Institute Of Physiess \& Mathermatics

$\left.\left(p^{\prime \prime}\right)-\dot{-2}(0, y)\right)$
.
| 1 |متحاز

 نور را متشكّل أز نترينهايى بكيربد كث هر كدام انرئى E و و نكانمى

النف) بردارنيروى وارد بر نبماستوانه از طرنـ باريكه را بم دست آورين.

$$
\left(c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}^{2}\right)
$$

 زاويدهاتى انحرافـ بزركّترأز (دست آوريد.

سال تحصبلى
1 lar 1

 الف) ميدانَ الكتريكى را روى محور z ببابيد.

بك جبسم بـ شكل مكعب مستطبل در نظر بكَيريد كد قاعدهى آن مربع إست وارتفاع آن خيلى

جنين مدل مى كنيم:

$$
\begin{aligned}
& z_{k}=(\dot{k}-1) d, \quad k=1,2 \ldots, N
\end{aligned}
$$

نهابى تنبا بر حسب ثابت هاى مسئله و k و ه باششد.

 از d هـاده كنبـ.
 اين مبدان را
(2

$$
\begin{aligned}
& I_{C}=\beta I_{B}=\alpha I_{E}, \quad V_{B}-V_{E}=0.7 \mathrm{~V} \\
& \text { كـ در اين جا ه م ر } \\
& \text { ترانزيستورها را در مدار با حرف QQ نشان هيدهيمه. } \\
& \text { الفـ) با توجه بد بقاى بار الكتريكي، مقدار ه را بر حسب } \beta \text { محاسبد كنيد. }
\end{aligned}
$$

نرض كنيد مىتوان از جربانهالى B ی همدى ترانزيستورها صرفنظر كرد.

ج) نرض كنيد
براى همهى نرانزيستورها ببابِيد.

$$
\epsilon:=\frac{\mu m g}{k}
$$

 "ميكنيم.

 شود؟
c

 هى شیدِ؟ آن را .

ذره طلى كـِده حِهتدز است؟

$$
\sigma(x, y)=\sigma_{I} \cos (\kappa x)
$$

ترار گرنتـ انـت：
الت．با استناده از تانون كولن، يـيان الكتريكى را در نتطنى

$$
E(x, y, z)=\cos (\kappa x) E_{z}(z) \dot{z}+\sin (\kappa x) E_{x}(z) \dot{x}
$$

居 $E(x, y, z)$

ج．با اعمال شرابط برزى در

ه．نـــت الز
و．برای سالت

 L C

$$
A \times(B \times C)=B(A \cdot C)-C(A \cdot B)
$$

 را

اين نـادگذارى را در نظر بغيريد:

 $\left[R_{y}(-\beta)\right]\left[R_{x}(\alpha)\right]\left[R_{y}(\beta)\right]\left[R_{x}(-\alpha)\right] r=r+\sum_{i=1}^{\infty}\left\{\alpha^{i} E_{i}(r)+\beta^{i} G_{i}(r)\right\}+\sum_{i=1}^{\alpha} \sum_{j=1}^{\infty} \alpha^{i} \beta^{j} F_{i j}(r)$

$$
U(x)=U_{0}+\frac{1}{2} m \omega_{0}^{2} x^{2}+\beta m x^{3}+\cdots
$$

 انست؛

$$
\begin{aligned}
& \langle f\rangle:=\frac{1}{T} \int_{0}^{T} f(t) d t
\end{aligned}
$$

 ي دو دا مشنحص كند.
 (ج) تـنيرات,

راهنمايی:
جوابي بسادله كي ديغرانــيلـ!

$$
\ddot{y}+\omega_{0}^{2} y=A \cos \omega t+B \sin \omega t, \quad \omega \neq \omega_{0}
$$

$$
\begin{aligned}
& \text { به نـكـب } \\
& y(t)=\alpha_{1} \sin \omega_{0} t+\alpha_{2} \cos \omega_{0} t+a_{3} \sin \omega t+a_{4} \cos \omega t+a_{5} \\
& \text { الست كى در ائن با }
\end{aligned}
$$

Institute Of Physics \& Mathematics

仿

$$
e:=\left|\frac{\Delta v_{n}^{\prime}}{\Delta v_{n}}\right|,
$$

كـ كـي كسـمان 0 ك

 $\alpha=0$ =0 (a

$$
\left(\frac{\Delta L}{L}\right)_{\|}=-\frac{P}{Y^{\prime}} \quad\left(\frac{\Delta L}{L}\right)_{\perp}=-\rho\left(\frac{\Delta L}{L}\right)_{\|} .
$$

$$
\text { الف. تنيرطرل نـبـب مر خلع (} i=1,2,3 ، \frac{\Delta L_{i}}{L_{i}} \text {) راحساب كبد. }
$$

 ج. نـبن إين كار بـ

بـ ازاي مشادير سخثلف م:

1

 هالا نرض كنيد نـداد مقاومتها محـود است (ماند ئكل).

معادل إى بـ ئكل 0 با

$$
X_{n}=C_{1}\left(Z_{1}\right)^{n}+C_{2}\left(Z_{2}\right)^{n} .
$$

 كيآيند.

$$
\begin{aligned}
& \text { ج. } \\
& \text { د. } \\
& \text { هـ. مناومت معادل بين تُرهاهى A و B را سساب كيّم. }
\end{aligned}
$$

二心的：Ey

 $l_{x}=\frac{m b^{2}}{4}$
 $Z_{y}=\frac{m a^{2}}{4} \quad I_{z}=I_{x}+\left.I_{y} \quad \vec{\omega}\right|_{t=0}=\Omega(i+\alpha k)$ ك．در اين جا بكخِيــ

$$
\omega_{1}=\Omega F_{1}(t), \quad \omega_{2}=\Omega F_{2}(t)
$$

 ج．جس از زمانْ طولانى（

Institute Of Physics \& Mathematics

$$
c=3.0 \times 10^{8} \mathrm{~ms}^{-1}, \mu_{0}=4 \pi \times 10^{-7} \mathrm{TmA}^{-1}, e=1.6 \times 10^{-19} \mathrm{C}
$$

 انجام دميد. الف. بـ تَريب تا اولبن مرثب از در تمام كضـا يابيـ.
مبدان مناطـــى ابن ذره را، تا اولين مرته از

$$
r>R: \quad \vec{B}(\vec{r})=\frac{\mu_{0} q \bar{v} \times \vec{r}}{4 \pi r^{3}}
$$

كه در آن ب. مبدان مغناط.طـى بيرون از ذره را بر هـسب ميدان الككتريكى،
 نــان ميدهيم و داريم

$$
\vec{p}=\epsilon_{0} \vec{E} \times \vec{B}
$$

تكانهى خطى ميدان الكترون متحركى را محاسبه كبد و آن را بـ صورت د. تكانیى كل عبارت است از جبع تكانهى ذره و مبالنها. هال تعرين مىكتيم:

$$
\vec{P}_{\mathrm{tot}}:=m \vec{v}=\left(m_{0}+m_{f}\right) \vec{v}
$$

 حدها؟

$$
\text { الككترومنناطيسى بكى الكترون متحركى را تا اولين مرتب از } \frac{v}{\text { بـابيـ. } . ~}
$$

مسئلهr

الف. بـ كمك قانون اسـل نتان دهيد كه بازتاب كلى در هنگام عبور نور از مرز جدايى از محيط رقيق به غلبظ نىيتواند رخ دهد. ب. بكـ فيبر نورى در نظر بغيريد كه ضريب نيكــت مغزى آن

 نور ديگر در نيـر نورى منتـر نتخواهد شد؟

$P[\mathrm{~Pa}]$	n_{2}
0	1.53
1×10^{5}	1.54
2×10^{5}	1.55

- الف. بردار سرـتـت كلوله را در دستْاه xyz كه نـبـت به ريل ساكن است بنويسيد.

 د. بـ ازازي هـ به ازاى مــلـ به دسـت آريد. $\alpha^{\prime}=\alpha_{0}+\frac{u \sqrt{2}}{4 v} \cos \phi+\left(\frac{8-23 \cos ^{2} \phi}{16}\right)\left(\frac{u}{v}\right)^{2}$ $u \rightarrow u$

$$
v \sin \alpha=g) \quad 4 \sin -8
$$

 بخش رفت

2) بتبى B براى مدت (f/2 - 1) با سرعت ثابت v حركت مى كند.
4) ساعت B براي مدن fT/4 ت

B الف. نـــت
 ا

ب. هد زير را حساب كنيد. توجه كـبد كه v يك مقدار محدود و كرجكتر از ع دارد. $\lim _{I \rightarrow 0} \frac{T^{\prime}}{T}$

مسكن است اين انتگرال به كار بـيـد.

$$
\int \sqrt{1-x^{2}} d x=\frac{1}{2}\left(x \sqrt{1-x^{2}}+\sin ^{-1} x\right)
$$

مستّلـ1
 جرمهاى

Yس .

a
 b) (

Institute Of Physics \& Mathematics

سال تحميلي -

$$
P=120 \quad 60
$$

حقندر بايد باشند؟

\qquad

 : $\alpha=3.2 \times 10^{-6}$ per $^{\circ} \mathrm{C}$

مال تحتيـلي

نرض ك A آن در وسط است. او با سرعت
 فط

 .

 $8,+9+9$
الن. حدافل بعدار فَ زا بـابيد نا بدن شخخص حداثل بكى دور بجرخد.

$11.01 \mathrm{~s}^{-1}$

1
شكر

 مرفر اند صفحهي ميانى بي برم
 داردد بزرگي ك ك ا
 نادل جابابجا سنده است رسم كـبد.

Y e د. انرزى تسـتـت ب را تا مرنب ي دوم

رما مكيُود.

1

جرمبا را

, $r_{E}=\frac{V_{1}}{V_{3}}$ بابيا

$\left(r_{e}-r_{c}+i_{n}\left(\frac{c^{e}}{e^{c}}\right)\right) /\left(r_{n} e^{c}+\frac{c_{p}}{v}(\right.$

$$
\frac{2}{6}
$$

در مدار مقابل، ولتاز ورودى يكى منـع يـنوسى با با با

Institute Of Physics \& Mathematics

دو ريل دابرمای هممركز به شُعاعماى

俍
 ـاكن أست.

قرار دهيد.)

K، و (V) بيأيد.

$8.30-1.30$

شكّ

1 ى

据

 هرتب ى دوم د بالانتر θ صرن نظر كيد

ل

آبا جاببمبا نـده نوسط جسمـ تغينير نكند.

شكل.

شكلr

ثكل

 جه زمانى α بيـينـي ئىود؟
.

(e) زاوبي! $\angle O A B$ را بـ دـت آوريد.

$$
00 \text { - }
$$

هـ. اختلان مؤلفه ى z مركز شناورى جديد و قديمبرا هــاب كنيد.
و. يولنه ى x مركز شناورى جديد را بيايبد.
ز. شرطى مـان h
c $4 a$

1
شكل ه

Institute Of Physics \& Mathematics

مستثه

$$
\stackrel{f}{e^{-}}
$$

$$
\begin{aligned}
& E^{\prime}=\gamma\left(E-v P_{x}\right) \\
& P_{x}^{\prime}=\gamma\left(P_{x}-\frac{v}{c^{2}} E\right) \\
& P_{y}^{\prime}=P_{y} \\
& P_{z}^{\prime}=P_{z}
\end{aligned}
$$

$$
\gamma=\frac{1}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}
$$

$$
\begin{aligned}
& \text { با }
\end{aligned}
$$

$$
P_{\rho^{-\gamma}}=P_{0} \rho_{0}^{-\gamma},
$$

ك د در آن
الـ. . بسادل ى تعادل بكانيكى لايب دا بنريـيد.

ج. متـتن دما نـبت به ارتناع،

$$
-\theta^{\frac{\gamma}{\delta+1}}
$$

Institute Of Physics \& Mathematics

.

 وارد بر سيم ثابت بـاندّ براير استـبا $d Q=d H=\rho A L C_{F}$.

الف. الگر نيروى F به دو سر سبم وارد نود، طول آن تنيير مى كند. در دماى ثابت ن.

 شيكل
 ($\frac{Q_{\mathrm{c}}}{Q_{H}}=\frac{T_{C}}{T_{H}}$

 دلخراه T، رابطلهاي ميان

Kamyar AKbari Roshan

中6 4 ever!

 بازتابى در زواياى مختلف داراراى كمينه و بيشينينه است..
 بدست آوريد.

،
ب) آيا در زواياى تابشى با شـد
دارد در جه زاويه و يا يا زوايايى و جكَكرنه؟

 نازك، d، بدست آوريد.

$$
\left(r_{12}\right)^{2}+t_{12} t_{21}=1
$$

 ضريب شكست n) است

$$
\begin{aligned}
& t_{12, s}=\frac{2 n_{1} \operatorname{Cos}(\theta)}{n_{1} \operatorname{Cos}(\theta)+n_{2} \operatorname{Cos}(\varphi)}=\frac{2 \operatorname{Cos}(\theta) \operatorname{Sin}(\varphi)}{\operatorname{Sin}(\theta+\varphi)}, r_{12, s}=\frac{n_{1} \operatorname{Cos}(\theta)-n_{2} \operatorname{Cos}(\varphi)}{n_{1} \operatorname{Cos}(\theta)+n_{2} \operatorname{Cos}(\varphi)}=-\frac{\operatorname{Sin}(\theta-\varphi)}{\operatorname{Sin}(\theta+\varphi)} \\
& t_{12, s}=\frac{2 n_{1} \operatorname{Cos}(\theta)}{n_{1} \operatorname{Cos}(\varphi)+n_{2} \operatorname{Cos}(\theta)}=\frac{2 \operatorname{Cos}(\theta) \sin (\varphi)}{\operatorname{Sin}(\theta+\varphi) \operatorname{Cos}(\theta-\varphi)}, r_{12, p}=\frac{n_{1} \operatorname{Cos}(\varphi)-n_{2} \operatorname{Cos}(\theta)}{n_{1} \operatorname{Cos}(\varphi)+n_{2} \operatorname{Cos}(\theta)}=-\frac{\tan (\theta-\varphi)}{\tan (\theta+\varphi)}
\end{aligned}
$$

$$
1+x+x^{2}+x^{3}+\ldots+x^{N}=\frac{1-x^{N+1}}{1-x}
$$

Institute Of Physics \& Mathematics
$9,5,19$
Emid: ©-5

را درنظر بگـيريد.

$$
A \quad \rightarrow \quad B+e
$$

 K K ' '
 گردرد:

$$
\begin{equation*}
\left\lceil H \rightarrow \Gamma_{Y} H e^{1+}+e\right. \tag{1}
\end{equation*}
$$

 (مقادير عددى مورد نياز در انتهاى سوال ذكر شده استا
 جبـّى الكترون هاى ساطل شده طمى وإياشى تربتيوم را نشان مى دمد:

$$
\begin{equation*}
r_{H} \rightarrow \upharpoonright_{i} e^{1+}+e+\nu \tag{r}
\end{equation*}
$$

با نوجه به نمودار تسـتث تبل حد بالايى برايى جرم سكون نوترينو بدست آوريد.
 هKeV

$$
\begin{aligned}
& \text {. } 01.99 \mathrm{MeV} / c^{T} \quad \text { جرم الكترون: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NGIVFFT× } \times 10^{-0} \mathrm{eV} /{ }^{\circ} \mathrm{K} \text { ثابت بولتزّمن: }
\end{aligned}
$$

[^0]
生

 و ميان نكّذر (بابيّن راست)

هى شُد). داريم: يانتن

شكل 1. با زياد تُدن n تابع ولتارٌ خروجمى بر حسب نركانس زاويه الى نزديكـ به تابع بله مى شود.
تسمت دوم:
 راهنمايی:
برای فيلتر بالاكذر داريم:

$$
V_{\text {out }}=\frac{V_{0}\left(\frac{\omega}{\omega_{0}}\right)^{n}}{\sqrt{1+\left(\frac{\omega}{\omega_{0}}\right)^{2 n}}}=\frac{V_{0}}{\sqrt{1+\left(\frac{\omega_{0}}{\omega}\right)^{2 n}}} .
$$

فِيلتر آنالوگـ

يكى مدار در نظر بكيريد به شُكل زبير:

 فاز هم حفظ شُود.

الفش) يكـ رابطه باز كشتّى برای اميلانس التاكر .i i و امبدانس خازن $\frac{1}{i \omega C}$ است.

 را به كونه ايى بيابيد كه قدر مطلق اين جنل جمله اى برابر

ر اين حالتت داريم:

 ب) كميت
$A_{J}=g_{j} j_{j+1} \ldots g_{n}$
كه در أن g به ازايى kی فرد برابر

$$
(x=a, z=0)
$$

كه موازى ي محورٍ y است، حركت مى كند. اين سفينه در لحظه ي
 سفينه حِنان تنظيم شـده كه وقت ى از نقطه ي (ويرّزمان است.
 f(t) را رو ي ساعت سفينه مى $f(t)$ تذكر: سرعتِ نور را واحد نگِيريد، به طور ى كه c در فرمولها يتان ديده شود. الف. تابع (ff(t) را به طورِ صريح (نه ضمنى) به دست آوريد، و در محلِ تعيين شده بنويسيده ب. ج. ج. د. برا ي بي دارد، آنها را مشخص كنيد.

- تيغه ایى شُفاف نازكى در اختيار داريم. جههت عهـود بـر سسطح ايـن تيغـه را مـحـور z در نظـر بگيريد. اين تيغه (مانند تيغه هاى ريع مرج) داراى دو محور است كه محور سريع را x (با ضريب

 تدأخلى در عبور و بازتاب نور ظاهر مى شود.
(تذكر:در تمام اين سوال فقطط تابس عمودى است.)
اگگ نورى با تطبش خططى (به صورت عمودى) به اين سطح برخورد كند.
 اين اختلاف فاز جقندر خواهد بود؟
ب) بين مولفه هاى ميدان الكتريكى بازتابى (در راستاى x و y) اختلاف فاز بوجود خوراهد آمــذ. اين اختلاف فاز جقدر خحواهد بود؟
茂 باشد، اين تيغه شـفاف جهه ضنخامتى بايل داشته باشد. (بدست آوردن معادله كافيست.)
颜 $\left.=E_{0} \operatorname{Cos}(\varphi) \hat{i}+E_{0} \operatorname{Sin}(\varphi) \hat{j}\right)$ مى دانيم ضريب بازتاب شُدت براى هر دو تطبش نور (در حالت عــود) بسـيار كـوجكتر از يــى

$$
\left(r_{12}\right)^{2}+t_{12} t_{21}=1
$$

 ضريب ششكست n) الست.

$$
\begin{array}{r}
t_{12, s}=\frac{2 n_{1} \operatorname{Cos}(\theta)}{n_{1} \operatorname{Cos}(\theta)+n_{2} \operatorname{Cos}(\varphi)}=\frac{2 \operatorname{Cos}(\theta) \operatorname{Sin}(\varphi)}{\operatorname{Sin}(\theta+\varphi)}, r_{12, s}=\frac{n_{1} \operatorname{Cos}(\theta)-n_{2} \operatorname{Cos}(\varphi)}{n_{1} \operatorname{Cos}(\theta)+n_{2} \operatorname{Cos}(\varphi)}=-\frac{\sin (\theta-\varphi)}{\operatorname{Sin}(\theta+\varphi)} \\
t_{12, \rho}=\frac{2 n_{1} \operatorname{Cos}(\theta)}{n_{1} \operatorname{Cos}(\varphi)+n_{2} \operatorname{Cos}(\theta)}=\frac{2 \operatorname{Cos}(\theta) \operatorname{Sin}(\varphi)}{\operatorname{Sin}(\theta+\varphi) \operatorname{Cos}(\theta-\varphi)}, r_{12, p}=\frac{n_{1} \operatorname{Cos}(\varphi)-n_{2} \operatorname{Cos}(\theta)}{n_{1} \operatorname{Cos}(\varphi)+n_{2} \operatorname{Cos}(\theta)}=\frac{\tan (\theta-\varphi)}{\tan (\theta+\varphi)} \\
1+x+x^{2}+x^{3}+\ldots+x^{N}=\frac{1-x^{N+1}}{1-x}
\end{array}
$$

[^0]: ${ }^{\top}$ Wolfgang Paulis
 ${ }^{T}$ neutrino

