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Abstract

Cooling tower rain zone performance characterisdiosh as the loss coefficient
and the Merkel number are evaluated and simuldtedhis end the influence of
drop diameter and drop deformation on the velo@gth length and cooling of
single water drops are investigated. Experimenig dize and pressure drop data
over a counterflow rain zone are presented ancffieet of drop deformation on
the pressure drop is investigated using the exgariah data and CFD. Using the
experimental drop size data and CFD, the performamcertainty produced by
using the Rosin-Rammler drop distribution functiam opposed to the discrete
drop distribution data is investigated. CFD modais developed to investigate
the feasibility of modelling rain zones by assumagonstant drop diameter and
to establish which diameter definition is the mospresentative of a particular
polydisperse drop distribution. These models weredu to validate the
correlations for the rain zone performance charesties proposed in literature.



Opsomming

Die Merkel getal en verlieskoeffisient van ‘n kaglhg se reénsone is
gemodelleer. Daar is gekyk na die invloed van delgipmeter en
druppelvervorming op die snelheid, padlengte eeindlelik die afkoeling van ‘n
enkele druppel. Druppelgrootte en drukval data \ramwarsvioei reénsone is
eksperimenteel bepaal. Die effek van druppelveruognop die drukval oor ‘n
dwarsvloei reénsone is bepaal deur gebruik te maakeksperimentele data en
CFD. Die verrigtingsonsekerheid wat ontstaan wediasgebruik van ‘n Rosin-
Rammler druppelverdeling, in plaas van ‘n diskredeuppelverdeling, is
ondersoek deur gebruik te maak van eksperimengeéte druppelverdelings en
CFD. CFD-modelle is opgestel om die modellering rameénsone met behulp
van ‘n enkele verteenwoordigende druppeldiameteontdersoek. Daar is ook
bepaal hoe so ‘n druppeldiameter gedefinieer moeirdw ten einde
verteenwoordigend te wees vir spesifieke toestamal® druppels poli-verdeeld
is. Laastens is die CFD-modelle gebruik om ‘n kiasies wat in die literatuur
voorkom vir verrigtinskarateristieke te bevestig.
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CHAPTER

| ntroduction

In conventional fossil fuelled power plants lesartthalf of the thermal energy
supplied is converted to electric power, most eftst is waste energy and needs
to be rejected to the surroundings by means obangpsystem.

Many of the earlier power plants made use of dhcedgh cooling, where
water is taken from a natural source e.g. searg;Vakes etc. and then heated and
returned back to the source. Ecological awarenedsegulations instated in the
1970s have prohibited the use of such cooling systemsnamy areas. Thus
alternatives such as wet-cooling towers had to daend to solve the cooling
problem.

A wet-cooling tower facilitates the cooling of warprocess water by
bringing it into direct contact with colder dry aifhe main cooling mechanisms
are sensible heat transfer and evaporation duess tnansfer, which are strongly
dependent on the interfacial area and the contaet Ways to increase the heat
and mass transfer is to make use of fill (splastkle or film type). These can be
installed in either counterflow or crossflow coniigtions which can be
distinguished by the direction of the air flow itala to the water flow.

For the case of a natural draught cooling towes dir flow is achieved by
means of buoyancy due to the difference in derisgtyveen the cold air outside
and the warm moist air inside the cooling towerevdas in a mechanical draught
cooling tower the air flow is provided by a fan.

1.1 Background

Rish [1961RI1] was one of the first to include tl@n zone in his analysis of
counterflow cooling towers. Prior studies ignoréd tain zone, considering it to
be unimportant or too complex to analyse. Howeuredarge counterflow wet-
cooling towers as much d€-20% of the total heat is rejected in the rain zone,
thus knowledge of the characteristics of the rainezis important for reliable
prediction of the total performance. This substtes that the rain zone can not
be ignored in any detailed analysis of a wet-captower.

Limited published literature is available on thathrematical modelling of
the heat and mass transfer from free-falling spayssisting of large drops. The
simpler models for describing drop cooling invalyabassume that the
polydisperse drop distribution can be expressea lsngle representative drop
diameter known as a monodisperse drop distributidollands [1974HO1]
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modelled the operation of a spray cooling towerheatatically, and concluded
that a monodisperse drop distribution is desiradnlé that the drop diameter
should be as small 4s2mm. Warrington and Musselman [1983WA1] reached the
same conclusion in comparing the performance of @nadisperse drop
distribution to a polydisperse drop distributiorikidlas [1981AL1] and Aggarwal
[1988AG1] found that the Sauter mean diameter caruged to calculate the
heating of a polydisperse drop distribution. Hollanand Goel [1976HO1]
showed analytically that it is not generally pobsito use a monodisperse drop
distribution to model the cooling or heating of alyalisperse drop distribution.
They found that a monodisperse drop distribution ba used in the following
cases: (i) when the particles move through the/imeats exchanger so rapidly that
they do not change appreciably in temperature ipwgnen the drops are very
small and represent a small mass in comparisonh¢o air stream. Dreyer
[1994DR1] reviewed relevant literature and coneuith this hypothesis.

Lowe and Christie [1961L01] derive the mass transind the pressure
drop for counterflow conditions, assuming that neopd collisions or
agglomeration occur. Their data is applicable talsmrops only and the drops
fall at their terminal velocity. In most towersyd@ drops may never reach their
terminal velocity.

Hollands [1974HO1] included the effect of drop atefiation on the drag
and the heat and mass transfer experienced by rtps dn his mathematical
model. De Villiers and Kroger [1998DE1] include graleformation in their
determination of the rain zone loss coefficient detkel number. Fisenko et al.
[2004FI1] exclude drop deformation in the developmef their mathematical
model of a mechanical draught cooling tower peréomoe. They do not determine
the pressure drop over the rain zone with their ehathd confine themselves to
modelling the change in the drop’s velocity, iterdeter and temperature, and
also a change in the temperature and density ditheapour mixture in a cooling
tower. De Villiers and Kroger [1998DE1] use a moispérse drop distribution in
their model, whereas Fisenko et al. [2004FI1] dnle o model polydisperse drop
distributions.

With the aid of modern computers the differentidhvier-Stokes,
continuity and energy equations for a two-phase ft@an be solved numerically.
Benton and Rehberg [1986BE1] conducted a numeineastigation of the rain
zone of a counterflow and a pure crossflow configon. Williamson et al.
[2006WI11] used FLUENT to simulate a two-dimensioagisymmetric two-phase
simulation of the heat and mass transfer insideatral draught wet-cooling
tower. They used a monodisperse drop distributiotih v drop diameter of
2.5mm.

1.2 Motivation

The motivations for this thesis can be divided itlhoee distinctive sections:
financial, environmental and academic.
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From an economical and engineering vantage pbistimperative that all
systems should meet design performance. It sho@dkmown that small
significant improvements to a cooling system ofcaver plant could result in a
multi-million dollar saving in resources. Improvitige rain zone performance can
reduce the life cycle costs of natural draught ealing towers.

Improving the rain zone performance of naturaludtd wet-cooling
towers can also be beneficial to the environmenthSimprovements include
reducing water consumption and plant emissions.

The academic motivation for this thesis is to gasound understanding of
the physics of the rain zone. This understandiniyj velp accomplish the prior
motivations.

These motivations are incentives to continuallypriove these systems
worldwide by conducting research and development.

1.3 Objectives

This thesis concentrates solely on the processaslfo the rain zone of a wet-
cooling tower. Counterflow and cross-counterflovinraone configurations are
investigated, with emphasis on the latter founchatural draught wet-cooling
towers.

Validation of the proposals, ideas and hypothgmsésforward by prior
researchers, as highlighted in Section 1.2, togetiith the motivations given in
the previous section give rise to the objectivethis thesis:

1. Investigate the influence of drop diameter and ddmformation on the
velocity, path length and cooling of single wateogbs vertically free-falling
through stagnant or upward flowing air.

2. Assist with the design, draughting, manufacturetatation, calibration and
testing of a new rain zone test facility.

3. Determine the inlet drop size distribution and theessure drop of a
counterflow rain zone experimentally for differesit and water mass flow
rates.

4. Develop CFD models to predict the pressure drop thedheat and mass
transfer of a counterflow and cross-counterflom rzone.

5. |Investigate the performance uncertainty produced uging the Rosin-
Rammler drop distribution function as opposed tecdite drop distribution
data when modelling the performance of the rairezon

6. Investigate the feasibility of modelling rain zonlkeg assuming a constant
drop diameter and establish which diameter dedinitiis the most
representative of a particular polydisperse drajrithution.

7. Using the CFD models developed in this thesis,dedd the correlations for
the rain zone performance characteristics propbgdde Villiers and Kroger
[1998DE1].
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1.4 Approach and Layout of Thesis

This section presents the basic layout of thisishasd provides a short synopsis
for each chapter.

CHAPTER 1. INTRODUCTION
Chapter 1 gives a brief description of cooling tesvdt presents the motivation,
objectives and the layout of the thesis.

CHAPTER 2. DROP VELOCITY AND PATH LENGTH

This chapter is used to gain an understanding efpifiysics of the motion of
drops free-falling through air and then also tove data to validate CFD
models. The effect of drop deformation on the vigyoand path length of a drop
is investigated.

CHAPTER 3. DROP HEAT AND M ASS TRANSFER

This chapter is used to gain an understanding efptysics of the cooling of
drops free-falling through air and then also tove data to validate CFD
models.

CHAPTER 4. EXPERIMENTAL DATA ACQUISITION

Experimental work of a one-dimensional counterfloase is performed in order
to obtain pressure drop and drop size distributiata necessary to validate CFD
models. The relevant data for the pressure dropdamal distribution is presented
at the end of this chapter.

CHAPTER 5. EFFECT OF DROP DEFORMATION ON RAIN ZONE PERFORMANCE
The effect of drop deformation on rain zone perfange is investigated.

CHAPTER 6. CFD M ODEL OF THE RAIN ZONE

CFD models are created that can be used to motealipperse and monodisperse
drop distributions, with regards to the loss caédint and Merkel number. The
results of the simulations for the polydispersepdistributions are given.

CHAPTER 7. MODELLING RAIN ZONE L 0SS COEFFICIENT

This chapter will investigate the modelling of dyabsperse drop distribution by
means of a monodisperse drop distribution with mégdo the loss coefficient,
and in doing so define a new representative diaméteD is then used to validate
the mathematical correlations for the rain zones losefficient given by De

Villiers and Kroger [1998DE1].

CHAPTER 8. MODELLING RAIN ZONE HEAT AND MASS TRANSFER

This chapter will investigate the modelling of dyabsperse drop distribution by
means of a monodisperse drop distribution with régado the Merkel number.
The mathematical correlations for the rain zone Kdenumber presented by De
Villiers and Kroger [1998DE1] will be validated WwitCFD.

CHAPTER 9. CONCLUSIONSAND RECOMMENDATIONS
This chapter is used to present the conclusionsracoimmendations that stem
from the work done in this thesis.



CHAPTER

Drop Velocity and Path Length

This chapter is used to gain an understanding efpiysics of the motion of
drops vertically free-falling through air and thalso to provide data to validate
CFD models. To this end, the chapter sets out ésgmt the derivation of the
governing equation of motion of a vertically fremhhg drop in an

incompressible Newtonian fluid. Different solutitechniques, namely analytical,
numerical and CFD (FLUENT 6.2.16) are employed tives the ordinary

differential equations and the results are compaFadally the effect of drop

deformation on the velocity and path length of @pds investigated.

2.1 Mathematical Moded

Consider a drop vertically free-falling under tteian of gravity through stagnant
air or a counterflow air stream.

Referring to Figure 2.1, the equation of motioraafrop can be found, by
applying Newton’s second law, defined by

ZF:Mdg_FB_FD:Mdad (21)

whereMq denotes the mass of the drapthe acceleration arféh andFg are the
drag and buoyancy forces defined by Equations gh#)(2.3) respectively.

1
Fo =§paV§dAdCD (2.2)
Fg =Mag (2.3)

Wherevy,q is the velocity of the air relative to the drdf, its cross-sectional area,
Cp the drag coefficient and{l, is the mass of the displaced air. The relative
velocity of the air to the drop is given by,

Vad :|Va_ Vd| (2.4)

wherev, andvy are the air and the drop velocities respectively.
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/:\"“” FetFp —>  Force

—> Velocity
Va

«---0

Mg
Figure2.1: Free-body-diagram of adrop in a counterflow air stream.

Substitution of Equations (2.2) and (2.3) into &iipn (2.1) and rewriting
all dependent variables in terms of their independariables yields,

dvg _(Pa=Pa) ,_ 3a 2
= g e Gy 25)

In this chapter it is assumed that the temperaincediameter of the drop
remain constant. The variation of these varialdesidressed in Chapter 3.

2.1.1 Drag Coefficient

Turton and Levenspiel [1986TU1] propose a corretatio represent the drag
coefficient for spheres. A reformulation of thegaequation correlation is given

by,

_ 24 4152 N 0.413

Cp =+
P Re RS 1+ 16300 ReH°

for Re< 200 000 (2.6)

Referring to Equation (2.6) and Figure 2.2, thetfierm on the right-hand-side
denotes Stokes’ law, the second term representsahsition of the drag curve to
the near constant portion for high Reynolds numbregesented by the last term.

Using the same data, Clift et al. [1978CL1] preseset of 10 polynomial
regressions applicable to different Reynolds nurmbeges to represent the drag
coefficient for spheres, given in Table 2.1.
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Table 2.1: Clift et al. [1978CL 1] drag coefficient correlations, w = log;gRe.

Reynolds number range Drag coefficient correlation

Re< 0.01 =243
Re 16
0.01< Re< 2( Co :ﬁ[h 0.1315RE% 00 >]
Re
24 6305
20< Res< 26( Cp =—-|1+0.1935 RE*”|
Re
260< Re< 150( log,,C, =1.6435- 1.124@+ 0.155¢

15x10 < Res 1.2 1t log,,C, =—-2.457% 2.555@— 0.9296 + 0.104%

1.2x10 < Re< 4.4 1t log,,C, =-1.918% 0.63W- 0.063€

4.4x10 < Re< 3.38 11 log, C, =-4.339+ 1.580%~ 0.1546

3.38x10< Rex & 1T C,=29.78- 5.3v

4x10 < Re< % 16 C, =0.1w- 0.4¢
1x10 < Re c. =019-810
Re
1000

100 \

= \
o R
= 10
o) -3
8
(o))
I
|
0.1
0.1 1 10 100 1000 10000
Reynolds number, Re [-]

Turton and Levenspiel [L1986TU1]  ------- Clift et. al. [1978CL1]

---—- Ferreira [L997FE1] Equation (2.7) -——-Ferreira [1997FE1] Equation (2.8)
¢ Data of Lapple and Shepherd [1940LA1]

Figure 2.2: Drag coefficient of a sphere asa function of Reynolds number.
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Ferreira [1997FE1] proposes two correlations, Eqoa (2.7) and (2.8),
for the drag coefficient in order to solve Equat{@rb) for a sphere analytically.

C =;—i+ 0.5 2.7)
(49 2
Co=| =77 +05 (2.8)

FLUENT Documentation [2003FL1] incorporate theldaling correlation
for the drag coefficient of smooth spheres given Mgrsi and Alexander
[1972MO1],

K, K
Cp = Kl+é+é (2.9)

whereKj, K, andK3 are constants that are applicable to certain Rdgnoumber
ranges, given in Table 2.2.

Table 2.2: Constants of Equation (2.9) and their applicable Reynolds number ranges.

Reynolds number

range Ky Kz Ks

Re < 0.1 0 24 0
0.1<Re<1 3.69 22.73 0.0903
1<Re<10 1.222 29.1667 -3.8889
10 < Re < 100 0.6167 46.5 -116.67
100 < Re < 1000 0.3644 98.33 -2778
1000 < Re < 5000 0.357 148.62 -4.75x1d
5000 < Re < 10000  0.46 -490.546 57.87x10
10000 < Re < 50000 0.5191 -1662.5 5.4167x10

FLUENT Documentation [2003FL1] also incorporatesother correlation,
proposed by Haider and Levenspiel [L989HAL], whiatludes a shape factor,

24 R
Co :R_e(1+ b Réb)+ é’i ;E (2.10)

where

In(b,) = 2.3288- 6.458p+ 2.4486
b, =0.0964+ 0.556f

In(bs) = 4.905- 13.894¢+ 18.4238- 10.258%
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In(by) =1.468% 12.2584— 20.738+ 15.8§5"

The shape factorp, is defined as the ratio of the surface area gjfteere, having
the same volume as the drop, to the actual suidaea of the drop. Equation
(2.10) is similar in form to Equation (2.6).

Gunn and Kinzer [1949GU1], Beard and Pruppach@89BE1] and Ryan
[1976RY1] measured the terminal velocities of wabeaps in air. They all show a
marked difference from the terminal velocity preddby using drag correlations
for spheres. Gunn and Kinzer [1949GU1] measured/¢hecity of water drops at
20°Cfalling in stagnant air at STP. Refer to Figur@. 2.

14
@ 12
£
£ 10 oo
> oooomoo
2 8 rsl=lel
5 o-
ke jﬁﬁ
2 6 =
E N
g 4 ﬁ“
o}
0

0 1 2 3 4 5 6
Diameter, d [mm]

O Data of Gunn and Kinzer [1949GUH— Spheres

Figure2.3: Terminal velocity asa function of drop diameter, for experimental water drops
and spheres.

The drag experienced by liquid drops is mainhuafced by internal
circulation, drop oscillation and drop deformation.

Internal circulation reduces the skin frictionttlaaliquid drop experiences
thus reducing the drag. LeClair et al. [1972LEXJrfd that the effect that internal
circulation has on the drag of a water drop todss thari%.

Beard [1977BE1] and Pruppacher and Klett [1978R#®t[cluded that the
oscillation frequency of water drops is too highr brop oscillation to have a
noticeable effect on drop drag in the absencerdtidbulence.

It can therefore be concluded that the main redsorthe difference in
drag between spheres and drops must thereforeeb® dlrop deformation.
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2.1.2 Drop Deformation

Drop deformation is defined as the aspect raticagbrolate ellipsoidal drop,
written as,

d,

E=-2
d,

(2.11)

whered, anddy are defined as shown
in Figure 2.4. Beard and Chuang
[1987BE1] formulated a numerical
model that predicts the deformation
at drop terminal velocity in stagnant
air. The deformation caused by drag
can be obtained by numerically
solving the appropriate Laplace — d, —

equation. An empirical equation

proposed by Dreyer [1994DR1] fits Figure 2.4: Representation of a deformed

their data, expressed by, drop.
Er = : (2.12)
T 1+0.148E8% '
where the Eotvos numbétp, is defined by,
d3 (o4 -
Eo= w (2.13)

gy

Dreyer [1994DR1] proposed a correlation for drogod®ation during drop
acceleration as a function of velocity, terminalloe#ty (vr) and terminal
deformation, given by,

2
E=1- V_dj 1- 2.14
5] -8) @14

He also proposed a correlation, which expressesatiwe of drop and sphere drag
coefficients as a function of drop deformation,agiby

CC—D:1—0.1718?( t B+ 66901 F- 6.605-1 )¢ (2.15)
D,sphere

whereCp sphereiS Calculated using Equation (2.6).
The drop drag coefficient in the correlation abavdased on the actual
frontal area of the deformed drop and the Reynaldsiber is based on the
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equivalent spherical drop diameter, where the edent spherical drop diameter
is the diameter of a sphere that has the same echsthe actual drop.

Equation (2.10) includes drop deformation, howetrex value for the
shape factor stays constant throughout the drdptathe and this implies that the
equation does not take into account changes in dedprmation which occur
during drop acceleration. Incorporation of Equati@l5) in FLUENT 6.2.16
would be computationally expensive. The authordfee proposes a correlation
that is a function of the Reynolds number and #reninal deformation of the
drop. The derivation of Equation (2.16) is giverAippendix B.

_23.986, 4.186
Re = R&343 (2.16)
+(1.28<10° B~ 1.75 10 E+ 7.07 10) RE

Co

2.2 Solution Techniques

The different solution techniques that are employedsolve Equation (2.5),
together with their assumptions, for the deternmdmabf the velocity and path
length of a drop falling through stagnant air oc@unterflow air stream are
presented in this section.

221 Analytical

For the analytical solution it is assumed that dnep remains spherical for its
entire path length, it falls in stagnant air anel thop has no effect on the air. This
means that the spherical drag correlation, EquafB), is employed. The
subscriptsis now used to denote the spherical drop case.

Analytical solutions for the velocity and path dgim as a function of time
are found and given below,

Ha [40 tan[—w (t ;to) + tan'l( 2Pa0sErVs ot H o ZD - EZJ (2.17)

Vg=—"2 —
2loadsEl :ual//
—Inl se@ E‘//( t— 5)"‘ taﬁl[zloadsEle,O"' Eu a} +E,t
s =- 1,LI 2 Moy
- 2 dsE
Palstq (2.18)
-In se@(taﬁl(ZpadsElvs'o+ E4 ""D + B¢
+1 HY
Zlua padsEl

where
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= Pal [1_ &J .

u P
__ 34,

= a2,

E, =b
E,=bp
E;=a+bf

p=(4eE-E)?

andty andvsg are the initial time and velocity respectively.eTtalues for the
constants and their applicable Reynolds numberasage given in Table 2.3.

Table 2.3: Values of constants of parabolic equation for CoRe? as a function of Reynolds
number.

Reynolds number range b; b, b

0<Rex< 275 0.409 75.837 -674.48
275< Re< 900 0.378 97.931 -4714.1
900< Re< 1750 0.359 142.33 -30791
1750< Re< 2750 0.354 140.25 -12434
2750< Re< 4000 0.377 10.257 172402
4000< Re< 10000 0.474 -961.02 2604768

The analytical solution presents an expressionttier time required to
reach terminal velocity,

20.d
liransient = ?SIOS (2.19)
a

The reader is referred to Appendix C for a fullidation of Equations (2.17) and
(2.18).

2.2.2 Numerical

For the purposes of this thesis, a numerical pragtas written that can solve the
equations of motion, Equation (2.5), for a verlicairee-falling drop in an

incompressible Newtonian fluid, using thd" #rder Runge-Kutta numerical
integration technique. The effect of drop deformation the drag can be
incorporated using Equation (2.15) or Equation@R.The effect of the drop on
the continuous phase is not considered, thus thdincmus phase remains
undisturbed.
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2.2.3 Computational Fluid Dynamics

FLUENT 6.2.16 models the drops by means of a disgphase model (DPM),
utilising a Lagrangian approach in which the momenequation is written in a
co-ordinate system that moves with each individirap. The continuous phase
equations are still expressed in their Euleriantioonm form, but are suitably
modified to account for the presence of the drogsmeans of interphase source
terms.

The user is presented with the option to includerphase interaction. In
the event that the interaction is included, them tlonservation of momentum
states that a change in momentum of the drop wedlult in a change in
momentum of the continuous phase. This interaci®naccounted for by
appropriate interphase source terms in the contimpbase momentum equations.

FLUENT 6.2.16 can solve Equation (2.5) using a bemof numerical
integration techniques: implicit Euler integratiosemi-implicit trapezoidal
integration; analytical integration and 8 &der Runge-Kutta technique.

The effect of the drops on the turbulence equatiohthe continuous
phase can be modelled with FLUENT 6.2.16 using wegy-turbulence coupling.

2.3 Analysisof Results

The next section compares and discusses the redithghed by employing the
different solution techniques. For the solutionht@iques to be comparable the
simulation conditions are identical. For this rea#itis section is sub-divided into
two sections. The first sectiorspherical drops will compare all the prior
discussed solution techniques for the case of argath drop falling in stagnant
air. The second sectiodeformable dropswill be used to compare the solution
techniques of CFD and the numerical model for tasecof a deformable drop
falling in a counterflow air stream.

2.3.1 Spherical drops

The analytical results are used as reference vataeshich the numerical and
CFD results are compared.

The analytical drop velocity and path length dat&a presented in Figures
2.5 and 2.6 respectively. Equation (2.19) is alsttgd in Figure 2.5.
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2.10

10

L

Sphere velocity, Vs [m/s]

Time, t [s]

—1mm ----2mm

3mm —--—--4mm ---—-5mm X Equation (2.19b

Figure 2.5: Velocity of a sphere asafunction of time, Equation (2.17).

Figure 2.5 correctly shows that all the spheregehthe same initial

gradient, gravitational acceleration. The figurgoashows that the larger spheres

attain a larger velocity value, thus they would fatough a rain zone faster.

50

40

30

20

Sphere path length, ss [m]

10

—Imm----2mm

Figure 2.6: Path length of a sphere asa function of time, Equation (2.18).
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Figure 2.6 shows that the larger drops take la®& tto attain any
corresponding path length value, thus for the zaine example this would mean
less contact time between the drop and the air. gradients of the curves in
Figure 2.6 become constant at the onset of termglactity.

Figures 2.7 and 2.8 are used to present the sesfilthe comparison
between the solution procedures, with respect limcitg and path length.

5
el £ °]
ZE EE y
8 4 - b._. 4 D
K<) 'S
> 0 ‘ S o
0 4 8 12 > 0 4 8 12
Veocity (analytical) [m/s] Velocity (analytical) [m/g]
\OlmmDmeABmm<>4mm><5mm\ \OlmmDmeA3mm<>4mm><5mn{

() (b)

Figure2.7: Numerical and CFD spherical drop velocity data plotted against cor responding
analytical data for comparison of theresults.

Figure 2.7 shows good correspondence between thdtserom the different
solution techniques. For &mm sphere there isl% deviation between the
analytical and the CFD results and between theyaoal and the numerical
results a0.04%deviation exists. The deviations can be attributethe different
drag coefficient correlations implemented. The wim@l and the numerical
solution techniques implement Equation (2.6), wasrdhe CFD solution
technique implements Equation (2.9).
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Path length (analytical) [m] Path length (analytical) [m]
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Figure 2.8: Numerical and CFD spherical drop path length data plotted against
corresponding analytical data for comparison of results.

For the path length, the values for the deviati@msain relatively unchanged.
This section demonstrates that analytical, CFD auadherical solution
techniques can be used to predict the velocitypatd length of a vertically free-
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falling spherical drop. It is seen that CFD dewsatearginally from the analytical
model due to the different drag correlation incogped.

2.3.2 Deformabledrops

Figure 2.9 illustrates the deviation in the terrhingelocity between the
experimental data of Gunn and Kinzer [1949GU1] aesults obtained using
various drag coefficient correlations.

The same order of accuracy is obtained for drameiers in the range<
ds < 2mm Beyond this range the terminal velocities of sphend drops begin to
deviate significantly from each other.

Kroger [1998KR1] states that generally splash tyffls produce a
spectrum of relatively small drops in the rain z¢8em — 4mmwhile film and
trickle fills produce larger dropsHihm — 6mm Figure 2.9 illustrates that neither
of these two ranges are accurately predicted byersghregarding terminal
velocity.

Therefore it can be stated: in order to accurapeldict the terminal
velocity of water drops and ultimately rain zonefpemance, it is imperative to
employ equations that incorporate the effect opdieformation on drag.

40

30

20

N
10 O £
,

o

Terminal velocity deviation, Avt [%]

0 1 2 3 4 5
Drop diameter, dq [mm]
—B— Equation 2.10 (CFD) —A— Equation 2.15 (numerical)
—<o— Equation 2.16 (CFD) ---©-- Equation 2.6 (numerical-sphere)

Figure 2.9: The deviation between experimental terminal velocity data [1949GU1] and
numerical and CFD data obtained by employing different drag coefficient correlations.

Figure 2.10 illustrates that an increase in catiotg air velocity reduces
the absolute terminal velocity of a drop which tesin a shorter path length for a
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given period of time. The absolute terminal velpcdf a drop falling in a
counterflow air stream can be written as,

Vre=Vreo™ Vs (2.20)

where vr. and vy are the absolute terminal velocities with and with a
counterflow air velocity respectively.

Drop velocity, vd [m/g]

1 1.5 2
Time, t [9]

— 4=0m/s ------. M= 1mls ———— M= 2m/s

Figure 2.10: Velocity of a Imm drop as a function of timefor various counterflow air
velocities.

Summary

Literature shows that internal circulation, drogitbation and drop deformation
have an effect on the drag experienced by a duapthiat deformation is the most
significant.

An analytical solution is proposed to determine trelocity and path
length of vertically free-falling spherical drops stagnant air. The results are
compared with corresponding results obtained nuwallyiand by means of CFD
and the deviations are withih04%and1% respectively.

Experimental data showed that the terminal vejoaitlarger liquid drops
and liquid spheres differed somewhat due to drdprdetion. FLUENT 6.2.16
provides the option to use a correlation for dragfficient which accommodates
fixed drop deformation, yet it was found to delivensatisfactory results for
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certain drop sizes. Consequently a new correlatvas developed with which
better results were obtained.

It was shown that increasing counterflow air véloceduces the absolute
terminal velocity, this results in shorter pathddrs for a specified time.

It was shown that the drop diameters that arecéssal with a rain zone
are all affected by drop deformation and thus ih ¢at be ignored when
determining the velocity and path length of dropghe rain zone. Also for the
typical heights associated with rain zones thesp diameters hardly ever reach
their terminal velocities, thus spending most aitHifetime in their transient
velocity stage. Very little literature exists onethliransient velocity stage of
deformable drops, thus no direct comparison camrbgin. However, with the
fixed initial gradient in the velocitys.time graph and a correct prediction of the
terminal velocity an accurate prediction of thentiant velocity stage of a drop’s
lifetime can be found.
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Drop Heat and Mass Transfer

This chapter is used to gain an understanding efptysics of the cooling of
drops vertically free-falling through air and thalso to provide data to validate
CFD models. To this end, the chapter sets out ésgmt the derivation of the
governing equations for the rate of temperaturengbaf a vertically free-falling

drop in an incompressible Newtonian fluid. Differeolution techniques to solve
these ordinary differential equations, namely athedy, numerical and CFD

(FLUENT 6.2.16), are employed and the results foe tchange in drop

temperature and diameter are then compared favwsdonditions.

3.1 Mathematical M odd

There are mainly three different models for thesport processes inside a drop.
The complete mixing model assumes complete mixing and therefore constant
temperature along the radius of the drop. Resistdaacheat and mass transfer
therefore only exists in the continuous phase. fidremixing model assumes a
temperature gradient along the radius, giving tisgansient heat transfer inside
the drop due to conduction. Thaixing model considers both the effects of
oscillation and internal circulation on the miximgthe drop. Thaon-mixing and
mixing models require that the internal temperature gradierd dfop,inter alia,

be modelled, resulting in extra computational tiper drop. FLUENT 6.2.16
employs thecomplete mixing model, which is adopted for this thesis.

Heat and mass transfer are the two main drivinghaeisms for energy
transfer between a water drop and air, which uliyarelates to a change in the
temperature and the diameter of the drop. Themdyiypotential for mass transfer
is the concentration difference of water vapouthatdrop surface and in the air,
defined by,

dMy _

T__hDAH (Cd _Ca) (3.1)

where,Aq is the surface area of the dr@p,andC, are the concentrations of water
vapour at the surface of the drop and in the apeetively andy is the mass
transfer coefficientthat is determined from the Sherwood numBby given by
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ShD

hr =———
° 7 dy (3.2)

whereD is the diffusion coefficient.

Concerning the heat transfer, it was assumed thatradiation heat
transfer is negligible, thus the heat transferus tb convection only. The driving
potential for the convection heat transfer is #@perature difference that exists
between the drop surface and the air. Assumingoumifdrop temperature, the
convection heat transfer is represented by Newtawsof cooling defined by,

Q =hAy (Ty—Tq) (3.3)

where, h is the convection heat transfer coefficient tlatdétermined from the
Nusselt numbemu, given by

(3.4)

wherek, is the thermal conductivity of the air.

From the first law of thermodynamics for an undiedlow process,
applied to a control volume around a drop, and tiuitien of Equations (3.1) and
(3.3) results in the energy equation for a drog-fi@ling in an incompressible
Newtonian fluid, expressed by,

d dT, dM
E(MdeTd):Mdcvd—,:j*Cde—dt—d:hAu(Ta‘Td)_hDAu(Cd —Cy)hy
hence

dly _ hAy o Ay

— = T,-Ty)- C,-C.)h

dt Mdcv( a d) Mde( d a) fg (3.5)

Solution of Equation (3.5) results in a relatiam tirop temperature as a
function of time, drop diameter and thermophysmalperties. For the change in
the diameter of the drop as a function of time Egna3.1) must be solved.

3.1.1 Heat and Mass Transfer Coefficients

Heat and mass transfer of liquid drops has beahestiextensively by numerous
researchers; Frossling [1938FR1], Snyder [1951SNR&nz and Marshall
[1952RA1], Hsu et al. [1954HS1], Yao and SchrocR7@YA1], Miura et al.
[1977MI1] and Srikrishna et al. [1982SR1].
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Ranz and Marshall [1952RA1] conducted their staidising small drops
suspended on thin wires/fibres, subject to a comstelocity air stream. They
proposed the following correlations for the heat arass transfer,

Nu=2+0.6 Re¥2 pPr¥3 (3.6)
Sh=2+0.6Re?? V3 (3.7)
for 2 <Re <800.

Miura et al. [1977MI1] show that these correlai@accurately predict the
heat and mass transfer for Reynolds numbers 0b @000. The correlations are
in good agreement with data for solid spheres, thasffects of drop oscillation
and internal circulation were minimal in the RamadaMarshall [1952RA1]
studies. FLUENT 6.2.16 employs these correlatifift@52RA1].

Yao and Schrock [1976YA1] measured the temperatidirearge water
drops,3 < dy < 6mm, accelerating from rest in still air, by condugtia series of
experiments. The experimental data is plotted gufe 3.1 together with results
obtained by solving Equation (3.5) using differaatrelations forNu and Sh
found in literature.
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Drop temperature, Tq [K]
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Drop path length, sq [m]
----Yao and Schrock [1976YA1] Ranz and Marshall [1952RA1]

------- Erens et al. [L994ER1] --—--Equation (3.12)
¢ Data of Yao and Schrock [1976YAL1]

Figure 3.1: Drop temperature asa function of path length for different heat and mass
transfer correlations.

Figure 3.1 illustrates that the correlations of Rand Marshall [L1952RA1] under-
predicts the cooling of accelerating water drogsusTacceleration influences the
heat and mass transfer of a drop. Snyder [19518iHsured the cooling rate of
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single water drops accelerating freely in air. Afher Reynolds numbers his data
differs by up tol5% from the heat transfer data for solid spheres.

Yao and Schrock [1976YAL1] proposed the followingretation, for their
experimental data, based on the correlations giggnRanz and Marshall
[1952RA1],

Nu =2+ gy (0.6 Re¥2 Pr¥2) (3.8)
where,
, Y07
Ovs = 25[—J (3.9)
dg

for Re < 2500 and10 < (z/dg) < 600.
Erens et al. [1994ER1] using the data of Yao andr&k [1976YAL]
proposed a more accurate correlation, given by,

2 2

0.2
dv/dt)d dv/dt)d
Oys = o.22+3.15(%} for (dv/dt)dg | 5x107* (3.10)
vad,, v

The maximum stable drop diametdg, which is the maximum diameter of a drop
before it breaks up, is given by,

160,
d = _ —Yd
m ‘/g(pd—pa) (3.11)

Using the experimental data of Yao and Schrock’§¥RA1] the author
proposes the following correlation,

-0.28
2
Oys =0.68 —(SD:‘z) " 0.95 -
D € 2 (3.12)
i
1+14| S0 RE e
(Co Re )T

where (CpRe)t is at the terminal velocity condition. The full ri@tion of
Equation (3.12) is given in Appendix D.

The predicted values for the temperature of antalaccelerating water
drop using Equations (3.10) and (3.12) are illusttan Figure 3.1, where it is
seen that the latter correlated the experimentah dd Yao and Schrock
[1976YAL] better.
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3.2 Solution Techniques

The different solution techniques that are employedsolve Equation (3.5),
together with their assumptions, for the deternamatof the temperature and
diameter of a drop free-falling through upward fiogy or stagnant air are
presented in this section.

3.21 Analytical

For the analytical solution it is assumed that dnep remains spherical for its
entire path length and it falls in stagnant airttRermore the falling drop has no
effect on the thermophysical properties of the itnmus phase, thus these
properties remain constant and equal to theiraihgonditions. For the analytical
model the thermophysical properties of the dropaientonstant and equal to
their initial conditions.
Equations (3.1) and (3.5) are coupled and needb¢o solved

simultaneously. In order to reduce the set of equatto a single ordinary
differential equation, Equation (3.5) must be daddoy Equation (3.1) to give,

dly __3 h T,-Tg 1 3hg 1 (3.13)
dds o hp Cs-Cyds ¢ ds .

where the subscriftis now used to denote the spherical drop.
The final solution equation is given by,

2
RHS:E(Q_]_)_ lf In 50'19 +|19+fa3
¢ 28%q, | &ay+ly+éay

+—f L tan'l(—zgal‘%Ilj—tan‘l(—zgalﬂlj
$ sy P 2

n=e™s (3.15)

(3.14)

are the dimensionless variables for the diametdrt@amperature respectively, the
constants in Equation (3.14) are defined below,

a=a (TS,O _Ta)2
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ay =(Tso —Ta) (24T, + ;)
a3 = alTa2 tal+tag + A

1
ﬁ:MLe_g
¢,D
3hyg
Cv(Ts,O _Ta)
I, =8+a)¢

l, :(4520301412)%

The reader is referred to Appendix E for a fullidation of Equation (3.14).
A shortcoming of this model is its failure to reeldhe dependent variables
temperature and diameter to an independent varsaigle as time or path length.
The model does show, mathematically, that the éianof a drop changes
by less thar2% before it reaches its steady state temperaturidie

3.2.2 Numerical

For the purposes of this thesis, a numerical pragras written that can solve the
energy transfer equation for a free-falling dropam incompressible Newtonian
fluid, using a 4 order Runge-Kutta integration technique. The modah
incorporate drop deformation, acceleration effenid change in drop diameter
and neglects the effects of the drop on the coatisphase.

The thermophysical properties of the continuoussgh also remain
constant. Unlike the analytical solution, the thepimysical properties of the drop
are able to be updated for each time step, makimgie realistic.

3.2.3 Computational Fluid Dynamics

FLUENT 6.2.16 models the drops by means of a diegphase model (DPM),
utilising a Lagrangian approach in which the enesgg mass transfer equations
are written in a co-ordinate system that moves \eiich individual drop. The
continuous phase equations are still expresseldein Eulerian continuum form,
but are suitably modified to account for the presenf the drops, by means of
interphase source terms.

The user is presented with the option to includerphase interaction. In
the event that the interaction is included, therthestrajectory of a particle is
computed, the code determines the heat and masderdoetween the drop phase
and the continuous phase. This interaction is aueou for by appropriate
interphase source terms in the continuous phasegyerand species transport
equations.

By default, the solution of the particle energydamass equations are
solved in a segregated manner. The user is presentlk the option to enable
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Coupled Heat-Mass Solution. If selected then the code will solve this pair of
equations using a stiff coupled ODE solver witloetolerance control.

FLUENT 6.2.16 only utilises the Ranz and Marshfll952RA1]
correlations for determining the Nusselt and Shedvoumbers. In order to
incorporate other correlations the user must canailuser-defined-function. In
the code the thermophysical properties such asitgespecific heat and latent
heat of vaporization of the drop and the diffusawefficient of water vapour in
air remain constant and equal to their initial eslulefined by the user.

FLUENT 6.2.16 provides the option to solve Equagi¢3.1) and (3.5) by
means of a number of different numerical integratiechniques: implicit Euler
integration; semi-implicit trapezoidal integratiompalytical integration and d"5
order Runge-Kutta technique.

3.3 Analysisof Results

The next section compares and discusses the reshitimed by employing the
different solution techniques. For the solutionht@iques to be comparable the
simulation conditions need to be identical. Fortladl simulations presented here,
the water drop will initially be at a higher temptire than the air.

Due to the limitations of FLUENT 6.2.16 and thealpical solution
technique, the drops are assumed to be sphereealfdlling in a stagnant air with
the heat and mass transfer calculated using threlabons of Ranz and Marshall
[1952RA1].

The results of the three solution techniques ampared by making use of
the dimensionless variablesand#, from the analytical solution. The simulation
conditions are: drybulb air temperature 286.6K, initial drop temperature of
313.9K, relative humidity oD.6 and ambient pressure H31325N/nv.

Numerical (1) in Figure 3.2 is for the case where the thermoighys
properties of the drop are updated for each tire@ g1 the numerical solution
technique Numerical (2) is for the case where the thermophysical propedre
held constantNumerical (1) is a better representation of the reality.

For the positive) case both the heat and mass transfer processesthee
same direction, whereas for the negativease the heat transfer process reverses
and now tries to heat the drop, this results inn@nease in the curvature of the
graph. Whero = 0 the drop temperature is equal to the air drybathperature.
The figure also shows that the drop’s diameter cediby less tha2% before the
drop temperature converges to the wetbulb temperadéi the air. For most
conventional cooling towers the fall height and@bstribution is such that the
majority of the drops never reach the wetbulb terafpee, therefore the change in
diameter can be considered negligible for coolmger analysis. The change in
diameter can be used to determine the mass of wedorated.
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Figure 3.2: Comparison of dimensionlesstemperature as a function of dimensionless
diameter for thethree different solution techniques.

From Figure 3.2 it appears that neither the aialyhor the CFD solution
represent the realityNumerical (1), accurately. Figure 3.3 compares the CFD
solution, the case of constant thermophysical pt@se with theNumerical (1)
solution.

1

T 310 — &

= ~—0.995 0

7 T Qo<><>

Q300 O 0.99

= = o0
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290 300 310 0.985 099 . Q09 1
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Figure 3.3: Comparison between numerical and CFD resultsfor (a) Temperatureand (b)
dimensionless diameter.

Figure 3.3 demonstrates that the maximum devidbetween the CFD
and numerical solutions i9.15% for both temperature and diameter. In
conclusion, for the simulations presented here, @RD any solution procedure
that assumes constant thermophysical propertiethefdrop and utilises the
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complete mixing model can be used to accurately predict the change in
temperature and diameter of a water drop freenfalin stagnant air.

According to Kroger [1998KR1] the rain zone getigreonsists of3-6mm
drops. Plotting the temperature as a functionroétfor drop diameters df 2, 3,
4 and5mm falling in air with a counterflow velocity dIm/s, reveals that all of the
drops will eventually converge to the wetbulb tenapare of the air.

315 [
B
\‘._\ . //— s =10m -0
310 10 ‘ \\({ ———s=15m Si_z?n'/fss I
\\_ ‘\' ‘] | ——— S= 20m
\ \\ ); X ———s= 25m
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Ay . N
\ \\.\&.‘\ X}i‘
300 \ S VA
\ N\\ T
295 \Q s "'“-;-_”q-_h. -
SS s . __ __h_:

Time, t [s]

Drop temperature, Td [K]

290

—Ilmm----2mm------- 3mm-----4mm-----5mm

Figure 3.4: Temperature asa function of timefor spherical water dropsfallingin
counterflow air.

Similar to the drop velocity, there exists a transiand steady state stage, the
steady state stage for each drop being the stageevthe drop attains the wetbulb
air temperature.

Figure 3.4 illustrates lines of constant path tin¢s) and that smaller
drops cool down quicker than larger drops. Fordhase ofs = 10m, which is the
typical height of a rain zone in a natural drafttyweoling tower, thelmm drop
has come to withif.2% of the steady state temperature. Kroger [1998kdRdtes
that generally the smallest average drop diamet#rd rain zone i8mm. For this
diameter withs = 10m, the change in drop temperature is obi¢o of the
maximum change in drop temperature. Had the drem bem or 2mm then the
change in drop temperature would 189.8% or 75% of the maximum
respectively. Thus it would be desirable to havalndrops in the rain zone.

For a rain zone height larger tha@m, it would be undesirable to have
1mm drop diameters, as the drop would no longer cobldnly lose mass due to
evaporation. Figure 3.4 shows that the majoritgdraips in a general rain zone of
a cooling tower hardly ever reach their thermahgyestate condition.
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For almm drop, under the same simulation conditions asrei@u4, free-
falling in different counterflow air velocities, éhchange in the drop temperature
as a function of drop path length is given by Feg8r5 below.

315

305 1

295 1

Drop temperature, TdlKI

285

Drop path length, sq [M]

Va=0m/s  ==---- Va=1m/s ———— v,=2m/s

Figure 3.5: Drop temperature asafunction of drop path length for various counterflow air
velocities.

The figure illustrates that a counterflow air vetpincreases the rate of change in
the drop temperature, and that an increase indteterflow air velocity results in
an increase in the rate of change in the drop testyre. Reasons for this are the
increased residence time and higher initial Reysmoldimbers that relate to higher
Nusselt and Sherwood numbers.

It should be noted that the effect of drop defdramon the change in
temperature of a drop is addressed in Chapter 5.

Summary

A new correlation for the heat and mass transfepragposed that predicts the
temperature change of free-falling acceleratingewdtops with greater accuracy
than others found in literature. The correlationRainz and Marshall [1952RA1]
is however used for this thesis due to its inclo$ioFLUENT 6.2.16.

The temperature and diameter change of free-fpfipheres was found to
be accurately predicted by FLUENT 6.2.16, analyt@ad numerical solution
techniques.

The thermal transient time of a drop is of greapartance to rain zone
analysis. This conclusion is supported by the taat the smallest average drop
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diameter generally found in a cooling tower raimedarely reaches thermal
steady state.

It was found that smaller drops require less tihan larger drops, for the
same amount of cooling, resulting in a shorter datigth. This leads to the
ratiocination that the smaller the drops the shdite rain zone required.

In conclusion it was found that a counterflow\atocity increases the rate
of change in the drop temperature, and that arease in the counterflow air
velocity results in an increase in the rate of ¢jeam the drop temperature, the
reasons being increased residence time and NasgeBherwood numbers.



CHAPTER

Experimental Data Acquisition

Experimental work of a one-dimensional counterflow case is performed in order
to obtain pressure drop and drop size distribution data necessary to validate CFD
models. This chapter is used to discuss the experimental test facility and the setup
thereof. The experimental procedure used to determine the pressure drop over the
domain of drops as well as the acquisition of drop distribution data is presented
here. The relevant data for the pressure drop and drop distribution is then analysed
and presented at the end of this chapter.

4.1 Experimental Setup

The experimental setup that is used to determine the pressure drop over the
domain as well as the drop size distribution in the domain will be discussed in this
section.

As part of this thesis a test facility was designed and implemented at the
Mechanical Engineering Department of the University of Stellenbosch. The
calibration of the test facility is dealt with in Viljoen [2006V11]. The test facility
is capable of maximum air and water velocities in the order of 5.8kg/m?s. Figure
4.1 shows all the components of the experimental setup and their relation to one
another.

The test facility was designed with the idea of making it adaptable, thus
entailing that the same parts can be used to construct either a crossflow,
counterflow or cross-counterflow test domain.

Referring to the figure, the path that the air travels is now given. The test
facility in the counterflow arrangement is an induced draft tunnel. The axial fan
creates a low pressure on the diffuser side of the fan, the atmospheric air being at
a higher pressure on the outside of the test facility is then drawn in due to the
pressure difference. The air passes through the rounded inlet that creates a
uniform velocity profile in the test section and then proceeds to move through the
domain of drops. The air then moves through the fill and the water distribution
sections before reaching the drift eliminator section where the majority of the
entrained drops are removed. After leaving this section the air enters the plenum
chamber, from where it travels through a flow nozzle. The pressure difference
over the flow nozzle is measured and this is used to determine the mass flow of
the air. The diffuser aids in pressure recovery and also helps to improve fan
performance. The air then finally is discharged by the fan to the surroundings. The
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static pressure difference of the air over the test section is measured between

pressure tapping points 1 and 2.

Diffuser

Flow nozzle —_—

Plenum chamber —_

Pressure tapping
point

o ‘Waterflow

Airflow

Water distribution

Drift eliminators 5NN — manifold

Fill section

Bypass-water  f——m—— |

Test section

Rounded inlet

Venturi flow meter

S

Pump

Figure4.1: Experimental test setup in counterflow configuration.

The water is pumped from the pond through a control valve that is located
on the high pressure side of the pump to control the volume flow of the water. The
water passes through a venturi meter where the pressure difference over the
venturi meter is recorded and used to determine the total volume flow of water
that enters the tunnel. The water is introduced to the tunnel via a water
distribution manifold found in the water distribution section. It then enters the fill
section of the tunnel and passes through it. From here the central portion of the
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flow leaving the fill passes through the test section where it interacts with the air
before returning to the pond. The peripheral portion is however collected in
bypass troughs from which it drains to a collecting tank for flow measurement
before returning back to the pond.

4.2 Measurement Techniquesand I nstrumentation

Temperature measurements are made using type T thermocouple wire and the
atmospheric pressure is measured with a mercury column manometer.

The pressure difference over the venturi flow meter is measured with a
Foxboro 843DP-H2I pressure transducer coupled to a data logging program,
LabView 7.1, via a Hewlett Packard A34790 datalogger. The calibration curve for
the venturi flow meter is given by,

Q. =1.73x107" Ap> —2.915x10°Ap{, +1.819x10>Ap3,

(4.1)
~5.363x 10 2ApZ, +0.9511Ap,, +0.4887

where Qy is the water flow rate in £/sand Apy is the pressure drop over the venturi
meter in kN/nv. The pressure drop is determined using the calibration curve of the
pressure transducer, given by,

p,, = 15.996V,, — 16.006 (4.2)

where V,, is the voltage reading given by the pressure transducer in volts.

The pressure drop over the flow nozzle as well as over the test section was
measured with Betz water micromanometers. Frequency control of the fan is done
by a YASKAWA General Purpose Inverter (Varispeed E-7 Model CIMR-E7C), so
as to control the mass flow of air through the test facility. The velocity of the air
in the test section is determined by,

0.5
Vs =Cy (ZA—F’] tal 3)
PaK As

where Apy is the pressure drop over the nozzle, C, is a caibration correction
coefficient of the nozzle with a value of 0.96, « is the vel ocity-of-approach factor
with a value of 0.988 and A, and A are the areas of the nozzle and test sections
respectively.

The drop size distribution in the test section is measured with an apparatus
designed and implemented by Terblanche [2005TE1l], a schematic of the
installation of this apparatusin the test facility at station 2 is given below.
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Figure 4.2: Drop size distribution measurement appar atus.

The raw experimental data is in the form of digital images. The digital
images are first imported into a standard image editing program in order to draw
definite lines around each drop so that they can easily be distinguished. Once this
Is complete the edited digital images are imported into Droplet Analyzer v.1
developed by Terblanche [2005TEL].

Droplet Analyzer v.1 determines the coordinates of each drop as well as
the number of pixels that each drop consists of. This data is then manipulated to
determine the drop distribution, the manipulation procedure is given below. The
close, far and average calibration values are determined using the following set of
equations respectively,

Y. =0.25 mm/pixel
ys =—0.000075x+0.313 mnvpixel

+
Vg =52 - rmipivel

(4.4

where x is the horizontal coordinate of the drop in the photograph. The
background plate, as shown in Figure 4.2, is not perpendicular to the digital
camera but at an angle, so as to reduce glare coming from the digital camera flash.
This angle resultsin the fact that pixels will have different dimensions at different
positions in the digital image, thus the need for the two calibration values in
Equation (4.4).
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4.3 Experimental Procedure

The test procedure for both the acquisition of the pressure drop and drop
distribution data is documented here in the format of the steps that were taken to
conduct one compl ete test.

4.3.1 PressureDrop

1
2

3

O

Record the atmospheric pressure using the mercury column manometer.

Reset the Betz micromanometers for both the test section and the nozzle to
the zero position.

Run the test facility by turning the pump on, it is not necessary at this point to
turn the fan on, until the water temperature reaches the wetbulb temperature
of the air in the test section that is measured at both station 1 and 2. Once this
condition is reached the fan can be turned on.

Input the atmospheric pressure, measured in step 1, into the graphic-user-
interface (GUI) of the LabView program specifically written for the test
facility, see Snyman [2005SN1]. The program uses this value together with
the temperature measured in the nozzle to determine the air density using the
ideal gas law.

Set the water to the desired total volume flow by adjusting the control valve,
the total volume flow isindicated in the GUI.

Adjust the frequency of the fan until the desired velocity in the test section is
achieved, thisis determined by using the pressure drop over the flow nozzle.
Once the Betz micromanometer for the test section has stabilized the pressure
drop reading can be recorded.

For one fixed water flow rate, three different air velocities are tested.

Repeat steps 6 through 9 for six different water flow rates.

4.3.2 Drop Size Distribution

1
2

3

Follow steps 1 through 7 asin section 4.3.1.

It is important to note that the water total flow rate and the air velocity in the
test section be set to the same values asin section 4.3.1.

Once the water flow rate and the air velocity have stabilized the digital
images of the drop distribution can be taken. It was found that five digital
images at a single test condition were sufficient.

For one fixed water flow rate take digita images at the same three air
velocities asin section 4.3.1.

Repeat steps 4 and 5 for the six different water flow rates.
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4.4 Experimental Data Analysis

The following section is used to illustrate the analysis procedure and the equations
used to convert the raw experimental data into the relevant data that will be used
in this thesis. The rain zone loss coefficient for comparison purposes and the drop
distributions will serve asinput data for the CFD simulations.

441 Rain Zone Loss Coefficient

The loss coefficient for the rain zone in the test section can be determined using
the total pressure drop, 4p:s, over the test section and the velocity, vi, in the test
section as shown in the equation below.

Apy
Kig =372 45
08 (49

4.4.2 Drop Size Distribution

The diameter of each drop can be determined using the number of pixels for the
drop, the diameter is given as a spherical equivalent diameter,

) _ 05
_ [ 4Yayg (number of pixels)

de (4.6)

m

where de is in mm. This is done for each drop in the digital image. Once the
diameters are known the drops can be grouped into intervals defined by diameter.
The mass for each diameter interval can be determined by multiplying the number
of drops in the interval by the representative mass for the interval. The
representative mass is determined using the midpoint diameter of the interval. The
total mass can then be determined by summing all the interval masses, by using:

Nd,i
M; :% Z d3;
J=1 (4.7)

where Ngy; and N are the number of drops in an diameter interval and the number
of diameter intervals respectively. The mass fraction for each interva is then
determined by dividing each interval mass by the total mass.

M.
Mg =—1

1T, (4.8)
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The experimental retained mass fraction, Yy;, of drops with a diameter greater
than d; is determined as follows,

i
Yd,i :1_ZM fi (49)
1

The Rosin-Rammler equation is used to fit a curve through the
experimental data points. The Rosin-Rammler equation is given by,

Y, :exp{—[diRRJ J (4.10)

where Yy is the retained mass fraction of drops with a diameter greater thand, d is
the drop diameter, drr is the mean drop diameter and n is a measure of the spread
of drops. The value of drr is Obtained by noting that thisis the value of d at which
Yq = €'~ 0.368. The value of nis determined using the experimental values for Yq
and the corresponding d as well as drg,

! In(d; /drg) (4.11)
N

Representative diameters of a polydisperse drop distribution can be
determined from ASTM E799-92 which defines these representative diameters as
follows:

p
gle-a) — Zidi™ 4.12
pq STE (4.12)

These diameters are single values that express the various mean sizes in the
domain of polydisperse drops. Table 4.1 below presents a summary of the
common representative diameters.

Table4.1: Summary of representative diametersfor polydisperse drop distributions.

Name

Average diameter
Mean volume diameter
Sauter mean diameter
Pierce diameter

De Brouckere diameter

AW W|L[T
WL INOIolQ
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4.5 Experimental Results

The experimental results for the rain zone loss coefficient and the drop
distribution are given in the relevant sections below. The reader is referred to
Appendix F for the rest of the experimental data. Appendix G is used to perform a
%mnﬁnzle calculation for the test condition of G, = 2.43 kg/n?s and G,, = 2.57
kg/ms.

45.1 Rain Zone Loss Coefficient

Figure 4.3 is a chart of the experimental rain zone loss coefficient as a function of
the water mass velocity, Gy, for different air mass velocities, Gs.
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Figure 4.3: Experimental rain zone loss coefficient.



45.2 Drop SizeDistribution

4.9

An example of the experimental drop size distribution is given below. This
polydisperse drop distribution is used in simulations in subsequent chapters.

1.2
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Figure 4.4; Retained massfraction for experimental data and Rosin-Rammler distribution

function.

Appendix H gives afull analysis of the Rosin-Rammler distribution function. The
analysis results in the exclusion of the Rosin-Rammler distribution function as a
method of inputting drop distribution datainto FLUENT 6.2.16.

The values of the representative diameters, from Equation (4.12), are

givenin Table4.2.

Table 4.2: Representative diameters.

Name p q Diameter [mm]
Mean Diameter 1 0 3.219
Mean volume diameter 3 0 4.354
Sauter mean diameter 3 2 5734
Pierce diameter 4 1 5.553
De Brouckere diameter 4 3 6.678

A plot of three of the representative diameters for al the test conditions is
given below, the three representative diameters are: Sauter mean diameter, Mean

volume diameter and the Average diameter.
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Figure 4.5: Consistency of therepresentative diametersfor different test conditions.

The curves show that the representative diameters remain relatively constant. The
Sauter mean diameter does seem to show the greatest variation for a specific
water mass velocity condition with the Average diameter showing the least.

Summary

This chapter dealt with the experimental setup as well as the procedure and
analysis followed to determine the rain zone loss coefficient as well as the drop
distribution data. The experimental results were then given and discussed.
Interestingly it was found that the representative diameters stayed relatively
constant for the range of test conditions.



CHAPTER

Effect of Drop Deformation on Rain Zone Perfor mance

Chapter 2 shows that drop deformation has an effedecreasing the absolute
terminal velocity. De Villiers & Kroger [1998DE1hclude the drop deformation
in their determination of the rain zone loss caéit and seem to show good
comparison with experimental results. Fisenko et[2004FI1] exclude drop
deformation in the development of their mathematicadel of mechanical draft
cooling tower performance. They do not determireepgtessure drop over the rain
zone with their model and confine themselves to eflod) the change in the
drops’ velocity, diameter and temperature, and alsthange in the temperature
and density of the air-vapour mixture in a cooltogver. Their model however,
correlates well with experimental data. Thus twpasate researchers have shown
that for the one case drop deformation plays a aok then for the other case it
does not. This chapter is used to validate bothareters’ work.

This chapter is used to gain an understandinghef déffect of drop
deformation on rain zone performance. To this ¢mel effect of drop deformation
on the pressure drop over a rain zone is validatadg CFD and experimental
data determined in Chapter 4. The effect on theghan temperature of the water
passing through the rain zone is also validatedguSiFD.

5.1 Rain ZonePressure Drop

Consider a single drop falling through air movinigaa absolute speed of.

N\
/ BSd,i

"

Figure5.1: Incremental control system for determination of pressuredrop.
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The scientific definition of work is given as: work the measure of a quantity
that is capable of accomplishing macroscopic motioa system due to the action
of a force over a distance. Now for a variable éotbhe expression for work
becomes,

work = j;f F (s)cos(8)ds (5.1)

whereF is the force that is dependent on the displacersemid d is the angle
between the force and the direction of motion. #ar case in Figure 5.1, the
motion of the drop and the parcel of air are inaflal and opposite directions,
thus negative work is done on the parcel of agulteng in a pressure drop.

If a parcel of air surrounding a drop, as showrrigure 5.1, moves at a
velocity of v,, then the parcel will be displaced a distancésyf during a time
increment obt. The work done by the drag force component is tloeeef

work = —Fp 08, (5.2)

Applying the same methodology to each drop-parcéhé domain, an expression
for the pressure drop over the domain can be detedn

Ny
z _FD,i JSa,i (53)

A —i=1
PQy B a—

where Ny is the number of drops in the domain. Further &itogtion of the
expression yields,

Nd
2 ~Fpjvy;

Ap = i=1
P V,A

(5.4)

whereA is the cross sectional area of the domainin the denominator is the
average air velocity ang,; is the velocity of the parcel derived from,

5 .
vy = % (5.5)

For the case where the drops are assumed notdct ¢ffe continuous phase, as
was done in theumerical solution technique, the velocity of the parcel is equal to
the average air velocity which leads to a furthepsification,
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Nd
2 —Fp;
Ap = i=1
P A

(5.6)

Referring to Equation (5.6), the summation of tliep drag determines
the pressure drop over a domain. It is importanimention that spherical and
deformable drops, of equal mass, will attain thenesaterminal drag force.
Equation (5.6) shows that pressure drop changesifathle sum of the drag forces
changes. The two influential factors are the nundfedrops and the drag force
values of the drops in the domain. Deformable dhapger than approximately
3mm, have lower absolute terminal velocities than rtheguivalent spherical
drops. This means that their residence time inrticogar domain will be longer
than that of the spherical drops, resulting in aatgr number of drops in the
domain and subsequently a higher pressure dropriable drops attain their
terminal condition sooner than spherical dropsultegy in higher drag force
values for a specific domain and subsequently berigressure drop.

51.1 Analysis

The pressure drop tests conducted in the tesitfadiéscribed in Chapter 4 were
simulated using FLUENT 6.2.16 to investigate thieefof drop deformation on
pressure drop. The measured drop size distributada, air and water flow rates
and temperatures are used as input values. Thelasioms were done for
polydisperse and some of the different monodispais®p distributions to
compare results. The CFD rain zone loss coeffisidratsed on a Sauter mean,
mean volume and average diameter and the corresgpagperimental data are
plotted against the CFD loss coefficients for thé/gisperse drop distributions in
Figure 5.2.
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oo

OR+20% ] o R k200
o6 O —6
+- -20% |-7-20%
B4 REE- &4
X Y - X
2 2 3
0 B | : i e
0 2 4 8 0 2 8
Kz (Polydisperse) 1 Kz (Polydisperse) -
‘ © Sauter Mean +Mean Volume ‘ ‘ © Sauter Mean + Mean Volume ‘
O Average Diameter A Experimental Data O Average Diamett A Experimental Dat
(a) Spherical drops (b) Deformable drops

Figure5.2: Experimental and monodisper se CFD resultsfor the rain zone loss coefficient
plotted against polydisperse CFD results.

The numerical program developed for the drop vglppath length and
heat and mass transfer calculations, is also usetktermine the pressure drop
over the domains using Equation (5.6). The analgsiestricted to monodisperse
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drop distributions. In the figures below the nuroati program’s results are
compared to the results of FLUENT 6.2.16.

_ 8 200 _ 8
= ] + ’/(/)//,or = . .
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Loss coefficient, Kr, [-] L oss coefficient, Kr, [-]
\+ Mean VolumeO Average Diametér \+ Mean VolumeO Average Diametér
(a) Spherical drops (b) Deformable drops

Figure5.3: Monodisperse numerical resultsfor the rain zoneloss coefficient plotted against
monodisperse CFD results.

In summary, the presumption that drop deformatitiacts the rain zone
pressure drop by increasing it is correct. The erpntal results share greater
correlation with the deformable drop cases and ties drop deformation is
included throughout this thesis for all simulatiafsthe rain zone. The analysis
also shows that De Villiers & Kroger [1998DE1] wererrect in including drop
deformation in the determination of their model tbe calculation of the rain
zone loss coefficient.

5.2 Water Outlet Temperature

As stated in the introduction of this chapter Figeet al. [2004FI1] ignore drop

deformation in the determination of their mathewwtimodel of a mechanical
draft cooling tower. The effect of drop deformatieam drop drag and the
subsequent effect on the change in water outlepeéeature of a typical cooling

tower is analysed in this section. The analysegpart®ormed using the Ranz and
Marshall [L952RA1] correlations.

521 Analysis

The analysis is performed by first analysid3, 4 and 5mm diameter drops and
examining their change in temperature with respegbath length, for both the
spherical and deformable drop case. The test donditare: initial drop
temperature 0f295.65K, ambient air temperature 88.6K with a relative
humidity of 10%, the ambient air pressure 84100N/m? and the counterflow air
velocity is 1.975nVs. These conditions are found in Kroger [1998KR1} &
typical natural draft circular wet-cooling towerttvia rain zone fall height dOm.
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Figure5.4: Comparison between spherical and deformable dropswith respect to drop
temperature.

Figure 5.4 shows that there is not much differelnesveen the respective drops
concerning the temperature as a function of faiglime At the end of the path
length the deformable drop has a lower temperatinéh is due to the fact that
the drop is in contact with the air for longer hetspecified fall domain. The two
curves show the same cooling for the first parthef path length, they begin to
separate at roughl§.9m. The reason being that before this point they lhathe
the same velocity and thus the same Nusselt andwS8bd numbers and
subsequently the same cooling rate.

For the single drop analysis there was no intemawith the continuous
phase. For the analysis that follows, interacti®nncluded. FLUENT 6.2.16 is
used to analyse a counterflow domain with a height4m. The same test
conditions are used as in the single drop analpspolydisperse drop distribution
was used with a total mass flow 8f39kg/s. The outlet water temperature is
determined using a mass flow averaged scheme atvdtex outlet boundary, as
given by Equation (5.7),

Nd
;1”11 iTd;
Two =

3 (5.7)
Zlmd j



5.6

whereNy is the total number of drops at the outlet boupd&he results for the
mass flow averaged water outlet temperature aengiv Table 5.1 below.

Table5.1: Comparison of outlet water temperaturefor spherical and deformable drops.

Spherical drops Deformable drops
294.27K 294.26K

This analysis too shows that the deformable dregbkibit a lower
temperature. However, the difference between tha@etsas of such a small value,
0.7% of the total cooling, that it can be stated thadbpddeformation has a
negligible effect on the cooling of the drops amdbsequently the water outlet
temperature. Therefore Fisenko et al. [2004FI1] atde to ignore drop
deformation in their mathematical model withoutuming a significant error in
the determination of the outlet water temperature.

Summary

It is seen that drop deformation does affect therd@nation of the rain zone loss
coefficient as well as the outlet water temperatfra rain zone. For the case of
the rain zone loss coefficient the effect is of @asurable order however the effect
on the water outlet temperature is negligible. udodlg drop deformation in a
mathematical model may present some difficultieswédver if a single
mathematical model is to be created that both descrthe rain zone loss
coefficient as well as the water outlet temperatben drop deformation must be
included so as to model accurately.



CHAPTER

CFD Moded of the Rain Zone

In subsequent chapters, investigation is lodgealtim feasibility of modelling the

loss coefficient and Merkel number of polydisperdeop distributions by

assuming a suitable monodisperse drop distributisimg a representative
diameter. All these investigations are done usimg ¢commercial CFD code,
FLUENT 6.2.16. The objective of this chapter igitvelop a CFD model. For the
counterflow rain zone a three-dimensional mesheisegated and for the natural
draught circular wet-cooling tower rain zone a timensional axisymmetric
mesh is generated. The results of the simulatiamstie polydisperse drop
distributions are presented.

6.1 Background

Both the Merkel [1925ME1] and Poppe [1972P0O1] mdthare one-dimensional
analytical cooling tower models. Merkel makes a ham of simplifying
assumptions to the heat balance equation, redukenglriving potential for heat
and mass transfer to an enthalpy difference. Pappkides the effect of
evaporation of water and proposes a more compreteesst of equations. Both
models have proven to be acceptable, but neithrecapture nor predict the non-
uniformities that exist in a cooling tower. CFD nets] due to their finite volume
approach, have the capability to predict non-umities that exist in a cooling
tower if modelled correctly.

FLUENT 6.2.16 is able to model polydisperse andhoabsperse drop
distributions and can also employ various turbutemodels, thus a realistic flow
field can be generated. The code models the drgpadans of a discrete phase
model (DPM), utilizing a Lagrangian approach in @fithe conservation of
momentum equation is written in a co-ordinate systbat moves with each
individually modelled drop. The continuous phaseatmpns are expressed in their
Eulerian continuum form, but are suitably modifitnl take account of the
presence of the drop phase.

6.2 CFD Solver Moddls

Considering the importance of natural draught ¢acwet-cooling towers in the
power generation field, it was decided to simukieh a geometry. Furthermore,
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due to the nature of the experimental work done;oanterflow domain is
simulated.

To analyse the heat, mass and momentum transfireimain zone of a
wet-cooling tower, certain simplifying assumptioeed to be made. For the
continuous phase:

* The mean flow field is steady thus all time delives are zero.

e The flow is incompressible.

* The flow is Newtonian and turbulent.

* The flow field at the tower inlet is essentiallyawlimensional, thus implying
axisymmetric flow for a circular tower. For the cwerflow geometry the flow
Is essentially one-dimensional.

FLUENT 6.2.16 has thus been used to solve the gt&®ynolds Averaged

Navier-Stokes (RANS) equations closed employing stemdardk-¢ turbulence

model. The semi-implicit method for pressure linkeguations (SIMPLE) was

employed with second order upwind discretizationplyed for the spatial

derivatives. A segregated implicit solver was used.

For the DPM the following assumptions are made:

* No drop agglomeration, collision, coalescence eakfup occurs.

* The drops do not influence the continuous phasbutence conservation
equations.

Drop deformation is included in the CFD model bgdrporating a UDF that

employs the correlation, Equation (2.16), derivedppendix B.

Solution of the discrete phase implies integrationtime of the force
balance on the drop to yield the drop trajectorg. éAdrop moves through the
continuous phase it experiences drag due to tlewssnature of the continuous
phase. The conservation of momentum states trafdlge, acting to change the
momentum of the drop, also changes the momentutimeo€ontinuous phase. As
the drop is moved along its trajectory, heat andsrteansfer between the drop
and the continuous phase are also compuiethe heat and mass transfer laws.
The aforementioned interactions of momentum, heat enass transfer are
accounted for by appropriate interphase sourcesténmhe continuous phase
momentum, energy and species equations respectively

The rain zone of a cooling tower contains a langenber of drops. In
order to individually model each drop it is necegst treat the drop in an
unsteady fashion. Although this is possible it doesease the demand on the
computation time. Steady modelling presents theesagsults for the pressure
drop, change in drop and air temperature and chentigee vapour content of the
air, in a fraction of the time required for unstgadodelling. This together with
the number of simulations needed for the purposéhisf thesis make steady
modelling of the drops the viable option.

For steady modelling, only a sample of the towbylation is analysed,
each sample is tracked from injection to termimati@scape or complete
evaporation) and an appropriate portion of thel totss flow rate of water is then
assigned to each of the trajectories. If drop apelation, collision, coalescence
or break-up need to be modelled then the drops dvbal/e to be treated in an
unsteady fashion.
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As stated earlier for the purposes of these sitioms, the standard-¢
turbulence model is employed. The model combindgsutant Reynolds number
forms of thek ande equations for the free stream with algebrada of the wall
representation of the flow within the boundary layeshould be emphasized that
existing turbulence models are inexact represemstof the physical phenomena
involved. The nature of the flow to which the tudnce model is being applied is
a leading factor in the degree of accuracy thattainable. Recirculating flow at
the cooling tower inlet gives rise to numericaldoaracies, it is for this reason
that comparison need be drawn with experimentaletaions in order to gain
confidence in the results presented. It is reconti@drthat accuracy assessment
be performed on the available and viable turbulenodels.

6.3 CFD Setup and Input Data

This section will give a brief synopsis of the gestries, boundary conditions,
input data and considerations used to construchtimeerical wet-cooling tower
simulations of this thesis, using the mesh germratode GAMBIT 2.2.30 and
the CFD code FLUENT 6.2.16.

6.3.1 Tower Geometry and Boundary Conditions

The counterflow domain together with the boundagditions is given in Figure
6.1. The dimensions of the domain dréx1.5x4m for the width, depth and
height respectively.

Outflow (Water inlet)

MMeshed domain Symmetry planes

1

Velocity Inlet {Air inlet)

Figure6.1: Counterflow domain and boundary conditions.
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Grid independence was investigated on the counterflomain. The results that
were monitored are the pressure drop across theaidpnthe outlet water
temperature and the mass fraction of water vapbtireaair outlet boundary. The
reader is referred to Appendix | for a full destiop of the analysis. From the
analysis it was found that a cell heightt@mmgave sufficient convergence. Thus
for all the simulations presented here, includihgse for the circular tower
domain, this cell height was used for all cellsrfdun the rain zone. For the three-
dimensional counterflow domain this resulted288 000hexahedral cells in the
domain.

Figure 6.2 depicts the natural draught circulat-gamling tower domain
together with the boundary conditions. The geomefrthe tower is taken from
Kroger [1998KR1]. The computational domain is dedized with approximately
75 000 two-dimensional structured cells. The computatiodamain extends
approximately6Ombeyond the cooling tower inlet allowing for thetelenination
of the inlet velocity profile. The tower has a bas@meter 0fL04.5mand a height
of 147m The tower has an inlet roundingd; ~ 0.01, wherer; is the inlet
rounding radius and; is the inlet diameter of the tower.

The combination of fixedmass inlet symmetry planeand outflow
boundaries ensure that the velocity distribution tie particular rain zone
resembles reality. Unlike the mathematical modeégiby De Villiers and Kroger
[1998DE1], the flow field is not specified at thewver inlet, but instead the flow is
allowed to develop naturally and according to thestraints of the tower domain
and the laws of fluid flow. The fixethass inletis used so as to ensure that the
mass flow rate of air in all the simulations is #zme, so as to create similitude.

It should be noted that the effect of boundaryetaywithin large cooling
towers is small, so that any inaccuracies can senasd negligible.

--------- Outflow
Wall (Tower shell) ---------
Symmetry Plane ..-----------.
: - -- Axis
¥
Mass Inlet ---»
Ll R Interior (Fill outlet)
Interior (Tower inlet) - - -+ -----.
i ¥
Lo-e- » 4 _..1----Interior (Fill inlet)
. F F
Wall (Ground) - ------------¢ oo e Wall (Pond)

Figure 6.2: Natural draught circular wet-cooling tower domain and boundary conditions
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6.3.2 CFD Input Data

For each domain, two different polydisperse drogtrifiutions are simulated

together with their representative monodispersandiars. The two different

polydisperse drop distributions chosen are:

A. A distribution with a large median diameter, thistdbution was determined
experimentally in Chapter 4, for film type (orthaic) fill.

B. A distribution with a small median diameter, thistdbution can be found in
Kroéger [1998KR1], for a trickle pack.

The distributions lie close to the extremitiesiod drop distribution interval found

in wet-cooling towers to date as given by Kroge®98KR1]. The necessary

information for both distributions is given belowTables 6.1 and 6.2.

Table 6.1: Polydispersedrop distribution data for distributions A and B.

DistributionA DistributionB
Diameter interval Number of drops| Diameter interval Number of drops
[mm] [] [mm] []
0.667 -1 1 0-0.5 43
1-1.333 16 05-1 205
1.333 — 1.667 40 1-15 165
1.667 — 2 84 15-2 78
2—2.333 43 2-25 23
2.333 — 2.667 22 25-3 10
2.667 — 3 15 3-35 5
3-3.333 14 35-4 4
3.333 — 3.667 10 4-45 3
3.667 -4 7 45-5 4
4 —4.333 7 5-55 3
4.333 — 4.667 11 55-6 2
4.667 —5 8 6—-6.5 2
5-5.333 9 7-75 1
5.333 — 5.667 8 8-8.5 1
5.667 — 6 14 — -
6 — 6.333 6 — —
6.333 — 6.667 9 — -
6.667 - 7 5 — —
7—7.333 6 - -
7.333 — 7.667 2 — —
7.667 — 8 6 — —
9-9.333 5 — -
9.333 — 9.667 2 — —
10.333 - 10.667 1 — -
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The representative diameters for the distributemesgiven below in Table 6.2.

Table 6.2: Values of the representative diameters of polydisperse drop distributions A and B.

Description Symbol  DistributionA DistributionB
Oog [mm] [mm]

Average diameter dio 3.219 1.284

Mean volume diameter  ds 4,354 2.029

Pierce diameter day 5.553 3.131

Sauter mean diameter (0 ) 5.734 3.256

For each distribution there are three differentisation conditions, the input data
of which are given in the tables below. Table &8spnts all the input data that
remains constant and is common to all three sinamatonditions. Table 6.4
presents the variable input data which differstfi@rthree simulation conditions.

Table 6.3: Common input data for natural draught circular wet-cooling tower and
counterflow CFD simulations.

Property Value
Dynamic viscosity of airu, [kg/ms] 1.794x10
Thermal conductivity of air, JfW/mK] 0.0253
Diffusion coefficient, D [ni/s] 2.34x10°
Density of water dropgy [kg/n1’] 997.87
Specific heat of water drops, [d/kgK] 4178.33
Latent heat of water dropsg fiJ/kg] 2.5016%10
Ambient air pressure ofiN/m?] 84100

Air drybulb temperature, J[K] 288.6
Turbulence intensity, [%] 2
Turbulence length scale, [m] 0.1

Table 6.4: Simulation specific input data for natural draught circular wet-cooling tower and
counterflow CFD simulations.

Inlet ambient Inlet water drop
relative humidity,®  temperatureTy

[-] [K]

Simulation 1 0.6 295.65
Simulation 2 0.6 300.00
Simulation 3 0.1 295.65

For the counterflow flow domain, a constant inletocity of 1.975m/ss used at
thevelocity inletboundary. The mass flow of the water in this flowrain is also
constant for all the simulations and equal3t89kg/s For the natural draught
circular wet-cooling tower flow domain the waterdaair mass flow rates are held
constant throughout, at2450kg/sand 16556kg/srespectively. The saturation
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pressure of water vapour is a function of the dtemperature and can be
represented by means of a fourth order polynomiaén by,
Ps(Ty) = 529.76% 10° §- 561.1063 1d

(6.1)
+224.2787F — 40045.99F 26954¢

6.3.3 Fill simulation

Terblanche and Kroger [1994TE1] show that the itdst is a function of the
pressure drop over the fill, thus the fill needbéomodelled accurately. For these
simulations only orthotropic resistance type filasvused. FLUENT 6.2.16 can
model such a film type fill by means of a porous:@oThe resistance of the
porous zone (fill) is determined using a power t#whe form:

Ap=Cy\~: (6.2)

The coefficientsCy andC;, can be found directly from the definition of tfik
loss coefficient,

1
Bp=_ VK, 6.3)
whereKj is the loss coefficient of the fill, so th@g andC; become

1
G =5P K/ Liicrp
c =2

(6.4)

whereLscep IS the length of the porous zone (fill) in the CHibdel. For the
natural draught circular wet-cooling tower simwat aC, value of11.06is used.

6.3.4 Drop Modelling

Due to the time-derivative Lagrangian tracking sobeinitial conditions for the
drops are needed. FLUENT 6.2.16 is able to impditeathat contains all the
necessary inputs. This technique is thus easilyptabe for poly- and
monodisperse drop distributions. The necessarytsnpte the initial conditions
for the position, velocity, temperature, diameted anass flow rate to be released
from the specific point. A program was written tiggnerates this file for the
various simulations.

A constant pitch o25mmfor the position of the initial points was usesd, a
this was the pitch of the orthotropic fill usedtire experimental work. The drops
were given only a vertical velocity 6f1m/sin the direction of gravity, this helps
eliminate infinities at flow initialisation. The ngperature and diameter of the
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drops depend on the simulation. For the mass flate of the water, it was
decided that a constant water mass velocity albegadius of the circular wet-
cooling tower domain, and also over the water iolethe counterflow domain
was desirable, thus the water mass flow rate wstglglited accordingly.

The pond is defined asveall boundary in the circular wet-cooling tower
domain, Figure 6.2, when drops reach the pond #nreyremoved from the flow
domain, by setting the discrete phase fateescapein the wall boundary
conditions. The same applies to drops in the cotlote flow domain when they
reach thevelocity inletboundary (air inlet), Figure 6.1.

6.4 Resaults

The results of the simulations for the polydispedsap distributionsA andB are
given in table format below. The results are présgnn the form of loss
coefficients and Merkel numbers.

Table 6.5: Resultsfor the natural draught circular wet-cooling tower flow domain.

Distribution A DistributionB
Simulation Simulation Simulation Simulation Simulation Simulation

1 2 3 1 2 3
Kee[-] 10.952 11.271 10.930 12.440 13.484 12.402
Me [-] 0.190 0.184 0.195 0.404 0.388 0.420

Table 6.6: Resultsfor the counterflow flow domain.

DistributionA DistributionB
Simulation Simulation Simulation Simulation Simulation Simulation
1 2 3 1 2 3
Ko [] 2.092 2.239 2.125 3.553 3.561 3.580
Me[] 0.110 0.107 0.112 0.282 0.270 0.293

The results above will serve as reference valuescémnparative purposes in
subsequent chapters.

Summary

This chapter presents the procedure followed tapset CFD model that can
perform polydisperse and monodisperse drop digtabicalculations as well as
help determine the loss coefficient and Merkel nemlfor both a counterflow
and a natural draught circular wet-cooling towewfldomain. The CFD model is
setup such that the flow field in the rain zoneaisealistic representation. The
boundary conditions and input data are given aedusised where necessary. The
results from the simulations are presented for twe polydisperse drop
distributions subject to the three simulation ctinds.
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Modelling of the Rain Zone L oss Coefficient

This chapter will investigate the modelling of alysisperse drop distribution
with a monodisperse drop distribution with regatashe loss coefficient, and in
doing so define a new representative diameter.ifvestigation is done using a
commercial CFD package, FLUENT 6.2.16, to find fhressure drop over a
counterflow domain as well as the inlet sectiomaafircular wet-cooling tower
domain. The results will be validated with relevarperimental correlations and
then used to validate the mathematical correlatitos the rain zone loss
coefficient given by De Villiers and Kroger [1998DE

7.1 Background

The equations for loss coefficient determined by Wiiers and Krdger
[1998DE1] are obtained from a two-dimensional modbht was one-
dimensionalised. They applied a method that usgmererental data for the
absolute value of the inlet loss coefficient in #iesence of a rain zone. Then by
using CFD, the relative influence of the rain zamethe inlet loss coefficient is
found, this is then applied to the experimentaétinbss coefficient to find an
approximation of the inlet loss coefficient in theesence of a rain zone. This is
illustrated in the equation set below,

Kct(wet) - CrZKct(dry)
where

Kct(wet CFD)

Crz: K

ct(dry CFD)

They derive their one-dimensional rain zone lossffe@ent by correlating data
determined by numerical integration of an analytycdetermined equation that
incorporates a two-dimensional potential flow fiaeldd the equations of motion of
a single drop. This method is employed for varidawer geometries. The
correlations make provision for a monodisperse dhsfribution and can not be
used in conjunction with a polydisperse drop disttion. De Villiers and Kroger

[1998DE1] did not measure the polydisperse dropridigion in a wet-cooling
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tower. They determined which single diameter catezl their experimental data
best. The aforementioned two-dimensional potefibal field is unrealistic in the
sense that it does not allow for flow recirculatianthe inlet, assumes the axial
velocity at the fill height to be uniform, assumasuniform inlet velocity
distribution and does not include the acceleraibiine flow at the inlet.

FLUENT 6.2.16 is able to determine the loss cogdfit for various multi-
dimensional geometries by determining the pressin@ over a specified
domain. The code presents an absolute value fquréssure drop over a domain;
that is it is the cumulative result of the pressdirep due to the rain zone, tower
geometry, turbulence etc. It is not possible tdai®othe various pressure drops as
well as the influences that each has on the retieoabsolute value.

An objective of this chapter is to model the raime loss coefficient using
a commercial CFD package.

Hollands and Goel [1976HO1] state that it is nosgble to model a
polydisperse drop distribution with a monodispedsep distribution accurately,
they proved it analytically. This is verified byroparing the results obtained for
the rain zone loss coefficient using a polydispets®p distribution to those for
different monodisperse drop distributions.

One-dimensional theoretical models are simplenmeustand and easy to
implement, whereas numerical methods tend to batively expensive
concerning time and money and require CFD experTisas the final objective of
this chapter is to validate the one-dimensional e@ine loss coefficients given by
De Villiers and Kroger [1998DE1].

7.2 AnalysisProcedure

FLUENT 6.2.16 reports an area-weighted-average poessure for a pre-defined
plane. The total energy loss experienced by thev flletween the ambient
conditions and the bottom of the fill can now b&ugkted. This value, calculated
using Equation (7.1), represents the total loss thuehe inlet, rain zone,
recirculation etc.

A point of interest, is the velocity distributi@etross the top of the fill for
the circular wet-cooling tower case as presente#figure 7.1. The velocity is
fairly uniform across the top of the fill but dropsddenly near the inlet of the
tower,r = 52.25m. This is where flow recirculation occurs. The s of a rain
zone has noticeable effects on the velocity digtidm, the first being that it
seems to increase the effective flow area and skgdhe velocity distribution
appears to be slightly more uniform.
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Figure7.1: Velocity distribution across the top of thefill asa function of the radius.

The total loss coefficient, defined in terms oé timass flow averaged fill
inlet velocity, is given by,

1 -
Pa ‘( Ps,fi T gﬂvﬁ + pgH fi)
t(Wet) = 1 5 (71)
Epvfi

where the subscripli denotes the conditions at the inlet to the fill, is the
atmospheric pressure at ground le¥gl,is the height of the fill above the ground
level andos is the velocity distribution correction factor thataken as unity. The
inlet loss coefficient for a cooling tower can nbe found from,

Kct(wet) = Kt(wet) ~K (7.2)

The rain zone loss coefficier;, is given later in this section.

Terblanche and Kroger [1994TE1] propose the falh@acorrelation for
the inlet loss coefficient of circular cooling tomsewith rounded inletsri{d; =
0.01) where the heat exchanger is installed horizontalich that it covers the
entire cross-section of the cooling tower at thpanping beam level, given by,
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d [—0.4645+0.02303(g‘]—0.00095[3‘] 1 s
Ket(ary) :1'59([{0-2'_'—'] K, | ' (7.3)

for 10 <di/H; <15 and5 <Ky < 25.

The work done by Terblanche and Kréger [1994TE1$ wane on dry-cooling
towers, however the material used for the heat axgérs in the experiments is
geometrically similar to orthotropic film type fjlthus the equation is valid for the
dry case of wet-cooling towers installed with ottpic type fill.

The CFD model for a circular wet-cooling toweregented in Chapter 6,
is used to determine the inlet loss coefficiéfdry), for differentd/H; values,
without the presence of a rain zone. These valveshen compared with the
experimental correlation, Equations (7.3), in thiesy validating the CFD code.

35
Kﬁ =21.89
=~ 30| 1d = 0.01 /
= O
s 25
x
g 20
S P
“083 15
2
2 10 £
ke &
= o
5 1 o -
O 1 1
7 11 15 19 23
Inlet diameter to height ratio, di/H; [-]
& CFD —— Equation (7.3)- - - - - Equation (7.3}

Figure7.2: Inlet loss coefficient for circular cooling towerswith orthotropic fill but norain
zone as a function of di/H;.

The general validity of the analysis for this cteapgs dependent on the
degree of similarity between the experimental datien and the CFD results. An
interesting point to note about Equation (7.3)histtit corresponds well with the
numerical results even outside of its validity rangor the purposes of this thesis
Equation (7.3) will be used when determining the idfet loss coefficient for a
circular cooling tower. In general, the agreemestieen the two approaches is
sufficient to give confidence in further resultsahbed using CFD.

De Villiers and Kroger [1998DE1] state that thegence of the rain zone
reduces the dry inlet loss coefficient. Figure hbws that the rain zone has an
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effect on the velocity distribution, however it caot be said what effect it has on
the inlet loss coefficient. A quantitative analysisthis effect is not provided in

this thesis. De Villiers and Kréger [1998DE1] gitlee wet inlet loss coefficient

as,

Ket(wet) = CrzKet(ary) (7.4)
whereC;; is a rain zone correction factor, given by,

_|0.2394+80.1(0.0954/(d} /H; ) +dg ) exp(0.395G,, /G, )
| -0.3195(G,,/G,) - 966 (dy /(ch /H; ) exp(0.686G, /G, ) (7.5)
x(1-0.06825G,, ) K {9 exp(8.7434(1/d; —0.01))

rz

The total loss coefficient due to the rain zone anét losses can be found by
substituting Equation (7.4) into Equation (7.2ptee,

Kt(wet) - Crcht(dry) +Ky; (7.6)

where K,, for a circular cooling tower is given by De Ville and Kroger
[1998DE1] as,

H.
K,=33aV, —
rz aV W(dd

+0.7755261.482416%xp7152a,d, ) - 091]

x{o.39064ex;{2.1824x10’2 a, %} - 0.17}[2.0892(@\/i ) I o.14] (7.7)

j[0.2246— 0.31467,0, +526304a, 41,

xexp(0.8449In(aL %j - 2.312)(0.37241n(avvi )+0.7263
X |n[206757(aL H, ) 2%+ 0.43]]]

and for a counterflow domain, is given as,

K., =a,v,[10645988, 1, -1307774, p, —32.6634

+88866492.45287a, v, ) ***'° + 034

x[4.03861exp(- 574542, d, ) + 0.493 (7.8)
x exp[(65.2621%, d, +0.74827)

xIn[6.09836exp(0.0767a, H, ) - 6.4]]]
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where
4.9 025
a =3061x107°| P9
H O.W
998
> p.

(7.9)

_ g°as ]
a, =7329 P

o 025
a, = 6.12{%}

for 2 <dy <8mm.
Using Equations (7.1) and (7.6) the results of C&ifal the one-dimensional
model of De Villiers and Kroger [1998DE1] are comgua

For the counterflow case the analysis is far mdirect. Due to the
essentially one-dimensional nature of the flow,reheill be no losses due to
curvature and recirculation, thus the total lossrathe domain is essentially a
function of the drag forces of the drops actingtlom air, as discussed in Chapter
5.

For the same simulation condition, the total lossefficient for
polydisperse and monodisperse drop distributionsdésermined, using the
representative diameters for the monodisperse drisgibutions. If the value
given by the polydisperse drop distribution is tales the reference value, then
the difference between this result and the redoitined for the monodisperse
drop distributions can be determined from,

DK =K oo = K sy (7.10)

If AK = 0, the corresponding diameter of the monodisperse distribution is
considered to be the equivalent monodisperse dernfmt approximating the total
loss coefficient of a polydisperse drop distribati@he values given by the one-
dimensional model of De Villiers and Kroger [19980}Fusing the representative
diameters, are compared in the same way.
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7.3 Resaults

Vector and contour plots of the flow field in thi&ctlar wet-cooling tower are
presented in Figures 7.3 and 7.4.

n's
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. 3502
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Figure7.3: Vector plot of theinlet flow of a circular wet-cooling tower .
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Figure 7.4; Contour plot of thetotal gauge pressure at theinlet of a circular wet-cooling
tower.
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Figure 7.3 shows the acceleration along the irdending and that the
flow is allowed to freely develop at the tower ml&imilar to Figure 7.1 the
velocity distribution above the fill appears to lbelatively uniform. A
recirculation zone is present at the tower axis, ifinot present in the dry tower
simulations nor in a potential flow field, as itdaused by the rain zone.

The total gauge pressure contour plot, Figure shdws the effect of the
rain zone on the pressure distribution.

Trajectories of small drops entrained by air /

T

Figure7.5: Drop trajectories of a polydisper se drop distribution.

The trajectories for the drops of a polydispersgpddistribution can be
seen in Figure 7.5. It is seen that the smallegpslare entrained into the air flow
and that the trajectories of different drop sizéfed Smaller drops are carried
into the tower more by the air than larger drops.

7.3.1 Circular Cooling Tower Domain

Figure 7.6 is used to compare the results for dtal foss coefficient given by
CFD and De Villiers and Kroger [1998DE1] for a citar wet-cooling tower. The
results of one simulation condition are given. Toges coefficient for the three
simulations did not differ significantly. The figeipresents the results obtained for
different monodisperse drop distributions compandth the results obtained for
both polydisperse drop distributions, refer to ®ecrt6.3.2, subject to the
conditions ofsimulation 1. The two methods correspond well, even beyond the
lower validity limit given by De Villiers and Krogd1998DE1].
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Figure7.6: Total loss coefficient of a circular wet-cooling tower asa function of drop
diameter.

In subsequent figures in this section, the diamsedee given from left-to-

right as:dio (average); dsp (mean volume); ds; (Pierce) and ds; (Sauter mean)

defined according to the ASTM standards discussedChapter 4. Theds
diameter is one that was developed in this themm adheres to the same

arithmetical determination technique given in tH&TM standards.

Total loss coefficient difference, AK [-]
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Equation (7.6}

Figure7.7: Total loss coefficient difference asa function of monodisper se drop diameter for
distribution A.
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Figure 7.7 and 7.8 are for polydisperse drop ithstions A and B
respectively. The figures are used to demonstriage difference in total loss
coefficient, 4K, using Equation (7.10), determined by CFD and Dlée¥s and
Kroger [1998DE1]. Table 7.1 gives an average alsolof the total loss
coefficient difference4K.

Table 7.1: Average absolute of 4K for the analysis of distribution A.

d]_o = 3.219mm d30 = 4.354mm d41 = 5.553mm d32 = 5.734mm

[%] [%] [%] [%]
CFD 20 3 4 5
Equation (7.6) 12 1 9 10

From Table 7.1, which has reference to Figure if.€an be seen that for both
methods théierce andmean volume diameters present the smallgit values.

8
- A Simulation 1
< 0 Simulation 2
g o Simulation 3
&
o 5
%
c
0
O
g2
A
S
I
<]
|_

-1

1 2 3 4
Drop diameter, dg [mm]
------- CFD —— Equation (7.6

Figure7.8: Total loss coefficient difference as a function of monodisper se drop diameter for
distribution B.

Table 7.2 gives an average absolute of the tosal doefficient differencefK.

Table 7.2: Average absolute of 4K for the analysis of distribution B.

dio= 1.284mm dzp = 2.029mm ds; = 3.131mm d3> = 3.256mm
[%] [%0] [%0] [%]

CFD 54 24 7 5

Equation (7.6) 57 22 1 2
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There is a clear shift in accuracy; t8auter mean and Pierce diameters
now present the smallegK values for both methods. The method of De Villiers
and Kroger [1998DE1] seems to present smallérvalues than CFD for this
particular analysis.

Referring to Figure 7.6, for distributid® the reference value for the total
loss coefficient is12.44, Chapter 6. The representative diameters for this
distribution lie in the rang&.28 < dy; < 3.25mm. In this range there is only one
instance where the value presented by CFD is closére reference value, this is
for the average diameter. Thus this diameter using CFD will have a smaller
deviation in Table 7.2 than the method of De Viliend Kroger [1998DEL1].
Using the same approach and a reference valuéhéototal loss coefficient of
10.95 for distribution A with a representative diameter range3d1l < dy <
5.73mm the values in Table 7.1 can be verified.

7.3.2 Counterflow Domain

Due to the fact that the presentation procedur¢hefresults is similar to the
previous section, only figures and tables will beeg, with explanations where
necessary.
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0 1 2 3 4 5 6 7

Drop diameter, dg [mm]

A CFD (Distribution A) & CFD (Distribution B
——Equation (7.8)  ----- Equation (7.8)

Figure7.9: Total loss coefficient of a counterflow domain as a function of monodisper se drop
diameter.

Figure 7.9 shows that the two methods corresportexeept below the lower
validity limit given by De Villiers and Kroger [1SBDE1].
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Figure 7.10: Total loss coefficient difference as a function of monodisper se drop diameter for
distribution A.

Table 7.3: Average absolute of 4K for the analysis of distribution A.

dio= 3.219mm  dzg = 4.354mm ds; = 5.553mm  dz» = 5.734mm

[%] [%] [%] [%]
CED 40 4 16 18
Equation (7.8) 51 dl7 3 2

Referring to Table 7.3 and Figure 7.10, it can &éensthat thd”ierce and Sauter
mean diameters present the smallggt values for the method of De Villiers and
Kroger [1998DE1]. CFD presents the smallgkt value using themean volume
diameter.

Applying the approach of Section 7.3.1 and usimgfarence value for the
total loss coefficient 0£.092, Chapter 6, and a representative diameter range of
3.21 <dyg <5.73mmthe values in Table 7.3 can be verified.
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Figure7.11: Total loss coefficient difference as a function of monodisper se drop diameter for
distribution B.

Table 7.4: Average absolute of 4K for the analysis of distribution B.

le = 1.284mm dgo = 2.029mm d41 = 3.131mm d32 = 3.256mm

[%] [%] [%] [%]
CFD 166 45 13 16
Equation (7.8) 75 32 7 10

The Pierce and Sauter mean diameters present the smalle#€ values for this
particular analysis. Applying the approach of Settr.3.1 and using a reference
value for the total loss coefficient @55, Chapter 6, and a representative
diameter range df.28 < dyq < 3.25mm the values in Table 7.4 can be verified.

Summary

This chapter set out to analyse a circular wetingotower and a counterflow
domain with regards to the loss coefficient.

FLUENT 6.2.16 was used to determine the inlet lossfficient of a
circular cooling tower, the results were compareith vexisting experimental
correlations for circular cooling towers with orthapic type fill. The results
compared very satisfactorily, this served as ajadilon of the CFD code.

Employing the methods given by De Villiers and #ed [1998DE1] and
CFD, together with the different monodisperse ddigiributions, the total loss
coefficients were determined. The values were coatpand found to be in good



7.14

agreement, in the order &% and 10% for the circular cooling tower and
counterflow domains respectively. The method of Bdliers and Kroger

[1998DE1] for determining the total loss coeffidienf a circular wet-cooling
tower and a counterflow domain was validated.

The values of the total loss coefficient for botlethods, employing the
different monodisperse drop distributions, werentltempared to the reference
value determined by using the polydisperse drofridigion and CFD. It was
found that no single representative drop diametedetied the polydisperse drop
distribution precisely, concerning the loss codéint.

From work done in this thesis a new representatinagp diameterds;
(Pierce), was defined. Employing both methods, this diameied the Sauter
mean in general model the polydisperse drop distributie best for the analyses
presented here.



CHAPTER

Modelling Rain Zone Heat and Mass Transfer

This chapter will investigate the feasibility of delling a polydisperse drop

distribution with a monodisperse drop distributiaith regards to the Merkel

number. The CFD investigation is done to find tleathand mass transfer over a
counterflow domain as well as a circular wet-coglitower domain. The

mathematical correlations for the rain zone Merkamber proposed by De
Villiers and Kroger [1998DE1] will be validated.

8.1 Background

In large counterflow wet-cooling towers, as muchl1@s20% of the total heat
rejection occurs in the rain zone, which can beeased. This is the motivation
for obtaining better insight into the charactecstf the rain zone.

Prior to De Villiers and Kroger [1998DE1] there neesome relations that
described the Merkel number of the rain zone, hawvethey tended to be
incorrect or limited to a narrow range of variableslight of this De Villiers and
Kroger [1998DE1] presented a one-dimensional catigel for the Merkel
number. Their method for determining the Merkel bemis similar to that of
their rain zone loss coefficient, Chapter 7, based a monodisperse drop
distribution.

More recently Fisenko et al. [2004FI1] presentethahematical model
for predicting the performance of a mechanical tdcabling tower. This model
determines the change in the drops’ diameter, ugl@nd temperature and the
change in the temperature and density of the gipwa mixture in a cooling
tower. The model predicts available experimentah deith a deviation of about
3%. Their mathematical model incorporates a polydspealrop distribution but
ignores drop deformation.

FLUENT 6.2.16 is able to determine the heat andsmeansfer between
the drop phase and the continuous phase. Thesesvala used to determine the
Merkel number for the flow domain.

Williamson et al. [2006WI1] used FLUENT to simwda two-dimensional
axisymmetric two-phase simulation of the heat arsriransfer inside a natural
draft wet-cooling tower, with the aim of optimisiriige design of cooling towers
by varying the fill depth and water flow rate irettower. Their model employs
correlations from Kloppers and Kroger [2003KL1] the fill loss coefficient and
Merkel number. The effect of the fill on the comtous phase is represented using
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source terms. The temperature of the drops entérggain zone is determined by
the temperature of the water leaving the fill. Thagke use of a monodisperse
drop distribution with a drop diameter 265mm

An objective of this chapter is to develop a mettilogy for modelling the
rain zone transfer coefficient using a commercigD(package. This is then used
to validate the one-dimensional rain zone Merkeinbars proposed by De
Villiers and Kroger [1998DE1] for counterflow andraular wet-cooling tower
domains.

Further objectives are to: investigate which repreative diameter gives
comparable results to the polydisperse drop digiobh and to validate the use of
the Chebyshev integration in the determinatiorhef Merkel number for the rain
zone of a wet-cooling tower.

8.2 AnalysisProcedure

The Merkel equation is given below,

ha A _ Ta  CpydTy
my T, ( hnasw_ hmg

(8.1)

where hq is the interfacial area-averaged mass transfefficieat, A the total
interfacial surface area ang), the total mass flow rate of water in the domain.

Traditionally, the Merkel number is calculated froexperimental data
using the Chebyshev integration approach,

=B 100+ 1)+ 1) 1(09)] ©2)

The values off(x) are evaluated at values of x which &&02673, 0.406204,
0.593796and0.8973270f the intervalb-a).

Another approach is proposed and the results @rgared to the values
determined using the Chebyshev integration. Consile equation of mass
transfer from a single drop, given by,

Mevap = hdAd(wd_we) (8.3)

where the subscriptd anda are for the conditions of the humidity ratio aeth
drop surface and the air respectively. ManipulatbbrEquations (8.1) and (8.3)
yields a new determination technique for the Merkehber,
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ha A — rTEvap
2 (8.4)

m/v{(wd - wa)dA

Figure 8.1 shows the change in humidity ratio &f &ir at the water drop surface
and of the air as the water and air move throughctholing tower, wherejw;
and4w; represenfwy — w,) at theair outlet and theair inlet of the wet-cooling
tower respectively.

A(,O]_

A(J)z

Humidity ratio

Air Outlet Air Inlet

Position

— Air-vapour mixture at drop surface- - - Air-vapour mixture of bulk aif

Figure 8.1: Humidity ratio asa function of position in therain zone of a wet-cooling tower.

The problem now resemblescaunterflow heat exchangethus thelog mean
humidity ratio differencecan be used to determine the integral of the hitynid
ratio difference with respect to differential area.

_Aw, —Aa,

" ,n[szJ (8.5)

Aw,

Ay

Thus essentially Equation (8.4) now becomes,

ﬁd A rr‘evap
= 8.6
my mNA@m ( )
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FLUENT 6.2.16 can report an area-weighted-averagses fraction of a
species for a pre-defined plane in the flow domtas the mass fraction of water
in the air can be determined at the tower inlet aniet. These can be converted
to humidity ratios of the airp,. The humidity ratio of saturated air at the drop
surface is determined using the water drop tempezal he inlet temperature of
the water, for the simulations presented herepistant. The temperature of the
water at the exit of the domain is calculated ushregtemperature of the drops on
the exit plane and a mass flow averaging technifgaation 5.7.

The integral of the humidity ratio difference witaspect to differential
area can also be approximated using the average \@l the humidity ratio
difference at the inlet and the outlet of the fld@amain, given by,

Aa, +A
At he (8.7)

Aw

The results of the three different methods to rdeitee the Merkel number
for simulationl conditions are presented in Figure 8.2.
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Figure 8.2: Merkel number asa function of monodisper se drop diameter for a circular wet-
cooling tower flow domain.

The deviation is in the order @% for dy > 3mm with a maximum deviation
between the three methods of approxima&dy at dy = 1.284mm The figure
shows that results for the log mean difference Hrel average methods are
virtually identical.
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Since Chebyshev is used to determine cooling t@&eiormance and the
difference between the different methods is smtilis method is used to
determine the Merkel number.

For circular wet-cooling towers De Villiers and dger [1998DE1]
propose the following correlation for the rain zdvierkel number,

lez(LJ[ﬂj( Pa / j 503 .{wowﬂ /(a,s_a,)
m, vdy |\ dy )\ RT, w+ 0.622
x[0.907578,0, — 30341.04gu, - 0.37564 4.04016

X[ (0'55+41'72156 a E”0.80043)( 0718 3-741|_aib'|_1'23456) (8.8)

x(3.11exi{ 0.15a;y— 3.13 exp[ 5.3759 ¢xp.2092a H))
xIn(0.3719ex§ 0.003811a)r 055 )]

and for a counterflow domain, is given as,

hyA_ 6 D J[Hi| Pa . | s833 “{%“LO-GZZJ/(%_CU)

m, voy )\ dy LR T, w+ 0.622
X[5.011343,0, - 192121.7gu,~ 2.57734 23.61842
x(o.2539( 0.15a §)"%" + 0.1}( 0.83667, a; 1%+ 0)4:

><(43.0696( 2 d)” "+ 0.5)2 ]

(8.9)

The coefficients and ranges of application aresdn@e as in the case of the rain
zone loss coefficients, Equations (7.7) and (7.8).

The CFD results are used to validate Equatior® ¢hd (8.9). Following
a similar methodology to the one employed for i@ zone loss coefficient, the
Merkel number is obtained for different monodispesop distributions using
CFD and De Villiers and Kroger [1998DE1] and conguhrto the reference
values, determined for a polydisperse drop distioiou Thus the difference in the
Merkel number is evaluated by,

AMe = Me

mono

-Me,,, (8.10)

8.3 Reaults

Graphical contour and drop trajectory plots foriraudar wet-cooling tower flow
field can be seen in Figures 8.3 and 8.4. The digare results of distributid®
under the test conditions of simulatitn
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Figure 8.3 shows the contours of the relative Mdityiinside a circular
wet-cooling tower. The relative humidity increasadially in the direction from
the tower inlet to the tower axis. The high relatiumidity at the tower axis is
due to the flow recirculation zone that is predeare.
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Figure 8.3: Contour plot of therelative humidity (%) inside a circular wet-cooling tower.
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Figure 8.4 shows how the drop temperature chamadmsy the drops’
trajectories. Figure 8.4 is a presentation plag, ititlined trajectories are those of
the smaller drops. The smaller drops’ trajectomaesl temperature change are
affected more by the air flow. These trajectoriesve that the temperature of
some of the smaller drops come close to reachirigow temperature. For the
larger drops, it can be seen that they do not cdamwvn much and that their
trajectories are hardly affected by the air flovihneTeffect of position along the
radius of the circular wet-cooling tower on the pmirdrajectory and drop
temperature can be seen.

8.3.1 Circular Cooling Tower Domain

Figure 8.5 presents the Merkel number results pbthfor different monodisperse
drop distributions in a circular wet-cooling tower.
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—— Equation (8.8)  ------- Equation (8.8)

Figure 8.5: Merkel number asa function of drop diameter for a circular wet-cooling tower.

The figure depicts the results of the represergatiop diameters for distributions
A andB, refer to Section 6.3.2, subjected to the conaigtiof simulation 1 The
two methods correspond well within the valid diaenatange of Equation (8.8).
Outside of the range the deviation is in the oaf&30%

In subsequent figures in this section, the diarsedee given from left-to-
right as:dio (average);dsy (mean volume)ds; (Pierce)and ds, (Sauter mean)
The ds; diameter, defined in the previous chapter, isudetl in all the analyses
concerning the Merkel number.
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Figure 8.6 and 8.7 are applicable to distributidrendB respectively. The
figures show which monodisperse drop diameter pesticts the Merkel number
of a polydisperse drop distribution. Each figureascompanied by a table that
presents the average absolute of the differenceeest the Merkel numbers of
monodisperse drop diameters and the reference ippde Merkel number,
AMe.
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Figure 8.6: Merkel number difference asa function of monodisper se drop diameter for
distribution A.

Table 8.1 gives an average absolute of the Merkelber difference/Me.

Table 8.1: Average absolute of AMefor the analysis of distribution A.

dio=3.219mm dzg=4.354mm ds; = 5.553mm d3» = 5.734mm

[%] [%] [%] [%]
CFD 129 45 0 4
Equation (8.8) 152 54 5 2

It can be seen that the smallgdde values are obtained for tiieerceandSauter
meandiameters. CFD, generally presents smaillMe values than the De Villiers
and Kroger [1998DE1] method. The discrepancy betvtbe respective methods
is small due to their close correspondence in Ei@ub for the respective diameter
range.
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Figure8.7: Merkel number difference asa function of monodisper se drop diameter for
distribution B.

Table 8.2 gives an average absolute of the Menkehber difference,
AMe.

Table 8.2: Average absolute of AMefor the analysis of distribution B.

d]_o =1.284mm d30 = 2.029mm d4;|_ =3.131mm d32 = 3.256mm

[%] [%] [%] [%]
CFD 318 117 12 6
Equation (8.8) 477 158 24 16

It can be seen that tlerceandSauter mealiameters present the smallgde
values for both methods. CFD, consistently pressmizller4Me values than the
De Villiers and Kroger [1998DE1] method. Both CFdaDe Villiers and Kroger
[1998DE1] show clear discrepancy outside the vdiaimeter range for Equation
(8.8).

Another point of interest in wet-cooling tower @gsis the amount of
water that is evaporated, as this determines thmuatrof make-up water needed.
Although the amount of water that is evaporatethétuded in the determination
of the transfer coefficient, the author feels titas an essential test criterion for
the polydisperse/monodisperse hypothesis. The samathodology for the
determination of the deviation is adopted for theporated mass analysis, the
results for both polydisperse drop distributions presented below on one graph
for the first test condition, simulatidh
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Figure 8.8: Evaporated mass differ ence as a function of monodisper se drop diameter for
distributions A and B.

For both distributions th&auter meamndPierce diameters present the smallest
difference. Both graphs show that for a smallermdiger, more mass is
evaporated.

8.3.2 Counterflow Domain

Due to the fact that the presentation procedur¢hefresults is similar to the
previous section, only figures and tables will beeg with explanations where
necessary.

Figure 8.9 presents the results of the represeatdtop diameters for both
polydisperse drop distributions subjected to thedtmns of simulationl. The
two methods correspond well within the valid diaenetinge given by De Villiers
and Kroger [1998DEL1]. Outside the diameter range,ttvo methods deviate by
up to30% The curves are very similar to those for theudac wet-cooling tower
however, for this instance CFD presents higherealior the Merkel number of
the smaller diameters.
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Table 8.3: Average absolute of AMefor the analysis of distribution A.

d]_o =3.219mm d30 = 4.354mm d4;|_ = 5.553mm d32 =5.734mm

[%] [%] [%] [%]
CFD 136 42 4 8
Equation (8.9) 137 46 1 4

Table 8.3 and Figure 8.10 show that the smalié4 is obtained for the
PierceandSauter meawnliameters.
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Figure8.11: Merkel number difference as a function of monodisper se drop diameter for
distribution B.

Table 8.4: Average absolute of AMefor the analysis of distribution B.

dio=1.284mm dzg=2.029mm ds; = 3.131mm d3» = 3.256mm

[%] [%] [%] [%]
CFD 435 109 4 10
Equation (8.9) 334 97 4 10

Table 8.4 and Figure 8.11 show that the smalié4 is obtained for the
PierceandSauter meamiameters.
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Summary

This chapter set out to analyse the rain zonedmcalar wet-cooling tower and a
counterflow domain with regards to the Merkel numbe

A new approximation technique for the Merkel numibes developed.
The technique relies on theg mean difference technigu&he Merkel number
values presented were compared to the values ebtdnmom the Chebyshev
integration technique. The methods compared wedl dieviation is in the order of
0% for dg > 3mm with a maximum deviation between the three methods
approximately8% atdy = 1.284mm

Employing the correlations given by De VilliersoaKroger [1998DE1]
and CFD, the Merkel numbers were determined fdeiht monodisperse drop
distributions. The values were compared and fountet in good agreement, in
the order 0fL0% and2% for the circular cooling tower and counterflow dains
respectively. Thus the method of De Villiers andoger [1998DE1] for
determining the transfer coefficient of a circuleset-cooling tower and a
counterflow domain was validated.

The values of the Merkel number for both methoes)ploying the
different representative drop diameters were tleenpared to the reference value
determined by using the polydisperse drop distidioutit was found that no single
representative drop diameter modelled the polydsspedrop distribution
precisely, concerning the Merkel number.

The new representative drop diameter was evalu&mdall the analyses
presented here tHeierceand theSauter meamnliameters were found to model the
polydisperse drop distribution the best.



CHAPTER

Conclusions and Recommendations

9.1 Conclusions

In this thesis the velocity, path length, coolingdachange in diameter of a drop
falling through air were modelled using analyticahd numerical solution
techniques. According to literature, internal clation and drop oscillation have a
negligible effect on the drag experienced by a dropt the effect of drop
deformation is significant. A simplified new coraébn is proposed for the drag
coefficient of deformable drops, which proves to less computationally
expensive deviating from experimental data by tkaa10%.

Drop deformation results in a lower absolute teahivelocity than a
sphere. The pressure drop over a domain was faubeé strongly dependent on
the drag force of the drops in the domain as welihe total number of drops. It
was found that drop deformation increased the presdrop over a domain
significantly, the value of which depends on thelegable domain. The effect of
the increased drag coefficient on the cooling afr@p, due to drop deformation,
was found to be negligible. Drop deformation therefneeds to be included in
the drop drag equation in order to create a moldat tan predict the loss
coefficient accurately. Furthermore, it was fouhdttthe cooling of a drop was
enhanced significantly by the effects of accelerati

An increase in counterflow air velocity reduce® thbsolute terminal
velocity of a drop resulting in a longer contactipe for a certain fall height, and
higher initial heat and mass transfer coefficiemtss results in increased cooling,
at the expense of a higher pressure drop.

Typically the thermal transient time is longerrihthe transient time for
the velocity of a drop. In conventional cooling t&nw, the majority of the drops
never reach their terminal velocity or cooling limirherefore the acceleration
period of a drop is most important, thus the modetlLowe and Christie
[1961L0O1] should be revised. The data of Lowe artttigfie [1961LO1] is
applicable to small drops only and the drops fathair terminal velocity.

For specific conditions typically encountered iooking towers, the
diameter of any drop changes by less tB&mbefore reaching its cooling limit.
Since only the smaller drops tend to approach ttwting limit the change in the
drops’ diameter can be neglected for the determonaif its cooling, however it
is needed to determine the mass that is evapordted. different solution
techniques showed that the assumption of congt@nimbphysical properties of
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the drop is acceptable. Figure 3.4 shows that smaltops require a shorter
domain to attain the same cooling as larger dropsylting in lower pumping
costs.

An experimental test facility was designed andthaideterminanter alia
the drop size distribution below different typeditifand the pressure drop over a
domain of drops. The facility can be extended talitate the investigation of
many areas of interest in a cooling tower.

From the experimental drop distribution data isvi@und that the retained
mass distributions, for a specific fill type, remad relatively constant for
different water and air mass velocities, which hesliin negligible variation in
the representative diameters. The variations inr#diained mass distributions
remained within the uncertainty limits.

CFD models were generated together with a testepiure for the analysis
of a circular cooling tower and counterflow domaitising these models, the
Rosin-Rammler distribution function was found to ibadequate for predicting
performance parameters of cooling tower rain zofidésis it was necessary to
input the discrete drop distribution data into CFD.

CFD showed satisfactory comparison with experimenbrrelations for
the inlet loss coefficient of circular cooling tomsevhich instilled confidence.

The correlations of De Villiers and Kroger [199800Efor the loss
coefficient and Merkel number of a counterflow asictular wet-cooling tower
are validated using CFD and a monodisperse dropildison. The results
compared satisfactorily for the prescribed diametenge, with the largest
deviation between the methods being in the orddi086. Outside this range the
results differed considerably.

The Sauter mearand dy;(Pierce) representative diameters were found to
be the equivalent monodisperse diameters mostbdeiifar approximating the
Merkel number of a polydisperse drop distributi&or the approximation of the
loss coefficient; themean volumediameter was the equivalent monodisperse
diameter for the polydisperse drop distributionnwthe larger mean diameter, and
the Sauter mearandPierce were the equivalent monodisperse diameters for the
polydisperse drop distribution with the smaller meiameter. This presents a
shift in equivalent monodisperse diameter, whicts wat found for the Merkel
number. These findings are in agreement with AKidB981AL1], Aggarwal
[1988AG1] and Hollands and Goel [1976HO1].

Similar results were obtained with both tS8auter mearand thePierce
diameters, however thePierce diameter generally appears to be more
conservative. Furthermore, tReerce diameter lies between ti8auter mearand
the mean volumeliameters. Therefore, with the shift in equivaleminodisperse
drop diameter for the loss coefficient, it may gatlg give better results than the
Sauter meaniameter, but not necessarily timean volumeliameter. It was found
that the deviation between the monodisperse angdisplerse Merkel numbers
was never larger thah% of the tower’'s overall Merkel number, for both the
Sauter meanand Pierce diameters. A similar result was found for the loss
coefficient, using th&auter meamandPiercediameters. Therefore, for the use of
the one-dimensional model of De Villiers and KrogEQ98KR1] it is
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recommended to use tlauter meamndPierce diameters when determining the
performance characteristics of the rain zone.

The formulation of an ideal wet-cooling tower raane is given, this rain zone
may never be achieved but may serve as a milestotie journey of improving
these systems.

Hollands [1974HO1] states that a monodisperse disfibution with a
diameter ofl — 2mmis desirable for a spray cooling tower. Ideallyazn zone
should consist of a monodisperse drop distributibwhich the drop diameter can
automatically be varied, so as to always operatmatimum effectiveness with
minimum evaporation losses.

The question of which drop diameter is desiraplesents two possible
solutions. For a small drop diameter, a shorten mne is needed to reach the
cooling limit, however with small drops the intesfal area between the drops and
the air is large, resulting in high evaporationskes For larger drops, the
evaporation losses are less, however a longerzane is needed to reach the
cooling limit. The height of the rain zone can beduced by creating a
counterflow rain zone with a high counterflow a@&lacity, thereby retarding the
large drops, which ultimately means that a shaggr zone is needed to reach the
cooling limit.

Although industry should be heading towards thdeal rain zones, there
should still be further investigation and improvernéo existing models in the
academic environment. This thesis has shown thatctoling, velocity, path
length and the change in diameter of a drop carddtermined analytically.
Therefore a complete two-dimensional mathematicatieh should be possible
that can predict the performance of a cooling tovsr using similar techniques
to Fisenko et al. [2004FI1] this model can incogter a polydisperse drop
distribution.

The development of CFD makes it an evermore vitdméfor the analysis
of cooling tower performance. CFD can model turboke using different
available models and is able to capture certam #ffects that exist in a cooling
tower that are ignored in mathematical models. ABDalso able to model
polydisperse drop distributions.

9.2 Recommendations

The effect of drop collision, agglomeration andlesaence on the performance of
the rain zone should be investigated. Literaturewsh that circulation and
oscillations have no real effect on the termindbegy of a drop. Is this the case
for the heat and mass transfer? This thesis iltestr that the acceleration period
of a drop is very important, however very littleshiature is available on the effects
of acceleration on the heat and mass transfer.

With CFD it is possible to model a realistic fldield, this can be used to
analyse the assumption of a simplified flow fieldund in many mathematical
models of the cooling tower. It was found that th zone has an effect on the
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velocity distribution above the fill, CFD can beedsto analyse this. The effect of
drop diameter on the distribution can also eastiyabalysed using CFD. It is also

recommended that investigation be done on the mabte turbulence model to
be used in CFD models of a cooling tower.
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APPENDIX

Thermophysical Propertiesof Fluids

All thermophysical properties are taken from Krofe398KR1].

A.1 Thermophysical propertiesof dry air from 220K to 380K at
atmospheric pressure 101325Pa

Density:
a RT (A1)

Specific heat:

Cpa = 1.045356 x10° —3.161783x10 " T +7.083814x107*T?
JkgK (A.2)
~2.705209%107'T®

Dynamic viscosity:

Uy =2.287973x107° +6.259793x107°T -3.131956 x 10112

ka/sm
+8.15038x 1072573 ) (A3)

Thermal conductivity:

k, = —4.937787x10™* +1.018087 x10~*T —4.627937 x107°T?

W/mK (A.4)
+1.250603% 10”113



A.2

A.2 Thermophysical propertiesof saturated water vapour from
273.15K to 380K

Vapour pressure:

p, =10% N/m?
z=10.79586 (1-273.16/T ) +5.02808l0g, (273.16/T)

+1.50474x 10~ ( 1- 10—8.29692((T/273.16)—1)) (A.5)

+4.2873x107% (104-76955( 1-273.16/T) _ 1) +2.786118312

Specific heat:

Cpy =1.3605x10° +2.31334T - 2.46784x 107 0T

JIkgK (A.6)
+5.91332x 1071376
Humidity ratio:
0.622
= _20%ePpy (A7)
( Py — ¢pv)

A.3 Thermophysical properties of mixtures of air and water
vapour

Density:

Pay = (1+w)(1-w/(w+0.62198)) p,/287.08T kg air-vapour/r (A.8)
Specific heat:

Cpay = (cpa +a1:pv)/(1+ w) J/K kg air-vapour (A.9)
Dynamic viscosity:

=X+ ) XXM bgims (o

whereM, = 28.97kg/mole, M, = 18.016kg/mole, X; = 1/(1 + 1.608w) and X, =
ol( w + 0.622)



A3

Thermal conductivity:
kav = (XakaM 2'33 + XvkvM\(/)Bg)/( XaM 2'33 + XVM\C/)BB) W/mK (A-ll)
Enthalpy:

(cpa (T-273.15) + w(hfgwo +epy (T 273-15)))

= J/kg air-vapour  (A.12)
May 1+ ) g p
Humidity ratio:
_ 2501.6 - 2.3263(T,,, — 273.15)
2501.6 +1.8577 (T - 273.15) - 4.184(T,,, — 273.15)

x( 0.62509 P,y J (A13)

P, —1.005 Py

_ 1.00416 (T =Ty )
2501.6 +1.8577 (T —273.15) - 4.184(T,,;, — 273.15)

A.4 Thermophysical properties of saturated water liquid from
273.15K to 380K

Density:

-1
1.49343%x1072 - 3.7164x107°T +7.09782x107°T?
= [ kg/nt’ (A.14)

~1.90321x100T°
Specific heat:

Cow =8.15599x10° —2.80627 x10'T +5.11283x 107 °T?
JkgK (A.15)
-2.17582x107°T°®

Latent heat of vaporization:

higw = 34831814 10° —5.8627703x 10°T +12.139568T 2

JIK (A.16)
-1.40290431x1072T3



APPENDIX

Derivation of a Drag Coefficient Correlation for
Deformable Drops

FLUENT 6.2.16 provides the option to select one of five different drag laws for
drops, of which only three are applicable to the work in this thesis i.e. spherical,
non-spherical and the dynamic drag law. Referring to Figure 2.3 it can be seen
that for large drop diameters, d > 2mm, a drag law that makes provision for drop
deformation needs to be used. The spherical drag law is therefore not applicable.
When selecting the non-spherical drag law a single value for the shape factor is
required as input, which presents a problem when modelling a polydisperse drop
distribution as this shape factor is then the same for al the different drop
diameters. FLUENT 6.2.16 also assumes that the shape factor is constant and thus
the drop does not undergo transient deformation. The dynamic drag law does
however consider transient deformation and can accommodate a polydisperse
drop distribution. This drag law can only be activated in conjunction with a drop
break-up model and unsteady tracking.

The calculation procedure and reasoning for the derivation of a drag
coefficient correlation for deformable dropsis given below.

Dreyer [1994DR1] proposes a correlation that expresses the ratio of the
drop and sphere drag coefficients as a function of the drop deformation, Equation
(2.15). The correlation shows good comparison with the experimental results of
Gunn & Kinzer [1949GU1] as shown in Figure 2.9.

CD
CD Sphere

=1-0.17185(1-E) +6.692(1- E)* -6.605(1- E)° (2.15)

When employing Equation (2.15) there are six calculation steps to be performed
of which one is an iteration loop to determine the terminal velocity of the drop.
FLUENT 6.2.16 will perform this set of calculations for each drop in the domain
thereby increasing the computing time. A need therefore exists for a correlation
that requires few calculation steps but that still models the transient deformation
of adrop and that can be used when modelling poly-dispersed drop distributions.

The deformed drop drag coefficient, calculated using Equation (2.15), is
plotted in Figure B.1 as a function of Reynolds number for different drop
diameters and compared with the drag coefficient calculated using Equation (2.6)
for spheres.
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Figure B.1: Deformed drag coefficient as a function of Reynolds number.

Figure B.1 shows how the deformed drag coefficients for a number of drop
diameters deviate from the standard drag curve of a sphere, they are no longer
only dependent on the Reynolds number. Each drop has a unique terminal
deformation value, thus resulting in its own unique drag coefficient curve. Using
the terminal deformation value for a drop from Equation (2.12), a new correlation
can be determined for the deformed drag coefficient, given by,

_23.986 , 4186
- 0.343

Re Re (2.16)
+(128x10° B2 ~1.75x10C E; +7.07x107 | ReM 2%

Co

Figure B.1 shows that the deformed drag coefficients closely resemble the drag
coefficient of a sphere for Reynolds numbers Re < 1000, and therefore the first
two terms of Equation (2.16) are similar to the first two terms in Equation (2.6),
the third term however differsto account for drop deformation.

Figure B.2 illustrates the difference between the drag coefficient values
predicted by Equation (2.15) and Equation (2.16). Referring to Figure 2.9 the
prediction error on the terminal velocity using Equation (2.16) can be seen. From
the figure it is clear that the new correlation dlightly over predicts the terminal
velocity but within an acceptable limit of 10%. Furthermore Equation (2.16)
requires three non-iterative calculation steps.
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Figure B.2: Deviation between Equation (2.15) and Equation (2.16) for different diameters.

implemented by means of a user-defined-function (UDF), written in C code.

Since the drag laws available in FLUENT 6.2.16 are inadequate for the
modelling of polydisperse drop distributions and large drops, Equation (2.16) is
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An Analytical Solution for the Accelerating Motion of a
Vertically Free-Falling Spherein an Incompressible
Newtonian Fluid

A spherical body free-falling vertically in an inopressible Newtonian fluid will
be decelerated by frictional and form drag and ballaccelerated by gravity. The
net force on the spherical object will be the vaatesum of the form drag and the
body forces. The drag force will always depend loa telative velocity of the
spherical body to the fluid.

To describe the accelerating motion of a sphebodly, it is assumed that
a sphere of diametek, massMs and densitys falls freely in an incompressible
Newtonian fluid of density,. The velocity of the sphere can be represented by
at any instant. Letg represent gravitational acceleration.

Renganathan and Turton [1989RE1] noted that whensphere density
was much larger than the fluid density, the Badeste becomes negligible.
Where the Basset force, also known as the histmy,tis the force associated
with past movements of the body. The added mase fier a result of the fluid
surrounding the body being accelerated. It hasdetecy to keep the body from
being accelerated in any direction. Neither of ¢hésrms is included in the
derivation that follows.

The equation of motion can be given by,

dv P, 30 2
Vs —1-Fa |g-"Fa ¢
at [ 0. j g 4p.d A (C.1)

whereCp represents the drag coefficient.

The main difficulty in finding an analytical solah to Equation (C.1) is
the drag coefficient term which is non-linear. Ragh proposed that the
fundamentals of particle motion can be expressedariorm of a drag coefficient
in terms of Reynolds number plot. For spheres suchrve has been determined
up to Reynolds numbers of the ordel®, by numerous experimenters. At low
Reynolds numbers viscous flow exists around themghn this Reynolds number
range the drag coefficient can be approximatedheylaw of Stokes. At high
Reynolds numbers the drag coefficient is approx@gatonstant and has a value
of 0.44. This range is often termed Newton’s law of pdetimotion. A transition
region exists between these two ranges.
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There are numerous drag correlations for spheras ripresent the available
standard drag coefficient data over the completgygaof Reynolds numbers,
discussed in Chapter 2.

In Figure 2.2 the correlations and the experimearahies given by Lapple
and Shepherd [1940LA1] are plotted. Figure C.1 shthwe deviation between the
correlations and the data and it is found that duand Levenspiel [1986TU1]
and Clift et al. [1978CL1] fit the data well, diffag marginally from each other
in the applicable Reynolds number range.
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Figure C.1: Deviation between drag coefficient correlations and the data from Lapple and
Shepherd [1940L A1].

From the definition of the Reynolds number, thbesjral drop’s velocity
can be written as,

Rey,
v, = ——2
== o, (C.2)
Substituting Equation (C.2) into Equation (C.1) aedrranging yields,
dd—Ffezach R€ (C.3)

where
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d
a :h(l_&J g (C.4)
H, Ps
_ 3y,
B= 2d2p, (C.5)

When terminal velocity is reached, the rate ofngfgaof Reynolds number
with respect to time is zero, thus resulting in,

4p,9d (o, - p,
(CoRe), = Sﬁ(,z ) (C6)

where the subscrit is for the terminal velocity condition. EquatioB.6) reveals
the maximum value ofpRe? that a sphere of sizk can attain when falling freely
in a gravitational field.

By separation of variables, Equation (C.3) cambegrated as follows,

t Re d Re
dt= [ ———— (C.7)
;[ R~L)a+,8CD R€

If the sphere starts from rest thBgs, = 0. The denominator in Equation (C.7)
contains a ternCpRe” which can be plotted again®e using the drag coefficient
correlation of Turton and Levenspiel [1986TU1], Ban (2.6), for the Reynolds
number rangé < Re < 10*.
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Figure C.2: CpR€” asafunction of Reynolds number.
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Figure C.2 illustrates that the curve can accuyabel represented by a parabolic
equation, which lends itself to analytical solutidme parabolic equation for the
curve presented in Figure C.2 is written as:

C,R€ = f(Rg=h Ré+h, Reb, (C.8)

The Reynolds number rang8, < Re < 10°, has been subdivided to
facilitate better accuracy. Each subinterval haBséinct parabolic equation, the
coefficients of which are given in Table 2.3.

Substituting Equation (C.8) into Equation (C.7)laearranging yields,

T dRe

E RE+E, RerE, (C9)

t
jdt:
t

Reg

where the constants in Equation (C.9) are repreddny,

E, =b8
E, =b,0
E,=a+b,

Equation (C.9) can be integrated directly to yield,

t zzatar(—ZEl Rex Ezj
© Y W

Re

(C.10)

Re
where

p=(4eE-El)

Rearranging Equation (C.10) so tiRat= f(t) yields,

Re¢):£(¢/ tar[[//(t—z_to)+atar(%]J_ EZ] (Cll)

Using Equation (C.2) the velocity can be found.

vy (t) = 2,0’%11 3 [l// tan[w(t;o) +atar( 2padsE;>/1;+ﬂaE2jj_ EZ} (2.17)
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The acceleration and path length of the sphedcap are given below
respectively.

as(t)=:11ua & {1+tan[%¢'(t—to)+atar(2Elp oOeVeo * Bl BJ (C.12)

IoadsEl tuaw
Yt-t _1[ 2p,0:Eveg + E5
—In{secz(( 5 0)+tan 1( azs Liz 2 a]n+E2t
Ss(t):_& a
2 PadsEy

(2.18)

20.d.E +E
_|n(secz (tan'l( Pals 1Vs,0 oMy }J] + E2t0
Ha HY

+La
2 padsEl




APPENDIX

Re-correlation of the Data by Yao and Schrock
[1976Y Al] for Heat and Mass Transfer from Vertically
Free-Falling Accelerating Water Drops

Yao and Schrock [1976Y Al] determined the heat and mass transfer coefficients
for large water drops accelerating from rest in still air by conducting a series of
experiments. They measured the drop temperature at a measurement station
located at different heights for drops with different diameters.

The data covered the following ranges. 3 <d < 6mm 29 < ® < 100%and
0.18< z < 2.9m The ambient air drybulb temperature was held between 294.45
and 296.75K while the initial temperature of the water drops was at
approximately 313.85K

Yao and Schrock [1976YA1] correlated their data using their proposed
modified form of the Ranz and Marshall correlation,

Nuyg = 2+ gY{ 0.6 Ré P%j for Re < 2500 (3.8)

where the term gys is introduced to account for acceleration, drop deformation,
internal circulation and drop oscillation effects. The correlation for gys proposed
by Y ao and Schrock [1976Y A1l] is given below,

-0.7
Oys = 25(5] for 10 < [gj < 600 (3.9)

Referring to Figure 3.1, it can be seen that this correlation over-predicts
the cooling of awater drop. Furthermore employing this correlation for any of the
Yao and Schrock [1976YA1] experimental cases did not correlate their
experimental data. Chen and Trezek [1977CH1] and Erens et al. [1994ER1] also
noticed this. Erens et a. [1994ER1] re-correlated the data and proposed the
following equation including an acceleration term:

>5x10% (3.10)
V

(dv/dt) d ]O'Z o (v d) g

gys =0.22+ 3.1
YS Vzdm 2



D.2

Figure 3.1 shows that the correlation by Erens et al. [1994ER1] under
predicts the cooling of adrop.

The re-correlation procedure, used in this thesis, of the data by Yao and
Schrock [1976Y Al] is now given.

By reordering Equation (3.5) an equation for the Nusselt number for a
vertically free-falling water drop is given.

1 g, 9T
hdy _ d 5Vl
Nuys =" =0 s (0.1
2 (Ta=Tg)=— 2= (C4-Cy)
PaCy a PT

Yao and Schrock [1976Y A1l] present their experimental data in the form
of drop temperature and fall distance. The fall distance of the relevant drops can
be determined as a function of time numericaly using Equation (2.15) for drop
deformation. The temperature can now be presented as a function of time for each
drop. The resulting curves exhibit a linear characteristic, thus the gradient, dTy/dt,
of the curves can be found and substituted into Equation (D.1) to calculate Nuys
for each experimental data point. The required drop thermophysica properties are
calculated for each data point and the air conditions are assumed constant. The
correction factor, gys can be calculated for each data point from Equation (3.8).

Figure D.1 shows the correction factor plotted as a function of the
dimensionless fall distance.

Correction factor, g vs []
H
i
A4

0 200 400 600 800
Dimensionless fall distance, z/d [-]

FigureD.1: Correction factor for Ranz and Marshall correlation asa function of
dimensionlessfall distance.
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Once the acceleration is zero the experimental correction values should be in the
order of unity, as Ranz and Marshall [1952RA1] conducted their experiments on
stationary drops in a steady air stream. The data in the Figure D.1 shows an
asymptotic characteristic, the value of the asymptote being in the order of 0.8 —
1.2.

Y ao and Schrock [1976Y A1l] used the dimensionless fall distance, z/d to
correlate the correction factor, which does not take the effect of air flow on the
drop acceleration into consideration. The author uses an acceleration based
variable to correlate the experimental data.

The calculation procedure for the selection of the dimensionless variable
to be used to correlate the experimental datais now given.

Consider the equation of motion for a deformable drop, given by,

dyy _ (,Od _pa) g _§ Pa E_%CDV:AZd (D.2)

dt Pd 4 pqde

where d. is the equivalent spherical diameter. The vaq” term in Equation (D.2) can
be rewritten in terms of Reynolds number. For the terminal velocity condition this
simplifiesto:

(coRrE). :{4;; a(pz;afa) dggj g (D3)

The value of Equation (D.3) is a fixed and maximum value attainable for a
specific drop diameter as the right-hand-side of the equation is only a function of
the drop diameter and thermophysical properties of the drop and the continuous
phase and the terminal drop deformation of the drop. For each drop diameter the
instantaneous CoR€ value can be normalized by Equation (D.3).

The recalculated correction factor data is correlated using the abscissaof
Figure D.2. The correlation is given by,

-0.28
6s=0.6 Cp R€ .\ 0.95 :
(Co RE) ) 3.12
T 141 Cp R€ (312)
(co RE).

Interestingly Equation (3.12) resembles the last two terms of the Turton and
Levenspiel [1986TU1] drag correlation, Equation (2.6).

Figure D.2 shows that two of the data sets (data sets 3 and 7) do not follow
the same trend as the other data and are therefore excluded from the data used to
determine Equation (3.12).
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Figure 3.1 is used to draw comparison between the different correlations,
from the figure it is obvious that Equation (3.12) fits the data better than any of
the other correlations.

It was found that the sensitivity of the results is mostly affected by the first
part of the curve. From Figure D.2 it can be seen that the correction factor changes
from approximately 1.6 at an abscissavalue of approximately 0.05 where the
drop acceleration is the highest, to approximately 1 at an abscissavalue of
approximately 0.25 after which it remains virtually constant. This indicates that
the most significant effect of acceleration on the Nusselt number is during the
initial acceleration stage.

Figure D.3 shows that by using Equation (3.12), the experimental data of
Yao and Schrock [1976YA1] can be predicted satisfactorily for different drop
diameters. Figure 3.1 shows that the Ranz and Marshall [1952RA1] equation is
conservative. FLUENT 6.2.16 exclusively uses the correlations of Ranz and
Marshall [1952RA1]. Thus for the purposes of this thesis these correlations will
suffice.
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Figure D.3: Experimental data of Yao and Schrock [1976Y A1] and predicted resultsusing
Equation (3.12).
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Analytical Solution for the Cooling of a Spherical Water
Drop in an Air Stream

The governing equation for the mass transfer ofsyhteerical water drop is given
by,

d
Z/'ts =-hp A5(Cs - C,) (3.1)

where As and Ms are the surface area and the mass of the sphearatal drop

respectivelyCs is the vapour concentration at the spherical watep’s surface,

where saturated conditions exist, a@d is the vapour concentration in the

continuous phase, air. The thermophysical propeniethe air are assumed to

remain constant. For the conditions simulated @o@ling tower the change in the

density of the water is less than one percent, ithasassumed to be constant.
Equation (3.1) can be rewritten as,

ddg 2
—s=-%h
a - o o(CamCa) E.D)

The governing equation for the conservation ofrgyneof the spherical
water drop is given by,

dly _ h h
d'[ éiv( Ts)_ I\/EI)SACj (Cs_Ca)hfg (3.5)

The first term on the right-hand-side of Equati@b] represents the convection
heat transfer and the second term represents thelgy transfer due to mass
transfer.Ts is the temperature at the surface of the sphewesdr drop which is
equal to the average drop temperature due to themgsion of thecomplete
mixing model. T, is the temperature of the air, which is assumedetoain
constant. The definitions of the vapour concerdretiare given below,

(E.2)
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_y P
C,= X, RTa (E.3)
a

where R is the universal gas constapig(Ts) is the saturated vapour pressure
taken at the spherical water drop’s temperafoyés the atmospheric pressure and
Xy is the mass fraction of the water vapour in the ai

Equations (E.1) and (3.5) are coupled and thusd niee be solved
simultaneously. The equations can be combined tm fa single equation by
dividing Equation (3.5) by Equation (E.1) which I,

dfy _ 3 h T-Ts 1 3 1
dds o hD Cs _Ca ds oy ds

(3.13)

The resulting equation is separable and thus itlmrsolved analytically. The
equation contains a number of variables some othviare assumed to remain
constant so as to simplify the equation by redudimg number of dependent
variables. From a numerical study of the equattocan be seen that the latent
heat,hy, and specific heat at constant volurag,do not vary considerably, thus
they will be taken as constant. The remaining e are found to be functions
of temperature, velocity or diameter.

The convection heat transfer coefficient is a fiomc of the temperature
and the velocity, given by,

(3.4)

where k; is the thermal conductivity of the air. The Nusselmber can be
calculated using the correlation proposed by RawizNarshall [1952RA1],

Nu =2+0.6 Re¥2 Pr¥3 for 2 < Re < 800 (3.6)

The mass transfer coefficient is a function of tdvaperature, velocity and
diameter of the spherical drop, given by,

D&
ds

hp = (3.2)

where D is the diffusion coefficient. The Sherwood numloan be calculated
using the correlation proposed by Ranz and Mar$h@82RA1],

Sh=2+0.6ReY2 Y3 for 2 <Re <800 (3.7)
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Miura et al. [1977MI1] show that the correlation§ Banz and Marshall
[1952RA1] accurately predict the heat and masssteairfor Reynolds numbers of
up to2000.

Substitution of Equations (3.4), (3.2), (E.2) d&d3) into Equation (3.13)
yields,

dl, __3RNu_ (To-T) 1 3hg 1

dd; oD Sh(ps(T) , pa)ds & G (E.4)
T, YT,

The Nusselt and Sherwood ratio is inherent in tlewis number
definition,

% -Le /s (E.5)

In a cooling tower the Lewis number can be takemd equal to unity.
Equation (E.4) is now an equation where all theialdes are functions of
temperature and diameter.

The bracketed term in the denominator of the festn on the right-hand-
side of Equation (E.4) is dependent on the sphlenager drop’s temperature and
can thus be substituted for by,

pvs(Ts)_ Pa _
T vaa f(Ts)+A (E.6)

where the new constat is a function of the thermophysical propertiesttus
continuous phase, air.
Substitution of Equations (E.5) and (E.6) into &iipn (E.4) yields,

Ty __3kR (Ta=Tg) 1 30 1

dds oD (f(Ts)+A)ds ¢ ds

(E.7)

The ratio of saturated vapour pressure to spHesiater drop temperature
can be represented by means of a parabolic equatitetms of spherical water
drop temperature,

f (Ts) - a1T52 +aylg+ag (E.8)
where,

a, =0.017
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a, =—9.5279
ag = 13405

These constants were determined by using the definof the saturated vapour
pressure as given by Kroger [1998KR1] to determdiserete numerical values
for the ratio of saturated vapour pressure to sghlewater drop temperature. The
coefficients of Equation (E.8) are obtained by nseaha least squares curve fit.
The temperature range is froB90K to 314K, as this is the range of cooling
generally encountered in wet-cooling towers.
Equation (E.7) is separable and can be solved/tacally. To simplify the

equation, the following dimensionless parameteesdafined:

ds

/7 =
ds,O

Q= Ts— Ty
TS,O _Ta

wheredso and Tso are the initial values for the diameter and terapge of the
spherical water drop respectively.
Rewriting Equation (E.7) in terms qfand6 yields,

%: 9 1+£1 E.Q
d7 " a6 +a,0+asn N (E9)

where,

2
= (TS,O _Ta)
as = (Ts,O _Ta)(zalTa + a2)
0’3 = alTaz + a2Ta +a.3 + A
5= 3R

c¢,D
3hyg

& (Ts,O - Ta)

By separation of variables, Equation (E.9) cannbegrated.

1 1 1
(*=dp=| dg
Tp~' 0 [ e (E.10)

6% +a,0+a,
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The analytical solution to the integration is gimiow.

I
n(’7) g( 2520,1 {a1+ll+£a3

+—f | tant (—250’16” Ilj—tan'l (—2&’1 i Ilj
$ly P 2

where the constants of integration are defined as,

Sory- o if o200

(3.14)

l1=B+a5

Now it is possible to expregsas a function of.
n=e™s (3.15)

whereRHS s the right-hand-side of Equation (3.14).
It is possible to simplify the solution by usindjraear curve fit to represent
the ratio of saturated vapour pressure to sphesiatdr drop temperature,

f(Ts)=aTs+as (E.11)
where,

a, =0.748
a5 =-210.451

The integral equation now becomes,

1 1 1

(2=dp=| de

Tn ¢ & . : (E.12)
a,60+as

where,

ay =8y (TS,O _Ta)
as=ag+aly + A

The definite integral solution then becomes,
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_4p_n_ G5B, [ J8+Sas

In(n7) = : (6-1) 12 In[ J+£a5] (E.13)
where,

J=pF+¢a,

Once agaim can be written as a function 6fusing Equation (3.15) with RHS
referring to the right-hand-side of Equation (E.13)

Figure E.1 is used to illustrate the results al#diby Equations (3.14) and
(E.13).
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Figure E.1: Dimensionlesstemperature asa function of dimensionless diameter for
Equations (3.14) and (E.13).
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Experimental Data
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Figure F.1: Experimental drop size data and Rosin-Rammler distribution function.
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APPENDIX

Sample Calculation for the Rain Zone L oss Coefficient
Test in the Cooling Tower Test Facility

A sample calculation is performed for one of the test conditions used to determine
the rain zone loss coefficient of a counterflow rain zone. The sample calculation
procedure is discussed in Chapter 4. During the particular test the following data
was measured:

Ambient temperature Ta=293.328K
Atmospheric pressure Pa = 100200N/m?
Air flow nozzle water micromanometer reading AH, = 22.7mm
Water pressure transducer voltage output Vw = 1.68878V
Sampletime tht = 35S

Volume of water in bypass tank Vit = 0.09183m?
Rain zone pressure drop micromanometer reading AH;; = 0.85mm
Temperature of the water Tw =292.743K

The density of the water is calculated from Equation (A.14),

-1
1.4934% 10°- 3.7164 T6( 292748 7.09%62°%0 292743

~1.9032% 10%°( 292.743
=998.23kg M

Pw =

The density of the air is calculated from Equation (A.1),

100200
= =1.19kg m
Pa 287.08x 293.328 d

The air and water mass velocities are calculated as follows:
Pressure difference over air flow nozzle (x10 Betz water micromanometer)

Ap, = 10AH, = 10x 22.7= 227N fr

Air flow nozzle throat cross sectional area:
d, = 0.455m

_(d, ) (0.455)%
%_n[7j —IT(T] =0.1626 M



G2

Test section cross sectional area:
A= 1mx1.5m = 1.5

Velocity of theair in the test section:

0.5 0.5
vo=c[2m i:o.gﬁ( 2% 227 &J 0.1626_, 411
Pk ) Ag 1.19x 0.98 1.5

Air mass velocity in the test section:
G, = pvi= 1.1 2.0& 2.43kf

Pressure difference over water venturi flow meter:
Ap,, =15.996\, - 16.006 15.996 1.688%8 16.006 11.00]7[1@2

Water flow rate to the distribution manifold:
Q,=173%10°A g - 2915 10A b+ 1.8%0 T 2p
~5.363x 10%A {,+ 0.9514 p+ 0.4887
=1.73x 107 (11.00° - 2.916 16( 11.0f» 1.89°1p 11)0

-5.363 10%( 11.00F + 0.95{1 11.0p7 0.4887
=6.49// s

Water flow rate in the bypass troughs:

Woater flow rate in the test section:
Q[s = QW_ th: 649_ 26% 387/

Water mass velocity in the test section:
G, = PuQis _ 998.23< 0.00387_ 557 kg/ =y
As 1.5

The rain zone loss coefficient is calcul ated as follows;
Pressure drop over the test section:

Ap,, = p,0AH,, = 998.2% 9.8% 0.00085 8.32/N?

Rain zone | oss coefficient:
K Nps 8.32

= = =3.35
© Lpe 05x1.19( 2.08




APPENDIX

Rosin-Rammler Distribution Function Analysis

In reality a rain zone consists of a number ofettéht drop sizes referred to as a
polydisperse drop distribution. The drop size d#tat was experimentally
determined in Chapter 4 are polydisperse dropiligtons. A polydisperse drop
distribution can be described by a log-normal orsiRdRammler distribution
function to name but a few. This thesis confineslitto an analysis of the Rosin-
Rammler distribution function due to its inclusian FLUENT 6.2.16. A
polydisperse drop distribution can also be represeby a monodisperse drop
distribution. A monodisperse drop distribution cdsts of only one diameter,
which is usually taken to be one of the represargatiameters that derive from
the polydisperse drop distribution through relewamithmetical operations.

The accuracy of the Rosin-Rammler distributionction is analysed with
respect to the rain zone performance parameters.anllysis is performed by
implementing a goodness of fit technique.

H.1 Performance Parameters’ Sensitivity

The objective of this section is to show how wh# Rosin-Rammler distribution
function correlates the experimental polydispermsgp dlistribution data. To this

end, the water outlet temperature and pressure @map predicted for a

counterflow rain zone using CFD and the experimemalydisperse drop

distribution data. These results are compared wotihesponding results obtained
using the Rosin-Rammler distribution function based the methodology

provided in the FLUENT documentation [2003FL1]. Arther investigation is

conducted to determine the effect of improving ¢heve-fit in certain intervals of

drop diameters, by changing the spread parametemaan diameter.

The analysis is conducted for two different drogesdistributions,
distribution A (experimentally determined in Chapter 4 for th& @ondition,Gy
= 2.21kg/nT’s G, = 2.42kg/n’s, with a large median diameter, and distribut&n
Kroger [1998KR1], with a smaller median diameterheT experimental
polydisperse drop distribution data is divided isténtervals for distributionA
shown in Figure H.1, an8 intervals for distributiorB, for both distributions a
section comprises 2mm span.



H.2

1.4

Interval 1 Interval 2 Interval 3 Interval4 Interval 5 Intervalp
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< Experimental polydisperse drop distribution data
— Rosin-Rammler distribution function

Figure H.1: Division of experimental polydisperse dop distribution data.

For each interval, using the experimental polydispedrop distribution data, a
least squares analysis is performed using the FRammler distribution function
by varying the values of the mean diamedtigk, and the spread parameterith
the aim of minimizing the sum of the squared déergtirrespective of the sum of
the squared deviations of the other sections. Bashltant Rosin-Rammler
distribution function is recorded together with then of the squared deviations
that it produces for all the intervals. The “best Rosin-Rammler distribution
function is determined by minimizing the sum of #wgiared deviations for all the
sections. The results are given in Table H.1.

Table H.1 shows that for both distributions thesbfit” Rosin-Rammler
distribution function gives better results than the@ndard Rosin-Rammler
distribution function. The table also shows that fRosin-Rammler distribution
functions, fitted to the larger diameter basedisest on average correlate the
water outlet temperature better. On average thdlenthameter based sections’
Rosin-Rammler distribution functions seem to catelthe pressure drop over the
domain better.
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Table H.1: Analysis results for Distribution A and Distribution B.

Distribution A

Experimental
polydisperse

dro Rosin- Best Interval Interval Interval Interval Interval Interval
_Grop - pammler it 1 2 3 4 5 6
distribution
data
n n/a 3.651 3.491 6.901 1.833 3.887 3.778 4.443 815.7
drr n/a 7.142 7.310 3.141 12.616 7.203 7.184 7.721 18.11

Two 294.702 294.692 294.694 293.156 294.373 294.7361.728 294.871 294.99

Ap 4.404 2.784 2.832 4.515 9.192 2.705 2.738 2.585.5032

Distribution B

Experimental
polydisperse

dro Rosin- Best Interval Interval Interval Interval Interval Interval
_ drop. Rammler fit 1 2 3 4 5 6
distribution
data

n n/a 2.308 2.021 1.884 1.009 2.556 1.562 2.758 n/a
drr n/a 5.587 5.222 4.388 8.219 5.413 4.758 5.488 n/a
Two 293.445 293.8 293.456 292.937 292.614 293.877 8292. 293.997 n/a
Ap 455 3.961 4571 5.465 6.14 3.779 5.788 3.568 n/a

Summary

It is shown that the standard Rosin-Rammler digtiim function does not
correlate the performance parameters the best.

The Rosin-Rammler distribution function does noobrrelate the
performance parameters of the rain zone with gafficaccuracy for the purposes
of this thesis and is therefore excluded as a meamgutting polydisperse drop
distributions into FLUENT 6.2.16 for the modellireg wet-cooling tower rain
zones.



APPENDIX

CFD Grid Independence Analysis

This appendix is used to present the results ofjtlteindependence analysis. The
purpose of the analysis is to determine the feasibll size in the rain zone. The
results that are monitored are the pressure dnmssthe domain, the outlet water
temperature and the mass fraction of the water waabthe air outlet boundary.
The solver and model settings are discussed int€hép

The analysis is performed on a counterflow don@iilx1.5x3m using
hexahedral cells. The domain consist2400 face cells on the inlet and outlet
boundaries, which are held constant throughoutatmeysis. The height of the
cells is varied, as given below in Table I.1.

Tablel.1: Cdl height dimension and number of cellsfor a domain.

Cell height Number of

[mm] cells [-]
1500 4800
1000 7200
750 9600
600 12000
500 14400
375 19200
300 24000
250 28800
200 36000
150 48000
100 72000
75 96000
50 144000
42.9 168000
37.5 192000
33.3 216000
30 240000

The analysis is conducted using one set of sinmratonditions, which are given
below in Table 1.2.



Tablel.2: Simulation conditionsfor grid independence analysis of a counter flow domain.

Property Value
Water mass flow, m [kg/s] 6
Monodisperse drop distribution diametey [lthm] 2

Inlet air velocity, y[m/s] 2

Inlet water drops temperature, [K] 313.9
Dynamic viscosity of ain, [kg/ms] 1.72x10°
Diffusion coefficient, D [r/s] 1.963x10
Thermal conductivity of air, J{W/mK] 0.026
Density of water dropsy, [kg/m’] 998.2
Specific heat of water drops; [d/kgK] 4182
Latent heat of water dropsg fJ/kg] 2.4051x10
Ambient air pressure 4fiN/m?] 101325
Air drybulb temperature, J[K] 296.6
Relative humidity® [-] 0.6

The saturated vapour pressure is a function oivdter drop temperaturéy, and
is represented by a fourth order polynomial, gilogn

ps(Tq) = 676.88% 10° §- 7357508 19

(1.1)
+301.9731F - 55426.82F 38365
23.5
£ 2309 e ——
= /e/e
S ?/Q
< 225
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o
= EZ g
s
7 22.0
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Number of cells

Figurel.l: Grid independence analysis of the total pressure drop across a counter flow
domain.



Figure 1.1 presents the results for the grid imhefence analysis of the
total pressure drop across the domain. Figurere2qmts the results for the grid
independence analysis of the water outlet temperadnd the mass fraction of
water vapour at the air outlet boundary.
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Figurel.2: Grid independence analysis of the water outlet temperature and the mass fraction
of water vapour at theair outlet.

The convergence criteria for the monitored resatts0.02 for the total
pressure drop and outlet water temperature G601 for the mass fraction of
water. These three criteria are satisfied by a dom&l44 000cells, referring to
Table I.1 this translates to a cell heigh66mm

Two points were checked for the circular cooliog/ér domain and found
to be in accordance with the results for grid iretegence of the counterflow
domain.
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