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It is easy to lie with statistics. It is hard to tell the truth without statistics.

[Andrejs Dunkels]

� � � technology tends to overwhelm common sense.

[D. A. Freedman]



For Amelia and Luke
also Shireen, Peter, Lorraine, Evan and Winifred

For Susan, Matthew and Phillip
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Preface

This book is an exposition of statistical methodology that focuses on ideas and concepts,
and makes extensive use of graphical presentation. It avoids, as much as possible, the
use of mathematical symbolism. It is particularly aimed at scientists who wish to do sta-
tistical analyses on their own data, preferably with reference as necessary to professional
statistical advice. It is intended to complement more mathematically oriented accounts of
statistical methodology. It may be used to give students with a more specialist statistical
interest exposure to practical data analysis.

While no prior knowledge of specific statistical methods or theory is assumed, there is
a demand that readers bring with them, or quickly acquire, some modest level of statistical
sophistication. Readers should have some prior exposure to statistical methodology, some
prior experience of working with real data, and be comfortable with the typing of analysis
commands into the computer console. Some prior familiarity with regression and with
analysis of variance will be helpful.

We cover a range of topics that are important for many different areas of statistical
application. As is inevitable in a book that has this broad focus, there will be investiga-
tors working in specific areas – perhaps epidemiology, or psychology, or sociology, or
ecology – who will regret the omission of some methodologies that they find important.

We comment extensively on analysis results, noting inferences that seem well-founded,
and noting limitations on inferences that can be drawn. We emphasize the use of graphs
for gaining insight into data – in advance of any formal analysis, for understanding the
analysis, and for presenting analysis results.

The data sets that we use as a vehicle for demonstrating statistical methodology have
been generated by researchers in many different fields, and have in many cases featured
in published papers. As far as possible, our account of statistical methodology comes
from the coalface, where the quirks of real data must be faced and addressed. Features
that may challenge the novice data analyst have been retained. The diversity of examples
has benefits, even for those whose interest is in a specific application area. Ideas and
applications that are useful in one area often find use elsewhere, even to the extent
of stimulating new lines of investigation. We hope that our book will stimulate such
cross-fertilization.

To summarize: the strengths of this book include the directness of its encounter with
research data, its advice on practical data analysis issues, the inclusion of code that
reproduces analyses, careful critiques of analysis results, attention to graphical and other
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presentation issues, and the use of examples drawn from across the range of statistical
applications.

John Braun wrote the initial drafts of Subsections 4.7.3, 4.7.4, 5.5.3, 6.8.5, 8.4.1
and Section 9.3. Initial drafts of remaining material were, mostly, from John Maindon-
ald’s hand. A substantial part was derived, intially, from the lecture notes of courses
for researchers, at the University of Newcastle (Australia) over 1996–1997 and at The
Australian National University over 1998–2001. Both of us have worked extensively
over the material in these chapters. John Braun has taken primary responsibility for
maintenance of the DAAG package.

The R system

We use the R system for the computations. The R system implements a dialect of the
influential S language, developed at AT&T Bell Laboratories by Rick Becker, John
Chambers and Allan Wilks, which is the basis for the commercial S-PLUS system.
It follows S in its close linkage between data analysis and graphics. Versions of R
are available, at no charge, for 32-bit versions of Microsoft Windows, for Linux and
other Unix systems, and for the Macintosh. It is available through the Comprehensive
R Archive Network (CRAN). Go to http://cran.r-project.org/, and find the
nearest mirror site.

The development model used for R has proved highly effective in marshalling high
levels of computing expertise for continuing improvement, for identifying and fixing
bugs, and for responding quickly to the evolving needs and interests of the statistical
community. Oversight of “base R” is handled by the R Core Team, whose members are
widely drawn internationally. Use is made of code, bug fixes and documentation from
the wider R user community. Especially important are the large number of packages that
supplement base R, and that anyone is free to contribute. Once installed, these attach
seamlessly into the base system.

Many of the analyses offered by R’s packages were not, 10 years ago, available in
any of the standard statistical packages. What did data analysts do before we had such
packages? Basically, they adapted more simplistic (but not necessarily simpler) analyses
as best they could. Those whose skills were unequal to the task did unsatisfactory
analyses. Those with more adequate skills carried out analyses that, even if not elegant
and insightful by current standards, were often adequate. Tools such as are available
in R have reduced the need for the adaptations that were formerly necessary. We can
often do analyses that better reflect the underlying science. There have been challenging
and exciting changes from the methodology that was typically encountered in statistics
courses 10 or 15 years ago.

In the ongoing development of R, priorities have been: the provision of good data
manipulation abilities; flexible and high-quality graphics; the provision of data analysis
methods that are both insightful and adequate for the whole range of application area
demands; seamless integration of the different components of R; and the provision of
interfaces to other systems (editors, databases, the web, etc.) that R users may require.
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Ease of use is important, but not at the expense of power, flexibility and checks against
answers that are potentially misleading.

Depending on the user’s level of skill with R, there will be some relatively routine
tasks where another system may seem simpler to use. Note however the availability of
interfaces, notably John Fox’s Rcmdr, that give a graphical user interface (GUI) to a
limited part of R. Such interfaces will develop and improve as time progresses. They may
in due course, for many users, be the preferred means of access to R. Be aware that the
demand for simple tools will commonly place limitations on the tasks that can, without
professional assistance, be satisfactorily undertaken.

Primarily, R is designed for scientific computing and for graphics. Among the packages
that have been added are many that are not obviously statistical – for drawing and coloring
maps, for map projections, for plotting data collected by balloon-born weather instruments,
for creating color palettes, for working with bitmap images, for solving sudoko puzzles,
for creating magic squares, for reading and handling shapefiles, for solving ordinary
differential equations, for processing various types of genomic data, and so on. Check
through the list of R packages that can be found on any of the CRAN sites, and you may
be surprised at what you find!

The citation for John Chambers’ 1998 Association for Computing Machinery Software
award stated that S has “forever altered how people analyze, visualize and manipu-
late data.” The R project enlarges on the ideas and insights that generated the S lan-
guage. We are grateful to the R Core Team, and to the creators of the various R
packages, for bringing into being the R system – this marvellous tool for scientific
and statistical computing, and for graphical presentation. We list at the end of the
reference section the authors and compilers of packages that have been used in this
book.

Influences on the modern practice of statistics

The development of statistics has been motivated by the demands of scientists for a
methodology that will extract patterns from their data. The methodology has developed
in a synergy with the relevant supporting mathematical theory and, more recently, with
computing. This has led to methodologies and supporting theory that are a radical depar-
ture from the methodologies of the pre-computer era.

Statistics is a young discipline. Only in the 1920s and 1930s did the modern framework
of statistical theory, including ideas of hypothesis testing and estimation, begin to take
shape. Different areas of statistical application have taken these ideas up in different
ways, some of them starting their own separate streams of statistical tradition. Gigerenzer
et al. (1989, “The Empire of Statistics”) examine the history, commenting on the different
streams of development that have influenced practice in different research areas.

Separation from the statistical mainstream, and an emphasis on “black box” approaches,
have contributed to a widespread exaggerated emphasis on tests of hypotheses, to a neglect
of pattern, to the policy of some journal editors of publishing only those studies that show
a statistically significant effect, and to an undue focus on the individual study. Anyone
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who joins the R community can expect to witness, and/or engage in, lively debate that
addresses these and related issues. Such debate can help ensure that the demands of
scientific rationality do in due course win out over influences from accidents of historical
development.

New tools for effective data analysis

We have drawn attention to advances in statistical computing methodology. These have led
to new powerful tools for exploratory analysis of regression data, for choosing between
alternative models, for diagnostic checks, for handling non-linearity, for assessing the
predictive power of models, and for graphical presentation. In addition, we have new
computing tools that make it straightforward to move data between different systems, to
keep a record of calculations, to retrace or adapt earlier calculations, and to edit output
and graphics into a form that can be incorporated into published documents.

The best any analysis can do is to highlight the information in the data. No amount of
statistical or computing technology can be a substitute for good design of data collection,
for understanding the context in which data are to be interpreted, or for skill in the
use of statistical analysis methodology. Statistical software systems are one of several
components of effective data analysis.

The questions that statistical analysis is designed to answer can often be stated simply.
This may encourage the layperson to believe that the answers are similarly simple. Often,
they are not. Be prepared for unexpected subtleties. Effective statistical analysis requires
appropriate skills, beyond those gained from taking one or two undergraduate courses in
statistics. There is no good substitute for professional training in modern tools for data
analysis, and experience in using those tools with a wide range of data sets. No-one
should be embarrassed that they have difficulty with analyses that involve ideas that
professional statisticians may take 7 or 8 years of professional training and experience to
master.

Changes in this second edition

This new edition takes account of changes in R since 2003. There is new material
on survival analysis, random coefficient models and the handling of high-dimensional
data. The treatment of regression methods has been extended, including in particular a
brief discussion of errors in predictor variables. Both the text and R code have been
extensively revised. Code has, wherever possible, been simplified. Some examples have
been reworked. There are changes to some graphs, and new graphs have been added.
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Conventions

Text that is R code, or output from R, is printed in a verbatim text style. For example,
in Chapter 1 we will enter data into an R object that we call austpop. We will use the
plot() function to plot these data. The names of R packages, including our own DAAG
package, are printed in italics.

Starred exercises and sections identify more technical items that can be skipped at a
first reading.

Solutions to exercises

Solutions to selected exercises, R scripts that have all the code from the book and other
supplementary materials are available via the link given at http://www.maths.anu.
edu.au/˜johnm/r-book
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A brief introduction to R

This first chapter introduces readers to the basics of R. It provides the minimum of
information that is needed for running the calculations that are described in later chapters.
The first section may cover most of what is immediately necessary. The rest of the chapter
may be used as a reference. Chapter 14 extends this material considerably.

Most of the R commands will run without change in S-PLUS.

1.1 An overview of R

1.1.1 A short R session

R must be installed!

An up-to-date version of R may be downloaded from a Comprehensive R Archive
Network (CRAN) mirror site. There are links at http://cran.r-project.org/.
Installation instructions are provided at the web site for installing R in Windows, Unix,
Linux, and version 10 of the Macintosh operating system. Various contributed packages
are now a part of the standard R distribution, but a number are not; any of these may be
installed as required. Data sets that are mentioned in this book, and that are not (in most
cases) available in other packages, have been collected into our DAAG package that is
available from CRAN sites.

For most Windows users, R can be installed by clicking on the icon that appears on
the desktop once the Windows binary has been downloaded from CRAN. An installation
program will then guide the user through the process. By default, an R icon will be placed
on the user’s desktop. The R system can be started by double-clicking on that icon.

The DAAG package can be installed under Windows by starting R and clicking on the
Packages Menu. From that menu, choose Install Packages. If a mirror site has not been
set earlier, this gives a pop-up menu from which a site must be chosen. Once this choice
is made, a new pop-up window appears with the entire list of available R packages.
Clicking on DAAG will cause it to be downloaded and installed.

Using the console (or command line) window

The command line prompt (>) is an invitation to start typing in commands or expressions.
R evaluates and prints out the result of any expression that is typed in at the command
line in the console window (multiple commands may appear on the one line, with the
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Table 1.1 Estimated worldwide
annual totals of carbon emissions from
fossil fuel use, in millions of tonnes.
Data are due to Marland et al. (2003).

Year Carbon

1 1800 8
2 1850 54
3 1900 534
4 1950 1630
5 2000 6611

semicolon (;) as the separator). This allows the use of R as a calculator. For example,
type 2+2 and press the Enter key. Here is what appears on the screen:

> 2+2

[1] 4

>

The first element is labeled [1] even when, as here, there is just one element! The final
> prompt indicates that R is ready for another command.

In a sense this chapter, and much of the rest of the book, is a discussion of what
is possible by typing in statements at the command line. Practice in the evaluation of
arithmetic expressions will help develop the needed conceptual and keyboard skills. Here
are simple examples:

> 2*3*4*5 # * denotes ’multiply’

[1] 120

> sqrt(10) # the square root of 10

[1] 3.162278

> pi # R knows about pi

[1] 3.141593

> 2*pi*6378 # Circumference of earth at equator (km)

# (radius at equator is 6378 km)

[1] 40074.16

Anything that follows a # on the command line is taken as comment and ignored by R.
A continuation prompt, by default +, appears following a carriage return when the

command is not yet complete. (In this book we will omit both the prompt (>) and the
continuation prompt (+), whenever command line statements are given separately from
output.)

Entry of data at the command line

Table 1.1 gives, for each of the years 1800, 1850, … , 2000, estimated worldwide totals
of carbon emissions that resulted from fossil fuel use. We can enter these columns of
data, then plot Carbon against Year to give Figure 1.1, thus:
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Figure 1.1 Plot of Carbon against Year, for the data in Table 1.1.

Year <- c(1800, 1850, 1900, 1950, 2000)

Carbon <- c(8, 54, 534, 1630, 6611)

## Now plot Carbon as a function of Year

plot(Carbon ˜ Year, pch=16)

Note the following:

• The <- is a left angle bracket (<) followed by a minus sign (-). It means “the values
on the right are assigned to the name on the left.”

• The objects Year and Carbon are vectors which were each formed by joining
(concatenating) separate numbers together. Thus c(8, 54, 534, 1630, 6611)
joined the numbers 8, 54, 534, 1630, 6611 together to form the vector Carbon. See
Subsection 1.3.2 for further details on this.

• The construct Carbon ∼ Year is a graphics formula. The plot() function inter-
prets this formula to mean “Plot Carbon as a function of Year” or “Plot Carbon
on the y-axis against Year on the x-axis.”

• The setting pch=16 (where pch is “plot character”) gives a solid black dot.
• Case is significant for names of R objects or commands. Thus, Carbon is different

from carbon.

We can make various modifications to this basic plot. We can specify more informative
axis labels, change the sizes of the text and of the plotting symbol, add a title, and so on.
More information is given in Section 1.6.

Collection of vectors into a data frame

The two vectors Year and Carbon are matched, element for element. It is convenient
to group the two vectors together into an object that is called a data frame, thus:

> fossilfuel <- data.frame(year=Year, carbon=Carbon)

> fossilfuel # Display the contents of the data frame.

year carbon

1 1800 8

2 1850 54

3 1900 534
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4 1950 1630

5 2000 6611

> rm(Year, Carbon) # These are no longer required

The vector objects year and carbon become columns in the data frame.
An alternative to the plotting command that gave Figure 1.1 is then:

plot(carbon ˜ year, data=fossilfuel, pch=16)

The data=fossilfuel argument instructs plot() to start its search for each of
carbon and year by looking among the columns of fossilfuel.

There are several ways to identify columns by name. Here, note that the second column
can be referred to as fossilfuel[, 2], or as fossilfuel[, "carbon"], or as
fossilfuel$carbon.

Data frames are the preferred way for organizing data sets that are of modest size. For
now, think of data frames as a rectangular row by column layout, where the rows are
observations and the columns are variables. More information about data frames can be
found in Section 1.4. Subsection 1.2.1 will demonstrate the reading of data from a file,
entering them into a data frame.

Checks on the working directory and the contents of the workspace

Each R session has a working directory. This is the default place where R looks for files
that are read from disk, or written to disk. For a session that is started from a Windows
icon, the initial working directory is the Start in directory that can be determined by
right clicking on the icon and clicking on Properties. Users of the GUI-based application
for the Macintosh can change the default startup directory from within an R session by
clicking on the R menu item, then on Preferences and making the necessary change in
the panel Initial working directory. On Unix or Linux sessions that are started from the
command line, the working directory is the directory in which R was started. In the event
that there is any uncertainty, use the command getwd() to give the name of the working
directory:

getwd()

Objects that the user creates or copies from elsewhere go into the user workspace. In
order to list the contents of the workspace, type:

ls()

The only object left over from the current session should be fossilfuel. There may
additionally be objects that are left over from previous sessions (if any) in the same
directory, and that were loaded when the session started.

Quitting R

Use the q() function to quit (exit) from R:

q()
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There will be a message asking whether to save the workspace image. Clicking Yes has the
effect that, before quitting, all the objects that remain in the working directory are saved
in an “image” file that has the name .RData. This file is an “image” of the workspace
immediately before quitting the session, and will be used to restore the workspace when
a new session is again started in that directory. (Note that while delaying the saving of
important objects till the end of the session is acceptable when working in a learning
mode, it is not a good strategy when using R in production mode. Advice on saving and
backing up through the course of the session will be given in Section 1.8 and, in more
detail, in Subsection 14.1.2.)

Depending on the implementation, alternatives to typing q() may be to click on the
File menu and then on Exit, or to click on the × in the top right-hand corner of the R
window. (Under Linux, depending on the window manager that is used, clicking on ×
may exit from the program, but without asking whether to save the workshop image.
Check the behavior on your installation.)

Note: In order to quit the R session we had to type q(). The round brackets are
necessary because q is a function. Typing q on its own, without the brackets, displays
the text of the function on the screen. Try it!

1.1.2 The uses of R

R has extensive capabilities for statistical analysis, that will be used throughout this book.
These are embedded in an interactive computing environment that is suited to many
different uses. Here we draw attention to abilities, beyond simple one-line calculations,
that may not be primarily statistical.

R offers an extensive collection of functions

Most of the calculations that users may wish to carry out, beyond simple command
line computations, involve explicit use of functions. There are of course functions for
calculating the sum (sum()), mean (mean()), range (range()), length of a vector
(length()), for sorting values into order (sort()) and so on. For example, the
following calculates the range of the values in the vector carbon:

> range(fossilfuel$carbon)

[1] 8 6611

By no means are R’s abilities limited to numerical calculation. Here are examples that
involve character strings:

> ## 4 cities

> fourcities <- c("Toronto", "Canberra", "New York", "London")

> ## display in alphabetical order

> sort(fourcities)

[1] "Canberra" "London" "New York" "Toronto"

> ## Find the number of characters in "Toronto"

> nchar("Toronto")
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[1] 7

>

> ## Find the number of characters in all four city names at once

> nchar(fourcities)

[1] 7 8 8 6

R will give numerical or graphical data summaries

The data frame cars that is in the datasets package has two columns (variables), with
the names speed and dist. Typing summary(cars) gives summary information on
these variables:

> summary(cars)

speed dist

Min. : 4.0 Min. : 2.00

1st Qu.:12.0 1st Qu.: 26.00

Median :15.0 Median : 36.00

Mean :15.4 Mean : 42.98

3rd Qu.:19.0 3rd Qu.: 56.00

Max. :25.0 Max. :120.00

Thus, we can immediately see that the range of speeds (first column) is from 4 mph to
25 mph, and that the range of distances (second column) is from 2 feet to 120 feet.

Graphical alternatives to summary(), including histograms and boxplots, are dis-
cussed and demonstrated in Sections 1.7 and 2.1. Try for example:

hist(cars$speed)

R is an interactive programming language

Suppose we want to calculate the Fahrenheit temperatures that correspond to Celsius
temperatures 0, 10� � � � , 40. Here is a good way to do this in R:

> celsius <- (0:4)*10

> fahrenheit <- 9/5*celsius+32

> conversion <- data.frame(Celsius=celsius, Fahrenheit=fahrenheit)

> print(conversion)

Celsius Fahrenheit

1 0 32

2 10 50

3 20 68

4 30 86

5 40 104

1.1.3 Online help

Before getting deeply into the use of R, it is well to take time to master the help facilities.
Such an investment of time will pay dividends. R’s help files are comprehensive, and are
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frequently upgraded. Type help(help) to get information on the help features of the
system that is in use. To get help on, for example, plot(), type:

help(plot)

The functions apropos() and help.search() offer means for searching for
functions that perform a desired task. Specific examples seem the best way to explain
their use. Thus try:

apropos("sort") # Try, also, apropos ("sor")

# This lists all functions whose names include the

# character string "sort".

help.search("sort") # Note that the argument is ’sort’

# This lists all functions that have the word ’sort’ as

# an alias or in their title.

The function help.start() is designed to start up a browser window that gives
access to a variety of help information and documentation.

Users are encouraged to experiment with R functions, perhaps starting by using
example() to run the examples that are included in the help file. Be warned that
some of the examples may illustrate relatively advanced aspects of the use of the func-
tion. This can be the case even for such basic functions as mean(). To run the examples
that are included in the help file for the function image(), type:

example(image)

# for a 2 by 2 layout of the last 4 plots, precede with

# par(mfrow=c(2,2))

# To prompt for each new graph, precede with par(ask=TRUE)

# When finished, turn off the prompts with par(ask=FALSE)

In learning to use a new function, it may be helpful to create a simple artificial data
set, or to create a small subset from a larger data set, and use this for experimentation.
For extensive experimentation, consider moving to a new working directory and working
with copies of any user data sets and functions.

The help pages, while not an encyclopedia on statistical methodology, have much
helpful information on the methods whose implementation they document. Some of
the abilities that they document will bring pleasant surprises. There are many in-
sightful and helpful examples, there are references to related functions, and there
are references to papers and books that give the relevant theory. It can help enor-
mously, before launching into the use of an R function, to check the relevant help
page!

Wide-ranging searches

The function RSiteSearch()makes it possible (assuming a live internet connection)
to search R manuals and help pages, and the R-help mailing list archives, for key words or
phrases. It has a parameter restrict that allows some limited targeting of the search.
See help(RSiteSearch) for details.
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1.1.4 Further steps in learning R

Readers who have followed the discussion thus far and worked through the examples
may at this point have learned enough to start on Chapter 2, referring as necessary to later
sections of this chapter, to R’s help pages, and to Chapter 14. Before progressing far,
it will however be wise to work through the remaining sections of the present chapter.
Topics that will be covered in the remaining sections of this chapter, and that readers will
encounter as they work through Chapter 2 and later chapters, include:

• The function read.table(), demonstrated in Subsection 1.2.1, reads data from a
file into a data frame.

• Vectors are a fundamental data structure. Possible modes include numeric, character,
logical and complex. See Subsection 1.3.1.

• Factors, not so far discussed, use integer values 1, 2, …, as indices into a look-up
table that holds unique character strings. They are used to represent categorical data,
and are fundamental to much of the use of R’s graphics and modeling functions. See
Subsection 1.3.6.

• Later chapters will make extensive use both of base graphics (using plot(), etc.) and
of the more stylized graphs provided by lattice graphics. Lattice graphics (Sections
1.7 and 14.12) allows the layout of panels on the page, and point and line settings, to
reflect meaningful aspects of the data structure.

• The R system has a variety of functions that calculate summary statistics, create tables,
do cross-tabulations, obtain information on data sets, and so on. Some of these are
listed in Section 1.5. Others will be encountered in later chapters.

1.2 Data input, packages and the search list

1.2.1 Reading data from a file

The function read.table() offers a straightforward way to read into an R data frame
a file in which each row has the same number of fields of data. For simplicity, assume
that the data from Table 1.1 are in a file called fuel.txt in the working directory, with
fields separated by one or more spaces and/or tabs. (On Microsoft Windows systems, the
Windows conventions apply to file names, and it is immaterial whether this file is called
fuel.txt or Fuel.txt. Unix file systems may, depending on the specific file system in use,
treat letters that have a different case as different.)

Code that will take data from the file fuel.txt, entering them into the data frame
fossilfuel in the workspace is:

fossilfuel <- read.table("fuel.txt", header=TRUE)

Note the use of header=TRUE to ensure that R uses the first line to get header infor-
mation for the columns.

Type fossilfuel at the command line prompt, and the data will be displayed almost
as they appear in Table 1.1 (the only difference is the introduction of row labels in the R
output). Data read into R with the read.table() function are automatically converted
to a data frame.
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We have assumed that the fields in fuel.txt are separated by spaces and/or tabs, as
allowed by the default setting (sep=") for read.table(). Other parameter settings
are sometimes required; note in particular:

fossilfuel <- read.table("fuel.csv", header=TRUE, sep=",")

reads data from a file fuel.csv where the fields have been separated by commas.
Consult the help page for read.table() for other options.

1.2.2 R packages

The recommended R distribution includes a number of packages in its library. These
are collections of functions and data. We will make frequent use both of the MASS
package (Venables and Ripley, 2002) and of our own DAAG package. DAAG, and other
packages that are not included with the default distribution, can be readily downloaded
and installed.

The base package, the stats package, the datasets package and several other packages,
are automatically attached at the beginning of a session. Other installed packages must
be explicity attached prior to use. Use sessionInfo() to see which packages are
currently attached. To attach any further installed package, use the library() function.
For example:

> library(DAAG)

> sessionInfo()

R version 2.0.1, 2004-11-15, powerpc-apple-darwin6.8

attached base packages:

[1] "methods" "stats" "graphics" "grDevices" "utils"

[6] "datasets" "base"

other attached packages:

DAAG

"0.5.2"

Data sets that accompany R packages

Type data() to get a list of data sets (mostly data frames) in all packages that are in the
current search path. To get information on the data sets that are included in the datasets
package, specify:

data(package="datasets") # Specify ’package’, not ’library’.

Replace "datasets" by the name of any other installed package, as required (type
library() to get the names of the installed packages). In most packages that
are intended for recent versions of R (2.0.0 or later), these data sets become avail-
able automatically once the package has been attached. They will be brought into
the workspace when and if required. (In older versions of R, or in packages that
have not implemented the lazy data mechanism, explicit use of a command of the
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form data(airquality) may be necessary, bringing the data object into the user’s
workspace.)

Installation of additional packages

The install.packages() function can be used, from within an R session, to install
new packages as required, from an internet connection or from a local repository or file.

Under Windows and other systems that have a menu, packages can alternatively be
installed using the Install Packages option in the Packages menu.

1.3 Vectors, factors and univariate time series

Vectors, factors and univariate time series are all univariate objects that can be included
as columns in a data frame.

1.3.1 Vectors in R

The vector modes that will be described here (there are others) are “numeric,” “logical,”
and “character.” Examples of vectors are:

> c(2, 3, 5, 2, 7, 1)

[1] 2 3 5 2 7 1

> 3:10 # The numbers 3, 4,..., 10

[1] 3 4 5 6 7 8 9 10

> c(T, F, F, F, T, T, F)

[1] TRUE FALSE FALSE FALSE TRUE TRUE FALSE

> c("Canberra", "Sydney", "Canberra", "Sydney")

[1] "Canberra" "Sydney" "Canberra" "Sydney"

The first two vectors above are numeric, the third is logical, and the fourth is a character
vector. Note the use of the global variables F(=FALSE) and T(=TRUE) as a convenient
shorthand when logical values are entered.

1.3.2 Concatenation – joining vector objects

The function c(), used in Subsection 1.1.1 to join numbers together to form a vector, is
more widely useful. It may be used to concatenate any combination of vectors and vector
elements. In the following, we form numeric vectors x and y, that we then concatenate
to form a vector z:

> x <- c(2, 3, 5, 2, 7, 1)

> x

[1] 2 3 5 2 7 1

> y <- c(10, 15, 12)
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> y

[1] 10 15 12

> z <- c(x, y)

> z

[1] 2 3 5 2 7 1 10 15 12

1.3.3 Subsets of vectors

Note three common ways to extract subsets of vectors:

1. Specify the indices of the elements that are to be extracted, for example:
> x <- c(3, 11, 8, 15, 12) # Assign to x the values 3,

# 11, 8, 15, 12

> x[c(2,4)] # Elements in positions 2

[1] 11 15 # and 4 only

2. Use negative subscripts to omit the elements in nominated subscript positions (take
care not to mix positive and negative subscripts):
> x[-c(2,3)] # Remove the elements in positions 2 and 3

[1] 3 15 12
3. Specify a vector of logical values. The elements that are extracted are those for which

the logical value is TRUE. Thus, suppose we want to extract values of x that are
greater than 10:
> x > 10

[1] FALSE TRUE FALSE TRUE TRUE

> x[x > 10]

[1] 11 15 12

Elements of vectors can be given names. In that case, elements can be extracted by
name:

> heights <- c(Andreas=178, John=185, Jeff=183)

> heights[c("John","Jeff")]

John Jeff

185 183

1.3.4 Patterned data

Use, for example, 5:15 to generate all integers in a range, here between 5 and 15
inclusive:

> 5:15

[1] 5 6 7 8 9 10 11 12 13 14 15

Conversely, 15:5 will generate the sequence in the reverse order.
The function seq() is more general. For example:

> seq(from=5, to=22, by=3) # The first value is 5. The final

# value is <= 22

[1] 5 8 11 14 17 20
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The function call can be abbreviated to:

seq(5, 22, 3)

To repeat the sequence (2, 3, 5) four times over, enter:

> rep(c(2,3,5), 4)

[1] 2 3 5 2 3 5 2 3 5 2 3 5

Patterned character vectors are also possible:

> c(rep("female", 3), rep("male", 2))

[1] "female" "female" "female" "male" "male"

1.3.5 Missing values

The missing value symbol is NA. As an example, consider the lung variable of the Cape
Fur Seal data (which will be studied in more detail in Chapter 5):

> seal.lung <- cfseal$lung # Weights (gm)

> seal.lung

[1] 605.0 436.0 380.0 493.9 NA 550.0 470.0 592.5 605.0

[10] 799.9 995.0 785.0 910.0 1115.0 1142.6 1465.0 1250.0 1580.0

[19] 2000.0 1474.4 NA 1220.0 1790.0 1510.0 NA NA 2735.0

[28] NA 2380.0 NA

Any arithmetic expression that involves an NA generates NA as its result. Functions
such as mean() allow the parameter setting na.rm=TRUE, so that NAs are omitted
before proceeding with the calculation. For example:

> seal.lung <- cfseal$lung

> mean(seal.lung)

[1] NA

> mean(seal.lung, na.rm=TRUE)

[1] 1137

Logically, if a value is unknown, it is impossible say whether or not it equals some
other value, whether known or unknown. Arithmetic and logical expressions in which
NAs appear generate NA as the result. Thus, consider:

> seal.lung == NA

< [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

< [22] NA NA NA NA NA NA NA NA NA NA

To replace all NAs by -999 (in most circumstances a bad idea) use the function
is.na(), thus:

> ## Replace all NAs by -999 (in general, a bad idea)

> seal.lung[is.na(seal.lung)] <- -999

> seal.lung

[1] 605.0 436.0 380.0 493.9 -999.0 550.0 470.0 592.5 605.0

[10] 799.9 995.0 785.0 910.0 1115.0 1142.6 1465.0 1250.0 1580.0

[19] 2000.0 1474.4 -999.0 1220.0 1790.0 1510.0 -999.0 -999.0 2735.0

[28] -999.0 2380.0 -999.0
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> ## There is now no protection against use of the -999 values as

> ## if they were legitimate numeric values

> mean(seal.lung) # Illegitimate calculation

[1] 709.7

Using a code such as -999 for missing values requires continual watchfulness to ensure
that it is never treated as a legitimate numeric value.

Missing values are discussed further in Subsection 1.5.6 and Section 14.5. For vectors
of mode numeric, other legal values that may require special attention are NaN (not a
number; try, e.g., by 0/0), Inf (e.g., 1/0) and -Inf.

1.3.6 Factors

A factor is stored internally as a numeric vector with values 1, 2, 3, � � � , k. The value k is
the number of levels. The levels are character strings.

Consider a survey that has data on 691 females and 692 males. If the first 691 are
females and the next 692 males, we can create a vector of strings that holds the values thus:

gender <- c(rep("female",691), rep("male",692))

We can change this vector to a factor, by entering:

gender <- factor(gender)

Internally, the factor gender is stored as 691 1s, followed by 692 2s. It has stored with
it a table that holds the information:

1 female
2 male

In most contexts that seem to demand a character string, the 1 is translated into female
and the 2 into male. The values female and male are the levels of the factor. By
default, the levels are in sorted order for the data type from which the factor was formed,
so that female precedes male. Hence:

> levels(gender)

[1] "female" "male"

Note that if gender had been an ordinary character vector, the outcome of the above
levels command would have been NULL.

The order of the factor levels determines the order of appearance of the levels in graphs
and tables that use this information. To cause male to come before female, use:

gender <- factor(gender, levels=c("male", "female"))

This syntax is available both when the factor is first created, and later to change the order
in an existing factor. Take care that the level names are correctly spelled. For example,
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specifying "Male" in place of "male" in the levels argument will cause all values
that were "male" to be coded as missing.

Note finally the function ordered(), which generates factors whose values can be
compared using the relational operators <, <=, >, >=, == and =!. Ordered factors are
appropriate for use with ordered categorical data. See Section 14.4 for further details.

1.3.7 Time series

The following are the numbers of workers (in 1000s) in the Canadian prairies for each
month from January 1995 through December 1996:1

numjobs <- c(982,981,984,982,981,983,983,983,983,979,973,979,

974,981,985,987,986,980,983,983,988,994,990,999)

The function ts() converts numeric vectors into time series objects. Frequently used
arguments of ts() are start, frequency and end. The following turns numjobs
into a time series, which can then be plotted:

numjobs <- ts(numjobs, start=1995, frequency = 12)

plot(numjobs)

Use the function window() to extract a subset of the time series. For example, the
following extracts the first 15 months of the series:

first15 <- window(numjobs, end=1996.25)

Multivariate time series are also possible. See Subsections 2.1.5 and 14.7.7.

1.4 Data frames and matrices

Data frames are fundamental to the use of the R modeling and graphics functions. A data
frame is a more general object than a matrix, in the sense that different columns may
have different modes. All elements of any column must, however, have the same mode,
that is, all numeric, or all factor, or all character, or all logical.

Included in the DAAG package is Cars93.summary, created from the Cars93 data
set in the MASS package. Its contents are:

> Cars93.summary

Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C

Large 6 6 11 L

Midsize 4 6 22 M

Small 4 5 21 Sm

Sporty 2 4 14 Sp

Van 7 8 9 V

1 ## Alternatively, obtain from data frame jobs (DAAG)
library(DAAG) numjobs <- jobs$Prairies
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The first three columns are numeric, and the fourth is a factor. Use the function class()
to check this, for example, enter class(Cars93.summary$abbrev). (The classifi-
cation of objects into classes is discussed in Subsection 1.5.2.)

On most systems, use of edit() allows access to a spreadsheet-like display of a data
frame or of a vector, where entries can be edited or new data added. For example:

Cars93.summary <- edit(Cars93.summary)

To close the spreadsheet, click on the File menu and then on Close. On Linux systems,
click on Quit to exit.

Display of the first few, or last few, rows of a data frame

Useful functions are head() and tail(). To display the first three rows of the
Cars93.summary data frame, type:

> head(Cars93.summary, n=3)

Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C

Large 6 6 11 L

Midsize 4 6 22 M

> # . . .

Similarly, the tail() function displays the last few rows of a data frame. The default
for the second argument (number of rows to display) is 6.

The functions head() and tail() are available also for use with objects other than
data frames.

The square bracket notation offers a more flexible alternative (any subset of rows can
be extracted):

> Cars93.summary[1:3, ]

Min.passengers Max.passengers No.of.cars abbrev

Compact 4 6 16 C

Large 6 6 11 L

Midsize 4 6 22 M

Data frames are a specialized type of list

A list is an arbitrary collection of R objects, brought together into a single data structure.
Most of R’s modeling functions return their output as a list.

Lists can be joined using the function c(); in this and in several other respects they
are “vectors.” Important aspects of the syntax for working with data frames apply also
to lists. Obviously, however, notions of “row” and “column” have no relevance to lists.
See Subsection 14.7.1 for further commentary.



16 A brief introduction to R

1.4.1 The attaching of data frames

In repeated computations with the same data frame, it is tiresome to keep repeating the
name of the data frame. By attaching a data frame, its columns can be referred to by
name, without further need to give the name of the data frame. For example:

> Min.passengers

Error: Object "Min.passengers" not found

> attach(Cars93.summary) # Attach data frame Cars93.summary

> Min.passengers

[1] 4 6 4 4 2 7

> detach(Cars93.summary) # Detach data frame

Detaching data frames that are no longer in use reduces the risk of a clash of variable
names, for example, two different attached data frames that have a column with the name
Min.passengers, or a Min.passengers both in the workspace and in an attached
data frame.

The attaching of a data frame extends the search list, which is the list of “databases”
where R looks for objects. See Subsection 14.1 for more details on this and other uses of
attach().

Column and row names

Use for example rownames(Cars93.summary) to extract the names of rows, here
Compact, Large, Midsize, � � � . Use for example names(Cars93. summary) or
colnames(Cars93. summary) to extract column names, here Min.passengers
(i.e., the minimum number of passengers for cars in this category), Max.passengers,
No.of.cars, and abbrev.

Subsets of data frames

Data frames are indexed by row and column number. Thus to extract the element in
the 4th row and 2nd column, specify Cars93.summary[4, 2]. Here are additional
examples:

Cars93.summary[1:3, 2:3] # Rows 1-3 and columns 2-3

Cars93.summary[, 2:3] # Columns 2-3 (all rows)

Cars93.summary[, c("No.of.cars","abbrev")] # cols 2-3, by name

Cars93.summary[, -c(2,3)] # omit columns 2 and 3

The subset() function offers an alternative way to extract rows and columns. For
example, the following extracts the first two rows:

subset(Cars93.summary, subset=1:2) # see help(subset) for details

Note that Cars93.summary[1,] is a data frame. To obtain the vector of values in
row 1, specify unlist(Cars93.summary[1, ]).

Avoid Cars93.summary[4], at least until the subtleties of its use are understood.
See Subsection 14.7.1. If used where Cars93.summary[, 4] was intended, the
calculation may fail or give an erroneous result.
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Assignment of (new) names to the columns of a data frame

The functions names() (or colnames()) and rownames()) can be used to assign
new names, perhaps shortening them. For example:

names(Cars93.summary)[3] <- "numCars"

names(Cars93.summary) <- c("minPass","maxPass","numCars","code")

1.4.2 Aggregation, stacking and unstacking

The aggregate() function yields a data frame that has the mean or value of another
specified function for each combination of factor levels. There is an example in Subsection
2.2.2. See also Subsection 14.7.5.

For stacking columns of a data frame, that is, placing successive columns one under
the other, the function stack() is available. The following use of stack(), with data
from the data frame jobs, will be required for the use of these data in Subsection 2.1.5:

> library(DAAG)

> head(jobs,3)

BC Alberta Prairies Ontario Quebec Atlantic Date

1 1752 1366 982 5239 3196 947 95.00000

2 1737 1369 981 5233 3205 946 95.08333

3 1765 1380 984 5212 3191 954 95.16667

> # . . .

> Jobs <- stack(jobs, select = 1:6)

> # stack() concatenates selected data frame columns into a

> # single column named "values", & adds a factor named "ind"

> # that has the names of the concatenated columns as levels.

> head(Jobs,3)

values ind

1 1752 BC

2 1737 BC

3 1765 BC

> # . . .

For a further example, see Exercise 19.
The unstack() function reverses the stacking operation. For example,

unstack(Jobs) (or more generally, unstack(Jobs, values ˜ ind))
recovers the original data frame.

1.4.3∗ Data frames and matrices

The numeric values in the data frame fossilfuel might alternatively be stored in a
matrix with the same dimensions, that is, 5 rows × 2 columns. The following enters these
same data as a matrix:

fossilfuelmat <- matrix(c(1800, 1850, 1900, 1950, 2000,

8, 54, 534, 1630, 6611), nrow=5)

colnames(fossilfuel) <- c("year", "carbon")
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Another possibility is the use of the function cbind() to combine two or more vectors
of the same length and type together into a matrix, thus:

fossilfuelmat <- cbind(year=c(1800, 1850, 1900, 1950, 2000),

carbon=c(8, 54, 534, 1630, 6611))

More generally, any data frame where all columns hold data that is all of the same
type, that is, all numeric or all character or all logical, can alternatively be stored as a
matrix. Storage of numeric data in matrix rather than data frame format can speed up some
mathematical and other manipulations when the number of elements is large, for example,
of the order of several hundreds of thousands. For further details, see Section 14.6.

Note that:

• Matrix elements are stored in column order in one long vector, that is, columns
are stacked one above the other, with the first column first. It is straightforward, as
explained in Section 14.6, to change between a matrix with m rows and n columns,
and a vector of length mn.

• The extraction of submatrices has the same syntax as for data frames. Thus
fossilfuelmat[2:3,] extracts rows 2 and 3 of the matrix fossilfuelmat.
(Be careful not to omit the comma, causing the matrix to be treated as one long vector.)

• The names() function returns NULL when the argument is a matrix. Note however
the functions rownames() and colnames(), which can be used either with data
frames or matrices.

1.5 Functions, operators and loops

Functions are integral to the use of the R language. User-written functions are used in
exactly the same way as built-in functions. Examples will appear from time to time
through the book. An incidental advantage of putting code into functions is that the
workspace is not then cluttered with objects that are local to the function.

1.5.1 Built-in functions

Common useful functions are:

all() # returns TRUE if all values are TRUE

any() # returns TRUE if any values are TRUE

args() # information on the arguments to a function

cat() # prints multiple objects, one after the other

cumprod() # cumulative product

cumsum() # cumulative sum

diff() # form vector of first differences

# N. B. diff(x) has one less element than x

history() # displays previous commands used

is.factor() # returns TRUE if the argument is a factor

is.na() # returns TRUE if the argument is an NA

# NB also is.logical(), is.matrix(), etc.

length() # number of elements in a vector or of a list
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ls() # list names of objects in the workspace

mean() # mean of the elements of a vector

median() # median of the elements of a vector

order() # x[order(x)] sorts x (by default, NAs are last)

print() # prints a single R object

range() # minimum and maximum value elements of vector

sort() # sort elements into order, by default omitting NAs

rev() # reverse the order of vector elements

str() # information on an R object

unique() # form the vector of distinct values

which() # locates ’TRUE’ indices of logical vectors

which.max() # locates (first) maximum of a numeric vector

which.min() # locates (first) minimum of a numeric vector

with() # do computation using columns of specified data frame

Calculations in parallel across all elements of a vector

Subsection 1.1.2 gave an example in which arithmetic was carried out in parallel across
all elements of a vector. Many of R’s functions likewise operate in parallel on all elements
of arrays, matrices and data frames.

The handling of missing values

By default, the functions mean(), sum(), median(), range(), and a number of
other such functions, return NA when applied to vectors in which one or more values is
NA. Note however the parameter setting na.rm=TRUE; that is, remove NAs, then proceed
with the calculation. For example:

> mean(c(1, NA, 3, 0, NA), na.rm=T)

[1] 1.3

When using a function for the first time, consult its help page for information on how it
handles missing values.

Data summary functions – table() and sapply()

Data summary functions that are useful in working with tables of counts are:

table() # Form a table of counts

xtabs() # Form a table of totals

A simple example of the use of table() is:

> library(DAAG) # tinting is from DAAG

> table(Sex=tinting$sex, AgeGroup=tinting$agegp)

AgeGroup
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Sex younger older

f 63 28

m 28 63

Note that, by default, table() ignores NAs.
For further details of table(), and for an example of the use of xtabs(), see

Subsection 2.2.1.
The function sapply() applies a nominated function to each column of a data frame,

or to each element of a list. The following demonstrates its use to give the range, for all
columns of the data frame jobs (DAAG):

> sapply(jobs[, -7], range)

BC Alberta Prairies Ontario Quebec Atlantic

[1,] 1737 1366 973 5212 3167 941

[2,] 1840 1436 999 5360 3257 968

The function with ()

The function with() is often a convenient alternative to attaching a data frame, exe-
cuting one or more lines of code, and detaching the data frame. Thus, an alternative to
table(tinting$sex, tinting$agegp) is:

> with(tinting, table(Sex=sex, AgeGroup=agegp))

AgeGroup

Sex younger older

f 63 28

m 28 63

For an example of the use of with() where there are several lines of code that make
reference to columns of the data frame, see footnote 2 in Chapter 8.

Utility functions

Type ls() (or objects()) to see the names of all objects in the workspace. One can
restrict the names to those with a defined pattern, for example, starting with the letter p.
(Type help(ls), help(grep) and help(glob2rx) for more details.2

By default, the function dir() lists the contents of the working directory. See Sub-
section 14.1.3 for further details on this and other utility functions.

1.5.2 Generic functions and the class of an object

The printing of a data frame requires steps that are different from those for the printing
of a vector of numbers. Yet, in R, the same print() function handles both tasks. In

2 ## More generally, note
ls(pattern="p") # List object names that include the letter "p"
ls(pattern="ˆp") # List object names that start with "p"
# The pattern-matching conventions are those used for grep(),
# which is modeled on the Unix grep command.
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order to make this possible, all objects in R have a class, which can be used to decide
how the printing should be handled.

The print() function does not itself attend to the printing. Instead, if print()
is called with a factor argument, print.factor() is used. For a data frame
print.data.frame() is used, and so on. Section 14.8 gives further details.
For objects (such as numeric vectors) that do not otherwise have a print method,
print.default() handles the printing.

For simple objects such as numbers and text strings, the class is determined informally.
More complex objects such as data frames carry a tag (an attribute) that specifies the
class. In either case, the function class() can be used to determine the class. See
Section 14.8 for further details.

1.5.3 User-written functions

Here is a function that returns the mean and standard deviation of a set of numbers:

meanANDsd <- function(x = rnorm(10)){

av <- mean(x)

sdev <- sd(x)

c(mean=av, SD=sdev)

}

Notice that we have given the function the default argument x = rnorm(10). This
makes it possible to run the function to see how it works, without specifying any data; thus:

> meanANDsd()

mean SD

0.6576272 0.8595572

Here then is the result of applying the function to a specific set of data. (The values that
are set equal to x are the values of distance in the data frame elasticband from
the DAAG package):

> meanANDsd(x = c(148,182,173,166,109,141,166))

mean SD

155.00 24.68

Note that the variables av and sdev are local to the function. They cannot be accessed
outside of the internal function environment.

The structure of functions

The function meanANDsd() has the following structure:

function name︷ ︸︸ ︷
meanANDsd <- function(

argument(s)︷ ︸︸ ︷
x=rnorm(10))

{
function

body
av <- mean(x)
sdev <- sd(x)
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return
value c(av = av, sd = sdev)

}

If the function body consists of just one statement that gives the return value, the curly
braces (� �) are unnecessary. The return value, which must be a single object, is given
by the final statement of the function body. In the example above, the return value was
the vector consisting of the two named elements mean and sdev. For returning several
objects that are of different types, join them into a list.3

1.5.4 Relational and logical operators and operations

In Subsection 1.3.3, we noted how the relational operator > can be used to create particular
subsets of a given vector. Other relational operators are <, <=, >=, ==, and !=. The latter
two operators test, respectively, for equality and inequality. For example, consider the
carbon and year columns of the data frame fossilfuel. To extract the carbon
emissions for the year 1900, type:

> attach(fossilfuel)

> carbon[year==1900]

[1] 534

For all years other than 1900, type:

> carbon[year!=1900]

[1] 8 54 1630 6611

For further information on relational operators consult help(Comparison),
help(Logic) and help(Syntax).

The R system also has the flow control capabilities of traditional programming lan-
guages, including if statements. The if function tests the truth of a given statement; if
the statement is true, the succeeding expression is evaluated. An else can be added to
provide an alternative expression to be evaluated in the case where the given statement
is false. For example, the following checks whether the mean for the carbon emissions
exceeds the median:

> if (mean(carbon) > median(carbon)) print("Mean > Median") else

print("Median <= Mean")

[1] "Mean > Median"

> detach(fossilfuel)

Here is another example:

> distance <- c(148, 182, 173, 166, 109, 141, 166)

> dist.sort <- if (distance[1] < 150)

+ sort(distance, decreasing=TRUE) else sort(distance)

> dist.sort

[1] 182 173 166 166 148 141 109

3 ## Thus, to return the mean, SD and name of the input vector
## replace c(mean=av, SD=sdev) by
list(mean=av, SD=sdev, dataset = deparse(substitute(x)))
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1.5.5 Selection and matching

A highly useful operator is %in%, used for testing set membership. For example:

> x <- rep(1:5, rep(3,5))

> x

[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

> x[x %in% c(2,4)]

[1] 2 2 2 4 4 4

We have picked out those elements of x that are either 2 or 4. To find which elements
of x are 2s, which 4s, and which are neither, use match(), thus:

> match(x, c(2,4), nomatch=0)

[1] 0 0 0 1 1 1 0 0 0 2 2 2 0 0 0

The nomatch argument specifies the symbol to be used for elements that do not match.
Specifying nomatch=0 is often preferable to the default, which is NA.

1.5.6 Functions for working with missing values

Recall the use of the function is.na(), discussed in Subsection 1.3.5, to identify NAs.
Testing for equality with NAs does not give useful information.

Identification of rows that include missing values

Many of the modeling functions will fail unless action is taken to handle missing values.
Two functions that are useful for handling missing values are complete.cases()
and na.omit(). The following code shows how we can identify rows that hold missing
values:

> ## Which rows have missing values: data frame science (DAAG)

> science[!complete.cases(science), ]

State PrivPub school class sex like Class

671 ACT public 19 1 <NA> 5 19.1

672 ACT public 19 1 <NA> 5 19.1

The function na.omit() omits any rows that contain missing values. For example:

> dim(science) # check dimensions (rows by columns)

[1] 1385 7

> Science <- na.omit(science)

> dim(Science)

[1] 1383 7

It should be noted that there may be better alternatives to omitting missing values. There
is an extensive discussion in Harrell (2001, pp. 43–51). Often, the preferred approach is
to estimate the values that are missing as part of any statistical analysis. It is important
to consider why values are missing – is the probability of finding a missing value
independent of the values of variables that appear in the analysis?
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1.5.7∗ Looping

A simple example of a for loop is:4

> for (i in 1:4) print(i)

[1] 1

[1] 2

[1] 3

[1] 4

Here is a way to estimate the increase in population for each of the Australian states and
territories between 1917 and 1997, relative to 1917:

## Relative population increase in Australian states: 1917-1997

## Data frame austpop (DAAG)

relGrowth <- numeric(8) # numeric(8) creates a numeric vector

# with 8 elements, all set equal to 0

for (j in seq(2,9)) {

relGrowth[j-1] <- (austpop[9, j]-austpop[1, j])/

austpop[1, j]}

names(relGrowth) <- names(austpop[c(-1,-10)])

# We have used names() to name the elements of relGrowth

The result is:

> relGrowth # Output is with options(digits=3)

NSW Vic Qld SA WA Tas NT ACT

2.30 2.27 3.98 2.36 4.88 1.46 36.40 102.33

Often, there is a better alternative to the use of a loop. See Subsection 14.3.3.

1.6 Graphics in R

Later chapters will make extensive use both of base graphics (using plot(), etc.) and of
the more stylized graphs provided by lattice graphics. This section is a brief introduction
to plot() and allied functions that are included in R’s base graphics. Section 1.7 is a
brief introduction to the more stylized graphical functions in the lattice package.

Base graphics are provided by the graphics package that is automatically attached
at startup. It includes the function plot() for creating scatterplots, and the functions
points(), lines(), text(), mtext() and axis() that add to existing plots.
There is a wide range of other functions. To see some of the possibilities that R offers,
enter:

demo(graphics)

Press the Enter key to move to each new graph.

4 Other looping constructs are
repeat <expression> # Place break somewhere inside
while (x > 0) <expression> # Or (x < 0), or etc.
Here <expression> is an R statement, or a sequence of statements that are enclosed within braces.
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1.6.1 The function plot( ) and allied functions

The basic command is:

plot(y ˜ x)

or:

plot(x, y)

where x and y must be the same length.

Adding points, lines, text and axis annotation

The data frame primates (DAAG) holds the following data:

Bodywt Brainwt

Potar monkey 10.0 115

Gorilla 207.0 406

Human 62.0 1320

Rhesus monkey 6.8 179

Chimp 52.2 440

The following plots Bodywt against Brainwt:

plot(Brainwt ˜ Bodywt, data=primates)

This plot can be improved by putting labels on the points, as in Figure 1.2:

## Place labels on points

attach(primates)

plot(Brainwt ˜ Bodywt, xlim=c(0, 300))

# Specify xlim so that there is room for the labels

text(Brainwt ˜ Bodywt, labels=row.names(primates), pos=4)

# pos=4 places text to the right of the points. Other

# possibilities are: 1: below; 2: to the left; 3: above

0 5 0 100 150 200 250 300

0
500

1000
1500

Body weight (kg)

Brain weight (g)
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Gorilla

Human
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Chimp

Figure 1.2 Brain weight versus body weight, for the primates data frame.
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Additionally, for Figure 1.2, the y-axis limits were extended slightly and small vertical
offsets were incorporated that raised the label Rhesus monkey, with a corresponding
lowering of the label Potar monkey.5

Use the points() function to add points to a plot. Use the lines() function to
add lines to a plot. Actually these functions are essentially the same, differing only in the
default argument for the parameter type. The default for points() is type = "p",
and that for lines() is type = "l". (Explicitly specifying type = "p" causes
either function to plot points, type = "l" gives lines.)

The function mtext(text, side, line,...) adds text in the margin of the
current plot. The sides are numbered 1 (it x-axis), 2 (it y-axis), 3 (top) and 4 (right vertical
axis). The axis() function gives fine control over axis ticks and labels. The setting
adj=0 positions the left extreme of the string at the left margin, adj=1 positions its
right extreme on the right margin, while the default setting of adj=0.5 centers the text
at the midpoint.

Fine control – parameter settings

The parameter pch controls the choice of plotting symbol. The parameter cex (“character
expansion”) controls the size of the plotting symbol, and col controls the color. These
parameters can be set when a function such as plot() or points() is called, in which
case they apply only to that function call. Plate 1 demonstrates some of the possibilities.
(Note that the function paste() turns the vector of numerical values 0:12 into a
vector of character strings with elements "0", "1",..., "12". An alternative to
paste(0:12) is as.character(0:12).)

The parameters xlim and ylim determine the limits in the x and y directions respec-
tively. Where xlim and/or ylim is not set explicitly, the range of data values determines
the limits. In any case, the axis is by default extended by 4% relative to those limits. The
setting pty="s" gives a square plot.

To change parameter settings more permanently, use the par() function. Thus,
we can increase the plot and character symbol size 20% above the default by us-
ing par(cex=1.2). Such settings revert to their defaults for any new device that
is opened. There are a number of parameters which can only be changed in this way
(including pty="s"), and some that cannot be changed in this way.

It is good practice to store the existing settings, so that they can be restored later. For
this, specify, for example:

oldpar <- par(cex=1.25) # Use par(oldpar) to restore

# previous settings

The size of the axis annotation can be controlled, independently of the setting of cex,
by specifying a value for cex.axis. Similarly, cex.labels may be used to control
the size of the axis labels.

5 plot(Brainwt ˜ Bodywt, xlim=c(0, 300), ylim=c(0,1500))
text(x=Bodywt, y=Brainwt+c(-.125,0,0,.125,0)*par()$cxy[2],

labels=row.names(primates), pos=4)
detach(primates)
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A number of figures in later chapters use par(mfrow=c(m,n)) to get an m by n
layout of graphs on a page. For example, the two by two layout of plots in Figure 2.1 of
Chapter 2 was obtained using par(mfrow=c(2,2)).

Type help(par) to get a list of parameter settings that are available with par().

1.6.2 The use of color

Try the following:

theta <- (1:50)*0.92

plot(theta, sin(theta), col=1:50, pch=16, cex=4)

points(theta, cos(theta), col=51:100, pch=15, cex=4)

palette() # Names of the colors in the current palette

Points are in the eight distinct colors of the default palette, one of which is “white.” These
are recycled as necessary.

The default palette is a small selection from the built-in colors. The function colors()
returns the 657 names of the built-in colors, some of them aliases for the same color.
The following repeats the plots above, but now using the first 100 of the 657 names for
built-in colors:

theta <- (1:50)*0.92

plot(theta, sin(theta), col=colors()[1:50], pch=16, cex=4)

points(theta, cos(theta), col=colors()[51:100], pch=15, cex=4)

Where data from a two-way layout are presented on the one panel, different symbols
can be used for the different levels of one of the classifying factors, with different colors
used for the different levels of the other classifying factor. Care may be required in the
choice of colors, so that the colors show with clarity the distinctions that are required,
and do not clash. There is further discussion of color palettes in Subsection 14.11.3.

1.6.3 The importance of aspect ratio

Attention to aspect ratio is often crucial for creating graphs that reveal important features
of the data. The following simple graphs highlight this point:

## Plot sin(theta) vs theta, at regularly spaced values of theta

## sin() expects angles to be in radians

# multiply angles in degrees by pi/180 to get radians

plot((0:20)*pi/10, sin((0:20)*pi/10))

plot((1:50)*0.92, sin((1:50)*0.92))

Readers might show the second of the graphs that now follows to their friends, asking
them to identify the pattern!

By holding with the left mouse button on the lower border until a double-sided arrow
appears and dragging upwards, the vertical dimension of the graph sheet can be shortened.
If sufficiently shortened, the pattern becomes obvious. The eye has difficulty in detecting
patterns of change where the angle of slope is close to the horizontal or close to the
vertical.
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Then try this:

par(mfrow=c(3,1)) # Gives a 3 by 1 layout of plots

plot((1:50)*0.92, sin((1:50)*0.92))

par(mfrow=c(1,1))

See Section 2.1 for further examples.

1.6.4 Dimensions and other settings for graphics devices

The shape of the graph sheet can be set when a new graphics page is started. On
Microsoft Windows systems, the function windows() starts a new graphics page on
the screen display. On Unix X11 systems, specify x11(). On recent implementations
for Macintosh OS X, use quartz(). These functions take arguments height (in
inches), width (in inches) and pointsize (there are 72.27 to an inch). The setting of
pointsize, with a default that varies between devices, determines character heights.6

See help(Devices) for a full list of the devices, including hard copy devices, that
are available on the particular system that is in use.

1.6.5 The plotting of expressions and mathematical symbols

Both text() and mtext() allow replacement of the character string by a mathematical
expression. In base graphics, character strings can be replaced, whenever they appear
in graphics commands, by expressions. For this purpose an expression is more general
than an algebraic expression. Thus, the following code gives a simplified version of
Figure 1.3:

symbols(0, 0, circles=0.95, bg="gray", xlim=c(-1,2.25), ylim=c

(-1,1), inches=FALSE) # inches=FALSE: radius is in x-axis units

text(1.75, 0, expression("Area" == pi*phantom("’")*italic(r)ˆ2))

# Use ’==’ to insert ’=’.

# Notice the use of phantom("’") to insert a small space.

Bydefault,symbols(), likeplot(), starts anewgraphics frame.Seehelp(symbols)
for details of the symbols, other than circles, for which there is provision.7

Type help(plotmath) to get details of available forms of expression. Run
demo(plotmath) to see some of the possibilities for plotting mathematical sym-
bols. There are further brief details in Section 14.11. Figures 3.1, 5.4, 10.7 and 14.2 will
demonstrate the use of expressions in annotation and/or labeling.

6 On Microsoft Windows systems, it is the relative sizes of these parameters that primarily matter for screen display or
for incorporation into Word and similar programs. Once pasted (from the clipboard) or imported into Word, graphs can
be enlarged or shrunk by pointing at one corner, holding down the left mouse button, and pulling.

7 ## To add the double-headed arrow and associated label, specify:
arrows(0, 0, -0.95, 0, length=.1, code=3) # code=3: arrows at both ends
# length is the length of the arrow head (in inches!)

text(-0.45, -strheight("R"), expression(italic(r) == 0.95))
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Area = π r 2
r

Figure 1.3 The function symbols() was used to plot the circle. The annotation to the right of
the circle used text(), with an expression supplied as the labels argument.

1.6.6 Identification and location on the figure region

Two functions are available for this purpose. Draw the graph first, then call whichever
of these functions is required:

• identify() labels points;
• locator() prints out the co-ordinates of points.

In either case, the user positions the cursor at the location for which co-ordinates are
required, and clicks the left mouse button. Depending on the platform, the identification or
labeling of points may be terminated by pointing outside of the graphics area and clicking,
or by clicking with a button other than the first. If continued, the process will terminate
after some default number n of points, which the user can set. (For identify() the
default setting is the number of data points, while for locator() the default is 500.)

As an example, identify two of the plotted points on the primates scatterplot:

attach(primates)

plot(Bodywt, Brainwt)

identify(Bodywt, Brainwt, labels=row.names(primates), n=2)

# Now click near 2 plotted points

detach(primates)

1.6.7 Plot methods for objects other than vectors

We have seen how to plot a numeric vector y against a numeric vector x. The plot function
is a generic function that also has special methods for “plotting” various different classes
of object. For example, plot() accepts a data frame as argument. Try:

## Use plot() with data frame trees (datasets)

plot(trees) # Gives a 3 x 3 layout of pairwise

# scatterplots among the three variables

This has the same effect as the function call pairs(trees).
The scatterplot matrix is a primary tool for the display of multivariate data. In Chap-

ter 6 it will be used extensively, starting in Subsection 6.1.3, for scrutiny of regres-
sion data. It will be an important tool, also, in the account of multivariate methods in
Chapter 12.
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1.6.8 Lattice graphics versus base graphics – xyplot() versus plot()

A Brainwt versus Bodywt scatterplot for the primates data, such as was given
earlier, might alternatively have been obtained using the function xyplot() from the
lattice package. The following are pretty much equivalent:

## Plot Brainwt vs Bodywt, data frame primates (DAAG)

plot(Brainwt ˜ Bodywt, data=primates) # base graphics

# ’base’ graphics use the abilities of the graphics package

library(lattice)

xyplot(Brainwt ˜ Bodywt, data=primates) # lattice

The function xyplot(), and other functions in the lattice package, are commonly
used to give row by column layouts of panels, in which the different panels are for
different subsets of the data. Additionally, points can be distinguished, within panels,
according to some further partitioning of the data. Section 1.7 will give further details,
and there will be extensive use of lattice functions in Chapter 2.

1.6.9 Further information on graphics

More detailed information on R’s graphics abilities will be given in later chapters. Several
further graphics functions will be introduced in Section 2.1. Note especially hist() and
boxplot(). See also Murrell (2005); Sarkar (2002).

In addition to the discussion of lattice graphics in Section 1.7, note the more detailed
information in Section 14.11 (on base graphics) and in Section 14.12 (on detailed control
of lattice graphics parameters). Section 14.11 has brief notes on the relatively specialist
abilities of the grid package, on which lattice is built.

1.6.10 Good and bad graphs

There is a difference!
Draw graphs so that they are unlikely to mislead. Ensure that they focus the eye on

features that are important, and avoid distracting features. Lines that are intended to attract
attention can be thickened.

In scatterplots, the intention is typically to draw attention to the points. If there are not
too many of them, the use of heavy black dots or other filled symbols will focus attention
on the points, rather than on a fitted line or curve or on the axes. If they are numerous and
there is substantial overlap, it then makes better sense to use open symbols. Where there
is extensive overlap, ink will fill that region more densely. If there is so much overlap
that the use of black symbols would merge most points into a dense black mass, use of
a shade of gray may be helpful.8

Where the horizontal scale is continuous, patterns of change that are important to
identify should bank at an angle of roughly 45� above or below the horizontal. Depending
on the context, angles in the approximate range 20� to 70� may be satisfactory, and the

8 ## Example of plotting with different shades of gray
plot(1:4, 1:4, pch=16, col=c("gray20","gray40","gray60","gray80"), cex=3)
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aspect ratio should be chosen accordingly. (This was the point of the sine curve example
in Subsection 1.6.3.) See Cleveland (1994) for further commentary.

Colors, or gray scales, can often be used to distinguish groupings in the data. Bear in
mind that the eye has difficulty in focusing simultaneously on widely separated colors
that are close together on the same graph.

1.7 Lattice (trellis) graphics

Many of the simpler types of analysis that this book will describe focus on the com-
parison of different groups within the data. Because functions in the lattice package
make it easy to provide graphs that allow ready comparison between such groupings they
are, often, almost indispensable in allowing a visual assessment that complements the
analysis. The relatively automatic manner in which lattice functions give many types of
highly structured graph has a cost – changes to the basic layout and structure may be
complicated.

Figure 1.4 is a simple example that demonstrates the possibilities of the function
xyplot() from the lattice package. Different symbols are used for males and females,
while different panels are used for different categories of athlete. The code used for
Figure 1.4 will be given and explained shortly.

Lattice graphics allows the use of the layout on the page, the choice of plotting symbols
and colors of symbols, and the layout with panels, to represent important aspects of data
structure.

Panels of scatterplots – the use of xyplot()

The function xyplot() is one of an extensive list of functions, with similar syntax and
conventions. Figure 1.4 demonstrates its use. Data in the data frame ais give various
measurements on 202 elite Australian athletes who trained at the Australian Institute of
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Figure 1.4 Height (ht) versus Weight (wt), for two categories of athlete. The different plotting
symbols distinguish males from females.
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Sport. In Figure 1.4, attention was limited to athletes from rowing and swimming. The
two panels distinguish the two sports, while different shades distinguish females from
males:

trellis.device(color=FALSE)

here <- ais$sport %in% c("Row","Swim")

xyplot(ht ˜ wt | sport, groups=sex, pch=c(4,1), aspect=1,

auto.key=list(columns=2), subset=here, data=ais)

dev.off() # Close device

trellis.device() # Start new device, by default with color=TRUE

In the graphics formula, the vertical bar indicates that what follows, in this case
sport, is a conditioning variable or factor, that is, the graphical information is broken
down according to its levels. The parameter aspect controls the ratio of dimensions in
the y and x directions.

If the output device has the setting color=FALSE, the default is to use different
symbols, rather than different shades or different colors, for the different groups.
To generate different colors for the different groups, use color=TRUE. The setting
auto.key=list(columns=2) generates a simple key, with the two key items side
by side in two columns rather than one under another in a single column as happens with
the default setting columns=1.

Selected lattice functions

dotplot(factor ˜ numeric,..) # 1-dim. Display

stripplot(factor ˜ numeric,..) # 1-dim. Display

barchart(character ˜ numeric,..)

histogram( ˜ numeric,..)

densityplot( ˜ numeric,..) # Density plot

bwplot(factor ˜ numeric,..) # Box and whisker plot

qqmath(factor ˜ numeric,..) # normal probability plots

splom( ˜ dataframe,..) # Scatterplot matrix

parallel( ˜ dataframe,..) # Parallel coordinate plots

cloud(numeric ˜ numeric * numeric, ...) # 3D surface

wireframe(numeric ˜ numeric * numeric, ...) # 3D scatterplot

In each instance, users can add conditioning variables.
Further points to note about the lattice package are:

• Because the lattice package implements the trellis style of graphics, several of the
functions that control stylistic features (color, plot characters, line type, etc.) have
trellis (where lattice might have seemed more natural) as part of their name.

• Lattice graphics functions cannot be mixed (or not easily) with the graphics func-
tions discussed earlier in Section 1.6. It is not possible to use points(), lines(),
text(), etc., to add features to a plot that has been created using a lattice graph-
ics function. Instead, it is necessary to use functions that are special to lattice –
lpoints(), llines(), ltext(), larrows() and lsegments().
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Inclusion of lattice graphics functions in user functions

The function xyplot() does not itself print the graph. Instead, it returns an object of
class trellis which, if the statement is typed on the command line, is then “printed”
by the function print.trellis(). Thus, typing:

xyplot(ht ˜ wt | sport, data=ais)

on the command line is equivalent to:

print(xyplot(ht ˜ wt | sport, data=ais))

In a function, unless the lattice command appears as the final statement of the function,
the print statement must be explicit, that is:

print(xyplot(ht ˜ wt | sport, data=ais))

or equivalently:

ais.trellis <- xyplot(ht ˜ wt | sport, data=ais)

print(ais.trellis)

Interaction with lattice plots

Subsection 14.12.1 describes, briefly, possibilities for interacting with lattice plots.

1.8 Additional points on the use of R

*Workspace management strategies

The working directory is the directory in which R will by default look for files, and save
files. The workspace is the collection of R objects that are listed upon typing ls() or
objects(). Objects that the user creates are by default stored in the user’s workspace.
The default choice of working directory, usually an R installation directory, is not a good
choice for long-term use, and should be changed.

In a long session in a working directory, cautious users will from time to time save
the current workspace image as a backup, perhaps first using rm() to remove objects
that are no longer required. The command save.image()) will save everything in the
workspace, by default into a file with the name .RData in the working directory. This
can alternatively be done by clicking on the relevant menu item, where such a menu is
available.

The working directory can be changed and a new workspace loaded in the course of a
session, either using the menu system, if available, or using command line instructions.
See Subsection 14.1.2.

It is good practice to use a separate working directory for each different project. The
ability to keep multiple image files in the one directory adds further flexibility. Use either
.RData or .rda as the extension for such files.
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Forward slashes and backslashes

Note that R follows the Unix conventions and uses forward slashes internally, where
Windows expects backslashes. Thus to read in the file fuel.txt that is in the directory:
c:\data, type

fossilfuel <- read.table("c:/data/fuel.txt")

An alternative is to use two backslashes in place of each forward slash.

Setting the number of decimal places in output

Often, calculations will, by default, give more decimal places of output than are useful.
In the output that we give, we often reduce the number of decimal places below what R
gives by default. The options() function can be used to make a global change to the
number of significant digits that are printed. For example:

> sqrt(10)

[1] 3.162278

> options(digits=2) # Change until further notice,

# or until end of session.

> sqrt(10)

[1] 3.2

Note that options(digits=2) expresses a wish, which R will not always obey!
Rounding will sometimes introduce small inconsistencies. For example, in Section 4.4,

with results rounded to two decimal places:√
372
12

= 5�57

√
2×

√
372
12

= 7�88�

Note however that
√

2×5�57 = 7�87.

Other option settings

Type help(options) to get further details. We will meet another impor-
tant option setting in Chapter 5. (The output that we present uses the setting
options(show.signif.stars=FALSE), where the default is TRUE. This affects
output in Chapter 5 and later chapters.)

Cosmetic issues

In our R code, we write, for example, a <- b rather than a<-b, and y ∼ x rather
than y∼x. This is intended to help readability, perhaps a small step on the way to literate
programming. Such presentation details can make a large difference when others use
the code.
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Where output is obtained with the simple use of print() or summary(), we have
in general included this as the first statement in the output.

∗Common sources of difficulty

Here we draw attention, with references to relevant later sections, to common sources of
difficulty. We list these items here so that readers have a point of reference when it is
needed.

• In the use of read.table() for the entry of data that have a rectangular lay-
out, it is important to tune the parameter settings to the input data set. See
help(read.table) and Subsection 14.2.1 for further details.

• Where read.table() complains that lines do not all have the same number of
elements (fields), use read.table() with the parameter setting fill=TRUE. Then
display and carefully check the input data frame. Blank fields will be implicitly
added, as needed to ensure that all records have an equal number of fields. Note also
the function count.fields(), which counts the number of fields that the input
function is able to identify in each record. Be aware that the default parameter settings
of read.table() differ somewhat from the settings used by count.fields().

• Character vectors that are included as columns in data frames become, by default,
factors. There are implications for the use of read.table(). See Subsection 14.2.1
and Section 14.4.

• Factors can often be treated as vectors of character strings, with values given by the
factor levels. In any particular context, check carefully to determine whether it is the
integer values or the levels that are used. See Section 14.4.

• The handling of missing values is a common source of difficulty. Refer to Section 14.5.
• The syntax fossilfuel[, 2] extracts the second column from the data

frame fossilfuel, yielding a numeric vector. Observe however that
fossilfuel[2, ] yields a data frame, rather than the numeric vector that the
user may require. Specify unlist(fossilfuel[2, ])to obtain the vector of nu-
meric values in the second row of the data frame. See Subsection 14.7.1. For another
instance (use of sapply()) where the difference between a numeric data frame and
a numeric matrix is important, see Subsection 141.

• It is inadvisable to assign new values to a data frame while it is attached. Assignment
to the data frame by name creates a new local copy, and later references that explicitly
use the name of the data frame will be to that local copy. Where the name of a column
appears on the right-hand side of an assignment, values will, unless an object of that
name has been created in the workspace, be taken from the original data frame. There
is obvious potential for confusion and erroneous calculations.

• Data objects that individually or in combination occupy a large part of the available
computer memory can slow down all memory-intensive computations. See further
Subsection 14.1.2 for comment on associated workspace management issues. See also
the opening comments in Section 14.6. Note that most of the data objects that are used
for our examples are small and thus will not, except where memory is very small,
make much individual contribution to demands on memory.
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Variable names in data sets

We will refer to a number of different data sets, many of them data frames in our DAAG
package. When we first introduce the data set, we will give both a general description of
the columns of values that we will use, and the names used in the data frame. In later
discussion, we will use the name that appears in the data frame whenever the reference
is to the particular values that appear in the column.

1.9 Recap

• One use of R is as a calculator, to evaluate arithmetic expressions. Calculations can
be carried out in parallel, across all elements of a vector at once.

• Use q() to quit from R. If newly created objects are to be retained, save the workspace
upon quitting.

• Useful help functions are help() (for getting information on a known function),
help.search() (for searching for a word that is used in the header for the help
file), apropos() (for identifying functions that include a particular character string
as part of their names) and help.start (for starting a browser window that gives
access to a variety of help information).

• The function c() (concatenate) joins vector elements together into vectors. It may be
used for logical and character vectors, as well as for numeric vectors.

• For simple forms of scatterplot, note the plot() function. There is a wide range of
plotting abilities, beyond those offered by plot().

• Important R data structures are vectors, lists and data frames. Vectors may be of mode
numeric, or logical, or character. Factors have mode “numeric” and class “factor.”

• Data frames group vectors, which must all have the same length, together as columns
of a single R object that is a list of vectors. The different columns of a data frame may
be any mix of logical, numeric, character, or factor. This is one of several differences
from matrices, where all elements must have the same vector mode.

• Missing values may require special care.
• read.table() is the primary function for inputting rectangular files.
• The attach() function can be used to give access to the columns of a data frame,

without the need to name the data frame whenever a column is accessed.
• The search path determines the order of search for objects that are accessed from the

command line, or that are not found in the environment of a function that accesses them.
• The R system has a wide range of generic functions, including print(), plot()

and summary(). For such functions, the result depends on the class of object that is
given as argument.

• Factors, used for categorical data, are fundamental to the use of many of the R modeling
functions. Ordered factors are appropriate for use with ordered categorical data.

• Option settings, which users can change at their discretion, control such matters as
the number of significant digits that will be displayed in output.

1.10 Further reading

An important reference is the R Development Core Team’s Introduction to R. This
document, which is regularly updated, is included with the R distributions. It is
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available from the CRAN sites as an independent document. (For a list of sites, go
to http://cran.r-project.org.) Books that include an introduction to R include
Dalgaard (2002), Fox (2002).

At a more advanced level note Venables and Ripley (2002), which covers both S-PLUS
and R. This will be an important reference throughout this book.

See also documents, including Maindonald (2001), that are listed under Contributed
Documentation on the CRAN sites. For a careful detailed account of the R and S
languages, see Venables and Ripley (2000).

Books and papers that set out principles of good graphics include Cleveland (1993,
1994), Tufte (1997), Wainer (1997), Wilkinson and Task Force on Statistical Inference
(1999). See also the imaginative uses of R’s graphical abilities that are demonstrated in
Murrell (2005). Maindonald (1992) comments very briefly on graphical design.

1.10.1 References for further reading

Cleveland, W. S. 1993. Visualizing Data. Hobart Press.
Cleveland, W. S. 1994. The Elements of Graphing Data, revised edn. Hobart Press.
Dalgaard, P. 2002. Introductory Statistics with R. Springer-Verlag.
Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Sage Books.
Maindonald, J. H. 1992. Statistical design, analysis and presentation issues. New Zealand

Journal of Agricultural Research 35: 121–41.
Maindonald, J. H. 2004. Using R for Data Analysis and Graphics. Available as a pdf file

at http://wwwmaths.anu.edu.au/johnm/r/usingR.pdf
Murrell, P. 2005. R Graphics. Chapman and Hall/CRC. http://www.stat.
auckland.ac.nz/paul/RGraphics/rgraphics.html

R Development Core Team. An Introduction to R. This document is available from CRAN
sites. For a list, go to http://cran.r-project.org

Tufte, E. R. 1997. Visual Explanations. Graphics Press.
Venables, W. N. and Ripley, B. D. 2000. S Programming. Springer-Verlag.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.

Springer-Verlag. See also “R” Complements to Modern Applied Statistics with S-
PLUS, available from http://www.stats.ox.ac.uk/pub/MASS4/

Wainer, H. 1997. Visual Revelations. Springer-Verlag.
Wilkinson, L. and Task Force on Statistical Inference. 1999. Statistical methods in psy-

chology journals: guidelines and explanation. American Psychologist 54: 594–604.

1.11 Exercises

1. The following table gives the size of the floor area (ha) and the price ($A000), for 15 houses
sold in the Canberra (Australia) suburb of Aranda in 1999.

area sale.price

1 694 192.0

2 905 215.0

3 802 215.0

4 1366 274.0

5 716 112.7
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6 963 185.0

7 821 212.0

8 714 220.0

9 1018 276.0

10 887 260.0

11 790 221.5

12 696 255.0

13 771 260.0

14 1006 293.0

15 1191 375.0

Type these data into a data frame with column names area and sale.price.

(a) Plot sale.price versus area.
(b) Use the hist() command to plot a histogram of the sale prices.
(c) Repeat (a) and (b) after taking logarithms of sale prices.
(d) The two histograms emphasize different parts of the range of sale prices. Describe the

differences.

2. The orings data frame gives data on the damage that had occurred in US space shuttle
launches prior to the disastrous Challenger launch of January 28, 1986. The observations in
rows 1, 2, 4, 11, 13, and 18 were included in the pre-launch charts used in deciding whether
to proceed with the launch, while remaining rows were omitted.

Create a new data frame by extracting these rows from orings, and plot Total incidents
against Temperature for this new data frame. Obtain a similar plot for the full data set.

3. For the data frame possum (DAAG package):

(a) Use the function str() to get information on each of the columns.
(b) Using the function complete.cases(), determine the rows in which one or more

values is missing. Print those rows. In which columns do the missing values appear?

4. For the data frame ais (DAAG package):

(a) Use the function str() to get information on each of the columns. Determine whether
any of the columns hold missing values.

(b) Make a table, that shows the numbers of males and females for each different sport. In
which sports is there a large imbalance (e.g. by a factor of more than 2:1) in the numbers
of the two sexes?

5. Create a table that gives, for each species represented in the data frame rainforest, the
number of values of branch that are NAs, and the total number of cases.
[Hint: Use either !is.na() or complete.cases() to identify NAs.]

6. Create a data frame called Manitoba.lakes that contains the lake’s elevation (in
meters above sea level) and area (in square kilometers) as listed below. Assign the names
of the lakes using the row.names() function.

elevation area

Winnipeg 217 24387

Winnipegosis 254 5374

Manitoba 248 4624

SouthernIndian 254 2247

Cedar 253 1353
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Island 227 1223

Gods 178 1151

Cross 207 755

Playgreen 217 657

Plot lake area against elevation, identifying each point by the name of the lake. Because of
the outlying value of area, use of a logarithmic scale is advantageous.

(a) Use the following code to plot log2(area) versus elevation, adding labeling
information:
attach(Manitoba.lakes)

plot(log2(area) ˜ elevation, pch=16, xlim=c(170,280))

# NB: Doubling the area increases log2(area) by 1.0

text(log2(area) ˜ elevation,

labels=row.names(Manitoba.lakes), pos=4)

text(log2(area) ˜ elevation, labels=area, pos=2)

title("Manitoba’s Largest Lakes")

detach(Manitoba.lakes)

Devise captions that explain the labeling on the points and on the y-axis. It will be
necessary to explain how distances on the scale relate to changes in area.

(b) Repeat the plot and associated labeling, now plotting area versus elevation, but
specifying log="y" in order to obtain a logarithmic y-scale. [NB: The log="y" setting
is automatic, , after its initial use with plot(), for the subsequent use of text().]

7. Look up the help for the R function dotchart(). Use this function to display the areas of
the Manitoba lakes (a) on a linear scale, and (b) on a logarithmic scale. Add, in each case,
suitable labeling information.

8. Using the sum() function, obtain a lower bound for the area of Manitoba covered by water.

9. The second argument of the rep() function can be modified to give different patterns. For
example, to get four 2s, then three 3s, then two 5s, enter:
rep(c(2,3,5), c(4,3,2))

(a) What is the output from the following command?
rep(c(2,3,5), 4:2)

(b) Obtain a vector of four 4s, four 3s and four 2s.
(c) The argument length.out can be used to create a vector whose length is

length.out. Use this argument to create a vector of length 50 that repeats, as many
times as necessary, the sequence: 3 1 1 5 7

(d) The argument each can be used to form a vector in which each element in the first
argument is replaced by the specified number of repeats of itself. Use this to create a
vector in which each of 3 1 1 5 7 is replaced by four repeats of itself. Show, also,
how this can be done without use of the argument each.

10. The ˆ symbol denotes exponentiation. Consider the following.
1000*((1+0.075)ˆ5 - 1) # Interest on $1000, compounded

# annually at 7.5% p.a. for five years

(a) Evaluate the above expression.
(b) Modify the expression to determine the amount of interest paid if the rate is 3.5% p.a.
(c) Explain the result obtained when the exponent 5 is changed to seq(1, 10).
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11. Run the following code:
gender <- factor(c(rep("female", 91), rep("male", 92)))

table(gender)

gender <- factor(gender, levels=c("male", "female"))

table(gender)

gender <- factor(gender, levels=c("Male", "female"))

# Note the mistake

# The level was "male", not "Male"

table(gender)

rm(gender) # Remove gender

Explain the output from the final table(gender).

12. Write a function that calculates the proportion of values in a vector x that exceed some value
cutoff.

(a) Use the sequence of numbers 1, 2, � � � , 100 to check that this function gives the result
that is expected.

(b) Obtain the vector ex01.36 from the Devore5 package. These data give the times
required for individuals to escape from an oil platform during a drill. Use dotplot()
to show the distribution of times. Calculate the proportion of escape times that exceed 7
minutes.

13. The following gives plots of four different transformations of the Animals data from the
MASS package. What are the different aspects of the data that these different graphs emphasize?
Consider the effect on low values of the variables, as contrasted with the effect on high values.
par(mfrow=c(2,2)) # 2 by 2 layout on the page

library(MASS) # Animals is in the MASS package

attach(Animals)

plot(body, brain)

plot(sqrt(body), sqrt(brain))

plot((body)ˆ0.1, (brain)ˆ0.1)

plot(log(body), log(brain))

detach(Animals)

par(mfrow=c(1,1)) # Restore to 1 figure per page

14. Using the data frame cottonworkers (DAAG package), use the function abbreviate()
to obtain six-character abbreviations for the row names. Plot survey1889 against
census1889, and plot avwage*survey1889 against avwage*census1889, in each
case using the six-letter abbreviations as labels for the points. How should each of
these graphs be interpreted? [Hint: Be sure to specify I(avwage*survey1889) and
I(avwage*census1889) when plotting the second of these graphs.]

15. The data frame socsupport (DAAG) has data from a survey on social and other kinds of
support, for a group of university students. It includes scores on the Beck depression inventory
(BDI) measure of depression. The following are two alternative plots of BDI against age.
plot(BDI ˜ age, data=socsupport)

plot(BDI ˜ unclass(age), data=socsupport)

For examination of cases where the score seems very high, which plot is more useful? Explain.
Why is it necessary to be cautious in making anything of the plots for students in the three
oldest age categories (25-30, 31-40, 40+)?
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16. Functions that can be useful for creating labels for points on graphs are abbreviate()

which can be used to take just the first few characters of names, and paste() which can
be used to make composite labels. A composite label might, for the data from the data frame
socsupport of Exercise 15, give information about gender, country and row number.
Try the following:
attach(socsupport)

gender1 <- abbreviate(gender, 1)

table(gender1) # Examine the result

country3 <- abbreviate(country, 3)

table(country3) # Examine the result

Now use the following to create a label that can be used with text() or with identify():
num <- seq(along=gender) # Generate row numbers

lab <- paste(gender1, country3, num, sep=":")

Use identify() to place labels on all the points that the boxplots have identified as
“outliers.” When this exercise is complete, be sure to type:
detach(socsupport)

17. Given a vector x, the following demonstrates alternative ways to create a vector of numbers
from 1 through n, where n is the length of the vector.
x <- c(8, 54, 534, 1630, 6611)

seq(1, length(x))

seq(along=x)

Now set x <- NULL and repeat each of the calculations seq(1, length(x)) and
seq(along=x). Which version of the calculation should be used if the preference is to
return a vector of length 0 in the event that the argument that is supplied happens to be NULL.

18. The Rabbit data frame in the MASS library contains blood pressure change measurements on
five rabbits (labeled as R1, R2, …, R5) under various control and treatment conditions. Read
the help file for more information. Use the unstack() function (three times) to convert
Rabbit to the following form:

Treatment Dose R1 R2 R3 R4 R5

1 Control 6.25 0.50 1.00 0.75 1.25 1.5

2 Control 12.50 4.50 1.25 3.00 1.50 1.5

3 Control 25.00 10.00 4.00 3.00 6.00 5.0

4 Control 50.00 26.00 12.00 14.00 19.00 16.0

5 Control 100.00 37.00 27.00 22.00 33.00 20.0

6 Control 200.00 32.00 29.00 24.00 33.00 18.0

7 MDL 6.25 1.25 1.40 0.75 2.60 2.4

8 MDL 12.50 0.75 1.70 2.30 1.20 2.5

9 MDL 25.00 4.00 1.00 3.00 2.00 1.5

10 MDL 50.00 9.00 2.00 5.00 3.00 2.0

11 MDL 100.00 25.00 15.00 26.00 11.00 9.0

12 MDL 200.00 37.00 28.00 25.00 22.00 19.0

19. The data frame vlt (DAAG) consists of observations taken on a video lottery terminal during
a two-day period. Eight different objects can appear in each of three windows. Here, they
are coded from 0 through 7. Different combinations of the objects give prizes (although with
small probability). The first four rows are:
> head(vlt, 4) # first few rows of vlt

window1 window2 window3 prize night
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1 2 0 0 0 1

2 0 5 1 0 1

3 0 0 0 0 1

4 2 0 0 0 1

> # . . .

Use stack() to convert the first three columns of this data set to a case-by-variable format,
then creating a tabular summary of the results, broken down by window.
vltcv <- stack(vlt[, 1:3])

head(vltcv) # first few rows of vltcv

table(vltcv$values, vltcv$ind)

# More cryptically, table(vltcv) gives the same result.

Does any window stand out as different?

20. Convert the data in iris3 (datasets package) to case-by-variable format, with column names
“Sepal.Length,” “Sepal.Width,” “Petal.Length,” “Petal.Width” and “Species.”

21.∗ The following code uses the for() looping function to plot graphs that compare the relative
population growth (here, by the use of a logarithmic scale) for the Australian states and
territories.
oldpar <- par(mfrow=c(2,4))

for (i in 2:9){

plot(austpop[, 1], log(austpop[, i]), xlab="Year",

ylab=names(austpop)[i], pch=16, ylim=c(0,10))}

par(oldpar)

Find a way to do this without looping. [Hint: Use the function sapply(), with
austpop[,2:9] as the first argument.]
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Styles of data analysis

When a researcher has a new set of data to analyze, what is the best way to begin? What
forms of data exploration will draw attention to obvious errors or quirks in the data, or
to obvious clues that the data contain? What are the checks that will make it plausible
that the data really will support an intended formal analysis? What mix of exploratory
analysis and formal analysis is appropriate? What attention should be paid to analyses
that other researchers have done with similar data?

In the ensuing discussion, we note the importance of graphical presentation and fore-
shadow a view of statistics that emphasizes the role of models. We emphasize the impor-
tance of looking for patterns and relationships. Numerical summaries, such as an average,
can be very useful, but important features of the data may be missed without a glance at an
appropriate graph. The best modern statistical software makes a strong connection between
data analysis and graphics, combining the computer’s ability to crunch numbers and
present graphs with the ability of a trained human eye to detect pattern. Often, careful con-
sideration is needed, to choose a graph that will be effective for the purpose that is in hand.

We will see in Chapter 3 that an integral part of statistical analysis is the development
of a model that accurately describes the data, aids in understanding what the data say,
and makes prediction possible. Without model assumptions, there cannot be a meaningful
formal analysis! As assumptions are strengthened, the chances of getting clear results
improve. The price for stronger assumptions is that, if they are wrong, then results may
be wrong. Graphical techniques have been developed for checking, to the extent possible,
many of the assumptions that must be made in practice.

Preliminary scrutiny of the data can readily degenerate into data snooping, so that the
form of the analysis is unduly attuned to features of the data that may reflect statistical
sampling variation. Under torture, the data readily yield false confessions. It is important
to maintain checks on the unbridled use of imaginative insight. To what extent, then, is
it legitimate to allow the data to influence the choice of the model that will be used for
the formal analysis?

2.1 Revealing views of the data

Exploratory Data Analysis (EDA) is a name for a collection of data display techniques that
are intended to let the data speak for themselves, prior to or as part of a formal analysis.
Competent statisticians have always used graphs to check their data; EDA formalizes and
extends this practice. The name EDA is due to John W. Tukey, who had a huge influence
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on data analysis practices; see for example (Hoaglin, 2003). EDA uses whatever help it
can get from statistical theory, so that displays are helpful and interpretable.

Even if a data set has not been collected in a way that makes it suitable for formal
statistical analysis, exploratory data analysis techniques can often be used to glean clues
from it. However, it is unwise, as too often happens, to rely on this possibility!

An effective EDA display presents data in a way that will make effective use of the
human brain’s abilities as a pattern recognition device. It looks for what may be apparent
from a direct, careful and (as far as possible) assumption-free examination of the data. It
has at least four roles:

• EDA may suggest ideas and understandings that had not previously been contemplated.
This use of EDA fits well with the view of science as inductive reasoning.

• EDA results may challenge the theoretical understanding that guided the initial collec-
tion of the data. EDA then acquires a more revolutionary role. It becomes the catalyst,
in the language of Thomas Kuhn, for a paradigm shift.

• EDA allows the data to criticize an intended analysis and facilitates checks on
assumptions. Subsequent formal analysis can then proceed with greater confidence.

• EDA techniques may reveal additional information, not directly related to the research
question. They may, for example, suggest fruitful new lines of research.

In the next several subsections, we describe the histogram and density plot, the stem-
and-leaf diagram, the boxplot, the scatterplot, the lowess smoother and the trellis style
graphics that are available in the lattice package. The lattice functions greatly extend the
available styles and layouts.

2.1.1 Views of a single sample

Histograms and density plots

The histogram is a basic (and over-used) EDA tool for displaying the frequency dis-
tribution of a set of data. The area of each rectangle of a histogram is proportional
to the number of observations whose values lie within the width of the rectangle.
A mound-shaped histogram may make it plausible that the data follow a normal dis-
tribution (the “bell curve”). In small samples, however, the shape can be highly irregular.
In addition, the appearance can depend on the choice of breakpoints, which is a further
reason for caution in interpreting the shape. It is often helpful to try more than one set of
breakpoints.

The data set possum (DAAG package) has nine morphometric measurements on each
of 104 mountain brushtail possums, trapped at seven sites from southern Victoria to
central Queensland (data relate to Lindenmayer et al., 1995). Attention will be limited to
the measurements for 43 females, placing them in a subset data frame that will be called
fossum. The following code creates this subset data frame:

library(DAAG) # Ensure that the DAAG package is attached

## Form the subset of possum that holds data on females only

fossum <- subset(possum, sex=="f")
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Figure 2.1 The histograms in panels A and B show the same data, but with a different choice of
breakpoints. In panels C and D, density plots are overlaid on the histograms from panels A and B,
respectively.

Panels A and B of Figure 2.1 exhibit histogram plots of the frequency distribution of
the total lengths of the female possums.1

attach(fossum)

hist(totlngth, breaks = 72.5 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length (cm)", main ="A: Breaks at 72.5, 77.5, ...")

hist(totlngth, breaks = 75 + (0:5) * 5, ylim = c(0, 22),

xlab="Total length (cm)", main="B: Breaks at 75, 80, ...")

The only difference in the construction of the two plots is the choice of breakpoints, but
one plot suggests that the distribution is asymmetric (skewed to the left), while the other
suggests symmetry.

A histogram is a crude form of a density estimate. A better alternative is, often, a
smooth density estimate, as in Figures 2.1C and 2.1D. Whereas the width of histogram
bars must be chosen somewhat subjectively, density estimates require the choice of a
bandwidth parameter that controls the amount of smoothing. In both cases, the software
has default choices that can work reasonably well.

dens <- density(totlngth) # Assumes fossum is still attached

xlim <- range(dens$x); ylim <- range(dens$y)

hist(totlngth, breaks = 72.5 + (0:5) * 5, probability = T,

xlim = xlim, ylim = ylim, xlab="Total length (cm)", main=" ")

lines(dens)

hist(totlngth, breaks = 75 + (0:5) * 5, probability = T,

xlim = xlim, ylim = ylim, xlab="Total length (cm)", main= " ")

lines(dens)

par(mfrow=c(1,1)); detach(fossum)

The height of the density curve at any point is an estimate of the proportion of sample
values per unit interval, locally at that point. Observe that in Figures 2.1A and 2.1C,

1 ## To get a 1 by 4 layout, precede with
par (mfrow = c (1,4))
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the cell of the histogram between the breakpoints (87.5, 92.5] has a frequency of 22. As
the total frequency is 43, and the width of the cell is 5, this corresponds to a density
of 22

43×5 = 0�102, which is just a little smaller than the height of the density curve at its
highest point or mode.

Much of the methodology in this book assumes that the data follow a normal distri-
bution (the “bell curve”), discussed in the next chapter. Density curves are preferable to
histograms for drawing attention to particular forms of non-normality, such as that asso-
ciated with strong skewness in the distribution, but are still not an adequate tool. A more
effective way of checking for normality – the normal probability plot – is described in
Subsection 28. Density curves are useful for estimating the population mode, that is, the
value that occurs most frequently.

Where data values have sharp lower and/or upper cutoff limits, use the parameters
from and to to specify those limits. For example, a failure time distribution may have
a mode close to zero, with a sharp cutoff at zero.

The stem-and-leaf display

The stem-and-leaf display is a fine-grained alternative to a histogram, for use in displaying
a single column of numbers. Here is a simple form of stem-and-leaf plot, for the heights
of the 37 rowers in the ais data set:

> stem(ais$ht[ais$sport=="Row"])

The decimal point is 1 digit(s) to the right of the |

15 | 6

16 |

16 | 5

17 | 4

17 | 5678899

18 | 00000011223

18 | 55666668899

19 | 123

19 | 58

The numbers that are displayed are, in order of magnitude, 156, 165, 174, � � � (the data
have been rounded to the nearest centimeter). The display has broken these down as
150 + 6, 160 + 5, 170 + 4, � � � The column of numbers on the left of the vertical bars
(15, 16, � � �) comprises the stem; these are the tens of centimeters parts of the numbers.
The leaf part for that number (6, 5, 4, � � �) is what remains after removing the stem; these
are printed, in order, to the right of the relevant vertical bar.

As there are 37 data values, the median or middle value is the 19th. (There are 18
values that are as small as or smaller than the 19th largest, and 18 values that are as
large or larger.) If one counts leaves, starting at the top and working down, the 19th
leaf corresponds to a stem value of 18, with a leaf entry of 2. Thus the median (or 50th
percentile) is 182. The first and third quartiles (the 25th and 75th percentiles) can be
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recovered in a similar way. The values for the lower and upper quartiles depend on the
details of the formula used for their calculation. For present purposes the first quartile can
be taken as the tenth largest value (= 179), while the third quartile is the 28th largest value
(= 186), or the tenth value when starting at the largest and counting down. (The number
10 is obtained by averaging the ranks 1 and 19, while 28 is the average of 19 and 39.)2

Lattice style density plots

The following density plot (Figure 2.2) compares the ear conch measurements of male
and female possums, for each of the two “populations” of possums:

## Density plot for earconch: data frame possum (DAAG package)

library(lattice)

densityplot(˜ earconch | Pop, groups=sex, data=possum,

auto.key=list(columns=2), aspect=1)

Boxplots

Like the histogram, the boxplot is a coarse summary. It allows a trained eye to com-
prehend at a glance specific important features of the data. Figure 2.3 shows a box-
plot of total lengths of females in the possum data set, with annotation added that
explains the interpretation of boxplot features. Code that gives the boxplot, without the
annotation, is:

## Base graphics boxplot function

boxplot(fossum$totlngth, horiz=TRUE)

## Alternative: lattice graphics bwplot function

bwplot(˜totlngth, data=fossum)

earconch

Density

40 45 50 55

0.00

0.05

0.10

0.15
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0.25
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40 45 50 55

other

f m

Figure 2.2 Density plot that compares the ear conch measurements of male and female possums,
for each of the two “populations” of possums.

2 ## Use quantile() to obtain the quartiles of ht: data frame ais (DAAG package)
quantile(ais$ht[ais$sport=="Row"], prob=c(.25,.5,.75))
# For the 50th percentile (the 2nd quartile), an alternative is median()
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Figure 2.3 Boxplot, with annotation that explains boxplot features.

Notice that one point lies outside the “whiskers” and is thus flagged as a possible
outlier. An outlier is a point that, in some sense, lies away from the main body of the
data. In identifying points that are flagged as possible outliers, the normal distribution
(to be discussed in Subsection 3.2.2) is taken as the standard. Using the default crite-
rion one point in 100 will on average, for data from a normal distribution, be flagged
as a possible outlier. Thus, in a boxplot display of 1000 values that are drawn at ran-
dom from a normal distribution, around 10 will be plotted out beyond the boxplot
whiskers and thus flagged as possible outliers. Subsection 2.1.7 has further comment on
outliers.

These ideas should become clearer when the normal and other distributions are dis-
cussed in Chapter 3.

2.1.2 Patterns in univariate time series

The data presented in Figure 2.4 includes both what is nowadays called measles and
the closely related rubella or German measles.3 Both measles (from DAAG) and
londonpop (data as in the footnote) are time series objects. Panel A uses a logarithmic
vertical scale. Panel B uses an unlogged scale and takes advantage of the fact that deaths
from measles are of the order, in any year, of one thousandth of the population. Thus
deaths in thousands and population in millions can be shown on the same scale. The plots
of the measles time series are obtained using:

## Panel A; For plotting of population numbers, see the footnote

plot(log10(measles), xlab="", ylim=log10 (c(1,5000*1000)),

ylab=" Deaths; Population (log scale)", yaxt="n")

ytiks <- c(1, 10, 100, 1000, 1000000, 5000000)

axis(2, at=log10(ytiks), labels=paste(ytiks), las=2)

## Panel B; for plotting of population numbers, see the footnote

Plot (window(measles, start=1840, end=1882), ylim=c (0, 4600), yaxt="n")

axis(2, at=(0:4)* 1000, labels=paste(0:4), las=2)

3 For details of the data, and commentary, see Guy (1882); Stocks (1942); Senn (2003). (Guy’s interest was in the
comparison with smallpox mortality.) The population estimates are from Mitchell (1988).
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Figure 2.4 The two panels provide different insights into data on mortality from measles, in
London over 1629–1939. The top panel shows the numbers of deaths from measles in London for
the period from 1629 through 1939 (black curve) and London population (black dots). A log scale
has been used (see Subsection 2.1.3 for details). The bottom panel shows the subset of the measles
data for the period 1840 through 1882 on the linear scale (black curve), together with the London
population (in thousands, black dots).

The function plot() recognizes that measles is a time series object, and calls the
plot method plot.ts() that is used for time series. For details, see help(plot.ts).
Notice the use, for panel B, of the function window() that extracts a subseries. Fuller
details of the code for these plots is in the footnote.4

Panel A shows broad trends over time, but is of no use for identifying changes on the
time-scale of a year or two. In panel B, the lines that show such changes are, mostly, at
an angle that is in the approximate range of 20� to 70� from the horizontal. A sawtooth

4 ## Panel A: Plot full measles time series (DAAG)
par(fig=c(0, 1, .38, 1)) # 38% to 100% of height of figure region
plot(log(measles,10), xlab="", ylim=c(0,log(5000*1000, 10)),

ylab=" Deaths & Population (log scale)", yaxt="n")
ytiks <-c (1, 10, 100, 1000, 1000000, 5000000)
axis(2, at=log10(ytiks), labels=paste (ytiks), las=2)
## London population in thousands
londonpop <- ts(c(1088,1258,1504,1778,2073,2491,2921,3336,3881,4266,

4563,4541,4498,4408), start=1801, end=1931, deltat=10)
points(log(londonpop*1000,10), pch=16, cex=.5)
mtext(side=3, line=0.5, "A (1629-1939)", adj=0)
## Panel B: window from 1840 to 1882
par(fig=c(0, 1, 0, .38), new=TRUE) # 0% to 38% of height of figure region
plot(window(measles, start=1840, end=1882), xlab="Year", yaxt="n",

ylim=c(0,4600), ylab="Deaths - measles")
points(londonpop, pch=16, cex=0.5)
axis(2, at=(0:4)*1000, cex=0.75)
mtext(side=3, line=0.5, "B (1841-1881)", adj=0)
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pattern, by which years in which there are many deaths are commonly followed by years
in which there are fewer deaths, is thus clearly evident. (To obtain this level of detail for
the whole period from 1629 until 1939, multiple panels would be necessary.)

2.1.3 Patterns in bivariate data

The examination of pattern and relationship is a central theme of science. Pattern and
relationship are core themes of statistics. The scatterplot is a simple but important tool
for the examination of pairwise relationships. Some graphs are helpful. Some are not. We
will illustrate with specific examples.

The data presented in Figure 2.5 were from a tasting session where each of 17 panelists
assessed the sweetness of each of two milk samples, one with four units of additive,
and the other with one unit of additive. The line y = x has been added. Short bars at
right angles to the axis show, for each axis, the distribution of data values along that
axis of the plot. The collection of such bars, for any one axis, has the name rug. The
code is:

## Plot four vs one: data frame milk (DAAG)

xyrange <- range(milk)

plot(four ˜ one, data = milk, xlim = xyrange, ylim = xyrange,

pch = 16, pty="s") # pty="s": square plotting region

rug(milk$one) # Rug plot on x-axis

rug(milk$four, side = 2) # Rug plot on y-axis

abline(0, 1)

The setting side=1, i.e. the x-axis, is the default.
There is a positive correlation between assessments for the two samples; if one was

rated as sweet, by and large so was the other. The line y = x assists in comparing the
two samples. Most panelists (13 out of 17) rated the sample with four units of additive
as sweeter than the sample with one unit of additive.

2 3 4 5 6 7
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4
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7

one

four

Figure 2.5 Each of 17 panelists compared two milk samples for sweetness. One of the samples
had one unit of additive, while the other had four units of additive.
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Figure 2.6 Electrical resistance versus apparent juice content. Panel B repeats panel A, but with
a smooth curve fitted to the data.

The fitting of a smooth trend curve

The data that are plotted in Figure 2.6 are from a study that examined how the electrical
resistance of a slab of kiwifruit changed with the apparent juice content. It can be useful to
make a comparison with a curve provided by a data-smoothing routine that is not restricted
to using a particular mathematical form of curve, as in panel B of Figure 2.6. The curve
in panel B, obtained using the lowess method that is discussed further in Subsection 7.5.3,
estimates the relationship between electrical resistance and apparent juice content.

The fitted smooth curve shows a form of response that is clearly inconsistent with a
straight line. The code is:

## Plot ohms vs juice: data frame fruitohms (DAAG)

plot(ohms ˜ juice, xlab="Apparent juice content (%)",

ylab="Resistance (ohms)", data=fruitohms)

## Add a smooth curve, as in Panel B

lines(lowess(fruitohms$juice, fruitohms$ohms), lwd=2)

# With lwd=2, the curve is twice the default thickness

The curve suggests that there is an approximate linear relationship for juice content up to
somewhat over 35%. At that point the curve becomes a horizontal line, and there is no
further change in resistance after the juice content reaches around 45%.

A smooth trend curve that has been superimposed on a scatterplot can be a useful aid
to interpretation. When the data appear to scatter about a simple mathematical curve, the
curve-fitting methods that we discuss in later chapters can be used to obtain a “best fit”
or regression line or curve to pass through the points.

What is the appropriate scale?

Figures 2.7A and 2.7B plot brain weight (g) against body weight (kg), for a number of
different animals:

## The following omits the labeling information

oldpar <- par(mfrow = c(1,2), pty="s")
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## Plot brain vs body: data frame Animals (MASS package)

library(MASS)

plot(brain ˜ body, data=Animals)

plot(log(brain) ˜ log(body), data=Animals)

par(oldpar)

Figure 2.7A is almost useless. The axes should be transformed so that the data are spread
out more evenly. Here, we can do this by choosing a logarithmic scale. Multiplication by
the same factor (e.g., for the tick marks in Figure 2.7B, by a factor of 10) always gives
the same distance along the scale. If we marked points 1, 5, 25, 125, … along the vertical
axis, they would also lie an equal distance apart.

A logarithmic scale is appropriate for scaling quantities that change in a multiplicative
manner. For example, if cells in a growing organism divide and produce new cells at a
constant rate, then the total number of cells changes in a multiplicative manner, resulting
in so-called exponential growth. Growth in the bodily measurements of organisms may
similarly be multiplicative, with large organisms increasing in some time interval by
the same approximate fraction as smaller organisms. Random changes in the relative
growth rate will produce adult organisms whose size (e.g., height) is, on the logarithmic
scale, approximately normally distributed. The reason for this is that the growth rate on
a natural logarithmic scale (loge) equals the relative growth rate. Derivation of this result
is a straightforward use of the differential calculus.

The logarithmic transformation is so commonly needed that it has seemed necessary to
introduce it at this point. Biologists, economists and others should become comfortable
working with it. As noted, there are many circumstances in which it makes good sense to
work on a logarithmic scale, that is, to use a logarithmic transformation. There is a brief
discussion of other transformations in Chapter 5.

2.1.4 Patterns in grouped data

Example: eggs of cuckoos

Strip plots and boxplots allow convenient side-by-side comparisons of different groups,
as in the cuckoo egg data that are plotted, using two different types of plot, in Figure 2.8.
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Figure 2.7 Brain weight versus body weight, for 27 animals that vary greatly in size.
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Figure 2.8 Strip plot (panel A) and boxplot (panel B) displays of cuckoo egg lengths. Data, from
Latter (1902), are reproduced in summarized form in Tippett (1931).

Cuckoos lay eggs in the nests of other birds. The eggs are then unwittingly adopted
and hatched by the host birds. In Figure 2.8 the egg lengths are grouped by the species of
the host bird, using both a strip plot display (panel A) and boxplot summaries (panel B).
The main part of the code used for these plots is:

## Compare stripplot() with bwplot(), both from lattice package

stripplot(species ˜ length, xlab="Length of egg (mm)", data=cuckoos)

bwplot(species ˜ length, xlab="Length of egg (mm)", data=cuckoos)

Observe that species, which is the factor that identifies the side-by-side groups, appears
on the left of the graphics formula species ˜ length. Fuller details of the code are
in the footnote.5

5 ## For tidier labels replace ".", in several of the species names, by a space
specnam <- sub(pattern="\\.", replacement=" ", x=levels(cuckoos$species))
# In a ‘regular expression’, "." must be specified as "\\."
levels(cuckoos$species) <- specnam
## Panel A: Strip plot: data frame cuckoos (DAAG)
plt1 <- stripplot(species ˜ length, xlab="Length of egg (mm)", data=cuckoos)
print(plt1, position=c(0, 0.5, 1, 1)) # xmin, ymin, xmax, ymax
# Use print() to display lattice graphics objects
## Panel B: Box plot
plt2 <- bwplot(species ˜ length, xlab="Length of egg (mm)", data=cuckoos)
print(plt2, newpage=FALSE, position=c(0, 0, 1, 0.5))
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Eggs planted in wrens’ nests appear clearly smaller than eggs planted in other birds’
nests. Apart from several outlying egg lengths in the meadow pipit nests, the length
variability within each host species’ nest is fairly uniform.

2.1.5* Multiple variables and times

Overlaying plots of several time series (sequences of measurements taken at regular
intervals) might seem appropriate for making direct comparisons. However, this approach
will only work if the scales are similar for the different series.

As an example, consider the number of workers (in thousands) in the Canadian labor
force broken down by region (BC, Alberta, Prairies, Ontario, Quebec, Atlantic) for the
24-month period from January, 1995 to December, 1996 (a time when Canada was
emerging from a deep economic recession). Data are in the data frame jobs. Columns
1–6 of the data frame have the respective numbers for the six different regions. Here are
the ranges of values in its columns:

> ## Apply function range to columns of data frame jobs (DAAG)

> sapply(jobs, range)

BC Alberta Prairies Ontario Quebec Atlantic Date

[1,] 1737 1366 973 5212 3167 941 95.00000

[2,] 1840 1436 999 5360 3257 968 96.91667

In order to see where the economy was taking off most rapidly, it is tempting to plot all
of the series on the same graph. In order that similar changes on the scale will correspond
to similar proportional changes, a logarithmic scale is used in Figure 2.9A:6

## First create a multivariate time series

jobts <- ts(jobs[,1:6], start=1995, frequency=12)

## Simplified plot; all series in a single panel; use log scale

plot(jobts, plot.type="single", xlim=c(1995,1997.2), lty=1:5,

xlab="", log="y", ylab="Number of Jobs")

## Plot labels following the final value for each series

ylast <- window(jobts, 1996+11/12)

# Note the use of window() to extract a row from the series.

text(rep(1996+11/12,6), ylast, colnames(ylast), pos=4)

Because the labor forces in the various regions do not have similar sizes, it is impossible
to discern any differences among the regions from this plot. Plotting on the logarithmic
scale did not remedy this problem. It is necessary to use different slices of the logarithmic
scale for the different plots.

6 ## Code for Figure 2.9A
jobts <- ts(jobs[,1:6], start=1995, frequency=12)
plot(jobts, plot.type="single", xlim=c(1995,1997.2), lty=1:6, log="y",

xaxt="n", xlab="", ylab="Number of Jobs")
## Move label positions so that labels do not overlap
ylast <- bounce(window(jobts, 1996+11/12), d=strheight("O"), log=TRUE)
text(rep(1996+11/12,6), ylast, colnames(ylast), pos=4)
datlab <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="3 month", length=8), "%b%Y")
axis(1, at=seq(from=1995, by=0.25, length=8), datlab)
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Figure 2.9 Panel A shows numbers in the labor force (thousands) for various regions of Canada,
all on the same logarithmic scale. Panel B shows the same data as in panel A, but now with separate
logarithmic scales on which the same percentage increase, e.g., by 1%, corresponds to the same
distance on the scale, for all plots.

Figure 2.9B shows a much preferable alternative, now using xyplot(). The six
different panels use different slices of the same logarithmic scale. Labeling is done on the
untransformed (Number) scale, with values on the logarithmic scale given in brackets:

## Code for Figure 2.9B

## Stack labor force numbers into one column: data frame jobs (DAAG)

Jobs <- stack(jobs, select = 1:6) # Column 1 first, then 2, ...

# The stack() function was discussed in Chapter 1

Jobs$Year <- rep(jobs[, 7], 6)

names(Jobs) <- c("Number", "Province", "Year")

xyplot(log(Number) ˜ Year | Province, data = Jobs, type = "l",

layout=c(2,3), scales = list(y=list(relation="sliced")))

# The parameter setting relation="sliced" causes the length of

# the relevant scale(s) (slice(s)) to be the same for all panels.

Equal distances on the scale now correspond to equal relative changes. To see how the key
was created, see Subsection 14.3.4. Alternatively, see the code for Figure 2.9B, available
from the web page for this book.
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It is now clear that Alberta and BC experienced the most rapid job growth during the
period, and that there was little or no job growth in Quebec and the Atlantic region.7

*Small proportional changes, on a scale of natural logarithms

Notice that the distance between tick marks is, on the logarithmic scale, always 0.02.
Because the scale is that of natural logarithms or loge x this corresponds, to a close
approximation, to a 2% change. On this scale, with small values of � (e.g., ��� < 0�1):

log�y�1+ ��� � log�y�+ ��

Because natural logarithms have been used, and the relative change between the lower
and upper vertical axis limits is in each case small, less than 10%, the differences between
values on the vertical scale can be interpreted as relative or percentage changes. Thus
the distance of 0.02 between tick marks on the vertical scale implies an increase of 0.02,
or 2%.

2.1.6 Scatterplots, broken down by multiple factors

Data, in the data frame tinting (DAAG), are from an experiment that aimed to model
the effects of the tinting of car windows on visual performance (data relate to Burns et al.,
1999). The authors were mainly interested in effects on side window vision, and hence
in visual recognition tasks that would be performed when looking through side windows.

The columns are:

• Variables csoa (critical stimulus onset asynchrony, i.e., the time in milliseconds
required to recognize an alphanumeric target), it (inspection time, i.e., the time
required for a simple discrimination task) and age (age to the nearest year).

• The ordered factor tint (levels no, lo, hi).
• Factors target (locon, i.e., low contrast, hicon, i.e., high contrast), sex

(f = female, m = male) and agegp (younger = a younger participant, in the 20s;
older = an older participant, in the 70s).

Each of 28 individuals was tested at each level of tint, for each of the two levels of
target.

There are four factors (tint, target, sex and agegp) that might influence the
values of csoa and it, and the relationship between them. Two of these factors (tint
and target) take different values for the same individual, while the other two (sex and
agegp) vary between individuals. It is thus a challenge to find effective ways to display
these data.

A first step might be to plot csoa against it for each combination of sex and
agegp. Use of the argument groups=target results in the use of different symbols

7 ## Another possibility, with number of tick positions (˜100)
## on the logarithmic scale chosen after some experimentation
ylabpos <- pretty(log(Jobs$Number), 100)
ylabels <- paste(round(exp(ylabpos)),"\n(", ylabpos, ")", sep="")
xyplot(log(Number) ˜ Year | Province, data = Jobs, type = "l", layout=c(2,3),

scales = list(y =list(relation="sliced", at=ylabpos, labels=ylabels)))
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(in a black and white plot) or different colors, depending on whether the target is low
contrast or high contrast. Also we can ask for a key. The code becomes:

xyplot(csoa ˜ it | sex*agegp, data=tinting, groups=target,

auto.key=list(columns=2))

There are further possibilities for refinement. Figure 2.10A has used parameter settings
that specify the choice of colors (here gray or black), plotting symbols and the placement
of the key.8

Observe that the longest times are for the high level of tinting. The relationship between
csoa and it seems much the same for both levels of contrast. There are long response
times for some of the older males that occur, as might have been expected, with the low
contrast target. The analysis that will be presented later, in Chapter 10, indicates that
within-subject effects – the effect of tint and target – stand up with greater clarity
against the statistical noise than do effects from sex and agegp. The reason is that
tint and target are effects that can be assessed within subjects, whereas the effects
of sex and agegp involve a comparison across different subjects. Because there are
six points for each subject, Figure 2.10A gives a visual impression that exaggerates the
evidence for effects that are associated with sex and agegp.

Figure 2.10 Panel A plots of csoa against it, for each combination of sex and agegp.
Different colors (gray and black) and symbols show different levels of target. Panel B shows
the same points, but different colors (printed in grayscale) now show different levels of tint.
Notice, also, the addition of smooth curves. For color version, see plate 2.

8 ## Settings used for Figure 2.10B (suitable for grayscale on a printed page)
xyplot(csoa ˜ it|sex*agegp, data=tinting, groups=target,

par.settings=list(background=list(col="transparent"),
superpose.symbol=list(col=c("black","gray20"),

pch=c(1, 16))),
auto.key=list(columns=2, text=levels(tinting$target), points=TRUE))

# In the above, par.settings changed settings for this use of xyplot()
# Setting background color to "transparent" gives a "white" background
## Use trellis.par.set() to change settings while the current device is in use
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Fitting a trend curve, as in Figure 2.10B, makes the relationship clearer. The code for
including the smooth curve, without the other refinements of Figure 2.10B, is:9

xyplot(csoa ˜ it|sex*agegp, groups=tint, data=tinting,

type=c("p","smooth"), span=1.25, auto.key=list(columns=3))

# "p": points; "smooth": a smooth curve

# With span=1.25, the smooth curve is close to a straight line

2.1.7 What to look for in plots

This has not been a complete account of what plots may reveal! Its purpose has been to
draw attention to some of the more obvious possibilities.

Outliers

Outliers are points that appear to be isolated from the main body of the data. Such points
(whether errors or genuine values) are liable to distort any model that we fit. What appears
as an outlier depends, inevitably, on the view that is presented. On a fairly simple level,
the view is affected by whether or not, and on how, the data are transformed.

Boxplots, and the normal probability plot that will be discussed in Subsection 28, are
useful for highlighting outliers in one dimension. Scatterplots may highlight outliers in
two dimensions. Some outliers will be apparent only in three or more dimensions. The
presence of outliers can indicate departure from model assumptions.

Asymmetry of the distribution

Most asymmetric distributions can be characterized as either positively skewed or nega-
tively skewed. Positive skewness is the commonest form of asymmetry. There is a long
tail to the right, values near the minimum are bunched up together, and the largest val-
ues are widely dispersed. Provided that all values are greater than zero, a logarithmic
transformation typically makes such a distribution more symmetric. A distribution that
is skew cannot be normal. Severe skewness is typically a more serious problem for the
validity of results than other types of non-normality.

If values of a variable that takes positive values range by a factor of more than 10:1
then, depending on the application area context, positive skewness is to be expected.
A logarithmic transformation should be considered.

9 ## Panel B, with refinements
xyplot(csoa ˜ it|sex*agegp, groups=tint, data=tinting,

type=c("p","smooth"), span=0.8,
par.settings=
list(superpose.symbol=list(col=c("skyblue1", "skyblue4")[c(2,1,2)],

pch=c(1,16,16)), # open, filled, filled
superpose.line=list(col=c("skyblue1", "skyblue4")[c(2,1,2)],

lwd=c(1,1,2)),
background=list(col="transparent")),

auto.key=list(columns=3, points=TRUE, lines=TRUE))
# A large value for span gives a smoother curve
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Changes in variability

Boxplots and histograms readily convey an impression of the amount of variability or
scatter in the data. Side-by-side boxplots, such as in Figure 2.8B, or strip charts such as
in Figure 2.8A are particularly useful for comparing variability across different samples
or treatment groups. Many statistical models depend on the assumption that variability
is constant across treatment groups. (Note however that it is easy to over-interpret such
plots. The variability in a sample, typically measured by the variance, is itself highly
variable under repeated sampling. Statistical theory offers useful and necessary warnings
about the potential for such over-interpretation.)

When variability increases as data values increase, the logarithmic transformation will
often help. If the variability is constant on a logarithmic scale, then the relative variation
on the original scale is constant. (Measures of variability will be discussed in Subsection
2.2.3.)

Clustering

Clusters in scatterplots may suggest structure in the data that may or may not have been
expected. When we proceed to a formal analysis, this structure must be taken into account.
Do the clusters correspond to different values of some relevant variable? Outliers are a
special form of clustering.

Non-linearity

We should not fit a linear model to data where relationships are demonstrably non-linear.
Often it is possible to transform variables so that terms enter into the model in a manner
that is closer to linear. If not, the possibilities are endless, and we will cover only a small
number of them. See especially Chapter 7.

If there is a theory that suggests the form of model, then this is a good starting point.
Available theory may, however, incorporate various approximations, and the data may
tell a story that does not altogether match the available theory. The data, unless they are
flawed, have the final say!

2.2 Data summary

Data summaries may: (1) be of interest in themselves; (2) give insight into aspects of
data structure that may affect further analysis; (3) be used as data for further analysis. In
case (3), it is necessary to ensure that important information, relevant to the analysis, is
not lost. If no information is lost, the gain in simplicity of analysis can make the use of
summary data highly worthwhile.



60 Styles of data analysis

It is important, when data are summarized, not to introduce distortions that are artefacts
of the way that the data have been summarized – examples will be given. The question of
whether information in the data may have been lost or obscured has especial importance
for the summarizing of counts across the margins of multi-way tables, and for the use of
the correlation coefficient.

2.2.1 Counts

Data in the data frame nsw74psid1 (DAAG package) are derived from a study (Lalonde,
1986) in which there were two groups of individuals with a history of unemployment
problems – one a control group and the other a “treatment” group whose members were
exposed to a labor training program. Are the two groups genuinely comparable? This can
be tested by comparing them with respect to various measures other than their exposure
(or not) to the labor training program. Data are in the data frame nsw74psid1 (DAAG
package).

Thus, what are the relative numbers in each of the two groups who had completed high
school (nodeg = 0), as opposed to those who had not (nodeg = 1)?

> ## Table of counts example: data frame nsw74psid1 (DAAG)

> attach(nsw74psid1)

> trtgp <- factor(trt, labels=c("none", "training"))

> educgp <- factor(nodeg, labels=c("completed", "dropout"))

> table(trtgp, educgp)

educgp

trtgp completed dropout

none 1730 760

training 54 131

The labels argument in the function factor() has been used to associate the numeric
codes 0 and 1 with meaningful level names.

The training group has a much higher proportion of dropouts. Similar comparisons are
required for other factors and variables, examining joint as well as individual comparisons.
These data will be investigated further in Section 13.2.

A check such as the following is highly recommended when using table():

> ## Check for NAs, which table() will have ignored:

> sum(is.na(trtgp) | is.na(educgp))

[1] 0

> ## A potentially more informative alternative is:

> ## table(is.na(trtgp), is.na(educgp))

> detach(nsw74psid1)

If x1, x2 � � � , xn are all vectors of the same length and each is supplied as an argument
to table(), the result is an n-way table. For example, table(x1, x2, x3) gives
a three-way table. The first argument defines rows, though it is printed horizontally if
there is just one column. The second argument defines columns. The table slices (rows by
columns) that correspond to different values of the third argument appear in succession
down the page, and so on.
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Table 2.1 Outcomes for two different types of surgery for kidney stones. The
overall success rates (78% for open surgery as opposed to 83% for ultrasound)
favor ultrasound. Comparison of the success rates for each size of stone separately
favors, in each case, open surgery.

Small (<2cm) Large (>=2cm) Total

open ultrasound open ultrasound open ultrasound

yes 81 234 yes 192 55 yes 273 289
no 6 36 no 71 25 no 77 61

Success rate 93% 87% 73% 69% 78% 83%

Addition over one or more margins of a table

Data in Table 2.1, shown visually in Figure 2.11, illustrate the possible hazards of adding
a multi-way table over one of its margins. Data are from a study (Charig, 1986) that
compared outcomes for two different types of surgery for kidney stones; A: open, which
used open surgery, and B: ultrasound, which used a small incision, with the stone
destroyed by ultrasound.

stones <- array(c(81,6,234,36,192,71,55,25), dim=c(2,2,2),

dimnames=list(Sucess=c("yes","no"),

Method=c("open","ultrasound"),

Size=c("<2cm", ">=2cm")))

mosaicplot(stones, sort=3:1)

# Re-ordering the margins gives a more interpretable plot.

Size

Method

<2cm >=2cm

open
ultra

sou
nd

yes no yes no

Figure 2.11 A mosaic plot for the kidney stone surgery data. The overall rate is, for open surgery,
biased toward the open surgery outcome for large stones, while for ultrasound it is biased toward
the outcome for small stones.
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Without additional information, the results are impossible to interpret. Different surgeons
will have preferred different surgery types, and the prior condition of patients will have
affected the choice of surgery type. The consequences of unsuccessful surgery may have
been less serious for ultrasound than for open surgery.

Cross-tabulation – the xtabs() function

Here is a more complicated example that, again, demonstrates the hazards of summa-
rizing tabular or other data across factors that affect the frequencies of the margins that
are retained. The multi-way table UCBAdmissions (datasets package) has admission
frequencies, by sex, for the six largest departments at the University of California at
Berkeley in 1973. Do the data provide evidence, across the university as a whole, of
sex-based discrimination? (The data are discussed in Bickel et al., 1975.) We encourage
the reader to examine and interpret a mosiac plot representation of the data.

For use of xtabs(), it is first necessary to turn the table into a data frame:

> ## From table UCBAdmissions, create data frame UCB.df

> UCB.df <- as.data.frame(UCBAdmissions)

> UCB.df

Admit Gender Dept Freq

1 Admitted Male A 512

2 Rejected Male A 313

3 Admitted Female A 89

4 Rejected Female A 19

5 Admitted Male B 353

....

Note: The result just obtained (a data frame with one column for each dimension of the
table, plus a column of frequencies) depends crucially on giving a table, rather than a
matrix or array, as the argument to as.data.frame().10

The function xtabs() takes as arguments a model formula in which the terms on the
right are the classifying factors, and an optional data frame where the terms (factors) can
be found. Totals are calculated for the variable on the left of the model formula:

> xtabs(Freq ˜ Admit + Gender, data=UCB.df)

Gender

Admit Male Female

Admitted 1198 557

Rejected 1493 1278

Admission rates will now be calculated, first for individual departments and then based
on the total frequencies over all six departments.

> ## First, determine overall admission rates

> tabAll <- xtabs(Freq ˜ Admit + Gender, data=UCB.df)

10 ## The following turns the 3-way array stones (created above) into a data
## frame with one column for each margin, plus a column of frequencies:
stones.df <- as.data.frame(as.table(stones)) # First, turn into a table
stones.df <- as.data.frame.table(stones) # Alternative
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> tabAll[1,]/(tabAll[1,]+tabAll[2,])

Male Female

0.445 0.304

> ## Create a table whose first dimension is ’Admit’

> tabDept <- xtabs(Freq ˜ Admit + Gender + Dept, data=UCB.df)

> ## With dimension 2 (’Gender’) and dimension 3 (’Dept’) as

> ## margins, find the proportion in level 1, as a fraction

> ## of the total over both levels of dimension 1:

> tabDept[1,,]/(tabDept[1,,] + tabDept[2,,])

Dept

Gender A B C D E F

Male 0.621 0.63 0.369 0.331 0.277 0.0590

Female 0.824 0.68 0.341 0.349 0.239 0.0704

. . . .

> tabDept[1,,] + tabDept[2,,] # Calculate totals

Dept

Gender A B C D E F

Male 825 560 325 417 191 373

Female 108 25 593 375 393 341

. . . .

The correct picture is that, as a fraction of those who applied, females were strongly
favored in department A, and males somewhat favored in departments C and E. The very
high number of males applying to departments A and B biased the male rates towards the
relatively high admission rates in that department, while the relatively high number of
females applying to departments C, D and F biased the overall female rates towards the
low admission rates in those departments. The overall bias arose because males favored
departments where there were a relatively larger numbers of places.

The results that give the overall proportions are, for these data, an unsatisfactory and
misleading summary. There is further comment in Subsection 3.4.5 on biases of this
type. This phenomenon, known as Simpson’s paradox or as the Yule–Simpson effect, is
discussed in Aldrich (1995); Simpson (1951). See also Meyer and Finney (2005).

2.2.2 Summaries of information from data frames

Earlier, we illustrated the use of the function summary(). Here, we will discuss specific
forms of summary statistic. We saw in Chapter 1 that the sapply() function can be
used to obtain summaries for each column of a data frame. For obtaining summaries at
combinations of different factor levels, the aggregate() function can be used.

Summary as a prelude to analysis – aggregate()

In the example that now follows, the analysis can be simplified by first taking means over
subgroups of the data. The aggregate() function does the needed summarization. It
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splits the data frame according to specified combinations of factor levels, and then applies
a specified function to each of the resulting subgroups.

The data frame kiwishade (from DAAG) has yield measurements from each of
48 vines. The vines were growing on 12 plots, divided into three blocks of four
plots each. One block of four was north-facing, a second block west-facing, and a
third block east-facing. (Because the trial was conducted in the Southern hemisphere,
there is no south-facing block.) Shading treatments were applied to whole plots, that
is, to groups of four vines, with each treatment occurring once per block. The shad-
ing treatments were applied either from August to December, December to February,
February to May, or not at all. For more details of the experiment, look ahead to
Figure 10.4.

For purposes of comparing treatments, there is no loss of information from basing the
analysis on the plot means. (There is however loss of information for other forms of
scrutiny of the data, as noted below.) The four individual vine results that are averaged
to give the plot mean are multiple measurements on the same experimental unit, here a
plot. The first few rows of the data frame are:

yield block shade plot

1 101.11 north none north.none

2 108.02 north none north.none

3 106.67 north none north.none

4 100.30 north none north.none

5 92.64 west none west.none

We now use the aggregate() function to form the data frame that holds the means
for each combination of block and shading treatment. The code, with the first four lines
of output following, is:

> ## mean yield by block by shade: data frame kiwishade (DAAG)

> attach(kiwishade)

> kiwimeans <- aggregate(yield, by=list(block, shade), mean)

> names(kiwimeans) <- c("block","shade","meanyield")

> detach(kiwishade)

> head(kiwimeans, 4)

block shade meanyield

1 east none 99.0250

2 north none 104.0250

3 west none 97.5575

4 east Aug2Dec 105.5550

> # . . .

Use of the aggregated data for analysis commits us to working with plot means. What
information is lost? If there were occasional highly aberrant values, use of medians might
be preferable. The data should have a say in determining the form of summary.

Figure 2.12 plots both the information in the aggregated data frame kiwimeans and
the individual vine results that are in the data frame kiwishade. As treatments were
applied to whole plots, the graph that shows the individual vine results exaggerates the
extent of information that is available, in each block, for comparing treatments. For
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Yield

none

Aug2Dec

Dec2Feb

Feb2May

85 90 95 100 105 110

west

85 90 95 100 105 110

n o r t h

85 90 95 100 105 110

east

Individual vine yields Plot means (4 vines)

Figure 2.12 The four panels are the four different plots. The vertical bars of the large + symbols
are plot means. The open circles are yields for individual vines in the plot.

gaining a correct impression of the strength of the evidence, it is necessary to focus the
eye on the means, shown as +. The code used for Figure 2.12 is given as a footnote.11

The benefits of data summary – dengue status example

By way of demonstrating further reasons for working with a suitable form of data
summary, consider a data set that has information on the worldwide distribution of
dengue (Hales et al., 2002). Dengue is a mosquito-borne disease that is a risk in hot and
humid regions. Dengue status – information on whether dengue had been reported during
1965–1973 – is available for 2000 administrative regions, while climate information is
available on a much finer scale, on a grid of about 80 000 pixels at 0.5� latitude and
longitude resolution. Should the analysis work with a data set that consists of 2000
administrative regions, or with the much larger data set that has one row for each of the
80 000 pixels? There are three issues here that warrant attention:

• Dengue status is a summary figure that is given by administrative region. An analysis
that uses the separate data for the 80 000 pixels will, in effect, predict dengue status
for climate variable values that are in some sense averages for the administrative
region. Explicit averaging, prior to the analysis, gives the user control over the form
of averaging that will be used. If, for example, values for some pixels are extreme
relative to other pixels in the administrative region, medians may be more appropriate

11 ## Note the use of a panel function that calls panel.dotplot(),
## then adding the code needed to display plot means.
dotplot(shade ˜ yield | block, data=kiwishade, pch=1, aspect=1,

panel=function(x,y,...){panel.dotplot(x, y ,...)
av <- sapply(split(x,y), mean)
ypos <- unique(y)
lpoints(ypos˜av, pch=3, cex=1.25)},

key=list(space="top", columns=2,
text=list(c("Individual vine yields", "Plot means (4 vines)")),
points=list(pch=c(1,3), cex=c(1,1.25))), layout=c(3,1))

# Note that parameter settings were given both in the function call and
# in the list supplied to key. [With auto.key, this is unnecessary.]
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than means. In some regions, the range of climatic variation may be extreme. The
mean will give the same weight to sparsely populated cold mountainous locations as
to highly populated hot and humid locations on nearby plains.

• Correlation between observations that are close together geographically, though still
substantial, will be less of an issue for the data set in which each row is an administra-
tive region. Points that repeat essentially identical information are a problem both for
the interpretation of plots and, often, for the analysis. Regions that are geographically
close will often have similar climates and the same dengue status.

• Analysis is more straightforward with data sets that are of modest size. It is easier
to do the various checks that are desirable. The points that appear on plots are more
nearly independent. Standard forms of scatterplot are less likely to appear as a dense
mass of black ink.

For all these reasons it is preferable to base the main analysis on some form of average
of climate data by administrative region. There are many possible ways to calculate a
central value, of which the mean and the median are the most common.

2.2.3 Standard deviation and inter-quartile range

An important measure of variation in a population is the population standard deviation
(often written 	). This is a population parameter that is almost always unknown. The
variance 	2, which is the square of the standard deviation, is widely used in formal
inference.

The sample standard deviation, used to estimate the population standard deviation when
a random sample has been taken, is:

s =
√∑

�x− x̄�2

n−1
�

In words, given n data values, take the difference of each data value from the mean,
square, add the squared differences together, divide by n–1, and take the square root.
(In R, the standard deviation is calculated using the function sd(), and the variance is
calculated using var().)

For s to be an accurate estimate of 	 , the sample must be large. The standard deviation
is similar in concept to the inter-quartile range H, which we saw in Subsection 2.1.1 is the
difference between the first and third quartiles. For data that are approximately normally
distributed, we have the relationship:

s ≈ 0�75H�

If the data are approximately normally distributed, one standard deviation either side of
the mean takes in roughly 68% of the data, whereas the region between the lower and
upper quartiles takes in 50% of the data.

Note also the median absolute deviation, calculated using the function mad(). This
calculates the median of the absolute deviations from the median. By default this is
multiplied by 1.4286, to ensure that in a large sample of normally distributed values the
value returned should approximately equal the standard deviation.
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Table 2.2 Standard deviations for cuckoo egg data.

Hedge sparrow Meadow pipit Pied wagtail Robin Tree pipit Wren
1.049 0.920 1.072 0.682 0.880 0.754

Cuckoo eggs example

Consider again the data on cuckoo eggs that we discussed in Subsection 2.1.4. The group
standard deviations are listed in Table 2.2.12

The variability in egg length is smallest when the robin is the host.

Degrees of freedom

If in calculating s we had divided by n rather than n–1 before taking the square root,
we would have computed the average of the squared differences of the observations
from their sample average. The denominator n–1 is the number of degrees of freedom
remaining after estimating the mean. With one data point, the sum of squares about the
mean is zero, the degrees of freedom are zero, and no estimate of the variance is possible.
The degrees of freedom are the number of data values, additional to the first data value.

The number of degrees of freedom is reduced by 1 for each parameter estimated. The
standard deviation calculation described above sums squared differences of data values
from their sample mean, divides by the degrees of freedom, and takes the square root.
The standard deviation is in the same units as the original measurements.

The pooled standard deviation

Consider two independent samples of sizes n1 and n2, respectively, randomly selected
from populations that have the same amount of variation but for which the means may
differ. Thus, two means must be estimated. The number of degrees of freedom remaining
for estimating the (common) standard deviation is n1 +n2 −2. We compute the so-called
pooled standard deviation by summing squares of differences of each data value from
their respective sample mean, dividing by the degrees of freedom n1 +n2 −2, and taking
the square root:

sp =
√∑

�x− x̄�2 +∑
�y − ȳ�2

n1 +n2 −2
�

Use of this pooled estimate of the standard deviation is appropriate if variation in the two
populations is plausibly similar. The pooled standard deviation is estimated with more
degrees of freedom, and therefore, more accurately, than either of the separate standard
deviations.

12 ## SD of length, by species: data frame cuckoos (DAAG)
sapply(split(cuckoos$length, cuckoos$species), sd)
# Subsection 12.6.7 has information on split()
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Elastic bands example

Consider data from an experiment in which 21 elastic bands were randomly divided into
two groups, one of 10 and one of 11. Bands in the first group were immediately tested for
the amount that they stretched under a weight of 1.35 kg. The other group were dunked
in hot water at 65 �C for four minutes, then left at air temperature for ten minutes, and
then tested for the amount that they stretched under the same 1.35 kg weight as before.
The results were:

Ambient: 254 252 239 240 250 256 267 249 259 269 (Mean = 253.5)
Heated: 233 252 237 246 255 244 248 242 217 257 254 (Mean = 244.1)
The pooled standard deviation estimate is s = 10�91, with 19 (= 10+11−2) degrees of

freedom. Since the separate standard deviations (s1 = 9.92; s2 = 11�73) are quite similar,
the pooled standard deviation estimate is a sensible summary of the variation in the data
set.

2.2.4 Correlation

The usual Pearson or product–moment correlation is a summary measure of linear rela-
tionship. Calculation of a correlation should always be accompanied by examination of a
relevant scatterplot. The scatterplot provides a useful visual check that the relationship is
linear. Often the addition of a smooth trend line helps the assessment. If the relationship
is not linear, but is monotonic, it may be appropriate to use a Spearman rank correlation.
Examples of the needed code are:

## Correlation between body and brain: data frame Animals (MASS)

## Pearson product--moment correlation

with(Animals, cor.test(body, brain))

with(Animals, cor.test(log(body), log(brain)))

## Spearman rank correlation

with(Animals, cor.test(body, brain, method="spearman"))

The output includes information additional to the correlation estimate itself.
Figure 2.13 gives four graphs to consider. For which does it make sense to calculate:

1. A Pearson correlation coefficient?
2. A Spearman rank correlation?

0.894 0.878 0.458 0.005

Figure 2.13 Different relationships between y and x. In the lower right panel, the Pearson
correlation is 0.882, while the Spearman rank correlation is 0.958.
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The figure that appears in the upper left in each panel is the Pearson correlation. For the
second panel, the Pearson correlation is 0.882, while the Spearman correlation, which
better captures the strength of the relationship, is 0.958. Here a linear fit clearly is
inadequate. The magnitude of the correlation r, or of the squared correlation r2, does not
of itself indicate whether the fit is adequate.

Note also the Kendall correlation, obtained by specifying method="kendall" when
cor.test() is called. This is often used in contexts where the same individuals are
assessed by different judges. It estimates the probability that the two judges will assign
the same ranking to an individual.

Here are ways in which the use of correlation may mislead:

• Values may not be independent. If we wish to make anything of the magnitude of the
coefficient, then it is necessary to assume that sample pairs (x, y) have been taken at
random from a bivariate normal distribution.

• There may be some kind of subgroup structure in the data. If, for example, values of
x and/or y are quite different for males and females, then the correlation may only
reflect a difference between the sexes. Or if random samples are taken from each of
a number of villages and the data are pooled, then it will be unclear whether any
correlation reflects a correlation between village averages or a correlation between
individuals within villages, or a bit of each. The interpretation is confused because the
two correlations may not be the same, and may even go in different directions. See
Cox and Wermuth (1996).

• Any correlation between a constituent and a total amount is likely to be, in part at
least, a mathematical artifact. Thus, consider a study of an anti-hypertensive drug that
hopes to determine whether the change y–x is larger for those with higher initial blood
pressure. If x and y have similar variances then, unfortunately, y–x will have a negative
correlation with x, whatever the influence of the initial blood pressure.

Note that while a correlation coefficient may sometimes be a useful single number
summary of the relationship between x and y, regression methods offer a much richer
framework for the examination of such relationships.

2.3 Statistical analysis questions, aims and strategies

Logically, this section should have appeared right at the beginning of the chapter, prior
to any discussion of analysis methods and approaches. The reason for placing it here is
that the reader should by now have a level of familiarity with several data sets that can
be used as a focus for discussion.

Different questions, asked of the same data, will elicit different answers. The data may
hold the information needed to answer one set of questions, and lack the information
needed to answer other questions. Questions should be carefully structured.

A closely related issue is: How will results be used? Is the aim scientific understanding,
perhaps as in the example discussed below to determine whether cuckoos do really match
the eggs that they lay in the nests of other birds to the size and color of the host eggs? Or
is the aim prediction, perhaps to predict, based on recent prices in the area and on house
size, the price that purchasers may be willing to pay?
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2.3.1 How relevant and how reliable are the data?

Data may, in principle, be incapable of answering the questions that are of interest. Data
on house prices in London may not have much relevance, if the interest is in house prices
in New York or Paris!

Assuming that the data are relevant, can reliance be placed on the answers that it
gives? Data that come from an experiment that has been designed to answer the ques-
tions of interest can give highly reliable results. That is the reason for designing and
carrying out experiments. Data that are from such experiments will be found through-
out this book – examples are the data on the tinting of car windows that was used for
the plots in Subsection 2.1.6 and the kiwifruit shading data that was discussed in Sub-
section 2.2.2. With data from carefully designed experiments, perhaps the most serious
danger is that the data will be generalized beyond the limits imposed by the experimental
conditions.

Observational data are another matter. Section 6.5 will discuss a comparison between
results from an experimental study on the effects of a work training program (those
enrolled in the study were randomly assigned to training and non-training groups), and
results from various sets of matched observational data that have been used in the attempt
to answer the same question. It happens that in this instance there is a check on the result
from the comparison that used observational data; data are available from an experiment
in which individuals were randomly assigned either to an experimental or to a control
group.

Latter (1902) collected the cuckoo egg data presented in Figure 2.8 in order to
investigate claims, made in Newton (1893–1896, p. 123), that the eggs that cuckoos lay
in the nests of other birds tend to match the eggs of the host bird in size, shape and
color. Figure 2.8 strongly indicated differences, depending on the host bird, in length.
A further step is to look for a relationship between the mean size of the cuckoo eggs
for each specific host, and the mean size of the host bird’s own eggs, using data such as
in Table 2.3.

There are various difficulties with the data in Table 2.3. The cuckoo eggs and the host
eggs are from different nests, collected in the course of different investigations. Data on
the host eggs is from various sources. For the wren, the value is an indicative length from
Gordon (1894). There is thus a risk of biases, different for the different sources of data,
that limit the inferences that can be drawn.

There is a striking difference between wrens and other species. Not only are their own
eggs easily the smallest among the species considered; the eggs of the wren host are
easily the smallest, among any of the hosts. Whatever biases may exist in the data, it is
unlikely that they would be so large as to affect these major differences. Biases might
well affect comparisons between eggs in the nests of species other than wrens.

2.3.2 Helpful and unhelpful questions

Analyses ask questions of data. The questions may be simple: “Does increasing the
amount of an additive in milk make it seem sweeter? If so, by how much does its
sweetness increase?”



2.3 Statistical analysis questions, aims and strategies 71

Table 2.3 Mean lengths of cuckoo eggs, compared with mean lengths of eggs laid by
the host bird species. More extensive data that bear on the comparison between cuckoo
eggs and host eggs are in the data frame cuckoohosts (DAAG).

Meadow Hedge Tree Yellow
Host species pipit sparrow Robin Wagtails pipit Wren nammer

Length (cuckoo) 22.3 (45) 23.1 (14) 22.5 (16) 22.6 (26) 23.1 (15) 21.1 (15) 22.6 (9)
Length (host) 19.7 (74) 20.0 (26) 20.2 (57) 19.9 (16) 20 (27) 17.7 (-) 21.6 (32)

Numbers in parentheses are numbers of eggs.

Or they may ask questions about relationships, as in the electrical resistance example
plotted in Figure 2.6: “What is the relationship between electrical resistance and apparent
juice content? How accurately can we predict resistance?” This is far more informative
than doing repeated trials, some with a juice content of 30% and some with a juice
content of 50%. With the data we have, it would be bad practice to do a formal statistical
test to compare, for example, juice content of less than 30% with juice content of more
than 50%. Even worse would be a study comparing resistance at 40% juice content with
resistance at 50% juice content; the result would be a complete failure to detect the
relatively rich relationship that exists between the apparent juice content and resistance.

2.3.3 How will results be used?

Studies may be designed to help scientific understanding. Consider again the data in
Table 2.3. The interest of Latter’s paper is primarily in establishing whether there is a
relationship, and rather less in determining the nature of the relationship. Egg size and
shape is one of several pieces of evidence that Latter considers. Uniquely among the birds
listed, the architecture of wren nests makes it impossible for the birds to see the eggs. In
wren nests, the color of the cuckoo’s egg does not match the color of the wren’s eggs;
for the other species the color does mostly match. Latter concludes that Newton is right,
that the eggs that cuckoos lay tend to match the eggs of the host bird in size and shape
in ways that will make it difficult for hosts to distinguish their eggs from the cuckoo
eggs.

This is very different from the demands of the real estate agent who may hope, on
the basis of last year’s prices in a city location, and floor area, to predict the prices that
purchasers will be willing to pay. Will a relationship that seems to work in one suburb
apply also in another suburb, or in a neighboring city? Accurate prediction is crucial, and
more important than understanding the detailed reasons for any relationship that may be
apparent. It becomes important also, to know what accuracy is important to the person
who will use the results. Is it accuracy for purposes of making a prediction on one of
the suburb(s) used in obtaining the data? Or is it accuracy for making predictions in new
suburb(s)? In the latter case, data from multiple suburbs will be needed, and it must be
possible to treat the sampled suburbs as a random sample from the suburbs for which
predictions are required.
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2.3.4 Formal and informal assessments

Statistical data analysis is, often, crucial to the answering of scientific questions. It does
not however stand alone, but must be interpreted against a background of subject area
knowledge and judgment. Qualitative judgments are inevitable at various points in studies
that generate data sets such as are analyzed in this book. Such judgments affect the use
of assumed subject area knowledge, the measurements that are taken, the design of
data collection, the choice of analysis, and the interpretation of analysis results. These
judgments, while they should be as informed as possible, cannot be avoided.

Two examples will now be given:

• In trials that evaluate therapies for use with patients whose conditions commonly lead
to early death, what is the relevant measure? Is it survival time from diagnosis? Or
is it more appropriate to use a measure that takes account of quality of life over that
time, which differ hugely between different therapies? Two such measures that are in
use as “Disability Adjusted Life Years” (DALYs) and “Quality Adjusted Life Years”
(QALYs).

• The dataset nsw74psid1, discussed briefly in Subsection 2.2.1, allows comparison
of two groups of individuals, both with a history of employment difficulties and related
difficulties. A focus of interest was income in 1978, subsequent to the study. Because
the distribution of income is highly skew, comparisons that are based directly on
income will be biased towards the experience of those few individuals whose incomes
were very large. This effect can be ameliorated by working with the logarithm of
income. Or it might be more appropriate to compare the median salaries of the two
groups, after adjusting for the effects of other variables.

In neither of these instances is the interpretation of analysis results quite as simple as
it might initially appear. There is an inevitable risk that assumed insights and judgments
will carry large elements of prejudice or personal bias. A well-designed study will allow
some opportunity for study results to challenge the assumed insights and understandings
that have motivated its collection.

Questionnaires and surveys

The science and socsupport data frames (DAAG) are both from surveys. In both
cases, an important question is whether the questions measured what they claimed to
measure. In the science data set, a focus of interest is the variable like, which
measured the extent of students’ liking for science. What did students understand by
“science”? Was science, for them, a way to gain and test knowledge of the world? Or
was it a body of knowledge? Or, more likely, was it a name for their experience of
science laboratory classes (smells, bangs and sparks perhaps) and field trips?

In the socsupport data set, an important variable is BDI, which is the Beck
depression index. The Beck depression index (BDI) is a standard psychological measure
of depression (see for example Streiner and Norman, 2003). It is a summary measure from
a questionnaire, known in the jargon as a survey instrument, that asks a large number of
questions.
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In either case it is impossible to escape the question: “What was measured?” This
question is itself amenable to experimental investigation. For the data frame science
answers to other questions included in the survey will shed some light. The Beck
depression index is the result of an extensive process of development and testing that have
seemed to indicate that it gives a usable and useful measure of psychological depression,
at least for populations on which it has been tested. Such background evidence helps in
deciding what is measured. Finally, however, there must be a qualitative judgment that
brings together subject area knowledge, background information and evidence, and the
results of the immediate statistical analysis.

2.3.5 Statistical analysis strategies

We have emphasized the importance of careful initial scrutiny of the data. Techniques of
a broadly EDA type have, in addition, a role in scrutinizing results from formal analysis,
in checking for possible model inadequacies and perhaps in suggesting remedies. In later
chapters, we will discuss the use of diagnostic statistics and graphs in examination both
of the model used and of output from the analysis. These are an “after the event” form of
EDA. In the course of an analysis, the data analyst may move backwards and forwards
between exploratory analysis and more formal analyses.

2.3.6 Planning the formal analysis

Where existing data are available, a cautious investigator will use them to determine the
form of analysis that is appropriate for the main body of data. If the data to be collected
are closely comparable to data that have been analyzed previously, the analyst will likely
know what to expect. It is then possible and desirable to plan the analysis in advance.
This reduces the chance of biasing the results of the analysis in a direction that is closest
to the analyst’s preference! Even so, graphical checks of the data should precede formal
analysis. There may be obvious mistakes. The data may have surprises for the analyst.

If available at the beginning of the study, the information from the analysis of earlier
data may, additionally, be invaluable in the design of data collection for the new study.
When prior data are not available, a pilot study involving a small number of experimental
runs can sometimes be used to provide this kind of information.

Where it is not altogether clear what to expect, careful preliminary examination is even
more necessary. In particular, the analyst should look for

• outliers,
• clusters in the data,
• unexpected patterns within groups,
• between-group differences in the scatter of the data,
• whether there are unanticipated time trends associated, for example, with order of data

collection.

In all studies, it is necessary to check for obvious data errors or inconsistencies. In
addition, there should be checks that the data support the intended form of analysis.
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2.3.7 Changes to the intended plan of analysis

Planning the formal analysis is one aspect of planning a research study. Such advance
planning should allow for the possibility of limited changes as a result of the exploratory
analysis. As noted above, the best situation is where there are existing data that can be
used for a practice run of the intended analysis.

What departures from the original plan are acceptable, and what are not? If the
exploratory analysis makes it clear that the data should be transformed in order to
approximate normality more closely, then use the transformation. It is sometimes useful
to do both analyses (with the untransformed as well as with the transformed data) and
compare them.

On the other hand, if there are potentially a large number of comparisons that could
be made, the comparisons that will be considered should be specified in advance. Prior
data, perhaps from a pilot study, can assist in this choice. Any investigation of other
comparisons may be undertaken as an exploratory investigation, a preliminary to the
next study.

Data-based selection of one or two comparisons from a much larger number is not
appropriate, since huge biases may be introduced. Alternatively there must be allowance
for such selection in the assessment of model accuracy. The issues here are non-trivial,
and we defer further discussion until later.

2.4 Recap

Exploratory data analysis aims to allow the data to speak for themselves, often prior to or
as part of a formal analysis. It gives multiple views of the data that may provide useful
insights. Histograms, density plots, stem-and-leaf displays and boxplots are useful for
examining the distributions of individual variables. Scatterplots are useful for looking at
relationships two at a time. If there are several variables, the scatterplot matrix provides
a compact visual summary of all two-way relationships.

Before analysis, look especially for

• outliers,
• skewness (e.g., a long tail) in the distribution of data values,
• clustering,
• non-linear bivariate relationships,
• indications of heterogeneous variability (i.e., differences in variability across samples),
• whether transformations seem necessary.

After analysis, check residuals for all these same features. Where relationships involve
several variables, adequate checks will be possible only after analysis.

Failure of the independence assumption is hard to detect, unless the likely form of
dependence is known and the sample is large. Be aware of any structure in the data that
may be associated with lack of independence.

Do not allow the initial scrutiny of data to influence the analysis in ways that may lead
to over-interpretation.
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2.5 Further reading

The books and papers on graphical presentation that were noted in Chapter 1 are equally
relevant to this chapter. The books Cleveland (1993, 1994) are especially pertinent to
the present chapter. Chatfield (2002) has a helpful and interesting discussion, drawing on
consulting experience, of approaches to practical data analysis.

On statistical presentation issues, and deficiencies in the published literature, see
Andersen (1990); Chanter (1981); Gardner et al. (1983); Maindonald (1992); Maindonald
and Cox (1984); Wilkinson and Task Force on Statistical Inference (1999). The Wilkinson
et al. paper has helpful comments on the planning of data analysis, the role of exploratory
data analysis, and so on. Nelder (1999) is forthright and controversial.

Two helpful web pages are:
http://www.math.yorku.ca/SCS/friendly.html\#graph and http://
www.rdg.ac.uk/ssc/dfid/booklets.html

2.5.1 References for further reading
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2.6 Exercises

1. Use the lattice function bwplot() to display, for each combination of site and sex in the
data frame possum (DAAG package), the distribution of ages. Show the different sites on the
same panel, with different panels for different sexes.
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2. Do a stem-and-leaf display for the lengths of the female possums. On the display, identify the
position of the median, either at one of the leaves or between two leaves. Explain the reasoning
used to find the median, and use the function median() to check the result.

3. Plot a histogram of the earconch measurements for the possum data. The distribution should
appear bimodal (two peaks). This is a simple indication of clustering, possibly due to sex
differences. Obtain side-by-side boxplots of the male and female earconch measurements.
How do these measurement distributions differ? Can you predict what the corresponding
histograms would look like? Plot them to check your answer.

4. For the data frame ais (DAAG package), draw graphs that show how the values of the
hematological measures (red cell count, hemoglobin concentration, hematocrit, white cell count
and plasma ferritin concentration) vary with the sport and sex of the athlete.

5. Using the data frame cuckoohosts, plot clength against cbreadth, and hlength

against hbreadth, all on the same graph and using a different color to distinguish the first
set of points (for the cuckoo eggs) from the second set (for the host eggs). Join the two points
that relate to the same host species with a line. What does a line that is long, relative to other
lines, imply? Here is code that you may wish to use:
attach(cuckoohosts)

plot(c(clength, hlength), c(cbreadth, hbreadth),

col=rep(1:2,c(12,12)))

for(i in 1:12)lines(c(clength[i], hlength[i]),

c(cbreadth[i], hbreadth[i]))

text(hlength, hbreadth, abbreviate(rownames(cuckoohosts),8))

detach(cuckoohosts)

6. Enter and run the following code. Annotate it, describing each function and each parameter:
deathrate <- c(40.7, 36,27,30.5,27.6,83.5)

hosp <- c("Cliniques of Vienna (1834-63)\n(> 2000 cases pa)",

"Enfans Trouves at Petersburg\n(1845-59, 1000-2000 cases pa)",

"Pesth (500-1000 cases pa)",

"Edinburgh (200-500 cases pa)",

"Frankfort (100-200 cases pa)", "Lund (< 100 cases pa)")

hosp <- factor(hosp, levels=hosp[order(deathrate)])

dotplot(hosp˜deathrate, xlim=c(0,95), xlab="Death rate per 1000 ",

type=c("h","p"))

## Source: Nightingale (1871). Data are ascribed to Dr Le Fort

7. Download and load the package Devore6, available from the CRAN sites. Then gain access to
data on tomato yields by typing:
library(Devore6) # ex10.22 is from Devore6

tomatoes <- ex10.22

This data frame gives tomato yields at four levels of salinity, as measured by electrical
conductivity (EC, in nmho/cm).

(a) Obtain a scatterplot of yield against EC.
(b) Obtain side-by-side boxplots of yield for each level of EC.
(c) The third column of the data frame is a factor representing the four different levels of

EC. Comment upon whether the yield data are more effectively analyzed using EC as a
quantitative or qualitative factor.
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8. Examine the help for the function mean(), and use it to learn about the trimmed mean. For
the total lengths of female possums, calculate the mean, the median, and the 10% trimmed
mean. How does the 10% trimmed mean differ from the mean for these data? Under what
circumstances will the trimmed mean differ substantially from the mean?

9. Assuming that the variability in egg length for the cuckoo eggs data is the same for all host birds,
obtain an estimate of the pooled standard deviation as a way of summarizing this variability.
[Hint: Remember to divide the appropriate sums of squares by the number of degrees of
freedom remaining after estimating the six different means.]

10. Calculate the following three correlations:
with(Animals, cor(brain,body))

with(Animals, cor(log(brain),log(body)))

with(Animals, cor(log(brain),log(body), method="spearman"))

Comment on the different results. Which is the most appropriate measure of the relationship?

11. The following code conveys information that has points of connection with the information in
Figure 2.12:
bwplot(shade ˜ yield|block, data=kiwishade, layout=c(3,1))

Compare and contrast the information given by these two plots.

12. The galaxies data in the MASS library gives speeds on 82 galaxies (see the help file and
the references listed there for more information). Obtain a density plot for these data. Is the
distribution strongly skewed? Is there evidence of clustering?

13. The cpus data frame in the MASS library contains information on eight aspects for each of
209 different types of computers. Read the help page for more information.

(a) Construct a scatterplot matrix for these data. Should any of the variables be transformed
before further analysis is conducted?

(b) How well does estimated performance (estperf) predict performance (perf)? Study
this question by constructing a scatterplot of these two variables, after taking logarithms.
Do the plotted points scatter about a straight line or is there an indication of non-linearity?
Is variability in performance the same at each level of performance?
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Statistical models

An engineer may build a scale model of a proposed bridge or a building. A scale model
of a building may be helpful for checking the routing of the plumbing but may give little
indication of the acoustics of seminar rooms that are included in the building. For use of
the model, it is important to understand which features generalize and which do not. In
medical research, mouse responses to disease and to therapeutic agents are widely used
as models for human responses. Experimental responses in the mouse may indicate likely
responses in humans. By contrast with the architect’s scale model of a building, it can be
hard to predict in advance which features of the mouse model will generalize, and which
will not.

In fundamental research in the physical sciences, deterministic models are often ade-
quate. Statistical variability may be so small that it can, for practical purposes, be ignored.
In applications of the physical sciences, variability may however be a serious issue. In
studying how buildings respond to a demolition charge, there will be variation from one
occasion to another, even for identical buildings and identically placed charges. There
will be variation in which parts of the building break first, in what parts remain intact, and
in the trajectories of fragments. In the natural sciences, such variability is everywhere.

Statistical models rely on probabilistic forms of description that have wide application
over all areas of science. They often consist of a deterministic component as well as a
random component that attempts to account for variation that is not accounted for by a
law-like property.

Models should, wherever possible, be scientifically meaningful, but not at the cost
of doing violence to the data. The scientific context includes the analyses, if any, that
other researchers have undertaken with related or similar data. It can be important to
note and use such analyses critically. While they may give useful leads, there can be
serious inadequacies in published analyses. Further discussion on this point can be found
in articles and books given in the list of references at the end of Chapter 2.

As we saw in Chapter 2, consideration of a model stays somewhat in the background in
initial efforts at exploratory data analysis. The choice of model is of crucial importance in
formal analysis. The choice may be influenced by previous experience with comparable
data, by subject area knowledge, and by cautious use of what may emerge from exploratory
analysis.
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3.1 Regularities

Many regularities of nature are taken for granted in everyday living – the rising and setting
of the sun, the effects of fire in cooking or in burning anyone unfortunate enough to get
too near, and so on. Experience of the world, rather than logical deductive argument, has
identified these regularities. Scientific investigation, especially in the physical sciences,
has greatly extended and systematized our awareness of regularities. Mathematical models,
usually but not necessarily deterministic, have been crucial for describing and quantifying
these regularities.

3.1.1 Deterministic models

Figure 3.1 is a graphical representation of a deterministic model for the distance that
a stone or other falling object, starting at rest above the earth’s surface, travels under
gravity in some stated time.1

The formula is not totally accurate – it neglects the effects of air resistance. Even if it
were totally accurate, measurement inaccuracy would introduce small differences between
observations and predictions from the formula. These inaccuracies could if desired be
modeled, thus making the model a statistical model.

3.1.2 Models that include a random component

Statistical models typically include at least two components. One component describes
deterministic law-like behavior. In engineering terms, that is the signal. The other compo-
nent is random, often described as noise, that is, subject to statistical variation. It accounts
for variation that cannot be assigned to some specific predictable cause. Up until Chapter
9, most analyses will assume that the elements of the noise (or error component) are
uncorrelated.
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Figure 3.1 Distance fallen versus time, for a stone that starts at rest and falls freely under gravity.
The constant g is the acceleration due to gravity.

1 ## Simplified version of graph
curve(0.5*9.8*xˆ2, from=0, to=5, xaxs="i", yaxs="i",

xlab = "Time (sec)", ylab = "Distance fallen (m)")
text(0.25, 105, expression("Distance" == frac(1,2)*phantom(i)*g*tˆ2), adj=0)
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Both noise and error are technical terms. The use of the word error does not imply
that there have been mistakes in the collection of the data, though mistakes can of course
contribute to making the variability unnecessarily large. Thinking of error as necessarily
implying “mistake” is on a par with associating noise, in a statistical or signal processing
context, with auditory sensation!

Figure 3.2 plots the data that are shown in Table 3.1. Different weights of roller were
rolled over different parts of a lawn, and the depression noted (data are from Stewart
et al., 1988).2 The data seem broadly consistent with the assumption of a “signal” by
which depression is proportional to roller weight. Variation about this signal is reflected in
variation in the values for depression /weight. More generally, it might be assumed
that the signal is a line, not necessarily a line of strict proportionality between depression
and weight. (It might, for example, be desirable to allow for a systematic error in the
measurement of depression.)

Assuming a line through the origin, the model is:

depression = 
×weight+noise�

Here 
 is a constant, which must be estimated. The noise is different for each different
part of the lawn.

The model has the form:

observed value = model prediction+ statistical error.

.
This has the mathematical form:

Y = �+�

(often � is a function of explanatory variables). The model prediction (�) is the signal
component of the model, while � is the noise or statistical error component of the model.
Using the mathematical idea of expected value, it is usual to define � = E�Y�, where the
E�Y� denotes “expected value of Y.” The expected value generalizes the mean.

It may be helpful to think of the model prediction as the “smooth”, and of the residual
as the “rough”.

Generalizing from models

Models should as far as possible yield inferences that, for their intended use, are acceptably
accurate. Often, the intended use is prediction. Alternatively, or additionally, there may
be an interest in model parameters. Thus for the lawn roller data of Table 3.1, one focus
of interest is the rate of increase of depression with increasing roller weight, that is, the
slope of the line.

Model structure should reflect data structure. The model treats the pattern of change of
depression with roller weight as a deterministic or fixed effect. The measured values of

2 ## Plot depression vs weight: data frame roller (DAAG)
plot(depression ˜ weight, data = roller, xlim=c(0,1.04*max(weight)),

ylim=c(0,1.04*max(depression)),
xaxs="i", yaxs="i", # "i"=inner: Fit axes exactly to the limits
xlab = "Weight of roller (t)", ylab = "Depression(mm)", pch = 16)

abline(0, 2.25) # A slope of 2.25 looks about right
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Table 3.1 Depression (depression) and
depression/weight ratio for different weights (weight) of
lawn roller. Data are in the data frame roller (DAAG
package).

weight (t) depression (mm) depression /weight

1 1.9 2 1.1
2 3.1 1 0.3
3 3.3 5 1.5
4 4.8 5 1.0
5 5.3 20 3.8
6 6.1 20 3.3
7 6.4 23 3.6
8 7.6 10 1.3
9 9.8 30 3.1

10 12.4 25 2.0

0 2 4 6 8 1 0
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Weight of roller (t)
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Figure 3.2 Depression in lawn, versus roller weight. The line, through the origin, was drawn
by eye.

depression incorporate, in addition, a random effect that reflects variation from one part
of the lawn to another, differences in the handling of the roller, and measurement error.
Elementary statistics courses typically emphasize fixed effects, with a single random
source of variation superimposed.

The model should accurately reflect both fixed and random sources of variation. In
practical contexts, multiple random sources of variation are the rule rather than the
exception. If there had been multiple lawns, effects would undoubtedly have differed
from one lawn to another. Thus we would have to reckon with between-lawn variation,
superimposed on the within-lawn variation on which our data give information. Data from
multiple lawns are essential, for anything more than informal judgment on how results
may generalize to other lawns. Chapter 10 will discuss models that might be tried, if data
from multiple lawns were available.
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Figure 3.3 In A a line has been fitted, while in B the loess method was used to fit a smoothed
curve. Residuals (the “rough”) appear as vertical lines. Positive residuals are black lines, while
negative residuals are dashed. Figures 3.3A and 3.3B were created using our function g3.3(),
which is available from the web page for the book. Interested readers can check the code.

Which model is best?

Figure 3.3 shows two possible models for the lawn roller data, together with information
that may be helpful in assessing the adequacy of the model. In Figure 3.3A, a line has
been fitted, while Figure 3.3B has used lowess() to fit a smooth curve through the
data. Sometimes, the fitting of a curve such as in Figure 3.3B helps indicate whether a
line really is appropriate. Note that there is just one point that seems to be causing the
line, and the fitted curve, to bend down. In any case, there is no statistical justification for
fitting a curve rather than a line, as can be verified with a formal analysis; see Exercise 2
in Chapter 7. There is “over-fitting” in Figure 3.3B.

3.1.3 Fitting models – the model formula

Formulae have already been used extensively to describe graphs that will be plotted using
plot() or another such function. Modeling functions likewise use formulae to describe
the role of variables and factors in models. Thus, the following model statement, with
model formula depression ˜ weight, fits a line to the data of Table 3.1:

## Fit line - by default, this fits intercept & slope.

## requires data frame roller (DAAG)

roller.lm <- lm(depression ˜ weight, data=roller)

## Compare with the code used to plot the data

plot(depression ˜ weight, data=roller)

## Add a the fitted line to the plot

abline(roller.lm)

The name roller.lm, used for the output of the calculation, was chosen for mnemonic
reasons – the object was the result of lm calculations on the roller data set. In the
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formula, weight is the predictor or explanatory variable, while depression is the
response.3

Model formulae give an economical way to specify the way that variables and factors
enter into a model. Once understood, they aid economy of thought and description.

Fitted values and residuals

Residuals, which are the differences between observed values of depression, and
predicted values of depression at the respective values of weight, are important for
assessing the accuracy of the model fit. A large noise or “rough” component generates
large residuals, and works against accurate prediction. Figure 3.3A exhibits the residuals
for the lawn roller data after fitting a straight line, while Figure 3.3B exhibits the residuals
after fitting a smooth curve. Positive residuals are represented by solid lines, while
negative residuals are represented by dashed lines.

Model objects

The model object, above saved as roller.lm, has the form of a list:

> names(roller.lm) # Get names of list elements

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

The information held in these list elements is available as a basis for further calculations.
Usually, rather than examining the list elements directly, it is best to use an extractor
function that gives what is required. The following gives the model coefficients:

## Use extractor function coef()

> coef(roller.lm)

(Intercept) weight

-2.087148 2.666746

## Examine list element directly (best avoided)

> roller.lm$coefficients

(Intercept) weight

-2.087148 2.666746

Here, the model coefficients are the intercept and slope of the fitted line.
The function coef() is one of a number of extractor functions that extract commonly

required information from the model object. Most of the information that is commonly
required from model objects can be obtained by the use of one of these extractor functions.

3.2 Distributions: models for the random component

A distribution is a model for a population of data values. Mathematically, the notion of
distribution makes it possible to deal with variability. Comparison between two groups

3 ## For a model that omits the intercept term, specify
lm(depression ˜ -1 + weight, data=roller)
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requires a model for the variability in each group, as a standard against which to assess
the difference between the two groups. In regression, a model is required for variation of
the responses about a line or curve, allowing an assessment of the acuracy with which
the line can be determined.

Discrete distributions are conceptually simpler than continuous distributions, and will
be discussed first, then going on to discuss the normal and other continuous distributions.

3.2.1 Discrete distributions

Bernoulli distribution

Successive tosses of a fair coin come up tails (which we count as zero) with probability
0.5 and heads (which we count as one) with probability 0.5, independently between tosses.
More generally, we may have a probability 1−
 for tails and 
 for heads. We say that the
number of heads has a Bernoulli distribution with parameter 
. Alternatively, we could
count the number of tails and note that it has a Bernoulli distribution with parameter 1−
.

Binomial distribution

The total number of heads in n tosses of a fair coin follows a binomial distribution (the
Bernoulli distribution is the special case for which n = 1) with size n and 
 = 0�5. The
numbers of female children in two-child families can be modeled as binomial with n = 2
and 
 ≈ 0�5. We can use the function dbinom() to determine probabilities of having
0, 1 or 2 female children:4

## To get labeled output exactly as below, see the footnote

## dbinom(0:2, size=2, prob=0.5) # Simple version

0 1 2

0.25 0.50 0.25

On average, 25% of two-child families will have no female child, 50% will have one
female child, and 25% will have two female children. For another example, we obtain
the distribution of female children in four-child families:

## dbinom(0:4, size=4, prob=0.5)

0 1 2 3 4

0.0625 0.2500 0.3750 0.2500 0.0625

To calculate the probability that a four-child family has no more than two females,
add up the probabilities of 0, 1, and 2 females �0�0625+0�2500+0�3750 = 0�6875�. The
function pbinom() can be used to determine such cumulative probabilities, thus:

pbinom(q=2, size=4, prob=0.5)

As a final example, suppose a sample of 50 manufactured items is taken from an
assembly line that produces 20% defective items, on average. The code is:

4 ## To get the labeling (0, 1, 2) as in the text, specify:
probs <- dbinom(0:2, size=2, prob=0.5)
names(probs) <- 0:2
probs
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> pbinom(q=4, size=50, prob=0.2)

[1] 0.0185

The probability of observing fewer than five defectives in the sample is 0.0185.
The function qbinom() goes in the other direction, from cumulative probabilities

to number of events. Thus, in the four-child family example, the following gives the
minimum number of females such that the cumulative probability is greater than or equal
to 0.65:

> qbinom(p = 0.65, size = 4, prob = 0.5)

[1] 2

> ## Check result

> sum(dbinom(0:2, size=4, prob=.5))

[1] 0.688

We will make no further use of qbinom().

Poisson distribution

The Poisson distribution is often used to model counts of defects or events that occur
relatively rarely. The R functions follow the same pattern as for the functions above, that
is, they are dpois(), ppois() and qpois().

As an example, consider a population of raisin buns for which there are an average of
3 raisins per bun. Any individual raisin has a small probability of finding its way into any
individual bun. We have the following probabilities for 0, 1, 2, 3, or 4 raisins per bun:

## Probabilities of 0, 1, 3, 4 raisins

## mean number of raisins per bun = 3

## dpois(x = 0:4, lambda = 3)

0 1 2 3 4

0.0498 0.1494 0.2240 0.2240 0.1680

The cumulative probabilities are:

## ppois(q = 0:4, lambda = 3)

0 1 2 3 4

0.0498 0.1991 0.4232 0.6472 0.8153

Thus, for example, the probability of finding 2 or fewer raisins in a bun is 0.4232.

Means, variances and standard deviations

For a binomial random variable based on a sample of size n and a probability 
, the
mean is n
 and the standard deviation is

√
n
�1−
�. Omission of the square root sign

gives the variance n
�1 −
�. Note that the variance of a binomial random variable is
always strictly smaller than the mean. The variance of a Poisson random variable is equal
to its mean. These observations have implications for some of the models considered in
Chapter 8.
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Figure 3.4 A plot of the normal density. The horizontal axis is labeled in standard deviations
(SDs) distance from the mean. The area of the shaded region is the probability that a normal random
variable has a value less than one standard deviation above the mean.

3.2.2 Continuous distributions

Normal distribution

The normal distribution, which has the bell-shaped density curve pictured in Figure 3.4,
is often used as a model for continuous measurement data (sometimes a transformation
of the data is required in order for the normal model to be useful). The height of the
curve is a function of the distance, measured in number of standard deviations, from the
mean. The area under the density curve is 1. The density curve plotted in Figure 3.4
corresponds to a normal distribution with a mean of 0, located at the peak or mode of
the density. By adding a fixed value � to a population of such normal variates, we can
change the mean to �, leaving the standard deviation unchanged. Here is code that plots
the normal density function:

## Plot the normal density, in the range -3 to 3

z <- pretty(c(-3,3), 30) # Find ˜30 equally spaced points

ht <- dnorm(z) # By default: mean=0, variance=1

plot(z, ht, type="l", xlab="Normal deviate", ylab="Density", yaxs="i")

# yaxs="i" locates the axes at the limits of the data

Code that is closer to what appears in Figure 3.4, together with the shading, is in the
footnote:5

Functions for calculations with continuous distributions operate a little differently
from functions for calculation with discrete distributions. Whereas dbinom() gives
probabilities, dnorm() gives values of the probability density function. The area under
any density curve between x = a and x = b gives the probability that the random variable
lies between those limits.

5 ## Plot the normal density, in the range -3.25 to 3.25
z <- pretty(c(-3.25,3.25), 30) # Find ˜30 equally spaced points
ht <- dnorm(z) # By default: mean=0, variance=1
plot(z, ht, type="l", xlab="Normal deviate", ylab="Ordinate", yaxs="i")
polygon(c(z[z <= 1.0], 1.0), c(dnorm(z[z <= 1.0]), 0), col="grey")
# Around 84.1% of the total area is to the left of the vertical line.
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The function pnorm() calculates the cumulative probability, that is, the area under
the curve up to the specified ordinate or x-value. For example, there is a probability of
0.841 that a normal deviate is less than 1:

> pnorm(1.0) # by default, mean=0 and SD=1

[1] 0.841

This corresponds to the area of the shaded region in Figure 3.4.6 The function qnorm()
calculates the deviate that corresponds to a given cumulative probability, that is, the area
under the curve up to the specified ordinate. The q stands for quantile. Another term,
that has in mind the division of the area into 100 equal parts, is percentile. For example,
the 90th percentile is 1.28.

> qnorm(.9) # 90th percentile; mean=0 and SD=1

[1] 1.28

The footnote has additional examples.7

The normal distribution is frequently used to describe the differences between observa-
tions and predicted values from a fitted model. For example, the differences (or residuals)
between the observed values and a fitted line in the lawn roller data in Figure 3.2 can
be modeled with a normal distribution. In other words, the noise component � in the
model that was introduced in Subsection 3.1.2 is assumed to have a normal distribution,
independently between observations. Such an assumption should be checked, to the extent
that this is possible. Subsection 3.4.2 will comment on how this can be done.

Other continuous distributions

There are many other statistical models for continuous observations. The simplest model
is the uniform distribution, for which an observation is equally likely to take any value
in a given interval. In more precise technical language, the probability density of values
is constant on a fixed interval.

Another model is the exponential distribution that gives high probability density to
positive values lying near 0; the probability density decays exponentially as the values
increase. This simple model has been used to model times between arrivals of customers
to a queue. The exponential distribution is a special case of the chi-squared distribution.
The latter distribution arises, for example, when dealing with contingency tables. Details
on computing probabilities for these distributions can be found in the exercises.

6 ## Additional examples
pnorm(0) # .5 (exactly half the area is to the left of the mean)
pnorm(-1.96) # .025
pnorm(1.96) # .975
pnorm(1.96, mean=2) # .484 (a normal distribution with mean 2 and SD 1)
pnorm(1.96, sd=2) # .836 (sd = standard deviation)

7 ## Additional examples
qnorm(0.841) # 1.0
qnorm(0.5) # 0
qnorm(0.975) # 1.96
qnorm(c(.1,.2,.3)) # -1.282 -0.842 -0.524 (10th, 20th and 30th percentiles)
qnorm(.1, mean=100, sd=10) # 87.2 (10th percentile, mean=100, SD=10)
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Different ways to describe distributions

In Subsection 2.1.1 it was noted that, with the default boxplot settings, 1% of values that
are drawn at random from a normal distribution will on average be flagged as possible
outliers. If the distribution is not symmetric, more than 1% of points may lie outside the
whiskers, mostly at the lower end if the distribution is skewed (i.e., with a long tail) to
the left, and mostly at the upper end if the distribution is skewed to the right. Or the
distribution may be symmetric, but “heavy-tailed", that is, higher proportion of values are
out beyond the boxplot whiskers, at both tails of the distribution, than would be expected
for a normal distribution.

Section 4.1.6 will introduce the t-distribution – distributions of this class have an
important role in introductory courses in statistical theory. These are all heavy-tailed
distributions.

In the above discussion, R’s boxplot conventions have been used to give “heavy-tailed"
a precise meaning. While there are other definitions, the definition given is adequate for
the purposes of this chapter.

3.3 The uses of random numbers

3.3.1 Simulation

R has functions that generate random numbers from some specified distributions. To take
a simple example, we can simulate a random sequence of 10 0s and 1s from a population
with some specified proportion of 1s, for example, 50% (i.e., a Bernoulli distribution):

> rbinom(10, size=1, p=.5) # 10 Bernoulli trials, prob=0.5

1 0 0 0 1 1 1 0 1 0

The random sample is different on each occasion, depending on the setting of a starting
number that is called the seed. Occasionally, it is desirable to set the seed for the random
number generator so that the selection of sample elements is the same on successive
executions of a calculation.

Use of the function set.seed()makes it possible to use the same random number
seed in two or more successive calls to a function that uses the random number generator.
Ordinarily, this is undesirable. However, users will sometimes, for purposes of checking a
calculation, wish to repeat calculations with the same sequence of random numbers as was
generated in an earlier call. (To obtain the sample above, specify set.seed(23826)
before issuing the rbinom command.)

We can simulate values from several other distributions. We will offer examples of
simulated binomial, Poisson and normal samples.

To generate the numbers of daughters in a simulated sample of 25 four-child families,
assuming that males and females are equally likely, we use the rbinom() function:

# For the sequence that follows, precede with set.seed(9388)

> rbinom(25, size=4, prob=0.5)

[1] 3 1 2 4 1 2 0 3 2 1 2 3 2 4 2 1 1 1 2 2 3 2 0 2 2
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Now consider the raisin buns, with an overall average of 3 raisins per bun. Here are
numbers of raisins for a simulated random sample of 20 buns:

> set.seed(9388)

> rpois(20, 3)

[1] 3 3 4 1 2 2 3 1 1 4 3 0 1 1 3 1 0 4 5 2

The function rnorm() generates random deviates from the normal distribution. For
example, the following are 10 random values from a normal distribution with mean 0 and
standard deviation 1:

> options(digits=2) # Suggest number of digits to display

> rnorm(10) # 10 random values from the normal distribution

# For our sequence, precede with set.seed(3663)

[1] -0.599 -1.876 1.441 -1.025 0.612 -1.669 0.138 -0.099 1.010 0.013

Calculations for other distributions follow the same pattern. For example, uniform
random numbers are generated using runif() and exponential random numbers are
generated using rexp().

runif(n = 20, min=0, max=1) # 20 numbers, uniform distn on (0, 1)

rexp(n=10, rate=3) # 10 numbers, exponential, mean 1/3.

Exercises at the end of this chapter explore some of the possibilities.

3.3.2 Sampling from populations

Here we will discuss probability-based methods for choosing random samples. These
methods have important practical uses. They contrast with more informal methods for
choosing samples.

Consider first a sample from a finite population. Suppose, for example, that names on
an electoral roll are numbered, actually or notionally, from 1 to 9384. We can obtain a
random sample of 15 individuals thus:

> ## For the sequence below, precede with set.seed(3676)

> sample(1:9384, 15, replace=FALSE)

[1] 9178 2408 8724 173 106 4664 3787 6381 5098 3228 8321

165 7332 9036 540

This gives the numerical labels for the 15 individuals that we should include in our
sample. The task is then to find them! The option replace=FALSE gives a without
replacement sample, that is, it ensures that no one is included more than once.

As another example, suppose that it is required to randomly assign 10 plants (labeled
from 1 to 10, inclusive) to one of two equal sized groups, control and treatment. One
such random assignment is the following:

> ## For the sequence below, precede with set.seed(366)

> split(sample(seq(1:10)), rep(c("Control","Treatment"), 5))

> # sample(1:10) gives a random re-arrangement (permutation)

> # of 1, 2, ..., 10

$Control
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[1] 6 8 3 7 9

$Treatment

[1] 5 4 2 1 10

We then assign plants 6, 8, 3, 7, and 9 to the control group. By choosing the plants in
such a manner, we avoid biases that could arise, for example, due to choosing healthier
looking plants for the treatment group.

Alternatively the requirement may be to simulate a sample from an infinite population.
Bootstrap sampling tries to approximate the taking of samples from the original popu-
lation, by the use of with replacement samples from the one available sample. See the
discussion of bootstrap methods in Subsections 4.7.3 and 4.7.4.

Cluster sampling

Cluster sampling is one of many different probability-based variants on simple random
sampling. See Barnett (2002). In surveys of human populations cluster-based sampling,
for example, samples of households or of localities, with multiple individuals from each
chosen household or locality, is likely to introduce a cluster-based form of dependence.
The analysis must then take account of this clustering. Standard inferential methods
require adaptation to take account of the fact that it is the clusters that are independent,
not the individuals within the clusters.

Resampling methods and simulation

We will later encounter methods that take repeated random samples from what are
already random samples, in order to make inferences about the population from which
the original sample came. These methods are called, not surprisingly, resampling methods.
The repeated random samples may be from the original data, or from the distribution that
the data are thought to follow.

Sampling from a distribution that the data are thought to follow has the name simulation.
For example, we will sometimes wish to simulate data from a fitted model, then re-fit
to that data to check how closely we can recover the model as initially fitted. For
the roller data considered in Subsection 3.1.2, the line y = −2�08 + 2�67x, where y is
depression and x is weight, fits the data quite well. A helpful simulation may be
to take new normally distributed depression measurements with a mean of −2�08+
2�67×weight and a standard deviation estimated from the data. See Chapter 5.

3.4 Model assumptions

Common model assumptions are normality, independence of the elements of the error or
noise term, and homogeneity of variance. There are some assumptions whose failure is
unlikely to compromise the validity of analyses. We say that the method used is robust
against those assumptions. Other assumptions matter a lot. How do we know which is
which? Much of the art of applied statistics comes from knowing which assumptions are
important, and need careful checking. There are few hard and fast rules.
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3.4.1 Random sampling assumptions – independence

Typically, the data analyst has a sample of values that will be used as a window into a
wider population. The inferential methods that we will discuss require the assumption that
the sample has been generated by a specific random mechanism. Almost all the standard
elementary methods assume that all population values are chosen with equal probability,
independently of the other sample values. Use of these methods can be extended in various
ways to handle modifications of the simple independent random sampling scheme. For
example, we can modify the methodology to handle analyses of data from a random
sample of clusters of individuals.

Often samples are chosen haphazardly, for example, an experimenter may pick a few
plants from several different parts of a plot. Or a survey interviewer may, in a poor
quality survey, seek responses from individuals who can be found in a shopping center.
Self-selected samples can be particularly unsatisfactory, for example, those readers of a
monthly magazine who are sufficiently motivated to respond to a questionnaire that is
included with the magazine.

In practice, analysts may make the random sampling assumption when the selection
mechanism does not guarantee randomness. Inferences from data that are chosen haphaz-
ardly are inevitably less secure than where we have random samples. Random selection
avoids the conscious or unconscious biases that result when survey or other samplers
make their own selection, or take whatever items seem suitable.

Failure of the independence assumption is a common reason for wrong statistical
inferences. Failure is, at the same time, hard to detect. Ideally, data should be gathered in
such a way that the independence assumption is guaranteed. This is why randomization is
so important in designed experiments, and why random sampling, whether of individuals
or of clusters, is so important in designed sample surveys.

With observational data, it is necessary to think carefully about the mechanisms that
may have generated the data, and consider whether these are likely to have generated
dependencies. Common sources of dependence are clustering in the data, and temporal or
spatial dependence. Values within a cluster, or close together in time and/or space, may
be more similar than those in different clusters. Temporal and spatial dependence arise
because values that are close together in time or space are relatively more similar.

Tests for independence are at best an occasionally useful guide. They are of little use
unless we have some idea how the assumption may have failed, and the sample is large!
It is in general better to try to identify the nature of the dependence, and use a form of
analysis that allows for it.

Ideally, we want the model to reflect the design of the data collection, that is, the
experimental or sampling design. Often however, the mechanisms that generated the
data are not totally clear, and the model is at best a plausible guess. Models that do
not obviously reflect mechanisms that generated the data can sometimes be useful for
prediction. They can also, if their deficiencies are not understood or if they are used
inappropriately, be misleading. Careful checking that the model is serving its intended
purpose, and caution, are necessary.
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3.4.2 Checks for normality

Many data analysis methods rest on the assumption that the data are normally distributed.
Real data are unlikely to be exactly normally distributed. For practical purposes, two
questions are important:

• How much departure from normality can we tolerate?
• How can we decide if it is plausible that the data are from a normal distribution?

Broadly, it is necessary to check for gross departures from normality. Small departures
are of no consequence. For modest sized samples, only gross departures will be detectable.
Whether a specific form of departure will matter depends on the use made of the data.

For modest sized samples, only gross departures will be detectable. For small samples
(e.g., less than about 10), it is typically necessary to rely on sources of evidence that are
external to the data, for example, previous experience with similar data.

Examination of histograms

What checks will detect gross departures? The approach taken in Chapter 2 was to draw
a histogram or density plot. While histograms and density plots have their place, they are
not an effective means for assessing whether the distribution is of some standard form,
here the normal. Figure 3.5 shows five histograms, obtained by taking five independent
random samples of 50 values from a normal distribution.8 None of these histograms show
a close resemblance to a theoretical normal distribution.

The normal probability plot

A better tool for assessing normality is the normal probability plot. First the data values
are sorted. These are then plotted against the ordered values that might be expected if the
data really were from a normal distribution. If the data are from a normal distribution,
the plot should approximate a straight line. Figure 3.6 shows normal probability plots for
the same five sets of 50 normally distributed values as we displayed in Figure 3.5. The
code that is used is:

## Use qreference() (DAAG)

## With seed=21, the random numbers are as in the previous figure

qreference(m=50, seed=21, nrep=5, nrows=1) # 50 values per panel

8 ## The following gives a rough equivalent of the figure:
set.seed (21) # Use to reproduce the data in the figure
par(mfrow=c(2,3))
x <- pretty(c(6.5,13.5), 40)
for(i in 1:5){

y <- rnorm(50, mean=10, sd=1)
hist(y, prob=TRUE, xlim=c(6.5,13.5), ylim=c(0,0.5), main="")
lines(x, dnorm(x,10,1))
}

par(mfrow=c(1,1))
rm(x, y)
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Figure 3.5 Each panel shows a simulated distribution of 50 values from a normal distribution
with mean = 10 and sd = 1. The underlying theoretical normal curve is overlaid on the left panel.
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Figure 3.6 Normal probability plots for the same random normal data as were displayed in
Figure 3.5.

An alternative is to use the lattice function qqmath().9 To obtain a single plot of this
type, the function qqnorm(), which relies on functions from base graphics, may be
used. Specify, for example, qqnorm(rnorm(50).

Displays such as Figure 3.6 help the data analyst to calibrate the eye, to get a feel for
the nature and extent of departures from linearity that are to be expected in random normal
samples of the specified size, here 50. It is useful to repeat the process several times. Such
plots give a standard against which to compare the normal probability plot for the sample.

The sample plot, set alongside plots for random normal data

Consider data from an experiment that tested the effect of heat on the stretchiness of elastic
bands. Eighteen bands were first tested for amount of stretch under a load that stretched the
bands by a small amount (the actual load was 425 g, thought small enough not to interfere
with the elastic qualities of the bands). This information was used to arrange bands into
nine pairs, such that the two members of a pair had similar initial stretch. One member
of each pair, chosen at random, was placed in hot water (60–65 �C) for four minutes. The
other member of the pair remained at ambient temperature. All bands were then measured
for amount of stretch under a load of 1.35 kg weight. Table 3.2 shows the results.

We are interested in the distribution of the differences. In the next chapter, these will
be the basis for various statistical calculations. We present the normal probability plot
for these data in the lower left panel of Figure 3.7. The other seven plots are for samples
(all of size 9) of simulated random normal values.

9 set.seed(21) # Use the same setting as for the previous figure
library(lattice)
qqmath(˜rnorm(50*5)|rep(1:5,rep(50,5)), layout=c(5,1), aspect=1)
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Table 3.2 Eighteen elastic bands were divided into nine pairs,
with bands of similar stretchiness placed in the same pair. One
member of each pair was placed in hot water (60–65 �C) for four
minutes, while the other was left at ambient temperature. After a
wait of about 10 minutes, the amounts of stretch, under a 1.35 kg
weight, were recorded.

Pair #

1 2 3 4 5 6 7 8 9

Heated (mm) 244 255 253 254 251 269 248 252 292
Ambient 225 247 249 253 245 259 242 255 286
Difference 19 8 4 1 6 10 6 −3 6
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Figure 3.7 The lower left panel is the normal probability plot for heated–ambient differences.
Remaining panels show plots for samples of nine numbers from a normal distribution.

## Compare normal probability plot for normal-ambient difference

## with simulated normal values: data frame pair65 (DAAG)

qreference(pair65$heated - pair65$ambient, nrep=8)

The lower left panel shows the normal probability plot for the data that we have.
Remaining plots give a standard against which to compare the plot for the experimental
data. There is no obvious feature that distinguishes the plot in the lower left panel from
the seven reference plots.

Formal statistical testing for normality?

There are formal statistical tests for normality. A difficulty with such tests is that normality
is difficult to rule out in small samples, while in large samples the tests will almost
inevitably identify departures from normality that are too small to have any practical
consequence for standard forms of statistical analysis.
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Additionally, in large samples, the effects of averaging may lead to normality of
the statistic under consideration, even when the underlying population is clearly not
normally distributed. Here, we obtain help from an important theoretical result, called the
“Central Limit Theorem.” This theorem states that the distribution of the sample mean
approximates the normal distribution with arbitrary accuracy, provided a large enough
sample is taken (there are regularity conditions that must be satisfied, but these can usually
be taken for granted). There are similar results for a number of other sample statistics.
A consequence is that, depending on the analysis that is to be performed, normality may
not be an important issue for analyses where samples are large; tests for normality will
detect non-normality in contexts where there is the least reason to be concerned about it.

3.4.3 Checking other model assumptions

In Chapter 2, we discussed a number of exploratory techniques that can aid in checking
whether the standard deviation is the same for all observations in a data set. Following
analysis, a plot of residuals against fitted values may give useful indications. For example,
residuals may tend to fan out as fitted values increase, giving a “funnel” effect, a fairly
sure sign that the standard deviation is increasing. Alternatively, or additionally, there
may be evidence of outliers – one or more unusually large residuals. The major concern
may however be to identify points, whether or not outliers, that have such high influence
that they distort model estimates.

3.4.4 Are non-parametric methods the answer?

While sometimes useful, classical non-parametric tests that purport to be assumption-free
are not the answer to every problem of failure of assumptions. These tests do rest on
assumptions, and we still have to be assured that these assumptions are realistic. If used
in a way that ignores structure in the data that we should be modeling, we risk missing
insights that parametric methods may provide. Building too little structure into a model
can be just as bad as building in too much structure.

There is a trade-off between the strength of model assumptions and the ability to find ef-
fects. We have already seen that some of the newer methodologies such as lowess smoothing
are a welcome addition to the statistical toolbox. However, if we assume a linear relationship,
we may be able to find it, where we will find nothing if we look for a general form of
smooth curve or a completely arbitrary relationship. This is why simple non-parametric ap-
proaches are often unsatisfactory – they assume too little. Often they assume much less than
we know to be true. Johnson (1995) has useful comments on the role of non-parametric
tests. In part the objection is to a view of non-parametric modeling that is too limited.

3.4.5 Why models matter – adding across contingency tables

Subsection 2.2.1 discussed the UCBAdmissions data (datasets package). The figures
that were obtained by taking totals of admissions for males and females separately over
all six departments were misleading. Here, a simple contrived data set will be used for a
more detailed investigation of the effect that those data demonstrate.
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Table 3.3 An example that illustrates the dangers of adding over
contingency tables.

Engineering Sociology Total

male female male female male female

Admit 30 10 Admit 15 30 Admit 45 40
Deny 30 10 Deny 5 10 Deny 35 20

Table 3.3 is a contrived example that shows admission patterns in two separate uni-
versity faculties. Looking at the table of totals on the right, we gain the clear impression
that females are more likely to be admitted (40 out of 60 = 67%) than males (45 out
of 80 = 56%). Indeed, the proportion of female applicants who are admitted is, overall,
larger than the proportion of male applicants admitted.

The puzzle is that when we look at the individual faculties, females and males
are accepted in exactly the same proportions, lower for Engineering (50%) than for
Sociology (75%). This “paradox” was discussed earlier, in Subsection 2.2.1.

Observe that a greater proportion of males apply in Engineering, while a greater proportion
of females apply in Sociology. Thus the overall rate for males is biased towards the rate
for Engineering, while the overall rate for females is biased towards the rate for Sociology.

What model is in mind? For simplicity, suppose that the university in question has just
two faculties – Engineering and Sociology! Do we have in mind choosing a female at
random, then comparing her chances of admission with the chances for a male who has
been chosen at random? The randomly chosen male, who is more likely to be an engineer,
will have a poorer chance than a randomly chosen female – 56% as against 67%.

Or, is the interest in the chances of a particular student, be they engineer or sociol-
ogist? If the latter, then we first note the faculty to which the student will apply. The
admission rate is 50% for engineering applicants, as against 75% for sociology applicants,
irrespective of sex.

Here, and in the example in Subsection 2.2.1, information was available on the classify-
ing factor on which it was necessary to condition. This will not always be the case. In any
use of contingency table analyses, it is always possible that there is some further variable
that, when conditioned on, can reverse or otherwise affect an observed association.

In any overall analysis, the effect of the classifying (or conditioning) factor sex must
be explicitly incorporated in the model. There are various ways to do this. Section 8.3
demonstrates one suitable approach. See also Exercise 11 in Chapter 4, and the references
given there.

3.5 Recap

Statistical models have both signal components and noise components. In simpler cases,
which include most of the cases we consider:

observation = signal+noise�
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After fitting a model, we have:

observation = fitted value+ residual

which we can think of as:

observation = smooth component+ rough component�

The hope is that the fitted value will recapture most of the signal, and that the residual will
contain mostly noise. Unfortunately, as the relative contribution of the noise increases:

• It becomes harder to distinguish between signal and noise.
• It becomes harder to decide between competing models.

Model assumptions, such as normality, independence and constancy of the standard
deviation, should be checked, to the extent that this is possible.

3.6 Further reading

Finding the right statistical model is an important part of statistical problem solving.
Chatfield (2002, 2003) has helpful comments. Clarke (1968) has a useful discussion of
the use of models in archaeology. See also the very different points of view of Breiman
and Cox (as discussant) in Breiman (2001). Our stance is much closer to Cox than to
Breiman. See also our brief comments on Bayesian modeling in Section 4.10.

Johnson (1995) comments critically on the limitations of widely used non-parametric
methods. See Hall (2001) for an overview of non-parametrics from a modern perspective.

3.6.1 References for further reading

Bickel, P. J., Hammel, E. A. and O’Connell, J. W. 1975. Sex bias in graduate admissions:
data from Berkeley. Science 187: 398–403.

Breiman, L. 2001. Statistical modeling: the two cultures. Statistical Science 16: 199–215.
Chatfield, C. 2002. Confessions of a statistician. The Statistician 51: 1–20.
Chatfield, C. 2003. Problem Solving. A Statistician’s Guide, 2nd edn. Chapman and Hall.
Clarke, D. 1968. Analytical Archaeology. Methuen.
Hall, P. 2001. Biometrika centenary: non-parametrics. Biometrika 88: 143–65.
Johnson, D. H. 1995. Statistical sirens: the allure of non-parametrics. Ecology 76:

1998–2000.

3.7 Exercises

1. An experimenter intends to arrange experimental plots in four blocks. In each block there
are seven plots, one for each of seven treatments. Use the function sample() to find four
random permutations of the numbers 1 to 7 that will be used, one set in each block, to make
the assignments of treatments to plots.

2. Use y <- rnorm(100) to generate a random sample of 100 numbers from a normal
distribution. Calculate the mean and standard deviation of y. Now put the calculation in a
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loop and repeat 25 times. Store the 25 means in a vector named av. Calculate the standard
deviation of the values in av.

3. Create a function that does the calculations of Exercise 2. Run the function several times,
showing each of the distributions of 25 means in a density plot.

4. To simulate samples from normal populations having different means and standard deviations,
the mean and sd arguments can be used in rnorm(). Simulate a random sample of size 20
from a normal population having a mean of 100 and a standard deviation of 10.

5. Use mfrow to set up the layout for a 3 by 4 array of plots. In the top 4 panels, show normal
probability plots for 4 separate “random” samples of size 10, all from a normal distribution.
In the middle 4 panels, display plots for samples of size 100. In the bottom 4 panels, display
plots for samples of size 1000. Comment on how the appearance of the plots changes as the
sample size changes.

6. The function runif()generates a sample from a uniform distribution, by default on the
interval 0 to 1. Try x <- runif(10), and print out the resulting numbers. Then repeat
Exercise 5 above, but taking samples from a uniform distribution rather than from a normal
distribution. What shape do the plots follow?

7. The function pexp(x, rate=r) can be used to compute the probability that an exponential
variable is less than x. Suppose the time between accidents at an intersection can be modeled
by an exponential distribution with a rate of 0.05 per day. Find the probability that the next
accident will occur during the next three weeks.

8. Use the function rexp() to simulate 100 exponential random numbers with rate 0.2. Obtain
a density plot for the observations. Find the sample mean of the observations. Compare with
the population mean (the mean for an exponential population is 1/rate).

9.∗ This exercise investigates simulation from other distributions. The statement x <-

rchisq(10, 1) generates 10 random values from a chi-squared distribution with one
degree of freedom. The statement x <- rt(10, 1) generates 10 random values from a
t distribution with one degree of freedom. Make normal probability plots for samples of vari-
ous sizes from each of these distributions. How large a sample is necessary, in each instance,
to obtain a consistent shape?

10. The following data represent the total number of aberrant crypt foci (abnormal growths in
the colon) observed in seven rats that had been administered a single dose of the carcinogen
azoxymethane and sacrificed after six weeks (thanks to Ranjana Bird, Faculty of Human
Ecology, University of Manitoba for the use of these data):
87 53 72 90 78 85 83

Enter these data and compute their sample mean and variance. Is the Poisson model appropriate
for these data? To investigate how the sample variance and sample mean differ under the
Poisson assumption, repeat the following simulation experiment several times:
x <- rpois(7, 78.3)

mean(x); var(x)

11.∗ A Markov chain is a data sequence which has a special kind of dependence. For example, a
fair coin is tossed repetitively by a player who begins with $2. If “heads” appear, the player
receives one dollar; otherwise, she pays one dollar. The game stops when the player has either
$0 or $5. The amount of money that the player has before any coin flip can be recorded –
this is a Markov chain. A possible sequence of plays is as follows:
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Player’s fortune: 2 1 2 3 4 3 2 3 2 3 2 1 0
Coin toss result: T H H H T T H T H T T T

Note that all we need to know in order to determine the player’s fortune at any time is the
fortune at the previous time as well as the coin flip result at the current time. The probability
of an increase in the fortune is 0.5 and the probability of a decrease in the fortune is 0.5. Such
transition probabilities are usually summarized in a transition matrix:

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
�5 0 �5 0 0 0
0 �5 0 �5 0 0
0 0 �5 0 �5 0
0 0 0 �5 0 �5
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The (i, j) entry of this matrix refers to the probability of making a change from the value i to the
value j. Here, the possible values of i and j are 0� 1� 2� � � � � 5. According to the matrix, there is
a probability of 0 of making a transition from $2 to $4 in one play, since the (2,4) element is 0;
the probability of moving from $2 to $1 in one transition is 0.5, since the (2,1) element is 0.5.

The following function can be used to simulate N values of a Markov chain sequence, with
transition matrix P:
Markov <- function (N=100, initial.value=1, P)

{

X <- numeric(N)

X[1] <- initial.value + 1

n <- nrow(P)

for (i in 2:N){

X[i] <- sample(1:n, size=1, prob=P[X[i-1],])}

X - 1

}

(a) Simulate 15 values of the coin flip game, starting with an initial value of $2.
(b) Simulate 100 values of the Markov chain which has the following transition matrix. Save

the result to a vector and use ts.plot() to plot the sequence.

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0�10 0�90 0�00 0�00 0�00 0�00
0�50 0�00 0�50 0�00 0�00 0�00
0�00 0�50 0�00 0�50 0�00 0�00
0�00 0�00 0�50 0�00 0�50 0�00
0�00 0�00 0�00 0�50 0�00 0�50
0�00 0�00 0�00 0�00 1�00 0�00

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(c) Now simulate 1000 values from the above Markov chain, and calculate the proportion

of times the chain visits each of the states. It can be shown, using linear algebra, that in
the long run, this Markov chain will visit the states according to the following stationary
distribution:

0 1 2 3 4 5

0.1098901 0.1978022 0.1978022 0.1978022 0.1978022 0.0989011

There is a result called the ergodic theorem which allows us to estimate this distribution
by simulating the Markov chain for a long enough time. Compare your calculated
proportions with the above theoretical proportions. Repeat the experiment using 10 000
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simulated values; the calculated proportions should be even closer to the theoretically
predicted proportions in that case.

(d) Simulate 100 values of the Markov chain which has the following transition matrix. Plot
the sequence. Compare the results when the initial value is 1 with when the initial value
is 3, 4, or 5. [When the initial value is 0 or 1, this Markov chain wanders a bit before
settling down to its stationary distribution which is concentrated more on the values 4
and 5. This wandering period is sometimes called “burn-in.”]

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0�50 0�50 0 0 0 0
0�50 0�45 0�05 0 0 0
0 0�01 0 0�90 0�09 0
0 0 0�01 0�40 0�59 0
0 0 0 0�50 0 0�50
0 0 0 0 0�50 0�50

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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An introduction to formal inference

A random sample is a set of values drawn independently from a larger population.
A (uniform) random sample has the characteristic that all members of the population
have an equal chance of being drawn. In the previous chapter, we discussed the im-
plications of drawing repeated random samples from a normally distributed population,
where the probability that a value lies in a given interval is governed by the normal
density. In this chapter, we will expand upon that discussion by introducing the idea
of a sampling distribution, and the use of standard error to assess estimation accuracy.
Confidence intervals and tests of hypotheses offer a formal basis for inference, based
on the sampling distribution. We will comment on weaknesses in the hypothesis testing
framework.

4.1 Basic concepts of estimation

This section will introduce material that is fundamental to inference.

4.1.1 Population parameters and sample statistics

A population parameter numerically summarizes some aspect of a population. The most
commonly studied population parameter is the mean, the average of all of the population
values, usually denoted as �. It is usually unknown. If a (preferably random) sample has
been taken from a population, it is possible to compute the average from that sample;
this statistic is used as an estimator of the population mean.

Other commonly used statistics are the proportion, standard deviation, variance, median,
the quartiles, the slope of a regression line, and the correlation coefficient. Each may be
used as an estimate of the corresponding population parameter.

Why use the sample mean as an estimator?

First, it makes good intuitive sense. For many researchers that is adequate justification.
Second, it can be justified by the least squares principle that is the basis for the methods
of Chapters 5–7. Least squares estimates minimize a sum of squared residuals (see
Exercise 20).
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Maximum likelihood estimation

Maximum likelihood (ML) estimation is more generally applicable than least squares.
The idea is to select values for the parameters which maximize the probability (density)
of observing the given sample. For independent normal errors maximum likelihood leads,
where a least squares estimate is available, to the same estimate(s) as least squares. Thus,
the maximum likelihood estimate for the population mean is the sample mean.

4.1.2 Sampling distributions

In most situations, there will be a vast number of possible samples that could have been
taken from a particular population. Each such sample will usually result in a different
value for its mean. The distribution of these possible sample means is called the sampling
distribution of the mean. It is important to remember that we usually only collect one
sample, so only one sample mean will be available in practice.

The central limit theorem (alluded to in Chapter 3) says that, for a population with
mean � and standard deviation 	 , the sampling distribution of the mean can often be well
approximated by a normal distribution whose mean is � and whose standard deviation
is 	/

√
n. This result depends strongly on the assumptions that the n items in the sample

have been selected independently of each other. As the sample size increases, the normal
distribution will be an increasingly accurate approximation to the sampling distribution
of the mean.

Other statistics, such as the sample proportion, have their own sampling distributions.
Often, these sampling distributions are reasonably approximated by a normal distribution.

4.1.3 Assessing accuracy – the standard error

The standard error is defined as the standard deviation of the sampling distribution of
the statistic. An important special case is the standard error of the mean (SEM). If data
values are independent, then a suitable estimate for the SEM is:

sx̄ = s√
n

since s is an estimator of the population standard deviation 	 .
This deceivingly simple formula, relating the SEM to the standard deviation, hides

quite complex mathematical ideas. If the data are not independent, then this formula does
not apply.

The SEM indicates the extent to which the sample mean might be expected to vary
from one sample to another. Figure 4.1 compares the theoretical sampling distribution
of the standard error of the mean, for samples of sizes 4 and 9, with the distribution of
individual sample values. Note how the distribution becomes narrower as the sample size
increases; this reflects the decrease in the SEM with increasing sample size: the sample
mean estimates the population mean with an accuracy that improves as the sample size
increases.

The SEM provides a way of measuring the accuracy of the sample mean. A small value
of the SEM suggests that the sample mean might be quite close to the population mean,



4.1 Basic concepts of estimation 103

n = 1

Sampling 
distribution 
of means of 
samples  of 
size n = 4

7 8 9 1 0 11 12 130.0
0.2

0.4
0.6

0.8
1.0

1.2

n = 1

Sampling 
distribution 
of means of 
samples  of 
size n = 9

7 8 9 1 0 11 12 13

Proba
bility dens

ity

Figure 4.1 Sampling distribution of the mean (n = 4 and n = 9), compared with the distribution
of individual sample values, for a normal population with mean = 10 and standard deviation = 1.

while a large value of the SEM allows for the possibility that the sample and population
means are far apart.

An example

The data frame pair65, shown earlier in Table 3.2, has information on nine sets of
paired comparisons, leading to nine differences in the amount of stretch under a 1.35 kg
weight. These were:

Difference 19 8 4 1 6 10 6 −3 6

The mean is 6.33, the SD is s = 6.10, and SEM = 6.10/
√

9 = 2.03.1 We may report:
“The mean change is 6.33 [SEM 2.03], based on n = 9 values,” or “The mean change is
6.10/2.03 (= 3.11) times the standard error.”

4.1.4 The standard error for the difference of means

We often wish to compare means of different samples. Where there are two independent
samples of size n1 and n2, the comparison is usually in the form of a difference:

x̄1 − x̄2

where x̄1 and x̄2 denote the respective sample means. If the corresponding standard errors
are denoted by SEM1 and SEM2, then the standard error of the difference (SED) can be
computed using the formula:

SED =
√

SEM2
1 +SEM2

2�

If all SEMs are the same, then for all comparisons:

SED = √
2×SEM�

1 ## Calculate heated-ambient; take heated & ambient from columns of pair65
test <- with(pair65, heated-ambient)
c(mean = mean(test), SD = sd(test), SEM = sd(test)/sqrt(length(test)))
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It is sometimes reasonable to assume equality of the standard deviations in the populations
from which the samples are drawn. Then:

SEM1 = s√
n1

� SEM2 = s√
n2

and the formula can be written as:

SED = s

√
1
n1

+ 1
n2

where s is the pooled standard deviation estimate described in Subsection 20.
As an example, consider the unpaired elastic band experiment data of Subsection 20.

The pooled standard deviation estimate is 10.91. Hence, the SED is 10�91×
√

1
10 + 1

11 =
4�77.2

4.1.5∗ The standard error of the median

For data that come from a normal distribution, there is a similarly simple formula for the
standard error of the median. It is:

SEmedian =
√




2
s√
n

≈ 1�25
s√
n

�

This indicates that the standard error of the median is about 25% greater than the standard
error of the mean. Thus, for data from a normal distribution, the population mean can be
estimated more precisely than can the population median.

Consider again the cuckoos data. The median and standard error for the median of
the egg lengths in the wrens’ nests are 21.0 and 0.244, respectively.3

A different formula for the standard error of the median, one that depends on the distribu-
tion, must be used when the data cannot reasonably be approximated by a normal model.

4.1.6 The sampling distribution of the t-statistic

The formula:

t = x̄−�

SEM

counts up the number of standard error units between the true value � and the sample
estimate x̄; it can be thought of as a standardized distance between the true mean and the

2 heated <- c(254, 252, 239, 240, 250, 256, 267, 249, 259, 269)
ambient <- c(233, 252, 237, 246, 255, 244, 248, 242, 217, 257, 254)
v1 <- var(heated) # 10 numbers; 10-1 = 9 d.f.
v2 <- var(ambient) # 11 numbers; 11-1 = 10 d.f.
v <- (9*v1 + 10*v2)/(9+10) # Pooled estimate of variance
# Estimate SED; variances may not be equal
c(sem1 = sqrt(v1/10), sem2 = sqrt(v2/11), sed = sqrt(v1/10 + v2/11))
# Estimate SED; use pooled estimate
c(sd = sqrt(v), sed = sqrt(v1/10 + v2/11))

3 ## median and SD for length, by species: data frame cuckoos (DAAG)
wren <- split(cuckoos$length, cuckoos$species)$wren
median(wren)
n <- length(wren)
sqrt(pi/2)*sd(wren)/sqrt(n) # this SE computation assumes normality
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sample mean. The quantity t will be approximately distributed according to a t-distribution,
under the assumptions we have been making.

Note that the variability in t has two sources: the sampling variability of x̄ and the
sampling variability of SEM. If we could use the true value 	/

√
n in place of s/

√
n for

SEM, the above ratio would have a standard normal distribution. Because of the additional
variation due to the SEM, the distribution of t is more spread out than a standard normal
distribution.

In fact, the t-distribution depends on the number of degrees of freedom associated with
the denominator (SEM). Because n− 1 degrees of freedom have been used to calculate
the standard deviation s, the t random variable has a t-distribution on n− 1 degrees of
freedom. As the sample size n increases (i.e. the number of degrees of freedom increases),
the sample standard deviation gives an increasingly good approximation to the population
standard deviation 	; thus, the t-statistic becomes more and more like a standard normal
random variable as the sample size increases.

Figure 4.2B shows the density curve for a normal distribution overlaid with those for
t-distributions with 3 d.f. respectively. The density curve for a t-distribution with 3 d.f. is
much more clearly different from the normal than in Figure 4.2A, where the comparison
was with a t-distribution with 8 degrees of freedom. The main difference, in each case,
is in the tails. The t-distribution is less concentrated around the mean than is the normal
distribution and more spread out in the tails, with the difference greatest when the number
of degrees of freedom is small. In the terminology of Subsection 3.2.2, the t-distribution
is heavy-tailed – heavier for smaller than for larger degrees of freedom.

For the data in the data frame pair65, the relevant inference is suitably based on the
mean d̄ of the differences that were observed when the bands were heated. In order to
standardize this mean difference, it needs to be divided by its standard error SE�d̄�, that
is, the relevant statistic is:

t = d̄

SE�d̄�
= d̄

s/
√

9
= 6�33

2�47
= 3�11�

The mean is 3.11 times the magnitude of the standard error.
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Figure 4.2 In A, we have overlaid the density for a normal distribution with the density for a
t-distribution with 8 d.f. In B, we have overlaid the density for a t-distribution with 3 d.f.
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Calculations for the t-distribution

Calculations for the t-distribution follow the same pattern as those shown for the normal
distribution in Subsection 3.2.2, but now with a distribution whose standard deviation
is the SEM, which has to be estimated. There are two sorts of calculation that may be
useful, both of which can be related to Figure 4.3.

• Given the distance from the mean, calculate the area under the curve. Thus,
calculate the area under the density curve within some specified number of standard
errors either side of the mean. For this, use functions that have p as their initial letter,
here pnorm() and pt:
> # Plus or minus 1.96SE normal distribution limits, e.g.

> pnorm(1.96) - pnorm(-1.96)

[1] 0.95

> # Plus or minus 2.31SE t distribution (8 df) limits, e.g.

> pt(2.31, 8) - pt(-2.31,8) # 2.31 SEs either side

[1] 0.95

• Given an area under the curve, calculate the limit or limits. Thus, what distance
from the mean gives an area under the curve, up to and including that point, that takes
some specified value? For this, use functions that have q as their initial letter, here
qnorm() and qt():
> qnorm(0.975) # normal distribution

[1] 1.96

> qt(0.975, 8) # t-distribution with 8 d.f.

[1] 2.31

The second of these statements makes it possible to say that in sampling from the
sampling distribution of t8 = d̄−�

s/
√

9
, 95% of the values of t8 will lie between −2�31 and

2.31, that is, d̄ −� will lie between −2�31s and 2.31s. In other words, in 90% of such
samples d̄ will lie within a distance 2.31s of �. It is this observation that will allow, in
Section 4.2, the calculation of a “confidence” (or coverage) interval for �.
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0.025 + 0.95
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Figure 4.3 Calculation of the endpoints of the symmetrically placed region that encloses 95% of
the probability: (A) for a normal distribution, and (B) for a t-distribution with 8 d.f. In each panel,
the upper 2.5% of the area under the curve is shaded in gray.



4.2 Confidence intervals and hypothesis tests 107

Table 4.1 A comparison of normal distribution endpoints (multipliers for
the SEM) with the corresponding t-distribution endpoints on 8 d.f.

Number of SEMs
Probability enclosed Cumulative
between limits probability normal distribution t-distribution (8 d.f.)

68.3% 84�1% 1�0 1�07
95% 97�5% 1�96 2�31
99% 99�5% 2�58 3�36
99.9% 99�95% 3�29 5�04

Table 4.1 summarizes information on the multipliers, for a normal distribution, and for a
t-distribution with 8 d.f., for several different choices of area under the curve. We leave it
as an exercise for the reader to add further columns to this table, corresponding to different
numbers of d.f. Changing from a normal distribution to a t-distribution with 8 d.f. led to
a small change, from 1.0 to 1.07, for enclosing the central 68.3% of the area. There is a
substantial difference, giving an increase from 1.96 to 2.31, for enclosing 95% of the area.

How good is the normal theory approximation?

For random samples from a distribution that is close to symmetric, the approximation
is often adequate, even for samples as small as 3 or 4. In practice, we may know little
about the population from which we are sampling. Even if the main part of the population
distribution is symmetric, occasional aberrant values are to be expected. Such aberrant
values do, perhaps fortunately, work in a conservative direction – they make it more
difficult to detect genuine differences. The take-home message is that, especially in small
samples, the probabilities and quantiles can be quite imprecise. They are rough guides,
intended to assist researchers in making a judgment.

4.2 Confidence intervals and hypothesis tests

Often we want an interval that most often, when samples are taken in the way that
the one available sample has been taken, will include the population mean. There are
two common choices for the long run proportion of similar samples for which the
corresponding intervals should contain the population mean – 95% and 99%.

It is possible to use confidence intervals as the basis for tests of hypotheses. If the
confidence interval for the population mean does not contain zero, this is equivalent to
rejection of the hypothesis that the population mean is zero.

4.2.1 One- and two-sample intervals and tests for means

Confidence intervals of 95% or 99%

We will use the paired elastic band data of Table 3.2 to illustrate the calculations. We
noted above, in Subsection 4.1.6, that the mean change was 6.33 [SEM 2.03], based on
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n = 9 pairs of values. From Table 4.1, we note that, in 95% of samples of size 9 (8 d.f.),
the sample mean d̄ will lie within 2.31 × SEM of the population mean �. Thus a 95%
confidence interval for the mean has the endpoints:4

�6�33−2�03×2�31� 6�33+2�03×2�31� = �1�64� 11�02��

From Table 4.1, the multiplier for a 99% confidence interval is 3.36, much larger
than the multiplier of 2.58 for the case where the standard deviation is known.5 A 99%
confidence interval is:

�6�33−2�03×3�36� 6�33+2�03×3�36� = �−0�49� 13�15��

Tests of hypotheses

We could ask whether the population mean difference for the paired elastic bands really
differs from zero. Since the 95% confidence interval does not contain zero, we can
legitimately write:

Based on the sample mean of 6.33, with SEM = 2�03, the population mean is greater
than zero (p < 0�05).

The 99% confidence interval for the elastic band differences did contain zero. Therefore
we cannot replace (p < 0�05) by (p < 0�01) in the statement above. The smallest p that we
could substitute into the above statement thus lies between 0.01 and 0.05. This smallest
p is called the p-value. A first step, for this example, is to use the pt() function to
calculate the probability that the t-statistic is less than:

−mean/SEM = −6�10/2�03�

The required calculation is:

> 1-pt(6.33/2.03, 8) # Equals pt(-6.33/2.03, 8)

[1] 0.00713

We then double 0.00713 to determine the sum of the probabilities in the two tails, leading
to p = 0�014. The result may be summarized in the statement: “Based on the sample
mean of 6.33, the population mean is greater than zero �p = 0�014�.”

The language of hypothesis testing provides a formal framework for such inferences.
Taking the population mean to be �, the null hypothesis is:

H0 � � = 0

while the alternative hypothesis is � 	= 0.

4 ## 95% CI for mean of heated-ambient: data frame pair65 (DAAG)
pair65.diff <- with(pair65, heated-ambient)
pair65.n <- length(pair65.diff)
pair65.se <- sd(pair65.diff)/sqrt(pair65.n)
mean(pair65.diff) + qt(c(.025,.975),8)*pair65.se

5 qt(0.995, 8)
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The formal methodology of hypothesis testing may seem contorted. A small p-value
makes the null hypothesis appear implausible. It is not a probability statement about the
null hypothesis itself, or for that matter about its alternative. All it offers is an assessment
of implications that flow from accepting the null hypothesis. A straw man is set up, the
statement that � = 0. The typical goal is to knock down this straw man. By its very
nature, hypothesis testing lends itself to various abuses.

What is a small p-value?

At what point is a p-value small enough to be convincing? Conventionally, p = 0�05
(= 5%) is used as the cutoff. But 0.05 is too large, if results from the experiment are to
be made the basis for a recommendation for changes to farming practice or to medical
treatment. It may be too small when the interest is in deciding which effects merit further
experimental or other investigation. There must a careful balancing of the likely costs
and benefits of any such recommendation, having regard to the statistical evidence. In
any particular case, consider carefully:

• Is there other relevant evidence, additional to that summarized in a p-value or confi-
dence interval?

• What is the most helpful way to present results: a p-value, or a confidence interval, or
something else again?

A summary of one- and two-sample calculations

Confidence intervals for a mean difference, or for a difference of means, have the form:

difference ± t-critical value × standard error of difference.

The t-statistic has the form:

t = difference
standard error of difference

�

Given t, the p-value for a (two-sided) test is defined as:

P�T > t�+P�T < −t�

where T has a t-distribution with the appropriate number of degrees of freedom. A small
p-value corresponds to a large value of �t�, regarded as evidence that the true difference
is non-zero and leading to the rejection of the null hypothesis.

Table 4.2 lists confidence intervals and tests in the one- and two-sample cases.6 The
single sample example is for the paired elastic band data that we discussed at the beginning

6 ## t-test and confidence interval calculations
heated <- c(254, 252, 239, 240, 250, 256, 267, 249, 259, 269)
ambient <- c(233, 252, 237, 246, 255, 244, 248, 242, 217, 257, 254)
t.test(heated, ambient, var.equal=TRUE)
rm(heated, ambient)
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Table 4.2 Formulae for confidence intervals and tests of hypothesis based on
the t-distribution.

Confidence interval Test statistic D.f.

One-sample t d̄± tcritSE�d̄� t = d̄
SE�d̄�

n−1

e.g. 6�33±2�306× 6�10√
9

t = 6�33
6�10/

√
9

8

Two-sample t x̄2 − x̄1 ± tcritSE�x̄2 − x̄1� t = x̄2 − x̄1�
SE�x̄2 − x̄1�

n1 +n2 −2

e.g. 253�5−244�1±2�09×10�91
√

1
10 + 1

11 t = 253�5−244�1

10�91×
√

1
10 + 1

11

19
= 253�5−244�1±2�09×4�77
= �−0�6� 19�4�

Here, tcrit is the 97.5th percentile of a t-statistic with 8 df (1-sample example) or 19 df
(2-sample example). (The 97.5th percentile is the same as the two-sided 5% critical value.)

of this section. The example that we use for the two-sample calculations was discussed
in Subsection 20.

When is pairing helpful?

Figure 4.4 shows, for two different sets of paired data, a plot of the second member of
the pair against the first.7 The first panel is for the paired elastic band data of Subsection
4.1.6, while the second panel (for the data set mignonette) is from the biologist Charles
Darwin’s experiments that compared the heights of crossed plants with the heights of
self-fertilized plants (data, for the wild mignonette Reseda lutea, are from p. 118 of
Darwin, 1877). Plants were paired within the pots in which they were grown, with one
plant on one side and one on the other.

For the paired elastic band data there is a clear correlation, and the standard error of
the difference is much less than the root mean square of the two separate standard errors.
For Darwin’s data there is little evidence of correlation. The standard error of differences
of pairs is about equal to the root mean square of the two separate standard errors. For
the elastic band data, the pairing was helpful; it led to a low SED. The pairing was not
helpful for Darwin’s data (note that Darwin (cited above) gives other data sets where the
pairing was helpful, in the sense of allowing a more accurate comparison).

If the data are paired, then the two-sample t-test corresponds to the wrong model!
It is appropriate to use the one-sample approach, whether or not there is evidence of
correlation between members of the same pair.

7 ## heated vs ambient: pair65 (DAAG); and cross vs self: mignonette (DAAG)
par(mfrow=c(1,2))
attach(pair65); attach(mignonette)
plot(heated ˜ ambient); abline(0, 1) # left panel
abline(mean(heated-ambient), 1, lty=2)
plot(cross ˜ self); abline(0, 1) # right panel
abline(mean(cross-self), 1, lty=2)
detach(pair65); detach(mignonette); par(mfrow = c(1,1))
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Figure 4.4 Second versus first member, for each pair. The first panel is for the ambient/heated
elastic band data from Subsection 4.1.6, while the second is for Darwin’s plants.

What if the standard deviations are unequal?

If the assumption of equal variances or standard deviations fails we have heterogeneity
of variance. The t-statistic based on the pooled variance estimate is then inappropriate.
The Welch procedure gives an adequate approximation, unless degrees of freedom are
very small. The Welch statistic is the difference in means divided by the standard error
of difference, that is:

t = x̄2 − x̄1

SED
�

where

SED =
√

s2
2

n2

+ s2
1

n1

�

If the two variances are unequal this does not have a t-distribution. However, critical
values are quite well approximated by the critical values of a t-distribution with degrees
of freedom given by a readily calculated function of the observed sample variances and
sample sizes. The most commonly used approximation is that of Welch (1949), leading
to the name Welch test. For details, see Miller (1986). The function t.test() has
the Welch test as its default; equal variances are assumed unless the parameter setting
var.equal=TRUE is given.

Note that if n1 = n2 then the statistic is the same as for the t-test that is based
on the pooled estimate of variance. However, the degrees of freedom are likely to be
reduced.

Different ways to report results

There are many situations where means and standard errors are all that is needed. Where
treatment differences are large, more than about six times the SEM for any individual
treatment or four times the SED for comparing two means, there may be no point in
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presenting the results of significance tests. It may be better to quote only means and
standard errors.

For the paired elastic band data of Table 3.2, the mean difference in amount of stretch
before and after heating is 6.33, with a standard deviation of 6.10. The standard error
of this difference (SED) is thus 6�10/

√
9 = 2�03. The mean is 3.11 times the magnitude

of the standard error. Especially in engineering and physical science contexts where the
aim is to accompany a report of the mean with a statement of its precision, it would be
enough to report: “The mean change is 6.33 [SED 2.03].”

Confidence intervals and hypothesis testing give this result a more interpretive twist.
It is useful to set these various alternatives side by side:8

1. The mean change is 6.33 [SED 2.03].
2. The t-statistic is t = 6�333/2�034 = 3�11, on 8 �= 9−1� degrees of freedom. In other

words, the difference is 3.11 times the standard error.
3. A 95% confidence interval for the change is:

�6�33−2�306×2�034� 6�33+2�306×2�034��

i.e. (1.64, 11.02).
[The multiplier, equal to 2.306, is the 5% two-sided critical value for a t-statistic on
8 �= 9−1� d.f.]

4. We reject the null hypothesis that the true mean difference is 0 �p = 0�014� – see
Subsection 34 for definitions.
[The two-sided p-value for t = 3�11 on 8 d.f. is 0.014.]

Alternative 1 is straightforward. The t-statistic (alternative 2) expresses the change as a
multiple of its standard error. Often, and especially if the difference is more than four or
five times the SED, it is all that is needed. The conventional wisdom is that the change
is worthy of note if the p-value is less than 0.05 or, equivalently, if the 95% confidence
interval does not contain 0. For this, the t-statistic must be somewhat greater than 1.96,
that is, for all practical purposes >2.0. For small degrees of freedom, the t-statistic must
be substantially greater than 2.0.

Readers who have difficulty with alternatives 3 and 4 may find it helpful to note
that these restate and interpret the information in alternatives 1 and 2. Those who have
problems with confidence intervals and (especially) tests of hypotheses are in good
company. There is an increasing support for the view that they should play a relatively
minor role in statistical analysis or be eliminated altogether.

If standard errors are not enough and formal inferential information is required, confi-
dence intervals may be preferable to formal tests of hypotheses.

8 pair65.diff <- with(pair65, heated-ambient)
n <- length(pair65.diff)
av <- mean(pair65.diff); sd <- sqrt(var(pair65.diff)); se <- sd/sqrt(n)
print(c(av, se)) # Item 1
print(av/se) # Item 2
t.test(pair65.diff) # Items 3 and 4
rm(pair65.diff, n, av, sd, se)
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Table 4.3 Approximate
95% confidence interval,
assuming 0.35 ≤ 
 ≤ 0.65.

Approximate 95%
n confidence interval

25 p±20%
100 p±10%
400 p±5%

1000 p±3�1%

4.2.2 Confidence intervals and tests for proportions

We assume that individuals are drawn independently and at random from a binomial
population where individuals are in one of two categories – male as opposed to female, a
favorable treatment outcome as opposed to an unfavorable outcome, survival as opposed to
non-survival, defective as opposed to non-defective, Democrat as opposed to Republican,
etc. Let 
 be the population proportion. In a sample of size n, the proportion in the
category of interest is denoted by p. Then:

SE�p� = √

�1−
�/n�

An upper bound for SE[p] is 1/�2
√

n�. If 
 is between about 0.35 and 0.65, the inaccuracy
in taking SE[p] as 1/�2

√
n� is small.

This approximation leads to the confidence intervals shown in Table 4.3. Note again
that the approximation is poor if 
 is outside the range 0.35 to 0.65.

An alternative is to use the estimator:

SE�p� =
√

p�1−p�

n
�

An approximate 95% confidence bound for the proportion 
 is then:

p±1�96

√
p�1−p�

n
�

4.2.3 Confidence intervals for the correlation

The correlation measure that we discuss here is the Pearson or product–moment correla-
tion, which measures linear association.

The standard error of the correlation coefficient is typically not a useful statistic.
The distribution of the sample correlation, under the usual assumptions (e.g., bivariate
normality), is too skew. The function cor.test() may be used to test the null hypoth-
esis that the sample has been drawn from a population in which the correlation � is zero.
This requires the assumption that the conditional distribution of y, given x, is normal,
independently for different ys and with mean given by a linear function of x.
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Classical methods for comparing the magnitudes of correlations, or for calculation of a
confidence interval for the correlation, rely on the assumption that the joint distribution of
(x, y) is bivariate normal. In addition to the assumption for the test that � = 0, we need to
know that x is normally distributed, independently between (x, y) pairs. This assumption
is required for the default confidence interval that cor.test() outputs. In practice, it
may be enough to check that both x and y have normal distributions.

4.2.4 Confidence intervals versus hypothesis tests

Many researchers find hypothesis tests (significance tests) hard to understand. The
methodology is too often abused. Papers that present a large number of significance
tests are, typically, not making good use of the data. Also, it becomes difficult to know
what to make of the results. Among a large number of tests, some will be significant as
a result of chance. Misunderstandings are common in the literature, even among mature
researchers. A p-value does not allow the researcher to say anything about the probability
that either hypothesis, the null or its alternative, is true. Then why use them? Perhaps the
best that can be said is that hypothesis tests often provide a convenient and quick answer
to questions about whether effects seem to stand out above background noise. However
if all that emerges from an investigation are a few p-values, we have to wonder what has
been achieved.

Because of these problems, there are strong moves away from hypothesis testing and
towards confidence intervals. Tukey (1991) argues strongly, and cogently, that confidence
intervals are more informative and more honest than p-values. He argues:

Statisticians classically asked the wrong question – and were willing to answer with a lie, one
that was often a downright lie. They asked “Are the effects of A and B different?” and they were
willing to answer “no”.

All we know about the world teaches us that the effects of A and B are always different – in
some decimal place – for every A and B. Thus asking “Are the effects different?” is foolish. What
we should be answering first is “Can we tell the direction in which the effects of A differ from
the effects of B?” In other words, can we be confident about the direction from A to B? Is it “up”,
“down”, or “uncertain”? [Tukey, 1991]

Tukey argues that we should never conclude that we “accept the null hypothesis.”
Rather our uncertainty is about the direction in which A may differ from B. Confidence
intervals do much better at capturing the nature of this uncertainty.

Here are guidelines on the use of tests of significance. Few scientific papers make
more than half-a-dozen points that are of consequence. Any significance tests should be
closely tied to these main points, preferably with just one or two tests for each point
that is made. Keep any significance tests and p-values in the background. Once it is
apparent that an effect is statistically significant, the focus of interest should shift to its
pattern and magnitude, and to its scientific significance. For example, it is very poor prac-
tice to perform t-tests for each comparison between treatments when the real interest is
(or should be) in the overall pattern of response. Where the response depends on a con-
tinuous variable, it is often pertinent to ask such questions as whether the response keeps
on rising (falling), or whether it rises (falls) to a maximum (minimum) and then falls (rises).
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Table 4.4 Contingency table derived from
data that relates to the Lalonde (1986) paper.

High school
graduate certificate

yes no

NSW74 male trainees 54 131
PSID3 males 63 65

Significance tests should give the researcher, and the reader of the research paper,
confidence that the effects that are discussed are real! The focus should then move to
the substantive scientific issues. Statistical modeling can be highly helpful for this. The
interest is often, finally, in eliciting the patterns of response that the data present.

4.3 Contingency tables

Table 4.4 is from US data that were used in the evaluation of labor training programs,
aimed at individuals who had experienced economic and social difficulties.9 The NSW74
trainee group had participated in a labor training program, while the PSID3 group had
not. These data will be further discussed in Section 13.2.

A chi-squared test for no association has:

> chisq.test(table(nsw74psid3$trt, nsw74psid3$nodeg))

> # Specify correct=FALSE

. . . .

X-squared = 12, df = 1, p-value = 0.0004975

Clearly, high school dropouts are more strongly represented in the NSW74 data.

The mechanics of the calculation

The null hypothesis is that the proportion of the total in each cell is, to within random error,
the result of multiplying a row proportion by a column proportion. The independence
assumption, that is, the assumption of independent allocation to the cells of the table, is
crucial.

Assume there are I rows and J columns. The expected value in cell (i, j) is calculated as:

Eij = (proportion for row i) × (proportion for column j) × total�

9 ## Compare #’s with a high school qualification, between
## ‘treated’ and ‘untreated’: data frame nsw74psid3 (DAAG)
table(nsw74psid3$trt, nsw74psid3$nodeg)
# Relative to Table 4.4, the rows will be interchanged.
# PSID3 males are coded 0; NSW74 male trainees are coded 1.
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Table 4.5 The calculated expected values for the contingency table in Table 4.4.

High school graduate

yes no Total Row proportion

NSW74 trainees 54 (69.15) 131 (115.85) 185 185/313 = 0�591
PSID3 63 (47.85) 65 (80.15) 128 128/313 = 0�409
Total 117 196 313
Column proportion 117/313 = 0�374 196/313 = 0�626

Table 4.6 Contingency table compiled
from Hobson (1988, table 12.1, p. 248).

Object moves

Dreamer moves yes no

yes 5 17
no 3 85

We can then obtain a score for each cell of the table by computing the absolute value of
the difference between the expected value and the observed value, subtracting a continuity
correction of 0.5 (this is the default), squaring, dividing the result by the expected value,
and replacing any scores that are less than zero by zero. Summing over all scores gives
the chi-squared statistic.

Under the null hypothesis the chi-squared statistic has an approximate chi-squared
distribution with (I −1)(J −1) degrees of freedom. In Table 4.5, the values in parentheses
are the expected values Eij .

The expected values are found by multiplying the column totals by the row proportions.
(Alternatively, the row totals can be multiplied by the column proportions.) Thus 117×
0�591 = 69�15, 196×0�591 = 115�85, etc.

An example where a chi-squared test may not be valid

In Table 4.6 we summarize information that Hobson (1988) derived from drawings
of dreams, made by an unknown person that he calls “The Engine Man.” Among other
information Hobson notes, for each of 110 drawings of dreams made, whether the dreamer
moves, and whether an object moves. Dreamer movement may occur if an object moves,
but is relatively rare if there is no object movement. (Note that Hobson does not give the
form of summary that we present in Table 4.6.)

It may also seem natural to do a chi-squared test for no association.10 This gives
�2 = 7�1 (1 d.f.), p = 0�008.

10 engineman <- matrix(c(5,3,17,85), 2,2)
chisq.test(engineman)
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Table 4.7 Cross-classification of
species occurring in South Australia/
Victoria and in Tasmania.

Habitat type
Common/rare
classification D W WD

CC 37 190 94
CR 23 59 23
RC 10 141 28
RR 15 58 16

A reasonable rule, for the use of the chi-squared approximation, may be that all
expected values should be at least 2 (Miller, 1986), a requirement that is satisfied for this
application of the test. A check is to do a Fisher exact test. This is available in a number
of different statistical packages, including R. Surprisingly, the Fisher exact test11 gives
exactly the same result as the chi-squared test, i.e. p = 0�008.

More seriously, there is a time sequence to the dreams. Thus, there could well be a
clustering in the data, that is, runs of dreams of the same type. Hobson gives the numbers
of the dreams in sequence. Assuming these represent the sequence in time, this would
allow a check of the strength of any evidence for runs. Hobson’s table has information
that our tabular summary (Table 4.6) has not captured.

4.3.1 Rare and endangered plant species

The calculations for a test for no association in a two-way table can sometimes give
useful insight, even where a formal test of statistical significance would be invalid. The
example that now follows (Table 4.7) illustrates this point. Data are from species lists for
various regions of Australia. Species were classified CC, CR, RC and RR, with C denoting
common and R denoting rare. The first code letter relates to South Australia and Victoria,
and the second to Tasmania. They were further classified by habitat according to the
Victorian register, where D= dry only, W= wet only, and WD= wet or dry.12

We use a chi-squared calculation to check whether the classification into the different
habitats is similar for the different rows. Details of the calculations are:

> chisq.test(rareplants, correct=FALSE)

Pearson’s Chi-squared test

data: rareplants

X-squared = 34.99, df = 6, p-value = 4.336e-06

11 fisher.test(engineman)
12 ## Enter the data thus:

rareplants <- matrix(c(37,190,94,23,59,23,10,141,28,15,58,16), ncol=3,
byrow=TRUE, dimnames=list(c("CC","CR","RC","RR"), c("D","W","WD")))
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This looks highly significant. This low p-value should attract a level of scepticism. We do
not have a random sample from some meaningful larger population. Suppose that there
is clustering, so that species come in closely related pairs, with both members of the pair
always falling into the same cell of the table. This will inflate the chi-squared statistic by
a factor of 2 (the net effect of inflating the numerator by 22, and the denominator by 2).
There probably is some such clustering, though not of the type that we have suggested
by way of this simplistic example. Such clustering will inflate the chi-squared statistic
by an amount that the available information does not allow us to estimate.

The standard Pearson chi-squared tests rely on multinomial sampling assumptions, with
counts entering independently into the cells. Where it is possible to form replicate tables,
the assumption should be tested.

Figure 4.5 shows expected number of species, by habitat.13

Examination of departures from a consistent overall row pattern

The investigator then needs to examine the nature of variation with the row clas-
sification. For this, it is helpful to look at the residuals; these are calculated as
�observed − expected�/expected0�5:

> x2 <- chisq.test(rareplants)

> ## Standardized residuals

> residuals(x2)

D W WD

CC -0.369 -1.1960 2.263

CR 2.828 -1.0666 -0.275

Habitat

Expected numb
er of species CC

CC

CC

CR

CR

CRRC

RC

RC

RR

RR

RR

D W W D

50
100

150
200

Figure 4.5 Expected number of species, by habitat, for the rareplants data.

13 x2 <- chisq.test(rareplants)
x2E <- stack(data.frame(t(x2$expected)))
habitat <- rep(c(1,2,3), 4)
plot(x2E$values ˜ habitat, axes=FALSE, xlim=c(0.5, 3.5), pch=16,

xlab="habitat", ylab="Expected Number of Species")
text(x2E$values ˜ habitat, labels=x2E$ind, pos=rep(c(4,4,2,2),3))
axis(1, at=seq(1,3), labels=c("D", "W", "WD"))
axis(2)
box()
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RC -2.547 2.3675 -2.099

RR 1.242 0.0722 -1.023

The null hypothesis implies that the expected relative numbers in different columns are
the same in every row. The chi-squared residuals show where there may be departures
from this pattern. In large tables these will, under the null hypothesis, behave like random
normal deviates with mean zero and variance one. The values that should be noted, if the
assumptions required for a chi-squared test are satisfied, are those whose absolute value
is somewhat greater than 2.0. For the present table, there are five standardized residuals
whose value is substantially greater than 2.0. It is these, and especially the two that are
largest, that should perhaps attract attention.

Notice that the CC species are, relative to the overall average, over-represented in the
WD classification, the CR species are over-represented in the D classification, while the
RC species are under-represented in D and WD and over-represented in W.

For reference, here is the table of expected values:

> x2$expected

D W WD

CC 39.3 207.2 74.5

CR 12.9 67.8 24.4

RC 21.9 115.6 41.5

RR 10.9 57.5 20.6

4.3.2 Additional notes

Interpretation issues

Having found an association in a contingency table, what does it mean? The interpretation
will differ depending on the context. The incidence of gastric cancer is relatively high in
Japan and China. Do screening programs help? Here are two ways in which the problem
has been studied:

• In a long-term follow-up study, patients who have undergone surgery for gastric cancer
may be classified into two groups – a “screened” group whose cancer was detected
by mass screening, and an “unscreened” group who presented at a clinic or hospital
with gastric cancer. The death rates over the subsequent 5- or 10-year period are then
compared. For example, the 5-year mortality may be around 58% in the unscreened
group, compared with 72% in the screened group, out of approximately 300 patients
in each group.

• In a prospective cohort study, two populations – a screened population and an un-
screened population – may be compared. The death rates in the two populations over
a 10-year period may then be compared. For example, the annual death rate may be of
the order of 60 per 100 000 for the unscreened group, compared with 30 per 100 000
for the screened group, in populations of several thousand individuals.

In the long-term follow-up study, the process that led to the detection of cancer was
different between the screened and unscreened groups. The screening may lead to surgery
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Figure 4.6 One-way strip plot, with different strips corresponding to different treatment regimes,
for rice shoot mass data.

for some cancers that would otherwise lie dormant long enough that they would never
attract clinical attention. The method of detection is a confounding factor. It is necessary,
as in the prospective cohort study, to compare all patients in a screened group with all
patients in an unscreened group. Even so, it is necessary, in a study where assignment of
participants is not random, to be sure that the two populations are comparable.

Modeling approaches

Modeling approaches typically work with data that record information on each case
separately. Data where there is a binary (yes/no) outcome, and where logistic regression
may be appropriate, are an important special case. Chapter 8 gives further details.

4.4 One-way unstructured comparisons

We will use the shoot dry mass data that are presented in Figure 4.6 as a basis for dis-
cussion.14 The data are from an experiment that compared wild type (wt) and genetically
modified rice plants (ANU843), each with three different chemical treatments. There are
72 sets of results.

There is one “strip” for each factor level. The strips appear in the order of factor levels,
starting from the lowest of the strips. The order that we set is deliberate – notice that F10,
NH4Cl and NH4NO3 appear first without ANU843, that is, they are results for “wild
type” plants. The final three levels repeat these same treatments, but for ANU843. For
the moment, we ignore this two-way structure, and carry out a one-way analysis (Perrine
et al. (2001) have an analysis of these data). Also ignored is the arrangement of plants in

14 library(lattice)
lev <- c("F10", "NH4Cl", "NH4NO3", "F10 +ANU843", "NH4Cl +ANU843",

"NH4NO3 +ANU843")
## Strip plot of ShootDryMass by trt: data frame rice (DAAG)
rice$trt <- factor(rice$trt, levels=lev)
stripplot(trt ˜ ShootDryMass, data=rice, xlab="Shoot dry mass (g)", aspect=0.5)
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blocks. Section 7.2 will give a more definitive analysis, which does take account of the
arrangement of plants in blocks.

Figure 4.6 is one of a number of graphical presentation possibilities for a one-way
layout. Others are (1) a side-by-side comparison of the histograms – but there are too few
values for that; (2) density plots – again there are too few values; and (3) a comparison
of the boxplots – this works quite well with 12 values for each treatment.

The strip plot displays “within-group” variability, as well as giving an indication of
variability among the group means. The one-way analysis of variance formally tests
whether the variation among the means is greater than what might occur simply because
of the natural variation within each group. This comparison is based on the F-statistic,
which is given in the output column headed F value. An F-statistic that is much larger
than 1 points to the conclusion that the means are different. The p-value is designed to
assist this judgment.

The analysis of variance table is obtained using the anova() function, thus:

> rice.aov <- aov(ShootDryMass ˜ trt, data=rice)

> anova(rice.aov)

Analysis of Variance Table

Response: ShootDryMass

Df Sum Sq Mean Sq F value Pr(>F)

trt 5 68326 13665 36.719 < 2.2e-16

Residuals 66 24562 372

The Mean Sq (“mean square”) column has estimates of between-sample (trt) and
within-sample variability (Residuals). The between-sample variance can be calculated
by applying the function var() to the vector of treatment means, then multiplying by
the sample sizes, in this case 12. The within-sample variability estimate is, effectively,
a pooled variance estimate for the five samples. Each mean square is the result from
dividing the Sum Sq (“sum of squares”) column by the appropriate degrees of freedom.

In the absence of systematic differences between the sample means, the two mean
squares will have the same expected value, and their ratio (the F-statistic) will be near
1. Systematic differences between the sample means will add extra variation into the
treatment mean square, with no effect on the residual mean square, resulting in an
expected F -statistic that is larger than 1. In the output above, the F -statistic is 36.7,
on 5 and 66 degrees of freedom, with p < 2�2 × 10−16. The very small p-value for the
F-statistic is a strong indication that there are indeed differences among the treatment
means. Interest then turns to teasing out the nature of those differences.

Observe that the residual mean squared error, otherwise known as the residual mean
square, is 372 with 66 d.f. At each of the six levels of trt, there are 11 d.f. for variation
between the 12 values, giving 6×11 = 66 degrees of freedom in all for variation within
levels of trt. Note that 5 degrees of freedom are associated with estimating 6 group
means, while there is 1 degree of freedom for the overall mean. The total 66 + 5 + 1
equals 72, which is the number of observations.
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For this table:

SEM =
√

372
12

= 5�57�

(Divide by 12 because each mean is the average of 12 values. We use the variance
estimate 	̂2 = 372, on 66 d.f.)

SED = 7�87 �= √
2×SEM��

A first step in examining treatment differences is to print out the coefficients (S-PLUS
users will need, in order to reproduce this output, to change options()$contrasts
from its default before fitting the model). These are:

> summary.lm(rice.aov)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 108.3 5.57 19.45 0.00e+00

trtNH4Cl -58.1 7.88 -7.38 3.47e-10

trtNH4NO3 -35.0 7.88 -4.44 3.45e-05

trtF10 +ANU843 -101.0 7.88 -12.82 0.00e+00

trtNH4Cl +ANU843 -61.8 7.88 -7.84 5.11e-11

trtNH4NO3 +ANU843 -36.8 7.88 -4.68 1.49e-05

Notice the use of summary.lm(), which is the default summary function for lm
objects.

The initial level, which is F10, has the role of a reference or baseline level. Notice that
it appeared on the lowest level of Figure 4.6. The “(Intercept)" line gives the estimate
for F10. Other treatment estimates are differences from the estimates for F10. Thus the
treatment estimates are:

108.3 108.3−58.1 108.3−35.0 108.3−101.0 108.3−61.8 108.3−36.8
= 108.3 = 50.2 = 73.3 = 7.3 = 46.5 = 71.5

The function dummy.coef() structures the coefficients in the manner of the calculations
just described. The treatment estimates were, effectively, calculated thus:

ests <- dummy.coef(rice.aov)

ests[["(Intercept)"]] + ests[["trt"]]

The standard errors (Std. Error) are, after the first row, all standard errors for dif-
ferences between F10 and later treatments. Notice that these standard errors are identical
in value, i.e. 7.88. Because all treatments occur equally often, the standard deviations for
all pairs of treatment differences equals 7.88. In order to check this, use the relevel()
function to set the reference level to be another level than F10, and re-run the analysis.15

Readerswhowant furtherdetailsof thehandlingofanalysisofvariancecalculationsmaywish
to look ahead to the discussion in Section 7.1, which the present discussion anticipates.

The results are in a form that facilitates tests of significance for comparing treatments
with the initial reference treatment. It is straightforward to derive a confidence interval

15 ## Make NH4Cl the reference (or baseline) level
rice$trt <- relevel(rice$trt, ref="NH4Cl")
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for the difference between any treatment and the reference. We leave the details of this
for discussion in Chapter 7.

Note that differences from the overall mean (effects) and associated standard errors,
and means and associated standard errors, can be calculated thus:

model.tables(rice.aov, se=TRUE) # By default, returns effects

model.tables(rice.aov, type="means", se=TRUE) # Treatment means

4.4.1 Displaying means for the one-way layout

For genuinely one-way data, we want a form of presentation that reflects the one-way
structure. Figure 4.7 shows a suitable form of presentation.16

Results come in pairs – one result for wild type plants and one for the ANU843 variety.
Notice that for F10 there is a huge difference, while for the other two chemicals there is
no detectable difference between wild type and ANU843. This emphasizes the two-way
structure of the data. In general, use of a one-way analysis for data that have a two-way
structure is undesirable. Important features may be missed. Here, detecting the interaction
of variety with chemical relied on recognizing this structure.

Is the analysis valid?

Figure 4.6 suggested that variance was much lower for the F10 + ANU843 combination
than for the other treatments. The variance seems lower when the mass is lower. Because
only one treatment seems different from the rest, the analysis of variance table would not
change much if we omitted it. The main concern is that the standard error of difference
will be too large for comparisons involving F10 + ANU843. It will be too small for other
comparisons.

0 2 0 4 0 6 0 8 0 1 0 0

F10NH4Cl NH4NO3F10 +ANU843 NH4Cl +ANU8
4

NH4NO3 +AN
U

LSD
Tukey HSD

Figure 4.7 Graphical presentation of results from the one-way analysis of the rice shoot dry mass
data. Means that differ by more than the LSD (least significant difference) are different, at the
5% level, in a t-test that compares the two means. Tukey’s Honest Significant Difference (HSD)
takes into account the number of means that are compared. See the text for details.

16 ## Use the function onewayPlot() from our DAAG package
onewayPlot(rice.aov) # rice.aov was obtained in footnote 17
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4.4.2 Multiple comparisons

In Figure 4.7 we give two “yardsticks” against which to compare differences between
means. We did the F -test because we wanted protection from finding spurious
differences – a result of looking at all possible comparisons rather than just one.

Tukey’s Honest Significant Difference (HSD) provides an alternative (or additional)
form of protection from finding such spurious differences. The 5% HSD is designed so
that, under the null model (no difference between treatments), the maximum difference
will be greater than the HSD in 5% of experiments. In other words, the 5% relates to
an experiment-wise error rate, defined as just described. Contrast this with 5% Least
Significant Difference (LSD). This is designed, if used without a preliminary F-test, to
give a 5% comparison-wise error rate.

A reasonable practical strategy is to do a preliminary analysis of variance F -test. If
that suggests differences between the means, then it is of interest to use both yardsticks
in comparing them. The least significant difference gives an anti-conservative yardstick,
that is, one that, in the absence of the preliminary F -test would be somewhat biased
towards finding differences. Tukey’s HSD gives a stricter conservative yardstick, that is,
one that is somewhat biased against finding differences. Ignoring changes in degrees of
freedom and possible associated changes in the standard error, the HSD will increase as
the number of treatment groups that are to be compared increases.17

∗Microarray data – severe multiplicity

Multiple tests are a serious issue in the analysis of microrray data, where an individual
slide (or sometimes, as for Plate 3, half-slide) may yield information on some thousands
of genes. Each slide (or, here, half-slide) is commonly used to compare, for each of a
large number of genes, the gene expression in two samples of genetic material.

The experiment that led to Plate 3 was designed to investigate changes in gene expres-
sion between the pre-settlement free-swimming stage of coral, and the post-settlement
stage. For 3042 genes (one for each of 3042 spots), which showed an increase in gene
expression and which a decrease? Note that each panel in Plate 3 has 3072 spots; this
includes 30 blanks. Where there was an increase, the spot should be fairly consistently
blue, or bluish, over all six panels. Where there was a decrease, the spot should be fairly
consistently yellow, or yellowish.

Here, all that will be attempted is to give broad indications of the experimental pro-
cedure, and subsequent processing, that led to the plots shown in Plate 3. The slides are
first printed with probes, with one probe per spot. Each probe is designed to check for

17 ## The SED is 7.88 with 66 degrees of freedom. There are 6 means.
sed <- 7.88 # For the t-critical value, use the sed
sem <- sed/sqrt(2) # For the HSD statistic, the sem is required
## Alternatively, sem = (Residual SE)/sqrt(# plots per treatment)
sem <- summary.lm(rice.aov)$sigma/sqrt(12)
qt(p=.975, df=66) * 7.88 # Equals 15.7
qtukey(p=.95, nmeans=6, df=66) * 7.88 / sqrt(2) # Equals 23.1
# NB: We call qtukey() with p=0.95, not with p=.975 as for the pairwise
# t-test. The test works with |difference|, and is inherently one-sided.
# We divide by sqrt(2) because the Tukey statistic is expressed as a
# multiple of the SEM = SED/sqrt(2) = 7.88/sqrt(2)
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Figure 4.8 Interaction plot, showing how the effect of levels of the first factors changes with the
level of the second factor.

evidence of the expression of one gene. The two samples are separately labeled so that
when later a spot “lights up” under a scanner, it will be possible to check for differences
in the signal intensity.

After labeling the separate samples, mixing them, and wiping the mixture over the slide
or half-slide, and various laboratory processing steps, a scanner was used to determine,
for each spot, the intensities generated from the two samples. Various corrections are then
necessary, leading finally to the calculation of logarithms of intensity ratios. Essentially,
it is logarithms of intensity ratios that are shown in Plate 3.

For these data there are, potentially, 3042 t-statistics. This is small, by the standards of
microarray experiments. There are severe problems of multiplicity to address. Details of
a defendable approach to analyzing the data shown in Plate 3 will be posted on the web
site for the book.

For further information on the analysis of microarray data, see Smyth (2004). For
background on the coral data, see Ball et al. (2002).

4.4.3 Data with a two-way structure, that is, two factors

The rice data, analyzed earlier in this section with a one-way analysis of variance, really
have a two-way structure. A first factor relates to whether F10 or NH4Cl or NH4NO3
is applied. A second factor relates to whether the plant is wild type (wt) or ANU843.
Figure 4.8 is designed to show this structure.18

This shows a large difference between ANU843 and wild type (wt) for the F10
treatment. For the other treatments, there is no detectable difference. A two-way analysis
would show a large interaction. Note, finally, that the treatments were arranged in two
blocks. In general, this has implications for the analysis. This example will be discussed
again in Chapter 7, where possible block effects will be taken into account. Chapter 10
has an example of the analysis of a randomized block design.

18 with(rice, interaction.plot(fert, variety, ShootDryMass))
# Do interaction.plot(fert, variety, ShootDryMass), with fert, variety
# and ShootDryMass taken from the columns of rice
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4.4.4 Presentation issues

The discussion so far has treated all comparisons as of equal interest. Often they are not.
There are several possibilities:

• Interest may be in comparing treatments with a control, with comparisons between
treatments of lesser interest.

• Interest may be in comparing treatments with one another, with any controls used as
a check that the order of magnitude of the treatment effect is pretty much what was
expected.

• There may be several groups of treatments, with the chief interest in comparisons
between the different groups.

Any of these situations should lead to specifying in advance the specific treatment
comparisons that are of interest.

Often, however, scientists prefer to regard all treatments as of equal interest. Results
may be presented in a graph that displays, for each factor level, the mean and its associated
standard error. Alternatives to displaying bars that show the standard error may be to show
a 95% confidence interval for the mean, or to show the standard deviation. Displaying or
quoting the standard deviation may be appropriate when the interest is, not in comparing
level means, but in obtaining an idea of the extent to which the different levels are clearly
separated.

In any case:

• For graphical presentation, use a layout that reflects the data structure, that is, a one-way
layout for a one-way data structure, and a two-way layout for a two-way data structure.

• Explain clearly how error bars should be interpreted – ± SE limits, ± 95% confidence
interval, ± SED limits, or whatever. Or if the intention is to indicate the variation in
observed values, the SD (standard deviation) may be more appropriate.

• Where there is more than one source of variation, explain what source(s) of “error”
is/are represented. It is pointless and potentially misleading to present information on
a source of error that is of little or no interest, for example, on analytical error when
the relevant “error” for the treatment comparisons that are of interest arises from fruit
to fruit variation.

4.5 Response curves

The table shown to the right of Figure 4.9 exhibits data that are strongly structured. The
data are for an experiment in which a model car was released three times at each of four
different distances up a 20� ramp. The experimenter recorded distances traveled from
the bottom of the ramp across a concrete floor. This should be handled as a regression
problem rather than as an analysis of variance problem. Figure 4.9 shows a plot of
these data.19 What is the pattern of the response? An analysis that examines all pairwise
comparisons does violence to the treatment structure, and confuses interpretation. In

19 ## Plot distance.travelled vs starting.point: data frame modelcars (DAAG)
plot(distance.traveled ˜ starting.point, pch=15, data=modelcars,

xlab = "Distance up ramp", ylab="Distance traveled")
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Figure 4.9 Distance traveled (distance.traveled) by model car, as a function of starting
point (starting.point), up a 20� ramp.

these data, the starting point effect is so strong that it will nevertheless appear as highly
significant. Response curve analyses should be used whenever appropriate in preference
to comparison of individual pairs of means.

For example, data may show a clear pattern of changing insect weight with changing
temperature. It may be possible to look at plots and decide that a quadratic equation type
of response curve was needed. Where the data are not clear it may be necessary to go
through the steps, in turn:

1. Does the assumption of a straight line form of response explain the data better than
assuming a random scatter about a horizontal line?

2. Does a quadratic response curve offer any improvement?
3. Is there a suggestion of a response that looks like a cubic curve?

Notice that at this stage we are not concerned to say that a quadratic or cubic curve is a
good description of the data. All we are examining is whether such a curve captures an
important part of the pattern of change. If it does, but the curve is still not quite right, it
may be worthwhile to look for a different form of curve that does fit the data adequately.

A representation of the response curve in terms of coefficients of orthogonal polynomi-
als provides information that makes it relatively easy to address questions 1–3. Consider
for example a model that has terms in x and x2. Orthogonal polynomials re-express this
combination of terms in such a way that the coefficient of the “linear” term is indepen-
dent of the coefficient of the “quadratic” term. Thus orthogonal polynomials have the
property that the coefficient(s) of lower-order terms (linear, � � �) do(es) not change when
higher-order terms are added. One model fit, with the highest order term present that we
wish to consider, provides the information needed to make an assessment about the order
of polynomial that is required. For details, see for example, Steel et al. (1993).

4.6 Data with a nested variation structure

Ten apples are taken from a box. A randomization procedure assigns five to one tester,
and the other five to another tester. Each tester makes two firmness tests on each of their
five fruit. Firmness is measured by the pressure needed to push the flat end of a piece of
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Table 4.8 Each tester made
two firmness tests on each of
five fruit.

Fruit Tester Firmness Mean

1 1 6.8, 7.3 7.05
2 1 7.2, 7.3 7.25
3 1 7.4, 7.3 7.35
4 1 6.8, 7.6 7.2
5 1 7.2, 6.5 6.85
6 2 7.7, 7.7 7.7
7 2 7.4, 7.0 7.2
8 2 7.2, 7.6 7.4
9 2 6.7, 6.7 6.7

10 2 7.2, 6.8 7.0

rod through the surface of the fruit. Table 4.8 gives the results, in N/m2.
For comparing the testers, we have five experimental units for each tester, not ten.

One way to do a t-test is to take means for each fruit. We then have five values (means,
itali-cized) for one treatment, that we can compare with the five values for the other
treatment.

What happens if we ignore the data structure, and compare ten values for one tester
with ten values for the other tester? This pretends that we have ten experimental units for
each tester. The analysis will suggest that the treatment means are more accurate than is
really the case. We obtain a pretend standard error that is not the correct standard error of
the mean. We are likely to underestimate the standard error of the treatment difference.

4.6.1 Degrees of freedom considerations

For comparison of two means when the sample sizes n1 and n2 are small, it is important
to have as many degrees of freedom as possible for the denominator of the t-test. It
is worth tolerating possible bias in some of the calculated SEDs in order to gain extra
degrees of freedom.

The same considerations arise in the one-way analysis of variance, and we pursue the
issue in that context. It is illuminating to plot out, side by side, say 10 SEDs based on
randomly generated normal variates, first for a comparison based on 2 d.f., then 10 SEDs
for a comparison based on 4 d.f., etc.

A formal statistical test is thus unlikely, unless the sample is large, to detect differences
in variance that may have a large effect on the result of the test. It is therefore necessary
to rely on judgment. Both past experience with similar data and subject area knowledge
may be important. In comparing two treatments that are qualitatively similar, differences
in the population variance may be unlikely, unless the difference in means is at least of
the same order of magnitude as the individual means. If the means are not much different
then it is reasonable, though this is by no means inevitable, to expect that the variances
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Table 4.9 These are the same data as in Table 3.2.

Pair #

1 2 3 4 5 6 7 8 9

Heated (mm) 244 255 253 254 251 269 248 252 292
Ambient 225 247 249 253 245 259 242 255 286
Difference 19 8 4 1 6 10 6 −3 6

will not be much different.
If the treatments are qualitatively different, then differences in variance may be

expected. Experiments in weed control provide an example where it would be surprising
to find a common variance. There will be few weeds in all plots where there is effective
weed control, and thus little variation. In control plots, or for plots given ineffective
treatments, there may be huge variation.

If there do seem to be differences in variance, it may be possible to model the variance
as a function of the mean. It may be possible to apply a variance-stabilizing transformation.
Or the variance may be a smooth function of the mean. Otherwise, if there are just one or
two degrees of freedom per mean, use a pooled estimate of variance unless the assumption
of equal variance seems clearly unacceptable.

4.6.2 General multi-way analysis of variance designs

Generalization to multi-way analysis of variance raises a variety of new issues. If each
combination of factor levels has the same number of observations, and if there is no
structure in the error (or noise), the extension is straightforward. The extension is less
straightforward when one or both of these conditions are not met. For unbalanced data
from designs with a simple error structure, it is necessary to use the lm() (linear model)
function. The lme() function in the nlme package, or alternatively lmer() in the lme4
package, is able to handle problems where there is structure in the error term, including
data from unbalanced designs. See Chapter 9 for further details.

4.7 Resampling methods for standard errors, tests and confidence intervals

There are many different resampling methods. All rely on the selection of repeated sam-
ples from a “population” that is constructed using the sample data. In general, there are too
many possible samples to take them all, and we therefore rely on repeated random samples.
In this section, we demonstrate permutation and bootstrap methods. We start with permu-
tation tests, illustrating their use for the equivalent of one-sample and two-sample t-tests.

4.7.1 The one-sample permutation test

Consider the paired elastic band data of Table 3.2 again, reproduced here as Table 4.9.
If the treatment has made no difference, then an outcome of 244 for the heated band
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and 225 for the ambient band might equally well have been 225 for the heated band and
244 for the ambient band. A difference of 19 becomes a difference of −19. There are
29 = 512 permutations, and a mean difference associated with each permutation. We
then locate the mean difference for the data that we observed within this permutation
distribution. The p-value is the proportion of values that are as large in absolute value as,
or larger than, the mean for the data.

The absolute values of the nine differences are:

Difference 19 8 4 1 6 10 6 3 6

In the permutation distribution, these each have an equal probability of taking a positive
or a negative sign. There are 29 possibilities, and hence 29 = 512 different values for d̄.
The possibilities that give a mean difference that is as large as or larger than in the actual
sample, where the value for pair 8 has a negative sign, are:

Difference 19 8 4 1 6 10 6 3 6
19 8 4 −1 6 10 6 3 6
19 8 4 1 6 10 6 −3 6

There are another three possibilities that give a mean difference that is of the same
absolute value, but negative. Hence p = 6/512 = 0�0117.

In general, when the number of pairs is large, it will not be feasible to use such an
enumeration approach to get information on relevant parts of the upper and lower tails
of the distribution. We therefore take repeated random samples from the permutation
distribution. The function onetPermutation() in our DAAG package may be used
for this.

4.7.2 The two-sample permutation test

Suppose we have n1 values in one group and n2 in a second, with n = n1 + n2. The
permutation distribution results from taking all possible samples of n2 values from the
total of n values. For each such sample, we calculate:

mean of the n2 values that are selected – mean of remaining n1 values�

The permutation distribution is the distribution of all such differences of means. We locate
the differences of means for the actual samples within this permutation distribution.

The calculation of the full permutation distribution is not usually feasible. We therefore
take perhaps 1000 samples from this distribution. The function twotPermutation()
that is in our DAAG package may be used for this repeated sampling.

Thus consider the data from Subsection 34.
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Figure 4.10 Density curves for two samples of 2000 each from the permutation distribution of
the difference in means, for the two-sample elastic band data.

Ambient: 254 252 239 240 250 256 267 249 259 269 (Mean = 253�5)
Heated: 233 252 237 246 255 244 248 242 217 257 254 (Mean = 244�1)

Figure 4.10 shows two estimates of the permutation distribution that were obtained by
taking, in each instance, 2000 random samples from this distribution. The point where
the difference in means falls with respect to this distribution (253�5 − 244�1 = 9�4) has
been marked, as has minus this difference.20

The density estimate corresponding to the solid line gave a p-value of 0.051. The
density estimate corresponding to the dashed line gave a p-value of 0.060. Use of a larger
sample size will of course lead to more accurate p-values.

4.7.3∗ Estimating the standard error of the median: bootstrapping

The formula given in Subsection 4.1.3 for the SEM has the same form, irrespective of the
distribution, providing that the sample is chosen randomly. By contrast, the formula for
the standard error of the median (Subsection 4.1.5) applies only when data are normally
distributed.

The bootstrap estimate of the standard error of the median avoids this requirement,
and avoids also the need to look for some alternative distribution that may be a better
fit to the data. A comparison between the bootstrap estimate and the normal theory

20 ## Draw just one of these curves
## Permutation distribution of difference in means
x1 <- two65$ambient; x2 <- two65$heated; x <- c(x1, x2)
n1 <- length(x1); n2 <- length(x2); n <- n1+n2
dbar <- mean(x2) - mean(x1)
z <- numeric(2000)
for(i in 1:2000){

mn <- sample(n, n2, replace=FALSE)
dbardash <- mean(x[mn]) - mean(x[-mn])
z[i]<- dbardash
}

pval <- (sum(z > abs(dbar)) + sum (z< -abs(dbar)))/2000
plot(density(z), yaxs="i")
abline(v = dbar)
abline(v = -dbar, lty=2)
print(signif(pval,3))
rm(x1, x2, n1, n2, x, n, dbar, z, mn, dbardash, pval)
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estimate allows an assessment of the seriousness of any bias that may result from non-
normality. We proceed to calculate the bootstrap estimate of the standard error for the
median length for the eggs that were in wrens’ nests. (The boot package (Canty, 2002)
is needed for all bootstrap examples.) We will use the result as a check on our earlier
computation.

The idea is as follows. In estimating the standard error of the median, we are seeking
the standard deviation of medians that could be obtained for all possible samples of
egg lengths in wrens’ nests. Of course, we have access to one sample only, but if
our sample has been collected properly it should give us a good approximation to the
entire population. The bootstrap idea is to compute with the sample in much the same
way as, if they were available, we would compute with repeated samples from the
population.

As additional samples from the whole egg length population are not available, we
take resamples from the egg length sample that we have in hand. This sampling is done
with replacement to ensure that we obtain different “new” samples. The resample size
is taken to be the same as the original sample size. We estimate the standard deviation
of the median by computing sample medians for each of the resamples and taking the
standard deviation of all of these medians. Even though the resamples are not genuine new
samples, this estimate for the standard error of the median has good statistical properties,
for purposes of estimating the standard error of the median.

Here is the output from R for the egg lengths from the wrens’ nests:

> ## bootstrap estimate of median of wren length: data frame cuckoos (DAAG)

> wren <- split(cuckoos$length, cuckoos$species)$wren

> library(boot)

> ## First define medianFun(), with two required arguments:

> ## data specifies the data vector,

> ## indices selects vector elements for a each resample

> medianFun <- function(data, indices){median(data[indices])}

> ## Call the boot() function, with statistic=medianFun

> wren.boot <- boot(data = wren, statistic = medianFun, R = 999)

> # R = number of resamples

> wren.boot

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = wren, statistic = medianFun, R = 999)

Bootstrap Statistics :

original bias std. error

t1* 21 0.061 0.225

The original estimate of the median was 21. The bootstap estimate of the standard error
is 0.225, based on 999 resamples. Compare this with the slightly larger standard error
estimate of 0.244 given by the normal theory formula in Subsection 4.1.5. The bootstrap
estimate of the standard error will of course differ somewhat between different runs of
the calculation. Also given is an estimate of the bias, that is, of the tendency to under- or
over-estimate the median.
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4.7.4 Bootstrap estimates of confidence intervals

The usual approach to constructing confidence intervals is based on a statistical theory
that relies, in part, on the assumption of normally distributed observations. Sometimes
this theory is too complicated to work out, and/or the normal assumption is not applicable.
In such cases, the bootstrap may be helpful. We demonstrate the use of the methodology
to calculate confidence intervals for the median and for the correlation.

Several different confidence intervals can be calculated using bootstrap replicates of
the data. The function boot.ci() handles five of these. The perc (percentile) type
is probably the most commonly used method; it is not the most accurate. The bca type
(bias corrected accelerated or BCa) will often give a substantial improvement. Efron and
Tibshirani (1993) give a clear description of these methods, together with theoretical
justification for the use of the BCa method.

The median

We will construct 95% confidence intervals for the median of the cuckoo egg lengths
in wrens’ nests. We will illustrate the percentile and BCa methods. As when computing
bootstrap standard errors, we calculate sample medians for a large number of resamples.
The endpoints for the 95% percentile confidence interval are calculated as the 2.5 and 97.5
percentiles of the resulting distribution of medians. The endpoints for the BCa confidence
interval are calculated in a more complicated way; Efron and Tibshirani (1993) can be
consulted for the details.

> medianFun <- function(data, indices){median(data[indices])}

> ## Call the boot() function, with statistic=medianFun

> wren <- cuckoos[cuckoos$species=="wren", "length"]

> wren.boot <- boot(data=wren, statistic=medianFun, R=9999)

> boot.ci(wren.boot, type=c("perc", "bca"))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = wren.boot, type = c("perc", "bca"))

Intervals :

Level Percentile BCa

95% (20.9, 22.0 ) (20.0, 21.0 )

Calculations and Intervals on Original Scale

Some BCa intervals may be unstable

Interestingly, the BCa interval is slightly narrower than the cruder percentile interval in
this example. The warning may be taken as an indication that the calculation should be
run again, with a larger number (perhaps 99 999) of resamples. Such warnings may arise
because of outliers in the data. Use qqnorm(wren) to check that this is not an issue
for these data.
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The correlation coefficient

Bootstrap methods do not require bivariate normality. Independence between observa-
tions, that is, between (x, y) pairs, is as important as ever. Note however that a correlation
of, for example, 0.75 for a non-normal distribution may have quite different implications
from a correlation of 0.75 when normality assumptions apply.

We will compute 95% confidence intervals for the correlation between chest and
belly for the possum data frame:21

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 9999 bootstrap replicates

CALL :

boot.ci(boot.out = possum.boot, type = c("perc", "bca"))

Intervals :

Level Percentile BCa

95% ( 0.476, 0.709 ) ( 0.468, 0.704 )

Calculations and Intervals on Original Scale

The bootstrap – parting comments

Bootstrap methods are not a panacea. We must respect the structure of the data; any
form of dependence in the data must be taken into account. There are contexts where
the bootstrap is invalid and will mislead. As a rough guideline, we recommend against
the bootstrap for statistics, including maximum, minimum and range, that are functions
of sample extremes. The bootstrap is usually appropriate for statistics from regression
analysis – means, variances, coefficient estimates, and correlation coefficients. It also
works reasonably well for medians and quartiles, and other such statistics. See Davison
and Hinkley (1997); Efron and Tibshirani (1993). See also the references in the help page
for the boot() function in the boot package.

4.8* Theories of inference

Formal statistical methodologies are of two broad types: frequentist and Bayesian. The
frequentist approach is usually based on the concept of likelihood; given the model, what
is the probability of obtaining a sample similar to that observed? Parameter values are
assumed to be unknown constants, and estimates are chosen to maximize this likelihood.
This has been the approach that we have followed for most of this chapter.

Another type of methodology, broadly known as “Bayesian” uses Bayes’ theorem.
The essential idea is that we might have prior information (knowledge or belief) about

21 ## Bootstrap estimate of 95% CI of cor(chest, belly): data frame possum (DAAG)
possum.fun <- function(data, indices) {

chest <- data$chest[indices]
belly <- data$belly[indices]
cor(belly, chest)
}

possum.boot <- boot(possum, possum.fun, R=9999)
boot.ci(possum.boot, type=c("perc", "bca"))
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the distribution of a parameter value before taking a sample of observations. This prior
information can be updated using the sample and the rules of probability.

A simple application of Bayes’ theorem is as follows. The incidence of HIV in adult
Australian males (15–49 years) who do not have any known risk factor may be of
the order of 1 in 100 000, that is, the prior probability of infection is 0.00001. A per-
son in this group has an initial test (for example, it may be required in order to ob-
tain a US green card) that has a specificity of 0.01%, that is, for every 10 000 people
tested, there will on average be one false positive. How should such an individual in-
terpret the result? If 100 000 individuals take the test, one will on average have AIDS
and will almost certainly return a positive test. On the other hand there will, on av-
erage, be close to 10 false positives (0.1% of 99 999). The posterior odds that the
person has AIDS are thus close to 1:10, certainly a narrowing from the prior odds of
1:99 999.

Note that, as often happens when Bayesian calculations are used, the prior information
is not very precise. What we can say is that the prior probability is, in the case mentioned
very low.

4.8.1 Maximum likelihood estimation

Consider the model

yi = �+ �i� i = 1� 2� � � � � n

where � is an unknown constant, and where the errors � are assumed to be independent
and normally distributed with mean 0 and variance 	2.

The probability density for the ith y-value is normal with mean � and variance 	2.
Because of the independence assumption, the probability density of the entire sample of
y’s is simply the product of these normal densities. This product is the likelihood. The
maximum likelihood estimates are the values of � and 	 which maximize this function.
A calculus argument can be used to see that the estimates are ȳ and s

√
�n−1�/n.

Note that the usual estimator of the standard deviation differs slightly from the maxi-
mum likelihood estimate; the denominator in the usual variance estimate is the number of
degrees of freedom (n−1 in this case), while it is n for the maximum likelihood estimate;
this difference is negligible in large samples.

For an example, consider the observed differences between heated and ambient,
assuming an independent normal errors model:

funlik <- function(mu, sigma, x=with(pair65, heated-ambient))

prod(dnorm(x, mu, sigma))

In practice, it is more convenient to work with the loglikelihood, rather than the
likelihood. Maximizing on the log scale leads to exactly the same estimates as on the
original scale. Try the following:

> log(funlik(6.3, 6.1)) # Close to estimated mean and SD

[1] -28.549
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> log(funlik(6.33, 5.75)) # Close to the actual mle’s

[1] -28.520

> log(funlik(7, 5.75))

[1] -28.580

4.8.2 Bayesian estimation

As noted earlier, the Bayesian methodology provides a way to update our prior information
about the model parameters using sample information.

Usually, the prior information is summarized in the form of a probability law called
the prior distribution of the model parameters. Interest usually centers on the posterior
distribution of the parameters which is proportional to the product of the likelihood and
the prior distribution.

Perhaps the simplest example is that of a normal likelihood (as considered in the
previous section) where the unobserved true mean is now also assumed to have a normal
distribution, but this time with mean �0 and variance 	2

0 . The posterior density of the
mean is then normal with mean

nȳ +�0	
2/	2

0

n+	2/	2
0

and variance

	2

n+	2/	2
0

�

This assumes that 	2 is actually known; an estimate can be obtained using the sample
variance. Alternatively, we could put a prior distribution on this parameter as well.

In problems where the model contains many parameters, each with its own prior
distribution, the exact calculation of the posterior distribution for each parameter can
be quite involved. Fortunately, in recent years, a simulation technique (called Markov
Chain Monte Carlo, or MCMC) has been shown to give very effective approximations
to these posterior distributions. Calculations must run for long enough that the posterior
distribution reaches a steady state that is independent of the starting values of parameters.
The steady state or stationary distribution is designed to be the posterior distribution of
the parameter(s) of interest. Example 11d in Chapter 3 was a simple example of the
methodology.

4.8.3 If there is strong prior information, use it!

Any methodology that ignores strong prior information is inappropriate, and may be
highly misleading. Diagnostic testing (the AIDS test example mentioned above) and
criminal investigations provide cogent examples.

Using the hypothesis testing framework, we take the null hypothesis H0, in the AIDS
test example, to be the hypothesis that the individual does not have HIV. Given this null
hypothesis, the probability of a positive result is 0.0001.
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Not infected Infected

10 000×0�001 = 10 (false) positives 1 true positive

Therefore the null hypothesis is rejected. As we saw, the prior information makes such
a conclusion entirely inappropriate.

In a serious criminal case, the police might scrutinize a large number of potential
perpetrators. A figure of 10 000 or more is entirely within the range of possibility.
Suppose there is a form of incriminating evidence that is found in one person in 1000.

Not the perpetrator The perpetrator

10 000×0�001 = 10 (false) positives 1 true positive

Scrutiny of 10 000 potential perpetrators will on average net 10 suspects. Suppose one of
these is later charged. The probability of such incriminating evidence, assuming that the
defendant is innocent, is indeed 0.001. The police screening will net around 10 innocent
people along with, perhaps, the 1 perpetrator. This evidence leads to odds of 1:10 or
worse, that is, less than 10%, that the defendant is guilty. On its own, it should be
discounted.

The interpretation of results from medical tests for AIDS is discussed in detail in
Gigerenzer (2002). The calculations just given made an informal use of Bayesian method-
ology. Such an approach is essential when, as here, there is strong prior knowledge. Where
there is no strong prior knowledge and the prior assessment of probabilities is little more
than a guess, a Bayesian analysis may nevertheless be insightful.

4.9 Recap

Dos and don’ts

• Do examine appropriate plots.
• Ensure that the analysis and graphs reflect any important structure in the data.
• Always present means, standard errors, and numbers for each group. Results from

formal significance tests have secondary usefulness.
• The use of a large number of significance tests readily leads to data summaries that

lack coherence and insight. Consider whether there is an alternative and more coherent
analysis that would provide better insight.

• Reserve multiple range tests for unstructured data.
• Think about the science behind the data. What analysis will best reflect that science?
• The aim should be an insightful and coherent account of the data, placing it in the

context of what is already known. Ensure that the statistical analysis assists this larger
purpose.
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4.10 Further reading

On general issues of style and approach, see Wilkinson and Task Force on Statistical
Inference (1999); Maindonald (1992); Krantz (1999) and Gigerenzer (1998, 2002). See
also the statistical good practice guidelines at the web site http://www.rdg.ac.uk/
ssc/dfid/booklets.html. Miller (1986) has extensive comment on consequences
of failure of assumptions, and on how to handle such failures. On the design of experi-
ments, and on analysis of the resulting data, see Cox (1958); Cox and Reid (2000). We
include further brief discussion of the design and analysis of experiments in Chapter 10.
See also Rosenbaum (2002).

Formal hypothesis testing, which at one time had become almost a ritual among
researchers in psychology, is now generating extensive controversy, reflected in the
contributions to Harlow et al. (1997). The review of the Harlow et al. book in Krantz
(1999) is a good guide to the controversy. See also Gigerenzer (1998); Wilkinson and
Task Force on Statistical Inference (1999); Nicholls (2000).

Gigerenzer et al. (1989) give interesting historical background to different styles and
approaches to inference that have grown up in one or other area of statistical application.
Wonnacott and Wonnacott (1990) has an elementary account of Bayesian methodology.
See also Gelman et al. (2003). There is a helpful brief summary of Bayesian methodology,
including Bayesian modeling, in Chapter 3 of Baldi and Brunak (2001). A weakness of
Baldi and Brunak’s account is that there is no discussion of model criticism. Gigerenzer
(2002) demonstrates the use of Bayesian arguments in several important practical contexts,
including AIDS testing and screening for breast cancer.

Chapter 4 of Senn (2003) has interesting comments on competing theories of statistical
inference. For a terse and remarkably comprehensive exposition of competing theories,
which does however make relatively severe technical demands, see Young and Smith
(2005).
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4.11 Exercises

1. In the data set nsw74demo (DAAG) determine 95% confidence intervals for: (a) the 1974
incomes of each of the “treated” and “control” groups; (b) the 1975 incomes of each group;
(c) the 1978 incomes of each group. Finally, calculate a 95% confidence interval for the
difference in income between treated and controls in 1978.

2. Draw graphs that show, for degrees of freedom between 1 and 100, the change in the 5%
critical value of the t-statistic. Compare a graph on which neither axis is transformed with a
graph on which the respective axis scales are proportional to log(t-statistic) and log(degrees
of freedom). Which graph gives the more useful visual indication of the change in the 5%
critical value of the t-statistic with increasing degrees of freedom?

3. Generate a random sample of 10 numbers from a normal distribution with mean 0 and standard
deviation 2. Use t.test() to test the null hypothesis that the mean is 0. Now generate
a random sample of 10 numbers from a normal distribution with mean 1.5 and standard
deviation 2. Again use t.test() to test the null hypothesis that the mean is 0. Finally write
a function that generates a random sample of n numbers from a normal distribution with mean
� and standard deviation 1, and returns the p-value for the test that the mean is 0.

4. Use the function that was created in Exercise 3 to generate 50 independent p-values, all with
a sample size n = 10 and with mean � = 0. Use qqplot(), with the parameter setting x =

qunif(ppoints(50)), to compare the distribution of the p-values with that of a uniform
random variable, on the interval [0, 1]. Comment on the plot.

5. The following code draws, in a 2 × 2 layout, ten boxplots of random samples of 1000 from
a normal distribution, ten boxplots of random samples of 1000 from a t-distribution with 7
d.f., ten boxplots of random samples of 200 from a normal distribution, and ten boxplots of
random samples of 200 from a t-distribution with 7 d.f.:
oldpar <- par(mfrow=c(2,2))

tenfold1000 <- rep(1:10, rep(1000,10))

boxplot(split(rnorm(1000*10), tenfold1000), ylab="normal - 1000")

boxplot(split(rt(1000*10, 7), tenfold1000),

ylab=expression(t[7]*" - 1000"))
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tenfold100 <- rep(1:10, rep(100, 10))

boxplot(split(rnorm(100*10), tenfold100), ylab="normal - 100")

boxplot(split(rt(100*10, 7), tenfold100),

ylab=expression(t[7]*" - 100"))

par(oldpar)

Refer back to the discussion of heavy-tailed distributions in Subsection 3.2.2, and com-
ment on the different numbers and configurations of points that are flagged as possible
outliers.

6. Here we generate random normal numbers with a sequential dependence structure.
y1 <- rnorm(51)

y <- y1[-1] + y1[-51]

acf(y1) # acf is ‘autocorrelation function’

# (see Chapter 9)

acf(y)

Repeat this several times. There should be no consistent pattern in the ACF plot for different
random samples y1. There will be a fairly consistent pattern in the ACF plot for y, a
result of the correlation that is introduced by adding to each value the next value in the
sequence.

7. Create a function that does the calculations in the first two lines of the previous exercise.
Put the calculation in a loop that repeats 25 times. Calculate the mean and variance for each
vector y that is returned. Store the 25 means in the vector av, and store the 25 variances in
the vector v. Calculate the variance of av.

8. (a) For each column of the data set nsw74psid1 after the first, compare the control group
(trt==0) with the treatment group (trt==1). Use overlaid density plots to compare the
continuous variables, and two-way tables to compare the binary (0/1) variables. Where
are the greatest differences?

(b) Repeat the comparison, but now for the data set nsw74demo.

9. In a study that examined the use of acupuncture to treat migraine headaches, consenting
patients on a waiting list for treatment for migraine were randomly assigned in a 2:1:1 ratio
to acupuncture treatment, a “sham” acupuncture treatment in which needles were inserted at
non-acupuncture points, and waiting-list patients whose only treatment was self-administered
(Linde et al., 2005). (The “sham” acupuncture treatment was described to trial participants
as an acupuncture treatment that did not follow the principles of Chinese medicine.) An-
alyze the following two tables. What, in each case, are the conclusions that should be
drawn from the analyses? Comment on implications for patient treatment and for further
research.

(a) Outcome is classified according to numbers of patients who experienced a greater than
50% reduction in headaches over a four-week period, relative to a pre-randomization
baseline:

Acupuncture Sham acupuncture Waiting list

≥ 50% reduction 74 43 11
< 50% reduction 71 38 65
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(b) Patients who received the acupuncture and sham acupuncture treatments were asked to
guess their treatment. Results were:

Acupuncture Sham acupuncture

Chinese 82 30
Other 17 26
Don’t know 30 16

10. Use mosaicplot() to display the table rareplants (Subsection 4.3.1) that was created
using code in footnote 12 . Annotate the mosaic plot to draw attention to the results that
emerged from the analysis in Subsection 4.3.1.

11. The table UCBAdmissions was discussed in Subsection 2.2.1. The following gives a table
that adds the 2 × 2 tables of admission data over all departments:

## UCBAdmissions is in the datasets package

## For each combination of margins 1 and 2, calculate the sum

UCBtotal <- apply(UCBAdmissions, c(1,2), sum)

What are the names of the two dimensions of this table?

(a) From the table UCBAdmissions, create mosaic plots for each faculty separately. (If
necessary refer to the code given in the help page for UCBAdmissions.)

(b) Compare the information in the table UCBtotal with the result from applying the
function mantelhaen.test() to the table UCBAdmissions. Compare the two sets
of results, and comment on the difference.

(c) The Mantel–Haenzel test is valid only if the male to female odds ratio for admission is
similar across departments. The following code calculates the relevant odds ratios:

apply(UCBAdmissions, 3, function(x)

(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

Is the odds ratio consistent across departments? Which department(s) stand(s) out as
different? What is the nature of the difference?

[For further information on the Mantel–Haenszel test, see the help page for
mantelhaen.test and Agresti (2002, pp. 287f).]

12.∗ Table 3.3 (Chapter 3) contained fictitious data that illustrate issues that arise in combining
data across tables. Table 4.10 is another such set of fictitious data, designed to demonstrate
how biases that go in different directions in the two subtables may cancel in the table to totals.
To enter the data for Table 3.3, type:
admissions <- array(c(30,30,10,10,15,5,30,10),

dim=c(2,2,2))

and similarly for Table 4.10. The third dimension in each table is faculty, as required for
using faculty as a stratification variable for the Mantel–Haenzel test. From the help page for
mantelhaen.test(), extract and enter the code for the function woolf(). Apply the
function woolf(), followed by the function mantelhaen.test(), to the data of each of
Tables 3.3 and 4.10. Explain, in words, the meaning of each of the outputs. Then apply the
Mantel–Haenzel test to each of these tables.



142 An introduction to formal inference

Table 4.10 In these data, biases that go in different directions in the
two faculties have canceled in the table of totals.

Engineering Sociology Total

male female male female male female

Admit 30 20 Admit 10 20 Admit 40 40
Deny 30 10 Deny 5 25 Deny 35 35

13. Re-do the analysis of the plant root weight data presented in Figure 4.6 after taking logarithms
of the weights. In the analysis, construct an analogue to Figure 4.6 as well as a new analysis
of variance table.

14. The function overlapDensity() in the DAAG package can be used to visualize the
unpaired version of the t-test. Type in

## Compare densities for ambient & heated: list two65 (DAAG)

with(two65, overlapDensity(ambient, heated))

# Do overlapDensity(ambient, heated) with ambient and heated

# taken, if not found elsewhere, from the columns of two65

in order to observe estimates of the stretch distributions of the ambient (control) and heated
(treatment) elastic bands.

15.∗ For constructing bootstrap confidence intervals for the correlation coefficient, it is advisable
to work with the Fisher z-transformation of the correlation coefficient. The following lines of
R code show how to obtain a bootstrap confidence interval for the z-transformed correlation
between chest and belly in the possum data frame. The last step of the procedure is to
apply the inverse of the z-transformation to the confidence interval to return it to the original
scale. Run the following code and compare the resulting interval with the one computed
without transformation. Is the z-transform necessary here?
z.transform <- function(r) .5*log((1+r)/(1-r))

z.inverse <- function(z) (exp(2*z)-1)/(exp(2*z)+1)

possum.fun <- function(data, indices) {

chest <- data$chest[indices]

belly <- data$belly[indices]

z.transform(cor(belly, chest))}

possum.boot <- boot(possum, possum.fun, R=999)

z.inverse(boot.ci(possum.boot, type="perc")$percent[4:5])

# See help(bootci.object). The 4th and 5th elements of

# the percent list element hold the interval endpoints.

16. The 24 paired observations in the data set mignonettewere from five pots. The observations
are in order of pot, with the numbers 5, 5, 5, 5, 4 in the respective pots. Plot the data in a
way that shows the pot to which each point belongs. Also do a plot that shows, by pot, the
differences between the two members of each pair. Do the height differences appear to be
different for different pots?

17. Add code to the function meanANDsd(), defined in Subsection 1.5.3 for calculation of a
95% confidence interval for the mean. Recall that the multiplier for the standard error is



4.11 Exercises 143

qt(0.975, nu), where nu is the number of degrees of freedom for the standard deviation
estimate.

18. Use the function rexp() to simulate 100 random observations from an exponential distribu-
tion with rate 1. Use the bootstrap (with 99 999 replications) to estimate the standard error of
the median. Repeat several times. Compare with the result that would be obtained using the
normal approximation, i.e.

√

/�2n�.

19. Low doses of the insecticide toxaphene may cause weight gain in rats (Chu et al., 1988).
A sample of 20 rats are given toxaphene in their diet, while a control group of 8 rats are
not given toxaphene. Assume further that weight gain among the treated rats is normally
distributed with a mean of 60g and a standard deviation of 30g, while weight gain among
the control rats is normally distributed with a mean of 10g and a standard deviation of 50g.
Using simulation, compare confidence intervals for the difference in mean weight gain, using
the pooled variance estimate and the Welch approximation. Which type of interval is correct
more often?

Repeat the simulation experiment under the assumption that the standard deviations are 40g
for both samples. Is there a difference between the two types of intervals now? Hint: Is one
of the methods giving systematically larger confidence intervals? Which type of interval do
you think is best?

20. Least-squares estimation of the mean. Conduct the following simulation experiment:
set.seed(32083)

x <- rnorm(100, mean=3, sd=7)

Next, confirm that the sample mean of the values in x is near 4.642. Now plot the sum of
squared deviations from �:

100∑
i=1

�xi −��2

as a function of �, using the following code:
lsfun <- function(mu) apply(outer(x, mu, "-")ˆ2, 2, sum)

curve(lsfun, from=4.6, to=4.7)

Repeat this experiment for different samples, noting where the minimum of the sum of the
squares is located each time.

21.∗ Experiment with the pair65 example and plot various views of the likelihood function,
either as a surface using the persp() function or as one-dimensional profiles using the
curve() function. Is there a single maximizer: where does it occur?

22.∗ Suppose the mean reaction time to a particular stimulus has been estimated in several previous
studies, and it appears to be approximately normally distributed with mean 0.35 seconds with
standard deviation 0.1 seconds. On the basis of 10 new observations, the mean reaction time is
estimated to be 0.45 seconds with an estimated standard deviation of 0.15 seconds. Based on
the sample information, what is the maximum likelihood estimator for the true mean reaction
time? What is the Bayes’ estimate of the mean reaction time.

23.∗ Plot the likelihood function for the mean in the normal errors model for the pair65 differ-
ences. Assume a normal prior distribution with mean 6.0 and standard deviation 5.0. Plot the
prior distribution as well as the posterior distribution of the mean. Is it reasonable to view the
posterior distribution as a compromise between the prior distribution and the likelihood?
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Regression with a single predictor

Data for which the models of this chapter may be appropriate can be displayed as a
scatterplot. The focus will be on the straight line model, though the use of transformations
makes it possible to accommodate specific forms of non-linear relationship within this
framework. By convention, the x-variable, plotted on the horizontal axis, has the role of
explanatory variable. The y-variable, plotted on the vertical axis, has the role of response
or outcome variable.

The issues that arise for these simple regression models are fundamental to any study
of regression methods. There are various special applications of linear regression that
raise their own specific issues. We consider one such application, to size and shape data.

Scrutiny of the scatterplot should precede the regression calculations that we will
describe. Such a plot may indicate that the intended regression is plausible, or it may
reveal unexpected features. If there are many observations, try fitting a smooth curve.

If the smooth curve differs substantially from an intended line, then straight line
regression may be inappropriate, as in Figure 2.6. The fitting of such smooth curves will
be a major focus of Chapter 7.

5.1 Fitting a line to data

In the straight line regression model that we will describe:

• There is just one explanatory or predictor variable x.
• The values y are independent.
• Given x, the response y has a normal distribution with mean given by a linear function

of x.

Notice that the role of the variables is not symmetric. Our interest is in predicting y
given x. The straight line regression model has the form:

y = �+
x+��

In the terminology of Chapter 3, the �+
x term is the deterministic component of the
model, and � represents the random noise. Subscripts are often used. Given observations
(x1, y1), (x2, y2�� � � � ��xn, yn), we may write:

yi = �+
xi +�i�
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In standard analyses, we assume that the �i are independently and identically distributed
as normal variables with mean 0 and variance 	2. The R function lm() provides a way
to estimate the slope 
 and the intercept �. Given estimates (a for � and b for 
), we
can pass the straight line

ŷ = a+bx

through the scatterplot. Fitted or predicted values are calculated using the above formula,
that is:

ŷ1 = a+bx1� ŷ2 = a+bx2� � � �

By construction, the fitted values lie on the estimated line. The line passes through the
cloud of observed values. Useful information about the noise can be gleaned from an
examination of the residuals, which are the differences between the observed and fitted
values:

e1 = y1 − ŷ1� e2 = y2 − ŷ2� � � �

In particular, a and b are estimated so that the sum of the squared residuals is as small as
possible, that is, the resulting fitted values are as close (in this “least squares” sense) as
possible to the observed values.

5.1.1 Lawn roller example

Figure 5.1 shows, for the lawn roller data, details of the straight line regression. The
depression measurements serve as the response values y1� y2� � � � , and the weights are the
values of the predictor variable x1� x2� � � � The regression model is:

depression = �+
 × weight + noise�

As described in Subsection 3.1.3, we use the R model formula depression ˜
weight to supply the model information to the R function lm(). We then use
summary() to display the output:1

0 2 4 6 8 1 0

0
5

10
20

30

Roller weight (t)

Depress
ion in lawn (mm)

Fitted values
Data values

r = 0.803

+ve residual
–ve residual

Figure 5.1 Lawn depression for various weights of roller, with fitted line.

1 ## Global option settings used for this and most later output
options(show.signif.stars=FALSE, digits=4)
# show.signif.stars=FALSE suppresses interpretive features that,
# for our use of the output, are unhelpful.
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> ## Fit lm model: data from roller (DAAG); output in roller.lm

> roller.lm <- lm(depression ˜ weight, data = roller)

> ## Use the extractor function summary() to summarize results

> summary(roller.lm)

Call:

lm(formula = depression ˜ weight, data = roller)

Residuals:

Min 1Q Median 3Q Max

-8.18 -5.58 -1.35 5.92 8.02

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.09 4.75 -0.44 0.6723

weight 2.67 0.70 3.81 0.0052

Residual standard error: 6.74 on 8 degrees of freedom

Multiple R-Squared: 0.644, Adjusted R-squared: 0.6

F-statistic: 14.5 on 1 and 8 DF, p-value: 0.00518

The first several lines of the R output include a numerical summary of the residuals.
This is followed by a table of the estimated regression coefficients and their standard
errors. Observe that the intercept of the fitted line is a = −2�09 (SE = 4.75), and the
estimated slope is b = 2�67 (SE = 0.70). Also included in the table are t-statistics and
p-values for individual tests of the hypotheses “true slope = 0” and “true intercept = 0.”
For this example, the p-value for the slope is small, which should not be surprising, and
the p-value for the intercept is large. Thus, consistently with the intuition that depression
should be proportional to weight, it would be reasonable to fit a model that lacks an
intercept term. We leave this as an exercise for the reader:2

The standard deviation of the noise term, here identified as the residual standard error,
is 6.735. We defer comment on R2 and the F-statistic until Subsection 5.1.5.

5.1.2 Calculating fitted values and residuals

The fitted values can be obtained using the predict() function, while the resid()
function gives the residuals:

> data.frame(roller, fitted.value=predict(roller.lm),

+ residual=resid(roller.lm))

weight depression fitted.value residual

1 1.9 2 2.98 -0.98

2 3.1 1 6.18 -5.18

3 3.3 5 6.71 -1.71

4 4.8 5 10.71 -5.71

2 ## Fit model that omits intercept term; i.e., y = bx
lm(depression ˜ -1 + weight, data=roller)
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5 5.3 20 12.05 7.95

6 6.1 20 14.18 5.82

7 6.4 23 14.98 8.02

8 7.6 10 18.18 -8.18

9 9.8 30 24.05 5.95

10 12.4 25 30.98 -5.98

For example, when weight has the value 1.9, the predicted value of depression is,
rounding to two decimal places:

ŷ = −2�09+2�67×1�9 = 2�98�

The residual corresponding to this observation is the difference between the observed and
fitted value:

e1 = 2−2�98 = −0�98�

5.1.3 Residual plots

Model assumptions should be checked, as far as is possible. Two common checks, both
available by using the plot() function with an lm object, are:

• A plot of residuals versus fitted values – for example there may be a pattern in the
residuals that suggests that we should be fitting a curve rather than a line. For this,
specify
plot(roller.lm, which = 1)

• A normal probability plot of residuals – if residuals are from a normal distribution
points should lie, to within statistical error, close to a line. For this, specify
plot(roller.lm, which = 2)

Figure 5.2 shows these two plots, for the lawn roller data.
Note that plot(roller.lm), that is, the parameter which is left at its default,

gives two further plots. The remaining two default plots will be demonstrated later.

5 1 0 2 0 30

–5
0

5

Fitted values

Residu
als

A

–1.5 –0.5 0.5 1.5

–5
0

5

Normal Q–Q Plot

Quantiles of normal distribution

Ordered data
 valu

es

B

Figure 5.2 Diagnostic plots for the regression of Figure 5.1. Panel A is a plot of residuals
against fitted values. Panel B is a normal probability plot of residuals. If residuals follow a normal
distribution the points should fall close to a line.
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Our conclusion will be that the plots are consistent with the assumptions that underlie
the analysis. Note however that, in such a small data set, departures from assumptions
will be hard to detect.

In Figure 5.2A, there is a suggestion of clustering in the residuals, but no real indication
that there should be a curve rather than a line. The normal probability plot in Figure
5.2B allows, as indicated in the second bullet point above, an assessment whether the
distribution of residuals follows a normal distribution.

Interpretation of these plots requires practice in their use, both with data that are to be
analyzed and with contrived data. This is especially the case for normal probability plots,
as noted in Subsection 28. For the interpretation of Figure 5.2B, it is necessary to calibrate
the eye by examining a number of independent plots from computer-generated normal data
with the same number of observations, as in Figure 5.3. The function qreference()
(DAAG) makes it easy to do this:3

## Normal probability plot, plus 7 reference plots

qreference(residuals(roller.lm), nrep=8, nrows=2)

5.1.4 Iron slag example: is there a pattern in the residuals?

We now consider an example where there does appear to be a clear pattern in the
residuals. The data compare two methods for measuring the iron content in slag – a

–10
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0
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–1 0 1

residuals(roller.lm) reference 1

–1 0 1

reference 2 reference 3

reference 4 reference 5

–1 0 1

reference 6

–10

–5

0

5

10
reference 7

–1 0 1

Figure 5.3 Normal probability plot for the regression of Figure 5.1, together with normal proba-
bility plots for computer-generated normal data.

3 ## Alternatively, use the following code:
test <- residuals(roller.lm); n <- length(test)
av <- mean(test); sdev <- sd(test)
y <- c(test, rnorm(7*n, av, sdev))
fac <- c(rep("residuals(roller.lm)",n), paste("reference", rep(1:7, rep(n,7))))
fac <- factor(fac, levels=unique(fac))
library(lattice)
qqmath(˜ y|fac, aspect=1, layout=c(4,2))
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magnetic method and a chemical method (data are from Roberts, 1974, p. 126). The
chemical method requires greater effort and is presumably expensive, while the magnetic
method is quicker and easier.

Figure 5.4A suggests that the straight line model is wrong.4 The smooth curve (shown
with a dashed line) gives a better indication of the pattern in the data. Panel B shows
the residuals from the straight line fit.5 The non-linearity is now more evident. Panel C
plots observed values against predicted values.6 Panel D is designed to allow a check
on whether the error variance is constant.7 There are theoretical reasons for plotting the
square root of absolute values of the residuals on the vertical axis in panel D.

Taken at face value, Figure 5.4D might be interpreted as an indication that the variance
decreases with increasing predicted value. Note, however, that the residuals are from the
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Figure 5.4 Chemical test of iron content in slag, versus magnetic test. The fitted curves used
the lowess smooth. In D, the downward slope suggests lower variance for larger fitted values. See
however Figure 5.5. (Exercise 7 at the end of the chapter has R code for panels B and D.)

4 ## requires data frame ironslag (DAAG)
par(mfrow=c(2,2))
attach(ironslag)
## Panel A
plot(chemical ˜ magnetic)
ironslag.lm <- lm(chemical ˜ magnetic)
abline(ironslag.lm)
lines(lowess(chemical ˜ magnetic, f=.9), lty=2)

5 res <- residuals(ironslag.lm)
plot(res ˜ magnetic, xlab="Residual")
lines(lowess(res ˜ magnetic, f=.9), lty=2)

6 yhat <- fitted(ironslag.lm)
plot(chemical ˜ yhat, xlab="Predicted chemical", ylab="Chemical")
lines(lowess(chemical ˜ yhat, f=.9), lty=2)

7 sqrtabs <- sqrt(abs(res))
plot(sqrtabs ˜ yhat, xlab = "Predicted chemical",

ylab = expression(sqrt(abs(residual))), type = "n")
panel.smooth(yhat, sqrtabs, span = 0.95)
detach(ironslag)
par(mfrow=c(1,1))
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Figure 5.5 Residuals (A), and square root of absolute values of residuals (B), for the loess smooth
for the data of Figure 5.4. (Exercise 8 at the end of the chapter has the R code.)

straight line model, which Figures 5.4A and 5.4B suggested was inappropriate. Thus the
plot in panel D may be misleading. We reserve judgment until we have examined the
equivalent plot for residuals from the smooth curve.

Figure 5.5 shows the plot of residuals from the loess fit versus the predictor, together
with the plot of square root of absolute values of residuals against predicted chemical
test result. There is now no suggestion of heterogeneity. The heterogeneity or change of
variance that was suggested by Figure 5.4D was an artifact of the use of a line, where
the true response was curvilinear.

Where there is true heterogeneity of variance, we can obtain estimates for the vari-
ance at each x-value, and weight data points proportionately to the reciprocal of the
variance. Getting an estimate to within some constant of proportionality is enough. It
may be possible to guess at a suitable functional form for the change in variance with
x or (equivalently, since y = a+bx) with y. For example, the variance may be propor-
tional to y.

5.1.5 The analysis of variance table

The analysis of variance table breaks the sum of squares about the mean, for the
y-variable, into two parts: a part that is accounted for by the deterministic compo-
nent of the model, that is, by a linear function of weight, and a part attributed to
the noise component or residual. For the lawn roller example, the analysis of variance
table is:

> anova(roller.lm)

Analysis of Variance Table

Response: depression

Df Sum Sq Mean Sq F value Pr(>F)

weight 1 657.97 657.97 14.503 0.005175

Residuals 8 362.93 45.37

The total sum of squares (about the mean) for the 10 observations is 1020.9 (= 658.0 +
362.9; we round to one decimal place). Including weight reduced this by 658.0, giving a
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residual sum of squares equal to 362.9. For comparing the reduction with the residual, it
is best to look at the column headed Mean Sq, that is, mean square. The mean square
of the reduction was 658.0, giving 45.4 as the mean square for the residual.

The degrees of freedom can be understood thus: two points determine a line. Thus
if there had been only two observations, both residuals would have been zero, yielding
no information about the noise. Every additional observation beyond two yields one
additional degree of freedom for estimating the noise variance. Thus with 10 points,
10 −2 �= 8� degrees of freedom are available (in the residuals) for estimating the noise
variance. (Where a line is constrained to pass through the origin, one point is enough to
determine the line, and the variance is estimated with 9 degrees of freedom.)

This table has the information needed for calculating R2 (also known as the “coefficient
of determination”) and adjusted R2. The R2 statistic is the square of the correlation
coefficient, and is the sum of squares due to weight divided by the total sum of squares:

R2 = 658�0
1020�9

= 0�64�

while

adjusted R2 = 1− 362�9/8
1020�9/9

= 0�60�

Adjusted R2 takes into account the number of degrees of freedom, and is preferable to
R2, though neither statistic is an effective summary of what has been achieved. They
do not give any direct indication of how well the regression equation will predict when
applied to a new data set.

Even for comparing models, adjusted R2 and R2 are in general unsatisfactory.
Section 5.5 describes more appropriate measures.

5.2 Outliers, influence and robust regression

The data displayed in Figure 5.6, with data shown on the right, are for a collection of eight
softback books. Additionally, the figure shows the fitted regression line, with information
on the residuals from the line.

Here is the output from the regression calculations:

## Fit lm model: data frame softbacks (DAAG)

> softbacks.lm <- lm(weight ˜ volume, data=softbacks)

> summary(softbacks.lm)

Residuals:

Min 1Q Median 3Q Max

-89.674 -39.888 -25.005 9.066 215.910

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.3725 97.5588 0.424 0.686293

volume 0.6859 0.1059 6.475 0.000644
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Figure 5.6 Volumes (≤m3) and weights (g), for eight softback books. The figure also shows the
fitted regression line, with information on the residuals from the line.
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Figure 5.7 Diagnostic plots for Figure 5.6.

Residual standard error: 102.2 on 6 degrees of freedom

Multiple R-Squared: 0.8748, Adjusted R-squared: 0.8539

F-statistic: 41.92 on 1 and 6 degrees of freedom,

p-value: 0.0006445

Figure 5.7 shows regression diagnostics. The code used is:

par(mfrow=c(2,2)) # Use par(mfrow=c(1,4)) for layout in figure

plot(softbacks.lm, which=1:4)

# By default, plots 1:3 and 5 [which=c(1:3,5)] are given

par(mfrow=c(1,1))

We should already be familiar with plots A and B from Figure 5.7. For regression
with one explanatory variable, plot A is equivalent to a plot of residuals against the
explanatory variable. Plot C, which is not of much interest for the present data, is
designed for examining the constancy of the variance. Plot D identifies residuals that are
influential in determining the form of the regression line. Influential points are commonly
taken to be those with Cook’s distances that are close to, or greater than, one.

The largest two residuals in Figure 5.7D are identified with their row labels, which
for the softbacks data frame are the observation numbers. The largest residual is that
for observation 6. Cook’s distance is a measure of influence; it measures the extent to
which the line would change if the point were omitted. Observation 4, which has the
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largest value of volume, also has the largest Cook’s statistic. In part, the statistic is
large because this point is at the extreme end of the range of x-values, making it a high
leverage point that exerts a greater pull on the regression line than observations closer to
the center of the range. Since its y-value is lower than would be predicted by the line, it
pulls the line downward.

Point 6 seems an outlier. There may then be two sets of results to report – the main
analysis, and the results for any outlying observations. Here, with only eight points, it
does not make sense to omit any of them, especially as points 4 and 6 are both, for
different reasons, candidates for omission.

Diagnostic plots, such as Figure 5.7, are not definitive. Rather, they draw attention to
points that require further investigation. It will, on checking, sometimes turn out that the out-
lier has arisen from a recording or similar error. Where an outlier seems a genuine data value,
it is good practice to do the analysis both with and without the outlier. If retention of an
apparent outlier makes little difference to the practical use and interpretation of the re-
sults, it is usually best to retain it in the main analysis. Where an outlier is omitted from
the main analysis, it should be reported along with the main analysis, and included in graphs.

Robust regression

Robust regression offers a half-way house between including outliers and omitting them
entirely. Rather than omitting outliers, it downweights them, reducing their influence on
the fitted regression line. This has the additional advantage of making outliers stand out
more strongly against the line. The MASS package has the function rlm() that may
be used for robust regression. Note also the lqs() resistant regression function in the
MASS package. For the distinction between robust regression and resistant regression, see
the R help page for lqs(). We pursue the investigation of robust and resistant regression
in the exercises at the end of this chapter, and in Sections 6.2.4 and 6.11.

5.3 Standard errors and confidence intervals

The regression output gives the standard error of the regression slope. Setting up a confidence
interval for the regression slope follows a similar format to that for a population mean.

In addition, we can ask for standard errors of predicted values, then make them the
basis for calculating confidence intervals. A wide confidence interval for the regression
slope implies that intervals for predicted values will be accordingly wide.

Recall that since two parameters (the slope and intercept) have been estimated, the
error mean square is calculated with n − 2 degrees of freedom. As a consequence, the
standard errors for the slope and for predicted values are calculated with n− 2 degrees
of freedom. Both involve the use of the square root of the error mean square.

5.3.1 Confidence intervals and tests for the slope

A 95% confidence interval for the regression slope is:

b± t0�975SEb�
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where t0�975 is the 97.5% point of the t distribution with n− 2 degrees of freedom, and
SEb is the standard error of b.

We demonstrate the calculation for the roller data. From the second row of the
Coefficients table in the summary output of Subsection 5.1.1, the slope estimate
is 2.67, with standard error equal to 0.70. The t-critical value for a 95% confidence
interval on 10−2 = 8 degrees of freedom is t0�975 = 2�30. Therefore, the 95% confidence
interval is:8

2�67±2�3×0�7 = �1�1� 4�3��

The validity of such confidence intervals depends crucially upon the regression assump-
tions.

For a formal statistical test, the statistic

t = b

SEb

is used to check whether the true regression slope differs from 0. Again, this is compared
with a t-critical value based on n − 2 degrees of freedom. An alternative is to check
whether the 95% confidence interval for b contains 0.

5.3.2 SEs and confidence intervals for predicted values

There are two types of predictions: the prediction of the given data values, and the
prediction of a new data value. The SE estimates of predictions for new data values take
account both of uncertainty in the line and of the variation of individual points about the
line. Thus the SE for prediction of a new data value is larger than that for prediction of
given data values.

Table 5.1 shows expected values of the depression, with SEs, for various roller
weights.9 The column that is headed SE indicates how precisely given data values are
determined. The column headed SE.OBS indicates the precision with which new obser-
vations can be predicted. For determining SE.OBS, there are two sources of uncertainty:
the standard error for the fitted value (estimated at 3.6 in row 1) and the noise standard
error (estimated at 6.74) associated with a new observation.

Figure 5.8 shows 95% pointwise confidence bounds for the fitted line.10

It bears emphasizing that the validity of these calculations depends crucially on the
appropriateness of the fitted model for the given data.

8 SEb <- summary(roller.lm)$coefficients[2, 2]
coef(roller.lm)[2] + qt(c(0.025,.975), 8)*SEb

9 ## Code to obtain fitted values and standard errors (SE, then SE.OBS)
fit.with.se <- predict(roller.lm, se.fit=TRUE)
fit.with.se$se.fit # SE
sqrt(fit.with.se$se.fitˆ2+fit.with.se$residual.scaleˆ2) # SE.OBS

10 plot(depression ˜ weight, data=roller, xlab = "Weight of Roller (tonnes)",
ylab = "Depression in Lawn (mm)", pch = 16)

roller.lm <- lm(depression ˜ weight, data = roller)
abline(roller.lm$coef, lty = 1)
xy <- data.frame(weight = pretty(roller$weight, 20))
yhat <- predict(roller.lm, newdata = xy, interval="confidence")
ci <- data.frame(lower=yhat[, "lwr"], upper=yhat[, "upr"])
lines(xy$weight, ci$lower, lty = 2, lwd=2, col="grey")
lines(xy$weight, ci$upper, lty = 2, lwd=2, col="grey")
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Table 5.1 Observed and fitted values of depression at the given
weight values, together with two different types of SE. The column
headed SE gives the precision of the predicted value. The column
headed SE.OBS gives the prediction of a new observation.

Predictor Observed
weight depression Fitted SE SE.OBS

1 1.9 2 3.0 3.6 7.6
√

3�62 +6�742

2 3.1 1 6.2 3.0 7.4
√

3�02 +6�742

3 3.3 5 6.7 2.9 7.3
4 4.8 5 10.7 2.3 7.1
5 5.3 20 12.0 2.2 7.1
6 6.1 20 14.2 2.1 7.1
7 6.4 23 15.0 2.1 7.1
8 7.6 10 18.2 2.4 7.1
9 9.8 30 24.0 3.4 7.5

10 12.4 25 31.0 4.9 8.3
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Figure 5.8 Lawn depression, for various weights of roller, with fitted line and showing 95%
pointwise confidence bounds for points on the fitted line.

5.3.3* Implications for design

The point of this subsection is to emphasize that the choice of location of the x-values,
which is a design issue, is closely connected with sample size considerations. As often,
increasing the sample size is not the only, or necessarily the best, way to improve
precision.

The estimated variance of the slope estimate is:

SEb
2 = s2

ns2
x

�
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where we define

s2
x =

∑
i�xi − x̄�2

n
�

Here s2 is the error mean square, that is, s is the estimated SD for the population from
which the residuals are taken. The expected value of SEb

2 is:

E�SE2
b� = 	2

ns2
x

Now consider two alternative ways that we might reduce SEb by a factor of
(e.g.) 2:

• If we fix the configuration of x-values, but multiply by 4 the number of values at each
discrete x-value, then sx is unchanged. As n has been increased by a factor of 4, the
effect is to reduce the expected value of SE2

b by a factor of 4, and SEb by a factor
of 2.

• Alternatively, we can reduce SEb by pushing the x-values further apart, thus increasing
sx. Increasing the average separation between x-values by a factor of 2 will reduce
SEb by a factor of 2.

Providing the relationship remains close to linear, and we have enough distinct well-
separated x-values that we can check for linearity, pushing the x-values further apart
is the better way to go. The caveats are important – it is necessary to check that the
relationship is linear over the extended range of x-values.

Reducing SEb does at the same time reduce the standard error of points on the fitted
line. Figure 5.9 shows the effect of increasing the range of x-values (the code for both
panels is a ready adaptation of the code for Figure 5.8). Both experiments used the same
rubber band. The first experiment used a much wider range of values of x (= amount by
which the rubber band was stretched). For the left panel of Figure 5.9, sx = 10�8, while
for the right panel, sx = 4�3.

Range of stretch 30–60 mm
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Range of stretch 42–54 mm
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Dista
nce moved (cm)

Amount of stretch (mm)

Figure 5.9 Two rubber band experiments, with different ranges of x-values. The dashed curves
are pointwise 95% confidence bounds for points on the fitted line. Note that, for the panel on the
right, the axis labels appear above the panel, as is done for lattice plots.
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5.4 Regression versus qualitative anova comparisons

5.4.1 Issues of power

An analysis that fails to take advantage of structure in the data may fail to find what is
there. Figure 5.10 shows six sets of data that have been simulated to follow a linear trend.

The first p-value tests for linear trend, while the second p-value tests for qualitative
differences between treatment effects, ignoring the fact that the levels are quantitative
(note that the test for linear trend is equivalent to the test for a linear contrast from
the aov()function that is available when the explanatory term is an ordered factor).
A test for linear trend is more powerful than an analysis of variance that treats the five
levels as qualitatively different levels. In repeated simulations of Figure 5.10, the p-values
in the test for linear trend will on average be smaller than in the analysis of variance that
makes qualitative comparisons between the five levels.

To get a clear indication of the effect we need a more extensive simulation. Figure 5.11
plots results from 200 simulations. Both axes use a scale of log�p/�1−p��. On the vertical
axis are the p-values for a test for linear trend, while the horizontal axis plots p-values
for an AOV test for qualitative differences. The majority of points (for this simulation,
91%) lie below the line y = x.

The function simulateLinear() in our DAAG package allows readers to exper-
iment with such simulations. Write the p-values for a test for linear trend as pl, and
the p-values for the analysis of variance test for qualitative differences as pa. Spec-
ifying type="density" gives overlaid plots of the densities for the two sets of
p-values, both on a scale of log�p/�1 − p��, together with a plot of the density of

log�pl/�1−pl��− log�pa/�1−pa��. As the data are paired, this last plot is the preferred
way to make the comparison.
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Figure 5.10 Test for linear trend, versus analysis of variance comparison that treats the levels
as qualitatively different. The six panels are six different simulations from the straight line model
with slope 0.8, SD = 2, and 4 replications per level.
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Figure 5.11 This plot compares p-values in a test for linear trend with p-values in an analysis of
variance test for qualitative differences, in each of 200 sets of simulated results. We show also the
line y = x.

5.4.2 The pattern of change

There are other reasons for fitting a line or curve, where this is possible, rather than
fitting an analysis of variance type model that has a separate parameter for each separate
level of the explanatory variable. Fitting a line (or a curve) allows interpolation between
successive levels of the explanatory variable. It may be reasonable to hazard prediction a
small distance beyond the range of the data. The nature of the response curve may give
scientific insight.

5.5 Assessing predictive accuracy

The resubstitution estimate of predictive accuracy, derived by direct application of model
predictions to the data from which the regression relationship was derived, gives in general
an optimistic assessment. There is a mutual dependence between the model prediction
and the data used to derive that prediction. The problem becomes more serious as the
number of parameters that are estimated increases, that is, as we move from the use
of one explanatory variable to examples (in later chapters) where there may be many
explanatory variables. The simple models discussed in the present chapter are a good
context in which to begin discussion of the issue.

5.5.1 Training/test sets and cross-validation

An ideal is to assess the performance of the model on a new data set. The data that are
used to develop the model form the training set, while the data on which predictions are
tested form the test set. This is a safe and generally valid procedure, provided that the
test set can be regarded as a random sample of the population to which predictions will
be applied. If there are too few data to make it reasonable to divide data into training and
test sets, then the method of cross-validation can be used.

Cross-validation extends the training/test set approach. As with that approach, it esti-
mates predictive accuracy for data that are sampled from the population in the same way
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Table 5.2 Floor area and sale price, for 15
houses in Aranda, a suburb of Canberra,
Australia.

Row number area bedrooms sale.price

1 694 4 192.0
2 905 4 215.0

· · · · · · · · ·
15 1191 6 375.0

as the existing data. The data are divided into k sets (or folds), where k is typically in
the range 3 to 10. Each of the k sets becomes in turn the test set, with the remaining
data forming the training set. The predictive accuracy assessments from the k folds are
combined to give a measure of the predictive performance of the model. This may be
done for several different measures of predictive performance.

5.5.2 Cross-validation – an example

We present an example of the use of cross-validation with a small data set. In order to
simplify the discussion, we will use 3-fold validation only.

Table 5.2 shows data on floor area and sale price for 15 houses in a suburb of
Canberra, in 1999. Rows of data have been numbered from 1 to 15. For demonstrating
cross-validation, we use a random number sampling system to divide the data up into
three equal groups.11

The observation numbers for three groups we obtain are:

2 3 12 13 15

1 5 7 8 14

4 6 9 10 11

Re-running the calculations will of course lead to a different division into three groups.
At the first pass (fold 1) the first set of rows will be set aside as the test data, with

remaining rows making up the training data. Each such division between training data
and test data is known as a fold. At the second pass (fold 2) the second set of rows will be
set aside as the test data, while at the third pass (fold 3) the third set of rows will be set
aside as the test data. A crucial point is that at each pass the data that are used for testing
are separate from the data used for prediction. Figure 5.12 is a visual summary, obtained
by using the function CVlm() (DAAG) with the default setting plotit=TRUE.

11 rand <- sample(1:15)%%3 + 1
# a%%3 is the remainder of a, modulo 3
# It is the remainder after subtracting from a the
# largest multiple of 3 that is <= a

(1:15)[rand == 1] # Observation numbers for the first group
(1:15)[rand == 2] # Observation numbers for the second group
(1:15)[rand == 3] # Observation numbers for the third group.
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Figure 5.12 Graphical summary of 3-fold cross-validation for the house sale data (Table 5.2).
The line is fitted leaving out the corresponding “test” set of points. Predictions for these omitted
points are used to assess predictive accuracy.

The following summary of the cross-validation results includes, for each fold, estimates
of the mean square error:

> ## Cross-validate lm calculations: data frame houseprices (DAAG)

> houseprices.lm <- lm(sale.price ˜ area, data=houseprices)

> CVlm(houseprices, houseprices.lm)

fold 1

Observations in test set: 2 3 12 13 15

Floor area 905.0 802.00 696.0 771.0 1191

Predicted price 225.9 208.63 190.9 203.4 274

Observed price 215.0 215.00 255.0 260.0 375

Residual -10.9 6.37 64.1 56.6 101

Sum of squares = 17719 Mean square = 3544 n = 5

fold 2

Observations in test set: 1 5 7 8 14

Floor area 694.0 716 821.0 714.00 1006.0

Predicted price 222.4 225 238.6 224.97 262.2

Observed price 192.0 113 212.0 220.00 293.0

Residual -30.4 -113 -26.6 -4.97 30.8

Sum of squares = 15269 Mean square = 3054 n = 5

fold 3

Observations in test set: 4 6 9 10 11

Floor area 1366 963.0 1018.0 887.00 790.00

Predicted price 412 278.4 296.6 253.28 221.22
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Observed price 274 185.0 276.0 260.00 221.50

Residual -138 -93.4 -20.6 6.72 0.28

Sum of squares = 28127 Mean square = 5625 n = 5

Overall ms

4074

At each fold, the training set consists of the remaining rows of data.
To obtain the estimate of the error mean square, take the total of the sums of squares

and divide by 15. This gives:

s2 = �17 719+15 269+28 127�/15 = 4074�

Actually, what we have is an estimate of the error mean square when we use only two-
thirds of the data. Thus we expect the cross-validated error to be larger than the error if
all the data could be used. We can reduce the error by doing 10-fold rather than 3-fold
cross-validation. Or we can do leave-one-out cross-validation, which for these data is
15-fold cross-validation.

Contrast s2 = 4074 with the estimate s2 = 2323 that we obtained from the model-based
estimate in the regression output for the total data.12

5.5.3* Bootstrapping

We first indicate how resampling methods can be used to estimate the standard error of
slope of a regression line. Recalling that the standard error of the slope is the standard
deviation of the sampling distribution of the slope, we need a way of approximating this
sampling distribution. One way of obtaining such an approximation is to resample the
observations or cases directly. For example, suppose five observations have been taken
on a predictor x and response y:

�x1� y1�� �x2� y2�� �x3� y3�� �x4� y4�� �x5� y5��

Generate five random numbers with replacement from the set �1� 2� 3� 4� 5�: 3, 5, 5, 1, 2,
say. The corresponding resample is then:

�x3� y3�� �x5� y5�� �x5� y5�� �x1� y1�� �x2� y2��

Note we are demonstrating only the so-called case-resampling approach. Another
approach involves fitting a model and resampling the residuals. Details for both methods
are in Davison and Hinkley (1997, chapter 6). A regression line can be fit to the resampled
observations, yielding a slope estimate. Repeatedly taking such resamples, we obtain a
distribution of slope estimates, the bootstrap distribution.

As an example, consider the regression relating sale.price to area in the
houseprices data. For comparison purposes, note first the estimate given by lm().

> houseprices.lm <- lm(sale.price ˜ area, data=houseprices)

> summary(houseprices.lm)$coef

12 summary(houseprices.lm)$sigmaˆ2
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 70.750 60.3477 1.17 0.2621

area 0.188 0.0664 2.83 0.0142

The lm() estimate of the standard error of the slope is thus 0.0664.
In order to use the boot() function, we need a function that will evaluate the slope

for the bootstrap resamples:

houseprices.fn <- function (houseprices, index){

house.resample <- houseprices[index, ]

house.lm <- lm(sale.price ˜ area, data=house.resample)

coef(house.lm)[2] # slope estimate for resampled data

}

Using 999 resamples, we obtain a standard error estimate that is almost 40% larger than
the lm() estimate:

> set.seed(1028) # use to replicate the exact results below

> library(boot) # ensure that the boot package is loaded

> ## requires the data frame houseprices (DAAG)

> houseprices.boot <- boot(houseprices, R=999, statistic=houseprices.fn)

> houseprices.boot

. . . .

Bootstrap Statistics :

original bias std. error

t1* 0.188 0.0169 0.0916

By changing the statistic argument in the boot() function appropriately, we can
compute standard errors and confidence intervals for fitted values. Here we use the
predict() function to obtain predictions for the given area:

houseprices1.fn <- function (houseprices, index){

house.resample <- houseprices[index, ]

house.lm <- lm(sale.price ˜ area, data=house.resample)

predict(house.lm, newdata=data.frame(area=1200))

}

For example, a 95% confidence interval for the expected sale price of a house (in Aranda)
having an area of 1200 square feet is (249 000, 363 000).13

The bootstrap procedure can be extended to gain additional insight into how well a re-
gression model is making predictions. Regression estimates for each resample are used to
compute predicted values at all of the original values of the predictor. The differences (i.e.,
the prediction errors) between the observed responses and these resampled predictors can
be plotted against observation number. Repeating this procedure a number of times gives a
distribution of the prediction errors at each observation. Figure 5.13A displays a prediction

13 houseprices1.boot <- boot(houseprices, R=999, statistic=houseprices1.fn)
boot.ci(houseprices1.boot, type="perc") # "basic" is an alternative to "perc"



5.5 Assessing predictive accuracy 163

1 4 7 1 0 1 3

–100
0

100
200

House

Prediction errors

A

2 4 6 8 1 2

0.9
1.0

1.1
1.2

1.3

House

Ratio of S
Es

boots
trap to model–b

as
ed

B

Figure 5.13 (A) Plot of bootstrap distributions of prediction errors for regression relating
sale.price to area, each based on 200 bootstrap estimates of the prediction error. (B) Ratios
of bootstrap prediction standard errors to model-based prediction standard errors.

error plot for the houseprices data.14 Note the large variability in the prediction error
associated with observation 4. We can use the same bootstrap output to estimate the stan-
dard errors. These can be compared with the usual estimates obtained by lm. Figure 5.13B
displays ratios of the bootstrap standard errors to the model-based standard errors.15 In this
case, themodel-basedstandarderrorsaregenerally smaller than thebootstrapstandarderrors.
A cautious data analyst might prefer the bootstrap standard errors.

We can also compute an estimate of the aggregate prediction error, as an alternative to
the cross-validation estimate obtained in the previous subsection. There are a number of
ways to do this, and some care should be taken. We refer the interested reader to Davison
and Hinkley (1997, section 6.4).

Commentary

The cross-validation and bootstrap estimates of mean square error are valid, provided we
can assume a homogeneous variance. This is true even if data values are not independent.
However, the estimate of predictive error applies only to data that have been sampled in the
same way as the data that are used as the basis for the calculations. In the present instance,
the estimate of predictive accuracy applies only to 1999 house prices in the same city suburb.

14 houseprices2.fn <- function (houseprices, index)
{
house.resample <- houseprices[index, ]
house.lm <- lm(sale.price ˜ area, data=house.resample)
houseprices$sale.price - predict(house.lm, houseprices) # resampled prediction

# errors
}
n <- length(houseprices$area)
R <- 200
houseprices2.boot <- boot(houseprices, R=R, statistic=houseprices2.fn)
house.fac <- factor(rep(1:n, rep(R, n)))
plot(house.fac, as.vector(houseprices2.boot$t), ylab="Prediction Errors",

xlab="House")
15 bootse <- apply(houseprices2.boot$t, 2, sd)
usualse <- predict (houseprices.lm, se.fit=TRUE)$se.fit
plot(bootse/usualse, ylab="Ratio of Bootstrap SE’s to Model-Based SE’s",

xlab="House", pch=16)
abline(1, 0)
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Such standard errors may have little relevance to the prediction of house prices in
another suburb, even if thought to be comparable, or to prediction for more than a very
short period of time into the future. This point has relevance to the use of regression
methods in business “data mining” applications. A prediction that a change will make cost
savings of $500 000 in the current year may have little relevance to subsequent years. The
point will have special force if the change will take six or twelve months to implement.
A realistic, though still not very adequate, assessment of accuracy may be derived by
testing a model that is based on data from previous years on a test set that is formed from
the current year’s data. Predictions based on the current year’s data may, if other features
of the business environment do not change, have a roughly comparable accuracy for
prediction a year into the future. If the data series is long enough, we might, starting at a
point part-way through the series, compare predictions one year into the future with data
for that year. The estimated predictive accuracy would be the average accuracy for all
such predictions. A more sophisticated approach might involve incorporation of temporal
components into the model, that is, use of a time series model. See Maindonald (2003)
for more extended commentary on such issues.

5.6* A note on power transformations

Among the more common transformations for continuous data are:

• Logarithmic. This is often the right transformation for size measurements (linear,
surface, volume or weight) of biological organisms. Some data may be too skewed
even for a logarithmic transformation. For example, counts of insects on leaves may
have this character.

• Square root or cube root. These are milder than the logarithmic transformation. If
linear measurements on insects are normally distributed, then we might expect the
cube root of weight to be approximately normally distributed. The square root is
useful for data for counts of “rare events.” The power transformation generalizes the
transformations that we have just discussed. Examples of power transformations are
y2, y0�5, y3, etc. Figure 5.14 shows a number of response curves, and describes the
particular power transformation that would make the relationship linear.

If the ratio of largest to smallest data value is greater than 10, and especially if it is
more than 100, then the logarithmic transformation should be tried as a matter of course.
Check this advice against the response curves shown in Figure 5.14.

We have so far mentioned only transformation of y. We might alternatively transform x,
or transform both x and y.

5.6.1* General power transformations

For � 	= 0, the power transformation replaces a value y by y�. The logarithmic trans-
formation corresponds to � = 0. In order to make this connection, a location and scale
correction is needed. The transformation is then:

y��� = y� −1
�

� if � 	= 0�

y��� = log�y�� if � = 0�
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Figure 5.14 The above panels show some alternative response curves. The formula for ỹ gives
the power family transformation of y that will make ỹ a linear function of x. Thus, if y = log�x�,
then the transformation ỹ = exp�y� will make ỹ a linear function of x.

• If the small values of a variable need to be spread, make � smaller.
• If the large values of a variable need to be spread, make � larger.

This is called the Box–Cox transformation, as proposed in Box and Cox (1964).
The function boxcox() (MASS), whose syntax is similar to that of lm(), can be

used to obtain data-driven estimates of �. We pursue investigation of boxcox() in an
exercise at the end of the chapter.

5.7 Size and shape data

In animal growth studies, there is an interest in the rate of growth of one organ rela-
tive to another. For example, heart growth may be related to increase in body weight.
As the animal must be sacrificed to measure the weights of organs, it is impossible to
obtain data on growth profiles for individual animals. For seals and dolphins and some
other protected marine species, the main source of information is animals who have
died, for example, snared in trawl nets, as an unintended consequence of commercial
fishing. For each animal, the data provide information at just one point in time, when
they died. At best, if conditions have not changed too much over the lifetimes of the
animals in the sample, the data may provide an indication of the average of the pop-
ulation growth profiles. If, for example, sample ages range from 1 to 10 years, it is
pertinent to ask how food availability may have changed over the past 10 years, and
whether this may have had differential effects on the different ages of animal in the
sample.
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5.7.1 Allometric growth

The allometric growth equation is:

y = axb�

where x may, for example, be body weight and y heart weight. It may alternatively be
written:

log y = log a+b log x�

that is:

Y = A+bX�

where

Y = log y� A = log a� X = log x�

Thus, we have an equation that can be fitted by linear regression methods, allowing
prediction of values of Y given a value for X. If b = 1, then the two organs (e.g. heart
and body weight) grow at the same rate.

Stewardson et al. (1999) present such data for the Cape fur seal. Figure 5.15 shows
the plot of heart weight against body weight for 30 seals. Here is the R output for the
calculations that fit the regression line:

> cfseal.lm <- lm(log(heart) ˜ log(weight), data=cfseal)

> summary(cfseal.lm)

Call:

lm(formula = log(heart) ˜ log(weight), data = cfseal)

Residuals:

Min 1Q Median 3Q Max

-3.15e-01 -9.18e-02 2.47e-05 1.17e-01 3.21e-01

Body weight (kg, log scale)

Heart weight (g, log s
cale)

20 40 60 100 160

100
200

400
700

log y = 1.2  [SE  0.211 ] +  1.126  [ 0.05 ] log x

Figure 5.15 Heart weight versus body weight, for 30 Cape fur seals.
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2043 0.2113 5.7 4.1e-06

log(weight) 1.1261 0.0547 20.6 < 2e-16

Residual standard error: 0.18 on 28 degrees of freedom

Multiple R-Squared: 0.938, Adjusted R-squared: 0.936

F-statistic: 424 on 1 and 28 DF, p-value: <2e-16

Note that the estimate of the exponent b �= 1�126� differs from 1�0 by 2�3
(= 0�126/0�0547) times its standard error. Thus for these data, the relative rate of increase
seems slightly greater for heart weight than for body weight. We have no interest in the
comparison between b and zero, for which the t-statistic and p-value in the regression
output are appropriate (authors sometimes present p-values that focus on the comparison
with zero, even though their interest is in the comparison with 1.0. See table 10 and other
similar tables in Gihr and Pilleri (1969, p. 43). For an elementary discussion of allometric
growth, see Schmidt-Nielsen (1984)).

5.7.2 There are two regression lines!

At this point, we note that there are two regression lines – a regression line for y on x,
and a regression line for x on y. It makes a difference which is the explanatory variable,
and which the dependent variable. The two lines are quite different if the correlation is
small. Figure 5.16 illustrates the point for two other data sets.

An alternative to a regression line

Here we note that there are yet other possibilities. A point of view that makes good sense
for the seal organ growth data is that there is an underlying linear functional relationship.
The analysis assumes that observed values of log(organ weight) and log(body weight)
differ from the values for this underlying functional relationship by independent random
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Figure 5.16 In each plot we show both the regression line for y on x (solid line), and the regression
line for x on y (dotted line). In A the lines are quite similar, while in B where the correlation is
smaller, the lines are quite different. Plot A is for the data of Table 3.2, while B is for a leaf data set.
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Table 5.3 The model matrix, for the lawn roller data, with
the vector of observed values in the column to the right.

X y

weight (t) depression (mm)

1 1.9 2
1 3.1 1
1 3.3 5
1 4.8 5
1 5.3 20
1 6.1 20
1 6.4 23
1 7.6 10
1 9.8 30
1 12.4 25

amounts. The line that is obtained will lie between the regression line for y on x and the line
for x on y. See Sprent (1966). Exercise 12 demonstrates a method for finding such a line.

5.8 The model matrix in regression

This section presents the calculations of earlier sections from a point of view that moves
us closer to the mathematical operations that are needed to handle the calculations. It will
to an extent test the understanding of the content of earlier sections. We include it at this
point because it will be important for understanding some of the extensions of straight
line regression that we will consider in later chapters. Straight line regression is a simple
context in which to introduce these ideas.

The formal mathematical structure of model matrices will allow us to fit different
lines to different subsets of the data. It will allow us to fit polynomial curves. It allows
the handling of multiple regression calculations. It will make it straightforward to fit
qualitative effects that are different for different factor levels. The model matrix, which
is mostly optional for understanding the examples that we consider in Chapter 6, will be
of central importance in Chapter 7.

In straight line regression, the model or X matrix has two columns – a column of 1s and a
column that holds values of the explanatory variable x. As fitted, the straight line model is:

ŷ = a+bx

which we can write as:

ŷ = 1×a+x×b�

For an example, we return to the lawn roller data. The model matrix, with the y-vector
alongside, is given in Table 5.3. To obtain the model matrix, specify:

model.matrix(roller.lm)
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Table 5.4 The use of the model matrix for calculation of fitted values and
residuals, in fitting a straight line to the lawn roller data.

Model matrix

× 2.67
Multiply and add to Compare with Residual =

× −2.09 weight yield fitted value ŷ observed y y − ŷ

1 1.9 −2.1 + 2.67 × 1.9 = 2.98 2 2 − 2.98
1 3.1 −2.1 + 2.67 × 3.1 = 6.18 1 1 − 6.18
1 3.3 −2.1 + 2.67 × 3.3 = 6.71 5 5 − 6.71
1 4.8 −2.1 + 2.67 × 4.8 = 10.71 5 5 − 10.71
1 5.3 −2.1 + 2.67 × 5.3 = 12.05 20 20 − 12.05
1 6.1 −2.1 + 2.67 × 6.1 = 14.18 20 20 − 14.18
1 6.4 −2.1 + 2.67 × 6.4 = 14.98 23 23 − 14.98
1 7.6 −2.1 + 2.67 × 7.6 = 18.18 10 10 − 18.18
1 9.8 −2.1 + 2.67 × 9.8 = 24.05 30 30 − 24.05
1 12.4 −2.1 + 2.67 × 12.4 = 30.98 25 25 − 30.98

For each row, we take some multiple of the value in the first column, another multiple
of the value in the second column, and add them. Table 5.4 shows how calculations
proceed given the estimates of a and b obtained earlier.

Note also the simpler (no intercept) model. For this:

ŷ = bx�

In this case the model matrix has only a single column, containing the values of x.

5.9 Recap

In exploring the relationships in bivariate data, the correlation coefficient can be a crude
and unduly simplistic summary measure. Keep in mind that it measures linear association.
Wherever possible, use the richer and more insightful regression framework.

The model matrix, together with the coefficients, allows calculation of predicted values.
The coefficients give the values by which the values in the respective columns must be
multiplied. These are then summed over all columns. In later chapters, we will use the
model matrix formulation to fit models that are not inherently linear.

In the study of regression relationships, there are many more possibilities than regres-
sion lines. If a line is adequate, use that. It is in any case useful to fit a smooth curve, to
see whether it suggests systematic departure from a line.

Simple alternatives to straight line regression using the original data are:

• Transform x and/or y.
• Use polynomial regression.
• Fit a smoothing curve.
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Following the calculations:

• Plot residuals against fitted values.
• If it seems necessary, do a plot that checks homogeneity of variance.

Use of the function plot(), with an lm model, gives both these plots, by default as the
first and third plots (c.f. panels A and C in Figure 5.7).

For size and shape data, the equation that assumes allometric variation is a good starting
point. Relationships between the logarithms of the size variables are linear.

The line for the regression of y on x is different from the line for the regression of x
on y. The difference between the two lines is most marked when the correlation is small.

5.10 Methodological references

We refer the reader to the suggestions for further reading at the end of Chapter 6.

5.11 Exercises

1. Here are two sets of data that were obtained using the same apparatus, including the same
rubber band, as the data frame elasticband. For the data set elastic1, the values are
stretch (mm): 46, 54, 48, 50, 44, 42, 52

distance (cm): 183, 217, 189, 208, 178, 150, 249.

For the data set elastic2, the values are
stretch (mm): 25, 45, 35, 40, 55, 50, 30, 50, 60

distance (cm): 71, 196, 127, 187, 249, 217, 114, 228, 291.

Using a different symbol and/or a different color, plot the data from the two data frames
elastic1 and elastic2 on the same graph. Do the two sets of results appear consistent?

2. For each of the data sets elastic1 and elastic2, determine the regression of stretch on
distance. In each case determine
(i) fitted values and standard errors of fitted values and

(ii) the R2 statistic. Compare the two sets of results. What is the key difference between the
two sets of data?

Use the robust regression function rlm() from the MASS package to fit lines to the data in
elastic1 and elastic2. Compare the results with those from use of lm(). Compare
regression coefficients, standard errors of coefficients, and plots of residuals against fitted
values.

3. Using the data frame cars (datasets), plot distance (i.e. stopping distance) versus speed.
Fit a line to this relationship, and plot the line. Then try fitting and plotting a quadratic curve.
Does the quadratic curve give a useful improvement to the fit? [Readers who have studied the
relevant physics might develop a model for the change in stopping distance with speed, and
check the data against this model.]

4. Calculate volumes (volume) and page areas (area) for the books on which information is
given in the data frame oddbooks (DAAG).

(a) Plot log(weight) against log(volume), and fit a regression line.
(b) Plot log(weight) against log(area), and again fit a regression line.
(c) Which of the lines (a) and (b) gives the better fit?
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(d) Repeat (a) and (b), now with log(density) in place of log(weight) as the de-
pendent variable. Comment on how results from these regressions may help explain the
results obtained in (a) and (b).

5. In the data set pressure (datasets), examine the dependence of pressure on temperature.
[The relevant theory is that associated with the Claudius–Clapeyron equation, by which the
logarithm of the vapor pressure is approximately inversely proportional to the absolute temper-
ature. For further details of the Claudius–Clapeyron equation, search on the internet, or look in
a suitable reference text.]

6.∗ Look up the help page for the function boxcox() from the MASS package, and use this func-
tion to determine a transformation for use in connection with Exercise 5. Examine diagnostics
for the regression fit that results following this transformation. In particular, examine the plot
of residuals against temperature. Comment on the plot. What are its implications for further
investigation of these data?

7. Annotate the code that gives panels B and D of Figure 5.4, explaining what each function does,
and what the parameters are.

8. The following code gives the values that are plotted in the two panels of Figure 5.5:
## requires the data frame ironslag (DAAG)

ironslag.loess <- loess(chemical ˜ magnetic, data=ironslag)

chemhat <- fitted(ironslag.loess)

res2 <- resid(ironslag.loess)

sqrtabs2 <- sqrt(abs(res2))

Using this code as a basis, create plots similar to Figures 5.5A and 5.5B. Why have we preferred
to use loess() here, rather than lowess()? [Hint: Is there a straightforward means for
obtaining residuals from the curve that lowess() gives? What are the x-values, and associated
y-values, that lowess() returns?]

9. In the data frame nsw74demo (DAAG), plot 1975 income (re75) against 1974 income
(re74). What features of the plot make the fitting of a regression relationship a challenge?

Restricting attention to observations for which both re74 and re75 are non-zero, plot
log(re75) against log(re74), and fit a trend curve. Additionally, fit a regression line to
the plot. Does the regression line accurately describe the relationship. In what respects is it
deficient.

Now examine the diagnostic plot that is obtained by using plot() with the regression
object as parameter. What further light does this shed on the regression line model?

10. Write a function which simulates simple linear regression data from the model

y = 2+3x+�

where the noise terms are independent normal random variables with mean 0 and variance 1.
Using the function, simulate two samples of size 10. Consider two designs: first, assume that
the x-values are independent uniform variates on the interval �−1� 1�; second, assume that half
of the x-values are −1s, and the remainder are 1s. In each case, compute slope estimates,
standard error estimates and estimates of the noise standard deviation. What are the advantages
and disadvantages of each type of design?

11. Using the models that were fitted to the elastic1 and elastic2 data sets, simulate artificial
data from each of these models. For example, if you had fit the the elastic1 data using
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e1.lm <- lm(distance ˜ stretch, data=elastic1)

then artificial data can be simulated from this model (conditional on the stretch measurements)
using
elastic1$newdistance <-

cbind(rep(1, 7), elastic1$stretch)%*%coef(e1.lm) +

rnorm(7, sd=summary(e1.lm)$sigma)

Now, regress newdistance against stretch and obtain side-by-side residual plots for the
original data and the artificial data. Repeat this procedure several times. Does it seem that the
outliers in the original residual plot are inconsistent with the fitted model? Apply the same
procedure to the elastic2 data.
[Technically, the methodology used here is that of a parametric bootstrap.]

12. The following function returns the coefficient of the estimated linear functional relationship
between x and y:
"funRel" <-

function(x=leafshape$logpet, y=leafshape$loglen, scale=c(1,1)){

## Find principal components rotation; see Section 11.1

## Here (unlike 11.1) the interest is in the final component

xy.prc <- prcomp(cbind(x,y), scale=scale)

b <- xy.prc$rotation[,2]/scale

bxy <- -b[1]/b[2] # slope - functional eqn line

c(bxy = bxy)

}

## Try the following:

funRel(scale=c(1,1)) # Take x and y errors as equally important

funRel(scale=c(1,10)) # Error is mostly in y; structural relation

# line is close to regression line of y on x

funRel(scale=c(10,1)) # Error is mostly in x ...

## Note that all lines pass through (xbar, ybar)

(a) Note where, for each of the three settings of the argument scale, the values of the
functional coefficient lie in the range between by �x and b−1

x � y, where by �x is the slope of
the regression line of y on x and bx � y is the slope of the regression line of x on y.

(b) Repeat this for each of the data frames softbacks and elastic2 and (with the vari-
ables logpet and loglen) leafshape17.

(c) Explain the effect of changing the settings of the argument scale.
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Multiple linear regression

In straight line regression, a response variable y is regressed on a single explanatory
variable x. Multiple linear regression generalizes this methodology to allow multiple
explanatory or predictor variables. The focus may be on accurate prediction. Or it may,
alternatively or additionally, be on the regression coefficients themselves. We warn the
reader that interpreting the regression coefficients is not as straightforward as it might
appear.

6.1 Basic ideas: book weight and brain weight examples

This book weight example has two x-variables in the regression equation. In the data
shown in Figure 6.1 and printed to the right of the figure, 7 books with hardback covers
have been added to the 8 softbacks that were used for Figure 5.6.1

The explanatory variables are the volume of the book ignoring the covers, and the total
area of the front and back covers. We might expect that:

weight of book = b0 +b1 ×volume +b2 × area of covers�

The intercept, b0, may not be needed. However, we will retain it for the moment. Later,
we can decide whether to set it to zero.

Here is the regression output:
> allbacks.lm <- lm(weight ˜ volume+area, data=allbacks)

> summary(allbacks.lm)

Call:

lm(formula = weight ˜ volume + area, data = allbacks)

Residuals:

Min 1Q Median 3Q Max

-104.1 -30.0 -15.5 16.8 212.3

1 ## Plot of weight vs volume: data frame allbacks (DAAG)
plot(weight ˜ volume, data=allbacks, pch=c(16,1)[unclass(cover)])
# unclass(cover) gives the integer codes that identify levels
## Use with() to specify data frame [text() does not take a ’data’ parameter]
with(allbacks, text(weight ˜ volume, labels=paste(1:15),

pos=c(2,4)[unclass(cover)]))
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 22.4134 58.4025 0.38 0.70786

volume 0.7082 0.0611 11.60 7e-08

area 0.4684 0.1019 4.59 0.00062

> # for coefficient estimates and SEs, without other output, enter

> # summary(allbacks.lm)$coef

Residual standard error: 77.7 on 12 degrees of freedom

Multiple R-Squared: 0.928, Adjusted R-squared: 0.917

F-statistic: 77.9 on 2 and 12 DF, p-value: 1.34e-007

The coefficient estimates are b0 = 22�4, b1 = 0�708 and b2 = 0�468. Standard errors and
p-values are provided for each estimate. Note that the p-value for the intercept suggests
that it cannot be distinguished from 0, as we guessed earlier. The p-value for volume
tests b1 = 0, in the equation that has both volume and area as explanatory variables.

The estimate of the noise standard deviation (the residual standard error) is 77.7. There
are now 15 − 3 = 12 degrees of freedom for the residual; we start with 15 observations
and estimate 3 parameters. In addition, there are two versions of R2. We defer comment
on these statistics for a later section. The F-statistic allows an overall test of significance
of the regression. The null hypothesis for this test is that all coefficients (other than the
intercept) are 0. Here, we obviously reject this hypothesis and conclude that the equation
does have explanatory power.

The output is geared towards various tests of hypotheses. The t-statistics and associated
p-values should however be used informally, rather than as a basis for formal tests of
significance. Even in this simple example, the output has four p-values. This may not
be too bad, but what if there are six or eight p-values? There are severe problems in
interpreting results from such a multiplicity of formal tests, with varying amounts of
dependence between the various tests.
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7 1228 396 1075 hb
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Figure 6.1 Weight versus volume, for 7 hardback and 8 softback books. Filled dots are hardbacks,
while open dots are softbacks. Data are shown to the right of the graph.
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The information on individual regression coefficients can readily be adapted to obtain
a confidence interval for the coefficient. The 5% critical value for a t-statistic with 12
degrees of freedom is 2.18.2 Thus, a 95% confidence interval for volume is 0�708 ±
2�18 × 0�0611, that is, it ranges from 0.575 to 0.841. This ignores any other confidence
interval(s) that may be calculated, notably, in this example, for area. It is a coefficient-
wise interval.

The analysis of variance table is:

> anova(allbacks.lm)

Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)

volume 1 812132 812132 134.7 7e-08

area 1 127328 127328 21.1 0.00062

Residuals 12 72373 6031

Note that this is a sequential analysis of variance table. It gives the contribution of
volume after fitting the overall mean, then the contribution of area after fitting the
overall mean, and then volume. The p-value for area in the anova table must agree with
that in the main regression output, since in both cases, we are testing the significance of
the coefficient of area after including volume in the model. The p-values for volume
need not necessarily agree. They will differ if there is a correlation between volume and
other explanatory variables included in the model. They agree in this instance (to a fair
approximation), because area is almost uncorrelated with volume. (The correlation
is 0.0015.)

Finally, note the model matrix that has been used in the least square calculations:

> model.matrix(allbacks.lm)

(Intercept) volume area

1 1 885 382

2 1 1016 468

3 1 1125 387

4 1 239 371

5 1 701 371

6 1 641 367

7 1 1228 396

8 1 412 0

9 1 953 0

10 1 929 0

11 1 1492 0

12 1 419 0

13 1 1010 0

14 1 595 0

15 1 1034 0

2 qt(0.975, 12)
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Predicted values are given by multiplying the first column by b0 (=22.4), the second by
b1 (=0.708), the third by b2 (=0.468), and adding.

6.1.1 Omission of the intercept term

We now investigate the effect of leaving out the intercept. Here is the regression output:

> allbacks.lm0 <- lm(weight ˜ -1+volume+area, data=allbacks)

> summary(allbacks.lm0)

Call:

lm(formula = weight ˜ -1 + volume + area, data = allbacks)

Residuals:

Min 1Q Median 3Q Max

-112.5 -28.7 -10.5 24.6 213.8

Coefficients:

Estimate Std. Error t value Pr(>|t|)

volume 0.7289 0.0277 26.34 1.1e-12

area 0.4809 0.0934 5.15 0.00019

Residual standard error: 75.1 on 13 degrees of freedom

Multiple R-Squared: 0.991, Adjusted R-squared: 0.99

F-statistic: 748 on 2 and 13 DF, p-value: 3.8e-014

Notice that the regression coefficients now have smaller standard errors. This is because,
in the model that included the intercept, there was a substantial negative correlation
between the estimate of the intercept and the coefficient estimates. The reduction in
standard error is greater for the coefficient of volume, where the correlation was −0�88,
than for area, where the correlation was −0.32. Correlations between estimates can be
obtained by setting corr=TRUE in the call to summary():

summary(allbacks.lm, corr=TRUE)

6.1.2 Diagnostic plots

Figure 6.2 displays useful information for checking on the adequacy of the model fit to
the allbacks data. It used the code:

par(mfrow=c(2,2)) # Get all 4 plots on one page

plot(allbacks.lm0, which=1:4)

par(mfrow=c(1,1))

Note the large residual for observation 13. This observation also has a large Cook’s
distance, indicating that it is an influential point. The Cook’s distance measure, which
appeared in a single predictor context in Section 5.2 will be discussed in more detail in
Subsection 6.2.1.
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Figure 6.2 Diagnostic plots for the model that fits weight as a function of volume and area,
omitting the intercept.

Should we omit observation 13? The first task is to check the data, which are however
correct. The book is a computing book, with a smaller height to width ratio than any
of the other books. It is constructed from a heavier paper, though differences in the
paper are not obvious to the inexpert eye. It seems legitimate to omit it from the main
analysis, but noting that there was one book that seemed to have a much higher weight
to volume ratio than any of the books that were finally included. The following omits
observation 13:

> allbacks.lm13 <- lm(weight ˜ -1+volume+area, data=allbacks[-13, ])

> summary(allbacks.lm13)

Call:

lm(formula = weight ˜ -1 + volume + area, data = allbacks[-13, ])

Residuals:

Min 1Q Median 3Q Max

-61.72 -25.29 3.43 31.24 58.86

Coefficients:

Estimate Std. Error t value Pr(>|t|)

volume 0.6949 0.0163 42.6 1.8e-14

area 0.5539 0.0527 10.5 2.1e-07

Residual standard error: 41 on 12 degrees of freedom

Multiple R-Squared: 0.997, Adjusted R-squared: 0.997

F-statistic: 2.25e+003 on 2 and 12 DF, p-value: 3.33e-016

The residual standard error is substantially smaller in the absence of observation 13.
Observation 11 stands out in the Cook’s distance plot, but not in the plot of residuals. A
cautious data analyst might want to examine how the omission of such a point changes the
regression coefficients. There will be discussion of functions lm.influence()$coef
and dfbetas() that examine the effect of individual points on the regression coefficients,
and further discussion of different types of diagnostic plots, in Section 6.2.
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Table 6.1 Range of values, for the three
variables in the data set litters.

lsize bodywt brainwt

Minimum 3.00 5.45 0.37
Maximum 12.00 9.78 0.44

lsize

(litter size)

6 7 8 9

4
6

8
10

6
7

8
9

bodywt

(Body Weight)

4 6 8 1 0 0.38 0.42

0.38
0.42brainwt

(Brain Weight)

Figure 6.3 Scatterplot matrix for the litters data set.

6.1.3 Example: brain weight

The data set litters holds data on the variables lsize (litter size), bodywt (body
weight) and brainwt (brain weight), for 20 mice. There were two mice from each litter
size. Table 6.1 gives summary information on the range of each of the variables (these
data relate to Wainright et al., 1989 and Matthews and Farewell, 1996, p. 121).

At this point, we introduce the scatterplot matrix (Figure 6.3), for which a simplified
version of the code is:3

pairs(litters) # For improved labeling, see the footnote.

The diagonal panels give the x-variable names for all plots in the column above or below,
and the y-variable names for all plots in the row to the left or right. Note that the vertical
axis labels alternate between the axis on the extreme left and the axis on the extreme

3 ## Scatterplot matrix for data frame litters (DAAG); labels as in figure
pairs(litters, labels=c("lsize\n\n(litter size)", "bodywt\n\n(Body Weight)",

"brainwt\n\n(Brain Weight)"))
## Alternatively, use the lattice function splom()
library(lattice); splom(˜litters)
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Figure 6.4 Brain weight as a function of lsize and bodywt.

right, and similarly for the horizontal axis labels. This avoids a proliferation of axis labels
on the extreme left and lower axes.

The first point to check is whether the relationship(s) between explanatory variables is
(are) approximately linear. If so, then examination of the panels in the row and column
for the dependent variable gives a good indication whether the dependent variable may
need transformation.

Figure 6.3 suggests that the relationship between lsize and bodywt is close to linear
with little scatter. This may lead to difficulties in separating out the effect of litter size
from that of body weight. The relationship between brainwt and bodywt may not
be quite linear. Brain weight and litter size seem linearly related, apart from two points
(litter sizes 9 and 11).

Figure 6.4 presents results both from the individual regressions and from the multiple
regression.4 Notice how the coefficient for litter size has a different sign (−ve versus
+ve) in the individual regression from the multiple regression. Both coefficients are
significant (p < 0�05). The coefficients have different interpretations:

• In the individual regressions, we are examining the variation of brainwt with litter
size, regardless of bodywt. No adjustment is made because, in this sample, bodywt

4 ## Code for the several regressions
mice1.lm <- lm(brainwt ˜ lsize, data = litters) # Regress on lsize
mice2.lm <- lm(brainwt ˜ bodywt, data = litters) # Regress on bodywt
mice12.lm <- lm(brainwt ˜ lsize + bodywt, data = litters) # Both the above
## Now obtain coefficients and SEs, etc., for the first of these regressions
summary(mice1.lm)$coef
## Similarly for the other regressions.
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increases as lsize decreases. Thus, at small values of lsize we are looking at
the brainwt for individuals with large values of bodywt, while at large values of
lsize we are looking at brainwt for individuals who on the whole have low values
of bodywt.

• In the multiple regression, the coefficient for lsize size estimates the change in
brainwt with lsize when bodywt is held constant. For any particular value of
bodywt, brainwt increases with lsize. This was a noteworthy finding for the
purposes of the study.

The results are consistent with the biological concept of brain sparing, whereby the
nutritional deprivation that results from large litter sizes has a proportionately smaller
effect on brain weight than on body weight.

Finally, Figure 6.5 displays the diagnostic plots from the regression calculations.5

There is perhaps a suggestion of curvature in the plot of residuals against fitted values in
panel A.

6.1.4 Plots that show the contribution of individual terms

For simplicity, the discussion will assume just two explanatory variables, x1 and x2, with
the intention of showing the contribution of each in turn to the model.

The fitting of a regression model makes it possible to write:

y = b0 +b1x1 +b2x2 + e (6.1)

= ŷ + e� (6.2)

where ŷ = b0 +b1x1 +b2x2.
Another way to write the model that is to be fitted is:

y − ȳ = a+b1�x1 − x̄1�+b2�x2 − x̄2�+ e�

It is a fairly straightforward algebraic exercise to show that a = 0. Notice that, for fitting
the model in this form:
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Figure 6.5 Diagnostic plots for the regression of brainwt on bodywt and lsize.

5[baseline=t]
plot(mice12.lm,which=1:4)
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The observations are y − ȳ, with mean zero.
The first explanatory variable is x1 − x̄1, with mean zero, and the first term in the

model is b1�x1 − x̄1�, with mean zero.
The second explanatory variable is x2 − x̄2, with mean zero, and the first term in the

model is b1�x1 − x̄1�, with mean zero.

The residuals e are exactly the same as before, and have mean zero.
The fitted model can then be written:

y = ȳ +b1�x1 − x̄1�+b2�x2 − x̄2�+ e

= ȳ + t1 + t2 + e�

This neatly splits the response value y into three parts – an overall mean ȳ, a term that
is due to x1, a term that is due to x2, and a residual e. Moreover, the values of t1 and t2

sum, in each case, to zero.
The predict() function in R has several options. The default (e.g.,

predict(mice12.lm)) is to give the fitted values ŷ. The alternative that is of imme-
diate interest is:

yterms <- predict(mice12.lm, type="terms")

This gives a matrix yterms that has two columns. The first of these columns has the
values of t1 = b1�x1 − x̄1�, while the second has the values of t2. Values in both these
columns sum to zero. The solid lines in Figure 6.6 show the contributions of the individual
terms to the model. The solid line in the left panel shows a plot of b1�x1 − x̄1� against x1,
while the solid line in the right panel shows a plot of b2�x2 − x̄2� against x2.

The lines can be obtained directly with the termplot() command:

termplot(mice12.lm)

The panels in Figure 6.6 add partial residuals, that is, residuals after accounting for the
effects of other variables in the model, and a smooth curve through those residuals. Specify:

termplot(mice12.lm, partial.resid=TRUE, smooth=panel.smooth,

col.res=1)
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Figure 6.6 The solid lines show the respective contributions of the two model terms, in the
regression of brainwt on bodywt and lsize. Partial residuals, and an associated smooth
curve, have been added.
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The points shown in the plots are the partial residuals, for each of the terms lsize and
bodywt in turn.

The vector t1 + e = ŷ − t2 holds the partial residuals for x1 given x2, that is, they
account for that part of the response that is not explained by the term in x2.

The vector t2 + e holds the partial residuals for x2 given x1.

Additionally, in each plot, a smooth curve has been passed through the partial residuals,
making it possible to assess any departure from the lines.

The plots of partial residuals can be obtained directly from the information that is
stored in mice12.lm.

res <- resid(mice12.lm)

yhat <- predict(mice12.lm, type="terms")

plot(litters$lsize, yhat[, "lsize"] + res, type="n")

panel.smooth(litters$lsize, yhat[, "lsize"]+res)

plot(litters$bodywt, yhat[, "bodywt"] + res, type="n")

panel.smooth(litters$bodywt, yhat[, "bodywt"]+res)

Each plot indicates, however, the pattern in the residuals when there is no change to
the linear pattern of response that is assumed for the other variable. Both plots suggest a
slight but noticeable departure from linearity, though in the right panel this seems largely
due to a single point. The case for using a transformation is in either case weak. Further
investigation, if it should seem warranted, can best proceed using methods for fitting
smooth curves that will be described in Chapter 7.

6.2 Multiple regression assumptions and diagnostics

We have now illustrated issues that arise in multiple regression calculations. At this
point, as a preliminary to setting out a general strategy for fitting multiple regression
models, we describe the assumptions that underpin multiple regression modeling. Given
the explanatory variables x1� x2�� � � � xp, the assumptions are that:

• The expectation E[y] is some linear combination of x1� x2�� � � � xp:

E�y� = �+
1x1 +
2x2 +· · ·+
pxp�

• The distribution of y is normal with mean E[y] and constant variance, independently
between observations.

In particular, note that if the joint distribution of (y, x1, x2� � � � � xp) is multivariate normal,
then for given x1, x2� � � � � xp, the above assumptions will be satisfied. In general, the
assumption that E[y] is a linear combination of the xs is likely to be false. The best we
can hope is that it is a good approximation. In addition, we can often do some simple
checks that will indicate how the assumption may be failing. This assumption may be
the best approximation we can find when the range of variation of each explanatory
variable is sufficiently small, relative to the noise component of the variation in y, that
it is impossible to detect any non-linearity in the effects of explanatory variables. Even
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where there are indications that it may not be entirely adequate, a simple form of multiple
regression model may be a reasonable starting point for analysis, on which we can then
try to improve.

6.2.1 Influential outliers and Cook’s distance

The Cook’s distance statistic is a measure, for each observation in turn, of the extent of
change in model estimates when that observation is omitted. Any observation for which
the Cook’s distance is close to one or more, or that is substantially larger than other
Cook’s distances, calls for investigation.

Data points that seriously distort the fitted response may lead to residuals that are hard
to interpret or even misleading. Thus it is wise to remove any highly influential data
points before proceeding far with the analysis.

Note however that two (or more) outliers that are influential may mask each other. If
this seems a possible issue, it is best to work with residuals and influence measures from a
resistant fit. There is a brief discussion of robust and resistant methods in Subsection 6.2.4.
Footnote 8 , which is the code used for Figure 6.11, demonstrates the use of the resistant
regression function lqs().

Outliers may or may not be influential points. Influential outliers are of the greatest con-
cern. They should never be disregarded. Careful scrutiny of the original data may reveal
an error in data entry that can be corrected. If the influential outliers appear genuine, they
should be set aside for separate scrutiny. Occasionally, it may turn out that their exclu-
sion was a result of use of the wrong model, so that with the right model they can be
re-incorporated. If they remain excluded from the final fitted model, they must be noted
in the eventual report or paper. They should be included, separately identified, in graphs.

∗Leverage and the hat matrix

What difference does replacing yi by yi + �i, while leaving other y-values unchanged,
make to the fitted surface. There is a straightforward answer; the fitted value changes
from ŷi to ŷi +hii�i, where hii is the leverage for that point.

The leverage values hii are the diagonal elements of the so-called hat matrix that can
be derived from the model matrix. (The name of the hat matrix H is due to the fact
that the vector of fitted values (“hat” values) is related to the observed response vector
by ŷ = Hy.) Large values represent high leverage. Use the function hatvalues() to
obtain the leverages, thus:

> hatvalues(mice12.lm)

1 2 3 4 5 6 7 8 9 10

0.199 0.173 0.130 0.157 0.088 0.273 0.068 0.069 0.155 0.095

11 12 13 14 15 16 17 18 19 20

0.128 0.076 0.140 0.073 0.125 0.088 0.433 0.126 0.204 0.199

The largest leverage, for observation 17, is 0.43. As this is more than three times the
average value of 0.15, it warrants attention. (There are p = 3 coefficients and n = 20
observations, so that the average is p/n = 0.15.)
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Figure 6.7 Diagnostic plot, in which standardized residuals are plotted against leverages, in the
regression of brainwt on bodywt and lsize for the litters data. Contours have been added
for Cook’s distances of 0.5 and 1.0.

The Cook’s distance statistic combines the effects of leverage and of the magnitude of
the residual. Better insight is available from a plot of residuals against leverage values,
which disentangles the two components of the effect. Figure 6.7 shows such a plot, for
the litters data set. The plot can be obtained thus:

plot(mice12.lm, which=5, add.smooth=FALSE)

## The points can be plotted using

## plot(hatvalues(model.matrix(mice12.lm)), residuals(mice12.lm))

6.2.2 Influence on the regression coefficients

In addition to examining the diagnostic plots, it may be interesting and useful to examine,
for each data point, how removal of that point affects the regression coefficients. The
function dfbetas(), whose use will now be demonstrated, gives changes that are
standardized, that is, divided by a standard error estimate for the change. These are in
general preferable to absolute changes, as more readily interpretable. For the regression
model, without the intercept term, that we fitted to the allbacks data set, the values
are shown in Figure 6.8.

Figure 6.8 Standardized changes in regression coefficients, for the model that was fitted to
the allbacks data set. The points for the one row (row 13) where the change for one of the
coefficients was greater than 2 in absolute value are labeled with the row number.
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If the distributional assumptions are satisfied, standardized changes that are larger than
2 can be expected, for a specified coefficient, in about 1 observation in 20. Here, the only
change that seems worthy of note is for volume in observation 13.

For absolute changes, should they be required, use the function lm.influence().
A difficulty for all these plots and statistics, used with lm() model fits, is that two or

more residuals may jointly distort the regression estimates and/or the predicted values.
In cases of doubt, examine residuals, and changes in regression coefficients, from robust
and/or resistant model fits. Dynamic regression graphics, as in Cook and Weisberg (1999),
can provide useful visual indications of residuals and other patterns in the data.

6.2.3 ∗ Additional diagnostic plots

The functions in the car package, designed to accompany Fox (2002), greatly extend the
range of diagnostic plots. See the examples and references included on the help pages for
this package. As an indication of what is available, try:

library(car)

leverage.plots(allbacks.lm, term.name="volume",

identify.points=FALSE)

6.2.4 Robust and resistant methods

Robust and resistant methods can assist model diagnosis. Outliers show up most clearly
when the fitting criterion is designed to downweight them. We refer the reader back to our
earlier brief discussion, in Section 5.2. We pursue further investigation of these methods,
now in connection with the examples in this chapter, in an exercise.

6.2.5 The uses of model diagnostics

Model diagnostics are a means to an end, not an end in themselves. Diagnostic checks
such as have been described are intended to assist in the tuning of models so that they
perform well when used for their intended purpose, and do not throw up unexpected and
perhaps unpleasant surprises. Thus, a model that is unduly affected by influential outliers
may give results that are less than satisfactory with the main body of the data.

This raise the issue: How is performance to be measured? If the model will be used
for prediction, then it is clearly important to get high predictive accuracy with the data
to which the model will be applied in practical use. If scientific understanding is the
chief concern, and this relies in part on the interpretation of model parameters, then it
is important to fit a model whose fitted parameters are open to whatever interpretations
are to be placed on them. Subsection 6.1.3 (the mouse brain weight example), where
the coefficient of bodywt reversed in sign when a second explanatory variable was
included, illustrated this point nicely. The two regression equations, one without the
second variable and the other with a second explanatory variable, served quite different
explanatory purposes.
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Even where scientific interpretation is a primary concern, predictive accuracy is a useful
measure of model performance. Various commonly used predictive accuracy measures
will be discussed in Section 6.4.

6.3 A strategy for fitting multiple regression models

6.3.1 Preliminaries

Careful graphical scrutiny of the explanatory variables is an essential first step. This may
lead to any or all of:

• Transformation of some or all variables.
• Replacement of existing variables by newly constructed variables that are a better

summary of the information. For example, we might want to replace variables x1 and
x2 by the new variables x1 +x2 and x1 −x2.

• Omission of some variables.

Here are steps that are reasonable to follow. They involve examination of the distributions
of values of explanatory variables, and of the pairwise scatterplots.

• Examine the distribution of each of the explanatory variables, and of the dependent
variable. Look for any instances where distributions are highly skew, or where there
are outlying values. Check whether any outlying values may be mistakes.

• Examine the scatterplot matrix involving all the explanatory variables. (Including the
dependent variable is, at this point, optional.) Look first for evidence of non-linearity
in the plots of explanatory variables against each other. Look for values that appear as
outliers in any of the pairwise scatterplots.

• Note the ranges of each of the explanatory variables. Do they vary sufficiently to affect
values of the dependent variable?

• How accurately are each of the explanatory variables measured? At worst, the inaccu-
racy may be so serious that it is unlikely that any effect can be detected. This point is
explained further in Subsection 6.8.1.

• This point identifies a model search strategy – seek models in which regression
relationships between explanatory variables follow a “simple” linear form. Thus, if
some pairwise plots show evidence of non-linearity, consider use of transformation(s)
to give more nearly linear relationships. While it may not necessarily prove possible,
following this strategy, to adequately model the regression relationship, this is a good
strategy, for the reasons given below, to follow in starting the search.

• Where the distribution is skew, consider transformations that may lead to a more
symmetric distribution. Surprisingly often, standard forms of transformation both give
more symmetric distributions and lead to scatterplots where the relationships appear
more nearly linear.

• Look for pairs of explanatory variables that seem highly correlated. Do scientific
considerations help in judging whether both variables should be retained? For example,
the two members of the pair may measure what is essentially the same quantity. On
the other hand, there will be other instances where the difference, although small, is
important. Section 8.2 has an example.
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If relationships between explanatory variables are approximately linear, perhaps after
transformation, it is then possible to interpret plots of predictor variables against the
response variable with confidence. Contrary to what might be expected, this is more
helpful than looking at the plots of the response variable against explanatory variables.
Look for non-linearity, for values that are outlying in individual bivariate plots, for
clustering, and for various unusual patterns of scatter. If there is non-linearity in these
plots, examine whether a transformation of the dependent variable would help.

Where there are many explanatory variables, the class of models that would result
from allowing all possible transformations of explanatory variables is too wide to be a
satisfactory starting point for investigation. By using transformations, where available,
that lead to scatterplots where the trend of any relationships between explanatory variables
is approximately linear, attention is limited to a suitably restricted subclass of models.

*Explanatory variables that are not linearly related

It may not be possible to find transformations of one or more of the explanatory variables
that ensure that the (pairwise) relationships shown in the panels appear linear. This can
create problems both for the interpretation of the diagnostic plots for any fitted regression
equation and for the interpretation of the coefficients in the fitted equation. See Cook
and Weisberg (1999). A further question is whether multiple regression methodology is
adequate, or whether a non-linear form of equation may be required. Ideas of “structural
dimension,” which are beyond the scope of the present text, become important. The
package dr (dimension reduction) addresses such issues.

6.3.2 Model fitting

Here is a suggested procedure to use in checking a fitted regression relationship:

• Examine the Cook’s distance statistics. If it seems helpful, examine standardized
versions of the drop-1 coefficients directly, using dfbetas(). It may be necessary
to delete influential data points and re-fit the model. Influential points may be more
troublesome than points that, although residuals are large, have little influence on the
fitted model.

• Plot residuals against fitted values. Check for patterns in the residuals, and for the
fanning out (or in) of residuals as the fitted values change. (Do not plot residuals
against observed values. This is potentially deceptive; there is an inevitable positive
correlation.)

• For each explanatory variable, do a term plot, in order to check whether any of the
explanatory variables require transformation.

We leave the discussion of variable selection issues until Subsection 6.6.1.

6.3.3 An example – the Scottish hill race data

The data set hills, from which Table 6.2 has selected observations, and which is in
the Venables and Ripley MASS package (we have included a version of it in our DAAG
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Table 6.2 Distance (dist), height climbed
(climb), and record times (time), for some of
the 35 Scottish hill races.

dist (mi) climb (ft) time (h)

1 2�40 650 0�27
2 6�0 2500 0�81
3 6�0 900 0�56

· · · · · · · · · · · ·
18 3�0 350 1�31
· · · · · · · · · · · ·
35 20�0 5000 2�66

package with the time variable converted from minutes to hours), gives distances (dist),
height climbed (climb), and time taken, for some of the 35 hill races held in Scotland
(Atkinson, 1986, 1988). The times are the record times in 1984.

We begin with scatterplot matrices, both for the untransformed data (Figure 6.9A), and
for the log transformed data (Figure 6.9B).6 Apart from a possible outlier, the relationship
between dist and climb seems approximately linear. If we can assume such a linear
relationship, this makes it straightforward to interpret the panels for time and climb,
and for time and dist.

The following are reasons for investigating the taking of logarithms:

• The range of values of time is large (3.4:0.27, i.e., >10:1), and similarly for dist
and climb. The times are bunched up towards zero, with a long tail. In such instances,
use of a logarithmic transformation is likely to lead to a more symmetric distribution.

• Figure 6.9 hints that times may increase more than linearly for the cluster of 3 or 4
longest races.

• It can be expected that time will increase more than linearly at very long times, and
similarly for climb, as physiological demands on the human athlete move closer to
limits of human endurance.

These considerations suggest looking at a power relationship:

time= A�dist�b1�climb�b2 �

Taking logarithms gives:

log�time� = a+b1 log�dist�+b2 log�climb��

6 ## Scatterplot matrix: data frame hills (DAAG)
## Panel A: untransformed data
library(lattice)
splom(˜ hills, cex.labels=1.2,

varnames=c("dist\n(miles)","climb\n(feet)", "time\n(hours)"))
## Panel B: log transformed data
splom(˜ log(hills), cex.labels=1.2,

varnames=c("dist\n(log miles)", "climb\n(log feet)",
"time\n(log hours)"))
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A: Untransformed scales: B: Logarithmic scales
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Figure 6.9 Scatterplot matrix for the hill race data (Table 6.2). Panel A uses the untransformed
scales, while panel B uses logarithmic scales.

where a = log�A�. We hope that the use of a logarithmic scale will stabilize the variance
and alleviate the problem with outliers at long times.

Figure 6.9A does seem marginally more consistent than Figure 6.9B with the assump-
tion of a linear relationship between predictors. Apart from one outlier the relationship
between climb and dist seems linear, and relationships involving time then also
seem linear. The variability does not now increase at the longer times. Hence, we pursue
the analysis using the log transformed data.

The observation that seems unusual can be identified thus:

> with(hills, hills[log(time)>0 & log(dist)<1.5,])

dist climb time

Knock Hill 3 350 1.311

Alternatively, and perhaps better, plot time versus dist, and use identify() to
identify the point interactively. (Refer back to Subsection 1.5.6.) It gives a time of 1.3
hours for a distance of three miles. The two other three-mile races had times of 0.27
hours and 0.31 hours. The time of 1.3 hours is undoubtedly a mistake. Atkinson (1988)
corrected the figure to 0.3 hours.

An initial analysis leaves the troublesome observation 18 in place. Figure 6.10A shows
the diagnostic plots. Clearly the plots in Figure 6.10B, obtained when observation 18 has
been omitted, are much preferable.7

7 ## Include observation 18
hills0.loglm <- lm(log(time) ˜ log(dist) + log(climb), data = hills)
plot(hills0.loglm)
## Exclude observation 18
hills.loglm <- lm(log(time) ˜ log(dist) + log(climb), data = hills[-18, ])
plot(hills.loglm)
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A: Include observation 18 (Knock Hill)

B: Omit observation 18 (Knock Hill)
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Figure 6.10 Diagnostic plots, from the regression of log(time) on log(climb) and
log(dist). In Panel A, observation 18 was left in the analysis, while in panel B it was removed.

Observe that problems with outliers have, in Figure 6.10, largely disappeared. Black
Hill, though perhaps an outlier, is not an influential point. Thus it does contribute
substantially to increasing the error mean square, but does not markedly distort the
regression equation. This can be checked by examining residuals from a resistant fit.

Residuals from a resistant regression fit

How do residuals change if they are calculated from a model in which the model estimates
are designed to be resistant to outliers? Figure 6.11 compares the residuals from use of
the resistant regression function lqs() (MASS) with those from use of lm(). The fit
from lqs() is not substantially different from the fit that used lm().8

Inclusion of an interaction term

We now check to see whether it is advantageous to include the term log(dist)
× log(climb). We fit a further model that has this interaction (product) term. The

8 ## Resistant regression fit
library(MASS)
h.lqs <- lqs(log(time) ˜ log(climb) + log(dist), data = hills[-18,])
## Compare residuals from lqs() with those from lm()
plot(resid(hills.loglm), resid(h.lqs), xlab="Residuals, lm model",

ylab="Residuals, lqs model")
## Residuals vs fitted values; resistant regression
plot(fitted(h.lqs), resid(h.lqs), xlab="Fitted values, lqs model",

ylab="Residuals, lqs model")
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Figure 6.11 Panel A compares the residuals fitted using the resistant regression function lqs()
(MASS) with those from using lm(). The line y = x is shown. Panel B plots residuals from the
lqs() fit against fitted values.

following is the R output that compares the two models:

> hills2.loglm <- lm(log(time) ˜ log(dist)+log(climb)+log(dist):log(climb),

+ data=hills[-18, ])

> anova(hills.loglm, hills2.loglm)

Analysis of Variance Table

Model 1: log(time) ˜ log(dist) + log(climb)

Model 2: log(time) ˜ log(dist) + log(climb)

+ log(dist):log(climb)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 31 0.798

2 30 0.741 1 0.057 2.31 0.14

The additional term is not statistically significant. None of the panels in the diagnostic
plot, which we do not show, are greatly different from Figure 6.10B. As often, however,
our real interest is not in whether the additional coefficient is statistically significant at
the 5% or any other level, but in whether adding the extra term is likely to improve the
predictive power of the equation. The Akaike Information Criterion (AIC), discussed in
more detail in the next section, is designed to decrease as the estimated predictive power
increases. We may compare the AIC value with and without the interaction term as follows:

> step(hills2.loglm)

Start: AIC= -122.1

log(time) ˜ log(dist) + log(climb) + log(dist):log(climb)

Df Sum of Sq RSS AIC

<none> 0.7 -122.1

- log(dist):log(climb) 1 0.1 0.8 -121.6

Call:

lm(formula = log(time) ˜ log(dist) + log(climb)

+ log(dist): log(climb), data = hills[-18, ])
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Coefficients:

(Intercept) log(dist) log(climb) log(dist):log(climb)

-2.4755 0.1685 0.0672 0.0993

The model without the interaction has a slightly smaller AIC. For this reason, and because
it is a simpler model, it is the preferred model.

On its own, the AIC value is pretty meaningless. What matters is the comparison
between the values of the statistic for the different models.

The model without the interaction term

Now, examine the model that lacks the interaction term:

> summary(hills.loglm, corr=TRUE)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -3.88 0.2826 -13.73 9.99e-15

log(dist) 0.91 0.0650 13.99 6.22e-15

log(climb) 0.26 0.0484 5.37 7.33e-06

The estimated equation is:

log�time� = −3�88[SE 0.28]+0�909[SE 0.065]× log�dist�+0�260[SE 0.048]

× log�climb��

By noting that exp(−3.88) = 0.0206, this can be rewritten as:

time= 0�0206× dist0�909 × climb0�260�

We note the implications of this equation. For a given height of climb, the time taken
is smaller for the second three miles, faster than for the first three miles. This follows
because 0.909 < 1. Is this plausible?

Note first that the coefficient for log(dist) has a substantial standard error, that is,
0.065. A 95% confidence interval is (0.78, 1.04).9

Note also that most distances are given to the nearest half mile, and may in any case
not be known at all accurately. The error will in any case be small relative to the range
of values of distances. Subsection 6.8.1 will discuss the implications of such error for the
attenuation (or “dilution”) of the regression coefficient, relative to its value in the posited
underlying theoretical relationship. Here, the attentuation seems likely to be small and
inconsequential. See the discussion in Subsection 6.8.1 for the reasoning used in getting
an indication of the magnitude of the effect.

9.909 + c(-.065, .065) * qt(.975, 31)
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The model with the interaction term

The summary information is:

> summary(hills2.loglm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.47552 0.9653 -2.5645 0.01558

log(dist) 0.16854 0.4913 0.3431 0.73394

log(climb) 0.06724 0.1354 0.4966 0.62307

log(dist):log(climb) 0.09928 0.0653 1.5205 0.13886

The estimated equation for this model is:

log�time� = −2�48[SE 0.97]+0�168[SE 0.491]× log�dist�+0�067[SE 0.135]

× log�climb�+0�0993[SE 0.0653]× log�dist�× log�climb��

Noting that exp(−2.48) = 0.084, this can be rewritten:

time = 0�084× dist0�168+0�0993×log�climb� ×climb0�067�

Thus, we have a more complicated equation. Notice that the coefficients are now much
smaller than are the SEs. Individual coefficients are, in this model, hard to interpret.

What happens if we do not transform?

If we avoid transformation and do not allow for increasing variability for the longer
races (see Exercise 5 at the end of the chapter for further development), we find several
outlying observations, some of which are influential. (It is, largely, the cluster of three
points for long races that causes the difficulty for the untransformed data.)

Venables and Ripley (2002, p. 154) point out that it is reasonable to expect that
variances will be larger for longer races. Using dist as a surrogate for time, they
give observations weights of 1/distˆ2. This is roughly equivalent, in its effect on the
variance, to our use of log(time) as the dependent variable.

6.4 Measures for the assessment and comparison of regression models

The measures discussed in this section all focus on predictive accuracy, assuming that
data used for fitting the model can be treated as a random sample from the data that will be
used in making predictions. This assumption may be incorrect. Also, as has been pointed
out earlier, predictive accuracy may not be the only or the most important consideration.

6.4.1 R2 and adjusted R2

Both R2 and adjusted R2 are included in the output that comes from summary(); refer
back to Section 6.1. One or other of these statistics is often used to give a rough sense of
the adequacy of a model. Whereas R2 is the proportion of the sum of squares about the
mean that is explained, adjusted R2 is the proportion of the mean sum of squares (MSS,
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or variance) that is explained. In those contexts where such a statistic perhaps has a place,
adjusted R2 is preferable to R2. Neither statistic should be used for making comparisons
between different studies, where the range of values of the explanatory variables may be
different. Both are likely to be largest in those studies where the range of values of the
explanatory variables is greatest.

The R2 statistic (whether or not adjusted) has a more legitimate use when comparing
different models for the same data. For this purpose, however, AIC and related statistics are
much preferable. The next subsection will discuss these “information measure” statistics.

6.4.2 AIC and related statistics

These statistics are designed to choose, from among a small number of alternatives,
the model with the best predictive power. Statistics that are in use include the Akaike
Information Criterion (AIC), Mallows’ Cp, and various elaborations of the AIC. The
AIC criterion and related statistics can be used for more general models than multiple
regression. We give the version that is used in R.

The model that gives the smallest value is preferred, whether for the AIC or for the Cp

statistic. The variance estimate 	̂2 is often determined from the full model.
Another statistic is the Bayesian Information Criterion (BIC), which is claimed as an

improvement on the AIC. The AIC is inclined to overfit, that is, to choose too complex
a model.

Calculation of R’s version of the AIC

Let n be the number of observations, let p be the number of parameters that have been
fitted, and let RSS denote the residual sum of squares. Then, if the variance is known, R
takes the AIC statistic as:

AIC = RSS
	2

+2p+ const�

where, here, the constant term arises from the assumption of an i.i.d. normal distribution
for the errors. In the more usual situation where the variance is not known, R takes the
AIC statistic as:

AIC = n log
(

RSS
n

)
+2p+ const�

The BIC (Schwarz’s Bayesian criterion) statistic, which replaces 2p by log�n� × p,
penalizes models with many parameters more strongly.

The Cp statistic differs from the AIC statistic only by subtraction of n, and by omission
of the constant term. It is:

Cp = n log
(

RSS
n

)
+2p−n�

6.4.3 How accurately does the equation predict?

The best test of how well an equation predicts is the accuracy of its predictions. We
can measure this theoretically, by examining, for example, 95% confidence intervals
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Figure 6.12 Observed versus predicted values, for the hill race data. The line y = x is shown. The
horizontal limits of the bounding curves are 95% pointwise confidence limits for predicted times.

for predicted values. Alternatively we can use cross-validation, or another resampling
procedure, to assess predictive accuracy. Both methods (theoretical and cross-validation)
for assessing predictive accuracy assume that the sample is randomly drawn from
the population that is of interest, and that any new sample for which predictions are
formed is from that same population. They are based on information that is internal
to the data used to develop the model, and are in this sense internal estimates of
accuracy.

The following table gives 95% coverage (confidence) intervals for predicted times in
the regression of log(time) on log(climb) and log(dist), for the first few and
last observations:

hills.loglm <- lm(log(time) ˜ log(dist)+log(climb),

data=hills[-18, ])

## Coverage intervals; use exp() to undo the log transformation

exp(predict(hills.loglm, interval="confidence"))

fit lwr upr

1 0.25 0.22 0.28

2 0.80 0.74 0.88

3 0.62 0.58 0.66

. . .

35 2.88 2.54 3.27

Figure 6.12 shows what these mean graphically. The 95% pointwise intervals apply to
the fitted values, that is, to the values on the horizontal axis.

This assessment of predictive accuracy has important limitations:

1. It is crucially dependent on the model assumptions – independence of the data
points, homogeneity of variance, and normality. If the theoretical assumptions are
wrong, perhaps because of clustering or other forms of dependence, then these
prediction intervals will also be wrong. Departures from normality are commonly of
less consequence than the other assumptions.

2. It applies only to the population from which these data have been sampled. If the
sample for which predictions are made is really from a different population, or is
drawn with a different sampling bias, the assessments of predictive accuracy will be
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wrong. Thus it would be hazardous to use it to predict winning times for hill races
in England or Mexico or Tasmania.

Point 2 can be addressed only by testing the model against data from these other
locations. Much better still, where this is possible, is to use data from multiple locations
to develop a model that allows for variation between locations as well as variation within
locations. Chapter 10 discusses models that are in principle suitable for such applications.

We might consider cross-validation, or the bootstrap, or another resampling method.
Cross-validation and other resampling methods can cope, to a limited extent and depending
on how they are used, with lack of independence. Note that neither this nor any other
such internal method can address sampling bias. Heterogeneity is just as much an issue
as for model-based assessments of accuracy. Thus for the hill race data, if there is no
adjustment for changing variability with increasing length of race:

1. If we use the untransformed data, cross-validation will exaggerate the accuracy for
long races and be slightly too pessimistic for short races.

2. If we use the log transformed data, cross-validation will exaggerate the accuracy for
short races and under-rate the accuracy for long races.

The DAAG package includes the data frame hills2000, which has data from the year
2000 that to some extent updates these earlier results that are in the data frame hills.
Although these are not truly independent data, they offer an interesting comparison with
the present data. Overlap with races in the hills data frame is incomplete; some of
those races do not appear, and there are some new races. We leave investigations that
involve these 2000 data to the exercises.

6.5 Interpreting regression coefficients

With observational data involving several explanatory variables, interpretation of coef-
ficient estimates can be hazardous. The discussion of the data on brain weight of mice
in Subsection 6.1.3 made the point that regression coefficients may change substantially,
perhaps even changing in sign, depending on what other explanatory terms are included.
This has clear implications for their interpretation.

The way that data are sampled can likewise affect the coefficients. This section will
examine two sets of data. In the first, examining the effect of book dimensions (thickness,
height and width) on book weight, data were sampled in a deliberately biased way. In
the second, from studies of the effects of a work training program on income subsequent
to the training program, interpretation relies crucially on getting a usable estimate of the
relevant regression coefficient.

6.5.1 Book dimensions and book weight

Figure 6.13 shows a scatterplot matrix for logged measurements on 12 soft-cover books.
Data are from the data frame odd books (DAAG).10 Books were selected in such a

10 pairs(log(oddbooks), labels=c("thick\n\nlog(mm)", "breadth\n\nlog(cm)",
"height\n\nlog(cm)", "weight\n\nlog(g)"))
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Figure 6.13 Scatterplot matrix for the logarithms of the variables in the oddbooks data frame.
Books were selected in such a way that weight increased with decreasing thickness.

way that weight increased with decreasing thickness, reflected in the strong negative
correlation between log(weight) and log(thick).

It might be expected that weight would be proportional to volume, that is, w = tbh and

̂log�w� = log�t�+ log�b�+ log�h�� (6.3)

where w = weight, t = thick, b = breadth and h = height.
Although equation (6.3) seems plausible, there can be no guarantee that it will give a

result that makes sense for data where there have been strong constraints on the choice
of books. We will fit models in which the fitted values take the following forms:

1 � log�w� = a0 +a1�log�t�+ log�b�+ log�h��

2 � log�w� = a0 +a1 log�t�+a2�log�b�+ log�h��

3 � log�w� = a0 +a1 log�t�+a2 log�b�+a3 log�h�

Figure 6.14 assists comparison of these models. The coefficients in the fitted equations,
with SEs in square brackets underneath, are:11

1 � log�w� = −8�9
�SE=2�7�

+ 1�7
�0�31�

× �log�t�+ log�b�+ log�h��

2 � log�w� = −1�6
�2�9�

+0�48
�0�42�

log�t�+1�10
�0�28�

�log�b�+ log�h��

3 � log�w� = −0�72
�3�2�

+0�46
�0�43�

log�t�+1�88
�1�07�

log�b�+0�15
�1�27�

log�h��

11 volume <- apply(oddbooks[, 1:3], 1, prod)
area <- apply(oddbooks[, 2:3], 1, prod)
lob1.lm <- lm(log(weight) ˜ log(volume), data=oddbooks)
lob2.lm <- lm(log(weight) ˜ log(thick)+log(area), data=oddbooks)
lob3.lm <- lm(log(weight) ˜ log(thick)+log(breadth)+log(height),

data=oddbooks)
coef(summary(lob1.lm))
## Similarly for coefficients and SEs for other models
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Figure 6.14 Panel A plots log(weight) against log(thick) + log(breadth) + log(height).
The dashed line shows the fitted values for model 1. Panel B plots observed values against fitted
values for models 2, with the line y = x superposed. Panel C plots observed values against fitted
values for model 3 and again shows the line y = x.

Transforming back to a relationship between weight and volume, the result for model 1
is that weight ∝ volume1�7, implying that weight increases faster than volume. As the
volume of books increases, their density increases. Almost certainly, the effect has arisen
because the books with larger page sizes are printed on heavier paper.

Note that the predicted values in model 2 are very similar to those for model 3. The
coefficient of thick in model 2 indicates that, for a given value of thick, weight is
very nearly proportional to page area.

Note finally that the regression of log(weight) on log(thick) yields:

> coef(summary(lm(log(weight) ˜ log(thick), data=oddbooks)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.69 0.708 13.7 8.35e-08

log(thick) -1.07 0.219 -4.9 6.26e-04

The implication is that weight decreases as thick increases. For these data, it does!
The oddbooks data were contrived to give a skewed picture of the way that book

weight varies with dimensions. Correlations between area and thick, and between both
area and thick and density of paper, make it impossible to use multiple regression to
separate the effects of these different variables. The one fairly solid piece of information
available from these data is obtained by using our knowledge of what the relationship
should be, to indicate how density changes with area or thick:

> book.density <- oddbooks$weight/volume

> bookDensity.lm <- lm(log(book.density) ˜ log(area), data=oddbooks)

> coef(summary(bookDensity.lm))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -5.109 0.5514 -9.27 3.18e-06

log(area) 0.419 0.0958 4.37 1.39e-03

Figure 6.15 summarizes this information graphically.
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Figure 6.15 Scatterplot matrix for the logarithms of the variables book.density, area and
thick, for variables derived from or (for thick) in the oddbooks data frame.

Observational data is very susceptible to such skewing. For example solar radiation,
windspeed, temperature and rainfall may change systematically with distance up a hillside,
and it may be impossible to distinguish the effects of the different factors on plant growth
or on the ecology. Worse, effects may be at work that will be discerned only from
substantial understanding of the physical processes and which are not obvious from the
measured data.

6.6 Problems with many explanatory variables

Variable selection is an issue when the aim is to obtain the best prediction possible.
Be sure to distinguish the variable selection problem from that of determining which
variables have greatest explanatory power. If the interest is in which variables have
useful explanatory power, then the choice of variables will depend on which quantities
are to be held constant when the effects of other quantities are estimated. There should
in any case be an initial exploratory investigation of explanatory variables, as described
in Section 6.3, leading perhaps to transformation of one or more of the variables.

One suggested rule is that there should be at least 10 times as many observations as
variables, before any use of variable selection takes place. For any qualitative factor,
subtract one from the number of levels, and count this as the number of variables
contributed by that factor. This may be a reasonable working rule when working with
relatively noisy data where none of the variables have a dominant effect. There are
important contexts where it is clearly inapplicable.

For an extended discussion of state of the art approaches to variable selection, we refer
the reader to Harrell (2001); Hastie et al. (2001, sections 4.3 and 4.7). The technically
demanding paper by Rao and Wu (2001) was, at the time of publication, a good summary
of the literature on model selection.

We will limit discussion here to widely used approaches that do not take us much
beyond the methodology discussed earlier in this chapter. We begin by noting strategies
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that are designed, broadly, to keep to a minimum the number of different models that
will be compared. The following strategies may be used individually, or in combination:

1. A first step may be an informed guess as to what variables/factors are likely to be
important. An extension of this approach classifies explanatory variables into a small
number of groups according to an assessment of scientific “importance.” Fit the most
important variables first, then add the next set of variables as a group, checking
whether the fit improves from the inclusion of all variables in the new group.

2. Interaction effects are sometimes modeled by including pairwise multiples of
explanatory variables, e.g. x1 × x2 as well as x1 and x2. Use is made of an omnibus
check for all interaction terms, rather than checking for interaction effects one at a time.

3. Use principal components analysis to look for a small number of components, that
is, combinations of the explanatory variables, that together account for most of the
variation in the explanatory variables. If we are fortunate, one or more of the first few
principal components will prove to be useful explanatory variables. If we are even
more fortunate, the principal components may suggest simple forms of summary of
the original variables. If we are unfortunate, the components will prove irrelevant or
uninterpretable! See Section 13.1 and Harrell (2001, sections 4.7 and 8.6) for further
commentary and examples.

4. Discriminant analysis can sometimes be used to identify a summary variable. There
is an example in Chapter 13.

6.6.1 Variable selection issues

We caution against giving much credence to output from conventional automatic variable
selection techniques – various forms of stepwise regression, and best subsets regression.
The resulting regression equation may have poorer genuine predictive power than the
regression that includes all explanatory variables. The standard errors and t-statistics typi-
cally ignore the effects of the selection process; estimates of standard errors, p-values and
F-statistics will be optimistic. Estimates of regression coefficients are biased upwards
in absolute value – positive coefficients will be larger than they should be, and neg-
ative coefficients will be smaller than they should be. See Harrell (2001) for further
discussion.

Variable selection – a simulation with random data

Repeated simulation of a regression problem where the data consist entirely of noise
will demonstrate the extent of the problem. In each regression there are 41 vectors of
100 numbers that have been generated independently and at random from a normal
distribution. In these data:12

1. The first vector is the response variable y.
2. The remaining 40 vectors are the variables x1, x2� � � � , x40.

12 y <- rnorm(100)
xx <- matrix(rnorm(4000), ncol = 40)
dimnames(xx)<- list(NULL, paste("X",1:40, sep=""))
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If we find any regression relationships in these data, this will indicate faults with our
methodology. (In computer simulation, we should not however totally discount the possi-
bility that a quirk of the random number generator will affect results. We do not consider
this an issue for the present simulation!)

We perform a best subsets regression in which we look for the three x-variables that
best explain y. (This subsection has an example that requires access to the leaps package.
Before running the code, be sure that leaps is installed.)13

Call:

lm(formula = y ˜ -1 + xx[, subvar])

Residuals:

Min 1Q Median 3Q Max

-2.363 -0.655 0.131 0.618 2.215

Coefficients:

Estimate Std. Error t value Pr(>|t|)

xx[, subvar]X12 0.2204 0.0896 2.46 0.0156

xx[, subvar]X23 -0.1431 0.0750 -1.91 0.0593

xx[, subvar]X28 0.2529 0.0927 2.73 0.0076

Residual standard error: 0.892 on 97 degrees of freedom

Multiple R-Squared: 0.132, Adjusted R-squared: 0.105

F-statistic: 4.93 on 3 and 97 DF, p-value: 0.00314

Note that two of the three variables selected have p-values less than 0.05.
When we repeated this experiment ten times, the outcomes were as follows. Categories

are exclusive:

Instances

All three variables selected were significant at p < 0�01 1
All three variables had p < 0�05 3
Two out of three variables had p < 0�05 3
One variable with p < 0�05 3

Total 10

In the modeling process there are two steps:

1. Select variables.
2. Do a regression and determine SEs and p-values, etc.

13 library(leaps)
xx.subsets <- regsubsets(xx, y, method = "exhaustive", nvmax = 3, nbest = 1)
subvar <- summary(xx.subsets)$which[3,-1]
best3.lm <- lm(y ˜ -1+xx[, subvar])
print(summary(best3.lm, corr = FALSE))
rm(xx, y, xx.subsets, subvar, best3.lm)
# For once, we note objects that should be removed.

## Note also our function bestsetNoise(). The following
## call is effectively equivalent to the above.
bestsetNoise(m=100, n=40)



202 Multiple linear regression

The p-values have been calculated assuming that step 2 was the only step in building the
model. Therefore, they are wrong, as demonstrated by our ability to find “significance”
in data sets that consist only of noise. Cross-validation is one way to determine realistic
standard errors and p-values. At each cross-validation step, we repeat both of steps 1
and 2 above, that is, both the variable selection step and the comparison of predictions
from the regression equation with data different from that used in forming the regression
equation.

Cross-validation will not however deal with the bias in the regression coefficients
(note, in passing, that the cross-validation SEs for these coefficients are similarly biased
upwards). Regression on principal components, which we discussed briefly in the pream-
ble to this section and will demonstrate in section 13.1, may sometimes be a useful
recourse. Hastie et al. (2001) discuss principal components regression alongside a num-
ber of other methods that are available. Note especially the “shrinkage” methods, which
directly shrink the coefficients. The function lars(), in the package with the same
name, implements a class of methods of this type that has the name least angle regres-
sion, allowing also for variable selection. See Efron et al. (2003).

6.7 Multicollinearity

Some later variables may be exactly, or very nearly, linear combinations of earlier vari-
ables. Technically, this is known as multicollinearity. For each multicollinear relationship,
there is one redundant variable.

The approaches that we have advocated – careful thinking about the background
science, careful initial scrutiny of the data, and removal of variables whose effect is
already accounted for by other variables – will generally avoid the more extreme effects
of multicollinearity that we will illustrate. Milder consequences are pervasive, especially
in the analysis of observational data. Our admittedly contrived example may help alert
the reader to these effects. While it is contrived, we have from time to time seen
comparable effects in computer output that researchers have brought us for scrutiny.
Indeed, we have ourselves, on occasion, generated data sets that have exhibited similar
effects.

6.7.1 A contrived example

We have formed the data set carprice from observations for cars of US origin in the
data set Cars93 that is in the MASS package. The data set includes the factor Type, three
price measurements and the variables MPG.city and MPG.highway from Cars93.
We have added two further variables. The variable Range.Price is the difference
between Max.Price and Min.Price. The variable RoughRange has been obtained
by adding to Range.Price random values from a normal distribution with mean 0 and
standard deviation 0.01. The variable gpm100 is the number of gallons used in traveling
100 miles. For this, we averaged MPG.city and MPG.highway, took the inverse, and
multiplied by 100.
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Figure 6.16 Scatterplot matrix for the continuous variables in the constructed carprice data set.

Figure 6.16 shows the scatterplot matrix for some of the continuous variables in
this data set.14 Notice that the relationships between gpm100 and the price variables
are approximately linear. We leave it to the reader to verify that the relationship with
MPG.city or MPG.highway is not at all linear.

We will now fit two models that have gpm100 as the response variable. The first
uses Type, Min.Price, Price, Max.Price and Range.Price as explanatory
variables. The second replaces Range.Price with RoughRange. We will, for the
time being, keep our attention fixed well away from the columns that hold the t-value
and the p-value, lest the nonsense of the calculations in which we are engaged should
bear too strongly on our attention! Here are the calculations for the first model:

> carprice1.lm <- lm(gpm100 ˜ Type+Min.Price+Price+Max.Price+

+ Range.Price, data=carprice)

> summary(carprice1.lm)$coef

14 ## Scatterplot matrix for data frame carprice (DAAG)
pairs(carprice[, -c(1,8,9)])
## Alternative, using the lattice function splom()
splom(˜carprice[, -c(1,8,9)])
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.287 0.153 21.467 0.000

TypeLarge 0.324 0.173 1.867 0.069

TypeMidsize 0.185 0.166 1.114 0.272

TypeSmall -0.389 0.168 -2.317 0.026

TypeSporty 0.205 0.175 1.176 0.247

TypeVan 1.349 0.193 6.997 0.000

Min.Price 0.700 0.989 0.707 0.484

Price -1.377 1.983 -0.695 0.491

Max.Price 0.711 0.994 0.715 0.479

Notice that the variable Range.Price has been silently omitted. We constructed it
as a linear combination (in fact a difference) of Min.Price and Max.Price, and it
adds no information additional to what those variables contain. The alias() function
can be a useful recourse in such circumstances; it will identify the linear relationship(s).
In this instance we find:

> alias(carprice1.lm)

Model :

gpm100 ˜ Type + Min.Price + Price + Max.Price + Range.Price

Complete :

(Intercept) TypeLarge TypeMidsize TypeSmall TypeSporty

Range.Price

TypeVan Min.Price Price Max.Price

Range.Price -1 1

This tells us what in this instance we already knew, that Range.Price is the result of
multiplying Min.Price by −1, Max.Price by 1, and adding.

Now observe the effect of replacing Price.Range with RoughRange which differs
ever so slightly. (Recall that to get Rough.Range, we added random values from a
normal distribution with mean 0 and standard deviation 0.01.) The coefficients and
standard errors are:

> carprice2.lm <- lm(gpm100 ˜ Type + Min.Price + Price +

+ Max.Price + RoughRange, data=carprice)

> summary(carprice2.lm)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.29 0.16 21.19 0.00

TypeLarge 0.33 0.18 1.84 0.07

TypeMidsize 0.18 0.17 1.09 0.28

TypeSmall -0.39 0.17 -2.29 0.03

TypeSporty 0.21 0.18 1.16 0.25

TypeVan 1.35 0.20 6.90 0.00

Min.Price 0.26 4.28 0.06 0.95

Price -1.35 2.02 -0.67 0.51

Max.Price 1.13 4.04 0.28 0.78

RoughRange -0.43 4.04 -0.11 0.92
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Notice first that RoughRange is now included as an explanatory variable. The
coefficients of two of the price variables have increased substantially in magnitude.
The standard errors of all three price variables have increased very substantially. This
is a strong version of a so-called multicollinearity effect, where there are near linear
relationships between the explanatory variables. The differences between the two sets
of results arise because, having once generated nonsensical coefficient estimates, very
small changes in the input data lead to new nonsense that looks superficially different.
Nonsense is not all of one kind!

Note however that the fitted values and standard errors of predicted values for these
different models will all be quite similar. It is the coefficients that are used to generate
these predicted values that are problematic.

An analysis that makes modest sense

We can sensibly fit only one price variable, in addition to Type. Here is the analysis:

> carprice.lm <- lm(gpm100 ˜ Type + Price, data = carprice)

> summary(carprice.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.305 0.148 22.357 0.000

TypeLarge 0.329 0.168 1.955 0.057

TypeMidsize 0.196 0.162 1.207 0.234

TypeSmall -0.365 0.162 -2.254 0.030

TypeSporty 0.243 0.163 1.490 0.144

TypeVan 1.392 0.180 7.712 0.000

Price 0.033 0.007 4.482 0.000

The following compares the coefficients,15 SEs and standard deviation of residual of
Price in the models carprice1.lm and carprice.lm:

Model Coeff. SE Residual SD

carprice.lm 0�033 0�007 0�306
carprice1.lm (Add Min.Price, Max.Price) −1�37 1�98 0�301

The residual SD decreased slightly as a result of the introduction of the two additional
price variables into carprice1.lm. This is of minor consequence relative to the huge
increase in the standard error, from 0.007 to 1.98. Notice the instability of the estimate
of the coefficient.

15 summary(carprice.lm)$sigma # residual standard error when only price is used
summary(carprice1.lm)$sigma # residual se when fitting all 3 price variables
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6.7.2 The variance inflation factor

If xj , with values xij (i = 1� � � � � n) is the only variable in a straight line regression model,
and bj is the estimated coefficient, then:

var�bj� = 	2

sjj

� where sjj =
n∑

i=1

�xij − x̄j�
2

and 	2 is the variance of the error term in the model. When further terms are included
in the regression model, this variance is inflated, as a multiple of 	2, by the variance
inflation factor.

The variance inflation factor (VIF) thus quantifies the effect of correlation with other
variables in inflating the standard error of a regression coefficient. It does not reflect
changes in the residual variance. Thus, it depends only on the model matrix.

Thus, consider how the variance inflation factor for the variable Price differs between
the different models considered above. We use the function vif() (DAAG) for the
calculations.

The model that includes Price as the only explanatory variable is the baseline,
relative to which the variance inflation factors for other models are calculated. The
variance inflation factor for this model is 1 (the variance inflation factor is always 1 when
there is a single predictor variable!).

> library (DAAG) # Be sure to use vif() from the DAAG package

> vif(lm(gpm100 ˜ Price, data=carprice)) # Baseline

Price 1

> vif(carprice1.lm) # has Min.Price, Price & Max.Price

TypeLarge TypeMidsize TypeSmall TypeSporty TypeVan

2.72e+00 2.33e+00 1.80e+00 2.17e+00 1.78e+00

Min.Price Price Max.Price

2.99e+04 1.21e+05 3.34e+04

> vif(carprice2.lm) # Add RoughRange

TypeLarge TypeMidsize TypeSmall TypeSporty TypeVan

2.78e+00 2.35e+00 1.82e+00 2.18e+00 1.78e+00

Min.Price Price Max.Price RoughRange

5.45e+05 1.22e+05 5.38e+05 9.62e+04

> vif(carprice.lm) # Price is the only price variable

TypeLarge TypeMidsize TypeSmall TypeSporty TypeVan Price

2.65 2.30 1.74 1.96 1.62 1.73

6.7.3 Remedies for multicollinearity

As we noted at the beginning of the section, the careful initial choice of variables,
based on scientific knowledge and on careful scrutiny of relevant exploratory plots
of explanatory variables, will often avert the problem. In some situations, it may be
possible to find additional data that will reduce correlations among the explanatory
variables.

Ridge regression is one of several approaches that may be used to alleviate the effects of
multicollinearity, in inflating coefficients and their standard errors. We refer the reader to
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the help page for the function lm.ridge() in the MASS package and to the discussions
in Myers (1990); Harrell (2001). For a less elementary and more comprehensive account,
see Hastie et al. (2001). Use of the function lm.ridge() requires the user to choose the
tuning parameter lambda. Typically, the analyst tries several settings and chooses the
value that, according to one of several available criteria, is optimal. Principal components
regression is another possible remedy.

6.8 Multiple regression models – additional points

The following notes should dispel any notion that this chapter’s account of multiple
regression models has covered everything of importance. They draw attention to issues
of large practical importance, that have received extensive attention in the literature, and
for which we have not found room earlier in the chapter.

6.8.1 Errors in x

In the discussion so far, it has been assumed, either that the explanatory variables are
measured with negligible error or that the interest is in the regression relationship given
the observed values of explanatory variables.

This subsection is designed to draw attention to the effect that errors in the explanatory
variables can have on regression slope. Such error, if large, reduces the chances that the
estimated slope will appear statistically significant. Additionally, it reduces the expected
magnitude of the slope, that is, the slope is attenuated. Even with just one explana-
tory variable x, it is not possible to estimate the magnitude of the error or consequent
attenuation from the information shown in a scatterplot of y versus x. For estimating the
magnitude of the error, there must be a direct comparison with values that are measured
with negligible error.

The discussion will now turn to a study on the measurement of dietary intake. The
error in the explanatory variable, as commonly measured, turned out to be larger and of
greater consequence than most researchers had been willing to contemplate.

Measurement of dietary intake

The 36-page Diet History Questionnaire is a Food Frequency Questionnaire (FFQ) that
was developed and evaluated at the US National Cancer Institute, for use in large-scale
trials that look for dietary effects on cancer and on other diseases. Given the huge scale
of some of these trials, some costing US$100 000 000 or more, it has been important to
have an instrument that is relatively cheap and convenient. Unfortunately, as the study
that is reported in Schatzkin et al. (2003) demonstrates, the FFQ seems too inaccurate to
serve its intended purpose.

This FFQ queries frequency of intake over the previous year for 124 food items,
asking details of portion sizes for most of them. There are supplementary questions
on such matters as seasonal intake and food type. More detailed food records may be
collected at specific times, which can then be used to calibrate the FFQ results. One such
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instrument is a 24-hour dietary recall, questioning participants on their dietary intake in
the previous 24 hours. The accuracy of the 24-hour dietary recall was a further concern
of the Schatzkin et al. (2003) study. Doubly Labeled Water, which is a highly expensive
biomarker, was used as an accurate reference instrument.

Schatzkin et al. (2003) reported measurement errors where the standard deviation
for estimated energy intake was seven times the standard deviation, between different
individuals, of the reference. Additionally, Schatzkin et al. (2003) found a bias in the
relationship between FFQ and reference that further reduced the attenuation factor, to
0.04 for women and to 0.08 for men. For the relationship between the 24-hour recalls
and the reference, the attenuation factors were 0.1 for women and 0.18 for men, though
these can be improved by the use of repeated 24-hour recalls. These errors were much
larger than most researchers had been willing to contemplate.

The results reported in Schatzkin et al. (2003) raise serious questions about what
such studies can achieve, using presently available instruments that are sufficiently cheap
and convenient that they can be used in large studies. The measurement instrument and
associated study design issues have multi-million dollar implications. Carroll (2004) gives
an accessible summary of the issues. Subsection 10.6.2 has further brief comment on the
modeling issues.

A simulation of the effect of measurement error

Suppose that the underlying regression relationship that is of interest is:

yi = �+
zi + �i �i = 1� � � � � n�

and that the measured values are:

xi = zi +�i

where

var��i� = 	2� var��i� = �2�

Figure 6.17 shows the effect. If � is 40% of the standard deviation in the x direction, that
is, � = 0�4sz, the effect on the slope is modest. If � = 2sz, the attenuation is severe.

The expected value of the attenuation in the slope is, to a close approximation:

� = 1
1+ �2/s2

z

�

where sz = √∑n
i=1�zi − z̄�2. If � = 0�4sz, then � � 0�86.

Whether a reduction in slope by a factor of 0.86 is of consequence will depend on
the nature of the application. Often there will be more important concerns. Very small
attenuation factors (large attenuations), for example, less than 0.1 such as were found in
the Schatzkin et al. (2003) study, are likely to have serious consequences for the use of
analysis results.
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Figure 6.17 The fitted solid lines show how the regression line for y on x changes as the error
in x changes. The underlying relationship, shown with the dashed line, is in each instance y = 15
+ 2.5z. Note that s2

z = ∑n
i=1�zi − z̄�2, and that � is the standard deviation of the independent errors

that are added to the zi. Data for these plots were generated using the function errorsINx()
(DAAG).

Points to note are:

• From the data used in the panels of Figure 6.17, it is impossible to estimate �, or
to know the underlying zi values. This can be determined only from an investigation
that compares the xi with an accurate, that is, for all practical purposes error-free,
determination of the zi. The Schatzkin et al. (2003) study made use of a highly
expensive reference instrument, too expensive for standard use, to assess and calibrate
the widely used cheaper measuring instruments.

• A test for 
 = 0 can be undertaken in the usual way, but with reduced power to detect
an effect that may be of interest.

• The t-statistic for testing 
 = 0 is affected in two ways; the numerator is reduced by an
expected factor of �, while the standard error that appears in the numerator increases.
Thus if � = 0.1, the sample size required to detect a non-zero slope is inflated by more
than the factor of 100 that the effect on the slope alone would suggest.

In social science, the ratio �2/s2
z has the name reliability. As Fuller (1987) points out,

a better name is reliability ratio.

Errors in variables – multiple regression

Variables that are measured inaccurately may on that account not appear statistically
significant, or have severely attenuated coefficients, in any multiple regression. Variables
whose true effect is of lesser consequence may appear to make a larger contribution. It
may be important to bear this in mind when starting a multiple regression analysis, or
when interpreting results.
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6.8.2 Confusion between explanatory and response variables

As an example, we return to the hill races data. The equation for predicting time given
dist and climb (without interaction) is:

log�predicted time� = −3�88+0�909 log�dist�+0�260 log�climb��

It is necessary to note that, to obtain the equation for predicting dist given time and
climb, we need to regress dist on climb and time. We cannot find it by rearranging
the above equation. The equation for predicting dist given time and climb is:16

log�predicted dist� = 3�44+0�95 log�time�−0�178 log�climb��

which is equivalent to:

log�time� = −3�62+1�053 log�predicted dist�+0�187 log�climb��

Compare this with:

log�predicted time� = −3�88+0�909 log�dist�+0�260 log�climb��

Only if the relationship is exact, so that predicted time is the same as observed time, will
the equations be exactly the same.

For examples where this issue arises in earth sciences, see Williams (1983).

Unintended correlations

This highlights another aspect of the desirability of maintaining a clear distinction between
explanatory and response variables. Suppose that xi �i = 1� 2� � � � � n� are results from a
series of controls, while yi �i = 1� 2� � � � � n� are results from the corresponding treated
group. It is tempting to plot y−x versus x. Unfortunately, there is likely to be a negative
correlation between y −x and x, though this is not inevitable. See the example in Sharp
et al. (1996).

6.8.3 Missing explanatory variables

Here the issue is use of the wrong model for the expected value. With the right “balance”
in the data, the expected values are unbiased or nearly unbiased. Where there is serious
imbalance, the bias may be huge.

In the game of cricket, the two sides take turns at each of the two roles: batting and
bowling. Typically, the first side bats, then takes a turn at bowling, then has another
turn at batting, and finally another turn at bowling. Each side taking turns at batting and
bowling in each of two innings. The game may be seen as a contest between bowlers,
with fielders supporting the bowlers, and batters. The two players who are batters at any
one time try to score runs, while bowlers try to get batters out. When 10 of the 11 batters
are out, the innings ends.

16 ## For convenience, here again are the R commands:
hills.loglm <- lm(log(dist) ˜ log(time)+log(climb), data=hills[-18, ])
summary(hills.loglm)
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Table 6.3 Runs per wicket for bowlers A and B, for each of
innings 1 and innings 2.

Innings 1 Innings 2 Average

A 50 (1 w) 14 (5 w) 32 = 28.5 + 3.5
B 40 (6 w) 10 (4 w) 25 = 28.5 − 3.5
Average 45 = 28.5 + 16.5 14 = 28.5 − 16.5 28.5

The winner is the team that has the greatest run total. Additionally, it is common to
compare the performances of different bowlers. Here is an example:

Bowler A Bowler B
1st Innings 2nd Innings Overall 1st Innings 2nd Innings Overall
50 runs 70 runs 120 runs 240 runs 40 runs 280 runs
1 w 5 w 6 w 6 w 4 w 10 w

Runs per wicket are:

Bowler A Bowler B
1st Innings 2nd Innings Overall 1st Innings 2nd Innings Overall
50 r/w 14 r/w 20 r/w 40 r/w 10 r/w 28 r/w

Thus bowler A does better than bowler B in both innings (gives away fewer runs for
each wicket taken), but ends up giving away more runs per wicket overall. The reason
is that bowler A did more of the bowling in the first innings, when runs were easy to
score and wickets were hard to get. Thus bowler A’s runs per wicket average is skewed
towards the first innings runs per wicket rate.

Table 6.3 has the 2×2 table of runs per wicket information. Adding the total of runs for
each bowler, and dividing in each case by the corresponding total of wickets is equivalent
to taking averages for each bowler of runs per wicket, weighted according to number of
wickets.

A reasonable model is:

runs/wicket = mean for innings + effect due to bowler
= overall mean (28.5) + bowler effect + innings effect

The first innings effect is 16.5, while the second innings effect is −16.5. The bowler A
effect is 3.5, while the bowler B effect is −3.5. In a more sophisticated model, cell means
might be weighted according to the number of runs scored, or according to the number
of overs bowled. The details are unimportant for present purposes. The important issue
is that any adequate modeling of these data must allow for the very different conditions
prevailing in innings 1, when runs were easy to get, and innings 2, when runs were hard
to get.

When variables or factors are omitted from models, values of the outcome variable are
as far as possible accounted for using those that remain. The mouse brain weight example
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in Subsection 6.1.3 can be understood in this way. Bland and Altman (2005) give several
examples of published results where conclusions have been vitiated by effects of this
type.

Another example of this same type, albeit in the context of contingency tables, was
discussed in Subsection 3.4.5. The analysis of the UCB admissions data in Section 8.3
formulates the analysis of contingency table data as a regression problem.

6.8.4 ∗ The use of transformations

Often there are scientific reasons for transformations. Thus, suppose we have weights w

of individual apples, but the effects under study are more likely to be related to surface
area. We should consider using x = w

2
3 as the explanatory variable. If the interest is in

studying relative, rather than absolute, changes, it may be best to work with the logarithms
of measurements.

Statisticians use transformations for one or more of the following reasons:

1. To form a straight line or other simple relationship.
2. To ensure that the “scatter” of the data is similar for all categories, that is, to ensure

that the boxplots all have a similar shape. In more technical language, the aim is to
achieve homogeneity of variance.

3. To make the distribution of data more symmetric and closer to normal.

If there is a transformation that deals with all these issues at once, we are fortunate. It
may greatly simplify the analysis.

A log transformation may both remove an interaction and give more nearly normal
data. It may on the other hand introduce an interaction where there was none before. Or a
transformation may reduce skewness while increasing heterogeneity. The availability of
direct methods for fitting special classes of model with non-normal errors, for example
the generalized linear models that we will discuss in Chapter 8, has reduced the need for
transformations.

6.8.5 ∗ Non-linear methods – an alternative to transformation?

This is a highly important area for which, apart from the present brief discussion, we
have not found room in the present book. We will investigate the use of the R nls()
function (stats package) to shed light on the loglinear model that we used for the hill race
data in Subsection 6.3.3.

The analysis of Subsection 6.3.3 assumed additive errors on the transformed logarithmic
scale. This implies, on the untransformed scale, multiplicative errors. We noted that the
assumption of homogeneity of errors was in doubt. One might alternatively assume
that the noise term is additive on the untransformed scale, leading to the non-linear
model

y = x�
1 x



2 +�

where y = time, x1 = dist, and x2 = climb.
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Because we could be taking a square or cube of the climb term, we prefer to work with
the variable climb.mi that is obtained by dividing climb by 5280, so that numbers
are of modest size:

hills$climb.mi <- hills$climb/5280

We will use the nls() non-linear least squares function to estimate � and 
. The
procedure used to solve the resulting non-linear equations is iterative, requiring starting
values for � and 
. We use the estimates from the earlier loglinear regression as starting
values:

hills.nls0 <- nls(time ˜ (distˆalpha)*(climb.miˆbeta), start =

c(alpha = .909, beta = .260), data = hills[-18,])

summary(hills.nls0)

plot(residuals(hills.nls0) ˜ predict(hills.nls0)) # residual plot

Output from the summary() function includes the following:

Parameters:

Estimate Std. Error t value Pr(>|t|)

alpha 0.3564 0.0194 18.38 < 2e-16

beta 0.6585 0.0674 9.76 4.1e-11

Residual standard error: 0.34 on 32 degrees of freedom

Note that these parameter estimates differ substantially from those obtained under the
assumption of multiplicative errors. This is not an unusual occurrence; the non-linear least
squares problem has an error structure that is different from the linearized least-squares
problem solved earlier. A glance at the residual plot shows the 11th observation as an
extreme outlier. Other residuals exhibit a non-linear pattern.

Another possibility, that allows time to increase non-linearly with climb.mi, is:

y = �+
x1 +�x�
2 +��

We then fit the model, using a fairly arbitrary starting guess:

hills.nls <- nls(time ˜ alpha + beta*dist +

gamma*(climb.miˆdelta), start=c(alpha = 1, beta = 1,

gamma = 1, delta = 1), data=hills[-18, ])

summary(hills.nls)

plot(residuals(hills.nls) ˜ predict(hills.nls))

# residual plot

The result is:

Parameters:

Estimate Std. Error t value Pr(>|t|)

alpha -0.05310 0.02947 -1.80 0.082

beta 0.11076 0.00398 27.82 < 2e-16

gamma 0.77277 0.07523 10.27 2.4e-11

delta 2.18414 0.22706 9.62 1.1e-10

Residual standard error: 0.0953 on 30 degrees of freedom
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There are no outliers on the residual plot. In addition, there is no indication of an increase
in the variance as the fitted values increase. Thus, a variance-stabilizing transformation
or the use of weighted least squares is unnecessary. The model is highly interpretable,
indicating that a racer should allow roughly 5.5 minutes per mile plus about 45 minutes for
every squared mile of climb. Using this rough guide, the prediction is that the missing
race (18), a distance of 3 miles with a climb of 0.066 miles, has a time of 16.7 minutes.

The intercept alpha, which implies a negative time for very short races, should be
removed from the model. We leave this as an exercise.

6.9 Recap

A coefficient in a multiple regression equation predicts the effect of a variable when other
variables are held constant. Coefficients can thus be different, sometimes dramatically,
for a different choice of explanatory variables.

Regression equation predictions are for the data used to derive the equation, and reflect
any sampling biases that affect that data. Biases that arise because data were not randomly
sampled from the population can lead to predictions that, for the population as a whole,
are seriously astray.

Plots that can be useful for checking regression assumptions and/or for checking
whether results may be unduly influenced by individual data points include: scatterplot
matrices of the variables in the regression equation, plots of residuals against fitted
values, partial residual plots such as are provided by the termplot() function (these
are a better guide than plots of residuals against individual explanatory variables), normal
probability plots of residuals, scale-location plots, and Cook’s distance and related plots.

Robust methods downweight the influence of outliers.

6.10 Further reading

Weisberg (1985) offers a relatively standard approach. Harrell (2001) is a wide-ranging,
practically oriented account, with much excellent advice. Cook and Weisberg (1999)
rely heavily on graphical explorations to uncover regression relationships. Venables and
Ripley (2002) is a basic reference for using R for regression calculations. See also Fox
(2002). Hastie et al. (2001) offer wide-ranging challenges for the reader who would like
to explore well beyond the forms of analysis that we have described.

On variable selection, which warrants more attention than we have given it, see Harrell
(2001); Hastie et al. (2001); Venables (1998). There is certain to be, in the next several
years, substantial enhancement of what R packages offer in this area.

Rosenbaum (2002) is required reading for anyone who wishes to engage seriously with
the analysis of data from observational studies. Results can rarely be interpreted with
the same confidence as for the analysis of data from a carefully designed experimental
study. There are however checks and approaches that, depending on the context, can be
helpful in assessing the credence that should be given to one or other interpretation of
analysis results. Several of the studies that are discussed in Leavitt and Dubner (2005),
some with major public relevance, relied to an extent on regression methods. References
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in the notes at the end of their book allow interested readers to pursue technical details of
the statistical and other methodology. The conflation of multiple sources of insight and
evidence is invariably necessary, in such studies, if conclusions are to carry conviction.

Especially hazardous is the use of studies where there are multiple potential con-
founding variables, that is, variables whose effects must be accounted for if coefficients
for remaining variables are to be genuinely suggestive of a cansal link. Not only must
confounders be included; their effects, including possible interaction effects, must be
correctly modeled. Controversy over studies on the health effects of moderate alcohol
consumption provide a good example; see for example Jackson et al. (2005).

For commentary on the use of regression and other models for predictive purposes, see
Maindonald (2003).

In our examples, there have been two categories of variables – explanatory variables
and response variables. More generally there may be three or more categories. There may,
for example, be explanatory variables, intermediate variables, and dependent variables,
where intermediate are dependent with respect to one or more of the explanatory variables,
and explanatory variables with respect to one or more of the dependent variables.

Cox and Wermuth (1996) and Edwards (2000) describe approaches that use regression
methods to elucidate the relationships. Cox and Wermuth is useful for the large number
of examples that it gives and for its illuminating comments on practical issues, while
Edwards now has a more up-to-date account of the methodology.

Bates and Watts (1988) discuss non-linear models in detail. A more elementary pre-
sentation is given in one of the chapters of Myers (1990).

6.10.1 References for further reading

Bates, D. M. and Watts, D. G. 1988. Non-linear Regression Analysis and Its Applications.
John Wiley.

Cook, R. D. and Weisberg, S. 1999. Applied Regression Including Computing and
Graphics. John Wiley.

Cox, D. R. and Wermuth, N. 1996. Multivariate Dependencies: Models, Analysis and
Interpretation. Chapman and Hall.

Edwards, D. 2000. Introduction to Graphical Modelling, 2nd edn. Springer-Verlag.
Fox, J. 2002. An R and S-PLUS Companion to Applied Regression. Sage Books.
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Logistic Regression and Survival Analysis. Springer-Verlag.
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Brooks Cole.

Rosenbaum, P. R. 2002. Observational Studies, 2nd edn. Springer-Verlag.
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6.11 Exercises

1. The data set cities lists the populations (in thousands) of Canada’s largest cities over 1992
to 1996. There is a division between Ontario and the West (the so-called “have” regions) and
other regions of the country (the “have-not” regions) that show less rapid growth. To identify
the “have” cities we can specify
## Set up factor that identifies the ‘have’ cities

## Data frame cities (DAAG)

cities$have <- factor((cities$REGION=="ON")|

(cities$REGION=="WEST"))

Plot the 1996 population against the 1992 population, using different colors to distinguish the
two categories of city, both using the raw data and taking logarithms of data values, thus:
plot(POP1996 ˜ POP1992, data=cities,

col=as.integer(cities$have))

plot(log(POP1996) ˜ log(POP1992), data=cities,

col=as.integer(cities$have))
Which of these plots is preferable? Explain.

Now carry out the regressions
cities.lm1 <- lm(POP1996 ˜ have+POP1992, data=cities)

cities.lm2 <- lm(log(POP1996) ˜ have+log(POP1992),

data=cities)

and examine diagnostic plots. Which of these seems preferable? Interpret the results.

2. In the data set cement (MASS package), examine the dependence of y (amount of heat
produced) on x1, x2, x3 and x4 (which are proportions of four constituents). Begin by
examining the scatterplot matrix. As the explanatory variables are proportions, do they require
transformation, perhaps by taking log�x/�100−x��? What alternative strategies might be useful
for finding an equation for predicting heat?

3. The data frame hills2000 in our DAAG package has data, based on information from the
Scottish Running Resource web site, that updates the 1984 information in the data set hills.
Fit a regression model, for men and women separately, based on the data in hills2000.
Check whether it fits satisfactorily over the whole range of race times. Compare the equation
that you obtain with that based on the hills data frame.

4. Section 6.1 used lm() to analyze the allbacks data that are presented in Figure 6.1. Repeat
the analysis using (1) the function rlm() in the MASS package, and (2) the function lqs()

in the MASS package. Compare the two sets of results with the results in Section 6.1.

5. This exercise illustrates what happens if a transformation is not used for the hills data analysis.
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(a) Fit two models, one a model that is linear in dist and climb, and one that has,
additionally, dist × climb, i.e.
hills.lm <- lm(time ˜ dist+climb, data=hills)

hills2.lm <- lm(time ˜ dist+climb+dist:climb,

data=hills)

anova(hills.lm, hills2.lm)

(b) Using the F-test result, make a tentative choice of model, and proceed to examine
diagnostic plots. Are there any problematic observations? What happens if these points
are removed? Re-fit both of the above models, and check the diagnostics again.

6. Check the variance inflation factors for bodywt and lsize for the model
brainwt ˜ bodywt + lsize, fitted to the litters data set. Comment.

7. Apply the lm.ridge() function to the litters data, using the generalized cross-validation
(GCV) criterion to choose the tuning parameter. (GCV is an approximation to cross-validation.)

(a) In particular, estimate the coefficients of the model relating brainwt to bodywt and
lsize and compare with the results obtained using lm().

(b) Using both ridge and ordinary regression, estimate the mean brain weight when litter
size is 10 and body weight is 7. Use the bootstrap, with case-resampling, to compute
approximate 95% percentile confidence intervals using each method. Compare with the
interval obtained using predict().

8.∗ Compare the ranges of dist and climb in the data frames hills and hills2000. In
which case would you expect it to be more difficult to find a model that fits well? For each
of these data frames, fit both the model based on the formula
log(time) ˜ log(dist) + log(climb)

and the model based on the formula
time ˜ alpha*dist + beta*I(climbˆ2)

Is there one model that gives the best fit in both cases?

9. The data frame table.b3 in the MPV package contains data on gas mileage and 11 other
variables for a sample of 32 automobiles.

(a) Construct a scatterplot of y (mpg) versus x1 (displacement). Is the relationship between
these variables non-linear?

(b) Use the xyplot() function, and x11 (type of transmission) as a group variable. Is a
linear model reasonable for these data?

(c) Fit the model relating y to x1 and x11 which gives two lines having possibly different
slopes and intercepts. Check the diagnostics. Are there any influential observations? Are
there any influential outliers?

(d) Plot the residuals against the variable x7 (number of transmission speeds), again using
x11 as a group variable. Is there anything striking about this plot?

10. The following code is designed to explore effects that can result from the omission of
explanatory variables:
> x1 <- runif(10) # predictor which will be missing

> x2 <- rbinom(10, 1, 1-x1) # observed predictor which depends

> # on missing predictor

> y <- 5*x1 + x2 + rnorm(10,sd=.1) # simulated model; coef

> # of x2 is positive

> y.lm <- lm(y ˜ factor(x2)) # model fitted to observed data
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> coef(y.lm)

(Intercept) factor(x2)1

2.8224119 -0.6808925 # effect of missing variable:

# coefficient of x2 has wrong sign

> y.lm2 <- lm(y ˜ x1 + factor(x2)) # correct model

> coef(y.lm2)

(Intercept) x1 factor(x2)1

0.06654892 4.91216206 0.92489061 # coef estimates are now OK

What happens if x2 is generated according to x2 <- rbinom(10, 1, x1)?
x2 <- rbinom(10, 1, .5)?

11. Fit the model investigated in Subsection 6.8.5, omitting the parameter �. Investigate and
comment on changes in the fitted coefficients, standard errors and fitted values.
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Exploiting the linear model framework

The model matrix X is fundamental to all calculations for a linear model. The model
matrix carries the information needed to calculate the fitted values that correspond to any
particular choice of coefficients. There is a one-to-one correspondence between columns
of X and regression coefficients.

In Chapter 6, the columns of the model matrix contained the observed values of
the explanatory variables, perhaps after transformation. Fitted values were obtained by
multiplying the first column by the first coefficient (usually the intercept), the second
column by the second coefficient, and so on across all columns. The sum of the products
in any row is the fitted value for that row.

This chapter will explore new ways to use the columns of the model matrix. Vec-
tors of zeros and ones (columns of “dummy” variables) can be used to handle factor
levels, but as noted below there are other possibilities. For modeling a quadratic form of
response, we take values of x as one of the columns and values of x2 as another. The
model matrix framework also allows the modeling of many other forms of non-linear
response. As before, the regression calculations find the set of coefficients that best
predicts the observed responses, in the sense of minimizing the sum of squares of the
residuals.

In R, as in much other statistical software, a model formula specifies the model. Terms
in model formulae may include factors and interactions of factors with other terms.
Given this information, R then sets up the model matrix, without further intervention
from the user. Where there are factors, there are various alternatives to R’s default for
setting up the relevant columns of the model matrix. In technical language, there are
other factor parameterizations, that is, other choices of factor contrasts, alternative to the
default use of columns of zeros and ones. These alternative choices have implications
for the interpretation of the resulting regression coefficients, but do not affect the fitted
values.

The latter part of this chapter will describe the fitting of smooth curves and surfaces
that do not necessarily have a simple parametric form of mathematical description.
Although not as convenient as linear or other simple parametric relationships, such
curves and surfaces do allow the calculation of predicted values and associated standard
error estimates. For many purposes, this is all that is needed.
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Table 7.1 Comparison of weights (weight) of sugar in a control (wild
type) plant and in three different genetically modified plant types.

Control (wild type) A (Modified 1) B (Modified 2) C (Modified 3)

82.0 58.3 68.1 50.7
97.8 67.9 70.8 47.1
69.9 59.3 63.6 48.9

Mean = 83.2 61.8 67.5 48.9

7.1 Levels of a factor – using indicator variables

7.1.1 Example – sugar weight

Table 7.1 displays data from an experiment that compared an unmodified wild type plant
with three different genetically modified forms (data are in the data set sugar in our
DAAG package). The measurements are weights (mg) of sugar that were obtained by
breaking down the cellulose. There is a single explanatory factor (treatment), with one
level for each of the different control agents. For convenience, we will call the factor
levels Control, A (Modified 1), B (Modified 2) and C (Modified 3). Figure 7.1 shows
the data.

We could reduce the apparent difference in variability between treatments by working
with the log(weight). For present illustrative purposes, we will however work with
the variable weight, leaving as an exercise for the reader the analysis that works with
log(weight).

The model can be fitted either using the function lm() or using the function aov().
The two functions give different default output.

For any problem that involves factor(s), there are several different ways to set up the
model matrix. The default, for R and for many other computer programs, is to set up
one of the treatment levels as a baseline or reference, with the effects of other treatment
levels then measured from the baseline. Here it makes sense to set Control (Wild) as
the baseline. With Control as baseline, the model matrix for the data in Table 7.1 is

50 60 70 80 90

Control

A

B

C

Weight (mg)

Figure 7.1 Weight of sugar (weight) extracted from four different types of plant: Control (wild
type), and modified types A, B and C.
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Table 7.2 Model matrix for the analysis of variance calculation
for the data in Table 7.1. The values of the response are in the final
column.

Control (baseline) A B C weight

1 0 0 0 82.0
1 0 0 0 97.8
1 0 0 0 69.9
1 1 0 0 58.3
1 1 0 0 67.9
1 1 0 0 59.3
1 0 1 0 68.1
1 0 1 0 70.8
1 0 1 0 63.6
1 0 0 1 50.7
1 0 0 1 47.1
1 0 0 1 48.9

Table 7.3 At the head of each column is the multiple, as determined
by least squares, that is taken in forming the fitted values.

Control: 83.2 A: −21�4 B: −15�7 C: −34�3 Fitted value

1 0 0 0 83.2
1 0 0 0 83.2
1 0 0 0 83.2
1 1 0 0 61.8
1 1 0 0 61.8
1 1 0 0 61.8
1 0 1 0 67.5
1 0 1 0 67.5
1 0 1 0 67.5
1 0 0 1 48.9
1 0 0 1 48.9
1 0 0 1 48.9

given in Table 7.2; values of the response (sugar$weight) have been added in the
final column.

The model matrix is obtained thus:

## Display model matrix: uses data frame sugar (DAAG)

sugar.aov <- aov(weight ˜ trt, data=sugar)

model.matrix(sugar.aov)

In Table 7.3, the multiples determined by least squares calculations are shown above
each column. Also shown is ŷ, which is the predicted value, and can be calculated either
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as fitted(sugar.aov) or as predict(sugar.aov). Residuals can be obtained
by subtracting the predicted values (̂y) in Table 7.3 from the observed values (y) in
Table 7.2. Here is the output summary from R:

> summary.lm(sugar.aov) # NB: summary.lm(),

# not summary() or summary.aov()

Call:

aov(formula = weight ˜ trt, data = sugar)

Residuals:

Min 1Q Median 3Q Max

-13.333 -2.783 -0.617 2.175 14.567

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 83.23 4.47 18.61 7.2e-08

trtA -21.40 6.33 -3.38 0.00960

trtB -15.73 6.33 -2.49 0.03768

trtC -34.33 6.33 -5.43 0.00062

Residual standard error: 7.75 on 8 degrees of freedom

Multiple R-Squared: 0.791, Adjusted R-squared: 0.713

F-statistic: 10.1 on 3 and

8 degrees of freedom, p-value: 0.00425

The row labeled (Intercept) gives the estimate (= 83.23) for the baseline, i.e.,
Control. The remaining coefficients (differences from the baseline) are:

A: weight differs by −21�40.
B: weight differs by −15�73.
C: weight differs by −34�33.

All three differences from the control are significant at the conventional 5% level. In
this example, the estimate for each treatment is the treatment mean. Regression calcula-
tions have given us a relatively complicated way to calculate the treatment means! The
methodology shows its power to better effect in more complex forms of model, where
there is no such simple alternative.

Investigators may consider the overall analysis of variance F-test, prior to these in-
dividual comparisons, a sufficient safeguard against over-interpretation of the results of
these individual comparisons. Nevertheless, insight may be gained from assessing differ-
ences against Tukey’s experiment-wise HSD criterion that was discussed in Subsection
4.4.2.

> sem <- summary.lm(sugar.aov)$sigma/sqrt(3) # 4 results/trt

> # Alternatively, sem <- 6.33/sqrt(2)

> qtukey(p=.95, nmeans=4, df=66) * sem

1] 16.67

Using this stricter criterion, B cannot be distinguished from the control, and A, B and C
cannot be distinguished.
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7.1.2 Different choices for the model matrix when there are factors

In the language used in the R help pages, different choices of contrasts are available,
with each different choice leading to a different model matrix. These different choices
lead to different regression parameters, but the same fitted values, and the same analysis
of variance table.

The default (treatment) choice of contrasts uses the initial factor level as baseline,
as we have noted. Different choices of the baseline or reference level lead to different
versions of the model matrix. The other common choice, that is, sum contrasts, uses the
average of treatment effects as the baseline. The choice of contrasts may call for careful
consideration, in order to obtain the output that will be most helpful for the problem in
hand. Or, more than one run of the analysis may be necessary, in order to gain information
on all effects that are of interest.

Here is the output when the baseline is the average of the treatment effects, that is,
from using the sum contrasts:

> oldoptions <- options(contrasts=c("contr.sum", "contr.poly"))

> # The mean over all treatment levels is now the baseline.

> # (The second setting ("contr.poly") is for ordered factors.)

> sugar.aov <- aov(formula = weight ˜ trt, data = sugar)

> summary.lm(sugar.aov)

Call:

aov(formula = weight ˜ trt, data = sugar)

Residuals:

Min 1Q Median 3Q Max

-13.333 -2.783 -0.617 2.175 14.567

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.37 2.24 29.23 2.0e-09

trt1 17.87 3.87 4.61 0.0017

trt2 -3.53 3.87 -0.91 0.3883

trt3 2.13 3.87 0.55 0.5968

Residual standard error: 7.75 on 8 degrees of freedom

Multiple R-Squared: 0.791, Adjusted R-squared: 0.713

F-statistic: 10.1 on 3 and

8 degrees of freedom, p-value: 0.00425

> options(oldoptions) # Restore default treatment contrasts

Note the differences from the output from the default choice of contrasts. The baseline,
labeled (Intercept), is now the treatment mean. This equals 65.37. Remaining coef-
ficients are differences, for Control and for treatment levels A and B, from this mean.
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The sum of the differences for all three treatments is zero. Thus the difference for C is
(rounding up):

−�17�87−3�53+2�13� = −16�5�

The estimates (means) are:

Control: 65�37+17�87 = 83�2.
A: 65�37−3�53 = 61�8.
B: 65�37+2�13 = 67�5.
C: 65�37−16�5 = 48�9.

Note finally the possibility of using helmert contrasts (these are the S-PLUS default).
Problems where these address the questions that are of direct scientific interest are unusual.

7.2 Block designs and balanced incomplete block designs

Data in the data frame rice (DAAG) that were analyzed in Section 4.4 were, as was
indicated in Subsection 4.4.3, from an experiment where the treatments had a two-way
structure. Additionally, the plants were laid out in blocks, with each treatment combination
occurring once in each block. Blocks should be chosen so that conditions are as uniform
as possible within each block. In a glasshouse (or greenhouse) experiment all plants in
a single block should be in a similar position in the glasshouse, with a similar exposure
to light.

The data frame rice is from a complete block design; all combinations of factors occur
equally often in each block. The data in appletaste are from a balanced incomplete
block design (BIBD). In the particular BIBD demonstrated here, one treatment is left out
of each block, but in such a way that the number of blocks in which a treatment is left
out is the same for all treatments. (More generally, the requirement for a BIBD is that all
treatments must occur together equally often in the same block.)

7.2.1 Analysis of the rice data, allowing for block effects

In general, there should be allowance for block differences when data from block designs
are analyzed. If this is not done, and there are substantial differences between blocks,
treatment effects are likely to be masked by these substantial block differences. The
interest is in knowing the extent to which treatment differences are consistent across
blocks, irrespective of block-to-block differences that affect all plants in a block.

In Section 4.4 the analysis of the variable ShootDryMass in the data frame rice
did not account for block differences. The block effects were small enough that treatment
effects nonetheless showed up clearly. An analysis will now be demonstrated that reflects
the two-way treatment structure and allows for block effects. The factor trt, used in
the one-way analysis, has been separated into the factors variety (plant variety) and
fert (type of fertilizer).

The code needed to do the analysis is:

ricebl.aov <- aov(ShootDryMass ˜ Block + variety * fert, data=rice)
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The analysis of variance table is a useful first point of reference, for examining results:

> summary(ricebl.aov)

Df Sum Sq Mean Sq F value Pr(>F)

Block 1 3528 3528 10.9 0.0016

variety 1 22685 22685 70.1 6.4e-12

fert 2 7019 3509 10.8 8.6e-05

variety:fert 2 38622 19311 59.7 1.9e-15

Residuals 65 21034 324

This makes it clear that there are substantial differences between blocks. The analysis
presented in Section 4.4 was thus less precise than this more adequate analysis.

Use summary.lm() to obtain details of the effects:

> summary.lm(ricebl.aov)

Call:

aov(formula = ShootDryMass ˜ Block + variety * fert, data = rice)

Residuals:

Min 1Q Median 3Q Max

-64.333 -9.813 -0.292 11.688 48.667

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 115.33 5.61 20.56 < 2e-16

Block2 -14.00 4.24 -3.30 0.0016

varietyANU843 -101.00 7.34 -13.75 < 2e-16

fertNH4Cl -58.08 7.34 -7.91 4.2e-11

fertNH4NO3 -35.00 7.34 -4.77 1.1e-05

varietyANU843:fertNH4Cl 97.33 10.39 9.37 1.1e-13

varietyANU843:fertNH4NO3 99.17 10.39 9.55 5.4e-14

Residual standard error: 18 on 65 degrees of freedom

Multiple R-Squared: 0.774, Adjusted R-squared: 0.753

F-statistic: 37 on 6 and 65 DF, p-value: <2e-16

The above residual standard error, that is, 18.0 on 65 degrees of freedom, may be
compared with a standard error of 19.3 on 66 degrees of freedom when there is no
allowance for block effects.1

Because this was a complete balanced design, the function model.tables() can
be used to obtain a summary of treatment effects in a pleasantly laid out form. Any
visual summary of results should, as a minimum, include the information given in Figure
4.8. (Do not try to use model.tables() for anything other than complete balanced
designs. Even for balanced “incomplete” results such as will now be discussed, results
will, at least for version 2.0.1 of R, be incorrect.)

1rice.aov <- aov(ShootDryMass ˜ variety * fert, data=rice)
summary.lm(rice.aov)$sigma
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7.2.2 A balanced incomplete block design

In tasting experiments a number of different products, which may for example be choco-
lates or wines or varieties of apple, are to be compared. If presented with too many
different products, tasters get confused, even when precautions are taken (including
washing the palette), to minimize carry-over effects from one product to another. Hence
it is usual to limit the number of products given to any one taster.

In the example that will now be given, the products were different varieties of apple,
identified by the numerical codes 298, 493, 649 and 937. The 20 tasters were divided
into four groups of five. For each group of five tasters, a different product was omitted.
Panelists made a mark on a line that gave their rating of aftertaste (0 for extreme
dislike; 150 for extreme approval). The following is a summary of the experimental
design:

> table(appletaste$product, appletaste$panelist)

a b c d e f g h i j k l m n o p q r s t

298 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1

493 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1

649 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

937 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

The tasters play the role that blocks would play in a field design. In spite of differences
in the way that different raters use the scale (some will tend to score low and some high),
there may be acceptable consistency in their comparative ratings of the products.

For analysis, it is necessary only to specify factors panelist and product as
explanatory factors.

> sapply(appletaste, is.factor) # panelist & product are factors

aftertaste panelist product

FALSE TRUE TRUE

> appletaste.aov <- aov(aftertaste ˜ panelist + product,

+ data=appletaste)

> summary(appletaste.aov)

Df Sum Sq Mean Sq F value Pr(>F)

panelist 19 30461 1603 2.21 0.019

product 3 34014 11338 15.60 1.0e-06

Residuals 37 26892 727

There are differences between the ratings of different panelists, but they are smaller than
differences between products.

The partial residual plot in Figure 7.2, obtained using the function termplot(), is
a highly useful and intelligible summary of results. Notice that ratings seem generally
lower for the final few raters. Did these do their ratings later, when product quality had
declined? In its present form, this function is useful only for displaying the effects of
factors for which no interaction terms are present. As noted above, do not try to use
model.tables() to obtain estimates of effects; the results, for this incomplete block
design, will be incorrect.
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Figure 7.2 These plots show the respective contributions of the factors panelist and product
to aftertaste scores, in an apple tasting experiment.

7.3 Fitting multiple lines

Multiple regression can be used to fit multiple lines. In the example that follows
(Table 7.4), there are measurements of vapor pressure (vapPress) and of the differ-
ence between leaf and air temperature (tempDiff), for three different levels of carbon
dioxide.

Possibilities we may want to consider are:

• Model 1 (constant response): y = a.
• Model 2 (a single line): y = a+bx.
• Model 3 (three parallel lines): y = a1 +a2z2 +a3z3 +bx.

(For the low CO2 group (z2 = 0 and z3 = 0) the constant term is a1; for the medium
CO2 group (z2 = 1 and z3 = 0) the constant term is a1 +a2, while for the high CO2

group (z2 = 0 and z3 = 1) the constant term is a1 +a3.)
• Model 4 (three separate lines): y = a1 +a2z2 +a3z3 +b1x+b2z2x+b3z3x.

(Here, z2 and z3 are as in Model 3 (panel B). For the low CO2 group (z2 = 0 and
z3 = 0) the slope is b1; for the medium CO2 group (z2 = 1 and z3 = 0) the slope is
b1 +b2, while for the high CO2 group (z2 = 0 and z3 = 1) the slope is b1 +b3.)

Selected rows from the model matrices for Model 3 and Model 4 are displayed in
Tables 7.5 and 7.6, respectively.

The statements used to fit the four models are:

## Fit various models to columns of data frame leaftemp (DAAG)

leaf.lm1 <- lm(tempDiff ˜ 1 , data = leaftemp)

leaf.lm2 <- lm(tempDiff ˜ vapPress, data = leaftemp)

leaf.lm3 <- lm(tempDiff ˜ CO2level + vapPress,

data = leaftemp)

leaf.lm4 <- lm(tempDiff ˜ CO2level + vapPress

+ vapPress:CO2level, data = leaftemp)

Recall that CO2level is a factor and vapPress is a variable. Technically,
vapPress:CO2level is an interaction. The effect of an interaction between a factor
and a variable is to allow different slopes for different levels of the factor.
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Table 7.4 Selected rows, showing values of CO2level,
vapPress and tempDiff, from the data set leaftemp.

CO2level vapPress tempDiff

low 1.88 1.36
low 2.20 0.60
low 1.75 0.23
� � � � � � � � �

medium 2.38 1.94
medium 2.72 0.83
medium 2.21 −0�11
� � � � � � � � �

high 2.56 1.50
high 2.55 0.85
high 2.17 −0�04
� � � � � � � � �

Table 7.5 Model matrix for fitting three parallel lines (Model 3) to the
data of Table 7.4. The y-values are in the separate column to the right.

(Intercept) Medium High vapPress tempDiff

1 0 0 1.88 1.36
1 0 0 2.2 0.6
1 0 0 1.75 0.23
1 0 0 1.85 0.48
� � � � � � � � � � � � � � �

1 1 0 2.38 1.94
1 1 0 2.72 0.83
1 1 0 2.21 −0�11
1 1 0 1.67 0.85
� � � � � � � � � � � � � � �

1 0 1 2.56 1.5
1 0 1 2.55 0.85
1 0 1 2.17 −0�04
1 0 1 1.64 1.25

The analysis of variance table is helpful in making a choice between these models:

> anova(leaf.lm1, leaf.lm2, leaf.lm3, leaf.lm4)

Analysis of Variance Table

Model 1: tempDiff ˜ 1

Model 2: tempDiff ˜ vapPress

Model 3: tempDiff ˜ CO2level + vapPress

Model 4: tempDiff ˜ CO2level + vapPress + CO2level:vapPress
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Table 7.6 Model matrix for fitting three separate lines (Model 4), with y-values in the
separate column to the right.

Medium: High:
(Intercept) Medium High vapPress vapPress vapPress tempDiff

1 0 0 1.88 0 0 1.36
1 0 0 2.2 0 0 0.6
1 0 0 1.75 0 0 0.23
1 0 0 1.85 0 0 0.48
� � � � � � � � � � � � � � � � � � � � �

1 1 0 2.38 2.38 0 1.94
1 1 0 2.72 2.72 0 0.83
1 1 0 2.21 2.21 0 −0�11
1 1 0 1.67 1.67 0 0.85
� � � � � � � � � � � � � � � � � � � � �

1 0 1 2.56 0 2.56 1.5
1 0 1 2.55 0 2.55 0.85
1 0 1 2.17 0 2.17 −0�04
1 0 1 1.64 0 1.64 1.25

Res.Df RSS Df Sum of Sq F Pr(>F)

1 61 40.00

2 60 34.73 1 5.272 11.33 0.0014

3 58 28.18 2 6.544 7.03 0.0019

4 56 26.06 2 2.126 2.28 0.1112

This is a sequential analysis of variance table. Thus the quantity in the sum of squares
column (Sum of Sq) is the reduction in the residual sum of squares due to the inclusion
of that term, given that earlier terms had already been included. The Df (degrees of
freedom) column gives the change in the degrees of freedom due to the addition of that
term. Table 7.7 explains this in detail.

The analysis of variance table suggests use of the parallel line model, shown in panel
B of Figure 7.3. The reduction in the mean square from Model 3 (panel B in Figure 7.3)
to Model 4 (panel C) in the analysis of variance table has a p-value equal to 0.1112. The
coefficients and standard errors for Model 3 are:

> summary(leaf.lm2)

Call:

lm(formula = tempDiff ˜ CO2level + vapPress,

data = leaftemp)

Residuals:

Min 1Q Median 3Q Max

-1.696828 -0.542987 0.060763 0.463710 1.358543
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Table 7.7 Analysis of variance information. The starting point is a model that has
only an intercept or “constant" term. The entries in rows 1–3 of the Df column and of
the Sum of Sq column are then sequential decreases from fitting, in turn,
vapPress, then three parallel lines, and then finally three separate lines.

Mean
Df Sum of Sq square F Pr(<F)

vapPress 1 5.272 5.272 11.3 0.0014 Reduction in SS due
(variable) to fitting one line

Three parallel 2 6.544 3.272 7.0 0.0019 Additional reduction
lines in SS due to fitting

two parallel lines
Three different 2 2.126 1.063 2.3 0.1112 Additional reduction

lines in SS due to fitting
two separate lines

Residuals 61 40.000 0.656
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Figure 7.3 A sequence of models fitted to the plot of tempDiff versus vapPress, for low,
medium and high values of CO2level. Panel A relates to Model 2, B to Model 3, and C to
Model 4.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.685 0.560 4.80 1.16e-05

CO2levelmedium 0.320 0.219 1.46 0.14861

CO2levelhigh 0.793 0.218 3.64 0.00058

vapPress -0.839 0.261 -3.22 0.00213

Residual standard error: 0.69707 on 58 degrees of freedom

Multiple R-Squared: 0.295, Adjusted R-squared: 0.259

F-statistic: 8.106 on 3 and

58 degrees of freedom, p-value: 0.000135



7.4 Polynomial regression 231

0.5 1.0 1.5 2.0

–2.0
–1.0

0.0
1.0

Fitted values

Residu
als

Resids vs Fitted

7

24

8

–2 –1 0 1 2

–2
–1

0
1

2
Theoretical quantiles

S
tanda

rdized residu
als

Normal Q–Q

7

24

8

0.5 1.0 1.5 2.0

0.0
0.5

1.0
1.5

Fitted values

S
tanda

rdized residu
als

Scale–Location
7

248

0.06 0.08 0.10 0.12

–3
–2

–1
0

1
2

Leverages

S
tanda

rdized residu
als

0.12

0.12

Resid vs Leverage

45

7

43

Figure 7.4 Diagnostic plots for the parallel line model of Figure 7.3.

The coefficients in the equations for this parallel line model are given in the annotation
for Figure 7.3B. For the first equation (low CO2), the constant term is 2.685, for the
second equation (medium CO2), the constant term is 2.685 + 0.320 = 3.005, while for
the third equation, the constant term is 2.685 + 0.793 = 3.478.

In addition, we examine a plot of residuals against fitted values, and a normal probability
plot of residuals (Figure 7.4).

These plots seem unexceptional.

7.4 Polynomial regression

Polynomial regression provides a straightforward way to model simple forms of departure
from linearity. The simplest case is where the response curve has a simple cup up or
cup down shape. For a cup down shape, the curve has some part of the profile of a path
that follows the steepest slope up a rounded hilltop towards the summit and down over
the other side. For a cup up shape, the curve passes through a valley. Such cup down or
cup up shapes can often be modeled quite well using quadratic, that is, polynomial with
degree 2, regression. For this the analyst uses x2 as well as x as explanatory variables. If
a straight line is not adequate, and the departure from linearity suggests a simple cup up
or cup down form of response, then it is reasonable to try a quadratic regression.

The calculations are formally identical to those for multiple regression. To avoid
numerical problems, it is often preferable to use orthogonal polynomial regression. The
orthogonal polynomial coefficients must be translated back into coefficients of powers
of x, if these are required. Interested readers may wish to pursue for themselves the use
of orthogonal polynomial regression, perhaps using as a starting point Exercise 15 at the
end of the chapter.

The data that are plotted in Figure 7.5 are number of grains per head (averaged over
eight replicates), for different seeding rates of barley. A quadratic curve has been fitted.
The code is:

## Fit quadratic curve: data frame seedrates (DAAG)

seedrates.lm2 <- lm(grain ˜ rate + I(rateˆ2), data = seedrates)

# The wrapper function I() ensures that the result from

# calculating rateˆ2 is treated as a variable in its own right.

plot(grain ˜ rate, data = seedrates, pch = 16,

xlim = c(50, 160), cex=1.4)
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1 50 21.2
2 75 19.9
3 100 19.2
4 125 18.4
5 150 17.9

Figure 7.5 Plot of number of grains per head versus seeding rate, for the barley seeding rate data
shown to the right of the figure, with fitted quadratic curve. Data relate to McLeod (1982).

new.df <- data.frame(rate = (1:14) * 12.5) # for plotting the fitted curve

hat2 <- predict(seedrates.lm2, newdata = new.df, interval="predict",

coverage = 0.95)

lines(new.df$rate, hat2[, "fit"], lty = 2, lwd=2)

The quadratic regression appears, from visual inspection, a good fit to the data. The
fitted model may be written:

ŷ = a+b1x1 +b2x2

where x1 = x and x2 = x2. Thus, the model matrix (Table 7.8) has a column of 1s, a
column of values of x, and a column that has values of x2.

Here is the output from R:

> summary(seedrates.lm2, corr=TRUE)

Call:

lm(formula = grain ˜ rate + I(rateˆ2), data = seedrates)

Coefficients:

Value Std. Error t value Pr(>|t|)

(Intercept) 24.060 0.456 52.799 0.000

rate -0.067 0.010 -6.728 0.021

I(rateˆ2) 0.000 0.000 3.497 0.073

Residual standard error: 0.115 on 2 degrees of freedom

Multiple R-Squared: 0.996

F-statistic: 256 on 2 and 2 degrees of freedom,

the p-value is 0.0039

Correlation of Coefficients:

(Intercept) rate

rate -0.978

I(rateˆ2) 0.941 -0.989
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Table 7.8 The model matrix, for fitting
a quadratic curve to the seeding rate
data of Figure 7.5.

(Intercept) rate rate2

1 50 2 500
1 75 5 625
1 100 10 000
1 125 15 625
1 150 22 500

Observe the high correlations between the coefficients. Note in particular the large
negative correlation between the coefficients for rate and I(rateˆ2). Forcing the
coefficient for rate to be high would lead to a low coefficient for I(rateˆ2), and
so on.

For the use of orthogonal polynomial regression, the separate terms rate and
I(rateˆ2) are replaced by the single term poly(rate,2), that is, an orthogonal
polynomial of degree 2 in rate. The fitted values will be identical, but the coeffi-
cients are then coefficients of the orthogonal polynomials, not coefficients of rate and
I(rateˆ2).

7.4.1 Issues in the choice of model

The coefficient of the x2 term in the quadratic model fell short of statistical significance
at the 5% level. Fitting the x2 leaves only two degrees of freedom for error. For prediction
our interest is likely to be in choosing the model that is on balance likely to give the
more accurate predictions; for this, use of the model that includes the quadratic term may
be preferred.

Figure 7.6 shows both a fitted line and a fitted curve, in both cases with 95% confidence
bounds.2 It shows a quadratic curve (dashed line) as well as a line (solid line). In addition,
the graph shows 95% pointwise confidence bounds for the expected number of grains per
head, both about the line and about the curve.

2 ## Code to fit the line, the curve, determine the pointwise coverage
## bounds and create the plots
CIcurves <-
function(form=grain˜rate, data=seedrates, lty=1, col=3,

newdata=data.frame(rate=seq(from=50, to=175, by=25))){
seedrates.lm <- lm(form, data=data)
x <- newdata[, all.vars(form)[2]]
hat <- predict(seedrates.lm, newdata=newdata, interval="confidence")
lines(spline(x, hat[, "fit"]))
lines(spline(x, hat[, "lwr"]), lty=lty, col=col)
lines(spline(x, hat[, "upr"]), lty=lty, col=col)

}
plot(grain ˜ rate, data=seedrates, xlim=c(50,175), ylim=c(15.5,22))
CIcurves()
CIcurves(form=grain˜rate+I(rateˆ2), lty=2)
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Figure 7.6 Number of grains per head versus seeding rate, with fitted line (solid) and fitted
quadratic curve (dashed). Also shown are 95% pointwise confidence bounds.

The curve is a better fit to the data than the line. For a short distance beyond the
final data point, it almost certainly gives a better estimate than does the line. Notice that
the confidence bounds for the curve are much wider, beyond a rate of about 160, than
the line. Not only does the line almost certainly give a biased estimate, it also gives
unrealistically narrow bounds for that estimate. If the model is wrong, it will give wrong
estimates of predictive accuracy. This is especially serious for extrapolation beyond the
limits of the data.

Beyond the limits of the data, it would be unwise to put much trust in either the
line or the curve. Our point is that the bounds for the quadratic curve do better reflect
uncertainty in the curve that ought to be fitted. We could try other, single parameter,
models. Selecting a model from a number of choices that allow for the curvature may not
however be much different, in its effect on the effective degrees of freedom, from adding
an x2 term. The wider confidence bounds for the quadratic model reflect this uncertainty
in choice of model, better than results from any individual model that has one parameter
additional to the intercept.

We can in fact fit the data well by modeling grain as a linear function of log(rate).
This model seems intuitively more acceptable; the fitted value of grain continues to
decrease as the rate increases beyond the highest rate used in the experiment. This is
perhaps the model that we should have chosen initially on scientific grounds.

7.5∗ Methods for passing smooth curves through data

In the previous section, we used the linear model framework to fit a model that had x
and x2, etc. terms. The method can be adapted to fit higher-order polynomial curves to
regression data. For a polynomial of degree m, the model matrix must have, in addition to
a column of 1s, columns that hold values of x, x2� � � � , xm. Polynomials can be effective
when a curve of degree m equal to 2 or 3 is appropriate. Polynomial curves where m is
greater than 3 can be problematic. High degree polynomials tend to move up and down
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between the data values in a snake-like manner. Splines, or piecewise polynomials, which
we now consider, are usually preferable to polynomials of degree greater than 3.

There are several perspectives on spline curves that may be helpful:

• The default form of spline curve joins two or more cubic curves (the curve is piecewise
cubic) in such a way that the cubics have the same slopes and rate of change of
slope at the points where they join. (Note that cubics are the default; any order of
polynomial can be used.) Such curves can be used for modeling smoothly changing
responses. Here regression splines, in which the join points are fixed in advance, will
be used.

• For B-splines, there are no boundary constraints, though there are boundary knots that
anchor the spline basis. By default, these are placed at the limits of the data. For natural
splines, the slope of the curve is constrained to be zero at and beyond the boundary
knots.

• Once the join points (=knots) have been determined, a spline curve can be fitted by
use of an appropriate choice of columns in the model matrix. In technical language, the
spline functions have linear bases. (There is an elementary explanation of the technical
details in Maindonald, 1984, chapter 7.)

• For generating the basis functions, use will be made of the function ns() (natural
splines) from the splines package. This insists on the use of piecewise cubics. An
alternative is the function bs() (B-spline).

• Curves will be fitted using lm(); this uses least squares methods to estimate the spline
curve as a linear combination of the basis functions. By default, lm() includes an
intercept, which as always accounts for a single degree of freedom.

• In the sequel, the number of degrees of freedom (df) additional to the intercept will be
specified for the spline curve, with the software then allowed to determine the number
and location of internal join points (=knots). For B-splines, the number of internal
knots is df - degree, where degree is the degree (by default 3) of the piecewise
polynomial. For natural splines, the number of internal knots is df - degree + 2.
(The difference is a result of the boundary constraints.) In either case, internal knots
are by default placed at equally spaced quantiles of the data.

A modest amount of algebra is required to make the connection between the basis
functions and the separate cubic (or other) polynomial curves. It is the basis functions
that the R routines use. Do not expect to see the separate polynomial curves pop out of
the calculations! Note also that there is a rich variety of different types of smoothing
method. The choice of methods that we discuss here is, inevitably, highly selective.

We will take a simple example where there is just one explanatory variable, and try
alternative methods, including regression splines, on it.

7.5.1 Scatterplot smoothing – regression splines

We have (in Table 7.9, shown earlier in Figure 2.6) the apparent juice content and
resistance (in ohms) for 128 slabs of fruit (these data relate to Harker and Maindonald,



236 Exploiting the linear model framework

Table 7.9 Resistance (ohms) versus apparent juice content. The table shows a
selection of the data.

Juice Juice Juice Juice
(%) ohms (%) ohms (%) ohms (%) ohms

1 4 4860 33 20 7500 65 41.5 3350 123 58.5 3650
2 5 5860 34 20.5 8500 66 42.5 2700 124 58.5 3750
3 5.5 6650 35 21.5 5600 67 43 2750 125 58.5 4550
4 7.5 7050 36 21.5 6950 68 43 3150 126 59.5 3300
5 8.5 5960 37 21.5 7200 69 43 3250 127 60 3600
� � � � � � � � � � � � � � � � � � � � � � � � � � � 128 9 9850

1994). Figure 7.7 shows four different curves fitted to these data:3 Figures 7.7A and 7.7B
show spline curves, the first with one knot and the second with two knots. Figures 7.7C
and 7.7D show, for comparison, third- and fourth degree polynomials. The polynomials,
which are inherently less flexible, do quite well here relative to the splines. Also shown
are 95% pointwise confidence intervals for the fitted curves.

A problem with all these curves is that they may be unduly influenced by values at the
extremes of the range. Diagnostic plots can be used, just as for the models considered
in earlier chapters, to highlight points that are associated with large residuals, or that are
having a strong influence on the curve. Figure 7.8 shows the default diagnostic plots for
the fitted model shown in Figure 7.7A.4

Apart from the large residual associated with point 52 (at 32.5% apparent juice content),
these plots show nothing of note. The curves have bent to accommodate points near the
extremes that might otherwise have appeared as outliers.

Here is the summary information:

> fruit.lmb4 <- lm(ohms ˜ ns(juice,4))

> summary(fruit.lmb4)

Call:

lm(formula = ohms ˜ bs(juice, 4))

3 ## Fit various models to columns of data frame fruitohms (DAAG)
library(splines)
attach(fruitohms)
## Code to obtain Panel A
plot(ohms ˜ juice, cex=0.8, xlab="Apparent juice content (%)",

ylab="Resistance (ohms)", data=fruitohms)
CIcurves(form=ohms ˜ ns(juice, 3), data=fruitohms,

newdata=data.frame(juice=pretty(fruitohms$juice,20)))
## For panels B, C, D replace: form = ohms ˜ ns(juice,3)
## form = ohms ˜ ns(juice,4) # panel B: nspline, df = 4
## ohms ˜poly(juice,3) # panel C: polynomial, df = 3
## ohms ˜poly(juice,4) # panel D: polynomial, df = 4
# For more information on poly(), see help(poly) and Exercise 15.

4 par(mfrow = c(2,2))
fruit.lmb4 <- lm(ohms ˜ ns(juice,4)) # panel B: nspline, df=4
plot(fruit.lmb4)
par(mfrow = c(1,1))
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Figure 7.7 Different smooth curves fitted to the data of Table 7.9. The dashed lines show 95%
pointwise confidence bounds for the fitted curve. In panels A and B, vertical lines show the locations
of the knots.
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Figure 7.8 Diagnostic plots for the fitted model given in Figure 7.7A.

Residuals:

Min 1Q Median 3Q Max

-3518.2 -618.2 -15.8 515.4 2937.7

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6293 457 13.79 < 2e-16

bs(juice, 4)1 2515 1040 2.42 0.01707

bs(juice, 4)2 -5621 652 -8.62 2.7e-14

bs(juice, 4)3 -2471 715 -3.46 0.00076

bs(juice, 4)4 -3120 585 -5.33 4.5e-07
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Residual standard error: 957 on 123 degrees of freedom

Multiple R-Squared: 0.743, Adjusted R-squared: 0.735

F-statistic: 89.1 on 4 and 123 DF, p-value: 0

While it is clear that the coefficients in the spline equation are highly significant, inter-
preting these coefficients individually is not straightforward and is usually not worth the
effort. Attention is best focused on the fitted curve, ignoring the fact that the curve can
be constructed by the smooth joining of separate cubic curves.

Nevertheless, comments that will help make sense of the coefficients and standard
errors in the R output may be helpful. The coefficients that are shown are coefficients of
the four basis functions. To help understand how the curve has been formed as a linear
combinations of basis functions, we plot graphs that show the curves for which these are
the coefficients. For this, we plot the relevant column of the X-matrix against x, and join
up the points, as in Figure 7.9.5

Looking back again at the coefficients, basis curve 2 (with a coefficient of −5621)
seems somewhat more strongly represented than the other basis curves.

The regression splines that we described above are attractive because they fit easily
within a linear model framework, that is, we can fit them by specifying an appropriate
X-matrix. There are a wide variety of other methods, most of which do not fit within the
linear model framework.
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Figure 7.9 Spline basis curves for the B-spline (one knot) fitted in Figure 7.7A. Ordinates of
the first basis curve give the entries in the second column of the model matrix, while the three
remaining basis curves give entries for columns 3, 4 and 5 respectively.

5 ## Code to obtain the curve shown in panel A
plot(juice, model.matrix(fruit.lmb4)[, 2], ylab="Column 2 of model matrix",

xlab="Apparent Juice Content (%)", type="n")
ord <- order(juice)
lines(juice[ord], model.matrix(fruit.lmb4)[ord, 2])
## For panels B, C and D, take columns 3, 4 and 5 respectively of
## the model matrix.
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7.5.2∗ Penalized splines and generalized additive models

Use of the functions bs() or ns() for generating the spline basis curves requires
a choice of parameter settings that determine the number and placement of the knots.
Above, the approach was to specify the degrees of freedom for the spline curve; knots
were then located at equal quantiles of the data. This is unlikely to be optimal. Use of
too few knots can lead to a curve that fails to capture all of the nuances of the regression
function while choosing too many can result in excessive bumpiness, that is, the details
of the curve capture noise.

One way of avoiding the problem of choosing knots is to use a roughness penalty
approach. The cubic smoothing spline (implemented as smooth.spline()) assigns a
knot to each predictor value, while constraining the fitted spline to smoothly pass through
the cloud of observations. Note that without such a constraint, the spline would interpolate
the observations, usually rendering a rough curve. The penalized spline generalizes this
idea; this is implemented, for example, in smooth.Pspline() in the pspline package.
See also the survival package.

The function gam() in the mgcv package (Wood, 2006) implements generalized
additive models (GAM). In these models, the location of internal knots is optimized as
part of the fitting process. The function s() is used to generate penalized spline terms.
Various alternative methods are available for choosing the penalty, and there is a default.
The fruitohms data set furnishes an example:

library(mgcv)

attach(fruitohms)

fruit.ps <- gam(ohms ˜ s(juice, bs="cs")) # cs: a cubic spline

plot(fruitohms)

lines(juice, predict(fruit.ps))

fruit.bs <- gam(ohms ˜ s(juice, bs="cr", fx=TRUE))

# bs="cr" causes uses of a cubic regression spline for the smooth

## compare with non-penalized spline

lines(juice, predict(fruit.bs), col=2)

detach(fruitohms)

Note also the gam package, which ports across to R the code used for the gam()
function in S-PLUS.

7.5.3 Other smoothing methods

Lowess curves are a popular alternative to spline curves. Figure 2.6 showed a curve that
was fitted to the fruitohms data using the function lowess(), which always uses
a resistant form of smoothing. The curve is thus relatively insensitive to large residuals.
Special steps are taken to avoid distortions due to end effects. As implemented in R,
lowess() is not available for use when there are multiple explanatory variables, and
there is no mechanism (or theory) for calculating pointwise confidence bounds.

The loess() function is an alternative to lowess() that is able to handle multi-
dimensional smoothing. The default for loess() is a non-resistant smooth; for a resistant
smooth, specify family=symmetric.
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Both lowess() and loess() implement a locally weighted regression
methodology. The following description is directly relevant to lowess(); calculations
for loess() follow the same general pattern. The method is said to be local, because
when estimating the regression function m(x) at a point x, we use only the data near x.
The data points nearest to x are given highest weight and those farther away are given
little or no weight. Outlier resistance is achieved by assigning low weight to observations
which generate large residuals; this allows for curves which are relatively unaffected by
the presence of outliers. An iterative method is used, with the residual at the previous
iteration determining the weight at the current iteration.

Kernel smoothing methods further widen the range of possibilities. For example, see
the documentation for the function locpoly() in the KernSmooth package.

On lowess smoothing, see Cleveland (1981). There is a useful brief discussion of
smoothing methods in Venables and Ripley (2002) and a fuller discussion of kernel
smoothing, splines and lowess in Fan and Gijbels (1996). See also Hall (2001).

*Monotone curves

Constraints can be included that force curves to be monotone increasing or monotone
decreasing. The function monoproc() in the monoProc package can be used, starting
from a fit using loess() or another function whose output follows the same conventions,
to create a monotone fit, as in Figure 7.10.

The code is:

library(monoProc)

fit.mono <- monoproc(loess(ohms˜juice, data=fruitohms),

bandwidth=0.1, mono1="decreasing",

gridsize=30)

plot(ohms ˜ juice, data=fruitohms,

xlab="Apparent juice content (%)", ylab="Resistance (ohms)")

lines(fit.mono)
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Figure 7.10 A monotonic decreasing spline curve has been fitted to the points shown in Figures 7.7
and 7.9.
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Table 7.10 Average dewpoint (dewpt) for available combinations
of monthly averages of maximum temperature (maxtemp) and
minimum temperature (mintemp). The table shows a selection of
the data.

maxtemp mintemp dewpt maxtemp mintemp dewpt

1 18 8 7 67 38 26 20
2 18 10 10 68 40 18 5
3 20 6 5 69 40 20 8
4 20 8 7 70 40 22 11
5 20 10 9 71 40 24 14
� � � � � � � � � � � � 72 40 26 17

7.6 Smoothing terms in additive models

Attention will now move to models with multiple terms. In the discussion that follows,
attention will be limited to the use of spline terms with fixed knots.

Table 7.10 has data on monthly averages of minimum temperature, maximum temper-
ature and dewpoint. For the background to these data, see Linacre (1992); Linacre and
Geerts (1997). The dewpoint is the maximum temperature at which the relative humidity
reaches 100%. Monthly data were obtained for a large number of sites worldwide. For
each combination of minimum and maximum temperature the average dewpoint was then
determined. Figure 7.11 shows a representation of these data that is given by an additive
model with two spline smoothing terms.6 We can write the model as:

y = �+f1�x1�+f2�x2�+��

where y = dewpt, x1 = maxtemp and x2 = mintemp.
Here � is estimated by the mean of y, so that the estimates of f1�x1� and f2�x2� give

differences from this overall mean. In Figure 7.11, both f1�x1� and f2�x2� are modeled
by spline functions with five degrees of freedom. The left panel is a plot of the estimate
of f1�x1� against x1, while the right panel plots f2�x2� against x2.

There is no obvious reason why the additive model should work so well. In general, we
might expect an interaction term, that is, we might expect that f1�x1� would be different

6 ## Regression of dewpt vs maxtemp: data frame dewpoint (DAAG)
library(splines)
attach(dewpoint)
ds.lm <- lm(dewpt ˜ bs(maxtemp,5) + bs(mintemp,5), data=dewpoint)
ds.fit <- predict(ds.lm, type="terms", interval="confidence")
oldpar <- par(mfrow = c(1,2), pty="s")
plot(maxtemp, ds.fit$fit[, 1], xlab="Maximum temperature",

ylab="Change from dewpoint mean", type="l")
lines(maxtemp, ds.fit$lwr[, 1], lty=2)
lines(maxtemp, ds.fit$upr[, 1], lty=2)
ord <- order(mintemp)
plot(mintemp[ord], ds.fit$fit[ord, 2], xlab="Minimum temperature",

ylab="Change from dewpoint mean", type="l")
lines(mintemp[ord], ds.fit$lwr[ord, 2], lty=2)
lines(mintemp[ord], ds.fit$upr[ord, 2], lty=2)
par(oldpar)
detach(dewpoint)
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Figure 7.11 Representation of average dewpoint (dewpt) as the sum of an effect due to maximum
temperature (maxtemp) and an effect due to minimum temperature (mintemp). (Data are from
Table 7.10.) The dashed lines are 95% pointwise confidence bounds.
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Figure 7.12 Plot of residuals against maximum temperature, for three different ranges of values
of minimum temperature. Panel strips are shaded to show the range of values of the conditioning
variable.

for different values of x2, or equivalently that f2�x2� would be different for different
values of x1. Even where the effects are not additive, an additive model is often a good
starting approximation. We can fit the additive model, and then check whether there are
departures from it that require examination of the dependence of y upon x1 and x2 jointly.

One check is to take, for example, for x2 = mintemp, three perhaps overlapping
ranges of values, which we might call “low”, “medium” and “high”. For this purpose
we are then treating mintemp as a conditioning variable. We then plot residuals against
x1 = maxtemp for each range of values of x2, as in Figure 7.12. If there is a pattern in
these plots that changes with the range of the conditioning variable, this is an indication
that there are non-additive effects that require attention.7

7 library(lattice)
mintempRange <- equal.count(dewpoint$mintemp, number=3)
xyplot(residuals(ds.lm) ˜ maxtemp | mintempRange,

data=dewpoint, aspect=1, layout=c(3,1), type=c("p","smooth"),
xlab="Maximum temperature", ylab="Residual")
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7.6.1∗ The fitting of penalized spline terms

The following demonstrates the fitting of penalized spline terms:

library(mgcv)
ds.ps <- gam(dewpt ˜ s(maxtemp, bs="cs") +

s(mintemp, bs="cs")), data=dewpoint)

Fitted values and residuals for the ds.ps object can be investigated in the same way as
for the ds.lm object that was obtained from the use of regression splines.

If it is suspected that the additive model is inappropriate, a simple alternative is the
so-called thin plate spline. For this, specify:

ds.tp <- gam(dewpt ˜ s(maxtemp, mintemp), data=dewpoint)

vis.gam(ds.tp, plot.type="contour") # gives a contour plot of the

# fitted regression surface

vis.gam(ds.ps, plot.type="contour") # for comparison

Three-dimensional perspective plots can also be obtained with the parameter setting
plot.type="persp".

7.7 Further reading

There is a review of the methodologies we have described, and of extensions, in Venables
and Ripley (2002). Hastie et al. (2001) discuss substantial extensions of the approaches
that have been described. See also Hastie and Tibshirani (1990), and references on the help
pages for functions in the locfit and mgcv packages. Eubank (1999) gives a comprehensive
and readable introduction to the use of splines in non-parametric regression.

7.7.1 References for further reading

Eubank, R. L. 1999. Nonparametric Regression and Spline Smoothing, 2nd edn. Marcel
Dekker.

Hastie, T. J. and Tibshirani, R. J. 1990. Generalized Additive Models. Chapman and Hall.
Hastie, T., Tibshirani, R. and Friedman, J. 2001. The Elements of Statistical Learning.

Data Mining, Inference and Prediction. Springer-Verlag.
Maindonald, J. H. 1984. Statistical Computation. John Wiley.
Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.

Springer-Verlag.

7.8 Exercises

1. Re-analyze the sugar weight data of Subsection 7.1.1 using log(weight) in place of
weight.

2. Use anova() to compare the two models:
roller.lm <- lm(depression˜weight, data=roller)

roller.lm2 <- lm(depression˜weight+I(weightˆ2), data=roller)

Is there any justification for including the squared term?
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3. Use the method of Section 7.3 to determine, formally, whether there should be different
regression lines for the two data frames elastic1 and elastic2 from Exercise 1 in
Section 5.11.

4. The data frame toycars consists of 27 observations on the distance (in meters) traveled by
one of three different toy cars on a smooth surface, starting from rest at the top of a 16-inch-long
ramp tilted at varying angles (measured in degrees). Because of differing frictional effects for
the three different cars, we seek three regression lines relating distance traveled to angle.

(a) As a first try, fit the model in which the three lines have the same slope but have different
intercepts.

(b) Note the value of R2 from the summary table. Examine the diagnostic plots carefully. Is
there an influential outlier? How should it be treated?

(c) The physics of the problem actually suggests that the three lines should have the same
intercept (very close to 0, in fact), and possibly differing slopes, where the slopes are
inversely related to the coefficient of dynamic friction for each car. Fit the model, and
note that the value of R2 is slightly lower than that for the previously fitted model.
Examine the diagnostic plots. What has happened to the influential outlier? In fact, this is
an example where it is inadvisable to take R2 too seriously; in this case, a more carefully
considered model can accommodate all of the data satisfactorily. Maximizing R2 does not
necessarily give the best model!

5. The data frame cuckoos holds data on the lengths and breadths of eggs of cuckoos, found
in the nests of six different species of host birds. Fit models for the regression of length on
breadth that have:

A: a single line for all six species.
B: different parallel lines for the different host species.
C: separate lines for the separate host species.

Use the anova() function to print out the sequential analysis of variance table. Which of the
three models is preferred? Print out the diagnostic plots for this model. Do they show anything
worthy of note? Examine the output coefficients from this model carefully, and decide whether
the results seem grouped by host species. How might the results be summarized for reporting
purposes?

6. Fit the three models A, B and C from the previous exercise, but now using the robust regression
function rlm() from the MASS package. Do the diagnostic plots look any different from those
from the output from lm()? Is there any substantial change in the regression coefficients?

7. Apply polynomial regression to the seismic timing data in the data frame geophones. Specif-
ically, check the fits of linear, quadratic, cubic and quartic (degree = 4) polynomial estimates
of the expected thickness as a function of distance. What do you observe about the fitted
quartic curve? Do any of the fitted curves capture the curvature of the data in the region where
distance is large?

8. Apply spline regression to the geophones data frame. Specifically, regress thickness against
distance, and check the fits of 4-, 5- and 6-degree-of-freedom cases. Which case gives
the best fit to the data? How does this fitted curve compare with the polynomial curves
obtained in the previous exercise? Calculate pointwise confidence bounds for the 5-degree-of-
freedom case.
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9. Apply lowess() to the geophones data as in the previous two exercises. You will need to
experiment with the f argument, since the default value oversmooths this data. Small values
of f (less than 0.2) give a very rough plot, while larger values give a smoother plot. A value
of about 0.25 seems a good compromise.

10. Check the diagnostic plots for the results of Exercise 8 for the 5-degree-of-freedom case. Are
there any influential outliers?

11. Continuing to refer to Exercise 8, obtain plots of the spline basis curves for the 5-degree-of-
freedom case. That is, plot the relevant column of the model matrix against y.

12. Apply the penalized spline to the geophones data using the default parameter settings in
mgcv’s s() function. Is this a satisfactory fit to the data? The argument k controls the number
of knots. Try setting k to 20, and examine the fit. How might an “optimal” value of k be
selected?

13. The ozone data frame holds data, for nine months only, on ozone levels at the Halley
Bay station between 1956 and 2000. (See Christie (2000); Shanklin (2001) for the scientific
background. Up-to-date data are available from the web page http://http://www.

antarctica.ac.uk/met/jds/ozone/) Replace zeros by missing values. Determine,
for each month, the number of missing values. Plot the October levels against Year, and fit a
smooth curve. At what point does there seem to be clear evidence of a decline? Plot the data
for other months also. Do other months show a similar pattern of decline?

14. The wages1833 data frame holds data on the wages of Lancashire cotton factory workers
in 1833. Plot male wages against age and fit a smooth curve. Repeat using the numbers of
male workers as weights. Do the two curves seem noticeably different? Repeat the exercise
for female workers. [See Boot and Maindonald (in press) for background information on these
data.]

15.∗ Compare the two results
seedrates.lm <- lm(grain ˜ rate + I(rateˆ2),

data=seedrates)

seedrates.pol <- lm(grain ˜ poly(rate,2),

data=seedrates)

Check that the fitted values and residuals from the two calculations are the same, and that
the t-statistic and p-value are the same for the final coefficient, that is, the same for the
coefficient labeled poly(rate, 2)2 in the polynomial regression as for the coefficient
labeled I(rateˆ2) in the regression on rate and rateˆ2.

Regress the second column of model.matrix(seedrates.pol) on rate and
I(rateˆ2), and similarly for the third column of model.matrix(seedrates.pol).
Hence express the first and second orthogonal polynomial terms as functions of rate and
rateˆ2.
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Generalized linear models and survival analysis

The straight line regression model we considered in Chapter 5 had the form:

y = �+
x+�

where, if we were especially careful, we would add subscript is to y, x and �. In this
chapter, we will resume with models where there is just one x, as in Chapter 5, in order to
keep the initial discussion simple. Later, we will add more predictor variables, as required.

We noted that the regression model can be written:

E�y� = �+
x�

where E is expectation. It is this form of the equation that is the point of departure for
our discussion of generalized linear models. This class of models was first introduced in
the 1970s, giving a unified theoretical and computational approach to models that had
previously been treated as distinct. These models have been a powerful addition to the
data analyst’s armory of statistical tools. The present chapter will limit attention to a few
important special cases. The chapter will end with a discussion of survival methods, which
while having important theoretical connections with generalized liner models, require a
distinct theoretical and computational treatment.

8.1 Generalized linear models

Generalized linear models (GLMs) differ in two ways from the models used in earlier
chapters. They allow for a more general form of expression for the expectation, and they
allow various types of non-normal error terms. Logistic regression models are perhaps
the most widely used GLM.

8.1.1 Transformation of the expected value on the left

GLMs allow a transformation f�� to the left-hand side of the regression equation, that is,
to E[y]. The result specifies a linear relation with x. In other words:

f �E�y�� = �+
x�

where f�� is a function, which is usually called the link function. In the fitted model, we
call � + 
x the linear predictor, while E[y] is the expected value of the response. The
function f�� transforms from the scale of the response to the scale of the linear predictor.
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Some common examples of link functions are: f�x� = x, f�x� = 1/x, f�x� = log�x�,
and f�x� = log�x/�1−x��. The last is referred to as the logit link and is the link function
for logistic regression. Note that these functions are all monotonic, that is, they increase
or (in the case of 1/x) decrease with increasing values of x.

8.1.2 Noise terms need not be normal

We may write:

y = E�y�+��

Here the elements of y may have a distribution different from the normal distribution.
Common distributions are the binomial where y is the number responding out of a given
total n, and the Poisson where y is a count.

Even more common may be models where the random component differs from the
binomial or Poisson by having a variance that is larger than the mean. The analysis
proceeds as though the distribution were binomial or Poisson, but the theoretical binomial
or Poisson variance estimates are replaced by a variance that is estimated from the data.
Such models are called, respectively, quasi-binomial models and quasi-Poisson models.

8.1.3 Log odds in contingency tables

With proportions that range from less than 0.1 to greater than 0.9, it is not reasonable to
expect that the expected proportion will be a linear function of x. A transformation (link
function) such as the logit is required. A good way to think about logit models is that
they work on a log(odds) scale. If p is a probability (e.g., that horse A will win the race),
then the corresponding odds are p/�1−p�, and

log�odds� = log�p/�1−p�� = log�p�− log�1−p��

Figure 8.1 shows the logit transformation.1

Logistic regression provides a framework for analyzing contingency table data. Let us
now recall the fictitious admissions data presented in Table 3.3. The observed proportion
of students (male and female) admitted into Engineering is 40/80 = 0�5. For Sociology,
the admission proportion is 15/60 = 0�25. Thus, we have

log�odds� = log�0�5/�05� = 0 for Engineering�

log�odds� = log�0�75/0�25� = 1�0986 for Sociology�

What determines whether a student will be admitted to Engineering? What determines
whether a student will be admitted to Sociology? Is age a factor? Logistic regression
allows us to model log(odds of admission) as a function of age, or as a function of any
other covariate that we may wish to investigate.

1 ## Simplified version of the figure
p <- (1:999)/1000
gitp <- log(p/(1 - p))
plot(p, gitp, xlab = "Proportion", ylab = "", type = "l", pch = 1)
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Figure 8.1 The logit or log(odds) transformation. Shown here is a plot of log(odds) versus
proportion. Notice how the range is stretched out at both ends.

For such data, we may write:

log�odds� = constant + effect due to faculty + effect due to gender�

This now has the form of a linear model.

8.1.4 Logistic regression with a continuous explanatory variable

The likelihood is the joint probability of the observed data values, given the model
parameters. It is thus a function of the model parameters. The deviance is minus twice
the logarithm of the likelihood. Maximizing the likelihood is equivalent to minimizing
the deviance.

The fitting of the logistic model is accomplished by minimizing deviances. A deviance
has a role very similar to a sum of squares in regression (in fact, if the data are normally
distributed, the two quantities are equivalent). This aspect of the analogy between regres-
sion and logistic regression is furnished by Table 8.1.

Data for the example that now follows are in the data frame anesthetic (DAAG).
Thirty patients were given an anesthetic agent that was maintained at a predetermined
(alveolar) concentration for 15 minutes before making an incision. It was then noted
whether the patient moved, that is, jerked or twisted. The interest is in estimating how
the probability of jerking or twisting varies with increasing concentration of the anes-
thetic agent.

We take the response as nomove, because the proportion then increases with increasing
concentration. The totals and proportions, for each of the six concentrations, can be
calculated thus:

library(DAAG)

anestot <- aggregate(anesthetic[, c("move","nomove")],

by=list(conc=anesthetic$conc), FUN=sum)
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Table 8.1 Terminology used for logistic regression (or more generally for generalized
linear models), compared with multiple regression terminology.

Regression Logistic regression

Degrees of freedom Degrees of freedom
Sum of squares (SS) Deviance (D)
Mean sum of squares (divide by degrees of

freedom)
Mean deviance (divide by degrees of freedom)

Fit models by minimizing the residual sum of
squares

Fit models by minimizing the deviance

## The column ’conc’, because from the ’by’ list, is then a factor.

## The next line recovers the numeric values

anestot$conc <- as.numeric(as.character(anestot$conc))

anestot$total <- apply(anestot[, c("move","nomove")], 1 , sum)

anestot$prop <- anestot$nomove/anestot$total

Figure 8.2 plots the proportions. The table that is shown to the right of Figure 8.2
gives the information in the data frame anestot that has just been calculated. It gives,
for each concentration, the respective numbers with nomove equal to 0 (i.e., movement)
and nomove equal to 1 (i.e., no movement). 2

We can fit the logit model either directly to the 0/1 data, or to the proportions in the
table that appears to the right of Figure 8.2:

C o n c e n t ration

Proportion

0.5 1.0 1.5 2.0 2.5

0.0
0.5

1.0
0.25

0.75

7
5

6 6

4 2

Value of nomove

conc 0 (move) 1 (no move) prop

0.8 6 1 0.17
1 4 1 0.20
1.2 2 4 0.67
1.4 2 4 0.67
1.6 0 4 1.00
2.5 0 2 1.00

Figure 8.2 Plot, versus concentration, of proportion of patients not moving, for each of six
different alveolar concentrations. The horizontal line is the proportion of no-moves over the data
as a whole. Data are displayed to the right of the plot.

2 ## Plot proportion moving vs conc: data frame anesthetic (DAAG)
plot(prop ˜ conc, data=anestot, xlab = "Concentration",

ylab = "Proportion", xlim = c(.5,2.5), ylim = c(0, 1), pch = 16)
with(anestot,

{text(conc, prop, paste(total), pos=2)
abline(h=sum(nomove)/sum(total), lty=2)})
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## Fit model directly to the 0/1 data in nomove

anes.logit <- glm(nomove ˜ conc, family=binomial(link="logit"),

data=anesthetic)

## Fit model to the proportions; supply total numbers as weights

anes1.logit <- glm(prop ˜ conc, family=binomial(link="logit"),

weights=total, data=anestot)

The analysis assumes that individuals respond independently with a probability, estimated
from the data, that on a logistic scale is a linear function of the concentration. For any
fixed concentration, the assumption is that we have Bernoulli trials, that is, individual
responses are drawn at random from the same population.

Output from the anova() and summary() functions is as follows:

> anova(anes.logit)

Analysis of Deviance Table

Model: binomial, link: logit

Response: nomove

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 29 41.5

conc 1 13.7 28 27.8

> summary(anes.logit)

Call:

glm(formula = nomove ˜ conc, family = binomial(link = "logit"),

data = anesthetic)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7667 -0.7441 0.0341 0.6867 2.0690

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -6.47 2.42 -2.67 0.0075

conc 5.57 2.04 2.72 0.0064

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 41.455 on 29 degrees of freedom

Residual deviance: 27.754 on 28 degrees of freedom

AIC: 31.75

Number of Fisher Scoring iterations: 5
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Figure 8.3 Plot, on an empirical logit scale, of log(odds) = logit(proportion) of patients not
moving, versus concentration. If x is the number of patients not moving, and n is the total, then the
empirical logit is log� x+0�5

n−x+0�5 �. Notice that the order changes from the order of the untransformed
proportions. Labels on the points show the observed proportions. The line gives the estimate of the
proportion of moves, based on the fitted logit model.

Figure 8.3 contains a graphical summary.3 With such a small sample size, a convincing
check of the adequacy of the model is impossible.

8.2 Logistic multiple regression

We now consider data on the distribution of the Southern Corroboree frog, that occurs in
the Snowy Mountains area of New South Wales, Australia (data are from Hunter, 2000).
In all, 212 sites were surveyed. In Figure 8.4 filled circles denote sites where the frogs
were found; open circles denote the absence of frogs.4

The variables in the data set are pres.abs (were frogs found?), easting (refer-
ence point), northing (reference point), altitude (in meters), distance (distance
in meters to nearest extant population), NoOfPools (number of potential breeding
pools), NoOfSites (number of potential breeding sites within a 2 km radius), avrain
(mean rainfall for Spring period), meanmin (mean minimum Spring temperature), and
meanmax (mean maximum Spring temperature).

As with multiple linear regression, a desirable first step is to check relationships among
explanatory variables. Where possible, we will transform so that those relationships are
made linear, as far as we can tell from the scatterplot matrix. If we can so transform
the variables, this gives, as noted earlier in connection with classical multiple regression,
access to a theory that can be highly helpful in guiding the process of regression modeling.

3 ## Graphical summary of logistic regression results
anestot$emplogit <- with(anestot, log((nomove+0.5)/(move+0.5)))
plot(emplogit ˜ conc, data=anestot,

xlab = "Concentration", xlim = c(0, 2.75), xaxs="i",
ylab = "Empirical logit", ylim=c(-2, 2.4), cex=1.5, pch = 16)

with(anestot, text(conc, emplogit, paste(round(prop,2)), pos=c(2,4,2,4,4,4)))
abline(anes.logit)

4 ## Presence/absence information: data frame frogs (DAAGS)
plot(northing ˜ easting, data=frogs, pch=c(1,16)[frogs$pres.abs+1],

xlab="Meters east of reference point", ylab="Meters north")
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Figure 8.4 Location of sites, relative to reference point, that were examined for frogs. The sites
are all in the Snowy Mountains region of New South Wales, Australia. The filled points are for
sites where frogs were found.

We wish to explain frog distribution as a function of the other variables. Because
we are working within a very restricted geographic area, we do not expect that the
distribution will change as a function of latitude and longitude per se, so that easting
and northing will not be used as explanatory variables. Figure 8.5 shows the scatterplot
matrix for the remaining explanatory variables.5

Notice that the relationships between altitude, avrain, meanmin and meanmax
are close to linear. For the remaining variables, the distributions are severely skewed, to
the extent that it is difficult to tell whether the relationship is linear. For a distance measure,
the favored transformation is, depending on the context, the logarithmic transformation.
Two of the variables are counts, so that a square root transformation might be appropriate.
Figure 8.6 shows three density plots for each of these variables: untransformed, after a
square root, and after a logarithmic transformation.6 For NoOfSites, a large number
of values of NoOfSites are zero. Hence we plot log(NoOfSites+1).

For distance and NoOfPools, we prefer a logarithmic transformation, while
NoOfSites is best not transformed at all. We now (using Figure 8.7) investigate
the scatterplot matrix for the variables that are so transformed.7

The smoothing curves for log(distance) and log(NoOfPools) are perhaps not
too seriously non-linear. There appears to be some non-linearity associated with
NoOfSites, so that we ought perhaps to consider including NoOfSites2 (the square
of NoOfSites) as well as NoOfSites in the regression equation.

5 pairs(frogs[, 4:10], oma=c(2,2,2,2), cex=0.5)
6 ## Here is code for the top row of plots
par(mfrow=c(3,3))
for(nam in c("distance","NoOfPools","NoOfSites")){

y <- frogs[, nam]
plot(density(y), main="", xlab=nam)
}

# The other rows can be obtained by replacing y by
# sqrt(y) or log(y) (or, for NoOfSites, by log(y+1))

par(mfrow=c(1,1))
7 with(frogs, pairs(cbind(altitude, log(distance), log(NoOfPools), NoOfSites),

panel=panel.smooth, labels=c("altitude","log(distance)",
"log(NoOfPools)","NoOfSites")))
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Figure 8.5 Scatterplot matrix for predictor variables in the frogs data set.

8.2.1 Selection of model terms and fitting the model

We try the simpler model (without NoOfSites2) first:

> frogs.glm0 <- glm(pres.abs ˜ altitude + log(distance) +

+ log(NoOfPools) + NoOfSites + avrain + meanmin +

+ meanmax, family = binomial, data = frogs)

> summary(frogs.glm0)

Call:

glm(formula = pres.abs ˜ altitude + log(distance)

+ log(NoOfPools) + NoOfSites + avrain + meanmin

+ meanmax, family = binomial, data = frogs)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.979 -0.719 -0.278 0.796 2.566
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Figure 8.6 Density plots for distance (distance), number of pools (NoOfPools) and number
of sites (NoOfSites), before and after transformation.

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.09e+01 1.33e+02 0.31 0.75785

altitude -6.65e-03 3.87e-02 -0.17 0.86347

log(distance) -7.59e-01 2.55e-01 -2.97 0.00295

log(NoOfPools) 5.73e-01 2.16e-01 2.65 0.00808

NoOfSites -8.98e-04 1.07e-01 -0.01 0.99333

avrain -6.79e-03 6.00e-02 -0.11 0.90985

meanmin 5.30e+00 1.54e+00 3.44 0.00058

meanmax -3.17e+00 4.84e+00 -0.66 0.51205

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 279.99 on 211 degrees of freedom

Residual deviance: 197.62 on 204 degrees of freedom

AIC: 213.6

Number of Fisher Scoring iterations: 4

Because we have taken no account of spatial clustering, and because there are questions
about the adequacy of the asymptotic approximation that is required for their calculation,
the p-values should be used with caution. We do however note the clear separation of the
predictor variables into two groups – in one group the p-values are 0.5 or more, while
for those in the other group the p-values are all very small.
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Figure 8.7 Scatterplot matrix for altitude, transformed versions of distance and NoOfPools,
and NoOfSites. We are particularly interested in whether the relationship with altitude is
plausibly linear. If the relationship with altitude is linear, then it will be close to linear also
with the temperature and rain variables.

We note that NoOfSites has a coefficient that is in the large p-value category.
Replacing it with NoOfSites2 makes little difference. We may, without loss of pre-
dictive power, be able to omit all variables for which the p-values are in the “large”
category, that is, we consider omission of altitude, NoOfSites, avrain and prob-
ably also meanmax. Because the first three of these variables are the clearest candidates
for omission, we try omitting them first.

> frogs.glm <- glm(formula = pres.abs ˜ log(distance) +

+ log(NoOfPools) + meanmin + meanmax,

+ family = binomial, data = frogs)

> summary(frogs.glm)

Call:

glm(formula = pres.abs ˜ log(distance) + log(NoOfPools)

+ meanmin + meanmax, family = binomial, data = frogs)
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Deviance Residuals:

Min 1Q Median 3Q Max

-1.975 -0.722 -0.278 0.797 2.574

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 18.527 5.267 3.52 0.00044

log(distance) -0.755 0.226 -3.34 0.00084

log(NoOfPools) 0.571 0.215 2.65 0.00800

meanmin 5.379 1.193 4.51 6.5e-06

meanmax -2.382 0.623 -3.82 0.00013

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 279.99 on 211 degrees of freedom

Residual deviance: 197.66 on 207 degrees of freedom

AIC: 207.7

Number of Fisher Scoring iterations: 4

The residual deviance is almost unchanged. Observe that meanmax now joins the
group of variables for which p-values are small. The coefficients are similar in magnitude
to those in the model that used all explanatory variables. Conditioning on the variables
that have been left out of the regression equation makes little difference, except in the
case of meanmax, to the way that we should interpret the effects of variables that have
been included.

Plate 4 allows a comparison of model predictions with observed occurrences of frogs,
with respect to geographical co-ordinates. Because our modeling has taken no account
of spatial correlation, examination of such a plot is more than ordinarily desirable. The
main interest of this plot is in points where although frogs were predicted with high
probability, none were found; and in points where frogs were not expected, but were
found. A further question is whether there are clusters of sites where model predictions
are obviously wrong. There is little overt evidence of such clusters.

8.2.2 A plot of contributions of explanatory variables

The equation that we have just fitted adds together the effects of log(distance),
log(NoOfPools), meanmin and meanmax. Figure 8.8 shows the change due to
each of these variables in turn, when other terms are held at their means. The code is:8

par(mfrow=c(1,4), pty="s")

termplot(frogs.glm, data=frogs)

par(mfrow=c(1,1))

8 ## Displaying the residuals does not, for logit models, add useful insight.
## To see what they look like, try:
termplot(frogs.glm, data=frogs, partial.resid=TRUE)
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Figure 8.8 Plots showing the contributions of the explanatory variables to the fitted values, on
the scale of the linear predictor.

Note first that the y-scale on these plots is on the scale of the linear predictor. As we
are using the logit link, zero corresponds to a probability of 0.5. Probabilities for other
values are −4: 0.02, −2: 0.12, 2: 0.88, and 4: 0.98. The range on the vertical scale for
meanmin indicates that it makes a huge contribution, with the probability of finding
frogs increasing substantially as meanmin goes from low to high values. For meanmax,
the effect goes in the other direction, that is, frogs are more likely to be present when
meanmax is small. The contributions from log(distance) and log(NoOfPools) are,
relatively, much smaller.

8.2.3 Cross-validation estimates of predictive accuracy

Our function CVbinary() calculates cross-validation estimates of predictive accuracy
for these models. Folds are numbered according to the part of the data that are used, at
that fold, for testing. The resubstitution measure of accuracy makes predictions for the
data used to derive the model, and calculates the proportion of correct predictions. By the
time the cross-validation calculations are complete, each observation has been a member
of a test set at one of the folds only; thus predictions are available for all observations
that are derived independently of those observations. The cross-validation measure is the
proportion that are correct:9

Fold: 6 4 2 3 10 9 1 5 7 8

Resubstitution estimate of accuracy = 0.797

Cross-validation estimate of accuracy = 0.651

>

Fold: 9 8 2 7 5 1 4 10 3 6

Resubstitution estimate of accuracy = 0.778

Cross-validation estimate of accuracy = 0.703

The resubstitution estimate assesses the accuracy of prediction for the data used in deriving
the model. Notice that this goes down slightly when we reduce the number of predictor
variables. The cross-validation estimate estimates the accuracy that might be expected for
a new sample. Notice that this is in both cases less than the resubstitution estimate.

The cross-validation estimates can be highly variable; it is best to run the cross-
validation routine a large number of times and to make comparisons in as accurate a

9 CVbinary(frogs.glm0) # All explanatory variables
CVbinary(frogs.glm) # Reduced set of explanatory variables
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manner as possible. When assessing the appropriateness of the proposed model for the
frogs data, we computed four separate cross-validation estimates of prediction accuracy
using the model with all explanatory variables (i.e., the full model), and we repeated these
computations independently using the reduced model with variables log(distance),
log(NoOfPools), meanmin and meanmax. The accuracy estimates for the full model
came to 62%, 65%, 68% and 59%, while the accuracy estimates for the reduced model
were 65%, 68% 74% and 58%. The variability of these estimates makes it difficult to
discern a difference.

A more accurate comparison can be obtained by matching the cross-validation runs for
each model. We do this by making a random assignment of observations to folds before
we call the cross-validation function, first with the full model and then with the reduced
model. The first four cross-validation comparisons are as follows:10

All: 0.665 Reduced: 0.726

All: 0.693 Reduced: 0.684

All: 0.627 Reduced: 0.708

All: 0.594 Reduced: 0.642

We compare 0.726 with 0.665, 0.684 with 0.693, 0.708 with 0.627, and 0.642 with 0.594.
With a number of further repetitions, it should become clear that the reduced model is
more accurate than the full model.

8.3 Logistic models for categorical data – an example

The array UCBAdmissions in the datasets package is a 2 × 2 × 6 array, with the
dimensions: Admit (Admitted/Rejected) × Gender (Male/Female) × Dept (A, B, C,
D, E, F).

A first step is to create, from this table, a data frame whose columns hold the information
in the form that will be required for the use of glm():

## Create data frame from multi-way table UCBAdmissions (datasets)

dimnames(UCBAdmissions) # Check levels of table margins

UCB <- as.data.frame.table(UCBAdmissions["Admitted", , ])

names(UCB)[3] <- "admit"

UCB$reject <- as.data.frame.table(UCBAdmissions["Rejected", , ]) $Freq

UCB$Gender <- relevel(UCB$Gender, ref="Male")

## Add further columns total and p (proportion admitted)

UCB$total <- UCB$admit + UCB$reject

UCB$p <- UCB$admit/UCB$total

We use a loglinear model to model the probability of admission of applicants. It is
important, for present purposes, to fit Dept, thus adjusting for different admission rates
in different departments, before fitting Gender:

10 ## The cross-validated estimate of accuracy is stored in the list
## element acc.cv, in the output from the function CVbinary(), thus:
for (j in 1:4){

randsam <- sample(1:10, 212, replace=TRUE)
all.acc <- CVbinary(frogs.glm0, rand=randsam)$acc.cv
reduced.acc <- CVbinary(frogs.glm, rand=randsam)$acc.cv
cat("\nAll:", round(all.acc,3), " Reduced:", round(reduced.acc,3))
}
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UCB.glm <- glm(p ˜ Dept*Gender, family=binomial,

data=UCB, weights=total)

anova(UCB.glm, test="Chisq")

The output is:

Analysis of Deviance Table

Model: binomial, link: logit

Response: p

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 11 877

Dept 5 855 6 22 1.2e-182

Gender 1 2 5 20 2.2e-01

Dept:Gender 5 20 0 -2.6e-13 1.1e-03

>

Once there has been allowance for overall departmental differences in admission rate,
there is no detectable main effect of Gender, in the absence of the interaction. (This is
a sequential table.) The significant interaction term suggests that there are department-
specific gender biases, which average out to reduce the main effect of Gender to close
to zero.

We now examine the individual coefficients in the model:

> summary(UCB.glm)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.4921 0.0717 6.859 6.94e-12

DeptB 0.0416 0.1132 0.368 7.13e-01

DeptC -1.0276 0.1355 -7.584 3.34e-14

DeptD -1.1961 0.1264 -9.462 3.02e-21

DeptE -1.4491 0.1768 -8.196 2.49e-16

DeptF -3.2619 0.2312 -14.110 3.31e-45

GenderFemale 1.0521 0.2627 4.005 6.20e-05

DeptB:GenderFemale -0.8321 0.5104 -1.630 1.03e-01

DeptC:GenderFemale -1.1770 0.2995 -3.929 8.52e-05

DeptD:GenderFemale -0.9701 0.3026 -3.206 1.35e-03

DeptE:GenderFemale -1.2523 0.3303 -3.791 1.50e-04

DeptF:GenderFemale -0.8632 0.4026 -2.144 3.20e-02

The first six coefficients relate to overall admission rates, for males, in the six departments.
The strongly significant positive coefficient for GenderFemale indicates that log�odds�
is increased by 1.05, in department A, for females relative to males. In departments C, D,
E and F, the log�odds� is reduced for females, relative to males.
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8.4 Poisson and quasi-Poisson regression

8.4.1 Data on aberrant crypt foci

The data frame ACF1 consists of two columns: count and endtime. The first column
contains the counts of simple aberrant crypt foci (ACFs) – these are aberrant aggre-
gations of tube-like structures – in the rectal end of 22 rat colons after administration
of a dose of the carcinogen azoxymethane. Each rat was sacrificed after 6, 12 or 18
weeks (recorded in the column endtime). For further background information, see
McLellan et al. (1991).

The argument is that there are a large number of sites where ACFs might occur, in
each instance with the same low probability. Because “site” does not have a precise
definition, the total number of sites is unknown, but it is clearly large. If we can assume
independence between sites, then we might expect a Poisson model, for the total number
of ACF sites. The output from fitting the model will include information that indicates
whether a Poisson model was, after all, satisfactory. If a Poisson model does not seem
satisfactory, then a quasi-Poisson model may be a reasonable alternative. A model of a
quasi-Poisson type is consistent with clustering in the appearance of ACFs. This might
happen because some rats are more prone to ACFs than others, or because ACFs tend to
appear in clusters within the same rat.

Figure 8.9 provides plots of the data.11 A logarithmic scale is appropriate on the x-axis
because the Poisson model will use a log link. Observe that the counts increase with time.
For fitting a Poisson regression model, we use the poisson family in the glm() function.
Momentarily ignoring the apparent quadratic relation, we fit a simple linear model:

> ACF.glm0 <- glm(formula = count ˜ endtime, family = poisson,

+ data = ACF1)

> summary(ACF.glm0)

Call:

glm(formula = count ˜ endtime, family = poisson, data = ACF1)

6 8 10 14 18
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2

4
6

8
10

en d t i m e

count

Figure 8.9 Plot of number of simple aberrant crypt foci (count) versus endtime.

11 ## Plot count vs endtime: data frame ACF1 (DAAG)
plot(count ˜ endtime, data=ACF1, pch=16, log="x")
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Deviance Residuals:

Min 1Q Median 3Q Max

-2.4620 -0.4785 -0.0794 0.3816 2.2633

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3215 0.4002 -0.80 0.42

endtime 0.1192 0.0264 4.51 6.4e-06

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 51.105 on 21 degrees of freedom

Residual deviance: 28.369 on 20 degrees of freedom

AIC: 92.21

Number of Fisher Scoring iterations: 4

We see that the relation between count and endtime is highly significant. In order
to accommodate the apparent quadratic effect, we try adding an endtimeˆ2 term. The
code and output summary is:

> ACF.glm <- glm(formula = count ˜ endtime + I(endtimeˆ2),

+ family = poisson, data = ACF1)

> summary(ACF.glm)

. . . .

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.72235 1.09177 1.58 0.115

endtime -0.26235 0.19950 -1.32 0.188

I(endtimeˆ2) 0.01514 0.00795 1.90 0.057

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 51.105 on 21 degrees of freedom

Residual deviance: 24.515 on 19 degrees of freedom

AIC: 90.35

. . . .

The fitted values are:

> etime <- unique(ACF1$endtime)

> etime

[1] 6 12 18

> exp(-0.3215 + 0.1192*etime) # Linear term only

[1] 1.48 3.03 6.20

> exp(1.72235 - 0.26235*etime + 0.01514*etimeˆ2) # Quadratic model

[1] 2.00 2.13 6.72
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These fitted values are alternatively available as unique(fitted(ACF.glm0)) and
unique(fitted(ACF.glm)).

Observe that the residual mean deviance is 24.515/19 = 1.29. For a Poisson model this
should, unless a substantial proportion of fitted values are small (e.g., less than about 2),
be close to 1. This may be used as an estimate of the dispersion, that is, of the amount
by which the variance is increased relative to the expected variance for a Poisson model.
A better estimate (it has only a very small bias) is however that based on the Pearson
chi-squared measure of lack of fit. This can be obtained as follows:

> sum(resid(ACF.glm, type="pearson")ˆ2)/19

[1] 1.25

This suggests that standard errors should be increased, and t-statistics reduced by
√

1�25 �
1�12, relative to those given above for the Poisson model.

The following fits a quasi-Poisson model, which incorporates this adjustment to the
variance. As the increased residual variance will take the quadratic term even further
from the conventional 5% significance level, we do not bother to fit it:

> ACFq.glm <- glm(formula = count ˜ endtime,

+ family = quasipoisson, data = ACF1)

> summary(ACFq.glm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.322 0.4553 -0.706 0.488239

endtime 0.119 0.0300 3.968 0.000758

Notice that the z value has now become t value, suggesting that is should be
referred to a t-distribution with 19 degrees of freedom (19 d.f. were available to estimate
the dispersion).

There are enough small expected counts that the dispersion estimate and resultant
t-statistics should be treated with modest caution. Additionally, there is a question whether
the same dispersion estimate should apply to all values of endtime. This can be
checked with:

> sapply(split(residuals(ACFq.glm), ACF1$endtime), var)

6 12 18

1.096 1.979 0.365

Under the assumed model, these should be approximately equal. The differences in
variance are nowhere near statistical significance. The following approximate test ignores
the small amount of dependence in the residuals:

> fligner.test(resid(ACFq.glm) ˜ factor(ACF1$endtime))

Fligner-Killeen test of homogeneity of variances

data: resid(ACFq.glm) by factor(ACF1$endtime)

Fligner-Killeen:med chi-squared = 2.17, df = 2, p-value = 0.3371
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8.4.2 Moth habitat example

The moths data are from a study of the effect of habitat on the densities of two species
of moth. Transects were set out across the search area. Within transects, sections were
identified according to habitat type. The end result was that there were:

• 41 different lengths (meters) of transect ranging from 2 meters to 233 meters,
• grouped into eight habitat types within the search area – Bank, Disturbed,
Lowerside, NEsoak, NWsoak, SEsoak, SWsoak, Upperside,

• with records taken at 20 different times (morning and afternoon) over 16 weeks.

The variables A and P give the numbers of moths of the two different species. Here is a
tabular summary, by habitat:12

Bank Disturbed Lowerside NEsoak NWsoak SEsoak SWsoak Upperside

Number 1 7 9 6 3 7 3 5

meters 21 49 191 254 65 193 116 952

A 0 8 41 14 71 37 20 28

P 4 33 17 14 19 6 48 8

The Number is the total number of transects for that habitat, while meters is the total
length.

Figure 8.10 gives a visual summary of the data. The code is:

library(lattice)

dotplot(habitat ˜ A, data=moths, xlab="Number of moths (species A)",

panel=function(x, y, ...){

avmoth <- aggregate(x, by=list(habitat=y), FUN=mean)

panel.dotplot(x,y, pch=1, ...)

panel.dotplot(avmoth$x, avmoth$habitat, pch=3,

cex=1.25, ...)

},

Number of moths (species A)

Bank

Disturbed

Lowerside

NEsoak

NWsoak

SEsoak

SWsoak

Upperside

0 1 0 2 0 3 0 4 0

Individual transects Mean

Figure 8.10 Dotplot summary of the numbers of moths of species A, by habitat type.

12 ## Number of moths by habitat: data frame moths (DAAG)
rbind(Number=table(moths[, 4]), sapply(split(moths[, -4], moths$habitat),

apply, 2, sum))
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key=list(text=list(c("Individual transects", "Mean")),

points=list(pch=c(1,3), cex=c(1,1.25))), columns=2))

For data such as these, there is no reason to accept the Poisson distribution assumption
that moths appear independently. The quasipoisson family, used in place of the
poisson, will now be the starting point for analysis. The dispersion estimate from the
quasipoisson model will indicate whether a Poisson distribution assumption might
have been adequate.

The model will take the form:

y = habitat effect+
 log�length of section��

where y = log(expected number of moths).
The use of a logarithmic link function, so that the model works with log(expected

number of moths), is the default. It is expected that effects will be multiplicative. This
form of model allows for the possibility that the number of moths per meter might be
relatively lower or higher for long than for short sections.

Comparisons are made against a reference (or baseline) factor level. The default ref-
erence level determined according to the alphanumeric order of the level names is not
always the most useful, so that the relevel() function must be used to change it.
Before making such a change, let’s see what happens if we proceed blindly and use as
reference Bank, which is the initial level of habitat in the data as included in the
DAAG package.

An unsatisfactory choice of reference level

No moths of the first species (A) were found in the Bank habitat. This zero count creates
problems for the calculation of standard errors, as will now be apparent:

> A.glm <- glm(A ˜ habitat + log(meters), family = quasipoisson,

+ data = moths)

> summary(A.glm)

Call:

glm(formula = A ˜ log(meters) + habitat, family = quasipoisson,

data = moths)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.556190 -1.463482 -0.000672 0.924806 3.082152

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -15.696 2096.588 -0.01 0.99

log(meters) 0.129 0.153 0.85 0.40

habitatDisturbed 15.622 2096.588 0.01 0.99

habitatLowerside 16.906 2096.588 0.01 0.99

habitatNEsoak 16.084 2096.588 0.01 0.99
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habitatNWsoak 18.468 2096.588 0.01 0.99

habitatSEsoak 16.968 2096.588 0.01 0.99

habitatSWsoak 17.137 2096.588 0.01 0.99

habitatUpperside 16.743 2096.588 0.01 0.99

(Dispersion parameter for quasipoisson family taken to be 2.7)

Null deviance: 257.108 on 40 degrees of freedom

Residual deviance: 93.991 on 32 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 13

The row of the data frame that has the information for Bank is:

> subset(moths, habitat=="Bank")

meters A P habitat

40 21 0 4 Bank

The estimate for (Intercept) is −15.696; note that this is on a logarithmic scale.
Thus the expected number of moths, according to the fitted model, is:

exp�−15�696+0�129 log�21�� = −2�27×10−7�

This is an approximation to zero! A tightening of the convergence criteria would give
an even smaller intercept and an expected value that is even closer to zero, which is the
observed value.13

The huge standard errors, and the value of NA for the AIC statistic, are an indication that
the output should not be taken at face value. A further indication comes from examination
of the standard errors of predicted values:

> ## SEs of predicted values

> A.se <- predict(A.glm, se=T)$se.fit

> A.se[moths$habitat=="Bank"]

40

2097

> range(A.se[moths$habitat!="Bank"])

[1] 0.197 0.631

The generalized linear model approximation to the standard error breaks down when, as
here, the fitted value for the reference level is zero. We cannot, from this output, say
anything about the accuracy of comparisons with Bank or between other types of habitat.

13 > ## Analysis with tighter convergence criterion
> A.glm <- update(A.glm, epsilon=1e-10)
> summary(A.glm)$coef
> head(summary(A.glm)$coefficients, 3)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -20.70 25542 -0.0008103 0.9994
habitatDisturbed 20.62 25542 0.0008074 0.9994
habitatLowerside 21.91 25542 0.0008576 0.9993
# Notice the large increase in standard errors that were already large
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A more satisfactory choice of reference level

The difficulty can be avoided, for habitats other than Bank, by taking Lowerside as
the reference:

> moths$habitat <- relevel(moths$habitat, ref="Lowerside")

> A.glm <- glm(A ˜ habitat + log(meters), family=quasipoisson,

+ data=moths)

> summary(A.glm)

Call:

glm(formula = A ˜ habitat + log(meters), family = quasipoisson,

data = moths)

Deviance Residuals:

Min 1Q Median 3Q Max

-3.556190 -1.463482 -0.000672 0.924806 3.082152

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2098 0.4553 2.66 0.012

habitatBank -16.9057 2096.5884 -0.01 0.994

habitatDisturbed -1.2832 0.6474 -1.98 0.056

habitatNEsoak -0.8217 0.5370 -1.53 0.136

habitatNWsoak 1.5624 0.3343 4.67 5.1e-05

habitatSEsoak 0.0621 0.3852 0.16 0.873

habitatSWsoak 0.2314 0.4781 0.48 0.632

habitatUpperside -0.1623 0.5843 -0.28 0.783

log(meters) 0.1292 0.1528 0.85 0.404

(Dispersion parameter for quasipoisson family taken to be 2.7)

Null deviance: 257.108 on 40 degrees of freedom

Residual deviance: 93.991 on 32 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 13

Note that the dispersion parameter, which for a Poisson distribution should equal 1, is
2.69. (One of several possible explanations for the dispersion is that there is a clustering
effect, with an average cluster size of 2.69. Such clustering need not imply that moths
will necessarily be seen together – they may appear at different times and places in the
same transect.) Thus, standard errors and p-values from a model that assumed Poisson
errors would be highly misleading. Use of a quasi-Poisson model, rather than a Poisson
model, has increased standard errors by a factor of

√
2�69 = 1�64. The ratio of estimate to

standard error is shown as t value, implying that a t-distribution should be used as the
reference. The number of degrees of freedom is that used for estimating the dispersion.

The estimates are on a logarithmic scale. Thus, the model predicts exp(-1.282) =
0.277 times as many moths on Disturbed as on Bank. However, these estimates and
associated z-statistics are for comparison with Lowerside.
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There remains a problem for the comparison between Bank and other habitats. We
will return to this shortly.

The fitted values remain the same as when Bank was the reference. Thus for
Disturbed, the earlier model calculated the fitted values (on a log scale) as:

−15�696+15�622+0�129 log�meters� = −0�074+0�129 log�meters��

while the model with Lowerside as the reference calculates them as:

1�2098−1�2832+0�129 log�meters� = −0�0734+0�129 log�meters��

The model says that:

log�expected number of moths� = 1�21+0�13 log�meters�

+ habitat (change from Lowerside as reference)�

i.e., expected number of moths = 0�93×meters0�13 × ehabitat.
The above output indicates that moths are much more abundant in NWsoak than in other

habitats. Notice that the coefficient of log(meters) is not statistically significant. This
species (A) avoids flying over long open regions. Their preferred habitats were typically
at the ends of transects. As a result, the length of the transect made little difference to
the number of moths observed.

The comparison between Bank and other habitats

Enough has been said to indicate that the t value or Wald statistic, which is anyway
approximate, is meaningless for comparisons that involve Bank. The deviances can
however be used, in an adaptation of a likelihood ratio test, to make the comparison.
(The adaptation is needed to account for the dispersion; standard likelihood theory does
not apply.) Here are comparisons between Bank and Disturbed, and between Bank
and NWsoak:

> ## Compare Bank with Disturbed

> habitatD <- moths$habitat

> habitatD[habitatD=="Bank"] <- "Disturbed"

> habitatD <- factor(habitatD)

> table(habitatD)

habitatD

Disturbed Lowerside NEsoak NWsoak SEsoak SWsoak Upperside

8 9 6 3 7 3 5

> A.glm <- glm(A ˜ habitat + log(meters), family = quasipoisson,

+ data=moths)

> AD.glm <- glm(A ˜ habitatD + log(meters), family = quasipoisson,

+ data=moths)

> anova(A.glm, AD.glm, test="F")

Analysis of Deviance Table

Model 1: A ˜ habitat + log(meters)

Model 2: A ˜ habitatD + log(meters)
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Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 32 94.0

2 33 96.5 -1 -2.5 0.93 0.34

> ##

> ## Compare Bank with NWsoak

> habitatNW <- moths$habitat

> habitatNW[habitatNW=="Bank"] <- "NWsoak"

> habitatNW <- factor(habitatNW)

> ANW.glm <- glm(A ˜ habitatNW + log(meters), family = quasipoisson,

+ data=moths)

> ANW.glm <- glm(A ˜ habitatNW + log(meters), family = quasipoisson,

+ data=moths)

> anova(A.glm, ANW.glm, test="F")

Analysis of Deviance Table

Model 1: A ˜ habitat + log(meters)

Model 2: A ˜ habitatNW + log(meters)

Resid. Df Resid. Dev Df Deviance F Pr(>F)

1 32 94.0

2 33 134.9 -1 -40.9 15.1 0.00047

An F-test is used because the dispersion estimate is greater than one. The quantity that
is labeled F is calculated as (change in deviance)/dispersion = 40.9/2.7 � 15.1. While
this scaled change in deviance statistic does not have the problems that can arise in the
calculation of the denominator for the Wald statistic, there can be no guarantee that it
will be well approximated by an F-distribution, as assumed here. The diagnostic plots
that will now be examined are however encouraging.

Diagnostic plots

For the plot now presented (Figure 8.11), the habitat Bankwas omitted from the analysis. To
see why, readers may care to repeat the use of plot()with the model that includes Bank.

The code is:

A1.glm <- glm(formula = A ˜ habitat + log(meters), family =

quasipoisson, data = moths, subset=habitat!="Bank")

plot(A1.glm, panel=panel.smooth)
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Figure 8.11 Diagnostic plots for modeling A (number of moths of species A) as a function of
habitat and log(meters), for habitats other than Bank.
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Observe that the standardized residuals follow a distribution that seems close to normal.
Moreover, the scale–location plot is consistent with the assumption that the dispersion is
constant, independent of the predicted value.

8.5 Additional notes on generalized linear models

8.5.1 ∗ Residuals, and estimating the dispersion

The R function residuals.glm(), which is called when residuals() is used with
glm object as its argument, offers a choice of three different types of residuals – deviance
residuals (type="deviance"), Pearson residuals (type="pearson") and working
residuals (type="working"). For most diagnostic uses, the deviance residuals, which
are the default, seem preferable. Deletion residuals, which McCullagh and Nelder (1989)
suggest are the preferred residuals to use in checking for outliers, are not, as of version
2.2.0 of R, among the alternatives that are on offer. However, the working residuals may
often be a reasonable approximation.

Plots of residuals can be hard to interpret. This is an especially serious problem for
models that have a binary (0/1) response, where it is essential to use a suitable form of
smooth curve as an aid to visual interpretation.

Other choices of link function for binomial models

Perhaps the most important alternative to the logit is the complementary log–log link; this
has f�x� = log�− log�1−x��. For an argument from extreme value theory that motivates
the use of the complementary log–log link, see Maindonald et al. (2001). Also used is the
probit, which is the normal quantile function, that is, the inverse of the cumulative normal
distribution. This is hard to distinguish from the logit – extensive data are required, and
differences are likely to be evident only in the extreme tails.

Quasi-binomial and quasi-Poisson models

In quasibinomial and quasipoisson models, a further issue is the estimation
of what is called the dispersion. Note that for data with a 0/1 response, no estimate of
dispersion is possible, unless there is some form of replication that allows this. The dis-
cussion that follows is thus not relevant. See McCullagh and Nelder (1989, section 4.5.1).

The default is to divide the sum of squares of the Pearson residuals by the degrees of
freedom of the residual, and use this as the estimate. This estimate, which appears in the
output from summary(), has a bias that in most cases is small enough to be ignored,
and is in this respect much preferable to the residual mean deviance as an estimate of
dispersion. See McCullagh and Nelder (1989, section 4.5.2).

Note the assumption that the dispersion is constant, independent of the fitted proportion
or Poisson rate. This may be inappropriate, especially if the range of fitted values is wide.

In lm models, which are equivalent to GLMs with identity link and normal errors, the
dispersion and the residual mean deviance both equal the mean residual sum of squares,
and have a chi-squared distribution with degrees of freedom equal to the degrees of
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freedom of the residual. This works quite well as an approximation for quasi-Poisson
models whose fitted values are of a reasonable magnitude (e.g., at least 2), and for some
binomial models. In other cases, it can be highly unsatisfactory. For models with a binary
(0/1) outcome, the residual deviance is a function of the fitted parameters and gives no
information on the dispersion.

The difference in deviance between two nested models has a distribution that is often
well approximated by a chi-squared distribution. Where there are two such models, with
nesting such that the mean difference in deviance (i.e., difference in deviance divided by
degrees of freedom) gives a plausible estimate of the source of variation that is relevant
to the intended inferences, this may be used to estimate the dispersion. For example,
see McCullagh and Nelder (1989, section 4.5.2). A better alternative may be use of the
lmer() function in lme4, specifying a binomial link and specifying the random part of
the model appropriately.

See McCullagh and Nelder (1989, chapter 9) for a discussion of theoretical issues in
the use of ideas of quasi-likelihood.

8.5.2 Standard errors and z- or t-statistics for binomial models

The z- or t-statistics are sometimes known as the Wald statistics. They are based on an
asymptotic approximation to the standard error. For binomial models, this approximation
can be seriously wrong when the fitted proportions are close to 0 or 1, to the extent that an
increased difference in an estimated proportion can be associated with a smaller t-statistic.
Where it is important to have a reasonably accurate p-value, this is suitably obtained from
an analysis of deviance table that compares models with and without the term.

The following demonstrates the effect:

> fac <- factor(LETTERS[1:4])

> p <- c(103, 30, 11, 3)/500

> n <- rep(500,4)

> summary(glm(p ˜ fac, family=binomial, weights=n))$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.35 0.111 -12.20 3.06e-34

facB -1.40 0.218 -6.42 1.35e-10

facC -2.45 0.324 -7.54 4.71e-14

facD -3.76 0.590 -6.38 1.78e-10

Notice that the z value for level D is smaller than the z value for level C, even
though the difference from level A (the reference) is greater.

The phenomenon is discussed in Hauck and Donner (1977).

8.5.3 Leverage for binomial models

In an lm model with a single predictor and with homogeneous errors, the points that are
furthest away from the mean inevitably have the largest leverages. For models with
binomial errors, this is not the case. The leverages are functions of the fitted values.
Figure 8.12 shows the pattern of change of the leverage, for the three common link
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Figure 8.12 Leverage versus fitted proportion, for the three common link functions. Points
that all have the same binomial totals were symmetrically placed, on the scale of the response,
about a fitted proportion of 0.5. The number and location of points will affect the magnitudes,
but for the symmetric links any symmetric configuration of points will give the same pattern of
change.

functions, when points are symmetrically placed, on the scale of the response, about a
fitted proportion of 0.5. The optimum placement of points for a probit link is slightly
further apart than for a logit link.

8.6 Models with an ordered categorical or categorical response

This section draws attention to an important class of models that further extend the
generalized linear model framework. Ordinal regression models will be discussed in
modest detail. Loglinear models, which may be appropriate when there is a qualitative
(i.e., unordered) categorical response, will get brief mention.

8.6.1 Ordinal regression models

We will demonstrate how logistic and related generalized linear models that assume
binomial errors can be used for an initial analysis. The particular form of logistic regression
that we will demonstrate is proportional odds logistic regression.

Ordinal logistic regression is relevant when there are three or more ordered outcome
categories that might, for example, be (1) complete recovery, (2) continuing illness,
(3) death. Here, in Table 8.2, we give an example where patients who were randomly
assigned to two different inhalers were asked to compare the clarity of leaflet instructions
for their inhaler (data, initially published with the permission of 3M Health Care Ltd, are
adapted from Ezzet and Whitehead, 1991).

Exploratory analysis

There are two ways to split the outcomes into two categories: we can contrast “easy”
with the remaining two responses (some degree of difficulty), or we can contrast the first
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Table 8.2 Data from a randomized trial – assessments of the
clarity of the instructions provided to the inhaler.

Easy Needed re-reading Not clear
(category 1) (category 2) (category 3)

Inhaler 1 99 41 2
Inhaler 2 76 55 13

Table 8.3 Odds ratios, and logarithms of odds ratios, for two
alternative choices of cutpoint in Table 8.2.

Easy versus some Clear after study versus
degree of difficulty not clear

odds log odds odds log odds

Inhaler 1 99/43 log�99/43� = 0�83 140/2 log�140/2� = 4�25
Inhaler 2 76/68 log�76/68� = 0�11 131/13 log�131/13� = 2�31

two categories (clear, perhaps after study) with “not clear.” Table 8.3 presents, side by
side in parallel columns, odds based on these two splits. Values for log(odds) are given
alongside.

Wherever we make the cut, the comparison favors the instructions for inhaler 1. The
picture is not as simple as we might have liked. The log(odds ratio), that is, the difference
on the log(odds) scale, may depend on which cutpoint we choose.

∗Proportional odds logistic regression

The function polr() in the MASS package allows the fitting of a formal model. We
begin by fitting a separate model for the two rows of data:

library(MASS)

inhaler <- data.frame(freq=c(99,76,41,55,2,13),

choice=rep(c("inh1","inh2"), 3),

ease=ordered(rep(c("easy","re-read",

"unclear"), rep(2,3))))

inhaler1.polr <- polr(ease ˜ 1, weights=freq, data=inhaler,

Hess=TRUE, subset=inhaler$choice=="inh1")

# Setting Hess=TRUE at this point averts possible numerical

# problems if this calculation is deferred until later.

inhaler2.polr <- polr(ease ˜ 1, weights=freq, data=inhaler,

Hess=TRUE, subset=inhaler$choice=="inh2")
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Notice that the dependent variable specifies the categories, while frequencies are specified
as weights. The output is:

> summary(inhaler1.polr)

Call:

polr(formula = ease ˜ 1, data = inhaler, weights = freq,

subset = inhaler$choice == "inh1", Hess = TRUE)

No coefficients

Intercepts:

Value Std. Error t value

easy|re-read 0.834 0.183 4.566

re-read|unclear 4.248 0.712 5.966

Residual Deviance: 190.34

AIC: 194.34

> summary(inhaler2.polr)

Call:

polr(formula = ease ˜ 1, data = inhaler, weights = freq,

subset = inhaler$choice == "inh2", Hess = TRUE)

No coefficients

Intercepts:

Value Std. Error t value

easy|re-read 0.111 0.167 0.666

re-read|unclear 2.310 0.291 7.945

Residual Deviance: 265.54

AIC: 269.54

For interpreting the output, observe that the intercepts for the model fitted to the first row
are 0�834 = log�99/43� and 4�248 = log�140/2�. For the model fitted to the second row,
they are 0�111 = log�76/68� and 2�310 = log�131/13�.

We now fit the combined model:

> inhaler.polr <- polr(ease ˜ choice, weights=freq, Hess=TRUE,

+ data=inhaler)

> summary(inhaler.polr)

Call:

polr(formula = ease ˜ choice, data = inhaler, weights = freq,

Hess = T)

Coefficients:

Value Std. Error t value

choiceinh2 0.79 0.245 3.23
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Intercepts:

Value Std. Error t value

easy|re-read 0.863 0.181 4.764

re-read|unclear 3.353 0.307 10.920

Residual Deviance: 459.29

AIC: 465.29

The difference in deviance between the combined model and the two separate models is:

> deviance(inhaler.polr) - (deviance(inhaler1.polr)

+ + deviance(inhaler2.polr))

[1] 3.42

We compare this with the 5% critical value for a chi-squared deviate on 1 degree of
freedom – there are 2 parameters for each of the separate models, making a total of 4,
compared with 3 degrees of freedom for the combined model. The difference in deviance
is just short of significance at the 5% level.

The parameters for the combined model are:

> summary(inhaler.polr)

Call:

polr(formula = ease ˜ choice, data = inhaler, weights = freq,

Hess = T)

Coefficients:

Value Std. Error t value

choiceinh2 0.79 0.245 3.23

Intercepts:

Value Std. Error t value

easy|re-read 0.863 0.181 4.764

re-read|unclear 3.353 0.307 10.920

Residual Deviance: 459.29

AIC: 465.29

The value that appears under the heading “Coefficients” is an estimate of the
reduction in log�odds� between the first and second rows. Table 8.4 gives the estimates
for the combined model.

The fitted probabilities for each row can be derived from the fitted log�odds�. Thus for
inhaler 1, the fitted probability for the easy category is exp�0�863�/�1+ exp�0�863�� =
0�703, while the cumulative fitted probability for easy and re-read is exp�3�353�/�1+
exp�3�353�� = 0�966.

8.6.2 ∗ Loglinear models

Loglinear models model the frequencies in a multi-way table directly. For the model-
fitting process, all margins of the table have the same status. However, one of the margins
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Table 8.4 The entries are log(odds) and odds estimates for
the proportional odds logistic regression model that was fitted
to the combined data.

log(odds) [odds in parentheses]

easy versus some clear after study versus
degree of difficulty not clear

Inhaler 1 0.863 3.353
(exp(0.863) = 2.37) (28.6)

Inhaler 2 0.863 − 0.790 3.353 − 0.790
(1.08) (13.0)

has a special role for interpretative purposes; it is known as the dependent margin. For the
UCBAdmissions data that we discussed in Section 8.3, the interest was in the variation
of admission rate with Dept and with Gender. A loglinear model, with Admit as the
dependent margin, offers an alternative way to handle the analysis. Loglinear models are
however generally reserved for use when the dependent margin has more than two levels,
so that logistic regression is not an alternative.

Examples of the fitting of loglinear models are included with the help page for
loglm(), in the MASS package. To run them, type in

library(MASS)

example(loglm)

8.7 Survival analysis

Survival (or failure) analysis introduces features different from any of those encountered
in the regression methods discussed in earlier chapters. It has been widely used for
comparing the times of survival of patients suffering a potentially fatal disease who have
been subject to different treatments. The computations that follow will use the survival
package, written for S-PLUS by Terry Therneau, and ported to R by Thomas Lumley.

Other names, mostly used in non-medical contexts, are Failure Time Analysis and
Reliability. Yet another term is Event History Analysis. The focus is on time to any event
of interest, not necessarily failure. It is an elegant methodology that is too little known
outside of medicine and industrial reliability testing.

Applications include:

• The failure time distributions of industrial machine components, electronic equipment,
automobile components, kitchen toasters, light bulbs, businesses, etc. (failure time
analysis, or reliability).

• The waiting time to germination of seeds, to marriage, to pregnancy, or to getting a
first job.

• The waiting time to recurrence of an illness or other medical condition.
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The outcomes are survival times, but with a twist. The methodology is able to handle
data where failure (or another event of interest) has, for a proportion of the subjects, not
occurred at the time of termination of the study. It is not necessary to wait till all subjects
have died, or all items have failed, before undertaking the analysis! Censoring implies
that information about the outcome is incomplete in some respect, but not completely
missing. For example, while the exact point of failure of a component may not be known,
it may be known that it did not survive more than 720 hours (= 30 days). In a clinical
trial, there may for some subjects be a final time up to which they survived, but no
subsequent information. Such observations are said to be right censored.

Thus, for each observation there are two pieces of information: a time, and censoring
information. Commonly the censoring information indicates either right censoring denoted
by a 0, or failure denoted by a 1.

Many of the same issues arise as in more classical forms of regression analysis. One
important set of issues has to do with the diagnostics used to check on assumptions. Here
there have been large advances in recent years. A related set of issues has to do with
model choice and variable selection. There are close connections with variable selection
in classical regression. Yet another set of issues has to do with the incomplete information
that is available when there is censoring.

Figure 8.13 shows a common pattern for the collection of the data that will be analyzed
in survival studies.

8.7.1 Analysis of the Aids2 data

We first examine the data frame Aids2 (MASS package). In the study that provided these
data, recruitment continued until the day prior to the end of the study. Once recruited,
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Figure 8.13 Outline of the process of collection of data that will be used in a survival analysis.
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subjects were followed until either they were “censored,” that is, were not available for
further study, or until they died from an Aids-related cause. The time from recruitment
to death or censoring will be used for analysis.

Observe the variety of different types of right censoring. Subjects may be removed
because they died from some cause that is not Aids-related, or because they can no longer
be traced. Additionally, subjects who are still alive at the end of the study cannot at that
point be studied further, and are also said to be censored.

Details of the different columns are:

> library(MASS)

> str(Aids2, vec.len=2)

‘data.frame’: 2843 obs. of 7 variables:

$ state : Factor w/ 4 levels "NSW","Other",..: 1 1 1 1 1 ...

$ sex : Factor w/ 2 levels "F","M": 2 2 2 2 2 ...

$ diag : int 10905 11029 9551 9577 10015 ...

$ death : int 11081 11096 9983 9654 10290 ...

$ status : Factor w/ 2 levels "A","D": 2 2 2 2 2 ...

$ T.categ: Factor w/ 8 levels "hs","hsid","id",..: 1 1 1 5 1 ...

$ age : int 35 53 42 44 39 ...

Note that death really means “final point in time at which status was known.”
The analyses that will be presented will use two different subsets of the data – individ-

uals who contracted Aids from contaminated blood, and male homosexuals. The extensive
data in the second of these data sets makes it suitable for explaining the notion of hazard.

A good starting point for any investigation of survival data is the survival curve or (if
there are several groups within the data) survival curves. The survival curve estimates
the proportion who have survived at any time. The analysis will work with “number of
days from diagnosis to death or removal from the study,” and this number needs to be
calculated.

bloodAids <- subset(Aids2, T.categ=="blood")

bloodAids$days <- bloodAids$death-bloodAids$diag

bloodAids$dead <- as.integer(bloodAids$status=="D")

For this subset of the data, all subjects were followed right through until the end of the
study, and the only patients that were censored were those that were still alive at the end
of the study. Thus Figure 8.14 compares females with males who contracted Aids from
contaminated blood.

The survival package uses the Surv() function to package together the time infor-
mation and the censoring (alive = 0, dead = 1) information. The survfit() function
then estimates the survival curve. The code is:

library(survival)

plot(survfit(Surv(days, dead) ˜ sex, data=bloodAids),

col=c(2,4), conf.int=TRUE)

Pointwise 95% confidence intervals have been placed around the estimated survival
curves. These assume independence between the individuals in the study group.
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Figure 8.14 Survival curves that compare females with males who contracted Aids from contam-
inated blood.

8.7.2 Right censoring prior to the termination of the study

This might happen in (at least) two ways:

• The subject may have died from a cause that is thought unlikely to be Aids-related,
for example, a traffic accident.

• The subject may have disappeared from the study, with efforts to trace them
unsuccessful.

A common assumption is that, subject to any covariate effects, the pattern of risk
subsequent to time when the subject was last known to be alive remained the same
as for individuals who were not censored. In technical language, the censoring was
“non-informative.” Censoring would be informative if it gave information on the risk
of that patient. For example, some patients may, because of direct or indirect effects of
their illness or of the associated medication, be at increased risk of traffic accidents. Such
possibilities make it unlikely that it will be strictly true that censoring was non-informative,
though it may be a reasonable working approximation, especially if a relatively small
proportion of subjects was censored in this way.

In order to illustrate the point, we will examine the pattern of censoring for males
where the mode of transmission (T.categ) was homosexual activity. (These data will
be used in the later discussion to illustrate the notion of hazard.)

> hsaids <- subset(Aids2, sex=="M" & T.categ=="hs")

> hsaids$days <- hsaids$death-hsaids$diag

> hsaids$dead <- as.integer(hsaids$status=="D")

> table(hsaids$status,hsaids$death==11504)

FALSE TRUE

A 16 916

D 1531 1

Recall that death really means “final point in time at which status was known.” The
interpretation of this output is:
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Alive at some time prior to end of study Alive at end of study
(16 censored at time < 11 504) (916 censored on day 11 504)

Dead at some time prior to end of study Dead at end of study
(1531 not censored) (1 not censored)

Just 16 individuals were censored prior to the end of the study, probably not enough to
cause a serious bias, even if their censoring was to an extent informative.

8.7.3 The survival curve for male homosexuals

Figure 8.15 shows the survival curve for these data, with 95% pointwise confidence
limits.14 Annotation has been added that will be used to help illustrate the notion of
hazard. The triangle on the upper left shows the change between 200 days and 700 days,
from a survival of 0.75 at day 200 to a survival of 0.33 at day 700. The difference in
survival is 0.42, or more precisely 0.427, which is a reduction of 0.000854 per day.

hsaids.surv <- survfit(Surv(days, dead) ˜ 1, data=hsaids)

plot(hsaids.surv)

8.7.4 Hazard rates

The hazard rate is obtained by dividing the mortality per day by the survival to that
point. Over a short time interval, multiplication of the hazard by the time interval gives
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Figure 8.15 Survival curve for males for whom the mode of transmission was homosexual
activity. There are two sets of arrows that show how the estimated survival probability decreased
over a 400-day period.

14 hsaids.surv <- survfit(Surv(days, dead) ˜ 1, data=hsaids)
plot(hsaids.surv)
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the probability of death over that interval, given survival up to that time. In Figure 8.15,
hazard rates at days 200 and 700 are, approximately:

Day 200 0.00854/0.752 � 0.11
Day 700 0.00854/0.326 � 0.026

More generally, the hazard rate can be determined at any point by fitting a smooth
function to the survival curve, and dividing the slope of the tangent by the survival at
that point. The above calculations of hazard are rough. More refined estimates can be
obtained by using the function muhaz() from the muhaz package. In order to get precise
estimates of the hazard, large sample sizes are needed.

8.7.5 The Cox proportional hazards model

Even where sample sizes are relatively small, and estimates of the individual hazards for
two groups that are of interest highly inaccurate, the assumption that the ratio is constant
between the two groups may be a reasonable working approximation. For example, it
might be assumed that the hazard for males who contracted Aids from contaminated blood,
relative to females, is a constant, that is, the hazard for males is directly proportional to
the hazard for females. There are two points to keep in mind:

• The assumption can be checked, as will be demonstrated below. Where data are
sufficiently extensive to make such a check effective, it often turns out that the ratio
is not constant over the whole time period.

• Even if it is suspected that the ratio is not truly constant over the whole time period,
the estimated ratio can be treated as an average.

With these points in mind, and using females as the baseline, we now examine the
hazard ratios for males who contracted Aids from contaminated blood. The code is:

bloodAids.coxph <- coxph(Surv(days, dead) ˜ sex, data=bloodAids)

Output is:

> summary(bloodAids.coxph)

Call:

coxph(formula = Surv(days, dead) ˜ sex, data = bloodAids)

n= 94

coef exp(coef) se(coef) z p

sexM -0.276 0.759 0.233 -1.18 0.24

exp(coef) exp(-coef) lower .95 upper .95

sexM 0.759 1.32 0.481 1.20

Rsquare= 0.015 (max possible= 0.998 )

Likelihood ratio test= 1.38 on 1 df, p=0.239
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Wald test = 1.4 on 1 df, p=0.236

Score (logrank) test = 1.41 on 1 df, p=0.235

Let h0�x� be the hazard function for females. Then the model assumes that the hazard
function hm�x� for males can be written:

hm�x� = h0�x� exp�
��

In the above output, coef is what, in this formula, is 
. There are several ways to
examine the comparison of males with females:

• The confidence interval for 
 includes 0. Equivalently, the t-test for the test 
 = 0 has
a p-value equal to 0.24.

• The confidence interval for exp�
� includes 1.
• A likelihood ratio test has p = 0�239.
• A Wald test has p = 0�236.
• A log-rank test has p = 0�235.

In general, 
 may be a linear function of covariates, and there may be several groups.
Confidence intervals will then be given for the separate coefficients in this model. The
likelihood ratio test, the Wald test and the log-rank test are all then tests for the null
hypothesis that the groups have the same hazard function.

The following tests whether the hazard ratio is constant:

> cox.zph(bloodAids.coxph)

rho chisq p

sexM -0.127 1.21 0.272

A plot of Schoenfeld residuals, with smooth curves fitted as in Figure 8.16, may
however be more informative. The code is

plot(cox.zph(bloodAids.coxph))

The Schoenfeld residuals (one for each event, here death) are computed for each covariate
in a model and are used to determine whether the coefficients in the model are constant
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Figure 8.16 Plot of Schoenfeld residuals from the Cox proportional hazards model.
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or time-varying. They are essentially differences between the covariate value for each
individual and an appropriately weighted average of the corresponding coefficient over
all other individuals still at risk at the individual’s event time.

The graph suggests that the hazard ratio may have been greater for males for the first
40 days or so after diagnosis. However, the difference from a constant 
 (or from 
 = 0)
cannot be distinguished from statistical error. In samples of this size, the difference from
a constant ratio must be large to allow much chance of detection.

Also available are the martingale residuals. These can be calculated and plotted thus:

plot(bloodAids$days, resid(bloodAids.coxph))

lines(lowess(bloodAids$days, resid(bloodAids.coxph)))

The martingale residuals are given by either 1 – the log of the survival function estimate
or the negative log of the survival function estimate, according to whether the observa-
tion has been censored or not. These residuals should be approximately exponentially dis-
tributed if the model is correct. One way to check this is to plot the residuals against time
(or another suitable covariate) and to pass a smooth curve through the plotted points. If
the result differs substantially from a horizontal line, then the model has not been specified
correctly.

8.8 Transformations for count data

Transformations were at one time commonly used to make count data amenable to
analysis using normal theory methods. Generalized linear models have largely removed
the need for such approaches. They are, however, still sometimes a useful recourse. Here
are some of the possibilities:

• The square root transformation: y = √
n. This may be useful for counts. If counts

follow a Poisson distribution, this gives values that have constant variance 0.25.
• The angular transformation: y = arcsin�

√
p�, where p is a proportion. If proportions

have been generated by a binomial distribution, the angular transformation will “sta-
bilize the variance.” The R system calculates values in radians. To obtain values that
run from 0 to 90, multiply by 180/
 � 57.3.

• The probit or normal equivalent deviate. Again, this is for use with proportions.
For this, take a table of areas under the normal curve. We transform back from the
area under the curve to the distance from the mean. It is commonly used in bioassay
work. This transformation has a severe effect when p is close to 0 or 1. It moves 0
down to −
 and 1 up to 
, that is, these points cannot be shown on the graph. Some
authors add 5 on to the normal deviates to get “probits.”

• The logit. This function is defined by logit�p� = log�p/�1−p��. This is a little more
severe than the probit transformation. Unless there are enormous amounts of data, it is
impossible to distinguish data that require a logit transformation from data that require
a probit transformation. Logistic regression uses this transformation on the expected
values in the model.

• The complementary log–log transformation. This function is defined by
cloglog�p� = log�− log�1 − p��. For p close to 0, this behaves like the logit
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transformation. For large values of p, it is a much milder transformation than the
probit or logit. It is often the appropriate transformation to use when p is a mortality
that increases with time.

Proportions usually require transformation unless the range of values is quite small,
between about 0.3 and 0.7.

Note that generalized linear models transform, not the observed proportion, but its
expected value as estimated by the model.

8.9 Further reading

Dobson (2001) is an elementary introduction to generalized linear models. Harrell (2001)
gives a comprehensive account of both generalized linear models and survival analysis
that includes extensive practical advice. Venables and Ripley (2002) give a summary
overview of the S-PLUS and R abilities, again covering survival analysis as well as
generalized linear models. A classic reference on generalized linear models is McCullagh
and Nelder (1989). For quasi-binomial and quasi-Poisson models, see pp. 200–208.

Collett (2003) is a basic introduction to elementary uses of survival analysis. Therneau
and Grambsch (2001) describes extensions to the Cox model, with extensive examples
that use the abilities of the survival package. Bland and Altman (2005) is an interesting
example of the application of survival methods.

There are many ways to extend the models that we have discussed. We have
not demonstrated models with links other than the logit. Particularly important, for
data with binomial or quasi-binomial errors, is the complementary log–log link; for
this specify family = binomial(link=cloglog), replacing binomial with
quasibinomial if that is more appropriate. Another type of extension, not currently
handled in R, arises when there is a natural mortality that must be estimated. See,
for example, Finney (1978). Multiple levels of variation, such as we will discuss in
Chapter 10, are a further potential complication. In the context of survival analysis, these
have the name frailty models. Maindonald et al. (2001) present an analysis where all of
these issues arose. In that instance, the binomial totals (n) were large enough that it was
possible to work with the normal approximation to the binomial.

8.9.1 References for further reading
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8.10 Exercises

1. The following table shows numbers of occasions when inhibition (i.e., no flow of current across
a membrane) occurred within 120 s, for different concentrations of the protein peptide-C (data
are used with the permission of Claudia Haarmann, who obtained these data in the course of
her PhD research). The outcome yes implies that inhibition has occurred.
conc 0.1 0.5 1 10 20 30 50 70 80 100 150

no 7 1 10 9 2 9 13 1 1 4 3

yes 0 0 3 4 0 6 7 0 0 1 7

Use logistic regression to model the probability of inhibition as a function of protein concen-
tration.

2. In the data set (an artificial one of 3121 patients, that is similar to a subset of the data
analyzed in Stiell et al., 2001) minor.head.injury, obtain a logistic regression model
relating clinically.important.brain.injury to other variables. Patients whose
risk is sufficiently high will be sent for CT (computed tomography). Using a risk threshold of
0.025 (2.5%), turn the result into a decision rule for use of CT.

3. Consider again the moths data set of Section 8.4.

(a) What happens to the standard error estimates when the poisson family is used in glm()
instead of the quasipoisson family?

(b) Analyze the P moths, in the same way as the A moths were analyzed. Comment on the
effect of transect length.

4.∗ The factor dead in the data set mifem (DAAG package) gives the mortality outcomes (live
or dead) for 1295 female subjects who suffered a myocardial infarction. (See Section 11.5
for further details.) Determine ranges for age and yronset (year of onset), and determine
tables of counts for each separate factor. Decide how to handle cases for which the outome,
for one or more factors, is not known. Fit a logistic regression model, beginning by comparing
the model that includes all two-factor interactions with the model that has main effects only.

5. Use the function logisticsim() (in the DAAG package) to simulate data from a logistic
regression model to study the the glm() function. For example, you might try experiments
such as the following.

(a) Simulate 100 observations from the model

logit�x� = 2−4x

for x = 0� 0�01� 0�02� …, 1�0. [This is the default setting for logisticsim().]
(b) Plot the responses (y) against the “dose” (x). Note how the pattern of 0s and 1s changes

as x increases.
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(c) Fit the logistic regression model to the simulated data, using the binomial family.
Compare the estimated coefficients with the true coefficients. Are the estimated coeffi-
cients within about 2 standard errors of the truth?

(d) Compare the estimated logit function with the true logit function. How well do you think
the fitted logistic model would predict future observations? For a concrete indication of the
difference, simulate a new set of 100 observations at the same x values, using a specified
pseudorandom number generator seed and the true model. Then simulate some predicted
observations using the estimated model and the same seed.

6. As in the previous exercise, the function poissonsim() allows for experimentation with
Poisson regression. In particular, poissonsim() can be used to simulate Poisson responses
with log-rates equal to a+bx, where a and b are fixed values by default.

(a) Simulate 100 Poisson responses using the model

log � = 2−4x

for x = 0� 0�01� 0�02 … , 1�0. Fit a Poisson regression model to these data, and compare
the estimated coefficients with the true coefficients. How well does the estimated model
predict future observations?

(b) Simulate 100 Poisson responses using the model

log � = 2−bx

where b is normally distributed with mean 4 and standard deviation 5. [Use the argument
slope.sd=5 in the poissonsim() function.] How do the results using the poisson
and quasipoisson families differ?
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Time series models

This chapter is concerned with measurements taken in time sequence. Almost invariably,
such measurements will be related to each other in some way; the independence
assumption of previous chapters is no longer valid. Typically observations that are close
together in time are more strongly correlated than observations that are widely separated
in time.

We will introduce the most commonly used linear time series models for such data:
the autoregressive moving average (ARMA) models. We will then give an example of
regression where the error term has a time series structure. The chapter will close with a
brief discussion of “non-linear” time series, such as have been widely used in modeling
financial time series.

Models of the type used in time series may also be used to model variation in a single
spatial dimension.

The analyses will use functions in the stats package, which is one of the base pack-
ages, included with all distributions of R. The brief discussion of non-linear time series
(ARCH and GARCH models) will require access to the tseries package, which must be
installed.

9.1 Time series – some basic ideas

Sequences of observations recorded over time are referred to as time series. Many tech-
niques have been developed to deal with the special nature of the dependence that is often
associated with such series. We will provide only the most cursory treatment here. The
interested reader is directed to any of several excellent books listed in the references.

9.1.1 Preliminary graphical explorations

The time series object LakeHuron (datasets) has annual depth measurements at a
specific site on Lake Huron. Figure 9.1 is a trace plot, that is, an unsmoothed scatterplot
of the data against time. The code is:

## Plot depth measurements: ts object LakeHuron (datasets)

plot(LakeHuron, ylab="depth (in feet)", xlab = "Time (in years)")

There is a slight downward trend for the first half of the series. Observe also that,
with some notable exceptions, depth measurements that are close together in time are
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Figure 9.1 A trace plot of annual depth measurements of Lake Huron versus time.

often close together in value. This is a first indication that we are not looking at a
series of independent observations. Time series typically exhibit some form of sequential
dependence, in which observations that are close together in time are more similar than
those that are widely separated. A key challenge for time series analysis is to find good
ways to model this dependence.

Lag plots may give a useful visual impression of the dependence. Suppose that our
observations are x1� x2� � � � � xn. Then the lag 1 plot plots xi against xi−1 �i = 2� � � � � n), thus:

y-value x2 x3 … xn

lag 1 (x-axis) x1 x2 … xn−1

For a lag 2 plot, xi is plotted against xi−2 (i = 3� � � � �n), and so on for higher lags.
Notice that the number of points that are plotted is reduced by the number of lags.

Figure 9.2A shows the first four lag plots for the Lake Huron data. The code is:

lag.plot(LakeHuron, lags=4, do.lines=FALSE)

The scatter of points about a straight line in the first lag plot suggests that the depen-
dence between consecutive observations is linear. The increasing scatter observed in the
second, third and fourth lag plots indicates that points separated by two or three lags are
successively less dependent. Note that the slopes, and therefore the correlations, are all
positive.

9.1.2 The autocorrelation function

For each of the lag plots in Figure 9.2A, there is a correlation. Informally, such correlations
are autocorrelations (literally, self-correlations). The autocorrelation function (ACF),
which gives the autocorrelations at all possible lags, often gives useful insight. Figure 9.2B
plots the first 19 lag autocorrelations. The code is:

acf(LakeHuron)

The autocorrelation at lag 0 is included by default; this always takes the value 1, since
it represents the correlation between the data and themselves. Of more interest are the
autocorrelations at other lags. In particular, as we inferred from the lag plots, the auto-
correlation at lag 1 (sometimes called the serial correlation) is fairly large and the lag
2 and lag 3 autocorrelations are successively smaller. The autocorrelations continue to
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Figure 9.2 The top four panels (A) show the first four lag plots of the annual depth measurements
of Lake Huron. The lower panel (B) shows the estimated autocorrelations.

decrease as the lag becomes larger, indicating that there is no linear association among
observations separated by lags larger than about 10.

As we will see in the next subsection, autocorrelation in a time series complicates the
estimation of such quantities as the standard error of the mean. There must be appropriate
modeling of the dependence structure. If there are extensive data, it helps to group the
data into sets of k successive values, and take averages. The serial correlation then reduces
to �1/k approximately. See Miller (1986) for further comment.

9.1.3 Autoregressive models

We have indicated earlier that, whenever possible, the rich regression framework provides
additional insights. This remains true when analyzing time series. If we can compute
correlations between successive observations, we should be able to compute regressions
relating successive observations as well.

The AR(1) model

The autoregressive model of order 1 (AR(1)) for a time series X1�X2� � � � , has the recursive
formula:

Xt = �+��Xt−1 −��+�t� t = 1� 2� � � � �
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where � and � are parameters. Usually, � takes values in the interval (−1, 1) (the
so-called stationary case). (If there is a clear trend in the series, the series is not stationary,
and the trend should be removed before proceeding. To remove a linear trend, take
successive differences.1 ) The error term �t is the familiar independent noise term with
constant variance 	2. The distribution of X0 is assumed fixed and will not be of immediate
concern.

For the AR(1) model, the ACF at lag i is �i, for i = 1� 2� � � � If � = 0�8, then the
observed autocorrelations should be 0�8� 0�64� 0�512� 0�410� 0�328� � � � � a geometrically
decaying pattern, not too unlike that in Figure 9.2B.

To gain some appreciation for the importance of models like the AR(1) model, we
consider estimation of the standard error for the estimate of the mean �. Under the AR(1)
model, a large sample approximation to the standard error for the mean is:

	√
n

1
�1−��

�

For a sample of size 100 from an AR(1) model with 	 = 1 and � = 0�5, the standard
error of the mean is 0.2. This is exactly twice the value that results from the use of the
usual 	/

√
n formula. Use of the usual standard error formula will result in misleading

and biased confidence intervals for time series where there is substantial autocorrelation.
There are several alternative methods for estimating the parameter �. One is to use the

autocorrelation at lag 1, here equal to 0.8319. The maximum likelihood estimator, equal
to 0.8376, is an alternative.2

The general AR(p) model

It is possible to include regression terms for Xt against observations at greater lags
than one. The autoregressive model of order p (the AR(p) model) regresses Xt against
Xt−1�Xt−2� � � � �Xt−p:

Xt = �+�1�Xt−1 −��+· · ·+�p�Xt−p −��+�t� t = 1� 2� � � � �

where �1��2� � � � ��p are additional parameters that would need to be estimated.
Estimation proceeds in the same way as for the AR(1) model. For example, if we

fit an AR(2) model (using maximum likelihood) to the Lake Huron data, we obtain
estimates3 �̂1 = 1�044 and �̂2 = −0�250. The question then arises as to how large p
should be, that is, how many AR parameters are required. We will briefly consider two
approaches.

1 ## series.diff <- diff(series)
2 LH.yw <- ar(x = LakeHuron, order.max = 1, method = "yw")

# autocorrelation estimate
# order.max = 1 for the AR(1) model

LH.yw$ar # autocorrelation estimate of alpha
LH.mle <- ar(x = LakeHuron, order.max = 1, method = "mle")

# maximum likelihood estimate
LH.mle$ar # maximum likelihood estimate of alpha
## Estimates of the series mean and of sigmaˆ2 can be obtained by typing
LH.mle$x.mean # estimated series mean
LH.mle$var.pred # estimated innovation variance

3 LH.mle2 <- ar(LakeHuron, order.max=2, method="mle")
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Figure 9.3 Partial autocorrelation function for the Lake Huron depth measurements.

The first is based on the AIC, which was introduced in Subsection 6.4.2. Use of this
criterion, with models fitted using maximum likelihood,4 suggests an AR(2) model, with
the parameter estimates given above.

A plot of the partial autocorrelation function allows a more informal approach. A par-
tial autocorrelation at a particular lag measures the strength of linear correlation between
observations separated by that lag, after adjusting for correlations between observations
separated by fewer lags. The partial autocorrelation at lag 4, for example, is the estimate
of �4 for an AR(4) model. Figure 9.3 displays a plot of the partial autocorrelations for
the Lake Huron data.5 This plot indicates, for example, that, after taking into account
observations at the previous two lags, the correlation between observations separated by
three or more lags is quite small. Thus, an AR(2) model seems appropriate, in agreement
with the result obtained using AIC.

9.1.4∗ Autoregressive moving average models – theory

In a moving average (MA) process of order q, the error term is the sum of an innovation �t

that is specific to that term, and a linear combination of earlier innovations �t−1, �t−2� � � � �

�t−q. The equation is:

Xt = �t + �t +b1�t−1 +· · ·+bq�t−q� (9.1)

where �1, �2� � � � � �q are independent random normal variables, all with mean 0. The
autocorrelation between terms that are more than q time units apart is zero. Moving
average terms can be helpful for modeling autocorrelation functions that are spiky, or
that have a sharp cutoff.

An autoregressive moving average (ARMA) model is an extension of an autoregressive
model to include “moving average” terms. Autoregressive integrated moving average
(ARIMA) models allow even greater flexibility. The model (AR or MA or ARMA)
is applied, not to the series itself, but to a differenced series, where the differencing
process may be repeated more than once. There are three parameters: the order p of the
autoregressive component, the order d of differencing (in our example 0) and the order q
of the moving average component. For details, see help(arima).

4 ar(LakeHuron, method="mle") # AIC is used by default if
# order.max is not specified

5 acf(LakeHuron, type="partial", main="")
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Figure 9.4 Theoretical autocorrelations for a moving average process, with the parameters shown.
The thin gray lines are the partial autocorrelations.

Figure 9.4 shows the autocorrelation functions for simulations of several different
moving average models. Notice that:

• with b1 = 0�5 (q = 1) there is a spike at lag 1,
• with b1 = b2 = 0, b3 = 0�5 (q = 3) there is a spike at lag 3,
• with b1 = b2 = 0, b3 = 0�5, b4 = 0� b5 = 0�5 (q = 5) there are spikes at lags 2, 3 and 5,
• with bi = 0�5 (i = 1� � � � � 5), there are spikes at the first five lags.

9.2∗ Regression modeling with moving average errors

The Southern Oscillation Index (SOI) is the difference in barometric pressure at sea level
between Tahiti and Darwin. Annual SOI and rainfall data for various parts of Australia,
for the years 1900–2005, are in the data frame bomsoi. (See Nicholls et al. (1996) for
background.) To what extent is the SOI useful for predicting Australian annual average
rainfall? The present discussion will examine the relationship between all-Australian
rainfall (avrain) and SOI.

It will turn out that, in fitting a regression model, a moving average model is effective
at capturing the error structure. The function arima() is able to incorporate covariate
(regression) effects. We will, in addition, need the function ts() that is included in the
default stats package.

Figure 9.5 plots the two series. The code is:

## Plot time series avrain and SOI: ts object bomsoi (DAAG)

plot(ts(bomsoi[, 15:14], start=1900),

panel=function(y,...)panel.smooth(bomsoi$Year, y,...))

The saucer-shaped trend for the rainfall series combines with the inverted saucer-shaped
trend for the Southern Oscillation Index data to give a small negative correlation between
the trend curves for the two series. We will demonstrate this relationship shortly.
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Figure 9.5 Plots of avrain (all of Australia) and SOI (Southern Oscillation Index), against
year.

Note also that the rainfall data seem positively skewed. A square root or cube root
transformation (Stidd, 1953) is commonly used to rectify this. Here, a cube root trans-
formation will be used. The following code creates a new data frame xbomsoi that has
the cube root transformed rainfall data, together with trend estimates (over time) for SOI
and cuberootRain.

xbomsoi <-

with(bomsoi, data.frame(SOI=SOI, cuberootRain=avrainˆ0.33))

xbomsoi$trendSOI <- lowess(xbomsoi$SOI)$y

xbomsoi$trendRain <- lowess(xbomsoi$cuberootRain)$y

Figure 9.6 shows a plot of the data, with fitted smooth curve. Superimposed on the
plot is a thick gray curve that shows the relationship between the two trend curves. It is
interesting and instructive that these two curves show quite different relationships. The
code is:

rainpos <- pretty(bomsoi$avrain, 5)

with(xbomsoi,

{plot(cuberootRain ˜ SOI, xlab = "SOI",

ylab = "Rainfall (cube root scale)", yaxt="n")

axis(2, at = rainposˆ0.33, labels=paste(rainpos))

## Relative changes in the two trend curves

lines(lowess(cuberootRain ˜ SOI))

lines(lowess(trendRain ˜ trendSOI), lwd=2, col="gray40")

})

For understanding the relationship between cuberootRain and SOI, it is necessary
to distinguish effects that seem independent of time from effects, evident in the heavy
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Figure 9.6 Plot of rainfall (cube root scale) against SOI, with fitted smooth curve. Superimposed
on the plot is a thick gray curve, pretty much at a right angle to the other curve, that shows the
relationship between the trend curve for the cube root of rainfall and the trend curve for SOI.

curve in Figure 9.6, that result from a steady pattern of change over time. For this purpose
detrended series will be required, both for cuberootRain and for SOI:

xbomsoi$detrendRain <-

with(xbomsoi, cuberootRain - trendRain + mean(trendRain))

xbomsoi$detrendSOI <-

with(xbomsoi, SOI - trendSOI + mean(trendSOI))

Figure 9.7A plots cuberootRain against SOI, while Figure 9.7B gives the equiva-
lent plot for the detrended series.6

The analysis that follows will model the relationship that seems apparent in Figure
9.7B. A linear relationship will be assumed. Following the initial analysis, this should
be checked against the suggestion, in Figure 9.7B, of a quadratic relationship. The time
series structure of the data will almost inevitably lead to correlated errors that should be
modeled or at least investigated, in order to obtain realistic standard errors for model
parameters and to make accurate inferences.

A first step is to fit a line as for uncorrelated errors; then using the residuals to get an
initial estimate of the error structure. Figure 9.8 shows the autocorrelation structure and
partial autocorrelation structure of the residuals. The code is:

attach(xbomsoi)

xbomsoi.ma0 <- arima(detrendRain, xreg=detrendSOI, order=c(0,0,0))

6 oldpar <- par(mfrow=c(1,2), pty="s")
plot(cuberootRain ˜ SOI, data = xbomsoi,

ylab = "Rainfall (cube root scale)", yaxt="n")
axis(2, at = rainposˆ0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(cuberootRain ˜ SOI)))
plot(detrendRain ˜ detrendSOI, data = xbomsoi,
xlab="Detrended SOI", ylab = "Detrended rainfall", yaxt="n")

axis(2, at = rainposˆ0.33, labels=paste(rainpos))
with(xbomsoi, lines(lowess(detrendRain ˜ detrendSOI)))
par(oldpar)



294 Time series models

–20 –10 0 1 0 20

SOI

R
ainf

all (c
ub

e root 
sc

ale)

400
600

800

A

–20 –10 0 10 20

Detrended SOI

Detrended r
ainf

all

300
400

600

B

Figure 9.7 Plot of (A) rainfall (cube root scale) against SOI, and (B) detrended rainfall against
detrended SOI.
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Figure 9.8 Plot of autocorrelation function for the residuals from the regression of detrendRain
on detrendSOI.

There is a clear negative autocorrelation at lag 12, with at best weak evidence of
autocorrelation beyond a lag of 12. In view of our earlier discussion of MA processes
(Subsection 9.1.4), either of the two following strategies seem reasonable:

• Fit an MA process of order 12, then dropping out (i.e., fixing to zero) coefficients that
are not clearly significant.
xbomsoi.ma12 <- arima(detrendRain, xreg=detrendSOI,

order=c(0,0,12))

• Fit a seasonal term with a period of 12 (this has a coefficient at lag 12, but none
at smaller lags), then rechecking the autocorrelation and partial autocorrelations to
determine what part of the autocorrelation remains to be explained:
xbomsoi.ma12s <- arima(detrendRain, xreg=detrendSOI,

seasonal=list(order=c(0,0,1), period=12))

Here, the first of these strategies will be followed:

> xbomsoi.ma12

Coefficients:

ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8

0.023 -0.137 -0.031 -0.251 -0.071 0.036 -0.080 0.056
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s.e. 0.103 0.106 0.110 0.119 0.113 0.141 0.121 0.123

ma9 ma10 ma11 ma12 intercept detrendSOI

0.216 -0.008 -0.293 -0.460 7.524 0.035

s.e. 0.167 0.115 0.156 0.126 0.007 0.004

sigmaˆ2 estimated as 0.0842: log likelihood = -22.7, aic = 75.3

Clearly the coefficients ma4 and ma12 should be retained. A case might be made,
also, for retaining the coefficients ma9 and ma11. The parameter fixed allows us to
set other MA coefficients to zero; an NA is placed in elements of fixed that correspond
to parameters that are to be estimated:

> xbomsoi.maSel <- arima(x = detrendRain, order = c(0, 0, 12),

+ xreg = detrendSOI, fixed = c(0, 0, 0,

+ NA, rep(0, 4), NA, 0, NA, NA, NA, NA))

> xbomsoi.maSel

Call:

arima(x = detrendRain, order = c(0, 0, 12), xreg = detrendSOI,

fixed = c(0, 0, 0, NA, rep(0, 4), NA, 0, NA, NA, NA, NA))

Coefficients:

ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8 ma9 ma10

0 0 0 -0.219 0 0 0 0 0.126 0

s.e. 0 0 0 0.101 0 0 0 0 0.139 0

ma11 ma12 intercept detrendSOI

-0.127 -0.482 7.524 0.037

s.e. 0.130 0.123 0.011 0.004

sigmaˆ2 estimated as 0.0894: log likelihood = -24.6, aic = 63.2

Notice that the coefficient and SE for detrendSOI are, to the accuracy of the output,
the same as when all 12 moving average coefficients are included.

In summary, there are two phenomena that seem relatively unconnected. The net effect
of the different trend curves over the past 105 years for rainfall and SOI is a negative
correlation; a downward trend in the SOI over the past half-century has been matched
by an upward trend of very nearly constant relative magnitude in rainfall. Values of
rainfall and SOI vary widely about the individual trend lines. Whenever the SOI for any
individual year is above the trend line, the Australian average rainfall in that year tends
to be above the trend line for rainfall.

Departures from the trend for SOI explain 47% of the variance in departures
from the trend for cuberootRain. This is found by comparing the estimate of
	2 from the model xbomsoi.maSel that was fitted above with that from the
model:

xbomsoi0.maSel <- arima(x = detrendRain, order = c(0, 0, 12),

fixed = c(0, 0, 0,

NA, rep(0, 4), NA, 0, NA, NA, NA))

detach(xbomsoi)
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This estimate of proportion of variance explained depends on the correlation structure
that is, finally, used. If xbomsoi.ma is compared with the equivalent model that omits
the vector xreg of external regressors, the estimate is then that 37% of the variance is
explained.

Additionally, rainfall is an average taken over the whole of Australia. The rela-
tionship is likely to be stronger for rainfall in north-eastern regions, and weaker in
the south.

Other checks and computations

Checking the autocorrelations among the residuals is recommended. The Box.test()
function provides a so-called portmanteau test of whiteness (i.e., lack of autocorrela-
tion) of the residuals. The Box–Ljung test statistic essentially adds up the squares of
the first m sample autocorrelation estimates. Properly normalized, this statistic has an
approximate chi-squared distribution on m degrees of freedom, provided there really is
no autocorrelation among the residuals.

In the following code, we specify m (i.e., the maximal lag) to be 20, arguing that
a meaningful autocorrelation estimate at any higher lag than this is not plausible, for
a series of this length. The number should not be too large, so that the flow-on from
autocorrelation at lower lags is still evident.

> Box.test(resid(lm(detrendRain ˜ detrendSOI, data = xbomsoi)),

+ type="Ljung-Box", lag=20)

Box-Ljung test

data: resid(lm(detrendRain ˜ detrendSOI, data = xbomsoi))

X-squared = 34.5, df = 20, p-value = 0.02321

Figure 9.7B suggested that a straight line regression model was adequate. We may
however wish to carry out a formal check on whether a squared (detrendSOIˆ2) term
is justified. The code is:

> attach(xbomsoi)

> xbomsoi2.maSel <- arima(x = detrendRain, order = c(0, 0, 12),

+ xreg = poly(detrendSOI,2), fixed = c(0,

+ 0, 0, NA, rep(0, 4), NA, 0, rep(NA,5)))

> xbomsoi2.maSel

Call:

arima(x = detrendRain, order = c(0, 0, 12),

xreg = poly(detrendSOI, 2), fixed = c(0, 0, 0, NA, rep(0, 4),

NA, 0, NA, NA, NA, NA, NA))

Coefficients:

ma1 ma2 ma3 ma4 ma5 ma6 ma7 ma8 ma9 ma10 ma11

0 0 0 -0.4543 0 0 0 0 0.4081 0 -0.2772

s.e. 0 0 0 0.1004 0 0 0 0 0.1203 0 0.1013
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ma12 intercept 1 2

-0.6989 7.5238 2.3623 0.1905

s.e. 0.1074 0.0067 0.2241 0.2425

sigmaˆ2 estimated as 0.06428: log likelihood = -21.36, aic = 58.72

The quadratic orthogonal polynomial term falls well short of the conventional 5% level
of statistical significance.

As well as checking that most of the sequential correlation has been removed from the
residuals, a check on normality may be desirable:

## Examine normality of estimates of "residuals" ("innovations")

qqnorm(resid(xbomsoi.maSel, type="normalized"))

detach(xbomsoi)

9.3∗ Non-linear time series

In the ARMA models so far considered, the error structures have been constructed
from linear combinations of the innovations, and the innovations have been i.i.d. normal
random variables. Such models are unable to capture the behavior of series where the
variance fluctuates widely with time, as happens for many financial and economic time
series.

ARCH (autoregressive conditionally heteroscedastic) and GARCH (generalized
ARCH) models have been developed to meet these requirements. The principal idea
behind a GARCH model is that there is an underlying (or hidden) process which governs
the variance of the noise term (i.e., �t) while ensuring that these noise terms at differ-
ent times remain uncorrelated. Perhaps the simplest example is a model with normal
ARCH(1) errors. In such a model, the error term at the current time step is normally
distributed with mean 0 and with a variance linearly related to the square of the error
at the previous time step. In other words, squares of noise terms form an autoregressive
process of order 1. Thus, an AR(1) process with ARCH(1) errors is given by:

Xt = �+��Xt−1 −��+�t�

where �t is normal with mean 0 and variance 	2
t = �0 + ��2

t−1. The error terms �t

are uncorrelated, while their squares have long-range correlations with the squares of
historical values of the error term.

GARCH models are an extension of ARCH models. In a GARCH model of order
�p� q�, 	2

t is the sum of two terms: (1) a linear function both of the previous p squares of
earlier errors, as for an ARCH model of order p and (2) a linear function of the variances
of the previous q error terms.

The function garch() (in the tseries package; compiled by A. Trapletti, 2005), allows
for estimation of the mean and the underlying process parameters for a given time series
by maximum likelihood, assuming normality. Note also the function white.test()
which can be used to test for non-linearity, either in the dependence of the error term
on earlier errors, or in residuals from a regression that includes a time series term. We
caution that the results of such tests should be interpreted with care; such non-linearity
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can manifest itself in innumerable ways, and such tests will not necessarily be sensitive
to the particular type of non-linearity present in a particular data set.

The following code may be used to simulate an ARCH(1) process with �0 = 0�25 and
�1 = 0�95:

x <- numeric(999) # x will contain the ARCH(1) errors

x0 <- rnorm(1)

for (i in 1:999){

x0 <- rnorm(1, sd=sqrt(.25 + .95*x0ˆ2))

x[i] <- x0

}

[Note that because the initial value is not quite set correctly, a “burn-in” period is required
for this to settle down to a close approximation to an ARCH series.]

We can use the garch() function to estimate the parameters from the simulated data.
Note that the order argument specifies the number of MA and AR terms, respectively.
With a longer time series, we would expect the respective estimates to converge towards
0.25 and 0.95.

> library(tseries)

> garch(x, order = c(0, 1), trace=FALSE)

Coefficient(s):

a0 a1

0.2412 0.8523

The fSeries package, which is part of the Rmetrics suite (Wurtz, 2004), substantially
extends the abilities that are in tseries.

9.4 Other time series packages

The range of time series abilities that are available in R is extensive. Apart from packages
mentioned earlier see: pear, for periodic autoregressive models, including methods for
plotting periodic time series; zoo, for irregular time series; fracdiff, for fractionally dif-
ferenced ARIMA “long memory” processes, where the correlation between time points
decays very slowly as the points move apart in time; strucchange, for estimating and
testing for change points; and the bundle of packages dse, for multivariate ARMA, state
space modeling, and associated forecasting.

9.5 Further reading

Chatfield (2003) is a relatively elementary introduction to time series. Brockwell and
Davis (2002) is an excellent and practically oriented introduction, with more mathematical
detail than Chatfield. Diggle (1990) offers a more advanced practically oriented approach.

On ARCH and GARCH models, see Gourieroux (1997), the brief introduction
in Venables and Ripley (2002, pp. 414–18), and references given there. See also the
references given on the help page for the garch() function.
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9.5.1 Spatial statistics

We have noted that time series ideas can be applied without modification to spatial
series in one dimension. In fact, it is also possible to handle higher-dimensional spatial
data. Geostatistics, and spatial modeling in general, is concerned with notions of spatial
autocorrelation. Kriging is a widely used multi-dimensional smoothing method. This gives
best linear unbiased estimates in a spatial context. We direct the interested reader to the
spatial library and the references given there.

As our discussion has indicated, ARIMA processes provide an integrated framework
that include AR and ARMA processes as special cases. Their use in time series modeling
and forecasting was popularized by Box and Jenkins in the late 1960s; hence they are
often called Box–Jenkins models.

State space modeling approaches, which are now coming into wide use, are an important
alternative. They provide a theoretical basis for the widely popular exponential forecasting
methodology, and for various extensions of exponential forecasting. See Ord et al. (1997)
and Hyndman et al. (2002). These approaches are intuitively appealing because they
discount information from the remote past. Hyndman et al. give an interesting and
insightful comparison of a number of different forecasting approaches, in which methods
of this type do well. Methods of this type are implemented in the StructTS() and
HoltWinters() functions in the stats package.

9.5.2 References for further reading

Brockwell, P. and Davis, R. A. 2002. Time Series: Theory and Methods, 2nd edn. Springer-
Verlag.

Chatfield, C. 2003. The Analysis of Time Series: An Introduction, 2nd edn. CRC Press.
Diggle, P. 1990. Time Series: A Biostatistical Introduction. Clarendon Press.
Gourieroux, C. 1997. ARCH Models and Financial Applications. Springer-Verlag.
Hyndman, R. J., Koehler, A. B., Snyder, R. D. and Grose, S. 2002. A state space framework

for automatic forecasting using exponential smoothing methods. International Journal
of Forecasting 18: 439–54.

Ord, J. K., Koehler, A. B. and Snyder, R. D. 1997. Estimation and prediction for a class of
dynamic nonlinear statistical models. Journal of the American Statistical Association
92: 1621–9.

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.
Springer-Verlag.

9.6 Exercises

1. A time series of length 100 is obtained from an AR(1) model with 	 = 1 and � = −0�5. What
is the standard error of the mean? If the usual 	/

√
n formula were used in constructing a

confidence interval for the mean, with 	 defined as in Subsection 9.1.3, would it be too narrow
or too wide?

2. Use the ar function to fit the second-order autoregressive model to the Lake Huron time
series.
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3. Repeat the analysis of Subsection 9.2, replacing avrain by: (i) southRain, i.e., annual
average rainfall in Southern Australia; (ii) northRain, i.e., annual average rainfall in Northern
Australia.

4. In the calculation
Box.test(resid(lm(detrendRain ˜ detrendSOI, data = xbomsoi)),

type="Ljung-Box", lag=20)

try the test with lag set to values of 1 (the default), 5, 20, 25 and 30. Comment on the different
results.

5.∗ Use the arima.sim function in the ts library to simulate 100 000 values from an AR(1)
process with � = −0�5. Now break this up into 1000 series of length 100. If x is the series, a
straightforward way to do this is to set
xx <- matrix(x, ncol=1000}

Now use the function apply() (Subsection 12.7.2) to find the means for each of these series
of length 100. Compare ∑

�Xt − X̄�2

n−1

with var[X̄ ] estimated from the formula 	2

n�1−��
.

For comparison, check the effect of using var�X�

n
to estimate the variance. First calculate

the ordinary sample variance for each of our 1000 series. Then compute the average of these
variance estimates and divide by the sample size, 100. (This gives a value that is also close to
that predicted by the theory, roughly three times larger than the value that was obtained using
the correct formula.)

6. Sugar content in cereal is monitored in two ways: a lengthy lab analysis and by using quick,
inexpensive high performance liquid chromatography. The data in frostedflakes (DAAG)
come from 101 daily samples of measurements taken using the two methods.

(a) Obtain a vector of differences between the pairs of measurements.
(b) Plot the sample autocorrelation function of the vector of differences. Would an MA(1)

model be more realistic than independence?
(c) Compute a confidence interval for the mean difference under the independence assumption

and under the MA(1) assumption.

7.∗ Take first differences of the logarithms of the first component of the time series object
ice.river (tseries package), i.e.
library(tseries)

data(ice.river) # Needed with version 0.9-30 of tseries

river1 <- diff(log(ice.river[, 1]))

Use arima() to fit an ARMA(1,2) model to river1. Plot the residuals. Do they appear to
have a constant variance? Test the residuals for non-linearity.
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Multi-level models and repeated measures

This chapter further extends the discussion of the models that are a marked departure
from the independent errors models of Chapters 5 to 8. In the models that will be
discussed, there is a hierarchy of variation. Often, variation at “lower” levels of variation
is nested within variation at higher level(s), reflecting a a nested data structure. For
example, students might be sampled from different classes, which in turn are sampled
from different schools. Or, crop yields might be measured on multiple parcels of land
which are located at a number of different sites.

Multi-level models may be suitable for the analysis of data from field trials, with results
for each of several parcels of land at each of a number of different sites. More than one
generalization – here to new sites, or to new parcels within an existing site — is possible.
Prediction for a new parcel at one of the existing sites is likely to be more accurate than a
prediction for a totally new site. Multi-level models, that is, models which have multiple
error (or noise) terms, are able to account for such differences in predictive accuracy.

Repeated measures models are multi-level models where measurements consist of
multiple profiles in time or space; each profile can be viewed as a time series. Such data
may arise in a clinical trial, and animal or plant growth curves are common examples;
each “individual” is measured at several different times. Typically, the data exhibit some
form of time dependence that the model should accommodate.

By contrast with the data that typically appear in a time series model, repeated measures
data consist of multiple profiles through time. Relative to the length of time series that is
required for a realistic analysis, each individual repeated measures profile can and often
will have values for a small number of time points only. Repeated measures data has,
typically, multiple time series that are of short duration.

This chapter will make a foray into the types of models that were discussed above,
starting with multi-level models. An introduction to repeated measures modeling then
follows. Ideas that will be central to the discussion are:

• fixed and random effects,
• variance components, and their connection, in special cases, with expected values of

mean squares,
• the specification of mixed models with a simple error structure,
• sequential correlation in repeated measures profiles.

Multi-level model and repeated measures analyses will use the package lme4, which
must be installed. The package lme4 is a partial replacement for the older nlme package.
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The function lmer(), from lme4, is a more flexible and powerful replacement for
lme(), from nline. The data set Orthodont that is used for the analyses of Subsection
10.5.2, and several data sets that appear in the exercises, are in the MEMSS package.

10.1 A one-way random effects model

An especially simple multi-level model is the random effects model for the one-way
layout. Thus, consider data, in the data frame ant111b in the DAAG package, from an
agricultural experiment where corn yield measurements were taken on four parcels of
land within each of eight sites on the Caribbean island of Antigua. Figure 10.1 gives a
visual summary.

Figure 10.1 suggests that, as might be expected, parcels on the same site will be
relatively similar, while parcels on different sites will be relatively less similar. A farmer
whose farm was close to one of the experimental sites might take data from that site as
indicative of what he/she might expect. In other cases it may be more appropriate for a
farmer to regard his/her farm as a new site, distinct from the experimental sites, so that
the issue is one of generalizing to a new site. Prediction for a new parcel at one of the
existing sites is more accurate than prediction for a totally new site.

There are two levels of random variation. They are site, and parcel within site. Variation
between sites may be due, for example, to differences in elevation or proximity to bodies
of water. Within a site, one might expect different parcels to be somewhat similar in terms
of elevation and climatic conditions; however, differences in soil fertility and drainage
may still have a noticeable effect on yield. (Use of information on such effects, not
available as part of the present data, might allow more accurate modeling.)

The model will need: (a) a random term that accounts for variation within sites, and
(b) a second superimposed random term that allows variability between parcels that are
on different sites to be greater than variation between parcels within sites. The different
random terms are known as random effects.

H arve st weight of corn

DBAN

LFAN

N SAN

ORAN

OVAN

TEAN

WEAN

WLAN

2 3 4 5 6 7

Figure 10.1 Corn yields for four parcels of land in each of eight sites on the Caribbean island of
Antigua. Data are in Table 10.1. They are a summarized version (parcel measurements are block
means) of a subset of data given in Andrews and Herzberg (1985, pp. 339–353).
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The model can be expressed as:

yield = overall mean + site effect
(random) + parcel effect (within site)

(random) (10.1)

Because of the balance (there are four parcels per site), an analysis of variance approach
using aov() is entirely satisfactory for these data. The output from aov() will be
compared and set alongside results from the use of the function lmer() from the
package lme4 (Bates, 2005). The comparison is between a traditional analysis of variance
approach, which is fine for data from a balanced experimental design, and a general
multi-level modeling approach that can in principle handle both balanced and unbalanced
designs.

10.1.1 Analysis with aov()

In the above model, the overall mean is assumed to be a fixed constant, while the site
and parcel effects are both assumed to be random. If we use aov(harvwt ˜ site),
then aov() will generate the usual error term that is associated with differences between
parcels, but there will not be an error term from differences between sites. In order to
account for the two levels of variation, it is necessary to include an Error(site)
term in the model formula. (Explicit mention of the “within site” level of variation is
unnecessary. Use of the error term Error(site/parcel), which explicitly identifies
parcels within sites, is however allowed.)

> library(DAAG)

> ant111b.aov <- aov(harvwt ˜ Error(site), data=ant111b)

> summary(ant111b.aov)

Error: site

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 7 70.34 10.05

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 24 13.861 0.578

The analysis of variance breaks the total sum of squares about the mean into two parts –
variation within sites, and variation between site means. Since there are eight sites, the
variation between sites is estimated from seven degrees of freedom, after estimating
the overall mean. Within each site, estimation of the site mean leaves three degrees of
freedom for estimating the variance for that site. Three degrees of freedom at each of
eight sites yields 24 degrees of freedom for estimating within-site variation.

Interpreting the mean squares

The division of the sum of squares into two parts mirrors the two different types of
prediction that can be based on these data.
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Table 10.1 The leftmost column has harvest weights (harvwt), for the parcels
in each site, for the Antiguan corn data. Each of these harvest weights can be
expressed as the sum of the overall mean (= 4.29), site effect (fourth column), and
residual from the site effect (final column). The information in the fourth and final
columns can be used to generate the sums of squares and mean squares for the
analysis of variance table.

Site

Site Parcel measurements means effects Residuals from site mean

DBAN 5.16, 4.8, 5.07, 4.51 4�88 +0.59 0.28, −0.08, 0.18, −0.38
LFAN 2.93, 4.77, 4.33, 4.8 4�21 −0.08 −1.28, 0.56, 0.12, 0.59
NSAN 1.73, 3.17, 1.49, 1.97 2�09 −2.20 −0.36, 1.08, −0.6, −0.12
ORAN 6.79, 7.37, 6.44, 7.07 6�91 +2.62 −0.13, 0.45, −0.48, 0.15
OVAN 3.25, 4.28, 5.56, 6.24 4�83 +0.54 −1.58, −0.56, 0.73, 1.4
TEAN 2.65, 3.19, 2.79, 3.51 3�03 −1.26 −0.39, 0.15, −0.25, 0.48
WEAN 5.04, 4.6, 6.34, 6.12 5�52 +1.23 −0.49, −0.93, 0.81, 0.6
WLAN 2.02, 2.66, 3.16, 3.52 2�84 −1.45 −0.82, −0.18, 0.32, 0.68

First, suppose that we take measurements on four new parcels at one of the existing
sites. Within what range of variation would we expect its average yield to lie? In this case,
the only source of uncertainty is parcel to parcel variation within the existing site. Recall
that standard errors of averages can be estimated from the square root of the (within)
residual mean square divided by the sample size (in this case, four). Note that this is
another form of the pooled variance estimate discussed in Chapter 4. Thus the relevant
standard error is

√
0�578/4 = 0.38.

Second, for prediction of an average of four parcels at some different site, not one
of the original eight, the relevant standard error can be calculated in the same way, but
using the between-site mean square; it is

√
10�05/4 =1.6.

Details of the calculations

This subsection may be omitted by readers who already understand the mean square
calculations. Table 10.1 contains the data and gives an indication of the mean square
calculations used to produce the anova table.

First, the overall mean is calculated. It is 4.29 for this example. Then site means are
calculated using the parcel measurements. Site effects are calculated by subtracting the
overall mean from the site means. The parcel effects are the residuals after subtracting
the site means from the individual parcel measurements.

The between-site sum of squares is obtained by squaring the site effects, summing,
and multiplying by four. This last step reflects the number of parcels per site. Dividing
by the degrees of freedom (seven) gives the mean square.

The within-site sum of squares is obtained by squaring the residuals (parcel effects),
summing, and dividing by the degrees of freedom (24).
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Practical use of the analysis of variance results

Treating sites as random when we do the analysis does not at all commit us to treating it as
random for purposes of predicting results from a new site. Rather, it allows us this option,
if this seems appropriate. Consider how a person who has newly come to the island, and
intends to purchase a farming property, might assess the prospects of a farming property
that is available for purchase. Two extremes in the range of possibilities are:

1. The property is similar to one of the sites for which data are available, so similar
in fact that yields would be akin to those from adding new parcels that together
comprise the same area on that site.

2. It is impossible to say with any assurance where the new property should be placed
within the range of results from experimental sites. The best that can be done is to
treat it as a random sample from the population of all possible sites on the island.

Given adequate local knowledge (and ignoring changes that have taken place since these
data were collected!) it might be possible to classify most properties on the island as likely
to give yields that are relatively close to those from one or more of the experimental sites.
Given such knowledge, it is then possible to give a would-be purchaser advice that is
much more finely tuned. The standard error (for the mean of four parcels) is likely to be
much less than 1.6, and may for some properties be closer to 0.38. In order to interpret
analysis results with confidence, and give the would-be purchaser high-quality advice, a
fact-finding mission to the island of Antigua may be expedient!

Random effects vs. fixed effects

The random effects model bears some resemblance to the one-way model considered in
Chapter 4. However, there is an important difference. In the one-way layout of Chapter
4, there was specific interest in differences between fixed levels of the factor, that is,
fertilizer–type combinations. There was no attempt to generalize the results of the analysis
to other possible fertilizer–type combinations, nor would such generalization make sense.
Predictions are restricted to fertilizer–type combinations considered in the study. Only
one level of prediction is possible.

The random effects model allows for predictions at two levels. We can predict agri-
cultural yield at a new location within an existing site, and we can make predictions at
locations in sites which were not included in the original study.

Nested factors – a variety of applications

Random effects models apply in any situation where there is more than one level of
random variability. In many situations, one source of variability is nested within the
other – thus parcels are nested within sites.

Other examples include: variation between houses in the same suburb, as against
variation between suburbs; variation between different clinical assessments of the same
patients, as against variation between patients; variation within different branches of the
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same business, as against variation between different branches; variations in the bacterial
count between subsamples of a sample taken from a lake, as opposed to variation between
different samples; variation between the drug prescribing practices of clinicians in a
particular specialty in the same hospital, as against variation between different clinicians
in different hospitals; and so on. In all these cases, the accuracy with which predictions
are possible will depend on which of the two levels of variability is involved. These
examples can all be extended in fairly obvious ways to include more than two levels of
variability.

Variation can also be crossed. For example, different years may be crossed with
different sites. Years are not nested in sites, nor are sites nested in years. In agricultural
yield trials these two sources of variation may be comparable; see for example Talbot
(1984).

10.1.2 A more formal approach

At this point, a formal mathematical description of the model seems necessary. The
model is:

yij = �+ �i
(site, random) + 
ij

(parcel, random) �i = 1� � � � � 8� j = 1� � � � � 4�

with var��i� = 	2
L, var�
ij� = 	2

W. The quantities 	2
L (L = location, another term for site)

and 	2
W (W = within) are referred to as variance components.

Variance components allow inferences that are not immediately available from the
information in the analysis of variance table. Importantly, the variance components pro-
vide information that can help design another experiment.

Relations between variance components and mean squares

The expected values of the mean squares are, in suitably balanced designs such as this,
linear combinations of the variance components. The discussion that now follows demon-
strates how to obtain the variance components from the analysis of variance calculations.
In an unbalanced design, this is not usually possible.

Consider, again, prediction of the average of four parcels within the ith existing site.
This average can be written as:

ȳi = �+�i + 
̄i�

where 
̄i denotes the average of the four parcel effects within the ith site. Since � and
�i are constant for the ith site (in technical terms, we condition on the site being the ith),
var�ȳi� is the square root of var�
̄i�, which equals 	W /

√
4.

In the aov() output, the expected mean square for Error: Within, that is, at the

within-site (between-packages) level, is 	2
W . Thus 	̂2

W = 0�578 and SE�ȳi� is estimated as
	̂W /

√
4 = √

0�578/4 = 0�38.
Next, consider prediction of the average yield at four parcels within a new site. The

expected mean square at the site level is 4	2
L +	2

W , that is, the between-site mean square,
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which in the aov() output is 10.05, estimates 4	2
L + 	2

W . The standard error for the
prediction of the average yield at four parcels within a new site is:√

	2
L +	2

W /4 =
√

�4	2
L +	2

W �/4�

The estimate for this is
√

10�05/4 = 1.59.
Finally, note how, in this balanced case, 	2

L can be estimated from the analysis of
variance output. Equating the expected between site mean square to the observed mean
square:

4	̂2
L + 	̂2

W = 10�05�

i.e.,

4	̂2
L +0�578 = 10�05�

so that 	̂2
L = �10�05−0�578�/4 = 2�37.

Interpretation of variance components

In summary, here is how the variance components can be interpreted, for the Antiguan

data. Plugging in numerical values ( 	̂2
W = 0.578 and 	̂2

L = 2.37), take-home messages
from this analysis are:

• For prediction for a new parcel at one of the existing sites, the standard error is 	̂W =√
0�578 = 0.76.

• For prediction for a new parcel at a new site, the standard error is
√

	2
L +	2

W =√
2�37+0�578 = 1.72.

• For prediction of the mean of n parcels at a new site, the standard error is√
	2

L +	2
W /n = √

2�37+0�578/n�

[Notice that while 	2
W is divided by n, 	2

L is not. This is because the site effect is the
same for all n parcels.]

• For prediction of the total of n parcels at a new site, the standard error is
√

	2
Ln+	2

W =√
2�37n+0�578.

Additionally

• The variance of the difference between two such parcels at the same site is 2	2
W .

[Both parcels have the same site effect �i, so that var��i� does not contribute to the
variance of the difference.]

• The variance of the difference between two parcels that are in different sites is:

2�	2
L +	2

W ��

This example demonstrates the extent to which, where there are multiple levels of vari-
ation, the predictive accuracy can be dramatically different, depending on what is to be
predicted. Similar issues arise in repeated measures contexts, and in time series.
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Intra-class correlation

From the perspective of the multi-level model, two observations at the same site are
correlated, while observations at different sites are uncorrelated. The extent of this corre-
lation is measured by a statistic that has the name intra-class correlation. For the model
considered here, the intra-class correlation is 	2

L/�	2
L + 	2

W �. This is the proportion of
residual variance explained by differences between sites.

Plugging in the variance component estimates, the intra-class correlation for the corn
yield data is 2�37/�2�37+0�578� = 0.804. Roughly 80% of the yield variation is due to
differences between sites.

10.1.3 Analysis using lmer()

In using the function lmer(), the assumption of two nested random effects, that is,
a hierarchy of two levels of variation, will be explicit. Variation between sites is the
“lower” of the two levels, called level 0. Variation between parcels in the same site is at
the “higher” of the two levels, and is conveniently called level 1. This model is explicit
from the start, rather than an afterthought of an algebraic breakdown of the sums of
squares about the mean.

The modeling command takes the form:

library(lme4)

ant111b.lmer <- lmer(harvwt ˜ 1 + (1 | site), data=ant111b)

The only fixed effect is the overall mean. The (1 | site) term fits random variation
between sites. Variation between the individual units that are nested within sites, that is,
between parcels, are by default treated as random. Here is the default output:

> options(digits=4)

> ## Output B from version 0.995-2 of lmer().

> ## Note that there is no degrees of freedom information.

> ant111b.lmer

Linear mixed-effects model fit by REML

Formula: harvwt ˜ 1 + (1 | site)

Data: ant111b

AIC BIC logLik MLdeviance REMLdeviance

98.42 101.3 -47.21 95.08 94.42

Random effects:

Groups Name Variance Std.Dev.

site (Intercept) 2.368 1.54

Residual 0.578 0.76

number of obs: 32, groups: site, 8

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.29 0.56 7.66

Observe that, according to lmer(), 	̂2
W = 0.578, and 	̂2

L = 2.368.
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Observe also that 	̂2
W = 0.578 is the mean square from the analysis of variance table.

The mean square at any level lower than level 2 does not drop out of the lmer()
analysis, not even in this balanced case.

Fitted values and residuals in lmer()

In multi-level models, fitted values can be calculated at each of the levels of variation
that are included in the model. Corresponding to each level of fitted values, there is a set
of residuals that is obtained by subtracting the fitted values from the observed values. In
the data under discussion, fitted values at level 0, which implies no adjustment for any
of the random effects, all evaluate to the overall mean.

The default, and at the time of writing the only option, is to calculate fitted values and
residuals at the highest available level, that is, adjusting for all except the highest level
of random effects. Here, these are the fitted values at level 1, and are estimates of the
site expected values. They differ slightly from the site means, as will be seen below.

Fitted values at level 1 (or at any higher level, if available) are known as BLUPs (Best
Linear Unbiased Predictors). Among linear unbiased predictors of the site means, the
BLUPs are designed to have the smallest expected error mean square.

Relative to the site means, the BLUPs are pulled in toward the overall mean. The most
extreme site means will on average, because of random variation, be more extreme than
the corresponding “true” means for those sites. For the simple model considered here,
the ith fitted value is given by:

ŷi = ŷi +
n	̂2

L

n	̂2
L + 	̂2

W

�ŷ − ŷi��

Shrinkage is substantial when n−1	̂2
W is large relative to 	̂2

L.
It is illuminating to calculate the BLUPs using the above formula, for comparison

with the values given by fitted(ant111b.lmer). Using the variance component
estimates, we obtain:

> s2W <- 0.578; s2L <- 2.37; n <- 4

> sitemeans <- with(ant111b, sapply(split(harvwt, site), mean))

> grandmean <- mean(sitemeans)

> shrinkage <- (n*s2L)/(n*s2L+s2W)

> grandmean + shrinkage*(sitemeans - grandmean)

DBAN LFAN NSAN ORAN OVAN TEAN WEAN WLAN

4.851 4.212 2.217 6.764 4.801 3.108 5.455 2.925

> ##

> ## More directly, use fitted() with the lmer object

> unique(fitted(ant111b.lmer))

[1] 4.851 4.212 2.217 6.764 4.801 3.108 5.455 2.925

> ##

> ## Compare with site means

> sitemeans

DBAN LFAN NSAN ORAN OVAN TEAN WEAN WLAN

4.885 4.207 2.090 6.915 4.832 3.036 5.526 2.841
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Observe that the fitted values differ slightly from the site means. For site means below
the overall mean (4.29), the fitted values are larger (closer to the overall mean), and for
site means above the overall mean, the fitted values are smaller.

Notice that fitted() has given the fitted values at level 1, that is, it adjusts for
the single random effect. The fitted value at level 0 is the overall mean, given by
fixef(ant111b.lmer). Residuals can also be defined on several levels. At level 0,
they are the differences between the observed responses and the overall mean. At level 1,
they are the differences between the observed responses and the fitted values at level 1
(which are the BLUPs for the sites).

*Uncertainty in the parameter estimates

The lme4 package has a function mcmcsamp() that implements a Markov Chain Monte
Carlo (MCMC) approach to assessing the uncertainty in parameter estimates. The pos-
terior distribution of the parameters is simulated, using a non-informative prior distribu-
tion. Credible intervals can be calculated; these are analogous to confidence intervals,
but have an easier interpretation, since they are actually probability statements. See
help(mcmcsamp) for more details.

The following code generates 1000 random samples from the relevant posterior distri-
bution:

> set.seed(41) # use to reproduce results below

> ant111b.samp <- mcmcsamp(ant111b.lmer, n=1000)

> # Now check the column names

> names (ant111b.samp)

[1] "(Intercept)" "log(sigmaˆ2)" "log(site.(In))"

Here (Intercept) is the intercept in the fitted model, which estimates the overall mean.
Note that a log scale has been used. The residual variance, 	2

W , has an estimate given by
sigmaˆ2, and the between site variance, 	2

L, has an estimate given by site.(In).
The 2.5% and 97.5% quantiles of the values in the respective columns can be used to

determine the required credible intervals. For the two variance estimates, we need to map
back from a logarithmic scale to the scale of the variances themselves:

> CI95 <- apply(ant111b.samp,2,function(x)quantile(x, prob=c(.025,.975)))

> # 95% limits for the overall mean

> CI95[,1]

2.5% 97.5%

3.00 5.43

> # 95% limits for the residual variance (sigmaˆ2)

> exp(CI95[,2])

2.5% 97.5%

0.366 0.994

> # 95% limits for the between site variance

> exp(CI95[,3])

2.5% 97.5%

1.00 9.57
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Handling more than two levels of random variation

There can be variation at each of several nested levels. Suppose, for example, that house
prices (price) were available at samples of 3-bedroom bungaloes within samples of
suburbs (suburb) located within a number of different American cities (city). We
now have three levels of variation: level 0 is house, level 1 is suburb, and level 2 is city.
Prices differ between cities, between suburbs within cities, and between houses within
suburbs.

Since level 1 and 2 variation must be reflected in the lmer() function call, we would
analyze such data using

## house.lmer <- lmer(price ˜ 1 + (1|city) + (1|city:suburb))

In addition, or instead of adding structure to the random part of the model, there may
be an interest in modeling the response variable as a linear function of “fixed effects.” For
example, there may be an interest in how price changes with floor area. The examples
in the next three sections demonstrate issues that arise in fitting such models, and in
interpreting results.

10.2 Survey data, with clustering

The data that will now be explored are from the data frame science (DAAG). They
are measurements of attitudes to science, from a survey where there were results from 20
classes in 12 private schools and 46 classes in 29 public (i.e., state) schools, all in and
around Canberra, Australia. Results are from a total of 1385 year 7 students. The variable
like is a summary score based on two of the questions. It is on a scale from 1 (dislike)
to 12 (like). The number in each class from whom scores were available ranged from 3
to 50, with a median of 21.5. Figure 10.2 compares results for public schools with those
for private schools.1

10.2.1 Alternative models

Within any one school, we might have

y = class effect + pupil effect�

where y represents the attitude measure.
Within any one school, we might use a one-way analysis of variance to estimate and

compare class effects. However, this study has the aim of generalizing beyond the classes

1 ## Means of like (data frame science: DAAG), by class
classmeans <- with(science,

aggregate(like, by=list(PrivPub, Class), mean) )
# NB: Class identifies classes independently of schools
# class identifies classes within schools

names(classmeans) <- c("PrivPub", "Class", "avlike")
attach(classmeans)
## Boxplots: class means by Private or Public school
boxplot(split(avlike, PrivPub), horizontal=TRUE, las=2,
xlab = "Class average of score", boxwex = 0.4)

rug(avlike[PrivPub == "private"], side = 1)
rug(avlike[PrivPub == "public"], side = 3)
detach(classmeans)
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Figure 10.2 Distribution of average scores across classes, compared between public and private
schools.

in the study to all of some wider population of classes, not just in the one school, but in a
wider population of schools from which the schools in the study were drawn. In order to
be able to generalize in this way, we treat school (school), and class (class) within
school, as random effects. We are interested in possible differences between the sexes
(sex), and between private and public schools (PrivPub). The two sexes are not a
sample from some larger population of possible sexes (!), nor are the two types of school
(for this study at least) a sample from some large population of types of school. Thus
they are fixed effects. The interest is in the specific fixed differences between males and
females, and between private and public schools.

The preferred approach is a multi-level model analysis. While it is sometimes possible
to treat such data using an approximation to the analysis of variance as for a balanced
experimental design, it may be hard to know how good the approximation is. We specify
sex (sex) and school type (PrivPub) as fixed effects, while school (school) and
class (class) are specified as random effects. Class is nested within school; within each
school there are several classes. The model is:

y = sex effect
(fixed)

+ type (private or public)
(fixed)

+ school effect
(random)

+ class effect
(random)

+ pupil effect
(random).

Questions we might ask are:

• Are there differences between private and public schools?
• Are there differences between females and males?
• Clearly there are differences among pupils. Are there differences between classes

within schools, and between schools, greater than pupil-to-pupil variation within classes
would lead us to expect?

The table of estimates and standard errors for the coefficients of the fixed component is
similar to that from an lm() (single level) analysis.

> science.lmer <- lmer(like ˜ sex + PrivPub + (1 | school) +

+ (1 | school:class), data = science,

+ na.action=na.omit)

> summary(science.lmer)
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Linear mixed-effects model fit by REML

Formula: like ˜ sex + PrivPub + (1 | school) + (1 | school:class)

Data: science

AIC BIC logLik MLdeviance REMLdeviance

5556.55 5582.71 -2773.27 5539.14 5546.55

Random effects:

Groups Name Variance Std.Dev.

school:class (Intercept) 3.206e-01 5.662e-01

school (Intercept) 1.526e-09 3.907e-05

Residual 3.052e+00 1.747e+00

number of obs: 1383, groups: school:class, 66; school, 41

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.7218 0.1624 29.072

sexm 0.1823 0.0982 1.857

PrivPubpublic 0.4117 0.1857 2.217

Correlation of Fixed Effects:

(Intr) sexm

sexm -0.309

PrivPubpblc -0.795 0.012

Degrees of freedom are as follows:

• Between types of school: 41 (number of schools) − 2 = 39
• Between sexes: 1383 − 1 (overall mean) − 1 (differences between males and females)

− 65 (differences between the 66 school:class combinations) = 1316

The comparison between types of schools compares 12 private schools with 29 public
schools, comprising 41 algebraically independent items of information. However, because
the numbers of classes and class sizes differ between schools, the three components of
variance contribute to these with different accuracies, and the 39 degrees of freedom are
for a statistic that has only an approximate t-distribution. On the other hand, schools are
made up of classes, each of which includes both males and females. The between-pupil
level of variation, where the only component of variance is that for the Residual
in the output above, is thus the relevant level for the comparison between males and
females. The t-test for this comparison is, under model assumptions, an exact test with
1316 degrees of freedom.

There are three variance components:2

Between schools (school) 0.00000000153
Between classes (school:class) 0.321
Between students (Residual) 3.052

2 ## The variances are included in the output from VarCorr()
VarCorr(science.lmer) # Displayed output differs slightly
# The between students (\texttt{Residual}) component of variance is
# attr(VarCorr(science.lmer),"sc")ˆ2
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It is important to note that these variances form a nested hierarchy. Variation between
students contributes to variation between classes. Variation between students and between
classes both contribute to variation between schools.

This table is interesting in itself. It tells us that differences between classes are greater
than would be expected from differences between students alone. It also suggests we
can do the following simpler analysis that does not account for the school component of
variance:

> science1.lmer <- lmer(like ˜ sex + PrivPub + (1 | school:class),

+ data = science, na.action=na.omit)

> summary(science1.lmer)

....

Random effects:

Groups Name Variance Std.Dev.

school:class (Intercept) 0.321 0.566

Residual 3.052 1.747

number of obs: 1383, groups: school:class, 66

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.7218 0.1624 29.07

sexm 0.1823 0.0982 1.86

PrivPubpublic 0.4117 0.1857 2.22

....

The variance components are, to two significant digits, the same as before. The function
mcmcsamp() will be used to get approximate 95% confidence intervals for the random
effects:

> science1.samp <- mcmcsamp(science1.lmer, n=1000)

> CI <- exp(apply(science1.samp[, 4:5], 2,

+ function(x)quantile(x, c(.025, .975))))

> colnames(CI) <- c("sigmaˆ2", "sigma_Classˆ2")

> round(CI, 2)

sigmaˆ2 sigma_Classˆ2

2.5% 2.83 0.19

97.5% 3.29 0.54

To what extent do differences between classes affect the attitude to science? A measure
of the effect is the intra-class correlation, which is the proportion of variance that is
explained by differences between classes. Here, it equals 0�321/�0�321+3�05� = 0�095.
The main influence comes from outside the class that the pupil attends, for example, from
home, television, friends, inborn tendencies, etc.

Do not be tempted to think that, because 0.321 is small relative to the within-class
component variance of 3.05, it is of little consequence. The variance for the mean of
a class that is chosen at random is 0.321 + 3.05/n. Thus, with a class size of 20, the
between class component makes a bigger contribution than the within-class component.
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Figure 10.3 Panel A plots class effects against number in the class. Panel B plots within-class
variance against number in the class. Panels C and D show normal probability plots, for the class
effect and for the level 1 residuals (adjusting for the class effect) respectively.

If all classes were the same size, then the standard error of the difference between class
means for public schools and those for private schools would, as there were 20 private
schools and 46 public schools, be:√

�0�321+3�05/n�

(
1

20
+ 1

46

)
�

From the output table of coefficients and standard errors, we note that the standard error of
difference between public and private schools is 0.1857. For this to equal the expression
just given, we require n = 19�1. Thus the sampling design is roughly equivalent to a
balanced design with 19.1 pupils per class.

Figure 10.3 displays information that may be helpful in the assessment of the model.
A simplified version of the code is:

class.df <- ranef(science1.lmer)[["school:class"]]

names(class.df) <- "classEff"

Class <- with(science, paste(school, class, sep=":"))

class.df$var <- with(science, sapply(split(like, Class), var))

class.df$num <- with(science, sapply(split(like, Class), length))

class.df$PrivPub <- with(science, sapply(split(PrivPub, Class),

function(x)x[1]))

par(mfrow=c(2,2))

plot(classEff ˜ num, data=class.df, pch=c(1,3)[unclass(PrivPub)])
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plot(var ˜ num, data=class.df, pch=c(1,3)[unclass(PrivPub)])

qqnorm(class.df$classEff)

qqnorm(residuals(science1.lmer))

par(mfrow=c(1,1))

Panels A shows no clear evidence of a trend. Panel B perhaps suggests that variances may
be larger for the small number of classes that had more than about 30 students. Panels C
and D show distributions that are probably acceptably close to normal. The interpretation
of panel C is complicated by the fact that the different effects are estimated with different
accuracies.

10.2.2 Instructive, though faulty, analyses

Ignoring class as the random effect

It is important that the specification of random effects be correct. It is enlightening
to do an analysis that is not quite correct, and investigate the scope that it offers for
misinterpretation. We fit school, ignoring class, as a random effect. The estimates
of the fixed effects change little.

> science2.lmer <- lmer(like ˜ sex + PrivPub + (1 | school),

+ data = science, na.action=na.exclude)

> science2.lmer

. . . .

Fixed effects:

Estimate Std. Error t value

(Intercept) 4.738 0.163 29.00

sexm 0.197 0.101 1.96

PrivPubpublic 0.417 0.185 2.25

This analysis suggests, wrongly, that the between-schools component of variance is
substantial. The estimated variance components are:3

Between schools 0.166
Between students 3.219

This is misleading. From our earlier investigation, it is clear that the difference is between
classes, not between schools!

Ignoring the random structure in the data

Here is the result from a standard regression (linear model) analysis, with sex and
PrivPub as fixed effects:

> ## Faulty analysis, using lm

> science.lm <- lm(like ˜ sex + PrivPub, data=science)

> summary(science.lm)$coef

3 ## The numerical values were extracted from
VarCorr(science2.lmer) # The between students component of variance

# is the square of the scale parameter
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.740 0.0996 47.62 0.000000

sexm 0.151 0.0986 1.53 0.126064

PrivPubpublic 0.395 0.1051 3.76 0.000178

Do not believe this analysis! The SEs are too small, and the number of degrees of freedom
for the comparison between public and private schools is much too large. The contrast is
more borderline than this analysis suggests.

10.2.3 Predictive accuracy

The variance of a prediction of the average for a new class of n pupils, sampled in
the same way as existing classes, is 0�32 + 3�05/n. If classes were of equal size, we
could derive an equivalent empirical estimate of predictive accuracy by using a resam-
pling method with the class means. With unequal class sizes, use of the class means in
this way will be a rough approximation. There were 60 classes. If the training/test set
methodology is used, the 60 class means would be divided between a training set and a
test set.

An empirical estimate of the within-class variation can be derived by applying a
resampling method (cross-validation, or the bootstrap) to data for each individual class.
The variance estimates from the different classes would then be pooled.

The issues here are important. Data do commonly have a hierarchical variance structure
comparable with that for the attitudes to science data. As with the Antiguan corn yield
data, the population to which results are to be generalized determines what estimate of
predictive accuracy is needed. There are some generalizations, for example, to another
state, that the data cannot support.

10.3 A multi-level experimental design

The data in kiwishade are from a designed experiment that compared different kiwifruit
shading treatments. [These data relate to Snelgar et al. (1992). Maindonald (1992) gives
the data in Table 10.2, together with a diagram of the field layout that is similar to
Figure 10.4. The two papers have different shorthands (e.g. Sept–Nov versus Aug–Dec)
for describing the time periods for which the shading was applied.] Figure 10.4 shows the
layout. There are four vines in each plot, and four plots (one for each of four treatments)
in each of the three blocks. This is a balanced design – each plot has the same number of
vines, each block has the same number of plots, with each treatment occurring the same
number of times.

Note also:

• There are three levels of variation – between vines within plots, between plots within
blocks, and between blocks.

• The experimental unit is a plot, since this is the level at which the treatment was
applied. We have four results for each plot.

• Within blocks, treatments were randomly assigned to plots.
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Table 10.2 Data from the kiwifruit shading trial. The level names
for the factor shade are mnemonics for the time during which
shading was applied. Thus (none) implies no shading, Aug2Dec
means “August to December,” and similarly for Dec2Feb and
Feb2May. The final four columns give yield measurements in
kilograms.

Block Shade Vine1 Vine2 Vine3 Vine4

east none 100�74 98�05 97�00 100�31
east Aug2Dec 101�89 108�32 103�14 108�87
east Dec2Feb 94�91 93�94 81�43 85�40
east Feb2May 96�35 97�15 97�57 92�45
north none 100�30 106�67 108�02 101�11
north Aug2Dec 104�74 104�02 102�52 103�10
north Dec2Feb 94�05 94�76 93�81 92�17
north Feb2May 91�82 90�29 93�45 92�58
west none 93�42 100�68 103�49 92�64
west Aug2Dec 97�42 97�60 101�41 105�77
west Dec2Feb 84�12 87�06 90�75 86�65
west Feb2May 90�31 89�06 94�99 87�27

The northernmost plots were grouped together because they were similarly affected
by shading from the sun in the north. For the remaining two blocks, shelter effects,
whether from the west or from the east, were thought more important. Table 10.2 displays
the data.

The aov() function will be used to calculate relevant mean squares, taking account of
the multiple levels of variation. The discussion will demonstrate the calculation of variance
components, should they be required. The section will conclude by demonstrating the
use of lmer() to provide information equivalent to that from the analysis of variance
calculations.

The model is:

yield = overall mean + block effect
(random) + shade effect

(fixed) + plot effect
(random) + vine effect

(random).

We characterize the design thus:

Fixed effect: shade (treatment).
Random effect: vine (nested) in plot in block, or block/plot/vine.

Although block is included as a random effect, the estimate of the block component of
variance will be of limited use, in practice, for assessing the accuracy of predictions of
treatment means in a new set of blocks. On the one hand, the common location of the
three blocks has exposed them to similar soil and general climate effects. On the other
hand, their different orientations (N, W and E) to sun and prevailing wind will lead to
systematic differences. At best, the estimate of the block component of variance gives
only the vaguest of hints on the likely accuracy for predictions to other blocks.
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There is some limited ability to generalize to other plots and other vines. When
horticulturalists apply these treatments in their own orchards, there will be different vines,
plots and blocks. Thus, vines and plots are treated as random effects. A horticulturalist
will however reproduce, as far as possible, the same shade treatments as were used
in the scientific trial, and these are taken as fixed effects. There is a caveat: in the
different climate, soil and other conditions of a different site, these effects might well be
different.

10.3.1 The anova table

An analysis of variance table will be used to give a breakdown of the total sum of
squares about the mean, in a form that is helpful for extracting the sums of squares and
F-statistics that are of interest. It will be necessary to specify that there are two levels of
variation additional to variation between vines. These are: between blocks, and between
plots within blocks.

There are various alternative ways to specify the error term in the analysis of variance
model formula. Note first that each different plot within a block has a different shading
treatment, so that the block:shade combination can be used to identify plots. Thus
the two error terms that need to be specified can be written block and block:shade.
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Figure 10.4 The field layout for the kiwifruit shading trial.
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Table 10.3 The analysis of variance information has
been structured to reflect the three levels of variation.

Df Sum of Sq Mean Sq

block level 2 172.35 86.17
block.plot level
shade 3 1394.51 464.84
residual 6 125.57 20.93

block.plot.vines level 36 438.58 12.18

There is a shorthand way to specify the two of them together. Write block/shade,
which expands into block+block:shade. Suitable code for the calculation is:

## Analysis of variance: data frame kiwishade (DAAG)

kiwishade.aov <- aov(yield ˜ shade + Error(block/shade),

data=kiwishade)

The output is:

> summary(kiwishade.aov)

Error: block

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 2 172.348 86.174

Error: block:shade

Df Sum Sq Mean Sq F value Pr(>F)

shade 3 1394.51 464.84 22.211 0.001194

Residuals 6 125.57 20.93

Error: Within

Df Sum Sq Mean Sq F value Pr(>F)

Residuals 36 438.58 12.18

Table 10.3 structures the output, with a view to making it easier to follow.

10.3.2 Expected values of mean squares

Table 10.4 shows how the variance components combine to give the expected values of
mean squares in the analysis of variance table. In this example, calculation of variance
components is not necessary for purposes of assessing the effects of treatments. We
compare the shade mean square with the residual mean square for the block.plot
level. The ratio is:

F -ratio = 464�84
20�93

= 22�2� on 3 and 6 d.f. (p = 0.0012).
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Table 10.4 Mean squares in the analysis of variance table. The final
column gives expected values of mean squares, as functions of the
variance components.

Df Mean sq E[Mean sq]

block level 2 86.17 16	2
B +4	2

P +	2
V

block.plot level
shade 3 464.84 4	2

P +	2
V + treatment component

residual 6 20.93 4	2
P +	2

V

block.plot.vines level 36 12.18 	2
V

As this is a balanced design, the treatment estimates can be obtained using
model.tables():

> model.tables(kiwishade.aov, type="means")

Tables of means

Grand mean

96.53

shade

shade

none Aug2Dec Dec2Feb Feb2May

100.20 103.23 89.92 92.77

The footnote gives an alternative way to calculate these means.4

Treatment differences are estimated within blocks, so that 	2
B does not contribute to the

standard error of the differences between means, which will be written SED. The SED is,
accordingly,

√
2 times the square root of the residual mean square divided by the sample

size:
√

2×√
�20�93/12� = 1�87. The sample size is 12, since each treatment comparison

is based on differences between two different sets of 12 vines.
The next subsection will demonstrate calculation of the sums of squares in the analysis

of variance table, based on a breakdown of the observed yields into components that
closely reflect the different terms in the model. Readers who do not at this point wish to
study Subsection 10.3.3 in detail may nevertheless find it helpful to examine Figures 10.5,
taking on trust the scalings used for the effects that they present.

10.3.3∗ The sums of squares breakdown

This subsection shows how to calculate the sums of squares and mean squares. These
details are not essential to what follows, but do give useful insight. The breakdown
extends the approach used in the simpler example of Subsection 10.1.1.

4 with(kiwishade, sapply(split(yield, shade), mean))
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Figure 10.5 Variation at the different levels, for the kiwifruit shading data. The individual data
values are given, together with one standard deviation limits either side of zero.

For each plot, we calculate a mean, and differences from the mean. See Table 10.5.5

Note that whereas we started with 48 observations we have only 12 means. Now we break
the means down into overall mean, plus block effect (the average of differences, for that
block, from the overall mean), plus treatment effect (the average of the difference, for
that treatment, from the overall mean), plus residual.

Table 10.6 uses the information from Table 10.5 to express each plot mean as the
sum of a block effect, a shade effect and a residual for the block.shade combi-
nation. The notes in the last row of each column show how to determine the mean
squares that were given in Table 10.4. Moreover, we can scale the values in the various
columns so that their standard deviation is the square root of the error mean square,
and plot them. Figure 10.5 plots all this information. It shows the individual values,
together with one standard deviation limits either side of zero. The chief purpose of these
plots is to show the much greater variation at these levels than at the plot and vine
level.

The estimate of between-plot variance in Table 10.3 was 20.93. While larger than the
between-vine mean square of 12.18, it is not so much larger that the evidence from Figure
10.5 can be more than suggestive. Variation between treatments does appear much greater
than can be explained from variation between plots, and the same is true for variation
between blocks.

We now explain the scaling of effects in Figure 10.5. Consider first the 48 residuals
at the vine level. Because 12 degrees of freedom were expended when the 12 plot
means were subtracted, the 48 residuals share 36 degrees of freedom and are positively
correlated. To enable the residuals to present the appearance of uncorrelated values with
the correct variance, we scale the 48 residuals so that the average of their squares is the

5 vine <- paste("vine", rep(1:4, 12), sep="")
vine1rows <- seq(from=1, to=45, by=4)
kiwivines <- unstack(kiwishade, yield ˜ vine)
kiwimeans <- apply(kiwivines, 1, mean)
kiwivines <- cbind(kiwishade[vine1rows, c("block","shade")],

Mean=kiwimeans, kiwivines-kiwimeans)
kiwivines <- with(kiwivines, kiwivines[order(block, shade), ])
mean(kiwimeans) # the grand mean
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Table 10.5 Plot means, and differences of yields for individual vines
from the plot mean.

block shade Mean vine1 vine2 vine3 vine4

east none 99�03 1�285 −2�025 −0�975 1�715
east Aug2Dec 105�55 3�315 −2�415 2�765 −3�665
east Dec2Feb 88�92 −3�520 −7�490 5�020 5�990
east Feb2May 95�88 −3�430 1�690 1�270 0�470
north none 104�03 −2�915 3�995 2�645 −3�725
north Aug2Dec 103�59 −0�495 −1�075 0�425 1�145
north Dec2Feb 93�70 −1�528 0�112 1�062 0�352
north Feb2May 92�03 0�545 1�415 −1�745 −0�215
west none 97�56 −4�918 5�932 3�123 −4�138
west Aug2Dec 100�55 5�220 0�860 −2�950 −3�130
west Dec2Feb 87�15 −0�495 3�605 −0�085 −3�025
west Feb2May 90�41 −3�138 4�582 −1�347 −0�097

Grand mean = 96.53

Table 10.6 Each plot mean is expressed as the sum of overall mean (= 96.53),
block effect, shade effect, and residual for the block:shade combination (or
plot).

block.shade

block shade Mean Block effect Shade effect residual

east none 99.03 0.812 3.670 −1.990
east Aug2Dec 105.56 0.812 6.701 1.509
east Dec2Feb 88.92 0.812 −6.612 −1.813
east Feb2May 95.88 0.812 −3.759 2.294
north none 104.03 1.805 3.670 2.017
north Aug2Dec 103.59 1.805 6.701 −1.444
north Dec2Feb 93.70 1.805 −6.612 1.971
north Feb2May 92.03 1.805 −3.759 −2.545
west none 97.56 −2.618 3.670 −0.027
west Aug2Dec 100.55 −2.618 6.701 −0.066
west Dec2Feb 87.15 −2.618 −6.612 −0.158
west Feb2May 90.41 −2.618 −3.759 0.251

square, add, square, add, square, add,
multiply by 4, multiply by 4, multiply by 4,
divide by d.f.=2, divide by d.f.=3, divide by d.f.=6,
to give ms to give ms to give ms

between-vine estimate of variance 	2
V ; this requires multiplication of each residual by√

�48/36�.
At the level of plot means, we have 6 degrees of freedom to share between 12 plot

effects. In addition, we need to undo the increase in precision that results from taking
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means of four values. Thus, we multiply each plot effect by
√

�12/6� ×√
�4�. If the

between-plot component of variance is zero, the expected value of the average of the
square of these scaled effects will be 	2

V . If the between-plot component of variance
is greater than zero, the expected value of the average of these squared effects will be
greater than 	2

V .
In moving from plot effects to treatment effects, we have a factor of

√
�4/3� that arises

from the sharing of 3 degrees of freedom between 4 effects, further multiplied by
√

�12�

because each treatment mean is an average of 12 vines. For block effects, we have a
multiplier of

√
�3/2� that arises from the sharing of 2 degrees of freedom between 3

effects, further multiplied by
√

�16� because each block mean is an average of 16 vines.
Effects that are scaled in this way allow visual comparison, as in Figure 10.5.

10.3.4 The variance components

The mean squares in an analysis of variance table for data from a balanced multi-level
model can be broken down further, into variance components. The variance components
analysis gives more detail about model parameters. Importantly, it provides informa-
tion that will help design another experiment. Here is the breakdown for the kiwifruit
shading data:

• Variation between vines in a plot is made up of one source of variation only. Denote
this variance by 	2

V .
• Variation between vines in different plots is partly a result of variation between vines,

and partly a result of additional variation between plots. In fact, if 	2
P is the (additional)

component of the variation that is due to variation between plots, the expected mean
square equals

4	2
P +	2

V �

(NB: the 4 comes from 4 vines per plot.)
• Variation between treatments is

4	2
P +	2

V +T�

where T �> 0� is due to variation between treatments.
• Variation between vines in different blocks is partly a result of variation between vines,

partly a result of additional variation between plots, and partly a result of additional
variation between blocks. If 	2

B is the (additional) component of variation that is due
to differences between blocks, the expected value of the mean square is:

16	2
B +4	2

P +	2
V

(16 vines per block; 4 vines per plot).
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We do not need estimates of the variance components in order to do the analysis of
variance. The variance components can be crucial for designing another experiment.
We calculate the estimates thus:

	̂2
V = 12�18�

4	̂2
P + 	̂2

V = 20�93� i.e. 4	̂2
P + 12�18 = 20�93�

This gives the estimate 	̂2
P = 2�19. We can also estimate 	̂2

B = 4�08�

We are now in a position to work out how much the precision would change if we had
8 (or, say, 10) vines per plot. With n vines per plot, the variance of the plot mean is:

�n	̂2
P + 	̂2

V �/n = 	̂2
P + 	̂2

V /n = 2�19+12�18/n�

We could also ask how much of the variance, for an individual vine, is explained by vine-
to-vine differences. This depends on how much we stretch the other sources of variation.
If the comparison is with vines that may be in different plots, the proportion is 12�18/

�12�18 + 2�19�. If we are talking about different blocks, the proportion is 12�18/�12�18 +
2�19 + 4�08�.

10.3.5 The mixed model analysis

For a mixed model analysis, we specify that treatment (shade) is a fixed effect, that
block and plot are random effects, and that plot is nested in block. The software
works out for itself that the remaining part of the variation is associated with differences
between vines. It is not necessary to specify it separately.

For using lmer(), the command is:

kiwishade.lmer <- lmer(yield ˜ shade + (1|block) + (1|block:plot),

data=kiwishade)

# block:shade is an alternative to block:plot

For comparison purposes with the results from the preceding section, consider:

> kiwishade.lmer

. . . .

Random effects:

Groups Name Variance Std.Dev.

block:plot (Intercept) 2.19 1.48

block (Intercept) 4.08 2.02

Residual 12.18 3.49

# of obs: 48, groups: block:plot, 12; block, 3

These agree with the estimates that were obtained above.

Plots of residuals

Recall that by default, fitted values adjust for all except random variation between
individual vines, that is, they account for treatment, block and plot effects. For this, set
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Figure 10.6 Panel A shows standardized residuals after fitting block and plot effects, plotted
against fitted values. There are 12 distinct fitted values, one for each plot. Panel B shows plot
effects, plotted against the plot means, separately for the three blocks.

level=2 when calculating fitted values, or the equivalent residuals. Other choices are
to calculate fitted values as treatment plus block (level=1) or as treatment effects only
(level=0). The block effects are differences between fitted values at level 1 and fitted
values at level 0, while the plot effects are differences between fitted values at level 2
and fitted values at level 1.

Figure 10.6A fits the block and plot effects, and takes residuals from those.6

A straightforward way to obtain the level 1 fitted values, and the plot effects, is to form
the plot means and fit the model to those. In Figure 10.6B, the plot effects are plotted

6 ## Simplified version of plot
library(lattice)
xyplot(residuals(kiwishade.lmer) ˜ fitted(kiwishade.lmer)|block,

groups=shade, pch=1:4, layout=c(3,1), data=kiwishade,
xlab="Level 2 fitted values (Treatment + block + plot effects)",
ylab="Residuals (level 2)", aspect=1,
key=list(
points=list(pch=1:4, col=trellis.par.get("superpose.symbol")$col[1:4]),
text=list(levels(kiwishade$shade)), space="top", columns=4))
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against the treatment means. Points are labeled according to the treatment.7 Figure 10.5
shows scaled versions of these plot effects.

The effects give more useful and interpretable information than the residuals at levels
1 or 0. For the inferences that are of interest, the model assumptions that matter are
those that concern the plot and block effects. It will help in interpreting Figure 10.6B to
remember that the treatment means are, in order,

Dec2Feb Feb2May none Aug2Dec
89.92 92.77 100.20 103.23

Notice that the plot-specific effects go in opposite directions, relative to the overall
treatment means, in the east and north blocks.

10.3.6 Predictive accuracy

We have data for one location on one site only. We thus cannot estimate a between-
location component of variance for different locations on the current site, let alone
a between-site component of variance. Use of resampling methods will not help; the
limitation is inherent in the experimental design.

Where data are available from multiple sites, the site-to-site component of variance
will almost inevitably be greater than zero. Given adequate data, the estimate of this
component of variance is likely to be greater than zero, even in the presence of covariate
adjustments that attempt to adjust for differences in rainfall, temperature, soil type, etc.
(Treatment differences are often, but by no means inevitably, more nearly consistent
across sites than are the treatment means themselves.)

Where two (or more) experimenters use different sites, differences in results are to
be expected. Such different results have sometimes led to acriminious exchanges, with
each convinced that there are flaws in the other’s experimental work. Rather, assuming
that both experiments were conducted with proper care, the implication is that both sets
of results should be incorporated into an analysis that accounts for site-to-site variation.
Better still, plan the experiment from the beginning as a multi-site experiment!

10.3.7 Different sources of variance – complication or focus of interest?

In this discussion, the main interest is in the parameter estimates. The different sources
of variance are a complication. In other applications, the variances are the focus of

7 ## Simplified version of graph that shows the plot effects
kiwimeans <- with(kiwishade,

aggregate(yield, by=list(block=block, shade=shade), mean))
names(kiwimeans)[3] <- "avyield"
kiwimeans.lmer <- lmer(avyield ˜ shade + (1 | block),

data=kiwimeans)
ploteffects <- residuals(kiwimeans.lmer)
plothat <- fitted(kiwimeans.lmer)
xyplot(ploteffects ˜ plothat|block, layout=c(3,1), groups=shade,

data=kiwimeans, aspect=1, pch=1:4,
key=list(
points=list(pch=1:4, col=trellis.par.get("superpose.symbol")$col[1:4]),
text=list(levels(kiwishade$shade)), space="top", columns=4))
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interest. Many animal and plant breeding trials are of this type. The aim may be to
design a breeding program that will lead to an improved variety or breed. Where there
is substantial genetic variability, breeding experiments have a good chance of creating
improved varieties.

Investigations into the genetic component of human intelligence have generated fierce
debate. Most such studies have used data from identical twins who have been adopted
out to different homes, comparing them with non-identical twins and with siblings who
have been similarly adopted out. The adopting homes rarely span a large part of a range
from extreme social deprivation to social privilege, so that results from such studies may
have little or no relevance to investigation of the effects of extreme social deprivation.
The discussion in Leavitt and Dubner (2005, chapter 5) sheds interesting light on these
these effects.

There has not been, until recently, proper allowance for the substantial effects that
arise from simultaneous or sequential occupancy of the maternal womb (Bartholemew,
2004; Daniels et al., 1997). Simple forms of components of variance model are unable
to account for the Flynn effect (Bartholemew, 2004, pp. 138–140), by which measured
IQs in many parts of the world have in recent times increased by about 15 IQ points per
generation. The simple model, on which assessments of proportion of variance that is
genetic have been based, is too simplistic to give useful insight.

We have used an analysis of data from a field experimental design to demonstrate the
calculation and use of components of variance. Other contexts for multi-level models are
the analysis of data from designed surveys, and general regression models in which the
“error” term is made up of several components. In all these cases, errors are no longer
independently and identically distributed.

10.4 Within- and between-subject effects

The data frame tinting is from an experiment that aimed to model the effects of
the tinting of car windows on visual performance. (For more information, see Burns
et al., 1999.) Interest is focused on effects on side window vision, and hence on visual
recognition tasks that would be performed when looking through side windows.

The variables are csoa (critical stimulus onset asynchrony, i.e., the time in milliseconds
required to recognize an alphanumeric target), it (inspection time, i.e., the time required
for a simple discrimination task) and age, while tint (three levels) and target (two
levels) are ordered factors. The variable sex is coded f for females and m for males,
while the variable agegp is coded Younger for young people (all in their 20s) and
Older for older participants (all in their 70s).

Data were collected in two sessions, with half the individuals undertaking the csoa
task in the first session and the it task in the second session, and the other half doing
these two types of task in the reverse order. Within each session, the order of presentation
of the two levels of target contrast was balanced over participants. For each level of
target contrast the levels of tint were in the order no (100% VLT = visible light
transmittance), lo (81.3% VLT = visible light transmittance) and hi (35% VLT =
visible light transmittance). Each participant repeated the combination of high contrast
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with no tinting (100% VLT) at the end of the session. Comparison with the same task
from earlier in the session thus allows a check on any change in performance through the
session.

We have two levels of variation – within individuals (who were each tested on each
combination of tint and target), and between individuals. Thus we need to specify
id (identifying the individual) as a random effect. Plots of the data make it clear that, to
have variances that are approximately homogeneous, we need to work with log(csoa)
and log(it). Here, we describe the analysis for log(it).

Model fitting criteria

The function lmer() allows use of one of two criteria: residual maximum likelihood
(REML), which is the default, and maximum likelihood (ML). The parameter estimates
from the REML method are generally preferred to those from ML, as more nearly
unbiased. Comparison of models using anova() relies on maximum likelihood theory,
and the models should for this purpose be fitted using ML.

10.4.1 Model selection

A good principle is to limit initial comparisons between models to several alternative
models within a hierarchy of increasing complexity. For example, consider main effects
only, main effects plus all first order interactions, main effects plus all first- and second-
order interactions, as far on up this hierarchy as seems reasonable. This makes for
conceptual clarity, and simplifies inference. (Where a model has been selected from
a large number of candidate models, extreme value effects may come into play, and
inference must account for this.)

Here, three models will be considered:

1. All possible interactions (this is likely to be more complex than is needed):
## Change initial letters of levels of tinting$agegp to upper case

levels(tinting$agegp) <- capstring(levels(tinting$agegp))

## Fit all interactions: data frame tinting (DAAG)

it3.lmer <- lmer(log(it) ˜ tint*target*agegp*sex + (1 | id),

data=tinting, method="ML")

2. All two-factor interactions (this is a reasonable guess; two-factor interactions may be
all we need):
it2.lmer <- lmer(log(it) ˜ (tint+target+agegp+sex)ˆ2 + (1 | id),

data=tinting, method="ML")

3. Main effects only (this is a very simple model):
it1.lmer <- lmer(log(it)˜(tint+target+agegp+sex) + (1 | id),

data=tinting, method= "ML")

Note the use of method="ML"; this then allows the equivalent of an analysis of variance
comparison:

> anova(it1.lmer, it2.lmer, it3.lmer)

Data: tinting



330 Multi-level models and repeated measures

Models:

it1.lmer: log(it) ˜ (tint + target + agegp + sex) + (1 | id)

it2.lmer: log(it) ˜ (tint + target + agegp + sex)ˆ2 + (1 | id)

it3.lmer: log(it) ˜ tint * target * agegp * sex + (1 | id)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

it1.lmer 7 -0.9 21.6 7.4

it2.lmer 16 -5.7 45.5 18.9 22.88 9 0.0065

it3.lmer 25 6.1 86.2 21.9 6.11 9 0.7288

Notice that Df is now used for degrees of freedom, where DF was used in the output
from the summary method for an aov object.

The p-value for comparing it3.lmer with it2.lmer is 0.73, while that for com-
paring it2.lmer with it1.lmer is 0.0065. This suggests that the model that limits
attention to two-factor interactions is adequate. (Note also that the AIC statistic favors
model 2. The BIC statistic, which is an alternative to AIC, favors the model that has main
effects only.)

Hastie et al. (2001, p. 208) suggest, albeit in reference to models with i.i.d. errors,
that BIC’s penalty for model complexity can be unduly severe when the number of
residual degrees of freedom is small. (Note also that the different standard errors are
based on variance component information at different levels of the design, so that the
critique in Vaida and Blanchard (2005) perhaps makes the use of either of these statistics
problematic. See Spiegelhalter et al. (2002) for various alternatives to AIC and BIC that
may be better suited to use with models with “complex” error structures. Our advice is to
use all such statistics with caution, and to consider carefully implications that may arise
from the intended use of model results.)

The analysis of variance table indicated that main effects together with two-factor
interactions were enough to explain the outcome. Interaction plots, looking at the ef-
fects of factors two at a time, are therefore an effective visual summary of the analysis
results. In the table of coefficients that appears below, the highest t-statistics for interac-
tion terms are associated with tint.L:agegpOlder, targethicon:agegpOlder,
tint.L:targethicon and tint.L:sexm. It makes sense to look first at those plots
where the interaction effects are clearest, that is, where the t-statistics are largest. The
plots may be based on either observed data or fitted values, at the analyst’s discretion.8

10.4.2 Estimates of model parameters

For exploration of parameter estimates in the model that includes all two-factor inter-
actions, we re-fit the model used for it2.lmer, but now using method="REML"
(restricted maximum likelihood estimation), and examine the estimated effects. The
parameter estimates that come from the REML analysis are in general preferable, because
they avoid or reduce the biases of maximum likelihood estimates. (See, e.g., Diggle et al.,
2002. The difference from likelihood can however be of little consequence.)

8 ## Code that gives the first four such plots, for the observed data
interaction.plot(tinting$tint, tinting$agegp, log(tinting$it))
interaction.plot(tinting$target, tinting$sex, log(tinting$it))
interaction.plot(tinting$tint, tinting$target, log(tinting$it))
interaction.plot(tinting$tint, tinting$sex, log(tinting$it))
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> it2.reml <- update(it2.lmer, method="REML")

> summary(it2.reml)

. . . .

Fixed effects:

Estimate Std. Error t value Pr(>|t|) DF

(Intercept) 3.61907 0.13010 27.82 < 2e-16 145

tint.L 0.16095 0.04424 3.64 0.00037 145

tint.Q 0.02096 0.04522 0.46 0.64352 145

targethicon -0.11807 0.04233 -2.79 0.00590 145

agegpolder 0.47121 0.23294 2.02 0.04469 22

sexm 0.08213 0.23294 0.35 0.72486 22

tint.L:targethicon -0.09193 0.04607 -2.00 0.04760 145

tint.Q:targethicon -0.00722 0.04821 -0.15 0.88107 145

tint.L:agegpolder 0.13075 0.04919 2.66 0.00862 145

tint.Q:agegpolder 0.06972 0.05200 1.34 0.18179 145

tint.L:sexm -0.09794 0.04919 -1.99 0.04810 145

tint.Q:sexm 0.00542 0.05200 0.10 0.91705 145

targethicon:agegpolder -0.13887 0.05844 -2.38 0.01862 145

targethicon:sexm 0.07785 0.05844 1.33 0.18464 145

agegpolder:sexm 0.33164 0.32612 1.02 0.31066 22

. . . .

> # NB: The final column, giving degrees of freedom, is not in the

> # summary output for version 0.995-2 of lme4. It is our addition.

Because tint is an ordered factor with three levels, its effect is split up into two
parts. The first, which always carries a .L (linear) label, checks if there is a linear change
across levels. The second part is labeled .Q (quadratic), and as tint has only three
levels, accounts for all the remaining sum of squares that is due to tint. A comparable
partitioning of the effect of tint carries across to interaction terms also.

The t-statistics are all substantially less than 2.0 in terms that include a tint.Q com-
ponent, suggesting that we could simplify the output by restricting attention to tint.L
and its interactions.

None of the main effects and interactions involving agegp and sex are significant
at the conventional 5% level, though agegp comes close. This may seem inconsis-
tent with Figures 2.10A and 2.10B, where it is the older males who seem to have
the longer times. On the other hand, the interaction terms (tint.L:agegpOlder,
targethicon:agegpOlder, tint.L:targethicon and tint.L:sexm) that
are statistically significant stand out much less clearly in Figures 2.10A
and 2.10B.

To resolve this apparent inconsistency, consider the relative amounts of evidence for
the two different sets of comparisons, and the consequences for the standard errors in the
computer output.

• Numbers of individuals:
> uid <- unique(tinting$id)

> subs <- match(uid, tinting$id)

> with(tinting, table(sex[subs], agegp[subs]))
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Younger Older

f 9 4

m 4 9

Standard errors in the computer output given above, for comparisons made at the level
of individuals and thus with 22 d.f., are in the range 0.23–0.32.

• Numbers of comparisons between levels of tint or target: Each of these com-
parisons is made at least as many times as there are individuals, that is, at least 26
times. Standard errors in the computer output on p. 241, for comparisons made at this
level, are in the range 0.042–0.058.

Statistical variation cannot be convincingly ruled out as the explanation for the effects
that stand out most strongly in the graphs.

10.5 Repeated measures in time

Whenever we make repeated measurements on a treatment unit we are, technically,
working with repeated measures. In this sense, both the kiwifruit shading data and the
window tinting data sets were examples of repeated measures data sets. Here, our interest
is in generalizing the multi-level modeling approach to handle models for longitudinal
data, that is, data where the measurements were repeated at different times. We comment
on the principles involved.

In the kiwifruit shading experiment, we gathered data from all vines in a plot at the
one time. In principle, we might have taken data from different vines at different points
in time. For each plot, there would be data at each of four time points.

There is a close link between a wide class of repeated measures models and time series
models. In the time series context, there is usually just one realization of the series, which
may however be observed at a large number of time points. In the repeated measures
context, there may be a large number of realizations of a series that is typically quite short.

Perhaps the simplest case is where there is no apparent trend with time. Thus consider
data from a clinical trial of a drug (progabide) used to control epileptic fits. (For an
analysis of data from the study to which this example refers, see Thall and Vail, 1990.)
The analysis assumes that patients were randomly assigned to the two treatments –
placebo and progabide. After an eight-week run-in period, data were collected, both for
the placebo group and for the progabide group, in each of four successive two-week
periods. The outcome variable was the number of epileptic fits over that time.

One way to do the analysis is to work with the total number of fits over the four weeks,
perhaps adjusted by subtracting the baseline value. It is possible that we might obtain
extra sensitivity by taking account of the correlation structure between the four sets of
fortnightly results, taking a weighted sum rather than a mean.

Suppose there is a trend with time. Then taking a mean over all times will not usually
make sense. In all, we have the following possibilities:

1. There is no trend with time.
2. The pattern with time may follow a simple form, e.g., a line or a quadratic curve.
3. A general form of smooth curve, e.g., a curve fitted using splines, may be required

to account for the pattern of change with time.
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We may have any of these possibilities both for the overall pattern of change and for the
pattern of difference between one profile and another.

The theory of repeated measures modeling

For the moment, profiles (or subjects) are assumed independent. The analysis must allow
for dependencies between the results of any one subject at different times. For a balanced
design, we will assume n subjects �i = 1� 2� � � � � n� and p times �j = 1� 2� � � � � p�, though
perhaps with missing responses (gaps) for some subjects at some times. The plot of
response versus time for any one subject is that subject’s profile.

A key idea is that there are (at least) two levels of variability – between subjects and
within subjects. In addition, there is measurement error.

Repeating the same measurement on the same subject at the same time will not
give exactly the same result. The between-subjects component of variation is never
observable separately from sources of variation that operate “within-subjects.” In any
data that we collect, measurements are always affected by “within-subjects” variability,
plus measurement error. Thus the simplest model that is commonly used has a between-
subjects variance component denoted by �2, while there is a within-subjects variance at
any individual time point that is denoted by 	2. The measurement error may be bundled
in as part of 	2. The variance of the response for one subject at a particular time point is
�2 +	2.

In the special case just considered, the variance of the difference between two time
points for one subject is 2	2. Comparisons “within subjects” are more accurate than
comparisons “between subjects.”

*Correlation structure

The time dependence of the data has implications for the correlation structure. The simple
model just described takes no account of this structure. Points that are close together in
time are in some sense more closely connected than points that are widely separated in
time. Often, this is reflected in a correlation between time points that decreases as the
time separation increases. The variance for differences between times typically increases
as points move further apart in time.

We have seen that correlation structure is also a key issue in time series analysis. A
limitation, relative to repeated measures, is that in time series analysis the structure must
typically be estimated from just one series, by assuming that the series is in some sense
part of a repeating pattern. In repeated measures there may be many realizations, allowing
a relatively accurate estimate of the correlation structure. By contrast with time series, the
shortness of the series has no effect on our ability to estimate the correlation structure.
Multiple realizations are preferable to a single long series.

While we are typically better placed than in time series analysis to estimate the
correlation structure there is, for most of the inferences that we commonly wish to make,
less need to know the correlation structure. Typically our interest is in the consistency
of patterns between individuals. For example, we may want to know: “Do patients on
treatment A improve at a greater rate than patients on treatment B?”
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There is a broad distinction between approaches that model the profiles, and approaches
that focus more directly on modeling the correlation structure. Direct modeling of the
profiles leads to random coefficient models, which allow each individual to follow their
own profile. Variation between profiles may largely account for the sequential correlation
structure, or there may be little further correlation left to explain. Direct modeling of the
correlation is most effective when there are no evident systematic differences between
profiles.

For further discussion of repeated measures modeling, see Diggle et al. (2002); Pinheiro
and Bates (2000). The Pinheiro and Bates book is based around the S-PLUS version of
the nlme package.

Different approaches to repeated measures analysis

Traditionally, repeated measures models have been analyzed in many different ways.
Here is a summary of methods that have been used:

• A simple way to analyze repeated measures data is often to form one or more summary
statistics for each subject, and then use these summary statistics for further analysis.

• When the variance is the same at all times and the correlation between results is the
same for all pairs of times, data can in principle be analyzed using an analysis of
variance model. This allows for two components of variance, (1) between subjects
and (2) between times. An implication of this model is that the variance of the
difference is the same for all pairs of time points, an assumption that is, in general,
unrealistic.

• Various adjustments adapt the analysis of variance approach to allow for the pos-
sibility or likelihood that the variance of time differences are not all equal. These
should be avoided now that there are good alternatives to the analysis of variance
approach.

• Multivariate comparisons accommodate all possible patterns of correlations between
time points. This approach accommodates the time series structure, but does not
take advantage of it to find an economical parameterization of the correlation
structure.

• Repeated measures models aim to reflect the sequential structure, in the fixed effects,
in the random effects, and in the correlation structure. They do this in two ways: by
modeling the overall pattern of difference between different profiles, and by direct
modeling of the correlation structure. This modeling approach often allows insights
that are hard to gain from approaches that ignore or do not take advantage of the
sequential structure.

10.5.1 Example – random variation between profiles

The data frame humanpower1 (DAAG) has data from investigations (Bussolari, 1987)
designed to assess the feasibility of a proposed 119 kilometer human powered flight from



10.5 Repeated measures in time 335

2.0 2.5 3.0 3.5 4.0 4.5

30
40

50
60

W att s per kilogr am

Oxygen int
ake (ml.min

−1
.kg

−1
)

A

10 0 5 10
12

14
16

18
Intercept

S
lope

10 0 5 10
12

14
16

18

B

Intercept

S
lope

Figure 10.7 Panel A shows oxygen intake, plotted against power output, for each of five athletes
who participated in investigations designed to assess the feasibility of a proposed Daedalus 119
kilometer human powered flight. Panel B plots the slopes of these separate lines against the
intercepts. A fitted line, with a slope of 2.77, has been added.

the island of Crete – in the initial phase of the Daedalus project. After an initial 5-minute
warm-up period and 5-minute recovery period, the power requirements from the athletes
were increased, at 2-minute intervals, in steps of around 30 watts. Figure 10.7 gives a
visual summary of the data.9

We leave it as an exercise to verify, using a fixed effects analysis such as was described
in Section 7.3, that separate lines are required for the different athletes, and that there is
no case for anything more complicated than straight lines. The separate lines fan out at
the upper extreme of power output, consistent with predictions from a random slopes
model.

9 ## Plot points and fitted lines (panel A)
library(lattice)
xyplot(o2 ˜ wattsPerKg, groups=id, data=humanpower1,

panel=function(x,y,subscripts,groups,...){
yhat <- fitted(lm(y ˜ groups*x))
panel.superpose(x, y, subscripts, groups, pch=1:5)
panel.superpose(x, yhat, subscripts, groups, type="l")

},
xlab="Watts per kilogram",
ylab=expression("Oxygen intake ("*ml.minˆ{-1}*.kgˆ{-1}*")"))
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Separate lines for different athletes

The model is:

yij = �+
xij +a+bxij + eij�

where i refers to individual, and j to observation j for that individual, � and 
 are fixed, a
and b have a joint bivariate normal distribution, each with mean 0, independently of the
eij which are i.i.d. normal. Each point in Figure 10.7B is a realization of an ��+a�
+b�

pair.
The following is the code that handles the calculations:

## Calculate intercepts and slopes; plot Slopes vs Intercepts

## Uses the function lmList() from the lme4 package

library(lme4)

hp.lmList <- lmList(o2 ˜ wattsPerKg | id, data=humanpower1)

coefs <- coef(hp.lmList)

names(coefs) <- c("Intercept", "Slope")

plot(Slope ˜ Intercept, data=coefs, pch=1:5)

abline(lm(Slope˜Intercept, data=coefs))

Note the formula o2 ˜ wattsPerKg | id that is given as argument to the function
lmList(). For each different level of the factor id, there is a regression of o2
on wattsPerKg. Summary information from the calculations is stored in the object
hp.lmList:

A random coefficients model

There are at least two possible reasons for modeling the variation in slopes as a random
effect:

• There may be an interest in generalizing to further athletes, selected in a similar way –
what range of responses is it reasonable to expect?

• The fitted lines from the random slopes model may be a better guide to performance
than the fitted “fixed” lines for individual athletes. The range of the slopes for the
fixed lines will on average exaggerate somewhat the difference between the smallest
and largest slope, an effect which the random effects analysis corrects.

Here, the major reason for working with these data is however that they demonstrate a
relatively simple application of a random effects model. Depending on how results will
be used a random coefficients analysis may well, for these data, be overkill!

The model that will now be fitted allows, for each different athlete, a random slope (for
wattsPerKg) and random intercept. We expect the correlation between the realizations
of the random intercept and the random slope to be close to 1. As it will turn out, this
will not create any undue difficulty. The necessary code is:

hp.lmer <- lmer(o2 ˜ wattsPerKg + (wattsPerKg | id),

data=humanpower1)
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The output is:

> summary(hp.lmer)

Linear mixed-effects model fit by REML

Formula: o2 ˜ wattsPerKg + (wattsPerKg | id)

Data: humanpower1

AIC BIC logLik MLdeviance REMLdeviance

134.2 140.9 -62.1 126.9 124.2

Random effects:

Groups Name Variance Std.Dev. Corr

id (Intercept) 50.73 7.12

wattsPerKg 7.15 2.67 -1.000

Residual 4.13 2.03

# of obs: 28, groups: id, 5

Fixed effects:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.09 3.78 0.55 0.58

wattsPerKg 13.91 1.36 10.23 1.3e-10

Correlation of Fixed Effects:

(Intr)

wattsPerKg -0.992

The predicted lines from this random lines model are shown as dashed lines in Figure
10.8A. These are the BLUPs that were discussed earlier in this chapter. The code is10

hat <- fitted(hp.lmer)

lmhat<-with(humanpower1, fitted(lm(o2 ˜ id*wattsPerKg)))

panelfun <-

function(x, y, subscripts, groups, ...){

panel.superpose(x, hat, subscripts, groups, type="1", lty=2)

panel.superpose(x, lmhat, subscripts, groups, type="1", lty=1)

}

xyplot(o2 ˜ wattsPerKg, groups=id, data=humanpower1, panel=panelfun,

xlab="Watts",

ylab=expression("Oxygen intake ("*ml.minˆ{-1}*"."*kgˆ{-1}*")"))

Figure 10.8B is a plot of residuals, with the points for each individual athlete connected
with broken lines.11 There is nothing in these residual profiles that obviously calls for

10 ## Alternatively, plot different lines in different panels
panelfun2 <-
function(x, y, subscripts, ...){

llines(x, hat [subscripts], type="1", lty=2)
llines(x, lmhat [subscripts], type="1", lty=1)

}
xyplot(o2 ˜ wattsPerKg | id, data=humanpower1, panel=panelfun2,

xlab="Watts",
ylab=expression("Oxygen intake ("*ml.minˆ{-1}*"."*kgˆ{-1}*")"))

11 xyplot(resid(hp.lmer) ˜ wattsPerKg, groups=id, type="b", data=humanpower1)
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Figure 10.8 In panel A the solid lines are the fitted lines for each individual athlete, as in Figure
10.7. Dashed lines are the fitted lines from the random lines model. Panel B shows the profiles of
residuals from the random lines.

attention. For example, none of the athletes shows exceptionally large departures, at one
or more points, from the linear trend.

The standard errors that are given for the fixed effects of the intercept and slope
take no account of the random between-individuals components of the intercepts and
slopes. The standard errors relate to the accuracy of prediction of the mean response
line for the population from which the athletes were sampled. The slopes are drawn
from a distribution with estimated mean 13.9 and standard error

√
1�362 +2�672 = 3.0.

This standard deviation may be compared with the standard deviation (= 3.28) of the
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five slopes that were fitted to the initial fixed effects model.12 Standard errors for
between-athletes components of variation relate to the particular population from which
the five athletes were sampled. Almost certainly, the pattern of variation would be dif-
ferent for five people who were drawn at random from a population of recreational
sportspeople.

In this example, the mean response pattern was assumed linear, with random changes,
for each individual athlete, in the slope. More generally, the mean response pattern will
be non-linear, and random departures from this pattern may be non-linear.

10.5.2 Orthodontic measurements on children

The Orthodont data frame (MEMSS package) has measurements on the distance
between two positions on the skull, taken every two years from age 8 until age 14,
on 16 males and 11 females. Is there a difference in the pattern of growth between males
and females?

Preliminary data exploration

Figure 10.9 shows the pattern of change for each of the 25 individuals. Lines have been
added; overall the pattern of growth seems close to linear.13
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Figure 10.9 Distance between two positions on the skull on a scale of log2, plotted against age,
for each of 27 children.

12 ## Derive the sd from the data frame coefs that was calculated above
sd(coefs$Slope)

13 library(MEMSS)
xyplot(distance ˜ age | Subject, groups=Sex, data=Orthodont, pch=c(1, 3),

scale=list(y=list(log=2)), type=c("p","r"), layout=c(11,3))
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Figure 10.10 Slopes of profiles, plotted against intercepts at age = 11. The females are shown
with +’s, and the males with open circles. Panel A is for distances, and panel B is for logarithms
of distances.

A good summary of these data are the intercepts and slopes, as in Figure 10.10. We
calculate these both with untransformed distances (panel A) and with distances on a
logarithmic scale (Panel B).14 The intercepts for the males are clearly different from the
intercepts for the females, as can be verified by a t-test. One slope appears an outlier from
the main body of the data. Hence, we omit the largest (M13) and (to make the comparison
fair) the smallest (M04) values from the sample of male slopes, before doing a t-test.
On the argument that the interest is in relative changes, we will work with logarithms of
distances.15 The output is:

14 ## Use lmList() to find the slopes
ab <- coef(lmList(distance ˜ age | Subject, Orthodont))
names(ab) <- c("a", "b")
## Obtain the intercept at x=mean(x)
## (For each subject, this is independent of the slope)
ab$ybar <- ab$a + ab$b*11 # mean age is 11, for each subject.
sex <- substring(rownames(ab), 1 ,1)
plot(ab[, 3], ab[, 2], col=c(F="red", M="blue")[sex],

pch=c(F=1, M=3)[sex], xlab="Intercept", ylab="Slope")
extremes <- ab$ybar %in% range(ab$ybar) |

ab$b %in% range(ab$b[sex=="M"]) |
ab$b %in% range(ab$b[sex=="F"])

text(ab[extremes, 3], ab[extremes, 2], rownames(ab)[extremes],
pos=4, xpd=TRUE)

## The following makes clear M13’s difference from other points
qqnorm(ab$b)
Orthodont$logdist <- log(Orthodont$distance)
## Now repeat, with logdist replacing distance

15 Orthodont$logdist <- log(Orthodont$distance)
ablog <- coef(lmList(logdist ˜ age | Subject, Orthodont))
names(ablog) <- c("a", "b")
## Obtain the intercept at mean age (= 11), for each subject
## (For each subject, this is independent of the slope)
ablog$ybar <- with(ablog, a + b*11)
extreme.males <- rownames(ablog) %in% c("M04","M13")
sex <- substring(rownames(ab), 1, 1)
with(ablog,
t.test(b[sex=="F"], b[sex=="M" & !extreme.males], var.equal=TRUE))
# Specify var.equal=TRUE, to allow comparison with anova output
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Two Sample t-test

data: b[sex == "F"] and b[sex == "M" & !extreme.males]
t = -2.32, df = 23, p-value = 0.02957
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.016053 -0.000919

sample estimates:
mean of x mean of y

0.0211 0.0296

The higher average slope for males is greater than can comfortably be attributed to
statistical error.

A random coefficients model

Now consider a random coefficients model. The model will allow different slopes for
males and females, with the slope for individual children varying randomly about the
slope for their sex. We will omit the same two males as before:

> keep <- !(Orthodont$Subject%in%c("M04","M13"))

> orthdiff.lmer <- lmer(logdist ˜ Sex * I(age-11) + (I(age-11) | Subject),

+ data=Orthodont, subset=keep, method="ML")

> orthdiff.lmer

Linear mixed-effects model fit by maximum likelihood

Formula: logdist ˜ Sex * I(age - 11) + (I(age - 11) | Subject)

Data: Orthodont

Subset: keep

AIC BIC logLik MLdeviance REMLdeviance

-248.9 -230.7 131.5 -262.9 -232.0

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 6.03e-03 7.77e-02

I(age - 11) 1.21e-12 1.10e-06 0.000

Residual 2.42e-03 4.92e-02

# of obs: 100, groups: Subject, 25

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.11451 0.02407 129.4

SexMale 0.09443 0.03217 2.9

I(age - 11) 0.02115 0.00325 6.5

SexMale:I(age - 11) 0.00849 0.00434 2.0

Next, we make the fixed slope effect the same for both sexes, and compare the two models:

> orthsame.lmer <-

+ lmer(logdist ˜ Sex + I(age - 11) + (I(age - 11) | Subject),

+ data=Orthodont, method="ML", subset=keep)

> anova(orthsame.lmer, orthdiff.lmer)
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Data: Orthodont

Subset: keep

Models:

orthsame.lmer: logdist ˜ Sex + I(age - 11) + (I(age - 11) | Subject)

orthdiff.lmer: logdist ˜ Sex * I(age - 11) + (I(age - 11) | Subject)

Df AIC BIC logLik Chisq Chi Df Pr(>Chisq)

orthsame.lmer 6 -247.2 -231.6 129.6

orthdiff.lmer 7 -248.9 -230.7 131.5 3.73 1 0.0534

Note that this compared the two models, while the t-test that was carried out above
compared the slopes for the males with the slopes for the females.

The estimates of fixed effects from the REML model are in general preferable to those
from the full maximum likelihood (ML) model.

> orthdiffr.lmer <- update(orthdiff.lmer, method="REML")

> summary(orthdiffr.lmer)

Linear mixed-effects model fit by REML

Formula: logdist ˜ Sex * I(age - 11) + (I(age - 11) | Subject)

Data: Orthodont

Subset: keep

AIC BIC logLik MLdeviance REMLdeviance

-218.1 -199.8 116.0 -262.9 -232.1

Random effects:

Groups Name Variance Std.Dev. Corr

Subject (Intercept) 6.33e-03 7.96e-02

I(age - 11) 1.19e-12 1.09e-06 0.000

Residual 2.38e-03 4.88e-02

number of obs: 100, groups: Subject, 25

Fixed effects:

Estimate Std. Error t value

(Intercept) 3.11451 0.02510 124.1

SexMale 0.09443 0.03354 2.8

I(age - 11) 0.02115 0.00329 6.4

SexMale:I(age - 11) 0.00849 0.00440 1.9

Correlation of Fixed Effects:

(Intr) SexMal I(-11)

SexMale -0.748

I(age - 11) 0.000 0.000

SxMl:I(-11) 0.000 0.000 -0.748

Notice that the estimate 1.19e-12 of the slope component of variance is for all practical
purposes zero. The variation in the slope of lines is entirely explained by variation of
individual points about lines, within and between subjects of the same sex. The output
suggests that slopes differ between males and females. The function mcmcsamp() can,
if desired, be used for yet another check on the Sex:age term, thus:
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> orth.mcmc <- mcmcsamp(orthdiffr.lmer, n=1000)

> sum(orth.mcmc[, "SexMale:I(age - 11)"] < 0)/1000

[1] 0.019

A 95% credible for the difference in slopes does not contain 0.

Correlation between successive times

We can calculate the autocorrelations across each subject separately, and check the
distribution. The interest is in whether any autocorrelation is consistent across subjects.

> res <- resid(orthdiffr.lmer)

> Subject <- factor(Orthodont$Subject[keep])

> orth.acf <- t(sapply(split(res, Subject),

+ function(x)acf(x, lag=4, plot=FALSE)$acf))

> ## Calculate respective proportions of Subjects for which

> ## autocorrelations at lags 1, 2 and 3 are greater than zero.

> apply(orth.acf[,-1], 2, function(x)sum(x>0)/length(x))

[1] 0.20 0.24 0.40

Thus a test for a zero lag 1 autocorrelation has p = 0�20. The suggestion of non-zero
autocorrelation is very weakly supported.

*The variance for the difference in slopes

This can be calculated from the components of variance information, as will now be
demonstrated. The sum of squares about the mean, for one line, is

∑
�x− x̄�2 = 20. The

sum of the two components of variance for an individual line is then:

1�19×10−12 +0�002383/20 = 0�00011915�

The standard error of the difference in slopes is then:√
0�00011915�1/14+1/11� = 0�00440�

which is, to within rounding error, the value given against the fixed effect
SexMale:I(age - 11) in the output above. Degrees of freedom for the compar-
ison are 23 as for the t-test.

10.6 Error structure considerations

10.6.1 Predictions from models with a complex error structure

Here, “complex” refers to models that assume something other than an i.i.d. error structure.
Most of the models considered in this chapter can be used for different predictive purposes,
and give standard errors for predicted values that are different according to the intended
purpose. This was the case for the Antiguan corn yield data with which the chapter started.
The approach has been to model the data accurately, so that these different inferential
uses are possible.
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It has been noted that shortcuts are sometimes possible. Consider again the kiwifruit
shading data. For predicting yields at any level other than the individual vine, there is no
loss of information from basing the analysis on plot means.

Consequences from assuming an overly simplistic error structure

In at least some statistical application areas, analyses that assume an overly simplistic error
structure (usually, an i.i.d. model) are relatively common in the literature. Inferences may
be misleading, or not, depending strongly on how results are used. Where there are multi-
ple levels of variation, fixed effects, which may operate both within and between levels of
variation, must be modeled correctly. The standard errors of model parameters that appear in
computer output will almost inevitably be wrong, and should be ignored. In data where the
unbalance is mild, predicted values will ordinarily be nearly unbiased. Predictive accuracy
assessments will apply to data that are sampled from the same population, with the same
relative numbers at the different levels of variation as for the data used to derive the model.

Thus, the inferences that are available are limited. A good understanding of the structure
of variation is typically required in order to make such limited inferences as are available
when an overly simplistic error structure is assumed.

10.6.2 Error structure in explanatory variables

This chapter has discussed error structure in dependent variables. There may also be
a structure to error in explanatory variables. Studies of the health effects of dietary
components, such as were described in Subsection 6.8.1, provide an interesting and
important example, with major implications for the design of such studies.

Instruments that have been used to measure dietary components include the Food
Frequency Questionnaire (FFQs) and 24-hour dietary recalls (24HRs), commonly with
the 24HRs used to calibrate FFQs. In the absence of another standard against which
to compare these instruments, it has been necessary to assume that the only substantial
source of error was that measured by the assessment at different times for the same
individual. The possibility that there might be a person-specific bias was ruled out. The
study that is reported in Schatzkin et al. (2003) found however that, for energy and using
the FFQ, the variance of the person-specific bias was 2.9 times the within-person variance
for women and 3.8 times the within-person variance for men.

10.7 Further notes on multi-level and other models with correlated errors

10.7.1 An historical perspective on multi-level models

Multi-level models are not new. The inventor of the analysis of variance was R. A. Fisher.
Although he would not have described it that way, many of the analysis of variance cal-
culations that he demonstrated were analyses of specific forms of multi-level model. Data
have a structure that is imposed by the experimental design. The particular characteristic
of the experimental design models that Fisher worked with was that the analysis could be
handled using analysis of variance methods. The variance estimates that are needed for
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different comparisons may be taken from different lines of the analysis of variance table.
This circumvents the need to estimate the variances of the random effects that appear in
a fully general analysis.

Until the modern computing era, multi-level data whose structure did not follow one
of the standard designs and thus did not fit the analysis of variance framework required
some form of approximate analysis. Such approximate analyses, if they were possible at
all, often demanded a high level of skill.

Statistical analysts who used Fisher’s experimental designs and methods of analysis
followed Fisher’s rules, and those of his successors, for the calculations. Each different
design had its own recipe. After working through a few such analyses, some of those who
followed Fisher’s methods began to feel that they understood the rationale fairly well at
an intuitive level. Books appeared that gave instructions on how to do the analyses. The
most comprehensive of these is Cochran and Cox (1957).

The Genstat system (Payne et al., 2005) was the first of the major systems to implement
general methods for the analysis of multi-level models that had a suitable “balance.” It
continues to be distinguished for its coherent approach to the analysis of data from
suitably balanced designs. There are still advantages, for suitably balanced designs, in
using a program that takes advantage of the balance to simplify and structure the output.

General purpose software for use with unbalanced data, in the style of the lme4
package, made its appearance relatively recently. The analyses that resulted from earlier
ad hoc approaches were in general less insightful and informative than the more adequate
analyses that are available within a multi-level modeling framework.

Regression models are another starting point for talking about multi-level models. Both
the fixed effects part of the model and the random effects part of the model have a structure.
We have moved beyond the models with a single error term that have been the stock in trade
of courses on regression modeling. Even now, most regression texts give scant recognition
of the implications of structure in the random part of the model. Yet data commonly do
have structure – students within classes within institutions, nursing staff within hospitals
within regions, managers within local organizations within regional groupings, and so on.

As has been noted, models have not always been written down. Once theoretical
statisticians did start to write down models there was a preoccupation with models
that had a single error term that described the random part of the model. Theoretical
development, where the discussion centered around models, was disconnected from the
practical analysis of experimental designs, where most analysts were content to follow
Cochran and Cox and avoid formal mathematical description of the models that were used.

Observational data that have a multi-level structure, which is typically unbalanced, can
nowadays be analyzed just as easily as experimental data. It is no longer necessary to
look up Cochran and Cox to find how to do an analysis, and there are often acceptable
alternatives to Cochran and Cox style experimental designs.

Problems of interpretation and meaningfulness remain, for observational data, as dif-
ficult as ever. The power of modern software can become a trap, perhaps leading to
inadequate care in the design of data collection in the expectation that computer software
will take care of any problems. The result may be data whose results are hard to interpret
or cannot be interpreted at all, or that make poor use of resources.
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10.7.2 Meta-analysis

Meta-analysis is a name for analyses that bring together into a single analysis framework
data from, for example, multiple agricultural trial sites, or multiple clinical trial centers, or
multiple psychological laboratories. We will use “location” as a general term for “site” or
“center,” or “laboratory,” etc. If treatment or other effects can be shown to be consistent
relative to location-to-location variation, the result can be compelling for practical appli-
cation. Multi-level modeling makes it possible to do analyses that take proper account
of site-to-site or center-to-center variation. Indeed, in such areas of investigation, it is
unsatisfactory to give an assessment of treatment or other effects that fails to take account
of site-to-site variation. In such research, multi-level modeling, and various extensions of
multi-level modeling, provide the appropriate framework for planning and for handling
the analysis.

Meta-analysis is uncontroversial when data come from a carefully planned multi-
location trial. More controversial is the bringing together into one analysis of data from
quite separate investigations. There may however be little choice; the alternative may
be an informal and perhaps unconvincing qualitative evaluation of the total body of
evidence. Clearly such analyses challenge the critical acumen of the analyst. A wide
range of methodologies have been developed to handle the problems that may arise.
Gaver et al. (1992) is a useful summary.

10.7.3 Functional data analysis

Much of the art of repeated measures modeling lies in finding suitable representations,
requiring a small number of parameters, both of the individual profiles and of variation
between those profiles. Spline curves are widely used in this context. Chapter 12 will
discuss the use of principal components to give a low-dimensional representation of
multivariate data. A similar methodology can be used to find representations of curves in
terms of a small number of basis functions. Further details are in Ramsay and Silverman
(2002).

10.8 Recap

The art in setting up an analysis for these models is in getting the description of the
model correct. Specifically it is necessary to

• identify which are fixed and which are random effects,
• correctly specify the nesting of the random effects.

In repeated measures designs, it is necessary to specify or otherwise model the pattern of
correlation within profiles.

Skill and care may be needed to get output into a form that directly addresses the
questions that are of interest. Finally, output must be interpreted. Multi-level analyses
often require high levels of professional skill.
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10.9 Further reading

Fisher (1935) is a non-mathematical account that takes the reader step by step through
the analysis of important types of experimental design. It is useful background for read-
ing more modern accounts. Williams et al. (2002) is similarly example-based, with an
emphasis on tree breeding. See also Cox (1958); Cox and Reid (2000). Cox and Reid is
an authoritative up-to-date account of the area, with a more practical focus than its title
might seem to imply.

On multi-level and repeated measures models see Snijders and Bosker (1999); Diggle
et al. (2002); Goldstein (1995); Pinheiro and Bates (2000); Venables and Ripley (2002);
Davidian and Giltanen (1995).

Talbot (1984) is an interesting example of the use of multi-level modeling, with impor-
tant agricultural and economic implications. It summarizes a large amount of information
that is of importance to farmers, on yields for many different crops in the UK, including
assessments both of center-to-center and of year-to-year variation.

The relevant chapters in Payne et al. (2005), while directed to users of the Genstat
system, have helpful commentary on the use of the methodology and on the interpretation
of results. Pinheiro and Bates (2000) describes the use of the nlme package for handling
multi-level analyses.

On meta-analysis see Chalmers and Altman (1995); Gaver et al. (1992).
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Springer-Verlag.
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10.10 Exercises

1. Repeat the calculations of Subsection 10.3.5, but omitting results from two vines at random.
Here is code that will handle the calculation:
n.omit <- 2

take <- rep(TRUE, 48)

take[sample(1:48,2)] <- FALSE

kiwishade.lmer <- lmer(yield ˜ shade + (1|block) + (1|block:plot),

data = kiwishade,subset=take)

vcov <- show(VarCorr(kiwishade.lmer))

gps <- vcov[, "Groups"]

print(vcov[gps=="block:plot", "Variance"])

print(vcov[gps=="Residual", "Variance"])

Repeat this calculation five times, for each of n.omit= 2, 4, 6, 8, 10, 12 and 14. Plot (i) the
plot component of variance and (ii) the vine component of variance, against number of points
omitted. Based on these results, for what value of n.omit does the loss of vines begin to
compromise results? Which of the two components of variance estimates is more damaged by
the loss of observations? Comment on why this is to be expected.

2. Repeat the previous exercise, but now omitting 1, 2, 3, 4 complete plots at random.

3. The data set Gun (MEMSS package) reports on the numbers of rounds fired per minute, by
each of nine teams of gunners, each tested twice using each of two methods. In the nine teams,
three were made of men with slight build, three with average, and three with heavy build. Is
there a detectable difference, in number of rounds fired, between build type or between firing
methods? For improving the precision of results, which would be better – to double the number
of teams, or to double the number of occasions (from 2 to 4) on which each team tests each
method?

4.∗ The data set ergoStool (MEMSS package) has data on the amount of effort needed to get up
from a stool, for each of nine individuals who each tried four different types of stool. Analyze
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the data both using aov() and using lme(), and reconcile the two sets of output. Was there
any clear winner among the types of stool, if the aim is to keep effort to a minimum?

5.∗ In the data set MathAchieve (MEMSS package), the factors Minority (levels yes and
no) and sex, and the variable SES (socio-economic status) are clearly fixed effects. Discuss
how the decision whether to treat School as a fixed or as a random effect might depend on
the purpose of the study. Carry out an analysis that treats School as a random effect. Are
differences between schools greater than can be explained by within-school variation?

6.∗ The data frame sorption (DAAG) includes columns ct (concentration-time sum),
Cultivar (apple cultivar), Dose (injected dose of methyl bromide), and rep (replicate
number, within Cultivar and year). Fit a model that allows the slope of the regression
of ct on Dose to be different for different cultivars and years, and to vary randomly with
replicate. Consider the two models:
cult.lmer <- lmer(ct ˜ Cultivar + Dose + factor(year) +

(-1 + Dose | gp), data = sorption,

method = "ML")

cultdose.lmer <- lmer(ct ˜ Cultivar/Dose + factor(year) +

(-1 + Dose | gp), data = sorption,

method = "ML")

Explain the role of each of the terms in these models, and explain how the two models differ.
Which model seems preferable? Write a brief commentary on the output from the preferred
model.
[NB: The factor gp, which has a different level for each different combination of Cultivar,
year and replicate, associates a different random effect with each such combination.]
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Tree-based classification and regression

Tree-based methods, or decision tree methods, may be used for two broad types of
problem – classification and regression. These methods may be appropriate when there
are extensive data, and there is uncertainty about the form in which explanatory variables
ought to enter into the model. They may be useful for initial data exploration. Tree-based
methods have been especially popular in the data mining community.

Tree-structured classification has a long history in biology where informal methods of
dendrogram construction have been in use for centuries. Social scientists began automating
tree-based procedures for classification in the 1940s and 1950s, using methods which are
similar to some of the current partitioning methods; see Belson (1959). Venables and
Ripley (2002, chapter 9) give a short survey of the more recent history.

The tree-based regression and classification methodology is radically different from the
methods discussed thus far in this book. The theory that underlies the methods of earlier
chapters has limited relevance to tree-based methods. The methodology is relatively easy
to use and can be applied to a wide class of problems. It is at the same time insensitive
to the nuances of particular problems to which it may be applied.

The methodology makes limited use of the ordering of values of continuous or ordinal
explanatory variables. In small data sets, it is unlikely to reveal data structure. Its strength
is that, in large data sets, it has the potential to reflect relatively complex forms of
structure, of a kind that may be hard to detect with conventional regression modeling.

There are various refinements on tree-based methods that, by building multiple trees,
improve on the performance of the single-tree methods that will occupy most of the dis-
cussion in this chapter. This chapter will end with a discussion of randomForest()
and related functions in the randomForest package. This takes multiple bootstrap ran-
dom samples (the default is 500), generating a separate tree for each such sample. The
prediction is determined by a simple majority vote across the multiple trees.

There are other refinements on tree-based models that build in less structure than
classical regression modeling, but more structure than classification and regression trees.
Note also that the inferences that we describe assume that the random part of the model
is independent between observations.

Note

This chapter will use both the rpart package and (in Section 11.7) the randomForest
package. The rpart package (Therneau and Atkinson, 2000) is one of the recommended
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packages, included with all binary distributions of R. It will be necessary to download
and install randomForest (Liaw and Wiener, 2002).

11.1 The uses of tree-based methods

11.1.1 Problems for which tree-based regression may be used

We will consider four types of problem:

• regression with a continuous outcome variable,
• binary regression,
• ordered classification problems where there are more than two outcomes,
• unordered classification problems.

There are other possibilities, including tree-based survival analysis, which the rpart
package implements.

We will use two simple regression examples with a continuous outcome variable to
illustrate the methodology. One is a toy data set, that is, a data set that has been constructed
to demonstrate the methodology. The other is a data set that gives mileage versus weight,
for cars described in US April 1990 Consumer Reports, where a conventional regression
approach is much preferable. Comparison with the regression approach does however
offer useful insights into the methodology.

The main focus, again starting with a toy data set, will be on classification with two
outcomes, that is, to problems that can be treated as binary regression problems. For
such binary outcomes, the use of a classification tree is a competitor for a logistic or
related regression. Unordered classification with multiple outcomes is a straightforward
extension.

Data sets that demonstrate realistic applications of the methodology are:

• A data set on email spam. For simplicity, our discussion will limit attention to 6 out
of the 57 explanatory variables on which there is information. The choice is based on
the first author’s intuition, educated by his own experience of spam mail!

• A data set, with 11 explanatory variables, that examines the mortality of hospitalized
female heart attack patients.

When are tree-based methods appropriate?

In small data sets, it may be necessary to use parametric models that build in quite strong
assumptions, for example, no interactions, and the assumption of linear effects for the
main explanatory variables, in order to gain adequate predictive power. Results are, as a
consequence, likely to contain some bias, but this is often a price worth paying. In larger
data sets, weaker assumptions are possible, for example, allow simple forms of curve
rather than lines and include interactions. Tree-based methods may be helpful for data
sets that are large enough that very limited assumptions will allow useful inference. Even
for such data sets, however, interesting structure may be missed because assumptions
have been too weak. There is, additionally, an optimality issue. While each local split is
optimal, the overall tree may be far from optimal.
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Exploration of a new data set with tree-based regression or classification can sometimes
gain a quick handle on which variables have major effects on the outcome. Note also
that, as will be discussed in Section 11.8, tree-based approaches can sometimes be used
in tandem with more classical approaches, in ways that combine the strengths of the
different approaches.

11.2 Detecting email spam – an example

The originator of these data, George Forman, of Hewlett–Packard Laboratories, collected
4601 email items, of which 1813 items were identified as spam; these data are available
from the web site for the reference Blake and Merz (1998).

Here, for simplicity, we will work with 6 of the 57 explanatory variables on which
Forman collected information. In Figure 11.1 (untransformed data in the upper series of
panels; log transformed data in the lower series of panels) we show boxplots for 6 of the
variables. In the lower series of panels, we added 0.5 before taking logarithms.1
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Figure 11.1 Boxplots for the 6 selected explanatory variables, in a random sample of 500 out
of 4601 rows (email messages) in the SPAM database. (Presenting data for a subsample makes it
easier to see the pattern of outliers.) The upper series of panels are for untransformed data, while
in the lower series of panels 0.5 was added to each variable prior to logarithmic transformation.

1 ## Sample 50 rows from data frame spam7 (DAAG)
## To get another sample and to obtain one of the plots, type:
spam.sample <- spam7[sample(seq(1,4601),500,replace=FALSE), ]
boxplot(split(spam.sample$crl.tot, spam.sample$yesno))
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The explanatory variables are:

• crl.tot, total length of words that are in capitals.
• dollar, the frequency of the $ symbol, as a percentage of all characters.
• bang, the frequency of the ! symbol, as a percentage of all characters.
• money, frequency of the word “money,” as a percentage of all words.
• n000, frequency of the character string “000,” as a percentage of all words.
• make, frequency of the word “make,” as a percentage of all words.

The outcome is the factor yesno, which is n for non-spam and y for spam.
For use of logistic regression or another parametric technique with these data, use of

transformations, for the final 5 variables, more severe than the logarithmic transformation
used in the lower series of panels, seems required. For tree-based regression, this is not
necessary. This is fortunate, because it is not straightforward to find transformations that
work well with these data.

Now consider a tree-based classification, using the same 6 variables as predictors.
Except for the setting method="class" that is anyway the default when the outcome
is a factor, we use default settings of control parameters. The code is:

library(rpart)

spam.rpart <- rpart(formula = yesno ˜ crl.tot + dollar + bang +

money + n000 + make, method="class", data=spam7)

plot(spam.rpart) # Draw tree

text(spam.rpart) # Add labeling

Figure 11.2 shows the tree.
Reading the tree is done as follows. If the condition that is specified at a node is

satisfied, then we take the branch to the left. Thus, dollar ($) < 0.0555 and bang (!)
< 0.0915 leads to the prediction that the email is not spam.

|
doll ar< 0.0555

bang< 0.0915

c r l . t o t <  85 . 5

bang< 0.7735
c r l . t o t <  1 7

n

n n y

y

ycrl.tot< 85.5

crl.tot< 17

Figure 11.2 Output from the function rpart(), with method="class", for classification
with the email spam data set, using the 6 explanatory variables noted in the text. At each split,
observations for which the condition is satisfied take the branch to the left.
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Table 11.1 The final row gives information on the performance of the
decision tree in Figure 11.2. Earlier rows show the performances of trees
with fewer splits.

> printcp(spam.rpart)

Classification tree:

rpart(formula = yesno ˜ crl.tot + dollar + bang + money +

n000 + make, method="class", data = spam7)

Variables actually used in tree construction:

[1] bang crl.tot dollar

Root node error: 1813/4601 = 0.394

n= 4601

CP nsplit rel error xerror xstd

1 0.4766 0 1.000 1.000 0.0183

2 0.0756 1 0.523 0.557 0.0155

3 0.0116 3 0.372 0.386 0.0134

4 0.0105 4 0.361 0.378 0.0133

5 0.0100 5 0.350 0.377 0.0133

Table 11.1, obtained using printcp(spam.rpart), displays information on the
predictive accuracy of the tree. It gives two types of error rate, both expressed as multiples
of the root node error rate, here equal to 0.394:

(1) The final row of the column headed rel error gives the relative error rate for
predictions for the data that generated the tree: 35%. Multiplication by the root
node error gives an absolute error rate of 0.394 × 0.35 = 0.l38, or 13.8%. This is
often called the resubstitution error rate. It can never increase as tree size increases,
gives an optimistic assessment of relative error in a new sample, and is of no use in
deciding tree size.

(2) The column headed xerror presents the more useful measure of performance. The
x in xerror is an abbreviation for cross-validated. The absolute cross-validated
error rate is 0.394 × 0.377 = 0.l49, or 14.9%.

The cross-validated error rate estimates the expected error rate for use of the prediction
tree with new data that are sampled in the same way as the data used to derive Figure
11.2. Examination of the cross-validated error rate suggests that five splits may be
marginally better than four splits. The use of six or more splits will be investigated later,
in Section 11.6.
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11.2.1 Choosing the number of splits

In classical regression, the inclusion of too many explanatory variables may lead to a loss
of predictive power, relative to a more parsimonious model. With tree-based methods,
the more immediate issue is the number of splits, rather than the number of explanatory
variables. Choice of a tree whose cross-validation error is close to the minimum protects
against choosing too many splits. The email spam example will be the basis for a later,
more extended, investigation.

The next section will explain the terminology and the methodology for forming trees.
From there, the discussion will move to showing the use of cross-validation for assessing
predictive accuracy and for choosing the optimal size of tree. Calculations are structured
to determine a sequence of splits, to get unbiased assessments of predictive accuracy for
a range of sizes of tree, and to allow an assessment of optimal tree size.

11.3 Terminology and methodology

The simple tree in Figure 11.3 illustrates basic nomenclature and labeling conventions.2

In Figure 11.3, there is a single factor (called Criterion) with five levels. By default,
the function text.rpart() labels the levels a, b, � � � , in order. Each split carries
a label that gives the decision rule that was used in making the split, for example,
Criterion=ac, etc. The label gives the factor levels, or more generally the range of
variable values, that lead to choosing the left branch. We have arranged, for this trivial
example, that the outcome value is 1 for level a, 2 for level b, etc.

There are nine nodes in total, made up of four splits and five terminal nodes or leaves.
In this example, the leaves are labeled 1, 2, � � � , 5. The number of splits is always one
less than the number of leaves. Output from the rpart package uses the number of splits
as a measure of the size of the tree.

11.3.1 Choosing the split – regression trees

The use of method="anova" is the default when the outcome variable is a continuous
or ordinal variable. The anova splitting rule minimizes the residual sum of squares, called
deviance in the output from rpart(). It is calculated in the manner that will now be
described.

Let ��j� be the mean for the cell to which yj is currently assigned. Then the residual
sum of squares is:

D = ∑
j

�yj −��j��
2�

Calculations proceed as in forward stepwise regression. At each step, the split is chosen
so as to give the maximum reduction in D. Observe that D is the sum of the “within-cells”
sums of squares.

2 ## Code to plot such a tree is
Criterion <- factor(paste("Leaf", 1:5))
Node <- c(1,2,3,4,5)
demo.df <- data.frame(Criterion = Criterion, Node = Node)
demo.rpart <- rpart(Node ˜ Criterion, data = demo.df,

control = list(minsplit = 2, minbucket = 1))
plot(demo.rpart, uniform=TRUE)
text(demo.rpart)
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|
Criterion= ab

C r i t e r i o n = a C r i t e r i o n = c

C r i t e r i o n = d
1 2 3

4 5

Criterion= a Criterion=c

Criterion=d

Figure 11.3 Tree labeling. For this illustrative tree, the only term used to determine the splitting is
a factor with the name “Criterion.” The split labels give the factor levels (always coded a, b, ...)
that lead to choosing the left branch. More generally, different variable or factor names may appear
at different nodes. Terminal nodes (leaves) are numbered 1� � � � � 5.

Prior to the first split, the deviance is:

D = ∑
j

�yj − ȳ�2�

The split will partition the set of subscripts j into two subsets – a set of j1’s (write {j1})
and a set of j2’s (write {j2}). For any such partition:

D = ∑
j

�yj − ȳ�2 = ∑
j1

�yj1
− ȳ1�

2 +∑
j2

�yj2
− ȳ2�

2 +n1�ȳ1 − ȳ�2 +n2�ȳ2 − ȳ�2�

where the first two terms comprise the new “within-group" sum of squares, and the final
two terms make up the “between-group" sum of squares. If the values yj are ordered, then
the partition between {j1} and {j2} must respect this ordering, that is, the partitioning is
defined by a cutpoint. If the outcome variable is an unordered factor, that is, if the values
are unordered, then every possible split into {j1} and {j2} must in principle be considered.

The split is chosen to make the sum of the first two terms as small as possible, and the
sum of the final two terms as large as possible. The approach is equivalent to maximizing
the between-groups sum of squares, as in a one-way analysis of variance.

For later splits, each of the current cells is considered as a candidate for splitting, and
the split is chosen that gives the maximum reduction in the residual sum of squares.

11.3.2 Within and between sums of squares

Typically there will be several explanatory variables and/or factors. In the toy example
of Figure 11.4 there is one explanatory factor (with levels “left” and “right”) and one
explanatory variable x. The dependent variable is y. Observe that, here, yj = j (j = 1,
2� � � � � 6). Table 11.2 shows the sums of squares calculations for the candidate splits at
the root.

The split between fac=="a" and fac=="b" gives a “between” sum of squares =
1.5, and a “within" sum of squares = 16. Either of the splits on x (between x = 1 and
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Table 11.2 Comparison of candidate splits at the root, i.e., at the first split.

Overall Cell “Within” sum “Between” sum of
mean means of squares squares

fac=="a" (y==1,3,5) versus
fac=="b" (y==2,4,6)

3�5 3, 4 8 + 8 = 16 3 × �3 − 3�5�2 + 3
× �4−3�5�2 = 1.5

x==1 (y==1,2) versus x==2 or
3 (y==3,4,5,6)

3�5 1.5, 4.5 0.5 + 5.0 = 5.5 2 × �1�5 − 3�5�2 + 4
× �4�5−3�5�2 = 12

x==1 or 2 (y=1,2,3,4)
versus x==3 (y==5, 6)

3�5 2.5, 5.5 5.0 + 0.5 = 5.5 4 × �2�5 − 3�5�2 + 2
× �5�5−3�5�2 = 12

|
x< 1.5

f ac = a x< 2.5

f ac = a f ac = a
1 2

3 4 5 6

f ac= a

f ac= a f ac= a

fac x y

left 1 1
right 1 2
left 2 3
right 2 4
left 3 5
right 3 6

Figure 11.4 This illustrative tree is generated from one explanatory factor (fac) and one
explanatory variable (x). The toy data used to generate the tree are shown to the right of the
tree. For factors, the levels that lead to a branch to the left are given. The levels are labeled a, b, … ,
rather than with the actual level names. For variables, the range of values is given that leads to
taking the left branch.

x > 1, or between x< 3 and x = 3) gives a within sum of squares equal to 5.5. As the
split on x leads to the smaller “within" sum of squares, it is the first of the splits on x
that is chosen. (The second of the splits on x might equally well be taken. The tie must
be resolved somehow!)

The algorithm then looks at each of the subcells in turn, and looks at options for splits
within each subcell. The split chosen is the one that gives the largest “between" sum of
squares, for the two new subcells that are formed.

11.3.3 Choosing the split – classification trees

To request a classification tree, include the parameter setting method="class" in the
rpart() call. This setting is the default when the outcome is a factor, but it is best to
state it explicitly.
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For classification trees, several different splitting criteria may be used, with different
software programs offering different selections of criteria. In rpart, the default is gini,
which uses a modified version of the Gini index∑

j 	=k

pijpik = 1−∑
k

p2
ik

as its default measure of “error,” or “impurity.” An alternative is information, or
deviance. The rpart documentation and output use the generic term error for whatever
criterion is used.

The classes (indexed by k) are the categories of the classification. Then nik is the
number of observations at the ith leaf who are assigned to class k. The nik are used to
estimate the proportions pik. Each leaf becomes, in turn, a candidate to be the node for a
new split.

The information criterion, or deviance, is:

Di = ∑
classes k

nik log�pik��

This differs only by a constant from the entropy measure that is used elsewhere, and thus
would give the same tree if the same stopping rule were used. For the two-class problem
(a binary classification), the Gini index and the deviance will almost always choose the
same split as the deviance or entropy.

The splitting rule, if specified, is set by specifying, for example,
parms=list(split=gini)or parms=list(split=information).

11.3.4 Tree-based regression versus loess regression smoothing

Useful insights may be gained from the comparison of predictions from tree-based regres-
sion with predictions from the more conventional and (for these data) more appropriate
use of a loess() or similar regression smoothing approach.

The data that are shown in Figure 11.5 are from the US Consumer Reports for April
1990. The code is:

## loess fit to Mileage vs Weight: data frame car.test.frame (rpart)

car.lo <- loess(Mileage ˜ Weight, car.test.frame)

plot(car.lo, xlab="Weight", ylab="Miles per gallon")

lines(seq(1850,3850), predict(car.lo, data.frame(Weight=seq(1850,3850))))

To fit a regression tree to the car mileage data shown in Figure 11.5, the model formula
is Mileage versus Weight, that is, predict Mileage given Weight, just as for the
use of lm() or loess(). The code is:

car.tree <- rpart(Mileage ˜ Weight, data=car.test.frame,

control = list(minsplit = 10, minbucket = 5,

cp = 0.0001), method="anova")

plot(car.tree, uniform = TRUE)

text(car.tree, digits = 3, use.n = TRUE)
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Figure 11.5 Mileage versus Weight, for cars described in US April 1990 Consumer Reports.
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Figure 11.6 Tree-based model for predicting Mileage given Weight, for cars described in US
April 1990 Consumer Reports. For present illustrative purposes, split criteria have been changed
from the rpart default, to increase the number of splits. Notice that for this plot we have used
uniform vertical spacing between levels of the tree.

Figure 11.6 shows the fitted regression decision tree. Table 11.3 compares the predic-
tions of Figure 11.6 with predicted values from the use of loess in Figure 11.5. Notice
how the tree-based regression has given several anomalous predictions. Later splits have
relied on information that is too local to improve predictive ability. Beyond a certain
point, adding additional leaves reduces genuine predictive power, even though the fit to
the data used to develop the predictive model must continue to improve.

Figure 11.7 is the plot that results when the split criteria are left at their defaults. It
used the simpler code:

car.tree <- rpart(Mileage ˜ Weight, data = car.test.frame)

plot(car.tree, uniform = FALSE)

text(car.tree, digits = 3, use.n = TRUE)

Prediction is much coarser.
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Table 11.3 Predictions from the regression tree of Figure 11.6. For
comparison, we give the range of predictions from the loess curve that we
fitted in Figure 11.5.

Range of Weight Predicted Mileage Range of loess predictions (Figure 11.5)

1845.0 – 2280 34 36.4 – > 30.3
> 2280.0 – 2567.5 28�9 30.3 – > 26.9
> 2567.5 – 2747.5 25�6 26.9 – > 24.9
> 2747.5 – 2882.5 23�3 24.9 – > 23.9
> 2882.5 – 3087.5 24�1 23.9 – > 22.1
> 3087.5 – 3322.5 20�5 22.1 – > 20.7
> 3322.5 – 3637.5 22 20.7 – > 19.7
> 3637.5 – 3855 18�7 19.7 – > 18.9

|
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W e i g h t > 30 88

W e i g h t > 2 7 4 8
20.4

 n=22
23. 8

 n=15
25.6
 n= 8

30.9
 n=15

Weight>30 88

Weight>274 8

Figure 11.7 Tree-based model for the data of Figure 11.6, but with split criteria set to the rpart
default, and with vertical spacing now set to reflect the change in residual sum of squares. In Figure
11.6, such non-uniform spacing would have given splits that were bunched up at the lower nodes.

Table 11.4 compares the predictions for this less ambitious tree with the predictions
from the loess regression.

11.4 Predictive accuracy and the cost–complexity tradeoff

Realistic estimates of the predictive power of a model must take account of the extent to
which the model has been selected from a wide range of candidate models. Two main
approaches have been used for determining unbiased assessments of predictive accuracy.
These are cross-validation and the use of training and test sets.

The cross-validation error is relevant to predictions for the population from which the
data were sampled. Testing performance under conditions of actual use, which may be
different from those that generated the initial data, may require a validation set that is
separate from any of the data used to generate the model. See also the further comments,
under Models with a complex error structure, in Section 11.8.
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Table 11.4 Predictions from the regression tree of Figure 11.7.

Range of weights Predicted mileage Range of loess predictions (Figure 11.5)

– 2567.5 30�9 36.4 – > 26.9
> 2567.5 – 2747.5 25�6 26.9 – > 24.9
> 2747.5 – 3087.5 23�8 24.9 – > 22.1
> 3087.5 20�4 22.1 – > 18.9

11.4.1 Cross-validation

As explained in the earlier discussion in Subsection 5.5.1, cross-validation requires the
splitting of the data into k subsets, where in rpart the default choice is k = 10. Each
of the k subsets of the data is left out in turn, the model is fitted to the remaining
data, and the results used to predict the outcome for the subset that has been left out.
There is one such division of the data, known as a fold, for each of the k subsets.
At the kth fold the kth subset has the role of test data, with the remaining data hav-
ing the role of training data. The data that are for the time being used as the test
data might alternatively be called the “out-of-bag” data, a name that is more directly
appropriate in the context of the bootstrap aggregation approach that will be discussed in
Section 11.7.

In a regression model, prediction error is usually taken as the sum of differences
between observed and predicted, that is, the criterion is the same as that used for the
splitting rule. In a classification model, prediction error is usually determined by counting
1 for a misclassification and 0 for a correct classification. The crucial feature of cross-
validation is that each prediction is independent of the data to which it is applied. As a
consequence, cross-validation gives an unbiased estimate of predictive power, albeit for
a model that uses, on average, a fraction �k− 1�/k of the data. An estimate of average
“error” is found by summing up the measure of “error” over all observations and dividing
by the number of observations. Once predictions are available in this way for each of the
subsets, the average error is taken as (total error)/(total number of observations).

Cross-validation is built into the rpart calculations, giving an assessment of the change
in prediction error with changing tree size. The usual approach is to build a tree that has
more splits than is optimal, that is, it is over-fitted, and then to prune back to a tree that
has close to the minimum cross-validated prediction error.

11.4.2 The cost–complexity parameter

Rather than controlling the number of splits directly, this is controlled indirectly, via
a quantity cp (complexity parameter) that puts a cost on each additional split. The
complexity parameter appears as cp in the output from rpart().

The increase in “cost” as the tree becomes more complex is traded off against the
reduction in the lack-of-fit criterion. Further splitting stops when increases in cost
outweigh reduction in lack-of-fit. Observe that a high value for cp leads to a small
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tree (additional cost quickly offsets additional decreases in lack-of-fit), while a low value
leads to a complex tree. The choice of cp is thus a proxy for the number of splits.

Previous experience in use of tree-based methods with similar problems may suggest a
suitable setting for cp for an initial run of the calculations. Otherwise, the rpart default
can be used. If the cross-validation error has not obviously reached a minimum, this will
indicate that the tree is too small, and calculations need to be re-run with a smaller setting
for cp.

Having fitted a tree that is more complex than is optimal, we then plot the cross-
validated relative error against cp (or equivalently, against number of splits) and determine
the value of cp for which the tree seems optimal.

It can be shown that there is a sequence of prunings from the constructed tree back to
the root, such that

• at each pruning the complexity reduces,
• each tree has the smallest number of nodes possible for that complexity, given the

previous tree.

See for example Ripley (1996). This is true even if the lack-of-fit measure used for
pruning is different from that used in the formation of the tree. For classification trees, it
is common to use fraction or percent misclassified when trees are pruned.

For the final choice of tree, an alternative to use of the cross-validation estimate of
error is to examine the error rate for a new set of data.

In summary:

• The parameter cp is a proxy for the number of splits. For the initial rpart model, it
should be set small enough that the cross-validation error rate achieves a minimum.

• Having identified the optimal tree (with the minimum cross-validation error rate), later
splits are then pruned off.

11.4.3 Prediction error versus tree size

In Figure 11.8, we return to the car mileage data of Figure 11.5 and Table 11.4. Figures
11.8A and 11.8B plot, against tree size, different assessments of the relative error. As we
have a continuous outcome variable (Mileage), the relative error is the sum of squares
of residual divided by the total sum of squares.

Figure 11.8A plots the resubstitution assessment of relative error, which shows the
performance of the tree-based prediction on the data used to form the tree. Figure 11.8B
shows estimates from three cross-validation runs, with the data split into k = 10 subsets
(or folds) at each run. The plot gives an indication of the variability that can be expected,
for these data, from one cross-validation run to another.

The optimal tree, in Figure 11.8, is the smallest tree that has near minimum cross-
validated relative error. In Figure 11.8, all three runs suggest that the optimal tree
size is 3. The point at which the cross-validation estimate of error starts to increase
will differ somewhat between runs. For this reason, several cross-validation runs are
recommended.
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Figure 11.8 While the relative error (A) must inevitably decrease as the number of splits increases,
the cross-validation relative error (X-val relative error, shown in B) is likely, once the number of
splits is large enough, to increase. Results from three cross-validation runs are shown. Plots are for
the car mileage data of Figure 11.5 and Table 11.4.

11.5 Data for female heart attack patients

This and the next section will proceed to look in detail at trees from substantial data sets.
This section will examine data on the outcome (live or dead) for female heart attack
patients, in the data frame mifem (DAAG). The data are for the mortality of 1295 female
heart attack patients. A summary of the data follows.

> summary(mifem) # data frame mifem (DAAG)

outcome age yronset premi smstat

live:974 Min. :35.0 Min. :85.0 y :311 c :390

dead:321 1st Qu.:57.0 1st Qu.:87.0 n :928 x :280

Median :63.0 Median :89.0 nk: 56 n :522

Mean :60.9 Mean :88.8 nk:103

3rd Qu.:66.0 3rd Qu.:91.0

Max. :69.0 Max. :93.0

diabetes highbp hichol angina stroke

y :248 y :813 y :452 y :472 y : 153

n :978 n :406 n :655 n :724 n :1063

nk: 69 nk: 76 nk:188 nk: 99 nk: 79

## Notes:

## premi = previous myocardial infarction event

## For smstat, c = current x = ex-smoker n = non-smoker

## nk = not known

(Technically, these are patients who have suffered a myocardial infarction. Data
are from the Newcastle (Australia) center of the Monica project; see the web site
http://www.ktl.fi/monicaindex.html.)
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In order to fit the tree, we specify

mifem.rpart <- rpart(outcome ˜ ., method="class",

data = mifem, cp = 0.0025)

The dot (.) on the right-hand side of the formula has the effect of including all available
explanatory variables. A choice of cp = 0.0025 continues splitting to the point where
the cross-validated relative error has started to increase. Figure 11.9 shows the change in
cross-validated error rate as a function of tree size, while the same information is shown
alongside in printed form. The code is:

plotcp(mifem.rpart) # Cross-validated error vs cp

printcp(mifem.rpart) # Tabular version of the same information

Notice the increase in the cross-validated error rate when there are more than two splits.
For this tree, the optimum is a single split, that is, two leaves. In order to prune the

tree back to this size, specify:

mifemb.rpart <- prune(mifem.rpart, cp=0.03)

The cross-validated error rate is 0.248 × 0.832 = 0.21.
For these data, the optimum tree is very simple indeed, with a single split. Figure 11.10

shows the tree, obtained using:

plot(mifemb.rpart)

par(xpd=TRUE) # May be needed so that labels appear

text(mifemb.rpart, use.n=T, digits=3)

par(xpd=FALSE)

Note that the levels of angina are y (labelled a in the graph), n (labeled b in the graph)
and nk. It is the patients whose angina status was unknown that were most likely to be
dead, perhaps because it was not possible to ask them for the information. Use of use.n
has had the effect of labeling each node with information on outcomes for patients that
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> # Tabular equivalent of graph

> printcp(mifem.rpart)

. . . .

Root node error: 321/1295 = 0.248

n= 1295

CP nsplit xerror xstd

1 0.20249 0 1.000 0.0484

2 0.00561 1 0.832 0.0454

3 0.00467 13 0.844 0.0456

4 0.00312 17 0.838 0.0455

5 0.00250 18 0.850 0.0457

Figure 11.9 Cross-validated error versus cp, for the female heart attack data. The top size of
the bounding box is labeled with the size of tree. The tabular equivalent of the graph is shown
alongside. The column that has the (potentially misleading) relative errors has been omitted.
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Figure 11.10 Decision tree of size 2, for the data on female myocardial infarction patients.

the decision tree has assigned to that node. For the left node (labeled live), 957 patients
survive, while 239 die. For the right node, 17 survive, while 82 die.

11.5.1 The one-standard-deviation rule

The function rpart() calculates, for each tree, both the cross-validated estimate of
“error" and a standard deviation for that error. Where the interest is in which splits are
likely to be meaningful, users are advised to choose the smallest tree whose error is
less than

minimum error +1 standard deviation.

Figure 11.9 has a dotted horizontal line, a height of xerror= 0.877 (= 0�832+0�054),
that shows where this error level is attained. Here the one-standard-error rule leads to the
same choice of tree size as the choice of the absolute minimum. The rule is in general
conservative if the interest is in choosing the optimal predictive tree, that is, the predictive
power will on average be slightly less than optimal.

11.5.2 Printed information on each split

We will now examine output that is available from printing the rpart object for the very
simple tree that is shown in Figure 11.10:

> print(mifemb.rpart)

n= 1295

node), split, n, loss, yval, (yprob)
* denotes terminal node

1) root 1295 321 live ( 0.75 0.25 )
2) angina:y, n 1196 239 live ( 0.80 0.20 ) *
3) angina:nk 99 17 dead ( 0.17 0.83 ) *

Predictions are:

• At the first split (the root) the prediction is live (probability 0.752), with the 321
who are dead misclassified. Here the loss (number misclassified) is 321.
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• Take the left branch from node 1 if the person’s angina status is y or n, i.e., if it is
known (1196 persons). The prediction is live (probability 0.800), with the 239 who
die misclassified.

• Take the right branch from node 1 if the angina status is unknown (99 persons). The
prediction is dead (probability 0.828), with the 17 who are live misclassified.

The function summary.rpart() gives information on alternative splits.

11.6 Detecting email spam – the optimal tree

In Figure 11.2, where the control parameter cp had its default value of 0.01, splitting
did not continue long enough for the cross-validated relative error to reach a minimum.
In order to find the minimum, we now repeat the calculation, this time with cp = 0.001.

spam7a.rpart <- rpart(formula = yesno ˜ crl.tot + dollar +

bang + money + n000 + make,

method="class", data = spam7, cp = 0.001)

The choice of cp = 0.001 in place of cp = 0.01 was, for this initial calculation, a guess.
It turns out to carry the splitting just far enough that the cross-validated relative error
starts to increase.

In this instance, the output from plotcp(spam7a.rpart) is not very useful. The
changes are so small that it is hard to determine, from the graph, where the minimum
falls. Instead, the printed output will be used:

> printcp(spam7a.rpart)

. . . .

Root node error: 1813/4601 = 0.394

n= 4601

CP nsplit rel error xerror xstd

1 0.47656 0 1.000 1.000 0.0183

2 0.07557 1 0.523 0.559 0.0155

3 0.01158 3 0.372 0.386 0.0134

4 0.01048 4 0.361 0.384 0.0134

5 0.00634 5 0.350 0.368 0.0132

6 0.00552 10 0.317 0.352 0.0129

7 0.00441 11 0.311 0.350 0.0129

8 0.00386 12 0.307 0.335 0.0127

9 0.00276 16 0.291 0.330 0.0126

10 0.00221 17 0.288 0.326 0.0125

11 0.00193 18 0.286 0.331 0.0126

12 0.00165 20 0.282 0.330 0.0126

13 0.00100 25 0.274 0.329 0.0126

Choice of the tree that minimizes the cross-validated error leads to nsplit=17 with
xerror=0.33. Again, note that different runs of the cross-validation routine will give
slightly different results.
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Use of the one-standard-deviation rule suggests taking nsplit=16. (From the table,
minimum + standard error = 0�330 + 0�013 = 0�343. The smallest tree whose xerror
is less than or equal to this has nsplit = 16.) Figure 11.11 plots this tree.3

The absolute error rate is estimated as 0�336×0�394 = 0�132 if the one-standard-error
rule is used, or 0�330×0�394 = 0�130 if the tree is chosen that gives the minimum error.

How does the one-standard-error rule affect accuracy estimates?

The function compareTreecalcs() (DAAG) can be used to assess how
accuracies are affected, on average, by use of the one-standard-error rule. See
help(compareTreecalcs) for further information. An example of its use is:

acctree.mat <- matrix(0, nrow=100, ncol=6)

for(i in 1:100)acctree.mat[i,] <- compareTreecalcs(data=spam7,

fun="rpart")

For each of 100 random splits of the data into two nearly equal subsets I and II, the
following accuracies are calculated:

1. The estimated cross-validation error rate when rpart() is run on the training data
(I), and the one-standard-error rule is used.
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Figure 11.11 Decision tree for a tree size of 16.

3 ## Use of prune() with cp between 0.00276 and 0.00386
## will prune back to nsplit=16. Specify:
spam7b.rpart <- prune(spam7a.rpart, cp=0.003)
plot(spam7b.rpart, uniform=TRUE)
text(spam7b.rpart, cex=0.75)
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2. The estimated cross-validation error rate when rpart() is run on subset I, and the
model used that gives the minimum cross-validated error rate.

3. The error rate when the model fitted in Item 1 is used to make predictions for subset II.
4. The error rate when the model fitted in Item 2 is used to make predictions for subset II.

In a run of the code given above (results will of course differ from run to run), we
obtained the following results. The prediction accuracy for subset II was indeed similar to
the cross-validated accuracy when the model was fit to subset I. There was, on average,
a small loss of accuracy (0.45%, SE=0.07%) from use of the one-standard-error rule.
Details are in the “Additional Notes” document that can be downloaded from the web
page for this book.

How is the standard error calculated?

For classification trees, using number misclassified, the standard deviation is, assuming
independent errors, approximately equal to the square root of the number misclassified.

When are tree-based methods appropriate?

Exploration of a new data set with tree-based regression or classification can sometimes
yield a quick handle on which variables have large effects on the outcome variable. Such
methods may be appropriate when data sets are very large, and very limited assumptions
are needed to make useful inferences.

However, there is a risk of missing interesting structure because assumptions have been
too weak. Parametric models have a better chance of capturing such structure; they are
almost always more appropriate for small data sets. There is also the issue of optimality;
while the local splits are optimal, the overall tree may be far from optimal.

11.7 The randomForest package

The function randomForest() in the randomForest package is an attractive alterna-
tive to rpart() that, for relatively complex trees, often gives an improved predictive
accuracy. For each of a large number of bootstrap samples (by default, 500) trees are
independently grown. In addition, a random sample of variables is chosen for consideration
at each split. The “out-of-bag” (OOB) prediction for each observation is determined by a
simple majority vote across trees whose bootstrap sample did not include that observation.

The function randomForest() can be used in much the same way as rpart().
There is no equivalent to the parameter cp, but there are various control parameters for
which the defaults are often satisfactory. The following uses randomForest() with
the data frame spam7:

library(randomForest)

spam7.rf <- randomForest(yesno ˜ ., data=spam7, importance=TRUE)

The output summary (though obtained using print()) is:

> print(spam7.rf)
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Call:

randomForest(x = yesno ˜ ., data = spam7, importance = T)

Type of random forest: classification

Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 11.95%

Confusion matrix:

n y class.error

n 2588 200 0.07173601

y 350 1463 0.19305019

Use of the OOB error rate is crucial for avoiding over-fitting and for calculating realistic
error rates. Notice that the error rate that was achieved here is slightly better than the
13.0% error rate achieved by rpart().

There is limited scope to tune the way that data and (more importantly) variables
are sampled, based on performance in “out-of-bag” data. The most important variable is
mtry, which controls the number of variables that are sampled for consideration at each
split. The function tuneRF() can be used to find an optimum value. Such tuning is
acceptable because its only effect is on the way that models are sampled from the class
of models that are in contention. The following calculates the optimum choice of mtry
for the present data:

> tuneRF(x=spam7[, -7], y=spam7$yesno, trace=FALSE)

-0.08633 0.05

-0.005396 0.05

mtry OOBError

1 1 0.1313

2 2 0.1208

4 4 0.1215

The value of OOBerror is smallest for mtry=2. For 6 variables, this is the default,
obtained by choosing the largest integer whose square is less than or equal to 6. The
result will vary somewhat from one run of tuneRF() to another.

Two “importance” measures are calculated for each variable. The first is a “leave-one-
out” type assessment of its contribution to prediction accuracy, although it is calculated
by the average decrease in prediction accuracies in the “out-of-bag” portions of the data
from permuting values of the variable. The second is the average decrease in lack-of-fit
from splitting on the variable, averaged over all trees. Specifying importance=TRUE
causes the calculation of both measures of importance, whereas the default is to calculate
only the second measure. For the present data, the result values are:

> importance(spam7.rf)

n y MeanDecreaseAccuracy MeanDecreaseGini

crl.tot 0.631 0.807 0.519 290.1

dollar 0.660 0.798 0.523 411.4

bang 0.683 0.848 0.536 647.1

money 0.562 0.782 0.492 182.2
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n000 0.649 0.465 0.510 96.9

make 0.339 0.609 0.418 44.8

Note that the first measure gives roughly equal importance to the first three and fifth
variables, while the second measure rates bang as easily the most “important.” Is a
variable important? It depends on what is meant by importance.

Comparison between rpart() and randomForest()

In the following, the spam7 will be repeatedly split at random into two nearly equal
subsets: subset I has 2300 observations, and subset II has 2301 observations. Models
will be fit (1) using rpart() and (2) using randomForest(). The calculations are,
again, handled using the function compareTreecalcs().4

Figure 11.12A is designed to check that randomForest() did not overfit. Figure
11.12B shows that the model fitted using randomForest() has given an average
reduction in the error rate, relative to rpart(), of 0.9% [SE = 0.1%].

The difference between rpart() and randomForest() is much larger if the full
spam database, with 57 explanatory variables, is used. Thus, in three runs, rpart()
gave error rates of 8.45%, 8.34% and 8.24%, whereas randomForest() gave error
rates of 4.56%, 4.41% and 4.54%.
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Figure 11.12 For each of 100 random splits of spam7 into two nearly equal subsets I and II,
random forest models were fitted to subset I, keeping a record both of the OOB error rate on subset
I and the error rate on predictions for subset II. Panel A compares the two error rates. Panel B
compares the error rate from use of rpart() with the second of the error rates for the random
forest model.

4 acctree.mat <- matrix(0, nrow=100, ncol=8)
colnames(acctree.mat) <- c("rpSEcvI", "rpcvI", "rpSEtest", "rptest",

"n.SErule", "nre.min.12", "rfcvI", "rftest")
for(i in 1:100)acctree.mat[i,] <-

compareTreecalcs(data=spam7, fun=c("rpart", "randomForest"))
acctree.df <- data.frame(acctree.mat)
lims <- range(acctree.mat[, c(4,7,8)], na.rm=TRUE)
plot(rfcvI ˜ rftest, data=acctree.df); abline(0,1) # Panel A
plot(rptest ˜ rftest, data=acctree.df); abline(0,1) # Panel B
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Efficient computation

Use of a model formula to specify the model, with the variables and/or factors taken from
the columns of a data frame, leads to lengthy calculations when the data frame is large.
The full spam database, which has dimension 4601 × 58, is large enough for this to be an
issue, at least on a 1.25GHz Power Book G4 with 512MB of memory. A better alternative
is to use the parameter x to specify a matrix whose columns hold the predictors, with the
parameter y specifying the response vector. On the machine just described, times with
the full spam database were:

rpart(): 23.8 sec (here there is no alternative to use of a model formula, typically
with variables taken from the columns of a data frame)
randomForest(): 72.5 sec, with predictors taken from the columns of a matrix
(the time was unacceptably long when a model formula and data frame were
specified)

Differences between rpart() and randomForest()

Some of the more important differences are:

• randomForest() does not give a tree.
• In the use of randomForest(), there is no direct equivalent of rpart’s cp

parameter, and no possibility or necessity to prune trees. It may be possible to adjust
the nodesize parameter to improve over the default.

• rpart() requires a model formula, whereas randomForest() allows specification
of a matrix whose columns are used as predictors.

• randomForest() does not have any equivalent of rpart’s method parameter
that can be used to distinguish between regression, classification and other models.
Instead, randomForest assumes a regression model if the response is a factor, and
otherwise assumes a regression model.

• Accuracy is, for some data sets, markedly better for randomForest() than for
rpart().

11.8 Additional notes on tree-based methods

11.8.1 The combining of tree-based methods with other approaches

Tree-based approaches can sometimes be used in tandem with parametric approaches,
in ways that combine the strengths of the different approaches. Thus, tree-based re-
gression may suggest interaction terms that ought to appear in a parametric model. We
might also apply tree-based regression analysis to residuals from conventional para-
metric modeling, in order to check whether there is residual structure that the para-
metric model has not captured. Another variation is to apply tree-based regression
to fitted values of a parametric model, in order to cast predictions in the form of a
decision tree.
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11.8.2 Models with a complex error structure

Tree-based models, as implemented in current software, are less than ideal for use with
data where there is correlation in time or space (as in Chapters 9 and 10), or where there is
more than one level of variation (as in Chapter 10). If tree-based models are nevertheless
used with such data, accuracy should be assessed at the level of variation that is relevant
for any use of model predictions. If there is clustering in the data, and the size of the
clusters varies widely, predictions may be strongly biased.

11.8.3 Pruning as variable selection

Venables and Ripley (2002) suggest that pruning might be regarded as a method of
variable selection. This suggests using an AIC-like criterion as the criterion for optimality.
We refer the reader to their discussion for details.

11.8.4 Other types of tree

The rpart package allows two other types of tree. The poisson splitting method adapts
rpart models to event rate data. See Therneau and Atkinson (2000, pp. 35–41). The
survival splitting method is intended for use with survival data, where each subject
has either 0 or 1 events. (The underlying model is a special case of the Poisson event
rate model.) See again Therneau and Atkinson (2000, pp. 41–6).

11.8.5 Factors as predictors

There are 2k−1 −1 ways to divide k factor levels into two groups, each with at least one
of the levels. If a factor has a large number of levels (more than perhaps eight or ten),
calculations may take an unreasonable length of time. A way around this is to replace
the k-level factor by k (or possibly k − 1) dummy variables. Splits then take place on
these dummy variables one at a time. This leads to a different calculation that (unless
k = 2) will run more quickly. Instead of optimality over all splits of factor levels into two
groups, there is optimality at each split on a dummy variable given previous splits, and
the total sequence of splits may not be optimal. While there will be sequences of splits on
the dummy variables that are equivalent to a single split of factor levels into two groups,
it is unlikely that splitting on the dummy variables will find such a sequence. A further
disadvantage is that the resulting tree may be much more complicated.

11.8.6 Summary of pluses and minuses of tree-based methods

Here is a more detailed comparison that matches tree-based methods against the use
of linear models, generalized additive models, and parametric discriminant methods.
Strengths of tree-based regression include:

• Results are invariant to a monotone re-expression of explanatory variables.
• The methodology is readily adapted to handle missing values, without omission of

complete observations.
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• Tree-based methods are adept at capturing non-additive behavior. Interactions are
automatically included.

• It handles regression, and in addition unordered and ordered classification.
• Results are in an immediately useful form for classification or diagnosis.

Weaknesses include:

• The overall tree may not be optimal. The methodology assures only that each split
will be optimal. Boosting and bagging and allied approaches do better, in general, in
this respect.

• Continuous predictor variables are treated, inefficiently, as discrete categories.
• Assumptions of monotonicity or continuity across category boundaries are lost.
• Low-order interaction effects do not take precedence over higher-order interactions.
• Limited notions of what to look for may result in failure to find useful structure.
• It may obscure insights that are obvious from parametric modeling, e.g., a steadily

increasing risk of cancer with increasing exposure to a carcinogen.
• Large trees make poor intuitive sense; their predictions must be used as black boxes.

11.9 Further reading

Venables and Ripley (2002) is the reference of choice for an overview of the method-
ology. See also Ripley (1996); Chambers and Hastie (1992). Hastie et al. (2001) is a
comprehensive treatment. They discuss new research directions, including such multiple
tree methods as bagging and boosting. In the boosting methodology, successive trees give
extra weight to points that were incorrectly predicted by earlier trees, with a weighted
vote finally taken to get a consensus prediction.

Therneau and Atkinson (2000, pp. 50–52) give comparisons between rpart methodol-
ogy and other software. Lim and Loh (2000) investigated 10 decision tree implementa-
tions, not however including rpart. Several of these implementations offer a choice of
algorithms.

For a biostatistical perspective, including a discussion of survival modeling and analysis
of longitudinal data, see Zhang and Singer (1999).

11.9.1 References for further reading

Chambers, J. M. and Hastie, T. J. 1992. Statistical Models in S. Wadsworth and Brooks-
Cole Advanced Books and Software.

Hastie, T., Tibshirani, R. and Friedman, J. 2001. The Elements of Statistical Learning.
Data Mining, Inference and Prediction. Springer-Verlag.

Lim, T.-S. and Loh, W.-Y. 2000. A comparison of prediction accuracy, complexity, and
training time of thirty-three old and new classification algorithms. Machine Learning
40: 203–28.

Ripley, B. D. 1996. Pattern Recognition and Neural Networks. Cambridge University
Press.

Therneau, T. M. and Atkinson, E. J. 1997. An Introduction to Recursive Partitioning Using
the RPART Routines. Technical Report Series No. 61, Department of Health Science
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Research, Mayo Clinic, Rochester, MN, 2000. Available from http://www.mayo.
edu/hsr/techrpt.html

Venables, W. N. and Ripley, B. D. 2002. Modern Applied Statistics with S, 4th edn.
Springer-Verlag.

Zhang, H. and Singer, B. 1999. Recursive Partitioning in the Health Sciences. Springer-
Verlag.

11.10 Exercises

1. Refer to the head.injury data frame.

(a) Use the default setting in rpart() to obtain a tree-based model for predicting occurrence
of clinically important brain injury, given the other variables.

(b) How many splits gives the minimum cross-validation error?
(c) Prune the tree using the one-standard-error rule.

2. The data set mifem is part of the larger data set in the data frame monica that we have
included in our DAAG package. Use tree-based regression to predict mortality in this larger
data set. What is the most immediately striking feature of the analysis output? Should this be
a surprise?

3. Use tree-based regression to predict re78 in the data frame nsw74psid1 that is in our DAAG
package. Compare the predictions with the multiple regression predictions in Chapter 6.

4. Copy down the email spam data set from the web site given at the start of Section 11.2. Carry
out a tree-based regression using all 57 available explanatory variables. Determine the change
in the cross-validation estimate of predictive accuracy.
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Multivariate data exploration and discrimination

In our discussion so far, we have made heavy use of exploratory graphs that have exam-
ined variables and their pairwise relationships, as a preliminary to regression modeling.
Scatterplot matrices have been an important tool, and will be used in this chapter also. The
focus will move from regression to methods that seek insight into the pattern presented
by multiple variables. While the methodology has applications in a regression context,
this is not its primary focus.

There are a number of methods that project the data on to a low-dimensional space,
commonly two dimensions. Such methods offer “views” of the data that may be insightful,
and suggest the views that it may be worthwhile to examine first. One of the most
widely used is principal components analysis (PCA). Principal components analysis uses
a mathematical representation of the data that has applications in many different contexts,
far beyond those discussed here.

As used here, PCA is a special case of a much wider class of ordination or
multi-dimensional scaling (MDS) methods. A brief note on this wider class of meth-
ods will be included at the end of Subsection 12.1.3.

Principal components analysis is a useful tool for the data exploration that we have
in mind. It replaces the variables with which we started by new principal component
variables, called principal components. The analysis orders the principal components
according to the amounts that they contribute to the total of the variances of the original
variables. The most insightful plots are often, but by no means inevitably, those that
involve the first few principal components. The proportion of the total variance that is
accounted for is, for this reason, commonly used as an “importance” criterion. At best, it
suggests variable combinations that may offer interesting views of the data. There is no
sense, as in analysis of variance, of accounting for variation in a response variable. Where
data are clustered into groups, principal components that account for a large proportion
of the total variance may show clustering.

As noted, the methods have application in regression and related analyses, in
problems where it is helpful to reduce the number of candidate explanatory variables.
We may, for example, replace a large number of candidate explanatory variables by
the first few principal components, hoping that they will adequately summarize the
information in the candidate explanatory variables. If we are fortunate, simple modi-
fications of the components will give new variables that are readily interpretable. In
the analysis of morphometric data, the first component is often an overall measure
of size.
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Discriminant analysis methods are another important class of methods. In
discrimination, observations belong to one of several classes or groups. The aim is
to find a rule, based on values of explanatory variables, that will, as far as possible,
assign observations to their correct classes. This rule may then be used to classify new
observations whose class may be unknown or unclear. An obvious way to evaluate clas-
sification rules is to examine their predictive accuracy, that is, the accuracy with which
they can be expected to assign new observations.

Discriminant analysis methodology is clearly an important methodology in its own
right. In addition it is sometimes used, in a manner akin to one of the uses of PCA, to
reduce the data to a small number of “discriminant components,” that is, linear combina-
tions of the candidate variables, that for discrimination purposes sum up the information
in those variables. Plots of these components can be useful for data exploration. In some
applications, the components may become covariates in a regression analysis, rather than
finding use for discrimination per se. See the example in Section 13.2.

12.1 Multivariate exploratory data analysis

Preliminary exploration of the data is as important for multivariate analysis as for classical
regression. Faced with a new set of data, what helpful forms of preliminary graphical
exploration are available? Here we illustrate a few of the possibilities.

The data set possum was described in Chapter 2. The interest is in finding the
morphometric characteristics, if any, that distinguish possums at the different sites. For
simplicity, we will limit attention to a subset of the morphometric variables.

12.1.1 Scatterplot matrices

It is good practice to begin by examining relevant scatterplot matrices. This may draw
attention to gross errors in the data. A plot in which the sites and/or the sexes are identified
will draw attention to any very strong structure in the data. For example, one site may be
quite different from the others, for some or all of the variables.

In order to provide a plot in which the features of interest are clear, we present, here, a
scatterplot matrix that shows three only of the nine variables. We invite readers to create
for themselves a scatterplot matrix that has all nine variables.

The choice of variables in Figure 12.1 anticipates results of later analysis, showing the
variables that discriminate the populations most effectively.1 Observe that there are two

1 ## Scatterplot matrix, for columns 9-11 of possum (DAAG)
## The use of different colors for different sexes, and different
## symbols for different sites, makes for intricate code.
library(lattice)
## Scatterplot matrix: columns 9:11 of data frame possum (DAAG)
colr <- c("red", "blue")
pchr <- c(3,4,0,8,2,10,1)
ss <- expand.grid(site=1:7, sex=1:2) # Site varies fastest
## Add sexsite to possum; will be used again below
possum$sexsite <- paste(possum$sex, possum$site, sep="-")
splom(˜ possum[, c(9:11)],

groups = possum$sexsite, col = colr[ss$sex], pch = pchr[ss$site],
varnames=c("tail\nlength","foot\nlength","ear conch\nlength"),
key =list(points = list(pch=pchr),

text=list(c("Cambarville","Bellbird","Whian Whian","Byrangery",
"Conondale ","Allyn River", "Bulburin")), columns=4))
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Figure 12.1 Scatterplot matrix for three morphometric measurements on the mountain brushtail
possum. Females are in red; males in blue. For color version, see Plate 5.

clusters of values, with some of the six sites more strongly represented in one cluster
than in the other.

12.1.2 Principal components analysis

Principal components analysis can be a useful exploratory tool for multivariate data. As
noted in the introductory comment at the beginning of the chapter, the idea is to replace
the original variables by a small number of “principal components” – linear combinations
of the initial variables, that together may explain most of the variation in the data.

A useful starting point for thinking about principal components analysis is to imagine
a two-dimensional scatterplot of data that has, roughly, the shape of an ellipse. Then the
first principal component coincides with the longer axis of the ellipse. For example, if we
had just the two variables footlgth (foot length) and earconch (ear conch length)
from the possum data set, then the first principal component would have the direction
of a line from the bottom left to the top right of the scatterplot in the first row and second
column of Figure 12.1. (We might equally well examine the plot in the second row and
third column, where the x- and y-axes are interchanged.)
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Figure 12.2 Three-dimensional perspective plot (cloud plot) for the three variables displayed in
Figure 12.1. For color version, see Plate 6.

In three dimensions the scatter of data has the shape of an ellipsoidal object, for
example, the shape of a mango or marrow, but perhaps flattened on one side. The first
principal component is the longest axis. If the first principal component explains most of
the variation, then the object will be long and thin.

Figure 12.2 gives a three-dimensional representation of the variables shown in
Figure 12.1.2 Notice that the data form into two clusters – the marrow has separated
into two parts! One use for principal components and associated plots is to help in
identifying such clusters.

Clearly the scaling of variables is important. It makes sense, in some circumstances,
to work with the data as they stand, and in others to standardize values of each vari-
able by dividing by the standard deviation. If the variables are measured on comparable

2 pchr <- c(3,4,0,8,2,10,1)
colr <- trellis.par.get()$superpose.symbol$col
cloud(earconch˜taill+footlgth, data=possum, pch=pchr, groups=site, cex=.65,

key = list(space="top", corner=c(0,1), columns=4, cex=0.75,
between=1, points = list(pch=pchr, col=colr),
text=list(c("Cambarville","Bellbird","Whian Whian ",
"Byrangery", "Conondale ","Allyn River","Bulburin")),
between.columns=2))
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scales, unstandardized data may be appropriate. If the scales are not comparable, and
especially if the ranges of variables are very different, standardization may be appropriate.
For morphometric (shape and size) data as in the possum data frame, use of the logarithms
of variables places all variables on a scale on which equal distances correspond to equal
relative changes, and is usually for this reason desirable.

Principal components will be formed using the morphometric data in columns 6 to 14
in the possum data frame. Interest will be in how principal components differ between
sites and sexes. In principal, changes with age should also be investigated. That will not
be pursued here, except to compare the distributions of ages between sites.

Preliminary data scrutiny

These morphometric measurements are all essentially linear. For these data, taking log-
arithms makes very little difference to the appearance of the plots. This is because the
ratio of largest to smallest value is relatively small, never more than 1.6:

> ## Ratios of largest to smallest values: possum[, 6:14] (DAAG)
> sapply(na.omit(possum[, 6:14]), function(x)max(x)/min(x))

hdlngth skullw totlngth taill footlgth earconch eye
1.25 1.37 1.29 1.34 1.29 1.36 1.39
chest belly
1.45 1.60

Thus for simplicity, the present discussion will not use logarithmically transformed vari-
ables, instead leaving examination of the effect of a logarithmic transformation as an
exercise for the reader.

In order to make the coefficients in the linear combinations unique, there must be
a constraint on their magnitudes. The princomp()function makes the squares of the
coefficients sum to one. The first principal component is the component that explains
the greatest part of the variation. The second principal component is the component that,
among linear combinations of the variables that are uncorrelated with the first principal
component, explains the greatest part of the remaining variation, and so on.

In the absence of other clues on what views of the data may be useful, plots that
examine the first few principal components are a reasonable starting point. Different
pairs of principal components allow different two-dimensional views of the data. A usual
first step is to plot the second principal component against the first principal component.
Or, a scatterplot matrix form of presentation can be used to examine all the pairwise plots
for the first three or four principal components.

The commands used for the analysis were:

## Principal components calculations: possum[, 6:14] (DAAG)

possum.prc <- princomp(na.omit(possum[, 6:14]))

Notice the use of the na.omit() function to remove rows that contain missing values,
prior to the principal components analysis. Note again that, for present tutorial purposes,
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Figure 12.3 Second principal component versus first principal component, for variables in columns
6–14 of the possum data frame. Females are in red; males in blue. For color version, see Plate 7.

we have chosen to work with the variables as they stand. Figure 12.3 plots the second
principal component against the first, for variables 6 to 14 in the possum data.3

Here are further details of the principal components output. We have edited the output
so that the “importance of components” information is printed to two decimal places
only. By default, blanks appear whenever coefficients are less than 0.1:

> summary(possum.prc, loadings=TRUE, digits=2)

Importance of components:

Comp.1 2 3 4 5 6 7 8 9

Standard deviation 6.80 5.03 2.67 2.16 1.74 1.60 1.29 1.11 0.92

Proportion of Variance 0.50 0.27 0.08 0.05 0.03 0.03 0.02 0.01 0.01

Cumulative Proportion 0.50 0.77 0.85 0.90 0.93 0.96 0.98 0.99 1.00

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9

3 ## Plot of principal components: possum[, 6:14]
here <- complete.cases(possum[, 6:14])
colr <- c("red", "blue")
pchr <- c(3,4,0,8,2,10,1)
ss <- expand.grid(site=1:7, sex=1:2) # Site varies fastest
xyplot(possum.prc$scores[, 2] ˜ possum.prc$scores[, 1],

groups = possum$sexsite[here], col = colr[ss$sex], pch = pchr[ss$site],
xlab="1st Principal Component", ylab="2nd Principal Component",
key=list(points = list(pch=pchr),

text=list(c("Cambarville", "Bellbird", "Whian Whian",
"Byrangery", "Conondale", "Allyn River",
"Bulburin" )), columns=4))
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hdlngth -0.41 0.28 0.34 -0.19 0.70 -0.28 -0.18

skullw -0.30 0.27 0.54 -0.34 -0.52 0.28 0.26 0.11

totlngth -0.52 0.31 -0.65 -0.16 0.23 -0.15 0.34

taill 0.25 -0.35 -0.19 0.44 -0.75 0.11

footlgth -0.51 -0.47 -0.34 -0.63

earconch -0.31 -0.65 0.25 0.58 0.21 -0.17

eye 0.19 0.24 0.94

chest -0.22 0.17 0.17 -0.18 0.19 -0.76 -0.40 0.27

belly -0.25 0.18 0.13 0.89 0.10 0.24 0.14

Most of the variation is in the first three or four principal components. Notice that
components 5 and 6 each explain only 3% of the variance. Later components explain,
individually, even less. The variation in these later components is so small that it may
well mostly represent noise in the data.

The loadings are the multiples of the original variables that are used in forming the
principal components. To a close approximation, the first three components are:

Comp.1: -0.41×hdlngth-0.3×skullw-0.52×totlngth-0.51×footlgth
-0.31×earconch-0.22×chest-0.25×belly

Comp.2: 0.28×hdlngth+0.27×skullw+0.31×totlngth+0.25×taill
-0.47×footlgth-0.65×earconch+0.18×belly

Comp.3: 0.34×hdlngth+0.54×skullw-0.65×totlngth-0.35×taill
+0.17×chest+0.13×belly

Notice that the first component is pretty much a size component; the magnitudes of all
coefficients are comparable. The negative signs are an artifact of the computations; the
signs could all just as well have been switched.

The stability of the principal components plot

Figure 12.3 showed a rather clear separation into two groups, distinguishing Bellbird
and Cambarville from the other sites. How stable, relative to statistical variation, are the
clusters that were apparent? The bootstrap approach is one way to test this.

A good indication of the population at each site is given by repeating each of the
sample observations an infinite number of times. A new sample from this bootstrap
infinite population is obtained by sampling with replacement from the original sample,
choosing a bootstrap sample that has the same size as the original sample. This is done for
each of the seven sites, thus giving a bootstrap sample data frame bsample1.possum
that replaces the original data. The process is repeated several times, giving further such
data frames bsample2.possum, bsample3.possum, � � �

The steps that led to Figure 12.3 are then repeated for each of these bootstrap sample
data frames, and plots obtained that correspond to Figure 12.3. Figure 12.4 presents four
such plots. All show a similar distinction between the two sets of sites, thus suggesting
that the view given by the principal components may be reasonably stable with respect
to sampling variation. The following code was used to give Figure 12.4:

library(lattice)

## Bootstrap principal components calculations: possum (DAAG)

usepossum <- na.omit(possum[, -5])

usepossum$sexsite <- with(usepossum, paste(sex, site, sep=":"))
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Figure 12.4 Second principal component versus first principal component, for variables in
columns 6–14 of the nine bootstrap versions of the possum data frame. Females are in gray;
males in black.

n <- dim(usepossum)[1]

ntimes <- 4

bootscores <- data.frame(matrix(0, nrow=ntimes*n, ncol=3))

for (i in 1:ntimes){

samprows <- sample(1:n, n, replace=TRUE)

possumi <- usepossum[samprows, ]

bootscores[n*(i-1)+(1:n), 1:2] <-

princomp(possumi[, 5:13])$scores[, 1:2]

bootscores[n*(i-1)+(1:n), 3] <- usepossum$sexsite[samprows]

}

names(bootscores) <- c("scores1","scores2", "sexsite")

bootscores$another <- rep(1:ntimes, rep(n,ntimes))

colr <- c("red", "blue")

pchr <- c(3,4,0,8,2,10,1)

ss <- expand.grid(site=1:7, sex=1:2)

xyplot(scores2 ˜ scores1 | another, data=bootscores,

groups = bootscores$sexsite, col=colr[ss$sex],

pch=pchr[ss$site], xlab="1st PC", ylab="2nd PC",

key = list(points = list(pch=pchr),

columns=4, cex=.75, between=1, between.columns=2,
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text=list(c("Cambarville","Bellbird","Whian Whian ",

"Byrangery", "Conondale ","Allyn River","Bulburin"))

))

12.1.3 Multi-dimensional scaling

We noted above that PCA, in the use made of it here, is a special case of a much
wider class of multi-dimensional scaling (MDS) methods. MDS starts with a distance
matrix that measures the distances of points from each other. In classical (“metric”)
MDS, the aim is to find a configuration of points in a low-dimensional space such that
these distances are as far as possible preserved. Classical MDS with Euclidean distance
(in three-dimensional space this is just the usual “distance”) is equivalent to a principal
components representation, working with the unscaled variables.

Depending on the data, a non-Euclidean distance measure may be considered. For some
of the possibilities, see help(dist) or, for a more extensive range of possibilities, the
help page for the function daisy() in the cluster package. The function cmdscale()
implements classical MDS. Both dist() and cmdscale() are in the stats package.

A particularly simple non-Euclidean distance (or “metric”) is the "manhattan".
In two dimensions this is the smallest walking distance between street corners, taking a
succession of left and/or right turns along streets that are laid out in a two-dimensional grid.

Less strongly metric methods are available that allow small distances to be reproduced
more accurately than large distances. The Sammon method (Sammon, 1969), which
minimizes a weighted sum of squared differences between the supplied and the fitted
distance, with weights inversely proportional to the distance, is often a good compromise
between classical MDS and methods such as Kruskal’s non-metric MDS. The function
sammon() (MASS) implements Sammon’s method, while isoMDS() (also MASS)
implements Kruskal’s non-metric MDS. Kruskal’s non-metric MDS is a challenge for
optimization algorithms, and calculations may take a long time.

The following code demonstrates the use (1) of sammon(), and (2) of isoMDS(),
using Euclidean distance:

library(MASS)

d.possum <- dist(possum[,6:14]) # Euclidean distance matrix

possum.sammon <- sammon(d.possum, k=2)

plot(possum.sammon$points) # Plot 2nd vs 1st ordinates

possum.isoMDS <- isoMDS(d.possum, k=2)

plot(possum.isoMDS$points)

A rotation and/or a reflection may be required to align these plots with each other and
with Figure 12.3. After such alignment, the plots are, for these data, remarkably similar.

For further details, especially with respect to distance measures, see Venables and
Ripley (2002); Gordon (1999); Cox and Cox (2001).

Binary data

Binary data raises special issues, both for the choice of distance measure and for the
choice of MDS methodology. For the “binary” measure, the number of bits where only
one is “on” (i.e., equal to one) is divided by the number where at least one is on. Points
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that are at a distance of 1.0 from each other and from most other points cannot, if there
is a substantial number of them, be accurately located in a low-dimensial space.

It is then undesirable to give much weight to distances close to or equal to 1.0. Use of
sammon() or isoMDS() is then much preferable to use of cmdscale(). The plots
may have a striking visual appearance, with points for which distances from most other
pointsareclose to1.0 lyingonacirclearound theboundaryof the total configurationofpoints.

12.2 Discriminant analysis

We want a rule that will allow us to predict the class to which a new data value will
belong. Using language that has been popular in the machine learning literature, and
that comes originally from the engineering pattern recognition literature, the interest is in
supervised learning. For example, we may wish to predict, based on prognostic measure-
ments and outcome information for previous patients, which future patients will remain
free of disease symptoms for 12 months or more. We demonstrate two methods – logistic
discrimination and linear discriminant analysis using the function lda() in MASS.

The methods that we discussed in earlier chapters for assessing predictive accuracy
apply here also. Note in particular cross-validation, and the training/test set methodology.
We emphasize once again that resubstitution accuracy, that is, prediction accuracy on the
data used to derive the model, must inevitably improve as the prediction model becomes
more complex. For the cross-validation estimate of predictive accuracy, and for predictive
accuracy on any test set, we will typically, at some point, start to see a reduction in accu-
racy. Cross-validation is an attractive approach when data are scarce – no more than a few
hundred or a few thousand observations at the level that matters for making predictions.

12.2.1 Example – plant architecture

Our first example is from data on plant architecture (data relate to King and Maindonald,
1999). There is a discussion of plant architectures, with diagrams that help make clear
the differences between the different architectures, in King (1998). Orthotropic species
have steeply angled branches, with leaves coming off on all sides. Plagiotropic species
have spreading branches (a few intermediates and a third uncommon branching pattern
are excluded). The interest was in comparing the leaf dimensions of species with the two
different architectures. Is leaf shape a good discriminator? The interest is not in prediction
per se, but in the extent to which leaf shape discriminates between the two architectures.

We examine data from a North Queensland site, one of the six sites that provided data.
Figure 12.5 is a plot of the data. A logarithmic scale is clearly preferable, as in Figure 12.5B.

With two explanatory variables, there is not much point in a plot of principal compo-
nents scores. A plot of the second versus the first principal components scores from the
log transformed data would look like Figure 12.5B, but rotated so that the major axis of
variation (running from the lower left to the upper right of Figure 12.5B) is horizontal.
We could draw a line by hand through these data at right angles to this major axis, from
the lower right to the upper left, that would discriminate orthotropic from plagiotropic
species. However, we need a more objective way to discriminate the two classes.
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Figure 12.5 Leaf length versus leaf width (A) with untransformed scales; and (B) using log-
arithmic scales. The symbols are o = plagiotropic and + = orthotropic. Data, in the data frame
leafshape17, are from a North Queensland site.

The function glm(), and the predict method for glm objects, reflect a classical approach
to statistical inference and make no explicit assumptions about the prior frequencies of
the classes. For making predictions, however, the expected proportions in the two (or
more) classes are important in finding a rule that will optimally assign a new sample
to a cancer type, with as high a probability of correct classification as possible.

More generally, different types of misclassification (orthotropic for a plagiotropic
species, as against plagiotropic for an orthotropic species) may have different costs that
should be taken into account. Costs are often important in a medical context. In a screening
test for a disease, some false positives are acceptable, while any false negative (failing to
detect an instance of the disease) may have very serious consequences.

Notation

Let 
0 and 
1 be the respective prior probabilities of orthotropic and plagiotropic
architectures. For predictions from the logistic regression, 
0 and 
1 are each implicitly
assumed equal to 0.5. In the call to lda(), 
0 and 
1 can be supplied, using the param-
eter prior, as an argument. They can also be changed, again using a parameter prior,
in a call to the predict method for an lda object. By default, lda() takes 
0 and 
1 to
be the frequencies in the data.

Then the discriminant analysis yields a linear function f�x� y� of x = log�leaf width�

and y = log�leaf length� such that when

f�x� y� < − log
(


1


0

)
�

the prediction is that the plant will be plagiotropic, while otherwise the plant is predicted
to be orthotropic. The function f�x� y� has the form a�x − x̄� + b�y − ȳ� and is called
the discriminant function. There is one value for each observation. The values of the
discriminant function are known as scores. The constants a and b must be estimated from
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the data. Predictions for glm objects assume, in effect, that log
(


1


0

)
= 0, but results

from the output from glm() can easily be adapted to accommodate 
1 	= 
0 and hence

log
(


1


0

)
	= 0.

12.2.2 Logistic discriminant analysis

Binary logistic discrimination works with a model for the probability, for example,
that a plant will be orthotropic. To fix attention on this specific example, the model
specifies log�odds orthotropic� as a linear function of the explanatory variables for the
classification. We get the function from

> leaf17.glm <- glm(arch ˜ logwid + loglen, family=binomial,

+ data=leafshape17)

> options(digits=3)

> summary(leaf17.glm)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) -15.286 4.09 -3.735 0.000188

logwid 0.185 1.57 0.118 0.905911

loglen 5.268 1.95 2.704 0.006856

Thus we have

log�odds orthotropic� = −15�3+0�185 log�width�+5�628 log�length��

Predictive accuracy

Accuracy assessments should be based either on use of separate test data, or on cross-
validation, or on another such resampling method. The cross-validation estimate is a
reasonable assessment of the accuracy that can be expected for a new set of data,
sampled in the same way as the existing training data. Our function CVbinary() can
conveniently be used to do the cross-validation calculations. It returns the class that is
predicted from the cross-validation in the list element cv.

## Confusion matrix: cross-validation estimate

> leaf17.cv <- CVbinary(leaf17.glm)

> tCV <- table(leafshape17$arch, round(leaf17.cv$acc.cv)) # CV

> cbind(tCV, c(tCV[1,1], class.acc=tCV[2,2])/(tCV[,1]+tCV[,2]))

0 1

0 36 5 0.878

1 7 13 0.650

In the above table, 36/(36+5) is calculated as 0.878, while 13/(7+13) is calculated as 0.65.
The overall predictive accuracy is �36+13�/�36+13+5+7� = 80�3%. We can find this
as follows:

> sum(tCV[row(tCV)==col(tCV)])/sum(tCV) # Overall accuracy

[1] 0.803
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Accuracies for the data that were used to train the model, here referred to as the resubsti-
tution accuracy rate, are in general optimistic, and should not be quoted. They are given
here for comparative purposes. The function CVbinary() returns the resubstitution
estimate in the list element resub.

## Confusion matrix: resubstitution estimate

## This can be grossly optimistic, and should be ignored

> tR <- table(leafshape17$arch, round(leaf17.cv$acc.resub)) # Resub

> cbind(tR, c(tR[1,1], class.acc=tR[2,2])/(tR[,1]+tR[,2]))

0 1

0 37 4 0.902

1 7 13 0.650

> sum(tR[row(tR)==col(tR)])/sum(tR) # Overall accuracy

[1] 0.82

The leave-one-out cross-validation accuracy was, for the cross-validation run that is
reported here, slightly lower than the resubstitution assessment.

12.2.3 Linear discriminant analysis

The function lda(), from the Venables and Ripley MASS package, is set in an explicit
Bayesian framework, as described in Ripley (1996, p. 36). For two classes it is a logistic
regression, but the assumptions (notably, a common variance–covariance matrix for the
two groups) are different from those for glm(). It yields posterior probabilities of
membership of the several groups. The allocation which makes the smallest expected
number of errors chooses, following the Bayes rule, the class with the largest posterior
probability. Where there are g > 2 groups, the methodology extends to allow the use of
up to g −1 discriminant axes.

We first extract predictions, and then examine the discriminant function. The code is:

library(MASS)

## Discriminant analysis; data frame leafshape17 (DAAG)

leaf17.lda <- lda(arch ˜ logwid+loglen, data=leafshape17)

Output from the analysis is:

> leaf17.lda

Call:

lda.formula(arch ˜ logwid + loglen, data = leafshape17)

Prior probabilities of groups:

0 1

0.672 0.328

Group means:

logwid loglen

0 1.43 2.46

1 1.87 2.99
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Coefficients of linear discriminants:

LD1

logwid 0.156

loglen 3.066

The coefficient estimates are a = 0.156 and b = 3.066.
The prior probabilities should reflect the expected proportions in the population to

which the discriminant function will be applied, which may be different from the rel-
ative frequencies in the data that were used to make predictions. Both lda() and the
predict method for lda objects take the parameter prior, allowing predictions to
use prior probabilities that may be different from those that were assumed in the call
to lda().

Assessments of predictive accuracy

Predictions for the data used to train the model can be obtained using predict
(leaf17.lda). Such predictions will, here, be ignored. Instead, we will re-run the
calculation with the argument CV=TRUE. Predictions are then based on leave-one-out
cross-validation, that is, observations are left out one at a time, the model is fitted to the
remaining data, and a prediction is made for the omitted observation. Here then are the
calculations:

> leaf17cv.lda <- lda(arch ˜ logwid+loglen, data=leafshape17,

+ CV=TRUE)

> ## the list element ’class’ gives the predicted class

> ## The list element ’posterior’ holds posterior probabilities

> tab <- table(leafshape17$arch, leaf17cv.lda$class)

> cbind(tab, c(tab[1,1], class.acc=tab[2,2])/(tab[,1]+tab[,2]))

0 1

0 37 4 0.902

1 8 12 0.600

> sum(tab[row(tab)==col(tab)])/sum(tab)

[1] 0.803

The function multinom(), in the nnet package that is supplied as part of the recom-
mended Venables and Ripley VR bundle of packages, offers another approach which is
however less well adapted for use for prediction.

12.2.4 An example with more than two groups

We present discriminant analysis calculations for the possum data frame. The methods
followed here are similar to those used in Lindenmayer et al. (1995), with these same data,
in making a case for the identification of a new possum species. (The species is named
Trichodurus cunninghami for the statistician whose analysis led to this identification. See
Hall (2003).)
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We will use the same nine variables as before.4 The output is:

> possum.lda

Call:

lda(site ˜ hdlngth + skullw + totlngth + taill + footlgth +

earconch + eye + chest + belly, data = na.omit(possum))

Prior probabilities of groups:

1 2 3 4 5 6 7

0.3267 0.0990 0.0693 0.0693 0.1287 0.1287 0.1782

Group means:

hdlngth skullw totlngth taill footlgth earconch eye chest belly

1 93.7 57.2 89.7 36.4 73.0 52.6 15.0 27.9 33.3

2 90.2 55.6 82.0 34.5 70.6 52.1 14.4 26.8 31.2

3 94.6 58.9 88.1 37.2 66.6 45.3 16.1 27.6 34.9

4 97.6 61.7 92.2 39.7 68.9 45.8 15.5 29.6 34.6

5 92.2 56.2 86.9 37.7 64.7 43.9 15.4 26.7 32.0

6 89.2 54.2 84.5 37.7 63.1 44.0 15.3 25.2 31.5

7 92.6 57.2 85.7 37.7 65.7 45.9 14.5 26.1 31.9

Coefficients of linear discriminants:

LD1 LD2 LD3 LD4 LD5 LD6

hdlngth -0.1494 0.0848 -0.2427 -0.0272 -0.0842 -0.1867

skullw -0.0256 0.0624 -0.2422 0.1056 -0.1492 0.1412

totlngth 0.1165 0.2546 0.3257 -0.1795 -0.0816 -0.1164

taill -0.4577 -0.0690 -0.4532 -0.1835 0.3013 0.5122

footlgth 0.2926 -0.0251 -0.0312 0.0457 0.0619 -0.1047

earconch 0.5809 -0.0626 -0.0876 -0.0783 -0.0311 0.2692

eye -0.0548 0.0284 0.7763 0.4522 0.2196 0.3348

chest 0.1021 0.0724 0.0216 0.2642 0.6714 -0.0472

belly 0.0073 -0.0333 0.1080 0.1075 -0.3376 0.1813

Proportion of trace:

LD1 LD2 LD3 LD4 LD5 LD6

0.8953 0.0511 0.0371 0.0087 0.0056 0.0023

The “proportion of trace” figures are the proportions of the between-class variance that
are explained by the successive linear combinations. For these data, the first linear
discriminant does most of the discriminating. The variables that seem important are
hdlngth and taill, contrasted with totlngth and footlgth. Figure 12.6 shows
the scatterplot matrix for the first three discriminant scores, which together account for
98.4% of the between-class variance.

4 possum.lda <- lda(site ˜ hdlngth + skullw + totlngth + taill + footlgth +
earconch + eye + chest + belly, data=na.omit(possum))

# na.omit() omits any rows that have one or more missing values
options(digits=4)
possum.lda$svd # Examine the singular values
plot(possum.lda, dimen=3)
# Scatterplot matrix - scores on 1st 3 canonical variates (Figure 11.4)
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Figure 12.6 Scatterplot matrix for the first three canonical variates.

We invite the reader to repeat the analysis with the parameter setting CV=TRUE in the
call to lda(), in order to obtain a realistic predictive accuracy estimate.

12.3∗ High-dimensional data, classification and plots

Data sets that have many more variables than observations are now common in a number
of application areas. Here, attention will be limited to data where the observations fall
into known previously identified groups.

The data used here were the basis for Golub et al. (1999). The hddplot package has a
processed version of these data, in the matrix Golub. These are expression array data,
that is, each of the 7129 variables (or “features”) is a measure of the biological activity of
a gene. Technically, the values are “gene expression indices.” The data are derived from
the golubEsets package, available on the Bioconductor website. The hddplot version has
been subjected to some further pre-processing, beyond the processing that preceded their
incorporation into golubEsets.

Following a terminology that is common for such data, the variables will be called
features. Each of the 72 observations (columns of Golub) is from a tissue sample from
a cancer patient. The 72 observations are classified into one of the three cancer types
ALL B-type (coded allB), ALL T-type (coded allT) and AML (coded aml). ALL is
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Acute Lymphoblastic Leukemia (lymphoblastic = producing lymph tissue), while AML
is Acute Myoblastic Leukemia (myoblastic = producing muscle tissue). Differences in
the cancer types are not however the only differences between the samples, which is a
complication for analysis.

One use for such data is to find a discrimination rule that, using a small subset of
the features, will allow discrimination between the different cancer types. Such a rule
might allow the design of a diagnostic device (a “probe”) that, given a new sample,
could determine the cancer type. (Note however that any classification of cancers is
likely to conceal large individual differences that, in many cancers, arise from random
differences in the timing and outcome of trigger points in a cascade of genomic damage
and disruption.)

As already noted, use of these data for discrimination between cancer types is com-
plicated by the potential effects of other factors. As well as different sexes, there are
two different body tissues (bone marrow and peripheral blood). There may also be vari-
ation because the tissues came from four different hospitals; this will not be pursued
here.

The presence of these other factors makes graphical exploration especially important.
Finding suitable views of the data, inevitably low-dimensional, is however a challenge.
Views are required that may help reveal subgroups in the data, or points that may have
been misclassified, or between-group differences in the variance–covariance structure.
Graphs should be revealing, without serious potential to mislead.

The papers Maindonald and Burden (2005), Ambroise and McLachlan (2002) and Zhu
et al. (2006) are useful background reading for the discussion of this section.

What groups are of interest?

The data frame golubInfo has information on the tissue samples, which are the
observations. The two classifications that will be investigated are (1) according to tissue
type and sex, given by the factor tissue.mf, and (2) according to cancer type (ALL
B-type, ALL T-type, AML), given by the factor cancer.

The frequencies in the two-way classification by cancer and tissue.mf are:

> library(hddplot)

> data(golubInfo)

> with(golubInfo, table(cancer, tissue.mf))

tissue.mf

cancer BM:NA BM:f BM:m PB:NA PB:f PB:m

allB 4 19 10 2 1 2

allT 0 0 8 0 0 1

aml 16 2 3 1 1 2

For the classification (1) above, according to tissue type and sex (tissue.mf),
restriction to the allB leukemia type and to patients whose sex is known gives a
relatively homogeneous set of data. Below, we will define a factor tissue.mfB that
classifies the allB subset of the data for which the sex of the patient is known, and
for which at least two samples are available. (The single allB observation that is PB:f
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will be omitted.) The levels of tissue.mfB will be a subset of those of tissue.mf.
Restriction to this subset, at least for preliminary investigation, is desirable because the
different tissue/sex combinations may bias the attempt to compare cancer types.

(Observe that allB is predominately BM:f, while aml is predominately BM of
unknown sex. If we compare allBwith aml and ignore other factors, will any differences
be due to cancer type, or to the sex of the patient, or to the tissue type?)

For the classification (2) above, according to cancer type (cancer), some limited
homogeneity will be imposed by restricting attention to bone marrow (BM) samples.
A classifying factor cancer.BM will be defined that relates to this reduced subset.
Consideration of results for these data should bear in mind that they may be affected by
sex differences as well as, possibly, by other unidentified factors (e.g., different types of
chromosome damage) where the numbers may differ between the different subgroups.

The following preliminary calculations separate out the allB subset (GolubB) of the
data that will be used (classification 1 above), and derive the factor tissue.mfB whose
levels are BM:f, BM:m and PB:m:

attach(golubInfo)

## Identify allB samples for that are BM:f or BM:m or PB:m

subsetB <- cancer=="allB" & tissue.mf%in%c("BM:f","BM:m","PB:m")

## Form vector that identifies these as BM:f or BM:m or PB:m

tissue.mfB <- tissue.mf[subsetB, drop=TRUE]

## Separate off the relevant columns of the matrix Golub

data(Golub)

GolubB <- Golub[, subsetB]

detach(golubInfo)

The argument drop=TRUE in tissue.mf[subsetB, drop=TRUE) causes the
return of a factor that has only the levels that are present in the data subset.

12.3.1 Classifications and associated graphs

In the discussion that now follows, interest will be on the graphical view that can be
associated with one or other discriminant rule, rather than in the discriminant rules
themselves. The objective is to give a visual representation that shows one or other
classification that is of interest. Different classifications will lead to different graphical
views – what is seen depends, inevitably, on which clues are pursued. Overly complex
classifications may force unsatisfactory compromises in the view that is presented. As
noted above, care is required to ensure that graphs present a fair view of the data,
not showing spurious differences between groups or exaggerating such differences as
may exist.

Discrimination will use the relatively simple and readily understood linear discriminant
function methodology that was introduced and used earlier, in Subsection 12.2.3. Analyses
will, again, use the lda() function (MASS). Linear discriminant functions may be as
complicated as is sensible, given the substantial noise in current expression array data
sets. In any case, the emphasis will be on insight rather than on the use of methods that
are arguably optimal.
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The statistical information given in the output from the function lda() assumes
that the variance–covariance matrix is the same in all groups. Even where this is not
plausible, a useful graphical is still possible, perhaps showing pronounced between-group
differences in the variance–covariance structure.

The function qda() is an alternative to lda() that allows for different variance–
covariance matrices in different groups. Use of qda() restricts the number of features
that can be used. For use of p features, each group must have at least p+1 observations.
The methodology described here is not readily adapted for use with qda().

Preliminary data manipulation

An observation on a tissue sample comes from a single “chip,” possibly leading to
systematic differences between observations. Preprocessing is needed to align the feature
values for the different observations. For the data set Golub in hddplot, data have been
processed so that, among other things, the median and standard deviation are the same
across the different slides. Full details will be included in a Sweave file that will be
included with a future version of hddplot.

Before proceeding further, the distribution for individual observations across features,
and the distribution for a selection of features across observations, should be checked.5

Both distributions are positively skewed.

12.3.2 Flawed graphs

Figure 12.7A is a flawed attempt at a graph that shows the separation of the 31 observations
into the three specified groups. It uses discriminant axes that were determined using 15
features that individually gave the “best” separation into the three groups (see below). It
is flawed because no account is taken of the effect of selecting the 15 “best” features, out
of 7129. Figure 12.7B, which was obtained by applying the same procedure to random
normal data, from 7129 independent normal variables that all had the same mean and
variance, shows the potential for getting an entirely spurious separation into groups. In
spite of its evident flaws, it is important to understand the procedure that was followed,
as the later discussion will extend and adapt it to give graphs that are not similarly
flawed.

In summary, Figure 12.7 was obtained as follows:

• The 15 features (from 7129) were selected that, as measured by an analysis of variance
F-statistic, gave the best separation of the 31 observations into the three groups BM:f,
BM:m, PB:f.6

• The two discriminant functions, and their associated discriminant scores, were calcu-
lated and the scores plotted.

5 ## Try e.g.
boxplot(data.frame(GolubB[, 1:20])) # First 20 columns (observations)
## Random selection of 20 rows (features)
boxplot(data.frame(GolubB[sample(1:7129, 20), ]))

6 ## Uses orderFeatures() (hddplot); see below
ord15 <- orderFeatures(GolubB, cl=tissue.mfB)[1:15]
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Figure 12.7 The left panel used the subset of ALL B-cell observations for which Gender was
known. The one PB:f observation was excluded for purposes of analysis. An anova F-statistic
calculation identified the 15 features that, individually, “best” separated the data into three groups.
These 15 features were then used in a linear discriminant analysis. Scores were then determined for
each of the two available discriminant axes. Additionally, a predicted score was determined for the
PB:f observation. For the right panel, the same procedure was followed, but now using a matrix
where the “expression values” were random normal data.

• Predicted scores were determined for the one PB:f sample, allowing its inclusion in
the plot.7

Figure 12.7B used the same two steps, but with the input expression values replaced by
random normal values.8

The function simulateScores()makes it easy, using different numbers of features,
and different numbers of observations and groupings of those observations, to examine
the use of the procedure just described with different configurations of random data.
Readers are encouraged to experiment, using the code in footnote 8 as a model.

The selection of 15 features from a total of 7129, selected to have the largest F-statistics,
makes it unwise to give much credence to the clear separation achieved with expression

7 dfB.ord <- data.frame(t(GolubB[ord15, ]))
## Calculations for the left panel
## Transpose to observations by features
dfB15 <- data.frame(t(GolubB[ord15, ]))
library(MASS)
dfB15.lda <- lda(dfB15, grouping=tissue.mfB)
scores <- predict(dfB15.lda, dimen=2)$x
## Scores for the single PB:f observation
attach(golubInfo)
df.PBf <- data.frame(t(Golub[ord15, tissue.mf=="PB:f"

& cancer=="allB", drop=FALSE]))
scores.PBf <- predict(dfB15.lda, newdata=df.PBf, dimen=2)$x
detach(golubInfo)
## Warning! The plot that now follows may be misleading!
## Use scoreplot(), from the hddplot package
scoreplot(list(scores=scores, cl=tissue.mfB, other=scores.PBf,

cl.other="PB:f"))
8 simscores <- simulateScores(nrow=7129, cl=rep(1:3, c(19,10,2)),

cl.other=4, nfeatures=15, seed=41)
# Returns list elements: scores, cl, scores.other & cl.other

scoreplot(simscores)
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array data in Figure 12.7A. The extent of separation in Figure 12.7B from use of random
normal data indicates the potential severity of the selection effect, for the data used for
Figure 12.7A. The 15 most extreme F-statistics out of 7129, from a null distribution in
which there is no separation between groups, will all individually show some separation.
Choice of the “best” two discriminant axes that use these 15 features will achieve even
clearer separation than is possible with any of the features individually. Clearer apparent
separation, both for random data and for the Golub data, can be achieved by choosing
more than 15 features.

Distributional extremes

There can be a small number of F-statistics that are so large that they are unlikely to
be extremes from the null distribution. Plots such as Figure 12.7A can then be based
on these features, with no concern about possible effects of selection bias. Correlations
between features vitiates use of a theory that assumes that genes are independent. Addi-
tionally, the distributions for individual features may not be normal, in a context where
the interest is in the distributional extremes of F-statistics and normality is likely to
matter.

Permutation methods, implemented in the package multtest (Pollard et al., 2005),
can however be used to determine a relevant reference distribution. The stand-alone
version of this package, available from CRAN, is adequate for present purposes. (For
installation of the BioConductor version, a minimal BioConductor installation must first be
in place.)

The function mt.maxT() determines the needed empirical distribution, as part of
its implementation of a multiple testing procedure – the “step-down” method. Our
interest here is not in the multiple testing procedure, but in the empirical distribution
of the F-statistics, which can be obtained as qf(1-GolubB.maxT$rawp, 2, 28).
The F-statistics for the assignment of labels as in the actual sample are stored in
GolubB.maxT$teststat, that is, the values are the same as those obtained from
aovFbyrow(GolubB, tissue.mfB).

The code used for the calculation is:

## The calculation may take tens of minutes, even with adequate

## memory (e.g., 512MB) and a fast processor.

## If necessary, use a smaller value of B.

library(multtest)

GolubB.maxT <- mt.maxT(GolubB, unclass(tissue.mfB)-1, test="f",

B=100000)

## Compare calculated F-statistics with permutation distribution

qqthin(qf(1-GolubB.maxT$rawp, 2, 28), GolubB.maxT$teststat)

## Compare calculated F-statistics with theoretical F-distribution

qqthin(qf(ppoints(7129), 2, 28), GolubB.maxT$teststat)

# The theoretical F-distribution gives estimates of quantiles

# that are too small

## NB also (not included in Figure 12.10) the comparison between
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## the permutation distribution and the theoretical F:

qqthin(qf(ppoints(7129), 2, 28), qf(1-GolubB.maxT$rawp, 2, 28))

# qqthin() is a version of qqplot() that thins out points where

# overlap is substantial, thus giving smaller graphics files.

The parameter B sets the number of permutations that will be taken. This needs to
be substantially larger than the number of features in order to get estimates of the
extreme upper quantiles of the distribution that are as accurate as possible. Figure 12.8
uses the function qqthin() (hddplot) to show QQ-plots that compare the relevant
distributions.

The plot on the left, which uses an appropriate reference distribution, suggests that
the largest two features, and probably others as well, show differential expression. The
theoretical F-distribution, used for the horizontal axis in the right plot, is clearly not an
appropriate reference distribution.

It is very unlikely that the null distribution would generate such extreme F-statistics. It
would be safe to work with a version of Figure 12.7A that uses the feature that shows the
clearest evidence of differential expression. After this, there are several features whose
F-statistics are relatively similar. Selection from among these features may introduce
a bias.

This interlude has drawn attention to distributional issues. Effective mechanisms for
handling such issues are the subject of active research, and will not be pursued further in
this section.

The subsequent discussion will demonstrate adaptations of the procedure used for
Figure 12.7A, but which avoid its evident flaws and do not require a limiting of attention
to a small number of features that show uniquely unequivocal evidence of differential
expression.
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Figure 12.8 These QQ-plots are for the subset of ALL observations for which Gender
was known, but excluding the one PB:f observation. The left plot compares the ordered
F-statistics with the ordered statistics from the permutation distribution. The right plot com-
pares the ordered F-statistics with F-distribution quantiles. Also shown, in both plots, is the line
y = x.
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Selection of features that discriminate

The function orderFeatures() will be used extensively in the sequel. It selects
features that, as measured by an analysis of variance F-statistic, give, individually, the
best separation between groups. The function takes as parameters:

• x: the matrix of expression values, in the features by observations layout that is usual
in work with expression arrays.

• cl: a factor that classifies the observations.
• subset: if changed from its default (NULL), this identifies a subset of observations

(columns of dset) that will be used for calculating the statistics.
• FUN: currently the only available function (aovFbyrow()) uses the analysis of

variance F-statistic as a measure of between-group separation.
• values: by default the function returns the order. If set to TRUE the function returns

the ordered F-statistic values as well as the order.

Selection of features that discriminate best individually, in an analysis of variance
F-statistic sense, is not guaranteed to select the features that perform best in combination.
It is akin to using, in a multiple regression, the variables that perform well when used
as the only predictors. It may however be a reasonable strategy for use in an initial
exploratory analysis, in the absence of an obviously better alternative. The development
of good variable selection methods, applicable to the data used in this section, is the
subject of ongoing research.

12.3.3 Accuracies and scores for test data

Where there are adequate data, a cautious strategy is to split the data into two sets,
here named I and II. Then set I can be used to train discriminant functions and to
determine discriminant scores for the test observations in set II. The key requirement is
that the scores must relate to observations that are distinct from those used to develop
the discriminant functions, and are therefore free from the selection bias that affects the
set I (training) scores. The set II test data has no role in either the selection of features,
or the determination of the discriminant functions and associated scores.

The process can then be reversed, with set II used for training and scores calculated
for set I. Two plots are then available, the first of which shows scores for set II, and
the second scores for set II. The two plots, conveniently identified as I/II and II/I,
will use different features and different discriminant functions and cannot be simply
superposed.

Because there are only three observations in the PB:m category, the data used for
Figure 12.7A cannot satisfactorily be split into training and test data. We can however
use this approach to examine the classification of the bone marrow (BM.PB=="BM")
samples into ALL B-cell, ALL T-cell, and AML. This larger data set (62 observations),
with larger numbers (8 or more) in each level of the classification, allows a split into a
set I and a set II such that in both cases each level of the classification has at least four
observations.



398 Multivariate data exploration and discrimination

Two approaches that might be used to determine the optimum number of features,
when developing a discriminant rule from set I, are:

• Use the predicted accuracies for set II.
• Use cross-validation on set I.

Cross-validation will be demonstrated later in this section, albeit working with the total
allB data.

The function divideUp() (hddplot) has a default that (with nset=2) is designed
to make a training/test split, while ensuring similar relative numbers in the three levels
of the classification.

attach(golubInfo)

Golub.BM <- Golub[, BM.PB=="BM"]

cancer.BM <- cancer[BM.PB=="BM"]

## Now split each of the cancer.BM categories between two subsets

## Uses divideUp(), from hddplot

gp.id <- divideUp(cancer.BM, nset=2, seed=29)

# Set seed to allow exact reproduction of the results below

detach(golubInfo)

Tabulating the division into two sets, we find:

> table(gp.id, cancer.BM)

cancer.BM

gp.id allB allT aml

1 17 4 10

2 16 4 11

The maximum number of features for calculations using lda() with the set I data
are 28�= 17 + 4 + 11 − 3 − 1� for set I, and 26 for set II. Hence we will work with a
maximum of 26 features, in each case. Steps in handling the calculations are:

1. Using set I as the training data, find the 26 features that, for a classification of the data
into three groups according to levels of cancer.BM, have the largest F-statistics.

2. For each value of nf = 1� 2� � � � � 26 in turn
– use the best nf features to develop discriminant functions,
– apply this function to the data in set II, and calculate the accuracy.

3. The accuracies that result will be called the I/II accuracies.
4. Now make set II the training data and set I the test data, and repeat items 1 and 2.

The accuracies that result will be called the II/I accuracies.

These calculations can be carried out using the function accTrainTest() (from
hddplot).

> accboth <- accTrainTest(x = Golub.BM, cl = cancer.BM,

+ traintest=gp.id)

Training/test split Best accuracy, less 1SD Best accuracy

I(training) / II(test) 0.89 (14 features) 0.94 (20 features)

II(training) / I(test) 0.92 (10 features) 0.97 (17 features)
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Notice that, as well as giving the number of features that gives the maximum accuracy,
the output gives the number that achieves the maximum accuracy, less one standard
deviation. This gives a more conservative estimate of the optimum number of features.
(The standard deviation is estimated as p�1 −p�/n, where p is the estimated maximum
accuracy, and n is the number of observations used to estimate p.)

We now calculate both sets of test scores (I/II and II/I) for the more conservative
choices of 14 and 10 features respectively, and use the function plotTrainTest() to
plot the scores. Figure 12.9A shows the test scores for the I/II split, while Figure 12.9B
shows the test scores for the II/I split.9 Readers should construct the plots with other
divisions of the data into training and test sets. To determine each new division, specify:

gp.id <- divideUp(cl=cancer.BM, nset=2, seed=NULL)

The graphs can vary greatly, depending on how the data have been split. The ALL T-cell
points seem more dispersed than points for the other two categories.

It is instructive to compare the choices of features between I/II and II/I. The first 20 in
the two cases are, by row number:

> rbind(accboth$sub2.1[1:20],accboth$sub1.2[1:20])

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]

[1,] 6606 4342 6510 3594 4050 6236 1694 1207 1268 4847 5542

[2,] 4050 2794 6510 6696 4342 5542 4357 5543 1207 4584 6236

[,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]

[1,] 2061 5543 4055 4375 1144 379 6696 4196 229

[2,] 1429 6575 2833 4750 2335 1704 4882 6225 3544

> match(accboth$sub2.1[1:20],accboth$sub1.2[1:20])

[1] NA 5 3 NA 1 11 NA 9 NA NA 6 NA 8 NA NA NA NA 4 NA NA
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Figure 12.9 Panel A plots scores for the set II data, using set I for training (the I/II split), as
described in the text. Panel B plots the scores for the set I data when the roles of the two sets were
reversed, i.e., the split was II/I.

9 ## Use function plotTrainTest() from hddplot
plotTrainTest(x=Golub.BM, nfeatures=c(14,10), cl=cancer.BM,

traintest=gp.id)
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Note that the first feature in the first list does not appear at all in the second list, and that
the first feature in the second list is fifth in the first list.

Cross-validation to determine the optimum number of features

We will demonstrate the use of tenfold cross-validation, repeated for each choice of
number of features in the range that is pertinent, to determine how many features to
choose.

Consider again the classification of a subset of the ALL B-cell Golub data for which
gender is known into BM:f, BM:m, and PB:m, but omitting the one PB:f sample. There
are 31 observations, divided into three groups, so that the maximum number of features
that can be used for discrimination is 23. This is calculated as follows. At each fold, the
training data consists of nine out of ten subsets in the tenfold division of the data, that is,
at least 27 out of the 31 points. (Each subset has three or four observations.) One degree
of freedom is lost for each of the three subgroups, and at least one degree of freedom
should be left for estimating the variance. Thus at most 23 �= 27−4� degrees of freedom
can be used for estimating linear discriminant parameters.

In order to choose the optimum number of features, the cross-validation must be
repeated for each choice of g = number of features in the range 1, 2, � � � , gmax = 23,
calculating the cross-validation accuracy for each such choice. The number of features
will be chosen to give an accuracy that is, or is close to, the maximum.

The full procedure is:

For g = 1, 2, � � � � gmax, do the following:

For each fold i = 1� � � � � k in turn (k = number of folds) do the following:Split: Take the ith set as the test data, and use the remaining data (all except
the ith set) for training.Select: Choose the g features that have the largest anova between-group
F-statistics.Classify: Determine discriminant functions, using the chosen features and
the current training data.Predict: Predict the groups to which observations in the current test set
belong.

Record, against the number g of features used, the proportion of correct predic-
tions. (This is calculated across all folds, and hence for the total data.)

Accuracies are now available for all choices of number of features. Choose the smallest
number of features that gives close to the maximum accuracy.

The tenfold cross-validation will be repeated for each of four different splits into ten
subsets. Especially in the present context, where at each fold of each repeat of the cross-
validation there is a variable selection step, such use of repeats is desirable for adequate
sampling of the variability.

Computations are greatly reduced by determining the ordering of features, for each
fold of the data, in advance. These orderings are stored in a matrix of character values,
with as many columns as there are folds, and with number of rows equal to the maximum
number of features under consideration. A rigid upper limit is the number of features that
can be accommodated on the discriminant analysis, which as noted earlier is 23. When
the preliminary calculations are finished, column i of the matrix will record the features
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that give the 23 highest F-statistics for the fold i training data. For selecting the “best”
nf features, one set for each different fold, the first nf rows of this matrix (f ≤ 23) will
be taken.

Calculations will use the function cvdisc() (hddplot). For comparison, results are
obtained both from the resubstitution measure of accuracy and from a defective use of
cross-validation:

> ## Cross-validation to determine the optimum number of features

> ## Accuracy measure will be: tissue.mfB.cv$acc.cv

> tissue.mfB.cv <- cvdisc(GolubB, cl=tissue.mfB, nfeatures=1:23,

+ nfold=c(10,4)) # 10-fold CV (x4)

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.85 (3 features) 0.9 (4 features)

> ## Defective measures will be in acc.resub (resubstitution)

> ## and acc.sel1 (select features prior to cross-validation)

> tissue.mfB.badcv <- defectiveCVdisc(GolubB, cl=tissue.mfB,

+ foldids=tissue.mfB.cv$folds,

+ nfeatures=1:23)

> ## NB: Warning messages have been omitted

> ##

> ## Calculations for random normal data:

> set.seed(43)

> rGolubB <- matrix(rnorm(prod(dim(GolubB))), nrow=dim(GolubB)[1])

> rtissue.mfB.cv <- cvdisc(rGolubB, cl=tissue.mfB, nfeatures=1:23,

+ nfold=c(10,4))

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.39 (1 features) 0.48 (9 features)

> rtissue.mfB.badcv <- defectiveCVdisc(rGolubB, cl=tissue.mfB,

+ nfeatures=1:23,

+ foldids=rtissue.mfB.cv$folds)

The resubstitution and “defective CV” points show biased and therefore inappropriate
accuracy measures. The resubstitution points show the proportion of correct predictions
when the discrimination rule is applied to the data used to develop the rule. The “defective
CV” points show the proportion of correct predictions when the same features, selected
using all the data, are used at each fold, and do not change from one fold to the next.

Figure 12.10B applies the same calculations to random data. The bias in the two
incorrect “accuracies” is now obvious. The correct cross-validation estimates are now
much worse than chance for more than three or four features, while the “defective CV”
estimates continue to increase up to about 15 features. At each fold, the rule is tuned to
be optimal for the quirks of the training data. It is therefore sub-optimal for the test data
at each fold.
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Figure 12.10 Comparison of different accuracy measures, in the development of a discriminant
rule for the classification, into the categories BM:f, BM:m and PB:m, of the B-cell ALL data
for which gender is known. The resubstitution measure (�) is a severely biased measure. Cross-
validation, but with features selected using all the data (+), is less severely biased. An acceptable
measure of predictive accuracy (�) requires re-selection of features at each fold of the cross-
validation. The right panel shows the performance of each of these measures when the expression
values were replaced by random data.

Which features?

It is of interest to see what features have been used at the different folds. This information
is available from the list element genelist, in the object tissue.mfB.cv that the
function cvdisc() returned. As the interest is in working with three features, it is the
first three rows that are relevant. The following is a summary:

> genelist <- matrix(tissue.mfB.cv$genelist[1:3, ,], nrow=3)

> tab <- table(genelist, row(genelist))

> ord <- order(tab[,1], tab[,2], decreasing=TRUE)

> tab[ord,]

genelist 1 2 3

M58459_at 32 4 0

S74221_at 4 0 0

U29195_at 4 0 0

X54870_at 0 16 8

U91327_at 0 8 16

L08666_at 0 4 0

U49395_at 0 4 0

X00437_s_at 0 4 0

X53416_at 0 0 4

X62654_rna1_at 0 0 8

X82494_at 0 0 4
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Observe that M58459_at is almost always the first choice. There is much less consis-
tency in the second and third choices.

Cross-validation: bone marrow (BM) samples only

It turns out to be sufficient to calculate accuracies for 1, 2, � � � , 25 features (the choice of
25 was a guess):

> BMonly.cv <- cvdisc(Golub.BM, cl=cancer.BM, nfeatures=1:25,

> nfold=c(10,4))

Accuracy Best accuracy, less 1SD Best accuracy

(Cross-validation) 0.9 (19 features) 0.94 (23 features)

The maximum is 94%, from use of 23 features. The more conservative assessment, based
on the one-standard-deviation rule, suggests use of 19 features with an accuracy of 90%. If
the interest is in using a small number of features to explain the evident group differences,
this may seem unsatisfactory.

12.3.4 Graphs derived from the cross-validation process

With a methodology available for choosing the number of features, it is now possible to
look for an alternative to Figure 12.7A that does not run the same risk of bias. Figure
12.9 demonstrated an approach that is sometimes available, but it gave two plots, each
for half of the data. The function cvscores() (hddplot) makes it possible to give one
plot for all the data. It can be used with any data where there are enough groups in each
subset of the classification that cvdisc() can be used satisfactorily.

Consider first the creation of a plot for the subset of the allB data that formed
classification 1. Figure 12.10A suggested that the optimum number of features is, con-
servatively, 3. The calculations that will be described here will use three features.

Test scores can be calculated for the test data at each of the folds. However the
different pairs of scores (with three groups, there can be at most two sets of scores)
relate to different discriminant functions and to different choices of features, and are thus
appropriately called “local” test scores. Local fold i training scores are similarly available,
again with one set for each value of i.

The local training scores are used to make the connection between the test scores at the
different folds. A vignette that gives details will be included with the package hddplot.
The methodology is a modification of that described in Maindonald and Burden (2005).
Code for panel A is:

## Panel A: Uses tissue.mfB.acc from above

tissue.mfB.scores <-

cvscores(cvlist = tissue.mfB.cv, nfeatures = 3, cl.other = NULL)

scoreplot(scorelist = tissue.mfB.scores, cl.circle=NULL,

prefix="B-cell subset -")

There are two clusters of points, with tissues from females mostly in one cluster and
tissues from males in the other cluster.
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Figure 12.11 These plots of projections of linear discriminant analysis scores are designed to
fairly reflect the performance of a linear discriminant in distinguishing between known groups in
the data. The two panels relate to different subsets of the Golub data, with different groupings in
the two cases. In panel B, for the classification of the 62 bone marrow (BM) samples into allB,
allT, and aml, points where the sex is known are identified as male or female. For color version,
See Plate 8.

Figure 12.11B has applied the same methodology to the classification of the bone
marrow samples according to cancer type. Points where Gender is known are identified
as male or female.10

Notice the clear clustering of points from females on the left of the graph. This
complicates interpretation; is there a bias from the different gender balances in the
three groups? This limited exploration indicates that heterogeneity of the samples is an
important issue for the analysis of these data, and for the interpretation of the graphs.

The lines of investigation that have been pursued in this section should be taken
as suggestions for an initial series of steps that might be followed. Extensive further
investigation would be required for any analysis that claims to be moderately complete.

Further comments

The ideas that have been introduced in this section have far-reaching importance. The
choice of variables, in Subsections 12.3.1 and 12.3.4, can be viewed as a form of model
tuning. By tuning the fitted model to accidental characteristics of the training data,
performance on the test data deteriorates, as seen in Figure 12.10B.

With more complicated models (really, families of models) such as neural nets and
Support Vector Machines (SVMs), there are many more tuning choices and tuning

10 BMonly.scores <- cvscores(cvlist=BMonly.cv, nfeatures=19,
cl.other=NULL)

scoreplot(scorelist=BMonly.scores, cl.circle=tissue.mfB,
circle=tissue.mfB%in%c("BM:f","BM:m"),
params=list(circle=list(col=c("cyan","gray"))),
prefix="B: BM samples -")
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parameters. Thus, for example, see the details of tuning parameters that are given on
the help page for the function svm() in the package e1071 (Meyer, 2001). Such tuning
can interact in complex ways with feature selection. For valid accuracy assessment, such
tuning (in principle, at least) must be repeated at each cross-validation fold.

The randomForest package seems an attractive alternative, for working with expression
array data, to the methods that have been discussed here. Its function MDSplot() can
be used to obtain a low-dimensional representation of the data, based as above on known
prior groupings.

Better understanding of gene interactions may suggest better alternatives to using large
numbers of features as discriminant variables. Such understanding seems certain to lead
also, in the course of time, to more targeted data collection. There will be a greater use
of studies that gather data on a small number of features of known relevance to the
phenomena under investigation.

12.4 Further reading

There is a large literature on the spectrum of methodologies discussed, and a large
and growing range of methodologies that are available in R and in other software. See
Venables and Ripley (2002) for a summary overview as of 2002, aimed at practical data
analysts, and including the R code needed for examples in the text. Some idea of what is
currently available in R can be gleaned by typing RSiteSearch("multivariate")
and glancing through the long list of hits.

Manly (2005) is a useful brief introduction, though with no reference to methods that
have been popular in the data mining literature. Surprisingly, R and S-PLUS are not
mentioned in the list of packages for multivariate analyses that is given in an appendix
(pp. 205–7). Krzanowski (2000) is a comprehensive and accessible overview of the
methodology of classical multivariate analysis.

Machine learning and data mining specialists have brought to these problems a research
perspective that has been different from that of academic statisticians. Recently, there
has been extensive interchange between the two streams of methodological development.
Ripley (1996) and Hastie et al. (2001) are important contributions to the ongoing dialogue.

Principal components methodology, though often effective, is a relatively crude tool for
the exploration of multi-dimensional data. The XGobi data visualization system (available
at no charge from http://www.research.att.com/areas/stat/xgobi/)
greatly extends the range of possibilities, offering its users a range of three-dimensional
dynamical graphical views. The GGobi system (from http://www.ggobi.org) is
an adaptation of XGobi that runs on Linux, Windows and version 10 of the Macintosh
system. The R package Rggobi, available from this same web site, provides an R interface.

Data where there are many times more variables (“features”) than observations are a
huge challenge for data analysts. Exaggerated predictive accuracy claims are common;
see Ambroise and McLachlan (2002) for examples.

Gentleman et al. (2005) is a wide-ranging overview both of the computational chal-
lenges of processing and analyzing data from genomics and molecular biology, and of
the abilities offered by the Bioconductor suite of packages.
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12.5 Exercises

1. Carry out the principal components analysis of Subsection 12.1.2, separately for males and
females. For each of the first and second principal components, plot the loadings for females
against the loadings for all data combined, and similarly for males. Are there any striking
differences?

2. In the discriminant analysis for the possum data (Subsection 12.2.4), determine, for each site,
the means of the scores on the first and second discriminant functions. Plot the means for the
second discriminant function against the means for the first discriminant function. Identify the
means with the names of the sites.

3. The data frame possumsites (DAAG) holds latitudes, longitudes and altitudes, for the seven
sites. The following code, which assumes that the oz package (written for S-PLUS by Bill
Venables; R port by Kurt Hornik) is installed, locates the sites on a map that shows the eastern
Australian coastline and nearby state boundaries.
library(DAAG); library(oz)

oz(sections=c(3:5, 11:16))

attach(possumsites)

points(latitude, longitude)

posval <- c(2, 4, 2, 2, 4, 2, 2)

text(latitude, longitude, row.names(possumsites), pos=posval)

Do the site means that were calculated in Exercise 2 relate in any obvious way to geographical
position, or to altitude?

4. Determine two-dimensional representations of the data in the painters data frame (MASS)
using (1) classical metric scaling; (2) Sammon scaling; (3) Kruskal’s non-metric scaling. On
each graph show the school to which the painter belonged.

5. Create a version of Figure 12.5B that shows the discriminant line. In the example of Sub-
section 12.2.1, investigate whether use of logpet, in addition to logwid and loglen,
improves discrimination.
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6.∗ The data set leafshape has three leaf measurements – bladelen (blade length),
bladewid (blade width) and petiole (petiole length). These are available for each of two
plant architectures, in each of six locations. (The data set leafshape17 that we encountered
in Subsection 12.2.1 is a subset of the data set leafshape.) Use logistic regression to develop
an equation for predicting architecture, given leaf dimensions and location. Compare the alter-
natives: (i) different discriminant functions for different locations; (ii) the same coefficients for
the leaf shape variables, but different intercepts for different locations; (iii) the same coefficients
for the leaf shape variables, with an intercept that is a linear function of latitude; (iv) the same
equation for all locations. Interpret the equation that is finally chosen as discriminant function.
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Regression on principal component or discriminant
scores

Methods for dimension reduction have application in regression and related analyses, in
problems where it is helpful to reduce the number of candidate explanatory variables. We
may, for example, replace a large number of candidate explanatory variables by the first
few principal components, hoping that they will adequately summarize the information
in the candidate explanatory variables. If we are fortunate, simple modifications of the
components will give new variables that are readily interpretable.

Propensity scores, otherwise called propensities, may be helpful where a response is
compared between two groups – a control and a treatment group, that have not been
assigned randomly. The response may for example, in a medical context, be death rate
in some interval of time. Variables that are not of direct interest, but which may in part
explain any differences between the two groups, are commonly known as covariates.
Results from such analyses are likely to be suggestive rather than definitive, irrespective
of the methodology used to account for covariate effects.

Propensities aim to capture, in a single variable, the covariate effects that are important
in accounting for differences between two groups. The propensity score, commonly
derived from a discriminant analysis, then becomes the only covariate in the regression
calculation.

Other types of ordination scores may be used in place of principal component scores.
There are a variety of other possibilities.

13.1 Principal component scores in regression

The data set socsupport has the following columns:

1. gender: male or female

2. age: 18-20, 21-24, 25-30, 31-40, 40+

3. country: Australia, other

4. marital: married, single, other

5. livewith: alone, friends, parents, partner, residences, other

6. employment: full-time, part-time, govt assistance, parental

support, other

7. firstyr: first year, other

8. enrolment: full-time, part-time, blank

9 10. emotional, emotionalsat: availability of emotional support,

and associated satisfaction (5 questions each)
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11 12. tangible, tangiblesat: availability of tangible support

and associated satisfaction (4 questions each)

13 14. affect, affectsat: availability of affectionate support

sources and associated satisfaction (3 questions each)

15 16. psi: psisat: availability of positive social interaction

and associated satisfaction (3 questions each)

17. esupport: extent of emotional support sources (4 questions)

18. psupport: extent of practical support sources (4 questions)

19. socsupport: extent of social support sources (4 questions)

20. BDI: Score on the Beck depression index (total over

21 questions)

The Beck depression index (BDI) is a standard psychological measure of depression
(see for example Streiner and Norman, 2003). The data are from individuals who were
generally normal and healthy. One interest was in studying how the support measures
(columns 9–19 in the data frame) may affect BDI, and in what bearing the informa-
tion in columns 1–8 may have. Pairwise correlations between the 11 measures range
from 0.28 to 0.85. In the regression of BDI on all of the variables 9–19, nothing
appears significant, though the F-statistic makes it clear that, overall, there is a sta-
tistically detectable effect. It is not possible to disentangle the effects of these various
explanatory variables. Attempts to take account of variables 1–8 will only make matters
worse. Variable selection has the difficulties that we noted in Chapter 6. In addition,
any attempt to interpret individual regression coefficients focuses attention on specific
variables, where a careful account will acknowledge that we observe their combined
effect.

We therefore prefer, prior to any use of regression methods, to try to reduce the
11 variables to some smaller number of variables that together account for the major
part of the variation. We will use principal components methodology for this purpose.
A complication is that the number of questions whose scores were added varied, ranging
from 3 to 5. This makes it more than usually desirable to base the principal components
calculation on the correlation matrix.

Here now is a summary of the steps that we followed:

1. Following a principal components calculation, we obtained scores for the first six
principal components.

2. The six sets of scores were then used as six explanatory variables, in a regression
analysis that had BDI as the response variable. The first run of this regression cal-
culation identified an outlier, which was then omitted and the regression calculation
repeated.

3. The regression output suggested that only the first of the variables used for the
regression, i.e., only the principal component scores for the first principal component,
contributed to the explanation of BDI. Compare p = 0�000 07 for scores on the first
component with p-values for later sets of scores, all of which have p > 0�05.

4. It was then of interest to examine the loadings of the first principal component, to see
which of the initial social support variables was involved.



410 Regression on principal component or discriminant scores

Code to do the initial analysis, then presenting a scatterplot matrix of the scores on the
first three principal components, is:

## Principal components: data frame socsupport (DAAG)
ss.pr1 <- princomp(as.matrix(na.omit(socsupport[, 9:19])), cor=TRUE)
pairs(ss.pr1$scores[, 1:3])
sort(ss.pr1$scores[, 1], decr=TRUE) [1:10] # Note the outlier
## Alternative to pairs(), using the lattice function splom()
splom(˜ss.pr1$scores[, 1:3])

The name given with the point that we have identified as an outlier is “36,” which is
the row name in the initial file. We omit this point and repeat the calculation.

not.na <- complete.cases(socsupport[, 9:19])

not.na[36] <- FALSE

ss.pr <- princomp(as.matrix(socsupport[not.na, 9:19]), cor=TRUE)

The output from summary() is:

> summary(ss.pr) # Examine the contributions of the components

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6

Standard deviation 2.394 1.219 1.137 0.8448 0.7545 0.695

Proportion of Variance 0.521 0.135 0.117 0.0649 0.0517 0.044

Cumulative Proportion 0.521 0.656 0.773 0.8383 0.8901 0.934

Comp.7 Comp.8 Comp.9 Comp.10 Comp.11

Standard deviation 0.4973 0.4561 0.3595 0.29555 0.23189

Proportion of Variance 0.0225 0.0189 0.0118 0.00794 0.00489

Cumulative Proportion 0.9565 0.9754 0.9872 0.99511 1.00000

We now regress BDI on the first six principal components. Because the successive
columns of scores are uncorrelated, the coefficients are independent. At the same time,
additional terms that contribute little except noise will make little difference to the residual
mean square, and hence to the standard errors. Thus, there is no reason for great economy
in the number of terms that we choose for initial examination. The coefficients in the
regression output are:

> ss.lm <- lm(BDI[not.na] ˜ ss.pr$scores[, 1:6], data=socsupport)

> summary(ss.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.461 0.893 11.709 3.49e-19

ss.pr$scores[, 1:6]Comp.1 1.311 0.373 3.513 7.23e-04

ss.pr$scores[, 1:6]Comp.2 -0.396 0.733 -0.540 5.91e-01

ss.pr$scores[, 1:6]Comp.3 0.604 0.786 0.768 4.45e-01

ss.pr$scores[, 1:6]Comp.4 1.425 1.058 1.347 1.82e-01

ss.pr$scores[, 1:6]Comp.5 2.146 1.184 1.812 7.36e-02

ss.pr$scores[, 1:6]Comp.6 1.288 1.285 1.003 3.19e-01
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Components other than the first do not make an evident contribution to prediction of
BDI. We now examine the loadings for the first component:

> ss.pr$loadings[, 1]

emotional emotionalsat tangible tangiblesat affect

-0.320 -0.298 -0.247 -0.289 -0.307

affectsat psi psisat esupport psupport

-0.288 -0.363 -0.332 -0.289 -0.285

socsupport

-0.285

The negative signs are incidental. This first component is pretty much an average of
the 11 measures. A further step is then to plot BDI against the scores on the first principal
component, using different colors and/or different symbols for females and males. This
should be repeated for each of the other seven factors represented by columns 1–8 of the
data frame socsupport. Figure 13.1 does this for the factor gender.1

Two observations seem anomalous, with BDI indices that are high given their scores on
the first principal component. Both are females. We leave it as an exercise for the reader to
re-calculate the principal components with these points omitted, and repeat the regression.

Regression on principal component scores has made it possible to identify a clear effect
from the social support variables. Because we have regressed on the principal components,
it is not possible to ascribe these effects, with any confidence, to individual variables. The
attempt to ascribe effects to individual social support variables, independently of other
support variables, may anyway be misguided. It is unlikely to reflect the reality of the
way that social support variables exercise their effects.
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Figure 13.1 Plot of BDI against scores on the first principal component.

1 attach(socsupport)
plot(BDI[not.na] ˜ ss.pr$scores[ ,1], col=as.numeric(gender[not.na]),

pch=as.numeric(gender[not.na]), xlab ="1st principal component",
ylab="BDI")

topleft <- par()$usr[c(1,4)]
legend(topleft[1], topleft[2], col=1:2, pch=1:2, legend=levels(gender))
detach(socsupport)
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13.2∗ Propensity scores in regression comparisons – labor training data

A propensity is a measure, determined by covariate values, of the probability that an
observation will fall in the treatment rather than in the control group. Various forms of
discriminant analysis may be used to determine scores. The propensity score is intended
to account for between-group differences that are not due to the effect under investi-
gation. If values of this variable for the different groups do not overlap, any inference
about differences between groups will be hazardous. If there is substantial overlap, then
comparison of observations within the approximate region of overlap may be reasonable,
but using the propensity score to adjust for differences that remain. See Rosenbaum and
Rubin (1983) for further comments on the methodology.

We will first describe the data, then investigate more conventional regression approaches
to the analysis of these data, then investigate the use of propensity scores. The results
highlight the difficulty in reaching secure conclusions from the use of observational data.

The labor training data

Over the period 1975–1977, an experiment randomly assigned individuals who met the
eligibility criteria either to a treatment group that participated in a 6–18 months training
program, or to a control group that did not participate. The study was conducted under the
aegis of the the US National Supported Work (NSW) Demonstration program. Participants
were individuals who had a history of employment and related difficulties.

The results for males, because they highlight methodological problems more sharply,
have been studied more extensively than the corresponding results for females.
Participation in the training gave an increase in male 1978 earnings, relative to those
in the control group, by an average of $886 [SE $472].

Can the same results be obtained from data that matches the NSW training group
with a non-experimental control group that received no such training? Lalonde (1986)
and Dehejia and Wahba (1999) both investigated this question, using two different non-
experimental control groups. These were:

1. The Panel Study of Income Dynamics study (PSID: 2490 males).
2. Westat’s Matched Current Population Survey – Social Security Administration file

(CPS: 16 289 males).

Our discussion will work with the data frame nsw74psid1 which combines male
data for the experimental treatment group (185 observations) with male control data
from the PSID (Panel Study of Income Dynamics) study (2490 observations), and limits
attention to the subset of the data for which 1974 earnings are available. (The data frame
nsw74demo in the DAAG package has the experimental data, both control and “treated,”
for which 1974 earnings are available.) Variables are:

trt (0 = control 1=treatment)

age (years)

educ (years of education)

black (0=white 1=black)

hisp (0=non-hispanic 1=hispanic)
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marr (0 = not married 2=married)

nodeg (0=completed high-school 1=dropout)

re74 (real earnings in 1974)

re75 (real earnings in 1975)

re78 (real earnings in 1978)

Observe that trt, black, hisp, marr and nodeg are all binary variables. Here, they
will be treated as dummy variables. In the language of Section 7.1, observations that
have the value zero are the baseline, while the coefficient for observations that have the
value 1 will give differences from this baseline. (For marr, where values are 0 or 2,
the coefficient for observations that have the value 2 will be half the difference from the
baseline.)

Intended analyses

An initial analysis will be based on a relatively standard use of regression methods.
Preliminary “filtering” of the data will be investigated, to try to ensure that control and
treatment groups are roughly comparable with respect to covariates, but recognizing that
it will remain important to account for covariate effects, and especially for the binary
variables. It will become apparent that separate models are required for the probability
that re78 (the 1978 earnings) are greater than zero and, conditional on re78 > 0, for
the amount of those earnings.

A final analysis will replace the covariates with a single propensity score. This seems
to work well, providing that the model is, as just described, separated into two parts.
The complications of these regression analyses, and the uncertainties that remain after
analysis, are in stark contrast to the relative simplicity of analysis for the experimental
data. Experimental treatment and control groups can be compared directly, without the
complications that arise from the attempt to adjust for covariate effects.

Potential sources of bias

There are at least three potential sources of bias, in all the analyses:

• The control and treatment groups may be so different, even after choice of a subset in
the manner just discussed, that regression adjustments will only be partially effective.

• The assumed form of the regression relationships may be wrong. The effects of
the comparison measures may be non-linear, or may differ between the control and
treatment groups.

• The groups may differ on comparison measures on which information was not
collected.

There are various steps that can reduce the risk of a major effect from the first two
sources of bias. It is a matter of informed judgement whether all reasonable steps have
been taken to deal with the third source of bias.
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The propensity score methodology – further comments

In the regression analysis that uses all covariates as explanatory variables, the covariates
must both model within-group relationships acceptably well and model between-group
relationships acceptably well. These two demands can be in conflict.

An advantage of the propensity score is that it is explicitly designed to model between-
group differences. Also, use of a single propensity score in place of many covariates
facilitates the use of standard checks to investigate whether the propensity score effect
is plausibly linear. There is just one covariate to investigate, rather than the difficult and
often unfruitful task of carrying out checks on several covariates.

Data exploration

Several different measures of the treatment effect are possible. A naive analysis might fit
the regression model:

nsw74psid1.lm <- lm(re78 ˜ trt+ (age + educ + re74 + re75) +

(black + hisp + marr + nodeg),

data = nsw74psid1)

We leave this to the reader to try. It has a number of problems:

• Covariate effects are unlikely to be linear across the whole of their range. All the
covariates age, educ, re74 and re75 take a wide range of values.

• It ignores possible interaction effects, perhaps a necessary simplification, in order to
make the analysis managable.

• It assumes that the effect of the training has been to shift the earnings of the treatment
group by some constant amount, relative to the treatment group. It seems to us more
plausible that the effect will be multiplicative, i.e., constant on a logarithmic scale.

Before proceeding, we compare the distributions of values, in the control and treatment
groups, for the covariates age, educ, re74 and re75 (Figure 13.2). There are large
differences between the two groups, and it does seem necessary to insist that the ratio
of the density estimates should stay within some reasonable range, for each of these
covariates. Values for re74 and re75 are concentrated in different parts of the ranges
of values. Differences in the binary variables may be even more important. Individuals in
the treated group are much more likely to be black, unmarried and high school dropouts.

20 40 60

0.00
0.03

0.06

age
0e+00 1e+050e+00

4e
–04

8e
–04

re74
0 50000 1500000e+00

3e
–04

6e
–04

re75
0 40000 1200000e+00

4e
–05

8e
–05

re7 8
0 5 10 15

0.00
0.15

0.30

ed uc

Den
sity

control tre ated

Figure 13.2 Overlaid density plots, for control and treatment groups.



13.2∗ Propensity scores in regression comparisons – labor training data 415

Color Hispanic Married High school

white black no yes single married graduate dropout

control 1866 624 2409 81 333 2157 1730 760
treated 29 156 174 11 150 35 54 131

The distributions for re74, re75 and re78 have heavy tails. In the analyses that
now follow, we will use a logarithmic scale for these income measures, with an offset of
47. This is half the average, taken over these three measures, of the minimum non-zero
value. Plate 9 shows the scatterplot matrix.2

13.2.1 Regression analysis, using all covariates

Non-linearities in some of the panels of Plate 9 seem due to the zeros for re74 and re75.
We will accommodate this by use of dummy variables, for each of re74 and re75, of
one for a zero income and otherwise zero. Additionally, there may be a non-linear effect
of age; a natural spline term of order 4 will be used to accommodate this. (It might also
be desirable to investigate a non-linear effect of educ.) The model fitted is then:

library(splines)

A.lm <- lm(formula = log(re78 + 47) ˜ trt + (ns(age, 4) + educ +

log(re74 + 47) + log(re75 + 47)) + I(re74 == 0) +

I(re75 == 0) + (black + hisp + marr + nodeg),

data = nsw74psid1)

Some further comment on the use of the logarithmic scale for re78 seems desirable.
Use of the untransformed scale requires a treatment difference between treated and
controls that is constant. A constant ratio, as implied by the use of a logarithmic scale,
seems to us more plausible.

Output is:

> summary(A.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.6638 0.5412 -1.227 2.20e-01

trt 1.0335 0.1602 6.452 1.31e-10

ns(age, 4)1 -0.2870 0.1959 -1.465 1.43e-01

ns(age, 4)2 -0.1664 0.1956 -0.850 3.95e-01

ns(age, 4)3 -0.5389 0.4241 -1.271 2.04e-01

2 linecols <- c(rgb(0,0.5,0.5), rgb(0.65,0,0.65))
trellis.par.set(superpose.symbol=list(cex=0.25),

superpose.line=list(lwd=2, col=linecols))
vnames <- c("educ","age","re74","re75","re78")
dframe <- nsw74psid1[, vnames]
dframe[,-(1:2)] <- log(dframe[,-(1:2)] + 47)
lab <- c(vnames[1:2], paste("log\n", vnames[-(1:2)], "+", 47))
trt <- factor(nsw74psid1$trt, labels=c("Control","Treatment"))
splom(˜ dframe, type=c("p","smooth"), groups=trt, varnames=lab,

auto.key=list(columns=2))
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ns(age, 4)4 -0.7548 0.1564 -4.824 1.48e-06

educ 0.0221 0.0161 1.370 1.71e-01

log(re74 + 47) 0.3157 0.0645 4.899 1.02e-06

log(re75 + 47) 0.7206 0.0593 12.142 4.66e-33

I(re74 == 0)TRUE 0.6106 0.3725 1.639 1.01e-01

I(re75 == 0)TRUE 1.5274 0.3345 4.566 5.19e-06

black 0.0413 0.0784 0.526 5.99e-01

hisp 0.4573 0.1718 2.662 7.82e-03

marr 0.0890 0.0935 0.951 3.42e-01

nodeg -0.0620 0.1020 -0.608 5.43e-01

How stable is this result under some preliminary filtering of the data, to make the
two groups more comparable with respect to covariate values? The function, given in the
footnote, multilap() can be used to filter. For example, setting maxf=30 selects a
subset of the data for which the treatment-to-control ratio of the non-binary covariates is
never outside the range from 1/30 to 30.3

It is insightful to run the calculations with no screening (maxf=Inf, as above; 2675
observations), with maxf=30 (752 observations) and with maxf=25 (362 observations).
The result for maxf=30, suggesting that there is a multiplicative treatment effect where
the lines become roughly parallel at larger fitted values, is as encouraging as results get.
The treatment effect is negative for values of maxf that we have tried that are less than 30.

Figure 13.3 shows the plot of residuals against fitted values for maxf=30, with smooth
curves fitted separately for control and treatment observations. The code is:

## Now run the function

common <- multilap(maxf=30)

xyplot(resid(A.lm) ˜ fitted(A.lm), groups=nsw74psid1$trt[common],

type=c("p","smooth"))

Observe the line of residuals that crosses the lower left corner of the graph. These points
are all for re78==0. This line of values plots log(offset) - fitted(A.lm)
against fitted(A.lm).

The model, if it is doing its job, will account for treatment effects. All it has done is to
account, on average over the whole of the range, for treatment effects. The fitted value
overestimates the treatment effect when the fitted value is small, and underestimates the
treatment effect when the fitted value is large. Two models are required: (1) a model

3 "multilap" <- # multilap is included in DAAG
function(df=nsw74psid1, maxf=20,

colnames=c("educ","age","re74","re75","re78")){
if(maxf==Inf)
return(rep(TRUE, dim(df)[1]))

if(length(maxf)==1)maxf <- c(1/maxf, maxf)
trt <- df$trt
common <- rep(TRUE, length(trt))
for(vname in colnames){
y0 <- df[trt==0,vname]
y1 <- df[trt==1,vname]
xchop <- overlapDensity(y0, y1, ratio=maxf,

compare.numbers=FALSE, plotit=FALSE)
common <- common & df[,vname]>=xchop[1] & df[,vname]<=xchop[2]

}
invisible(common)
}
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Figure 13.3 Residuals from the fitted regression model are plotted against fitted values, with
separate smooth curves for control and treatment groups. For color version, see Plate 10.

for the probability that earnings will be non-zero, and (2) conditional on re78 > 0, a
model for the amount of the earnings. It would of course be useful to do this for analyses
in the style just given, but this discussion has already occupied many lines of text, and it
is not unreasonable to leave an occasional loose end for the reader to follow up.

We will now fit these two models, at the same time moving to the use of the propensity
score methodology.

13.2.2 The use of propensity scores

Propensity scores offer an alternative strategy. The aim is to find a single variable whose
values characterize the difference between the groups. Subgroups can then be identified
that are acceptably similar on values of this variable. The analysis that is now presented
is much in the spirit of Dehejia and Wahba (1999). A first task will be to find a single
score that accounts for differences between the control and treatment groups.

We use logistic regression to determine propensity scores. We hope to find a single
score that characterizes differences between control and treatment observations. It is
probably desirable to do this for observations that we already know to be broadly similar,
but how similar? If the groups differ too much, data values that are in some sense extreme
may seriously distort the scores that are given by logistic regression. We use the values
of the linear predictor from the logistic regression as scores. These scores measure the
“propensity” for membership in the treatment rather than in the control group.

common <- multilap(maxf=30) # Mild preliminary filtering

## Calculate propensity scores: data frame nsw74psidA (DAAG)

disc.glm <- glm(formula = trt ˜ age + educ + black + hisp + marr +

nodeg + re74 + re75, family = binomial,

data = nsw74psid1, subset=common)

Pscores <- predict(disc.glm)

Figure 13.4A shows the distributions of the scores, separately for the control and for the
treatment group.
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Figure 13.4 Panel A shows density plots of scores (predicted values on the scale of the linear
predictor from the object disc.glm), separately for control and treatment groups. Panel B is a plot
of residuals against fitted values, for the regression of log(re78+47) on trt and Pscores,
for those observations for which re78 > 0. For color version, see Plate 11.

We limit the comparison to the range of values where the ratio of the densities for
treatment relative to control lies between 1:30 and 30:1. A few preliminaries are needed,
before getting on with the analysis:

nsw74psidB <- subset(nsw74psid1, common)

trt <- nsw74psidB$trt

xchop <- overlapDensity(Pscores[trt==0], Pscores[trt==1],

compare.numbers=FALSE,

ratio=c(1/30, 30))

overlap <- Pscores > xchop[1] & Pscores < xchop[2]

We check the relative numbers of treatment and control values, both for re78 == 0
and for re78 > 0.

> with(subset(nsw74psidB, overlap), table(re78>0, trt))

trt

0 1

FALSE 128 45

TRUE 242 130

Here then is the analysis that checks whether there is a training effect on the probability
of non-zero earnings:

> AS.glm <- glm(I(re78>0) ˜ trt + Pscores, data=nsw74psidB,

+ subset = overlap, family=binomial)

> summary(AS.glm)$coef

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.320 0.1756 1.82 0.06852

trt 0.882 0.2893 3.05 0.00228

Pscores -0.128 0.0563 -2.27 0.02300
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Such an effect seems fairly well attested, and is not changed much even if, in the call
to overlapDensity(), the parameter ratio is set to c(1/maxf, maxf), with
maxf anywhere in the range 12 to 30, as the reader can verify.

Now consider the effect on re78, for those who had non-zero earnings:

> AS.lm <- lm(log(re78+47) ˜ trt + Pscores, data=nsw74psidB,

+ subset = overlap&nsw74psidB$re78>0)

> summary(AS.lm)$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 8.7307 0.0915 95.38 4.34e-262

trt -0.0750 0.1364 -0.55 5.83e-01

Pscores -0.0933 0.0273 -3.42 6.93e-04

The effect remains well below the conventional 5% level of statistical significance, for
settings of the parameter ratio to overlapDensity() anywhere in the range just
noted. Conditional on re78 > 0, there is no evident treatment effect on the amount
earned. Figure 13.4B shows the plot of residuals against fitted values, with treatment and
control values separately identified, and with separate smooth lines fitted. As a validation
of the analysis, it is much more encouraging than Figure 13.3.

Further comments

A key requirement, for the propensity score methodology, is that the data must include
information on all relevant covariates. In general, propensity score methods require
extensive data, unless the data sets are extremely well matched. Adequate numbers
of observations must remain after omission of observations that lie outside the region of
overlap of the scores.

The data that were analyzed are part of a much larger collection that are available from
http://www.columbia.edu/˜rd247/nswdata.html

13.3 Further reading

Streiner and Norman (2003) discuss important issues that relate to the collection and analy-
sis of multivariate data in medicine, in the health social sciences, and in psychology. On the
use of propensity scores, see Rosenbaum and Rubin (1983); Rosenbaum (2002). On wider
issues with respect to the analysis of observational data, see Rosenbaum (2002, 1999).

13.3.1 References for further reading
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to Their Development and Use, 2nd edn. Oxford University Press.
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13.4 Exercises

1. Repeat the principal components calculation omitting the points that appear as outliers in
Figure 13.1, and redo the regression calculation. What differences are apparent, in loadings
for the first two principal components and/or in the regression results?

2. Repeat the analyses of Section 13.2, but now with the data in nsw74demo. [Filtering of the
observations should be unnecessary.]

3. Examine the implications that the use of the logarithms of the income variables in the analysis
of the data set nsw74psid1 have for the interpretation of the results. Determine predicted
values for each observation. Then exp(predicted values) gives predicted incomes in 1978.
Take exp(estimated treatment effect) to get an estimate of the factor by which a predicted
income for the control group must be multiplied to get a predicted income for the experimental
group, if covariate values are the same.

4. Repeat the analysis in Subsection 13.2.1 that used all covariates, but now fitting (1) a model
for the probability that earnings will be non-zero, and (2) conditional on re78 > 0, a model
for the amount of the earnings.

(a) Plot fitted values in Exercise 3, for observations where re78 > 0, against fitted values
from the analysis (2), with points identified as control or treated.

(b) Use suitable plots to compare the fitted values (1) and (2) with the respective sets of
fitted values in Subsection 13.2.2.

5. Investigate the sensitivity of the regression results in Subsection 13.2.2 to the range of
treatment/control ratios that are used to define the region of acceptable overlap in the scores.
Extend the analysis to include data where the ratio of treatment to control numbers, as
estimated from the density curve, lies between 1:40 and 40:1. Narrow it to include data where
the ratio is restricted to lie between 1:10 and 10:1.

6. Repeat the analyses of Section 13.2, but using the data set nsw74demo, which compares the
experimental control group with the experimental treatment group. Obtain the equivalents of
Figures 13.2, 13.3 and Plate 9, and comment on any differences that you observe from those
figures.
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14.1 Working directories, workspaces and the search list

14.1.1∗ The search path

When R starts up, it has a set of names of repositories (“databases”) where it looks,
in order, for objects that are required for a command line evaluation. The workspace
(.Globalenv) is first on this search path. Thus, ls(pos=1) is equivalent to ls().
Use ls(pos=2) to print the names of the objects in the database that is second on the
search path, and so on. The following shows the search path on a version 2.2.0 installation
immediately after startup:

> search()

[1] ".GlobalEnv" "package:methods" "package:stats"

[4] "package:graphics" "package:grDevices" "package:utils"

[7] "package:datasets" "Autoloads" "package:base"

This listing includes all packages automatically loaded at startup. Note that .Globalenv
and Autoloads are not packages. For information on .Globalenv, see Subsection
14.9.4; for information on the Autoloads database, see help(autoload).

The search path can be extended in three ways – by the use of attach() to attach a
data frame or list object, by the use of library() to attach another package, and by
the attachment of an image file, perhaps the .RData file from another directory. For data
frames, the effect of attach() is to allow use of the column names to give access to
columns, without further mention of the name of the data frame. For packages the effect
of library() is to give access to the functions and data sets in the package. For image
files, the effect of library() is to give access to the objects that have been stored in
the image file. Examples will be given below.

14.1.2 Workspace management

Continually adding objects to a workspace without removing objects that are no longer
needed leads to a cluttered workspace which is difficult to manage. Meaningful names
should be used for all objects that will be retained for future sessions. Acronyms can
help in shortening names, but they should be memorable. For data sets of modest size,
it is reasonable to keep two versions: one with a name such as BodyMassIndex and
another such as BMI; the latter helps to keep typing to a minimum. Short names with
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slight mnemonic significance can be reserved for use for objects that can be deleted
almost immediately after use; such names are in the style of a, b, x, tmp and junk.
Such strategies make it easier to identify the objects that can be removed immediately
before quitting a session.

There are two complementary strategies for effectively dealing with large data objects,
which might have the potential for using excessive amounts of memory:

• Objects that cannot easily be reconstructed or copied from elsewhere, but are not for
the time being required, are conveniently saved to an image file, using save(). For
example:
xy <- matrix(rnorm(60000), nrow=600)

xy.rowrange <- apply(xy, 1, range)

save(xy, xy.rowrange, file="xy.RData")

rm(xy, xy.rowrange)

Use of the command attach("xy.RData") then makes these objects available,
as and when required. They are in memory (this may change), but would not be saved
into an image of the workspace. (If modified in some way, the modified version will
appear in the workspace.)

• Use a separate working directory for each major project.

For example, for working through the code and exercises in this book, some users may
find it helpful to reserve a different working directory for each different Chapter. On
a Windows system, suitable names for the respective working directories, each with its
own default .RData image file, would be c:\r\ch1, c:\r\ch2, � � � If while in the working
directory c:\r\ch2, access is required to objects from the image file in c:\r\ch1, enter:

## attach("c:/r/ch1/.RData") # Microsoft Windows systems

## ls(pos=2) # Check names of available objects

An alternative is to continue use of the same directory, but once finished with Chapter
1 use, for example, save.image(file="ch1.RData") to save Chapter 1 objects
into the image file ch1.RData. The current workspace contents can then be removed (use
the relevant option from the menu, or specify rm(list = ls())), leaving an empty
workspace for use in working through Chapter 2. At the beginning of a new R session,
we may restore the Chapter 1 workspace, by typing load("ch1.RData").

The default action of save.image(), that is, save all objects in the workspace to
the default .RData file, is equivalent to save(list=ls(), file=".RData").

Changing the working directory and/or workspace

As a preliminary to loading a new workspace, it will usually be desirable to remove
unwanted objects, save it, clear it, and move to a new working directory. These operations
may be performed from the menu, if any. Alternatively, use save.image() to save
the current workspace, rm(list=ls()) to clear the workspace, setwd() to change
the working directory, and load() to load a new workspace.
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14.1.3 Utility functions

Useful functions are:

dir() # List files in the working directory

file.choose() # Choose a file interactively

sessionInfo() # Print version numbers for R and for

# attached packages

R.home() # Give the path to the R home directory

.Library # Path to the default library.

Sys.getenv() # Get settings of environment variables

Here is an example of the use of dir():

> dir()

[1] "chap12.Rnw" "diary.R" "figs12.R" "oneBadRow.txt"

[5] "scan-demo.txt"

Optionally, a directory path and/or search pattern can be given as argument.
Type names(Sys.getenv()) to get names of environment variables. Individual

settings can then be obtained thus:

> Sys.getenv("R_HOME")

R_HOME

"/Library/Frameworks/R.framework/Resources"

14.2 Data input and output

Definitive information is in the help information for the relevant functions or packages,
and in the R Data Import/Export manual that is part of the official R documentation.
New features will appear from time to time. The discussion that follows should be
supplemented with examination of up-to-date documentation.

In our discussion, we will make use of two files which are to reside in the working
directory. These have the names oneBadRow.txt and scan-demo.txt. The function
datafile() DAAG can be used to place these in the working directory, thus:

library(DAAG)

datafile("oneBadRow")

datafile("scan-demo")

As viewed from a text editor the entries of the first three lines of oneBadRow.txt
should be as follows:

10 9 17 # First of 7 lines

11 13 1 6

9 14 16

Note that the second line has four fields, while the other lines have three.
The entries in scan-demo.txt (again viewed with a text editor) are:

First of 4 lines

a 2 3
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b 11 13

c 9 7

An alternative to using a text editor is to use the function readLines() to inspect
the contents of these files. For example:

readLines("oneBadRow.txt") # all lines of file

readLines("oneBadRow.txt", n=3) # First 3 lines only

14.2.1 Input of data

Functions that will be noted include read.table(), readLines(), scan(), and
functions that are designed to handle input from other systems. Most common data input
requirements, for data where all records have the same number of fields, can be handled
using read.table(). The function scan() allows greater user control, and extends
somewhat the range of data formats that are readily handled.

The function read.table() and its variants

The function read.table(), or one of the variants that are described on its help page, is
suitable for most common requirements. Among the existing variants of read.table(),
we note read.delim() for reading tab-delimited data files and read.csv() for
reading comma-delimited data files. These variants are versions of read.table() with
different default settings; more details can be found using help(read.table).

Data that appear not to conform to the strict rectangular structure are a potential source
of difficulty. First, any column that does not consist entirely of numeric data (or entirely of
logical or complex values) is taken to be of mode character. By default it is stored as a factor,
with as many levels as there are unique text strings. Thus, columns that are intended to be
numeric may, because of small mistakes in data entry, be treated as text and stored as a factor.
For example, the letter “O” might have been accidentally used in place of the number “0”.

The argument as.is=TRUE prevents conversion to factors; the argument
colClasses="numeric" forces all columns to be of numeric mode, and will give an
error message if there is a character element in any of the columns. For finer control, either
of as.is and colClasses can be a vector; see the help page for read.table()
for details.

Missing value symbols that differ from the default NA (or a space for logical, numeric
or complex fields) must be explicitly indicated. If, for example, the period (.) has been
used as the missing value symbol, use the argument na.strings=c("."). Multiple
missing value symbols can be handled as well; for example, if "*" and “.” are both used,
then they can be converted to NA using na.strings=c("*", ".").

The function read.table() has a parameter comment.char that by default is set
to #. Anything that follows # on an input field is then treated as comment and ignored.

By default, read.table() treats both double and single quotes as character string
delimiters. If a file has text fields that include the vertical single quote, it will be necessary
to set quote="\"" (set string delimiter to ") or quote="". As a simple demonstration
of this behavior, suppose the file quote.txt contains the single line
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"John’s missed the quote."

The following indicates the behavior of the quote argument.

> read.table("quote.txt", quote = "")
V1 V2 V3 V4

1 "John’s missed the quote."
> read.table("quote.txt", quote = "\"")

V1
1 John’s missed the quote.
> read.table("quote.txt", quote = "\"’") # the default

V1
1 John’s missed the quote.

Tracking errors in input data

An error message that different rows have different numbers of fields is often an indication
that one or more parameter settings should be changed. The argument fill=TRUE can
be used to cause reading of data to proceed regardless, filling out rows with blank fields
as necessary. The data that are input should then be checked carefully to identify the
source of the problem.

The function count.fields() can be useful in identifying rows where the number
of fields differs from the standard. An example is:

> nfields <- count.fields("oneBadRow.txt")

> nfields # Number of fields, for each row

[1] 3 4 3 3 3 3 3

Typically, most rows will have the same number of fields (in the example just given, 3),
with one or two that are aberrant. The following demonstrates a ready way to identify
the aberrant row or rows:

> (1:length(nfields))[nfields == 4]

[1] 2

This calls for scrutiny of row 2.
The function readLines() creates a character vector that holds one character string

for each input row of the file, and offers a ready means to display the data for a row or
rows that are of interest. Its use was demonstrated earlier in this subsection.

Negative values for the argument n indicate that the entire file should be read:

## The following (the default) inputs all lines of the file

readLines("oneBadRow.txt", n=-1)

Input of fixed format data

Use read.fwf(). Note especially the argument widths, which is an integer vector
that specifies the widths of the fixed-width fields. Alternatively, it may be a list of integer
vectors that gives the widths of records that are multiline. Details may be found on the
relevant help page.
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Input of large rectangular files

The function scan() is likely to be faster than read.table() (possibly, much faster)
for reading data that is all of the one type into a large matrix. By default, scan() stores
all data in a single numeric vector; it is then readily dimensioned as a matrix. Alternatively,
data may be input to a list of vectors, where the different vectors may be of different
types. For example:

> scan("oneBadRow.txt", skip = 1, quiet= TRUE)

[1] 11 13 1 6 9 14 16 12 15 14 8 15 15 9 13 12 7 14 18

The parameter what="" can be set to a vector or list. The output is then a list that
has one vector for each vector or list element. In the following, all data is read into a
single list element. The setting what="" reads data into a character string, that is, there
is no type conversion.

> scan("scan-demo.txt", skip = 1, quiet= TRUE, what="")

[1] "a" "2" "3" "b" "11" "13" "c" "9" "7"

If what is set to a list, then the data are read into a list consisting of
elements of the modes of the objects specified in the what list. For example,
what=list(ab="", col2=1, col3=1) will generate a list consisting of one
character vector, named ab and two numeric vectors, named col2 and col3. Fre-
quently, it will be convenient to turn such a list into a data frame, thus:

> data.frame(scan("scan-demo.txt", skip = 1, quiet= TRUE,

what=list(ab="", col2=1, col3=1)))

ab col2 col3

1 a 2 3

2 b 11 13

3 c 9 7

By default, the call to data.frame() turns the column ab into a factor.

Example – input of the Boston housing data

One of the files available from the web site http://lib.stat.cmu.edu/
datasets/ is the file boston_corrected.txt. The command places this file
in the working directory, under the name bostonc.txt.

Careful examination of the file, and some preliminary experimentation that uses
readLines() in the way that will now be described, indicates that the first nine lines
are background documentation, line 10 is header information, and line 11 is the first record.

To check this, enter:

readLines("bostonc.txt", n=11)[10:11]

The output makes it clear that the tab symbol is the separator. More useful output is
obtained from:

> strsplit(readLines("bostonc.txt", n=11)[10:11], split="\t")

[[1]]
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[1] "OBS." "TOWN" "TOWN#" "TRACT" "LON" "LAT"

[7] "MEDV" "CMEDV" "CRIM" "ZN" "INDUS" "CHAS"

[13] "NOX" "RM" "AGE" "DIS" "RAD" "TAX"

[19] "PTRATIO" "B" "LSTAT"

[[2]]

[1] "1" "Nahant" "0" "2011"

[5] "-70.955000" "42.255000" "24.0" "24.0"

[9] "0.00632" "18.0" "2.31" "0"

[13] "0.538" "6.575" "65.2" "4.0900"

[17] "1" "296" "15.3" "396.90"

[21] "4.98"

The following uses scan() to input this file:

boston <- scan("bostonc.txt", n=-1, sep="\t", skip=10,

what=c(list(1,""), as.list(rep(1,19))))

colnams <- scan("bostonc.txt", skip=9, n=21, what="")

boston <- data.frame(boston)

names(boston) <- colnams

The parameter skip gives the number of lines that are to be skipped. The parameter n,
unless set to −1, gives the number of elements that should be read into each of the types
that is indicated by the parameter what.

Compare the above with the use of read.table():

boston <- read.table("bostonc.txt", sep="\t", skip=9,

comment.char="", header=TRUE)

Setting the argument comment.char to "" allows the input of fields containing the #
character. This is necessary for read.table() because the column name TOWN# ends
with the symbol #, which would otherwise be taken to indicate that the remainder of line
10 is comment and should be ignored.

Importing data from other statistical systems

The package foreign has functions that are able to handle data in various proprietary
formats. In several instances, the data are input as a list. At the time of writing, files
in various formats from S-PLUS, Minitab, SPSS, SAS and Stata can be read. There are
functions for writing files in the Stata .dta format, in the DBF database formats, and
in various other formats. Type help.start(), look under Packages and then under
foreign.

Database connections

Such connections allow direct access from the R command line to information stored in a
database. This is an area of active R development. Already, there are extensive abilities.
See in particular the documentation for the RODBC and RMySQL packages.
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14.2.2 Data output

Output of data frames

The function write.table() writes out data frames; thus:

write.table(fossilfuel, file="fuel.txt")

The file fuel.txt then contains the following:

"year" "carbon"

"1" 1800 8

"2" 1850 54

"3" 1900 534

"4" 1950 1630

"5" 2000 6611

Note that the row and column labels are printed to the file. Specify row.names=FALSE
to suppress row names, and/or col.names=FALSE to suppress column names, and/or
quote=FALSE to suppress quotes in the output.

For completeness, note also the function write(), used primarily for writing matrices
or vectors. See help(write).

Redirection of screen output to a file

The function sink() takes as argument the name of a file. Screen output is then directed
to that file. To direct output back again to the screen, call sink() without specifying
an argument. For example:

> fossilfuel # Below, this will be written to the file

year carbon

1 1800 8

2 1850 54

3 1900 534

4 1950 1630

5 2000 6611

> sink("fuel2.txt")

> fossilfuel # NB: No output on screen

> sink()

Output to a file using cat()

The function cat() can be used to direct output either to the screen or to a file. Output
objects must at present be scalars or vectors or matrices. Matrices are output as single
vectors, with elements in columnwise order. The user can place limited format controls
(spaces, tabs and newlines) between the names of output objects.
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14.3 Functions and operators – some further details

This section will begin by noting reasons for writing or adapting functions, then listing
points of good practice in the writing of functions. Brief comments will follow on some
important built-in functions that have not been covered earlier, including functions for
working with dates.

Why collect code into functions?

Once code is in place for a computation that will be carried out repeatedly, it makes
sense to place the code in a function that can be used to automate the computation. This
should happen sooner rather than later. Such functions ease the burden of documenting
the computations, and of ensuring that there is an audit trail. What precise sequence of
changes was applied to the initial data frame, as created from data supplied by a client,
in order to create the data frame that was used for the analysis?

Functions are usually the preferred way to parcel code that is to be taken over and
used by another person. The R packages do this, for a collection of functions that are
built around a common theme, in the carefully structured and documented way that is
desirable for code that will be offered to the total R community.

A further possibility is to extend or adapt built-in functions. One of R’s major merits
is that its resources are at the user’s command, to use or modify or enhance at one’s
discretion. Take care to use that freedom well!

Issues for the writing and use of functions

The number of functions may soon become large. Choose names carefully, so that
they are meaningful. Choose meaningful names for arguments, even if this means that
they are longer than is preferred. Remember that they can be abbreviated in actual
use. Use lists, where this seems appropriate, to group parameters that belong together
conceptually.

If at all possible, give parameters sensible defaults. Often a good strategy is to use as
defaults parameters that are suitable for a demonstration run of the function. NULL is
a useful default where the parameter mostly is not required, but where the parameter if
it appears may be any one of several types of data structure. Within the function body,
an if(!is.null(ParameterOfInterest)) form of construction then determines
whether it is necessary to investigate that parameter further. Values of constants that may
need to change in later use of the function should appear as parameter defaults.

Where convenient, provide a demonstration mode that shows by example what
the function does. Such a mode may be useful for debugging. Thus, in the
function meanANDsd() in Subsection 1.5.3, the argument x had the default value
x = rnorm(10). The default could equally well have been x = rnorm(20) or
x = runif(10), or even x = 1:10. This last has the advantage of giving predictable
output, which can make debugging easier.

Structure code to avoid multiple entry of information. As far as possible, make code self-
documenting. Use meaningful names for objects. The R system allows the use of names



430 The R system – additional topics

for elements of vectors and lists, and for rows and columns of arrays and data frames.
Consider the use of names rather than numbers when extracting individual elements,
columns, etc. Thus, fossilfuel[, "carbon"] is more meaningful and safer than
fossilfuel[, 2].

Break functions up into a small number of sub-functions or “primitives.” Re-use existing
functions wherever possible. Write any new “primitives” so that they can be re-used.
This helps ensure that functions contain well-tested and well-understood components.
Contributors to the r-help electronic mail list from time to time offer useful functions for
routine tasks. There may be functions in our DAAG package that readers will wish to
take over and use for their own purposes.

Where data and labeling must be pulled together from a number of different objects
and files, and especially where it may be necessary to retrace steps some months later,
take the same care over organizing and naming data as over structuring code.

14.3.1 Function arguments

The args() function

This function gives details of named function parameters, and of any default settings. For
example:

> args(write.table) # Version 2.2.1 of R

function (x, file = "", append = FALSE, quote = TRUE, sep = " ",

eol = "\n", na = "NA", dec = ".", row.names = TRUE,

col.names = TRUE, qmethod = c("escape", "double"))

NULL

Use of args() may, when a check is needed on parameter names, be an alternative to
looking up the help page. Note however that in some very common functions, including
plot(), many or most of the parameter names do not appear in the argument list. The
R system has a mechanism, which will now be discussed, that allows the passing of
arguments that have not been included in the function’s named arguments.

The � � � argument

The optional � � � argument allows the passing of parameters that are additional to those
that are in the list of named arguments. Parameters that are passed in this way can be
accessed by extracting the appropriate list element from list(...). The list elements
have the names, if any, that they are given when the function is called.

The function rm() uses this mechanism to target an arbitrary set of objects for removal,
as in the following code fragment:

x <- c(1,5,7); z <- c(4,9,10,NA); u <- 1:10

# Now do calculations that use x, z and u

rm(x, z, u)

The � � � argument can be useful when the number of possible parameters is large, as
for plot() and related functions. The onus is on the user to ensure that arguments have
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names that will be recognized within the function, or within functions to which the � � �

parameter list is passed.

14.3.2 Character string and vector functions

The character vector c("year", "carbon") has as elements the character strings
"year" and "carbon". Here note several functions that may be useful for working with
character strings and vectors. The function nchar() counts the number of characters in a
string, substring() extracts a substring, and paste() pastes its arguments together
into a single string. Type help.search("string") for a more complete list.

> substring("abracadabra",3, 8) # Extract characters 3 to 8

# inclusive

[1] "racada"

> nchar("abracadabra") # Count the number of characters

[1] 11

> strsplit("abracadabra", "r") # Split wherever "r" appears

[[1]]

[1] "ab" "acadab" "a"

> strsplit("abcd", split="") # Split into separate characters

[[1]]

[1] "a" "b" "c" "d"

> paste("ab","c","d", sep="") # Join together

[1] "abcd"

> paste(c("a","b","c"), collapse="") # Join vector elements

[1] "abc"

All these functions can be applied to a character vector. If strsplit() is supplied
with a vector of strings as argument, the output has one list element for each element of
the vector.

Use is.character() to test whether an object is a character rather than perhaps a
factor.

14.3.3 Anonymous functions

Anonymous functions are defined in the same way as for named functions, except that
there is no assignment to a name. Thus, contrast:

ssfun <- function(x)sum(xˆ2)

sapply(elastic1, ssfun) # elastic1 is from the DAAG package

with the use of an anonymous function for the same task in

sapply(elastic1, function(x)sum(xˆ2))

The calculation described in Subsection 1.5.7 can be conveniently handled using an
anonymous function. First, here is the version that uses an explicit named function:

growthfun <- function(x)(x[9] - x[1])/x[1]

sapply(austpop[, -c(1,10)], growthfun)
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Using an anonymous function, this becomes:

sapply(austpop[, -c(1,10)], function(x)(x[9] - x[1])/x[1])

14.3.4 Functions for working with dates (and times)

Several functions for working with dates are available in R base. See help(Dates)
and help(as.Date) and help(format.Date) for detailed information.

Use as.Date() to convert character strings into dates. The default format has year,
then month, then day of month, thus:

> # Electricity Billing Dates

> dd <- as.Date(c("2003-08-24","2003-11-23","2004-02-22","2004-05-03"))

> diff(dd)

Time differences of 91, 91, 91 days

Use format() to set or change the way that a date is formatted. The following are a
selection of the symbols that are used:

%d: day, as number
%a: abbreviated weekday name (%A: unabbreviated)

%m: month (00-12)
%b: month abbreviated name (%B: unabbreviated)
%y: final two digits of year (%Y: all four digits)

The default format is "%Y-%m-%d". The character / can be used in place of -. Other
separators (e.g., a space) must be explicitly specified, using the format parameter, as
in the examples below.

The function as.Date() will take a vector of character strings that has an appropriate
format, and convert it into a dates object. By default, dates are stored in integer numbers
of days, using January 1, 1970 as origin. This becomes apparent when as.integer()
is used to convert a date into an integer value. Here are examples:

> as.Date("1/1/1960", format="%d/%m/%Y")

[1] "1960-01-01"

> as.Date("1:12:1960",format="%d:%m:%Y")

[1] "1960-12-01"

> as.Date("1960-12-1")-as.Date("1960-1-1")

as.Date("1960-12-1")-as.Date("1960-1-1")

> as.Date("31/12/1960","%d/%m/%Y")

[1] "1960-12-31"

> as.integer(as.Date("1/1/1970","%d/%m/%Y"))

[1] 0

> as.integer(as.Date("1/1/2000","%d/%m/%Y"))

[1] 10957

The function format() allows control of the formatting of dates in printed output.
See help(format.Date).

> dec1 <- as.Date("2004-12-1")

> format(dec1, format="%b %d %Y")
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[1] "Dec 01 2004"

> format(dec1, format="%a %b %d %Y")

[1] "Wed Dec 01 2004"

Such formatting may be used to give meaningful labels on graphs, thus

## Labeling of graph: data frame jobs (DAAG)

Jobs <- stack(jobs, select=-7)

startofmonth <- seq(from=as.Date("1Jan1990", format="%d%b%Y"),

by="1 month", length=24)

Jobs$Date <- rep(startofmonth, 6)

names(Jobs) <- c("Number", "Province", "Date")

atdates <- seq(from=as.Date("1Jan1990", format="%d%b%Y"),

by="3 month", length=8)

datelabs <- format(atdates, "%b%y")

library(lattice)

xyplot(Number ˜ Date, groups=Province, data=Jobs,

scale=list(x=list(at=atdates, labels=datelabs)),

auto.key=list(columns=6, between=1))

Note the use of the function seq() to assign a regular sequence of dates to the object
atdates, which is then used to specify positions on the x-axis. See help(seq.Date)
for details of the options that are available.

The function date() returns the current date and time, while Sys.Date()
returns the date. For information on functions for working with times, see
help(ISOdatetime).

14.3.5 Creating groups

The following uses the cut() function to collapse the column bp in the data frame
Pima.tr2 (MASS) into four categories, then tabulating the frequencies:

> library(MASS)

> catBP <- cut(Pima.tr2$bp, breaks=4)

> table(catBP)

catBP

(37.9,57] (57,76] (76,95] (95,114]

22 170 87 8

> sum(table(catBP))

[1] 287

Notice that the 13 missing values, out of the total of 300, are not included in the table.
This can be a trap. They are in catBP, as we can easily verify:

> table(is.na(catBP))

FALSE TRUE

287 13

By default, table() ignores NAs. For comments on including NAs in a tabulation, see
Section 14.5.
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14.3.6 Logical operators

The logical operators & (and) and | (or) operate on vectors. They have counterparts &&
and || that expect a single element; if either operand is a vector, the first element only
is taken. Thus compare:

> c(TRUE, TRUE, FALSE) & c(FALSE, TRUE, FALSE)

[1] FALSE TRUE FALSE

> c(TRUE, TRUE, FALSE) && c(FALSE, TRUE, FALSE)

[1] FALSE

A vector form of if statement

The function ifelse() may be regarded as a vector form of the if statement. The
comparison is made, and the resultant action taken, for all elements of a vector. See
help(ifelse).

Operators are functions

Operators are a special type of function. Thus 2+3 is the result of applying the operator
+ with the arguments 2 and 3. In R, it is possible to handle addition by explicitly writing
the calculation in functional form, thus:

> "+"(2, 3)

[1] 5

14.4 Factors

Factors are an essential adjunct to the use of model formulae and graphics formulae.
They find wide use in the statistical modeling functions in the various R packages. Recall
(Subsection 1.3.5) that factors are stored as integer vectors, where the integer values
range from one to the number of levels. A table of levels, stored as an attribute of the
factor, associates a unique character string with each different integer value.

The levels can be accessed using attr() with the parameter setting
which="levels". It is however better to use the function levels().

Factors have the potential to cause surprises, so be careful! Note that:

• When a vector of character strings is included as a column of a data frame, R by
default turns the vector into a factor, in which the distinct character strings are the
level names. To avoid this, enclose the vector of character strings in the wrapper
function I() when calling data.frame().

• There are some contexts in which factors become numeric vectors. To be sure of
obtaining the vector of character strings, specify, e.g., as.character(country).
Specifically
– When the index variable in a for loop takes factor values, the values are the

integer codes. For example:
> fac <- factor(c("c", "b", "a"))

> for (i in fac) print(i)
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[1] 3

[1] 2

[1] 1

– The result from cbind(), for any factor arguments, depends on whether at least
one of the other arguments is a data frame. If other arguments are numeric, and
none is a data frame, none of the arguments is a data frame, factors become integer
vectors. See Subsection 14.7.4 for details.

• To extract the numeric values 1, 2, � � � , specify unclass(fac).
• In Subsection 8.1.4, use of the function aggregate() generated a factor conc

whose levels were "0.8", "1", "1.2", "1.4", "1.6" and "2.5". Use of
as.numeric(as.character(conc)) extracted the numeric values.

Ordered factors

Actually, it is the levels that are ordered. To create an ordered factor, or to turn a factor
into an ordered factor, use the function ordered(). The levels of an ordered factor
specify positions on an ordinal scale. Try

> stress.level <- rep(c("low","medium","high"), 2)

> ordf.stress <- ordered(stress.level, levels=c("low", "medium",

+ "high"))

> ordf.stress

[1] low medium high low medium high

Levels: low < medium < high

> ordf.stress < "medium"

[1] TRUE FALSE FALSE TRUE FALSE FALSE

> ordf.stress >= "medium"

[1] FALSE TRUE TRUE FALSE TRUE TRUE

Ordered factors have (inherit) the attributes of factors, and have a further order-
ing attribute. All factors, ordered or not, have an order for their levels! The spe-
cial feature of ordered factors is that there is an ordering relation (<) between factor
levels.

Factor contrasts

When the lm() or another similar modeling function is called, the model formula is
parsed, and the function model.matrix() is used to create a model matrix. Where
factors appear in the model formula, the choice of factor contrasts determines how the
model matrix will be constructed. The different model matrices give different mathemat-
ical descriptions for the same model.

As described in Chapter 7, the R system allows a choice between several different
types of built-in factor contrasts, and users can define their own factor contrasts. Here
note treatment contrasts, sum contrasts (often known as anova contrasts), and helmert
contrasts, with treatment as the default. Note also polynomial contrasts, usually reserved
for use with ordered factors.
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In order to use sum contrasts in place of treatment contrasts, specify
options(contrasts=c("contr.sum", "contr.poly")). It is also possible
to set contrasts separately for each factor. See help(C).

The coding for any particular choice of contrasts can be inspected directly:

> contr.treatment(3)

2 3

1 0 0

2 1 0

3 0 1

> contr.sum(3)

[,1] [,2]

1 1 0

2 0 1

3 -1 -1

> cities <- factor(c("Melbourne","Sydney","Adelaide"))

> cities

Sydney Adelaide

Melbourne 0 0

Sydney 1 0

Adelaide 0 1

> contr.sum(cities)

[,1] [,2]

Melbourne 1 0

Sydney 0 1

Adelaide -1 -1

The default is that Adelaide is level 1, Melbourne is level 2, and Sydney is level
3. Level names are by default ordered alphabetically.

Contrasts – implications for model fitting

Fitted values, residuals, anova tables and model comparisons do not change between
different parameterizations of the same model.

For a factor that has two levels, helmert contrasts lead to a parameter estimate that is
just half that for treatment contrasts. For factors with more than two levels, the parameter
estimates that are associated with helmert contrasts do not usually correspond to the
scientific questions that are of most immediate interest.

*Tests for main effects in the presence of interactions?

With rare exceptions, tests for main effects in the presence of interactions are a bad
idea. The anova method in the nlme package allows the parameter setting type = "m".
This gives marginal tests of the effect of dropping each term in the model in turn, while
retaining other terms. This includes tests on the effect of “dropping” each factor main
effect, while retaining all interaction terms – tests that in most circumstances do not make
much sense. See Venables (1998) for commentary.
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The word “drop” is inappropriate. Constraints are implicitly applied, in the “omission”
of main effects from the model, that depend on the choice of contrasts. Thus the Type 3
test will test a different null hypothesis, depending on the choice of contrasts. Users of
lme() should not go down this road unless they are very sure that they know what they
doing. Most who know what they are doing avoid Type 3 tests!

14.5 Missing values

The missing value indicator is NA. Any arithmetic or logical operation that has NA as one
of its arguments generates NA. This applies to the relations <, <=, >, >=, ==, !=.
The first four compare magnitudes, == tests for equality, and != tests for inequality.

Users who do not give adequate consideration to the handling of NAs in their data may
be surprised by the results. Specifically, note that x==NA generates NA, whatever the
values in x. Be sure to use is.na(x) to test which values of x are NA. The construct
x==NA gives a vector in which all elements are NAs, and thus gives no information about
the elements of x. For example:

> x <- c(1, 6, 2, NA)

> is.na(x) # TRUE for NAs, otherwise FALSE

[1] FALSE FALSE FALSE TRUE

> x == NA # All elements are set to NA

[1] NA NA NA NA

> NA == NA

[1] NA

As of version 2.0.0 of R, values cannot be assigned to expressions whose subscripts
include missing values.

> x <- c(1, NA, 6, 2, 10)

> x > 4 # The second element will be NA

[1] FALSE NA TRUE FALSE TRUE

> x[x>4] # NB: This generates a vector of length 3

[1] NA 6 10

> x[x > 4] <- c(101, 102)

Error: NAs are not allowed in subscripted assignments

To replace elements that are greater than 4, specify

> x[!is.na(x) & x > 4] <- c(101, 102)

> x

[1] 1 NA 101 2 102

Use of !is.na(x) limits the elements that are identified by the subscript expression,
on both sides, to those that are not NAs.

Counting and identifying NAs – the use of table()

The action needed to get NAs tabulated under a separate NA category depends, annoy-
ingly, on whether or not the vector is a factor. If the vector is not a factor, specify
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exclude=NULL in the call to table(). If the vector is a factor then it is necessary to
generate a new factor that includes NA as a level. Specify

x <- factor(x, exclude=NULL)

In the example given earlier in Subsection 14.3.5, we had:

library(MASS)

catBP <- cut(Pima.tr2$bp, breaks=4)

To ensure that the tabulation includes NAs, we can do the following:

> table(factor(catBP, exclude=NULL))

catBP

(37.9,57] (57,76] (76,95] (95,114] <NA>

22 170 87 8 13

> sum(table(factor(catBP, exclude=NULL)))

[1] 300

The removal of NAs

The function complete.cases() takes as arguments any sequence of vectors, data
frames and matrices that all have the same number of rows. It returns a vector that has
the value TRUE whenever a row is complete, that is, has no missing values across any of
the objects, and otherwise has the value FALSE.

The function na.omit() omits NAs from vectors. For matrices and data frames, it
omits any rows where one or more elements is NA.

The expression any(is.na(x)) returns TRUE if the vector has any NAs, and is
otherwise FALSE.

NAs in modeling functions

Many of the modeling functions have an argument na.action. We can inspect the
global setting; thus:

> options()$na.action # Version 2.1.0, following startup

[1] "na.omit"

The argument na.action=na.omit causes omission of rows that hold NAs, prior to
the analysis. A useful alternative to na.omit, when it is available, can be na.exclude.
This omits rows that have NAs from the analysis. However, it returns values for all rows
when fitted values, residuals, etc., are calculated, placing NAs in those positions.

Individual functions may have defaults that are different from the global setting. See
help(na.action), and help pages for individual modeling functions, for further details.

Sorting and ordering, where there are NAs

By default, sort() omits any NAs. The function order() places NAs last. Hence:

> x <- c(1, 20, 2, NA, 22)

> order(x) # By default, na.last=TRUE
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[1] 1 3 2 5 4

> x[order(x)]

[1] 1 2 20 22 NA

> sort(x) # By default na.last=NA

[1] 1 2 20 22

> sort(x, na.last=TRUE)

[1] 1 2 20 22 NA

14.6∗ Matrices and arrays

Conceptually, a matrix is a rectangular array in which all elements have the same mode.
The common modes are numeric, character, logical or complex. A matrix is in this sense
a more restricted structure than a data frame. Numeric matrices allow a variety of mathe-
matical operations, including matrix multiplication, that are not available for data frames.

A matrix is a special case of an array, which may have more than two dimensions.
Names may be assigned to the rows and columns of a matrix, or more generally to the
different dimensions of an array. Details are below.

Matrix elements are stored in column order in one long vector, that is, columns are
stacked one above the other, with the first column first. Consistent with this, a matrix is
a vector (numeric or character or logical) whose dimension attribute has length 2. Thus
consider

> xx <- matrix(1:6, ncol=3) # Equivalently, enter

# matrix(1:6, nrow=2)

> xx

[,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

Use the function dim() to determine the dimensions. Thus:

> dim(xx)

[1] 2 3

The following are alternative ways to turn the matrix xx back into the vector of
elements 1, 2, � � � , 6:

## Use as.vector()

x <- as.vector(xx)

## Alternatively, directly remove the dimension attribute

x <- xx

dim(x) <- NULL

Both mechanisms have the effect of removing the dimension attribute.
The function t() takes a matrix as its argument, which it transposes. It may also be

used for data frames, with the side effect that all elements will be promoted to a common
type when columns are of different types.

Use rownames() to extract or assign row names, and colnames() for column
names. An alternative, which assigns or extracts row and column names at the same
time, is the use of dimnames(). The dimnames() function gives a list, in which the
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first list element is the vector of row names, and the second list element is the vector of
column names.

The extraction of submatrices

The syntax is the same as for data frames. The result is now, except when a single row
or column is extracted, a matrix.

For use in demonstrating the extraction of submatrices, set

> x34 <- matrix(1:12, ncol=4)

> x34

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

The following should be self-explanatory:

x34[2:3, c(1,4)] # Extract rows 2 & 3 and columns 1 & 4

x34[-2, ] # Extract all rows except the second

x34[-2, -3] # Omit row 2 and column 3

Extraction of a single row or column yields, by default, a vector. To extract the second
row, keeping the result as a matrix, use the syntax x34[1, , drop=FALSE]. Thus
compare the following:

> x34[2, ] # The dimension attribute is dropped

[1] 2 5 8 11

> x34[2, , drop=FALSE] # Retain the dimension attribute

[,1] [,2] [,3] [,4]

[1,] 2 5 8 11

Conversion of data frames and tables into matrices

Use as.matrix() to convert a data frame into a matrix. The columns should all
be of one of the modes numeric or character or logical. If this is not the case, type
conversion will be necessary. Where there is a choice between matrix computations and
equivalent computations that start from the data frame equivalent of the matrix, the matrix
computations can be much more efficient.

In R version 2.0.1, use of as.matrix() with a two-way table leaves the table
unchanged, that is, its class is still returned as “table.” The rationale may be that two-way
tables are already in matrix form. If tab is a two-way table, use as(tab, "matrix")
to convert tab to the class matrix.

14.6.1 Matrix arithmetic

Matrix arithmetic has many different applications. They can be important for the imple-
mentation of new regression and multivariate methods. The following are the more basic
operations that are available:
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## Set up example matrices G, H and B

G <- matrix(1:12, nrow=4); H <- matrix(112:101, nrow=4); B <- 1:3

G + H # Element-wise addition (X & Y both n by m)

G * H # Element-wise multiplication

G %*% B # Matrix multiplication (X is n by k; B is k by m)

## Set up example matrices X (square, full rank) and Y

X <- matrix(c(1,1,1, -1,0,1, 2,4,2), nrow=3)

Y <- matrix(1:6, nrow=3)

solve(X, Y) # Solve XB = Y (X must be square)

Note also the more numerically stable alternative for matrix multiplication,
crossprod(G,H), and the linear system solver qr.solve(X, Y).

Computational efficiency

As noted above, matrix computations can be much more efficient than the equivalent
computations with data frames. The difference can be substantial:

> xy <- matrix(rnorm(500000),ncol=50)

> dim(xy)

[1] 10000 50

> system.time(xy+1)

[1] 0.015 0.009 0.025 0.000 0.000

> xy.df <- data.frame(xy)

> system.time(xy.df+1)

[1] 0.496 0.513 2.260 0.000 0.000

The first number is processor time, while the third number is elapsed time. Other numbers
are not, for present purposes, of interest. The above was on a 1.25 GHz Macintosh
PowerPC G4 with 512 MB of random access memory.

14.6.2 Outer products

A common use of outer() is to generate a matrix of quantities of the form

xij = aibj�

For example:

# Multiplication table

> outer(1:4, 1:10)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1 2 3 4 5 6 7 8 9 10

[2,] 2 4 6 8 10 12 14 16 18 20

[3,] 3 6 9 12 15 18 21 24 27 30

[4,] 4 8 12 16 20 24 28 32 36 40

More generally, outer() may be used to generate an array whose (i, j)th
element is a function of ai and bj . Often it is convenient to use an anonymous
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function. As an example, we will generate a matrix of color names. The parameter
col in R plotting functions may be supplied either with a number, or with the
name of a color. Many of these colors come in five different shades; thus in addi-
tion to “blue” there are “blue1,” “blue2,” “blue3” and “blue4.” The following gener-
ates all five shades of the colors “red,” “blue” and “green,” storing the result in a
matrix.

> rbgshades <- outer(c("red","blue","green"), c("",paste(1:4)),

+ function(x,y)paste(x,y, sep=""))

> rbgshades # Display the matrix

[,1] [,2] [,3] [,4] [,5]

[1,] "red" "red1" "red2" "red3" "red4"

[2,] "blue" "blue1" "blue2" "blue3" "blue4"

[3,] "green" "green1" "green2" "green3" "green4"

> plot(rep(0:4, rep(3,5)), rep(1:3, 5), col=rbgshades, pch=15, cex=8)

14.6.3 Arrays

An array is a generalization of a matrix (2 dimensions), to allow > 2 dimensions. The
dimensions are, in order, rows, columns, � � � By way of example, we start with a numeric
vector of length 24. So that we can easily keep track of the elements, we make them 1,
2, � � � , 24. This is readily changed into, for example, a 3 × 8 matrix, or into a 3 × 4 × 2
array:

> x <- 1:24

> dim(x) <- c(4, 6)

> x

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1 5 9 13 17 21

[2,] 2 6 10 14 18 22

[3,] 3 7 11 15 19 23

[4,] 4 8 12 16 20 24

> dim(x) <- c(3, 4, 2)

> x

, , 1

[,1] [,2] [,3] [,4]

[1,] 1 4 7 10

[2,] 2 5 8 11

[3,] 3 6 9 12

, , 2

[,1] [,2] [,3] [,4]

[1,] 13 16 19 22

[2,] 14 17 20 23

[3,] 15 18 21 24

The function aperm() permutes the dimensions. Thus aperm(x, c(3,2,1))
interchanges dimensions 1 and 3.
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14.7 Manipulations with lists, data frames and matrices

It can be important to understand the points of connection between lists and data frames,
and between data frames and matrices. Data frames are a specialized type of list, in
which the list elements hold vectors (the columns) that all have the same length and are
all indexed by the same row names.

Data frames and matrices use the same subscripting syntax, though the outcome can
be subtly different. Certain functions that are primarily designed for use with matrices
can also be applied to data frames. Data frames are however, unlike matrices, stored as
lists, and functions that are designed for use with lists can also be used with data frames.

The functions dim() and dimnames() generalize in the obvious way for use with
arrays.

14.7.1 Lists – an extension of the notion of “vector”

Vectors, in a general sense, are of two types. First, there are atomic vectors whose
elements are logical, integer, numeric, complex or character. These are atomic because
their elements do not break down into anything more fundamental. In earlier chapters,
the word “vector” was reserved for use with atomic vectors.

Second, there are lists (and data frames). These are recursive (or generic) vectors. Such
vectors consist of a sequential set of elements, just as for atomic vectors. The difference
is that each list element is itself a list. The import of this will be explained shortly.

As lists are vectors, elements can be referenced using the usual subscript notation; the
first list element is zz[1], the second is zz[2], and so on. Those elements, themselves
lists, are wrappers for objects of arbitrary class and type. The list elements can hold
scalars, matrices or more general arrays, functions, other lists, atomic vectors, etc. The
elements of lists can, and often do, hold a rag-tag collection of different objects. A good
example is the list object that R creates as output from an lm calculation.

As a way to understand lists, imagine a traveler, who insists on putting all the objects
in his/her kit into individual bags. The objects may be items of clothing, books, toiletry
items, etc. Bags will in some cases be packed together into other bags. Each individual
bag is a list, and bags may be grouped together into further “lists.” Subsetting from a list
extracts a selection of the bags in the list.

A notation is then required for obtaining the individual objects, without their bags. The
syntax zz[[1]], zz[[2]], ..., zz[[n]] was devised for this purpose. Thus
zz[[1]] extracts the object that is held in the first list element, and similarly for other
elements in the list.

Functions such as c(), length() and rev() (take elements in the reverse order)
can be applied to any vector, including a list. To interchange the first two elements of
the list zz, write zz[c(2, 1, 3:length(zz))].

Here is an example:

> list1 <- list(1:3, 15, c("win","susan"))

> list1[c(3,1,2)]

[[1]]

[1] "win" "susan"
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[[2]]

[1] 1 2 3

[[3]]

[1] 15

> ## Return list whose only element is the vector c("win","susan")

> list1[3]

[[1]]

[1] "win" "susan"

> ## Return the vector c("win","susan")

> list1[[3]]

[1] "win" "susan"

The dual identity of data frames

Data frames have the form of rectangular arrays whose elements can be extracted using
the same subscript notation as for matrices. More fundamentally, they are lists whose
elements hold vectors that are all of the same length. Thus, setting:

xyz <- data.frame(x=1:4, y=11:14, z=I(letters[1:4]))

Use of rev(xyz) gives a data frame whose columns are taken in the reverse order.
The function length() returns the value 3; this is because xyz is a list that has three
elements. The wrapper function I() was used to prevent z from becoming a factor.

Note the contrast between:

> xyz[1,] # Returns a data frame, i.e., a list)

x y z

1 1 11 a

> xyz[1,, drop=TRUE]

$x

[1] 1

$y

[1] 11

$z

[1] "a"

> unlist(xyz[1,]) # Returns, here, a vector of atomic mode

x y z

"1" "11" "a"

> unlist(xyz[1,, drop=TRUE])

x y z

"1" "11" "a"
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The elements of xyz[1, ] were of different modes. The inconsistency was resolved
by constraining all elements to character mode. (If xyz had been a factor, all elements
would have been numeric. Why?)

14.7.2 Changing the shape of data frames

The functions noted here do not accept matrices as arguments. For use of these functions,
matrices must first be turned into data frames, perhaps using as.data.frame(). See
below, Subsection 14.7.4.

The reshape() function

The reshape() function is a counterpart of stack() (discussed in Subsection 1.4.2)
that has the advantage of carrying along other columns of the data frame.

> Jobs <- reshape(jobs, varying=list(names(jobs)[1:6]),

+ v.names="Number", times=names(jobs)[1:6],

+ timevar="Region", direction="long")

> head(Jobs, 3)

Date Region Number id

1.BC 95.00000 BC 1752 1

2.BC 95.08333 BC 1737 2

3.BC 95.16667 BC 1765 3

Note that the varying column names were specified in a list whose only element was
the vector of column names. (If more than one vector is to be stacked, this is done by
specifying multiple list elements.) The function is designed with a view to use with data
where the columns that are to be stacked correspond to multiple times. In the data frame
jobs, the different columns hold data for different regions; these must nevertheless be
referred to as “times.”

It may, in addition, be useful to specify the parameter ids that gives values that will
identify what, in the wide format, were the rows (“subjects”).

The following returns the data frame Jobs that was created above, to the wide format:

reshape(Jobs, v.names="Number", timevar="Region", direction="wide")

14.7.3∗ Merging data frames – merge()

The DAAG package has the data frame Cars93.summary, which has as its row names
the six different car types in the data frame Cars93 from the MASS package. The column
abbrev holds one or two character abbreviations for the car types. We show how to
merge the information on abbreviations into the data frame Cars93; thus:

new.Cars93 <- merge(x=Cars93, y=Cars93.summary[, "abbrev", drop=F],

by.x="Type", by.y="row.names")

The arguments by.x and by.y specify the keys, the first from the data frame
that is specified as the x- and the second from the data frame that is specified as
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the y-parameter. The new column in the data frame new.Cars93 has the name
abbrev.

If there had been rows with missing values of Type, these would have been omitted
from the new data frame. We can avoid this by ensuring that Type has NA as one of its
levels, in both data frames.

14.7.4 Joining data frames, matrices and vectors – cbind()

Use cbind() to join, side by side, two or more objects that may be any mix of data
frames and vectors. (If all arguments are matrix or vector, then the result is a matrix.)
Alternatively, we can use the function data.frame().

In the use of cbind(), note that if all arguments are matrix or vector, then any factors
will become integer vectors. If one (or more) argument(s) is a data frame, so that the
result is a data frame, factors will remain as factors.

Use rbind() to stack any combination of data frames, matrices and (row) vectors.
When data frames are stacked one above the other, the names and types (numeric, logical,
character, factor, …) of the columns must agree.

Conversion of tables and arrays into data frames

Use as.data.frame() to handle the conversion, from a table, to a data frame
that has one column of values of the classifying factor corresponding to each dimen-
sion of the table. If the argument is an array, it must first be coerced into a table
with the same number of dimensions. Alternatively, use an explicit call to the function
as.data.frame.table(), with the array as argument. See the discussion following
Figure 2.11 in Subsection 2.2.1 for examples.

14.7.5 The apply family of functions

The functions that are in mind are sapply(), lapply(), apply() and tapply().
The functions sapply() and lapply() operate on vectors, on lists and on data
frames. We encountered sapply() (s = simplify) in Chapter 1, and it has been
used extensively in earlier chapters. The function apply() is designed for use
with matrices and arrays. It can also be used with data frames, provided of course
that the operations that the function performs are legal for elements in the data
frame.

The tapply() function

The arguments are a vector, a list of factors, and a function that operates on a vector
to return a single value. For each combination of factor levels, the function is applied
to corresponding values of the variable. For simplicity, assume that the function returns
a scalar. The default output (with simplify=TRUE) is then an array with as many
dimensions as there are factors.
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Compare the following two calculations, the first using tapply(), and the second
(from Subsection 2.2.2) using aggregate():1

## Compare tapply() with aggregate(): data frame kiwishade (DAAG)

attach(kiwishade)

kiwimeans <- tapply(yield, INDEX=list(block, shade), FUN=mean)

kiwimeans <- aggregate(yield, by=list(block, shade), FUN=mean)

detach(kiwishade)

The function tapply() yields an array, where aggregate() yields a data frame.
Another difference is that the first argument to tapply() must be a vector, where
aggregate() can alternatively be used with data frames or with time series objects
and will then carry out the aggregation in parallel across all columns. Where there are no
data values for a particular combination of factor levels tapply() returns NA, whereas
aggregate() does not include that row in the data frame.

Where the first argument is of such length that the time taken for the calculation
is an issue, tapply() typically completes its task in a fraction of the time taken
by aggregate(). If a data frame is required, use as.data.frame.table() to
handle the necessary conversion. (Note that as.data.frame.array() does not give
the result that is likely to be required.)

The apply() function

The functionapply() applies a function to rows or columns of a matrix, or to a specified
dimension of an array. Additionally, it can be used, with some restrictions, for data frames.
The data frame is first coerced to be a matrix, so that all elements are character, or all
numeric, or all logical, or all complex. This restricts the functions that can be applied.

The first argument to apply() is an array or data frame. The second argument
specifies the dimension(s) – 1 for applying the function to each row in turn, and 2 when
the function is to be applied to each column in turn (if the first argument is an array of
more than two dimensions, then a number greater than 2 is possible). Examples can be
found in Exercise 11 in Chapter 1, Subsections 8.1.4 and 6.5.1 and elsewhere.

The functions lapply() and sapply()

The functions lapply() and sapply() apply a function to each element of a vector
in turn. They are most commonly used with recursive vectors, that is, with lists or data
frames. For lapply(), the result is a list, with one element corresponding to each
element of the list that was supplied as argument. The function sapply() differs only
in simplifying the result as far as possible, to give a vector or matrix or list.

The arguments of lapply() or sapply() are the name of the data frame or list
(or other vector), and the function that is to be applied. Additionally, parameters may be
specified that will be passed to the function that is the second argument:

1 ## The need to attach kiwishade can be avoided by use of with()
with(kiwishade, tapply(yield, INDEX=list(block, shade), FUN=mean))
with(kiwishade, aggregate(yield, by=list(block, shade), FUN=mean))
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> ## Uses data frame rainforest (DAAG)

> sapply(rainforest[, -7], range, na.rm=TRUE)

dbh wood bark root rootsk branch

[1,] 4 3 8 2 0.3 4

[2,] 56 1530 105 135 24.0 120

Note the use of the parameter setting na.rm=TRUE, which sapply() passed to the
function range().

Note that:

• Any rectangular structure that results from the use of sapply() will be a matrix,
not a data frame. In order to use sapply to carry out further manipulations on its
columns, it must first be turned into a data frame.

• If sapply() is used with a matrix as its argument, the function is applied to all
elements of the matrix – not usually the result that is wanted. Use apply() instead,
or convert the matrix to a data frame.

14.7.6 Splitting vectors and data frames into lists – split()

As an example, we work with the data frame cabbages from the MASS package. Then,

## Split data frame cabbage (MASS) into list

library(MASS)

split(cabbages$HeadWt, cabbages$Date)

returns a list with three elements. The list elements have names d16, d20 and d21
and consist, respectively, of the values of HeadWt for which Date takes the respective
values d16, d20 and d21.

The argument to split() may alternatively be a data frame, which is split into a list
of data frames. For example:

split(cabbages[, -1], cabbages$Date) # Split remaining columns

# by levels of Date

14.7.7 Multivariate time series

As demonstrated in Subsection 2.1.5, the function ts() can be used to create a multi-
variate time series from a matrix or data frame whose columns hold the separate series,
thus:

> jobts <- ts(jobs[,1:6], start=1995, frequency=12)

> colnames(jobts)

[1] "BC" "Alberta" "Prairies" "Ontario" "Quebec" "Atlantic"

To extract the first column, specify tsunits[, 2] or tsunits[, "Alberta"].
The subscript notation can be used to extract rows, but returns a matrix rather than a time
series. Use the function window() to extract, as a time series, a subseries. For example:

> ## Subseries through to the third month of 1995

> window(jobts, end=1995+2/12)
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BC Alberta Prairies Ontario Quebec Atlantic

Jan 1995 1752 1366 982 5239 3196 947

Feb 1995 1737 1369 981 5233 3205 946

Mar 1995 1765 1380 984 5212 3191 954

> # Rows are 1995+0/12, 1990+1/12, 1990+2/12

There is a plot method for multivariate time series.

plot(jobts, plot.type="single") # Use one panel for all

plot(jobts, plot.type="multiple") # Separate panels.

14.8 Classes and methods

Generic functions, whose action varies according to the class of the object that is given
as the first argument, were mentioned briefly in Subsection 1.5.2. There are two imple-
mentations – the S3 implementation that is provided by base R, and the more recent
S4 implementation of the methods package. Generic functions do not call the specific
method, such as print.factor(), directly. Instead, they call a dispatch function,
which in the case of print() calls the relevant print function.

The discussion that now follows relates to S3 methods and classes. S4 methods and
classes will be considered below. For S3 methods and classes, the dispatch function is
UseMethod(). For example, here is the function print():

> print

function (x,...)

UseMethod("print")

The function UseMethod() notes the class of the object, now identified as x, and calls
the print function for that class. If the object is a factor, then UseMethod() will call
print.factor().

Use the function class() to determine the class of an object. Classes may be defined
so that they inherit the properties of parent classes. Thus ordered factors inherit from
factors, and inherit the print method for factors.

14.8.1 Printing and summarizing model objects

Just as for any other R object, typing the name of a model object on the command line
invokes the print function, if any, for that class of object. Thus typing elastic.lm,
where elastic.lm is an lm object, has the same effect as print.lm(elastic.lm)
or print(elastic.lm).

Print functions for model objects, for example, print.lm() for printing the model
object elastic.lm, process output into a form that is, broadly, suitable for immediate
inspection. Additional or different information may be available by directly access-
ing the list elements of the model object. For most classes of object there is, in addition, a
summary() function that gives a different and often more detailed summary. For example:

elastic.lm <- lm(distance ˜ stretch, data=elasticband)

elastic.sum <- summary(elastic.lm)
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stores summary information for elastic.lm in the elastic.sum summary object.
Typing elastic.sum (or summary(elastic.lm)) on the command line invokes
the function print.summary.lm(), thus printing the summary information.

Other generic functions that commonly find use with model objects are coef() (alias
coefficients()), residuals() (alias resid()), fitted(), predict() and
anova().

14.8.2 Extracting information from model objects

The object elastic.lm is a list that holds a variety of quite different objects. To get
the names of the list elements, type

> names(elastic.lm)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

Here are three different and equivalent ways to examine the contents of the first list
element:

elastic.lm$coefficients

elastic.lm[["coefficients"]]

elastic.lm[[1]]

The preferred way to extract the coefficients is however to use the extractor function
coef(), i.e.

> coef(elastic.lm)

(Intercept) stretch

-63.571429 4.553571

14.8.3 S4 classes and methods

S3 classes are not formally defined. Classes can be assigned to objects in an arbitrary
manner, whether or not the object has the structure (e.g., the expected list elements) for
that class. For example:

> x <- 1:5

> class(x) <- "lm" # Inappropriate assignment of class

> print(x)

Call:

NULL

No coefficients

S4 objects have formally defined slots; these have a similar role to the list elements in,
for example, lm objects. The names and classes of the slots are established at the time of
the class definition. In computations with objects of an S4 class, the names and classes of



14.9 Manipulation of language constructs 451

the slots are validated against the definition. Methods must likewise be formally defined,
and the classes of one or more named arguments to the generic function must be formally
identified.

Users of packages (e.g., lme4, or Bioconductor packages) may need to access the slots
of S4 objects. Use the function slotNames() to obtain the names of the slots, and
either the function slot() or the operator @ to extract or replace a slot. For example,
consider the lmList object that was created in Subsection 10.5.1:

## Use data frame humanpower1, from DAAG

> library(lme4)

> hp.lmList <- lmList(o2 ˜ wattsPerKg | id, data=humanpower1)

> slotNames(hp.lmList)

[1] ".Data" "call" "pool"

> slot(hp.lmList, "call")

lmList(formula = o2 ˜ wattsPerKg | id, data = humanpower1)

> hp.lmList@call

lmList(formula = o2 ˜ wattsPerKg | id, data = humanpower1)

See the help(Methods), and Chambers (1998), for further information on S4 classes
and methods. Lumley (2004a) compares S3 and S4 approaches to the definition of a simple
class. See also Bates and DebRoy (2003).

14.9 Manipulation of language constructs

We will demonstrate manipulations involving formulae and expressions, for the most part
in the context of user-defined functions.

14.9.1 Model and graphics formulae

It can sometimes be useful to construct model or graphics formulae from character
strings. For example, here is a function that takes two named columns from the data
frame mtcars, plotting them one against another:

plot.mtcars <- function(xvar="disp", yvar="hp"){

attach(mtcars)

mt.txt <- paste(yvar, "˜", xvar)

plot(formula(mt.txt))

}

We can now, when we call the function, set xvar and yvar to be any columns we
choose:

> ## Plot using data frame mtcars (datasets)

> names(mtcars)

[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs"

"am" "gear"

[11] "carb"

> plot.mtcars(xvar="disp", yvar="mpg")
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Extraction of variable names from formula objects

The function all.vars() takes a formula as argument, and returns the names of the
variables that appear in the formula. For example:

> all.vars(mpg ˜ disp)

[1] "mpg" "disp"

As well as allowing the use of a formula to specify the graph, the following gives more
informative x- and y-labels:

plot.mtcars <- function(form = mpg˜disp){

yvar <- all.vars(form)[1]

xvar <- all.vars(form)[2]

## Include information that allows a meaningful label

mtcars.info <- c(mpg= "Miles/(US) gallon",

cyl= "Number of cylinders",

disp= "Displacement (cu.in.)",

hp= "Gross horsepower",

drat= "Rear axle ratio",

wt= "Weight (lb/1000)",

qsec= "1/4 mile time",

vs= "V/S",

am= "Transmission (0 = automatic, 1 = manual)",

gear= "Number of forward gears",

carb= "Number of carburettors")

xlab <- mtcars.info[xvar]

ylab <- mtcars.info[yvar]

plot(form, xlab=xlab, ylab=ylab)

}

14.9.2 The use of a list to pass parameter values

The following are equivalent:

mean(rnorm(20))

do.call("mean", args=list(x=rnorm(20)))

Use of do.call() allows the parameter list to be set up in advance of the call, as in
the following function:

"simulateDistribution" <-

function(distn="weibull", parms=list(n=10)){

## Simulates one of: weibull, gaussian, logistic

if(distn=="weibull" & !("shape" %in% names(parms)))

parms <- c(shape=1, parms)

## weibull requires a default shape parameter.

## =====================================================

## Choose the function that will generate the random sample

rfun <- switch(distn,

weibull = rweibull,
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normal = rnorm,

logistic= rlogis)

## Call rfun(). Use of do.call() makes it possible to give

## the parameter list as a list of named values.

## Pass shape parameter (or NULL), plus n = # of numbers

do.call("rfun", args=parms)

}

Now try the following:

simulateDistribution()

plot(density(simulateDistribution("normal", parms=list(n=100))))

plot(density(simulateDistribution("weibull",

parms=list(n=100, scale=0.5))))

The function call(), which has the same syntax as do.call(), sets up an uneval-
uated expression. The expression can be evaluated at some later time, using eval().

> mean.call <- call("mean", x=rnorm(5))

> eval(mean.call)

[1] -0.6276536

> eval(mean.call)

[1] -0.6276536

Notice that the argument x was evaluated when call() was evoked. Hence the result
is unchanged upon repeating the use of eval(). This can be verified by printing out the
expression

> mean.call

mean(x = c(-0.68467334794551, -0.376091734366091, -0.289459988631994,

-3.04694266628697, 1.25889972957396))

14.9.3 Expressions

An expression is anything that can be evaluated. Thus xˆ2 is an expression, y <- xˆ2
is an expression that returns the value that is assigned to y, and y == xˆ2 is an
expression. Recall that y <- xˆ2 assigns the value of xˆ2 to y, while y == xˆ2
tests whether y equals xˆ2.

The following can be convenient when there is a complicated expression that we want
to evaluate repeatedly from the command line, changing one or more of the parameters
each time.

> local(a+b*x+c*xˆ2, envir=list(x=1:4, a=3, b=5, c=1))

[1] 9 17 27 39

14.9.4 Environments

Every call to a function creates a frame that contains the local variables created in the
function. This combines with the environment in which the function was defined to create
a new environment.
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The global environment, .Globalenv, is the workspace. This is frame number 0.
Broadly, the frame number increases by 1 with each new function call. Additionally,
frames may be referred to by name. Use

sys.nframe() to get the number of the current evaluation frame
sys.frame(sys.nframe()) to identify the frame by name
sys.parent() to get the number of the parent frame.
sys.call() to return, from within a function, the function call.

There are many other such functions, but these will do for now!
Here is a function that determines, from within the function, its name:

test <- function(){

fname <- as.character(sys.call())

fname

}

The result of executing the function is:

> test()

[1] "test"

> newtest <- test # Create a copy with a different name

> newtest()

[1] "newtest"

Automatic naming of a file that holds function output

The discussion will illustrate an approach that automates some of the work associated
with naming and organizing files that hold figures that will appear in a published paper.
Functions for creating figures, in the directory that relates to a paper that is being written,
have the names fig1(), fig2(), etc. These functions in turn call a function gf()
that sets up the graphics device, and specifies the file that will be used to store the graph.
A definition for gf() is:

gf <-

function(width=2.25, height=2.25, color=F, pointsize=8){

funtxt <- sys.call(1)

fnam <- paste(funtxt, ".pdf", sep="")

print(paste("Output will be to the file ’",

fnam, "’", sep=""))

pdf(file=fnam, width=width, height=height, pointsize=

pointsize)

}

Now define fig1(), which is designed to plot the sine function over the range (−
,

), so that it calls gf():

fig1 <- function(){

gf() # Call with default parameters

curve(sin, -pi, 2*pi)

dev.off()

}
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Output goes to the file fig1.pdf. For a function fig2() that calls gf(), the file name
will be fig2.pdf. Similarly for any other function that calls gf().

14.9.5 Function environments and lazy evaluation

When a function is defined, this sets up an evaluation environment for that function.
Variables that are not passed as parameters are first searched for in the frame of the
function, which in R is the environment in which the function was itself defined. If not
found there, the parent frame (if any) is searched, then the parent frame of the parent
frame, and so on. If they are not found in any of the frames, then they are sought in the
search path. A complete description is beyond the scope of this book.

The consequences for lazy evaluation, which we now discuss, are mildly subtle.

Lazy evaluation

Expressions may be specified as arguments to R functions. The expression is evaluated
only when it is encountered in the R function. For example:

> lazyfoo <- function(x=4, y = xˆ2)y

> lazyfoo()

[1] 16

> lazyfoo(x=3)

[1] 9

This is unsurprising. Expressions that appear in default parameter settings are evaluated
within the function environment.

By contrast, however, expressions that are specified when the function is called are
evaluated in the parent environment, that is, in the environment from which the function
was called. Hence the following behavior:

> lazyfoo(y=xˆ3) # We specify a value for y in the function call

Error in lazyfoo(y = xˆ3) : Object "x" not found

> x <- 9

> lazyfoo(y=xˆ3)

[1] 729

For the call lazyfoo(), the parameter setting was the default, and the function looked
for an x in the environment interior to the function. For the call lazyfoo(y=xˆ3),
the function looked for an x in the environment from which the function was
called.

Example – a function that identifies objects added during a session

This illustrates points that were made in the discussion above.
At the beginning of a new session, we might store the names of the objects in the

workspace in the vector dsetnames, thus:

dsetnames <- objects()



456 The R system – additional topics

Now suppose that we have a function additions(), defined thus:

additions <- function(objnames = dsetnames){

newnames <- objects(envir=.GlobalEnv)

existing <- newnames %in% objnames

newnames[!existing]

}

The function call sys.frame(0) returns the name of the workspace. At some later
point in the session, we can enter

additions(dsetnames)

to obtain the names of objects that have been added since the start of the session.
Use of newnames <- objects() in the above function, that is, leaving parameter

settings at their defaults, would have returned the names of objects in the function
environment.

14.10 Document preparation — Sweave()

Recall that R implements the S language. Hence the name Sweave() for the function
that will now be described, and hence the reference to S code. According to the help page
for the Sweave()

‘Sweave’ provides a flexible framework for mixing text and S code for automatic
report generation. The basic idea is to replace the S code with its output, such that the
final document only contains the text and the output of the statistical analysis.

The present description assumes use of the LATEX markup language, that is, R
code is added into a LATEX manuscript, creating an Sweave document. The Sweave file
sec1-1.Rnw, available from the web page for this book, can be used to reproduce a close
approximation to Section 1.1, including Figure 1.1 and Table 1.1. The file sec1-1.Rnw is
in LATEX markup format, supplemented with Sweave markup commands and associated
R code that controls the inclusion of code and/or output, the figure and the table. To
process this file, place it in the working directory, and type, from the R command line:

Sweave("sec1-1.Rnw") # actually, Sweave("sec1-1") is sufficient

This will write the LATEX file sec1-1.tex to the working directory. Additionally the graphics
file that is needed for Figure 1.1 will be generated by the R code and placed in that
directory. Providing LATEX is installed, the file can then be processed to give pdf or
postscript output that will pretty much reproduce Section 1.1.

Use of the Sweave() document processing system makes it straightforward to
re-generate a report if the input data and/or the code change. Gentleman and Lang
(2004) argue for making reports of research results available in a format of this type, thus
making research results more genuinely reproducible.

The Sweave syntax is based on the Noweb literate programming syntax. See
help(Sweave) and Leisch (2002) for further details. For details of the version of
LATEX that is recommended for Microsoft Windows, go to www.miktex.org/
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14.11 Graphs in R

Much of the information in this section is intended for reference. It includes commentary
on the graphical devices that are available in R, on font families and fonts, on plotting
symbols, and on R’s color choices. More details can be found in the relevant official R
documentation.

14.11.1 Hardcopy graphics devices

The following writes the output to the pdf file fossilfuel.pdf :

pdf(file="fossilfuel.pdf", width=6.5, height=6.5, pointsize=18)

plot(Carbon ˜ Year, data=fossilfuel, pch=16)

dev.off()

Functions that start hardcopy graphics devices include postscript(), pdf(),
bitmap(). Most systems have png() and jpeg(); for these, height and width are
given in pixels. A file name should be given for the output. Use dev.off() to close
the device, thus making the file available for display, or for printing, or for incorporation
into a document. For a complete list of devices, and further details of specific devices,
see help(Devices).

Subsection 1.6.4 gave details of the commands used to open graphics windows on
commonly used implementations of R. Use dev.copy() to copy a graph from the
display that is currently active to a hardcopy graphics device. For example:

plot(carbon ˜ year, data=fossilfuel, pch=16) # Display graph

## Now open pdf device and copy graph to it

dev.copy(pdf, file="fossilcopy.pdf")

dev.off() # Close pdf device

14.11.2 Multiple graphs on a single graphics page

In base graphics, there are several ways to do this. The use of the mfrow or mfcol
argument to par() was described in Subsection 1.6.1. For fine control over the location
of graphs on the page, including the ability to overprint graphs, use of the fig parameter
to par is flexible and straightforward, and is the mechanism that will be described here.
There are however other mechanisms; see in particular the help page for layout().

Each setting for the parameter fig has the format c(xleft, xright, yleft,
yright), where each of the elements is a number between 0 and 1. The code in footnote
4 in Chapter 2 demonstrated the use of this mechanism to place Figure 2.4A on the upper
part of the graphics page, with Figure 2.4B on the lower part of the graphics page. Note
that a new setting for fig can overlap an earlier setting.

14.11.3 Plotting characters, symbols, line types and colors

Setting pch to one of the numbers 0, 1, � � � , 25 gives one of 26 different plotting symbols.
The numbers and symbols are shown on the top two lines of Figure 14.1. In addition,
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Figure 14.1 Parameter settings for fonts, symbols, line types and colors. For characters
in the range 32–255, different fonts will give symbols that may vary depending on the
family and on the device. Here, the font family is "Helvetica", which is the default
sans serif font (par(family="") or par(family="sans")) for a postscript or pdf
device. Line types may be specified by number, by name (lty="dashed",…), or by code
(lty="44",…).

assuming that a single-byte character set is in use, pch may be set to any value in the
range 32–255. (Multi-byte character sets are available that can be used, e.g., for Asian
languages.)

Figure 14.1, created using the default postscript/pdf encoding (see
help(postscript) for details) shows the characters that appear when pch is
set to a number in this range. An alternative is to use a quoted string, for example,
pch="a". The full range of characters is given for the font setting font=1. Notice
that, for plotting, the characters are centered vertically about their mid-position.

There are six line types that can be specified by number (0, 1,…, 6) or by name
("blank", "solid",…). Use of a number sequence that is enclosed in quotes allows
a more flexible specification of line types. Thus "33" describes a length of 3 units that
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is drawn, followed by 3 units that are skipped. Up to 4 (draw, skip) pairs are allowed,
that is, a total of 8 numbers. Units are, on most devices, line widths.

Colors will be described below.

Font families

A font family is a collection of device-specific font faces. Within any font family, the
numbers 1–4 identify, wherever possible, a specific face. Font 1 is plain text, font 2 is
bold face, font 3 is italic, and font 4 is bold italic. Font 5 is a special setting that specifies
the symbol font (in Adobe symbol encoding), irrespective of the family.

Figure 14.1 uses the default postscript font family, which is "Helvetica". On a
Windows graphics screen the default is Arial.

Generic family names that can be specified using the parameter family to the
par() function are: "sans" (on a vanilla setup, the default), "serif", "mono"
and "symbol". On devices that honor this setting, these are in each case mapped to
device-specific families. Thus Helvetica is the default device-specific "sans" family
for postscript or pdf devices, where for Windows (win.graph()) it is "Arial".

Symbols

The function symbols() offers a choice of circles, squares, rectangles, stars, ther-
mometers and boxplots. The parameter fg (foreground) specifies the color of the symbol
outline, while bg (background) specifies the fill color. See help(symbols) for details.

Note also the functions rect() (rectangles) and polygon(). Examples are:

## Draw red triangle

plot(0:3, 0:3, type="n")

polygon(c(1,1.5,2), c(1,2,1), col="red", border="black")

# It was sufficient to specify 2 sides (out of 3) only

## Plot normal density; show area under curve in red

curve(dnorm, from=-3.25, to=3.25, yaxs="i",

ylim=c(0, 1.025*dnorm(0)), bty="n")

## Fill each 2.5% tail in gray

x <- seq(from=1.96, to=3.25, length.out=20)

polygon(c(x[1], x, 3.25), c(0, dnorm(x), 0), col="gray")

polygon(-c(x[1], x, 3.25), c(0, dnorm(x), 0), col="gray")

Colors

The default color palette, shown in Plate 12, has eight colors. This attaches the numbers
1,…,8 to the eight colors in the default palette. The palette can be changed as required,
to any other set of colors that may be preferred.

There are 657 named colors. Many are specified as different shades of the same basic
color. Thus "red", "red1", "red2", "red3" and "red4" are different shades
of red. The function showColors() (DAAG) shows colors that are provided by the
colors() function.
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The functions rainbow(), heat.colors(), topo.colors() and
cm.colors() give a set of graduated colors. These all have an argument, set
to 12 in Plate 12, that controls the number of gradations. The function rainbow() has
other parameters also that vary the colors that are obtained; for details see the help page.
See help(hcl) for some further possibilities. The function hcl() uses a hue, chroma
and lightness form of representation that may be a better starting point for generation
of graduated colors than the red, green and blue representation of the function rgb().
Note also the RColorBrewer package, whose palettes are intended for coloring maps.

The dichromat package includes the function dichromat(), which allows simulation
of the effects of the two common types of red–green color blindness. It has palettes,
several of which are shown in Plate 13, that have been designed so that individuals with
these types of red–green color blindness can distinguish the colors. The final several rows
show the effect of this simulation, first for the default palette plus "green", and then for
the dichromat Categorical.12 palette. Notice that "green3", which has replaced
"green" in the default palette, does appear different from "red".

Contour and filled contour plots

The relevant functions are contour(), filled.contour() and image(). These
functions all take parameters x, y and z, where x and y specify, respectively, x- and
y-coordinates, and z is a matrix of contour level values, with one row corresponding to
each element of x, and one column corresponding to each element of y. Alternatively,
the argument x may be specified as a list, with elements a vector x$x, a vector x$y and
a matrix x$z.

The latter two types of plot use a color scale to represent the values of z. Values of
x and y must be in increasing order of x and of y within x. For examples of the use of
these functions, type demo(image). The results are often visually appealing.

Formatting and plotting of text and equations

An extension of the syntax for expressions makes it possible to format and plot mathemat-
ical symbols and formulae, either on their own or as part of character strings. Wherever
a plot command allows a character string, an expression can be substituted. Relevant
commands include: text(), mtext(), title() and legend(). Character strings
can form part of the “expression,” and can appear where a mathematical expression
would require a variable. The output is formatted according to rules that are expressed in
a LATEX-like syntax. Type demo(plotmath) to see some of the possibilities. See the
help pages for plotmath, expression and substitute.

There have been a number of examples in earlier chapters. Refer back to Figures 1.3,
3.1, 5.4 and 10.7.

The following, which follows normal text with italic text, demonstrates the mixing of
different text styles in the one line:

## Plot data from data frame rainforest (DAAG)

Acmena <- subset(rainforest, species=="Acmena smithii")
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maintitle <- expression(italic("Acmena smithii") * "(Lilly Pilly)")

plot(wood ˜ dbh, data = Acmena, main = maintitle)

The asterisk juxtaposes the two character strings, in just the same way that
expression(u*v) will be written uv.

Symbolic substitution of symbols in an expression

The following uses substitute() in place of expression(), allowing the char-
acter string to be given in symbolic form:

## Alternative, demonstrating symbolic substitution

maintitle <- substitute(italic(tx) * ": " * "wood vs dbh",

list(tx="Acmena smithii")))

We will return to this graph shortly, enhancing it with a fitted curve and giving the
equation for the curve.

Plotting expressions in parallel

The function expression() calculates one expression for each argument that is sup-
plied to it, as the following illustrates:

## Sample from bivariate normal (x, y) with correlation rho

rho <- 0.75; x <- rnorm(40); y <- rnorm(40) + rho/sqrt(1-rhoˆ2)*x

## Now map all values of x onto 3 integer values

x0 <- cut(x, breaks=c(-Inf,-1,1,Inf))

plot(unclass(x0), y, xaxt="n")

axis(1, at=1:3, labels=expression("(-Inf,-1]", "(-1,1]", "(1, Inf]"))

*Symbolic substitution in parallel

The following demonstrates the use of the functions quote() and bquote(), to
provide the legend in Figure 14.2.

## Plot Acmena smithii data (subset of rainforest, from DAAG)

Acmena <- subset(rainforest, species=="Acmena smithii")

plot(wood˜dbh, data=Acmena)

b <- coef(lm(log(wood) ˜ log(dbh), data=Acmena, subset=dbh<40))

curve(exp(b[1])*xˆb[2], add=TRUE)

b <- round(b,3)

arg1 <- bquote(italic(y) == .(A) * italic(x)ˆ.(B),

list(A=b[1], B=b[2]))

arg2 <- quote("where " * italic(y) * "=wood; " *

italic(x) * "=dbh")

legend("topleft", legend=do.call("expression", c(arg1, arg2)),

bty="n")
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Figure 14.2 Plot of wood vs dbh, for the species Acmena smithii (rainforest). The text
describes the code used to obtain the annotation.

Figure 14.2 has further refinements that are unrelated to the subject of this subsection.2

The object arg2 that is created by the call to quote() has class call; it can be
included as a list element in the args parameter to do.call(), for passing to the
function that is specified by the what argument to do.call().

The call to bquote() that creates arg1 adds a further feature – the substitution of
values for the variables A and B. The values of A in .(A), and of B in .(B), are each
taken from the environment, here specified by list(A=b[1], B=b[2]).

A further use for substitute()

The function substitute() may, additionally, be used to extract the names of the
actual function parameters when they are passed at run time. This can be useful for
graphical annotation. The following demonstrates the syntax:

> testfun <- function(x, y){

+ xpar <- deparse(substitute(x))

+ xpar}

> testfun(x = AnyValidName)

[1] "AnyValidName"

14.12 Lattice graphics and the grid package

Section 1.7 gave a brief introductory account of lattice plots. Further more technical
details will now be discussed — the customization of parameters, the creation of keys
or legends, interaction with plots, the use of grid functions to supplement plots, and the

2 plot(wood˜dbh, data=Acmena, xlim=c(0, max(Acmena$dbh)))
## In fitting the curve, omit the point where dbh is largest
b <- coef(lm(log(wood) ˜ log(dbh), data=Acmena, subset=dbh < 40))
big2 <- sort(Acmena$dbh, decreasing=TRUE)[2:1]
curve(exp(b[1])*xˆb[2], from=min(Acmena$dbh), to=big2[1], add=TRUE)
curve(exp(b[1])*xˆb[2], from=big2[1], to=big2[2], lty=2, add=TRUE)
## Finally, use the code given above to add the legend and the title.
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“printing” of multiple lattice plots on the one graphics page. The grid package has a
radically new approach to creating graphs. It gets only brief mention here, as an adjunct
to lattice.

Default lattice graphics parameter settings

In order to inspect the available settings, type:

> names(trellis.par.get()) # lattice version 0.13-8

[1] "grid.pars" "fontsize" "background"

[4] "clip" "add.line" "add.text"

[7] "plot.polygon" "box.dot" "box.rectangle"

[10] "box.umbrella" "dot.line" "dot.symbol"

[13] "plot.line" "plot.symbol" "reference.line"

[16] "strip.background" "strip.shingle" "strip.border"

[19] "superpose.line" "superpose.symbol" "superpose.polygon"

[22] "regions" "shade.colors" "axis.line"

[25] "axis.text" "axis.components" "layout.heights"

[28] "layout.widths" "box.3d" "par.xlab.text"

[31] "par.ylab.text" "par.zlab.text" "par.main.text"

[34] "par.sub.text"

The settings that are of interest can then be inspected individually. Settings that have
been made in providing the graphs that are included in this book include:

• fontsize: This is a list with the two named elements text and points.
• superpose.symbol: These settings are applied when the groups parameter is

used to differentiate points on each individual panel. Settings that can be changed
include cex (character expansion), col (color), font (font) and pch (plot character).

• superpose.line: Settings that can be changed include col (color), lty (line
type) and lwd (line thickness).

The function trellis.par.set () changes settings for the current active device.
These persist while that device is active, or until the settings are again changed. A
convenient alternative is, often, to use the function argument par.settings to change
settings for the duration of the function call. The settings are stored in the trellis object
that is created by the call, and take effect when the object is printed.

Footnote 1 in Subsection 13.2 demonstrated the use of trellis.par.set(). Here
is an example, simpler than that in Subsection 2.1.6, of the use of trellis.settings

xyplot (csoa ˜ it, groups=agegp, data=tinting, type=c("p", "smooth"),

par.settings=list (superpose.symbol=list (pch=c(1, 16)),

superpose.line=list (col=c(8, 1))),

auto.key=list (points=TRUE, lines=TRUE))

Annotation – the auto.key, key and legend arguments

For a key that identifies the colours, plotting symbols and names for the groups, specify
auto.key=TRUE. For greater flexibility, auto.key can be a list. Settings that are
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often useful are:

• x and y, where these are coordinates with respect to the whole display area, together
with corner, which is one of c (0, 0) (bottom left corner of legend), c (1, 0), c (1,1)
and c (0,1).

• space: one of "above", "below", "left", "right".
• points, lines: in each case set to TRUE or FALSE.
• columns: number of columns of keys.

Colors, plotting symbols, line type are then taken from the trellis settings for the device
used. Unless text is supplied as a parameter, levels (groups) provides the legends.

Alternatives are to supply a list of arguments to the parameter key, or to use the
argument key=simpleKey (). If key is supplied as a list, at least one of lines,
points and text must be supplied. Arguments to simpleKey () are the names of
list elements when auto.key is used. When the parameter key is supplied, arguments
that are not otherwise specified use the trellis settings that were in place when the trellis
object was created, or that are supplied by the par.settings argument in the function
call. If changed at the time of the function call, any necessary changes must be made in
the list supplied to key, whether directly or via the function simpleKey (), as well
as in the call to the lattice function.

See help (xyplot) for further details.

14.12.1 Interaction with plots

Interaction with lattice plots is achieved, once all panels have been plotted, by the
combined use of the functions trellis.focus() and panel.identify(). Here
is an example:

## Use of xyplot(): data frame tinting (DAAG)

library(lattice); library(grid)

xyplot(it ˜ csoa | sex, data=tinting)

trellis.focus("panel", column=1, row=1)

panel.identify(labels=as.character(tinting$target))

## Now click near points as required.

## Terminate by right clicking inside the panel.

## Now interact with panel 2

trellis.focus("panel", row=1, column=2)

panel.identify(labels=as.character(tinting$target))

## Click, ..., and right click

By default, the x and y arguments to the function panel.identify() are taken to
be those that were supplied to the lattice function, here xyplot().

14.12.2* Use of grid.text() to label points

Following a call to trellis.focus(), grid functions can be used to supplement plots.
The following adds text labels:
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## Add labels to lattice plot: data frame primates (DAAG)

library(grid)

xyplot(Brainwt ˜ Bodywt, data=primates)

trellis.focus("panel", row=1, column=1, clip.off=TRUE)

xyetc <- trellis.panelArgs()

grid.text(label=row.names(primates), x=xyetc$x, y=xyetc$y,

default.units="native", just="left")

trellis.unfocus()

14.12.3* Multiple lattice graphs on a graphics page

The function print.trellis() takes a parameter position that controls the po-
sitioning of a graph on the graphics page. The following, which is a simplified version
of the code used for Figure 2.8, illustrates its use:

## Two lattice graphs on one page: data frame cuckoos (DAAG)

library(grid)

trellis.par.set(layout.heights=list(key.top=0.25, axis.top=0.5,

bottom.padding=0.15))

cuckoos.strip <- stripplot(species ˜ length, xlab="", data=cuckoos,

legend=list(top=list(fun=textGrob,

args=list(label="A", x=0))))

print(cuckoos.strip, position=c(0,.475,1,1))

# Left bottom corner is (0,.475); right upper corner is (1,1)

cuckoos.bw <- bwplot(species˜length, data=cuckoos,

xlab="Egg length (mm)",

legend=list(top=list(fun=textGrob,

args=list(label="B", x=0))))

print(cuckoos.bw, newpage=FALSE, position=c(0,0,1,.525))

frame()

Notice the use of parameter settings that control various features of the graphical layout.
Notice also the use of the function textGrob() from the grid package, to control the
detailed content and placing of a “legend.”

Base and trellis plots can be placed on the same page. For example, following earlier
plots (base or lattice), here is an alternative way to place labels A and B:

par(fig=c(0, 1, .495, 1)) # (xl, xu, yl, yu)

mtext(side=3, line=2.5, "A", adj=-0.075)

par(fig=c(0, 1, 0, .505), new=TRUE)

# Specify new=TRUE for a new plot on the existing page

mtext(side=3, line=2.5, "B", adj=-0.075)

cuckoos.strip <- stripplot(species ˜ length, xlab="", data=cuckoos)

print(cuckoos.strip, newpage=FALSE, position=c(0,.495,1,1))

# (xl, yl, xu, yu)

cuckoos.bw <- bwplot(species˜length, data=cuckoos,

xlab="Egg length (mm)")

print(cuckoos.bw, newpage=FALSE, position=c(0,0,1,.505))

frame()
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Observe that base graphics and lattice graphics have different conventions for positioning
the graph.

14.13 Further reading

The definitive document is the relevant up-to-date version of the R Language Definition
document (R Core Development Team). Venables and Ripley (2000) is a useful com-
mentary on that document. For citing R in a publication, use R Development Core Team
(2004b). For historical background, see Ihaka and Gentleman (1996). Note that the R
function citation() can be used to obtain citation information, both for R itself and
for any installed package, thus:

citation()

citation("DAAG")

Murrell (2005) shows R’s graphical abilities off to impressive effect. The code used
for the graphs is available from the web page that is given with the reference. This is a
great book for anyone who wishes to explore R’s graphical abilities in depth.

14.13.1 Vignettes

Vignettes are (currently) pdf documents that describe the abilities in packages for R, and
that can be accessed using the vignette() function. Many packages have no vignettes,
while some have several.

To get a list of vignettes in all installed packages, type:

vignette() # All vignettes in all installed packages

To get name(s) of vignette(s), if any, for specific packages, type, e.g.:

vignette(package="grid")

The package grid had, at the time of writing, 13 vignettes.
To use the default pdf viewer to display a specific vignette, type, e.g.:

vignette("grid") # Equivalent to vignette(topic="grid")

Acroread or another such pdf viewer must be installed.

14.13.2 References for further reading

Ihaka, R. and Gentleman, R. 1996. R: a language for data analysis and graphics. Journal
of Computational and Graphical Statistics 5: 299–314.

Murrell, P., 2005. R Graphics. Chapman and Hall/CRC.
http://www.stat.auckland.ac.nz/˜paul/RGraphics/rgraphics.
html

R Core Team. R Language Definition. Available from CRAN sites.
Venables, W. N. and Ripley, B. D. 2000. S Programming. Springer-Verlag.
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14.14 Exercises

1. Compare the different outputs from help.search("print"), apropos(print) and
methods(print). Look up the help for each of these three functions, and use what you
find to explain the different outputs.

2. Identify as many R functions as possible that are specifically designed for manipulations
with character strings.

3. Test whether strsplit() is vectorized, i.e., does it accept a vector of character strings as
input, then operating in parallel on all elements of the vector?

4. For the data frame Cars93, get the information provided by summary() for each level of
Type. [Use split().]

5. Determine the number of cars, in the data frame Cars93, for each Origin and Type.

6. In the data frame Insurance (MASS package):

(a) determine the number of rows of information for each age category (Age) and car type
(Group);

(b) determine the total number of claims for each age category and car type.

7. Enter the following, and explain the steps that are performed to obtain the result:

## Use of split() and sapply(): data frame science (DAAG)

with(science, sapply(split(school, PrivPub),

function(x)length(unique(x))))

8. Save the objects in your workspace, into an image (.RData) file, with the name
archive.RData. Then remove all objects from the workspace. Demonstrate how, without
loading the image file, it is possible to list the objects that were included in archive.RData
and to recover a deleted object that is again required.

9. Determine the number of days, according to R, between the following dates:

(a) January 1 in the year 1700, and January 1 in the year 1800.
(b) January 1 in the year 1998, and January 1 in the year 2007.

10.∗ The following code concatenates (x, y) data values that are random noise to data pairs
that contain a “signal,” randomly permutes the pairs of data values, and finally attempts to
reconstruct the signal:

### Thanks to Markus Hegland (ANU), cwho wrote the initial version

##1 Generate the data

cat("generate data \n")

n <- 800 # length of noise vector

m <- 100 # length of signal vector

xsignal <- runif(m)

sig <- 0.01

enoise <- rnorm(m)*sig

ysignal <- xsignal**2+enoise

maxys <- max(ysignal)

minys <- min(ysignal)

x <- c(runif(n), xsignal)

y <- c(runif(n)*(maxys-minys)+minys, ysignal)

# random permutation of the data vectors
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iperm <- sample(seq(x))

x <- x[iperm]

y <- y[iperm]

# normalize the data, i.e., scale x & y values to

# lie between 0 & 1

xn <- (x - min(x))/(max(x) - min(x))

yn <- (y - min(y))/(max(y) - min(y))

##1 End

##2 determine number of neighbors within

# a distance <= h = 1/sqrt(length(xn))

nx <- length(xn)

# determine distance matrix

d <- sqrt( (matrix(xn, nx, nx) - t(matrix(xn, nx, nx)) )**2 +

(matrix(yn, nx, nx) - t(matrix(yn, nx, nx)) )**2 )

h <- 1/sqrt(nx)

nnear <- apply(d <= h, 1, sum)

##2 End

##3 Plot data, with reconstructed signal overlaid.

cat("produce plots \n")

# identify the points which have many such neighbors

ns <- 8

plot(x,y)

points(x[nnear > ns], y[nnear > ns], col="red", pch=16)

##3 End

(a) Run the code and observe the graph that results.
(b) Work through the code, and write notes on what each line does.

[The key idea is that points that are part of the signal will, on average, have more near
neighbors than points that are noise.]

(c) Split the code into three functions, bracketed respectively between lines that begin ##1,
lines that begin ##2, and lines that begin ##3. The first function should take parameters
m and n, and return a list xy that holds data that will be used subsequently. The second
function should take vectors xn and yn as parameters, and return values of nnear, i.e.,
for each point, it will give the number of other points that lie within a circle with the point
as center and with radius h. The third function will take as parameters x, y, nnear and
the constant ns such that points with more than ns near neighbors will be identified
as part of the signal. Run the first function, and store the output list of data values
in xy.

(d) Run the second and third functions with various different settings of h and ns. Comment
on the effect of varying h. Comment on the effect of varying ns.

(e) Which part of the calculation is most computationally intensive? Which makes the
heaviest demands on computer memory?

(f ) Suggest ways in which the calculation might be made more efficient.

11. Try the following, for a range of values of n between, e.g., 2 × 105 and 107. (On systems
that are unable to cope with such large numbers of values, adjust the range of values of n as
necessary.)
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n <- 10000; system.time(sd(rnorm(n)))

The first output number is the user cpu time, while the third output number is the
elapsed time. Plot each of these numbers, separately, against n. Comment on the graphs.
Is the elapsed time roughly linear with n? Try the computations both for an otherwise
empty workspace, and with large data objects (e.g., with 107 or more elements) in the
workspace.



Epilogue – models

Our first several chapters were introductory and elementary in style, though with more
attention to the subtleties of practical application than is common in elementary treatments.
The last several chapters treated topics that have traditionally been reserved for advanced
courses. We have thought it important to give readers a taste of methods for data for which
linear models may be inadequate, and/or that do not have independently and identically
distributed errors.

Models that are not strictly correct, or even perhaps badly broken, may nevertheless
be useful, giving acceptably accurate predictions. The validity of model assumptions
remains an important issue. We need to know the limits of the usefulness of our models.
Experience from comparing results from a simplistic model with results from a less
simplistic model can be a huge help in developing intuition. The only satisfactory way
to determine whether assumptions matter may be to compare results from the simpler
model with results from a model that takes better account of the data. Chapters 7–11 are,
for those who hope to do a good job of the analyses described in Chapters 2–6, essential
background! An understanding of the ideas of multi-level and repeated measures models
seems particularly important, since they introduced the idea that the noise components of
the models have a structure that frequently requires attention.

Whether or not faulty assumptions matter will depend on the circumstances. At least for
simpler models, the independently and identically distributed errors assumption typically
makes little difference to estimates of model parameters and to fitted values, but can have
a large effect on standard errors. Consider our analysis of the frogs data in Chapter 8.
Models that allow for the likely spatial correlation are beyond the scope of this text. We
therefore limited ourselves to the standard form of multiple logistic regression. Because
we did not take account of spatial autocorrelation, the standard errors were more than
otherwise unreliable, and the best we could do was to make a tentative distinction between
coefficients that seemed clearly statistically significant, and those that were not.

What can be gained from modeling the correlation structure? We would have a
description that should generalize better to sites in the vicinity of those that were studied,
with more believable indications of the accuracy of such a description. For generalizing
in time, for example, to a subsequent year, the benefits are more doubtful. If data from
multiple years were available, then for predictive purposes the modeling of the temporal
structure should be the priority.

The emphasis in this text has been on careful modeling of the data, using both fixed and
random effects as appropriate. This allows maximum flexibility in the subsequent use of
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the fitted model – whether the aim is scientific understanding or prediction. There has been
some discussion of predictive accuracy issues, but these have not occupied center stage.

Predictive accuracy measurement makes its own modeling demands. In general, there
may be two models. First there is a model for the population from which the data
have been drawn and the sampling mechanism. Second, there must be a model for the
population and associated sampling mechanism when predictions are made. AIC, BIC and
cross-validation error rates that relate to the data used to develop the model, all assume
that the two populations and associated sampling mechanisms are the same.

The following situations all occur in practice:

1. The data used to develop the model are, to a close approximation, a random sample
from the population to which predictions will be applied. If this can be assumed, a
simple use of a resampling method will give an estimate of the score function that is
unbiased with respect to the population that is the target for predictions.

2. Test data are available that are from the target population, with a sampling mechanism
that reflects the intended use of the model. The test data can then be used to derive
a realistic estimate of predictive accuracy.

3. The sampling mechanism for the target data differs from the mechanism that yielded
the data in 1, or yielded the test data in 2. However, there is a model that predicts
how predictive accuracy will change with the change in sampling mechanism. Thus,
in the “attitudes to science” data, the predictive accuracy for the mean of a new
class depends on the number in the class. Refer back to Section 10.2, and especially
Subsection 10.2.3.

4. The connection between the population from which the data have been sampled and
the target population may be weak or tenuous. It may be so tenuous that a confident
prediction of the score function for the target population is impossible. In other
words, a realistic test set and associated sampling mechanism may not be available.
An informed guess may be the best that is available.

These four possibilities are not completely distinct; they overlap at the boundaries.
A modeling approach offers a framework of understanding from which to make an

informed judgment, in all these situations. Models, both those fitted to the existing
available data, and models for the data that will be the target for predictions, should as
far as possible be explicit. See Maindonald (2003) for further commentary.

Statistical models in genomics

Human and other chromosomes carry long sequences of four nucleotides that have the
codes A, T, C and G, constituting a four-letter alphabet. By studying the coded messages
of this four-letter alphabet, one aim is to identify those segments of DNA that are likely to
code for genes. Once identified, such candidate gene sequences can then be investigated
by more direct laboratory investigation. To date, the most successful approaches have
relied on what are known as hidden Markov models (HMMs), and on extensions of such
models. What is important is that the model should reach the same conclusions, that is,
non-gene or gene, as the processes that the cell uses.
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Although these models are quite different in character from the models discussed in
earlier chapters, there are similar predictive validation issues. Empirical testing, testing
the model on new data, is the best way to decide whether the model is working. How
should the test set, the data that will be used for testing, be chosen? A model that has a
high predictive power for genes that have been found to date may not do well at finding
new genes. The crucial test will come from making predictions that can then be tested
out in the laboratory. Test data is required such that models that perform well on the test
sets also do well when their predictions are checked out in the laboratory.

We can think of an HMM as a gene-making machine that uses probabilistic mechanisms
to determine the sequence of nucleotides. An HMM has some of the characteristics of an
unusually complicated poker machine. The probabilities assigned to successive outputs
depend in defined ways both on hidden states that are internal to the machine and on
previous outputs. The aim is to identify states, occupying less than 10% of the human
genome, in which the strings are parts of genes. For mathematical details, see Durbin
et al. (1998); Baldi and Brunak (2001). Hidden Markov models had earlier been used in
linguistics and investigated for use in financial modeling.

Do these models closely reflect the way that the cell distinguishes between non-coding
and coding parts of the gene? This seems unlikely. Are the models useful? Yes, but only
if carefully validated.

Other models yet!

Each of Chapters 6 to 12 might be expanded into a book. Our discussions of generalized
linear models, of multi-level and repeated measures models, and of time series models,
have been especially cursory. There has been no discussion of models for data where the
outcome is multivariate. We have not discussed clustering methods. There has been scant
attention to Bayesian approaches.

New areas of statistical application often have their own new requirements, which
act as a stimulus to the development of new methodology. Bioinformatics – genomics,
proteomics and related specialities – are the latest of many areas of application where
this has happened. The chapter headings of Ewens and Grant (2004); Baldi and Brunak
(2001) give an indication of the present scope of such applications.

The demand for powerful and flexible tools for the processing of microarray data has
been the motivation for the Bioconductor project (see http://www.bioconductor.
org). The first of the R Bioconductor packages appeared in early 2002. The scope of
the packages is of course wider than statistical analysis, extending to annotation, to data
management and organization, and to data storage and retrieval. The bundle includes
functions that handle web access.

We encourage readers to continue their explorations beyond the limits that we have
set ourselves. We have given references that will often be useful starting points. There
is much information, and further references, in the R help pages. There are many more
R packages to explore, in addition to those that we have mentioned. It is interesting (and
daunting) to check through the summary details of packages that are available from the
CRAN sites.
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References for further reading

Baldi, P. and Brunak, S. 2001. Bioinformatics. The Machine Learning Approach. MIT
Press.

Durbin, R. S., Eddy, A., Krogh, A. and Mitchison, G. 1998. Biological Sequence Analysis.
Cambridge University Press.

Ewens, W. J. and Grant, G. R. 2001. Statistical Methods in Bioinformatics: an Introduc-
tion. Springer-Verlag.

Maindonald, J. H. 2003. The role of models in predictive validation. ISI meeting, Berlin.
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Functions
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installations, are loaded at startup: methods, stats,
graphics, grDevices, utils, datasets.

abbreviate, 40, 41, 76
abline, 50, 80, 82, 110, 131, 149, 154, 163, 249,

251, 336, 370
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76, 110, 149, 236, 239, 241, 293, 296, 311,
392, 394, 398, 406, 411, 421, 422, 447, 451
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axis, 24, 26, 48, 49, 54, 118, 292, 293, 461
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format, 54, 432, 433
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frac, 79
frame, 465
function, 21, 65, 132–5, 141–3, 172, 233, 263, 291,

310, 314, 315, 335, 343, 379, 416, 431, 432,
442, 451, 452, 454–6, 462, 467

funlik (in text), 135, 136
funRel (in text), 172

g3.3 (DAAG), 82
gam (mgcv), 239, 243
garch (tseries), 297, 298
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glm, 250, 253, 255, 258–62, 264, 266–8, 270, 284,

385–7, 417, 418
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grid.text (grid), 464, 465

hatvalues, 183, 184
hcl, 460, Plate 12
head, 15, 17, 41, 42, 64, 265, 445
heat.colors, 460, Plate 12
help, 7, 20, 22, 27, 28, 34–6, 49, 142, 236, 290,

310, 367, 383, 421, 424, 428, 432–4, 436,
438, 451, 456–60, 464

help.search, 7, 36, 431, 467
help.start, 7, 427
hist, 6, 30, 38, 45, 92
histogram (lattice), 32
history, 18
HoltWinters, 299
hypothesis test, see test

I, 40, 217, 231, 232, 233, 243, 245, 261, 341–3,
398, 415, 416, 418, 434, 444

identify, 29, 41, 189
if, 22, 416, 429, 452
ifelse, 434
image, 7, 460
importance (randomForest), 369
install.packages, 10
interaction.plot, 125, 330
invisible, 416
is.character, 431
is.factor, 18
is.logical, 18
is.matrix, 18
is.na, 12, 18, 23, 60, 433, 437, 438
isoMDS (MASS), 383, 384
italic, 28, 461

jpeg, 457

lag.plot, 287
lapply, 446, 447
larrows (lattice), 32
lars (lars), 202
layout, 457
lazyfoo (in text), 455
lda (MASS), 384, 385, 387–90, 392–4, 398
legend, 411, 460, 461
length, 5, 18, 41, 104, 108, 112, 131, 148, 163,

416, 443, 444, 468
levels, 13, 53, 326, 327, 329, 434, 463
leverage.plots (car), 185
library, 9, 17, 421
lines, 24, 26, 32, 45, 51, 92, 149, 154, 232, 233,

238–41, 282, 292, 293, 358
list, 22, 32, 443

llines (lattice), 32
lm, 82, 83, 129, 145, 146, 149, 151, 154, 160–63,

165, 166, 170, 172, 173, 176, 177, 179, 185,
189–91, 195, 197, 198, 201, 203–6, 210, 216,
217, 220, 227, 229, 231–3, 235, 236, 241,
243–5, 296, 300, 312, 316, 335, 336, 358,
410, 414, 415, 419, 435, 449, 461, 462

lm.influence, 177, 185
lm.ridge (MASS), 207, 217
lme (nlme), 129, 302, 308, 349, 437
lmer (lme4), 129, 270, 302, 303, 308, 309, 311,

312, 314, 316, 319, 325, 327, 329, 336, 341,
348, 349

lmList (lme4), 336, 340, 451
load, 422
local, 453
locator, 29
locpoly (KernSmooth), 240
loess, 171, 239, 240, 358
log, 40, 42, 49, 52
log10, 48, 52, 385
log2, 39
logisticsim (DAAG), 284
logit, 248, 251
loglm (MASS), 275
lowess, 51, 82, 149, 171, 239, 240, 245, 282, 292, 293
lpoints (lattice), 32, 65
lqs (MASS), 153, 183, 190, 191, 216
ls, 4, 19, 20, 33, 421, 422
lsegments (lattice), 32
ltext (lattice), 32

mad, 66
mantelhaen.test, 141
match, 23, 331, 399
matrix, 17, 116, 117, 200, 300, 367, 370, 382, 401,

402, 422, 439–41, 468
max, 462, 467, 468
mcmcsamp (Matrix), 310, 314, 342, 343
MDSplot (randomForest), 405
mean, 5, 7, 12, 13, 19, 21, 22, 77, 98, 103, 108, 110,

112, 131, 148, 293, 309, 322, 340, 452, 453
meanANDsd (in text), 21, 142, 429
median, 19, 22, 47, 76, 104
medianFun (in text), 132
merge, 445
methods, 467
min, 467, 468
model.matrix, 168, 175, 183, 184, 221, 238, 245,

435
model.tables, 123, 225, 226, 321
monoproc (monoProc), 240
mosaicplot, 61, 141
mt.maxT (multtest), 395
mtext, 24, 26, 28, 49, 460, 465
muhaz (muhaz), 280
multilap (DAAG), 416, 417
multinom (nnet), 388
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names, 16–18, 24, 42, 55, 64, 83, 84, 258, 311,

315, 327, 336, 340, 382, 423, 427, 433, 445,
450–52, 463

nchar, 5, 6, 431
newtest (in text), 454
nls, 212, 213
nrow, 99
ns (splines), 235, 236, 239, 415, 416
numeric, 24, 99, 131, 298

objects, 20, 33, 455, 456
onetPermutation (DAAG), 130
onewayPlot (DAAG), 123
options, 24, 34, 89, 122, 145, 223, 308, 386, 389,

436, 438
order, 19, 238, 241, 402, 438
ordered, 14, 272, 435
orderFeatures (hwde), 393, 397
outer, 143, 441, 442
overlapDensity (DAAG), 142, 416, 418, 419
oz (oz), 406

pairs, 29, 178, 196, 203, 252, 410
palette, 27
panel.dotplot (lattice), 65, 263
panel.identify (lattice), 464
panel.smooth, 149, 182
panel.superpose (lattice), 335
par, 7, 26–8, 40, 42, 45, 49, 51, 52, 92, 110, 139,

140, 149, 152, 176, 236, 241, 252, 256, 293,
315, 316, 364, 411, 457–9, 465

parallel (lattice), 32
paste, 26, 41, 48, 56, 148, 200, 249, 251, 315, 322,

355, 376, 382, 415, 431, 442, 451, 454
pbinom, 84, 85
pdf, 454, 457
persp, 143
pexp, 98
phantom, 28
plot, 2–4, 24–30, 457–65
plot.mtcars (in text), 451
plot.ts, 49, 291
plotcp (rpart), 364, 366
plotTrainTest (hwde), 399
png, 457
pnorm, 86, 87, 106
points, 24, 26, 27, 32, 49, 139, 395, 396, 406, 468
poissonsim (DAAG), 285
polr (MASS), 272–4
poly, 233, 236, 245, 296
polygon, 86, 459
postscript, 457
ppois, 85
prcomp, 172
predict, 146, 154, 162, 163, 181, 182, 195, 213,

217, 222, 232, 233, 239, 241, 265, 358, 394,
417, 450

pretty, 56, 86, 92, 154, 236, 292
princomp, 379, 382, 410
print, 6, 19–22, 24, 33, 35, 36, 53, 112, 131, 201,

348, 365, 368, 434, 449, 450, 454, 465
print.data.frame, 21
print.default, 21
print.factor, 21, 449
print.lm, 449
print.summary.lm, 450
print.trellis (lattice), 33, 465
printcp (rpart), 354, 364, 366
prod, 135, 401
prune (rpart), 364, 367
prune.rpart (rpart), 367
pt, 106, 108

q, 4, 5, 36
qbinom, 85
qda (MASS), 393
qf, 395, 396
qnorm, 87, 106
qpois, 85
qqmath (lattice), 32, 93, 148
qqnorm, 93, 133, 297, 316, 340
qqplot, 139, 396
qqthin (hwde), 395, 396
qr.solve, 441
qreference (DAAG), 92, 94, 148
qt, 106, 108, 124, 143, 154, 175, 192
qtukey, 124, 222
quantile, 47
quartz, 28
qunif, 139
quote, 461, 462

R.home, 423
rainbow, 460, Plate 12
randomForest (randomForest), 350, 368–71
ranef (lme4), 315
range, 5, 19, 45, 50, 265, 340, 370, 448
rbind, 263, 399, 446
rbinom, 88, 217, 218
rchisq, 98
read.csv, 424
read.delim, 424
read.fwf, 425
read.table, 8, 9, 34–6, 424–7
readLines, 424–6
rect, 459
regsubsets (leaps), 201
relevel, 122, 258, 264, 266
rep, 12, 13, 23, 39, 40, 54, 55, 76, 89, 118, 139,

140, 148, 163, 172, 270, 272, 295, 296, 322,
348, 382, 416, 427, 433, 435, 442

reshape, 445
resid, residuals, 118, 146, 148, 149, 171, 182, 184,

190, 213, 242, 262, 269, 282, 296, 297, 300,
316, 326, 327, 337, 343, 416, 450
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rexp, 89, 98, 143
rfun, 453
rgb, 415, 460
rlm (MASS), 153, 170, 216, 244
rm, 3, 4, 33, 40, 92, 109, 112, 131, 201, 422, 430
rnorm, 21, 89, 92, 93, 97, 98, 139, 140, 143, 148,

172, 200, 217, 298, 401, 422, 429, 441, 452,
461, 467, 469

round, 56, 251, 258, 314, 386, 387, 461
row, 99, 386–8, 402
row.names, 26, 38, 39, 406
rownames, 16–18, 76, 340, 439
rpart (rpart), 353–5, 357–9, 361, 364–71, 374
rpois, 89, 98
RSiteSearch, 7, 405
rt, 98, 139, 140
rug, 50, 311
runif, 89, 98, 217, 429, 467

s (mgcv), 239, 243, 245
sammon (MASS), 383, 384
sample, 89, 97, 99, 131, 159, 258, 382, 468
sapply, 19, 20, 35, 42, 54, 63, 65, 67, 226, 262,

263, 309, 315, 321, 343, 379, 431, 432,
446–8, 467

save, 422
save.image, 33, 422
scale, 55
scan, 424, 426, 427
scoreplot (hwde), 394, 403, 404
sd, 21, 66, 103, 108, 148, 339, 469
search, 421
seq, 11, 12, 24, 39, 41, 54, 89, 233, 322, 352, 358,

433, 459, 468
sessionInfo, 9, 423
set.seed, 88, 89, 93, 143, 162, 401
setwd, 422
show, 348
showColors (DAAG), 459
simpleKey, 463, 464
simulateDistribution, 452, 453
simulateLinear (DAAG), 157
simulateScores (hwde), 394
sin, 27, 28
sink, 428
slot, 451
slotNames, 451
smooth.Pspline (pspline), 239
smooth.spline, 239
solve, 441
sort, 5, 19, 22, 410, 438, 439, 462
source, 126
spline, 233, 239
split, 65, 67, 89, 104, 132, 139, 140, 262, 263, 309,

311, 315, 321, 343, 352, 448, 467
splom (lattice), 32, 178, 188, 203, 376, 410, 415

sqrt, 2, 34, 40, 104, 112, 124, 149, 154, 171, 252,
254, 468

stack, 17, 42, 55, 118, 433, 445
stem, 46
step, 191
str, 19, 38, 277
stripplot (lattice), 32, 53, 120, 465
strsplit, 426, 431, 467
StructTS, 299
sub, 53
subset, 16, 44, 265, 277, 278, 418, 460, 461
substitute, 22, 461, 462
substring, 340, 431
sum, 5, 19, 39, 60, 85, 131, 262, 343, 386–8, 433,

438
summary, 6, 35–6, 63, 145–6, 173–4, 222,

449–50
summary.aov, 222
summary.lm, 122, 124, 222, 223, 225
Surv (survival), 277, 279, 280
survfit (survival), 277, 279
svm (e1071), 405
Sweave, 456
switch, 452
symbols, 28, 29, 459
sys.call, 454
Sys.Date, 433
sys.frame, 454, 456
Sys.getenv, 423
sys.nframe, 454
sys.parent, 454
system.time, 441, 469

t, 118, 343, 394, 439, 468
t.test, 109, 111, 112, 139, 340
table, 19, 20, 40–42, 60, 115, 226, 267, 278, 331,

386–8, 391, 398, 402, 418, 433, 437, 438
tail, 15
tapply, 446, 447
termplot, 181, 214, 226, 256
terrain.colors, Plate 12
test (in text), 454
testfun (in text), 462
text, 24–6, 28, 29, 32, 39, 41, 54, 76, 79, 118, 173,

251, 340, 353, 355, 358, 359, 364, 367, 406,
460

text.rpart (rpart), 355
textGrob (grid), 465
title, 39, 460
topo.colors, 460, Plate 12
trellis.device (lattice), 32, 464
trellis.focus (lattice), 464, 465
trellis.panelArgs (lattice), 465
trellis.par.get (lattice), 326, 327, 378, 463
trellis.par.set (lattice), 57, 415, 462, 464, 465
trellis.unfocus (lattice), 465
ts, 14, 49, 54, 291, 448
ts.plot, 99
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tuneRF (randomForest), 369
twotPermutation (DAAG), 130

unclass, 40, 173, 395, 435, 461
unique, 19, 65, 261, 262, 309, 331, 467
unlist, 16, 35, 444
unstack, 17, 41, 322
update, 265, 331, 342
UseMethod, 449

var, (66), 98, 104, 112, 121
VarCorr (lme4), 313, 316, 348
vif (DAAG), 206
vignette, 466
vis.gam (mgcv), 243

which, 19
which.max, 19
which.min, 19
while, 24
white.test, 297

window, 14, 48, 49, 54, 448
windows, 28
wireframe (lattice), 32
with, 19, 20, 77, 103, 108, 112, 125, 142, 173, 189,

249, 251, 252, 292, 293, 309, 311, 315, 321,
322, 327, 331, 340, 382, 391, 418,
447, 467

woolf (see help(mantelhaen.test)),
141

write, 428
write.table, 428

x11, 28
xtable (xtable), xxiii
xtabs, 19, 20, 62, 63
xyplot (lattice), 30–33, 55–8, 217, 242, 326, 327,

335, 337, 339, 380, 382, 416, 433,
464, 465

z.inverse (in text), 142
z.transform (in text), 142
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Akaike information criterion (AIC), 191, 192, 194,
290, 330, 372, 471

allometric growth, 166
analysis of variance

balanced incomplete block, 226, 227
block design, 224, 225

term plot, 226, 227
degrees of freedom, 121, 128, 129, 303, 304
linear model (lm) formulation, 129
one-way

inference for means, 122
qualitative comparison vs linear fit, 157
table (anova), 120, 175, 225, 229, 303, 319–25,

344
by level of variation, 320, 321

see also linear model (lm)
analysis, issues

analysis traditions, 43, 44, 135–8
analysis of summary data, 63–66
assumptions, 43, 58, 90–95, 134, 138, 182, 183,

195, 196, 276, 327, 351, 368, 470
changes of plan, 74
choice of methodology, 135–8, 351
deficiencies, 75
independence, 67, 69, 74, 84, 87, 90, 91, 97,

101, 102, 113, 114, 115, 134–5, 163, 167,
171, 182, 195–6, 200, 209, 250, 257, 277,
328, 343, 344, 368, 470

model comparisons
structuring, 329

non-parametric methods, 95, 97
observational data

sources of bias, 61–63, 85, 86, 207–12, 214,
215, 413

planning an analysis, 72, 74
presentation issues, 34, 37, 123, 124, 126
prior information, 135, 136
random sampling assumptions, 90, 157, 163,

164, 195, 196, 343, 470, 471
robustness, 90, 153, 185
significance tests, 111–15, 137

arguments (to functions), 14, 18, 21, 429–30,
451–3, 455

abbreviated names, 429
array

dimensions, 439, 441, 442
permuting dimensions, 442

arrays
permutation of dimensions, 441

assignment, 3
subscripted, 431

autocorrelation, 140, 287–96
partial, 290–91

Bayesian Information Criterion (BIC), 194, 330,
471

bootstrap, 90, 129, 131–4, 142, 143, 161–3, 172,
196, 217, 317, 350, 368, 381, 382
validity, 163

classes & methods, 15, 29, 449–51
comment character, 2, 423
concatenation, 10, 17
confounding, 120
correlation

linear (Pearson), 68, 69, 77, 101, 113, 114, 133,
134, 142, 151, 169, 170

confidence interval, 113, 114, 133–4
Kendall, 69
rank (Spearman), 68, 69

cross-validation, 158–61, 163, 195, 196, 202, 217,
257, 258, 317, 355, 360–63, 366–8, 384,
386–8, 400–403, 405, 471
validity of error estimate, 163

data
database connections, 427
input, 8, 9, 34–6, 422–6

errors in data, 35, 43, 58, 73, 425
fixed format, 425
from other systems, 427
parameters, 9
skipping fields, 427
to data frame, 424

management strategies, 33
measurement inaccuracies, 207, 344
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data (cont.)
measurement issues, 72, 73
outliers, 58
output, 428

redirection from screen, 428
to file, 428

patterned, 11, 12
summary, 6, 19, 38, 42, 47, 59–69, 72, 169, 200

data analysis
strategies, 68–71, 73, 74, 199
styles, 44

data frame, 3, 4, 6, 8–10, 14–24, 29, 36, 44, 62–4,
421, 429, 430, 434, 435, 438–40, 443–8

as database, 16–18, 420
as list, 15, 443–8
attaching & detaching, 16
column & row names, 16
columns

character converted to factor, 434, 435
compared with matrix, 439–41, 443–8
conversion to/from table or matrix, 440
conversion to/from tables or matrices, 62, 258
dimensions, 23
input into, 8, 9, 34, 36, 424–7
joining (cbind, rbind), 18, 435
merging data frames, 445, 446
omit rows that have NAs, 438
operations across all columns, 447, 448
output, 428
reading, see input into
reshaping, 445
split to a list, 448

data manipulation, 17, 18, 22, 23, 59–66, 439–48
apply family of functions, 446–8
grouping, 433

data mining, 163, 350
datasets (in DAAG, except as noted. The datasets

package is, in most “out-of-the-box”
installations, among those that are attached
at startup.)

ACF1, 260, 261
acupuncture (in text), 140
Aids2 (MASS), 276, 277
airquality (datasets), 10
ais, 31, 38
allbacks, 175, 176, 216
anesthetic, 248
Animals (MASS), 40, 51, 68, 76
ant111b, 302, 308–11
appletaste, 223
austpop, 24, 42, 431
bomsoi, 291, 300
cabbages, 448
car.test.frame (rpart), 358–60
carprice, 202–205
cars (datasets), 6, 14, 16, 169, 202, 243
Cars93 (MASS), 14–16, 203, 445, 467
Cars93.summary, 14–16, 445

cfseal, 12, 165
cities, 216
cottonworkers, 40
cuckoohosts, 70, 71, 76
cuckoos, 52, 67, 68, 70, 71, 104, 132, 133, 244,

465
dewpoint, 241–3
elastic1, 170, 171, 244, 431, 432
elastic2, 170, 171, 244
elasticband, 21, 170, 449
ergoStool (MEMSS), 348
ex01.36 (Devore6), 40
ex10.22 (Devore6), 76
fossilfuel, 3, 4, 8, 9, 17, 18, 22, 33, 35, 428, 430
frogs, 251, 252, 254–7
frostedflakes, 300
fruitohms, 51, 235, 236, 238, 239
geophones, 244
Golub, golubInfo (hddplot), 389–405
Gun (MEMSS), 348
head.injury, 283, 374
hills, 186–90, 195, 196, 210, 212, 216, 217
hills2000, 196, 216, 217
houseprices, 158, 161–3
humanpower, humanpower1, 334–8, 451
ice.river, 300
Insurance (MASS), 467
iris (MASS), 42
ironslag, 148, 171
jobs, 14, 17, 20, 54, 433, 445
kiwishade, 62–4, 77, 317–28, 348, 447
LakeHuron (datasets), 286–91, 299
leafshape, leafshape17, 172, 384, 386–8, 406,

407
leaftemp, 227, 228
litters, 177, 178, 182, 217
Manitoba.lakes, 38, 39
MathAchieve (MEMSS), 349
measles, 48
mifem, 283, 363–5
mignonette, 110, 142
milk, 49, 70
modelcars, 126
monica, 374
moths, 263–6, 268, 284
mtcars, 451, 452
nsw74demo, 139, 171, 420
nsw74psid1, 59, 71, 140, 374, 412–20
nsw74psid3, 116
oddbooks, 170
orings, 38
Orthodont (MEMSS), 302, 339–42
ozone, 245
pair65, 93, 102, 105, 107, 110, 135, 143
possum, 38, 44, 46, 75, 134, 142, 376–83,

388–90
possum, possumsites, 406
pressure, 171
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primates, 25, 30, 465
Rabbit (MASS), 42
rainforest, 38, 448, 460, 461
rareplants, 117, 141
rice, 120, 121, 123, 124, 224
roller, 80–82, 146, 150, 154, 167, 168, 243, 244
science, 23, 311–17
seedrates, 229, 231, 232, 245
socsupport, 40, 41, 72, 407–11
softbacks, 150, 151, 172
sorption, 349
spam7, 352–4, 366–8
stones (in text), 59, 60, 62
sugar, 220–22, 243, 244
table.b3 (MPV), 217
tinting, 19, 20, 56, 57, 70, 328–32, 464
toycars, 244
trees (datasets), 29
two65, 130, 142
UCBAdmissions (datasets), 62, 141, 258, 275
wages1833, 245
vlt, 41, 42
women (datasets), 207, 343

dates, functions for, 432, 433
degrees of freedom, 67, 105, 111, 112, 116, 121,

128, 129, 135, 139, 143, 151, 174, 249, 302,
307, 313, 322, 324, 330, 400

density
estimate &/or plot, 32, 86, 254, 414, 418,

419, 452
posterior, 136, 310, 387, 388

designed experiment, 70, 91, 120, 125, 138, 140,
141, 224–7, 271–4, 317

deviance, see GLM, multi-level model, time series
discriminant analysis, 376, 383–90, 392–5,

397–404
high-dimensional data, 392–5, 397–404

feature selection, 394, 395
feature selection bias, 393–5
graphs from cross-validation, 403, 404

logistic, 384–7, 417, 418
linear discriminant analysis (lda), 387–90
predictive accuracy

confusion matrix, 386, 387
cross-validation, 386, 387

distribution
t-distribution, 88, 105–107

degrees of freedom, 105
binomial, 84, 88, 113, 247, 252
chi-square, 87, 98, 116, 269–70, 296
cumulative probability, 84, 87
density, 45–7, 86, 87, 101, 131, 136, 420, 453
exponential, 98
heavy-tailed, 88, 105, 140
normal, 44, 46, 48, 58, 66, 69, 74, 84, 86–90,

92–5, 98, 101–2
percentile, 87
permutation, 129–31, 295, 296

Poisson, 85, 88, 98, 247, 260, 262, 265
quantile, 87
sample from, 453
sampling, 101, 102, 104

t-statistic, 104–7
bootstrap estimate, 131
median, 131
simulation, 143

skew, 45, 46, 58, 72, 88, 113, 163, 185, 291
uniform, 98

document preparation
Sweave, 456

examples, analyses & analysis issues
aberrant crypt foci, rat colons, 260–62
acupuncture, effectiveness, 140, 141
AIDS, survival of patients, 276–82
anesthetic, effect on pain, 248–50
animal body & brain weight, 51, 52
Antarctic ozone measurements, 245
Antiguan corn yields, 302–9, 311
apple tasting, 224, 225
Australian athletes, vital statistics, 31, 38
barley, grains per head vs planting density, 230,

231
books

weight vs book dimensions, biased sample,
196, 198, 199

weight vs book dimensions, hardbacks vs
softbacks, 173, 175, 176

brain vs body weight & litter size in mice, 177–9
car mileage vs weight, 358–60
car prices (contrived variables), 203–5
clarity of instructions, 271–4
CO2 level & leaf temperature, 227–9, 231
cuckoo egg dimensions, 52, 53

comparison with host eggs, 70, 71
dengue incidence projections, 64
dewpoint vs min & max temperatures, 241–3
discrimination between cancer types, 390–405
drawings of dreams, 116
elastic bands, distance vs stretch, 21, 68, 93, 244
electrical resistance of kiwifruit, 51, 235, 236,

238, 239
email spam, 350, 352–4
epileptic fits, 332
Food Frequency Questionnaire (FFQ), 206–8, 344
frogs, spatial distribution, 251–3, 255, 256, 258
geophones, thickness vs distance, 244, 245
hill race record times, 187–9, 191, 192, 195,

196, 210, 212, 213, 216, 217
house prices, 37, 38, 159, 161–4
human power output, vs O2 intake, 334–9
IQ, 328
iron slag measurements, 148, 149
jobs, by region of Canada, 14, 17, 20, 54, 55
kidney stones, treatment, 61, 62
kiwifruit shading, 63, 65, 317–28
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distribution (cont.)
labor training program, effectiveness, 60, 412–19
lake elevations & areas, 38, 39
levels of Lake Huron, 286–91
measles, deaths in London, 48, 49
membrane, inhibition across, 284
model cars, 126
mortality, female heart attack patients, 363–6
moths, occurrence of, 263, 264, 266–9
plant architecture, 384–8
population growth

Australian states, 24, 42
Canadian cities, 216

possums, morphometric data, 38, 376–84
rainforest trees, 38
rare plants & habitat type, 117, 118
rice varieties & treatments, weight data, 120–25,

224, 225
science, school survey, 23, 311–17
seal growth (cross-sectional data), 12, 165, 166
selfed vs crossed plants (Darwin’s data), 110
skull growth in children, 339–43
social support & depression, 40, 41, 72, 408–11
SOI & rainfall, 291–7
sources of variation in crop yields, 347
space shuttle damage, 38
sugar weight, wild type vs GM plants, 220–24
tinting of car windows, 19, 20, 56, 58, 328–32
tomato yields vs electrical conductivity, 76
University admission rates, 63, 96, 258, 259

contrived data, 95, 141
wages of cottonworkers, 40

exploratory data analysis (EDA), 43, 44, 72–4, 376
expression, 453–5

evaluation, 453–5
print on graph, 460–62

factor, 13, 14, 17, 27, 31, 35, 220–24, 434–6, 441
columns in model matrix, 222, 435, 436
contrasts, 219, 220, 223–4, 435, 436

model matrix, 223
in model formula, 435, 436
levels, 13, 14, 17, 27, 31, 35, 220–24, 434, 435

order, 13
ordered, 14, 435
reordering levels, 122, 258, 264, 266

file names, 8, 34
function, 18–24, 429–34

anonymous, 431, 441, 442
argument

lazy evaluation, 455
arguments, 21

pass via list, 452, 453
common useful functions, 18, 19
environment, 453–6

evaluation frames, 454
extraction of function name, 454
for use with character data, 431

functions for dates & times, 432, 433
generic, 20, 21, 29, 36, 448–50
inspection of arguments, 430
issues for writing & use, 21, 22, 422–30
methods for generic functions, 21, 29, 449–51
return value, 22
the ... argument, 430
utility functions, 20, 423

generalized linear model, 246–69
analysis of deviance table, 250
coefficients

Hauck–Donner phenomenon, 270
SE approximation failure, 265
SEs & Wald (z−) statistics, 270
Wald statistics, 267, 270, 281

design, 271
deviance, 246, 248–50, 252, 254, 262, 265
diagnostic plots, 268
dispersion, 262, 264, 266–8, 270
dispersion estimate

from replicates, 269
Pearson chi-squared, 262, 269

estimated dispersion
F -test, 268
approximate F -test, 262
approximate t-test, 261

factor contrasts
unsatisfactory choice, 264, 265

family, 249, 250, 253, 270
binomial, 247, 249, 250, 253, 255, 259, 270
poisson, 247, 260, 261, 264, 268, 270
quasibinomial, 269
quasipoisson, 262, 264, 266, 267, 269

fitted values, see predicted values
leverage, 271

binomial family, 270
likelihood ratio tests, 269–70
linear predictor, 245, 257
link, 245, 247, 249, 270, 271

complementary log–log, 269, 283
log, 260, 262, 264
logit, 247, 248, 253, 258

logistic regression, 120, 247, 248–50, 386, 387,
407, 417, 418

loglinear model, 274, 275
outlier, 269
predicted values

linear predictor, 245
response, 245, 271

predictive accuracy
cross-validation, 256–8

residuals
deviance, 269
Pearson, 269
working, 269

term plot, 257
vs linear model, 249
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graphs
creating, see plot, lattice
good practice, 30, 33, 153
links with analysis, 43
views of high-dimensional data, 392–6, 403, 404

help, 6–8
apropos, 7, 36
help.search, 7, 36
help.start, 7, 36
search R site, 7, 36
vignettes, 466

high-dimensional data
cross-validation, 400–403
low-dimensional view(s), 392–6, 403, 404
model tuning, 404, 405
multiple groups

distribution of F -statistic, 395, 396

image file, 33, 421, 422, 467
see also workspace

inference, 100, 138
1 & 2-sample means, 109
Bayesian, 134–8, 387

MCMC simulation, 136
boostrap confidence interval

correlation, 133–4, 142
median, 133

confidence interval, 107, 113–14, 133–4, 139,
153, 236

1 & 2-sample means, 109
confidence interval vs hypothesis test, 114
degrees of freedom issues, 128
hypothesis testing, 101, 138
likelihood ratio test, 267, 280, 281, 329
maximum likelihood, 102, 134–6, 142, 248, 267,

281, 329
multiple comparisons, 124, 222

Tukey’s HSD, 222
proportions

confidence intervals, 113
use of bootstrap, 134

lattice, 8, 31–3, 462–5
adding features to plots, 32
addition of smooth curve, 58
cloud (3-D plot), 378
conditioning variable, 32
dotplot example, 76
graphics objects

print several on one page, 465, 466
interaction with plots, 32, 464
key, 31, 47, 55–8, 65, 463

automatic, 464
layout of panels, 30, 31, 55, 56, 65
list of functions, 32
panel function, 65, 263
parameter settings

par.settings, 57, 58
parameters, 463
printing from user functions, 33
scaling of axes, 55
scatterplot matrix, 29, 178, 196, 203, 252, 410
size of points & text, 30, 65
strip plot, 32, 54, 120, 465
use of grid functions to supplement plots, 464,

465
library, 9, 16, 423

packages, 1, 8–10
linear model (lm)

anova F -test, 174
anova table, 174
assumptions, 182
bootstrap

validity of error estimate, 163
check for linearity, 59
coefficients

confidence intervals, 153, 175
correlation between, 175
interpretation, 180, 196–9
multiple testing issue, 175
standard error, 146, 153, 174

comparison of models, 193
Cook’s distance, 152, 177, 183, 184
cross-validation

validity of error estimate, 163
validity of SE estimates, 195, 196

design, 155, 156, 171
residuals vs leverage, 184

diagnostics (including plots), 146, 147, 151–3,
171, 176–8, 180–87, 190, 216, 217, 236,
244, 245, 268, 281

proper use, 185
errors in x

attenuation of coefficient, 207
explanatory variables

relationships, 178, 187
fitted values, see predicted values
functional relationship, 167, 171
hat matrix, 182, 183
influence, 151–3, 177, 183, 185
leverage, 153, 183, 271
loglinear, 166, 212
model formulae, 145, 435
model matrix, 168–9, 175, 183, 206, 219–21,

245, 435
one term; several columns, 219–21

modeling non-linear responses, 219
multicollinearity, 202–7

remedies, 206
variance inflation factor (VIF), 206

multiple lines, 227–30
model formulae, 227
model matrix, 228, 229

omission of intercept, 176
outliers, 153
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linear model (lm) (cont.)
polynomial, see regression (main entry)
predicted values, 80, 82, 83, 145, 149, 153, 154,

162, 169, 176, 185, 205, 209, 222
SEs & confidence intervals, 154, 195
validity of SE estimates, 195, 196

predictive accuracy, 159–61, 164, 185, 186,
193–5

see also bootstrap, cross-validation
training/test approach, 158

prediction interval (new y-value), 155
R2 & adjusted R2, 193
regression spline, see regression (main entry)
relations between xs, 255
residual SE

degrees of freedom, 174
residuals

normal probability plots, 148
robust regression, 153

residuals, 190, 191
straight line model, 146

fitted values, 146
residual, 146

strategies for fitting, 187
strategy for model fitting, 187, 189
term plots, 181
terms, 219
variable selection, 187, 199
variance inflation factor (VIF), 217
vs qualitative comparison, 157
x on y vs y on x, 167, 210
see also regression

list, 15, 36, 443, 444, 447–8
as recursive vectors, 443
concatenation of lists, 443
manipulation of list elements, 448
manipulation as vector, 443, 444
manipulation of list elements, 447
what is a list?, 443

Markov chain, 98–100
matrix, 17, 18, 35, 426, 439–42, 446–8

arithmetic, 440, 441
computational efficiency, 441
conversion to/from data frame, 62, 258, 440
conversion to/from vector, 439
dimensions, 439
extraction of sub-matrix, 18, 140
formed as outer product, 441, 442
joining (cbind, rbind), 446
names of rows & columns, 18, 439
number of rows & columns, 23
storage in memory, 439
transpose, 439

mean, 5, 18
trimmed, 77

methods & classes, 449
S4 vs S3, 449–51

missing values, 12, 13, 19, 23, 35, 38, 437–9
sort() & order(), 438, 439
counting & identifying, 437–9
modeling functions, 438
removal, 438

model
complex error structure

simplistic assumptions, 344
genomics, 471, 472
outliers, 58, 133
prediction

error structure implications, 343, 344
predictive accuracy, 159–61, 164, 185, 186,

193–5, 301, 307, 317, 327, 344, 354, 355,
360, 361, 374, 376, 384, 386, 388. 405, 471

target vs source population, 81, 163–4, 195,
196, 301, 305, 307, 328, 339, 471

influential data values, 95
outliers, 73
parameters, 81
residuals, 83
signal & noise, 79–81, 97
statistical vs deterministic, 78, 80
see also discriminant analysis, time series,

generalized linear model (GLM), linear
model, multi-level model, random
coefficients, repeated measures, survival
analysis, time series

models in R
formula, 81–3, 89, 101, 120, 138, 139, 145, 161,

162, 166, 168, 176, 178, 183, 186, 196,
198, 211, 219, 452

extraction of names, 452
model objects

extracting information, 450
multinomial, 118

deviance, 337, 339, 341
spatial autocorrelation, 299
see also discriminant analysis, time series,

generalized linear model (GLM), linear
model, multi-level model, random
coefficients, survival analysis, time series

multi-dimensional scaling (MDS)
see ordination

multi-level model, 301, 302
fixed & random effects, 301
analysis of variance, 319–25

degrees of freedom, 303
mean squares, 304

deviance, 308, 313, 342
faulty analyses, 316, 317
fitted values

at different levels, 309, 310
fitting by REML, 313
fitting by restricted maximum likelihood

(REML), 329
fixed effects, 305
historical background, 344, 345
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inferences from variance estimates, 327, 328
intra-class correlation, 309
levels, 309, 310
meta-analysis, 346
mixed model analysis, 308, 325–7
ML criterion, 329
model comparison & selection, 329, 330

AIC, 330
BIC, 330

multiple predictive accuracies, 317
parameters

confidence intervals, 310
MCMC estimates of sampling distributions,

310
predicted values (BLUPs), 309, 310
predictive accuracy

different possibilities, 301, 302, 304–7
results from different researchers, 327

random effects, 302, 305
REML criterion, 329–32
residuals

at different levels, 309, 310
variance components, 301, 306–10, 312, 313

estimates from expected mean squares, 306,
307, 324, 325

mixed model analysis, 308
use & interpretation, 307

multivariate analysis, 383
general comments, 375, 376

multivariate data
distances, 467, 468

nonsense, 203, 205

object
saving, 5

operator, 22
arithmetic, 2, 12, 19
assignment, 35, 120
logical, 14, 434

ordination
distance measures, 383

binary data, 383
multi-dimensional scaling (MDS), 383
principal components analysis (PCA), 376–84

loadings, 380, 381, 411, 420
stability of plots, 381, 382

PCA scores, 380
in regression, 375, 408–11

package
base, 9, 432
boot, 132, 142, 162, 163
car, 185
cluster, 383
DAAG, 1, 9
datasets
Devore6, 76

dichromat, 460
dr, 187
dse (package bundle), 298
foreign, 427
fracdiff, 298
fSeries, 298
fseries, 298
grid, 30, 463–6
KernSmooth, 240
lars, 202
lazy data mechanism, 9
leaps, 201
lme4, 129, 270, 301, 302,

308, 451
loaded at startup, 422
locfit, 243
lqs, 153, 183, 190, 216
MASS, 9
MEMSS, 302, 339, 348
mgcv, 243
monoProc, 240
muhaz, 279
nlme, 129, 301, 437
pear, 298
randomForest, 350, 405
RColorBrewer, 460
RMySQL, RODBC, 427
rpart, 350–56
stats, 9, 37, 212, 214, 286, 421
strucchange, 298
survival, 275–9
tseries, 286, 297, 298
VR (package bundle), 388
xtable, xxiii
zoo, 298

panel function, 65
parameters, 26
plot

aspect ratio, 27
axes, 30, 86
box-&-whisker (boxplots), 47, 48, 53, 58, 120

outlier criterion, 88, 140
outliers, 41

boxplot
outlier, 48

color, 27, 459, 460, Plates 12 & 13
graduated colors, 459, 460, Plates 12 & 13

contour, 460
dates as axis labels, 55, 433
expression

parallel symbolic substitution, 462
symbolic substitution, 461
symbolic substitution in parallel, 461

font family, 459
face, 459

expressions & formatted text, 28, 29, 460–61
graphics devices, 28, 457, 459
histogram, 6, 38, 44–6
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plot (cont.)
interaction plot, 125
legend, 460–62
line type, 458
interaction with plots, 29

identify points, 29
locate co-ordinate positions, 29

maths symbols & equations, 28, 29, 460–61
mosaic plot (multi-way tables), 141
multiple graphs on page, 49, 457, 459
normal probability, 32, 92–4, 148

simulated data, 93
parameters, 26, Plate 1
quantile–quantile (QQ), 32, 139
shaded regions, 86
size of points & text, 26, 28, Plate 1
stem-&-leaf, 46
symbols & characters, 457–9, 461–2, Plate 1
transformation of scales, 52

predictive accuracy, see generalized linear model,
linear model, model, training/test set

principal components analysis (PCA)
see ordination

printing, 20
digits, 24, 34, 36

questionnaires & surveys, 72, 311
quitting a session, 5

R session
quitting, 5, 15
search path, 9, 36, 421, 455

databases, 421
session information, 9, 423
workspace, see workspace
working directory, 456
see also workspace

random coefficients models, 334–8, 340–43
random numbers, 88, 89

seed, 88, 89, 92
random sample, 66, 88–91, 101, 117, 453

of permutations, 89
randomForest, see tree-based methods
regression

additive model
penalized spline terms, 243
spline, 241, 242

Akaike information criterion (AIC), 191, 192,
194

allometric growth, 166
Bayesian Information Criterion (BIC), 194
Cp statistic, 194
confusion between x & y, 210
covariate adjustment, 412
cross-validation, 217
errors in x, 158–61, 163, 195–6, 202, 207–9

simulation, 209
explain using multi-level model, 344

extrapolation beyond data, 234
generalized additive models (GAMs), 239, 241–2
missing xs, 210, 211
non-linear model, 212, 213
observational data, 214
on principal components scores, 202, 408–11
on propensity scores, 412, 414, 415, 417–19
ordinal logistic (POLR), 271, 272
outliers, 151–3, 185, 186, 188, 420

resistant smooth, 239
penalized splines, 239

knots, 245
polynomial, 127, 168, 170, 231–4, 244, 435

model matrix, 233
resistant, 153, 185
robust, 153, 170, 185, 244
shrinkage methods, 202
smoother, 44, 58, 281

loess, 82, 149, 150, 171, 239, 240, 358, 359,
361

lowess, 51, 82, 95, 149, 171, 239, 240, 245,
292, 293

monotone curves, 240
spline, 234–8

basis functions, 238
knots, 235–7, 239, 245

variable selection, 199–202
cross-validation, 202
realistic SEs, 202
simulation, 199–201

see also generalized model (GLM), linear model,
time series

repeated measures (mostly in time), 300, 331–4
commentary, 332–4
correlation structure, 332, 333
different approaches to analysis, 334
functional data analysis, 346

resampling methods, 90
bootstrap, see bootstrap
cross-validation, see cross-validation
permutation, see distribution, permutation
simulation, see simulation

sampling
cluster sampling, 90
with/without replacement, 89

session
see R session

simulation, 88, 90, 98, 136, 143, 157, 200, 201,
208, 291, 460

spline, 235
see also regression

standard deviation (SD), 21, 66, 85–7, 95, 101, 102
vs inter-quartile range, 66
degrees of freedom, 67
difference of means (SED), 103, 124
maximum likelihood estimate, 135
mean, see standard error of mean



Index of terms 499

median, see standard error of median
pooled, 67
residual standard error, 146, 174, 225

standard error, 102, 103, 167, 222, 270
binomial distribution

proportions, 113
median, 104, 132
residual, 146, 174, 225
standard error of mean (SEM), 102, 105
standard error of median, 104

survival analysis, 275–82
censoring

informative/non-informative, 279
right, 276–9

Cox proportional hazard, 280, 282
tests & CIs, 281

data collection process, 276
frailty models, 283
hazard rate, 279, 280
hazard rate estimates

confidence intervals, 280
residuals

martingale, 282
Schoenfeld, 281

survival estimate, 277, 278
confidence intervals, 277, 278

table
of frequencies, 19, 20, 60, 62, 63, 95, 96, 141,

437
adding across tables (Simpson’s paradox), 62,

63, 95, 96, 141, 142
table formula, 62

test
2-way tables

chi-square statistic, 115, 116
degrees of freedom, 116
Fisher exact test, 117
residuals from row/column independence

model, 118
3-way tables

Mantel–Haenzel, 141
Woolf, 141

chi-square, 115–19, 269–70, 296
F -test, 124, 217, 222, 268
correlation, 68, 69, 134
homogeneity of variance

Fligner–Killeen, 262
likelihood ratio, 267, 270, 280, 281
linear trend, 154, 157–8
log-rank, 281
non-parametric, 95
multiple regression slopes, 175
permutation

one-sample, 129
two-sample, 129

proportions, 113–14
sequential correlation, 297, 300

t-test
one-sample, 110
two-sample, 108–10
two-sample, unequal variances, 111

type III, 437, 438
Wald, 267, 270, 281
white noise, 297

time series, 10, 14, 49, 286–300
AR model, 288–90

estimates of coefficients, 289
SD of error term, 289
SE of mean, 289

ARCH & GARCH models, 297, 298
ARIMA model, 290
ARMA model, 290

autocorrelation, 290, 291
partial autocorrelation, 291

autocorrelation, 140, 287–9, 293
Ljung–Box test, 296, 300

exponential forecasting, 300
lag plots, 287
MA model, 290, 294–7
model selection

AIC, 290
multivariate, 448, 449
regression with MA errors, 291–7
residuals, 293, 294, 297

normal probability plot, 297
state space models, 299

training/test set, 158–9, 317, 360, 384, 386, 397–9
transformation, 282

Box–Cox, 165, 171
count data, 282

angular, 282
complementary log–log, 282
logit, 282
probit, 282
square root, 282

cube root, 292, 293
logarithmic, 38, 39, 41, 52, 55, 56, 58, 59, 72,

77, 164, 170, 188, 189, 197, 198, 212, 252,
265, 352, 353, 379, 384, 415

logit, 247–51, 272, 282
power, 164
proportions, 283
use of, 212

tree-based methods
classification, 352–4, 363–8

deviance error measure, 358
entropy error measure, 358
error measure, 358
gini error measure, 358
splitting criterion, 357, 358
tree diagram, 365, 367

combine with other approaches, 371
complex error structure, 372
cost–complexity tradeoff (cp), 360–63
cp parameter, 364, 366
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tree-based methods (cont.)
cross-validation, 354, 361
deviance, 356, 358
nomeclature & labeling, 357
number of splits, 355

one SE rule, 365, 367, 368
output

information on each split, 365, 366
pluses & minuses, 372, 373
predictive accuracy, 354, 355

vs tree size, 363
pruning, 361, 362, 364, 371
randomForest, 368–71

comparison with rpart, 370, 371
confusion matrix, 369
efficient computation, 371
out-of-bag (OOB) error estimate, 368–70

regression
splitting criterion, 355–7
tree diagram, 353, 356, 357, 359, 360
tree-based vs lowess smoothing, 359, 360

terminology & labeling, 355, 356
tree-based regression vs lowess, 358
when to use, 351, 352, 368

variability
heterogeneity, 59

variance
heterogeneity, 111, 150, 196, 212

vector, 10–13
atomic, 443
character, 8

character count, 5, 6
complex, 8
concatenation, 3
logical, 8, 10, 11, 14, 17, 18,

22, 36
numeric, 8, 10, 14, 24
recursive (list), 443, 447
split to a list, 448
subsetting, 11

working directory, 4, 5, 7, 8, 20, 33, 421–3, 426,
456

changing, 4
workspace, 4, 5, 8–10, 16, 18, 20, 33, 35, 36,

421–3, 453–6, 467
image file, 5, 33, 421, 422, 467
management, 6, 421–3
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Plate 1 This figure, intended to accompany Section 1.6, demonstrates the use of parameter settings
to control various graphical features. See also Section 14.11.



Plate 2 Panel A plots of csoa against it, for each combination of sex and agegp. Different
colors (gray and black) and symbols show different levels of target. Panel B shows the same
points, but different colors (printed in grayscale) now show different levels of tint. Notice, also,
the addition of smooth curves. (See Figure 2.10)



1 1A (dyeswap of 1)

2 2A (dyeswap of 2)

3 3A (dyeswap of 3)

Plate 3 This false color image shows the intensity of the post signal (red ), relative to the pre
signal (green), for each of six half-slides in a two channel microarray gene expression experiment.



Plate 4 Fitted values (model predictions of the probability of finding a frog) are shown on a color
density scale. Sites are labeled “o” or “+” according as frogs were not found or were found. For
details of the model, see Subsection 8.2.1.



Plate 5 Scatterplot matrix for three morphometric measurements on the mountain brushtail
possum. Females are in red; males in blue. (See Figure 12.1)



Plate 6 Three-dimensional perspective plot (cloud plot) for the three variables displayed in
Figure 12.1. (See Figure 12.2)
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Plate 7 Second principal component versus first principal component, for variables in columns
6–14 of the possum data frame. Females are in red; males in blue. (See Figure 12.3)



Plate 8 These plots of projections of linear discriminant analysis scores are designed to fairly
reflect the performance of a linear discriminant in distinguishing between known groups in the
data. The two panels relate to different subsets of the Golub data, with different groupings in the
two cases. In panel B, for the classification of the 62 bone marrow (BM) samples into allB, allT,
and aml, points where the sex is known are identified as male or female. (See Figure 12.11)



Plate 9 Scatterplot matrix, for non-binary covariates, for the nsw74psid1 data that are discussed
in Subsection 13.2. An experimental treatment group is compared with a non-experimental control
group. Does this give the same result as for a comparison between experimental treatment and
control groups? Separate smooth curves have been fitted for the control and treatment groups.



Plate 10 Residuals from the fitted regression model are plotted against fitted values, with separate
smooth curves for control and treatment groups. (See Figure 13.3)

Plate 11 Panel A shows density plots of scores (predicted values on the scale of the linear
predictor from the object disc.glm), separately for control and treatment groups. Panel B is a
plot or residuals against fitted values, for the regression of log(re78+47) on trt and Pscores,
for those observations for which re78 > 0. (See Figure 13.4)



Plate 12 The default palette has the eight colors that are shown. Functions in the default
package grDevices that can be used to generate color sequences include heat.colors(),
terrain.colors(), topo.colors(), rainbow() and hcl(). Also shown are a selection
of palettes from the RColorBrewer package. See Section 14.11 for further details.



Plate 13 Palettes in the dichromat package use colors that can be distinguished by individuals
with either of two common forms of red-green color blindness. Also shown are simulations of
the effects of these two common common forms of red-green color blindness, first for the default
palette plus "green", and then for the Categorical.12 palette from dichromat. Simulations
for deuteranomia are identified with a D, while simulations for proteranomia are identified with
a P. See Section 14.11 for further comment.


	Cover
	Half-title
	Series-title
	Title
	Copyright
	Dedication
	Contents
	Preface
	1 A brief introduction to R
	1.1 An overview of R
	1.1.1 A short R session
	R must be installed!
	Using the console (or command line) window
	Entry of data at the command line
	Collection of vectors into a data frame
	Checks on the working directory and the contents of the workspace
	Quitting R

	1.1.2 The uses of R
	R offers an extensive collection of functions
	R will give numerical or graphical data summaries
	R is an interactive programming language

	1.1.3 Online help
	Wide-ranging searches

	1.1.4 Further steps in learning R

	1.2 Data input, packages and the search list
	1.2.1 Reading data from a file
	1.2.2 R packages
	Data sets that accompany R packages
	Installation of additional packages


	1.3 Vectors, factors and univariate time series
	1.3.1 Vectors in R
	1.3.2 Concatenation – joining vector objects
	1.3.3 Subsets of vectors
	1.3.4 Patterned data
	1.3.5 Missing values
	1.3.6 Factors
	1.3.7 Time series

	1.4 Data frames and matrices
	Display of the first few, or last few, rows of a data frame
	Data frames are a specialized type of list
	1.4.1 The attaching of data frames
	Column and row names
	Subsets of data frames

	1.4.2 Aggregation, stacking and unstacking
	1.4.3 Data frames and matrices

	1.5 Functions, operators and loops
	1.5.1 Built-in functions
	Calculations in parallel across all elements of a vector
	The handling of missing values
	Data summary functions – table( ) and sapply( )
	The function with ( )
	Utility functions

	1.5.2 Generic functions and the class of an object
	1.5.3 User-written functions
	The structure of functions

	1.5.4 Relational and logical operators and operations
	1.5.5 Selection and matching
	1.5.6 Functions for working with missing values
	Identification of rows that include missing values

	1.5.7 Looping

	1.6 Graphics in R
	1.6.1 The function plot( ) and allied functions
	1.6.2 The use of color
	1.6.3 The importance of aspect ratio
	1.6.4 Dimensions and other settings for graphics devices
	1.6.5 The plotting of expressions and mathematical symbols
	1.6.6 Identification and location on the figure region
	1.6.7 Plot methods for objects other than vectors
	1.6.8 Lattice graphics versus base graphics – xyplot( ) versus plot( )
	1.6.9 Further information on graphics
	1.6.10 Good and bad graphs

	1.7 Lattice (trellis) graphics
	Panels of scatterplots – the use of xyplot( )
	Selected lattice functions
	Inclusion of lattice graphics functions in user functions
	Interaction with lattice plots

	1.8 Additional points on the use of R
	Workspace management strategies
	Forward slashes and backslashes
	Setting the number of decimal places in output
	Other option settings
	Cosmetic issues
	Common sources of difficulty
	Variable names in data sets

	1.9 Recap
	1.10 Further reading
	1.10.1 References for further reading

	1.11 Exercises

	2 Styles of data analysis
	2.1 Revealing views of the data
	2.1.1 Views of a single sample
	Histograms and density plots
	The stem-and-leaf display
	Lattice style density plots
	Boxplots

	2.1.2 Patterns in univariate time series
	2.1.3 Patterns in bivariate data
	The fitting of a smooth trend curve
	What is the appropriate scale?

	2.1.4 Patterns in grouped data
	Example: eggs of cuckoos

	2.1.5 Multiple variables and times
	Small proportional changes, on a scale of natural logarithms

	2.1.6 Scatterplots, broken down by multiple factors
	2.1.7 What to look for in plots
	Outliers
	Asymmetry of the distribution
	Changes in variability
	Clustering
	Non-linearity


	2.2 Data summary
	2.2.1 Counts
	Addition over one or more margins of a table
	Cross-tabulation – the xtabs( ) function

	2.2.2 Summaries of information from data frames
	Summary as a prelude to analysis – aggregate( )
	The benefits of data summary – dengue status example

	2.2.3 Standard deviation and inter-quartile range
	Cuckoo eggs example
	Degrees of freedom
	The pooled standard deviation
	Elastic bands example

	2.2.4 Correlation

	2.3 Statistical analysis questions, aims and strategies
	2.3.1 How relevant and how reliable are the data?
	2.3.2 Helpful and unhelpful questions
	2.3.3 How will results be used?
	2.3.4 Formal and informal assessments
	Questionnaires and surveys

	2.3.5 Statistical analysis strategies
	2.3.6 Planning the formal analysis
	2.3.7 Changes to the intended plan of analysis

	2.4 Recap
	2.5 Further reading
	2.5.1 References for further reading

	2.6 Exercises

	3 Statistical models
	3.1 Regularities
	3.1.1 Deterministic models
	3.1.2 Models that include a random component
	Generalizing from models
	Which model is best?

	3.1.3 Fitting models – the model formula
	Fitted values and residuals
	Model objects


	3.2 Distributions: models for the random component
	3.2.1 Discrete distributions
	Bernoulli distribution
	Binomial distribution
	Poisson distribution
	Means, variances and standard deviations

	3.2.2 Continuous distributions
	Normal distribution
	Other continuous distributions
	Different ways to describe distributions


	3.3 The uses of random numbers
	3.3.1 Simulation
	3.3.2 Sampling from populations
	Cluster sampling
	Resampling methods and simulation


	3.4 Model assumptions
	3.4.1 Random sampling assumptions – independence
	3.4.2 Checks for normality
	Examination of histograms
	The normal probability plot
	The sample plot, set alongside plots for random normal data
	Formal statistical testing for normality?

	3.4.3 Checking other model assumptions
	3.4.4 Are non-parametric methods the answer?
	3.4.5 Why models matter – adding across contingency tables

	3.5 Recap
	3.6 Further reading
	3.6.1 References for further reading

	3.7 Exercises

	4 An introduction to formal inference
	4.1 Basic concepts of estimation
	4.1.1 Population parameters and sample statistics
	Why use the sample mean as an estimator?
	Maximum likelihood estimation

	4.1.2 Sampling distributions
	4.1.3 Assessing accuracy – the standard error
	4.1.4 The standard error for the difference of means
	4.1.5 The standard error of the median
	4.1.6 The sampling distribution of the t-statistic
	Calculations for the t-distribution
	How good is the normal theory approximation?


	4.2 Confidence intervals and hypothesis tests
	4.2.1 One- and two-sample intervals and tests for means
	Confidence intervals of 95% or 99%
	Tests of hypotheses
	What is a small p-value?
	A summary of one- and two-sample calculations
	When is pairing helpful?
	What if the standard deviations are unequal?
	Different ways to report results

	4.2.2 Confidence intervals and tests for proportions
	4.2.3 Confidence intervals for the correlation
	4.2.4 Confidence intervals versus hypothesis tests

	4.3 Contingency tables
	The mechanics of the calculation
	An example where a chi-squared test may not be valid
	4.3.1 Rare and endangered plant species
	Examination of departures from a consistent overall row pattern

	4.3.2 Additional notes
	Interpretation issues
	Modeling approaches


	4.4 One-way unstructured comparisons
	4.4.1 Displaying means for the one-way layout
	Is the analysis valid?

	4.4.2 Multiple comparisons
	Microarray data . severe multiplicity

	4.4.3 Data with a two-way structure, that is, two factors
	4.4.4 Presentation issues

	4.5 Response curves
	4.6 Data with a nested variation structure
	4.6.1 Degrees of freedom considerations
	4.6.2 General multi-way analysis of variance designs

	4.7 Resampling methods for standard errors, tests and confidence intervals
	4.7.1 The one-sample permutation test
	4.7.2 The two-sample permutation test
	4.7.3 Estimating the standard error of the median: bootstrapping
	4.7.4 Bootstrap estimates of confidence intervals
	The median
	The correlation coefficient
	The bootstrap – parting comments


	4.8 Theories of inference
	4.8.1 Maximum likelihood estimation
	4.8.2 Bayesian estimation
	4.8.3 If there is strong prior information, use it!

	4.9 Recap
	Dos and don’ts

	4.10 Further reading
	4.10.1 References for further reading

	4.11 Exercises

	5 Regression with a single predictor
	5.1 Fitting a line to data
	5.1.1 Lawn roller example
	5.1.2 Calculating fitted values and residuals
	5.1.3 Residual plots
	5.1.4 Iron slag example: is there a pattern in the residuals?
	5.1.5 The analysis of variance table

	5.2 Outliers, influence and robust regression
	Robust regression

	5.3 Standard errors and confidence intervals
	5.3.1 Confidence intervals and tests for the slope
	5.3.2 SEs and confidence intervals for predicted values
	5.3.3 Implications for design

	5.4 Regression versus qualitative anova comparisons
	5.4.1 Issues of power
	5.4.2 The pattern of change

	5.5 Assessing predictive accuracy
	5.5.1 Training/test sets and cross-validation
	5.5.2 Cross-validation -- an example
	5.5.3 Bootstrapping
	Commentary


	5.6 A note on power transformations
	5.6.1 General power transformations

	5.7 Size and shape data
	5.7.1 Allometric growth
	5.7.2 There are two regression lines!
	An alternative to a regression line


	5.8 The model matrix in regression
	5.9 Recap
	5.10 Methodological references
	5.11 Exercises

	6 Multiple linear regression
	6.1 Basic ideas: book weight and brain weight examples
	6.1.1 Omission of the intercept term
	6.1.2 Diagnostic plots
	6.1.3 Example: brain weight
	6.1.4 Plots that show the contribution of individual terms

	6.2 Multiple regression assumptions and diagnostics
	6.2.1 Influential outliers and Cook's distance
	Leverage and the hat matrix

	6.2.2 Influence on the regression coefficients
	6.2.3 Additional diagnostic plots
	6.2.4 Robust and resistant methods
	6.2.5 The uses of model diagnostics

	6.3 A strategy for fitting multiple regression models
	6.3.1 Preliminaries
	Explanatory variables that are not linearly related

	6.3.2 Model fitting
	6.3.3 An example – the Scottish hill race data
	Residuals from a resistant regression fit
	Inclusion of an interaction term
	The model without the interaction term
	The model with the interaction term
	What happens if we do not transform?


	6.4 Measures for the assessment and comparison of regression models
	6.4.1 R2 and adjusted R2
	6.4.2 AIC and related statistics
	Calculation of R’s version of the AIC

	6.4.3 How accurately does the equation predict?

	6.5 Interpreting regression coefficients
	6.5.1 Book dimensions and book weight

	6.6 Problems with many explanatory variables
	6.6.1 Variable selection issues
	Variable selection – a simulation with random data


	6.7 Multicollinearity
	6.7.1 A contrived example
	An analysis that makes modest sense

	6.7.2 The variance inflation factor
	6.7.3 Remedies for multicollinearity

	6.8 Multiple regression models -- additional points
	6.8.1 Errors in x
	Measurement of dietary intake
	A simulation of the effect of measurement error
	Errors in variables – multiple regression

	6.8.2 Confusion between explanatory and response variables
	Unintended correlations

	6.8.3 Missing explanatory variables
	6.8.4 The use of transformations
	6.8.5 Non-linear methods – an alternative to transformation?

	6.9 Recap
	6.10 Further reading
	6.10.1 References for further reading

	6.11 Exercises

	7 Exploiting the linear model framework
	7.1 Levels of a factor -- using indicator variables
	7.1.1 Example -- sugar weight
	7.1.2 Different choices for the model matrix when there are factors

	7.2 Block designs and balanced incomplete block designs
	7.2.1 Analysis of the rice data, allowing for block effects
	7.2.2 A balanced incomplete block design

	7.3 Fitting multiple lines
	7.4 Polynomial regression
	7.4.1 Issues in the choice of model

	7.5 Methods for passing smooth curves through data
	7.5.1 Scatterplot smoothing – regression splines
	7.5.2 Penalized splines and generalized additive models
	7.5.3 Other smoothing methods
	Monotone curves


	7.6 Smoothing terms in additive models
	7.6.1 The fitting of penalized spline terms

	7.7 Further reading
	7.7.1 References for further reading

	7.8 Exercises

	8 Generalized linear models and survival analysis
	8.1 Generalized linear models
	8.1.1 Transformation of the expected value on the left
	8.1.2 Noise terms need not be normal
	8.1.3 Log odds in contingency tables
	8.1.4 Logistic regression with a continuous explanatory variable

	8.2 Logistic multiple regression
	8.2.1 Selection of model terms and fitting the model
	8.2.2 A plot of contributions of explanatory variables
	8.2.3 Cross-validation estimates of predictive accuracy

	8.3 Logistic models for categorical data – an example
	8.4 Poisson and quasi-Poisson regression
	8.4.1 Data on aberrant crypt foci
	8.4.2 Moth habitat example
	An unsatisfactory choice of reference level
	A more satisfactory choice of reference level
	The comparison between Bank and other habitats
	Diagnostic plots


	8.5 Additional notes on generalized linear models
	8.5.1 Residuals, and estimating the dispersion
	Other choices of link function for binomial models
	Quasi-binomial and quasi-Poisson models

	8.5.2 Standard errors and z- or t-statistics for binomial models
	8.5.3 Leverage for binomial models

	8.6 Models with an ordered categorical or categorical response
	8.6.1 Ordinal regression models
	Exploratory analysis
	.Proportional odds logistic regression

	8.6.2 Loglinear models

	8.7 Survival analysis
	8.7.1 Analysis of the Aids2 data
	8.7.2 Right censoring prior to the termination of the study
	8.7.3 The survival curve for male homosexuals
	8.7.4 Hazard rates
	8.7.5 The Cox proportional hazards model

	8.8 Transformations for count data
	8.9 Further reading
	8.9.1 References for further reading

	8.10 Exercises

	9 Time series models
	9.1 Time series – some basic ideas
	9.1.1 Preliminary graphical explorations
	9.1.2 The autocorrelation function
	9.1.3 Autoregressive models
	The AR(1) model
	The general AR(p) model

	9.1.4 Autoregressive moving average models – theory

	9.2 Regression modeling with moving average errors
	Other checks and computations

	9.3 Non-linear time series
	9.4 Other time series packages
	9.5 Further reading
	9.5.1 Spatial statistics
	9.5.2 References for further reading

	9.6 Exercises

	10 Multi-level models and repeated measures
	10.1 A one-way random effects model
	10.1.1 Analysis with aov( )
	Interpreting the mean squares
	Details of the calculations
	Practical use of the analysis of variance results
	Random effects vs. fixed effects
	Nested factors – a variety of applications

	10.1.2 A more formal approach
	Relations between variance components and mean squares
	Interpretation of variance components
	Intra-class correlation

	10.1.3 Analysis using lmer( )
	Fitted values and residuals in lmer( )
	Uncertainty in the parameter estimates
	Handling more than two levels of random variation


	10.2 Survey data, with clustering
	10.2.1 Alternative models
	10.2.2 Instructive, though faulty, analyses
	Ignoring class as the random effect
	Ignoring the random structure in the data

	10.2.3 Predictive accuracy

	10.3 A multi-level experimental design
	10.3.1 The anova table 
	10.3.2 Expected values of mean squares
	10.3.3 The sums of squares breakdown
	10.3.4 The variance components
	10.3.5 The mixed model analysis
	Plots of residuals

	10.3.6 Predictive accuracy
	10.3.7 Different sources of variance -- complication or focus of interest?

	10.4 Within- and between-subject effects
	Model fitting criteria
	10.4.1 Model selection
	10.4.2 Estimates of model parameters

	10.5 Repeated measures in time
	The theory of repeated measures modeling
	Correlation structure
	Different approaches to repeated measures analysis
	10.5.1 Example – random variation between profiles
	A random coefficients model

	10.5.2 Orthodontic measurements on children
	Preliminary data exploration
	A random coefficients model
	Correlation between successive times
	The variance for the difference in slopes


	10.6 Error structure considerations
	10.6.1 Predictions from models with a complex error structure
	Consequences from assuming an overly simplistic error structure

	10.6.2  Error structure in explanatory variables

	10.7 Further notes on multi-level and other models with correlated errors
	10.7.1 An historical perspective on multi-level models
	10.7.2 Meta-analysis
	10.7.3 Functional data analysis

	10.8 Recap
	10.9 Further reading
	10.9.1 References for further reading
	Analysis of variance with multiple error terms
	Multi-level models and repeated measures
	Meta-analysis


	10.10 Exercises

	11 Tree-based classification and regression
	Note
	11.1 The uses of tree-based methods
	11.1.1 Problems for which tree-based regression may be used
	When are tree-based methods appropriate?


	11.2 Detecting email spam – an example
	11.2.1 Choosing the number of splits

	11.3 Terminology and methodology
	11.3.1 Choosing the split – regression trees
	11.3.2 Within and between sums of squares
	11.3.3 Choosing the split – classification trees
	11.3.4 Tree-based regression versus loess regression smoothing

	11.4 Predictive accuracy and the cost–complexity tradeoff
	11.4.1 Cross-validation
	11.4.2 The cost--complexity parameter
	11.4.3 Prediction error versus tree size

	11.5 Data for female heart attack patients
	11.5.1 The one-standard-deviation rule
	11.5.2 Printed information on each split

	11.6 Detecting email spam – the optimal tree
	How does the one-standard-error rule affect accuracy estimates?
	How is the standard error calculated?
	When are tree-based methods appropriate?

	11.7 The randomForest package
	Comparison between rpart( ) and randomForest( )
	Efficient computation
	Differences between rpart( ) and randomForest( )

	11.8 Additional notes on tree-based methods
	11.8.1 The combining of tree-based methods with other approaches
	11.8.2 Models with a complex error structure
	11.8.3 Pruning as variable selection
	11.8.4 Other types of tree
	11.8.5 Factors as predictors
	11.8.6 Summary of pluses and minuses of tree-based methods

	11.9 Further reading
	11.9.1 References for further reading

	11.10 Exercises

	12 Multivariate data exploration and discrimination
	12.1 Multivariate exploratory data analysis
	12.1.1 Scatterplot matrices
	12.1.2 Principal components analysis
	Preliminary data scrutiny
	The stability of the principal components plot

	12.1.3 Multi-dimensional scaling
	Binary data


	12.2 Discriminant analysis
	12.2.1 Example – plant architecture
	Notation

	12.2.2 Logistic discriminant analysis
	Predictive accuracy

	12.2.3 Linear discriminant analysis
	Assessments of predictive accuracy

	12.2.4 An example with more than two groups

	12.3 High-dimensional data, classification and plots
	What groups are of interest?
	12.3.1 Classifications and associated graphs
	Preliminary data manipulation

	12.3.2 Flawed graphs
	Distributional extremes
	Selection of features that discriminate

	12.3.3 Accuracies and scores for test data
	Cross-validation to determine the optimum number of features
	Which features?
	Cross-validation: bone marrow (BM) samples only

	12.3.4 Graphs derived from the cross-validation process
	Further comments


	12.4 Further reading
	12.4.1 References for further reading

	12.5 Exercises

	13 Regression on principal component or discriminant scores
	13.1 Principal component scores in regression
	13.2 Propensity scores in regression comparisons -- labor training data
	The labor training data
	Intended analyses
	Potential sources of bias
	The propensity score methodology – further comments
	Data exploration
	13.2.1 Regression analysis, using all covariates
	13.2.2 The use of propensity scores
	Further comments


	13.3 Further reading
	13.3.1 References for further reading

	13.4 Exercises

	14 The R system -- additional topics
	14.1 Working directories, workspaces and the search list
	14.1.1 The search path
	14.1.2 Workspace management
	Changing the working directory and/or workspace

	14.1.3 Utility functions

	14.2 Data input and output
	14.2.1 Input of data
	The function read.table() and its variants
	Tracking errors in input data
	Input of fixed format data
	Input of large rectangular files
	Example – input of the Boston housing data
	Importing data from other statistical systems
	Database connections

	14.2.2 Data output
	Output of data frames
	Redirection of screen output to a file
	Output to a file using cat( )


	14.3 Functions and operators – some further details
	Why collect code into functions?
	Issues for the writing and use of functions
	14.3.1 Function arguments
	The args( ) function
	The … argument

	14.3.2 Character string and vector functions
	14.3.3 Anonymous functions
	14.3.4 Functions for working with dates (and times)
	14.3.5 Creating groups
	14.3.6 Logical operators
	A vector form of if statement
	Operators are functions


	14.4 Factors
	Ordered factors
	Factor contrasts
	Contrasts – implications for model fitting
	Tests for main effects in the presence of interactions?

	14.5 Missing values
	Counting and identifying NAs – the use of table( )
	The removal of NAs
	NAs in modeling functions
	Sorting and ordering, where there are NAs

	14.6 Matrices and arrays
	The extraction of submatrices
	Conversion of data frames and tables into matrices
	14.6.1 Matrix arithmetic
	Computational efficiency

	14.6.2 Outer products
	14.6.3 Arrays

	14.7 Manipulations with lists, data frames and matrices
	14.7.1 Lists – an extension of the notion of ``vector''
	The dual identity of data frames

	14.7.2 Changing the shape of data frames
	The reshape( ) function

	14.7.3 Merging data frames -- merge( )
	14.7.4 Joining data frames, matrices and vectors – cbind( )
	Conversion of tables and arrays into data frames

	14.7.5 The apply family of functions
	The tapply( ) function
	The apply( ) function
	The functions lapply( ) and sapply( )

	14.7.6 Splitting vectors and data frames into lists -- split()
	14.7.7 Multivariate time series

	14.8 Classes and methods
	14.8.1 Printing and summarizing model objects
	14.8.2 Extracting information from model objects
	14.8.3 S4 classes and methods

	14.9 Manipulation of language constructs
	14.9.1 Model and graphics formulae
	Extraction of variable names from formula objects

	14.9.2 The use of a list to pass parameter values
	14.9.3 Expressions
	14.9.4 Environments
	Automatic naming of a file that holds function output

	14.9.5 Function environments and lazy evaluation
	Lazy evaluation
	Example – a function that identifies objects added during a session


	14.10 Document preparation --- Sweave()
	14.11 Graphs in R
	14.11.1 Hardcopy graphics devices
	14.11.2 Multiple graphs on a single graphics page
	14.11.3 Plotting characters, symbols, line types and colors
	Font families
	Symbols
	Colors
	Contour and filled contour plots
	Formatting and plotting of text and equations
	Symbolic substitution of symbols in an expression
	Plotting expressions in parallel
	Symbolic substitution in parallel
	A further use for substitute()


	14.12 Lattice graphics and the grid package
	Default lattice graphics parameter settings
	Annotation – the auto.key, key and legend arguments
	14.12.1 Interaction with plots
	14.12.2 Use of grid.text() to label points
	14.12.3 Multiple lattice graphs on a graphics page

	14.13 Further reading
	14.13.1 Vignettes
	14.13.2 References for further reading

	14.14 Exercises

	Epilogue – models
	Statistical models in genomics
	Other models yet!
	References for further reading

	References
	Methodological references
	References for data sets
	References for packages
	References for web pages
	Acknowledgments for use of data

	Index of R symbols and functions
	Index of terms
	Index of authors


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


