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6.5 DIFFERENTIAL PULSE CODE
MODULATION (DPCM)

PCM is not a very efficient system because it generates so many bits and requires so much
bandwidth fo transmit. Many different ideas have been proposed to improve the encoding
efficiency of A/D conversion. In general, these ideas exploit the characteristics of the source
signals. DPCM is one such scheme.

In analog messages we can make a good guess about a sample value from knowledge of
past sample values. In other words, the sample values are not independent, and generally there
is a great deal of redundancy in the Nyquist samples. Proper exploitation of this redundancy
leads to encoding a signal with fewer bits. Consider a simple scheme; instead of transmitting the
sample values, we transmit the difference between the successive sample values. Thus, if m[k]is
the kth sample, instead of transmitting m{k], we transmit the difference d[k] = mfk]—mlk—1}.
At the receiver, knowing d[k] and several previous sample value m[k — 11, we can reconstruct
mik}. Thus, from knowledge of the difference d[k], we can reconstruct m[k] iteratively at the
receiver. Now, the difference between successive samples is generally much smaller than the
sample values. Thus, the peak amplitude m, of the transmitted values is reduced considerably.
Because the quantization interval Av = my,, /L, for a given L (or n), this reduces the quantization
interval Av, thus reducing the quantization noise, which is given by Av?/12. This means that
for a given n (or transmission bandwidth), we can increase the SNR, or for a given SNR, we
can reduce n (or transmission bandwidth).

We can improve upon this scheme by estimating (predicting) the value of the kth sample
mlk] from a knowledge of several previous sample values. If this estimate is m[k], then we
transmit the difference (prediction error) d[k] = m[k]—m[k]. Atihe recciver also, we determine
the estimate m[k] from the previous sample values, and then generate m[k| by adding the
received d [k] to the estimate m{k]. Thus, we reconstruct the samples at the receiver iteratively.
If our prediction is worth its salt, the predicted (estimated) value m[k] will be close to m[k],
and their difference (prediction error) d[k] will be even smaller than the difference between
the successive samples. Consequently, this scheme, known as the differential PCM (DPCM),
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is superior to the naive prediction described in the preceding paragraph, which is a special case
of DPCM, where the estimate of a sample value is taken as the previous sample value, that is,
mik] = m{k — 11.

Spirits of Taylor, Maclaurin, and Wiener

Before describing DPCM, we shall briefly discuss the approach to signal prediction (estima-
tion). To the uninitiated, future prediction seems like mysterious stuff, fit only for psychics,
wizards, mediums, and the like, who can sammon help from the spirit world. Electrical
engineers appear to be hopelessly outclassed in this pursuit. Not quite so! We can also sum-
mon the spirits of Taylor, Maclauzin, Wiener, and the like to help us. What is more, unlike
Shakespeare’s spirits, our spirits come when called.* Consider, for example, a signal m(f),
which has derivatives of all orders at . Using the Taylor series for this signal, we can express
mit+7T) as

2 3

. T, T3 ..
m(t + To) = m(f) + Tan(t) + -2"7};1@) + ES»‘M Ait) 4+ - - (6.422)
= m(t) + Tom(5) for small 7 (6.42b)

Equation (6.42a) shows that from a knowledge of the signal and its derivatives at instant 7, we
can predict a future signal value at 7 -+ 7. In fact, even if we know just the first derivative,
we can still predict this value approximately, as shown in Eq. (6.42b). Let us denote the kth
sample of m(z) by mlk], that is, m(kT,) = mlk], and m(kTs £ T5) = mik 4 1], and so on.
Setting t = kT in Eq. (6.42b), and recognizing that /n(kTy) ~ [m(kTs) — m{kTs — THY/ Ty, we
obtain

r it 7| K] =k — 1]
m{k+11~mi,k,f+z{--. - J‘

= 2mfk] — mlk — 1]

This shows that we can find a crude prediction of the (k + 1)th sample from the two previous
samples. The approximation in Eq. (6.42b) improves as we add more terms in the series on
the right-hand side. To determine the higher order derivatives in the series, we require more
samples in the past. The larger the number of past samples we use, the better will be the
prediction. Thus, in general, we can express the prediction formula as

mik] ~ aymlk — 1l +apmlk — 2]+ - +anmlk — N] (6.43)
The right-hand side is m{k], the predicted value of m[k]. Thus,

mik] = aim[kA — 11+ amlk — 2]+ -+ aymlk — N| (6.44)
This is the equation of an Nth-order predictor. Larger N would result in better prediction in
general. The output of this filter (predictor) is mik], the predicted value of m{k]. The input

consists of the previous samples m[k — 11, mlk — 2], ..., mlk — N|, although it is customary
to say that the input is m[k] and the output is /[k]. Observe that this equation reduces to

* From Shakespeare, Henry 1V, Part 1, Act I, Scene 1:
Glendower: I can call the spirits from vasty deep.
Hotspur: Why, so can I, or so can any man;

But will they come when you do call for them?
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mlk] = m[k — 1] in the case of the first-order prediction. It follows from Eq. (6.42b), where
we retain only the first term on the right-hand side. This means that a; = 1, and the first-order
predictor is a simple time delay.

We have outlined here a very simple procedure for predictor design. In a more sophisticated
approach, discussed in Sec. 8.5, where we use the minimum mean squared error criterion for
best prediction, the prediction coefficients a; in Eq. (6.44) are determined from the statistical
correlation between various samples. The predictor described in Eq. (6.44) is called a linear
predictor. 1t is basically a transversal filter (a tapped delay line), where the tap gains are set
equal to the prediction coefficients, as shown in Fig. 6.27.

Analysis of DPCM

As mentioned earlier, in DPCM we transmit not the present sample m[k], but d[k] (the
difference between mlk] and its predicted value m[k]). At the receiver, we generate mi[k]
from the past sample values to which the received d|k] is added to generate mik].
There is, however, one difficulty associated with this scheme. At the receiver, instead of

the past samples m[k — 1], m[k —2], ..., as well as d[k], we have their quantized ver-
sions mylk — 1], mylk —2], . ... Hence, we cannot determine m[k]. We can determine only
ylk], the estimate of the quantized sample mglk], in terms of the quantized samples
mglk — 1], mylk — 2], ... . This will increase the error in reconstruction. In such a case, a better

strategy is to determine 7i1z[k], the estimate of mglk] (instead of m[k]), at the transmitter also
from the quantized samples m,[k — 1], mglk — 2], . ... The difference d[k] = m[k] — mglk]is
now transmitted via PCM. At the receiver, we can generate ﬁzq [k], and from the received d[k],
we can reconstruct mg[k].

Figure 6.28a shows a DPCM transmitter. We shall soon show that the predictor inputis
mylk]. Naturally, its output is r?zq [k], the predicted value of mylk]. The difference

dlk] = mlk] — g lk] (6.45)
is quantized to yield
dglk] = d[k] + glk] (6.46)

where g[k] is the quantization error. The predictor output mglk] is fed back to its input so that
the predictor input mgylk] is
mglk] = g lk] + dy[k]
= mik] — dlk] + d,[k]
= mlk} + glk] (6.47)



Figure 6.28
DPCM system:
{a) transmitter;
{b) receiver.
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This shows that mglk]is a quantized version of m[k]. The predictor input is indeed my,[k], as
assumed. The quantized signal d,[k] is now transmitted over the channel. The receiver shown
in Fig. 6.28b is identical to the shaded portion of the transmitter. The inputs in both cases are
also the same, namely, d,[k]. Therefore, the predictor output must be fglk] (the same as the
predictor output at the transmitter). Hence, the receiver output (which is the predictor input) is
also the same, viz., mglk] = m[k]+ g[k], as found in Eq. (6.47). This shows that we are able to
receive the desired signal m[k] plus the quantization noise g[k]. This is the quantization noise
associated with the difference signal d[k], which is generally much smaller than m{k]. The
received samples my[k] are decoded and passed through a low-pass filter for D/A conversion.

SNR Improvement

To determine the improvement in DPCM over PCM, let m, and d, be the peak amplitudes
of m(r) and d(¢), respectively. If we use the same value of L in both cases, the quantization
step Av in DPCM is reduced by the factor d,/m,,. Because the quantization noise power is
(Av)?/12, the quantization noise in DPCM is reduced by the factor (m, /dp)z, and the SNR
is increased by the same factor. Moreover, the signal power is proportional to its peak value
squared (assuming other statistical properties invariant). Therefore, G, (SNR improvement
due to prediction) is at least

Py
Gy = P
where P,, and Py are the powers of m(z) and d (z), respectively. In terms of decibel units, this
means that the SNR increases by 10 log,o(P/P4) dB. Therefore, Eq. (6.41) applies to DPCM
also with a value of « that is higher by 10 log;o(Pm/P4) dB. In Example 8.24, a second-order
predictor processor for speech signals is analyzed. For this case, the SNR improvement is
found to be 5.6 dB. In practice, the SNR improvement may be as high as 25 dB in such cases
as short-term voiced speech spectra and in the spectra of low-activity images.'? Alternately,
for the same SNR, the bit rate for DPCM could be lower than that for PCM by 3 to 4 bits per
sample. Thus, telephone systems using DPCM can often operate at 32 or even 24 kbit/s.
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6.6 ADAPTIVE DIFFERENTIAL PCM {ADPCM|

Figure 6.29
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Adaptive DPCM (ADPCM) can further improve the efficiency of DPCM encoding by incor-
porating an adaptive quantizer at the encoder. Figure 6.29 illustrates the basic configuration
of ADPCM. For practical reasons, the number of quantization level L is fixed. When a fixed
quantjzation step Av is applied, either the quantization error is too large because Av is too
big or the quantizer cannot cover the necessary signal range when Av is too small. Therefore,
it would be better for the gquantization step Av to be adaptive so that Av is large or small
depending on whether the prediction error for quantizing is large or small.

It is important to note that the quantized prediction error d,;[k] can be a good indicator of
the prediction error size. For example, when the quantized prediction ervor samples vary close
to the largest positive value (or the largest negative value), it indicates that the prediction error
is large and Av needs to grow. Conversely, if the quantized samples oscillate near zero, then
the prediction ervor is small and Av needs to decrease. It is important that both the modulator
and the receiver have access to the same quantized samples. Hence, the adaptive quantizer and
the receiver reconstruction can apply the same algorithm to adjust the Av identically.

Compared with DPCM, ADPCM can further compress the number of bits needed for 2
signal waveform. For example, it is very common in practice for an 8-bit PCM sequence to be
encoded into a 4-bit ADPCM sequence at the same sampling rate. This easily represents a 2:1
bandwidth or storage reduction with virtually no loss.

ADPCM encoder has many practical applications. The ITU-T standard (G.726 specifies an
ADPCM speech coder and decoder (called codec) for speech signal samples at 8 kHz.” The
G726 ADPCM predictor uses an eighth-order predictor. For different quality levels, G.726
specifies four different ADPCM rates at 16, 24, 32, and 40 kbit/s. They correspond to four
different bit sizes for each speech sample at 2 bits, 3 bits, 4 bits, and 5 bits, respectively, or
equivalently, quantization levels of 4, 8, 16, and 32, respectively.

The most common ADPCM speech encoders use 32 kbit/s. In practice, there are multiple
variations of ADPCM speech codec. In addition to the ITU-T G.726 specification,’” these
include the OKI ADPCM codec, the Microsoft ADPCM codec supported by WAVE players,
and the Interactive Multimedia Association (IMA) ADPCM, also known as the DVI ADPCM.
The 32 kbit/s TTU-T G726 ADPCM speech codec is widely used in the DECT (digital enhanced
cordless telecommunications) system, which itself is widely used for residential and business
cordless phone communications. Designed for short-range use as an access mechanism to the
main networks, DECT offers cordless voice, fax, data, and multimedia communications. DECT
is now in use in over 100 countries worldwide. Another major user of the 32 kbit/s ADPCM
codec is the Personal Handy-phone System (or PHS), also marketed as the Personal Access
System (PAS) and known as Xiaolingtong in China.

PHS 1s a mobile network system similar to a cellular network, operating in the 1880 to 1930
MHz frequency band, used mainly in Japan, China, Taiwan, and elsewhere in Asia. Originally
developed by the NTT Laboratory in Japan in 1989, PHS is much simpler to implement and
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deploy. Unlike cellular networks, PHS phones and base stations are low-power, short-range
facilities. The service is often pejoratively called the “poor man’s cellular” because of its
limited range and poor roaming ability. PHS first saw limited deployment (NTT-Personal,
DDI-Pocket, and ASTEL) in Japan in 1995 but has since nearly disappeared. Surprisingly,
PHS has seen a resurgence in markets like China, Taiwan, Vietnam, Bangladesh, Nigeria,
Mali, Tanzania, and Honduras, where its low cost of deployment and hardware costs offset
the system’s disadvantages. In China alone, there was an explosive expansicn of subscribers,
reaching nearly 80 million in 2006.

6.7 DELTA MODULATION

Figure 6.30
Delta modulation
is a special case

of DPCM.

Sample correlation used in DPCM is further exploited in delta modulation (DM) by oversam-
pling (typically four times the Nyquist rate) the baseband signal. This increases the correlation
between adjacent samples, which results in a small prediction error that can be encoded using
only one bit (L = 2). Thus, DM is basically a 1-bit DPCM, that is, a DPCM that uses only two
levels (L = 2) for quantization of m{k] — fig(k]. In comparison to PCM (and DPCM), itisa
very simple and inexpensive method of A/D conversion. A 1-bit codeword in DM makes word

raming unnecessary at the transmitter and the receiver. This strategy allows us to use fewer
bits per sample for encoding a baseband signal.

In DM, we use a first-order predictor, which, as seen earlier, is just a time delay of T
(the sampling interval). Thus, the DM transmitter (modulator) and receiver (demodulator) are
identical to those of the DPCM in Fig. 6.28, with a time delay for the predictor, as shown in
Fig. 6.30, from which we can write

mq[k] = mglk — 1] + dglk] (6.48)
Hence,
mglk — 1] = mq[k — 2} +dylk ~ 1]
mik] dlk] dglk]
" > Quantizer » ! >

Accumulator

dqlk] fz\ N mqlk]

malk 11| Delay T: j
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Substituting this equation into Eq. (6.48) yields
mylk] = mylk — 2] + dylk] + dylk — 1]

Proceeding iteratively in this manner, and assaming zero initial condition, that is, mgl{0] =0,
we write

k .
mglk] =" dylm] (6.49)

m=0

This shows that the receiver (demodulator) is just an accumulator (adder). If the output
dy[k]is represented by impulses, then the accumulator (receiver) may be realized by an integra-
tor because its output is the sum of the strengths of the input impulses (sum of the areas under
the impulses). We may also replace with an integrator the feedback portion of the modulator
(which is identical to the demodulator). The demodulator output is m,[k], which when passed
through a low-pass filter yields the desired signal reconstructed from the quantized samples.

Figure 6.31 shows a practical implementation of the delta modulator and demodulator.
As discussed earlier, the first-order predictor is replaced by a low-cost integrator circuit (such
as an RC integrator). The modulator (Fig. 6.31a) consists of a comparator and a sampler in
the direct path and an integrator-amplifier in the feedback path. Let us see how this delta
modulator works. .

The analog signal m(r) is compared with the feedback signal (which serves as a predicted
signal) /i, (¢). The error signal d () = m(r) — fig(¢) is applied to a comparator. If d (¢) is positive,
the comparator output is a censtant signal of amplitude E, and if d (7) is negative, the comparator
output is —£. Thus, the difference is a binary signal (L = 2) that is needed to generate a 1-bit
DPCM. The comparator output is sampled by a sampler at a rate of f; samples per second,
where f; is typically much higher than the Nyquist rate. The sampler thus produces a train
of narrow pulses dg[k] (to simulate impulses) with a positive pulse when m(#) > 1, (¢) and a
negative pulse when m(t) < 7n,(¢). Note that each sample is coded by a single binary pulse
(1-bit DPCM), as required. The pulse train d,[k] is the delta-modulated pulse train (Fig. 6.31d).
The modulated signal d,[k] is amplified and integrated in the feedback path to generate g ()
(Fig. 6.31c), which tries to follow m(z).

To understand how this works, we note that each pulse in 4, [k at the input of the integrator
gives rise to a step function (positive or negative, depending on the pulse polarity) in i, (). If,
for example, m(t) > i, (¢}, a positive pulse is generated in d4[k], which gives rise to a positive
step in 71, (1), trying to equalize /74 (£) to m(¢) in small steps at every sampling instant, as shown
in Fig. 6.31c. It can be seen that 7z, (¢) is a kind of staircase approximation of m(r). When g (1)
is passed through a low-pass filter, the coarseness of the staircase in /4 (7) is eliminated, and
we get a smoother and better approximation to m(t). The demodulator at the receiver consists
of an amplifier-integrator (identical to that in the feedback path of the modulator) followed by
a low-pass filter (Fig. 6.31b).

DM Transmits the Derivative of m(¢)

In PCM, the analog signal samples are quantized in L levels, and this information is transmitted
by n pulses per sample (n = log, L). A little reflection shows that in DM, the modulated signal
carries information not about the signal samples but about the difference between successive
samples. If the difference is positive or negative, a positive or a negative pulse (respectively)
is generated in the modulated signal d [k]. Basically, therefore, DM carries the information
about the derivative of m(¢), hence, the name “delta modulation.” This can also be seen from
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the fact that integration of the delta-modulated signal yields g (t), which is an approximation

of m(t).

In PCM, the information of each quantized sample is transmitted by an n-bit code word,
whereas in DM the information of the difference between successive samples is transmitted

by a 1-bit code word.

. Threshold of Coding and Overloading

Threshold and overloading effects can be clearly seen in Fig. 6.31c. Variations in m(r) smaller
than the step value (threshold of coding) are lost in DM. Moreover, if m(f) changes too fast,



