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Abstract 
 

Cooling tower rain zone performance characteristics such as the loss coefficient 
and the Merkel number are evaluated and simulated. To this end the influence of 
drop diameter and drop deformation on the velocity, path length and cooling of 
single water drops are investigated. Experimental drop size and pressure drop data 
over a counterflow rain zone are presented and the effect of drop deformation on 
the pressure drop is investigated using the experimental data and CFD. Using the 
experimental drop size data and CFD, the performance uncertainty produced by 
using the Rosin-Rammler drop distribution function as opposed to the discrete 
drop distribution data is investigated. CFD models are developed to investigate 
the feasibility of modelling rain zones by assuming a constant drop diameter and 
to establish which diameter definition is the most representative of a particular 
polydisperse drop distribution. These models were used to validate the 
correlations for the rain zone performance characteristics proposed in literature. 
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Opsomming 
 

Die Merkel getal en verlieskoeffisient van ‘n koeltoring se reënsone is 
gemodelleer. Daar is gekyk na die invloed van druppeldiameter en 
druppelvervorming op die snelheid, padlengte en uiteindelik die afkoeling van ‘n 
enkele druppel. Druppelgrootte en drukval data van ‘n dwarsvloei reënsone is 
eksperimenteel bepaal. Die effek van druppelvervorming op die drukval oor ‘n 
dwarsvloei reënsone is bepaal deur gebruik te maak van eksperimentele data en 
CFD. Die verrigtingsonsekerheid wat ontstaan weens die gebruik van ‘n Rosin-
Rammler druppelverdeling, in plaas van ‘n diskrete druppelverdeling, is 
ondersoek deur gebruik te maak van eksperimenteel gemete druppelverdelings en 
CFD. CFD-modelle is opgestel om die modellering van ‘n reënsone met behulp 
van ‘n enkele verteenwoordigende druppeldiameter te ondersoek. Daar is ook 
bepaal hoe so ‘n druppeldiameter gedefinieer moet word, ten einde 
verteenwoordigend te wees vir spesifieke toestande waar druppels poli-verdeeld 
is. Laastens is die CFD-modelle gebruik om ‘n korrelasies wat in die literatuur 
voorkom vir verrigtinskarateristieke te bevestig. 
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1 
Introduction 

 
In conventional fossil fuelled power plants less than half of the thermal energy 
supplied is converted to electric power, most of the rest is waste energy and needs 
to be rejected to the surroundings by means of a cooling system. 
 Many of the earlier power plants made use of once-through cooling, where 
water is taken from a natural source e.g. sea, rivers, lakes etc. and then heated and 
returned back to the source. Ecological awareness and regulations instated in the 
1970s have prohibited the use of such cooling systems in many areas. Thus 
alternatives such as wet-cooling towers had to be found to solve the cooling 
problem. 
 A wet-cooling tower facilitates the cooling of warm process water by 
bringing it into direct contact with colder dry air. The main cooling mechanisms 
are sensible heat transfer and evaporation due to mass transfer, which are strongly 
dependent on the interfacial area and the contact time. Ways to increase the heat 
and mass transfer is to make use of fill (splash, trickle or film type). These can be 
installed in either counterflow or crossflow configurations which can be 
distinguished by the direction of the air flow relative to the water flow. 
 For the case of a natural draught cooling tower, the air flow is achieved by 
means of buoyancy due to the difference in density between the cold air outside 
and the warm moist air inside the cooling tower, whereas in a mechanical draught 
cooling tower the air flow is provided by a fan. 
 

1.1 Background 
 
Rish [1961RI1] was one of the first to include the rain zone in his analysis of 
counterflow cooling towers. Prior studies ignored the rain zone, considering it to 
be unimportant or too complex to analyse. However, in large counterflow wet-
cooling towers as much as 10-20% of the total heat is rejected in the rain zone, 
thus knowledge of the characteristics of the rain zone is important for reliable 
prediction of the total performance. This substantiates that the rain zone can not 
be ignored in any detailed analysis of a wet-cooling tower. 
 Limited published literature is available on the mathematical modelling of 
the heat and mass transfer from free-falling sprays consisting of large drops. The 
simpler models for describing drop cooling invariably assume that the 
polydisperse drop distribution can be expressed by a single representative drop 
diameter known as a monodisperse drop distribution. Hollands [1974HO1] 
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modelled the operation of a spray cooling tower mathematically, and concluded 
that a monodisperse drop distribution is desirable and that the drop diameter 
should be as small as 1-2mm. Warrington and Musselman [1983WA1] reached the 
same conclusion in comparing the performance of a monodisperse drop 
distribution to a polydisperse drop distribution. Alkidas [1981AL1] and Aggarwal 
[1988AG1] found that the Sauter mean diameter can be used to calculate the 
heating of a polydisperse drop distribution. Hollands and Goel [1976HO1] 
showed analytically that it is not generally possible to use a monodisperse drop 
distribution to model the cooling or heating of a polydisperse drop distribution. 
They found that a monodisperse drop distribution can be used in the following 
cases: (i) when the particles move through the heat/mass exchanger so rapidly that 
they do not change appreciably in temperature or (ii) when the drops are very 
small and represent a small mass in comparison to the air stream. Dreyer 
[1994DR1] reviewed relevant literature and concurs with this hypothesis. 
 Lowe and Christie [1961LO1] derive the mass transfer and the pressure 
drop for counterflow conditions, assuming that no drop collisions or 
agglomeration occur. Their data is applicable to small drops only and the drops 
fall at their terminal velocity. In most towers, large drops may never reach their 
terminal velocity. 
 Hollands [1974HO1] included the effect of drop deformation on the drag 
and the heat and mass transfer experienced by the drops in his mathematical 
model. De Villiers and Kröger [1998DE1] include drop deformation in their 
determination of the rain zone loss coefficient and Merkel number. Fisenko et al. 
[2004FI1] exclude drop deformation in the development of their mathematical 
model of a mechanical draught cooling tower performance. They do not determine 
the pressure drop over the rain zone with their model and confine themselves to 
modelling the change in the drop’s velocity, its diameter and temperature, and 
also a change in the temperature and density of the air-vapour mixture in a cooling 
tower. De Villiers and Kröger [1998DE1] use a monodisperse drop distribution in 
their model, whereas Fisenko et al. [2004FI1] are able to model polydisperse drop 
distributions. 
 With the aid of modern computers the differential Navier-Stokes, 
continuity and energy equations for a two-phase flow can be solved numerically. 
Benton and Rehberg [1986BE1] conducted a numerical investigation of the rain 
zone of a counterflow and a pure crossflow configuration. Williamson et al. 
[2006WI1] used FLUENT to simulate a two-dimensional axisymmetric two-phase 
simulation of the heat and mass transfer inside a natural draught wet-cooling 
tower. They used a monodisperse drop distribution with a drop diameter of 
2.5mm. 
  

1.2 Motivation 
 
The motivations for this thesis can be divided into three distinctive sections: 
financial, environmental and academic. 
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 From an economical and engineering vantage point it is imperative that all 
systems should meet design performance. It should be known that small 
significant improvements to a cooling system of a power plant could result in a 
multi-million dollar saving in resources. Improving the rain zone performance can 
reduce the life cycle costs of natural draught wet-cooling towers. 
 Improving the rain zone performance of natural draught wet-cooling 
towers can also be beneficial to the environment. Such improvements include 
reducing water consumption and plant emissions. 
 The academic motivation for this thesis is to gain a sound understanding of 
the physics of the rain zone. This understanding will help accomplish the prior 
motivations. 
 These motivations are incentives to continually improve these systems 
worldwide by conducting research and development. 
 

1.3  Objectives 
 
This thesis concentrates solely on the processes found in the rain zone of a wet-
cooling tower. Counterflow and cross-counterflow rain zone configurations are 
investigated, with emphasis on the latter found in natural draught wet-cooling 
towers. 
 Validation of the proposals, ideas and hypotheses put forward by prior 
researchers, as highlighted in Section 1.2, together with the motivations given in 
the previous section give rise to the objectives of this thesis: 
1. Investigate the influence of drop diameter and drop deformation on the 

velocity, path length and cooling of single water drops vertically free-falling 
through stagnant or upward flowing air. 

2. Assist with the design, draughting, manufacture, installation, calibration and 
testing of a new rain zone test facility. 

3. Determine the inlet drop size distribution and the pressure drop of a 
counterflow rain zone experimentally for different air and water mass flow 
rates. 

4. Develop CFD models to predict the pressure drop and the heat and mass 
transfer of a counterflow and cross-counterflow rain zone. 

5. Investigate the performance uncertainty produced by using the Rosin-
Rammler drop distribution function as opposed to discrete drop distribution 
data when modelling the performance of the rain zone. 

6. Investigate the feasibility of modelling rain zones by assuming a constant 
drop diameter and establish which diameter definition is the most 
representative of a particular polydisperse drop distribution. 

7. Using the CFD models developed in this thesis, validate the correlations for 
the rain zone performance characteristics proposed by De Villiers and Kröger 
[1998DE1]. 
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1.4 Approach and Layout of Thesis 
 
This section presents the basic layout of this thesis and provides a short synopsis 
for each chapter. 
 

CHAPTER 1. INTRODUCTION 
Chapter 1 gives a brief description of cooling towers. It presents the motivation, 
objectives and the layout of the thesis. 

CHAPTER 2. DROP VELOCITY AND PATH LENGTH 
This chapter is used to gain an understanding of the physics of the motion of 
drops free-falling through air and then also to provide data to validate CFD 
models. The effect of drop deformation on the velocity and path length of a drop 
is investigated. 

CHAPTER 3. DROP HEAT AND MASS TRANSFER 
This chapter is used to gain an understanding of the physics of the cooling of 
drops free-falling through air and then also to provide data to validate CFD 
models.  

CHAPTER 4. EXPERIMENTAL DATA ACQUISITION 
Experimental work of a one-dimensional counterflow case is performed in order 
to obtain pressure drop and drop size distribution data necessary to validate CFD 
models. The relevant data for the pressure drop and drop distribution is presented 
at the end of this chapter. 

CHAPTER 5. EFFECT OF DROP DEFORMATION ON RAIN ZONE PERFORMANCE 
The effect of drop deformation on rain zone performance is investigated.  

CHAPTER 6. CFD MODEL OF THE RAIN ZONE 
CFD models are created that can be used to model polydisperse and monodisperse 
drop distributions, with regards to the loss coefficient and Merkel number. The 
results of the simulations for the polydisperse drop distributions are given. 

CHAPTER 7. MODELLING RAIN ZONE LOSS COEFFICIENT 
This chapter will investigate the modelling of a polydisperse drop distribution by 
means of a monodisperse drop distribution with regards to the loss coefficient, 
and in doing so define a new representative diameter. CFD is then used to validate 
the mathematical correlations for the rain zone loss coefficient given by De 
Villiers and Kröger [1998DE1].  

CHAPTER 8. MODELLING RAIN ZONE HEAT AND MASS TRANSFER 
This chapter will investigate the modelling of a polydisperse drop distribution by 
means of a monodisperse drop distribution with regards to the Merkel number. 
The mathematical correlations for the rain zone Merkel number presented by De 
Villiers and Kröger [1998DE1] will be validated with CFD. 

CHAPTER 9. CONCLUSIONS AND RECOMMENDATIONS 
This chapter is used to present the conclusions and recommendations that stem 
from the work done in this thesis. 



CHAPTER 

2 
Drop Velocity and Path Length 

 
This chapter is used to gain an understanding of the physics of the motion of 
drops vertically free-falling through air and then also to provide data to validate 
CFD models. To this end, the chapter sets out to present the derivation of the 
governing equation of motion of a vertically free-falling drop in an 
incompressible Newtonian fluid. Different solution techniques, namely analytical, 
numerical and CFD (FLUENT 6.2.16) are employed to solve the ordinary 
differential equations and the results are compared. Finally the effect of drop 
deformation on the velocity and path length of a drop is investigated. 
 

2.1 Mathematical Model 
 
Consider a drop vertically free-falling under the action of gravity through stagnant 
air or a counterflow air stream. 
 Referring to Figure 2.1, the equation of motion of a drop can be found, by 
applying Newton’s second law, defined by 
 

d B D d dF M g F F M a= − − =∑  (2.1) 
 
where Md denotes the mass of the drop, ad the acceleration and FD and FB are the 
drag and buoyancy forces defined by Equations (2.2) and (2.3) respectively. 
 

2
D a ad d D

1
F v A C

2
ρ=  (2.2) 

B aF M g=  (2.3) 
 
Where vad is the velocity of the air relative to the drop, Ad its cross-sectional area, 
CD the drag coefficient and Ma is the mass of the displaced air. The relative 
velocity of the air to the drop is given by, 
 

ad a dv v v= −  (2.4) 

 
where va and vd are the air and the drop velocities respectively.  
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Figure 2.1: Free-body-diagram of a drop in a counterflow air stream. 

 
 Substitution of Equations (2.2) and (2.3) into Equation (2.1) and rewriting 
all dependent variables in terms of their independent variables yields, 
 

( )d a 2d a
D ad

d d d

dv 3
g C v

dt 4 d

ρ ρ ρ
ρ ρ
−

= −  (2.5) 

 
 In this chapter it is assumed that the temperature and diameter of the drop 
remain constant. The variation of these variables is addressed in Chapter 3. 
 

2.1.1 Drag Coefficient 
Turton and Levenspiel [1986TU1] propose a correlation to represent the drag 
coefficient for spheres. A reformulation of the single equation correlation is given 
by,  
 

D 0.343 1.09

24 4.152 0.413
C

Re Re 1 16300 Re−
= + +

+
 for Re ≤ 200 000 (2.6) 

 
Referring to Equation (2.6) and Figure 2.2, the first term on the right-hand-side 
denotes Stokes’ law, the second term represents the transition of the drag curve to 
the near constant portion for high Reynolds numbers, represented by the last term. 
 Using the same data, Clift et al. [1978CL1] present a set of 10 polynomial 
regressions applicable to different Reynolds number ranges to represent the drag 
coefficient for spheres, given in Table 2.1. 
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Table 2.1: Clift et al. [1978CL1] drag coefficient correlations, w = log10Re. 

Reynolds number range Drag coefficient correlation 

Re 0.01<  
24 3

Re 16DC = +  

0.01 Re 20< ≤  (0.82 0.05 )24
1 0.1315Re

Re
w

DC − = +   

20 Re 260≤ ≤  0.630524
1 0.1935Re

ReDC  = +   

260 Re 1500≤ ≤  2
10log 1.6435 1.1242 0.1558DC w w= − +  

3 41.5 10 Re 1.2 10× ≤ ≤ ×  
2 3

10log 2.4571 2.5558 0.9295 0.1049DC w w w= − + − +  
4 41.2 10 Re 4.4 10× < < ×  

2
10log 1.9181 0.637 0.0636DC w w= − + −  

4 54.4 10 Re 3.38 10× < ≤ ×  
2

10log 4.339 1.5809 0.1546DC w w= − + −  
5 53.38 10 Re 4 10× < ≤ ×  29.78 5.3DC w= −  

5 64 10 Re 1 10× < ≤ ×  0.1 0.49DC w= −  

61 10 Re× <  
48 10

0.19
ReDC
×= −  
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Figure 2.2: Drag coefficient of a sphere as a function of Reynolds number. 
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 Ferreira [1997FE1] proposes two correlations, Equations (2.7) and (2.8), 
for the drag coefficient in order to solve Equation (2.5) for a sphere analytically. 
  

D
24

C 0.5
Re

= +  (2.7) 

2

D 1 2

4.9
C 0.5

Re

 = + 
 

 (2.8) 

 
 FLUENT Documentation [2003FL1] incorporate the following correlation 
for the drag coefficient of smooth spheres given by Morsi and Alexander 
[1972MO1], 
 

32
D 1 2

KK
C K

Re Re
= + +  (2.9) 

 
where K1, K2 and K3 are constants that are applicable to certain Reynolds number 
ranges, given in Table 2.2. 
 

Table 2.2: Constants of Equation (2.9) and their applicable Reynolds number ranges. 

Reynolds number 
range 

K1 K2 K3 

Re < 0.1 0 24 0 
0.1 < Re < 1 3.69 22.73 0.0903 
1 < Re < 10 1.222 29.1667 -3.8889 
10 < Re < 100 0.6167 46.5 -116.67 
100 < Re < 1000 0.3644 98.33 -2778 
1000 < Re < 5000 0.357 148.62 -4.75×104 
5000 < Re < 10000 0.46 -490.546 57.87×104 
10000 < Re < 50000 0.5191 -1662.5 5.4167×106 
 
FLUENT Documentation [2003FL1] also incorporates another correlation, 
proposed by Haider and Levenspiel [1989HA1], which includes a shape factor, 
 

( )2b 3
D 1

4

b Re24
C 1 b Re

Re b Re
= + +

+
 (2.10) 

 
where  
 

( ) 2
1ln b 2.3288 6.4581 2.4486φ φ= − +  

2b 0.0964 0.5565φ= +  

( ) 2 3
3ln b 4.905 13.8944 18.4222 10.2599φ φ φ= − + −  
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( ) 2 3
4ln b 1.4681 12.2584 20.7322 15.8855φ φ φ= + − +  

 
The shape factor, Φ, is defined as the ratio of the surface area of a sphere, having 
the same volume as the drop, to the actual surface area of the drop. Equation 
(2.10) is similar in form to Equation (2.6). 
 Gunn and Kinzer [1949GU1], Beard and Pruppacher [1969BE1] and Ryan 
[1976RY1] measured the terminal velocities of water drops in air. They all show a 
marked difference from the terminal velocity predicted by using drag correlations 
for spheres. Gunn and Kinzer [1949GU1] measured the velocity of water drops at 
20˚C falling in stagnant air at STP. Refer to Figure 2.3. 
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Figure 2.3: Terminal velocity as a function of drop diameter, for experimental water drops 
and spheres. 

 
 The drag experienced by liquid drops is mainly influenced by internal 
circulation, drop oscillation and drop deformation. 
 Internal circulation reduces the skin friction that a liquid drop experiences 
thus reducing the drag. LeClair et al. [1972LE1] found that the effect that internal 
circulation has on the drag of a water drop to be less than 1%.  
 Beard [1977BE1] and Pruppacher and Klett [1978PR1] concluded that the 
oscillation frequency of water drops is too high for drop oscillation to have a 
noticeable effect on drop drag in the absence of air turbulence. 
 It can therefore be concluded that the main reason for the difference in 
drag between spheres and drops must therefore be due to drop deformation. 
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2.1.2 Drop Deformation 
Drop deformation is defined as the aspect ratio of a prolate ellipsoidal drop, 
written as, 
 

z

x

d
E

d
=  (2.11) 

 
where dz and dx are defined as shown 
in Figure 2.4. Beard and Chuang 
[1987BE1] formulated a numerical 
model that predicts the deformation 
at drop terminal velocity in stagnant 
air. The deformation caused by drag 
can be obtained by numerically 
solving the appropriate Laplace 
equation. An empirical equation 
proposed by Dreyer [1994DR1] fits 
their data, expressed by, 

 

Figure 2.4: Representation of a deformed 
drop. 

 

T 0.85

1
E

1 0.148Eo
=

+
 (2.12) 

 
where the Eotvos number, Eo, is defined by, 
 

( )2
d d a

d

gd
Eo

ρ ρ
σ

−
=  (2.13) 

 
Dreyer [1994DR1] proposed a correlation for drop deformation during drop 
acceleration as a function of velocity, terminal velocity (vT) and terminal 
deformation, given by, 
 

( )
2

d
T

T

v
E 1 1 E

v

 
= − − 

 
 (2.14) 

 
He also proposed a correlation, which expresses the ratio of drop and sphere drag 
coefficients as a function of drop deformation, given by 
 

( ) ( ) ( )2 3D

D,sphere

C
1 0.17185 1 E 6.692 1 E 6.605 1 E

C
= − − + − − −  (2.15) 

 
where CD,sphere is calculated using Equation (2.6). 

The drop drag coefficient in the correlation above is based on the actual 
frontal area of the deformed drop and the Reynolds number is based on the 
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equivalent spherical drop diameter, where the equivalent spherical drop diameter 
is the diameter of a sphere that has the same volume as the actual drop. 
 Equation (2.10) includes drop deformation, however the value for the 
shape factor stays constant throughout the drop’s lifetime and this implies that the 
equation does not take into account changes in drop deformation which occur 
during drop acceleration. Incorporation of Equation (2.15) in FLUENT 6.2.16 
would be computationally expensive. The author therefore proposes a correlation 
that is a function of the Reynolds number and the terminal deformation of the 
drop. The derivation of Equation (2.16) is given in Appendix B. 
 

( )
D 0.343

6 2.017 6 7 1.831
T T

23.986 4.186
C

Re Re

1.28 10 E 1.75 10 E 7.07 10 Re− − −

= +

+ × − × + ×
 (2.16) 

 

2.2 Solution Techniques 
 
The different solution techniques that are employed to solve Equation (2.5), 
together with their assumptions, for the determination of the velocity and path 
length of a drop falling through stagnant air or a counterflow air stream are 
presented in this section. 
 

2.2.1 Analytical 
For the analytical solution it is assumed that the drop remains spherical for its 
entire path length, it falls in stagnant air and the drop has no effect on the air. This 
means that the spherical drag correlation, Equation (2.6), is employed. The 
subscript s is now used to denote the spherical drop case. 
 Analytical solutions for the velocity and path length as a function of time 
are found and given below, 
 

( ) a s 1 s,0 a 20 1a
s 2

a s 1 a

2 d E v Et t
v tan tan E

2 d E 2

ρ µψµ ψ
ρ µ ψ

−  +−  
= + −        

 (2.17) 

( ) a s 1 s,0 2 a2 1
0 2

a
s a

a s 1

a s 1 s,0 2 a2 1
2 0

a
a

a s 1

2 d E v E1
ln sec t t tan E t

21
s

2 d E

2 d E v E
ln sec tan E t

1

2 d E

ρ µ
ψ

µ ψ
µ

ρ

ρ µ
µ ψ

µ
ρ

−

−

  + 
− − + +        = −

  + 
− +        +

 (2.18) 

 
where  
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1a s a

a s

d
g

ρ ρα
µ ρ

 
= − 

 
 

2

3

4
a

s sd

µβ
ρ

= −  

1 1E bβ=  

2 2E b β=  

3 3E bα β= +  

( )1
2 2

3 1 24E E Eψ = −  

 
and t0 and vs,0 are the initial time and velocity respectively. The values for the 
constants and their applicable Reynolds number ranges are given in Table 2.3. 
 

Table 2.3: Values of constants of parabolic equation for CDRe2 as a function of Reynolds 
number. 

Reynolds number range b1 b2 b3 
0 ≤ Re ≤ 275 0.409 75.837 -674.48 
275 ≤ Re ≤ 900 0.378 97.931 -4714.1 
900 ≤ Re ≤ 1750 0.359 142.33 -30791 
1750 ≤ Re ≤ 2750 0.354 140.25 -12434 
2750 ≤ Re ≤ 4000 0.377 10.257 172402 
4000 ≤ Re ≤ 10000 0.474 -961.02 2604768 
 
 The analytical solution presents an expression for the time required to 
reach terminal velocity,  
 

s s
transient

1 a

2 d
t

3b

ρ
ρ

=  (2.19) 

 
The reader is referred to Appendix C for a full derivation of Equations (2.17) and 
(2.18). 
 

2.2.2 Numerical 
For the purposes of this thesis, a numerical program was written that can solve the 
equations of motion, Equation (2.5), for a vertically free-falling drop in an 
incompressible Newtonian fluid, using the 4th order Runge-Kutta numerical 
integration technique. The effect of drop deformation on the drag can be 
incorporated using Equation (2.15) or Equation (2.16). The effect of the drop on 
the continuous phase is not considered, thus the continuous phase remains 
undisturbed.  
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2.2.3 Computational Fluid Dynamics 
FLUENT 6.2.16 models the drops by means of a discrete phase model (DPM), 
utilising a Lagrangian approach in which the momentum equation is written in a 
co-ordinate system that moves with each individual drop. The continuous phase 
equations are still expressed in their Eulerian continuum form, but are suitably 
modified to account for the presence of the drops, by means of interphase source 
terms. 
 The user is presented with the option to include interphase interaction. In 
the event that the interaction is included, then the conservation of momentum 
states that a change in momentum of the drop will result in a change in 
momentum of the continuous phase. This interaction is accounted for by 
appropriate interphase source terms in the continuous phase momentum equations. 
 FLUENT 6.2.16 can solve Equation (2.5) using a number of numerical 
integration techniques: implicit Euler integration; semi-implicit trapezoidal 
integration; analytical integration and a 5th order Runge-Kutta technique. 
 The effect of the drops on the turbulence equations of the continuous 
phase can be modelled with FLUENT 6.2.16 using two-way turbulence coupling. 
 

2.3 Analysis of Results 
 
The next section compares and discusses the results obtained by employing the 
different solution techniques. For the solution techniques to be comparable the 
simulation conditions are identical. For this reason this section is sub-divided into 
two sections. The first section, spherical drops, will compare all the prior 
discussed solution techniques for the case of a spherical drop falling in stagnant 
air. The second section, deformable drops, will be used to compare the solution 
techniques of CFD and the numerical model for the case of a deformable drop 
falling in a counterflow air stream. 
 

2.3.1 Spherical drops 
The analytical results are used as reference values, to which the numerical and 
CFD results are compared.  
 The analytical drop velocity and path length data are presented in Figures 
2.5 and 2.6 respectively. Equation (2.19) is also plotted in Figure 2.5. 
 



 2.10

0

2

4

6

8

10

12

0 1 2 3 4 5
Time, t [s]

Sp
he

re
 v

el
oc

ity
,

1mm 2mm 3mm 4mm 5mm Equation (2.19)

v s
 [m

/s
]

 
Figure 2.5: Velocity of a sphere as a function of time, Equation (2.17). 

 
 Figure 2.5 correctly shows that all the spheres have the same initial 
gradient, gravitational acceleration. The figure also shows that the larger spheres 
attain a larger velocity value, thus they would fall through a rain zone faster.  
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Figure 2.6: Path length of a sphere as a function of time, Equation (2.18). 
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 Figure 2.6 shows that the larger drops take less time to attain any 
corresponding path length value, thus for the rain zone example this would mean 
less contact time between the drop and the air. The gradients of the curves in 
Figure 2.6 become constant at the onset of terminal velocity. 
 Figures 2.7 and 2.8 are used to present the results of the comparison 
between the solution procedures, with respect to velocity and path length. 
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Figure 2.7: Numerical and CFD spherical drop velocity data plotted against corresponding 
analytical data for comparison of the results. 

 
Figure 2.7 shows good correspondence between the results from the different 
solution techniques. For a 5mm sphere there is 1% deviation between the 
analytical and the CFD results and between the analytical and the numerical 
results a 0.04% deviation exists. The deviations can be attributed to the different 
drag coefficient correlations implemented. The analytical and the numerical 
solution techniques implement Equation (2.6), whereas the CFD solution 
technique implements Equation (2.9). 
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Figure 2.8: Numerical and CFD spherical drop path length data plotted against 
corresponding analytical data for comparison of results. 

 
For the path length, the values for the deviations remain relatively unchanged. 
 This section demonstrates that analytical, CFD and numerical solution 
techniques can be used to predict the velocity and path length of a vertically free-
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falling spherical drop. It is seen that CFD deviates marginally from the analytical 
model due to the different drag correlation incorporated. 
 

2.3.2 Deformable drops 
Figure 2.9 illustrates the deviation in the terminal velocity between the 
experimental data of Gunn and Kinzer [1949GU1] and results obtained using 
various drag coefficient correlations. 
 The same order of accuracy is obtained for drop diameters in the range 0 ≤ 
dd ≤ 2mm. Beyond this range the terminal velocities of spheres and drops begin to 
deviate significantly from each other. 
 Kröger [1998KR1] states that generally splash type fills produce a 
spectrum of relatively small drops in the rain zone (3mm – 4mm) while film and 
trickle fills produce larger drops (5mm – 6mm). Figure 2.9 illustrates that neither 
of these two ranges are accurately predicted by spheres regarding terminal 
velocity.  
 Therefore it can be stated: in order to accurately predict the terminal 
velocity of water drops and ultimately rain zone performance, it is imperative to 
employ equations that incorporate the effect of drop deformation on drag.  
 

-10

0

10

20

30

40

0 1 2 3 4 5
Drop diameter, dd [mm]

T
er

m
in

al
 v

el
oc

ity
 d

ev
ia

tio
n,

Equation 2.10 (CFD) Equation 2.15 (numerical)

Equation 2.16 (CFD) Equation 2.6 (numerical-sphere)

∆
v T

 [%
]

 
Figure 2.9: The deviation between experimental terminal velocity data [1949GU1] and 
numerical and CFD data obtained by employing different drag coefficient correlations. 

 
 Figure 2.10 illustrates that an increase in counterflow air velocity reduces 
the absolute terminal velocity of a drop which results in a shorter path length for a 
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given period of time. The absolute terminal velocity of a drop falling in a 
counterflow air stream can be written as,  
 

T ,c T ,c0 av v v= −  (2.20) 
 
where vT,c and vT,c0 are the absolute terminal velocities with and without a 
counterflow air velocity respectively. 
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Figure 2.10: Velocity of a 1mm drop as a function of time for various counterflow air 
velocities. 

 
Summary 
 
Literature shows that internal circulation, drop oscillation and drop deformation 
have an effect on the drag experienced by a drop, but that deformation is the most 
significant. 
 An analytical solution is proposed to determine the velocity and path 
length of vertically free-falling spherical drops in stagnant air. The results are 
compared with corresponding results obtained numerically and by means of CFD 
and the deviations are within 0.04% and 1% respectively. 
 Experimental data showed that the terminal velocity of larger liquid drops 
and liquid spheres differed somewhat due to drop deformation. FLUENT 6.2.16 
provides the option to use a correlation for drag coefficient which accommodates 
fixed drop deformation, yet it was found to deliver unsatisfactory results for 
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certain drop sizes. Consequently a new correlation was developed with which 
better results were obtained. 
 It was shown that increasing counterflow air velocity reduces the absolute 
terminal velocity, this results in shorter path lengths for a specified time. 
 It was shown that the drop diameters that are associated with a rain zone 
are all affected by drop deformation and thus it can not be ignored when 
determining the velocity and path length of drops in the rain zone. Also for the 
typical heights associated with rain zones these drop diameters hardly ever reach 
their terminal velocities, thus spending most of their lifetime in their transient 
velocity stage. Very little literature exists on the transient velocity stage of 
deformable drops, thus no direct comparison can be drawn. However, with the 
fixed initial gradient in the velocity vs. time graph and a correct prediction of the 
terminal velocity an accurate prediction of the transient velocity stage of a drop’s 
lifetime can be found. 



CHAPTER 

3 
Drop Heat and Mass Transfer 

 
This chapter is used to gain an understanding of the physics of the cooling of 
drops vertically free-falling through air and then also to provide data to validate 
CFD models. To this end, the chapter sets out to present the derivation of the 
governing equations for the rate of temperature change of a vertically free-falling 
drop in an incompressible Newtonian fluid. Different solution techniques to solve 
these ordinary differential equations, namely analytical, numerical and CFD 
(FLUENT 6.2.16), are employed and the results for the change in drop 
temperature and diameter are then compared for various conditions. 
 

3.1 Mathematical Model 
 
There are mainly three different models for the transport processes inside a drop. 
The complete mixing model assumes complete mixing and therefore constant 
temperature along the radius of the drop. Resistance to heat and mass transfer 
therefore only exists in the continuous phase. The non-mixing model assumes a 
temperature gradient along the radius, giving rise to transient heat transfer inside 
the drop due to conduction. The mixing model considers both the effects of 
oscillation and internal circulation on the mixing in the drop. The non-mixing and 
mixing models require that the internal temperature gradient of a drop, inter alia, 
be modelled, resulting in extra computational time per drop. FLUENT 6.2.16 
employs the complete mixing model, which is adopted for this thesis. 
 Heat and mass transfer are the two main driving mechanisms for energy 
transfer between a water drop and air, which ultimately relates to a change in the 
temperature and the diameter of the drop. The driving potential for mass transfer 
is the concentration difference of water vapour at the drop surface and in the air, 
defined by, 
 

( )d
D d d a

dM
h A C C

dt
= − −  (3.1) 

 
where, Ad is the surface area of the drop, Cd and Ca are the concentrations of water 
vapour at the surface of the drop and in the air respectively and hD is the mass 
transfer coefficient, that is determined from the Sherwood number, Sh, given by 
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Sh D
h

d
=  (3.2) 

 
where D is the diffusion coefficient. 
 Concerning the heat transfer, it was assumed that the radiation heat 
transfer is negligible, thus the heat transfer is due to convection only. The driving 
potential for the convection heat transfer is the temperature difference that exists 
between the drop surface and the air. Assuming uniform drop temperature, the 
convection heat transfer is represented by Newton’s law of cooling defined by, 
 

( )c d a dQ hA T T= −  (3.3) 

 
where, h is the convection heat transfer coefficient that is determined from the 
Nusselt number, Nu, given by 
 

a

d

k Nu
h

d
=  (3.4) 

 
where ka is the thermal conductivity of the air. 
 From the first law of thermodynamics for an unsteady flow process, 
applied to a control volume around a drop, and substitution of Equations (3.1) and 
(3.3) results in the energy equation for a drop free-falling in an incompressible 
Newtonian fluid, expressed by, 
 

( ) ( ) ( )d d
d v d d v v d d a d D d d a g

dT dMd
M c T M c c T hA T T h A C C h

dt dt dt
= + = − − −   

 
hence 
 

( ) ( )d d D d
a d d a fg

d v d v

dT hA h A
T T C C h

dt M c M c
= − − −  (3.5) 

 
 Solution of Equation (3.5) results in a relation for drop temperature as a 
function of time, drop diameter and thermophysical properties. For the change in 
the diameter of the drop as a function of time Equation (3.1) must be solved. 
 

3.1.1 Heat and Mass Transfer Coefficients 
Heat and mass transfer of liquid drops has been studied extensively by numerous 
researchers; Frossling [1938FR1], Snyder [1951SN1], Ranz and Marshall 
[1952RA1], Hsu et al. [1954HS1], Yao and Schrock [1976YA1], Miura et al. 
[1977MI1] and Srikrishna et al. [1982SR1]. 
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 Ranz and Marshall [1952RA1] conducted their studies using small drops 
suspended on thin wires/fibres, subject to a constant velocity air stream. They 
proposed the following correlations for the heat and mass transfer,  
 

(3.6) 1 2 1 3

1 2 1 3
Nu 2 0.6 Re Pr
Sh 2 0.6 Re Sc

= +
= +

  
(3.7) 

 
for 2 ≤ Re ≤ 800. 
 Miura et al. [1977MI1] show that these correlations accurately predict the 
heat and mass transfer for Reynolds numbers of up to 2000. The correlations are 
in good agreement with data for solid spheres, thus the effects of drop oscillation 
and internal circulation were minimal in the Ranz and Marshall [1952RA1] 
studies. FLUENT 6.2.16 employs these correlations, [1952RA1]. 
 Yao and Schrock [1976YA1] measured the temperature of large water 
drops, 3 ≤ dd ≤ 6mm, accelerating from rest in still air, by conducting a series of 
experiments. The experimental data is plotted in Figure 3.1 together with results 
obtained by solving Equation (3.5) using different correlations for Nu and Sh 
found in literature. 
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Figure 3.1: Drop temperature as a function of path length for different heat and mass 
transfer correlations. 

 
Figure 3.1 illustrates that the correlations of Ranz and Marshall [1952RA1] under-
predicts the cooling of accelerating water drops. Thus acceleration influences the 
heat and mass transfer of a drop. Snyder [1951SN1] measured the cooling rate of 
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single water drops accelerating freely in air. At higher Reynolds numbers his data 
differs by up to 15% from the heat transfer data for solid spheres.  

Yao and Schrock [1976YA1] proposed the following correlation, for their 
experimental data, based on the correlations given by Ranz and Marshall 
[1952RA1], 
 

( )1 2 1 3
YSNu 2 g 0.6 Re Pr= +  (3.8) 

 
where,  
 

0.7
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d
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g 25
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−
 
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 

  (3.9) 

 
for Re < 2500 and 10 < (z/dd) < 600.  
 Erens et al. [1994ER1] using the data of Yao and Schrock [1976YA1] 
proposed a more accurate correlation, given by, 
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dv dt d
g 0.22 3.15

v d

 
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( ) d 4
2
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5 10

v
−> ×  (3.10) 

 
The maximum stable drop diameter, dm, which is the maximum diameter of a drop 
before it breaks up, is given by, 
 

( )
d

m
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16
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ρ ρ
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−

 (3.11) 

 
 Using the experimental data of Yao and Schrock [1976YA1] the author 
proposes the following correlation, 
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(3.12) 

 
where (CDRe2)T is at the terminal velocity condition. The full derivation of 
Equation (3.12) is given in Appendix D. 
 The predicted values for the temperature of a falling accelerating water 
drop using Equations (3.10) and (3.12) are illustrated in Figure 3.1, where it is 
seen that the latter correlated the experimental data of Yao and Schrock 
[1976YA1] better. 
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3.2 Solution Techniques 
 
The different solution techniques that are employed to solve Equation (3.5), 
together with their assumptions, for the determination of the temperature and 
diameter of a drop free-falling through upward flowing or stagnant air are 
presented in this section. 

3.2.1 Analytical 
For the analytical solution it is assumed that the drop remains spherical for its 
entire path length and it falls in stagnant air. Furthermore the falling drop has no 
effect on the thermophysical properties of the continuous phase, thus these 
properties remain constant and equal to their initial conditions. For the analytical 
model the thermophysical properties of the drop remain constant and equal to 
their initial conditions. 
 Equations (3.1) and (3.5) are coupled and need to be solved 
simultaneously. In order to reduce the set of equations to a single ordinary 
differential equation, Equation (3.5) must be divided by Equation (3.1) to give, 
 

fgs a s

s v D s a s v s

3hdT T T3 h 1 1

dd c h C C d c d

−= − +
−

 (3.13) 

 
where the subscript s is now used to denote the spherical drop. 
 The final solution equation is given by, 
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RHSeη =  (3.15) 

 
where, 
 

s
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d

d
η =  

s a
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T T

T T
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are the dimensionless variables for the diameter and temperature respectively, the 
constants in Equation (3.14) are defined below, 
 

( )2
1 1 s,0 aa T Tα = −  
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The reader is referred to Appendix E for a full derivation of Equation (3.14). 
 A shortcoming of this model is its failure to relate the dependent variables 
temperature and diameter to an independent variable such as time or path length. 
 The model does show, mathematically, that the diameter of a drop changes 
by less than 2% before it reaches its steady state temperature, wetbulb. 
 

3.2.2 Numerical 
For the purposes of this thesis, a numerical program was written that can solve the 
energy transfer equation for a free-falling drop in an incompressible Newtonian 
fluid, using a 4th order Runge-Kutta integration technique. The model can 
incorporate drop deformation, acceleration effects and change in drop diameter 
and neglects the effects of the drop on the continuous phase. 
 The thermophysical properties of the continuous phase also remain 
constant. Unlike the analytical solution, the thermophysical properties of the drop 
are able to be updated for each time step, making it more realistic. 
 

3.2.3 Computational Fluid Dynamics 
FLUENT 6.2.16 models the drops by means of a discrete phase model (DPM), 
utilising a Lagrangian approach in which the energy and mass transfer equations 
are written in a co-ordinate system that moves with each individual drop. The 
continuous phase equations are still expressed in their Eulerian continuum form, 
but are suitably modified to account for the presence of the drops, by means of 
interphase source terms. 
 The user is presented with the option to include interphase interaction. In 
the event that the interaction is included, then as the trajectory of a particle is 
computed, the code determines the heat and mass transfer between the drop phase 
and the continuous phase. This interaction is accounted for by appropriate 
interphase source terms in the continuous phase energy and species transport 
equations. 
 By default, the solution of the particle energy and mass equations are 
solved in a segregated manner. The user is presented with the option to enable 
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Coupled Heat-Mass Solution. If selected then the code will solve this pair of 
equations using a stiff coupled ODE solver with error tolerance control. 
 FLUENT 6.2.16 only utilises the Ranz and Marshall [1952RA1] 
correlations for determining the Nusselt and Sherwood numbers. In order to 
incorporate other correlations the user must compile a user-defined-function. In 
the code the thermophysical properties such as density, specific heat and latent 
heat of vaporization of the drop and the diffusion coefficient of water vapour in 
air remain constant and equal to their initial values defined by the user. 
 FLUENT 6.2.16 provides the option to solve Equations (3.1) and (3.5) by 
means of a number of different numerical integration techniques: implicit Euler 
integration; semi-implicit trapezoidal integration; analytical integration and a 5th 
order Runge-Kutta technique. 
 

3.3 Analysis of Results 
 
The next section compares and discusses the results obtained by employing the 
different solution techniques. For the solution techniques to be comparable the 
simulation conditions need to be identical. For all the simulations presented here, 
the water drop will initially be at a higher temperature than the air. 
 Due to the limitations of FLUENT 6.2.16 and the analytical solution 
technique, the drops are assumed to be spherical, free-falling in a stagnant air with 
the heat and mass transfer calculated using the correlations of Ranz and Marshall 
[1952RA1]. 
 The results of the three solution techniques are compared by making use of 
the dimensionless variables, η and θ, from the analytical solution. The simulation 
conditions are: drybulb air temperature of 296.6K, initial drop temperature of 
313.9K, relative humidity of 0.6 and ambient pressure of 101325N/m2. 
 Numerical (1) in Figure 3.2 is for the case where the thermophysical 
properties of the drop are updated for each time step in the numerical solution 
technique, Numerical (2) is for the case where the thermophysical properties are 
held constant. Numerical (1) is a better representation of the reality. 
 For the positive θ case both the heat and mass transfer processes are in the 
same direction, whereas for the negative θ case the heat transfer process reverses 
and now tries to heat the drop, this results in an increase in the curvature of the 
graph. When θ = 0 the drop temperature is equal to the air drybulb temperature. 
The figure also shows that the drop’s diameter reduces by less than 2% before the 
drop temperature converges to the wetbulb temperature of the air. For most 
conventional cooling towers the fall height and drop distribution is such that the 
majority of the drops never reach the wetbulb temperature, therefore the change in 
diameter can be considered negligible for cooling tower analysis. The change in 
diameter can be used to determine the mass of water evaporated. 
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Figure 3.2: Comparison of dimensionless temperature as a function of dimensionless 
diameter for the three different solution techniques. 

 
 From Figure 3.2 it appears that neither the analytical nor the CFD solution 
represent the reality, Numerical (1), accurately. Figure 3.3 compares the CFD 
solution, the case of constant thermophysical properties, with the Numerical (1) 
solution. 
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Figure 3.3: Comparison between numerical and CFD results for (a) Temperature and (b) 
dimensionless diameter. 

 
 Figure 3.3 demonstrates that the maximum deviation between the CFD 
and numerical solutions is 0.15% for both temperature and diameter. In 
conclusion, for the simulations presented here, CFD and any solution procedure 
that assumes constant thermophysical properties of the drop and utilises the 
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complete mixing model can be used to accurately predict the change in 
temperature and diameter of a water drop free-falling in stagnant air. 
 According to Kröger [1998KR1] the rain zone generally consists of 3-6mm 
drops. Plotting the temperature as a function of time for drop diameters of 1, 2, 3, 
4 and 5mm falling in air with a counterflow velocity of 2m/s, reveals that all of the 
drops will eventually converge to the wetbulb temperature of the air.  
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Figure 3.4: Temperature as a function of time for spherical water drops falling in 
counterflow air. 

 
Similar to the drop velocity, there exists a transient and steady state stage, the 
steady state stage for each drop being the state where the drop attains the wetbulb 
air temperature. 
 Figure 3.4 illustrates lines of constant path length (s) and that smaller 
drops cool down quicker than larger drops. For the case of s = 10m, which is the 
typical height of a rain zone in a natural draft wet-cooling tower, the 1mm drop 
has come to within 0.2% of the steady state temperature. Kröger [1998KR1] states 
that generally the smallest average drop diameter in the rain zone is 3mm. For this 
diameter with s = 10m, the change in drop temperature is only 50% of the 
maximum change in drop temperature. Had the drop been 1mm or 2mm then the 
change in drop temperature would be 99.8% or 75% of the maximum 
respectively. Thus it would be desirable to have smaller drops in the rain zone.  
 For a rain zone height larger than 10m, it would be undesirable to have 
1mm drop diameters, as the drop would no longer cool but only lose mass due to 
evaporation. Figure 3.4 shows that the majority of drops in a general rain zone of 
a cooling tower hardly ever reach their thermal steady state condition. 



 3.10

 For a 1mm drop, under the same simulation conditions as Figure 3.4, free-
falling in different counterflow air velocities, the change in the drop temperature 
as a function of drop path length is given by Figure 3.5 below. 
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Figure 3.5: Drop temperature as a function of drop path length for various counterflow air 
velocities. 

 
The figure illustrates that a counterflow air velocity increases the rate of change in 
the drop temperature, and that an increase in the counterflow air velocity results in 
an increase in the rate of change in the drop temperature. Reasons for this are the 
increased residence time and higher initial Reynolds numbers that relate to higher 
Nusselt and Sherwood numbers. 
 It should be noted that the effect of drop deformation on the change in 
temperature of a drop is addressed in Chapter 5. 
 
Summary 
 
A new correlation for the heat and mass transfer is proposed that predicts the 
temperature change of free-falling accelerating water drops with greater accuracy 
than others found in literature. The correlation of Ranz and Marshall [1952RA1] 
is however used for this thesis due to its inclusion in FLUENT 6.2.16. 
 The temperature and diameter change of free-falling spheres was found to 
be accurately predicted by FLUENT 6.2.16, analytical and numerical solution 
techniques. 
 The thermal transient time of a drop is of great importance to rain zone 
analysis. This conclusion is supported by the fact that the smallest average drop 
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diameter generally found in a cooling tower rain zone barely reaches thermal 
steady state.  
 It was found that smaller drops require less time than larger drops, for the 
same amount of cooling, resulting in a shorter path length. This leads to the 
ratiocination that the smaller the drops the shorter the rain zone required. 
 In conclusion it was found that a counterflow air velocity increases the rate 
of change in the drop temperature, and that an increase in the counterflow air 
velocity results in an increase in the rate of change in the drop temperature, the 
reasons being increased residence time and Nusselt and Sherwood numbers. 



CHAPTER 

4 
Experimental Data Acquisition 

 
Experimental work of a one-dimensional counterflow case is performed in order 
to obtain pressure drop and drop size distribution data necessary to validate CFD 
models. This chapter is used to discuss the experimental test facility and the setup 
thereof. The experimental procedure used to determine the pressure drop over the 
domain of drops as well as the acquisition of drop distribution data is presented 
here. The relevant data for the pressure drop and drop distribution is then analysed 
and presented at the end of this chapter. 
 

4.1 Experimental Setup 
 
The experimental setup that is used to determine the pressure drop over the 
domain as well as the drop size distribution in the domain will be discussed in this 
section. 
 As part of this thesis a test facility was designed and implemented at the 
Mechanical Engineering Department of the University of Stellenbosch. The 
calibration of the test facility is dealt with in Viljoen [2006VI1]. The test facility 
is capable of maximum air and water velocities in the order of 5.8kg/m2s. Figure 
4.1 shows all the components of the experimental setup and their relation to one 
another. 
 The test facility was designed with the idea of making it adaptable, thus 
entailing that the same parts can be used to construct either a crossflow, 
counterflow or cross-counterflow test domain. 
 Referring to the figure, the path that the air travels is now given. The test 
facility in the counterflow arrangement is an induced draft tunnel. The axial fan 
creates a low pressure on the diffuser side of the fan, the atmospheric air being at 
a higher pressure on the outside of the test facility is then drawn in due to the 
pressure difference. The air passes through the rounded inlet that creates a 
uniform velocity profile in the test section and then proceeds to move through the 
domain of drops. The air then moves through the fill and the water distribution 
sections before reaching the drift eliminator section where the majority of the 
entrained drops are removed. After leaving this section the air enters the plenum 
chamber, from where it travels through a flow nozzle. The pressure difference 
over the flow nozzle is measured and this is used to determine the mass flow of 
the air. The diffuser aids in pressure recovery and also helps to improve fan 
performance. The air then finally is discharged by the fan to the surroundings. The 
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static pressure difference of the air over the test section is measured between 
pressure tapping points 1 and 2. 
 

 
Figure 4.1: Experimental test setup in counterflow configuration. 

 
 The water is pumped from the pond through a control valve that is located 
on the high pressure side of the pump to control the volume flow of the water. The 
water passes through a venturi meter where the pressure difference over the 
venturi meter is recorded and used to determine the total volume flow of water 
that enters the tunnel. The water is introduced to the tunnel via a water 
distribution manifold found in the water distribution section. It then enters the fill 
section of the tunnel and passes through it. From here the central portion of the 
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flow leaving the fill passes through the test section where it interacts with the air 
before returning to the pond. The peripheral portion is however collected in 
bypass troughs from which it drains to a collecting tank for flow measurement 
before returning back to the pond.  
 

4.2 Measurement Techniques and Instrumentation 
 
Temperature measurements are made using type T thermocouple wire and the 
atmospheric pressure is measured with a mercury column manometer. 
 The pressure difference over the venturi flow meter is measured with a 
Foxboro 843DP-H2I pressure transducer coupled to a data logging program, 
LabView 7.1, via a Hewlett Packard A34790 data logger. The calibration curve for 
the venturi flow meter is given by, 
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w w w w
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 (4.1) 

 
where Qw is the water flow rate in ℓ/s and ∆pw is the pressure drop over the venturi 
meter in kN/m2. The pressure drop is determined using the calibration curve of the 
pressure transducer, given by, 
 

w wp 15.996V 16.006= −  (4.2) 
 
where Vw is the voltage reading given by the pressure transducer in volts. 
 The pressure drop over the flow nozzle as well as over the test section was 
measured with Betz water micromanometers. Frequency control of the fan is done 
by a YASKAWA General Purpose Inverter (Varispeed E-7 Model CIMR-E7C), so 
as to control the mass flow of air through the test facility. The velocity of the air 
in the test section is determined by, 
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 (4.3) 

 
where ∆pn is the pressure drop over the nozzle, Cn is a calibration correction 
coefficient of the nozzle with a value of 0.96, κ is the velocity-of-approach factor 
with a value of 0.988 and An and Ats are the areas of the nozzle and test sections 
respectively. 
 The drop size distribution in the test section is measured with an apparatus 
designed and implemented by Terblanche [2005TE1], a schematic of the 
installation of this apparatus in the test facility at station 2 is given below. 
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Figure 4.2: Drop size distribution measurement apparatus. 

 
 The raw experimental data is in the form of digital images. The digital 
images are first imported into a standard image editing program in order to draw 
definite lines around each drop so that they can easily be distinguished. Once this 
is complete the edited digital images are imported into Droplet Analyzer v.1 
developed by Terblanche [2005TE1]. 
 Droplet Analyzer v.1 determines the coordinates of each drop as well as 
the number of pixels that each drop consists of. This data is then manipulated to 
determine the drop distribution, the manipulation procedure is given below. The 
close, far and average calibration values are determined using the following set of 
equations respectively, 
 

cy 0.25=  mm/pixel 

fy 0.000075x 0.313= − +  mm/pixel 

c f
avg

y y
y

2

+
=  mm/pixel 

(4.4) 

 
where x is the horizontal coordinate of the drop in the photograph. The 
background plate, as shown in Figure 4.2, is not perpendicular to the digital 
camera but at an angle, so as to reduce glare coming from the digital camera flash. 
This angle results in the fact that pixels will have different dimensions at different 
positions in the digital image, thus the need for the two calibration values in 
Equation (4.4). 
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4.3 Experimental Procedure 
 
The test procedure for both the acquisition of the pressure drop and drop 
distribution data is documented here in the format of the steps that were taken to 
conduct one complete test. 
 

4.3.1 Pressure Drop 
1 Record the atmospheric pressure using the mercury column manometer. 
2 Reset the Betz micromanometers for both the test section and the nozzle to 

the zero position. 
3 Run the test facility by turning the pump on, it is not necessary at this point to 

turn the fan on, until the water temperature reaches the wetbulb temperature 
of the air in the test section that is measured at both station 1 and 2. Once this 
condition is reached the fan can be turned on. 

4 Input the atmospheric pressure, measured in step 1, into the graphic-user-
interface (GUI) of the LabView program specifically written for the test 
facility, see Snyman [2005SN1]. The program uses this value together with 
the temperature measured in the nozzle to determine the air density using the 
ideal gas law. 

5 Set the water to the desired total volume flow by adjusting the control valve, 
the total volume flow is indicated in the GUI. 

6 Adjust the frequency of the fan until the desired velocity in the test section is 
achieved, this is determined by using the pressure drop over the flow nozzle. 

7 Once the Betz micromanometer for the test section has stabilized the pressure 
drop reading can be recorded. 

8 For one fixed water flow rate, three different air velocities are tested. 
9 Repeat steps 6 through 9 for six different water flow rates. 
 

4.3.2 Drop Size Distribution 
1 Follow steps 1 through 7 as in section 4.3.1. 
2 It is important to note that the water total flow rate and the air velocity in the 

test section be set to the same values as in section 4.3.1. 
3 Once the water flow rate and the air velocity have stabilized the digital 

images of the drop distribution can be taken. It was found that five digital 
images at a single test condition were sufficient. 

4 For one fixed water flow rate take digital images at the same three air 
velocities as in section 4.3.1. 

5 Repeat steps 4 and 5 for the six different water flow rates. 
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4.4 Experimental Data Analysis 
 
The following section is used to illustrate the analysis procedure and the equations 
used to convert the raw experimental data into the relevant data that will be used 
in this thesis. The rain zone loss coefficient for comparison purposes and the drop 
distributions will serve as input data for the CFD simulations. 
 

4.4.1 Rain Zone Loss Coefficient 
The loss coefficient for the rain zone in the test section can be determined using 
the total pressure drop, ∆pts, over the test section and the velocity, vts, in the test 
section as shown in the equation below. 
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4.4.2 Drop Size Distribution 
The diameter of each drop can be determined using the number of pixels for the 
drop, the diameter is given as a spherical equivalent diameter, 
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where de is in mm. This is done for each drop in the digital image. Once the 
diameters are known the drops can be grouped into intervals defined by diameter. 
The mass for each diameter interval can be determined by multiplying the number 
of drops in the interval by the representative mass for the interval. The 
representative mass is determined using the midpoint diameter of the interval. The 
total mass can then be determined by summing all the interval masses, by using: 
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where Nd,i and N are the number of drops in an diameter interval and the number 
of diameter intervals respectively. The mass fraction for each interval is then 
determined by dividing each interval mass by the total mass. 
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The experimental retained mass fraction, Yd,i, of drops with a diameter greater 
than di is determined as follows, 
 

i

d ,i f ,i
1

Y 1 M= −∑  (4.9) 

 
 The Rosin-Rammler equation is used to fit a curve through the 
experimental data points. The Rosin-Rammler equation is given by, 
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where Yd is the retained mass fraction of drops with a diameter greater than d, d is 
the drop diameter, dRR is the mean drop diameter and n is a measure of the spread 
of drops. The value of dRR is obtained by noting that this is the value of d at which 
Yd = e-1 ≈ 0.368. The value of n is determined using the experimental values for Yd 
and the corresponding d as well as dRR, 
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 Representative diameters of a polydisperse drop distribution can be 
determined from ASTM E799-92 which defines these representative diameters as 
follows: 
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These diameters are single values that express the various mean sizes in the 
domain of polydisperse drops. Table 4.1 below presents a summary of the 
common representative diameters. 
 

Table 4.1: Summary of representative diameters for polydisperse drop distributions. 

p q Name 
1 0 Average diameter 
3 0 Mean volume diameter 
3 2 Sauter mean diameter 
4 1 Pierce diameter 
4 3 De Brouckere diameter 
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4.5 Experimental Results 
 
The experimental results for the rain zone loss coefficient and the drop 
distribution are given in the relevant sections below. The reader is referred to 
Appendix F for the rest of the experimental data. Appendix G is used to perform a 
sample calculation for the test condition of Ga = 2.43 kg/m2s and Gw = 2.57 
kg/m2s. 
 

4.5.1 Rain Zone Loss Coefficient 
Figure 4.3 is a chart of the experimental rain zone loss coefficient as a function of 
the water mass velocity, Gw, for different air mass velocities, Ga. 
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Figure 4.3: Experimental rain zone loss coefficient. 
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4.5.2 Drop Size Distribution 
An example of the experimental drop size distribution is given below. This 
polydisperse drop distribution is used in simulations in subsequent chapters.  
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Figure 4.4: Retained mass fraction for experimental data and Rosin-Rammler distribution 
function. 

 
Appendix H gives a full analysis of the Rosin-Rammler distribution function. The 
analysis results in the exclusion of the Rosin-Rammler distribution function as a 
method of inputting drop distribution data into FLUENT 6.2.16. 
 The values of the representative diameters, from Equation (4.12), are 
given in Table 4.2. 
 

Table 4.2: Representative diameters. 

Name p q Diameter [mm] 
Mean Diameter 1 0 3.219 
Mean volume diameter 3 0 4.354 
Sauter mean diameter 3 2 5.734 
Pierce diameter 4 1 5.553 
De Brouckere diameter 4 3 6.678 

 
 A plot of three of the representative diameters for all the test conditions is 
given below, the three representative diameters are: Sauter mean diameter, Mean 
volume diameter and the Average diameter. 
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Figure 4.5: Consistency of the representative diameters for different test conditions. 

 
The curves show that the representative diameters remain relatively constant. The 
Sauter mean diameter does seem to show the greatest variation for a specific 
water mass velocity condition with the Average diameter showing the least. 
 
Summary 
 
This chapter dealt with the experimental setup as well as the procedure and 
analysis followed to determine the rain zone loss coefficient as well as the drop 
distribution data. The experimental results were then given and discussed. 
Interestingly it was found that the representative diameters stayed relatively 
constant for the range of test conditions. 



CHAPTER 

5 
Effect of Drop Deformation on Rain Zone Performance 

 
Chapter 2 shows that drop deformation has an effect of decreasing the absolute 
terminal velocity. De Villiers & Kröger [1998DE1] include the drop deformation 
in their determination of the rain zone loss coefficient and seem to show good 
comparison with experimental results. Fisenko et al. [2004FI1] exclude drop 
deformation in the development of their mathematical model of mechanical draft 
cooling tower performance. They do not determine the pressure drop over the rain 
zone with their model and confine themselves to modelling the change in the 
drops’ velocity, diameter and temperature, and also a change in the temperature 
and density of the air-vapour mixture in a cooling tower. Their model however, 
correlates well with experimental data. Thus two separate researchers have shown 
that for the one case drop deformation plays a role and then for the other case it 
does not. This chapter is used to validate both researchers’ work. 
 This chapter is used to gain an understanding of the effect of drop 
deformation on rain zone performance. To this end, the effect of drop deformation 
on the pressure drop over a rain zone is validated using CFD and experimental 
data determined in Chapter 4. The effect on the change in temperature of the water 
passing through the rain zone is also validated using CFD. 
 

5.1 Rain Zone Pressure Drop 
 
Consider a single drop falling through air moving at an absolute speed of va. 
 

 
Figure 5.1: Incremental control system for determination of pressure drop. 
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The scientific definition of work is given as: work is the measure of a quantity 
that is capable of accomplishing macroscopic motion of a system due to the action 
of a force over a distance. Now for a variable force the expression for work 
becomes, 
 

( ) ( )f

0

s
swork F s cos dsθ= ∫  (5.1) 

 
where F is the force that is dependent on the displacement s and θ is the angle 
between the force and the direction of motion. For the case in Figure 5.1, the 
motion of the drop and the parcel of air are in parallel and opposite directions, 
thus negative work is done on the parcel of air, resulting in a pressure drop. 
 If a parcel of air surrounding a drop, as shown in Figure 5.1, moves at a 
velocity of va, then the parcel will be displaced a distance of δsa,i during a time 
increment of δt. The work done by the drag force component is therefore: 
 

D,i a,iwork F sδ= −  (5.2) 
 
Applying the same methodology to each drop-parcel in the domain, an expression 
for the pressure drop over the domain can be determined, 
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where Nd is the number of drops in the domain. Further simplification of the 
expression yields, 
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where A is the cross sectional area of the domain, va in the denominator is the 
average air velocity and va,i is the velocity of the parcel derived from, 
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For the case where the drops are assumed not to effect the continuous phase, as 
was done in the numerical solution technique, the velocity of the parcel is equal to 
the average air velocity which leads to a further simplification, 
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 Referring to Equation (5.6), the summation of the drop drag determines 
the pressure drop over a domain. It is important to mention that spherical and 
deformable drops, of equal mass, will attain the same terminal drag force. 
Equation (5.6) shows that pressure drop changes only if the sum of the drag forces 
changes. The two influential factors are the number of drops and the drag force 
values of the drops in the domain. Deformable drops larger than approximately 
3mm, have lower absolute terminal velocities than their equivalent spherical 
drops. This means that their residence time in a particular domain will be longer 
than that of the spherical drops, resulting in a greater number of drops in the 
domain and subsequently a higher pressure drop. Deformable drops attain their 
terminal condition sooner than spherical drops, resulting in higher drag force 
values for a specific domain and subsequently a higher pressure drop. 
 

5.1.1 Analysis 
The pressure drop tests conducted in the test facility described in Chapter 4 were 
simulated using FLUENT 6.2.16 to investigate the effect of drop deformation on 
pressure drop. The measured drop size distribution data, air and water flow rates 
and temperatures are used as input values. The simulations were done for 
polydisperse and some of the different monodisperse drop distributions to 
compare results. The CFD rain zone loss coefficients based on a Sauter mean, 
mean volume and average diameter and the corresponding experimental data are 
plotted against the CFD loss coefficients for the polydisperse drop distributions in 
Figure 5.2. 
 

0

2

4

6

8

0 2 4 6 8
KRZ (Polydisperse) [-]

K
R

Z
 [

-]

Sauter Mean Mean Volume
Average Diameter Experimental Data

-20%

+20%

 
   (a) Spherical drops 
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(b) Deformable drops 

Figure 5.2: Experimental and monodisperse CFD results for the rain zone loss coefficient 
plotted against polydisperse CFD results. 

 
 The numerical program developed for the drop velocity, path length and 
heat and mass transfer calculations, is also used to determine the pressure drop 
over the domains using Equation (5.6). The analysis is restricted to monodisperse 
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drop distributions. In the figures below the numerical program’s results are 
compared to the results of FLUENT 6.2.16. 
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(a) Spherical drops 
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(b) Deformable drops 

Figure 5.3: Monodisperse numerical results for the rain zone loss coefficient plotted against 
monodisperse CFD results. 

 
 In summary, the presumption that drop deformation affects the rain zone 
pressure drop by increasing it is correct. The experimental results share greater 
correlation with the deformable drop cases and thus the drop deformation is 
included throughout this thesis for all simulations of the rain zone. The analysis 
also shows that De Villiers & Kröger [1998DE1] were correct in including drop 
deformation in the determination of their model for the calculation of the rain 
zone loss coefficient. 
 

5.2 Water Outlet Temperature 
 
As stated in the introduction of this chapter Fisenko et al. [2004FI1] ignore drop 
deformation in the determination of their mathematical model of a mechanical 
draft cooling tower. The effect of drop deformation on drop drag and the 
subsequent effect on the change in water outlet temperature of a typical cooling 
tower is analysed in this section. The analyses are performed using the Ranz and 
Marshall [1952RA1] correlations. 
 

5.2.1 Analysis 
The analysis is performed by first analysing 2, 3, 4 and 5mm diameter drops and 
examining their change in temperature with respect to path length, for both the 
spherical and deformable drop case. The test conditions are: initial drop 
temperature of 295.65K, ambient air temperature of 288.6K with a relative 
humidity of 10%, the ambient air pressure is 84100N/m2 and the counterflow air 
velocity is 1.975m/s. These conditions are found in Kröger [1998KR1] for a 
typical natural draft circular wet-cooling tower with a rain zone fall height of 10m. 
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Figure 5.4: Comparison between spherical and deformable drops with respect to drop 
temperature. 

 
Figure 5.4 shows that there is not much difference between the respective drops 
concerning the temperature as a function of fall height. At the end of the path 
length the deformable drop has a lower temperature, which is due to the fact that 
the drop is in contact with the air for longer in the specified fall domain. The two 
curves show the same cooling for the first part of the path length, they begin to 
separate at roughly 0.9m. The reason being that before this point they both have 
the same velocity and thus the same Nusselt and Sherwood numbers and 
subsequently the same cooling rate. 
 For the single drop analysis there was no interaction with the continuous 
phase. For the analysis that follows, interaction is included. FLUENT 6.2.16 is 
used to analyse a counterflow domain with a height of 4m. The same test 
conditions are used as in the single drop analysis. A polydisperse drop distribution 
was used with a total mass flow of 3.39kg/s. The outlet water temperature is 
determined using a mass flow averaged scheme at the water outlet boundary, as 
given by Equation (5.7), 
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where Nd is the total number of drops at the outlet boundary. The results for the 
mass flow averaged water outlet temperature are given in Table 5.1 below. 
 

Table 5.1: Comparison of outlet water temperature for spherical and deformable drops. 

Spherical drops Deformable drops 
294.27K 294.26K 

 
 This analysis too shows that the deformable drops exhibit a lower 
temperature. However, the difference between the models is of such a small value, 
0.7% of the total cooling, that it can be stated that drop deformation has a 
negligible effect on the cooling of the drops and subsequently the water outlet 
temperature. Therefore Fisenko et al. [2004FI1] are able to ignore drop 
deformation in their mathematical model without incurring a significant error in 
the determination of the outlet water temperature. 
 
Summary 
 
It is seen that drop deformation does affect the determination of the rain zone loss 
coefficient as well as the outlet water temperature of a rain zone. For the case of 
the rain zone loss coefficient the effect is of a measurable order however the effect 
on the water outlet temperature is negligible. Including drop deformation in a 
mathematical model may present some difficulties, however if a single 
mathematical model is to be created that both describes the rain zone loss 
coefficient as well as the water outlet temperature then drop deformation must be 
included so as to model accurately. 



CHAPTER 

6 
CFD Model of the Rain Zone 

 
In subsequent chapters, investigation is lodged into the feasibility of modelling the 
loss coefficient and Merkel number of polydisperse drop distributions by 
assuming a suitable monodisperse drop distribution using a representative 
diameter. All these investigations are done using the commercial CFD code, 
FLUENT 6.2.16. The objective of this chapter is to develop a CFD model. For the 
counterflow rain zone a three-dimensional mesh is generated and for the natural 
draught circular wet-cooling tower rain zone a two-dimensional axisymmetric 
mesh is generated. The results of the simulations for the polydisperse drop 
distributions are presented. 
 

6.1 Background 
 
Both the Merkel [1925ME1] and Poppe [1972PO1] methods are one-dimensional 
analytical cooling tower models. Merkel makes a number of simplifying 
assumptions to the heat balance equation, reducing the driving potential for heat 
and mass transfer to an enthalpy difference. Poppe includes the effect of 
evaporation of water and proposes a more comprehensive set of equations. Both 
models have proven to be acceptable, but neither can capture nor predict the non-
uniformities that exist in a cooling tower. CFD models, due to their finite volume 
approach, have the capability to predict non-uniformities that exist in a cooling 
tower if modelled correctly. 
 FLUENT 6.2.16 is able to model polydisperse and monodisperse drop 
distributions and can also employ various turbulence models, thus a realistic flow 
field can be generated. The code models the drops by means of a discrete phase 
model (DPM), utilizing a Lagrangian approach in which the conservation of 
momentum equation is written in a co-ordinate system that moves with each 
individually modelled drop. The continuous phase equations are expressed in their 
Eulerian continuum form, but are suitably modified to take account of the 
presence of the drop phase.  
 

6.2 CFD Solver Models 
 
Considering the importance of natural draught circular wet-cooling towers in the 
power generation field, it was decided to simulate such a geometry. Furthermore, 
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due to the nature of the experimental work done, a counterflow domain is 
simulated. 
 To analyse the heat, mass and momentum transfer in the rain zone of a 
wet-cooling tower, certain simplifying assumption need to be made. For the 
continuous phase: 
• The mean flow field is steady thus all time derivatives are zero. 
• The flow is incompressible. 
• The flow is Newtonian and turbulent. 
• The flow field at the tower inlet is essentially two-dimensional, thus implying 

axisymmetric flow for a circular tower. For the counterflow geometry the flow 
is essentially one-dimensional. 

FLUENT 6.2.16 has thus been used to solve the steady Reynolds Averaged 
Navier-Stokes (RANS) equations closed employing the standard k-ε turbulence 
model. The semi-implicit method for pressure linked equations (SIMPLE) was 
employed with second order upwind discretization employed for the spatial 
derivatives. A segregated implicit solver was used. 
 For the DPM the following assumptions are made: 
• No drop agglomeration, collision, coalescence or break-up occurs. 
• The drops do not influence the continuous phase turbulence conservation 

equations. 
Drop deformation is included in the CFD model by incorporating a UDF that 
employs the correlation, Equation (2.16), derived in Appendix B. 
 Solution of the discrete phase implies integration in time of the force 
balance on the drop to yield the drop trajectory. As a drop moves through the 
continuous phase it experiences drag due to the viscous nature of the continuous 
phase. The conservation of momentum states that this force, acting to change the 
momentum of the drop, also changes the momentum of the continuous phase. As 
the drop is moved along its trajectory, heat and mass transfer between the drop 
and the continuous phase are also computed via the heat and mass transfer laws. 
The aforementioned interactions of momentum, heat and mass transfer are 
accounted for by appropriate interphase source terms in the continuous phase 
momentum, energy and species equations respectively. 
 The rain zone of a cooling tower contains a large number of drops. In 
order to individually model each drop it is necessary to treat the drop in an 
unsteady fashion. Although this is possible it does increase the demand on the 
computation time. Steady modelling presents the same results for the pressure 
drop, change in drop and air temperature and change in the vapour content of the 
air, in a fraction of the time required for unsteady modelling. This together with 
the number of simulations needed for the purpose of this thesis make steady 
modelling of the drops the viable option. 
 For steady modelling, only a sample of the total population is analysed, 
each sample is tracked from injection to termination (escape or complete 
evaporation) and an appropriate portion of the total mass flow rate of water is then 
assigned to each of the trajectories. If drop agglomeration, collision, coalescence 
or break-up need to be modelled then the drops would have to be treated in an 
unsteady fashion. 
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 As stated earlier for the purposes of these simulations, the standard k-ε 
turbulence model is employed. The model combines turbulent Reynolds number 
forms of the k and ε equations for the free stream with algebraic “law of the wall” 
representation of the flow within the boundary layer. It should be emphasized that 
existing turbulence models are inexact representations of the physical phenomena 
involved. The nature of the flow to which the turbulence model is being applied is 
a leading factor in the degree of accuracy that is attainable. Recirculating flow at 
the cooling tower inlet gives rise to numerical inaccuracies, it is for this reason 
that comparison need be drawn with experimental correlations in order to gain 
confidence in the results presented. It is recommended that accuracy assessment 
be performed on the available and viable turbulence models. 
 

6.3 CFD Setup and Input Data 
 
This section will give a brief synopsis of the geometries, boundary conditions, 
input data and considerations used to construct the numerical wet-cooling tower 
simulations of this thesis, using the mesh generation code GAMBIT 2.2.30 and 
the CFD code FLUENT 6.2.16. 
  

6.3.1 Tower Geometry and Boundary Conditions 
The counterflow domain together with the boundary conditions is given in Figure 
6.1. The dimensions of the domain are 1.5×1.5×4m for the width, depth and 
height respectively. 
 

 
Figure 6.1: Counterflow domain and boundary conditions. 
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Grid independence was investigated on the counterflow domain. The results that 
were monitored are the pressure drop across the domain, the outlet water 
temperature and the mass fraction of water vapour at the air outlet boundary. The 
reader is referred to Appendix I for a full description of the analysis. From the 
analysis it was found that a cell height of 50mm gave sufficient convergence. Thus 
for all the simulations presented here, including those for the circular tower 
domain, this cell height was used for all cells found in the rain zone. For the three-
dimensional counterflow domain this resulted in 288 000 hexahedral cells in the 
domain. 
 Figure 6.2 depicts the natural draught circular wet-cooling tower domain 
together with the boundary conditions. The geometry of the tower is taken from 
Kröger [1998KR1]. The computational domain is discretized with approximately 
75 000 two-dimensional structured cells. The computational domain extends 
approximately 60m beyond the cooling tower inlet allowing for the determination 
of the inlet velocity profile. The tower has a base diameter of 104.5m and a height 
of 147m. The tower has an inlet rounding r i/di ≈ 0.01, where r i is the inlet 
rounding radius and di is the inlet diameter of the tower. 
 The combination of fixed mass inlet, symmetry plane and outflow 
boundaries ensure that the velocity distribution in the particular rain zone 
resembles reality. Unlike the mathematical model given by De Villiers and Kröger 
[1998DE1], the flow field is not specified at the tower inlet, but instead the flow is 
allowed to develop naturally and according to the constraints of the tower domain 
and the laws of fluid flow. The fixed mass inlet is used so as to ensure that the 
mass flow rate of air in all the simulations is the same, so as to create similitude. 
 It should be noted that the effect of boundary layers within large cooling 
towers is small, so that any inaccuracies can be assumed negligible. 
 

 
Figure 6.2: Natural draught circular wet-cooling tower domain and boundary conditions 
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6.3.2 CFD Input Data 
For each domain, two different polydisperse drop distributions are simulated 
together with their representative monodisperse diameters. The two different 
polydisperse drop distributions chosen are: 
A. A distribution with a large median diameter, this distribution was determined 

experimentally in Chapter 4, for film type (orthotropic) fill. 
B. A distribution with a small median diameter, this distribution can be found in 

Kröger [1998KR1], for a trickle pack. 
The distributions lie close to the extremities of the drop distribution interval found 
in wet-cooling towers to date as given by Kröger [1998KR1]. The necessary 
information for both distributions is given below in Tables 6.1 and 6.2.  
 

Table 6.1: Polydisperse drop distribution data for distributions A and B. 

Distribution A Distribution B 
Diameter interval 

[mm] 
Number of drops 

[-] 
Diameter interval 

[mm] 
Number of drops 

[-] 
0.667 – 1 1 0 – 0.5 43 
1 – 1.333 16 0.5 – 1 205 

1.333 – 1.667 40 1 – 1.5 165 
1.667 – 2 84 1.5 – 2 78 
2 – 2.333 43 2 – 2.5 23 

2.333 – 2.667 22 2.5 – 3 10 
2.667 – 3 15 3 – 3.5 5 
3 – 3.333 14 3.5 – 4 4 

3.333 – 3.667 10 4 – 4.5 3 
3.667 – 4 7 4.5 – 5 4 
4 – 4.333 7 5 – 5.5 3 

4.333 – 4.667 11 5.5 – 6 2 
4.667 – 5 8 6 – 6.5 2 
5 – 5.333 9 7 – 7.5 1 

5.333 – 5.667 8 8 – 8.5 1 
5.667 – 6 14 – – 
6 – 6.333 6 – – 

6.333 – 6.667 9 – – 
6.667 - 7 5 – – 
7 – 7.333 6 – – 

7.333 – 7.667 2 – – 
7.667 – 8 6 – – 
9 – 9.333 5 – – 

9.333 – 9.667 2 – – 
10.333 – 10.667 1 – – 
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The representative diameters for the distributions are given below in Table 6.2. 
 

Table 6.2: Values of the representative diameters of polydisperse drop distributions A and B. 

Description Symbol 
dpq 

Distribution A 
[mm] 

Distribution B 
[mm] 

Average diameter d10 3.219 1.284 
Mean volume diameter d30 4.354 2.029 
Pierce diameter d41 5.553 3.131 
Sauter mean diameter d32 5.734 3.256 
 
For each distribution there are three different simulation conditions, the input data 
of which are given in the tables below. Table 6.3 presents all the input data that 
remains constant and is common to all three simulation conditions. Table 6.4 
presents the variable input data which differs for the three simulation conditions. 
  

Table 6.3: Common input data for natural draught circular wet-cooling tower and 
counterflow CFD simulations. 

Property Value 
Dynamic viscosity of air, µa [kg/ms] 1.794×10-5 
Thermal conductivity of air, ka [W/mK] 0.0253 
Diffusion coefficient, D [m2/s] 2.34×10-5 
Density of water drops, ρw [kg/m3] 997.87 
Specific heat of water drops, cv [J/kgK] 4178.33 
Latent heat of water drops, hfg [J/kg] 2.5016×106 
Ambient air pressure, pa [N/m2] 84100 
Air drybulb temperature, Ta [K] 288.6 
Turbulence intensity, [%] 2 
Turbulence length scale, [m] 0.1 

 

Table 6.4: Simulation specific input data for natural draught circular wet-cooling tower and 
counterflow CFD simulations. 

 Inlet ambient 
relative humidity, Φ 

[-] 

Inlet water drop 
temperature, Td 

[K] 
Simulation 1 0.6 295.65 
Simulation 2 0.6 300.00 
Simulation 3 0.1 295.65 

 
For the counterflow flow domain, a constant inlet velocity of 1.975m/s is used at 
the velocity inlet boundary. The mass flow of the water in this flow domain is also 
constant for all the simulations and equal to 3.39kg/s. For the natural draught 
circular wet-cooling tower flow domain the water and air mass flow rates are held 
constant throughout, at 12450kg/s and 16556kg/s respectively. The saturation 
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pressure of water vapour is a function of the drop temperature and can be 
represented by means of a fourth order polynomial, given by, 
 

( ) 6 4 3 3
vs d d d

2
d d

p T 529.769 10 T 561.1063 10 T

224.2787T 40045.99T 2695480

− −= × − ×

+ − +
 (6.1) 

  

6.3.3 Fill simulation 
Terblanche and Kröger [1994TE1] show that the inlet loss is a function of the 
pressure drop over the fill, thus the fill needs to be modelled accurately. For these 
simulations only orthotropic resistance type fill was used. FLUENT 6.2.16 can 
model such a film type fill by means of a porous zone. The resistance of the 
porous zone (fill) is determined using a power law of the form: 
 

1C
0p C v∆ =  (6.2) 

 
The coefficients, C0 and C1, can be found directly from the definition of the fill 
loss coefficient, 
 

fiKvp 2

2

1 ρ=∆  (6.3) 

 
where Kfi is the loss coefficient of the fill, so that C0 and C1 become 
 

0 fi fi ,CFD
1

C K L
2

ρ=  

1C 2=  
(6.4) 

 
where Lfi,CFD is the length of the porous zone (fill) in the CFD model. For the 
natural draught circular wet-cooling tower simulations a C0 value of 11.06 is used. 
 

6.3.4 Drop Modelling 
Due to the time-derivative Lagrangian tracking scheme, initial conditions for the 
drops are needed. FLUENT 6.2.16 is able to import a file that contains all the 
necessary inputs. This technique is thus easily adaptable for poly- and 
monodisperse drop distributions. The necessary inputs are the initial conditions 
for the position, velocity, temperature, diameter and mass flow rate to be released 
from the specific point. A program was written that generates this file for the 
various simulations. 
 A constant pitch of 25mm for the position of the initial points was used, as 
this was the pitch of the orthotropic fill used in the experimental work. The drops 
were given only a vertical velocity of 0.1m/s in the direction of gravity, this helps 
eliminate infinities at flow initialisation. The temperature and diameter of the 
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drops depend on the simulation. For the mass flow rate of the water, it was 
decided that a constant water mass velocity along the radius of the circular wet-
cooling tower domain, and also over the water inlet of the counterflow domain 
was desirable, thus the water mass flow rate was distributed accordingly. 
 The pond is defined as a wall boundary in the circular wet-cooling tower 
domain, Figure 6.2, when drops reach the pond they are removed from the flow 
domain, by setting the discrete phase fate to escape in the wall boundary 
conditions. The same applies to drops in the counterflow flow domain when they 
reach the velocity inlet boundary (air inlet), Figure 6.1. 
 

6.4 Results 
 
The results of the simulations for the polydisperse drop distributions A and B are 
given in table format below. The results are presented in the form of loss 
coefficients and Merkel numbers. 
  

Table 6.5: Results for the natural draught circular wet-cooling tower flow domain. 

Distribution A Distribution B  
Simulation 
1 

Simulation 
2 

Simulation 
3 

Simulation 
1 

Simulation 
2 

Simulation 
3 

Kct [-] 10.952 11.271 10.930 12.440 13.484 12.402 
Me [-] 0.190 0.184 0.195 0.404 0.388 0.420 

 

Table 6.6: Results for the counterflow flow domain. 

Distribution A Distribution B  
Simulation 
1 

Simulation 
2 

Simulation 
3 

Simulation 
1 

Simulation 
2 

Simulation 
3 

Kct [-] 2.092 2.239 2.125 3.553 3.561 3.580 
Me [-] 0.110 0.107 0.112 0.282 0.270 0.293 

 
The results above will serve as reference values for comparative purposes in 
subsequent chapters. 
 
Summary 
 
This chapter presents the procedure followed to setup a CFD model that can 
perform polydisperse and monodisperse drop distribution calculations as well as 
help determine the loss coefficient and Merkel number, for both a counterflow 
and a natural draught circular wet-cooling tower flow domain. The CFD model is 
setup such that the flow field in the rain zone is a realistic representation. The 
boundary conditions and input data are given and discussed where necessary. The 
results from the simulations are presented for the two polydisperse drop 
distributions subject to the three simulation conditions. 



CHAPTER 

7 
Modelling of the Rain Zone Loss Coefficient 

 
This chapter will investigate the modelling of a polydisperse drop distribution 
with a monodisperse drop distribution with regards to the loss coefficient, and in 
doing so define a new representative diameter. The investigation is done using a 
commercial CFD package, FLUENT 6.2.16, to find the pressure drop over a 
counterflow domain as well as the inlet section of a circular wet-cooling tower 
domain. The results will be validated with relevant experimental correlations and 
then used to validate the mathematical correlations for the rain zone loss 
coefficient given by De Villiers and Kröger [1998DE1].  
 

7.1 Background 
 
The equations for loss coefficient determined by De Villiers and Kröger 
[1998DE1] are obtained from a two-dimensional model that was one-
dimensionalised. They applied a method that uses experimental data for the 
absolute value of the inlet loss coefficient in the absence of a rain zone. Then by 
using CFD, the relative influence of the rain zone on the inlet loss coefficient is 
found, this is then applied to the experimental inlet loss coefficient to find an 
approximation of the inlet loss coefficient in the presence of a rain zone. This is 
illustrated in the equation set below, 
 

( ) ( )rzct wet ct dryK C K=  

 
where  
 

( )

( )

ct wet ,CFD
rz

ct dry ,CFD

K
C

K
=  

 
They derive their one-dimensional rain zone loss coefficient by correlating data 
determined by numerical integration of an analytically determined equation that 
incorporates a two-dimensional potential flow field and the equations of motion of 
a single drop. This method is employed for various tower geometries. The 
correlations make provision for a monodisperse drop distribution and can not be 
used in conjunction with a polydisperse drop distribution. De Villiers and Kröger 
[1998DE1] did not measure the polydisperse drop distribution in a wet-cooling 
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tower. They determined which single diameter correlated their experimental data 
best. The aforementioned two-dimensional potential flow field is unrealistic in the 
sense that it does not allow for flow recirculation at the inlet, assumes the axial 
velocity at the fill height to be uniform, assumes a uniform inlet velocity 
distribution and does not include the acceleration of the flow at the inlet.  
 FLUENT 6.2.16 is able to determine the loss coefficient for various multi-
dimensional geometries by determining the pressure drop over a specified 
domain. The code presents an absolute value for the pressure drop over a domain; 
that is it is the cumulative result of the pressure drop due to the rain zone, tower 
geometry, turbulence etc. It is not possible to isolate the various pressure drops as 
well as the influences that each has on the rest or the absolute value. 
 An objective of this chapter is to model the rain zone loss coefficient using 
a commercial CFD package. 
 Hollands and Goel [1976HO1] state that it is not possible to model a 
polydisperse drop distribution with a monodisperse drop distribution accurately, 
they proved it analytically. This is verified by comparing the results obtained for 
the rain zone loss coefficient using a polydisperse drop distribution to those for 
different monodisperse drop distributions. 
 One-dimensional theoretical models are simple to understand and easy to 
implement, whereas numerical methods tend to be relatively expensive 
concerning time and money and require CFD expertise. Thus the final objective of 
this chapter is to validate the one-dimensional rain zone loss coefficients given by 
De Villiers and Kröger [1998DE1]. 
 

7.2 Analysis Procedure 
 
FLUENT 6.2.16 reports an area-weighted-average total pressure for a pre-defined 
plane. The total energy loss experienced by the flow between the ambient 
conditions and the bottom of the fill can now be calculated. This value, calculated 
using Equation (7.1), represents the total loss due to the inlet, rain zone, 
recirculation etc.  
 A point of interest, is the velocity distribution across the top of the fill for 
the circular wet-cooling tower case as presented in Figure 7.1. The velocity is 
fairly uniform across the top of the fill but drops suddenly near the inlet of the 
tower, r = 52.25m. This is where flow recirculation occurs. The presence of a rain 
zone has noticeable effects on the velocity distribution, the first being that it 
seems to increase the effective flow area and secondly the velocity distribution 
appears to be slightly more uniform. 
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Figure 7.1: Velocity distribution across the top of the fill as a function of the radius. 

 
 The total loss coefficient, defined in terms of the mass flow averaged fill 
inlet velocity, is given by, 
 

( )

2
a s, fi fi fi fi

t wet
2
fi

1
p p v gH

2
K

1
v

2

α ρ ρ

ρ

 − + + 
 =  (7.1) 

 
where the subscript fi denotes the conditions at the inlet to the fill, pa is the 
atmospheric pressure at ground level, Hfi is the height of the fill above the ground 
level and αfi is the velocity distribution correction factor that is taken as unity. The 
inlet loss coefficient for a cooling tower can now be found from, 
 

( ) ( ) rzct wet t wetK K K= −  (7.2) 

 
The rain zone loss coefficient, Krz, is given later in this section. 
 Terblanche and Kröger [1994TE1] propose the following correlation for 
the inlet loss coefficient of circular cooling towers with rounded inlets (ri/di ≈ 
0.01) where the heat exchanger is installed horizontally, such that it covers the 
entire cross-section of the cooling tower at the upper ring beam level, given by, 
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( )

2

i i

i i

d d
0.4645 0.02303 0.00095

H Hi
fict dry

i

d
K 1.5exp 0.2 K

H

    
 − + −   
      

=  
 

 (7.3) 

 
for 10 ≤ di/Hi ≤ 15 and 5 ≤ Kfi ≤ 25.  
The work done by Terblanche and Kröger [1994TE1] was done on dry-cooling 
towers, however the material used for the heat exchangers in the experiments is 
geometrically similar to orthotropic film type fill, thus the equation is valid for the 
dry case of wet-cooling towers installed with orthotropic type fill. 
 The CFD model for a circular wet-cooling tower, presented in Chapter 6, 
is used to determine the inlet loss coefficient, Kct(dry), for different di/Hi values, 
without the presence of a rain zone. These values are then compared with the 
experimental correlation, Equations (7.3), in this way validating the CFD code. 
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Figure 7.2: Inlet loss coefficient for circular cooling towers with orthotropic fill but no rain 
zone as a function of di/Hi. 

 
 The general validity of the analysis for this chapter is dependent on the 
degree of similarity between the experimental correlation and the CFD results. An 
interesting point to note about Equation (7.3) is that it corresponds well with the 
numerical results even outside of its validity range. For the purposes of this thesis 
Equation (7.3) will be used when determining the dry inlet loss coefficient for a 
circular cooling tower. In general, the agreement between the two approaches is 
sufficient to give confidence in further results obtained using CFD. 
 De Villiers and Kröger [1998DE1] state that the presence of the rain zone 
reduces the dry inlet loss coefficient. Figure 7.1 shows that the rain zone has an 
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effect on the velocity distribution, however it can not be said what effect it has on 
the inlet loss coefficient. A quantitative analysis of this effect is not provided in 
this thesis. De Villiers and Kröger [1998DE1] give the wet inlet loss coefficient 
as, 
  

( )ct( wet ) rz ct dryK C K=  (7.4) 

 
where Crz is a rain zone correction factor, given by, 
 

( )( ) ( )
( ) ( )( ) ( )

( ) ( )( )

i i d w a
rz

w a d i i w a

0.09667
w fi i

0.2394 80.1 0.0954 d H d exp 0.395G G
C

0.3195 G G 966 d d H exp 0.686G G

1 0.06825G K exp 8.7434 1 d 0.01

 + +
 =
 − − 

× − −

 (7.5) 

 
The total loss coefficient due to the rain zone and inlet losses can be found by 
substituting Equation (7.4) into Equation (7.2) to give, 
 

( ) ( )rz rzt wet ct dryK C K K= +  (7.6) 

 
where Krz for a circular cooling tower is given by De Villiers and Kröger 
[1998DE1] as, 
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and for a counterflow domain, is given as, 
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where 
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for 2 ≤ dd ≤ 8mm. 
Using Equations (7.1) and (7.6) the results of CFD and the one-dimensional 
model of De Villiers and Kröger [1998DE1] are compared. 
 For the counterflow case the analysis is far more direct. Due to the 
essentially one-dimensional nature of the flow, there will be no losses due to 
curvature and recirculation, thus the total loss over the domain is essentially a 
function of the drag forces of the drops acting on the air, as discussed in Chapter 
5. 
 For the same simulation condition, the total loss coefficient for 
polydisperse and monodisperse drop distributions is determined, using the 
representative diameters for the monodisperse drop distributions. If the value 
given by the polydisperse drop distribution is taken as the reference value, then 
the difference between this result and the result obtained for the monodisperse 
drop distributions can be determined from, 
 

polymono KKK −=∆  (7.10) 
 
If ∆K = 0, the corresponding diameter of the monodisperse drop distribution is 
considered to be the equivalent monodisperse diameter for approximating the total 
loss coefficient of a polydisperse drop distribution. The values given by the one-
dimensional model of De Villiers and Kröger [1998DE1], using the representative 
diameters, are compared in the same way. 
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7.3 Results 
 
Vector and contour plots of the flow field in the circular wet-cooling tower are 
presented in Figures 7.3 and 7.4. 
 

 
Figure 7.3: Vector plot of the inlet flow of a circular wet-cooling tower. 

 

 
Figure 7.4: Contour plot of the total gauge pressure at the inlet of a circular wet-cooling 
tower. 
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 Figure 7.3 shows the acceleration along the inlet rounding and that the 
flow is allowed to freely develop at the tower inlet. Similar to Figure 7.1 the 
velocity distribution above the fill appears to be relatively uniform. A 
recirculation zone is present at the tower axis, this is not present in the dry tower 
simulations nor in a potential flow field, as it is caused by the rain zone. 
 The total gauge pressure contour plot, Figure 7.4, shows the effect of the 
rain zone on the pressure distribution. 
 

 
Figure 7.5: Drop trajectories of a polydisperse drop distribution. 

 
 The trajectories for the drops of a polydisperse drop distribution can be 
seen in Figure 7.5. It is seen that the smallest drops are entrained into the air flow 
and that the trajectories of different drop sizes differ. Smaller drops are carried 
into the tower more by the air than larger drops. 
 

7.3.1 Circular Cooling Tower Domain 
Figure 7.6 is used to compare the results for the total loss coefficient given by 
CFD and De Villiers and Kröger [1998DE1] for a circular wet-cooling tower. The 
results of one simulation condition are given. The loss coefficient for the three 
simulations did not differ significantly. The figure presents the results obtained for 
different monodisperse drop distributions compared with the results obtained for 
both polydisperse drop distributions, refer to Section 6.3.2, subject to the 
conditions of simulation 1. The two methods correspond well, even beyond the 
lower validity limit given by De Villiers and Kröger [1998DE1]. 
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Figure 7.6: Total loss coefficient of a circular wet-cooling tower as a function of drop 
diameter. 

 
 In subsequent figures in this section, the diameters are given from left-to-
right as: d10 (average); d30 (mean volume); d41 (Pierce) and d32 (Sauter mean) 
defined according to the ASTM standards discussed in Chapter 4. The d41 
diameter is one that was developed in this thesis, and adheres to the same 
arithmetical determination technique given in the ASTM standards. 
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Figure 7.7: Total loss coefficient difference as a function of monodisperse drop diameter for 
distribution A. 
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 Figure 7.7 and 7.8 are for polydisperse drop distributions A and B 
respectively. The figures are used to demonstrate the difference in total loss 
coefficient, ∆K, using Equation (7.10), determined by CFD and De Villiers and 
Kröger [1998DE1]. Table 7.1 gives an average absolute of the total loss 
coefficient difference, ∆K. 
 

Table 7.1: Average absolute of ∆K for the analysis of distribution A. 

 d10 = 3.219mm                 

[%] 
d30 = 4.354mm                     

[%] 
d41 = 5.553mm                 

[%] 
d32 = 5.734mm                    

[%] 
CFD 20 3 4 5 
Equation (7.6) 12 1 9 10 
 
From Table 7.1, which has reference to Figure 7.7, it can be seen that for both 
methods the Pierce and mean volume diameters present the smallest ∆K values. 
 

-1

2

5

8

1 2 3 4

Drop diameter, dd [mm]

T
ot

al
 lo

ss
 c

oe
ff

ic
ie

nt
 d

iff
er

en
ce

, 

CFD Equation (7.6)

∆  Simulation 1
◊  Simulation 2
□  Simulation 3

∆
K

 [-
]

 
Figure 7.8: Total loss coefficient difference as a function of monodisperse drop diameter for 
distribution B. 

 
Table 7.2 gives an average absolute of the total loss coefficient difference, ∆K. 
 

Table 7.2: Average absolute of ∆K for the analysis of distribution B. 

 d10 = 1.284mm                 

[%] 
d30 = 2.029mm                      

[%] 
d41 = 3.131mm                 

[%] 
d32 = 3.256mm                  

[%] 
CFD 54 24 7 5 
Equation (7.6) 57 22 1 2 
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 There is a clear shift in accuracy; the Sauter mean and Pierce diameters 
now present the smallest ∆K values for both methods. The method of De Villiers 
and Kröger [1998DE1] seems to present smaller ∆K values than CFD for this 
particular analysis. 
 Referring to Figure 7.6, for distribution B, the reference value for the total 
loss coefficient is 12.44, Chapter 6. The representative diameters for this 
distribution lie in the range 1.28 ≤ dpq ≤ 3.25mm. In this range there is only one 
instance where the value presented by CFD is closer to the reference value, this is 
for the average diameter. Thus this diameter using CFD will have a smaller 
deviation in Table 7.2 than the method of De Villiers and Kröger [1998DE1]. 
Using the same approach and a reference value for the total loss coefficient of 
10.95 for distribution A with a representative diameter range of 3.21 ≤ dpq ≤ 
5.73mm the values in Table 7.1 can be verified. 
 

7.3.2 Counterflow Domain 
Due to the fact that the presentation procedure of the results is similar to the 
previous section, only figures and tables will be given, with explanations where 
necessary. 
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Figure 7.9: Total loss coefficient of a counterflow domain as a function of monodisperse drop 
diameter. 

 
Figure 7.9 shows that the two methods correspond well except below the lower 
validity limit given by De Villiers and Kröger [1998DE1]. 
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Figure 7.10: Total loss coefficient difference as a function of monodisperse drop diameter for 
distribution A. 

 

Table 7.3: Average absolute of ∆K for the analysis of distribution A. 

 d10 = 3.219mm                 

[%] 
d30 = 4.354mm                     

[%] 
d41 = 5.553mm                 

[%] 
d32 = 5.734mm                    

[%] 
CFD 40 4 16 18 
Equation (7.8) 51 17 3 2 
 
Referring to Table 7.3 and Figure 7.10, it can be seen that the Pierce and Sauter 
mean diameters present the smallest ∆K values for the method of De Villiers and 
Kröger [1998DE1]. CFD presents the smallest ∆K value using the mean volume 
diameter. 
 Applying the approach of Section 7.3.1 and using a reference value for the 
total loss coefficient of 2.092, Chapter 6, and a representative diameter range of 
3.21 ≤ dpq ≤ 5.73mm the values in Table 7.3 can be verified. 
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Figure 7.11: Total loss coefficient difference as a function of monodisperse drop diameter for 
distribution B. 

 

Table 7.4: Average absolute of ∆K for the analysis of distribution B. 

 d10 = 1.284mm                 

[%] 
d30 = 2.029mm                      

[%] 
d41 = 3.131mm                 

[%] 
d32 = 3.256mm                    

[%] 
CFD 166 45 13 16 
Equation (7.8) 75 32 7 10 
 
The Pierce and Sauter mean diameters present the smallest ∆K values for this 
particular analysis. Applying the approach of Section 7.3.1 and using a reference 
value for the total loss coefficient of 3.55, Chapter 6, and a representative 
diameter range of 1.28 ≤ dpq ≤ 3.25mm the values in Table 7.4 can be verified. 
 
Summary 
 
This chapter set out to analyse a circular wet-cooling tower and a counterflow 
domain with regards to the loss coefficient. 
 FLUENT 6.2.16 was used to determine the inlet loss coefficient of a 
circular cooling tower, the results were compared with existing experimental 
correlations for circular cooling towers with orthotropic type fill. The results 
compared very satisfactorily, this served as a validation of the CFD code. 
 Employing the methods given by De Villiers and Kröger [1998DE1] and 
CFD, together with the different monodisperse drop distributions, the total loss 
coefficients were determined. The values were compared and found to be in good 
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agreement, in the order of 5% and 10% for the circular cooling tower and 
counterflow domains respectively. The method of De Villiers and Kröger 
[1998DE1] for determining the total loss coefficient of a circular wet-cooling 
tower and a counterflow domain was validated. 
 The values of the total loss coefficient for both methods, employing the 
different monodisperse drop distributions, were then compared to the reference 
value determined by using the polydisperse drop distribution and CFD. It was 
found that no single representative drop diameter modelled the polydisperse drop 
distribution precisely, concerning the loss coefficient. 
 From work done in this thesis a new representative drop diameter, d41 
(Pierce), was defined. Employing both methods, this diameter and the Sauter 
mean in general model the polydisperse drop distribution the best for the analyses 
presented here. 



CHAPTER 

8 
Modelling Rain Zone Heat and Mass Transfer 

 
This chapter will investigate the feasibility of modelling a polydisperse drop 
distribution with a monodisperse drop distribution with regards to the Merkel 
number. The CFD investigation is done to find the heat and mass transfer over a 
counterflow domain as well as a circular wet-cooling tower domain. The 
mathematical correlations for the rain zone Merkel number proposed by De 
Villiers and Kröger [1998DE1] will be validated. 
 

8.1 Background 
 
In large counterflow wet-cooling towers, as much as 10-20% of the total heat 
rejection occurs in the rain zone, which can be increased. This is the motivation 
for obtaining better insight into the characteristics of the rain zone. 
 Prior to De Villiers and Kröger [1998DE1] there were some relations that 
described the Merkel number of the rain zone, however they tended to be 
incorrect or limited to a narrow range of variables. In light of this De Villiers and 
Kröger [1998DE1] presented a one-dimensional correlation for the Merkel 
number. Their method for determining the Merkel number is similar to that of 
their rain zone loss coefficient, Chapter 7, based on a monodisperse drop 
distribution. 
 More recently Fisenko et al. [2004FI1] presented a mathematical model 
for predicting the performance of a mechanical draft cooling tower. This model 
determines the change in the drops’ diameter, velocity and temperature and the 
change in the temperature and density of the air-vapour mixture in a cooling 
tower. The model predicts available experimental data with a deviation of about 
3%. Their mathematical model incorporates a polydisperse drop distribution but 
ignores drop deformation. 
 FLUENT 6.2.16 is able to determine the heat and mass transfer between 
the drop phase and the continuous phase. These values are used to determine the 
Merkel number for the flow domain. 
 Williamson et al. [2006WI1] used FLUENT to simulate a two-dimensional 
axisymmetric two-phase simulation of the heat and mass transfer inside a natural 
draft wet-cooling tower, with the aim of optimising the design of cooling towers 
by varying the fill depth and water flow rate in the tower. Their model employs 
correlations from Kloppers and Kröger [2003KL1] for the fill loss coefficient and 
Merkel number. The effect of the fill on the continuous phase is represented using 
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source terms. The temperature of the drops entering the rain zone is determined by 
the temperature of the water leaving the fill. They make use of a monodisperse 
drop distribution with a drop diameter of 2.5mm. 
 An objective of this chapter is to develop a methodology for modelling the 
rain zone transfer coefficient using a commercial CFD package. This is then used 
to validate the one-dimensional rain zone Merkel numbers proposed by De 
Villiers and Kröger [1998DE1] for counterflow and circular wet-cooling tower 
domains.  
 Further objectives are to: investigate which representative diameter gives 
comparable results to the polydisperse drop distribution and to validate the use of 
the Chebyshev integration in the determination of the Merkel number for the rain 
zone of a wet-cooling tower. 
 

8.2 Analysis Procedure 
 
The Merkel equation is given below, 
 

( )
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T
pw wd
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 (8.1) 

 
where dh  is the interfacial area-averaged mass transfer coefficient, A the total 
interfacial surface area and mw the total mass flow rate of water in the domain. 
 Traditionally, the Merkel number is calculated from experimental data 
using the Chebyshev integration approach, 
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The values of f(x) are evaluated at values of x which are 0.102673, 0.406204, 
0.593796 and 0.897327 of the interval (b-a). 
 Another approach is proposed and the results are compared to the values 
determined using the Chebyshev integration. Consider the equation of mass 
transfer from a single drop, given by, 
 

( )evap d d d am h A ω ω= −  (8.3) 

 
where the subscripts d and a are for the conditions of the humidity ratio at the 
drop surface and the air respectively. Manipulation of Equations (8.1) and (8.3) 
yields a new determination technique for the Merkel number,  
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Figure 8.1 shows the change in humidity ratio of the air at the water drop surface 
and of the air as the water and air move through the cooling tower, where, ∆ω1 
and ∆ω2 represent (ωd – ωa) at the air outlet and the air inlet of the wet-cooling 
tower respectively. 
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Figure 8.1: Humidity ratio as a function of position in the rain zone of a wet-cooling tower. 

 
The problem now resembles a counterflow heat exchanger, thus the log mean 
humidity ratio difference can be used to determine the integral of the humidity 
ratio difference with respect to differential area.  
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Thus essentially Equation (8.4) now becomes, 
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 FLUENT 6.2.16 can report an area-weighted-average mass fraction of a 
species for a pre-defined plane in the flow domain, thus the mass fraction of water 
in the air can be determined at the tower inlet and outlet. These can be converted 
to humidity ratios of the air, ωa. The humidity ratio of saturated air at the drop 
surface is determined using the water drop temperature. The inlet temperature of 
the water, for the simulations presented here, is constant. The temperature of the 
water at the exit of the domain is calculated using the temperature of the drops on 
the exit plane and a mass flow averaging technique, Equation 5.7. 
 The integral of the humidity ratio difference with respect to differential 
area can also be approximated using the average value of the humidity ratio 
difference at the inlet and the outlet of the flow domain, given by, 
 

 
2

21 ωωω ∆+∆
=∆  (8.7) 

 
 The results of the three different methods to determine the Merkel number 
for simulation 1 conditions are presented in Figure 8.2. 
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Figure 8.2: Merkel number as a function of monodisperse drop diameter for a circular wet-
cooling tower flow domain. 

 
The deviation is in the order of 0% for dd > 3mm with a maximum deviation 
between the three methods of approximately 8% at dd = 1.284mm. The figure 
shows that results for the log mean difference and the average methods are 
virtually identical. 



 8.5

 Since Chebyshev is used to determine cooling tower performance and the 
difference between the different methods is small, this method is used to 
determine the Merkel number. 
 For circular wet-cooling towers De Villiers and Kröger [1998DE1] 
propose the following correlation for the rain zone Merkel number,  
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and for a counterflow domain, is given as, 
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The coefficients and ranges of application are the same as in the case of the rain 
zone loss coefficients, Equations (7.7) and (7.8). 
 The CFD results are used to validate Equations (8.8) and (8.9). Following 
a similar methodology to the one employed for the rain zone loss coefficient, the 
Merkel number is obtained for different monodisperse drop distributions using 
CFD and De Villiers and Kröger [1998DE1] and compared to the reference 
values, determined for a polydisperse drop distribution. Thus the difference in the 
Merkel number is evaluated by, 
 

polymono MeMeMe −=∆  (8.10) 
 

8.3 Results 
 
Graphical contour and drop trajectory plots for a circular wet-cooling tower flow 
field can be seen in Figures 8.3 and 8.4. The figures are results of distribution B 
under the test conditions of simulation 1. 
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 Figure 8.3 shows the contours of the relative humidity inside a circular 
wet-cooling tower. The relative humidity increases radially in the direction from 
the tower inlet to the tower axis. The high relative humidity at the tower axis is 
due to the flow recirculation zone that is present here. 
 

 
Figure 8.3: Contour plot of the relative humidity (%) inside a circular wet-cooling tower. 

 

 
Figure 8.4: Drop trajectory plot for a circular wet-cooling tower showing drop temperature. 
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 Figure 8.4 shows how the drop temperature changes along the drops’ 
trajectories. Figure 8.4 is a presentation plot, the inclined trajectories are those of 
the smaller drops. The smaller drops’ trajectories and temperature change are 
affected more by the air flow. These trajectories show that the temperature of 
some of the smaller drops come close to reaching wet bulb temperature. For the 
larger drops, it can be seen that they do not cool down much and that their 
trajectories are hardly affected by the air flow. The effect of position along the 
radius of the circular wet-cooling tower on the drop trajectory and drop 
temperature can be seen. 
 

8.3.1 Circular Cooling Tower Domain 
Figure 8.5 presents the Merkel number results obtained for different monodisperse 
drop distributions in a circular wet-cooling tower. 
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Figure 8.5: Merkel number as a function of drop diameter for a circular wet-cooling tower. 

 
The figure depicts the results of the representative drop diameters for distributions 
A and B, refer to Section 6.3.2, subjected to the conditions of simulation 1. The 
two methods correspond well within the valid diameter range of Equation (8.8). 
Outside of the range the deviation is in the order of 30%. 
 In subsequent figures in this section, the diameters are given from left-to-
right as: d10 (average); d30 (mean volume); d41 (Pierce) and d32 (Sauter mean). 
The d41 diameter, defined in the previous chapter, is included in all the analyses 
concerning the Merkel number. 
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 Figure 8.6 and 8.7 are applicable to distributions A and B respectively. The 
figures show which monodisperse drop diameter best predicts the Merkel number 
of a polydisperse drop distribution. Each figure is accompanied by a table that 
presents the average absolute of the difference between the Merkel numbers of 
monodisperse drop diameters and the reference polydisperse Merkel number, 
∆Me. 
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Figure 8.6: Merkel number difference as a function of monodisperse drop diameter for 
distribution A. 

 
Table 8.1 gives an average absolute of the Merkel number difference, ∆Me. 
 

Table 8.1: Average absolute of ∆Me for the analysis of distribution A. 

 d10 = 3.219mm                 

[%] 
d30 = 4.354mm                      

[%] 
d41 = 5.553mm                 

[%] 
d32 = 5.734mm           

[%] 
CFD 129 45 0 4 
Equation (8.8) 152 54 5 2 
 
It can be seen that the smallest ∆Me values are obtained for the Pierce and Sauter 
mean diameters. CFD, generally presents smaller ∆Me values than the De Villiers 
and Kröger [1998DE1] method. The discrepancy between the respective methods 
is small due to their close correspondence in Figure 8.5 for the respective diameter 
range. 
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Figure 8.7: Merkel number difference as a function of monodisperse drop diameter for 
distribution B. 

 
 Table 8.2 gives an average absolute of the Merkel number difference, 
∆Me. 
 

Table 8.2: Average absolute of ∆Me for the analysis of distribution B. 

 d10 = 1.284mm                 

[%] 
d30 = 2.029mm                      

[%] 
d41 = 3.131mm                 

[%] 
d32 = 3.256mm           

[%] 
CFD 318 117 12 6 
Equation (8.8) 477 158 24 16 
 
It can be seen that the Pierce and Sauter mean diameters present the smallest ∆Me 
values for both methods. CFD, consistently presents smaller ∆Me values than the 
De Villiers and Kröger [1998DE1] method. Both CFD and De Villiers and Kröger 
[1998DE1] show clear discrepancy outside the valid diameter range for Equation 
(8.8).  
 Another point of interest in wet-cooling tower design is the amount of 
water that is evaporated, as this determines the amount of make-up water needed. 
Although the amount of water that is evaporated is included in the determination 
of the transfer coefficient, the author feels that it is an essential test criterion for 
the polydisperse/monodisperse hypothesis. The same methodology for the 
determination of the deviation is adopted for the evaporated mass analysis, the 
results for both polydisperse drop distributions are presented below on one graph 
for the first test condition, simulation 1.  
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Figure 8.8: Evaporated mass difference as a function of monodisperse drop diameter for 
distributions A and B. 

 
For both distributions the Sauter mean and Pierce diameters present the smallest 
difference. Both graphs show that for a smaller diameter, more mass is 
evaporated. 
 

8.3.2 Counterflow Domain 
Due to the fact that the presentation procedure of the results is similar to the 
previous section, only figures and tables will be given with explanations where 
necessary. 
 Figure 8.9 presents the results of the representative drop diameters for both 
polydisperse drop distributions subjected to the conditions of simulation 1. The 
two methods correspond well within the valid diameter range given by De Villiers 
and Kröger [1998DE1]. Outside the diameter range, the two methods deviate by 
up to 30%. The curves are very similar to those for the circular wet-cooling tower 
however, for this instance CFD presents higher values for the Merkel number of 
the smaller diameters. 
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Figure 8.9: Merkel number as a function of monodisperse drop diameter for a counterflow 
domain. 
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Figure 8.10: Merkel number difference as a function of monodisperse drop diameter for 
distribution A. 
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Table 8.3: Average absolute of ∆Me for the analysis of distribution A. 

 d10 = 3.219mm                 

[%] 
d30 = 4.354mm                      

[%] 
d41 = 5.553mm                 

[%] 
d32 = 5.734mm         

[%] 
CFD 136 42 4 8 
Equation (8.9) 137 46 1 4 
 
 Table 8.3 and Figure 8.10 show that the smallest ∆Me is obtained for the 
Pierce and Sauter mean diameters. 
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Figure 8.11: Merkel number difference as a function of monodisperse drop diameter for 
distribution B. 

 

Table 8.4: Average absolute of ∆Me for the analysis of distribution B. 

 d10 = 1.284mm                 

[%] 
d30 = 2.029mm                      

[%] 
d41 = 3.131mm                 

[%] 
d32 = 3.256mm                    

[%] 
CFD 435 109 4 10 
Equation (8.9) 334 97 4 10 
 
 Table 8.4 and Figure 8.11 show that the smallest ∆Me is obtained for the 
Pierce and Sauter mean diameters.  
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Summary 
 
This chapter set out to analyse the rain zone in a circular wet-cooling tower and a 
counterflow domain with regards to the Merkel number. 
 A new approximation technique for the Merkel number was developed. 
The technique relies on the log mean difference technique. The Merkel number 
values presented were compared to the values obtained from the Chebyshev 
integration technique. The methods compared well, the deviation is in the order of 
0% for dd > 3mm with a maximum deviation between the three methods of 
approximately 8% at dd = 1.284mm. 
 Employing the correlations given by De Villiers and Kröger [1998DE1] 
and CFD, the Merkel numbers were determined for different monodisperse drop 
distributions. The values were compared and found to be in good agreement, in 
the order of 10% and 2% for the circular cooling tower and counterflow domains 
respectively. Thus the method of De Villiers and Kröger [1998DE1] for 
determining the transfer coefficient of a circular wet-cooling tower and a 
counterflow domain was validated. 
 The values of the Merkel number for both methods, employing the 
different representative drop diameters were then compared to the reference value 
determined by using the polydisperse drop distribution. It was found that no single 
representative drop diameter modelled the polydisperse drop distribution 
precisely, concerning the Merkel number. 
 The new representative drop diameter was evaluated. For all the analyses 
presented here the Pierce and the Sauter mean diameters were found to model the 
polydisperse drop distribution the best. 



CHAPTER 

9 
Conclusions and Recommendations 

 

9.1 Conclusions 
 
In this thesis the velocity, path length, cooling and change in diameter of a drop 
falling through air were modelled using analytical and numerical solution 
techniques. According to literature, internal circulation and drop oscillation have a 
negligible effect on the drag experienced by a drop, but the effect of drop 
deformation is significant. A simplified new correlation is proposed for the drag 
coefficient of deformable drops, which proves to be less computationally 
expensive deviating from experimental data by less than 10%. 
 Drop deformation results in a lower absolute terminal velocity than a 
sphere. The pressure drop over a domain was found to be strongly dependent on 
the drag force of the drops in the domain as well as the total number of drops. It 
was found that drop deformation increased the pressure drop over a domain 
significantly, the value of which depends on the applicable domain. The effect of 
the increased drag coefficient on the cooling of a drop, due to drop deformation, 
was found to be negligible. Drop deformation therefore needs to be included in 
the drop drag equation in order to create a model that can predict the loss 
coefficient accurately. Furthermore, it was found that the cooling of a drop was 
enhanced significantly by the effects of acceleration. 
 An increase in counterflow air velocity reduces the absolute terminal 
velocity of a drop resulting in a longer contact period for a certain fall height, and 
higher initial heat and mass transfer coefficients. This results in increased cooling, 
at the expense of a higher pressure drop. 
 Typically the thermal transient time is longer than the transient time for 
the velocity of a drop. In conventional cooling towers, the majority of the drops 
never reach their terminal velocity or cooling limit. Therefore the acceleration 
period of a drop is most important, thus the model of Lowe and Christie 
[1961LO1] should be revised. The data of Lowe and Christie [1961LO1] is 
applicable to small drops only and the drops fall at their terminal velocity. 
 For specific conditions typically encountered in cooling towers, the 
diameter of any drop changes by less than 2% before reaching its cooling limit. 
Since only the smaller drops tend to approach their cooling limit the change in the 
drops’ diameter can be neglected for the determination of its cooling, however it 
is needed to determine the mass that is evaporated. The different solution 
techniques showed that the assumption of constant thermophysical properties of 
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the drop is acceptable. Figure 3.4 shows that smaller drops require a shorter 
domain to attain the same cooling as larger drops, resulting in lower pumping 
costs. 
 An experimental test facility was designed and built to determine inter alia 
the drop size distribution below different types of fill and the pressure drop over a 
domain of drops. The facility can be extended to facilitate the investigation of 
many areas of interest in a cooling tower. 
 From the experimental drop distribution data it was found that the retained 
mass distributions, for a specific fill type, remained relatively constant for 
different water and air mass velocities, which resulted in negligible variation in 
the representative diameters. The variations in the retained mass distributions 
remained within the uncertainty limits. 
 CFD models were generated together with a test procedure for the analysis 
of a circular cooling tower and counterflow domains. Using these models, the 
Rosin-Rammler distribution function was found to be inadequate for predicting 
performance parameters of cooling tower rain zones. Thus it was necessary to 
input the discrete drop distribution data into CFD. 
 CFD showed satisfactory comparison with experimental correlations for 
the inlet loss coefficient of circular cooling towers which instilled confidence. 
 The correlations of De Villiers and Kröger [1998DE1] for the loss 
coefficient and Merkel number of a counterflow and circular wet-cooling tower 
are validated using CFD and a monodisperse drop distribution. The results 
compared satisfactorily for the prescribed diameter range, with the largest 
deviation between the methods being in the order of 10%. Outside this range the 
results differed considerably. 
 The Sauter mean and d41(Pierce) representative diameters were found to 
be the equivalent monodisperse diameters most suitable for approximating the 
Merkel number of a polydisperse drop distribution. For the approximation of the 
loss coefficient; the mean volume diameter was the equivalent monodisperse 
diameter for the polydisperse drop distribution with the larger mean diameter, and 
the Sauter mean and Pierce were the equivalent monodisperse diameters for the 
polydisperse drop distribution with the smaller mean diameter. This presents a 
shift in equivalent monodisperse diameter, which was not found for the Merkel 
number. These findings are in agreement with Alkidas [1981AL1], Aggarwal 
[1988AG1] and Hollands and Goel [1976HO1].  
 Similar results were obtained with both the Sauter mean and the Pierce 
diameters, however the Pierce diameter generally appears to be more 
conservative. Furthermore, the Pierce diameter lies between the Sauter mean and 
the mean volume diameters. Therefore, with the shift in equivalent monodisperse 
drop diameter for the loss coefficient, it may generally give better results than the 
Sauter mean diameter, but not necessarily the mean volume diameter. It was found 
that the deviation between the monodisperse and polydisperse Merkel numbers 
was never larger than 5% of the tower’s overall Merkel number, for both the 
Sauter mean and Pierce diameters. A similar result was found for the loss 
coefficient, using the Sauter mean and Pierce diameters. Therefore, for the use of 
the one-dimensional model of De Villiers and Kröger [1998KR1] it is 



 9.3

recommended to use the Sauter mean and Pierce diameters when determining the 
performance characteristics of the rain zone. 
 
The formulation of an ideal wet-cooling tower rain zone is given, this rain zone 
may never be achieved but may serve as a milestone in the journey of improving 
these systems. 
 Hollands [1974HO1] states that a monodisperse drop distribution with a 
diameter of 1 – 2mm is desirable for a spray cooling tower. Ideally a rain zone 
should consist of a monodisperse drop distribution of which the drop diameter can 
automatically be varied, so as to always operate at maximum effectiveness with 
minimum evaporation losses. 
 The question of which drop diameter is desirable, presents two possible 
solutions. For a small drop diameter, a shorter rain zone is needed to reach the 
cooling limit, however with small drops the interfacial area between the drops and 
the air is large, resulting in high evaporation losses. For larger drops, the 
evaporation losses are less, however a longer rain zone is needed to reach the 
cooling limit. The height of the rain zone can be reduced by creating a 
counterflow rain zone with a high counterflow air velocity, thereby retarding the 
large drops, which ultimately means that a shorter rain zone is needed to reach the 
cooling limit.  
 Although industry should be heading towards these ideal rain zones, there 
should still be further investigation and improvement to existing models in the 
academic environment. This thesis has shown that the cooling, velocity, path 
length and the change in diameter of a drop can be determined analytically. 
Therefore a complete two-dimensional mathematical model should be possible 
that can predict the performance of a cooling tower. By using similar techniques 
to Fisenko et al. [2004FI1] this model can incorporate a polydisperse drop 
distribution. 
 The development of CFD makes it an evermore viable tool for the analysis 
of cooling tower performance. CFD can model turbulence using different 
available models and is able to capture certain flow effects that exist in a cooling 
tower that are ignored in mathematical models. CFD is also able to model 
polydisperse drop distributions.  
 

9.2 Recommendations 
 
The effect of drop collision, agglomeration and coalescence on the performance of 
the rain zone should be investigated. Literature shows that circulation and 
oscillations have no real effect on the terminal velocity of a drop. Is this the case 
for the heat and mass transfer? This thesis illustrated that the acceleration period 
of a drop is very important, however very little literature is available on the effects 
of acceleration on the heat and mass transfer. 
 With CFD it is possible to model a realistic flow field, this can be used to 
analyse the assumption of a simplified flow field, found in many mathematical 
models of the cooling tower. It was found that the rain zone has an effect on the 
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velocity distribution above the fill, CFD can be used to analyse this. The effect of 
drop diameter on the distribution can also easily be analysed using CFD. It is also 
recommended that investigation be done on the most viable turbulence model to 
be used in CFD models of a cooling tower. 
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APPENDIX 

A 
Thermophysical Properties of Fluids 

 
All thermophysical properties are taken from Kröger [1998KR1]. 
 

A.1 Thermophysical properties of dry air from 220K to 380K at 
atmospheric pressure 101325Pa 

 
Density: 
 

a
a

a

p

R T
ρ =  kg/m3 (A.1) 

 
Specific heat: 
 

3 1 4 2
pa

7 3

c 1.045356 10 3.161783 10 T 7.083814 10 T

2.705209 10 T

− −

−

= × − × + ×

− ×
 J/kgK (A.2) 

 
Dynamic viscosity: 
 

6 8 11 2
a

15 3

2.287973 10 6.259793 10 T 3.131956 10 T

8.15038 10 T

µ − − −

−

= × + × − ×

+ ×
 kg/sm (A.3) 

 
Thermal conductivity: 
 

4 4 8 2
a

11 3

k 4.937787 10 1.018087 10 T 4.627937 10 T

1.250603 10 T

− − −

−

= − × + × − ×

+ ×
 W/mK (A.4) 

 
 
 
 
 



 A.2

A.2 Thermophysical properties of saturated water vapour from 
273.15K to 380K 

 
Vapour pressure: 
 

z
vp 10=  N/m2 

( ) ( )
( )( )

( )( )

10

8.29692 T 273.16 14

4.76955 1 273.16 T4

z 10.79586 1 273.16 T 5.02808 log 273.16 T

1.50474 10 1 10

4.2873 10 10 1 2.786118312

− −−

−−

= − +

 + × − 
 

+ × − +

 (A.5) 

 
Specific heat: 
 

3 10 5
pv

13 6

c 1.3605 10 2.31334T 2.46784 10 T

5.91332 10 T

−

−

= × + − ×

+ ×
 J/kgK (A.6) 

 
Humidity ratio: 
 

( )
v

a v

0.622 p

p p

φω
φ

=
−

  (A.7) 

 

A.3 Thermophysical properties of mixtures of air and water 
vapour 

 
Density: 
 

( ) ( )( )av a1 1 0.62198 p 287.08Tρ ω ω ω= + − +  kg air-vapour/m3 (A.8) 

 
Specific heat: 
 

( ) ( )pav pa pvc c c 1ω ω= + +  J/K kg air-vapour (A.9) 

 
Dynamic viscosity: 
 

( ) ( )0.5 0.5 0.5 0.5
av a a a v v v a a v vX M X M X M X Mµ µ µ= + +  kg/ms (A.10) 

 
where Ma = 28.97kg/mole, Mv = 18.016kg/mole, Xa = 1/(1 + 1.608ω) and Xv = 
ω/( ω + 0.622) 



 A.3

Thermal conductivity: 
 

( ) ( )0.33 0.33 0.33 0.33
av a a a v v v a a v vk X k M X k M X M X M= + +  W/mK (A.11) 

 
Enthalpy: 
 

( ) ( )( )( )
( )

pa fgwo pv
av

c T 273.15 h c T 273.15
h

1

ω

ω

− + + −
=

+
 J/kg air-vapour (A.12) 

 
Humidity ratio: 
 

( )
( ) ( )

( )
( ) ( )

wb

wb

vwb

a vwb

wb

wb

2501.6 2.3263 T 273.15

2501.6 1.8577 T 273.15 4.184 T 273.15

0.62509 p

p 1.005 p

1.00416 T T

2501.6 1.8577 T 273.15 4.184 T 273.15

ω
 − −

=   + − − − 

 
× − 

 −
−  + − − − 

  (A.13) 

 
 

A.4 Thermophysical properties of saturated water liquid from 
273.15K to 380K 

 
Density: 
 

13 6 9 2

w 20 6

1.49343 10 3.7164 10 T 7.09782 10 T

1.90321 10 T
ρ

−− − −

−

 × − × + ×
=  
 − × 

 kg/m3 (A.14) 

 
Specific heat: 
 

3 1 2 2
pw

13 6

c 8.15599 10 2.80627 10 T 5.11283 10 T

2.17582 10 T

−

−

= × − × + ×

− ×
 J/kgK (A.15) 

 
Latent heat of vaporization: 
 

6 3 2
fgw

2 3

h 3.4831814 10 5.8627703 10 T 12.139568T

1.40290431 10 T−

= × − × +

− ×
 J/K (A.16) 

 



APPENDIX 

B 
Derivation of a Drag Coefficient Correlation for 

Deformable Drops 
 

FLUENT 6.2.16 provides the option to select one of five different drag laws for 
drops, of which only three are applicable to the work in this thesis i.e. spherical, 
non-spherical and the dynamic drag law. Referring to Figure 2.3 it can be seen 
that for large drop diameters, d > 2mm, a drag law that makes provision for drop 
deformation needs to be used. The spherical drag law is therefore not applicable. 
When selecting the non-spherical drag law a single value for the shape factor is 
required as input, which presents a problem when modelling a polydisperse drop 
distribution as this shape factor is then the same for all the different drop 
diameters. FLUENT 6.2.16 also assumes that the shape factor is constant and thus 
the drop does not undergo transient deformation. The dynamic drag law does 
however consider transient deformation and can accommodate a polydisperse 
drop distribution. This drag law can only be activated in conjunction with a drop 
break-up model and unsteady tracking. 
 The calculation procedure and reasoning for the derivation of a drag 
coefficient correlation for deformable drops is given below. 
 Dreyer [1994DR1] proposes a correlation that expresses the ratio of the 
drop and sphere drag coefficients as a function of the drop deformation, Equation 
(2.15). The correlation shows good comparison with the experimental results of 
Gunn & Kinzer [1949GU1] as shown in Figure 2.9. 
 

( ) ( ) ( )2 3D

D,sphere

C
1 0.17185 1 E 6.692 1 E 6.605 1 E

C
= − − + − − −  (2.15) 

 
When employing Equation (2.15) there are six calculation steps to be performed 
of which one is an iteration loop to determine the terminal velocity of the drop. 
FLUENT 6.2.16 will perform this set of calculations for each drop in the domain 
thereby increasing the computing time. A need therefore exists for a correlation 
that requires few calculation steps but that still models the transient deformation 
of a drop and that can be used when modelling poly-dispersed drop distributions. 
 The deformed drop drag coefficient, calculated using Equation (2.15), is 
plotted in Figure B.1 as a function of Reynolds number for different drop 
diameters and compared with the drag coefficient calculated using Equation (2.6) 
for spheres. 
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Figure B.1: Deformed drag coefficient as a function of Reynolds number. 

 
Figure B.1 shows how the deformed drag coefficients for a number of drop 
diameters deviate from the standard drag curve of a sphere, they are no longer 
only dependent on the Reynolds number. Each drop has a unique terminal 
deformation value, thus resulting in its own unique drag coefficient curve. Using 
the terminal deformation value for a drop from Equation (2.12), a new correlation 
can be determined for the deformed drag coefficient, given by, 
 

( )
D 0.343

6 2.017 6 7 1.831
T T

23.986 4.186
C

Re Re

1.28 10 E 1.75 10 E 7.07 10 Re− − −

= +

+ × − × + ×
 (2.16) 

 
Figure B.1 shows that the deformed drag coefficients closely resemble the drag 
coefficient of a sphere for Reynolds numbers Re < 1000, and therefore the first 
two terms of Equation (2.16) are similar to the first two terms in Equation (2.6), 
the third term however differs to account for drop deformation. 
 Figure B.2 illustrates the difference between the drag coefficient values 
predicted by Equation (2.15) and Equation (2.16). Referring to Figure 2.9 the 
prediction error on the terminal velocity using Equation (2.16) can be seen. From 
the figure it is clear that the new correlation slightly over predicts the terminal 
velocity but within an acceptable limit of 10%. Furthermore Equation (2.16) 
requires three non-iterative calculation steps. 
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Figure B.2: Deviation between Equation (2.15) and Equation (2.16) for different diameters. 

 
 Since the drag laws available in FLUENT 6.2.16 are inadequate for the 
modelling of polydisperse drop distributions and large drops, Equation (2.16) is 
implemented by means of a user-defined-function (UDF), written in C code. 



APPENDIX 

C 
An Analytical Solution for the Accelerating Motion of a 

Vertically Free-Falling Sphere in an Incompressible 
Newtonian Fluid 

 
A spherical body free-falling vertically in an incompressible Newtonian fluid will 
be decelerated by frictional and form drag and will be accelerated by gravity. The 
net force on the spherical object will be the vectorial sum of the form drag and the 
body forces. The drag force will always depend on the relative velocity of the 
spherical body to the fluid. 
 To describe the accelerating motion of a spherical body, it is assumed that 
a sphere of diameter ds, mass Ms and density ρs falls freely in an incompressible 
Newtonian fluid of density ρa. The velocity of the sphere can be represented by vs 
at any instant t. Let g represent gravitational acceleration. 
 Renganathan and Turton [1989RE1] noted that when the sphere density 
was much larger than the fluid density, the Basset force becomes negligible. 
Where the Basset force, also known as the history term, is the force associated 
with past movements of the body. The added mass force is a result of the fluid 
surrounding the body being accelerated. It has a tendency to keep the body from 
being accelerated in any direction. Neither of these terms is included in the 
derivation that follows.  
 The equation of motion can be given by, 
 

23
1

4
s a a

D s
s s s

dv
g C v

dt d

ρ ρ
ρ ρ

 
= − − 
 

 (C.1) 

 
where CD represents the drag coefficient.  
 The main difficulty in finding an analytical solution to Equation (C.1) is 
the drag coefficient term which is non-linear. Rayleigh proposed that the 
fundamentals of particle motion can be expressed in the form of a drag coefficient 
in terms of Reynolds number plot. For spheres such a curve has been determined 
up to Reynolds numbers of the order 106, by numerous experimenters. At low 
Reynolds numbers viscous flow exists around the sphere, in this Reynolds number 
range the drag coefficient can be approximated by the law of Stokes. At high 
Reynolds numbers the drag coefficient is approximately constant and has a value 
of 0.44. This range is often termed Newton’s law of particle motion. A transition 
region exists between these two ranges.  



 C.2

There are numerous drag correlations for spheres that represent the available 
standard drag coefficient data over the complete range of Reynolds numbers, 
discussed in Chapter 2. 
 In Figure 2.2 the correlations and the experimental values given by Lapple 
and Shepherd [1940LA1] are plotted. Figure C.1 shows the deviation between the 
correlations and the data and it is found that Turton and Levenspiel [1986TU1] 
and Clift et al. [1978CL1] fit the data well, differing marginally from each other 
in the applicable Reynolds number range. 
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Figure C.1: Deviation between drag coefficient correlations and the data from Lapple and 
Shepherd [1940LA1]. 

 
 From the definition of the Reynolds number, the spherical drop’s velocity 
can be written as, 
 

Re a
s

a s

v
d

µ
ρ

=  (C.2) 

 
Substituting Equation (C.2) into Equation (C.1) and rearranging yields, 
 

2Re
ReD

d
C

dt
α β= +  (C.3) 

 
where 



 C.3

 

1a s a

a s

d
g

ρ ρα
µ ρ

 
= − 

 
 (C.4) 

2

3

4
a

s sd

µβ
ρ

= −  (C.5) 

 
 When terminal velocity is reached, the rate of change of Reynolds number 
with respect to time is zero, thus resulting in, 
 

( ) ( )3
2

2

4
Re

3
a s s a

D T
a

gd
C

ρ ρ ρ
µ

−
=  (C.6) 

 
where the subscript T is for the terminal velocity condition. Equation (C.6) reveals 
the maximum value of CDRe2 that a sphere of size ds can attain when falling freely 
in a gravitational field. 
 By separation of variables, Equation (C.3) can be integrated as follows, 
 

0 0

Re

2
Re

Re

Re

t

Dt

d
dt

Cα β
=

+∫ ∫  (C.7) 

 
If the sphere starts from rest then Re0 = 0. The denominator in Equation (C.7) 
contains a term CDRe2 which can be plotted against Re using the drag coefficient 
correlation of Turton and Levenspiel [1986TU1], Equation (2.6), for the Reynolds 
number range 0 ≤ Re ≤ 104.  
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Figure C.2: CDRe2 as a function of Reynolds number. 



 C.4

Figure C.2 illustrates that the curve can accurately be represented by a parabolic 
equation, which lends itself to analytical solution. The parabolic equation for the 
curve presented in Figure C.2 is written as: 
 

( )2 2
1 2 3Re Re Re ReDC f b b b= = + +  (C.8) 

 
 The Reynolds number range, 0 ≤ Re ≤ 104, has been subdivided to 
facilitate better accuracy. Each subinterval has a distinct parabolic equation, the 
coefficients of which are given in Table 2.3. 
 Substituting Equation (C.8) into Equation (C.7) and rearranging yields, 
 

0 0

Re

2
1 2 3Re

Re

Re Re

t

t

d
dt

E E E
=

+ +∫ ∫  (C.9) 

 
where the constants in Equation (C.9) are represented by, 
 

1 1E b β=  

2 2E b β=  

3 3E bα β= +  

 

 
Equation (C.9) can be integrated directly to yield, 
 

0

0

Re

1 2

Re

2 Re2
atan

t

t

E E
t

ψ ψ
 +=  
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 (C.10) 

 
where 
 

( )1
2 2

3 1 24E E Eψ = −   

 
Rearranging Equation (C.10) so that Re = f(t) yields, 
 

( )0 1 0 2
2

1

2 Re1
Re( ) tan atan

2 2

t t E E
t E

E

ψ
ψ

ψ
  −  += + −       

 (C.11) 

 
Using Equation (C.2) the velocity can be found. 
 

( ) 1 ,0 20
2

1

2
( ) tan atan

2 2
a s s aa

s
a s a

d E v Et t
v t E

d E

ρ µψµ ψ
ρ µ ψ

  +−  
= + −        

 (2.17) 
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 The acceleration and path length of the spherical drop are given below 
respectively. 
 

( )
2

2
1 ,0 2

0
1

21 1
( ) 1 tan atan

4 2
a s s a

s a
a s a

E d v E
a t t t

d E
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  + 
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 (C.12) 
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APPENDIX 

D 
Re-correlation of the Data by Yao and Schrock 

[1976YA1] for Heat and Mass Transfer from Vertically 
Free-Falling Accelerating Water Drops 

 
Yao and Schrock [1976YA1] determined the heat and mass transfer coefficients 
for large water drops accelerating from rest in still air by conducting a series of 
experiments. They measured the drop temperature at a measurement station 
located at different heights for drops with different diameters. 
 The data covered the following ranges: 3 ≤ d ≤ 6mm, 29 ≤ Φ ≤ 100% and 
0.18 ≤ z ≤ 2.9m. The ambient air drybulb temperature was held between 294.45 
and 296.75K, while the initial temperature of the water drops was at 
approximately 313.85K. 
 Yao and Schrock [1976YA1] correlated their data using their proposed 
modified form of the Ranz and Marshall correlation, 
 

11
32

YS YSNu 2 g 0.6 Re Pr
 = +  
 

 for Re < 2500 (3.8) 

 
where the term gYS is introduced to account for acceleration, drop deformation, 
internal circulation and drop oscillation effects. The correlation for gYS proposed 
by Yao and Schrock [1976YA1] is given below, 
 

0.7

YS
z

g 25
d

−
 =  
 

 for 10 < 
z

d
 
 
 

 < 600 (3.9) 

 
 Referring to Figure 3.1, it can be seen that this correlation over-predicts 
the cooling of a water drop. Furthermore employing this correlation for any of the 
Yao and Schrock [1976YA1] experimental cases did not correlate their 
experimental data. Chen and Trezek [1977CH1] and Erens et al. [1994ER1] also 
noticed this. Erens et al. [1994ER1] re-correlated the data and proposed the 
following equation including an acceleration term: 
 

( ) 0.2
d

YS 2
m

dv dt d
g 0.22 3.15

v d

 
= +   

 
 for 

( ) d 4
2

dv dt d
5 10

v
−> ×  (3.10) 
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 Figure 3.1 shows that the correlation by Erens et al. [1994ER1] under 
predicts the cooling of a drop. 
 The re-correlation procedure, used in this thesis, of the data by Yao and 
Schrock [1976YA1] is now given. 
 By reordering Equation (3.5) an equation for the Nusselt number for a 
vertically free-falling water drop is given. 
 

( ) ( )

d
v d

d d
YS

fga a
a d d a

a v,a

dT1
c dhd d 6 dtNu
h Sck k

T T C C
c Prρ

 
 
 = =
 

− − −  
 

  (D.1) 

 
 Yao and Schrock [1976YA1] present their experimental data in the form 
of drop temperature and fall distance. The fall distance of the relevant drops can 
be determined as a function of time numerically using Equation (2.15) for drop 
deformation. The temperature can now be presented as a function of time for each 
drop. The resulting curves exhibit a linear characteristic, thus the gradient, dTd/dt, 
of the curves can be found and substituted into Equation (D.1) to calculate NuYS 
for each experimental data point. The required drop thermophysical properties are 
calculated for each data point and the air conditions are assumed constant. The 
correction factor, gYS, can be calculated for each data point from Equation (3.8). 
 Figure D.1 shows the correction factor plotted as a function of the 
dimensionless fall distance.  
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Figure D.1: Correction factor for Ranz and Marshall correlation as a function of 
dimensionless fall distance. 
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Once the acceleration is zero the experimental correction values should be in the 
order of unity, as Ranz and Marshall [1952RA1] conducted their experiments on 
stationary drops in a steady air stream. The data in the Figure D.1 shows an 
asymptotic characteristic, the value of the asymptote being in the order of 0.8 – 
1.2.  
 Yao and Schrock [1976YA1] used the dimensionless fall distance, z/d, to 
correlate the correction factor, which does not take the effect of air flow on the 
drop acceleration into consideration. The author uses an acceleration based 
variable to correlate the experimental data. 
 The calculation procedure for the selection of the dimensionless variable 
to be used to correlate the experimental data is now given. 
 Consider the equation of motion for a deformable drop, given by, 
 

( ) 2d a 2d a 3
D ad

d d e

dv 3
g E C v

dt 4 d

ρ ρ ρ
ρ ρ

−−
= −   (D.2) 

 
where de is the equivalent spherical diameter. The vad

2 term in Equation (D.2) can 
be rewritten in terms of Reynolds number. For the terminal velocity condition this 
simplifies to: 
 

( ) ( ) 3 2
a d a e2 3

D T2T
a

4 d g
C Re E

3

ρ ρ ρ
µ

 −
=  
 
 

  (D.3) 

 
The value of Equation (D.3) is a fixed and maximum value attainable for a 
specific drop diameter as the right-hand-side of the equation is only a function of 
the drop diameter and thermophysical properties of the drop and the continuous 
phase and the terminal drop deformation of the drop. For each drop diameter the 
instantaneous CDRe2 value can be normalized by Equation (D.3). 
 The recalculated correction factor data is correlated using the abscissa of 
Figure D.2. The correlation is given by, 
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(3.12) 

 
Interestingly Equation (3.12) resembles the last two terms of the Turton and 
Levenspiel [1986TU1] drag correlation, Equation (2.6). 
 Figure D.2 shows that two of the data sets (data sets 3 and 7) do not follow 
the same trend as the other data and are therefore excluded from the data used to 
determine Equation (3.12).  
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Figure D.2 Correction factor, gYS, as a function of CDRe2/(CDRe2)T. 

 
 Figure 3.1 is used to draw comparison between the different correlations, 
from the figure it is obvious that Equation (3.12) fits the data better than any of 
the other correlations. 
 It was found that the sensitivity of the results is mostly affected by the first 
part of the curve. From Figure D.2 it can be seen that the correction factor changes 
from approximately 1.6 at an abscissa value of approximately 0.05, where the 
drop acceleration is the highest, to approximately 1 at an abscissa value of 
approximately 0.25, after which it remains virtually constant. This indicates that 
the most significant effect of acceleration on the Nusselt number is during the 
initial acceleration stage. 
 Figure D.3 shows that by using Equation (3.12), the experimental data of 
Yao and Schrock [1976YA1] can be predicted satisfactorily for different drop 
diameters. Figure 3.1 shows that the Ranz and Marshall [1952RA1] equation is 
conservative. FLUENT 6.2.16 exclusively uses the correlations of Ranz and 
Marshall [1952RA1]. Thus for the purposes of this thesis these correlations will 
suffice. 
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 Drop Diameter 
[mm] Tinitial [K] T∞  [K] R.H. 

◊ 3 313.89 295.47 0.36 
∆ 4 313.89 295.59 0.36 
□ 5 313.87 295.71 0.36 
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Figure D.3: Experimental data of Yao and Schrock [1976YA1] and predicted results using 
Equation (3.12). 



APPENDIX 

E 
Analytical Solution for the Cooling of a Spherical Water 

Drop in an Air Stream 
 

The governing equation for the mass transfer of the spherical water drop is given 
by, 
 

( )s
D S s a

dM
h A C C

dt
= − −  (3.1) 

 
where AS and Ms are the surface area and the mass of the spherical water drop 
respectively, Cs is the vapour concentration at the spherical water drop’s surface, 
where saturated conditions exist, and Ca is the vapour concentration in the 
continuous phase, air. The thermophysical properties of the air are assumed to 
remain constant. For the conditions simulated in a cooling tower the change in the 
density of the water is less than one percent, thus it is assumed to be constant.  
 Equation (3.1) can be rewritten as,  
 

( )s
D s a

s

dd 2
h C C

dt ρ
= − −  (E.1) 

 
 The governing equation for the conservation of energy of the spherical 
water drop is given by, 
 

( ) ( )s S D S
a s s a fg

s v s v

dT hA h A
T T C C h

dt M c M c
= − − −  (3.5) 

 
The first term on the right-hand-side of Equation (3.5) represents the convection 
heat transfer and the second term represents the enthalpy transfer due to mass 
transfer. Ts is the temperature at the surface of the spherical water drop which is 
equal to the average drop temperature due to the assumption of the complete 
mixing model. Ta is the temperature of the air, which is assumed to remain 
constant. The definitions of the vapour concentrations are given below, 
 

( )vs s
s

s

p T
C

RT
=  (E.2) 



 E.2

a
a v

a

p
C X

RT
=  (E.3) 

 
where R is the universal gas constant, pvs(Ts) is the saturated vapour pressure 
taken at the spherical water drop’s temperature, pa is the atmospheric pressure and 
Xv is the mass fraction of the water vapour in the air. 
 Equations (E.1) and (3.5) are coupled and thus need to be solved 
simultaneously. The equations can be combined to form a single equation by 
dividing Equation (3.5) by Equation (E.1) which yields, 
 

fgs a s

s v D s a s v s

3hdT T T3 h 1 1

dd c h C C d c d

−= − +
−

  (3.13) 

 
The resulting equation is separable and thus it can be solved analytically. The 
equation contains a number of variables some of which are assumed to remain 
constant so as to simplify the equation by reducing the number of dependent 
variables. From a numerical study of the equation it can be seen that the latent 
heat, hfg, and specific heat at constant volume, cv, do not vary considerably, thus 
they will be taken as constant. The remaining variables are found to be functions 
of temperature, velocity or diameter.  
 The convection heat transfer coefficient is a function of the temperature 
and the velocity, given by,  
 

a

s

k Nu
h

d
=  (3.4) 

 
where ka is the thermal conductivity of the air. The Nusselt number can be 
calculated using the correlation proposed by Ranz and Marshall [1952RA1], 
 

1 2 1 3Nu 2 0.6 Re Pr= +  for 2 ≤ Re ≤ 800 (3.6) 
 
 The mass transfer coefficient is a function of the temperature, velocity and 
diameter of the spherical drop, given by, 
 

D
s

D Sh
h

d
=  (3.2) 

 
where D is the diffusion coefficient. The Sherwood number can be calculated 
using the correlation proposed by Ranz and Marshall [1952RA1], 
 

1 2 1 3Sh 2 0.6 Re Sc= +  for 2 ≤ Re ≤ 800 (3.7) 
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Miura et al. [1977MI1] show that the correlations of Ranz and Marshall 
[1952RA1] accurately predict the heat and mass transfer for Reynolds numbers of 
up to 2000.  
 Substitution of Equations (3.4), (3.2), (E.2) and (E.3) into Equation (3.13) 
yields, 
 

( )
( )

fga ss

s v s v svs s a
v

s a

3hT TdT 3kR Nu 1 1

dd c D Sh d c dp T p
X

T T

−
= − +

 
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 

 
(E.4) 

 
 The Nusselt and Sherwood ratio is inherent in the Lewis number 
definition, 
 

1
3Nu

Le
Sh

−
=  (E.5) 

 
 In a cooling tower the Lewis number can be taken to be equal to unity. 
Equation (E.4) is now an equation where all the variables are functions of 
temperature and diameter. 
 The bracketed term in the denominator of the first term on the right-hand-
side of Equation (E.4) is dependent on the spherical water drop’s temperature and 
can thus be substituted for by, 
 

( ) ( )vs s a
v s

s a

p T p
X f T A

T T
− = +  (E.6) 

 
where the new constant A is a function of the thermophysical properties of the 
continuous phase, air.  
 Substitution of Equations (E.5) and (E.6) into Equation (E.4) yields,  
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( )( )

fga ss a

s v s v ss

3hT TdT 3k R 1 1
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 (E.7) 

 
 The ratio of saturated vapour pressure to spherical water drop temperature 
can be represented by means of a parabolic equation in terms of spherical water 
drop temperature, 
 

( ) 2
s 1 s 2 s 3f T a T a T a= + +  (E.8) 

 
where, 
 

1a 0.017=   



 E.4

2a 9.5279= −   

3a 1340.5=   

 
These constants were determined by using the definition of the saturated vapour 
pressure as given by Kröger [1998KR1] to determine discrete numerical values 
for the ratio of saturated vapour pressure to spherical water drop temperature. The 
coefficients of Equation (E.8) are obtained by means of a least squares curve fit. 
The temperature range is from 290K to 314K, as this is the range of cooling 
generally encountered in wet-cooling towers. 
 Equation (E.7) is separable and can be solved analytically. To simplify the 
equation, the following dimensionless parameters are defined:  
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d
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s a

s,0 a

T T

T T
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−
 

 
where ds,0 and Ts,0 are the initial values for the diameter and temperature of the 
spherical water drop respectively. 
 Rewriting Equation (E.7) in terms of η and θ yields, 
 

2
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θ θβ ξ
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where, 
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By separation of variables, Equation (E.9) can be integrated. 
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The analytical solution to the integration is given below. 
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where the constants of integration are defined as, 
 

1 2I β α ξ= +  

( )1
2 2 2

2 3 1 1I 4 Iξ α α= −  

 
Now it is possible to express η as a function of θ. 
 

RHSeη =  (3.15) 

 
where RHS is the right-hand-side of Equation (3.14). 
 It is possible to simplify the solution by using a linear curve fit to represent 
the ratio of saturated vapour pressure to spherical water drop temperature, 
 

( )s 4 s 5f T a T a= +  (E.11) 

 
where, 
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The integral equation now becomes, 
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where, 
 

( )4 4 s,0 aa T Tα = −   

5 5 4 aa a T Aα = + +   

 
The definite integral solution then becomes, 
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 (E.13) 

 
where, 
 

4J β ξα= +   

 
Once again η can be written as a function of θ using Equation (3.15) with RHS 
referring to the right-hand-side of Equation (E.13). 
 Figure E.1 is used to illustrate the results obtained by Equations (3.14) and 
(E.13). 
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Figure E.1: Dimensionless temperature as a function of dimensionless diameter for 
Equations (3.14) and (E.13). 
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Figure F.1: Experimental drop size data and Rosin-Rammler distribution function. 
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APPENDIX 

G 
Sample Calculation for the Rain Zone Loss Coefficient 

Test in the Cooling Tower Test Facility 
 

A sample calculation is performed for one of the test conditions used to determine 
the rain zone loss coefficient of a counterflow rain zone. The sample calculation 
procedure is discussed in Chapter 4. During the particular test the following data 
was measured: 
Ambient temperature Ta = 293.328K 
Atmospheric pressure pa = 100200N/m2 
Air flow nozzle water micromanometer reading ∆Hn = 22.7mm 
Water pressure transducer voltage output Vw = 1.68878V 
Sample time tbt = 35s 
Volume of water in bypass tank Vbt = 0.09183m3 
Rain zone pressure drop micromanometer reading ∆Hrz = 0.85mm 
Temperature of the water Tw = 292.743K 
 
The density of the water is calculated from Equation (A.14), 
 

( ) ( )
( )

123 6 9

w 620

3

1.49343 10 3.7164 10 292.743 7.09782 10 292.743

1.90321 10 292.743

998.23kg m

ρ

−
− − −

−

 × − × + ×
 =
 − × 

=

 

 
The density of the air is calculated from Equation (A.1), 
 

3
a

100200
1.19 kg m

287.08 293.328
ρ = =

×
 

 
The air and water mass velocities are calculated as follows: 
Pressure difference over air flow nozzle (×10 Betz water micromanometer) 

2
a np 10 H 10 22.7 227 N m∆ = ∆ = × =  

 
Air flow nozzle throat cross sectional area: 
dn = 0.455m 

2 2
2n

n
d 0.455

A 0.1626m
2 2

π π   = = =  
  

 



 G.2

Test section cross sectional area: 
Ats = 1m×1.5m = 1.5m2 
 
Velocity of the air in the test section: 

0.5 0.5
n n

ts n
a ts

2 p A 2 227 0.1626
v C 0.96 2.04 m s

A 1.19 0.988 1.5ρ κ
 ∆ × = = =   ×  

 

 
Air mass velocity in the test section: 

2
a a tsG v 1.19 2.04 2.43kg m sρ= = × =  

 
Pressure difference over water venturi flow meter: 

2
w wp 15.996V 16.006 15.996 1.68878 16.006 11.007 kN m∆ = − = × − =  

 
Water flow rate to the distribution manifold: 

( ) ( ) ( )
( ) ( )

7 5 5 4 3 3
w w w w

2 2
w w

5 4 37 5 3

22

Q 1.73 10 p 2.915 10 p 1.819 10 p

5.363 10 p 0.9511 p 0.4887

1.73 10 11.007 2.915 10 11.007 1.819 10 11.007

5.363 10 11.007 0.9511 11.007 0.4887
6.49 s

− − −

−

− − −

−

= × ∆ − × ∆ + × ∆
− × ∆ + ∆ +

= × − × + ×

− × + +
= �

 

 
Water flow rate in the bypass troughs: 

bt
bt

V 0.09183
Q 2.62 s

t 35
= = = �  

 
Water flow rate in the test section: 

ts w btQ Q Q 6.49 2.62 3.87 s= − = − = �  

 
Water mass velocity in the test section: 

2w ts
w

ts

Q 998.23 0.00387
G 2.57 kg m s

A 1.5

ρ ×= = =  

 
The rain zone loss coefficient is calculated as follows: 
Pressure drop over the test section: 

2
rz w rzp g H 998.23 9.81 0.00085 8.32 N mρ∆ = ∆ = × × =  

 
Rain zone loss coefficient: 

( )
ts

rz 2 2
a ts

p 8.32
K 3.35

1 v 0.5 1.19 2.042 ρ
∆= = =

× ×
 

 



APPENDIX 

H 
Rosin-Rammler Distribution Function Analysis 

 
In reality a rain zone consists of a number of different drop sizes referred to as a 
polydisperse drop distribution. The drop size data that was experimentally 
determined in Chapter 4 are polydisperse drop distributions. A polydisperse drop 
distribution can be described by a log-normal or Rosin-Rammler distribution 
function to name but a few. This thesis confines itself to an analysis of the Rosin-
Rammler distribution function due to its inclusion in FLUENT 6.2.16. A 
polydisperse drop distribution can also be represented by a monodisperse drop 
distribution. A monodisperse drop distribution consists of only one diameter, 
which is usually taken to be one of the representative diameters that derive from 
the polydisperse drop distribution through relevant arithmetical operations. 
 The accuracy of the Rosin-Rammler distribution function is analysed with 
respect to the rain zone performance parameters. The analysis is performed by 
implementing a goodness of fit technique. 
 

H.1 Performance Parameters’ Sensitivity 
 
The objective of this section is to show how well the Rosin-Rammler distribution 
function correlates the experimental polydisperse drop distribution data. To this 
end, the water outlet temperature and pressure drop are predicted for a 
counterflow rain zone using CFD and the experimental polydisperse drop 
distribution data. These results are compared with corresponding results obtained 
using the Rosin-Rammler distribution function based on the methodology 
provided in the FLUENT documentation [2003FL1]. A further investigation is 
conducted to determine the effect of improving the curve-fit in certain intervals of 
drop diameters, by changing the spread parameter and mean diameter. 
 The analysis is conducted for two different drop size distributions, 
distribution A (experimentally determined in Chapter 4 for the test condition, Gw 
= 2.21kg/m2s Ga = 2.42kg/m2s, with a large median diameter, and distribution B, 
Kröger [1998KR1], with a smaller median diameter. The experimental 
polydisperse drop distribution data is divided into 6 intervals for distribution A 
shown in Figure H.1, and 5 intervals for distribution B, for both distributions a 
section comprises a 2mm span.  
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Figure H.1: Division of experimental polydisperse drop distribution data. 

 
For each interval, using the experimental polydisperse drop distribution data, a 
least squares analysis is performed using the Rosin-Rammler distribution function 
by varying the values of the mean diameter, dRR, and the spread parameter, n, with 
the aim of minimizing the sum of the squared deviation, irrespective of the sum of 
the squared deviations of the other sections. Each resultant Rosin-Rammler 
distribution function is recorded together with the sum of the squared deviations 
that it produces for all the intervals. The “best fit” Rosin-Rammler distribution 
function is determined by minimizing the sum of the squared deviations for all the 
sections. The results are given in Table H.1. 
 Table H.1 shows that for both distributions the “best fit” Rosin-Rammler 
distribution function gives better results than the standard Rosin-Rammler 
distribution function. The table also shows that the Rosin-Rammler distribution 
functions, fitted to the larger diameter based sections, on average correlate the 
water outlet temperature better. On average the smaller diameter based sections’ 
Rosin-Rammler distribution functions seem to correlate the pressure drop over the 
domain better. 
 
 
 
 
 
 
 



 H.3

Table H.1: Analysis results for Distribution A and Distribution B. 

Distribution A 

 

Experimental 
polydisperse 

drop 
distribution 

data 

Rosin-
Rammler 

Best  
fit 

Interval 
1 

Interval 
2 

Interval 
3 

Interval 
4 

Interval 
5 

Interval 
6 

n n/a 3.651 3.491 6.901 1.833 3.887 3.778 4.443 5.781 

dRR n/a 7.142 7.310 3.141 12.616 7.203 7.184 7.721 8.111 

Two 294.702 294.692 294.694 293.156 294.373 294.736 294.718 294.871 294.99 

∆p 4.404 2.784 2.832 4.515 9.192 2.705 2.738 2.585 2.503 

Distribution B 

 

Experimental 
polydisperse 

drop 
distribution 

data 

Rosin-
Rammler 

Best  
fit 

Interval 
1 

Interval 
2 

Interval 
3 

Interval 
4 

Interval 
5 

Interval 
6 

n n/a 2.308 2.021 1.884 1.009 2.556 1.562 2.758 n/a 

dRR n/a 5.587 5.222 4.388 8.219 5.413 4.758 5.488 n/a 

Two 293.445 293.8 293.456 292.937 292.614 293.877 292.815 293.997 n/a 

∆p 4.55 3.961 4.571 5.465 6.14 3.779 5.788 3.568 n/a 

 
Summary 

It is shown that the standard Rosin-Rammler distribution function does not 
correlate the performance parameters the best.  
 The Rosin-Rammler distribution function does not correlate the 
performance parameters of the rain zone with sufficient accuracy for the purposes 
of this thesis and is therefore excluded as a means of inputting polydisperse drop 
distributions into FLUENT 6.2.16 for the modelling of wet-cooling tower rain 
zones. 



APPENDIX 

I 
CFD Grid Independence Analysis 

 
This appendix is used to present the results of the grid independence analysis. The 
purpose of the analysis is to determine the feasible cell size in the rain zone. The 
results that are monitored are the pressure drop across the domain, the outlet water 
temperature and the mass fraction of the water vapour at the air outlet boundary. 
The solver and model settings are discussed in Chapter 6. 
 The analysis is performed on a counterflow domain of 1×1.5×3m using 
hexahedral cells. The domain consists of 2400 face cells on the inlet and outlet 
boundaries, which are held constant throughout the analysis. The height of the 
cells is varied, as given below in Table I.1. 
 

Table I.1: Cell height dimension and number of cells for a domain. 

Cell height 
[mm] 

Number of 
cells [-] 

1500 4800 
1000 7200 
750 9600 
600 12000 
500 14400 
375 19200 
300 24000 
250 28800 
200 36000 
150 48000 
100 72000 
75 96000 
50 144000 
42.9 168000 
37.5 192000 
33.3 216000 
30 240000 

 
The analysis is conducted using one set of simulation conditions, which are given 
below in Table I.2.  
 
 



 I.2 

Table I.2: Simulation conditions for grid independence analysis of a counterflow domain. 

Property Value 
Water mass flow, m [kg/s] 6 
Monodisperse drop distribution diameter, dd [mm] 2 
Inlet air velocity, vi [m/s] 2 
Inlet water drops temperature, Td [K] 313.9 
Dynamic viscosity of air, µa [kg/ms] 1.72×10-5 
Diffusion coefficient, D [m2/s] 1.963×10-5 
Thermal conductivity of air, ka [W/mK] 0.026 
Density of water drops, ρw [kg/m3] 998.2 
Specific heat of water drops, cv [J/kgK] 4182 
Latent heat of water drops, hfg [J/kg] 2.4051×106 
Ambient air pressure, pa [N/m2] 101325 
Air drybulb temperature, Ta [K] 296.6 
Relative humidity, Ф [-] 0.6 

 
The saturated vapour pressure is a function of the water drop temperature, Td, and 
is represented by a fourth order polynomial, given by, 
 

( ) 6 4 3 3
vs d d d

2
d d

p T 676.88 10 T 735.7508 10 T

301.9731T 55426.82T 3836516

− −= × − ×

+ − +
 (I.1) 
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Figure I.1: Grid independence analysis of the total pressure drop across a counterflow 
domain. 



 I.3 

 Figure I.1 presents the results for the grid independence analysis of the 
total pressure drop across the domain. Figure I.2 presents the results for the grid 
independence analysis of the water outlet temperature and the mass fraction of 
water vapour at the air outlet boundary. 
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Figure I.2: Grid independence analysis of the water outlet temperature and the mass fraction 
of water vapour at the air outlet. 

 
 The convergence criteria for the monitored results are 0.02 for the total 
pressure drop and outlet water temperature and 0.0001 for the mass fraction of 
water. These three criteria are satisfied by a domain of 144 000 cells, referring to 
Table I.1 this translates to a cell height of 50mm. 
 Two points were checked for the circular cooling tower domain and found 
to be in accordance with the results for grid independence of the counterflow 
domain. 
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