IN THE NAME OF ALLAH
|

Neural Networks

Radial Basis Function Networks

Shahrood University of Technology

Hossein Khosravi

RBF vs. FFT!

» A function is radial basis (RBF) if its output depends on the
distance of the input from a given stored vector (a non-
increasing function).

» FFT Idea: Almost any signal is a combination of sinusoids of
different frequencies and amplitudes.

» RBF Idea: Almost any function can be approximated using
mixture of Gaussians with different sigma and centers.

Weighted Sum of Radial Basis Transfer Functions Weighted Sum of Radial Basis Transfer Functions

14

25

161

Output a

0.5 “I. /

RBF vs. MLP

]
In MLP E N e
/
/
/
/
/
/
e
/]
s
/’
Z
7
/
/

RBF vs. MLP

In
RBFN

v

RBF vs. MLP

Radial Basis Function Network

>

>

RBFs represent local receptors, as illustrated below, where
each green point is a stored vector used in one RBF.

In a RBF network one hidden layer uses neurons with RBF
activation functions describing local receptors. Then one
output node is used to combine linearly the outputs of the
hidden neurons.

w3 The output of the red vector is interpolated
using the three green vectors, where each
vector gives a contribution that depends on
its weight and on its distance from the red
point. In the picture we have

Wl <w3< w2

v

Radial Basis Function Network

» Approximate function with linear combination of
Radial basis functions

F(x) =2 w; h(x)

» h(X) is mostly Gaussian function

Architecture

Input layer Hidden layer Output layer

o

Three layers

» |Input layer

] Source nodes that connect the network to its
environment

» Hidden layer

) Hidden units provide a set of basis function
1 High dimensionality

» Output layer

] Linear combination of hidden functions

Radial basis function

» Design Requires

] Selection of the RBF width parameter (o)
J Number of radial basis neurons

FOO =) Wik (X)
j=1

_ 1% =)
hj(X) - exp(— 20']-2)

jis index of the hidden neuron,
X is the input vector,

U, is mean vector or prototype vector of jth neuron

and o; is the spread parameter

RBF Learning: Overview
|

» The RBF learning problem boils down to two tasks:

) How to determine the parameters associated with the
radial-basis functions in the hidden layer ¢.(x) (e.g., the
center of the Gaussians).

) How to train the hidden-to-output weights?
This part is relatively easy.

RBF as an Interpolation Problem

e mo-Dinputto 1-D output mapping s : R™0 — R,

e The map s can be thought of as a hypersurface ' C R™0 71,
— Training: fit hypersurface 1" to the training data points.
— Generalization: interpolate between data points, along the

reconstructed surface 1.

e Given {x; €e R™0|4=1,2,..., N} and N labels
{di e R'|i =1,2,...,N},find F : R — R such that

F(x;) = d; forall i.

o

RBF and Interpolation

e Interpolation is formulated as

N
F(x) =3 wig(|lx — xil]).
=1

where {o(||x — x;||)|i = 1,2,..., N} is asetof N arbitrary
(nonlinear) functions known as radial-basis functions.

e The known data points x; € R™0,7 = 1,2, ..., N are treated
as the centers of the RBFs. (Note that in this case, all input data

need to be memorized, as in instance-based learning, but this is

not a necessary requirement.)

o

RBF and Interpolation (cont’d)

N
F(x) = 3 wio(lx —xi))
=1

e So, we have /N inputs and /N hidden units, and one output unit.
Expressing everything (all /N input-output pairs) in matrix form:

- . - . - —

@11 ®12 i O1N w1 dy
$21 P22 -+ Q2N wo da2

| ¢énN1 @N2 o+ ONN | | wN | | dN |
where ¢;; = (|| x; — x; |?). We can abbreviate the

v
Input Center

above as:
ow = d.

o

RBF and Interpolation (cont’d)

e From ¢pw = d, we can find an explicit solution w:
T |
w=¢ “d,

assuming ¢ is nonsingular.

(Note: in general, the number of hidden units is much less than

the number of inputs, so we don't always have ¢ as a square
matrix! We'll see how to handle this, later.)

e Nonsingularity of ¢ is guaranteed by Micchelli’s theorem:
Let {x; l\: | be a set of distinct points in R"™0 . Then
the N -by-IN interpolation matrix ¢, whose ji-th element
is9ji = o(||x; — xi|

), is nonsingular.

o

RBF and Interpolation (cont’d)

e When mg < N (mq: number of hidden units; /N : number of
inputs), we can find w that minimizes

N
Ew) =3 (F(xi) —di)?.
=1

where F'(x) = > "0 wp ¢ (x).
e The solution involves the pseudo inverse of ¢:
il
T I i
w=(¢Tp) oTd

L 7
R, L

pseudo inverse
Note: ¢ is an N X m rectangular matrix.

e In this case, how to determine the centers of the ¢ () functions

becomes an issue.

o

Selection of Spread Parameter

The width o of Gaussian functions can be fixed according to the spread of the centres:

o = s (8.6)

where m; 1s the number of centres and d,4 15 the maximum distance between the chosen
centres. This formula ensures that the individual radial-basis functions are not too peaked or
too flat: both of these extreme conditions should be avoided.

The width o} of a Gaussian function G(x,c;) can also be calculated by so called P-nearest
neighbour heuristic. Consider a given centre ¢; and assume that ¢,, ¢,, ..., cp are P nearest
centres. Then we set

2

(8.7)

1 ¥
O = \/;ZH% G
i=1

Selection of Centers

» Random from input space
» Unsupervised (Clustering)
» Supervised (Through Learning)

» Will discussed later

Example of function approximation — large RBFN

The training data consists of 100 points.

Therefore, m1 = 100 hidden layer neurons

Centered at training samples.

All have the same width calculated from: o =

o.gz / \

0 0.2 0.4 0.6 0.8 1
b

RBFN output (dashed line)

Neural Networks ~ Shahrood University

max

NQ.
3l

0 0.2 0.4 0.6 0.8 i
x
Ensemble of 100 elementary functions

Hossein Khosravi Spring 2012

Example of function approximation — small RBFN

Training data selected randomly from the training set consist of
5 points.

RBFN has, therefore, m1 =5 hidden neurons
Centered at selected training samples.
All have the same width calculated as before.

Neural Networks ~ Shahrood University Hossein Khosravi Spring 2012

Example of function approximation — noisy data

Uniformly distributed noise from the
interval [-0.1, 0.1] was added to the training

samples

N
I A X
S N

0 "["\"\

LN

Neural Networks ~ Shahrood University

P

1]
/ "\
&
- i

— T

NI

(=) F

-0.23

Typical RBFs

Forsomec > 0,0 > 0,andr € R.

e Multiquadrics (non-local):
B(r) = (r? +*)1/?

e Inverse multiquadrics (local):

1
(T2 4 C2)1/2

6(r) =

e Gaussian functions (local):

¢(r) = exp (—;—2>

0'2

v

[X,Y] = meshgrid(-3:.125:3);
RS SRR SR TR S Z = 1./sqrt ((X.*X+Y.*Y+5));
meshc (X,Y, Z) ;

QA5 e

O d

0agdo
034

0.25

) ‘t Pl
"t“‘gtt
ot
%
g

1~ |
08+ D.Bxl
0B T
I RRE s
02 Dlz .
e e
. i |
It e e e A = LA A LR
R A L AT B
t.:.::’o o ‘:‘:ﬁ’:‘::‘t‘ . 4 2 S N Ay o
0 l. | D 2

RBF for classification problems

» Number of radial basis neurons
) By designer
1 Max of neurons = number of input samples
) Min of neurons = experimentally determined
J More neurons

L1 More complex, but smaller tolerance

Selection of the RBF width para.

» Not required for an MLP

» Small width

] Cause in untrained data
. More hidden neuron required

» Large width

] Network of smaller size & faster execution

» Adaptive width
! Through training

learning strategies

» Two levels of Learning
! Center and spread learning (or determination)
) Output layer Weights Learning

» Make number of parameters as small as possible

Various learning strategies

» how the centers of the radial-basis functions of
the network are specified:

) Fixed centers selected at random
1 Self-organized selection of centers
) Supervised selection of centers

Fixed centers selected at random

» Fixed RBFs of the hidden units

» The locations of the centers may be chosen
randomly from the training data set.

> We can use different values of centers and widths
for each radial basis function & Experimentation
with training data is needed.

' "'&““. N I

Fixed centers selected at random(cnt’d)

» Only output layer weights must be learned.

» Obtain the value of the output layer weight by
pseudo-inverse method (as mentioned before)

» Main problem
May not present great performance as MLP
Generalization is not great

Computation of Inverse Matrix in the case of large
hidden size

o

Self-organized selection of centers(1)

» Hybrid learning

self-organized learning to estimate the centers of RBFs
in hidden layer

supervised learning to estimate the linear weights of
the output layer

» Self-organized learning of centers by means of
clustering.

» Supervised learning of output weights by LMS
algorithm.

o

Self-organized selection of centers(2)

» k-means clustering
Initialization
Sampling
Similarity matching
Updating

CHEESR S =

Continuation

K-Means Animation

»
» »
s »
. *
'.'.. »* »
. N
» '. »
» .' » . .y %
» » »
» '.
5 » .
s * » N
. ® » ’- » »
P »
hd bl ™
»
» »
» »
» s a ® .
P
»
. »
»
*
» »
b »*s
»
» » - *
» »
» . *

Hossein Khosravi

Shahrood University of Technology

Example

» 60 hidden units

] K-means centers

Supervised selection of centers

» All free parameters of the network are changed by
supervised learning process.

» Error-correction learning using LMS algorithm.

RBF Learning

approximation, as mentioned before.
No Weights are computed through matrix
Training inverse.

Try newrbe in MATLAB ("'e” stands for

e Hidden layer parameters are fixed.
Half Output layer weights are trained.

Training
e newrb in MATLAB

o All parameters are determined through
training. No built-in function in MATLAB,
I think!

e We discuss full training in detail.

RBF Learning - Assumptions

Hidden neurons are Gaussian:

Output neurons could be sigmoid, linear, or pseudo-linear, i.e.
linear with some squashing property:

"
X —¥% B
Ym = fm(x) = exp (— Il 20'2:“)

sigmoid,
1 4e=5 8 '
S_j . ¢ l » .
zj=9 7, linear, with — squashing function,

2 2
S : . 1 . :
——, pseudo-linear, with squashing function,

\ Zm Ym z m Ym

where

I
Sj = E YmUmj J=1,..., l5.

m=1
Hossein Khosravi Spring 2012

Neural Networks ~ Shahrood University

RBF Learning - Initialization of Centers

Some randomly chosen samples

from the training set

4 N
The first samples of the training
set

\ y,

4 N

\ Y
(Centers obtained by some)
clustering or classification method,

e.g. k-means algorithm or LVQ
_ algorithm.)

RBF Learning - Initialization of spread parameter

» Assigning a small fixed value, say, 0.05 or 0.1

J requires a large number of hidden neurons to cover the
input space.

d

V20
] where d is the maximum distance between the chosen
centers, and |, is the number of centers.

» When using k-means to find the kernel vectors, o,,, could be
the standard deviation of the vectors in the pertaining
cluster.

o

RBF Learning - Initialization of output layer weights

» Some random values in the range [- 0.1, +0.1].

) This method necessitates weight adjustment through
an iterative process (the backpropagation algorithm).

» Using the pseudo-inverse matrix:

w=(¢T¢) ¢Td
N

pseudo inverse

o

Basic backpropagation for the RBF network
|

> 1. Initialize Network

» 2. Forward pass: Insert the input and the desired output,
compute the network outputs

» 3. Backward pass: Calculate the error gradients versus the

parameters
» 4. Update parameters OE/Oumj, OE[0vim, OE/0ar,
OE
umj(n + 1) — umj(n) — N3 5]
‘Umj
» 5. Repeat the algorithm for all | | E
) p) g Uim(” = 1) — Uim(_n) Bl | - :)
training inputs in several epochs. OVim
OE
2 2
Ulrz(n -+ 1) = an(n) — i -
002,

o

Updating Parameters

[II I

ot Yote Xeta

0E OE &z os
ﬁumj an 65; é’umj

L

—2(t; —z;)zj (1 —z;)ym

D =2t =221 = 2w, .

J

(xim — Vim):

cE
”mj(” + 1): ”mj(”) — N3 I
mj
oE
Vim(n + 1) = vim(n) — m2 P
Uim
oF
T (n+ 1) = 3(m) — i 5
m
I I IT1
e Yot Nodhe'
aUr‘m azj aym avim .
| 11 I
et Rt Werhn
cE ﬁzf ﬁym =)

OE _
ey

i

0z; Oym 003~

J

> =20t —z))z;(1 — 2 Yt ¥m (

|x — VmHz
204

)

o

Gradient Computation

» See the paper pages 20-26

Matlab Samples

> R u n R a i d a I_b a S i S_d e m O . m i Weighted Sum of Radia Basis Transfo Functions

» Run General Regression NN.m
(step by step)

newrbe, newrb, g -
newgrnn

References
e,

1 Neural Networks and Learning Machines, Haykin, 2008
1 NEURAL NETWORKS, M. Hajek, 2005

o Training RBF networks with selective backpropagation, vakil-
Baghmisheh, Neurocomputing 62 (2004) 39 — 64

- Some Slides

Neural Networks - Shahrood University - H. Khosravi — Spring 2012

Jbad OMlos - pwid

O pasy slee Jlo slias jl cowl e yia—io il el

P Az W oylyo ol (F S8 295 0 &5 Sz 2oyl
€ bl 802 1 6950 ¢ (S5 (o0

€ Pigns » O (0 939 PO L ydd Ay (WSS o0 S AT S

PB (B oly 0 W S (o0 95 05 S @ &5 b (ylos
€ G590ty » g ylo (o g

&

MR

‘M|J.~‘>‘$.o Iy Loy dlisodd a5 ulj 6‘“ x| 4\395 90 yliwgo >

Wy s8 o0 Iy Lot e aSST JR0 .08 (2195 (5 s (yLi)
Slallosl » caudlau 1y Lhol jud (d,lo oo lg JKai a1y Lol g

€
0 &5 (Bly i 9 Cawgi ;S 55k o @ (gl (ASCio ST -

b &5 Cawl (@l S5 o ddicod gl 1) OMSCo0 Silgd
€ pls pg» . RO juudd |y &, S8

|y o 9 w5390] (o0 azolr jo Iy ils g eolgils yo 1y bjgel >
Cazmd Gl yo 80 . o ledd Ol S5 5o

@

