failure events fall in the deciles associated to high predicted probabilities of failure.

#### THE ESTIMATION OF Z-SCORE

Despite various shortcomings of Z-score, a number of approaches have been developed for the Z-score's construction, and abundant empirical studies employ Z-score as proxy for bank risk (see, e.g., Boyd and Graham, 1986; De Nicolò, 2000; Stiroh, 2004; Beck and Laeven, 2006; Laeven and Levine, 2009; Beck *et al.*, 2013; Chiaramonte *et al.*, 2015; DeYoung and Torna, 2013; Liu *et al.*, 2013).

We compute the Z-score following different approaches developed by the literature for its construction (see the variable definition in the Appendix). On the basis of the most common approach (Boyd and Graham, 1986; Hannan and Hanweck, 1988), the first Z-score used in our analysis (hereafter 'Z-score 1') is calculated as the sum of equity to total assets (ETA) and return on assets (ROA) divided by the three-year standard deviation of ROA ( $\sigma$ ROA). Following Maecheler *et al.* (2007), we also compute the Z-score using the three-year moving return of assets (A\_ROA) plus the three-year moving average of equity to total assets (A\_ETA) over the three-year standard deviation of A\_ROA ( $\sigma$ A\_ROA). We label this type of Z-score as 'Z-score 2'. The third way of estimation of the Z-score follows Boyd *et al.* (2006) and is calculated as the sum of three-year moving average of equity to total assets (A\_ETA) and current values of return on assets (ROA) divided by the three-year standard deviation of ROA ( $\sigma$ ROA). We label this type of Z-score as 'Z-score 3'. Finally, following Laeven and Lavine (2009) and Dam and Koetter (2012), we compute the Z-score as the sum of tier 1 ratio (TIER 1 RATIO) and return on risk weighted assets (R\_RWA) divided by the three-year standard deviation of R\_RWA ( $\sigma$ R\_RWA). We label this type of Z-score as 'Z-score 4'. Since the Z-score is usually highly skewed, we use the natural logarithm of the Z-score, which is more likely to follow normal distribution (Laeven and Levine, 2009; Liu *et al.*, 2013). We label the natural logarithm of Z-score as InZ.

#### VARIABLES

We include several bank- and macro-level factors as control variables to capture differences in bank risk profiles that are associated with other bank characteristics, macroeconomic conditions or banking market structures. These different categories of indicators represent various determinants of a bank's vulnerability (see Betz *et al.*, 2014). In the Appendix, we describe the control variables outlined below and summarize their hypothesized relationships with the probability of bank failure.

The first control variable we consider is the natural logarithm of a bank's total assets as a proxy for bank size (SIZE). Existing literature indicates that the sign linking SIZE to the probability of bank failure could be uncertain. The relationship can be negative when growth of bank size leads to efficiency gains and superior ability of diversification, which would result in higher bank stability. On the other hand, the relationship may become positive when diversification strategies followed by large banks do not make them safer and may exacerbate the risk of a system-wide breakdown (Allen and Jagtiani, 2000) or result in higher earnings volatility while relying on the implicit guarantee associated with the too-big-to-fail argument (DeYoung and Roland, 2001; DeJonghe, 2010, Demirguc-Kunt and Huizinga, 2010).

Next, we include bank diversification (DIV) as another control variable and measure it by the ratio of non-interest income to total operating income following Stiroh (2004). We expect a negative sign between DIV and the probability of bank failure because diversification leads to risk reduction and therefore lower the likelihood of failure.

In addition, we employ the ratio of the sum of cash, available-for-sale securities and federal funds sold to total assets (LIQ) as a proxy for bank liquidity. The relationship linking LIQ to bank failure is expected to be negative. The more liquid the bank is and the less vulnerable to a classic run. An increase in LIQ should therefore correspond to a reduction in probability of bank default. In addition, we include the ratio of non-performing loans to total assets (NPL) as a proxy for asset quality. The higher ratio of NPL indicates the lower quality of the bank loan portfolio. Hence, an increase in NPL should lead to an increase in probability of bank failure. Furthermore, we employ the cost-to-income ratio (CIR) as a proxy for bank operational efficiency. Since low values of CIR indicate better managerial quality, the relationship between CIR and profitability of bank failure is expected to be positive.

Finally, within the bank-specific factors, we include the Bank Holding Company (BHC) dummy variable, which takes the value of 1 if the bank is owned by a BHC and 0 otherwise. We expect a negative sign between BHC dummy and bank failure. A bank that is a part of a BHC may be subject to more complex risk management and stricter monitoring because BHCs boards have more committees and meet more frequently than other boards (Adams and Mehran, 2003). The increased corporate governance may thus reduce the likelihood of bank failure.

In our empirical analysis, we also consider the most commonly used macroeconomic indicators: the annual percentage change of gross domestic product (GDPC) and the annual inflation rate (INF). We expected that low GDP growth and high inflation increase bank vulnerability (see Betz *et al.*, 2014). Hence, we hypothesize a negative sign for GDPC and a positive sign for INF.

To measure the degree of banking system concentration, we determine the Herfindahl–Hirschman index (hereafter HHI). The HHI is calculated as the sum of the squared market share value (in term of total assets) of all banks in the country. The theoretical relationship linking HHI to bank survival is uncertain based on the previous studies. The competition-fragility view expects a positive sign as competitive markets limit the ability of banks to gain informational advantages from their relationships with borrowers, reducing their incentives to properly screen borrowers, thus increasing the risk of default (Allen and Gale, 2000, 2004; Carletti, 2008; Beck *et al.*, 2013). Contrary to this view, the competition-stability view (Boyd an De Nicolò, 2005) predicts a negative sign and maintains that highly competitive banking systems (i.e., lower HHI) result in more stability. If competition reduces the cost of financing, bank borrowers would be better able to repay their loan obligations, thus reducing the risk of bank failure due to credit risk. Given the unsolved contradictions of predictions from the existing theories, we leave the sign for the coefficient of the HHI variable to empirical testing.

### SUMMARY STATISTICS

Table 2 reports descriptive statistics of the variables used in our U.S. sample for the whole sample period from 2004 to 2012, tabulated by bank status (active or failed). To mitigate the effect of outliers, we winsorize observations in the outside 1% of each tail of each explanatory variable, with the exception of SIZE.

As expected, active banks show higher values for the average lnZ than failed banks for all types of Z-score in the time period considered. This result can be largely explained both by a lower volatility of returns (proxied by the standard

|                                         |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                     |                            |                                  | ACTIVE                             |                                       |                             |                                |
|-----------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-------------------------------------|----------------------------|----------------------------------|------------------------------------|---------------------------------------|-----------------------------|--------------------------------|
|                                         | ACTI                               | VE BANI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SS                               | FAIL                                | ED BANI                    | ŚŚ                               | and<br>FAILED                      | FUI                                   | LL SAMPL                    | Ш                              |
| Variables                               | N. of<br>observation               | Mean                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Standard<br>Deviation            | N. of<br>observation                | Mean                       | Standard<br>Deviation            | BANKS<br>differences               | N. of<br>observation                  | Mean                        | Standard<br>Deviation          |
| InZ (7-score 1)                         | 57 571                             | 3 038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 178                            | 552                                 | 2 254                      | 1 714                            | 1 684***                           | 50 784                                | 3 916                       | 1 196                          |
| InZ, (Z-score 2)                        | 57.571                             | 3.963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.121                            | 552                                 | 2.604                      | 1.363                            | $1.359^{***}$                      | 59,784                                | 3.945                       | 1.131                          |
| lnZ, (Z-score 3)                        | 57,571                             | 3.959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.129                            | 552                                 | 2.495                      | 1.467                            | $1.464^{***}$                      | 59,784                                | 3.940                       | 1.143                          |
| lnZ, (Z-score 4)                        | 57,571                             | 3.867                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.190                            | 552                                 | 2.133                      | 1.690                            | $1.734^{***}$                      | 59,784                                | 3.844                       | 1.209                          |
| ETA                                     | 57,571                             | 11.224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.161                            | 552                                 | 9.902                      | 8.802                            | $1.322^{***}$                      | 59,784                                | 11.212                      | 7.206                          |
| ROA                                     | 57,571                             | 0.883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.317                            | 552                                 | -1.086                     | 8.271                            | $1.969^{***}$                      | 59,784                                | 0.858                       | 2.439                          |
| $\sigma_{ m ROA}$                       | 57,571                             | 0.440                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.008                            | 552                                 | 1.607                      | 5.008                            | $-1.167^{***}$                     | 59,784                                | 0.453                       | 1.122                          |
| SIZE                                    | 57,571                             | 11.860                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.311                            | 552                                 | 12.373                     | 1.396                            | $-0.513^{***}$                     | 59,784                                | 11.869                      | 1.319                          |
| DIV                                     | 57,567                             | 16.831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.386                           | 552                                 | 15.505                     | 16.759                           | $1.326^{*}$                        | 59,777                                | 16.843                      | 12.467                         |
| LIQ                                     | 57,571                             | 12.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.519                           | 552                                 | 10.307                     | 10.550                           | $2.490^{***}$                      | 59,784                                | 12.768                      | 12.532                         |
| NPL                                     | 57,571                             | 0.157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.318                            | 552                                 | 0.264                      | 0.492                            | $-0.107^{***}$                     | 59,784                                | 0.157                       | 0.320                          |
| CIR                                     | 57,567                             | 46.598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13.616                           | 552                                 | 53.830                     | 23.058                           | $-7.232^{***}$                     | 59,777                                | 46.631                      | 13.830                         |
| GDPC                                    |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                     |                            |                                  |                                    | 59,784                                | 1.641                       | 1.946                          |
| INF                                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                     |                            |                                  |                                    | 59,784                                | 2.344                       | 0.779                          |
| IHH                                     |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |                                     |                            |                                  |                                    | 59,784                                | 452.979                     | 88.277                         |
| This table reports<br>of its components | the summery<br>and of the con      | statistics on the statistics of the statistics o | of the four dif<br>bles (bank-sp | ferent measure<br>becific and mac   | s of the na<br>pro factors | ttural logarith<br>) used in our | un of the Z-sco<br>analysis. We re | re (i.e., our mai                     | in variable<br>escriptive s | of interest),<br>tatistics for |
| the components o<br>bank status and o   | f the Z-score 1<br>n the full same | given that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tt the compon<br>the sole except | ents of the othe<br>tion of the mac | er differen<br>ro variable | t types of Z-s<br>es that are ob | core show a sir<br>served only wi  | nilar trend. The<br>th reference to t | estimates at the whole s    | are done by<br>amole. The      |
| 'full sample' inclu                     | udes the failed                    | and active                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e banks. The e                   | descriptive stat                    | istics are r               | eferred to the                   | whole period                       | (2004–2012). T                        | o mitigate t                | he effect of                   |
| outliers, we winse                      | orize observatio                   | ons in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | outside 1% o                     | f each tail of ea                   | ich variabl                | e, except for 3                  | SIZE, GDPC, I                      | NF and HHI. A                         | Il the varial               | oles, except                   |
| SIZE and HHI, a                         | e in percentage                    | e.The nun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nbers reported                   | l in the table re                   | fers only t                | o those banks                    | s with data avai                   | lable to comput                       | te our main                 | variable of                    |
| interest (the natu                      | al logarithm o                     | of the Z-sc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ore). See the                    | Appendix for                        | the description            | ption of diffe                   | rent Z-score ar                    | nd of the contro<br>respectively      | ol variables                | used in the                    |
| paper, au                               | a are releted                      | n une rw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-siucu unpa                     | ITED 1-ICSI SIALLS                  | sucai sigui                | IICALICE AL 170                  | , J%o, allu 1076                   | respectively.                         |                             |                                |

Table 2: Summary Statistics of Variables By Failed and Active Banks

deviation ROA) and by higher average ROA values of active banks compared to failed banks. Failed banks also show lower level of capitalization (ETA) compared to active banks. Overall, the difference in terms of the mean test between active and failed banks for the Z-score and its components is statistically significant at the 1% level during the whole period.

With regard to bank-specific characteristics observed by bank status, it emerges that failed banks are larger in size than surviving banks. This finding is in line with that of Jin *et al.* (2011). Additionally, banks that experienced a failure showed poorer quality loans portfolio, lower efficiency, less diversified into non-interest income activities and holding less liquidity. All these characteristics helped healthy banks to survive during the period of analysis. The latter results are confirmed by the more recent U.S. bank failure literature (Jin *et al.*, 2011; Dam and Koetter, 2012). Overall, the differences in terms of mean test between active and failed banks for the bank-specific variables are statistically significant at the 1% level during the period 2004–2012.

We also observe low values of inflation ratio (INF) and bank concentration (HHI) with low variations throughout the period while the annual GDP growth (GDPC) shows relevant changes. Finally, Table 3 presents the correlation matrix for our main variables of interest (the four measures of Z-score), its components and the control variables. It shows that all the four Z-scores we construct are highly correlated with one another as expected. It also shows that though many of the pairwise correlation coefficients are statistically significant, the correlation magnitudes are in general low.

# **IV. MAIN RESULTS**

#### REGRESSION ANALYSIS AND PREDICTION RESULTS

Table 4 shows the complementary log-log models estimations results and also displays the relationship between model predictions and actual failure events (see Type I and II errors) using a cut-off point equals to 1%. In order to investigate to what extent Z-score is a sufficient statistic of bank failure, for each measures of Z-score, we test the model on Z-score alone, and the combination of Z-score and the common bank- and macro-level control variables. In the final column, we also test the predictive power of control variables without the inclusion of Z-score. We also include time fixed effects in all our regressions. The bottom of Table 4 displays the relationship between model predictions and actual failure events for the complementary log-log model for the entire sample period (2004-2012) using a cut-off point of 1%.

Table 4 shows that on average Z-score can accurately predict 76–77% of bank failures. For example when Z-score 1 is the only independent variable included in the hazard model (and with year fixed effects added), the Type I error is 23.9% while the Type II error is 21.8%, indicating that 23.9% of the time Z-score 1 fails to identify the failed banks and 21.8% of the time a healthy bank is falsely

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lnZ,<br>(Z-score 1)                                                                                                                                                 | lnZ,<br>(Z-score 2)                                                                                                                                                                        | lnZ,<br>(Z-score 3)                                                                                                                                  | lnZ,<br>(Z-score 4)                                                                                                                           | ETA                                                                                          | ROA                                                                                                                                                     | σroa                                                                        | SIZE                                                                                    | DIV                                                                | LIQ                                                                    | NPL                                                     | CIR                                               | GDPC                                                         | INF                                              | IHH                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|
| In Z (Z-score 1)<br>In Z (Z-score 3)<br>In Z (Z-score 3)<br>In Z (Z-score 4)<br>In Z ( | 1.000<br>0.989<br>0.992<br>0.950<br>0.076<br>0.076<br>0.076<br>0.023<br>-0.032<br>-0.032<br>-0.037<br>-0.024<br>0.024<br>0.024<br>0.243<br>0.207<br>0.243<br>-0.182 | $\begin{array}{c} 1.000\\ 0.9999'\\ 0.9355\\ 0.9355\\ 0.9355\\ 0.9351\\ 0.1855\\ -0.489'\\ -0.249'\\ -0.210'\\ 0.3511\\ 0.264'\\ -0.264'\\ -0.253'\\ -0.006\\ -0.253'\\ -0.006\end{array}$ | 1.000<br>0.939*<br>0.065*<br>0.200*<br>-0.490*<br>-0.241*<br>0.241*<br>0.241*<br>0.241*<br>0.241*<br>0.241*<br>0.241*<br>0.241*<br>0.096*<br>-0.006* | 1.000<br>0.048<br>0.223<br>-0.503<br>-0.28<br>0.028<br>0.028<br>0.087<br>0.011<br>0.116<br>0.011<br>0.116<br>0.011<br>0.011<br>0.011<br>0.001 | 1.000<br>0.283<br>0.309<br>0.3034<br>-0.036<br>-0.036<br>-0.036<br>-0.228<br>0.228<br>-0.173 | $\begin{array}{c} 1.000\\ 0.180^{\circ}\\ -0.037^{\circ}\\ -0.034^{\circ}\\ -0.034^{\circ}\\ -0.233^{\circ}\\ 0.199^{\circ}\\ 0.199^{\circ}\end{array}$ | 1.000<br>-0.058<br>-0.031<br>-0.031<br>-0.031<br>-0.271<br>-0.271<br>-0.173 | $\begin{array}{c} 1.000\\ 0.172\\ -0.280\\ -0.280\\ -0.257\\ -0.051\\ 0.095\end{array}$ | 1.000<br>0.114°<br>0.114°<br>0.015°<br>-0.015°<br>-0.001<br>-0.001 | 1.000<br>-0.004<br>0.063<br>-0.048 <sup>6</sup><br>-0.034 <sup>8</sup> | 1.000<br>-0.035<br>-0.033<br>-0.010                     | $-0.080^{\circ}$                                  | $\begin{array}{c} 1.000\\ 0.654^{*}\\ -0.462^{*}\end{array}$ | 1.000 -0.127*                                    | 1.000                                   |
| This table show<br>our main variab<br>components of<br>the table are ref<br>variable of inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /s the correlation of interest;<br>the other type<br>itered to the vest (the nature                                                                                 | tion matrix further components of Z-score whole period                                                                                                                                     | or the explan<br>ents of InZ; a<br>show the co<br>: 2004–2012<br>of the Z-scon                                                                       | atory variable<br>nd the contro<br>rrect sign and<br>(latest data a                                                                           | es used in<br>l variables<br>are very<br>vailable).<br>s statistics                          | the empiri<br>. We repor<br>low. See the<br>The numb                                                                                                    | cal analys<br>t only the<br>ne Append<br>ers report                         | is: the four<br>results for<br>fix for the<br>ed in the t                               | rr differen<br>the comp<br>descriptic<br>able refer:               | t measures<br>onents of<br>on of the e<br>s only to t                  | s of the nat<br>the Z-score<br>xplanatory<br>hose banks | ural loga<br>e 1 given 1<br>variables<br>with dat | rithm of the<br>that the cor<br>used in the<br>a available   | e Z-score<br>relations<br>e paper. I<br>to compu | (lnZ),<br>for the<br>data in<br>the our |

 Table 3: Correlations

| Table 4: Con | aplementary          | y Log-log Mod                       | lel Estimatio        | ns Results an                       | nd Type I an         | id II Errors                        |                           |                                     |                                 |
|--------------|----------------------|-------------------------------------|----------------------|-------------------------------------|----------------------|-------------------------------------|---------------------------|-------------------------------------|---------------------------------|
|              | Z-                   | score 1                             | Z-sc                 | core 2                              | Z-s                  | core 3                              | Z-s                       | core 4                              |                                 |
| Variables    | InZ only             | InZ and the<br>control<br>variables | InZ only             | InZ and the<br>control<br>variables | InZ only             | InZ and the<br>control<br>variables | InZ only                  | InZ and the<br>control<br>variables | Control<br>variables<br>only    |
| lnZ (-1)     | -0.862***<br>(0.029) | -0.838***<br>(0.032)                | -0.986***<br>(0.041) | -0.933***<br>(0.044)                | -0.967***<br>(0.037) | $-0.917^{***}$<br>(0.040)           | $-0.821^{***}$<br>(0.033) | -0.809***<br>(0.030)                |                                 |
| SIZE $(-1)$  |                      | 0.171***                            | ~                    | 0.192 <sup>***</sup><br>(0.029)     | ~                    | $0.181^{***}$<br>(0.029)            | ~                         | 0.153 <sup>***</sup><br>(0.029)     | 0.252 <sup>***</sup><br>(0.030) |
| DIV (-1)     |                      | -0.005                              |                      | $-0.007^{*}$                        |                      | -0.006                              |                           | -0.006                              | -0.001                          |
| (1–) OI I    |                      | (0.003)                             |                      | (0.004)<br>0.008                    |                      | (0.004)<br>-0.000*                  |                           | (0.003)<br>-0.008                   | (0.005)                         |
|              |                      | (0.005)                             |                      | (0.005)                             |                      | (0.005)                             |                           | (0.005)                             | (0.004)                         |
| NPL (-1)     |                      | 0.366***                            |                      | $0.380^{***}$                       |                      | $0.358^{***}$                       |                           | $0.392^{***}$                       | 0.651***                        |
|              |                      | (0.093)                             |                      | (0.092)                             |                      | (0.092)                             |                           | (0.093)                             | (0.092)                         |
| CIR (-1)     |                      | 0.001                               |                      | $0.005^{**}$                        |                      | $0.004^{*}$                         |                           | -0.0004                             | $0.013^{***}$                   |
|              |                      | (0.002)                             |                      | (0.002)                             |                      | (0.002)                             |                           | (0.002)                             | (0.001)                         |
| GDPC (-1)    |                      | $-0.224^{***}$                      |                      | $-0.270^{***}$                      |                      | $-0.243^{***}$                      |                           | $-0.215^{***}$                      | $-0.197^{***}$                  |
|              |                      | (0.032)                             |                      | (0.033)                             |                      | (0.032)                             |                           | (0.032)                             | (0.031)                         |
| INF(-1)      |                      | 1.009                               |                      | 1.073                               |                      | 1.023                               |                           | 0.955                               | 0.651                           |
|              |                      | (0.110)                             |                      | (0.111)                             |                      | (0.110)                             |                           | (0.110)                             | (0.108)                         |
| HHI (-1)     |                      | 0.020                               |                      | 0.022                               |                      | 0.021                               |                           | 0.020                               | 0.017                           |
|              |                      | (0.002)                             |                      | (0.002)                             |                      | (0.002)                             |                           | (0.002)                             | (0.002)                         |
| BHC dummy    |                      | -0.052                              |                      | -0.100                              |                      | -0.137                              |                           | -0.015                              | $-0.259^{*}$                    |
|              |                      | (0.113)                             |                      | (0.113)                             |                      | (0.113)                             |                           | (0.113)                             | (0.114)                         |
| Year dummies | Yes                  | Yes                                 | Yes                  | Yes                                 | Yes                  | Yes                                 | Yes                       | Yes                                 | Yes                             |
| N. of Obs.   | 58,123               | 58,119                              | 58,123               | 58,119                              | 58,123               | 58,119                              | 58,123                    | 58,119                              | 75,197                          |
|              |                      |                                     |                      |                                     |                      |                                     |                           | )                                   | Continued)                      |

| Table 4: (Co                                                                                                                                                          | ntinued)                                                                                                                                          |                                                                                                                                                                                 |                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                       | Z-sc                                                                                                                                              | core 1                                                                                                                                                                          | Z-s(                                                                                                                                                                     | core 2                                                                                                                                                                             | Z-S                                                                                                                                                              | core 3                                                                                                                                                                                                                                                    | Z-S                                                                                                                                           | core 4                                                                                                                                                                                |                                                                                                                                               |
| Variables                                                                                                                                                             | nlv<br>VlnD                                                                                                                                       | InZ and the<br>control<br>variables                                                                                                                                             | ln Zulv                                                                                                                                                                  | InZ and the<br>control<br>variables                                                                                                                                                | ulv<br>Vlno                                                                                                                                                      | InZ and the<br>control<br>variables                                                                                                                                                                                                                       | In Z only                                                                                                                                     | InZ and the<br>control<br>variables                                                                                                                                                   | Control<br>variables                                                                                                                          |
| Type Frrors.                                                                                                                                                          |                                                                                                                                                   | 2700TTD                                                                                                                                                                         |                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                  | 2000 m                                                                                                                                                                                                                                                    |                                                                                                                                               | 2000                                                                                                                                                                                  | ſ                                                                                                                                             |
| TP                                                                                                                                                                    | 420                                                                                                                                               | 414                                                                                                                                                                             | 423                                                                                                                                                                      | 415                                                                                                                                                                                | 422                                                                                                                                                              | 412                                                                                                                                                                                                                                                       | 417                                                                                                                                           | 416                                                                                                                                                                                   | 439                                                                                                                                           |
| FN                                                                                                                                                                    | 132                                                                                                                                               | 138                                                                                                                                                                             | 129                                                                                                                                                                      | 137                                                                                                                                                                                | 130                                                                                                                                                              | 140                                                                                                                                                                                                                                                       | 135                                                                                                                                           | 136                                                                                                                                                                                   | 173                                                                                                                                           |
| FP                                                                                                                                                                    | 12,563                                                                                                                                            | 12,130                                                                                                                                                                          | 13,419                                                                                                                                                                   | 12,827                                                                                                                                                                             | 13,016                                                                                                                                                           | 12,503                                                                                                                                                                                                                                                    | 12,571                                                                                                                                        | 12,171                                                                                                                                                                                | 20,856                                                                                                                                        |
| TN                                                                                                                                                                    | 45,008                                                                                                                                            | 45,437                                                                                                                                                                          | 44,152                                                                                                                                                                   | 44,740                                                                                                                                                                             | 44,555                                                                                                                                                           | 45,064                                                                                                                                                                                                                                                    | 45,000                                                                                                                                        | 45,396                                                                                                                                                                                | 53,729                                                                                                                                        |
| Type I                                                                                                                                                                | 0.239                                                                                                                                             | 0.250                                                                                                                                                                           | 0.233                                                                                                                                                                    | 0.248                                                                                                                                                                              | 0.235                                                                                                                                                            | 0.253                                                                                                                                                                                                                                                     | 0.244                                                                                                                                         | 0.246                                                                                                                                                                                 | 0.282                                                                                                                                         |
| Type II                                                                                                                                                               | 0.218                                                                                                                                             | 0.210                                                                                                                                                                           | 0.233                                                                                                                                                                    | 0.222                                                                                                                                                                              | 0.226                                                                                                                                                            | 0.217                                                                                                                                                                                                                                                     | 0.218                                                                                                                                         | 0.211                                                                                                                                                                                 | 0.279                                                                                                                                         |
| This table show<br>our main varia<br>only (see last c<br>control variable<br>errors of the es<br>and 10% levels<br>full sample for<br>FP stands for '<br>as: FN/(FN+T | ws a comparisi-<br>ble of interest)<br>olumn). Each<br>es used in this<br>et in two-tailed<br>the whole per<br>False Positive'<br>P). Type II err | on of the compl<br>alone and with<br>regressions is the<br>paper are desci-<br>cients are repoint<br>tests, respective<br>iod (see Panel .<br>; TN stands fou<br>or occurs when | ementary log-<br>in the control v:<br>steed on the wh<br>ribed in the Ar<br>rted in parenth<br>rted in parenth<br>sly. This table i<br>A) using a cut.<br>a healthy banl | log model resul<br>urables. Finally,<br>nole period, 200<br>pendix. Year du<br>eses. ***, **, a<br>also displays the<br>off point equals<br>ve'. Type I error<br>k is falsely iden | ts obtained us<br>, we also test 1<br>4–2012 (latest<br>ummy variable<br>nd * denote c<br>relationship l<br>s to 0.01. TP s<br>c occurs when<br>tifted as failec | ing alternatively<br>the complements<br>t data available).<br>t data available).<br>es are also incor<br>es are also incor<br>oefficients statis<br>between model pails<br>the model fails<br>the model fails<br>the model fails<br>al (i.e., a false ala | y the four diff<br>ary log-log m<br>ary log-log m<br>porated in the<br>protections an<br>Positive'; FN<br>to identify the<br>tro identify the | erent Z-score me<br>odel on the contr<br>types of the Z-s,<br>thodel. The rob<br>at from zero at 1<br>d actual failure e<br>stands for 'Fals<br>failed bank. It i<br>puted as: FP/(FF | assures (i.e.,<br>ol variables<br>core and the<br>ust standard<br>he $1\%$ , $5\%$ ,<br>vents on the<br>z Negative';<br>is computed<br>p+TN). |

| ž            |
|--------------|
| ũ            |
| Ľ.           |
| ио           |
| ŭ            |
| Ċ            |
| <del>4</del> |
| e            |
| -            |
| 1            |

identified as a failing bank by using the information of Z-score 1 only<sup>6</sup>. In the last column of Table 4, we report the results by considering alternative set of other bank-specific and macro variables, and find that both Type I error (28.2%) and Type II error (27.9%) are higher than those when Z-score alone is considered, suggesting a better predictability using Z-score alone in comparison to using the set of other bank-specific and macro variables as we defined earlier as independent variables. For each Z-score variable, we also report the results by combining the Z-score and the other bank-specific and macro variables, and we find that the latter leads to slightly higher Type I errors while slightly lower Type II errors. These results suggest that by adding a set of other bank-specific and macro variables to the Z-score does not significantly improve the predictability of our hazard model.

Table 4 also shows that during the period 2004–2012, the natural logarithm of the Z-score (lnZ) enters the regressions significantly at 1% level and negatively in all the cases considered, indicating that the significance of Z-score as a predictor of bank failure does not disappear once the other variables are controlled. The negative sign of the coefficient means that higher values of Z-score are indicative of lower likelihood of bank failure.

In Table 4, we display that the empirical results of the control variables are in general consistent with our expectations. The positive sign of SIZE implies that larger banks take on higher risk which may endanger their probability of survival. Similarly, more concentrated banking markets result to increase the probability of bank default. Positive relationship is also found between the non-performing ratio (NPL) as a measure of asset quality and the probability of default. This result is consistent with those reported in Poghosyan and Čihák (2011) and Betz et al. (2014), who find that failure probabilities are influenced by the deterioration of the loan portfolio. Diversification (DIV) is found to have significant negative impact on the probability of bank failure when Z-score 2 (but not the other Z-scores) is considered, indicating that diversification leads to risk reduction and therefore lower the likelihood of bank failure. The bank's level of liquidity (LIQ) is found to have significant negative impact on the probability of bank failure when Z-score 1 and Z-score 3 (but not Z-score 2) are considered, indicating that banks with more liquidity are less vulnerable to bank failure. Cost-to-income ratio (CIR) as a measure of managerial inefficiency is also found to have a positive relationship with the likelihood of bank failure when Z-score 2 and 3 are considered.

The two macro-variables, INF and GDPC, show positive and negative signs, respectively. Hence, high inflation and low real GDP growth increase bank vulnerability, confirming the results of Betz *et al.* (2014).

Overall, Table 4 indicates that the Z-score, in all its computations, is a key determinant of the probability of bank survival, and the additional contribution of the bank-specific and macro variables to predict bank default is marginal at best.

 $^{6}$ We also exclude from the model the time fixed effects to examine the predictive power of Z-score on its own. We find that on average the exclusion of time fixed effects increases the Type 1 error by 10% while the Type 2 error remains unchanged to that reported for the models with time fixed effects.

## DEFAULT FORECASTS

The predictive accuracy of the Z-score relative to the control variables with or without the Z-score is further confirmed by the failure forecasts in Table 5. Following Bharath and Shumway (2008), we assess the accuracy of our complementary log-log model by sorting banks in deciles based on the predicted probabilities and calculating the percentage of defaults by decile of the sole forecast variable (Z-score), the combination of Z-score and bank-specific and macro variables, and the set of control variables alone. Table 5 shows that the highest percentage of failure is in the tenth and ninth deciles (i.e., banks with the largest probability of failure or lowest value of Z-score) for all the specifications. By adding the other set of bank-specific and macro variables to the Z-score, however it is measured, will increase the predictability power of the tenth decile (for example, 64.31% vs. 61.59% for Z-score 1). However, the overall predictability of both tenth and ninth deciles will remain similar (for example, 73.91% vs. 73.54% for Z-score 1). Both these results with the inclusion of Z-scores report significant higher predictability power than that of control variables only. These results confirm that the Z-score alone is a good predictor of bank failure.

# Z-SCORE VERSUS MERTON DISTANCE-TO-DEFAULT MEASURE

In addition to the examination of the predictability of Z-scores to bank failure, we also examine to what extent Z-score, the accounting measure of bank distance-todefault, is consistent with the market price based Merton distance-to-default (DD), which is based on Merton's (1974) bond pricing model. Studies have demonstrated the ability of DD measures to predict default risk (Elton et al., 2001; Gropp et al., 2002; Vassalou and Xing, 2004). Kato and Hagendorff (2010) analyze the extent to which distance to default based on market data can be explained using accounting-based indicators of risk for a sample of U.S. bank holding companies. They show that a large number of bank fundamentals help to predict default for institutions that issue subordinated debt. However, they do not study the impact of Z-score on Merton DD. Gropp et al. (2002) empirically test European banks' distances-to-default and subordinated bond spreads in relation to their capability of anticipating a material weakening in banks' financial conditions. They use two different econometric models: a logit-model and a proportional hazard model. They find support in favor of using both indicators as leading indicators of bank fragility, regardless of the econometric specification. The predictive performance of the distance-to-default indicator is found to be robust between 6 to 18 months in advance, its predictive properties are quite poor closer to default.

We follow Bharath and Shumway's (2008) method to estimate the Merton DD model.<sup>7</sup> We examine all U.S. banks in the CRSP/Compustat Merged Database from 2003 to 2012, and then merged with CRSP to obtain stock price data. To examine the correlation between Z-scores and DD measure, we run a series of regressions

<sup>&</sup>lt;sup>7</sup>The SAS commands for estimating the DD model can be found in Bharath and Shumway (2008).

|                          | Z-sc                                | ore 1                                | Z-sc                                   | ore 2                                    | Z-sc                                   | ore 3              | Z-80                                   | core 4             |                              |
|--------------------------|-------------------------------------|--------------------------------------|----------------------------------------|------------------------------------------|----------------------------------------|--------------------|----------------------------------------|--------------------|------------------------------|
|                          |                                     | lnZ and<br>control                   |                                        | lnZ and<br>control                       |                                        | lnZ and<br>control |                                        | InZ and<br>control | Control variables            |
| Deciles                  | lnZ only                            | variables                            | lnZ only                               | variables                                | lnZ only                               | variables          | lnZ only                               | variables          | only                         |
| 10                       | 0.6159                              | 0.6431                               | 0.5923                                 | 0.6304                                   | 0.5996                                 | 0.6394             | 0.6195                                 | 0.6394             | 0.4362                       |
| 6                        | 0.1195                              | 0.0960                               | 0.1340                                 | 0.1014                                   | 0.1340                                 | 0.0942             | 0.1159                                 | 0.1068             | 0.1944                       |
| 8                        | 0.0797                              | 0.0815                               | 0.0851                                 | 0.0923                                   | 0.0742                                 | 0.0905             | 0.0797                                 | 0.0778             | 0.0996                       |
| 7                        | 0.0452                              | 0.0489                               | 0.0416                                 | 0.0434                                   | 0.0489                                 | 0.0434             | 0.0507                                 | 0.0452             | 0.0915                       |
| 9                        | 0.0380                              | 0.0326                               | 0.0398                                 | 0.0271                                   | 0.0380                                 | 0.0307             | 0.0489                                 | 0.0434             | 0.0522                       |
| 1-5                      | 0.1014                              | 0.0978                               | 0.1068                                 | 0.1050                                   | 0.1050                                 | 0.1014             | 0.0851                                 | 0.0869             | 0.1258                       |
| This table<br>on the who | reports the freq<br>de period (2002 | uencies of defau<br>t-2012), present | ult events by dec<br>ted in Table 4. D | ciles of the distr<br>Decile 10 (1) is t | ibution of the p<br>he decile with the | he highest (lowe   | ilities for the co<br>est) predicted p | robabilities of fa | g-log model<br>ilure events. |
| TILE TRIONE              | IN ITS LESIEN VII VI                | TITALLI VALIAUIO                     | OI IIICICN, I.C.                       | ., ule llaural lui                       | galiulli ui uic z                      | T-SCOID (IIIZ), U  | ic iiaui ai iugai                      | ne-7 am 10 mm      | one bins me                  |

control variables and on the control variables only (see last column).

 Table 5: Default Forecasts

|                 | (1)         | (2)          | (3)          |
|-----------------|-------------|--------------|--------------|
| InZ (Z-score 1) | $0.737^{*}$ |              |              |
|                 | (0.093)     |              |              |
| lnZ (Z-score 2) |             | $0.900^{**}$ |              |
|                 |             | (0.017)      |              |
| lnZ (Z-score 3) |             |              | $0.846^{**}$ |
|                 |             |              | (0.021)      |
| Constant        | 1.384       | 0.694        | 0.920        |
|                 | (0.407)     | (0.626)      | (0.501)      |
| N. of Obs.      | 5,689       | 5,795        | 5,795        |
| Hansen          | 0.47        | 0.34         | 0.38         |
| AR (2)          | 0.98        | 0.96         | 0.97         |

Table 6: Comparison With Merton Distance Default (DD) Model

This table compares the Z-score by Merton (1974) distance default model. The three different types of the Z-score used are described in the Appendix. We follow Bharath and Shumway's (2008) method to estimate the DD model. We examine all banks in the CRSP/Compustat Merged Database from 2004 to 2012, and then merged with CRSP for stock price data. We use System GMM estimator with Windmeijer correction to all the regressions to address the potential endogeneity between the two bank stability measures. Hansen is the p-value of Hansen test statistic of over-identifying restrictions, while AR(2) is the p-value the second order autocorrelation test statistic.\*\*\*, \*\*, and \* denote the statistical significance level at 1%, 5% and 10% respectively.

with the dependent variable being the DD measure, while the independent variable being different measures of Z-scores. Since both are bank risk measures, we use system generalized method of moments (GMM) estimator to treat the potential endogeneity issue between them. The results are reported in Table 6, where we observe that all our Z-score measures are significantly and positively correlated with the DD measure, which indicates that the accounting and market based bank risk measures are consistent with one another. This is the first attempt, to the authors' best knowledge, to examine the consistency of the accounting and market based bank risk measures and it strengthens the results in the previous sections that Z-score is an informative and reliable measure for bank risk.

### **ROBUSTNESS TESTS**

In light of the numerous failure events that characterized the U.S. banking industry during the recent years, we investigate the suitability of the Z-score as a measure of bank risk during and after the crisis period of 2007–2012. Table 7 presents the complementary log-log models estimation results and displays the relationship between model predictions and actual failure events (see Type I and II errors) using a cut-off point equals to 1%. We test the model on the Z-score alone, the model with the combination of Z-score and the common bank- and macro level control variables and the model with the sole control variables.

| Table 7: Con | plementary           | Log-log Mod               | lel Estimatio             | ns Results an             | id Type I and             | d II Errors in            | the Financi          | al Crisis Peri            | od                |
|--------------|----------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------|---------------------------|-------------------|
|              | Z-sc                 | ore 1                     | Z-sco                     | ore 2                     | Z-sco                     | ore 3                     | Z-scc                | ore 4                     |                   |
|              |                      | InZ and<br>the<br>control |                           | InZ and<br>the<br>control |                           | InZ and<br>the<br>control |                      | InZ and<br>the<br>control | Control variables |
| Variables    | lnZ only             | variables                 | lnZ only                  | variables                 | lnZ only                  | variables                 | lnZ only             | variables                 | only              |
| lnZ (-1)     | -0.879***<br>(0.030) | $-0.850^{***}$<br>(0.033) | $-1.020^{***}$<br>(0.042) | -0.960***<br>(0.046)      | $-0.994^{***}$<br>(0.038) | -0.935***<br>(0.042)      | -0.837***<br>(0.027) | $-0.820^{***}$<br>(0.031) |                   |
| SIZE $(-1)$  |                      | 0.170***                  |                           | $0.190^{***}$             |                           | 0.179***                  | ~                    | 0.152***                  | $0.304^{***}$     |
|              |                      | (0.032)                   |                           | (0.031)                   |                           | (0.031)                   |                      | (0.031)                   | (0.031)           |
| (I-) AIM     |                      | -0.009<br>(0.004)         |                           | -0.011<br>(0.004)         |                           | -0.010<br>(0.004)         |                      | -0.010<br>(0.004)         | (0.007)           |
| LIQ (-1)     |                      | $-0.012^{*}$              |                           | $-0.011^{*}$              |                           | $-0.011^{*}$              |                      | $-0.010^{*}$              | $-0.016^{**}$     |
|              |                      | (0.005)                   |                           | (0.005)                   |                           | (0.005)                   |                      | (0.005)                   | (0.004)           |
| NPL (-1)     |                      | $0.388^{***}$             |                           | $0.400^{***}$             |                           | $0.379^{***}$             |                      | $0.412^{***}$             | $0.686^{***}$     |
|              |                      | (0.094)                   |                           | (0.093)                   |                           | (0.093)                   |                      | (0.094)                   | (0.094)           |
| CIR (-1)     |                      | 0.001                     |                           | $0.005^{**}$              |                           | $0.005^{*}$               |                      | -0.0003                   | $0.015^{***}$     |
|              |                      | (0.002)                   |                           | (0.002)                   |                           | (0.002)                   |                      | (0.002)                   | (0.001)           |
| GDPC (-1)    |                      | $-0.224^{***}$            |                           | $-0.272^{***}$            |                           | $-0.243^{***}$            |                      | $-0.215^{***}$            | $-0.196^{***}$    |
|              |                      | (0.032)                   |                           | (0.033)                   |                           | (0.032)                   |                      | (0.032)                   | (0.031)           |
| INF(-1)      |                      | $1.012^{***}$             |                           | $1.083^{***}$             |                           | $1.027^{***}$             |                      | $0.956^{***}$             | $0.642^{***}$     |
|              |                      | (0.111)                   |                           | (0.112)                   |                           | (0.111)                   |                      | (0.111)                   | (0.109)           |
| HHI (-1)     |                      | $0.020^{***}$             |                           | $0.022^{***}$             |                           | $0.021^{***}$             |                      | $0.020^{***}$             | $0.017^{***}$     |
|              |                      | (0.002)                   |                           | (0.002)                   |                           | (0.002)                   |                      | (0.002)                   | (0.002)           |
| BHC dummy    |                      | 0.066                     |                           | 0.015                     |                           | -0.023                    |                      | 0.107                     | 0.001             |
|              |                      | (0.120)                   |                           | (0.121)                   |                           | (0.121)                   |                      | (0.121)                   | (0.128)           |
|              |                      |                           |                           |                           |                           |                           |                      | 3                         | Continued)        |

350

|                                                                                                                                                                                           | Z-sc                                                                                                                                                                         | core 1                                                                                                                                                                       | Z-sc                                                                                                                                                                      | sore 2                                                                                                                                                                    | Z-S(                                                                                                                                                              | core 3                                                                                                                                                                        | Z-S(                                                                                                                                                                                         | core 4                                                                                                                                                                   |                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables                                                                                                                                                                                 | lnZ only                                                                                                                                                                     | lnZ and<br>the<br>control<br>variables                                                                                                                                       | lnZ only                                                                                                                                                                  | lnZ and<br>the<br>control<br>variables                                                                                                                                    | lnZ only                                                                                                                                                          | lnZ and<br>the<br>control<br>variables                                                                                                                                        | lnZ only                                                                                                                                                                                     | lnZ and<br>the<br>control<br>variables                                                                                                                                   | Control<br>variables<br>only                                                                                                                       |
| Year dummies<br>N. of Obs.                                                                                                                                                                | Yes<br>37,714                                                                                                                                                                | Yes<br>37,710                                                                                                                                                                | Yes<br>37,714                                                                                                                                                             | Yes<br>37,710                                                                                                                                                             | Yes<br>37,714                                                                                                                                                     | Yes<br>37,710                                                                                                                                                                 | <i>Yes</i><br>37,714                                                                                                                                                                         | Yes<br>37,710                                                                                                                                                            | <i>Yes</i><br>39,103                                                                                                                               |
| TP<br>TP                                                                                                                                                                                  | 413                                                                                                                                                                          | 410                                                                                                                                                                          | 415                                                                                                                                                                       | 409                                                                                                                                                                       | 413                                                                                                                                                               | 407                                                                                                                                                                           | 412                                                                                                                                                                                          | 414                                                                                                                                                                      | 426                                                                                                                                                |
| FP                                                                                                                                                                                        | 101<br>11,884                                                                                                                                                                | 104<br>11,475                                                                                                                                                                | 99<br>12,580                                                                                                                                                              | c01<br>11,999                                                                                                                                                             | 101<br>12,250                                                                                                                                                     | 1070111,765                                                                                                                                                                   | 102 11,930                                                                                                                                                                                   | 11,570                                                                                                                                                                   | 1111<br>19,617                                                                                                                                     |
| LN                                                                                                                                                                                        | 25,316                                                                                                                                                                       | 25,721                                                                                                                                                                       | 24,620                                                                                                                                                                    | 25,197                                                                                                                                                                    | 24,950                                                                                                                                                            | 25,431                                                                                                                                                                        | 25,270                                                                                                                                                                                       | 25,626                                                                                                                                                                   | 18,949                                                                                                                                             |
| Type I<br>Type II                                                                                                                                                                         | 0.196<br>0.319                                                                                                                                                               | 0.202<br>0.308                                                                                                                                                               | $0.192 \\ 0.338$                                                                                                                                                          | 0.204<br>0.322                                                                                                                                                            | $0.196 \\ 0.329$                                                                                                                                                  | 0.208<br>0.316                                                                                                                                                                | $0.198 \\ 0.320$                                                                                                                                                                             | $0.194 \\ 0.311$                                                                                                                                                         | 0.206<br>0.508                                                                                                                                     |
| This table shows<br>our main variable<br>only (see last col<br>control variables<br>errors of the estii<br>and 10% levels ii<br>full sample for th<br>FP stands for 'Fa<br>as: FN/(FN+TP) | a comparison<br>a of interest) a<br>umn). Each re-<br>used in this p<br>mated coeffici<br>n two-tailed te:<br>he whole perio<br>lse Positive'; <sup>7</sup><br>Type II error | t of the comple<br>luone and with th<br>sgressions is tes<br>aper are descril<br>ents are report<br>sts, respectively<br>of (see Panel A<br>TN stands for "<br>occurs when a | mentary log-lc<br>the control vari<br>ted on the crisi<br>bed in the App<br>ed in parenthes<br>y. This table als<br>) using a cut-o<br>True Negative'<br>t healthy bank i | g model result<br>ables. Finally,<br>is period, 2007-<br>endix. Year du<br>ese. ***, **, an<br>o displays the<br>ff point equals<br>. Type I error c<br>is falsely identi | s obtained usi<br>we also test th<br>-2012 (latest c<br>mmy variable:<br>id * denote co<br>relationship bu<br>to 0.01. TP st<br>ccurs when th<br>fifed as failed. | ng alternatively<br>ne complement:<br>lata available).<br>s are also incor<br>efficients statis<br>etween model I<br>ands for 'True<br>ne model fails t<br>(i.e., a false ala | <ul> <li>the four diffe<br/>ary log-log mc</li> <li>The different -<br/>porated in the<br/>ficcally different and<br/>predictions and<br/>Positive'; FN</li> <li>o identify the f</li> </ul> | rent Z-score m<br>del on the cont<br>types of the Z-s<br>model. The rot<br>nt from zero at<br>actual failure (<br>stands for 'Fals<br>failed bank and<br>mputed as: FP/( | easures (i.e.,<br>rol variables<br>core and the<br>oust standard<br>the $1\%$ , $5\%$ ,<br>events on the<br>e Negative';<br>is computed<br>FP+TN). |

| Table 8:  | Complei                  | mentary L      | og-log Md                | odel Estin               | nations Re | sults (Co | mponents  | of lnZ an | d its Lag      | (bed)     |           |                |
|-----------|--------------------------|----------------|--------------------------|--------------------------|------------|-----------|-----------|-----------|----------------|-----------|-----------|----------------|
|           |                          | 1              | 1)                       |                          |            | (2)       | (1)       |           |                |           |           |                |
| Variables | Z-score 1                | Z-score 2      | Z-score 3                | Z-score 4                | Z-score 1  | Z-score 2 | Z-score 3 | Z-score 4 | Z-score 1      | Z-score 2 | Z-score 3 | Z-score 4      |
| lnZ (-2)  |                          |                |                          |                          | -0.581***  | -0.630*** | -0.628*** | -0.562*** |                |           |           |                |
| lnZ (-3)  |                          |                |                          |                          | (0.033)    | (0.041)   | (0.039)   | (0.030)   | $-0.438^{***}$ | -0.457*** | -0.456*** | $-0.437^{***}$ |
| ETA       | -0.099***                |                |                          |                          |            |           |           |           | (0.038)        | (0.042)   | (0.041)   | (0.034)        |
| ROA       | (0.028)<br>$0.059^{***}$ |                | $-0.095^{**}$            |                          |            |           |           |           |                |           |           |                |
| σroa      | (0.013)<br>$0.286^{***}$ |                | (0.034)<br>$0.233^{***}$ |                          |            |           |           |           |                |           |           |                |
| A_ETA     | (170.0)                  | $-0.102^{*}$   | $(0.050)^{+}$            |                          |            |           |           |           |                |           |           |                |
| A_ROA     |                          | $-0.197^{***}$ | (/10.0)                  |                          |            |           |           |           |                |           |           |                |
| σa_roa    |                          | 0.380***       |                          |                          |            |           |           |           |                |           |           |                |
| TIER 1    |                          | (100.0)        |                          | -0.0006                  |            |           |           |           |                |           |           |                |
| RATIO     |                          |                |                          | (0.001)                  |            |           |           |           |                |           |           |                |
| K_KWA     |                          |                |                          | -0.012 (0.005)           |            |           |           |           |                |           |           |                |
| σr_Rwa    |                          |                |                          | $0.0007^{*}$<br>(0.0003) |            |           |           |           |                |           |           |                |
|           |                          |                |                          |                          |            |           |           |           |                |           |           | Continued)     |

|                                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                                                                    | (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                            |                                                                                                                                                                       | 0                                                                                                                                                             | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          | 3)                                                                                                                                                                                                |                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Variables                                                                                                                                                                                                           | Z-score 1                                                                                                                                                   | Z-score 2                                                                                                                                                                          | Z-score 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Z-score 4                                                                                                                                                                                  | Z-score 1                                                                                                                                                             | Z-score 2                                                                                                                                                     | Z-score 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z-score 4                                                                                                                 | Z-score 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z-score 2                                                                                                                                                                                | Z-score 3                                                                                                                                                                                         | Z-score 4                                                                                                                                        |
| Year dummies                                                                                                                                                                                                        | Yes                                                                                                                                                         | Yes                                                                                                                                                                                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes                                                                                                                                                                                        | Yes                                                                                                                                                                   | Yes                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                                                                                                                       | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Yes                                                                                                                                                                                      | Yes                                                                                                                                                                                               | Yes                                                                                                                                              |
| N. of Obs.                                                                                                                                                                                                          | 58,125                                                                                                                                                      | 42,555                                                                                                                                                                             | 58,125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58,125                                                                                                                                                                                     | 50,247                                                                                                                                                                | 50,247                                                                                                                                                        | 50,247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 50,247                                                                                                                    | 42,654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 42,654                                                                                                                                                                                   | 42,654                                                                                                                                                                                            | 42,654                                                                                                                                           |
| Type Errors:                                                                                                                                                                                                        |                                                                                                                                                             |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                            |                                                                                                                                                                       |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                          |                                                                                                                                                                                                   |                                                                                                                                                  |
| TP                                                                                                                                                                                                                  | 432                                                                                                                                                         | 391                                                                                                                                                                                | 443                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 442                                                                                                                                                                                        | 407                                                                                                                                                                   | 406                                                                                                                                                           | 404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 407                                                                                                                       | 389                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 388                                                                                                                                                                                      | 388                                                                                                                                                                                               | 388                                                                                                                                              |
| FN                                                                                                                                                                                                                  | 120                                                                                                                                                         | 105                                                                                                                                                                                | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120                                                                                                                                                                                        | 118                                                                                                                                                                   | 119                                                                                                                                                           | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 118                                                                                                                       | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 112                                                                                                                                                                                      | 112                                                                                                                                                                                               | 112                                                                                                                                              |
| FP                                                                                                                                                                                                                  | 19,236                                                                                                                                                      | 18,596                                                                                                                                                                             | 20,477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20,460                                                                                                                                                                                     | 17,256                                                                                                                                                                | 17,687                                                                                                                                                        | 17,400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 17,201                                                                                                                    | 19,086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19,168                                                                                                                                                                                   | 19,110                                                                                                                                                                                            | 18,925                                                                                                                                           |
| NT                                                                                                                                                                                                                  | 38,337                                                                                                                                                      | 23,463                                                                                                                                                                             | 37,096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37,103                                                                                                                                                                                     | 32,466                                                                                                                                                                | 32,035                                                                                                                                                        | 32,322                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32,521                                                                                                                    | 23,068                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22,986                                                                                                                                                                                   | 23,044                                                                                                                                                                                            | 23,229                                                                                                                                           |
| Type I                                                                                                                                                                                                              | 0.217                                                                                                                                                       | 0.211                                                                                                                                                                              | 0.211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.213                                                                                                                                                                                      | 0.224                                                                                                                                                                 | 0.226                                                                                                                                                         | 0.230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.224                                                                                                                     | 0.222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.224                                                                                                                                                                                    | 0.224                                                                                                                                                                                             | 0.224                                                                                                                                            |
| Type II                                                                                                                                                                                                             | 0.334                                                                                                                                                       | 0.442                                                                                                                                                                              | 0.355                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.355                                                                                                                                                                                      | 0.347                                                                                                                                                                 | 0.355                                                                                                                                                         | 0.349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.345                                                                                                                     | 0.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.454                                                                                                                                                                                    | 0.453                                                                                                                                                                                             | 0.448                                                                                                                                            |
| This table repo-<br>logarithm of the<br>in the Appendit<br>progress) and 0<br>of each tail of e<br>The robust star<br>the 1%, 5%, and<br>on the full sam<br>0.01 and we ob<br>Negative'. Type<br>is falselv identit | rts the resul<br>e Z-score (I.<br>x. The dep()<br>otherwise.<br>ach variable<br>dard errors<br>d 10% leve<br>ple for the v<br>tained very<br>s 1 error occy | Its obtained<br>mZ) and (2) or<br>endent varia<br>All explama<br>e. Year dumu<br>of the estim<br>whole perioo<br>similar resu<br>urrs when the<br>urrs when the<br>d (i.e., a fail | testing the c<br>ble (second li<br>ble (the cdef<br>tory variable<br>my variable<br>my variable<br>my variable<br>my variable<br>my variable<br>my variable<br>the coeffic<br>led tests, res<br>led tests, res<br>to using a cu<br>thus and the coeffic<br>led tests, res<br>and et coeffic<br>and a coeffic<br>led tests, res<br>and et coeffic<br>and a coeffic<br>an | complement<br>ag and (3) th<br>aulted bank<br>aulted bank<br>as are lagger<br>sear also inc<br>zients are re<br>spectively. 7<br>af point<br>s for "True 1<br>s to identify<br>d is comput | ary log-log<br>third lag (<br>d by one year<br>corporated in p<br>ported in p<br>This table al<br>corparates to 0.<br>Positive'; Flue<br>the failed b<br>the failed b | models ove<br>of the Z-sco<br>arriable) that<br>ar. To mitiga<br>are the model<br>arentheses.<br>Iso displays<br>01. We alsos<br>01. We alsos<br>and and is ( | r the whole<br>re. The diffi<br>takes the v<br>are the effect<br>are the effect<br>the relation<br>the relation<br>there the ore<br>vested the v<br>tesse | period 200<br>erent types,<br>alue of 1 it<br>ings were of<br>ings were of<br>iship betwee<br>regressions<br>ative': FP s | 4–2012 for<br>of Z-score a<br>f bank <i>i</i> bee a<br>t, we winson<br>the winson the winson t | : (1) the corr<br>and their con<br>comes failed<br>rize observating<br>gunconsoliti<br>statistically<br>redictions am<br>redictions am<br>off point eq<br>alse Positive<br>I error occur | pronents of apponents of apponents of apponents are $t$ (itions in the $t$ dated bank, dated bank and actual fai and actual fai ural to 0.10 ural to 0.10 s <sup>2</sup> ; TN stand res when a he | the natural<br>c described<br>the year in<br>outside 1%<br>statements.<br>om zero at<br>lure events<br>rather than<br>is for "True<br>althy bank |

 Table 8: (Continued)

Our variable of interest, lnZ, remains highly significant during the period of 2007–2012. The bottom of Table 7 highlights that during this period, the Z-score can predict bank failures with an accuracy of 81% (see Type I errors). The results for Type II errors also confirm the best predictive power of the Z-score, especially compared to the control variables alone.<sup>8</sup>

We further test whether, and to which extent, the single components of the natural logarithm of the Z-score affect the probability of bank failure (see results (1) of Table 8).<sup>9</sup> To this aim we re-estimate the complementary log-log model on the whole period (2003-2012), but only for our main variables of interest, the Z-scores, given that the contribution of the control variables is only marginal as shown in Table 4. Results (1) of Tables 8 show that, regardless of how the Z-score is computed, all the three components significantly affect the bank probability of failure, with the exception of the Tier 1 ratio being insignificant.

Finally, we check whether Z-score has predictive power two or three years before the failure (see results (2) and (3) of Table 8). Therefore, we test the complementary log-log model firstly on a two-year lag and then on a three-year lag of the natural logarithm of the Z-score. We find in the results (2) and (3), that lnZ is strongly significant both in two and three years before failure with the expected negative sign. These results indicate that Z-score has the ability to predict bank failure even two to three years before the failure events.

#### V. CONCLUSIONS

Understanding the accuracy of measures of bank soundness that are widely used in the empirical banking literature is an important theme. The numerous bank failures in modern times, especially those during the 2007–09 global financial crisis, highlight the urgency and need of effective, transparent and easy to implement predictors for bank failures.

In this empirical study, we examine the accuracy and the contribution of the Boyd and Graham (1986) Z-score in predicting bank failures, based on three main analyses and several robustness tests. First, we incorporate various versions of Z-score into a complementary log-logistic model to forecast bank failure from 2003 through 2012. We find that Z-score is able to predict bank failures with the accuracy of on average 76%, while adding a set of other bank- and macro-level variables can only marginally increase the model's predictability. Second, we compare the short-term, out-of-sample forecasting ability of Z-score and find that the lowest two deciles of Z-score can predict on average 74% of bank failures. We also examine whether the accounting value based distance-to-default measure Z-score is highly correlated with the market based Merton distance-to-default (DD) measure. We find that Z-score is a significant determinant factor of Merton

<sup>&</sup>lt;sup>8</sup>Following Barath and Shumway (2008), we also assess the accuracy of our complementary log-log model for the 2007-09 financial crisis time period in an unreported analysis. Our main results hold.
<sup>9</sup>The components of the lnZ are lagged by one year.

DD measure, indicative of high correlation between the two widely used bank risk measures. Furthermore, we find that Z-score alone can predict bank default with three years in advance. Finally, our main results survive the several robustness checks including testing the predicting power of the Z-score for the crisis and post-crisis period (2007–2012) and testing the single components of the natural logarithm of the Z-score affect the probability of bank failures. Based on the consistent and strong empirical evidence documented in this study, we conclude that Z-score is a useful and sufficient predictor for forecasting bank failure.

Our research provides noteworthy contributions to the literature. The obtained empirical results justify the extensive use of this bank risk measure by both academic researchers and practitioners. The advantage of Z-score as a simple measure, and its non-reliance on the publicly traded status of the bank makes it widely applicable to both private and publicly listed banks, and suitable to improve information environment for both retail and institutional investors. In addition, our evidence of establishing Z-score as an effective predictor for bank failure also suggests that accounting quality of banks' earnings and equity is crucial for investors to derive unbiased judgment of bank failure risk. Thus our research calls for further studies aimed to investigate the effects of managerial incentives and various regulations on bank earnings management that could potentially lead to systemically underestimating bank risk.

# VI. APPENDIX: VARIABLE DEFINITIONS

This appendix describes the natural logarithm of the Z-score (i.e., our main variable of interest) computed in our paper following the different approaches developed by the literature for its construction and the definition of the control variables used. The table summarizes also their hypothesized relationships with the dependent variable (the failed bank dummy variable).

| Variables         | Definition                                                                                                                                                                                                                                                          | Expected sign |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Main variables of | interest:                                                                                                                                                                                                                                                           |               |
| lnZ (Z-score 1)   | The sum of equity to total assets (ETA)<br>and return on average assets (ROA)<br>over the three-year standard<br>deviation of ROA ( $\sigma_{ROA}$ ). See Boyd<br>and Graham (1986) and Hannan and<br>Hanweck (1988).                                               |               |
| lnZ (Z-score 2)   | The sum of the three-year moving<br>average of equity to total assets<br>(A_ETA) and the three-year moving<br>return of average assets (A_ROA)<br>over the three-year standard<br>deviation of A_ROA ( $\sigma_{A_{ROA}}$ ). See<br>Maecheler <i>et al.</i> (2007). |               |

| Variables          | Definition                                                                                                                                                                                                                                        | Expected sign     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| InZ (Z-score 3)    | The sum of the three-year moving<br>average of equity to total assets<br>(A_ETA) and the current values of<br>return on average assets (ROA) over<br>the three-year standard deviation of<br>ROA ( $\sigma_{ROA}$ ) See Boyd <i>et al.</i> (2006) | NEGATIVE          |
| lnZ (Z-score 4)    | The sum of tier 1 ratio (TIER 1 RATIO)<br>and return on risk weighted assets<br>(R_RWA) over the three-year<br>standard deviation of R_RWA<br>( $\sigma_{R_RWA}$ ). See Laeven and Levine<br>(2009) and Dam and Koetter (2012).                   |                   |
| Control variables: |                                                                                                                                                                                                                                                   |                   |
| SIZE               | Natural logarithm of total assets (thousands of dollars)                                                                                                                                                                                          | POSITIVE/NEGATIVE |
| DIV                | The ratio of Non-interest income to net operating revenue                                                                                                                                                                                         | NEGATIVE          |
| LIQ                | The ratio of the sum of cash, for sale<br>securities and federal funds sold to<br>total assets                                                                                                                                                    | NEGATIVE          |
| NPL                | The ratio of Non-performing loans to total assets                                                                                                                                                                                                 | POSITIVE          |
| CIR                | The ratio of Operating expenses to<br>operating income                                                                                                                                                                                            | POSITIVE          |
| BHC dummy          | 1 if the bank is a member of a BHC; 0<br>otherwise                                                                                                                                                                                                | NEGATIVE          |
| GDPC               | Annual percentage change of gross<br>domestic product                                                                                                                                                                                             | NEGATIVE          |
| INF                | Inflation rate (annual percentage change of GDP deflator)                                                                                                                                                                                         | POSITIVE          |
| нні                | Sum of the squared market share value<br>(in term of total assets) of all banks<br>in a year                                                                                                                                                      | POSITIVE/NEGATIVE |

#### **VII. REFERENCES**

- Acharya, V., L. Pedersen, T. Philippon, and M. Richardson. 2012. "Measuring Systemic Risk." Centre for Economic Policy Research (CEPR) Discussion Paper, No. 8824.
- Adams, R. and H. Mehran. 2003. "Is Corporate Governance Different for Bank Holding Companies?" *Economic Policy Review* 9:123–142.
- Akins, B., L. Li, J. Ng, and T.O. Rusticus. 2016. "Bank Competition and Financial Stability: Evidence from the Financial Crisis." *Journal of Financial and Quantitative Analysis* 51:1:1–28.

- Allen, F. and D. Gale. 2000. "Financial Contagion." *Journal of Political Economy* 108:1–33.
- Allen, F. and D. Gale. 2004. "Competition and Systemic Stability." Journal of Money, Credit and Banking 36:453–480.
- Allen, L. and J. Jagtiani. 2000. "The Risk Effects of Combing Banking, Securities, and Insurance Activities." *Journal of Economics and Business* 52:485–497.
- Altman, E. 1968. "Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy." *Journal of Finance* 22:550–612.
- Altman, E. 2000. "Predicting Financial Distress of Companies: Revisiting the Z-Score and Zeta Models." Unpublished Paper, NYU Stern School of Business.
- Altman, E., R. Haldeman, and P. Narayanan. 1977. "Zeta Analysis: A New Model to Identify Bankruptcy Risk of Corporations." *Journal of Banking and Finance* 1:29–54.
- Balcaen, S. and H. Ooghe. 2006. "35 Years of Studies on Business Failure: An Overview of the Classic Statistical Methodologies and Their Related Problems." *British Accounting Review* 38:63–93.
- Beck, T. and L. Laeven. 2006. "Resolution of Failed Banks by Deposit Insurers: Cross-Country Evidence." World Bank Policy Research Working Paper 3920.
- Beck, T., O. De Jonghe, and G. Schepens. 2013. "Bank Competition and Stability: Cross-Country Heterogeneity." *Journal of Financial Intermediation* 22:218–244.
- Berger, A.N., S. Bonime, L.G. Goldberg, and L.J. White. 2004. "The Dynamics of Market Entry: They Effects of Mergers and Acquisitions on Entry in The Banking Industry." *Journal of Business* 77:797–834.
- Betz, F., S. Oprica, T.A. Peltonen, and P. Sarlin. 2014. "Predicting Distress in European Banks." *Journal of Banking and Finance* 45:225–241.
- Bharath, S.T. and T. Shumway. 2008. "Forecasting Default With the Merton Distance to Default Model." *Review of Financial Studies* 21:1339–1369.
- Billio, M., M. Getmansky, A.W. Lo, and L. Pelizzon. 2012. "Econometric Measures of Connectedness and Systemic Risk in the Finance and Insurance Sectors." *Journal of Financial Economics* 104:535–559.
- Boyd, J. and D.E. Runkle. 1993. "Size and Performance of Banking Firms." *Journal of Monetary Economics* 31:47–67.
- Boyd, J. and G. De Nicolò. 2005. "The Theory of Bank Risk Taking and Competition Revisited." *Journal of Finance* 60:1329–1343.
- Boyd, J.H. and S.L. Graham. 1986. "Risk, Regulation, and Bank Holding Company Expansion into Nonbanking." Quarterly Review – Federal Reserve Bank of Minneapolis 10.
- Brown, C.O. and I.S. Dinc. 2011. "Too Many to Fail? Evidence of Regulatory Forbearance When the Banking Sector is Weak." *Review of Financial Studies* 24:1378–1405.
- Carletti, E. 2008. "Competition and Regulation in Banking." In *Handbook of Financial Intermediation and Banking*, eds., A. Boot and A. Thakor. Elsevier.

- Cheng, Q., T. Warfield, and M. Ye. 2011. "Equity Incentives and Earnings Management: Evidence from the Banking Industry." *Journal of Accounting*, *Auditing and Finance* 26:317–349.
- Chiaramonte, L., F. Poli, and M.E. Oriani. 2015. "Are Cooperative Banks a Lever for Promoting Bank Stability? Evidence from the Recent Financial Crisis in OECD Countries." *European Financial Management* 21:491–523.
- Dam, L. and M. Kotter. 2012. "Bank Bailouts and Moral Hazard: Evidence from Germany." *Review of Financial Studies* 25:2343–2380.
- De Jonghe, O.G. 2010. "Back to the Basics in Banking? A Micro-Analysis of Banking System Stability." *Journal of Financial Intermediation* 19:387–417.
- De Nicoló, G. 2000. "Size, Charter Value and Risk in Banking: An International Perspective." EFA 2001 Barcelona Meetings; FRB International Finance Discussion Paper N. 689.
- Demirgüç Kunt, A. and H. Huizinga. 2010. "Bank Activity and Funding Strategies: the Impact on Risk and Returns." *Journal of Financial Economics* 98:626–650.
- Demyanyk, Y. and I. Hasan. 2010. "Financial Crises and Bank Failures: A Review of Prediction Methods." *Omega* 38:315–324.
- DeYoung, R. and K.P. Roland. 2001. "Product Mix and Earnings Volatility at Commercial Banks: Evidence from a Degree of Total Leverage Model." *Journal of Financial Intermediation* 10:54–84.
- DeYoung, R. and G. Torna. 2013. "Nontraditional Banking Activities and Bank Failures During the Financial Crisis." *Journal of Financial Intermediation* 22:397–421.
- Eckles, D. L., M. Halek, E. He, D.W. Sommer, and R. Zhang. 2011. "Earnings Smoothing, Executive Compensation, and Corporate Governance: Evidence from the Property–Liability Insurance Industry." *Journal of Risk and Insurance* 78:761–790.
- Elton E. J., M.J. Gruber, D. Agrawal, and C. Mann. 2001. "Explaining the Rate Spread on Corporate Bonds." *Journal of Finance* 56:247–277.
- Erkens, D. H., M. Hung, and P. Matos. 2012. "Corporate Governance in the 2007–2008 Financial Crisis: Evidence from Financial Institutions Worldwide." *Journal of Corporate Finance* 18:389–411.
- Gorton, G. and A. Metrick. 2012. "Securitized Banking and the Run on Repo." Journal of Financial Economics 104:425–451.
- Gropp, R., J. Vesala, and G. Vulpes. 2002. "Equity and Bond Market Signals as Leading Indicators of Bank Fragility." ECB Working Paper No. 150, Frankfurt.
- Guo, G. 1993. "Event-History Analysis for Left-Truncated Data." *Sociological Methodology* 23:217–243.
- Hannan, T.H. and G.A. Hanweck. 1988. "Bank Insolvency Risk and the Market for Large Certificates of Deposit." *Journal of Money, Credit and Banking* 20:203– 211.
- Huizinga, H. and L. Laeven. 2012. "Bank Valuation and Accounting Discretion During a Financial Crisis." *Journal of Financial Economics* 106:614– 634.

- Ivashina, V. and D. Scharfstein. 2010. "Bank Lending During the Financial Crisis of 2008." *Journal of Financial economics* 97:319–338.
- Jin, J. Y., K. Kanagaretnam and G.J. Lobo. 2011. "Ability of Accounting and Audit Quality Variables to Predict Bank Failure During the Financial Crisis." *Journal of Banking and Finance* 35:2811–2819.
- Kato, P. and J. Hagendorff. 2010. "Distance to Default, Subordinated Debt, and Distress Indicators in the Banking Industry." *Accounting and Finance* 50:853–870.
- Kilic, E., G.J. Lobo, T. Ranasinghe, and K. Sivaramakrishnan. 2012. "The Impact of SFAS 133 on Income Smoothing by Banks Through Loan Loss Provisions." *Accounting Review* 88:233–260.
- Kumar, R.P. and V. Ravi. 2007. "Bankruptcy Prediction in Banks and Firms Via Statistical and Intelligent Techniques – A Review." *European Journal of Operational Research* 180:1–28.
- Laeven, L. and R. Levine. 2009. "Bank Governance, Regulation and Risk Taking." Journal of Financial Economics 93:259–275.
- Liu H., P. Molyneux, and J.O.S. Wilson. 2013. "Competition and Stability in European Banking: A Regional Analysis." The Manchester School N. 81:176– 201.
- Maecheler, A.M., M. Srobona, and W. DeLisle. 2007. "Decomposing Financial Risks and Vulnerabilities in Eastern Europe." International Monetary Fund Working Paper 248.
- Männasoo, K. and D.G. Mayes. 2009. "Explaining Bank Distress in Eastern European Transition Economies." *Journal of Banking and Finance* 33: 244–253.
- Martinez-Miera, D. and R. Repullo. 2010. "Does Competition Reduce the Risk of Bank Failure?" *Review of Financial Studies* 23:3638– 3664.
- Merton, R.C. 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates." *Journal of Finance* 29:449–70.
- Persons, O. 1999. "Using Financial Information to Differentiate Failed vs. Surviving Finance Companies in Thailand: An Implication for Emerging Economies." *Multinational Finance Journal* 3:127–145.
- Poghosyan, T. and M. Čihák. 2011. "Distress in European Banks: An Analysis Based on a New Dataset." *Journal of Financial Services Research* 40: 163–184.
- Repullo, R. and J. Suarez. 2013. "The Procyclical Effects of Bank Capital Regulation." *Review of Financial Studies* 26:452–490.
- Stiroh, K.J. 2004. "Do Community Banks Benefit from Diversification?" *Journal* of Financial Services Research 25:135–160.
- Strobel, F. 2011. "Bank Insolvency Risk and Z-score Measures with Unimodal Returns." *Applied Economic Letters* 18:1683–1685.
- Vassalou, M. and Y. Xing. 2004. "Default Risk in Equity Returns." *Journal of Finance* 59:831–868.

# VIII. NOTES ON CONTRIBUTORS

Laura Chiaramonte is a Lecturer of Banking at the Università Cattolica del Sacro Cuore, Milan (Italy). Her research interest include the role of bank CDS in the recent financial crisis, the new liquidity rules for banks (Basel III) and the contribution of cooperative banks to financial stability. She recently published on *The European Journal of Finance, Global Finance Journal, British Accounting Review* and *European Financial Management*.

(Frank) Hong Liu is a Senior Lecturer at Adam Smith Business School, University of Glasgow. His research areas focus on banking and security issuance. His recent publication include *Journal of Banking & Finance, European Financial Management*, and *International Review of Financial Analysis*.

**Federica Poli** is an Associate Professor of Banking at the Università Cattolica del Sacro Cuore, Milan (Italy). Her main research areas pertain to bank internationalization, bank organizational models, financial distribution channels and financial innovations. She is author of several publications including published chapters of books and manuals on banking and financial intermediation She recently published on *European Financial Management* and *Global Finance Journal*.

**Mingming Zhou** is an Assistant Professor at University of Colorado at Colorado Springs, and she has been working in the area of banking, corporate finance, and emerging markets. Her recent publications include *Journal of Banking and Finance, Journal of Investing, Journal of Financial Markets, Institutions, and Instruments, Economic Development Quarterly*, etc.