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Preface

This book is an exposition of statistical methodology that focuses on ideas and concepts,
and makes extensive use of graphical presentation. It avoids, as much as possible, the
use of mathematical symbolism. It is particularly aimed at scientists who wish to do sta-
tistical analyses on their own data, preferably with reference as necessary to professional
statistical advice. It is intended to complement more mathematically oriented accounts of
statistical methodology. It may be used to give students with a more specialist statistical
interest exposure to practical data analysis.

While no prior knowledge of specific statistical methods or theory is assumed, there is
a demand that readers bring with them, or quickly acquire, some modest level of statistical
sophistication. Readers should have some prior exposure to statistical methodology, some
prior experience of working with real data, and be comfortable with the typing of analysis
commands into the computer console. Some prior familiarity with regression and with
analysis of variance will be helpful.

We cover a range of topics that are important for many different areas of statistical
application. As is inevitable in a book that has this broad focus, there will be investiga-
tors working in specific areas — perhaps epidemiology, or psychology, or sociology, or
ecology — who will regret the omission of some methodologies that they find important.

We comment extensively on analysis results, noting inferences that seem well-founded,
and noting limitations on inferences that can be drawn. We emphasize the use of graphs
for gaining insight into data — in advance of any formal analysis, for understanding the
analysis, and for presenting analysis results.

The data sets that we use as a vehicle for demonstrating statistical methodology have
been generated by researchers in many different fields, and have in many cases featured
in published papers. As far as possible, our account of statistical methodology comes
from the coalface, where the quirks of real data must be faced and addressed. Features
that may challenge the novice data analyst have been retained. The diversity of examples
has benefits, even for those whose interest is in a specific application area. Ideas and
applications that are useful in one area often find use elsewhere, even to the extent
of stimulating new lines of investigation. We hope that our book will stimulate such
cross-fertilization.

To summarize: the strengths of this book include the directness of its encounter with
research data, its advice on practical data analysis issues, the inclusion of code that
reproduces analyses, careful critiques of analysis results, attention to graphical and other



XX Preface

presentation issues, and the use of examples drawn from across the range of statistical
applications.

John Braun wrote the initial drafts of Subsections 4.7.3, 4.7.4, 5.5.3, 6.8.5, 8.4.1
and Section 9.3. Initial drafts of remaining material were, mostly, from John Maindon-
ald’s hand. A substantial part was derived, intially, from the lecture notes of courses
for researchers, at the University of Newcastle (Australia) over 1996-1997 and at The
Australian National University over 1998-2001. Both of us have worked extensively
over the material in these chapters. John Braun has taken primary responsibility for
maintenance of the DAAG package.

The R system

We use the R system for the computations. The R system implements a dialect of the
influential S language, developed at AT&T Bell Laboratories by Rick Becker, John
Chambers and Allan Wilks, which is the basis for the commercial S-PLUS system.
It follows S in its close linkage between data analysis and graphics. Versions of R
are available, at no charge, for 32-bit versions of Microsoft Windows, for Linux and
other Unix systems, and for the Macintosh. It is available through the Comprehensive
R Archive Network (CRAN). Go to http://cran.r-project.org/, and find the
nearest mirror site.

The development model used for R has proved highly effective in marshalling high
levels of computing expertise for continuing improvement, for identifying and fixing
bugs, and for responding quickly to the evolving needs and interests of the statistical
community. Oversight of “base R” is handled by the R Core Team, whose members are
widely drawn internationally. Use is made of code, bug fixes and documentation from
the wider R user community. Especially important are the large number of packages that
supplement base R, and that anyone is free to contribute. Once installed, these attach
seamlessly into the base system.

Many of the analyses offered by R’s packages were not, 10 years ago, available in
any of the standard statistical packages. What did data analysts do before we had such
packages? Basically, they adapted more simplistic (but not necessarily simpler) analyses
as best they could. Those whose skills were unequal to the task did unsatisfactory
analyses. Those with more adequate skills carried out analyses that, even if not elegant
and insightful by current standards, were often adequate. Tools such as are available
in R have reduced the need for the adaptations that were formerly necessary. We can
often do analyses that better reflect the underlying science. There have been challenging
and exciting changes from the methodology that was typically encountered in statistics
courses 10 or 15 years ago.

In the ongoing development of R, priorities have been: the provision of good data
manipulation abilities; flexible and high-quality graphics; the provision of data analysis
methods that are both insightful and adequate for the whole range of application area
demands; seamless integration of the different components of R; and the provision of
interfaces to other systems (editors, databases, the web, etc.) that R users may require.
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Ease of use is important, but not at the expense of power, flexibility and checks against
answers that are potentially misleading.

Depending on the user’s level of skill with R, there will be some relatively routine
tasks where another system may seem simpler to use. Note however the availability of
interfaces, notably John Fox’s Rcmdr, that give a graphical user interface (GUI) to a
limited part of R. Such interfaces will develop and improve as time progresses. They may
in due course, for many users, be the preferred means of access to R. Be aware that the
demand for simple tools will commonly place limitations on the tasks that can, without
professional assistance, be satisfactorily undertaken.

Primarily, R is designed for scientific computing and for graphics. Among the packages
that have been added are many that are not obviously statistical — for drawing and coloring
maps, for map projections, for plotting data collected by balloon-born weather instruments,
for creating color palettes, for working with bitmap images, for solving sudoko puzzles,
for creating magic squares, for reading and handling shapefiles, for solving ordinary
differential equations, for processing various types of genomic data, and so on. Check
through the list of R packages that can be found on any of the CRAN sites, and you may
be surprised at what you find!

The citation for John Chambers’ 1998 Association for Computing Machinery Software
award stated that S has “forever altered how people analyze, visualize and manipu-
late data.” The R project enlarges on the ideas and insights that generated the S lan-
guage. We are grateful to the R Core Team, and to the creators of the various R
packages, for bringing into being the R system — this marvellous tool for scientific
and statistical computing, and for graphical presentation. We list at the end of the
reference section the authors and compilers of packages that have been used in this
book.

Influences on the modern practice of statistics

The development of statistics has been motivated by the demands of scientists for a
methodology that will extract patterns from their data. The methodology has developed
in a synergy with the relevant supporting mathematical theory and, more recently, with
computing. This has led to methodologies and supporting theory that are a radical depar-
ture from the methodologies of the pre-computer era.

Statistics is a young discipline. Only in the 1920s and 1930s did the modern framework
of statistical theory, including ideas of hypothesis testing and estimation, begin to take
shape. Different areas of statistical application have taken these ideas up in different
ways, some of them starting their own separate streams of statistical tradition. Gigerenzer
et al. (1989, “The Empire of Statistics”) examine the history, commenting on the different
streams of development that have influenced practice in different research areas.

Separation from the statistical mainstream, and an emphasis on “black box” approaches,
have contributed to a widespread exaggerated emphasis on tests of hypotheses, to a neglect
of pattern, to the policy of some journal editors of publishing only those studies that show
a statistically significant effect, and to an undue focus on the individual study. Anyone
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who joins the R community can expect to witness, and/or engage in, lively debate that
addresses these and related issues. Such debate can help ensure that the demands of
scientific rationality do in due course win out over influences from accidents of historical
development.

New tools for effective data analysis

We have drawn attention to advances in statistical computing methodology. These have led
to new powerful tools for exploratory analysis of regression data, for choosing between
alternative models, for diagnostic checks, for handling non-linearity, for assessing the
predictive power of models, and for graphical presentation. In addition, we have new
computing tools that make it straightforward to move data between different systems, to
keep a record of calculations, to retrace or adapt earlier calculations, and to edit output
and graphics into a form that can be incorporated into published documents.

The best any analysis can do is to highlight the information in the data. No amount of
statistical or computing technology can be a substitute for good design of data collection,
for understanding the context in which data are to be interpreted, or for skill in the
use of statistical analysis methodology. Statistical software systems are one of several
components of effective data analysis.

The questions that statistical analysis is designed to answer can often be stated simply.
This may encourage the layperson to believe that the answers are similarly simple. Often,
they are not. Be prepared for unexpected subtleties. Effective statistical analysis requires
appropriate skills, beyond those gained from taking one or two undergraduate courses in
statistics. There is no good substitute for professional training in modern tools for data
analysis, and experience in using those tools with a wide range of data sets. No-one
should be embarrassed that they have difficulty with analyses that involve ideas that
professional statisticians may take 7 or 8 years of professional training and experience to
master.

Changes in this second edition

This new edition takes account of changes in R since 2003. There is new material
on survival analysis, random coefficient models and the handling of high-dimensional
data. The treatment of regression methods has been extended, including in particular a
brief discussion of errors in predictor variables. Both the text and R code have been
extensively revised. Code has, wherever possible, been simplified. Some examples have
been reworked. There are changes to some graphs, and new graphs have been added.
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Conventions

Text that is R code, or output from R, is printed in a verbatim text style. For example,
in Chapter 1 we will enter data into an R object that we call austpop. We will use the
plot () function to plot these data. The names of R packages, including our own DAAG
package, are printed in italics.

Starred exercises and sections identify more technical items that can be skipped at a
first reading.

Solutions to exercises

Solutions to selected exercises, R scripts that have all the code from the book and other
supplementary materials are available via the link given at http: //www.maths.anu.
edu.au/~ johnm/r-book






A brief introduction to R

This first chapter introduces readers to the basics of R. It provides the minimum of
information that is needed for running the calculations that are described in later chapters.
The first section may cover most of what is immediately necessary. The rest of the chapter
may be used as a reference. Chapter 14 extends this material considerably.

Most of the R commands will run without change in S-PLUS.

1.1 An overview of R
1.1.1 A short R session
R must be installed!

An up-to-date version of R may be downloaded from a Comprehensive R Archive
Network (CRAN) mirror site. There are links at http://cran.r-project.org/.
Installation instructions are provided at the web site for installing R in Windows, Unix,
Linux, and version 10 of the Macintosh operating system. Various contributed packages
are now a part of the standard R distribution, but a number are not; any of these may be
installed as required. Data sets that are mentioned in this book, and that are not (in most
cases) available in other packages, have been collected into our DAAG package that is
available from CRAN sites.

For most Windows users, R can be installed by clicking on the icon that appears on
the desktop once the Windows binary has been downloaded from CRAN. An installation
program will then guide the user through the process. By default, an R icon will be placed
on the user’s desktop. The R system can be started by double-clicking on that icon.

The DAAG package can be installed under Windows by starting R and clicking on the
Packages Menu. From that menu, choose Install Packages. If a mirror site has not been
set earlier, this gives a pop-up menu from which a site must be chosen. Once this choice
is made, a new pop-up window appears with the entire list of available R packages.
Clicking on DAAG will cause it to be downloaded and installed.

Using the console (or command line) window

The command line prompt (>) is an invitation to start typing in commands or expressions.
R evaluates and prints out the result of any expression that is typed in at the command
line in the console window (multiple commands may appear on the one line, with the
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Table 1.1  Estimated worldwide
annual totals of carbon emissions from
fossil fuel use, in millions of tonnes.
Data are due to Marland et al. (2003).

Year Carbon
1 1800 8
2 1850 54
3 1900 534
4 1950 1630
5 2000 6611

semicolon (;) as the separator). This allows the use of R as a calculator. For example,
type 2+2 and press the Enter key. Here is what appears on the screen:

> 242
[1] 4

>

The first element is labeled [1] even when, as here, there is just one element! The final
> prompt indicates that R is ready for another command.

In a sense this chapter, and much of the rest of the book, is a discussion of what
is possible by typing in statements at the command line. Practice in the evaluation of
arithmetic expressions will help develop the needed conceptual and keyboard skills. Here
are simple examples:

> 2%3*%4%5 # * denotes 'multiply’

[1] 120

> sgrt (10) # the square root of 10

[1] 3.162278

> pi # R knows about pi

[1] 3.141593

> 2*pi*6378 # Circumference of earth at equator (km)

# (radius at equator is 6378 km)
[1] 40074.16

Anything that follows a # on the command line is taken as comment and ignored by R.

A continuation prompt, by default +, appears following a carriage return when the
command is not yet complete. (In this book we will omit both the prompt (>) and the
continuation prompt (+), whenever command line statements are given separately from
output.)

Entry of data at the command line

Table 1.1 gives, for each of the years 1800, 1850, ..., 2000, estimated worldwide totals
of carbon emissions that resulted from fossil fuel use. We can enter these columns of
data, then plot Carbon against Year to give Figure 1.1, thus:
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ab

Figure 1.1 Plot of Carbon against Year, for the data in Table 1.1.

Year <- ¢ (1800, 1850, 1900, 1950, 2000)
Carbon <- c(8, 54, 534, 1630, 6611)

## Now plot Carbon as a function of Year
plot (Carbon ~ Year, pch=16)

Note the following:

The <- is a left angle bracket (<) followed by a minus sign (-). It means “the values
on the right are assigned to the name on the left.”

The objects Year and Carbon are vectors which were each formed by joining
(concatenating) separate numbers together. Thus ¢ (8, 54, 534, 1630, 6611)
joined the numbers 8, 54, 534, 1630, 6611 together to form the vector Carbon. See
Subsection 1.3.2 for further details on this.

The construct Carbon ~ Year is a graphics formula. The plot () function inter-
prets this formula to mean “Plot Carbon as a function of Year” or “Plot Carbon
on the y-axis against Year on the x-axis.”

The setting pch=16 (where pch is “plot character”) gives a solid black dot.

Case is significant for names of R objects or commands. Thus, Carbon is different
from carbon.

We can make various modifications to this basic plot. We can specify more informative

axis labels, change the sizes of the text and of the plotting symbol, add a title, and so on.
More information is given in Section 1.6.

Collection of vectors into a data frame

The two vectors Year and Carbon are matched, element for element. It is convenient
to group the two vectors together into an object that is called a data frame, thus:

>

>

fossilfuel <- data.frame (year=Year, carbon=Carbon)
fossilfuel # Display the contents of the data frame.
year carbon

1800 8

1850 54

1900 534
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4 1950 1630
5 2000 6611
> rm(Year, Carbon) # These are no longer required

The vector objects year and carbon become columns in the data frame.
An alternative to the plotting command that gave Figure 1.1 is then:

plot (carbon ~ year, data=fossilfuel, pch=16)

The data=fossilfuel argument instructs plot () to start its search for each of
carbon and year by looking among the columns of fossilfuel.

There are several ways to identify columns by name. Here, note that the second column
can be referred to as fossilfuel [, 2],oras fossilfuel[, "carbon"], or as
fossilfuelS$Scarbon.

Data frames are the preferred way for organizing data sets that are of modest size. For
now, think of data frames as a rectangular row by column layout, where the rows are
observations and the columns are variables. More information about data frames can be
found in Section 1.4. Subsection 1.2.1 will demonstrate the reading of data from a file,
entering them into a data frame.

Checks on the working directory and the contents of the workspace

Each R session has a working directory. This is the default place where R looks for files
that are read from disk, or written to disk. For a session that is started from a Windows
icon, the initial working directory is the Start in directory that can be determined by
right clicking on the icon and clicking on Properties. Users of the GUI-based application
for the Macintosh can change the default startup directory from within an R session by
clicking on the R menu item, then on Preferences and making the necessary change in
the panel Initial working directory. On Unix or Linux sessions that are started from the
command line, the working directory is the directory in which R was started. In the event
that there is any uncertainty, use the command getwd () to give the name of the working
directory:

getwd ()

Objects that the user creates or copies from elsewhere go into the user workspace. In
order to list the contents of the workspace, type:

1s()

The only object left over from the current session should be fossilfuel. There may
additionally be objects that are left over from previous sessions (if any) in the same
directory, and that were loaded when the session started.

Quitting R
Use the g () function to quit (exit) from R:

al)
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There will be a message asking whether to save the workspace image. Clicking Yes has the
effect that, before quitting, all the objects that remain in the working directory are saved
in an “image” file that has the name .RData. This file is an “image” of the workspace
immediately before quitting the session, and will be used to restore the workspace when
a new session is again started in that directory. (Note that while delaying the saving of
important objects till the end of the session is acceptable when working in a learning
mode, it is not a good strategy when using R in production mode. Advice on saving and
backing up through the course of the session will be given in Section 1.8 and, in more
detail, in Subsection 14.1.2.)

Depending on the implementation, alternatives to typing g () may be to click on the
File menu and then on Exit, or to click on the X in the top right-hand corner of the R
window. (Under Linux, depending on the window manager that is used, clicking on X
may exit from the program, but without asking whether to save the workshop image.
Check the behavior on your installation.)

Note: In order to quit the R session we had to type g (). The round brackets are
necessary because g is a function. Typing g on its own, without the brackets, displays
the text of the function on the screen. Try it!

1.1.2 The uses of R

R has extensive capabilities for statistical analysis, that will be used throughout this book.
These are embedded in an interactive computing environment that is suited to many
different uses. Here we draw attention to abilities, beyond simple one-line calculations,
that may not be primarily statistical.

R offers an extensive collection of functions

Most of the calculations that users may wish to carry out, beyond simple command
line computations, involve explicit use of functions. There are of course functions for
calculating the sum (sum () ), mean (mean () ), range (range () ), length of a vector
(length () ), for sorting values into order (sort ()) and so on. For example, the
following calculates the range of the values in the vector carbon:

> range (fossilfuel$carbon)
[1] 8 6611

By no means are R’s abilities limited to numerical calculation. Here are examples that
involve character strings:

> ## 4 cities

> fourcities <- c("Toronto", "Canberra", "New York", "London")
> ## display in alphabetical order

> sort (fourcities)

[1] "Canberra" "London" "New York" "Toronto"

> ## Find the number of characters in "Toronto"

> nchar ("Toronto")
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[11 7

>

> ## Find the number of characters in all four city names at once
> nchar (fourcities)

[1] 7 8 8 6

R will give numerical or graphical data summaries

The data frame cars that is in the datasets package has two columns (variables), with
the names speed and dist. Typing summary (cars) gives summary information on
these variables:

> summary (cars)

speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

Thus, we can immediately see that the range of speeds (first column) is from 4 mph to
25 mph, and that the range of distances (second column) is from 2 feet to 120 feet.

Graphical alternatives to summary (), including histograms and boxplots, are dis-
cussed and demonstrated in Sections 1.7 and 2.1. Try for example:

hist (cars$speed)

R is an interactive programming language

Suppose we want to calculate the Fahrenheit temperatures that correspond to Celsius

temperatures 0, 10, ..., 40. Here is a good way to do this in R:

> celsius <- (0:4)*10

> fahrenheit <- 9/5*celsius+32

> conversion <- data.frame (Celsius=celsius, Fahrenheit=fahrenheit)
> print (conversion)

Celsius Fahrenheit

1 0 32
2 10 50
3 20 68
4 30 86
5 40 104

1.1.3 Online help

Before getting deeply into the use of R, it is well to take time to master the help facilities.
Such an investment of time will pay dividends. R’s help files are comprehensive, and are
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frequently upgraded. Type help (help) to get information on the help features of the
system that is in use. To get help on, for example, plot (), type:

help (plot)

The functions apropos () and help.search () offer means for searching for
functions that perform a desired task. Specific examples seem the best way to explain
their use. Thus try:

apropos ("sort") # Try, also, apropos ("sor")
# This lists all functions whose names include the
# character string "sort".

help.search("sort") # Note that the argument is ’sort’
# This lists all functions that have the word ’'sort’ as
# an alias or in their title.

The function help.start () is designed to start up a browser window that gives
access to a variety of help information and documentation.

Users are encouraged to experiment with R functions, perhaps starting by using
example () to run the examples that are included in the help file. Be warned that
some of the examples may illustrate relatively advanced aspects of the use of the func-
tion. This can be the case even for such basic functions as mean () . To run the examples
that are included in the help file for the function image (), type:

example (image)
# for a 2 by 2 layout of the last 4 plots, precede with
# par (mfrow=c(2,2))
# To prompt for each new graph, precede with par (ask=TRUE)
# When finished, turn off the prompts with par (ask=FALSE)

In learning to use a new function, it may be helpful to create a simple artificial data
set, or to create a small subset from a larger data set, and use this for experimentation.
For extensive experimentation, consider moving to a new working directory and working
with copies of any user data sets and functions.

The help pages, while not an encyclopedia on statistical methodology, have much
helpful information on the methods whose implementation they document. Some of
the abilities that they document will bring pleasant surprises. There are many in-
sightful and helpful examples, there are references to related functions, and there
are references to papers and books that give the relevant theory. It can help enor-
mously, before launching into the use of an R function, to check the relevant help

page!

Wide-ranging searches

The function RSiteSearch () makes it possible (assuming a live internet connection)
to search R manuals and help pages, and the R-help mailing list archives, for key words or
phrases. It has a parameter restrict that allows some limited targeting of the search.
See help (RSiteSearch) for details.
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1.1.4 Further steps in learning R

Readers who have followed the discussion thus far and worked through the examples
may at this point have learned enough to start on Chapter 2, referring as necessary to later
sections of this chapter, to R’s help pages, and to Chapter 14. Before progressing far,
it will however be wise to work through the remaining sections of the present chapter.
Topics that will be covered in the remaining sections of this chapter, and that readers will
encounter as they work through Chapter 2 and later chapters, include:

¢ The function read.table (), demonstrated in Subsection 1.2.1, reads data from a
file into a data frame.

e Vectors are a fundamental data structure. Possible modes include numeric, character,
logical and complex. See Subsection 1.3.1.

» Factors, not so far discussed, use integer values 1, 2, ..., as indices into a look-up
table that holds unique character strings. They are used to represent categorical data,
and are fundamental to much of the use of R’s graphics and modeling functions. See
Subsection 1.3.6.

* Later chapters will make extensive use both of base graphics (using plot (), etc.) and
of the more stylized graphs provided by lattice graphics. Lattice graphics (Sections
1.7 and 14.12) allows the layout of panels on the page, and point and line settings, to
reflect meaningful aspects of the data structure.

* The R system has a variety of functions that calculate summary statistics, create tables,
do cross-tabulations, obtain information on data sets, and so on. Some of these are
listed in Section 1.5. Others will be encountered in later chapters.

1.2 Data input, packages and the search list
1.2.1 Reading data from a file

The function read. table () offers a straightforward way to read into an R data frame
a file in which each row has the same number of fields of data. For simplicity, assume
that the data from Table 1.1 are in a file called fuel.txt in the working directory, with
fields separated by one or more spaces and/or tabs. (On Microsoft Windows systems, the
Windows conventions apply to file names, and it is immaterial whether this file is called
fuel.txt or Fuel.txt. Unix file systems may, depending on the specific file system in use,
treat letters that have a different case as different.)

Code that will take data from the file fuel.txt, entering them into the data frame
fossilfuel in the workspace is:

fossilfuel <- read.table("fuel.txt", header=TRUE)

Note the use of header=TRUE to ensure that R uses the first line to get header infor-
mation for the columns.

Type fossilfuel at the command line prompt, and the data will be displayed almost
as they appear in Table 1.1 (the only difference is the introduction of row labels in the R
output). Data read into R with the read.table () function are automatically converted
to a data frame.
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We have assumed that the fields in fuel.txt are separated by spaces and/or tabs, as
allowed by the default setting (sep=") for read.table (). Other parameter settings
are sometimes required; note in particular:

fossilfuel <- read.table("fuel.csv", header=TRUE, sep=",")

reads data from a file fuel.csv where the fields have been separated by commas.
Consult the help page for read.table () for other options.

1.2.2 R packages

The recommended R distribution includes a number of packages in its library. These
are collections of functions and data. We will make frequent use both of the MASS
package (Venables and Ripley, 2002) and of our own DAAG package. DAAG, and other
packages that are not included with the default distribution, can be readily downloaded
and installed.

The base package, the stats package, the datasets package and several other packages,
are automatically attached at the beginning of a session. Other installed packages must
be explicity attached prior to use. Use sessionInfo () to see which packages are
currently attached. To attach any further installed package, use the Library () function.
For example:

> library (DAAG)
> sessionInfo()
R version 2.0.1, 2004-11-15, powerpc-apple-darwiné.8

attached base packages:
[1] "methods" "stats" "graphics" "grDevices" "utils"
[6] "datasets" T"base"

other attached packages:
DAAG
n O . 5 . 2 n

Data sets that accompany R packages

Type data () to get a list of data sets (mostly data frames) in all packages that are in the
current search path. To get information on the data sets that are included in the datasets
package, specify:

data (package="datasets") # Specify ’'package’, not ’'library’.

Replace "datasets" by the name of any other installed package, as required (type
library() to get the names of the installed packages). In most packages that
are intended for recent versions of R (2.0.0 or later), these data sets become avail-
able automatically once the package has been attached. They will be brought into
the workspace when and if required. (In older versions of R, or in packages that
have not implemented the lazy data mechanism, explicit use of a command of the
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form data (airquality) may be necessary, bringing the data object into the user’s
workspace.)

Installation of additional packages

The install.packages () function can be used, from within an R session, to install
new packages as required, from an internet connection or from a local repository or file.

Under Windows and other systems that have a menu, packages can alternatively be
installed using the Install Packages option in the Packages menu.

1.3 Vectors, factors and univariate time series

Vectors, factors and univariate time series are all univariate objects that can be included
as columns in a data frame.

1.3.1 Vectors in R

The vector modes that will be described here (there are others) are “numeric,” “logical,”
and “character.” Examples of vectors are:

>c(2, 3, 5, 2, 7, 1)
[1] 2352 71

> 3:10 # The numbers 3, 4,..., 10
[1] 3 45 6 7 8 9 10

> c(T, F, F, F, T, T, F)
[1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE

> c("Canberra", "Sydney", "Canberra", "Sydney")
[1] "Canberra" "Sydney" "Canberra" "Sydney"

The first two vectors above are numeric, the third is logical, and the fourth is a character
vector. Note the use of the global variables F (=FALSE) and T (=TRUE) as a convenient
shorthand when logical values are entered.

1.3.2 Concatenation — joining vector objects

The function c (), used in Subsection 1.1.1 to join numbers together to form a vector, is
more widely useful. It may be used to concatenate any combination of vectors and vector
elements. In the following, we form numeric vectors x and y, that we then concatenate
to form a vector z:

>x <-¢c(2, 3, 5,2, 7, 1)
> X

[1] 235271

>y <- c(10, 15, 12)
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>y

[1] 10 15 12

> z <- ¢c(x, V)

> Z

[1] 2 352 7 1 10 15 12

1.3.3 Subsets of vectors

Note three common ways to extract subsets of vectors:

1. Specify the indices of the elements that are to be extracted, for example:
> x <- c(3, 11, 8, 15, 12) # Assign to x the values 3,
# 11, 8, 15, 12
> x[c(2,4)] # Elements in positions 2
[1] 11 15 # and 4 only
2. Use negative subscripts to omit the elements in nominated subscript positions (take
care not to mix positive and negative subscripts):
> x[-c(2,3)] # Remove the elements in positions 2 and 3
[1] 3 15 12
3. Specify a vector of logical values. The elements that are extracted are those for which
the logical value is TRUE. Thus, suppose we want to extract values of x that are

greater than 10:

> x > 10

[1] FALSE TRUE FALSE TRUE TRUE
> x[x > 10]

[1] 11 15 12

Elements of vectors can be given names. In that case, elements can be extracted by
name:

> heights <- c(Andreas=178, John=185, Jeff=183)
> heights[c ("John", "Jeff")]
John Jeff

185 183

1.3.4 Patterned data

Use, for example, 5:15 to generate all integers in a range, here between 5 and 15
inclusive:

> 5:15
[1] 5 6 7 8 9 10 11 12 13 14 15

Conversely, 15: 5 will generate the sequence in the reverse order.
The function seq () is more general. For example:

> seq(from=5, to=22, by=3) # The first value is 5. The final
# value is <= 22
[1] 5 8 11 14 17 20
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The function call can be abbreviated to:
seq(5, 22, 3)
To repeat the sequence (2, 3, 5) four times over, enter:

> rep(c(2,3,5), 4)
[1] 2 352352352375

Patterned character vectors are also possible:

> c(rep("female", 3), rep("male", 2))
[1] "female" "female" "female" "male" "male"

1.3.5 Missing values

The missing value symbol is NA. As an example, consider the 1ung variable of the Cape
Fur Seal data (which will be studied in more detail in Chapter 5):

> seal.lung <- cfseal$lung # Weights (gm)
> seal.lung

[1] 605.0 436.0 380.0 493.9 NA 550.0 470.0 592.5 605.0
[10] 799.9 995.0 785.0 910.0 1115.0 1142.6 1465.0 1250.0 1580.0
[19] 2000.0 1474.4 NA 1220.0 1790.0 1510.0 NA NA 2735.0
[28] NA 2380.0 NA

Any arithmetic expression that involves an NA generates NA as its result. Functions
such as mean () allow the parameter setting na.rm=TRUE, so that NAs are omitted
before proceeding with the calculation. For example:

> seal.lung <- cfseal$lung

> mean (seal.lung)

[1] NA

> mean (seal.lung, na.rm=TRUE)
[1]1 1137

Logically, if a value is unknown, it is impossible say whether or not it equals some
other value, whether known or unknown. Arithmetic and logical expressions in which
NAs appear generate NA as the result. Thus, consider:

> seal.lung == NA
< [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
< [22] NA NA NA NA NA NA NA NA NA NA

To replace all NAs by -999 (in most circumstances a bad idea) use the function
is.na (), thus:

> ## Replace all NAs by -999 (in general, a bad idea)
> seal.lung[is.na(seal.lung)] <- -999
> seal.lung

[1] 605.0 436.0 380.0 493.9 -999.0 550.0 470.0 592.5 605.0
[10] 799.9 995.0 785.0 910.0 1115.0 1142.6 1465.0 1250.0 1580.0
[19] 2000.0 1474.4 -999.0 1220.0 1790.0 1510.0 -999.0 -999.0 2735.0
[28] -999.0 2380.0 -999.0
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> ## There is now no protection against use of the -999 values as
> ## if they were legitimate numeric values

> mean (seal.lung) # Illegitimate calculation

[1] 709.7

Using a code such as -999 for missing values requires continual watchfulness to ensure
that it is never treated as a legitimate numeric value.

Missing values are discussed further in Subsection 1.5.6 and Section 14.5. For vectors
of mode numeric, other legal values that may require special attention are NaN (not a
number; try, e.g., by 0/0), Inf (e.g., 1/0) and - Inf.

1.3.6 Factors

A factor is stored internally as a numeric vector with values 1, 2, 3,..., k. The value k is
the number of levels. The levels are character strings.

Consider a survey that has data on 691 females and 692 males. If the first 691 are
females and the next 692 males, we can create a vector of strings that holds the values thus:

gender <- c(rep("female",691), rep("male",692))
We can change this vector to a factor, by entering:
gender <- factor(gender)

Internally, the factor gender is stored as 691 1s, followed by 692 2s. It has stored with
it a table that holds the information:

1 female
2 male

In most contexts that seem to demand a character string, the 1 is translated into female
and the 2 into male. The values female and male are the levels of the factor. By
default, the levels are in sorted order for the data type from which the factor was formed,
so that female precedes male. Hence:

> levels (gender)
[1] "female" "male"

Note that if gender had been an ordinary character vector, the outcome of the above
levels command would have been NULL.

The order of the factor levels determines the order of appearance of the levels in graphs
and tables that use this information. To cause male to come before female, use:

gender <- factor(gender, levelsgs=c("male", "female"))

This syntax is available both when the factor is first created, and later to change the order
in an existing factor. Take care that the level names are correctly spelled. For example,
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specifying "Male" in place of "male™" in the levels argument will cause all values
that were "male" to be coded as missing.

Note finally the function ordered (), which generates factors whose values can be
compared using the relational operators <, <=, >, >=, == and =!. Ordered factors are
appropriate for use with ordered categorical data. See Section 14.4 for further details.

1.3.7 Time series

The following are the numbers of workers (in 1000s) in the Canadian prairies for each
month from January 1995 through December 1996:!

numjobs <- c(982,981,984,982,981,983,983,983,983,979,973,979,
974,981,985,987,986,980,983,983,988,994,990,999)

The function ts () converts numeric vectors into time series objects. Frequently used
arguments of ts () are start, frequency and end. The following turns numjobs
into a time series, which can then be plotted:

numjobs <- ts(numjobs, start=1995, frequency = 12)
plot (numjobs)

Use the function window () to extract a subset of the time series. For example, the
following extracts the first 15 months of the series:

firstl5 <- window(numjobs, end=1996.25)

Multivariate time series are also possible. See Subsections 2.1.5 and 14.7.7.

1.4 Data frames and matrices

Data frames are fundamental to the use of the R modeling and graphics functions. A data
frame is a more general object than a matrix, in the sense that different columns may
have different modes. All elements of any column must, however, have the same mode,
that is, all numeric, or all factor, or all character, or all logical.

Included in the DAAG package is Cars93 . summary, created from the Cars93 data
set in the MASS package. Its contents are:

> Cars93.summary
Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 c
Large 6 6 11 L
Midsize 4 6 22 M
Small 4 5 21 Sm
Sporty 2 4 14 Sp
Van 7 8 9 v

"## Alternatively, obtain from data frame jobs (DAAG)
library (DAAG) numjobs <- jobs$Prairies
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The first three columns are numeric, and the fourth is a factor. Use the function class ()
to check this, for example, enter class (Cars93 . summarySabbrev). (The classifi-
cation of objects into classes is discussed in Subsection 1.5.2.)

On most systems, use of edit () allows access to a spreadsheet-like display of a data
frame or of a vector, where entries can be edited or new data added. For example:

Cars93.summary <- edit (Cars93.summary)
To close the spreadsheet, click on the File menu and then on Close. On Linux systems,

click on Quit to exit.

Display of the first few, or last few, rows of a data frame

Useful functions are head () and tail (). To display the first three rows of the
Cars93.summary data frame, type:

> head(Cars93.summary, n=3)
Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 c
Large 6 6 11 L
Midsize 4 6 22 M
> #

Similarly, the tail () function displays the last few rows of a data frame. The default
for the second argument (number of rows to display) is 6.

The functions head () and tail () are available also for use with objects other than
data frames.

The square bracket notation offers a more flexible alternative (any subset of rows can
be extracted):

> Cars93.summary[1:3, ]
Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 c
Large 6 6 11 L
Midsize 4 6 22 M

Data frames are a specialized type of list

A list is an arbitrary collection of R objects, brought together into a single data structure.
Most of R’s modeling functions return their output as a list.

Lists can be joined using the function c () ; in this and in several other respects they
are “vectors.” Important aspects of the syntax for working with data frames apply also
to lists. Obviously, however, notions of “row” and “column” have no relevance to lists.
See Subsection 14.7.1 for further commentary.
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1.4.1 The attaching of data frames

In repeated computations with the same data frame, it is tiresome to keep repeating the
name of the data frame. By attaching a data frame, its columns can be referred to by
name, without further need to give the name of the data frame. For example:

> Min.passengers

Error: Object "Min.passengers" not found

> attach(Cars93.summary) # Attach data frame Cars93.summary
> Min.passengers

[1] 4 6 4427

> detach(Cars93.summary) # Detach data frame

Detaching data frames that are no longer in use reduces the risk of a clash of variable
names, for example, two different attached data frames that have a column with the name
Min.passengers, or a Min.passengers both in the workspace and in an attached
data frame.

The attaching of a data frame extends the search list, which is the list of “databases”
where R looks for objects. See Subsection 14.1 for more details on this and other uses of
attach().

Column and row names

Use for example rownames (Cars93.summary) to extract the names of rows, here
Compact, Large, Midsize,.... Use for example names (Cars93. summary) or
colnames (Cars93. summary) to extract column names, here Min.passengers
(i.e., the minimum number of passengers for cars in this category), Max . passengers,
No.of .cars, and abbrev.

Subsets of data frames

Data frames are indexed by row and column number. Thus to extract the element in
the 4th row and 2nd column, specify Cars93.summary[4, 2]. Here are additional
examples:

1:3, 2:3] # Rows 1-3 and columns 2-3

Cars93.summary [
Cars93.summary [, 2:3] # Columns 2-3 (all rows)
[

Cars93.summary[, c("No.of.cars", "abbrev")] # cols 2-3, by name

Cars93.summary[, -c(2,3)] # omit columns 2 and 3

The subset () function offers an alternative way to extract rows and columns. For
example, the following extracts the first two rows:

subset (Cars93.summary, subset=1:2) # see help(subset) for details

Note that Cars93.summary [1,] is a data frame. To obtain the vector of values in
row 1, specify unlist (Cars93.summary[1, ]).

Avoid Cars93.summary [4], at least until the subtleties of its use are understood.
See Subsection 14.7.1. If used where Cars93.summary [, 4] was intended, the
calculation may fail or give an erroneous result.
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Assignment of (new) names to the columns of a data frame

The functions names () (or colnames ()) and rownames () ) can be used to assign
new names, perhaps shortening them. For example:

names (Cars93.summary) [3] <- "numCars"
names (Cars93.summary) <- c("minPass", "maxPass", "numCars", "code")

1.4.2 Aggregation, stacking and unstacking

The aggregate () function yields a data frame that has the mean or value of another
specified function for each combination of factor levels. There is an example in Subsection
2.2.2. See also Subsection 14.7.5.

For stacking columns of a data frame, that is, placing successive columns one under
the other, the function stack () is available. The following use of stack (), with data
from the data frame jolbs, will be required for the use of these data in Subsection 2.1.5:

> library (DAAG)
head (jobs, 3)

\Y

BC Alberta Prairies Ontario Quebec Atlantic Date
1752 1366 982 5239 3196 947 95.00000
1737 1369 981 5233 3205 946 95.08333
1765 1380 984 5212 3191 954 95.16667

#

Jobs <- stack(jobs, select = 1:6)
# stack() concatenates selected data frame columns into a
# single column named "values", & adds a factor named "ind"
# that has the names of the concatenated columns as levels.
head (Jobs, 3)
values ind

V V. V. V vV VvV W DN K

1 1752 BC
2 1737 BC
3 1765 BC
> #

For a further example, see Exercise 19.

The unstack() function reverses the stacking operation. For example,
unstack (Jobs) (or more generally, unstack(Jobs, values ~ ind))
recovers the original data frame.

1.4.3* Data frames and matrices

The numeric values in the data frame fossilfuel might alternatively be stored in a
matrix with the same dimensions, that is, 5 rows x 2 columns. The following enters these
same data as a matrix:

fossilfuelmat <- matrix(c (1800, 1850, 1900, 1950, 2000,
8, 54, 534, 1630, 6611), nrow=5)
colnames (fossilfuel) <- c("year", "carbon")
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Another possibility is the use of the function cbind () to combine two or more vectors
of the same length and type together into a matrix, thus:

fossilfuelmat <- cbind(year=c (1800, 1850, 1900, 1950, 2000),
carbon=c (8, 54, 534, 1630, 6611))

More generally, any data frame where all columns hold data that is all of the same
type, that is, all numeric or all character or all logical, can alternatively be stored as a
matrix. Storage of numeric data in matrix rather than data frame format can speed up some
mathematical and other manipulations when the number of elements is large, for example,
of the order of several hundreds of thousands. For further details, see Section 14.6.

Note that:

e Matrix elements are stored in column order in one long vector, that is, columns
are stacked one above the other, with the first column first. It is straightforward, as
explained in Section 14.6, to change between a matrix with m rows and n columns,
and a vector of length mn.

e The extraction of submatrices has the same syntax as for data frames. Thus
fossilfuelmat [2:3,] extracts rows 2 and 3 of the matrix fossilfuelmat.
(Be careful not to omit the comma, causing the matrix to be treated as one long vector.)

e The names () function returns NULL when the argument is a matrix. Note however
the functions rownames () and colnames (), which can be used either with data
frames or matrices.

1.5 Functions, operators and loops

Functions are integral to the use of the R language. User-written functions are used in
exactly the same way as built-in functions. Examples will appear from time to time
through the book. An incidental advantage of putting code into functions is that the
workspace is not then cluttered with objects that are local to the function.

1.5.1 Built-in functions

Common useful functions are:

all() # returns TRUE if all values are TRUE
any () # returns TRUE if any values are TRUE
args () # information on the arguments to a function
cat () # prints multiple objects, one after the other
cumprod () # cumulative product
cumsum () # cumulative sum
diff () # form vector of first differences

# N. B. diff (x) has one less element than x
history () # displays previous commands used
is.factor() # returns TRUE if the argument is a factor
is.na() # returns TRUE i1f the argument is an NA

# NB also is.logical(), is.matrix(), etc.
length () # number of elements in a vector or of a list
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1s() # list names of objects in the workspace

mean () # mean of the elements of a vector

median () # median of the elements of a vector

order () # x[order (x)] sorts x (by default, NAs are last)
print () # prints a single R object

range () # minimum and maximum value elements of vector

sort () # sort elements into order, by default omitting NAs
rev () # reverse the order of vector elements

str() # information on an R object

unique () # form the vector of distinct values

which () # locates 'TRUE’ indices of logical vectors
which.max () # locates (first) maximum of a numeric vector
which.min() # locates (first) minimum of a numeric vector

with () # do computation using columns of specified data frame

Calculations in parallel across all elements of a vector

Subsection 1.1.2 gave an example in which arithmetic was carried out in parallel across
all elements of a vector. Many of R’s functions likewise operate in parallel on all elements
of arrays, matrices and data frames.

The handling of missing values

By default, the functions mean (), sum(), median (), range (), and a number of
other such functions, return NA when applied to vectors in which one or more values is
NA. Note however the parameter setting na . rm=TRUE; that is, remove NAs, then proceed
with the calculation. For example:

> mean(c(l, NA, 3, 0, NA), na.rm=T)
[1] 1.3

When using a function for the first time, consult its help page for information on how it

handles missing values.

Data summary functions — table () and sapply ()

Data summary functions that are useful in working with tables of counts are:

table () # Form a table of counts
xtabs () # Form a table of totals

A simple example of the use of table () is:
> library (DAAG) # tinting is from DAAG

> table (Sex=tinting$sex, AgeGroup=tinting$agegp)
AgeGroup
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Sex younger older
£ 63 28
m 28 63

Note that, by default, table () ignores NAs.

For further details of table (), and for an example of the use of xtabs (), see
Subsection 2.2.1.

The function sapply () applies a nominated function to each column of a data frame,
or to each element of a list. The following demonstrates its use to give the range, for all
columns of the data frame jobs (DAAG):

> sapply(jobs[, -7], range)

BC Alberta Prairies Ontario Quebec Atlantic
[1,] 1737 1366 973 5212 3167 941
[2,] 1840 1436 999 5360 3257 968

The function with ()

The function with () is often a convenient alternative to attaching a data frame, exe-
cuting one or more lines of code, and detaching the data frame. Thus, an alternative to
table (tinting$sex, tintingS$agegp) is:

> with(tinting, table (Sex=sex, AgeGroup=agegp))

AgeGroup

Sex younger older
£ 63 28
m 28 63

For an example of the use of with () where there are several lines of code that make
reference to columns of the data frame, see footnote 2 in Chapter 8.

Utility functions

Type 1s () (or objects ()) to see the names of all objects in the workspace. One can
restrict the names to those with a defined pattern, for example, starting with the letter p.
(Type help (1s), help (grep) and help (glob2rx) for more details.’

By default, the function dir () lists the contents of the working directory. See Sub-
section 14.1.3 for further details on this and other utility functions.

1.5.2 Generic functions and the class of an object

The printing of a data frame requires steps that are different from those for the printing
of a vector of numbers. Yet, in R, the same print () function handles both tasks. In

2## More generally, note
ls (pattern="p") # List object names that include the letter "p"
1ls (pattern=""p") # List object names that start with "p"

# The pattern-matching conventions are those used for grep(),

# which is modeled on the Unix grep command.
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order to make this possible, all objects in R have a class, which can be used to decide
how the printing should be handled.

The print () function does not itself attend to the printing. Instead, if print ()
is called with a factor argument, print.factor () is used. For a data frame
print.data.frame () is used, and so on. Section 14.8 gives further details.
For objects (such as numeric vectors) that do not otherwise have a print method,
print.default () handles the printing.

For simple objects such as numbers and text strings, the class is determined informally.
More complex objects such as data frames carry a tag (an attribute) that specifies the
class. In either case, the function class () can be used to determine the class. See
Section 14.8 for further details.

1.5.3 User-written functions

Here is a function that returns the mean and standard deviation of a set of numbers:

meanANDsd <- function(x = rnorm(lO)){
av <- mean (x)
sdev <- sd(x)
c (mean=av, SD=sdev)

}

Notice that we have given the function the default argument x = rnorm(10). This
makes it possible to run the function to see how it works, without specifying any data; thus:

> meanANDsd ()
mean SD
0.6576272 0.8595572

Here then is the result of applying the function to a specific set of data. (The values that
are set equal to x are the values of distance in the data frame elasticband from
the DAAG package):

> meanANDsd (x = c(148,182,173,166,109,141,166))
mean SD
155.00 24.68

Note that the variables av and sdev are local to the function. They cannot be accessed
outside of the internal function environment.

The structure of functions
The function meanANDsd () has the following structure:

function name argument(s)

P N — —

meanANDsd <- function (;:rnorm (10 )\)

{

Junction av <- mean (x)
body sdev <- sd(x)
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return

value c(av = av, sd = sdev)

If the function body consists of just one statement that gives the return value, the curly
braces ({}) are unnecessary. The return value, which must be a single object, is given
by the final statement of the function body. In the example above, the return value was
the vector consisting of the two named elements mean and sdev. For returning several
objects that are of different types, join them into a list.’

1.5.4 Relational and logical operators and operations

In Subsection 1.3.3, we noted how the relational operator > can be used to create particular
subsets of a given vector. Other relational operators are <, <=, >=, ==, and ! =. The latter
two operators test, respectively, for equality and inequality. For example, consider the
carbon and year columns of the data frame fossilfuel. To extract the carbon
emissions for the year 1900, type:

> attach(fossilfuel)
> carbon [year==1900]
[1] 534

For all years other than 1900, type:

> carbon[year!=1900]
[1] 8 54 1630 6611

For further information on relational operators consult help (Comparison),
help(Logic) and help (Syntax).

The R system also has the flow control capabilities of traditional programming lan-
guages, including if statements. The if function tests the truth of a given statement; if
the statement is true, the succeeding expression is evaluated. An else can be added to
provide an alternative expression to be evaluated in the case where the given statement
is false. For example, the following checks whether the mean for the carbon emissions
exceeds the median:

> if (mean(carbon) > median(carbon)) print ("Mean > Median") else
print ("Median <= Mean")

[1] "Mean > Median"

> detach(fossilfuel)

Here is another example:

distance <- c(148, 182, 173, 166, 109, 141, 166)
dist.sort <- if (distance[l] < 150)
sort (distance, decreasing=TRUE) else sort (distance)
dist.sort

1] 182 173 166 166 148 141 109

— V + Vv V

3## Thus, to return the mean, SD and name of the input vector
## replace c(mean=av, SD=sdev) by
list (mean=av, SD=sdev, dataset = deparse (substitute(x)))
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1.5.5 Selection and matching
A highly useful operator is $in%, used for testing set membership. For example:

> X <- rep(l:5, rep(3,5))
> X
[1] 1 1 1222 33344450565
> x[x %$in% c(2,4)]
[1] 2 2 2 4 4 4

We have picked out those elements of x that are either 2 or 4. To find which elements
of x are 2s, which 4s, and which are neither, use match (), thus:

> match(x, c¢(2,4), nomatch=0)
[1] 0001 11000222000

The nomatch argument specifies the symbol to be used for elements that do not match.
Specifying nomatch=0 is often preferable to the default, which is NA.

1.5.6 Functions for working with missing values

Recall the use of the function is.na (), discussed in Subsection 1.3.5, to identify NAs.
Testing for equality with NAs does not give useful information.

Identification of rows that include missing values

Many of the modeling functions will fail unless action is taken to handle missing values.
Two functions that are useful for handling missing values are complete.cases ()
and na.omit (). The following code shows how we can identify rows that hold missing
values:

> ## Which rows have missing values: data frame science (DAAG)

> science[!complete.cases (science), ]

State PrivPub school class sex like Class
671 ACT public 19 1 <NA> 5 19.1
672 ACT public 19 1 <NA> 5 19.1

The function na.omit () omits any rows that contain missing values. For example:

> dim(science) # check dimensions (rows by columns)
[1] 1385 7

> Science <- na.omit (science)

> dim(Science)

[1] 1383 7

It should be noted that there may be better alternatives to omitting missing values. There
is an extensive discussion in Harrell (2001, pp. 43-51). Often, the preferred approach is
to estimate the values that are missing as part of any statistical analysis. It is important
to consider why values are missing — is the probability of finding a missing value
independent of the values of variables that appear in the analysis?
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1.5.7% Looping
A simple example of a for loop is:*

> for (i in 1:4) print(i)
(1] 1

[1]
[1]
[1]

W N

Here is a way to estimate the increase in population for each of the Australian states and
territories between 1917 and 1997, relative to 1917:

## Relative population increase in Australian states: 1917-1997
## Data frame austpop (DAAG)
relGrowth <- numeric(8) # numeric (8) creates a numeric vector
# with 8 elements, all set equal to 0
for (j in seq(2,9)) {
relGrowth[j-1] <- (austpopl[9, jl-austpopll, jl)/
austpop[1, jl1}
names (relGrowth) <- names (austpopl[c(-1,-10)1)
# We have used names() to name the elements of relGrowth

The result is:

> relGrowth # Output is with options(digits=3)
NSW Vic Qld SA WA Tas NT ACT
2.30 2.27 3.98 2.36 4.88 1.46 36.40 102.33

Often, there is a better alternative to the use of a loop. See Subsection 14.3.3.

1.6 Graphics in R

Later chapters will make extensive use both of base graphics (using plot (), etc.) and of
the more stylized graphs provided by lattice graphics. This section is a brief introduction
to plot () and allied functions that are included in R’s base graphics. Section 1.7 is a
brief introduction to the more stylized graphical functions in the lattice package.

Base graphics are provided by the graphics package that is automatically attached
at startup. It includes the function plot () for creating scatterplots, and the functions
points (), lines (), text (), mtext () and axis () that add to existing plots.
There is a wide range of other functions. To see some of the possibilities that R offers,
enter:

demo (graphics)
Press the Enter key to move to each new graph.
#Other looping constructs are
repeat <expression> # Place break somewhere inside

while (x > 0) <expressionx> # Or (x < 0), or etc.
Here <expressions> is an R statement, or a sequence of statements that are enclosed within braces.
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1.6.1 The function plot ( ) and allied functions
The basic command is:
plot(y ~ x)
or:
plot (x, vy)

where x and y must be the same length.

Adding points, lines, text and axis annotation
The data frame primates (DAAG) holds the following data:

Bodywt Brainwt

Potar monkey 10.0 115
Gorilla 207.0 406
Human 62.0 1320
Rhesus monkey 6.8 179
Chimp 52.2 440

The following plots Bodywt against Brainwt:
plot (Brainwt ~ Bodywt, data=primates)

This plot can be improved by putting labels on the points, as in Figure 1.2:

## Place labels on points
attach (primates)
plot (Brainwt Bodywt, xlim=c (0, 300))
# Specify xlim so that there is room for the labels

text (Brainwt
# pos=4 places text to the right of the points. Other

Bodywt, labels=row.names (primates), pos=4)

# possibilities are: 1: below; 2: to the left; 3: above

1]
(VR

Figure 1.2  Brain weight versus body weight, for the primates data frame.
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Additionally, for Figure 1.2, the y-axis limits were extended slightly and small vertical
offsets were incorporated that raised the label Rhesus monkey, with a corresponding
lowering of the label Potar monkey.’

Use the points () function to add points to a plot. Use the 1ines () function to
add lines to a plot. Actually these functions are essentially the same, differing only in the

default argument for the parameter type. The default for points () is type = "p",
and that for 1ines () is type = "1". (Explicitly specifying type = "p" causes
either function to plot points, type = "1" gives lines.)

The function mtext (text, side, line,...) adds text in the margin of the

current plot. The sides are numbered 1 (it x-axis), 2 (it y-axis), 3 (top) and 4 (right vertical
axis). The axis () function gives fine control over axis ticks and labels. The setting
adj=0 positions the left extreme of the string at the left margin, adj=1 positions its
right extreme on the right margin, while the default setting of adj=0.5 centers the text
at the midpoint.

Fine control — parameter settings

The parameter pch controls the choice of plotting symbol. The parameter cex (“character
expansion”) controls the size of the plotting symbol, and col controls the color. These
parameters can be set when a function such as plot() or points() is called, in which
case they apply only to that function call. Plate 1 demonstrates some of the possibilities.
(Note that the function paste () turns the vector of numerical values 0:12 into a
vector of character strings with elements "0", "1",..., "12". An alternative to
paste(0:12) is as.character(0:12).)

The parameters x1im and y1im determine the limits in the x and y directions respec-
tively. Where x1 im and/or y1lim is not set explicitly, the range of data values determines
the limits. In any case, the axis is by default extended by 4% relative to those limits. The
setting pty="s" gives a square plot.

To change parameter settings more permanently, use the par () function. Thus,
we can increase the plot and character symbol size 20% above the default by us-
ing par (cex=1.2). Such settings revert to their defaults for any new device that
is opened. There are a number of parameters which can only be changed in this way
(including pty="s"), and some that cannot be changed in this way.

It is good practice to store the existing settings, so that they can be restored later. For
this, specify, for example:

oldpar <- par(cex=1.25) # Use par(oldpar) to restore
# previous settings

The size of the axis annotation can be controlled, independently of the setting of cex,
by specifying a value for cex.axis. Similarly, cex.labels may be used to control
the size of the axis labels.

Splot (Brainwt ~ Bodywt, xlim=c (0, 300), ylim=c(0,1500))

text (x=Bodywt, y=Brainwt+c(-.125,0,0,.125,0)*par()scxyl[2],
labels=row.names (primates), pos=4)

detach (primates)
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A number of figures in later chapters use par (mfrow=c (m,n)) to get an m by n
layout of graphs on a page. For example, the two by two layout of plots in Figure 2.1 of
Chapter 2 was obtained using par (mfrow=c (2,2)).

Type help (par) to get a list of parameter settings that are available with par ().

1.6.2 The use of color
Try the following:

theta <- (1:50)*0.92

plot (theta, sin(theta), col=1:50, pch=16, cex=4)

points (theta, cos(theta), col=51:100, pch=15, cex=4)

palette () # Names of the colors in the current palette

Points are in the eight distinct colors of the default palette, one of which is “white.” These
are recycled as necessary.

The default palette is a small selection from the built-in colors. The function colors ()
returns the 657 names of the built-in colors, some of them aliases for the same color.
The following repeats the plots above, but now using the first 100 of the 657 names for
built-in colors:

theta <- (1:50)*0.92
plot (theta, sin(theta), col=colors() [1:50], pch=16, cex=4)
points (theta, cos(theta), col=colors() [51:100], pch=15, cex=4)

Where data from a two-way layout are presented on the one panel, different symbols
can be used for the different levels of one of the classifying factors, with different colors
used for the different levels of the other classifying factor. Care may be required in the
choice of colors, so that the colors show with clarity the distinctions that are required,
and do not clash. There is further discussion of color palettes in Subsection 14.11.3.

1.6.3 The importance of aspect ratio

Attention to aspect ratio is often crucial for creating graphs that reveal important features
of the data. The following simple graphs highlight this point:

## Plot sin(theta) vs theta, at regularly spaced values of theta
## sin() expects angles to be in radians

# multiply angles in degrees by pi/180 to get radians

plot ((0:20)*pi/10, sin((0:20)*pi/10))

plot ((1:50)*0.92, sin((1:50)*0.92))

Readers might show the second of the graphs that now follows to their friends, asking
them to identify the pattern!

By holding with the left mouse button on the lower border until a double-sided arrow
appears and dragging upwards, the vertical dimension of the graph sheet can be shortened.
If sufficiently shortened, the pattern becomes obvious. The eye has difficulty in detecting
patterns of change where the angle of slope is close to the horizontal or close to the
vertical.
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Then try this:

par (mfrow=c(3,1)) # Gives a 3 by 1 layout of plots
plot ((1:50)*0.92, sin((1:50)*0.92))
par (mfrow=c(1,1))

See Section 2.1 for further examples.

1.6.4 Dimensions and other settings for graphics devices

The shape of the graph sheet can be set when a new graphics page is started. On
Microsoft Windows systems, the function windows () starts a new graphics page on
the screen display. On Unix X11 systems, specify x11 (). On recent implementations
for Macintosh OS X, use quartz (). These functions take arguments height (in
inches), width (in inches) and pointsize (there are 72.27 to an inch). The setting of
pointsize, with a default that varies between devices, determines character heights.°
See help (Devices) for a full list of the devices, including hard copy devices, that
are available on the particular system that is in use.

1.6.5 The plotting of expressions and mathematical symbols

Both text () and mtext () allow replacement of the character string by a mathematical
expression. In base graphics, character strings can be replaced, whenever they appear
in graphics commands, by expressions. For this purpose an expression is more general
than an algebraic expression. Thus, the following code gives a simplified version of
Figure 1.3:

symbols (0, 0, circles=0.95, bg="gray", xlim=c(-1,2.25), ylim=c

(-1,1), inches=FALSE) # inches=FALSE: radius is in x-axis units
text (1.75, 0, expression("Area" == pi*phantom("’")*italic(xr)"2))

# Use ’'==' to insert ’'='.

# Notice the use of phantom("’") to insert a small space.

By default, symbols (),likeplot () ,startsanew graphics frame. Seehelp (symbols)
for details of the symbols, other than circles, for which there is provision.’

Type help (plotmath) to get details of available forms of expression. Run
demo (plotmath) to see some of the possibilities for plotting mathematical sym-
bols. There are further brief details in Section 14.11. Figures 3.1, 5.4, 10.7 and 14.2 will
demonstrate the use of expressions in annotation and/or labeling.

% On Microsoft Windows systems, it is the relative sizes of these parameters that primarily matter for screen display or
for incorporation into Word and similar programs. Once pasted (from the clipboard) or imported into Word, graphs can
be enlarged or shrunk by pointing at one corner, holding down the left mouse button, and pulling.

"## To add the double-headed arrow and associated label, specify:
arrows (0, 0, -0.95, 0, length=.1, code=3) # code=3: arrows at both ends

# length is the length of the arrow head (in inches!)
text (-0.45, -strheight ("R"), expression(italic(r) == 0.95))
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Figure 1.3  The function symbols () was used to plot the circle. The annotation to the right of
the circle used text (), with an expression supplied as the 1abels argument.

1.6.6 Identification and location on the figure region

Two functions are available for this purpose. Draw the graph first, then call whichever
of these functions is required:

e identify () labels points;
* locator () prints out the co-ordinates of points.

In either case, the user positions the cursor at the location for which co-ordinates are

required, and clicks the left mouse button. Depending on the platform, the identification or

labeling of points may be terminated by pointing outside of the graphics area and clicking,

or by clicking with a button other than the first. If continued, the process will terminate

after some default number n of points, which the user can set. (For identify () the

default setting is the number of data points, while for locator () the default is 500.)
As an example, identify two of the plotted points on the primates scatterplot:

attach (primates)

plot (Bodywt, Brainwt)

identify (Bodywt, Brainwt, labels=row.names (primates), n=2)
# Now click near 2 plotted points

detach (primates)

1.6.7 Plot methods for objects other than vectors

We have seen how to plot a numeric vector y against a numeric vector x. The plot function
is a generic function that also has special methods for “plotting” various different classes
of object. For example, plot () accepts a data frame as argument. Try:

## Use plot() with data frame trees (datasets)
plot (trees) # Gives a 3 x 3 layout of pairwise
# scatterplots among the three variables

This has the same effect as the function call pairs (trees).

The scatterplot matrix is a primary tool for the display of multivariate data. In Chap-
ter 6 it will be used extensively, starting in Subsection 6.1.3, for scrutiny of regres-
sion data. It will be an important tool, also, in the account of multivariate methods in
Chapter 12.
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1.6.8 Lattice graphics versus base graphics — xyplot () versus plot ()

A Brainwt versus Bodywt scatterplot for the primates data, such as was given
earlier, might alternatively have been obtained using the function xyplot () from the
lattice package. The following are pretty much equivalent:

## Plot Brainwt vs Bodywt, data frame primates (DAAG)

plot (Brainwt Bodywt, data=primates) # base graphics
# ’'base’ graphics use the abilities of the graphics package
library (lattice)

xyplot (Brainwt Bodywt, data=primates) # lattice

The function xyplot (), and other functions in the lattice package, are commonly
used to give row by column layouts of panels, in which the different panels are for
different subsets of the data. Additionally, points can be distinguished, within panels,
according to some further partitioning of the data. Section 1.7 will give further details,
and there will be extensive use of lattice functions in Chapter 2.

1.6.9 Further information on graphics

More detailed information on R’s graphics abilities will be given in later chapters. Several
further graphics functions will be introduced in Section 2.1. Note especially hist () and
boxplot (). See also Murrell (2005); Sarkar (2002).

In addition to the discussion of lattice graphics in Section 1.7, note the more detailed
information in Section 14.11 (on base graphics) and in Section 14.12 (on detailed control
of lattice graphics parameters). Section 14.11 has brief notes on the relatively specialist
abilities of the grid package, on which lattice is built.

1.6.10 Good and bad graphs

There is a difference!

Draw graphs so that they are unlikely to mislead. Ensure that they focus the eye on
features that are important, and avoid distracting features. Lines that are intended to attract
attention can be thickened.

In scatterplots, the intention is typically to draw attention to the points. If there are not
too many of them, the use of heavy black dots or other filled symbols will focus attention
on the points, rather than on a fitted line or curve or on the axes. If they are numerous and
there is substantial overlap, it then makes better sense to use open symbols. Where there
is extensive overlap, ink will fill that region more densely. If there is so much overlap
that the use of black symbols would merge most points into a dense black mass, use of
a shade of gray may be helpful.®

Where the horizontal scale is continuous, patterns of change that are important to
identify should bank at an angle of roughly 45° above or below the horizontal. Depending
on the context, angles in the approximate range 20° to 70° may be satisfactory, and the

84## Example of plotting with different shades of gray
plot(1l:4, 1:4, pch=16, col=c("gray20", "gray40", "gray60", "gray80"), cex=3)
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aspect ratio should be chosen accordingly. (This was the point of the sine curve example
in Subsection 1.6.3.) See Cleveland (1994) for further commentary.

Colors, or gray scales, can often be used to distinguish groupings in the data. Bear in
mind that the eye has difficulty in focusing simultaneously on widely separated colors
that are close together on the same graph.

1.7 Lattice (trellis) graphics

Many of the simpler types of analysis that this book will describe focus on the com-
parison of different groups within the data. Because functions in the lattice package
make it easy to provide graphs that allow ready comparison between such groupings they
are, often, almost indispensable in allowing a visual assessment that complements the
analysis. The relatively automatic manner in which lattice functions give many types of
highly structured graph has a cost — changes to the basic layout and structure may be
complicated.

Figure 1.4 is a simple example that demonstrates the possibilities of the function
xyplot () from the lattice package. Different symbols are used for males and females,
while different panels are used for different categories of athlete. The code used for
Figure 1.4 will be given and explained shortly.

Lattice graphics allows the use of the layout on the page, the choice of plotting symbols
and colors of symbols, and the layout with panels, to represent important aspects of data
structure.

Panels of scatterplots — the use of xyplot ()

The function xyplot () is one of an extensive list of functions, with similar syntax and
conventions. Figure 1.4 demonstrates its use. Data in the data frame ais give various
measurements on 202 elite Australian athletes who trained at the Australian Institute of
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Figure 1.4 Height (ht) versus Weight (wt), for two categories of athlete. The different plotting
symbols distinguish males from females.
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Sport. In Figure 1.4, attention was limited to athletes from rowing and swimming. The
two panels distinguish the two sports, while different shades distinguish females from
males:

trellis.device (color=FALSE)
here <- ais$sport %in% c("Row", "Swim")

xyplot (ht ~ wt | sport, groups=sex, pch=c(4,1), aspect=1,
auto.key=1list (columns=2), subset=here, data=ais)

dev.off () # Close device

trellis.device() # Start new device, by default with color=TRUE

In the graphics formula, the vertical bar indicates that what follows, in this case
sport, is a conditioning variable or factor, that is, the graphical information is broken
down according to its levels. The parameter aspect controls the ratio of dimensions in
the y and x directions.

If the output device has the setting color=FALSE, the default is to use different
symbols, rather than different shades or different colors, for the different groups.
To generate different colors for the different groups, use color=TRUE. The setting
auto.key=1ist (columns=2) generates a simple key, with the two key items side
by side in two columns rather than one under another in a single column as happens with
the default setting columns=1.

Selected lattice functions

dotplot (factor 7 numeric,..) # 1-dim. Display

stripplot (factor ™ numeric,..) # 1-dim. Display

barchart (character ~ numeric,..)

histogram( ~ numeric, ..)

densityplot ( ~ numeric,..) # Density plot

bwplot (factor © numeric,..) # Box and whisker plot
ggmath (factor 7 numeric, ..) # normal probability plots
splom( ~ dataframe, ..) # Scatterplot matrix
parallel ( ~ dataframe, ..) # Parallel coordinate plots
cloud (numeric ~ numeric * numeric, ...) # 3D surface
wireframe (numeric ~ numeric * numeric, ...) # 3D scatterplot

In each instance, users can add conditioning variables.
Further points to note about the lattice package are:

* Because the lattice package implements the trellis style of graphics, several of the
functions that control stylistic features (color, plot characters, line type, etc.) have
trellis (where lattice might have seemed more natural) as part of their name.

e Lattice graphics functions cannot be mixed (or not easily) with the graphics func-
tions discussed earlier in Section 1.6. It is not possible to use points (), lines (),
text (), etc., to add features to a plot that has been created using a lattice graph-
ics function. Instead, it is necessary to use functions that are special to latfice —
lpoints (), llines (), ltext (), larrows () and lsegments () .
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Inclusion of lattice graphics functions in user functions

The function xyplot () does not itself print the graph. Instead, it returns an object of
class trellis which, if the statement is typed on the command line, is then “printed”
by the function print.trellis (). Thus, typing:

xyplot (ht ~ wt | sport, data=ais)
on the command line is equivalent to:
print (xyplot (ht ~ wt | sport, data=ais))

In a function, unless the lattice command appears as the final statement of the function,
the print statement must be explicit, that is:

print (xyplot (ht ~ wt | sport, data=ais))
or equivalently:

ais.trellis <- xyplot(ht ~ wt | sport, data=ais)
print (ais.trellis)

Interaction with lattice plots

Subsection 14.12.1 describes, briefly, possibilities for interacting with lattice plots.

1.8 Additional points on the use of R
*Workspace management strategies

The working directory is the directory in which R will by default look for files, and save
files. The workspace is the collection of R objects that are listed upon typing 1s () or
objects (). Objects that the user creates are by default stored in the user’s workspace.
The default choice of working directory, usually an R installation directory, is not a good
choice for long-term use, and should be changed.

In a long session in a working directory, cautious users will from time to time save
the current workspace image as a backup, perhaps first using rm () to remove objects
that are no longer required. The command save . image () ) will save everything in the
workspace, by default into a file with the name .RData in the working directory. This
can alternatively be done by clicking on the relevant menu item, where such a menu is
available.

The working directory can be changed and a new workspace loaded in the course of a
session, either using the menu system, if available, or using command line instructions.
See Subsection 14.1.2.

It is good practice to use a separate working directory for each different project. The
ability to keep multiple image files in the one directory adds further flexibility. Use either
.RData or .rda as the extension for such files.
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Forward slashes and backslashes

Note that R follows the Unix conventions and uses forward slashes internally, where
Windows expects backslashes. Thus to read in the file fuel.txt that is in the directory:
c:\data, type

fossilfuel <- read.table("c:/data/fuel.txt")

An alternative is to use two backslashes in place of each forward slash.

Setting the number of decimal places in output

Often, calculations will, by default, give more decimal places of output than are useful.
In the output that we give, we often reduce the number of decimal places below what R
gives by default. The options () function can be used to make a global change to the
number of significant digits that are printed. For example:

> sgrt (10)

[1] 3.162278

> options(digits=2) # Change until further notice,
# or until end of session.

> sgrt (10)

[1] 3.2

Note that options (digits=2) expresses a wish, which R will not always obey!
Rounding will sometimes introduce small inconsistencies. For example, in Section 4.4,
with results rounded to two decimal places:
372

— =5.57
12

372
2% |25 = 7.88.
V2 12

Note however that ~/2 x 5.57 = 7.87.

Other option settings

Type help(options) to get further details. We will meet another impor-
tant option setting in Chapter 5. (The output that we present uses the setting
options (show.signif.stars=FALSE), where the default is TRUE. This affects
output in Chapter 5 and later chapters.)

Cosmetic issues

In our R code, we write, for example, a <- Db rather than a<-b, and y ~ x rather
than y~x. This is intended to help readability, perhaps a small step on the way to literate
programming. Such presentation details can make a large difference when others use
the code.
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Where output is obtained with the simple use of print () or summary (), we have
in general included this as the first statement in the output.

*Common sources of difficulty

Here we draw attention, with references to relevant later sections, to common sources of
difficulty. We list these items here so that readers have a point of reference when it is
needed.

e In the use of read.table () for the entry of data that have a rectangular lay-
out, it is important to tune the parameter settings to the input data set. See
help (read.table) and Subsection 14.2.1 for further details.

* Where read.table () complains that lines do not all have the same number of
elements (fields), use read. table () with the parameter setting £111=TRUE. Then
display and carefully check the input data frame. Blank fields will be implicitly
added, as needed to ensure that all records have an equal number of fields. Note also
the function count.fields (), which counts the number of fields that the input
function is able to identify in each record. Be aware that the default parameter settings
of read.table () differ somewhat from the settings used by count .fields ().

* Character vectors that are included as columns in data frames become, by default,
factors. There are implications for the use of read.table (). See Subsection 14.2.1
and Section 14.4.

» Factors can often be treated as vectors of character strings, with values given by the
factor levels. In any particular context, check carefully to determine whether it is the
integer values or the levels that are used. See Section 14.4.

* The handling of missing values is a common source of difficulty. Refer to Section 14.5.

e The syntax fossilfuel[, 2] extracts the second column from the data
frame fossilfuel, yielding a numeric vector. Observe however that
fossilfuel[2, ] yields a data frame, rather than the numeric vector that the
user may require. Specify unlist (fossilfuel [2, 1) to obtain the vector of nu-
meric values in the second row of the data frame. See Subsection 14.7.1. For another
instance (use of sapply ()) where the difference between a numeric data frame and
a numeric matrix is important, see Subsection 141.

» It is inadvisable to assign new values to a data frame while it is attached. Assignment
to the data frame by name creates a new local copy, and later references that explicitly
use the name of the data frame will be to that local copy. Where the name of a column
appears on the right-hand side of an assignment, values will, unless an object of that
name has been created in the workspace, be taken from the original data frame. There
is obvious potential for confusion and erroneous calculations.

» Data objects that individually or in combination occupy a large part of the available
computer memory can slow down all memory-intensive computations. See further
Subsection 14.1.2 for comment on associated workspace management issues. See also
the opening comments in Section 14.6. Note that most of the data objects that are used
for our examples are small and thus will not, except where memory is very small,
make much individual contribution to demands on memory.
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Variable names in data sets

We will refer to a number of different data sets, many of them data frames in our DAAG
package. When we first introduce the data set, we will give both a general description of
the columns of values that we will use, and the names used in the data frame. In later
discussion, we will use the name that appears in the data frame whenever the reference
is to the particular values that appear in the column.

1.9 Recap

* One use of R is as a calculator, to evaluate arithmetic expressions. Calculations can
be carried out in parallel, across all elements of a vector at once.

* Use g () to quit from R. If newly created objects are to be retained, save the workspace
upon quitting.

» Useful help functions are help () (for getting information on a known function),
help.search () (for searching for a word that is used in the header for the help
file), apropos () (for identifying functions that include a particular character string
as part of their names) and help.start (for starting a browser window that gives
access to a variety of help information).

* The function ¢ () (concatenate) joins vector elements together into vectors. It may be
used for logical and character vectors, as well as for numeric vectors.

* For simple forms of scatterplot, note the plot () function. There is a wide range of
plotting abilities, beyond those offered by plot ().

* Important R data structures are vectors, lists and data frames. Vectors may be of mode
numeric, or logical, or character. Factors have mode “numeric” and class “factor.”

* Data frames group vectors, which must all have the same length, together as columns
of a single R object that is a list of vectors. The different columns of a data frame may
be any mix of logical, numeric, character, or factor. This is one of several differences
from matrices, where all elements must have the same vector mode.

» Missing values may require special care.

* read.table () is the primary function for inputting rectangular files.

* The attach () function can be used to give access to the columns of a data frame,
without the need to name the data frame whenever a column is accessed.

* The search path determines the order of search for objects that are accessed from the
command line, or that are not found in the environment of a function that accesses them.

e The R system has a wide range of generic functions, including print (), plot ()
and summary (). For such functions, the result depends on the class of object that is
given as argument.

» Factors, used for categorical data, are fundamental to the use of many of the R modeling
functions. Ordered factors are appropriate for use with ordered categorical data.

* Option settings, which users can change at their discretion, control such matters as
the number of significant digits that will be displayed in output.

1.10 Further reading

An important reference is the R Development Core Team’s Introduction to R. This
document, which is regularly updated, is included with the R distributions. It is
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available from the CRAN sites as an independent document. (For a list of sites, go
to http://cran.r-project.org.) Books that include an introduction to R include
Dalgaard (2002), Fox (2002).

At a more advanced level note Venables and Ripley (2002), which covers both S-PLUS
and R. This will be an important reference throughout this book.

See also documents, including Maindonald (2001), that are listed under Contributed
Documentation on the CRAN sites. For a careful detailed account of the R and S
languages, see Venables and Ripley (2000).

Books and papers that set out principles of good graphics include Cleveland (1993,
1994), Tufte (1997), Wainer (1997), Wilkinson and Task Force on Statistical Inference
(1999). See also the imaginative uses of R’s graphical abilities that are demonstrated in
Murrell (2005). Maindonald (1992) comments very briefly on graphical design.

1.10.1 References for further reading

Cleveland, W.S. 1993. Visualizing Data. Hobart Press.

Cleveland, W.S. 1994. The Elements of Graphing Data, revised edn. Hobart Press.

Dalgaard, P. 2002. Introductory Statistics with R. Springer-Verlag.

Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Sage Books.

Maindonald, J. H. 1992. Statistical design, analysis and presentation issues. New Zealand
Journal of Agricultural Research 35: 121-41.

Maindonald, J. H. 2004. Using R for Data Analysis and Graphics. Available as a pdf file
at http://wwwmaths.anu.edu.au/johnm/r/usingR.pdf

Murrell, P. 2005. R Graphics. Chapman and Hall/CRC. http://www.stat.
auckland.ac.nz/paul/RGraphics/rgraphics.html

R Development Core Team. An Introduction to R. This document is available from CRAN
sites. For a list, go to http://cran.r-project.org

Tufte, E. R. 1997. Visual Explanations. Graphics Press.

Venables, W.N. and Ripley, B.D. 2000. S Programming. Springer-Verlag.

Venables, W.N. and Ripley, B.D. 2002. Modern Applied Statistics with S, 4th edn.
Springer-Verlag. See also “R” Complements to Modern Applied Statistics with S-
PLUS, available from http://www.stats.ox.ac.uk/pub/MASS4/

Wainer, H. 1997. Visual Revelations. Springer-Verlag.

Wilkinson, L. and Task Force on Statistical Inference. 1999. Statistical methods in psy-
chology journals: guidelines and explanation. American Psychologist 54: 594-604.

1.11 Exercises

1. The following table gives the size of the floor area (ha) and the price ($A000), for 15 houses
sold in the Canberra (Australia) suburb of Aranda in 1999.
area sale.price
1 694 192.
2 905 215.
3 802 215.
4 1366 274.
5 716 112.
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6 963 185.0
7 821 212.0
8 714 220.0
9 1018 276.0
10 887 260.0
11 790 221.5
12 696 255.0
13 771 260.0
14 1006 293.0

15 1191 375.0
Type these data into a data frame with column names area and sale.price.

(a) Plot sale.price versus area.

(b) Use the hist () command to plot a histogram of the sale prices.

(c) Repeat (a) and (b) after taking logarithms of sale prices.

(d) The two histograms emphasize different parts of the range of sale prices. Describe the
differences.

The orings data frame gives data on the damage that had occurred in US space shuttle
launches prior to the disastrous Challenger launch of January 28, 1986. The observations in
rows 1, 2, 4, 11, 13, and 18 were included in the pre-launch charts used in deciding whether
to proceed with the launch, while remaining rows were omitted.

Create a new data frame by extracting these rows from orings, and plot Total incidents
against Temperature for this new data frame. Obtain a similar plot for the full data set.

For the data frame possum (DAAG package):

(a) Use the function str () to get information on each of the columns.
(b) Using the function complete.cases (), determine the rows in which one or more
values is missing. Print those rows. In which columns do the missing values appear?

For the data frame ais (DAAG package):

(a) Use the function str () to get information on each of the columns. Determine whether
any of the columns hold missing values.

(b) Make a table, that shows the numbers of males and females for each different sport. In
which sports is there a large imbalance (e.g. by a factor of more than 2:1) in the numbers
of the two sexes?

Create a table that gives, for each species represented in the data frame rainforest, the
number of values of branch that are NAs, and the total number of cases.
[Hint: Use either !is.na () or complete.cases () to identify NAs.]

Create a data frame called Manitoba.lakes that contains the lake’s elevation (in
meters above sea level) and area (in square kilometers) as listed below. Assign the names
of the lakes using the row.names () function.

elevation area

Winnipeg 217 24387
Winnipegosis 254 5374
Manitoba 248 4624
SouthernIndian 254 2247

Cedar 253 1353
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Island 227 1223
Gods 178 1151
Cross 207 755
Playgreen 217 657

Plot lake area against elevation, identifying each point by the name of the lake. Because of
the outlying value of area, use of a logarithmic scale is advantageous.

(a) Use the following code to plot 1log2 (area) versus elevation, adding labeling
information:
attach(Manitoba.lakes)
plot (log2 (area) ~ elevation, pch=16, xlim=c(170,280))
# NB: Doubling the area increases log2(area) by 1.0
text (log2 (area) ~ elevation,
labels=row.names (Manitoba.lakes), pos=4)
text (log2 (area) ~ elevation, labels=area, pos=2)
title("Manitoba’s Largest Lakes")
detach (Manitoba.lakes)
Devise captions that explain the labeling on the points and on the y-axis. It will be
necessary to explain how distances on the scale relate to changes in area.
(b) Repeat the plot and associated labeling, now plotting area versus elevation, but
specifying Log="y" in order to obtain a logarithmic y-scale. [NB: The log="y" setting
is automatic, , after its initial use with plot (), for the subsequent use of text ().]

Look up the help for the R function dotchart (). Use this function to display the areas of
the Manitoba lakes (a) on a linear scale, and (b) on a logarithmic scale. Add, in each case,
suitable labeling information.

Using the sum () function, obtain a lower bound for the area of Manitoba covered by water.

The second argument of the rep () function can be modified to give different patterns. For
example, to get four 2s, then three 3s, then two 5s, enter:
rep(c(2,3,5), c(4,3,2))

(a) What is the output from the following command?
rep(c(2,3,5), 4:2)

(b) Obtain a vector of four 4s, four 3s and four 2s.

(c) The argument length.out can be used to create a vector whose length is
length.out. Use this argument to create a vector of length 50 that repeats, as many
times as necessary, the sequence: 3 1 1 5 7

(d) The argument each can be used to form a vector in which each element in the first
argument is replaced by the specified number of repeats of itself. Use this to create a
vector in which each of 3 1 1 5 7 is replaced by four repeats of itself. Show, also,
how this can be done without use of the argument each.

The ~ symbol denotes exponentiation. Consider the following.
1000* ((1+0.075)"5 - 1) # Interest on $1000, compounded
# annually at 7.5% p.a. for five years

(a) Evaluate the above expression.
(b) Modify the expression to determine the amount of interest paid if the rate is 3.5% p.a.
(c) Explain the result obtained when the exponent 5 is changed to seqg (1, 10).
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Run the following code:
gender <- factor(c(rep("female", 91), rep("male", 92)))
table (gender)
gender <- factor(gender, levels=c("male", "female"))
table (gender)
gender <- factor (gender, levels=c("Male", "female"))

# Note the mistake

# The level was "male", not "Male"
table (gender)
rm(gender) # Remove gender
Explain the output from the final table (gender).

Write a function that calculates the proportion of values in a vector x that exceed some value
cutoff.

(a) Use the sequence of numbers 1, 2,..., 100 to check that this function gives the result
that is expected.

(b) Obtain the vector ex01.36 from the Devore5S package. These data give the times
required for individuals to escape from an oil platform during a drill. Use dotplot ()
to show the distribution of times. Calculate the proportion of escape times that exceed 7
minutes.

The following gives plots of four different transformations of the Animals data from the
MASS package. What are the different aspects of the data that these different graphs emphasize?
Consider the effect on low values of the variables, as contrasted with the effect on high values.
par (mfrow=c(2,2)) # 2 by 2 layout on the page

library (MASS) # Animals is in the MASS package
attach(Animals)

plot (body, brain)

plot (sqgrt (body), sqgrt (brain))

plot ((body) 0.1, (brain)”~0.1)

plot (log(body), log(brain))

detach (Animals)

par (mfrow=c (1,1)) # Restore to 1 figure per page

Using the data frame cottonworkers (DAAG package), use the function abbreviate ()
to obtain six-character abbreviations for the row names. Plot surveyl1889 against
censusl889, and plot avwage*surveyl889 against avwage*censusl1889, in each
case using the six-letter abbreviations as labels for the points. How should each of
these graphs be interpreted? [Hint: Be sure to specify I (avwage*surveyl1889) and
I (avwage*census1889) when plotting the second of these graphs.]

The data frame socsupport (DAAG) has data from a survey on social and other kinds of
support, for a group of university students. It includes scores on the Beck depression inventory
(BDI) measure of depression. The following are two alternative plots of BDI against age.
plot (BDI ~ age, data=socsupport)

plot (BDI ~ unclass(age), data=socsupport)

For examination of cases where the score seems very high, which plot is more useful? Explain.
Why is it necessary to be cautious in making anything of the plots for students in the three
oldest age categories (25-30, 31-40, 40+)?
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Functions that can be useful for creating labels for points on graphs are abbreviate ()
which can be used to take just the first few characters of names, and paste () which can
be used to make composite labels. A composite label might, for the data from the data frame
socsupport of Exercise 15, give information about gender, country and row number.
Try the following:

attach (socsupport)

genderl <- abbreviate (gender, 1)

table (genderl) # Examine the result

country3 <- abbreviate (country, 3)

table (country3) # Examine the result

Now use the following to create a label that can be used with text () or with identify ():
num <- seq(along=gender) # Generate row numbers

lab <- paste(genderl, country3, num, sep=":")

Use identify () to place labels on all the points that the boxplots have identified as
“outliers.” When this exercise is complete, be sure to type:

detach (socsupport)

Given a vector x, the following demonstrates alternative ways to create a vector of numbers
from 1 through n, where n is the length of the vector.

x <- c¢(8, 54, 534, 1630, 6611)

seq(l, length(x))

seq (along=x)

Now set x <- NULL and repeat each of the calculations seg(1l, length(x)) and
seq(along=x). Which version of the calculation should be used if the preference is to
return a vector of length 0 in the event that the argument that is supplied happens to be NULL.

The Rabbit data frame in the MASS library contains blood pressure change measurements on
five rabbits (labeled as R1, R2, ..., R5) under various control and treatment conditions. Read
the help file for more information. Use the unstack () function (three times) to convert
Rabbit to the following form:

Treatment Dose R1 R2 R3 R4 R5
1 Control 6.25 0.50 1.00 0.75 1.25 1.5
2 Control 12.50 4.50 1.25 3.00 1.50 1.5
3 Control 25.00 10.00 4.00 3.00 6.00 5.0
4 Control ©50.00 26.00 12.00 14.00 19.00 16.0
5 Control 100.00 37.00 27.00 22.00 33.00 20.0
6 Control 200.00 32.00 29.00 24.00 33.00 18.0
7 MDL 6.25 1.25 1.40 0.75 2.60 2.4
8 MDL 12.50 0.75 1.70 2.30 1.20 2.5
9 MDL 25.00 4.00 1.00 3.00 2.00 1.5
10 MDL 50.00 9.00 2.00 5.00 3.00 2.0
11 MDL 100.00 25.00 15.00 26.00 11.00 9.0
12 MDL 200.00 37.00 28.00 25.00 22.00 19.0

The data frame v1t (DAAG) consists of observations taken on a video lottery terminal during
a two-day period. Eight different objects can appear in each of three windows. Here, they
are coded from 0 through 7. Different combinations of the objects give prizes (although with
small probability). The first four rows are:
> head(vlt, 4) # first few rows of vlt

windowl window2 window3 prize night
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1 2 0 0 0 1
2 0 5 1 0 1
3 0 0 0 0 1
4 2 0 0 0 1
> #

Use stack () to convert the first three columns of this data set to a case-by-variable format,
then creating a tabular summary of the results, broken down by window.
vltev <- stack(vlt[, 1:3])
head (vltcv) # first few rows of vltcv
table (vlitcvsvalues, vltcvs$sind)
# More cryptically, table(vltcv) gives the same result.
Does any window stand out as different?

Convert the data in 1ris3 (datasets package) to case-by-variable format, with column names
“Sepal.Length,” “Sepal.Width,” “Petal.Length,” “Petal. Width” and “Species.”

21X The following code uses the for () looping function to plot graphs that compare the relative

population growth (here, by the use of a logarithmic scale) for the Australian states and
territories.
oldpar <- par (mfrow=c(2,4))
for (i in 2:9){
plot (austpop[, 1], log(austpopl[, i]), xlab="Year",
ylab=names (austpop) [1], pch=16, ylim=c(0,10))}
par (oldpar)
Find a way to do this without looping. [Hint: Use the function sapply (), with
austpop [, 2:9] as the first argument.
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When a researcher has a new set of data to analyze, what is the best way to begin? What
forms of data exploration will draw attention to obvious errors or quirks in the data, or
to obvious clues that the data contain? What are the checks that will make it plausible
that the data really will support an intended formal analysis? What mix of exploratory
analysis and formal analysis is appropriate? What attention should be paid to analyses
that other researchers have done with similar data?

In the ensuing discussion, we note the importance of graphical presentation and fore-
shadow a view of statistics that emphasizes the role of models. We emphasize the impor-
tance of looking for patterns and relationships. Numerical summaries, such as an average,
can be very useful, but important features of the data may be missed without a glance at an
appropriate graph. The best modern statistical software makes a strong connection between
data analysis and graphics, combining the computer’s ability to crunch numbers and
present graphs with the ability of a trained human eye to detect pattern. Often, careful con-
sideration is needed, to choose a graph that will be effective for the purpose that is in hand.

We will see in Chapter 3 that an integral part of statistical analysis is the development
of a model that accurately describes the data, aids in understanding what the data say,
and makes prediction possible. Without model assumptions, there cannot be a meaningful
formal analysis! As assumptions are strengthened, the chances of getting clear results
improve. The price for stronger assumptions is that, if they are wrong, then results may
be wrong. Graphical techniques have been developed for checking, to the extent possible,
many of the assumptions that must be made in practice.

Preliminary scrutiny of the data can readily degenerate into data snooping, so that the
form of the analysis is unduly attuned to features of the data that may reflect statistical
sampling variation. Under torture, the data readily yield false confessions. It is important
to maintain checks on the unbridled use of imaginative insight. To what extent, then, is
it legitimate to allow the data to influence the choice of the model that will be used for
the formal analysis?

2.1 Revealing views of the data

Exploratory Data Analysis (EDA) is a name for a collection of data display techniques that
are intended to let the data speak for themselves, prior to or as part of a formal analysis.
Competent statisticians have always used graphs to check their data; EDA formalizes and
extends this practice. The name EDA is due to John W. Tukey, who had a huge influence
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on data analysis practices; see for example (Hoaglin, 2003). EDA uses whatever help it
can get from statistical theory, so that displays are helpful and interpretable.

Even if a data set has not been collected in a way that makes it suitable for formal
statistical analysis, exploratory data analysis techniques can often be used to glean clues
from it. However, it is unwise, as too often happens, to rely on this possibility!

An effective EDA display presents data in a way that will make effective use of the
human brain’s abilities as a pattern recognition device. It looks for what may be apparent
from a direct, careful and (as far as possible) assumption-free examination of the data. It
has at least four roles:

* EDA may suggest ideas and understandings that had not previously been contemplated.
This use of EDA fits well with the view of science as inductive reasoning.

* EDA results may challenge the theoretical understanding that guided the initial collec-
tion of the data. EDA then acquires a more revolutionary role. It becomes the catalyst,
in the language of Thomas Kuhn, for a paradigm shift.

* EDA allows the data to criticize an intended analysis and facilitates checks on
assumptions. Subsequent formal analysis can then proceed with greater confidence.

* EDA techniques may reveal additional information, not directly related to the research
question. They may, for example, suggest fruitful new lines of research.

In the next several subsections, we describe the histogram and density plot, the stem-
and-leaf diagram, the boxplot, the scatterplot, the lowess smoother and the trellis style
graphics that are available in the lattice package. The lattice functions greatly extend the
available styles and layouts.

2.1.1 Views of a single sample
Histograms and density plots

The histogram is a basic (and over-used) EDA tool for displaying the frequency dis-
tribution of a set of data. The area of each rectangle of a histogram is proportional
to the number of observations whose values lie within the width of the rectangle.
A mound-shaped histogram may make it plausible that the data follow a normal dis-
tribution (the “bell curve”). In small samples, however, the shape can be highly irregular.
In addition, the appearance can depend on the choice of breakpoints, which is a further
reason for caution in interpreting the shape. It is often helpful to try more than one set of
breakpoints.

The data set possum (DAAG package) has nine morphometric measurements on each
of 104 mountain brushtail possums, trapped at seven sites from southern Victoria to
central Queensland (data relate to Lindenmayer ef al., 1995). Attention will be limited to
the measurements for 43 females, placing them in a subset data frame that will be called
fossum. The following code creates this subset data frame:

library (DAAG) # Ensure that the DAAG package is attached
## Form the subset of possum that holds data on females only
fossum <- subset (possum, sex=="f")
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Figure 2.1  The histograms in panels A and B show the same data, but with a different choice of
breakpoints. In panels C and D, density plots are overlaid on the histograms from panels A and B,
respectively.

Panels A and B of Figure 2.1 exhibit histogram plots of the frequency distribution of
the total lengths of the female possums.'

attach (fossum)
hist (totlngth, breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length (cm)", main ="A: Breaks at 72.5, 77.5, ...")
hist (totlngth, breaks = 75 + (0:5) * 5, ylim = c(0, 22),
xlab="Total length (cm)", main="B: Breaks at 75, 80, ...")

The only difference in the construction of the two plots is the choice of breakpoints, but
one plot suggests that the distribution is asymmetric (skewed to the left), while the other
suggests symmetry.

A histogram is a crude form of a density estimate. A better alternative is, often, a
smooth density estimate, as in Figures 2.1C and 2.1D. Whereas the width of histogram
bars must be chosen somewhat subjectively, density estimates require the choice of a
bandwidth parameter that controls the amount of smoothing. In both cases, the software
has default choices that can work reasonably well.

dens <- density(totlngth) # Assumes fossum is still attached
x1im <- range (dens$x); ylim <- range (densSy)
hist (totlngth, breaks = 72.5 + (0:5) * 5, probability = T,

x1lim = x1lim, ylim = ylim, xlab="Total length (cm)", main=" ")
lines (dens)
hist (totlngth, breaks = 75 + (0:5) * 5, probability = T,

xlim = xlim, ylim = ylim, xlab="Total length (cm)", main= " ")
lines (dens)
par (mfrow=c(1,1)); detach(fossum)

The height of the density curve at any point is an estimate of the proportion of sample
values per unit interval, locally at that point. Observe that in Figures 2.1A and 2.1C,

## To get a 1 by 4 layout, precede with
par (mfrow = c (1,4))
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the cell of the histogram between the breakpoints (87.5, 92.5] has a frequency of 22. As
the total frequency is 43, and the width of the cell is 5, this corresponds to a density
of 432i = = 0.102, which is just a little smaller than the height of the density curve at its
highest point or mode.

Much of the methodology in this book assumes that the data follow a normal distri-

bution (the “bell curve”), discussed in the next chapter. Density curves are preferable to
histograms for drawing attention to particular forms of non-normality, such as that asso-
ciated with strong skewness in the distribution, but are still not an adequate tool. A more
effective way of checking for normality — the normal probability plot — is described in
Subsection 28. Density curves are useful for estimating the population mode, that is, the
value that occurs most frequently.

Where data values have sharp lower and/or upper cutoff limits, use the parameters
from and to to specify those limits. For example, a failure time distribution may have
a mode close to zero, with a sharp cutoff at zero.

The stem-and-leaf display

The stem-and-leaf display is a fine-grained alternative to a histogram, for use in displaying
a single column of numbers. Here is a simple form of stem-and-leaf plot, for the heights
of the 37 rowers in the ais data set:

> stem(aisS$ht [ais$Ssport=="Row"])

The decimal point is 1 digit(s) to the right of the |

15 | 6

16 |

16 | 5

17 | 4

17 | 5678899

18 | 00000011223
18 | 55666668899
19 | 123

19 | s8

The numbers that are displayed are, in order of magnitude, 156, 165, 174,...(the data
have been rounded to the nearest centimeter). The display has broken these down as
15046, 160+5, 170 +4,... The column of numbers on the left of the vertical bars
(15, 16,...) comprises the stem; these are the tens of centimeters parts of the numbers.
The leaf part for that number (6, 5, 4, ...) is what remains after removing the stem; these
are printed, in order, to the right of the relevant vertical bar.

As there are 37 data values, the median or middle value is the 19th. (There are 18
values that are as small as or smaller than the 19th largest, and 18 values that are as
large or larger.) If one counts leaves, starting at the top and working down, the 19th
leaf corresponds to a stem value of 18, with a leaf entry of 2. Thus the median (or 50th
percentile) is 182. The first and third quartiles (the 25th and 75th percentiles) can be
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recovered in a similar way. The values for the lower and upper quartiles depend on the
details of the formula used for their calculation. For present purposes the first quartile can
be taken as the tenth largest value (= 179), while the third quartile is the 28th largest value
(= 186), or the tenth value when starting at the largest and counting down. (The number
10 is obtained by averaging the ranks 1 and 19, while 28 is the average of 19 and 39.)

Lattice style density plots

The following density plot (Figure 2.2) compares the ear conch measurements of male
and female possums, for each of the two “populations” of possums:

## Density plot for earconch: data frame possum (DAAG package)

library(lattice)

densityplot (¥ earconch | Pop, groups=sex, data=possum,
auto.key=1list (columns=2), aspect=1)

Boxplots

Like the histogram, the boxplot is a coarse summary. It allows a trained eye to com-
prehend at a glance specific important features of the data. Figure 2.3 shows a box-
plot of total lengths of females in the possum data set, with annotation added that
explains the interpretation of boxplot features. Code that gives the boxplot, without the
annotation, is:

## Base graphics boxplot function

boxplot (fossum$totlngth, horiz=TRUE)

## Alternative: lattice graphics bwplot function
bwplot ("totlngth, data=fossum)

+ - - =

Figure 2.2  Density plot that compares the ear conch measurements of male and female possums,
for each of the two “populations” of possums.

2## Use quantile() to obtain the quartiles of ht: data frame ais (DAAG package)
quantile (aissht [ais$sport=="Row"], prob=c(.25,.5,.75))
# For the 50th percentile (the 2nd quartile), an alternative is median()
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Figure 2.3  Boxplot, with annotation that explains boxplot features.

Notice that one point lies outside the “whiskers” and is thus flagged as a possible
outlier. An outlier is a point that, in some sense, lies away from the main body of the
data. In identifying points that are flagged as possible outliers, the normal distribution
(to be discussed in Subsection 3.2.2) is taken as the standard. Using the default crite-
rion one point in 100 will on average, for data from a normal distribution, be flagged
as a possible outlier. Thus, in a boxplot display of 1000 values that are drawn at ran-
dom from a normal distribution, around 10 will be plotted out beyond the boxplot
whiskers and thus flagged as possible outliers. Subsection 2.1.7 has further comment on
outliers.

These ideas should become clearer when the normal and other distributions are dis-
cussed in Chapter 3.

2.1.2 Patterns in univariate time series

The data presented in Figure 2.4 includes both what is nowadays called measles and
the closely related rubella or German measles.” Both measles (from DAAG) and
londonpop (data as in the footnote) are time series objects. Panel A uses a logarithmic
vertical scale. Panel B uses an unlogged scale and takes advantage of the fact that deaths
from measles are of the order, in any year, of one thousandth of the population. Thus
deaths in thousands and population in millions can be shown on the same scale. The plots
of the measles time series are obtained using:

## Panel A; For plotting of population numbers, see the footnote
plot (logl0 (measles), xlab="", ylim=logl0 (c(1,5000%1000)),
ylab=" Deaths; Population (log scale)", yaxt="n")
ytiks <- c¢(1, 10, 100, 1000, 1000000, 5000000)
axis (2, at=loglO (ytiks), labels=paste(ytiks), las=2)
## Panel B; for plotting of population numbers, see the footnote
Plot (window(measles, start=1840, end=1882), ylim=c (0, 4600), yaxt="n")
axis (2, at=(0:4)* 1000, labels=paste(0:4), las=2)

3 For details of the data, and commentary, see Guy (1882); Stocks (1942); Senn (2003). (Guy’s interest was in the
comparison with smallpox mortality.) The population estimates are from Mitchell (1988).
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Figure 2.4 The two panels provide different insights into data on mortality from measles, in
London over 1629-1939. The top panel shows the numbers of deaths from measles in London for
the period from 1629 through 1939 (black curve) and London population (black dots). A log scale
has been used (see Subsection 2.1.3 for details). The bottom panel shows the subset of the measles
data for the period 1840 through 1882 on the linear scale (black curve), together with the London
population (in thousands, black dots).

The function plot () recognizes that measles is a time series object, and calls the
plot method plot.ts () thatis used for time series. For details, see help (plot.ts).
Notice the use, for panel B, of the function window () that extracts a subseries. Fuller
details of the code for these plots is in the footnote.*

Panel A shows broad trends over time, but is of no use for identifying changes on the
time-scale of a year or two. In panel B, the lines that show such changes are, mostly, at
an angle that is in the approximate range of 20° to 70° from the horizontal. A sawtooth

4 ## panel A: Plot full measles time series (DAAG)

par (fig=c(0, 1, .38, 1)) # 38% to 100% of height of figure region

plot (log(measles,10), xlab="", ylim=c(0,log(5000*1000, 10)),
ylab=" Deaths & Population (log scale)", yaxt="n")

ytiks <-c¢ (1, 10, 100, 1000, 1000000, 5000000)

axis (2, at=1logl0(ytiks), labels=paste (ytiks), las=2)

## London population in thousands

londonpop <- ts(c(1088,1258,1504,1778,2073,2491,2921,3336,3881,4266,

4563,4541,4498,4408), start=1801, end=1931, deltat=10)

points (log(londonpop*1000,10), pch=16, cex=.5)

mtext (side=3, line=0.5, "A (1629-1939)", adj=0)

## Panel B: window from 1840 to 1882

par (fig=c(0, 1, 0, .38), new=TRUE) # 0% to 38% of height of figure region

plot (window (measles, start=1840, end=1882), xlab="Year", yaxt="n",
ylim=c(0,4600), ylab="Deaths - measles")

points (londonpop, pch=16, cex=0.5)

axis (2, at=(0:4)*1000, cex=0.75)

mtext (side=3, line=0.5, "B (1841-1881)", adj=0)
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pattern, by which years in which there are many deaths are commonly followed by years
in which there are fewer deaths, is thus clearly evident. (To obtain this level of detail for
the whole period from 1629 until 1939, multiple panels would be necessary.)

2.1.3 Patterns in bivariate data

The examination of pattern and relationship is a central theme of science. Pattern and
relationship are core themes of statistics. The scatterplot is a simple but important tool
for the examination of pairwise relationships. Some graphs are helpful. Some are not. We
will illustrate with specific examples.

The data presented in Figure 2.5 were from a tasting session where each of 17 panelists
assessed the sweetness of each of two milk samples, one with four units of additive,
and the other with one unit of additive. The line y = x has been added. Short bars at
right angles to the axis show, for each axis, the distribution of data values along that
axis of the plot. The collection of such bars, for any one axis, has the name rug. The
code is:

## Plot four vs one: data frame milk (DAAG)

xyrange <- range (milk)

plot (four ~ one, data = milk, xlim = xyrange, ylim = xyrange,
pch = 16, pty="s") # pty="s": square plotting region

rug (milkSone) # Rug plot on x-axis

rug (milk$four, side = 2) # Rug plot on y-axis

abline (0, 1)

The setting side=1, i.e. the x-axis, is the default.

There is a positive correlation between assessments for the two samples; if one was
rated as sweet, by and large so was the other. The line y = x assists in comparing the
two samples. Most panelists (13 out of 17) rated the sample with four units of additive
as sweeter than the sample with one unit of additive.

Figure 2.5 Each of 17 panelists compared two milk samples for sweetness. One of the samples
had one unit of additive, while the other had four units of additive.



2.1 Revealing views of the data 51

ssa
|
(o]

au au

Figure 2.6  Electrical resistance versus apparent juice content. Panel B repeats panel A, but with
a smooth curve fitted to the data.

The fitting of a smooth trend curve

The data that are plotted in Figure 2.6 are from a study that examined how the electrical
resistance of a slab of kiwifruit changed with the apparent juice content. It can be useful to
make a comparison with a curve provided by a data-smoothing routine that is not restricted
to using a particular mathematical form of curve, as in panel B of Figure 2.6. The curve
in panel B, obtained using the lowess method that is discussed further in Subsection 7.5.3,
estimates the relationship between electrical resistance and apparent juice content.

The fitted smooth curve shows a form of response that is clearly inconsistent with a
straight line. The code is:

## Plot ohms vs juice: data frame fruitohms (DAAG)
plot (ohms ~ juice, xlab="Apparent juice content (%)",
ylab="Resistance (ohmsg)", data=fruitohms)
## Add a smooth curve, as in Panel B
lines (lowess (fruitohms$juice, fruitohms$Sohms), 1lwd=2)
# With 1lwd=2, the curve is twice the default thickness

The curve suggests that there is an approximate linear relationship for juice content up to
somewhat over 35%. At that point the curve becomes a horizontal line, and there is no
further change in resistance after the juice content reaches around 45%.

A smooth trend curve that has been superimposed on a scatterplot can be a useful aid
to interpretation. When the data appear to scatter about a simple mathematical curve, the
curve-fitting methods that we discuss in later chapters can be used to obtain a “best fit”
or regression line or curve to pass through the points.

What is the appropriate scale?

Figures 2.7A and 2.7B plot brain weight (g) against body weight (kg), for a number of
different animals:

## The following omits the labeling information
oldpar <- par(mfrow = c(1,2), pty="s")
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## Plot brain vs body: data frame Animals (MASS package)
library (MASS)

plot (brain ~ body, data=Animals)

plot (log(brain) ~ log(body), data=Animals)

par (oldpar)

Figure 2.7A is almost useless. The axes should be transformed so that the data are spread
out more evenly. Here, we can do this by choosing a logarithmic scale. Multiplication by
the same factor (e.g., for the tick marks in Figure 2.7B, by a factor of 10) always gives
the same distance along the scale. If we marked points 1, 5, 25, 125, ... along the vertical
axis, they would also lie an equal distance apart.

A logarithmic scale is appropriate for scaling quantities that change in a multiplicative
manner. For example, if cells in a growing organism divide and produce new cells at a
constant rate, then the total number of cells changes in a multiplicative manner, resulting
in so-called exponential growth. Growth in the bodily measurements of organisms may
similarly be multiplicative, with large organisms increasing in some time interval by
the same approximate fraction as smaller organisms. Random changes in the relative
growth rate will produce adult organisms whose size (e.g., height) is, on the logarithmic
scale, approximately normally distributed. The reason for this is that the growth rate on
a natural logarithmic scale (log,) equals the relative growth rate. Derivation of this result
is a straightforward use of the differential calculus.

The logarithmic transformation is so commonly needed that it has seemed necessary to
introduce it at this point. Biologists, economists and others should become comfortable
working with it. As noted, there are many circumstances in which it makes good sense to
work on a logarithmic scale, that is, to use a logarithmic transformation. There is a brief
discussion of other transformations in Chapter 5.

2.1.4 Patterns in grouped data
Example: eggs of cuckoos

Strip plots and boxplots allow convenient side-by-side comparisons of different groups,
as in the cuckoo egg data that are plotted, using two different types of plot, in Figure 2.8.

Figure 2.7 Brain weight versus body weight, for 27 animals that vary greatly in size.
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Figure 2.8  Strip plot (panel A) and boxplot (panel B) displays of cuckoo egg lengths. Data, from
Latter (1902), are reproduced in summarized form in Tippett (1931).

Cuckoos lay eggs in the nests of other birds. The eggs are then unwittingly adopted
and hatched by the host birds. In Figure 2.8 the egg lengths are grouped by the species of
the host bird, using both a strip plot display (panel A) and boxplot summaries (panel B).
The main part of the code used for these plots is:

## Compare stripplot () with bwplot (), both from lattice package

stripplot (species length, xlab="Length of egg (mm)", data=cuckoos)

bwplot (species ~ length, xlab="Length of egg (mm)", data=cuckoos)

Observe that species, which is the factor that identifies the side-by-side groups, appears
on the left of the graphics formula species ~ length. Fuller details of the code are
in the footnote.’

S## For tidier labels replace ".", in several of the species names, by a space
specnam <- sub(pattern="\\.", replacement=" ", x=levels (cuckoos$species)
# In a ‘regular expression’, "." must be specified as "\\."

levels (cuckoos$species) <- specnam
## Panel A: Strip plot: data frame cuckoos (DAAG)
pltl <- stripplot(species ~ length, xlab="Length of egg (mm)", data=cuckoos)
print (pltl, position=c(0, 0.5, 1, 1)) # xmin, ymin, xmax, ymax
# Use print() to display lattice graphics objects
## Panel B: Box plot
plt2 <- bwplot (species ~ length, xlab="Length of egg (mm)", data=cuckoos)
print (plt2, newpage=FALSE, position=c(0, 0, 1, 0.5))
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Eggs planted in wrens’ nests appear clearly smaller than eggs planted in other birds’
nests. Apart from several outlying egg lengths in the meadow pipit nests, the length
variability within each host species’ nest is fairly uniform.

2.1.5% Multiple variables and times

Overlaying plots of several time series (sequences of measurements taken at regular
intervals) might seem appropriate for making direct comparisons. However, this approach
will only work if the scales are similar for the different series.

As an example, consider the number of workers (in thousands) in the Canadian labor
force broken down by region (BC, Alberta, Prairies, Ontario, Quebec, Atlantic) for the
24-month period from January, 1995 to December, 1996 (a time when Canada was
emerging from a deep economic recession). Data are in the data frame jobs. Columns
1-6 of the data frame have the respective numbers for the six different regions. Here are
the ranges of values in its columns:

> ## Apply function range to columns of data frame jobs (DAAG)
> sapply(jobs, range)

BC Alberta Prairies Ontario Quebec Atlantic Date
[1,] 1737 1366 973 5212 3167 941 95.00000
[2,] 1840 1436 999 5360 3257 968 96.91667

In order to see where the economy was taking off most rapidly, it is tempting to plot all
of the series on the same graph. In order that similar changes on the scale will correspond
to similar proportional changes, a logarithmic scale is used in Figure 2.9A:°

## First create a multivariate time series
jobts <- ts(jobs[,1:6], start=1995, frequency=12)
## Simplified plot; all series in a single panel; use log scale
plot (jobts, plot.type="single", xlim=c(1995,1997.2), 1lty=1:5,
xlab="", log="y", ylab="Number of Jobs")
## Plot labels following the final value for each series
ylast <- window(jobts, 1996+11/12)
# Note the use of window() to extract a row from the series.
text (rep(1996+11/12,6), ylast, colnames (ylast), pos=4)

Because the labor forces in the various regions do not have similar sizes, it is impossible
to discern any differences among the regions from this plot. Plotting on the logarithmic
scale did not remedy this problem. It is necessary to use different slices of the logarithmic
scale for the different plots.

S## Code for Figure 2.9A
jobts <- ts(jobs[,1:6], start=1995, frequency=12)
plot (jobts, plot.type="single", xlim=c(1995,1997.2), lty=1:6, log="y",
xaxt="n", xlab="", ylab="Number of Jobs"
## Move label positions so that labels do not overlap
ylast <- bounce (window(jobts, 1996+11/12), d=strheight ("O"), log=TRUE)
text (rep(1996+11/12,6), ylast, colnames(ylast), pos=4)
datlab <- format (seqg(from=as.Date("1Janl1995", format="%d%b%Y"),
by="3 month", length=8), "%b%Y")
axis (1, at=seqg(from=1995, by=0.25, length=8), datlab)



2.1 Revealing views of the data 55

ubbs

ub ub
9 9 9 9 9 8
I I I I N I I I I I |
a as ub
— ] ] 89
0 o ©
® _-\/\v//f“Jﬁf\ @ _-V\,—\VV/\r/J 8 _-A/a/A/\u\f“/ T
o | S o |
ba a _
8 8 -
— © _j\/\/\/'\/\ |
©
— © ] _
1T 1T T 1 17T 1T T 1 17T 1T T 1
9 9 9 9 9 9 9 9 9 9 9 -

Figure 2.9  Panel A shows numbers in the labor force (thousands) for various regions of Canada,
all on the same logarithmic scale. Panel B shows the same data as in panel A, but now with separate
logarithmic scales on which the same percentage increase, e.g., by 1%, corresponds to the same
distance on the scale, for all plots.

Figure 2.9B shows a much preferable alternative, now using xyplot (). The six
different panels use different slices of the same logarithmic scale. Labeling is done on the
untransformed (Number) scale, with values on the logarithmic scale given in brackets:

## Code for Figure 2.9B

## Stack labor force numbers into one column: data frame jobs (DAAG)
Jobs <- stack(jobs, select = 1:6) # Column 1 first, then 2,

# The stack() function was discussed in Chapter 1

Jobs$Year <- rep(jobsl[, 7], 6)

names (Jobs) <- c¢("Number", "Province", "Year")
xyplot (log (Number) ~ Year | Province, data = Jobs, type = "1",
layout=c(2,3), scales = list(y=list(relation="sliced")))

# The parameter setting relation="sliced" causes the length of
# the relevant scale(s) (slice(s)) to be the same for all panels.

Equal distances on the scale now correspond to equal relative changes. To see how the key
was created, see Subsection 14.3.4. Alternatively, see the code for Figure 2.9B, available
from the web page for this book.
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It is now clear that Alberta and BC experienced the most rapid job growth during the
period, and that there was little or no job growth in Quebec and the Atlantic region.’

*Small proportional changes, on a scale of natural logarithms

Notice that the distance between tick marks is, on the logarithmic scale, always 0.02.
Because the scale is that of natural logarithms or log, x this corresponds, to a close
approximation, to a 2% change. On this scale, with small values of € (e.g., |€| < 0.1):

log(y(1+¢€)) ~log(y) +e.

Because natural logarithms have been used, and the relative change between the lower
and upper vertical axis limits is in each case small, less than 10%, the differences between
values on the vertical scale can be interpreted as relative or percentage changes. Thus
the distance of 0.02 between tick marks on the vertical scale implies an increase of 0.02,
or 2%.

2.1.6 Scatterplots, broken down by multiple factors

Data, in the data frame tinting (DAAG), are from an experiment that aimed to model

the effects of the tinting of car windows on visual performance (data relate to Burns er al.,

1999). The authors were mainly interested in effects on side window vision, and hence

in visual recognition tasks that would be performed when looking through side windows.
The columns are:

* Variables csoa (critical stimulus onset asynchrony, i.e., the time in milliseconds
required to recognize an alphanumeric target), it (inspection time, i.e., the time
required for a simple discrimination task) and age (age to the nearest year).

* The ordered factor tint (levels no, 1o, hi).

* Factors target (locon, i.e., low contrast, hicon, i.e., high contrast), sex
(f = female, m = male) and agegp (younger = a younger participant, in the 20s;
older = an older participant, in the 70s).

Each of 28 individuals was tested at each level of tint, for each of the two levels of
target.

There are four factors (tint, target, sex and agegp) that might influence the
values of csoa and it, and the relationship between them. Two of these factors (tint
and target) take different values for the same individual, while the other two (sex and
agegp) vary between individuals. It is thus a challenge to find effective ways to display
these data.

A first step might be to plot csoa against it for each combination of sex and
agegp. Use of the argument groups=target results in the use of different symbols

7## Another possibility, with number of tick positions (~100)

## on the logarithmic scale chosen after some experimentation

ylabpos <- pretty(log(Jobs$Number), 100)

ylabels <- paste(round (exp(ylabpos)),"\n(", ylabpos, ")", sep="")

xyplot (log (Number) ~ Year | Province, data = Jobs, type = "1", layout=c(2,3),
scales = list(y =list(relation="sliced", at=ylabpos, labels=ylabels)))
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(in a black and white plot) or different colors, depending on whether the target is low
contrast or high contrast. Also we can ask for a key. The code becomes:

xyplot (csoa ~ it | sex*agegp, data=tinting, groups=target,
auto.key=1list (columns=2))

There are further possibilities for refinement. Figure 2.10A has used parameter settings
that specify the choice of colors (here gray or black), plotting symbols and the placement
of the key.®

Observe that the longest times are for the high level of tinting. The relationship between
csoa and it seems much the same for both levels of contrast. There are long response
times for some of the older males that occur, as might have been expected, with the low
contrast target. The analysis that will be presented later, in Chapter 10, indicates that
within-subject effects — the effect of tint and target — stand up with greater clarity
against the statistical noise than do effects from sex and agegp. The reason is that
tint and target are effects that can be assessed within subjects, whereas the effects
of sex and agegp involve a comparison across different subjects. Because there are
six points for each subject, Figure 2.10A gives a visual impression that exaggerates the
evidence for effects that are associated with sex and agegp.

A ©  locon & hicon B & no - s i
50 100 150 200 50 100 150 200
| | | | | | | | | | | | | | | |
older alder i older
f m f m
-] -
120 — z — — . — 12c
100 — o S = = Y= oo
a0 — 0.,% wbo” j 8,% *- 8o
60 ? .04\; ol o I &0
St o -} - = ] o p—
o ] a3 2, C Q& | W o
3 younger youngsr _younger younger |
8 f m f m
120 — = — — 12¢
toa = o = — 100
50 — — — — &0
S w1 e [
a0 — — — - — 40
. o . SO | * 7 QR | W | T8
{ ] TP " R T I DR o P Y R T e e
50100 150 200 50 100 150 200

[ it

Figure 2.10 Panel A plots of csoa against it, for each combination of sex and agegp.
Different colors (gray and black) and symbols show different levels of target. Panel B shows
the same points, but different colors (printed in grayscale) now show different levels of tint.
Notice, also, the addition of smooth curves. For color version, see plate 2.

8## Settings used for Figure 2.10B (suitable for grayscale on a printed page)
xyplot (csoa ~ it|sex*agegp, data=tinting, groups=target,
par.settings=1ist (background=1list (col="transparent"),
superpose.symbol=1list (col=c("black", "gray20"),
pch=c(1, 16))),
auto.key=1list (columns=2, text=levels(tinting$target), points=TRUE))
# In the above, par.settings changed settings for this use of xyplot ()
# Setting background color to "transparent" gives a "white" background
## Use trellis.par.set() to change settings while the current device is in use
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Fitting a trend curve, as in Figure 2.10B, makes the relationship clearer. The code for
including the smooth curve, without the other refinements of Figure 2.10B, is:’

xyplot (csoa ~ it|sex*agegp, groups=tint, data=tinting,
type=c("p", "smooth"), span=1.25, auto.key=list (columns=3))
# "p": points; "smooth": a smooth curve

# With span=1.25, the smooth curve is close to a straight line

2.1.7 What to look for in plots

This has not been a complete account of what plots may reveal! Its purpose has been to
draw attention to some of the more obvious possibilities.

Outliers

Outliers are points that appear to be isolated from the main body of the data. Such points
(whether errors or genuine values) are liable to distort any model that we fit. What appears
as an outlier depends, inevitably, on the view that is presented. On a fairly simple level,
the view is affected by whether or not, and on how, the data are transformed.

Boxplots, and the normal probability plot that will be discussed in Subsection 28, are
useful for highlighting outliers in one dimension. Scatterplots may highlight outliers in
two dimensions. Some outliers will be apparent only in three or more dimensions. The
presence of outliers can indicate departure from model assumptions.

Asymmetry of the distribution

Most asymmetric distributions can be characterized as either positively skewed or nega-
tively skewed. Positive skewness is the commonest form of asymmetry. There is a long
tail to the right, values near the minimum are bunched up together, and the largest val-
ues are widely dispersed. Provided that all values are greater than zero, a logarithmic
transformation typically makes such a distribution more symmetric. A distribution that
is skew cannot be normal. Severe skewness is typically a more serious problem for the
validity of results than other types of non-normality.

If values of a variable that takes positive values range by a factor of more than 10:1
then, depending on the application area context, positive skewness is to be expected.
A logarithmic transformation should be considered.

## Panel B, with refinements
xyplot (csoa ~ it|sex*agegp, groups=tint, data=tinting,

type=c("p", "smooth"), span=0.8,
par.settings=
list (superpose.symbol=1list (col=c("skybluel", "skyblue4") [c(2,1,2)],
pch=c(1,16,16)), # open, filled, filled
superpose.line=1list (col=c("skybluel", "skyblue4") [c(2,1,2)],

lwd=c(1,1,2)),
background=1list (col="transparent")),
auto.key=1list (columns=3, points=TRUE, lines=TRUE))
# A large value for span gives a smoother curve
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Changes in variability

Boxplots and histograms readily convey an impression of the amount of variability or
scatter in the data. Side-by-side boxplots, such as in Figure 2.8B, or strip charts such as
in Figure 2.8A are particularly useful for comparing variability across different samples
or treatment groups. Many statistical models depend on the assumption that variability
is constant across treatment groups. (Note however that it is easy to over-interpret such
plots. The variability in a sample, typically measured by the variance, is itself highly
variable under repeated sampling. Statistical theory offers useful and necessary warnings
about the potential for such over-interpretation.)

When variability increases as data values increase, the logarithmic transformation will
often help. If the variability is constant on a logarithmic scale, then the relative variation
on the original scale is constant. (Measures of variability will be discussed in Subsection
2.2.3))

Clustering

Clusters in scatterplots may suggest structure in the data that may or may not have been
expected. When we proceed to a formal analysis, this structure must be taken into account.
Do the clusters correspond to different values of some relevant variable? Outliers are a
special form of clustering.

Non-linearity

We should not fit a linear model to data where relationships are demonstrably non-linear.
Often it is possible to transform variables so that terms enter into the model in a manner
that is closer to linear. If not, the possibilities are endless, and we will cover only a small
number of them. See especially Chapter 7.

If there is a theory that suggests the form of model, then this is a good starting point.
Available theory may, however, incorporate various approximations, and the data may
tell a story that does not altogether match the available theory. The data, unless they are
flawed, have the final say!

2.2 Data summary

Data summaries may: (1) be of interest in themselves; (2) give insight into aspects of
data structure that may affect further analysis; (3) be used as data for further analysis. In
case (3), it is necessary to ensure that important information, relevant to the analysis, is
not lost. If no information is lost, the gain in simplicity of analysis can make the use of
summary data highly worthwhile.
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It is important, when data are summarized, not to introduce distortions that are artefacts
of the way that the data have been summarized — examples will be given. The question of
whether information in the data may have been lost or obscured has especial importance
for the summarizing of counts across the margins of multi-way tables, and for the use of
the correlation coefficient.

2.2.1 Counts

Data in the data frame nsw74psidl (DAAG package) are derived from a study (Lalonde,
1986) in which there were two groups of individuals with a history of unemployment
problems — one a control group and the other a “treatment” group whose members were
exposed to a labor training program. Are the two groups genuinely comparable? This can
be tested by comparing them with respect to various measures other than their exposure
(or not) to the labor training program. Data are in the data frame nsw74psidl (DAAG
package).

Thus, what are the relative numbers in each of the two groups who had completed high
school (nodeg = 0), as opposed to those who had not (nodeg = 1)?

> ## Table of counts example: data frame nsw74psidl (DAAG)
> attach(nsw74psidl)
> trtgp <- factor(trt, labels=c("none", "training"))
> educgp <- factor(nodeg, labels=c("completed", "dropout"))
> table(trtgp, educgp)
educgp

trtgp completed dropout

none 1730 760

training 54 131

The 1labels argument in the function factor () has been used to associate the numeric
codes 0 and 1 with meaningful level names.

The training group has a much higher proportion of dropouts. Similar comparisons are
required for other factors and variables, examining joint as well as individual comparisons.
These data will be investigated further in Section 13.2.

A check such as the following is highly recommended when using table ():

> ## Check for NAs, which table() will have ignored:
> sum(is.na (trtgp) | is.na (educgp))

(1] ©

> ## A potentially more informative alternative is:
> ## table(is.na(trtgp), is.na(educgp))

> detach(nsw74psidl)

If x1, x2..., xn are all vectors of the same length and each is supplied as an argument
to table (), the result is an n-way table. For example, table (x1, x2, x3) gives
a three-way table. The first argument defines rows, though it is printed horizontally if
there is just one column. The second argument defines columns. The table slices (rows by
columns) that correspond to different values of the third argument appear in succession
down the page, and so on.
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Table 2.1  Outcomes for two different types of surgery for kidney stones. The
overall success rates (78% for open surgery as opposed to 83% for ultrasound)
Sfavor ultrasound. Comparison of the success rates for each size of stone separately
favors, in each case, open surgery.

Small (<2cm) Large (>=2cm) Total
open ultrasound open ultrasound open  ultrasound
yes 81 234 yes 192 55 yes 273 289
no 6 36 no 71 25 no 77 61
Success rate  93% 87% 73% 69% 78% 83%

Addition over one or more margins of a table

Data in Table 2.1, shown visually in Figure 2.11, illustrate the possible hazards of adding
a multi-way table over one of its margins. Data are from a study (Charig, 1986) that
compared outcomes for two different types of surgery for kidney stones; A: open, which
used open surgery, and B: ultrasound, which used a small incision, with the stone
destroyed by ultrasound.

stones <- array(c(81,6,234,36,192,71,55,25), dim=c(2,2,2),
dimnames=1list (Sucess=c("yes", "no"),
Method=c ("open", "ultrasound") ,
Size=c("<2cm", ">=2cm")))
mosaicplot (stones, sort=3:1)
# Re-ordering the margins gives a more interpretable plot.

uasu

S

Figure 2.11 A mosaic plot for the kidney stone surgery data. The overall rate is, for open surgery,
biased toward the open surgery outcome for large stones, while for ultrasound it is biased toward
the outcome for small stones.
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Without additional information, the results are impossible to interpret. Different surgeons
will have preferred different surgery types, and the prior condition of patients will have
affected the choice of surgery type. The consequences of unsuccessful surgery may have
been less serious for ultrasound than for open surgery.

Cross-tabulation — the xtabs () function

Here is a more complicated example that, again, demonstrates the hazards of summa-
rizing tabular or other data across factors that affect the frequencies of the margins that
are retained. The multi-way table UCBAdmissions (datasets package) has admission
frequencies, by sex, for the six largest departments at the University of California at
Berkeley in 1973. Do the data provide evidence, across the university as a whole, of
sex-based discrimination? (The data are discussed in Bickel er al., 1975.) We encourage
the reader to examine and interpret a mosiac plot representation of the data.
For use of xtabs (), it is first necessary to turn the table into a data frame:

> ## From table UCBAdmissions, create data frame UCB.df
> UCB.df <- as.data.frame (UCBAdmissions)

> UCB.df

Admit Gender Dept Freq
1 Admitted Male A 512
2 Rejected Male A 313
3 Admitted Female A 89
4 Rejected Female A 19
5 Admitted Male B 353

Note: The result just obtained (a data frame with one column for each dimension of the
table, plus a column of frequencies) depends crucially on giving a table, rather than a
matrix or array, as the argument to as.data.frame ().

The function xtabs () takes as arguments a model formula in which the terms on the
right are the classifying factors, and an optional data frame where the terms (factors) can
be found. Totals are calculated for the variable on the left of the model formula:

Admit + Gender, data=UCB.df)
Gender
Admit Male Female
Admitted 1198 557
Rejected 1493 1278

> xtabs (Freq

Admission rates will now be calculated, first for individual departments and then based
on the total frequencies over all six departments.

> ## First, determine overall admission rates
> tabAll <- xtabs(Freq 7 Admit + Gender, data=UCB.df)

044 The following turns the 3-way array stones (created above) into a data
## frame with one column for each margin, plus a column of frequencies:
stones.df <- as.data.frame(as.table(stones)) # First, turn into a table
stones.df <- as.data.frame.table(stones) # Alternative
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> tabAll[1,]/(tabAll[1,]+tabAll[2,])
Male Female
0.445 0.304

> ## Create a table whose first dimension is ’‘Admit’
> tabDept <- xtabs(Freq ~ Admit + Gender + Dept, data=UCB.df)
> ## With dimension 2 (’Gender’) and dimension 3 (’Dept’) as
> ## margins, find the proportion in level 1, as a fraction
> ## of the total over both levels of dimension 1:
> tabDept[1,,]1/ (tabDept([1l,,] + tabDeptl[2,,])

Dept
Gender A B c D E F

Male 0.621 0.63 0.369 0.331 0.277 0.0590
Female 0.824 0.68 0.341 0.349 0.239 0.0704

> tabDept[1,,] + tabDept[2,,] # Calculate totals
Dept
Gender A B C D E F
Male 825 560 325 417 191 373
Female 108 25 593 375 393 341

The correct picture is that, as a fraction of those who applied, females were strongly
favored in department A, and males somewhat favored in departments C and E. The very
high number of males applying to departments A and B biased the male rates towards the
relatively high admission rates in that department, while the relatively high number of
females applying to departments C, D and F biased the overall female rates towards the
low admission rates in those departments. The overall bias arose because males favored
departments where there were a relatively larger numbers of places.

The results that give the overall proportions are, for these data, an unsatisfactory and
misleading summary. There is further comment in Subsection 3.4.5 on biases of this
type. This phenomenon, known as Simpson’s paradox or as the Yule—Simpson effect, is
discussed in Aldrich (1995); Simpson (1951). See also Meyer and Finney (2005).

2.2.2 Summaries of information from data frames

Earlier, we illustrated the use of the function summary (). Here, we will discuss specific
forms of summary statistic. We saw in Chapter 1 that the sapply () function can be
used to obtain summaries for each column of a data frame. For obtaining summaries at
combinations of different factor levels, the aggregate () function can be used.

Summary as a prelude to analysis — aggregate ()

In the example that now follows, the analysis can be simplified by first taking means over
subgroups of the data. The aggregate () function does the needed summarization. It
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splits the data frame according to specified combinations of factor levels, and then applies
a specified function to each of the resulting subgroups.

The data frame kiwishade (from DAAG) has yield measurements from each of
48 vines. The vines were growing on 12 plots, divided into three blocks of four
plots each. One block of four was north-facing, a second block west-facing, and a
third block east-facing. (Because the trial was conducted in the Southern hemisphere,
there is no south-facing block.) Shading treatments were applied to whole plots, that
is, to groups of four vines, with each treatment occurring once per block. The shad-
ing treatments were applied either from August to December, December to February,
February to May, or not at all. For more details of the experiment, look ahead to
Figure 10.4.

For purposes of comparing treatments, there is no loss of information from basing the
analysis on the plot means. (There is however loss of information for other forms of
scrutiny of the data, as noted below.) The four individual vine results that are averaged
to give the plot mean are multiple measurements on the same experimental unit, here a
plot. The first few rows of the data frame are:

yield block shade plot
101.11 north none north.none
108.02 north none north.none
106.67 north none north.none
100.30 north none north.none

Uk W N

92.64 west none west.none

We now use the aggregate () function to form the data frame that holds the means
for each combination of block and shading treatment. The code, with the first four lines
of output following, is:

## mean yield by block by shade: data frame kiwishade (DAAG)
attach (kiwishade)

kiwimeans <- aggregate(yield, by=1list (block, shade), mean)
names (kiwimeans) <- c("block", "shade", "meanyield")

detach (kiwishade)

head (kiwimeans, 4)

block shade meanyield

VvV V. V V V VvV

1 east none 99.0250
2 north none 104.0250
3 west none 97.5575
4 east Aug2Dec 105.5550
> #

Use of the aggregated data for analysis commits us to working with plot means. What
information is lost? If there were occasional highly aberrant values, use of medians might
be preferable. The data should have a say in determining the form of summary.

Figure 2.12 plots both the information in the aggregated data frame kiwimeans and
the individual vine results that are in the data frame kiwishade. As treatments were
applied to whole plots, the graph that shows the individual vine results exaggerates the
extent of information that is available, in each block, for comparing treatments. For
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Figure 2.12  The four panels are the four different plots. The vertical bars of the large 4+ symbols
are plot means. The open circles are yields for individual vines in the plot.

gaining a correct impression of the strength of the evidence, it is necessary to focus the
eye on the means, shown as +. The code used for Figure 2.12 is given as a footnote."!

The benefits of data summary — dengue status example

By way of demonstrating further reasons for working with a suitable form of data
summary, consider a data set that has information on the worldwide distribution of
dengue (Hales et al., 2002). Dengue is a mosquito-borne disease that is a risk in hot and
humid regions. Dengue status — information on whether dengue had been reported during
1965-1973 — is available for 2000 administrative regions, while climate information is
available on a much finer scale, on a grid of about 80000 pixels at 0.5° latitude and
longitude resolution. Should the analysis work with a data set that consists of 2000
administrative regions, or with the much larger data set that has one row for each of the
80000 pixels? There are three issues here that warrant attention:

* Dengue status is a summary figure that is given by administrative region. An analysis
that uses the separate data for the 80000 pixels will, in effect, predict dengue status
for climate variable values that are in some sense averages for the administrative
region. Explicit averaging, prior to the analysis, gives the user control over the form
of averaging that will be used. If, for example, values for some pixels are extreme
relative to other pixels in the administrative region, medians may be more appropriate

' 4# Note the use of a panel function that calls panel.dotplot (),
## then adding the code needed to display plot means.
dotplot (shade ~ yield | block, data=kiwishade, pch=1, aspect=1,
panel=function(x,y,...) {panel.dotplot(x, y ,...)
av <- sapply(split(x,y), mean)
ypos <- unique (y)
lpoints (ypos~av, pch=3, cex=1.25)},
key=1list (space="top", columns=2,
text=1list (c("Individual vine yields", "Plot means (4 vines)")),
points=1list (pch=c(1,3), cex=c(1,1.25))), layout=c(3,1)
# Note that parameter settings were given both in the function call and
# in the list supplied to key. [With auto.key, this is unnecessary.]
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than means. In some regions, the range of climatic variation may be extreme. The
mean will give the same weight to sparsely populated cold mountainous locations as
to highly populated hot and humid locations on nearby plains.

» Correlation between observations that are close together geographically, though still
substantial, will be less of an issue for the data set in which each row is an administra-
tive region. Points that repeat essentially identical information are a problem both for
the interpretation of plots and, often, for the analysis. Regions that are geographically
close will often have similar climates and the same dengue status.

* Analysis is more straightforward with data sets that are of modest size. It is easier
to do the various checks that are desirable. The points that appear on plots are more
nearly independent. Standard forms of scatterplot are less likely to appear as a dense
mass of black ink.

For all these reasons it is preferable to base the main analysis on some form of average
of climate data by administrative region. There are many possible ways to calculate a
central value, of which the mean and the median are the most common.

2.2.3 Standard deviation and inter-quartile range

An important measure of variation in a population is the population standard deviation
(often written o). This is a population parameter that is almost always unknown. The
variance o2, which is the square of the standard deviation, is widely used in formal
inference.

The sample standard deviation, used to estimate the population standard deviation when
a random sample has been taken, is:

In words, given n data values, take the difference of each data value from the mean,
square, add the squared differences together, divide by n—1, and take the square root.
(In R, the standard deviation is calculated using the function sd (), and the variance is
calculated using var ().)

For s to be an accurate estimate of o, the sample must be large. The standard deviation
is similar in concept to the inter-quartile range H, which we saw in Subsection 2.1.1 is the
difference between the first and third quartiles. For data that are approximately normally
distributed, we have the relationship:

s~ 0.75H.

If the data are approximately normally distributed, one standard deviation either side of
the mean takes in roughly 68% of the data, whereas the region between the lower and
upper quartiles takes in 50% of the data.

Note also the median absolute deviation, calculated using the function mad (). This
calculates the median of the absolute deviations from the median. By default this is
multiplied by 1.4286, to ensure that in a large sample of normally distributed values the
value returned should approximately equal the standard deviation.
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Table 2.2 Standard deviations for cuckoo egg data.

Hedge sparrow  Meadow pipit  Pied wagtail Robin Tree pipit Wren
1.049 0.920 1.072 0.682 0.880 0.754

Cuckoo eggs example

Consider again the data on cuckoo eggs that we discussed in Subsection 2.1.4. The group
standard deviations are listed in Table 2.2.'?
The variability in egg length is smallest when the robin is the host.

Degrees of freedom

If in calculating s we had divided by n rather than n—1 before taking the square root,
we would have computed the average of the squared differences of the observations
from their sample average. The denominator n—1 is the number of degrees of freedom
remaining after estimating the mean. With one data point, the sum of squares about the
mean is zero, the degrees of freedom are zero, and no estimate of the variance is possible.
The degrees of freedom are the number of data values, additional to the first data value.

The number of degrees of freedom is reduced by 1 for each parameter estimated. The
standard deviation calculation described above sums squared differences of data values
from their sample mean, divides by the degrees of freedom, and takes the square root.
The standard deviation is in the same units as the original measurements.

The pooled standard deviation

Consider two independent samples of sizes n, and n,, respectively, randomly selected
from populations that have the same amount of variation but for which the means may
differ. Thus, two means must be estimated. The number of degrees of freedom remaining
for estimating the (common) standard deviation is n, +n, —2. We compute the so-called
pooled standard deviation by summing squares of differences of each data value from
their respective sample mean, dividing by the degrees of freedom n, 4 n, —2, and taking
the square root:

) z\/Z(X—J’c)“rZ(y—&)Z

p ny+n,—2 '
Use of this pooled estimate of the standard deviation is appropriate if variation in the two
populations is plausibly similar. The pooled standard deviation is estimated with more
degrees of freedom, and therefore, more accurately, than either of the separate standard
deviations.

244 SD of length, by species: data frame cuckoos (DAAG)
sapply (split (cuckoos$length, cuckoos$species), sd)
# Subsection 12.6.7 has information on split ()
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Elastic bands example

Consider data from an experiment in which 21 elastic bands were randomly divided into
two groups, one of 10 and one of 11. Bands in the first group were immediately tested for
the amount that they stretched under a weight of 1.35kg. The other group were dunked
in hot water at 65°C for four minutes, then left at air temperature for ten minutes, and
then tested for the amount that they stretched under the same 1.35kg weight as before.
The results were:

Ambient: 254 252 239 240 250 256 267 249 259 269 (Mean = 253.5)

Heated: 233 252 237 246 255 244 248 242 217 257 254 (Mean = 244.1)

The pooled standard deviation estimate is s = 10.91, with 19 (= 10+ 11 —2) degrees of
freedom. Since the separate standard deviations (s, = 9.92; s, = 11.73) are quite similar,
the pooled standard deviation estimate is a sensible summary of the variation in the data
set.

2.2.4 Correlation

The usual Pearson or product-moment correlation is a summary measure of linear rela-
tionship. Calculation of a correlation should always be accompanied by examination of a
relevant scatterplot. The scatterplot provides a useful visual check that the relationship is
linear. Often the addition of a smooth trend line helps the assessment. If the relationship
is not linear, but is monotonic, it may be appropriate to use a Spearman rank correlation.
Examples of the needed code are:

## Correlation between body and brain: data frame Animals (MASS)
## Pearson product--moment correlation

with (Animals, cor.test (body, brain))

with (Animals, cor.test(log(body), log(brain)))

## Spearman rank correlation

with(Animals, cor.test (body, brain, method="spearman"))

The output includes information additional to the correlation estimate itself.
Figure 2.13 gives four graphs to consider. For which does it make sense to calculate:

1. A Pearson correlation coefficient?
2. A Spearman rank correlation?

89 . ® |58 8 . .
o © °
o © o o ® 4 ° °
o ® . ¢
° o |o
° ° ° .o
DA ° .
° o L
o o ° ° o °®
o o ° i °
o® L] ° ®® * °° e o ¢
° .°oo°..°... °e* )

Figure 2.13  Different relationships between y and x. In the lower right panel, the Pearson
correlation is 0.882, while the Spearman rank correlation is 0.958.
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The figure that appears in the upper left in each panel is the Pearson correlation. For the
second panel, the Pearson correlation is 0.882, while the Spearman correlation, which
better captures the strength of the relationship, is 0.958. Here a linear fit clearly is
inadequate. The magnitude of the correlation r, or of the squared correlation 72, does not
of itself indicate whether the fit is adequate.

Note also the Kendall correlation, obtained by specifying method="kendall" when
cor.test () is called. This is often used in contexts where the same individuals are
assessed by different judges. It estimates the probability that the two judges will assign
the same ranking to an individual.

Here are ways in which the use of correlation may mislead:

* Values may not be independent. If we wish to make anything of the magnitude of the
coefficient, then it is necessary to assume that sample pairs (x, y) have been taken at
random from a bivariate normal distribution.

e There may be some kind of subgroup structure in the data. If, for example, values of
x and/or y are quite different for males and females, then the correlation may only
reflect a difference between the sexes. Or if random samples are taken from each of
a number of villages and the data are pooled, then it will be unclear whether any
correlation reflects a correlation between village averages or a correlation between
individuals within villages, or a bit of each. The interpretation is confused because the
two correlations may not be the same, and may even go in different directions. See
Cox and Wermuth (1996).

* Any correlation between a constituent and a total amount is likely to be, in part at
least, a mathematical artifact. Thus, consider a study of an anti-hypertensive drug that
hopes to determine whether the change y—x is larger for those with higher initial blood
pressure. If x and y have similar variances then, unfortunately, y—x will have a negative
correlation with x, whatever the influence of the initial blood pressure.

Note that while a correlation coefficient may sometimes be a useful single number
summary of the relationship between x and y, regression methods offer a much richer
framework for the examination of such relationships.

2.3 Statistical analysis questions, aims and strategies

Logically, this section should have appeared right at the beginning of the chapter, prior
to any discussion of analysis methods and approaches. The reason for placing it here is
that the reader should by now have a level of familiarity with several data sets that can
be used as a focus for discussion.

Different questions, asked of the same data, will elicit different answers. The data may
hold the information needed to answer one set of questions, and lack the information
needed to answer other questions. Questions should be carefully structured.

A closely related issue is: How will results be used? Is the aim scientific understanding,
perhaps as in the example discussed below to determine whether cuckoos do really match
the eggs that they lay in the nests of other birds to the size and color of the host eggs? Or
is the aim prediction, perhaps to predict, based on recent prices in the area and on house
size, the price that purchasers may be willing to pay?
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2.3.1 How relevant and how reliable are the data?

Data may, in principle, be incapable of answering the questions that are of interest. Data
on house prices in London may not have much relevance, if the interest is in house prices
in New York or Paris!

Assuming that the data are relevant, can reliance be placed on the answers that it
gives? Data that come from an experiment that has been designed to answer the ques-
tions of interest can give highly reliable results. That is the reason for designing and
carrying out experiments. Data that are from such experiments will be found through-
out this book — examples are the data on the tinting of car windows that was used for
the plots in Subsection 2.1.6 and the kiwifruit shading data that was discussed in Sub-
section 2.2.2. With data from carefully designed experiments, perhaps the most serious
danger is that the data will be generalized beyond the limits imposed by the experimental
conditions.

Observational data are another matter. Section 6.5 will discuss a comparison between
results from an experimental study on the effects of a work training program (those
enrolled in the study were randomly assigned to training and non-training groups), and
results from various sets of matched observational data that have been used in the attempt
to answer the same question. It happens that in this instance there is a check on the result
from the comparison that used observational data; data are available from an experiment
in which individuals were randomly assigned either to an experimental or to a control
group.

Latter (1902) collected the cuckoo egg data presented in Figure 2.8 in order to
investigate claims, made in Newton (1893-1896, p. 123), that the eggs that cuckoos lay
in the nests of other birds tend to match the eggs of the host bird in size, shape and
color. Figure 2.8 strongly indicated differences, depending on the host bird, in length.
A further step is to look for a relationship between the mean size of the cuckoo eggs
for each specific host, and the mean size of the host bird’s own eggs, using data such as
in Table 2.3.

There are various difficulties with the data in Table 2.3. The cuckoo eggs and the host
eggs are from different nests, collected in the course of different investigations. Data on
the host eggs is from various sources. For the wren, the value is an indicative length from
Gordon (1894). There is thus a risk of biases, different for the different sources of data,
that limit the inferences that can be drawn.

There is a striking difference between wrens and other species. Not only are their own
eggs easily the smallest among the species considered; the eggs of the wren host are
easily the smallest, among any of the hosts. Whatever biases may exist in the data, it is
unlikely that they would be so large as to affect these major differences. Biases might
well affect comparisons between eggs in the nests of species other than wrens.

2.3.2 Helpful and unhelpful questions

Analyses ask questions of data. The questions may be simple: “Does increasing the
amount of an additive in milk make it seem sweeter? If so, by how much does its
sweetness increase?”
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Table 2.3 Mean lengths of cuckoo eggs, compared with mean lengths of eggs laid by
the host bird species. More extensive data that bear on the comparison between cuckoo
eggs and host eggs are in the data frame cuckoohosts (DAAG).

Meadow  Hedge Tree Yellow
Host species pipit sparrow Robin  Wagtails pipit Wren nammer

Length (cuckoo) 223 (45) 23.1 (14) 22.5(16) 22.6 (26) 23.1(15) 21.1(15) 22.6(9)
Length (host)  19.7 (74) 20.0 (26) 202 (57) 19.9(16) 20(27) 17.7()  21.6(32)

Numbers in parentheses are numbers of eggs.

Or they may ask questions about relationships, as in the electrical resistance example
plotted in Figure 2.6: “What is the relationship between electrical resistance and apparent
juice content? How accurately can we predict resistance?” This is far more informative
than doing repeated trials, some with a juice content of 30% and some with a juice
content of 50%. With the data we have, it would be bad practice to do a formal statistical
test to compare, for example, juice content of less than 30% with juice content of more
than 50%. Even worse would be a study comparing resistance at 40% juice content with
resistance at 50% juice content; the result would be a complete failure to detect the
relatively rich relationship that exists between the apparent juice content and resistance.

2.3.3 How will results be used?

Studies may be designed to help scientific understanding. Consider again the data in
Table 2.3. The interest of Latter’s paper is primarily in establishing whether there is a
relationship, and rather less in determining the nature of the relationship. Egg size and
shape is one of several pieces of evidence that Latter considers. Uniquely among the birds
listed, the architecture of wren nests makes it impossible for the birds to see the eggs. In
wren nests, the color of the cuckoo’s egg does not match the color of the wren’s eggs;
for the other species the color does mostly match. Latter concludes that Newton is right,
that the eggs that cuckoos lay tend to match the eggs of the host bird in size and shape
in ways that will make it difficult for hosts to distinguish their eggs from the cuckoo
eggs.

This is very different from the demands of the real estate agent who may hope, on
the basis of last year’s prices in a city location, and floor area, to predict the prices that
purchasers will be willing to pay. Will a relationship that seems to work in one suburb
apply also in another suburb, or in a neighboring city? Accurate prediction is crucial, and
more important than understanding the detailed reasons for any relationship that may be
apparent. It becomes important also, to know what accuracy is important to the person
who will use the results. Is it accuracy for purposes of making a prediction on one of
the suburb(s) used in obtaining the data? Or is it accuracy for making predictions in new
suburb(s)? In the latter case, data from multiple suburbs will be needed, and it must be
possible to treat the sampled suburbs as a random sample from the suburbs for which
predictions are required.
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2.3.4 Formal and informal assessments

Statistical data analysis is, often, crucial to the answering of scientific questions. It does
not however stand alone, but must be interpreted against a background of subject area
knowledge and judgment. Qualitative judgments are inevitable at various points in studies
that generate data sets such as are analyzed in this book. Such judgments affect the use
of assumed subject area knowledge, the measurements that are taken, the design of
data collection, the choice of analysis, and the interpretation of analysis results. These
judgments, while they should be as informed as possible, cannot be avoided.
Two examples will now be given:

e In trials that evaluate therapies for use with patients whose conditions commonly lead
to early death, what is the relevant measure? Is it survival time from diagnosis? Or
is it more appropriate to use a measure that takes account of quality of life over that
time, which differ hugely between different therapies? Two such measures that are in
use as “Disability Adjusted Life Years” (DALYs) and “Quality Adjusted Life Years”
(QALYs).

» The dataset nsw74psidil, discussed briefly in Subsection 2.2.1, allows comparison
of two groups of individuals, both with a history of employment difficulties and related
difficulties. A focus of interest was income in 1978, subsequent to the study. Because
the distribution of income is highly skew, comparisons that are based directly on
income will be biased towards the experience of those few individuals whose incomes
were very large. This effect can be ameliorated by working with the logarithm of
income. Or it might be more appropriate to compare the median salaries of the two
groups, after adjusting for the effects of other variables.

In neither of these instances is the interpretation of analysis results quite as simple as
it might initially appear. There is an inevitable risk that assumed insights and judgments
will carry large elements of prejudice or personal bias. A well-designed study will allow
some opportunity for study results to challenge the assumed insights and understandings
that have motivated its collection.

Questionnaires and surveys

The science and socsupport data frames (DAAG) are both from surveys. In both
cases, an important question is whether the questions measured what they claimed to
measure. In the science data set, a focus of interest is the variable 1ike, which
measured the extent of students’ liking for science. What did students understand by
“science”? Was science, for them, a way to gain and test knowledge of the world? Or
was it a body of knowledge? Or, more likely, was it a name for their experience of
science laboratory classes (smells, bangs and sparks perhaps) and field trips?

In the socsupport data set, an important variable is BDI, which is the Beck
depression index. The Beck depression index (BDI) is a standard psychological measure
of depression (see for example Streiner and Norman, 2003). It is a summary measure from
a questionnaire, known in the jargon as a survey instrument, that asks a large number of
questions.
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In either case it is impossible to escape the question: “What was measured?” This
question is itself amenable to experimental investigation. For the data frame science
answers to other questions included in the survey will shed some light. The Beck
depression index is the result of an extensive process of development and testing that have
seemed to indicate that it gives a usable and useful measure of psychological depression,
at least for populations on which it has been tested. Such background evidence helps in
deciding what is measured. Finally, however, there must be a qualitative judgment that
brings together subject area knowledge, background information and evidence, and the
results of the immediate statistical analysis.

2.3.5 Statistical analysis strategies

We have emphasized the importance of careful initial scrutiny of the data. Techniques of
a broadly EDA type have, in addition, a role in scrutinizing results from formal analysis,
in checking for possible model inadequacies and perhaps in suggesting remedies. In later
chapters, we will discuss the use of diagnostic statistics and graphs in examination both
of the model used and of output from the analysis. These are an “after the event” form of
EDA. In the course of an analysis, the data analyst may move backwards and forwards
between exploratory analysis and more formal analyses.

2.3.6 Planning the formal analysis

Where existing data are available, a cautious investigator will use them to determine the
form of analysis that is appropriate for the main body of data. If the data to be collected
are closely comparable to data that have been analyzed previously, the analyst will likely
know what to expect. It is then possible and desirable to plan the analysis in advance.
This reduces the chance of biasing the results of the analysis in a direction that is closest
to the analyst’s preference! Even so, graphical checks of the data should precede formal
analysis. There may be obvious mistakes. The data may have surprises for the analyst.

If available at the beginning of the study, the information from the analysis of earlier
data may, additionally, be invaluable in the design of data collection for the new study.
When prior data are not available, a pilot study involving a small number of experimental
runs can sometimes be used to provide this kind of information.

Where it is not altogether clear what to expect, careful preliminary examination is even
more necessary. In particular, the analyst should look for

e outliers,

e clusters in the data,

e unexpected patterns within groups,

* between-group differences in the scatter of the data,

* whether there are unanticipated time trends associated, for example, with order of data
collection.

In all studies, it is necessary to check for obvious data errors or inconsistencies. In
addition, there should be checks that the data support the intended form of analysis.
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2.3.7 Changes to the intended plan of analysis

Planning the formal analysis is one aspect of planning a research study. Such advance
planning should allow for the possibility of limited changes as a result of the exploratory
analysis. As noted above, the best situation is where there are existing data that can be
used for a practice run of the intended analysis.

What departures from the original plan are acceptable, and what are not? If the
exploratory analysis makes it clear that the data should be transformed in order to
approximate normality more closely, then use the transformation. It is sometimes useful
to do both analyses (with the untransformed as well as with the transformed data) and
compare them.

On the other hand, if there are potentially a large number of comparisons that could
be made, the comparisons that will be considered should be specified in advance. Prior
data, perhaps from a pilot study, can assist in this choice. Any investigation of other
comparisons may be undertaken as an exploratory investigation, a preliminary to the
next study.

Data-based selection of one or two comparisons from a much larger number is not
appropriate, since huge biases may be introduced. Alternatively there must be allowance
for such selection in the assessment of model accuracy. The issues here are non-trivial,
and we defer further discussion until later.

2.4 Recap

Exploratory data analysis aims to allow the data to speak for themselves, often prior to or
as part of a formal analysis. It gives multiple views of the data that may provide useful
insights. Histograms, density plots, stem-and-leaf displays and boxplots are useful for
examining the distributions of individual variables. Scatterplots are useful for looking at
relationships two at a time. If there are several variables, the scatterplot matrix provides
a compact visual summary of all two-way relationships.

Before analysis, look especially for

* outliers,

» skewness (e.g., a long tail) in the distribution of data values,

* clustering,

* non-linear bivariate relationships,

* indications of heterogeneous variability (i.e., differences in variability across samples),
* whether transformations seem necessary.

After analysis, check residuals for all these same features. Where relationships involve
several variables, adequate checks will be possible only after analysis.

Failure of the independence assumption is hard to detect, unless the likely form of
dependence is known and the sample is large. Be aware of any structure in the data that
may be associated with lack of independence.

Do not allow the initial scrutiny of data to influence the analysis in ways that may lead
to over-interpretation.
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2.5 Further reading

The books and papers on graphical presentation that were noted in Chapter 1 are equally
relevant to this chapter. The books Cleveland (1993, 1994) are especially pertinent to
the present chapter. Chatfield (2002) has a helpful and interesting discussion, drawing on
consulting experience, of approaches to practical data analysis.

On statistical presentation issues, and deficiencies in the published literature, see
Andersen (1990); Chanter (1981); Gardner et al. (1983); Maindonald (1992); Maindonald
and Cox (1984); Wilkinson and Task Force on Statistical Inference (1999). The Wilkinson
etal. paper has helpful comments on the planning of data analysis, the role of exploratory
data analysis, and so on. Nelder (1999) is forthright and controversial.

Two helpful web pages are:
http://www.math.yorku.ca/SCS/friendly.html\#graph and http://
www.rdg.ac.uk/ssc/dfid/booklets.html
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2.6 Exercises

1. Use the lattice function bwplot () to display, for each combination of site and sex in the
data frame possum (DAAG package), the distribution of ages. Show the different sites on the
same panel, with different panels for different sexes.
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Do a stem-and-leaf display for the lengths of the female possums. On the display, identify the
position of the median, either at one of the leaves or between two leaves. Explain the reasoning
used to find the median, and use the function median () to check the result.

Plot a histogram of the earconch measurements for the possum data. The distribution should
appear bimodal (two peaks). This is a simple indication of clustering, possibly due to sex
differences. Obtain side-by-side boxplots of the male and female earconch measurements.
How do these measurement distributions differ? Can you predict what the corresponding
histograms would look like? Plot them to check your answer.

For the data frame ais (DAAG package), draw graphs that show how the values of the
hematological measures (red cell count, hemoglobin concentration, hematocrit, white cell count
and plasma ferritin concentration) vary with the sport and sex of the athlete.

Using the data frame cuckoohosts, plot clength against cbreadth, and hlength
against hbreadth, all on the same graph and using a different color to distinguish the first
set of points (for the cuckoo eggs) from the second set (for the host eggs). Join the two points
that relate to the same host species with a line. What does a line that is long, relative to other
lines, imply? Here is code that you may wish to use:
attach (cuckoohosts)
plot (c(clength, hlength), c(cbreadth, hbreadth),
col=rep(l:2,c(12,12)))

for(i in 1:12)lines(c(clength[i], hlength[il),

c (cbreadth[i], hbreadth[i]))
text (hlength, hbreadth, abbreviate (rownames (cuckoohosts),8))
detach (cuckoohosts)

Enter and run the following code. Annotate it, describing each function and each parameter:

deathrate <- c(40.7, 36,27,30.5,27.6,83.5)

hosp <- c("Cliniques of Vienna (1834-63)\n(> 2000 cases pa)",
"Enfans Trouves at Petersburg\n(1845-59, 1000-2000 cases pa)",
"Pesth (500-1000 cases pa)",
"Edinburgh (200-500 cases pa)",
"Frankfort (100-200 cases pa)", "Lund (< 100 cases pa)")

hosp <- factor (hosp, levels=hosp[order (deathrate)])

dotplot (hosp~™deathrate, xlim=c(0,95), xlab="Death rate per 1000 ",

type=c ("h", "p"))
## Source: Nightingale (1871). Data are ascribed to Dr Le Fort

Download and load the package Devore6, available from the CRAN sites. Then gain access to
data on tomato yields by typing:

library (Devoreé6) # ex10.22 is from Devoreé6

tomatoes <- ex10.22

This data frame gives tomato yields at four levels of salinity, as measured by electrical
conductivity (EC, in nmho/cm).

(a) Obtain a scatterplot of yield against EC.

(b) Obtain side-by-side boxplots of yield for each level of EC.

(c) The third column of the data frame is a factor representing the four different levels of
EC. Comment upon whether the yield data are more effectively analyzed using EC as a
quantitative or qualitative factor.
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Examine the help for the function mean (), and use it to learn about the trimmed mean. For
the total lengths of female possums, calculate the mean, the median, and the 10% trimmed
mean. How does the 10% trimmed mean differ from the mean for these data? Under what
circumstances will the trimmed mean differ substantially from the mean?

Assuming that the variability in egg length for the cuckoo eggs data is the same for all host birds,
obtain an estimate of the pooled standard deviation as a way of summarizing this variability.
[Hint: Remember to divide the appropriate sums of squares by the number of degrees of
freedom remaining after estimating the six different means.]

Calculate the following three correlations:

with(Animals, cor (brain,body))

with (Animals, cor(log(brain),log(body)))

with(Animals, cor(log(brain),log(body), method="spearman"))
Comment on the different results. Which is the most appropriate measure of the relationship?

The following code conveys information that has points of connection with the information in
Figure 2.12:

bwplot (shade yield|block, data=kiwishade, layout=c(3,1))
Compare and contrast the information given by these two plots.

The galaxies data in the MASS library gives speeds on 82 galaxies (see the help file and
the references listed there for more information). Obtain a density plot for these data. Is the
distribution strongly skewed? Is there evidence of clustering?

The cpus data frame in the MASS library contains information on eight aspects for each of
209 different types of computers. Read the help page for more information.

(a) Construct a scatterplot matrix for these data. Should any of the variables be transformed
before further analysis is conducted?

(b) How well does estimated performance (estperf) predict performance (perf)? Study
this question by constructing a scatterplot of these two variables, after taking logarithms.
Do the plotted points scatter about a straight line or is there an indication of non-linearity?
Is variability in performance the same at each level of performance?
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An engineer may build a scale model of a proposed bridge or a building. A scale model
of a building may be helpful for checking the routing of the plumbing but may give little
indication of the acoustics of seminar rooms that are included in the building. For use of
the model, it is important to understand which features generalize and which do not. In
medical research, mouse responses to disease and to therapeutic agents are widely used
as models for human responses. Experimental responses in the mouse may indicate likely
responses in humans. By contrast with the architect’s scale model of a building, it can be
hard to predict in advance which features of the mouse model will generalize, and which
will not.

In fundamental research in the physical sciences, deterministic models are often ade-
quate. Statistical variability may be so small that it can, for practical purposes, be ignored.
In applications of the physical sciences, variability may however be a serious issue. In
studying how buildings respond to a demolition charge, there will be variation from one
occasion to another, even for identical buildings and identically placed charges. There
will be variation in which parts of the building break first, in what parts remain intact, and
in the trajectories of fragments. In the natural sciences, such variability is everywhere.

Statistical models rely on probabilistic forms of description that have wide application
over all areas of science. They often consist of a deterministic component as well as a
random component that attempts to account for variation that is not accounted for by a
law-like property.

Models should, wherever possible, be scientifically meaningful, but not at the cost
of doing violence to the data. The scientific context includes the analyses, if any, that
other researchers have undertaken with related or similar data. It can be important to
note and use such analyses critically. While they may give useful leads, there can be
serious inadequacies in published analyses. Further discussion on this point can be found
in articles and books given in the list of references at the end of Chapter 2.

As we saw in Chapter 2, consideration of a model stays somewhat in the background in
initial efforts at exploratory data analysis. The choice of model is of crucial importance in
formal analysis. The choice may be influenced by previous experience with comparable
data, by subject area knowledge, and by cautious use of what may emerge from exploratory
analysis.
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3.1 Regularities

Many regularities of nature are taken for granted in everyday living — the rising and setting
of the sun, the effects of fire in cooking or in burning anyone unfortunate enough to get
too near, and so on. Experience of the world, rather than logical deductive argument, has
identified these regularities. Scientific investigation, especially in the physical sciences,
has greatly extended and systematized our awareness of regularities. Mathematical models,
usually but not necessarily deterministic, have been crucial for describing and quantifying
these regularities.

3.1.1 Deterministic models

Figure 3.1 is a graphical representation of a deterministic model for the distance that
a stone or other falling object, starting at rest above the earth’s surface, travels under
gravity in some stated time.'

The formula is not totally accurate — it neglects the effects of air resistance. Even if it
were totally accurate, measurement inaccuracy would introduce small differences between
observations and predictions from the formula. These inaccuracies could if desired be
modeled, thus making the model a statistical model.

3.1.2 Models that include a random component

Statistical models typically include at least two components. One component describes
deterministic law-like behavior. In engineering terms, that is the signal. The other compo-
nent is random, often described as noise, that is, subject to statistical variation. It accounts
for variation that cannot be assigned to some specific predictable cause. Up until Chapter
9, most analyses will assume that the elements of the noise (or error component) are
uncorrelated.

saa

Figure 3.1 Distance fallen versus time, for a stone that starts at rest and falls freely under gravity.
The constant g is the acceleration due to gravity.

"## Simplified version of graph
curve (0.5*9.8*x"2, from=0, to=5, xaxs="i", yaxs="i",
xlab = "Time (sec)", ylab = "Distance fallen (m)")
text (0.25, 105, expression("Distance" == frac(1l,2)*phantom(i)*g*t”~2), adj=0)
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Both noise and error are technical terms. The use of the word error does not imply
that there have been mistakes in the collection of the data, though mistakes can of course
contribute to making the variability unnecessarily large. Thinking of error as necessarily
implying “mistake” is on a par with associating noise, in a statistical or signal processing
context, with auditory sensation!

Figure 3.2 plots the data that are shown in Table 3.1. Different weights of roller were
rolled over different parts of a lawn, and the depression noted (data are from Stewart
et al., 1988).” The data seem broadly consistent with the assumption of a “signal” by
which depression is proportional to roller weight. Variation about this signal is reflected in
variation in the values for depression/weight. More generally, it might be assumed
that the signal is a line, not necessarily a line of strict proportionality between depression
and weight. (It might, for example, be desirable to allow for a systematic error in the
measurement of depression.)

Assuming a line through the origin, the model is:

depression = 3 x weight + noise.

Here 3 is a constant, which must be estimated. The noise is different for each different
part of the lawn.
The model has the form:

observed value = model prediction + statistical error.

This has the mathematical form:
Y=pu+e

(often w is a function of explanatory variables). The model prediction () is the signal
component of the model, while ¢ is the noise or statistical error component of the model.
Using the mathematical idea of expected value, it is usual to define u = E(Y), where the
E(Y) denotes “expected value of ¥.” The expected value generalizes the mean.

It may be helpful to think of the model prediction as the “smooth”, and of the residual
as the “rough”.

Generalizing from models

Models should as far as possible yield inferences that, for their intended use, are acceptably
accurate. Often, the intended use is prediction. Alternatively, or additionally, there may
be an interest in model parameters. Thus for the lawn roller data of Table 3.1, one focus
of interest is the rate of increase of depression with increasing roller weight, that is, the
slope of the line.

Model structure should reflect data structure. The model treats the pattern of change of
depression with roller weight as a deterministic or fixed effect. The measured values of

2## Plot depression vs weight: data frame roller (DAAG)
plot (depression ~ weight, data = roller, xlim=c(0,1.04*max(weight)),
ylim=c (0,1.04*max (depression)),
xaxs="1i", yaxs="i", # "i"=inner: Fit axes exactly to the limits
xlab = "Weight of roller (t)", ylab = "Depression(mm)", pch = 16)
abline (0, 2.25) # A slope of 2.25 looks about right



3.1 Regularities 81

Table 3.1 Depression (depression) and
depression/weight ratio for different weights (weight) of
lawn roller. Data are in the data frame roller (DAAG
package).

weight (t) depression (mm) depression/weight

1 1.9 2 1.1
2 3.1 1 0.3
3 33 5 1.5
4 4.8 5 1.0
5 53 20 3.8
6 6.1 20 33
7 6.4 23 3.6
8 7.6 10 1.3
9 9.8 30 3.1
10 12.4 25 2.0
o °
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Figure 3.2  Depression in lawn, versus roller weight. The line, through the origin, was drawn
by eye.

depression incorporate, in addition, a random effect that reflects variation from one part
of the lawn to another, differences in the handling of the roller, and measurement error.
Elementary statistics courses typically emphasize fixed effects, with a single random
source of variation superimposed.

The model should accurately reflect both fixed and random sources of variation. In
practical contexts, multiple random sources of variation are the rule rather than the
exception. If there had been multiple lawns, effects would undoubtedly have differed
from one lawn to another. Thus we would have to reckon with between-lawn variation,
superimposed on the within-lawn variation on which our data give information. Data from
multiple lawns are essential, for anything more than informal judgment on how results
may generalize to other lawns. Chapter 10 will discuss models that might be tried, if data
from multiple lawns were available.
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Figure 3.3 In A a line has been fitted, while in B the loess method was used to fit a smoothed
curve. Residuals (the “rough”) appear as vertical lines. Positive residuals are black lines, while
negative residuals are dashed. Figures 3.3A and 3.3B were created using our function g3.3 (),
which is available from the web page for the book. Interested readers can check the code.

Which model is best?

Figure 3.3 shows two possible models for the lawn roller data, together with information
that may be helpful in assessing the adequacy of the model. In Figure 3.3A, a line has
been fitted, while Figure 3.3B has used lowess () to fit a smooth curve through the
data. Sometimes, the fitting of a curve such as in Figure 3.3B helps indicate whether a
line really is appropriate. Note that there is just one point that seems to be causing the
line, and the fitted curve, to bend down. In any case, there is no statistical justification for
fitting a curve rather than a line, as can be verified with a formal analysis; see Exercise 2
in Chapter 7. There is “over-fitting” in Figure 3.3B.

3.1.3 Fitting models — the model formula

Formulae have already been used extensively to describe graphs that will be plotted using
plot () or another such function. Modeling functions likewise use formulae to describe
the role of variables and factors in models. Thus, the following model statement, with
model formula depression ~ weight, fits a line to the data of Table 3.1:

## Fit line - by default, this fits intercept & slope.
## requires data frame roller (DAAG)

roller.lm <- lm(depression ~ weight, data=roller)

## Compare with the code used to plot the data

plot (depression ~ weight, data=roller)

## Add a the fitted line to the plot

abline (roller.1lm)

The name roller. 1m, used for the output of the calculation, was chosen for mnemonic
reasons — the object was the result of 1m calculations on the roller data set. In the
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formula, weight is the predictor or explanatory variable, while depression is the
response.’

Model formulae give an economical way to specify the way that variables and factors
enter into a model. Once understood, they aid economy of thought and description.

Fitted values and residuals

Residuals, which are the differences between observed values of depression, and
predicted values of depression at the respective values of weight, are important for
assessing the accuracy of the model fit. A large noise or “rough” component generates
large residuals, and works against accurate prediction. Figure 3.3A exhibits the residuals
for the lawn roller data after fitting a straight line, while Figure 3.3B exhibits the residuals
after fitting a smooth curve. Positive residuals are represented by solid lines, while
negative residuals are represented by dashed lines.

Model objects

The model object, above saved as roller. 1m, has the form of a list:

> names (roller.1lm) # Get names of list elements
[1] "coefficients" ‘'"residuals" "effects" "rank"
[5] "fitted.values" "assign" "gr" "df .residual™"
[9] "xlevels" "call" "terms" "model"

The information held in these list elements is available as a basis for further calculations.
Usually, rather than examining the list elements directly, it is best to use an extractor
function that gives what is required. The following gives the model coefficients:

## Use extractor function coef ()
> coef (roller.1lm)
(Intercept) weight
-2.087148 2.666746
## Examine list element directly (best avoided)
> roller.lmScoefficients
(Intercept) weight
-2.087148 2.666746

Here, the model coefficients are the intercept and slope of the fitted line.

The function coef () is one of a number of extractor functions that extract commonly
required information from the model object. Most of the information that is commonly
required from model objects can be obtained by the use of one of these extractor functions.

3.2 Distributions: models for the random component

A distribution is a model for a population of data values. Mathematically, the notion of
distribution makes it possible to deal with variability. Comparison between two groups

3## For a model that omits the intercept term, specify
lm(depression ~ -1 + weight, data=roller)
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requires a model for the variability in each group, as a standard against which to assess
the difference between the two groups. In regression, a model is required for variation of
the responses about a line or curve, allowing an assessment of the acuracy with which
the line can be determined.

Discrete distributions are conceptually simpler than continuous distributions, and will
be discussed first, then going on to discuss the normal and other continuous distributions.

3.2.1 Discrete distributions
Bernoulli distribution

Successive tosses of a fair coin come up tails (which we count as zero) with probability
0.5 and heads (which we count as one) with probability 0.5, independently between tosses.
More generally, we may have a probability 1 — 7 for tails and 7= for heads. We say that the
number of heads has a Bernoulli distribution with parameter 7. Alternatively, we could
count the number of tails and note that it has a Bernoulli distribution with parameter 1 — 7.

Binomial distribution

The total number of heads in n tosses of a fair coin follows a binomial distribution (the
Bernoulli distribution is the special case for which n = 1) with size n and 7 = 0.5. The
numbers of female children in two-child families can be modeled as binomial with n =2
and 7 ~ 0.5. We can use the function dbinom () to determine probabilities of having
0, 1 or 2 female children:*

## To get labeled output exactly as below, see the footnote
## dbinom(0:2, size=2, prob=0.5) # Simple version

0 1 2
0.25 0.50 0.25

On average, 25% of two-child families will have no female child, 50% will have one
female child, and 25% will have two female children. For another example, we obtain
the distribution of female children in four-child families:

## dbinom(0:4, size=4, prob=0.5)
0 1 2 3 4
0.0625 0.2500 0.3750 0.2500 0.0625

To calculate the probability that a four-child family has no more than two females,
add up the probabilities of 0, 1, and 2 females (0.06254-0.2500+40.3750 = 0.6875). The
function pbinom () can be used to determine such cumulative probabilities, thus:

pbinom(g=2, size=4, prob=0.5)

As a final example, suppose a sample of 50 manufactured items is taken from an
assembly line that produces 20% defective items, on average. The code is:

“## To get the labeling (0, 1, 2) as in the text, specify:
probs <- dbinom(0:2, size=2, prob=0.5)

names (probs) <- 0:2

probs
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> pbinom(g=4, size=50, prob=0.2)
[1] 0.0185

The probability of observing fewer than five defectives in the sample is 0.0185.

The function gbinom () goes in the other direction, from cumulative probabilities
to number of events. Thus, in the four-child family example, the following gives the
minimum number of females such that the cumulative probability is greater than or equal
to 0.65:

> gbinom(p = 0.65, size = 4, prob = 0.5)
[1] 2

> ## Check result

> sum(dbinom(0:2, size=4, prob=.5))

[1] 0.688

We will make no further use of gbinom ().

Poisson distribution

The Poisson distribution is often used to model counts of defects or events that occur
relatively rarely. The R functions follow the same pattern as for the functions above, that
is, they are dpois (), ppois () and gpois ().

As an example, consider a population of raisin buns for which there are an average of
3 raisins per bun. Any individual raisin has a small probability of finding its way into any
individual bun. We have the following probabilities for 0, 1, 2, 3, or 4 raisins per bun:

## Probabilities of 0, 1, 3, 4 raisins
## mean number of raisins per bun = 3
## dpois(x = 0:4, lambda = 3)

0 1 2 3 4
0.0498 0.1494 0.2240 0.2240 0.1680

The cumulative probabilities are:

## ppois(g = 0:4, lambda = 3)
0 1 2 3 4
0.0498 0.1991 0.4232 0.6472 0.8153

Thus, for example, the probability of finding 2 or fewer raisins in a bun is 0.4232.

Means, variances and standard deviations

For a binomial random variable based on a sample of size n and a probability 7, the
mean is n7r and the standard deviation is \/n(1 — 7). Omission of the square root sign
gives the variance nm(1 — 7). Note that the variance of a binomial random variable is
always strictly smaller than the mean. The variance of a Poisson random variable is equal
to its mean. These observations have implications for some of the models considered in
Chapter 8.
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Figure 3.4 A plot of the normal density. The horizontal axis is labeled in standard deviations
(SDs) distance from the mean. The area of the shaded region is the probability that a normal random
variable has a value less than one standard deviation above the mean.

3.2.2 Continuous distributions
Normal distribution

The normal distribution, which has the bell-shaped density curve pictured in Figure 3.4,
is often used as a model for continuous measurement data (sometimes a transformation
of the data is required in order for the normal model to be useful). The height of the
curve is a function of the distance, measured in number of standard deviations, from the
mean. The area under the density curve is 1. The density curve plotted in Figure 3.4
corresponds to a normal distribution with a mean of 0, located at the peak or mode of
the density. By adding a fixed value w to a population of such normal variates, we can
change the mean to u, leaving the standard deviation unchanged. Here is code that plots
the normal density function:

## Plot the normal density, in the range -3 to 3

z <- pretty(c(-3,3), 30) # Find 730 equally spaced points

ht <- dnorm(z) # By default: mean=0, variance=1

plot(z, ht, type="1l", xlab="Normal deviate", ylab="Density", yaxs="i")
# yaxs="i" locates the axes at the limits of the data

Code that is closer to what appears in Figure 3.4, together with the shading, is in the
footnote:’

Functions for calculations with continuous distributions operate a little differently
from functions for calculation with discrete distributions. Whereas dbinom () gives
probabilities, dnorm () gives values of the probability density function. The area under
any density curve between x = a and x = b gives the probability that the random variable
lies between those limits.

S## Plot the normal density, in the range -3.25 to 3.25
z <- pretty(c(-3.25,3.25), 30) # Find "30 equally spaced points

ht <- dnorm(z) # By default: mean=0, variance=1
plot(z, ht, type="1l", xlab="Normal deviate", ylab="Ordinate", yaxs="i"
polygon(c(z[z <= 1.0], 1.0), c(dnorm(z[z <= 1.0]), 0), col="grey")

# Around 84.1% of the total area is to the left of the vertical line.
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The function pnorm () calculates the cumulative probability, that is, the area under
the curve up to the specified ordinate or x-value. For example, there is a probability of
0.841 that a normal deviate is less than 1:

> pnorm(1.0) # by default, mean=0 and SD=1
[1] 0.841

This corresponds to the area of the shaded region in Figure 3.4.° The function gnorm ()
calculates the deviate that corresponds to a given cumulative probability, that is, the area
under the curve up to the specified ordinate. The g stands for quantile. Another term,
that has in mind the division of the area into 100 equal parts, is percentile. For example,
the 90th percentile is 1.28.

> gnorm(.9) # 90th percentile; mean=0 and SD=1
[1] 1.28

The footnote has additional examples.’

The normal distribution is frequently used to describe the differences between observa-
tions and predicted values from a fitted model. For example, the differences (or residuals)
between the observed values and a fitted line in the lawn roller data in Figure 3.2 can
be modeled with a normal distribution. In other words, the noise component & in the
model that was introduced in Subsection 3.1.2 is assumed to have a normal distribution,
independently between observations. Such an assumption should be checked, to the extent
that this is possible. Subsection 3.4.2 will comment on how this can be done.

Other continuous distributions

There are many other statistical models for continuous observations. The simplest model
is the uniform distribution, for which an observation is equally likely to take any value
in a given interval. In more precise technical language, the probability density of values
is constant on a fixed interval.

Another model is the exponential distribution that gives high probability density to
positive values lying near 0; the probability density decays exponentially as the values
increase. This simple model has been used to model times between arrivals of customers
to a queue. The exponential distribution is a special case of the chi-squared distribution.
The latter distribution arises, for example, when dealing with contingency tables. Details
on computing probabilities for these distributions can be found in the exercises.

S ## Additional examples

pnorm(0) .5 (exactly half the area is to the left of the mean)
pnorm(-1.96) .025
pnorm(1.96) .975

pnorm(1l.96, mean=2)
pnorm(1.96, sd=2)
7## Additional example

.484 (a normal distribution with mean 2 and SD 1)
.836 (sd = standard deviation)

H H H 0 HHH

gnorm(0.841) 1.0

gnorm(0.5) 0

gnorm(0.975) 1.96

gnorm(c(.1,.2,.3)) # -1.282 -0.842 -0.524 (10th, 20th and 30th percentiles)
gnorm(.1l, mean=100, sd=10) # 87.2 (10th percentile, mean=100, SD=10)
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Different ways to describe distributions

In Subsection 2.1.1 it was noted that, with the default boxplot settings, 1% of values that
are drawn at random from a normal distribution will on average be flagged as possible
outliers. If the distribution is not symmetric, more than 1% of points may lie outside the
whiskers, mostly at the lower end if the distribution is skewed (i.e., with a long tail) to
the left, and mostly at the upper end if the distribution is skewed to the right. Or the
distribution may be symmetric, but “heavy-tailed", that is, higher proportion of values are
out beyond the boxplot whiskers, at both tails of the distribution, than would be expected
for a normal distribution.

Section 4.1.6 will introduce the t-distribution — distributions of this class have an
important role in introductory courses in statistical theory. These are all heavy-tailed
distributions.

In the above discussion, R’s boxplot conventions have been used to give “heavy-tailed"
a precise meaning. While there are other definitions, the definition given is adequate for
the purposes of this chapter.

3.3 The uses of random numbers
3.3.1 Simulation

R has functions that generate random numbers from some specified distributions. To take
a simple example, we can simulate a random sequence of 10 Os and 1s from a population
with some specified proportion of 1s, for example, 50% (i.e., a Bernoulli distribution):

> rbinom (10, size=1, p=.5) # 10 Bernoulli trials, prob=0.5
1000111010

The random sample is different on each occasion, depending on the setting of a starting
number that is called the seed. Occasionally, it is desirable to set the seed for the random
number generator so that the selection of sample elements is the same on successive
executions of a calculation.

Use of the function set.seed () makes it possible to use the same random number
seed in two or more successive calls to a function that uses the random number generator.
Ordinarily, this is undesirable. However, users will sometimes, for purposes of checking a
calculation, wish to repeat calculations with the same sequence of random numbers as was
generated in an earlier call. (To obtain the sample above, specify set.seed (23826)
before issuing the rbinom command.)

We can simulate values from several other distributions. We will offer examples of
simulated binomial, Poisson and normal samples.

To generate the numbers of daughters in a simulated sample of 25 four-child families,
assuming that males and females are equally likely, we use the rbinom () function:

# For the sequence that follows, precede with set.seed(9388)
> rbinom (25, size=4, prob=0.5)
[1] 31 241203212324211122322022
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Now consider the raisin buns, with an overall average of 3 raisins per bun. Here are
numbers of raisins for a simulated random sample of 20 buns:

> set.seed(9388)
> rpois (20, 3)
[1] 33412231143 011310452

The function rnorm () generates random deviates from the normal distribution. For
example, the following are 10 random values from a normal distribution with mean 0 and
standard deviation 1:

> options(digits=2) # Suggest number of digits to display
> rnorm(10) # 10 random values from the normal distribution
# For our sequence, precede with set.seed(3663)
[1] -0.599 -1.876 1.441 -1.025 0.612 -1.669 0.138 -0.099 1.010 0.013

Calculations for other distributions follow the same pattern. For example, uniform
random numbers are generated using runif () and exponential random numbers are
generated using rexp ().

runif (n = 20, min=0, max=1) # 20 numbers, uniform distn on (0, 1)
rexp (n=10, rate=3) # 10 numbers, exponential, mean 1/3.

Exercises at the end of this chapter explore some of the possibilities.

3.3.2 Sampling from populations

Here we will discuss probability-based methods for choosing random samples. These
methods have important practical uses. They contrast with more informal methods for
choosing samples.

Consider first a sample from a finite population. Suppose, for example, that names on
an electoral roll are numbered, actually or notionally, from 1 to 9384. We can obtain a
random sample of 15 individuals thus:

> ## For the sequence below, precede with set.seed(3676)

> sample(1:9384, 15, replace=FALSE)

[1] 9178 2408 8724 173 106 4664 3787 6381 5098 3228 8321
165 7332 9036 540

This gives the numerical labels for the 15 individuals that we should include in our
sample. The task is then to find them! The option replace=FALSE gives a without
replacement sample, that is, it ensures that no one is included more than once.

As another example, suppose that it is required to randomly assign 10 plants (labeled
from 1 to 10, inclusive) to one of two equal sized groups, control and treatment. One
such random assignment is the following:

> ## For the sequence below, precede with set.seed(366)

> split (sample(seq(1:10)), rep(c("Control","Treatment"), 5))
> # sample(1:10) gives a random re-arrangement (permutation)
> # of 1, 2, ..., 10

$Control
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[1] 6 8 3 7 9
STreatment
[1] 5 4 2 1 10

We then assign plants 6, 8, 3, 7, and 9 to the control group. By choosing the plants in
such a manner, we avoid biases that could arise, for example, due to choosing healthier
looking plants for the treatment group.

Alternatively the requirement may be to simulate a sample from an infinite population.
Bootstrap sampling tries to approximate the taking of samples from the original popu-
lation, by the use of with replacement samples from the one available sample. See the
discussion of bootstrap methods in Subsections 4.7.3 and 4.7.4.

Cluster sampling

Cluster sampling is one of many different probability-based variants on simple random
sampling. See Barnett (2002). In surveys of human populations cluster-based sampling,
for example, samples of households or of localities, with multiple individuals from each
chosen household or locality, is likely to introduce a cluster-based form of dependence.
The analysis must then take account of this clustering. Standard inferential methods
require adaptation to take account of the fact that it is the clusters that are independent,
not the individuals within the clusters.

Resampling methods and simulation

We will later encounter methods that take repeated random samples from what are
already random samples, in order to make inferences about the population from which
the original sample came. These methods are called, not surprisingly, resampling methods.
The repeated random samples may be from the original data, or from the distribution that
the data are thought to follow.

Sampling from a distribution that the data are thought to follow has the name simulation.
For example, we will sometimes wish to simulate data from a fitted model, then re-fit
to that data to check how closely we can recover the model as initially fitted. For
the roller data considered in Subsection 3.1.2, the line y = —2.08 +2.67x, where y is
depression and x is weight, fits the data quite well. A helpful simulation may be
to take new normally distributed depression measurements with a mean of —2.08 +
2.67x weight and a standard deviation estimated from the data. See Chapter 5.

3.4 Model assumptions

Common model assumptions are normality, independence of the elements of the error or
noise term, and homogeneity of variance. There are some assumptions whose failure is
unlikely to compromise the validity of analyses. We say that the method used is robust
against those assumptions. Other assumptions matter a lot. How do we know which is
which? Much of the art of applied statistics comes from knowing which assumptions are
important, and need careful checking. There are few hard and fast rules.
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3.4.1 Random sampling assumptions — independence

Typically, the data analyst has a sample of values that will be used as a window into a
wider population. The inferential methods that we will discuss require the assumption that
the sample has been generated by a specific random mechanism. Almost all the standard
elementary methods assume that all population values are chosen with equal probability,
independently of the other sample values. Use of these methods can be extended in various
ways to handle modifications of the simple independent random sampling scheme. For
example, we can modify the methodology to handle analyses of data from a random
sample of clusters of individuals.

Often samples are chosen haphazardly, for example, an experimenter may pick a few
plants from several different parts of a plot. Or a survey interviewer may, in a poor
quality survey, seek responses from individuals who can be found in a shopping center.
Self-selected samples can be particularly unsatisfactory, for example, those readers of a
monthly magazine who are sufficiently motivated to respond to a questionnaire that is
included with the magazine.

In practice, analysts may make the random sampling assumption when the selection
mechanism does not guarantee randomness. Inferences from data that are chosen haphaz-
ardly are inevitably less secure than where we have random samples. Random selection
avoids the conscious or unconscious biases that result when survey or other samplers
make their own selection, or take whatever items seem suitable.

Failure of the independence assumption is a common reason for wrong statistical
inferences. Failure is, at the same time, hard to detect. Ideally, data should be gathered in
such a way that the independence assumption is guaranteed. This is why randomization is
so important in designed experiments, and why random sampling, whether of individuals
or of clusters, is so important in designed sample surveys.

With observational data, it is necessary to think carefully about the mechanisms that
may have generated the data, and consider whether these are likely to have generated
dependencies. Common sources of dependence are clustering in the data, and temporal or
spatial dependence. Values within a cluster, or close together in time and/or space, may
be more similar than those in different clusters. Temporal and spatial dependence arise
because values that are close together in time or space are relatively more similar.

Tests for independence are at best an occasionally useful guide. They are of little use
unless we have some idea how the assumption may have failed, and the sample is large!
It is in general better to try to identify the nature of the dependence, and use a form of
analysis that allows for it.

Ideally, we want the model to reflect the design of the data collection, that is, the
experimental or sampling design. Often however, the mechanisms that generated the
data are not totally clear, and the model is at best a plausible guess. Models that do
not obviously reflect mechanisms that generated the data can sometimes be useful for
prediction. They can also, if their deficiencies are not understood or if they are used
inappropriately, be misleading. Careful checking that the model is serving its intended
purpose, and caution, are necessary.
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3.4.2 Checks for normality

Many data analysis methods rest on the assumption that the data are normally distributed.
Real data are unlikely to be exactly normally distributed. For practical purposes, two
questions are important:

e How much departure from normality can we tolerate?
* How can we decide if it is plausible that the data are from a normal distribution?

Broadly, it is necessary to check for gross departures from normality. Small departures
are of no consequence. For modest sized samples, only gross departures will be detectable.
Whether a specific form of departure will matter depends on the use made of the data.

For modest sized samples, only gross departures will be detectable. For small samples
(e.g., less than about 10), it is typically necessary to rely on sources of evidence that are
external to the data, for example, previous experience with similar data.

Examination of histograms

What checks will detect gross departures? The approach taken in Chapter 2 was to draw
a histogram or density plot. While histograms and density plots have their place, they are
not an effective means for assessing whether the distribution is of some standard form,
here the normal. Figure 3.5 shows five histograms, obtained by taking five independent
random samples of 50 values from a normal distribution.® None of these histograms show
a close resemblance to a theoretical normal distribution.

The normal probability plot

A better tool for assessing normality is the normal probability plot. First the data values
are sorted. These are then plotted against the ordered values that might be expected if the
data really were from a normal distribution. If the data are from a normal distribution,
the plot should approximate a straight line. Figure 3.6 shows normal probability plots for
the same five sets of 50 normally distributed values as we displayed in Figure 3.5. The
code that is used is:

## Use greference() (DAAG)
## With seed=21, the random numbers are as in the previous figure
greference (m=50, seed=21, nrep=5, nrows=1l) # 50 values per panel

8## The following gives a rough equivalent of the figure:
set.seed (21) # Use to reproduce the data in the figure
par (mfrow=c(2,3))
X <- pretty(c(6.5,13.5), 40)
for(i in 1:5){
y <- rnorm(50, mean=10, sd=1)
hist (y, prob=TRUE, xlim=c(6.5,13.5), ylim=c(0,0.5), main="")
lines (x, dnorm(x,10,1))
}
par (mfrow=c(1,1))
rm(x, y)
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Figure 3.5 Each panel shows a simulated distribution of 50 values from a normal distribution
with mean = 10 and sd = 1. The underlying theoretical normal curve is overlaid on the left panel.

o
(-]
o

Figure 3.6 Normal probability plots for the same random normal data as were displayed in
Figure 3.5.

An alternative is to use the lattice function ggmath ().’ To obtain a single plot of this
type, the function ggnorm (), which relies on functions from base graphics, may be
used. Specify, for example, ggnorm (rnorm (50).

Displays such as Figure 3.6 help the data analyst to calibrate the eye, to get a feel for
the nature and extent of departures from linearity that are to be expected in random normal
samples of the specified size, here 50. It is useful to repeat the process several times. Such
plots give a standard against which to compare the normal probability plot for the sample.

The sample plot, set alongside plots for random normal data

Consider data from an experiment that tested the effect of heat on the stretchiness of elastic
bands. Eighteen bands were first tested for amount of stretch under a load that stretched the
bands by a small amount (the actual load was 425 g, thought small enough not to interfere
with the elastic qualities of the bands). This information was used to arrange bands into
nine pairs, such that the two members of a pair had similar initial stretch. One member
of each pair, chosen at random, was placed in hot water (60-65 °C) for four minutes. The
other member of the pair remained at ambient temperature. All bands were then measured
for amount of stretch under a load of 1.35 kg weight. Table 3.2 shows the results.

We are interested in the distribution of the differences. In the next chapter, these will
be the basis for various statistical calculations. We present the normal probability plot
for these data in the lower left panel of Figure 3.7. The other seven plots are for samples
(all of size 9) of simulated random normal values.

set.seed(21) # Use the same setting as for the previous figure
library(lattice)
ggmath (“rnorm(50*5) |rep(1:5,rep(50,5)), layout=c(5,1), aspect=1)
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Table 3.2  FEighteen elastic bands were divided into nine pairs,
with bands of similar stretchiness placed in the same pair. One
member of each pair was placed in hot water (60-65°C) for four
minutes, while the other was left at ambient temperature. After a
wait of about 10 minutes, the amounts of stretch, under a 1.35 kg
weight, were recorded.

Pair #

1 2 3 4 5 6 7 8 9

Heated (mm) 244 255 253 254 251 269 248 252 292

Ambient 225 247 249 253 245 259 242 255 286
Difference 19 8 4 1 6 10 6 =3 6
I T I Y S I [ A A O A |
n aab . 3 B

Figure 3.7 The lower left panel is the normal probability plot for heated—ambient differences.
Remaining panels show plots for samples of nine numbers from a normal distribution.

## Compare normal probability plot for normal-ambient difference
## with simulated normal values: data frame pairé65 (DAAG)
greference (pair65Sheated - pair65Sambient, nrep=8)

The lower left panel shows the normal probability plot for the data that we have.
Remaining plots give a standard against which to compare the plot for the experimental
data. There is no obvious feature that distinguishes the plot in the lower left panel from
the seven reference plots.

Formal statistical testing for normality?

There are formal statistical tests for normality. A difficulty with such tests is that normality
is difficult to rule out in small samples, while in large samples the tests will almost
inevitably identify departures from normality that are too small to have any practical
consequence for standard forms of statistical analysis.
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Additionally, in large samples, the effects of averaging may lead to normality of
the statistic under consideration, even when the underlying population is clearly not
normally distributed. Here, we obtain help from an important theoretical result, called the
“Central Limit Theorem.” This theorem states that the distribution of the sample mean
approximates the normal distribution with arbitrary accuracy, provided a large enough
sample is taken (there are regularity conditions that must be satisfied, but these can usually
be taken for granted). There are similar results for a number of other sample statistics.
A consequence is that, depending on the analysis that is to be performed, normality may
not be an important issue for analyses where samples are large; tests for normality will
detect non-normality in contexts where there is the least reason to be concerned about it.

3.4.3 Checking other model assumptions

In Chapter 2, we discussed a number of exploratory techniques that can aid in checking
whether the standard deviation is the same for all observations in a data set. Following
analysis, a plot of residuals against fitted values may give useful indications. For example,
residuals may tend to fan out as fitted values increase, giving a “funnel” effect, a fairly
sure sign that the standard deviation is increasing. Alternatively, or additionally, there
may be evidence of outliers — one or more unusually large residuals. The major concern
may however be to identify points, whether or not outliers, that have such high influence
that they distort model estimates.

3.4.4 Are non-parametric methods the answer?

While sometimes useful, classical non-parametric tests that purport to be assumption-free
are not the answer to every problem of failure of assumptions. These tests do rest on
assumptions, and we still have to be assured that these assumptions are realistic. If used
in a way that ignores structure in the data that we should be modeling, we risk missing
insights that parametric methods may provide. Building too little structure into a model
can be just as bad as building in too much structure.

There is a trade-off between the strength of model assumptions and the ability to find ef-
fects. We have already seen that some of the newer methodologies such as lowess smoothing
are a welcome addition to the statistical toolbox. However, if we assume a linear relationship,
we may be able to find it, where we will find nothing if we look for a general form of
smooth curve or a completely arbitrary relationship. This is why simple non-parametric ap-
proaches are often unsatisfactory — they assume too little. Often they assume much less than
we know to be true. Johnson (1995) has useful comments on the role of non-parametric
tests. In part the objection is to a view of non-parametric modeling that is too limited.

3.4.5 Why models matter — adding across contingency tables

Subsection 2.2.1 discussed the UCBAdmissions data (datasets package). The figures
that were obtained by taking totals of admissions for males and females separately over
all six departments were misleading. Here, a simple contrived data set will be used for a
more detailed investigation of the effect that those data demonstrate.
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Table 3.3 An example that illustrates the dangers of adding over
contingency tables.

Engineering Sociology Total
male female male female male female
Admit 30 10 Admit 15 30 Admit 45 40
Deny 30 10 Deny 5 10 Deny 35 20

Table 3.3 is a contrived example that shows admission patterns in two separate uni-
versity faculties. Looking at the table of totals on the right, we gain the clear impression
that females are more likely to be admitted (40 out of 60 = 67%) than males (45 out
of 80 =56%). Indeed, the proportion of female applicants who are admitted is, overall,
larger than the proportion of male applicants admitted.

The puzzle is that when we look at the individual faculties, females and males
are accepted in exactly the same proportions, lower for Engineering (50%) than for
Sociology (75%). This “paradox” was discussed earlier, in Subsection 2.2.1.

Observe that a greater proportion of males apply in Engineering, while a greater proportion
of females apply in Sociology. Thus the overall rate for males is biased towards the rate
for Engineering, while the overall rate for females is biased towards the rate for Sociology.

What model is in mind? For simplicity, suppose that the university in question has just
two faculties — Engineering and Sociology! Do we have in mind choosing a female at
random, then comparing her chances of admission with the chances for a male who has
been chosen at random? The randomly chosen male, who is more likely to be an engineer,
will have a poorer chance than a randomly chosen female — 56% as against 67%.

Or, is the interest in the chances of a particular student, be they engineer or sociol-
ogist? If the latter, then we first note the faculty to which the student will apply. The
admission rate is 50% for engineering applicants, as against 75% for sociology applicants,
irrespective of sex.

Here, and in the example in Subsection 2.2.1, information was available on the classify-
ing factor on which it was necessary to condition. This will not always be the case. In any
use of contingency table analyses, it is always possible that there is some further variable
that, when conditioned on, can reverse or otherwise affect an observed association.

In any overall analysis, the effect of the classifying (or conditioning) factor sex must
be explicitly incorporated in the model. There are various ways to do this. Section 8.3
demonstrates one suitable approach. See also Exercise 11 in Chapter 4, and the references
given there.

3.5 Recap

Statistical models have both signal components and noise components. In simpler cases,
which include most of the cases we consider:

observation = signal + noise.
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After fitting a model, we have:
observation = fitted value + residual
which we can think of as:
observation = smooth component 4 rough component.

The hope is that the fitted value will recapture most of the signal, and that the residual will
contain mostly noise. Unfortunately, as the relative contribution of the noise increases:

e It becomes harder to distinguish between signal and noise.
e It becomes harder to decide between competing models.

Model assumptions, such as normality, independence and constancy of the standard
deviation, should be checked, to the extent that this is possible.

3.6 Further reading

Finding the right statistical model is an important part of statistical problem solving.
Chatfield (2002, 2003) has helpful comments. Clarke (1968) has a useful discussion of
the use of models in archaeology. See also the very different points of view of Breiman
and Cox (as discussant) in Breiman (2001). Our stance is much closer to Cox than to
Breiman. See also our brief comments on Bayesian modeling in Section 4.10.

Johnson (1995) comments critically on the limitations of widely used non-parametric
methods. See Hall (2001) for an overview of non-parametrics from a modern perspective.

3.6.1 References for further reading

Bickel, P.J., Hammel, E. A. and O’Connell, J. W. 1975. Sex bias in graduate admissions:
data from Berkeley. Science 187: 398-403.

Breiman, L. 2001. Statistical modeling: the two cultures. Statistical Science 16: 199-215.

Chatfield, C. 2002. Confessions of a statistician. The Statistician 51: 1-20.

Chatfield, C. 2003. Problem Solving. A Statistician’s Guide, 2nd edn. Chapman and Hall.

Clarke, D. 1968. Analytical Archaeology. Methuen.

Hall, P. 2001. Biometrika centenary: non-parametrics. Biometrika 88: 143—65.

Johnson, D.H. 1995. Statistical sirens: the allure of non-parametrics. Ecology 76:
1998-2000.

3.7 Exercises

1. An experimenter intends to arrange experimental plots in four blocks. In each block there
are seven plots, one for each of seven treatments. Use the function sample () to find four
random permutations of the numbers 1 to 7 that will be used, one set in each block, to make
the assignments of treatments to plots.

2. Use y <- rnorm(100) to generate a random sample of 100 numbers from a normal
distribution. Calculate the mean and standard deviation of y. Now put the calculation in a
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loop and repeat 25 times. Store the 25 means in a vector named av. Calculate the standard
deviation of the values in av.

Create a function that does the calculations of Exercise 2. Run the function several times,
showing each of the distributions of 25 means in a density plot.

To simulate samples from normal populations having different means and standard deviations,
the mean and sd arguments can be used in rnorm (). Simulate a random sample of size 20
from a normal population having a mean of 100 and a standard deviation of 10.

Use mfrow to set up the layout for a 3 by 4 array of plots. In the top 4 panels, show normal
probability plots for 4 separate “random” samples of size 10, all from a normal distribution.
In the middle 4 panels, display plots for samples of size 100. In the bottom 4 panels, display
plots for samples of size 1000. Comment on how the appearance of the plots changes as the
sample size changes.

The function runif () generates a sample from a uniform distribution, by default on the
interval 0 to 1. Try x <- runif (10), and print out the resulting numbers. Then repeat
Exercise 5 above, but taking samples from a uniform distribution rather than from a normal
distribution. What shape do the plots follow?

The function pexp (x, rate=r) can be used to compute the probability that an exponential
variable is less than x. Suppose the time between accidents at an intersection can be modeled
by an exponential distribution with a rate of 0.05 per day. Find the probability that the next
accident will occur during the next three weeks.

Use the function rexp () to simulate 100 exponential random numbers with rate 0.2. Obtain
a density plot for the observations. Find the sample mean of the observations. Compare with
the population mean (the mean for an exponential population is 1/rate).

This exercise investigates simulation from other distributions. The statement x <-
rchisqg (10, 1) generates 10 random values from a chi-squared distribution with one
degree of freedom. The statement x <- rt (10, 1) generates 10 random values from a
t distribution with one degree of freedom. Make normal probability plots for samples of vari-
ous sizes from each of these distributions. How large a sample is necessary, in each instance,
to obtain a consistent shape?

The following data represent the total number of aberrant crypt foci (abnormal growths in
the colon) observed in seven rats that had been administered a single dose of the carcinogen
azoxymethane and sacrificed after six weeks (thanks to Ranjana Bird, Faculty of Human
Ecology, University of Manitoba for the use of these data):

87 53 72 90 78 85 83

Enter these data and compute their sample mean and variance. Is the Poisson model appropriate
for these data? To investigate how the sample variance and sample mean differ under the
Poisson assumption, repeat the following simulation experiment several times:

X <- rpois(7, 78.3)

mean (x) ; var (x)

A Markov chain is a data sequence which has a special kind of dependence. For example, a
fair coin is tossed repetitively by a player who begins with $2. If “heads” appear, the player
receives one dollar; otherwise, she pays one dollar. The game stops when the player has either
$0 or $5. The amount of money that the player has before any coin flip can be recorded —
this is a Markov chain. A possible sequence of plays is as follows:
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Player’s fortune: 2 1 2 3 4 3 2 3 2 3 2 1 0
Cointossresut: T H H H T T H T H T T T
Note that all we need to know in order to determine the player’s fortune at any time is the
fortune at the previous time as well as the coin flip result at the current time. The probability
of an increase in the fortune is 0.5 and the probability of a decrease in the fortune is 0.5. Such
transition probabilities are usually summarized in a transition matrix:

100000
505000
050500
005050
0005035
000001

The (i, j) entry of this matrix refers to the probability of making a change from the value i to the

value j. Here, the possible values of i and j are 0, 1,2, ..., 5. According to the matrix, there is

a probability of 0 of making a transition from $2 to $4 in one play, since the (2,4) element is 0;

the probability of moving from $2 to $1 in one transition is 0.5, since the (2,1) element is 0.5.
The following function can be used to simulate N values of a Markov chain sequence, with

transition matrix P:

Markov <- function (N=100, initial.value=1, P)

{
X <- numeric (N)
X[1] <- initial.value + 1
n <- nrow(P)
for (i in 2:N){
X[i] <- sample(l:n, size=1, prob=P[X[i-1]1,1)}
X -1
}

(a) Simulate 15 values of the coin flip game, starting with an initial value of $2.
(b) Simulate 100 values of the Markov chain which has the following transition matrix. Save
the result to a vector and use ts.plot () to plot the sequence.

0.10 0.90 0.00 0.00 0.00 0.00
0.50 0.00 0.50 0.00 0.00 0.00
0.00 0.50 0.00 0.50 0.00 0.00
0.00 0.00 0.50 0.00 0.50 0.00
0.00 0.00 0.00 0.50 0.00 0.50
0.00 0.00 0.00 0.00 1.00 0.00

(¢) Now simulate 1000 values from the above Markov chain, and calculate the proportion
of times the chain visits each of the states. It can be shown, using linear algebra, that in
the long run, this Markov chain will visit the states according to the following stationary
distribution:

0 1 2 3 4 5
0.1098901 0.1978022 0.1978022 0.1978022 0.1978022 0.0989011

There is a result called the ergodic theorem which allows us to estimate this distribution
by simulating the Markov chain for a long enough time. Compare your calculated
proportions with the above theoretical proportions. Repeat the experiment using 10000
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simulated values; the calculated proportions should be even closer to the theoretically
predicted proportions in that case.

Simulate 100 values of the Markov chain which has the following transition matrix. Plot
the sequence. Compare the results when the initial value is 1 with when the initial value
is 3, 4, or 5. [When the initial value is O or 1, this Markov chain wanders a bit before
settling down to its stationary distribution which is concentrated more on the values 4
and 5. This wandering period is sometimes called “burn-in.”]

0500500 0 0 O
0.500.450050 0 O
0 0010 0900.090
0 0 0.010400.590
0O 0 0 0500 0.50
0 0 0 0 050050
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A random sample is a set of values drawn independently from a larger population.
A (uniform) random sample has the characteristic that all members of the population
have an equal chance of being drawn. In the previous chapter, we discussed the im-
plications of drawing repeated random samples from a normally distributed population,
where the probability that a value lies in a given interval is governed by the normal
density. In this chapter, we will expand upon that discussion by introducing the idea
of a sampling distribution, and the use of standard error to assess estimation accuracy.
Confidence intervals and tests of hypotheses offer a formal basis for inference, based
on the sampling distribution. We will comment on weaknesses in the hypothesis testing
framework.

4.1 Basic concepts of estimation

This section will introduce material that is fundamental to inference.

4.1.1 Population parameters and sample statistics

A population parameter numerically summarizes some aspect of a population. The most
commonly studied population parameter is the mean, the average of all of the population
values, usually denoted as w. It is usually unknown. If a (preferably random) sample has
been taken from a population, it is possible to compute the average from that sample;
this statistic is used as an estimator of the population mean.

Other commonly used statistics are the proportion, standard deviation, variance, median,
the quartiles, the slope of a regression line, and the correlation coefficient. Each may be
used as an estimate of the corresponding population parameter.

Why use the sample mean as an estimator?

First, it makes good intuitive sense. For many researchers that is adequate justification.
Second, it can be justified by the least squares principle that is the basis for the methods
of Chapters 5-7. Least squares estimates minimize a sum of squared residuals (see
Exercise 20).
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Maximum likelihood estimation

Maximum likelihood (ML) estimation is more generally applicable than least squares.
The idea is to select values for the parameters which maximize the probability (density)
of observing the given sample. For independent normal errors maximum likelihood leads,
where a least squares estimate is available, to the same estimate(s) as least squares. Thus,
the maximum likelihood estimate for the population mean is the sample mean.

4.1.2 Sampling distributions

In most situations, there will be a vast number of possible samples that could have been
taken from a particular population. Each such sample will usually result in a different
value for its mean. The distribution of these possible sample means is called the sampling
distribution of the mean. It is important to remember that we usually only collect one
sample, so only one sample mean will be available in practice.

The central limit theorem (alluded to in Chapter 3) says that, for a population with
mean u and standard deviation o, the sampling distribution of the mean can often be well
approximated by a normal distribution whose mean is p and whose standard deviation
is a/4/n. This result depends strongly on the assumptions that the 7 items in the sample
have been selected independently of each other. As the sample size increases, the normal
distribution will be an increasingly accurate approximation to the sampling distribution
of the mean.

Other statistics, such as the sample proportion, have their own sampling distributions.
Often, these sampling distributions are reasonably approximated by a normal distribution.

4.1.3 Assessing accuracy — the standard error

The standard error is defined as the standard deviation of the sampling distribution of
the statistic. An important special case is the standard error of the mean (SEM). If data
values are independent, then a suitable estimate for the SEM is:

sy = ﬁ
since s is an estimator of the population standard deviation o.

This deceivingly simple formula, relating the SEM to the standard deviation, hides
quite complex mathematical ideas. If the data are not independent, then this formula does
not apply.

The SEM indicates the extent to which the sample mean might be expected to vary
from one sample to another. Figure 4.1 compares the theoretical sampling distribution
of the standard error of the mean, for samples of sizes 4 and 9, with the distribution of
individual sample values. Note how the distribution becomes narrower as the sample size
increases; this reflects the decrease in the SEM with increasing sample size: the sample
mean estimates the population mean with an accuracy that improves as the sample size
increases.

The SEM provides a way of measuring the accuracy of the sample mean. A small value
of the SEM suggests that the sample mean might be quite close to the population mean,
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Figure 4.1 Sampling distribution of the mean (n =4 and n = 9), compared with the distribution
of individual sample values, for a normal population with mean = 10 and standard deviation = 1.

while a large value of the SEM allows for the possibility that the sample and population
means are far apart.

An example

The data frame pairé65, shown earlier in Table 3.2, has information on nine sets of
paired comparisons, leading to nine differences in the amount of stretch under a 1.35kg
weight. These were:

Difference 19 8 4 1 6 10 6 -3 6

The mean is 6.33, the SD is s = 6.10, and SEM = 6.10/+/9 = 2.03." We may report:
“The mean change is 6.33 [SEM 2.03], based on n =9 values,” or “The mean change is
6.10/2.03 (= 3.11) times the standard error.”

4.1.4 The standard error for the difference of means

We often wish to compare means of different samples. Where there are two independent
samples of size n; and n,, the comparison is usually in the form of a difference:

X=X

where x; and x, denote the respective sample means. If the corresponding standard errors
are denoted by SEM, and SEM,, then the standard error of the difference (SED) can be

computed using the formula:
SED = \/SEM? + SEMZ.

If all SEMs are the same, then for all comparisons:

SED = /2 x SEM.

'## calculate heated-ambient; take heated & ambient from columns of pairés
test <- with(pair65, heated-ambient)
c(mean = mean(test), SD = sd(test), SEM = sd(test)/sqrt (length(test)))
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It is sometimes reasonable to assume equality of the standard deviations in the populations
from which the samples are drawn. Then:

SEM, = % SEM, = ——
n, Jn

S}

and the formula can be written as:

1 1
SED=ys | — 4+ —
ny  n
where s is the pooled standard deviation estimate described in Subsection 20.
As an example, consider the unpaired elastic band experiment data of Subsection 20.
The pooled standard deviation estimate is 10.91. Hence, the SED is 10.91 x ,/ % + ﬁ =
4.77.7

4.1.5* The standard error of the median

For data that come from a normal distribution, there is a similarly simple formula for the
standard error of the median. It is:

T2 ~125-

E ﬁ ~ . ﬁ .
This indicates that the standard error of the median is about 25% greater than the standard
error of the mean. Thus, for data from a normal distribution, the population mean can be
estimated more precisely than can the population median.

Consider again the cuckoos data. The median and standard error for the median of
the egg lengths in the wrens’ nests are 21.0 and 0.244, respectively.’

A different formula for the standard error of the median, one that depends on the distribu-
tion, must be used when the data cannot reasonably be approximated by a normal model.

SEmedian =

4.1.6 The sampling distribution of the t-statistic

The formula:
fo XK
~ SEM

counts up the number of standard error units between the true value u and the sample
estimate Xx; it can be thought of as a standardized distance between the true mean and the

’heated <- c (254, 252, 239, 240, 250, 256, 267, 249, 259, 269)
ambient <- c (233, 252, 237, 246, 255, 244, 248, 242, 217, 257, 254)
vl <- var (heated) # 10 numbers; 10-1 9 d.f.

v2 <- var (ambient) # 11 numbers; 11-1 = 10 d.f.

v <- (9*vl + 10*v2)/(9+10) # Pooled estimate of variance

# Estimate SED; variances may not be equal

c(seml = sgrt(vl/10), sem2 = sgrt(v2/11), sed = sqgrt(vli/10 + v2/11)
# Estimate SED; use pooled estimate

c(sd = sgrt(v), sed = sqgrt(vli/10 + v2/11)

3## median and SD for length, by species: data frame cuckoos (DAAG)
wren <- split(cuckoos$length, cuckoos$species) $wren

median (wren)

n <- length(wren)

sqgrt (pi/2) *sd (wren) /sqrt (n) # this SE computation assumes normality



4.1 Basic concepts of estimation 105

sample mean. The quantity ¢ will be approximately distributed according to a ¢-distribution,
under the assumptions we have been making.

Note that the variability in 7 has two sources: the sampling variability of X and the
sampling variability of SEM. If we could use the true value o/+/n in place of s/./n for
SEM, the above ratio would have a standard normal distribution. Because of the additional
variation due to the SEM, the distribution of ¢ is more spread out than a standard normal
distribution.

In fact, the #-distribution depends on the number of degrees of freedom associated with
the denominator (SEM). Because n — 1 degrees of freedom have been used to calculate
the standard deviation s, the ¢ random variable has a ¢-distribution on n — 1 degrees of
freedom. As the sample size n increases (i.e. the number of degrees of freedom increases),
the sample standard deviation gives an increasingly good approximation to the population
standard deviation o; thus, the ¢-statistic becomes more and more like a standard normal
random variable as the sample size increases.

Figure 4.2B shows the density curve for a normal distribution overlaid with those for
t-distributions with 3 d.f. respectively. The density curve for a ¢-distribution with 3 d.f. is
much more clearly different from the normal than in Figure 4.2A, where the comparison
was with a t-distribution with 8 degrees of freedom. The main difference, in each case,
is in the tails. The #-distribution is less concentrated around the mean than is the normal
distribution and more spread out in the tails, with the difference greatest when the number
of degrees of freedom is small. In the terminology of Subsection 3.2.2, the ¢-distribution
is heavy-tailed — heavier for smaller than for larger degrees of freedom.

For the data in the data frame pairé5, the relevant inference is suitably based on the
mean d of the differences that were observed when the bands were heated. In order to
standardize this mean difference, it needs to be divided by its standard error SE[c_l], that
18, the relevant statistic is:

_d _d 633
T SE[d]  s/v/9 247

The mean is 3.11 times the magnitude of the standard error.

=3.11.

N
/
\\u
/

Ssa Ssa

Figure 4.2 In A, we have overlaid the density for a normal distribution with the density for a
t-distribution with 8 d.f. In B, we have overlaid the density for a #-distribution with 3 d.f.
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Calculations for the t-distribution

Calculations for the #-distribution follow the same pattern as those shown for the normal
distribution in Subsection 3.2.2, but now with a distribution whose standard deviation
is the SEM, which has to be estimated. There are two sorts of calculation that may be
useful, both of which can be related to Figure 4.3.

¢ Given the distance from the mean, calculate the area under the curve. Thus,
calculate the area under the density curve within some specified number of standard
errors either side of the mean. For this, use functions that have p as their initial letter,
here pnorm () and pt:
> # Plus or minus 1.96SE normal distribution limits, e.g.

> pnorm(1.96) - pnorm(-1.96)

[1] 0.95

> # Plus or minus 2.31SE t distribution (8 df) limits, e.g.
> pt(2.31, 8) - pt(-2.31,8) # 2.31 SEs either side

[1] 0.95

¢ Given an area under the curve, calculate the limit or limits. Thus, what distance
from the mean gives an area under the curve, up to and including that point, that takes
some specified value? For this, use functions that have q as their initial letter, here
gnorm() and gt ():

> gnorm(0.975) # normal distribution

[1] 1.96

> gqt(0.975, 8) # t-distribution with 8 d.f.
[1] 2.31

The second of these statements makes it possible to say that in sampling from the

sampling distribution of #; = ;;J%, 95% of the values of f; will lie between —2.31 and

2.31, that is, d — u will lie between —2.31s and 2.31s. In other words, in 90% of such
samples d will lie within a distance 2.31s of w. It is this observation that will allow, in
Section 4.2, the calculation of a “confidence” (or coverage) interval for .

ababs
©
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©
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9 98
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Figure 4.3  Calculation of the endpoints of the symmetrically placed region that encloses 95% of
the probability: (A) for a normal distribution, and (B) for a #-distribution with 8 d.f. In each panel,
the upper 2.5% of the area under the curve is shaded in gray.
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Table 4.1 A comparison of normal distribution endpoints (multipliers for
the SEM) with the corresponding t-distribution endpoints on 8 d.f.

. . Number of SEMs
Probability enclosed ~ Cumulative

between limits probability normal distribution  z-distribution (8 d.f.)
68.3% 84.1% 1.0 1.07
95% 97.5% 1.96 2.31
99% 99.5% 2.58 3.36
99.9% 99.95% 3.29 5.04

Table 4.1 summarizes information on the multipliers, for a normal distribution, and for a
t-distribution with 8 d.f., for several different choices of area under the curve. We leave it
as an exercise for the reader to add further columns to this table, corresponding to different
numbers of d.f. Changing from a normal distribution to a #-distribution with 8 d.f. led to
a small change, from 1.0 to 1.07, for enclosing the central 68.3% of the area. There is a
substantial difference, giving an increase from 1.96 to 2.31, for enclosing 95% of the area.

How good is the normal theory approximation?

For random samples from a distribution that is close to symmetric, the approximation
is often adequate, even for samples as small as 3 or 4. In practice, we may know little
about the population from which we are sampling. Even if the main part of the population
distribution is symmetric, occasional aberrant values are to be expected. Such aberrant
values do, perhaps fortunately, work in a conservative direction — they make it more
difficult to detect genuine differences. The take-home message is that, especially in small
samples, the probabilities and quantiles can be quite imprecise. They are rough guides,
intended to assist researchers in making a judgment.

4.2 Confidence intervals and hypothesis tests

Often we want an interval that most often, when samples are taken in the way that
the one available sample has been taken, will include the population mean. There are
two common choices for the long run proportion of similar samples for which the
corresponding intervals should contain the population mean — 95% and 99%.

It is possible to use confidence intervals as the basis for tests of hypotheses. If the
confidence interval for the population mean does not contain zero, this is equivalent to
rejection of the hypothesis that the population mean is zero.

4.2.1 One- and two-sample intervals and tests for means
Confidence intervals of 95% or 99%

We will use the paired elastic band data of Table 3.2 to illustrate the calculations. We
noted above, in Subsection 4.1.6, that the mean change was 6.33 [SEM 2.03], based on
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n =9 pairs of values. From Table 4.1, we note that, in 95% of samples of size 9 (8 d.f.),
the sample mean d will lie within 2.31 x SEM of the population mean w. Thus a 95%
confidence interval for the mean has the endpoints:*

(6.33—2.03 x2.31,6.33+2.03 x 2.31) = (1.64, 11.02).

From Table 4.1, the multiplier for a 99% confidence interval is 3.36, much larger
than the multiplier of 2.58 for the case where the standard deviation is known.” A 99%
confidence interval is:

(6.33—-2.03x 3.36,6.334+2.03 x 3.36) = (—0.49, 13.15).

Tests of hypotheses

We could ask whether the population mean difference for the paired elastic bands really
differs from zero. Since the 95% confidence interval does not contain zero, we can
legitimately write:

Based on the sample mean of 6.33, with SEM = 2.03, the population mean is greater
than zero (p < 0.05).

The 99% confidence interval for the elastic band differences did contain zero. Therefore
we cannot replace (p < 0.05) by (p < 0.01) in the statement above. The smallest p that we
could substitute into the above statement thus lies between 0.01 and 0.05. This smallest
p is called the p-value. A first step, for this example, is to use the pt () function to
calculate the probability that the #-statistic is less than:

—mean/SEM = —6.10/2.03.

The required calculation is:

> 1-pt(6.33/2.03, 8) # Equals pt(-6.33/2.03, 8)
[1] 0.00713

We then double 0.00713 to determine the sum of the probabilities in the two tails, leading
to p = 0.014. The result may be summarized in the statement: “Based on the sample
mean of 6.33, the population mean is greater than zero (p = 0.014).”

The language of hypothesis testing provides a formal framework for such inferences.
Taking the population mean to be w, the null hypothesis is:

Hy: u=0

while the alternative hypothesis is p # 0.

44# 95% CI for mean of heated-ambient: data frame paire5 (DAAG)
pairé65.diff <- with(pairé5, heated-ambient)

pair65.n <- length(pair65.diff)

pair65.se <- sd(pair65.diff)/sqrt (pair65.n)

mean (pair65.diff) + gt(c(.025,.975),8)*pair6e5.se

gt (0.995, 8)
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The formal methodology of hypothesis testing may seem contorted. A small p-value
makes the null hypothesis appear implausible. It is not a probability statement about the
null hypothesis itself, or for that matter about its alternative. All it offers is an assessment
of implications that flow from accepting the null hypothesis. A straw man is set up, the
statement that w = 0. The typical goal is to knock down this straw man. By its very
nature, hypothesis testing lends itself to various abuses.

What is a small p-value?

At what point is a p-value small enough to be convincing? Conventionally, p = 0.05
(= 5%) is used as the cutoff. But 0.05 is too large, if results from the experiment are to
be made the basis for a recommendation for changes to farming practice or to medical
treatment. It may be too small when the interest is in deciding which effects merit further
experimental or other investigation. There must a careful balancing of the likely costs
and benefits of any such recommendation, having regard to the statistical evidence. In
any particular case, consider carefully:

¢ Is there other relevant evidence, additional to that summarized in a p-value or confi-
dence interval?

e What is the most helpful way to present results: a p-value, or a confidence interval, or
something else again?

A summary of one- and two-sample calculations
Confidence intervals for a mean difference, or for a difference of means, have the form:
difference = r-critical value x standard error of difference.

The t-statistic has the form:

difference

t= - .
standard error of difference

Given 1, the p-value for a (two-sided) test is defined as:
P(T> 1)+ P(T < —1)

where T has a r-distribution with the appropriate number of degrees of freedom. A small
p-value corresponds to a large value of |¢|, regarded as evidence that the true difference
is non-zero and leading to the rejection of the null hypothesis.

Table 4.2 lists confidence intervals and tests in the one- and two-sample cases.® The
single sample example is for the paired elastic band data that we discussed at the beginning

O## t-test and confidence interval calculations

heated <- c(254, 252, 239, 240, 250, 256, 267, 249, 259, 269)
ambient <- c¢(233, 252, 237, 246, 255, 244, 248, 242, 217, 257, 254)
t.test (heated, ambient, var.equal=TRUE)

rm (heated, ambient)
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Table 4.2  Formulae for confidence intervals and tests of hypothesis based on
the t-distribution.

Confidence interval Test statistic D.f.
One-sample r d 1., SE[d] r=-—d_ n—1
SE(d]
6.10 _ 63

e.g. 6.33+2.306 x % t= 510/ 55 8

- - - - Xy —X
Two-sample ¢ X, — X, £+ .43 SE[X, — X] t= W_}ll] ny+n,—2
eg. 253.5—244.122.00 X 1091/ 5+ 1= 233=2L_ 19

=253.5—244.14£2.09 x 4.77 1091 > /55 + 17

= (—0.6,19.4)

Here, t.; is the 97.5th percentile of a r-statistic with 8 df (1-sample example) or 19 df
(2-sample example). (The 97.5th percentile is the same as the two-sided 5% critical value.)

of this section. The example that we use for the two-sample calculations was discussed
in Subsection 20.

When is pairing helpful?

Figure 4.4 shows, for two different sets of paired data, a plot of the second member of
the pair against the first.” The first panel is for the paired elastic band data of Subsection
4.1.6, while the second panel (for the data set mignonette) is from the biologist Charles
Darwin’s experiments that compared the heights of crossed plants with the heights of
self-fertilized plants (data, for the wild mignonette Reseda lutea, are from p. 118 of
Darwin, 1877). Plants were paired within the pots in which they were grown, with one
plant on one side and one on the other.

For the paired elastic band data there is a clear correlation, and the standard error of
the difference is much less than the root mean square of the two separate standard errors.
For Darwin’s data there is little evidence of correlation. The standard error of differences
of pairs is about equal to the root mean square of the two separate standard errors. For
the elastic band data, the pairing was helpful; it led to a low SED. The pairing was not
helpful for Darwin’s data (note that Darwin (cited above) gives other data sets where the
pairing was helpful, in the sense of allowing a more accurate comparison).

If the data are paired, then the two-sample t-test corresponds to the wrong model!
It is appropriate to use the one-sample approach, whether or not there is evidence of
correlation between members of the same pair.

7## heated vs ambient: pairé5 (DAAG); and cross vs self: mignonette (DAAG)
par (mfrow=c(1,2)
attach(pair65); attach(mignonette)

plot (heated ~ ambient); abline(0, 1) # left panel
abline (mean (heated-ambient), 1, 1lty=2)
plot (cross ~ self); abline(0, 1) # right panel

abline (mean(cross-self), 1, lty=2)
detach(pair65); detach(mignonette); par(mfrow = c(1,1)
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Figure 4.4  Second versus first member, for each pair. The first panel is for the ambient/heated
elastic band data from Subsection 4.1.6, while the second is for Darwin’s plants.

What if the standard deviations are unequal?

If the assumption of equal variances or standard deviations fails we have heterogeneity
of variance. The t-statistic based on the pooled variance estimate is then inappropriate.
The Welch procedure gives an adequate approximation, unless degrees of freedom are
very small. The Welch statistic is the difference in means divided by the standard error
of difference, that is:

X, — X
SED

2§
SED= |2+ L.
n, n

If the two variances are unequal this does not have a #-distribution. However, critical
values are quite well approximated by the critical values of a t-distribution with degrees
of freedom given by a readily calculated function of the observed sample variances and
sample sizes. The most commonly used approximation is that of Welch (1949), leading
to the name Welch test. For details, see Miller (1986). The function t.test () has
the Welch test as its default; equal variances are assumed unless the parameter setting
var.equal=TRUE is given.

Note that if n; = n, then the statistic is the same as for the #-test that is based
on the pooled estimate of variance. However, the degrees of freedom are likely to be
reduced.

>

where

Different ways to report results

There are many situations where means and standard errors are all that is needed. Where
treatment differences are large, more than about six times the SEM for any individual
treatment or four times the SED for comparing two means, there may be no point in
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presenting the results of significance tests. It may be better to quote only means and
standard errors.

For the paired elastic band data of Table 3.2, the mean difference in amount of stretch
before and after heating is 6.33, with a standard deviation of 6.10. The standard error
of this difference (SED) is thus 6.10/+/9 = 2.03. The mean is 3.11 times the magnitude
of the standard error. Especially in engineering and physical science contexts where the
aim is to accompany a report of the mean with a statement of its precision, it would be
enough to report: “The mean change is 6.33 [SED 2.03].”

Confidence intervals and hypothesis testing give this result a more interpretive twist.
It is useful to set these various alternatives side by side:®

1. The mean change is 6.33 [SED 2.03].

2. The t-statistic is t = 6.333/2.034 =3.11, on 8 (=9 —1) degrees of freedom. In other
words, the difference is 3.11 times the standard error.

3. A 95% confidence interval for the change is:

(6.33 —2.306 x 2.034, 6.33+2.306 x 2.034),

ie. (1.64, 11.02).
[The multiplier, equal to 2.306, is the 5% two-sided critical value for a -statistic on
8(=9-1)df]

4. We reject the null hypothesis that the true mean difference is 0 (p = 0.014) — see
Subsection 34 for definitions.
[The two-sided p-value for t =3.11 on 8 d.f. is 0.014.]

Alternative 1 is straightforward. The t-statistic (alternative 2) expresses the change as a
multiple of its standard error. Often, and especially if the difference is more than four or
five times the SED, it is all that is needed. The conventional wisdom is that the change
is worthy of note if the p-value is less than 0.05 or, equivalently, if the 95% confidence
interval does not contain 0. For this, the f-statistic must be somewhat greater than 1.96,
that is, for all practical purposes >2.0. For small degrees of freedom, the #-statistic must
be substantially greater than 2.0.

Readers who have difficulty with alternatives 3 and 4 may find it helpful to note
that these restate and interpret the information in alternatives 1 and 2. Those who have
problems with confidence intervals and (especially) tests of hypotheses are in good
company. There is an increasing support for the view that they should play a relatively
minor role in statistical analysis or be eliminated altogether.

If standard errors are not enough and formal inferential information is required, confi-
dence intervals may be preferable to formal tests of hypotheses.

8pair65.diff <- with(pair65, heated-ambient)
n <- length(paire5.diff)

av <- mean(pairé65.diff); sd <- sqgrt(var(paire5.diff)); se <- sd/sqgrt(n)
print (c(av, se)) # Item 1
print (av/se) # Item 2

t.test (pair65.diff) # Items 3 and 4
rm(pair65.diff, n, av, sd, se)
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Table 4.3 Approximate
95% confidence interval,
assuming 0.35 < < 0.65.

Approximate 95%

n confidence interval
25 pE£20%
100 pE10%
400 pE5%
1000 pt3.1%

4.2.2 Confidence intervals and tests for proportions

We assume that individuals are drawn independently and at random from a binomial
population where individuals are in one of two categories — male as opposed to female, a
favorable treatment outcome as opposed to an unfavorable outcome, survival as opposed to
non-survival, defective as opposed to non-defective, Democrat as opposed to Republican,
etc. Let 77 be the population proportion. In a sample of size n, the proportion in the
category of interest is denoted by p. Then:

SE[p] =/ (1 —m)/n.

An upper bound for SE[p] is 1/(24/n). If 7 is between about 0.35 and 0.65, the inaccuracy
in taking SE[p] as 1/(2+4/n) is small.

This approximation leads to the confidence intervals shown in Table 4.3. Note again
that the approximation is poor if 7 is outside the range 0.35 to 0.65.

An alternative is to use the estimator:

SE[p] = /p(ln—p)‘

An approximate 95% confidence bound for the proportion 7 is then:

p(1—p)
+1.96,/ ———.
p n

4.2.3 Confidence intervals for the correlation

The correlation measure that we discuss here is the Pearson or product-moment correla-
tion, which measures linear association.

The standard error of the correlation coefficient is typically not a useful statistic.
The distribution of the sample correlation, under the usual assumptions (e.g., bivariate
normality), is too skew. The function cor.test () may be used to test the null hypoth-
esis that the sample has been drawn from a population in which the correlation p is zero.
This requires the assumption that the conditional distribution of y, given x, is normal,
independently for different ys and with mean given by a linear function of x.
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Classical methods for comparing the magnitudes of correlations, or for calculation of a
confidence interval for the correlation, rely on the assumption that the joint distribution of
(x, y) is bivariate normal. In addition to the assumption for the test that p = 0, we need to
know that x is normally distributed, independently between (x, y) pairs. This assumption
is required for the default confidence interval that cor.test () outputs. In practice, it
may be enough to check that both x and y have normal distributions.

4.2.4 Confidence intervals versus hypothesis tests

Many researchers find hypothesis tests (significance tests) hard to understand. The
methodology is too often abused. Papers that present a large number of significance
tests are, typically, not making good use of the data. Also, it becomes difficult to know
what to make of the results. Among a large number of tests, some will be significant as
a result of chance. Misunderstandings are common in the literature, even among mature
researchers. A p-value does not allow the researcher to say anything about the probability
that either hypothesis, the null or its alternative, is true. Then why use them? Perhaps the
best that can be said is that hypothesis tests often provide a convenient and quick answer
to questions about whether effects seem to stand out above background noise. However
if all that emerges from an investigation are a few p-values, we have to wonder what has
been achieved.

Because of these problems, there are strong moves away from hypothesis testing and
towards confidence intervals. Tukey (1991) argues strongly, and cogently, that confidence
intervals are more informative and more honest than p-values. He argues:

Statisticians classically asked the wrong question — and were willing to answer with a lie, one
that was often a downright lie. They asked “Are the effects of A and B different?” and they were
willing to answer “no”.

All we know about the world teaches us that the effects of A and B are always different — in
some decimal place — for every A and B. Thus asking “Are the effects different?” is foolish. What
we should be answering first is “Can we tell the direction in which the effects of A differ from
the effects of B?” In other words, can we be confident about the direction from A to B? Is it “up”,
“down”, or “uncertain”? [Tukey, 1991]

Tukey argues that we should never conclude that we “accept the null hypothesis.”
Rather our uncertainty is about the direction in which A may differ from B. Confidence
intervals do much better at capturing the nature of this uncertainty.

Here are guidelines on the use of tests of significance. Few scientific papers make
more than half-a-dozen points that are of consequence. Any significance tests should be
closely tied to these main points, preferably with just one or two tests for each point
that is made. Keep any significance tests and p-values in the background. Once it is
apparent that an effect is statistically significant, the focus of interest should shift to its
pattern and magnitude, and to its scientific significance. For example, it is very poor prac-
tice to perform ¢-tests for each comparison between treatments when the real interest is
(or should be) in the overall pattern of response. Where the response depends on a con-
tinuous variable, it is often pertinent to ask such questions as whether the response keeps
onrising (falling), or whether it rises (falls) to a maximum (minimum) and then falls (rises).
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Table 4.4  Contingency table derived from
data that relates to the Lalonde (1986) paper.

High school
graduate certificate

yes no
NSW74 male trainees 54 131
PSID3 males 63 65

Significance tests should give the researcher, and the reader of the research paper,
confidence that the effects that are discussed are real! The focus should then move to
the substantive scientific issues. Statistical modeling can be highly helpful for this. The
interest is often, finally, in eliciting the patterns of response that the data present.

4.3 Contingency tables

Table 4.4 is from US data that were used in the evaluation of labor training programs,
aimed at individuals who had experienced economic and social difficulties.” The NSW74
trainee group had participated in a labor training program, while the PSID3 group had
not. These data will be further discussed in Section 13.2.

A chi-squared test for no association has:

> chisqg.test (table (nsw74psid3$trt, nsw74psid3$nodeg))
> # Specify correct=FALSE

X-squared = 12, df = 1, p-value = 0.0004975

Clearly, high school dropouts are more strongly represented in the NSW74 data.

The mechanics of the calculation

The null hypothesis is that the proportion of the total in each cell is, to within random error,
the result of multiplying a row proportion by a column proportion. The independence
assumption, that is, the assumption of independent allocation to the cells of the table, is
crucial.

Assume there are  rows and J columns. The expected value in cell (i, j) is calculated as:

E;; = (proportion for row i) x (proportion for column j) x total.

## Compare #’'s with a high school qualification, between
## ‘treated’ and ‘untreated’: data frame nsw74psid3 (DAAG)
table (nsw74psid3S$trt, nsw74psid3snodeg)

# Relative to Table 4.4, the rows will be interchanged.

# PSID3 males are coded 0; NSW74 male trainees are coded 1.
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Table 4.5 The calculated expected values for the contingency table in Table 4.4.

High school graduate

yes no Total Row proportion
NSW74 trainees 54 (69.15) 131 (115.85) 185 185/313 =0.591
PSID3 63 (47.85) 65 (80.15) 128 128/313 = 0.409
Total 117 196 313

Column proportion  117/313=0.374  196/313 = 0.626

Table 4.6 Contingency table compiled
from Hobson (1988, table 12.1, p. 248).

Object moves

Dreamer moves yes no
yes 5 17
no 3 85

We can then obtain a score for each cell of the table by computing the absolute value of
the difference between the expected value and the observed value, subtracting a continuity
correction of 0.5 (this is the default), squaring, dividing the result by the expected value,
and replacing any scores that are less than zero by zero. Summing over all scores gives
the chi-squared statistic.

Under the null hypothesis the chi-squared statistic has an approximate chi-squared
distribution with (I — 1)(J — 1) degrees of freedom. In Table 4.5, the values in parentheses
are the expected values E;;.

The expected values are found by multiplying the column totals by the row proportions.
(Alternatively, the row totals can be multiplied by the column proportions.) Thus 117 x
0.591 =69.15, 196 x 0.591 = 115.85, etc.

An example where a chi-squared test may not be valid

In Table 4.6 we summarize information that Hobson (1988) derived from drawings
of dreams, made by an unknown person that he calls “The Engine Man.” Among other
information Hobson notes, for each of 110 drawings of dreams made, whether the dreamer
moves, and whether an object moves. Dreamer movement may occur if an object moves,
but is relatively rare if there is no object movement. (Note that Hobson does not give the
form of summary that we present in Table 4.6.)

It may also seem natural to do a chi-squared test for no association.'” This gives
x>=7.1(14d.£.), p=0.008.

lOengineman <- matrix(c(5,3,17,85), 2,2)
chisqg.test (engineman)
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Table 4.7  Cross-classification of
species occurring in South Australia/
Victoria and in Tasmania.

Habitat type

Common/rare

classification D W WD
cc 37 190 94
CR 23 59 23
RC 10 141 28
RR 15 58 16

A reasonable rule, for the use of the chi-squared approximation, may be that all
expected values should be at least 2 (Miller, 1986), a requirement that is satisfied for this
application of the test. A check is to do a Fisher exact test. This is available in a number
of different statistical packages, including R. Surprisingly, the Fisher exact test'' gives
exactly the same result as the chi-squared test, i.e. p = 0.008.

More seriously, there is a time sequence to the dreams. Thus, there could well be a
clustering in the data, that is, runs of dreams of the same type. Hobson gives the numbers
of the dreams in sequence. Assuming these represent the sequence in time, this would
allow a check of the strength of any evidence for runs. Hobson’s table has information
that our tabular summary (Table 4.6) has not captured.

4.3.1 Rare and endangered plant species

The calculations for a test for no association in a two-way table can sometimes give
useful insight, even where a formal test of statistical significance would be invalid. The
example that now follows (Table 4.7) illustrates this point. Data are from species lists for
various regions of Australia. Species were classified CC, CR, RC and RR, with C denoting
common and R denoting rare. The first code letter relates to South Australia and Victoria,
and the second to Tasmania. They were further classified by habitat according to the
Victorian register, where D = dry only, W = wet only, and WD = wet or dry."”

We use a chi-squared calculation to check whether the classification into the different
habitats is similar for the different rows. Details of the calculations are:

> chisqg.test (rareplants, correct=FALSE)
Pearson’s Chi-squared test

data: rareplants
X-squared = 34.99, df = 6, p-value = 4.336e-06

' fisher.test (engineman)
2 44 Enter the data thus:
rareplants <- matrix(c(37,190,94,23,59,23,10,141,28,15,58,16), ncol=3,
byrow=TRUE, dimnames=list(c("CC","CR","RC","RR"), c("D","W","WD")))
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This looks highly significant. This low p-value should attract a level of scepticism. We do
not have a random sample from some meaningful larger population. Suppose that there
is clustering, so that species come in closely related pairs, with both members of the pair
always falling into the same cell of the table. This will inflate the chi-squared statistic by
a factor of 2 (the net effect of inflating the numerator by 22, and the denominator by 2).
There probably is some such clustering, though not of the type that we have suggested
by way of this simplistic example. Such clustering will inflate the chi-squared statistic
by an amount that the available information does not allow us to estimate.

The standard Pearson chi-squared tests rely on multinomial sampling assumptions, with
counts entering independently into the cells. Where it is possible to form replicate tables,
the assumption should be tested.

Figure 4.5 shows expected number of species, by habitat.'?

Examination of departures from a consistent overall row pattern

The investigator then needs to examine the nature of variation with the row clas-
sification. For this, it is helpful to look at the residuals; these are calculated as
(observed — expected) /expected’”:

> X2 <- chisqg.test (rareplants)
> ## Standardized residuals
> residuals (x2)
D W WD
CC -0.369 -1.1960 2.263
CR 2.828 -1.0666 -0.275
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Figure 4.5 Expected number of species, by habitat, for the rareplants data.

By <= chisqg.test (rareplants)
x2E <- stack(data.frame (t (x2Sexpected)))
habitat <- rep(c(1,2,3), 4)
plot (x2E$values ~ habitat, axes=FALSE, xlim=c(0.5, 3.5), pch=16,
xlab="habitat", ylab="Expected Number of Species")
text (x2E$values ~ habitat, labels=x2E$ind, pos=rep(c(4,4,2,2),3))
axis(l, at=seq(1,3), labels=c("D", "W", "WD"))
axis (2)
box ()
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RC -2.547 2.3675 -2.099
RR 1.242 0.0722 -1.023

The null hypothesis implies that the expected relative numbers in different columns are
the same in every row. The chi-squared residuals show where there may be departures
from this pattern. In large tables these will, under the null hypothesis, behave like random
normal deviates with mean zero and variance one. The values that should be noted, if the
assumptions required for a chi-squared test are satisfied, are those whose absolute value
is somewhat greater than 2.0. For the present table, there are five standardized residuals
whose value is substantially greater than 2.0. It is these, and especially the two that are
largest, that should perhaps attract attention.

Notice that the CC species are, relative to the overall average, over-represented in the
WD classification, the CR species are over-represented in the D classification, while the
RC species are under-represented in D and WD and over-represented in W.

For reference, here is the table of expected values:

> x2$expected

D W WD
CC 39.3 207.2 74.5
CR 12.9 67.8 24.4
RC 21.9 115.6 41.5
RR 10.9 57.5 20.6

4.3.2 Additional notes
Interpretation issues

Having found an association in a contingency table, what does it mean? The interpretation
will differ depending on the context. The incidence of gastric cancer is relatively high in
Japan and China. Do screening programs help? Here are two ways in which the problem
has been studied:

* In along-term follow-up study, patients who have undergone surgery for gastric cancer
may be classified into two groups — a “screened” group whose cancer was detected
by mass screening, and an “unscreened” group who presented at a clinic or hospital
with gastric cancer. The death rates over the subsequent 5- or 10-year period are then
compared. For example, the 5-year mortality may be around 58% in the unscreened
group, compared with 72% in the screened group, out of approximately 300 patients
in each group.

e In a prospective cohort study, two populations — a screened population and an un-
screened population — may be compared. The death rates in the two populations over
a 10-year period may then be compared. For example, the annual death rate may be of
the order of 60 per 100 000 for the unscreened group, compared with 30 per 100 000
for the screened group, in populations of several thousand individuals.

In the long-term follow-up study, the process that led to the detection of cancer was
different between the screened and unscreened groups. The screening may lead to surgery
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Figure 4.6  One-way strip plot, with different strips corresponding to different treatment regimes,
for rice shoot mass data.

for some cancers that would otherwise lie dormant long enough that they would never
attract clinical attention. The method of detection is a confounding factor. It is necessary,
as in the prospective cohort study, to compare all patients in a screened group with all
patients in an unscreened group. Even so, it is necessary, in a study where assignment of
participants is not random, to be sure that the two populations are comparable.

Modeling approaches

Modeling approaches typically work with data that record information on each case
separately. Data where there is a binary (yes/no) outcome, and where logistic regression
may be appropriate, are an important special case. Chapter 8 gives further details.

4.4 One-way unstructured comparisons

We will use the shoot dry mass data that are presented in Figure 4.6 as a basis for dis-
cussion.'* The data are from an experiment that compared wild type (wt) and genetically
modified rice plants (ANU843), each with three different chemical treatments. There are
72 sets of results.

There is one “strip” for each factor level. The strips appear in the order of factor levels,
starting from the lowest of the strips. The order that we set is deliberate — notice that F10,
NH4C1 and NH4NO3 appear first without ANU84 3, that is, they are results for “wild
type” plants. The final three levels repeat these same treatments, but for ANU843. For
the moment, we ignore this two-way structure, and carry out a one-way analysis (Perrine
et al. (2001) have an analysis of these data). Also ignored is the arrangement of plants in

“1library(lattice)
lev <- c("F10", "NH4Cl", "NH4NO3", "F10 +ANU843", "NH4Cl +ANU843",
"NH4NO3 +ANU843")
## Strip plot of ShootDryMass by trt: data frame rice (DAAG)
riceS$trt <- factor(riceS$trt, levels=lev)
stripplot (trt ~ ShootDryMass, data=rice, xlab="Shoot dry mass (g)", aspect=0.5)
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blocks. Section 7.2 will give a more definitive analysis, which does take account of the
arrangement of plants in blocks.

Figure 4.6 is one of a number of graphical presentation possibilities for a one-way
layout. Others are (1) a side-by-side comparison of the histograms — but there are too few
values for that; (2) density plots — again there are too few values; and (3) a comparison
of the boxplots — this works quite well with 12 values for each treatment.

The strip plot displays “within-group” variability, as well as giving an indication of
variability among the group means. The one-way analysis of variance formally tests
whether the variation among the means is greater than what might occur simply because
of the natural variation within each group. This comparison is based on the F-statistic,
which is given in the output column headed F value. An F-statistic that is much larger
than 1 points to the conclusion that the means are different. The p-value is designed to
assist this judgment.

The analysis of variance table is obtained using the anova () function, thus:

> rice.aov <- aov(ShootDryMass ~ trt, data=rice)
> anova (rice.aov)
Analysis of Variance Table

Response: ShootDryMass

Df Sum Sg Mean Sg F value Pr (>F)
trt 5 68326 13665 36.719 < 2.2e-16
Residuals 66 24562 372

The Mean Sqg (“mean square”) column has estimates of between-sample (trt) and
within-sample variability (Residuals). The between-sample variance can be calculated
by applying the function var () to the vector of treatment means, then multiplying by
the sample sizes, in this case 12. The within-sample variability estimate is, effectively,
a pooled variance estimate for the five samples. Each mean square is the result from
dividing the Sum Sqg (“sum of squares”) column by the appropriate degrees of freedom.

In the absence of systematic differences between the sample means, the two mean
squares will have the same expected value, and their ratio (the F-statistic) will be near
1. Systematic differences between the sample means will add extra variation into the
treatment mean square, with no effect on the residual mean square, resulting in an
expected F-statistic that is larger than 1. In the output above, the F-statistic is 36.7,
on 5 and 66 degrees of freedom, with p < 2.2 x 1076, The very small p-value for the
F-statistic is a strong indication that there are indeed differences among the treatment
means. Interest then turns to teasing out the nature of those differences.

Observe that the residual mean squared error, otherwise known as the residual mean
square, is 372 with 66 d.f. At each of the six levels of trt, there are 11 d.f. for variation
between the 12 values, giving 6 x 11 = 66 degrees of freedom in all for variation within
levels of trt. Note that 5 degrees of freedom are associated with estimating 6 group
means, while there is 1 degree of freedom for the overall mean. The total 6645+ 1
equals 72, which is the number of observations.
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For this table:

372
SEM =,/ — =5.57.
12

(Divide by 12 because each mean is the average of 12 values. We use the variance
estimate 0> = 372, on 66 d.f.)

SED = 7.87 (= +/2 x SEM).

A first step in examining treatment differences is to print out the coefficients (S-PLUS
users will need, in order to reproduce this output, to change options () Scontrasts
from its default before fitting the model). These are:

> summary.lm(rice.aov) $Scoef

Estimate  Std. Error t value Pr(>|t]|)
(Intercept) 108.3 5.57 19.45 0.00e+00
trtNH4C1l -58.1 7.88 -7.38 3.47e-10
trtNH4NO3 -35.0 7.88 -4.44 3.45e-05
trtF10 +ANU843 -101.0 7.88 -12.82 0.00e+00
trtNH4Cl +ANU843 -61.8 7.88 -7.84 5.11le-11
trtNH4NO3 +ANU843 -36.8 7.88 -4.68 1.49e-05

Notice the use of summary.lm(), which is the default summary function for 1m
objects.

The initial level, which is F10, has the role of a reference or baseline level. Notice that
it appeared on the lowest level of Figure 4.6. The “(Intercept)" line gives the estimate
for F10. Other treatment estimates are differences from the estimates for F10. Thus the
treatment estimates are:

108.3 108.3-58.1 108.3-35.0 108.3—101.0 108.3—61.8 108.3—-36.8
= 108.3 =502 =733 =73 =46.5 =715

The function dummy . coef () structures the coefficients in the manner of the calculations
just described. The treatment estimates were, effectively, calculated thus:

ests <- dummy.coef (rice.aov)
ests[[" (Intercept)"]] + ests[["trt"]]

The standard errors (Std. Error) are, after the first row, all standard errors for dif-
ferences between F10 and later treatments. Notice that these standard errors are identical
in value, i.e. 7.88. Because all treatments occur equally often, the standard deviations for
all pairs of treatment differences equals 7.88. In order to check this, use the relevel ()
function to set the reference level to be another level than F10, and re-run the analysis."
Readers who want further details of the handling of analysis of variance calculations may wish
to look ahead to the discussion in Section 7.1, which the present discussion anticipates.

The results are in a form that facilitates tests of significance for comparing treatments
with the initial reference treatment. It is straightforward to derive a confidence interval

1544 Make NH4C1 the reference (or baseline) level
rice$trt <- relevel (rice$Strt, ref="NH4C1l")



4.4 One-way unstructured comparisons 123

for the difference between any treatment and the reference. We leave the details of this
for discussion in Chapter 7.

Note that differences from the overall mean (effects) and associated standard errors,
and means and associated standard errors, can be calculated thus:

model .tables (rice.aov, se=TRUE) # By default, returns effects
model.tables (rice.aov, type="means", se=TRUE) # Treatment means

4.4.1 Displaying means for the one-way layout

For genuinely one-way data, we want a form of presentation that reflects the one-way
structure. Figure 4.7 shows a suitable form of presentation.'®

Results come in pairs — one result for wild type plants and one for the ANU84 3 variety.
Notice that for F10 there is a huge difference, while for the other two chemicals there is
no detectable difference between wild type and ANU843. This emphasizes the two-way
structure of the data. In general, use of a one-way analysis for data that have a two-way
structure is undesirable. Important features may be missed. Here, detecting the interaction
of variety with chemical relied on recognizing this structure.

Is the analysis valid?

Figure 4.6 suggested that variance was much lower for the F10 + ANU843 combination
than for the other treatments. The variance seems lower when the mass is lower. Because
only one treatment seems different from the rest, the analysis of variance table would not
change much if we omitted it. The main concern is that the standard error of difference
will be too large for comparisons involving F10 + ANU84 3. It will be too small for other
comparisons.
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Figure 4.7  Graphical presentation of results from the one-way analysis of the rice shoot dry mass
data. Means that differ by more than the LSD (least significant difference) are different, at the
5% level, in a t-test that compares the two means. Tukey’s Honest Significant Difference (HSD)
takes into account the number of means that are compared. See the text for details.

1044 Use the function onewayPlot () from our DAAG package
onewayPlot (rice.aov) # rice.aov was obtained in footnote 17
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4.4.2 Multiple comparisons

In Figure 4.7 we give two “yardsticks” against which to compare differences between
means. We did the F-test because we wanted protection from finding spurious
differences — a result of looking at all possible comparisons rather than just one.

Tukey’s Honest Significant Difference (HSD) provides an alternative (or additional)
form of protection from finding such spurious differences. The 5% HSD is designed so
that, under the null model (no difference between treatments), the maximum difference
will be greater than the HSD in 5% of experiments. In other words, the 5% relates to
an experiment-wise error rate, defined as just described. Contrast this with 5% Least
Significant Difference (LSD). This is designed, if used without a preliminary F-test, to
give a 5% comparison-wise error rate.

A reasonable practical strategy is to do a preliminary analysis of variance F-test. If
that suggests differences between the means, then it is of interest to use both yardsticks
in comparing them. The least significant difference gives an anti-conservative yardstick,
that is, one that, in the absence of the preliminary F-test would be somewhat biased
towards finding differences. Tukey’s HSD gives a stricter conservative yardstick, that is,
one that is somewhat biased against finding differences. Ignoring changes in degrees of
freedom and possible associated changes in the standard error, the HSD will increase as
the number of treatment groups that are to be compared increases.'’

*Microarray data — severe multiplicity

Multiple tests are a serious issue in the analysis of microrray data, where an individual
slide (or sometimes, as for Plate 3, half-slide) may yield information on some thousands
of genes. Each slide (or, here, half-slide) is commonly used to compare, for each of a
large number of genes, the gene expression in two samples of genetic material.

The experiment that led to Plate 3 was designed to investigate changes in gene expres-
sion between the pre-settlement free-swimming stage of coral, and the post-settlement
stage. For 3042 genes (one for each of 3042 spots), which showed an increase in gene
expression and which a decrease? Note that each panel in Plate 3 has 3072 spots; this
includes 30 blanks. Where there was an increase, the spot should be fairly consistently
blue, or bluish, over all six panels. Where there was a decrease, the spot should be fairly
consistently yellow, or yellowish.

Here, all that will be attempted is to give broad indications of the experimental pro-
cedure, and subsequent processing, that led to the plots shown in Plate 3. The slides are
first printed with probes, with one probe per spot. Each probe is designed to check for

7## The SED is 7.88 with 66 degrees of freedom. There are 6 means.

sed <- 7.88 # For the t-critical value, use the sed

sem <- sed/sqgrt(2) # For the HSD statistic, the sem is required
## Alternatively, sem = (Residual SE)/sqgrt(# plots per treatment)
sem <- summary.lm(rice.aov)$sigma/sqgrt (12)

gt (p=.975, df=66) * 7.88 # Equals 15.7
gtukey (p=.95, nmeans=6, df=66) * 7.88 / sqrt(2) # Equals 23.1

# NB: We call gtukey() with p=0.95, not with p=.975 as for the pairwise
# t-test. The test works with |difference|, and is inherently one-sided.
# We divide by sgrt (2) because the Tukey statistic is expressed as a

# multiple of the SEM = SED/sqrt(2) = 7.88/sqrt(2)
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Figure 4.8 Interaction plot, showing how the effect of levels of the first factors changes with the
level of the second factor.

evidence of the expression of one gene. The two samples are separately labeled so that
when later a spot “lights up” under a scanner, it will be possible to check for differences
in the signal intensity.

After labeling the separate samples, mixing them, and wiping the mixture over the slide
or half-slide, and various laboratory processing steps, a scanner was used to determine,
for each spot, the intensities generated from the two samples. Various corrections are then
necessary, leading finally to the calculation of logarithms of intensity ratios. Essentially,
it is logarithms of intensity ratios that are shown in Plate 3.

For these data there are, potentially, 3042 r-statistics. This is small, by the standards of
microarray experiments. There are severe problems of multiplicity to address. Details of
a defendable approach to analyzing the data shown in Plate 3 will be posted on the web
site for the book.

For further information on the analysis of microarray data, see Smyth (2004). For
background on the coral data, see Ball er al. (2002).

4.4.3 Data with a two-way structure, that is, two factors

The rice data, analyzed earlier in this section with a one-way analysis of variance, really
have a two-way structure. A first factor relates to whether F10 or NH4C1 or NH4NO3
is applied. A second factor relates to whether the plant is wild type (wt) or ANU843.
Figure 4.8 is designed to show this structure.'®

This shows a large difference between ANU843 and wild type (wt) for the F10
treatment. For the other treatments, there is no detectable difference. A two-way analysis
would show a large interaction. Note, finally, that the treatments were arranged in two
blocks. In general, this has implications for the analysis. This example will be discussed
again in Chapter 7, where possible block effects will be taken into account. Chapter 10
has an example of the analysis of a randomized block design.

lswith(rice, interaction.plot (fert, variety, ShootDryMass))
# Do interaction.plot (fert, variety, ShootDryMass), with fert, variety
# and ShootDryMass taken from the columns of rice
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4.4.4 Presentation issues

The discussion so far has treated all comparisons as of equal interest. Often they are not.
There are several possibilities:

* Interest may be in comparing treatments with a control, with comparisons between
treatments of lesser interest.

* Interest may be in comparing treatments with one another, with any controls used as
a check that the order of magnitude of the treatment effect is pretty much what was
expected.

* There may be several groups of treatments, with the chief interest in comparisons
between the different groups.

Any of these situations should lead to specifying in advance the specific treatment
comparisons that are of interest.

Often, however, scientists prefer to regard all treatments as of equal interest. Results
may be presented in a graph that displays, for each factor level, the mean and its associated
standard error. Alternatives to displaying bars that show the standard error may be to show
a 95% confidence interval for the mean, or to show the standard deviation. Displaying or
quoting the standard deviation may be appropriate when the interest is, not in comparing
level means, but in obtaining an idea of the extent to which the different levels are clearly
separated.

In any case:

» For graphical presentation, use a layout that reflects the data structure, that is, a one-way
layout for a one-way data structure, and a two-way layout for a two-way data structure.

* Explain clearly how error bars should be interpreted — + SE limits, & 95% confidence
interval, == SED limits, or whatever. Or if the intention is to indicate the variation in
observed values, the SD (standard deviation) may be more appropriate.

* Where there is more than one source of variation, explain what source(s) of “error”
is/are represented. It is pointless and potentially misleading to present information on
a source of error that is of little or no interest, for example, on analytical error when
the relevant “error” for the treatment comparisons that are of interest arises from fruit
to fruit variation.

4.5 Response curves

The table shown to the right of Figure 4.9 exhibits data that are strongly structured. The
data are for an experiment in which a model car was released three times at each of four
different distances up a 20° ramp. The experimenter recorded distances traveled from
the bottom of the ramp across a concrete floor. This should be handled as a regression
problem rather than as an analysis of variance problem. Figure 4.9 shows a plot of
these data.'” What is the pattern of the response? An analysis that examines all pairwise
comparisons does violence to the treatment structure, and confuses interpretation. In

944 plot distance.travelled vs starting.point: data frame modelcars (DAAG)
plot (distance.traveled ~ starting.point, pch=15, data=modelcars,
xlab = "Distance up ramp", ylab="Distance traveled")
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Figure 4.9 Distance traveled (distance. traveled) by model car, as a function of starting
point (starting.point), up a 20° ramp.

these data, the starting point effect is so strong that it will nevertheless appear as highly
significant. Response curve analyses should be used whenever appropriate in preference
to comparison of individual pairs of means.

For example, data may show a clear pattern of changing insect weight with changing
temperature. It may be possible to look at plots and decide that a quadratic equation type
of response curve was needed. Where the data are not clear it may be necessary to go
through the steps, in turn:

1. Does the assumption of a straight line form of response explain the data better than
assuming a random scatter about a horizontal line?

2. Does a quadratic response curve offer any improvement?

3. Is there a suggestion of a response that looks like a cubic curve?

Notice that at this stage we are not concerned to say that a quadratic or cubic curve is a
good description of the data. All we are examining is whether such a curve captures an
important part of the pattern of change. If it does, but the curve is still not quite right, it
may be worthwhile to look for a different form of curve that does fit the data adequately.

A representation of the response curve in terms of coefficients of orthogonal polynomi-
als provides information that makes it relatively easy to address questions 1-3. Consider
for example a model that has terms in x and x?. Orthogonal polynomials re-express this
combination of terms in such a way that the coefficient of the “linea