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Preface

This volume provides the latest advancements in statistical methods for multidimen-
sional data analysis which can have a complex structure and collects a selection of
revised papers presented at the first Joint Meeting of the Société Francophone de
Classification and the Classification and Data Analysis Group of the Italian Statis-
tical Society (SFC-CLADAG 2008) which was held in Caserta, June 11–13, 2008.
Bernard Fichet and Domenico Piccolo co-chaired the Scientific Programme Com-
mittee and Rosanna Verde chaired the Local Organising Committee.

The meeting brought together a large number of scientists and experts, especially
from Italy and francophone countries. It was a highly appreciated opportunity of dis-
cussion and mutual knowledge exchange about techniques and tools for analyzing,
classifying and summarizing statistical information, as well as for discovering and
characterizing trends, and for automatically bagging anomalies.

Special attention was paid to new methodological contributions from both the
theoretical and the applicative point of views, in the fields of Clustering, Classifica-
tion, Time Series Analysis, Multidimensional Data Analysis, Knowledge Discovery
from Large Datasets, Spatial Statistics.

Upon conclusion of the joint meeting a cooperation agreement between the SFC
and CLADAG was signed by Gilles Venturini, president of the SFC and Andrea
Cerioli, president of CLADAG for a continuation of the scientific collaboration
between the two groups around subjects related to the Classification and Multivari-
ate Data Analysis.

The volume is structured in nine sections. The first contains the key note speakers
papers, with eminent contributions in Classification and Data Analysis fields in ple-
nary and semi-plenary sessions, by Edwin Diday, Carlo Lauro, Jacqueline Meulman,
Paolo Giudici, André Hardy and Roberta Siciliano. The extended versions of some
of their contributions were then written in collaboration with other colleagues.

Furthermore, the other 43 selected papers have been collected in 8 sections
according to the following macro-topics:

• Classification and discrimination
• Data mining
• Robustness and classification
• Categorical data and latent class approach
• Latent Variables and related methods
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vi Preface

• Symbolic, multi-valued and conceptual data analysis
• Spatial, temporal, streaming and functional data analysis
• Bio and health science

We wish to thank the authors for their contributions and the referees who care-
fully reviewed the papers: S. Balbi (Università di Napoli Federico II), F. Bartolucci
(Università di Urbino “Carlo Bo”), Ch. Biernacki (Université LILLE I),
M. Bini (Università di Firenze), H.-H. Bock (RWTH Aachen), A. Cerioli (Uni-
versità di Parma), M. Chiodi (Università di Palermo), A. Chouakria-Douzal (Uni-
versité Joseph Fourier Grenoble), M. Civardi (Università di Milano Bicocca),
M. Corduas (Università di Napoli Federico II), F.T.A. De Carvalho (UFPE Brazil),
M.R. D’Esposito (Università di Salerno), F. Domenach (University of Nicosia),
V. Esposito Vinzi (ESSEC Paris), L. Fabbris (Università di Padova), L. Ferré (Uni-
versité Toulouse Le Mirail), J. Gama (University of Porto), P. Giudici (Univer-
sità di Pavia), A. Giusti (Università di Firenze), R. Gras (Université de Nantes),
A. Guénoche (IML Marseille), G. Hébrail (ENST Paris), S. Ingrassia (Università
di Catania), F.-X. Jollois (Université Paris Descartes) P. Kuntz (LINA, Université
Nantes), M. La Rocca (Università di Salerno), Y. Lechevallier (INRIA Rocquen-
court), V. Makarenkov (Université de Montréal), S. Mignani (Alma Mater Studio-
rum Università di Bologna), A. Mineo (Università di Palermo), M. Noirhomme
(Université de Namur), F. Palumbo (Università di Napoli Federico II), C. Rampi-
chini (Università degli Studi di Firenze), M. Rémon (Facultés Universitaires Notre-
Dame de la Paix, Namur), M. Riani (Università di Parma), R. Rocci (Università di
Roma Tor Vergata), F. Rossi (ENST Paris), G. Scepi (Università di Napoli Fed-
erico II), R. Siciliano (Università di Napoli Federico II), N. Torelli (Università
di Trieste), Claus Weihs (Universität Dortmund), S. Zani (Università di Parma),
D. Zighed (Université de Lyon).

We gratefully acknowledge the Facoltà di Studi Politici e per l’Alta Formazione
Europea e Mediterranea “Jean Monnet” and the Dipartimento di Studi Europei e
Mediterranei of the Seconda Università di Napoli for financial and organisation sup-
port and EPT, Scuola Superiore della Pubblica Amministrazione, Sovraintendenza
ai Beni Culturali for the authorization for the use of the rooms and the theatre of the
Royal Palace of Caserta for the conference sessions.

Special thanks are due to the members of the local Organising Committee for
their work and especially to Antonio Irpinio and Antonio Balzanella for their effi-
cient assistance in managing the web review process.

We are grateful to Hans-Hermann Bock for his help and fruitful support during
the reviewing process and to have facilitated our contact with Springer-Verlag

Finally we would like to thank Dr. M. Bihn and her colleagues from Springer-
Verlag, Heidelberg, for the excellent cooperation in publishing this volume.

Marseille, France Bernard Fichet
Napoli, Italy Domenico Piccolo
Caserta, Italy Rosanna Verde
Roma, Italy Maurizio Vichi
Maggio 2010
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Principal Component Analysis for Categorical
Histogram Data: Some Open Directions
of Research

Edwin Diday

Abstract In recent years, the analysis of symbolic data where the units are cat-
egories, classes or concepts described by interval, distributions, sets of categories
and the like becomes a challenging task since many applicative fields generate
massive amount of data that are difficult to store and to analyze with traditional
techniques [1]. In this paper we propose a strategy for extending standard PCA to
such data in the case where the variables values are “categorical histograms” (i.e.
a set of categories called bins with their relative frequency). These variables are a
special case of “modal” variables (see for example, Diday and Noirhomme [5]) or
of “compositional” variables (Aitchison [1]) where the weights are not necessarily
frequencies. First, we introduce “metabins” which mix together bins of the different
histograms and enhance interpretability. Standard PCA applied on the bins of such
data table loose the histograms constraints and suppose independencies between
the bins but copulas takes care of the probabilities and the underlying dependen-
cies. Then, we give several ways for representing the units (called “individuals”),
the bins, the variables and the metabins when the number of categories is not the
same for each variable. A way for representing the variation of the individuals, for
getting histograms in output is given. Finally, some theoretical results allow the
representation of the categorical histogram variables inside a hypercube covering
the correlation sphere.

1 Introduction

Recent advances in Symbolic Data Analysis (SDA) as Billard and Diday [2], Diday
and Noirhomme-Fraiture [5] have motivated the development of strategies for the
analysis of data where the variable values (called “symbolic data”) are intervals,
categorical sequences sometimes weighted, distributions or histograms. Applica-
tion fields include socio demographic surveys, medical information management,
biology, forecasting and climate monitoring, telecommunications.

E. Diday (B)
CEREMADE, Université Paris-Dauphine, Paris, France,
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B. Fichet et al. (eds.), Classification and Multivariate Analysis for Complex Data
Structures, Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-13312-1_1, C© Springer-Verlag Berlin Heidelberg 2011
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4 E. Diday

Here we are interested on what we have called “categorical histogram” data,
where each variable value for each individual is a set of the relative frequencies
associated to the categories (or bins) of this variable. That is why the sum of the
weights is equal to 1 and these numbers can be considered as the probability of
their associated category for the corresponding individual. Therefore, these data
are a case of what has been called in the SDA framework “modal multi-valued”
data where the value taken by each variable (called “modal”) for each individual
is a sequence of weighted categories. Categorical histogram data are also a case of
compositional data (Aitchison [1, 3]) where sum of the weights of the categories
for a given variable remains a constant when the individuals vary. Nagabushan et al.
[11] approach consists of doing the standard PCA of each table Tk for k = 1, . . . ,m
where each individual is described by its kth bin for each of the p variables Other
approaches like Rodriguez et al. [13] or Ichino [7, 8] are based on the transformation
of the histograms in distributions which is not possible in the case of non ordinal
bins. Makosso Kallyth et al. [10] approach needs the same number of bins supposed
ordered for each variable. The method presented in this paper can be applied to
ordinal or nominal (i.e. non ordinal) bins with different number of bins for each
variable. We first present the so called “categorical histogram data”, we define and
build examples of metabins which join together bins taken in each variable. Then,
we present the standard PCA and the “Copular PCA” which improves the standard
one by taking care of the dependencies between the bins. We give tools for the
representation of individuals, individual × variables, individual × metabins in its
factorial space with histograms at output following in that way one of the SDA
framework principle saying that the output data have to be of the same kind than the
input data. Finally, we give tools for the representation of variables or metabins in
the correlation sphere of a PCA inside a hypercube.

2 The Categorical Histogram Data Table

The set of individuals (i.e. observations) is denoted Ω = {ω1, . . . , ωn}, the set
of the histogram value variables is Y = {Y1, . . . ,Yp}. Each variable Y j has
m j bins (i.e. categories) and is associated to its bin variables

(
Y j1, . . . ,Y jm j

)
.

The variables are such that the value of Y j for an individual ωi is Y j (ωi ) =(
Y j1(ωi ), . . . ,Y jm j (ωi )

) = (
ri j1, . . . , ri jm j

) ∈ I Rm j . Hence Y jk(ωi ) = ri jk is
the categorical histogram value of ωi for the variable Y j and its bin k. Therefore,

we have for any individual i and variable j :
m j∑

k=1
ri jk = 1. In other words we obtain

the table of Fig. 1. For example, if the data table describes the teams of the world
cup and if the variable Y j represents the nationality, the bins Y jk are associated
to countries and the individuals ωi are associated to the teams, we can have for
example:

NATIONALITY (Spanish Team) = [(0.8) Spanish, (0.1) Brazilian, (0.1) French]
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Fig. 1 Initial categorical
histogram data table

characterized by
m j∑

k=1
ri jk = 1

Y1 Yp

Y11 Y1m1
Yp1 Ypmp

ω1 r111 r11m1
r1p1 r1pmp

ωn rn11 rn11 rnp1
rnpmp

where the weights as (0.8) represent the frequencies of the nationalities in this team.
We can have two kinds of categorical histogram value variables: the “nominal” case
where the bins are not ordered as for example countries in the example of the nation-
ality variable and the ordinal case where the bins are ordered as the intervals of age
in the following example:

AGE (Spanish Team) = [(0.5)[20, 25[, (0.3)[25, 30[, (0.2)[30, 35]] .

3 Building “Metabins” by Scoring the Bins in Case of Nominal
Histogram Variables

3.1 What Are “Metabins”?

It is possible to sort the bins of nominal histogram value variables by many ways.
The simplest way is to sort the bins by the means of their frequencies on the set of
individuals. For example having:

AGE (Spanish Team) = [(0.8) Spanish, (0.1) Brazilian, (0.1) French]
AGE (French Team) = [(0.2) Spanish, (0.2) English, (0.6) French]

We get the following mean and range:

[(0.5) Spanish, (0.35) French, (0.1) English, (0.05) Brazilian].

In practice, it is more interesting to sort the bins in such a way that the first bins, sec-
ond bins etc. of all the variables be “linked” within the meaning of their (standard,
Kendall, Spearman, Guttman, etc.) correlation denoted “cor”. In Sect. 3.2 we give
examples of such criteria. We denote K = (

(k11, . . . , k1m1), . . . , (kp1, . . . , kpm p )
)

an ordered set of integers such that k js ≤ m j associated to the following bins vec-

tor:
(
(Y1k11 , . . . ,Y1k pm1

), . . . , (Ypkp1 , . . . ,Ypkpm p
)
)

which represents a reordering

of the bins of each categorical histogram variable. We call “metabin” a set of p bins
one for each variable.

Example From the table given Fig. 1 in case of p = 4, S = {Y21,Y41,Y61,Y43}is
a metabin. But S′ = {Y25,Y43,Y41,Y34} is not a metabin as two bins belong to the
same variable Y4.



6 E. Diday

3.2 Metabins Quality Criteria, Correlation or Copulas Based

Many quality criteria of metabins can be defined. We can set, for example, that the
best order of the bins is the one which maximizes the following criterion: W (K ) =

p∑

j, j ′=1

min(m j ,m j ′ )∑

m=1
cor2(Y jk jm ,Y j ′k j ′m ) which means that the “link” between the bins

in same metabin for each pair of variables must be maximized.
Another kind of criterion based on “copulas” (see the Annex for a short

recall on copulas) can be defined in the following way. First we define a joint
probability distribution Fs based on a metabin s = {Y1k1m , . . . ,Ypkpm } by
Fs(x1, . . . , x p) = Cop(G1s(x1), . . . ,G ps(x p)) where G js(x j ) = Prob(Y jk jm ≤
x j ) = card{w/Y jk jm (ω) ≤ x j }/n and Fs(x1, . . . , xp) = Prob(∩ j=1,pY jk jm

≤ x j ).
Knowing the Fs and the G js , the copula Cop can be estimated among a parametric
copula family (as the Clayton or Frank family) which allows finding Fs by just
knowing the marginals G js and a criterion to optimize. An example of criterion W
likelihood based can be written in the following way:

W (K ) =
max j (m j )∑

m=1
L(Fm) or W (K ) =

max j (m j )∑

s=1
Log(L(Fs)) where L(Fm) is the

likelihood of Fs given by L(Fm) =
n∏

i=1
Fs(Y1k1m (ωi ), . . . , Ypkpm (ωi )).

Many non parametric copulas are also possible as the “product” which

expresses independencies: Fs(Y1k1m (ωi ), . . . ,Ypkpm (ωi ))) =
p∏

j=1
Prob(Y jk jm ≤

Y jk jm (ω j )). A simpler possible choice is Fs(Y1k1m (ωi ), . . . , Ypkpm (ωi )) =
Min
j=1,p

{
Prob(Y jk jm = Y jk jm (ω j ))

}
. By using Archimedean copulas (see for exam-

ple, Nelsen [12]) many other criteria can be also used.

4 PCA for Histogram Data Table Using Copulas

4.1 The Standard PCA on Histogram Data

After having centered and reduced the initial data table given in Fig. 1, we denote
X = {Xi j }i=1,n; j=1,p its induced matrix of rows defined by the vectors Xi j =
(xi j1, xi jk, . . . , xi jm j ) for j = 1, p. Its rows can be also associated to a vector Xi

of
p∑

k=1
mk dimension, such that:

X T
i = (xi11, . . . , xi1m1 , xi21, . . . , xi2m2 , . . . , xip1, . . . , xipm p).

In other words, if the initial coordinates are denoted ri jk , we have xi jk = (ri jk −
r. jk/n)/(s jk

√
n) where r. jk/n and s jk are respectively the mean and the mean
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square of the bin variable Y jk . As the bin variables Y jk are centered and reduced

we get
n∑

i=1
Y jk(ωi ) =

n∑

i=1
xi jk = 0 and

n∑

i=1
x2

i jk = 1 for any j and k. Therefore, the

condition
m j∑

k=1
xi jk = 1 is no more available. Standard PCA can be applied to the

numerical centered and reduced data table of Fig. 1. In all the following we use the
standard formulas given in Lebart et al. [9]. We denote D a diagonal matrix p × p
where the i th term of the diagonal is a weight pi associated to the i th individual

such that
n∑

i=1
pi = 1 and we look for a vector:

Z T = (z11, . . . , z1m1 , z21, . . . , z2m2 , . . . , z p1, . . . , z pm p )

of
p∑

k=1
mk coordinates, such that

n∑

i=1
pi (Xi M Z)2, where M is a metric between indi-

viduals, be maximized for any i under the constraint Z T M Z = 1. In other words
we wish to maximize

n∑

i=1

pi Xi M Z Xi M Z =
n∑

i=1

pi Z T M X T
i Xi M Z = Z T M X T DX M Z = Z T MΓ Z = λ

where λ is a positive number and Γ = X T DX M is the standard correlation matrix

of dimension
p∑

k=1
mk ×

p∑

k=1
mk . It is easy to see that a solution of the equation

Z T MΓ Z = λ is Γ Z = λZ as Z T M(Γ Z) = λZ T M Z = Z T M(λZ). Hence, the
solution is given by the Eigen vector of Γ which maximizes λ. This Eigen vector
is called the first factor and denoted Z (1). The other best orthogonal solutions are
given by the other Eigen vectors of W and denoted Z (2), . . . , Z (p) .

In the following, in order to simplify, we consider that M is reduced to the iden-
tity matrix even if all the results can be easily generalized to any metric defined
by M . The coordinate i of the principal component F (α) is by definition the pro-
jection of the i th individual ωi on the factor Z (k). Therefore, its value is: F (α)

i =
p∑

j=1

m j∑

k=1
xi jk z(α)jk . For which it results more generally that F(α) = X Zα . The correla-

tion between each variable and each factor gives its coordinates inside the so called
“correlation sphere” of raw length equal to 1. More precisely, the coordinate of the

bin variable Yi j on the factor k is defined by: cor(Y jk, F (α)) =
n∑

i=1
xi jk F (α)

i /
√
λα .

Therefore, we get:
p∑

α=1
cor2(Y jk, F (α)) = 1. Finally this method allows the mapping

of the variables inside the correlation circle.
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4.2 The Copular PCA

In the standard PCA developed in Sect. 4.1 we have not used the fact that probabil-
ities can be associated to the frequency of each bin. If we wish to take care of that,
“copulas” are needed. In order to simplify, we suppose that D is the 1/n diagonal
matrix and M is the identity matrix. It results that Γ is the correlation matrix and so
its generic term is:

C j j ′ =
n∑

i=1

xi jk xi j ′k =
n∑

i=1

(ri jk − r. jk/n)(ri j ′k − r. j ′k/n)/(ns j s j ′).

Let Ri j be the random variable associated to the variable Y j for the individual i
such that Prob(Ri j (k)) = ri jk . We can now see that in C j j ′ there are many products
ri jkri j ′k = Prob(Ri j = k)Prob(Ri j ′ = k ′). Let H be the joint probability between
Ri j and Ri j ′ . Under the hypotheses of independence between Ri j and Ri j ′ , we get
H(Ri j = k, Ri j ′ = k ′) = Prob(Ri j = k)Prob(Ri j ′ = k′) = ri jkri j ′k . This means
that the product get a high value if both ri jk and ri j ′k are high. In practice, this is not
the case when there is no independencies between Ri j and Ri j ′ . In order to express
the joint probability in a more realistic way, we need to introduce copulas which
aim is to do the link between the marginals and the joint by the following formula
(Shweizer and Sklar (1983)), for more details on copulas see annex):

H(Ri j = k, Ri j ′ = k′) = Copθ (Prob(Ri j = k), Prob(Ri j ′ = k ′)),

where H is the joint probability:

H(Ri j = k, Ri j ′ = k′) = Prob((Ri j = k) ∩ (Ri j ′ = k ′)),

where only Cop and θ are unknown and has to be estimated. The copula Cop exists
and is unique under some hypothesis given in the Sklar theorem [15] recalled in
annex. If the initial data are the native data from which the histograms have been
build are known, and the copula family has been chosen, the parameter θ can some-
times be estimated by using the Kendall Tau between the random variables Ri j and
Ri j ′ (see Nelsen [12] for examples of such estimations).

5 Data Tables Derived from the Initial Categorical Histogram
Data Table

5.1 The Use of the Derived Data Tables

Until now we have just used the standard PCA on the normalized histogram data
table (given in Fig. 1) extended to copulas inside the correlation matrix. From the
Fig. 2 we can see that many other data tables are also involved in this framework.
The Tables 2–6 are based on the standard or copular PCA presented in Sects. 4.1
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Variables Individuals Ind. × bins Ind. × metabins Ind. × Variables
ω1 ωi ωn ω1 1 ωi k ωn mp ω1 1 ωi m ωi M ω11 ωij ωnp

Bins:
Y 11
Y jk Table1 Table4 Table5 Table6
Y pmp

Variables
Y 1 = Y1
Y j = Yj Table2 Table7
Y p = Yp

Metabins
S1
Sm Table3 Table8
SM

Fα

Fig. 2 Data tables derived from the initial categorical histogram data table

Fig. 3 Table 4 where
Y. jk(ωt.q ) = xi jk if
(t, q) = ( j, k) and equal to 0
if not

ω1 1 ωi k ωn mp

Y 11 x111 Y 11(ωi k) Y 11(ωn mp )

Y jk xi jk

Y pmp Y pmp (ω1 1) Y pmp (ωi k) xnpmp

and 4.2. For example, the table 4 is detailed in Fig. 3. They allow the representation
of supplementary individuals and variables as will be shown in Sect. 5.2.

5.2 Representation of Supplementary Individuals, Variables
and Metabins

The idea is here to use the tables shown in Fig. 2 in order to represent inside the
standard or copular PCA of Table 1, the contribution of bins, variables or specific
individuals by using the table 2–6. More precisely, we use the Table 2 for the pro-
jection of the variables Y j , the Table 3 for the projection of the metabins Sm , the
table 4–6 respectively for the projection of the Individual × bins, the Individual ×
Variables and the Individual × Metabins. We use table 2 for the representation of
new variables on the principal components F (α) .

5.3 Representation of the Variation of the Individuals According
to the Bins, the Metabins and the Variables

The table 4 expresses the Cartesian product between the individuals and the bins
described by the bins. In this case the coordinate on the factor Z (α) of the individual
ωi × ( j, k) associated to the initial observation ωi and the bin k of the variable Y j

is xi jk z(α)jk .
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Hence, each individual wi can be considered as the mean center of the projections

of M =
p∑

j=1
m j bins such that: Projα

(
wi × (k, j)/Z (α)

) = Mxi jk z(α)jk for all the

M bins on the factor Z (α). This is easily proved as we know that Projα
(
wi/Z (α)

) =
p∑

j=1

m j∑

k=1
xi jk z(α)jk is the projection of ωi on the factor Z (α) and therefore, we get:

Mean
{

Projα
(
ωi × (k, j)/Z (α)

)
/j = 1, p, k = 1,m j

}

=
p∑

j=1

m j∑

k=1
Projα

(
ωi × (k, j)/Z (α)

)
/M = Projα

(
ωi/Z (α)

)
.

In practice, in order to avoid too many points we can select the projection of the
bins according to a given variable or to a given metabin.

The table 5 expresses the Cartesian product between the individuals and the
metabins described by their bins. In this case, the coordinate on the factor Z (α)

of the unit ωi × Sm associated to the initial observation ωi and the metabin Sm

is:
p∑

j=1
xi jk jm z(α)jk jm

. Hence, each observation ωi according to the metabin Sm among

the K Max = Maxi mi metabins can be represented by a supplementary individual

denoted ωi × Sm of projection: Projα
(
ωi × Sm/Z (α)

) = KMax

p∑

j=1
xi jk jm z(α)jk jm

on

the factors Z (α). The product by M in the preceding formula leads to

Mean
{

Projα
(
ωi × Sm/Z (α)

)
/j = 1, p

} =
=

K Max∑

m=1
Projα(ωi × Sm/Z (α))/KMax = Projα

(
ωi/Z (α)

)

and so it results that the projection of ωi on Z (α) is the mean center of the projections
of the supplementary individuals denoted ωi × Sm for k = 1, KMax on Z (α).

The table 6 expresses the Cartesian product between the individuals and the vari-
ables described by the bins. In this case, the coordinate of the unit ωi×Y j associated

to the initial individual ωi and the variable Y j is
m j∑

k=1
xi jk z(α)jk . Hence, each individual

ωi according to the variable Y j can be represented by p supplementary individu-

als denoted ωi × Y j of projection: Projα
(
ωi × Y j/Z (α)

) = p.
m j∑

k=1
xi jk z(α)jk on the

factors Z (α). As in the preceding cases, it results that

Mean
{

Projα
(
ωi × Y j/Z (α)

)
/j = 1, p

}

=
p∑

j=1

Projα
(
ωi × Y j/Z (α)

)

p
= Projα

(
ωi/Z (α)

)
.

Hence, the projection of ωi on Z (α) is the mean center of the projections of the
supplementary individuals ωi × Y j for j = 1, p on Z (α).
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Fig. 4 Examples of “histogram stars” of bins or of variables where the sum of the length of the
radius is 1 and the center is the projection of the individual is ωi (Vex in the example)

5.4 “Histogram Stars” Associated to the Bins, the Metabins or the
Variables, as Output of the PCA

We have seen in the preceding section that the representation of the individuals ωi
can be considered as the mean center of the M supplementary individuals × bins
ωi × (k, j), of the KMax supplementary individuals × metabins ωi × Sm or of the
p supplementary individuals × variables ωi × Y j . These properties can be used in
order to get a categorical histograms in output. In that way, we introduce the so
called “histogram stars” (see Fig. 4). The centers of these stars are the projection of
the n individuals ωi on the factorial space and their vertices are the M projections of
the ωi× bins or the p projections of the ωi× variables or the KMax projections of
the ωi × metabins such that the sum of the length of the radius of each star equal 1
(that is why such stars are called “histogram stars”). For example, in the case of the
stars whose vertices represent the ωi× bins and the center represents the individual
ωi we can get them in the following way: we denote Ai for i = 1, n the projection
of the ωi in the factorial space and Bk the projection of the M individual × bin in
the same space. It is then easy to join Ai to the Bk and to divide the length of each
radius by the sum of the length of all the Ai Bk when k = 1, M in order to get a
star as the ones shown in Fig. 4 where the sum of the length of the radius is equal
to 1. In the Fig. 4 an individual × bin (resp. individual × variable or individual ×
metabin) is represented by just the name of the bin (resp. the name of the variable
or the name of the metabin) as there is no ambiguity. Knowing the meaning of the
factorial axis, the directions of the radius of these stars in the factorial space can
enhance the interpretability of the categorical histogram PCA (standard or copular)
for each chosen individual.

5.5 Representation of the Symbolic Variables in a Hypercube

We represent a variable Y j on F (α) by a weighted sum of the projection on each
factor of the m j bins of this variable. This weighted sum corresponds to the projec-

tion of the observations on the factor Zα restricted to the bins of Y j . Hence, Y (α)
j is

defined by:
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Y (α)
j =

m j∑

k=1

z(α)jk Y jk . (1)

More precisely Y (α)
j can be written Y (α)

j = (Y (α)
1 j , . . . , Y (α)

nj )T where Y (α)
i j =

m j∑

k=1
xi jk z(α)jk for i = 1, n. We can then calculate the correlation between Y (α)

j and

F (α) defined by:

Cor
(

Y (α)
j , F (α)

)
= Y (α)

j F (α)/
(
|Y (α)

j | · |F (α)|
)

(2)

Lemma The projection of the bins on the principal component F (α) is given by

Y jk F (α) = λαz(α)jk (3)

Proof The projection of the bins on the principal component F(α) is given by the
matricial product X ′F (α). As F (α) = X Zα we have X ′F (α) = X ′X Zα = λαZα

which implies X ′F (α) = λαZα . As Y jk and z(α)jk are respectively the kth row of X ′

and of Zα , we get Y jk F (α) = λαz(α)jk .

Proposition

Cor
(

Y (α)
j , F (α)

)
= √λα

m j∑

k=1

(
z(α)jk

)2
/

√√√√
n∑

i=1

(
Y (α)

i j

)2
/n (4)

Proof We have

Y (α)
j F (α) =

m j∑

k=1

z(α)jk Y jk F (α) from (1)

Y (α)
j F (α) =

m j∑

k=1

z(α)jk

(
λαz(α)jk

)
from (3)

Therefore

Y (α)
j F (α) = λα

m j∑

k=1

(
z(α)jk

)2
(5)

Knowing that

|F (α)| = √λα (6)
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and

|Y (α)
j | = σ

(
Y (α)

j

)
(7)

with σ 2
(

Y (α)
j

)
=

n∑

i=1

(
Y (α)

i j

)2
/n where Y (α)

i j =
m j∑

k=1
xi jk z(α)jk due to the fact that Y (α)

i j

is centred as linear combination of centred variables. By replacing in (3) the formu-

las (5), (6) and (7) we get Cor
(

Y (α)
j , F (α)

)
= λα

m j∑

k=1

(
z(α)jk

)2
/
(
σ
(

Y (α)
j

)√
λα

)
.

From which results (3).

The “symbolic hypercube”: From this proposition, it is possible to asso-
ciate a “global” vector OG j to each symbolic variable Y j . This vector OG j
is defined by its coordinates on the principal components axes F (α) which

value is Cor
(

Y (α)
j , F (α)

)
. In other words OG j =

(
Cor

(
Y (α)

1 , F (α)
)
, . . . ,

Cor
(

Y (α)
p , F (α)

))
. Therefore, each coordinate of this vector varies between −1

to 1 and therefore the vectors OG j are inside the hypercube of p dimension whose
projection on each plane defined by two axes F (α), F (β) is a square with vertices of
coordinates (1, 1), (−1, 1), (−1,−1), (1,−1). This hypercube is called “symbolic
hypercube” as it contains the symbolic variables.

6 Conclusion

We have presented a set of open directions of research for methods allowing the
extraction of several kinds of information from a categorical histogram data table.
We have shown that standard PCA can be applied but loose the probabilistic aspect
of these kind of data due to its underlying assumption of independency between the
bins. The copular approach solves this question by allowing the estimation of other
models closer from the data. Copular approach can be applied to ordinal histogram
data and has to be extended to standard numerical histograms and more generally
to distributions of functional data. We have also given ways for the representation
of individuals, individuals x variables, individuals × metabins at the vertices of
what has been called “histogram stars”. For the representation of the categorical
histogram variables, we have provided new theoretical results allowing their repre-
sentation in a hypercube of the correlation PCA space. This work open doors for
solving the difficult question of PCA on nominal histogram data but much remain
to be done to improve in practice the proposed directions.

Annex

Definition of a k-copula (Schweizer and Sklar [14], Nelsen [12]): A k-copula is a
function C from [0, 1]k to [0, 1] with the following properties:
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1. for every u in [0, 1]k , C(u) = 0 if at least one coordinate of u is 0;
2. if all coordinate of u are 1 except u∗ then C(u) = u∗;
3. the number assigned by C to each hyper-cube [a1, a2] × [b1, b2] × . . .× [zk, zk]

is non negative.

For example, in two dimensions (k = 2), the third condition gives: C(a2, b2) −
C(a2, b1) − C(a1, b2) + C(a1, b1) ≥ 0. In the following, we denote RanG as the
range of the mapping G. Sklar [15] gave the following theorem:

Theorem Let H be a k-dimensional distribution with marginal distributions
G1, . . . ,Gk. Then there exists a k-copula C such that for all (x1, . . . , xk) ∈ [0, 1]n,

H(x1, . . . , xk) = C(G1(x1), . . . ,Gk(xk)). (1)

Moreover, if G1, . . . ,Gk are continuous, then C is unique; otherwise C is uniquely
determined on RanG1 × . . .× RanGk. Conversely, if G1, . . . ,Gk are distribution
functions and C is a copula, the function H defined by (1) is a k-dimensional distri-
bution function with marginal distributions G1, . . . ,Gk.

Parametric families of copulas: the most simple copulas denoted M , W and Π

are M(u, v) = min(u, v), Π(u, v) = uv and W (u, v) = max(u + v − 1, 0).
These copulas are special cases of some parametric families of copulas as the
followings: Cb(u, v) = max([u−b + v−b − 1]−1/b, 0) discussed by Clayton [4]
has the following special cases: C−1 = W , C0 = Π , C∞ = M . Frank [6] has
defined Cb(u, v) = −1/b ln

(
1+ (e−bu − 1

) (
e−bv − 1

)
/
(
e−b − 1

))
which has

the following special cases: C−∞ = W , C0 = Π , C∞ = M . We denote τ the
Kendall tau between Ri j and Ri j ′ .The Clayton family is defined by Copθ (u, v) =
max

((
u−θ + v−θ − 1

)−1/θ
, 0
)

where θ ∈ [−1, 1]/0 and θ = 2τ/(1 − τ). Many

other copulas families are defined in Nelsen [12].
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Factorial Conjoint Analysis Based
Methodologies

Giuseppe Giordano, Carlo Natale Lauro, and Germana Scepi

Abstract Aim of this paper is to underline the main contributions in the con-
text of Factorial Conjoint Analysis. The integration of Conjoint Analysis with
the exploratory tools of Multidimensional Data Analysis is the basis of different
research strategies, proposed by the authors, combining the common estimation
method with its geometrical representation. Here we present a systematic and uni-
tary review of some of these methodologies by taking into account their contribution
to several open ended problems.

1 Introduction

Conjoint Analysis [15, 16] is one of the most popular statistical technique used in
Marketing to elicit preference functions at both individual and aggregate level. Con-
joint Analysis (CA) is a methodology based on several steps starting from designing
the experiment, collecting data, estimating the model and, finally, using the results
for market segmentation or product positioning.

Since the early 1970s, this technique has known an even wider diffusion in dif-
ferent applicative fields, ranging from Trading to Health, from Agriculture to Food
Industry, among others. One of the most recent field is Regulatory Impact Analysis
where the aim is to set the ideal regulation among alternative policies [24].

In the 1998, Lauro et al. [18] proposed the use of Principal Component Analysis
in order to manage dependent and explanatory variables in Conjoint Analysis. In
such approach, the traditional interpretative tools of multidimensional techniques
enhance the classical CA results. The underlying thought is that individual part-
worth coefficients derived for each respondents can be aggregated in a set of com-
mon latent utility models, arranged in decreasing importance with respect to their
explicative power (see Sect. 3).

Starting from this approach, different methodologies have been then developed
and applied in the framework of Multidimensional Data Analysis. Aim of this paper
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is to present a systematic and unitary review of these methodologies by taking into
account their contribution to several open ended problems: (i) to obtain homoge-
neous groups of respondents (ii) to take into account information on the respon-
dents not included in the Conjoint models, and (iii) to consider multiple criteria as
response variables.

The paper is structured as follows: in Sect. 2 we refer to the Metric Conjoint
Analysis model as the baseline of all successive methods. In Sect. 3 it is shown
how the data structure considered in Metric Conjoint Analysis can be analyzed
in the framework of exploratory multidimensional data analysis and how to read
and interpret the factorial maps as preference map. In Sect. 4, it is considered the
opportunity to enrich the original data structure with information about respondents.
This new data set is introduced and analyzed by a new specification of the Conjoint
model considering the preference system influenced by both the stimuli features and
the consumer characteristics.

Thus, in order to derive ex-post cluster of homogeneous set of respondents, a
peculiar approach is discussed in Sect. 5. It starts from the results of the facto-
rial decomposition in order to derive global and local utility models. Finally (in
Sect. 6), we address the problem of a multi-criteria approach to Conjoint Analysis
by introducing a data structure allowing to take into account multiple set of response
variables. Some conclusions and future directions are in the Sect. 7.

2 The Metric Approach to Conjoint Analysis

As starting point, we look at the metric approach to Conjoint Analysis. This allows
us to consider a well defined data structure that can be analyzed with a multivariate
multiple regression model, where the response variable is measured at interval scale
and OLS estimation method is applied.

For instance, we consider the role played by two sets of variables: the dependent
variables in the matrix Y (N×J), and the explicative ones in the design matrix X of
size N × (K − k), where N is the set of Stimuli, J is the number of judges, i.e.
the preference responses, and k is the number of experimental factors expanded in
K attribute-levels. Let us notice that one dummy category has been dropped out for
each attribute to obtain a full rank matrix design.

The Metric Conjoint Analysis model is written as the following multivariate mul-
tiple regression model:

Y = XB+ E (1)

where B is the (K − k)× J matrix of individual part-worth coefficients and E is the
(N×J) matrix of error terms for the set of J individual regression models.

Indeed, the simultaneous computation of the elements of the coefficient matrix
B yields the same results as a set of J separate multiple regression models, since
the relationships within the multiple responses are not involved in the ordinary
least squares method. The OLS is seen here as a decompositive technique because
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the classical assumptions on the errors are disregarded in Conjoint Analysis. Typi-
cally, some holdout runs are used to assess the internal validity of the model. Since
researchers often deal with complex stimuli, where a large number of attributes and
levels are involved, the use of saturated models is often necessary as a screening
study.

Focusing on the quantitative nature of the response variables (preference rating),
on the qualitative featuring of the design matrix (dummy variables) and because of
the simple reading of the part-worth coefficients computed as average effects, the
metric approach to Conjoint Analysis is the most used one. This model is at the
basis of the methodologies proposed in the following sections.

3 The Factorial Conjoint Analysis

The Multidimensional Approach to Conjoint Analysis aims at improving the inter-
pretation of the traditional results of this technique by proposing a new reading in the
context of Exploratory Data Analysis. The main advantage is to obtain a graphical
visualization of the relationships between the preference judgments (dependent vari-
ables) and the attribute-levels (independent variables) represented onto a common
space.

Different techniques have been proposed in order to take into account the dimen-
sion reduction aspect of the model stated in Eq. (1). Among others, we mention the
Reduced-Rank Regression Model [1, 17]; the Principal Component of Instrumental
Variables [20]; the Simultaneous Linear Prediction Modeling [10]; the Redundancy
Analysis [25] and the Principal Component Analysis on a Reference Subspace
[5, 6]. The peculiarity of all these techniques is the possibility to link the compu-
tational aspects of the regression coefficients with the descriptive and interpretative
tools of principal component or canonical variates.

Here we refer to the Principal Component Analysis on a Reference Subspace
(PCAR). We consider the asymmetric role played by the two sets of variables (pref-
erences and attributes) involved in multiattribute preference data. Note that in mul-
tidimensional data analysis asymmetry refers to the different role played by two or
more set of variables when we observe a particular phenomenon. In this context, we
highlight the dependence relation between the set of the J preference response vari-
ables and the set of the (K − k) attribute–levels described in the design matrix. This
technique allows to summarize the multivariate set of preference response variables
by performing a Principal Component Analysis of the matrix XB – stated in model
(1) – and equivalent to:

Ŷ ≡ XB = X(X′X)
−1X′Y (2)

The individual part-worth coefficients are aggregated by means of a suitable
weighting system (the PCAR coefficients) reflecting the preference variability:
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B′X′XBuα = λαuα α=1,...,(K−k) (3)

It is worth noting, by comparing expression (1) and (3), that the criterion opti-
mized with PCAR (i.e. preference variance accounted by attribute-levels) is fully
consistent with the metric Conjoint Analysis data structure. Namely, we define this
method as Factorial Conjoint Analysis (FCA).

The PCAR geometrical interpretation allows to enrich even more Conjoint Anal-
ysis by joint plots of attribute-levels, judges and stimuli on the first two or three
factorial axes. Additional information on judges (e.g. a priori cluster or social-
demographic characteristics) can also be shown on the plot.

Traditional interpreting tools of Conjoint Analysis can be read in the context of
multidimensional data analysis too. For instance, the relative importance of each
attribute are derived by looking at the range of the attribute-level coordinates on
each factorial axis. Each factorial axis is a synthesis of the preference variables.
They describe the preference of a homogenous subset of respondents towards the
attribute levels. The first factorial axis determine the maximum agreement system
within judges while the successive ones establish alternative preference patterns of
judges subsets.

Considering the expression (2), the principal axes of inertia are obtained as solu-
tion of the following characteristic equation under orthonormality constraints:

Ŷ′Ŷuα = λαuα u′i ui=1; u′i u j=0 {i, j}∈α=1,...,(K−k); (4)

which is a Principal Component Analysis of the matrix Ŷ.
The eigenvectors uα are the weights for the J respondents in the aggregated pref-

erence model:

¯̂Yα = X(X′X)
−1X′Yuα = XBuα (5)

Since there are at most (K−k) different weighting systems with decreasing order of
importance, we refer to α = (1, 2) as the principal judgment system and define the
first factorial plan as a Preference Scenario. The (5) is used in computing the coor-
dinates of the N stimuli. The holdouts stimuli can be represented as supplementary
points Y+:

Coor(Y+) = X+Buα (6)

where X+ are the X rows containing the attribute levels combinations describing
any new products. The coordinates of the attribute-levels are:

Coor(X) = (X′X)−1/2X′Yuα (7)

The level coordinates in Eq. (7) are computed as linear combination of the individual
part-worth coefficients and assuming the relation between judge and factorial axis
as weighting system (i.e. the vector u), they represent different synthesis of the
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estimated part-worth coefficients. In this way, we obtain different synthesis of the
individual estimates instead of the unique average which is traditionally considered.

The coordinates of the J respondents are:

Coor(Y ) = √λαuα (8)

which give the directions where pointing out the individual preference models.
The most important feature of this approach is the possibility to synthesize the

part-worth coefficients in an optimal way according to hierarchical patterns of pref-
erences.

The advantage of this technique with respect to similar approach, carried out
by means of Multidimensional Scaling techniques, is the possibility to recover and
interpret the different role of all the objects involved in the analysis (e.g. Stim-
uli, Attributes, Levels and Preference Scores). Furthermore, holdout stimuli not
involved in the analysis can be represented as supplementary points on the factorial
plan which is here interpreted as a Preference Map.

4 The FCA with Two Informative Structures

In the multivariate regression model introduced in Eq. (1) we have considered
two groups of variables: a set of dependent variables (in Y), judges’ preference,
described by a set of explicative variables (in X) which are the dummy coded
attributes of the stimuli.

In Marketing, for example, with the aim of defining a peculiar market strategy,
consumers can be a-priori classified on the basis of several socio-demographical
characteristics. Starting from this point of view, it is possible to undertake the
Taguchi’s categorization between controllable versus noise factors proposed in
Design of Experiment for Total Quality Control and introduce it in Preference Data
Analysis [12]. In particular, the set of a-priori information on judges can be con-
sidered as external factors and the attribute-levels describing different stimuli as
controllable or internal factors. Therefore, it is possible to introduce the data matrix
Z of size (H − h) × J , holding socio-demographical characteristics (h nominal
variables expanded in full disjunctive binary coding) observed on J judges.

We refer to the design matrix X as internal informative structure or Inner Array
in Taguchi’s notation. while the matrix Z can be seen as external informative struc-
ture or Outer Array. With the aim of studying the relationships between the two
different informative structures, the influence of these two kinds of information on
the response variables and, finally, the relationships within each data structure, an
extension of the Factorial Conjoint Analysis approach has been applied.

In particular, the two data matrices can be regarded as two different sets of
explicative variables in two separated multivariate regression models. The first one
is the model (1) above defined and the second one is defined by considering the
respondents as statistical units in the model:
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Y′ = Z′D+ F (9)

where D is the (H − h) × J matrix of coefficients and F is the (J × N ) matrix of
error terms. In order to relate the information of the two designs (X and Z′ and their
own effects on the values in Y, the coefficients matrices B and D have been used in
the models (10) and (11) which share common solutions in the matrix Θ .

B̂ = Z′Θ + V (10)

D̂ = XΘ ′ +W (11)

where V and W are the corresponding matrices of error terms. The generic ele-
ments of [(H−h)×(K−k)] can be regarded as a coefficient showing the relationship
between the two sets of explicative factors. The common OLS solution for Θ is:

Θ̂ = (ZZ′)−1ZY′X(X′X)−1. (12)

In order to synthesise and represent the information in Θ , the Singular Value
Decomposition SVD) with respect to two different metrics [13] allows to produce a
factorial plan where to show the relationships between the users’ characteristics and
the service features.

This approach allows us to enrich the results of Conjoint Analysis by considering
the elements of Θ as inter-reference coefficients while the elements of B and D can
be regarded as intra-reference coefficients.

The coefficients in B are useful to answer to questions as: What happens if we
substitute an attribute level with another one?

The coefficients in D answer to: How a category of respondents value a prod-
uct/service with respect to another category? The Θ coefficients help the researchers
to answer at question as: What is the effect of changing the attribute level when we
target a peculiar category of respondents?

In this way, for example, we may simulate potential market segments charac-
terised by both consumers and products characteristics.

5 Cluster Based Factorial Conjoint Analysis

The results obtained by Factorial Conjoint Analysis (see Sect. 3) give an aggregate
model derived by the total variability within preference judgments. Let us note that
judges are represented as variables (judge-vectors) in the FCA subspace.

Starting from FCA results, a strategy which alternates steps of factorial analyses
and clustering procedures is proposed in Lauro et al. [19].

With the aim of defining utility models for homogeneous group of judges, we
used a method of variables clustering that split the set of judgements into hierarchi-
cal clusters. In a Customer Satisfaction strategy, for example, the obtained classes
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can be considered as market segments and specialized products are offered to these
segments in order to maximize customer satisfaction.

Therefore, for each class a local utility model is derived. Thus, in order to define
an aggregate model coherent with the local models and, at the same time, reflecting
the preferences of most judges, a weighted PCA is carried out. This analysis aims
to synthesize the local preference models in a single model by considering both the
number of units in a class and their variability. In this way, the final synthesis put
emphasis on more homogenous and larger classes. As a result, this aggregate model
is different from the initial aggregate model furnished by the first axis of the FCA;
it gets the information from the classes for defining an ideal scenario representative
of the preferences of most respondents.

Indeed, each factorial axis obtained through Eq. (3) is a synthesis of the whole
set of J preference models. According to standard PCA interpretation rules, vector-
variables pointing in the same direction are highly correlated and represent similar
preference. Starting from results shown in Eq. (8), a variable clustering (i.e. the
VARCLUS procedure of the SAS/Stat system) is performed, so that the individual
judgments are aggregated to form homogenous classes. For each class, a local utility
model is derived and a standardized scoring coefficient is assigned to each variable
to determine the membership to the class. In this step the number of members in
each class and a measure of variability explained by each class is also retained.
The number of classes C is chosen by exploring the tree structure (dendrogram)
or can be set ex ante by the researcher. In a further step we use this information to
derive an optimal aggregated utility function, as a synthesis of the local models. The
aggregated model is different from the initial PCAR results because it takes into
account the relationships among clusters instead of individual judgments. At this
aim it is defined the matrix S (J × C) holding the standardized scoring coefficients
for each judge, and the diagonal weighing matrix W(C×C) of generic term defined
as:

wc= jc/σc∑

c
jc/σc

; c=1,. . .,C; 0≤wc≤1;
∑

c
wc=1 (13)

where jc is th number of judges in the cth class and σc is the variability explained by
the cth class. By considering the initial coefficients B, a weighted Principal Compo-
nent Analysis is defined by the following eigen-equation:

WS′B′BSvα = υαvα (14)

where the υα are the eigenvalues associated to the corresponding eigenvectors vα .
The matrix product BS [(K − k) × C] retrieves the importance of each part-worth
coefficients in the C segments.

The first principal component obtained by the (14) represents a synthesis of the
local preference models. So the new aggregate model can just defined by consid-
ering this component. We highlight that the weighing matrix W used in Eq. (14)
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allows to stress on local models with a large number of units (all judges sharing
the same model) and allows to give importance to more homogeneous clusters (i.e.
market segments).

Therefore, the direction of the new principal component depends on (i) the cor-
relations between the local models; (ii) the size and (iii) the variability within the
clusters.

The main results of this strategy are:

• the definition of local preference models;
• the definition of a synthesis model taking into account the local preference

models;
• the graphical representations of preferences of both the local and the aggregate

models as useful tools for interpreting results.

The local preference models allow to represent utility functions for subset of
respondents. For example, in marketing, they could be very useful to establish a
marketing specialization strategy. The global preference model is complementary to
the average model and to the principal component model. The more homogeneous
is the market as a whole, the more the syntheses will tend to the average model. In
presence of strong variability among the judgements the principal component model
improve the average model. Whereas there exists subsets of consumers that define
market segments, the global model is the best suited for a covering market strategy.
The graphical representation allows to better visualize the results of the Conjoint
experiment and simulation study for product positioning and market simulation.

We warn that internal validity should always achieved by cross-validation tech-
niques, and more important in application fields, the actual use of the methods
should produce feedback information to assess external validity and reliability of
results.

6 Multi Criteria Factorial Conjoint Analysis

The developments of Conjoint Analysis discussed above are defined on the con-
cept of utility function and applied in the context of Marketing Research, Cus-
tomer Satisfaction and Customer Relationship Management. Recently, the concept
of function of value has taken new meanings. Since one cannot measure utility
directly, and attempts to derive it based on preferences (Conjoint Analysis relies
on the Neumann-Morgenstern theory) could not work because the idea of utility is
ambiguous in Social Choice theory where you are speaking about what is useful to
society in general. Anyway, Which are society values? and What do you value for
society? In general, different criteria could be taken into account when evaluating
some concepts from the socio-political point of view. In this view, we think that
Conjoint Analysis can be easily adapted to understand the importance (or value) of
different attribute-levels in defining a new product/service, as well as a new policy or
politics [24]. All we need, is a value system, different from Utility, able to describe
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the new concept. Some example are the Efficacy or the Sustainability in a broader
sense. The definition of such analytical functions and their estimates through the
use of the Conjoint Analysis approach, will provide a new tool for comparing and
evaluate the gaps between what is expected and what is possible to get.

We plan and administer a questionnaire for collecting simultaneously opinions of
same judges on a set of stimuli on the basis of m different criteria such as expected
benefits, expected utility, strategic priority, and so on.

With this aim, we extend the metric model of Conjoint Analysis (1) by introduc-
ing several response matrices:

⎧
⎪⎨

⎪⎩

Y1=XB1+E1
...

Ym=XBm+Em

(15)

where Bm is the coefficient matrix related to the mth criterion and Em is the corre-
sponding error matrix. Therefore, m sets of OLS part-worth coefficients have been
calculated by considering each single criterion separately. Let us notice that the
Design Matrix X is the same in the m criterion.

We are interested in define a similarity measure among the J judges with respect
to the m criteria simultaneously. A straightforward approach is to carry out the Fac-
torial Conjoint Analysis on a given criterion and then project (as supplementary
points) on the obtained subspace the others m−1 criteria. However, this choice has
several issues because of the subjectivity of the reference criterion and the absence
of a reference subspace where all criteria play an equal (as well as weighted) role.

Different methods allow to face with these issues. They aim at obtaining a syn-
thesis of the multiple criteria directly on a factorial plan. From the others, we refer
to STATIS [9], Principal Matrices Analysis [4, 21] and Multiple Factorial Analysis
[8] and, from a non-symmetrical point of view, to an extension of PCAR [5] and to
a non-symmetrical version of Principal Matrices Analysis [3], which considers the
case of multiple observational designs.

The Multi Criteria Factorial Conjoint Analysis deals with a peculiar data struc-
ture where the design matrix is the same in the different occasions while the
response matrix changes. Therefore, we propose to apply the MFA to the coefficient
matrices Bi (i = 1, . . . ,m) and (according to Eq. 2) to interpret it in the frame of a
non-symmetrical data analysis.

Multiple factor analysis analyzes observations described by several “blocks” or
sets of variables. MFA seeks the common structures present in all of these sets. MFA
is performed in two steps. First a principal component analysis (PCA) is performed
on each data set which is then “normalized” by dividing all its elements by the
square root of the first eigenvalue obtained from each PCA. Second, the normalized
data sets are merged to form a unique matrix and a global PCA is performed on this
matrix. The individual data sets are then projected onto the global space to analyze
communalities and discrepancies.
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In analogy with MFA, we carry out m PCA’s, one for each separated criterion,
and the first eigenvalue is retrieved. So we normalize each Bm(i = 1, . . . ,m) and
juxtapose them in order to obtain a unique matrix. A global PCA is performed
on this matrix. In this way a synthesis of the coefficients related to all criteria
is achieved. On this common plan, we can compare the different criteria and we
can project the judges for analyzing their differences and similarities respect to the
different criteria. The relationships among the different criteria and between the
criteria and the global solution can be analyzed by computing the partial inertia of
each analysis for each dimension of the global analysis. In this way we are able to
understand the importance of each criterion in the definition of the global solution
and we can define the ideal combination of attribute-levels (product, service, policy
and so on) by selecting the levels with the larger coordinates on the global plan.

7 Some Conclusions

Different other contributions to Factorial Conjoint Analysis have been proposed
by the authors with different aims and from different perspectives [2, 7, 11, 23].
A further development consists in searching a new distance for comparing metric
Conjoint Analysis models. In particular, Romano et al. [22] define an inter-models
distance which takes into account both the analytical structure of the model (through
coefficient deviations) and the information about the model fitting (through the dif-
ference between the adjusted R2 related to each pair of models). The so defined
Model Distance is parameterized by a trimmer value that allows to take into account
the extent to which the model fitting enter in the definition of the distance. This new
metric allows to cluster judges in terms of individual models by taking into account
both the information on the structural component of the model and on the error term.
As Green et al. [14] say:

[. . . ] despite its maturity, conjoint analysis is still far from stagnant, because the methods
deal with the pervasive problem of buyer preferences and choices.

In this point of view, we think that new methodological development and appli-
cations can be performed in Factorial Conjoint Analysis context. In particular, it
will be interesting to investigate the possibility to extend the proposed methods to
different structures of data, such as for example, interval value data.
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Ordering and Scaling Objects in Multivariate
Data Under Nonlinear Transformations
of Variables

Jacqueline J. Meulman, Lawrence J. Hubert, and Phipps Arabie

Abstract An integrated iterative method is presented for the optimal ordering and
scaling of objects in multivariate data, where the variables themselves may be trans-
formed in the process of optimizing the objective function. Given an ordering of
objects, optimal transformation of variables is guaranteed by the combined use of
majorization (a particular (sub)gradient optimization method) and projection meth-
ods. The optimal sequencing is a combinatorial task and should not be carried out
by applying standard optimization techniques based on gradients, because these are
known to result in severe problems of local optima. Instead, a combinatorial data
analysis strategy is adopted that amounts to a cyclic application of a number of
local operations. A crucial objective for the overall method is the graphical display
of the results, which is implemented by spacing the object points optimally over
a one-dimensional continuum. An indication is given for how the overall process
converges to a (possibly local) optimum. As an illustration, the method is applied to
the analysis of a published observational data set.

1 Introduction

In this paper we consider a set of iterative methods that are integrated to perform
a particular data analysis task. The available data will typically consist of nonnu-
merical variables, e.g., ordinal variables that provide an ordering for the objects, or
nominal variables that group the objects into a limited number of classes. In either
case, the distances between distinct pairs of the objects are unknown and have to be
recovered as part of the overall optimization process. For such data, we require the
results of the analysis to be invariant under one-to-one nonlinear transformations of
the variables.

We focus on the analysis of an n × m multivariate data matrix Q =
{qi j }1≤i≤n,1≤ j≤m , where n denotes the number of objects in the rows of the matrix
and m denotes the number of variables in the columns. Later, the columns of Q
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will themselves be assumed constructed by transformations on the columns of an
originally given n × m data matrix Z, but for the moment we phrase our presenta-
tion solely in terms of the data matrix Q. The relationship between the objects is
defined by Euclidean distances between the rows of the data matrix Q, and these
are collected into an n × n proximity matrix P = {pik}1≤i,k≤n , having entries pik

(= pki ≥ 0, and pii = 0). Thus, pik represents the proximity between the objects Oi
and Ok , where a large value corresponds to a small similarity and a large distance,
and can be given explicitly as:

pik ≡
√

d2
ik(Q) ≡ √(ei − ek)′QQ′(ei − ek) , (1)

with ei denoting the i th column vector of the n × n identity matrix I, and d2
ik(Q)

the squared Euclidean distance between Oi and Ok . The basic data analytic prob-
lem is to represent the (high-dimensional) proximities between objects by distances
between object points in a low-dimensional representation space X of order n × s,
for some suitably chosen value of s.

There are numerous approaches that could be considered if the representation
space X has s ≥ 2 dimensions. (We mention these very briefly; details can be found
in [22].) One of these is the classical approach usually associated with Torgerson
[30] and Gower [9], which is an eigenvalue technique based on Young and House-
holder [37]. Here a scalar product matrix R, constructed by taking −1

2 the double-
centered squared proximities, is approximated by another scalar product matrix of
lower rank XX′. To optimize the approximation by using distances D(X), and not
scalar products XX′, gradient [16, 17, 23, 24], subgradient [5, 10], and majorization
methods [6] have been developed to minimize iteratively the objective function

ST RE SS(X) = ‖P− D(X)‖2, (2)

over X in s < r dimensions, and where ‖·‖ denotes the usual Frobenius (Euclidean)
norm. Basically, these methods are variations (with fixed or optimal stepsizes) of
iteratively computing a successor configuration X+ for X of the same order, and
satisfying

‖P− D(X+)‖2 ≤ ‖P− D(X)‖2, (3)

for fixed X. Kruskal [16, 17] proposed a gradient method and re-estimated a step-
size γ in each iteration. The method proposed by Guttman [10] implicitly used the
same algorithm, but with a fixed stepsize. (Again, see Meulman, Hubert, and Arabie
[22] for details regarding these candidate successor configurations.) De Leeuw and
Heiser [5] showed that the procedure proposed by Guttman is equivalent to a sub-
gradient method, and a convergence proof was given, while De Leeuw and Heiser
[6] interpreted the associated update X+ as a majorization procedure, and offered a
new, alternative convergence proof.
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2 Our Data Analytic Problem

In the present paper, we use a set of iterative methods that are integrated to minimize
the objective function

ST RE SS(Q; x; c) = ‖D(Q)+ c − D(x)‖2. (4)

Here, the vector x defines a one-dimensional scale to be fitted to the proximities
in D(Q), and c is a constant to be estimated; D(·) contains Euclidean distances
di j (·) according to (1) between all objects i and j , i, j = 1, . . . , n. Q denotes the
data matrix, with columns allowed to be transformed according to a prespecified
transformation level. For ordinal data, the transformation level would typically be
monotonic, using either the full parameter space, or a monotonic spline function
with a prespecified degree and number of interior knots.

The combination of multivariate analysis and optimal scaling (i.e., exchanging
the variables in Z with a set of transformed variables in Q), has a long history in
psychometrics. The major impetus was the extension of the loss function in (2)
to include optimization over only the ordinal information present in the proximi-
ties in P, an approach pioneered by Shepard [27, 28] and Kruskal [16, 17]. Sub-
sequently, the principle of optimal transformation was transferred from proximity
data to multivariate data, with optimal scaling of the variables instead of the prox-
imities. Selected highlights from the early psychometric literature on optimal scal-
ing include Kruskal [18], Shepard [29], Roskam [26], De Leeuw [4], Kruskal and
Shepard [19], Young, De Leeuw, and Takane [38], Young, Takane, and De
Leeuw [39], Winsberg and Ramsay [34, 35], Van der Burg and De Leeuw [31],
Van der Burg, De Leeuw, and Verdegaal [32], and Ramsay [25]. Approaches to
systematization are the “ALSOS” system [36], and the Leiden “Albert Gifi” system
[8]. The more mainstream statistical literature has acknowledged optimal scaling by
the papers by Breiman and Friedman [1], Ramsay [25], Buja [2], and Hastie, Buja,
and Tibshirani [11].

For the data analytic task of the present paper, optimal scaling has to be inte-
grated with the task of finding an optimal ordering of objects and spacing the
objects as points along a one-dimensional continuum (along with an estimate for the
constant c).

2.1 The Three Subtasks and Corresponding Optimization Methods

Finding an optimal ordering of objects is a combinatorial optimization task, and it
is known, for example, from Defays [3], De Leeuw and Heiser [5], and Hubert and
Arabie [12] that (sub)gradient and majorization methods are prone to identifying
seriously suboptimal solutions whenever applied to scaling tasks that are limited to
one dimension.

We begin with a given n × n symmetric proximity matrix P = {pik}, whose
entries have a distance interpretation in which larger values reflect the more
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dissimilar objects. An ordering of the n objects is sought, represented by a per-
mutation of the first n integers, ρ(·), such that the reordered matrix Pρ ≡ {pρ(i)ρ(k)}
is as “close as possible”, defined by an explicit objective function, to a so-called
anti-Robinson matrix (see Hubert and Arabie [13] and the references therein for the
historical background to the use of the term “anti-Robinson”). Formally, an n × n
symmetric matrix, Δ ≡ {δik}, has an anti-Robinson form if the entries within the
rows and columns never decrease as we move away from the main diagonal in any
direction, i.e.,

δik ≤ δi(k+1) for1 ≤ i < k ≤ n − 1; (5)

δik ≤ δi(k−1) for 2 ≤ k < i ≤ n.

Except for small values of n, a complete enumeration strategy that would exhaus-
tively consider all n! permutations is computationally infeasible. To construct a gen-
eral search procedure that would work for any reasonable size for n, a heuristic strat-
egy is adopted based on suggestions from the quadratic assignment literature (e.g.,
see Hubert and Schultz [14]), and which has been successfully applied in Hubert
and Arabie [13] for fitting anti-Robinson matrices to given proximity matrices.

Specifically, we begin by computing the cross-productΓ (ρ(·))=∑i,k pρ(i)ρ(k)δik

for some (randomly) chosen permutation ρ(·) and equally-spaced anti-Robinson
target matrix Δ = {|i − k|}, and attempt by a series of local operations to produce a
sequence of permutations that increase Γ (·) until no local operation can improve on
its value. The strategy includes local operations from three classes: (i) all pairwise
interchanges of the n objects; (ii) all insertions of l consecutive objects between
any two existing objects (or at the beginning and end of the permutation); (iii) all
complete reversals of the orderings of l consecutive objects, l = 2, . . . , n. When
the best permutation, say, ρ∗(·), is found, a “new” anti-Robinson target matrix Δ

is reconstructed by a least-squares fit to the proximity matrix Pρ∗ , and the whole
process repeated, until stability is eventually achieved both in the identification of
ρ∗(·) and Δ.

Optimal spacing of the object points amounts to obtaining scale values for the
(ordered) objects along a one-dimensional continuum. To obtain scale values and to
construct a graphical display, requires additional constraints, to be imposed on the
fitting of the anti-Robinson matrix Δ for the identified permutation ρ∗(·). Explic-
itly, Δ is constrained as Δ = D(x), with D(x) the matrix containing all pairs of
Euclidean (or more generally, Minkowski) distances, dik(x) = |xi − xk |, for some
collection of coordinates x1 ≤ · · · ≤ xn . Given the ordering ρ∗(·), the scale values
(in x) and the constant (c) can be obtained in several ways. In the present paper, we
use Dykstra’s [7] iterative projection approach. For a fixed permutation ρ(·), the set
of all n × n matrices equal to the reordered proximity matrix {pρ(i)ρ(k)} up to an
additive constant c will be denoted by Pρ , and D denotes the set of all n × n matri-
ces that give the interpoint distances between the objects along a one-dimensional
continuum for x1 ≤ · · · ≤ xn . The sets Pρ and D are both closed and convex; thus,
projections of any n × n symmetric matrix onto either Pρ or D can be constructed.
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Because we need to find both the coordinates in x and the additive constant c simul-
taneously, an alternating projection strategy is implemented between the two sets
Pρ and D. The projection of any given matrix onto Pρ to generate an optimal value
for c is straightforward, but the projection onto D is somewhat more complicated.
This minimization requires the satisfaction of several linear inequality/equality con-
straints:

(i) 0 ≤ dik(x) for 1 ≤ i = k ≤ n;
(ii) 0 = dii (x) for 1 ≤ i ≤ n;

(iii) dik(x) = dki (x) for 1 ≤ i = k ≤ n;
(iv) di(i+1)(x)+ · · · + d(k−1)k(x) = dik(x) for 1 ≤ i < k ≤ n, where 2 ≤ k − i .

The details for solving this particular optimization problem can be found in Hubert,
Arabie, and Meulman [15]. Basically, the constraints are considered sequentially
and checked as to whether each is satisfied; if not, the current update is projected
onto the subset that does satisfy the constraint. In this cyclic process, the previous
changes are “undone” when each constraint is reconsidered (see Dykstra [7] for a
proof of convergence to the desired projection onto the closed convex set).

Optimal scaling of each variable implies finding a transformation q j = ϕ(z j )

with maximal fit for fixed x. Thus, the optimal scaling process is guided by the
objective function

ST RE SS(x; c) = min
q j∈C j

‖D(Q)+ c − D(x)‖2, (6)

with q′j q j = 1. For a given matrix D(x) and constant c, finding the optimal Q can
be solved by an optimization strategy based on majorization (which is equivalent to
a subgradient method) and projection (see De Leeuw and Heiser [6] for the basic
principles).

In our algorithm, the majorization step finds for each current Q an unconstrained
update Y of the same order as Q that satisfies

‖D(Y)− D(x)‖2 ≤ ‖D(Q)− D(x)‖2, (7)

for fixed x. This task is carried out by choosing Y as Y = n−1B(Q)Q. Here, the n×n
matrix B(Q) is defined as B(Q) = Bt (Q)− Br (Q); the n × n matrix Br (Q) has ele-
ments br

ik(Q) = dik(x)/dik(Q) if i = k, and br
ik(Q) = 0 if i = k or dik(Q) = 0. The

n×n diagonal matrix, Bt (Q), has elements bt
ii (Q) = u′Br (Q)ei along its main diag-

onal. The required transformation is constructed by a metric projection of the uncon-
strained update Y onto the space that satisfies the constraints; explicitly, if a class of
cones is defined for all admissible transformations of the variables in Q, we write
the metric projection of Y onto the cone as PC (Y) = Q̂ = {q̂1, . . . , q̂ j , . . . , q̂M },
where Q̂ minimizes ‖Y − Q‖2 over all q j ∈ C j . The convergence results of De
Leeuw and Heiser [6] can be used to show that Q̂ will yield the desired result:
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‖D(Q̂)− D(x)‖2 ≤ ‖D(Q)− D(x)‖2. (8)

The metric projection PC (Y) needs to be specified by a particular choice of trans-
formation. If we choose monotonic spline transformations and construct an I-spline
basis matrix S j for the j th variable in Z (see Ramsay [25] for details),

‖y j − S j b j‖2, (9)

is minimized, under the conditions that the spline coefficient vector b j contains
nonnegative entries (to guarantee monotonic I-splines) and b′j S′j S j b j = 1 (to give
the transformed variable a unit length). To ensure nonnegativity of the entries in b j ,
the problem is further partitioned by separating the t th column of the spline basis
matrix S j (denoted by s j

t , with the remaining matrix denoted by S j
−t ) and the t th

element from the spline coefficient vector b j (denoted by b j
t , with the remaining

vector denoted by b j
−t ). We minimize iteratively:

‖(y j − S j
−t b

j
−t )− s j

t b j
t ‖2, (10)

over elements b j
t ≥ 0, t = 1, . . . , M (where M is dependent on the degree of the

spline and the number of knots), and for j = 1, . . . ,m. After an update for Q has
been determined, the procedure returns, and the three steps described in this section
are cycled through repeatedly until no change occurs.

3 An Empirical Illustration

To illustrate our iterative method, we use a data set that concerns the perceived
effectiveness, safety, availability, and convenience of 15 birth control methods. Four
groups of respondents (two groups consisting of female respondents, and two of
male respondents) ranked the methods from 1 to 15 according to the four criteria.
Each group consisted of seven individuals, and their rankings were aggregated [33].
For the present analysis, it is important to use the aggregate rankings per group as the
variables in the analysis, and the 15 contraceptive methods as the row objects (thus
we analyze the transpose of the usual data matrix.) The objective of the analysis
is to find an optimal ordering of the 15 methods displaying a consensus among
the respondents, on the basis of optimal transformation of the rankings for each
of the eight groups of respondents. The rankings were optimally transformed with
a quadratic spline function with one interior knot (thus, for every ranking, three
parameters were fitted in the transformation). The solution found by our iterative
method accounts for 92.6% of the total variance in the distances between the objects
according to the transformed variables. One ordering and scaling is depicted in
Fig. 1. The sequence is from the extreme birth control method abortion via the
other surgeries, hysterectomy, tubal ligation, and vasectomy, to the other extreme
abstinence via rhythm, withdrawal, and oral sex. The condom, pill, and iud are in
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Fig. 1 The proximity between 15 birth control methods fitted along a one-dimensional continuum.
The horizontal axis displays the ordering and the spacing of the objects, showing the consensus
among the four groups of respondents on the four different criteria

the center of the continuum. The spacing between the points corresponds to the fitted
distances; the scale values are given as well. The largest distance between adjacent
objects is for abstinence and oral sex (1.29). At the other end of the continuum,
hysterectomy is 0.59 from abortion and 0.70 from tubal ligation and vasectomy,
which coincide and are 0.74 from intra-uterine device. The latter is much closer
(0.27) to the pill, but the smallest distances are from the pill to spermicide (0.09) to
diaphragm (0.01) to douche (0.02) and to foam, tied with douche. At some distance
(0.25) we find condom to rhythm (0.15), and withdrawal (0.10), and finally we have
oral sex at distance 0.33, and abstinence at the end of the scale.

Next, we consider the transformation of the (aggregate) rankings from 7 (7 × 1)
to 105 (7 × 15) to their optimally scaled versions (in Figs. 2 and 3). In the left two
panels of Fig. 2, the transformations for the women groups are displayed; the two
panels on the right are transformations for the male groups. The two top panels are
transformations according to effectiveness, followed by safety at the bottom. It is
clear that there is a great deal of consensus, with the overall exception being the
second male group. Although the women and the first male group believe that oral
sex and abstinence is efficient and safe, the second male group ranks abstinence
and oral sex much lower on effectiveness, and oral sex much lower on safety. The
corresponding plots for convenience, and availability are given in Fig. 3. Here it can
be seen that the women judge oral sex and abstinence as available and convenient,
but both male groups believe that oral sex is not available, and the second male
group that oral sex is not convenient either.

An alternative display of the optimal scale values from Fig. 1 is given in Fig. 4.
Here, the horizontal axis displays the objects sequenced according to the scale
values (and equally spaced), while the vertical axis displays the optimal spacing
according to the scale values. The transformations in Figs. 2 and 3 were found
separately for each of the 4 groups and according to each of the four criteria. As
an interpretation, Fig. 3 displays a “consensus” transformation over all groups of
respondents and criteria. Overall, the consensus ordering and scaling in x is most
associated (according to the Pearson correlations) with SF1 (0.95), SM1 (0.91), CF1
(0.90), AF2 (0.89), AF1 (0.85), CF2 (0.81), SF2 (0.73), and SM2 (0.70), and least
with EM2 (-0.28), EF1 (0.0), EF2 (0.17), AM1 (0.41), CM1 (0.48), AM2 (0.51),
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Fig. 2 The optimally scaled rankings (vertical axis) versus original ranking scores (horizontal axis)
giving transformation plots. The transformations were found for two groups of men and two groups
of women on four criteria; above are the optimally scaled rankings according to Effectiveness and
Safety. The transformations for the two female and the two male groups were combined into a
single plot each. The sequence of the 15 contraceptive methods - ordered from high to low for each
of the four groups of judges - is given at the right-hand side

EM1 (0.56), and CM2 (0.67). Thus, safety, convenience, and availability according
to women and safety according to men are closest to the consensus ordering in x,
while availability and convenience according to men, and effectiveness according
to all groups of respondents, are not. The women respondents are generally closer
to the consensus ordering than the male groups, and the criterion effectiveness is
judged differently from the other three.

To evaluate the possible presence of (suboptimal) local optima, the analysis
reported above was repeated with 100 random starts for the initial ordering of
the objects. Of the 100 solutions, 99 were identical, with 92.6% of the variance
in the distances accounted for; the only solution that differed gave a slightly less
variance-accounted-for of 92.5%. The ordering in this solution differed for the
objects withdrawal and rhythm: in the optimal solution, rhythm comes before with-
drawal (with scale values of 2.806 and 2.903, respectively); in the suboptimal solu-
tion, rhythm and withdrawal have almost the same scale values (2.835 and 2.834,
respectively). The rest of the one-dimensional scale was virtually identical, as well
as the transformed rankings per group.
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Fig. 4 The proximity
between 15 birth control
methods fitted along a
one-dimensional continuum:
the horizontal axis represents
the ordering and the vertical
axis represents the spacing:
optimally scaled consensus
ranking

4 Concluding Remarks

In the present paper, we have shown how to construct a parsimonious one-
dimensional representation for a (large) number of transformed variables. The data
analytic objective was to incorporate the use of discrete multivariate ordinal data,
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where relationships between variables could be nonlinear, and where the data might
be decidedly nonnormal in distribution. Optimal scaling was proposed as a way for
dealing with this nontraditional type of multivariate data. The data analytical task is
computationally a nested iterative procedure, where objects are optimally sequenced
cyclically, spaced optimally, and all implemented with optimal transformation of the
variables in the original data.

Using this combinatorial data analysis framework, the transformation of vari-
ables can also be combined with fitting the special structures described by Hubert,
Arabie, and Meulman [15]. One extension is to the construction of a circular unidi-
mensional scale, where in addition to the ordering, the scale values, and the additive
constant, a set of inflection points must be found that indicate where the minimum
distance calculation must change direction around the closed continuum. A second
generalization is to the use of additive trees, defined by a structure where the fitted
value dik is the length of the path that joins the two objects i and k. The fitted values
satisfy what is called the four-point condition: over all distinct i, k, l, and m, among
the three sums, dik + dlm , dil + dkm , and dim + dkl , the largest two are equal. As
a special case of an additive tree, ultrametrics can be fitted, where for any three
distinct objects i, k, and l, the largest two values among dik, dil , and dkl , are equal.
The latter condition induces a sequence of partitions for the object set.

Finally, in the general distance analysis framework considered, we can also fit
objects in a representation space with dimensionality s > 1, as done by Meulman
[20, 21]. In contrast to their performance in the unidimensional scaling task
(and their difficulty with identifying seriously suboptimal solutions), gradient and
majorization methods generally work well in constructing such multidimensional
representations.
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Statistical Models to Predict Academic
Churn Risk

Paolo Giudici and Emanuele Dequarti

Abstract This paper describes a research conducted on university students careers.
The purpose is to study, describe and prevent the phenomenon of abandonment
(churn). Results from predictive models may be employed to start activities of per-
sonalized tutoring, aimed at preventing the phenomena

1 Introduction

In this paper we present how to analyse student careers data, in order to predict
and, therefore, prevent, students abandonment. We show empirical evidence derived
from real data from the Faculty of Psychology of the University of Pavia.

The faculty of psychology was chosen because we deal with strongly motivated
students. This makes the analysis of the data particularly meaningful. The main
objective of this paper is to study the phenomenon of churn concerning the students,
in order to reduce the number of students that leave their university career without
reaching the degree.

In profit companies is rather immediate to establish the number of clients that
abandons a service. The distinction is usually made between voluntary and involun-
tary churn. Involuntary churn occurs when the company terminates the customers’
contract or account - usually on the basis of a poor payment history. Voluntary churn
is when the customer decides to take their business elsewhere.

Now we adapt these concepts to a situation that interests the students of a faculty
(see E.6. [5]). Voluntary churn is when the student interrupts academic studies. The
student could definitely leave his/her career. We will call this possibility renounced
student. A different event is that the student could continue his/her career in another
University. We will call this possibility dismissed student. Renounced student and
dismissed student are positions officially enacted in official documents.

There are also positions of students that officially result “active”, but that do not
take exams anymore and they suspend the payment of the annual tax for years. The
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reception office considers these kind of students as “renounced student” after eight
years of complete inactivity, but it is clearly possible to establish with wide advance
this condition of abandonment.

It thus becomes necessary to individualize a criterion to establish what students
formally held active, are instead definitely inactive.

The missed payment of the annual tax of registration, with the exception of the
graduated students, clearly signals a possible risk of churn. A necessary caution is
the need to verify that the student does not restart to pay taxes in following years.

The final objective is to define profiles of students with high churn risk, depend-
ing on the following factors: given credits, average mark of given exams, and the
followings social- demographic variables: gender, date of birth, province of resi-
dence, type of middle school diploma.

These profiles could be used for beginning tutorial and counselling activities in
order to prevent churn risk.

For relevant contributions about analysis on the performances of the students see
also [2] [7] [8] [13] [14] [15].

To reach this objective we employ descriptive and inferential models such us
Kaplan Meier survival function and Cox model (see E.6. [3]).

The paper is organised as follows: in Sect. 2 we present the data available, in
Sect. 3 our methodological proposal aimed at estimating for each student churn
risk; finally in Sect. 4 empirical evidence is given. Section 5 reports the conclusion
and further ideas of research.

2 Data Set

The data available for our analysis contain information about the Degree of Psychol-
ogy. The data set contains 845 observations: for each row (statistical units), which
represents in this case a different student, we report variables useful to describe the
university career of each student and his/her social-demographic characteristics.

The variables are:

• I D: (univocal code of identity for each student).
• Dateof bir th: (year).
• Gender : (female, male).
• ProvRec: (italian province of residence).
• Diploma: type of middle school diploma (professional institute, technical insti-

tute, classical high school, linguistic high school, scientific high school, teacher’s
college, Other).

• Position: current position of the student (Active, Dismissed, Interruption, Grad-
uated, Renounced, Declined).

• Credits: (credits maturated by the student in the exams for each year of his
career). The minimum value is 5, the maximum is 185.

• Averagemark: (average mark of the given exams for each year of the career).
The minimum value is 18, the maximum is 30.

• T ax : type of payment of the tax for each year (none, only first, full).



Statistical Models to Predict Academic Churn Risk 43

The period of time considered is: 2002–2006. Missing values are present for the
Credits and the Averagemarkvariables. This means that the student did not take
any exam in that year.

The response variable is called Churn. We will use it to examine the distribution
of times between two events, the beginning and the end of the career. This kind of
data includes some censored cases. Censored cases are cases for which the second
event is not recorded. In this case the censored cases include students graduated and
students Active, that are regularly continuing the university career and paying the
tax. The status variable Churn is dichotomic and it presents these values:

• 1: the (churn) event has occurred
• 2: the event is censored.

3 Methodological Proposal

A number of components can generate a churn behaviour:

• a static component, determined by the characteristics of the students;
• a dynamic component, that encloses trend and the contacts of the students with

the university career;
• a seasonal part, linked to the period of exams;
• external factors.

The goal of the university is to identify students that are likely to leave and join
a new university or a job. This objective is well perceived by the university top
management, which considers lowering churn one of the key targets.

The churn models currently used to predict churn are logistic regression and
classification trees. However, in order to obtain a predictive tool which is able to
consider the fact that churn data is ordered in calendar time, the use of new methods
is necessary. We propose to use a survival analysis approach, as a longitudinal data
analysis method aimed at predicting students’ churn behavior. For lack of space,
we do not present details of our methodology here, but refer the reader to the paper
[6], that contains the methodology employed and a more extensive treatment of the
context, as also explained by Fleming and Harrington [9].

4 Empirical Evidence

We now proceed with survival analysis modeling. Through the analysis of the pay-
ments of the taxes and the activities of the students we classify the careers, defining
the variable churn, that points out abandons. As shown in Table 1, on 845 cases,
188 students experiment the event abandonment, while 657 students, 77, 8 %, are
considered censored cases.

In Fig. 1 and 2 we show the survival and hazard functions, relatively to the careers
of the students of psychology in the five analyzed years.

In Table 2 we report the results of the application of the Kaplan Meier estimator
[12] to the data.
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Table 1 Distribution of the events of abandonment and censored cases, on Psychology

Frequency Percent Valid Percent Cumulative Percent

Valid Abandonment 188 22.2 22.2 22.2
Active/censored 657 77.8 77.8 100.0

Total 845 100.0 100.0
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From Fig. 2 and Table 2, note that the probabilities of survival, after one year
from the beginning of the studies, are of 95, 6%, for a total of 37 subjects that
experiment the event abandonment. Probabilities moderately decrease, then, in the
second and third year. They lower in more evident way from the fourth year, being
equal to 48, 1%. An intervention of tutoring for the students that have not completed
the career after the three years could be meaningful.

Table 3 shows that the highest percentage of students focuses in the band between
141 and 170 credits.

Table 2 Kaplan Meier estimator

Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI

1 845 37 0.956 0.00704 0.943 0.97
2 707 44 0.897 0.01091 0.876 0.918
3 448 57 0.783 0.01703 0.75 0.817
4 96 37 0.481 0.04026 0.408 0.567
5 21 13 0.183 0.05323 0.104 0.324

Table 3 Distribution of the variable credits banded
Frequency Percent Valid percent Cumulative percent

<= 20,00 24 2,8 2,8 2,8
21,00 − 50,00 44 5,2 5,2 8
51,00 − 80,00 136 16,1 16,1 24,1
81,00 − 110,00 171 20,2 20,2 44,4
111,00 − 140,00 188 22,2 22,2 66,6
141,00 − 170,00 277 32,8 32,8 99,4
171,00+ 5 0,6 0,6 100

Total 845 100 100
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Fig. 3 Survival function for the factor Credits
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Figure 3 and Table 4 show that the Kaplan-Meier method, applied to the data,
allows us to compare overall survival rates between different groups of student,
according to different factors:

• Credits
• Average mark
• Date of birth
• Gender
• Italian province of residence
• Diploma

Table 4 Kaplan Meier estimator for the factor credits

Credits_banded=<= 20.00
Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI
1 24 16 0.333 0.0962 0.189 0.587
2 6 6 0 NA NA NA

Credits_banded = 21.00 – 50.00
Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI
1 44 17 0.614 0.0734 0.4854 0.776
2 21 16 0.146 0.0597 0.0656 0.325
3 4 2 0.073 0.0472 0.0206 0.259
4 2 2 0 NA NA NA

Credits_banded = 51.00 – 80.00
Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI
1 136 3 0.978 0.0126 0.9536 1
2 48 14 0.693 0.0648 0.5767 0.832
3 25 17 0.222 0.0679 0.1216 0.404
4 5 2 0.133 0.0634 0.0523 0.338
5 3 3 0 NA NA NA

Credits_banded = 81.00 – 110.00
Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI
2 168 6 0.964 0.0143 0.937 0.993
3 39 18 0.519 0.0774 0.388 0.695
4 12 7 0.216 0.0806 0.104 0.449
5 3 3 0 NA NA NA

Credits_banded = 111.00 – 140.00
Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI
1 188 1 0.995 0.0053 0.9843 1
2 186 2 0.984 0.00917 0.9662 1
3 106 19 0.808 0.03742 0.7375 0.884
4 27 18 0.269 0.07432 0.1567 0.462
5 6 3 0.135 0.06634 0.0512 0.354

Credits_banded = 141.00 – 170.00
Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI
3 269 1 0.996 0.00371 0.989 1
4 45 8 0.819 0.05686 0.715 0.939
5 6 4 0.273 0.15878 0.0874 0.854
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The curves of survival confirm an high risk for students in low bands of credits,
in particular for the bands <= 20.00 and 21.00− 50.00 credits.

Similar results can be obtained for the Gender variable, as in Fig. 4 and Table 5.
The performance of female students is always better than male colleagues, in

terms of survival probabilities, as shown in Table 5. We now report the performances
of students coming from different Italian provinces, in Fig. 5. The greater part of
the students arrives from the same region where the faculty is situated, Lombardy.
The students resident in the province of Alessandria and Sondrio have underlined
positive results, while the ones from the province of Genoa have negative results.
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Fig. 4 Survival function for the factor Gender

Table 5 Kaplan Meier estimator for the factor Gender

Gender=Male

Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI

1 143 13 0.909 0.024 0.863 0.957
2 113 15 0.788 0.0357 0.721 0.862
3 73 15 0.626 0.0469 0.541 0.725
4 16 7 0.352 0.082 0.223 0.556
5 4 4 0 NA NA NA

Gender=Female

Time n.risk n.event Survival Std.err Lower 95% CI Upper 95% CI

1 702 24 0.966 0.00686 0.952 0.979
2 594 29 0.919 0.01075 0.898 0.94
3 375 42 0.816 0.01775 0.782 0.851
4 80 30 0.51 0.04553 0.428 0.607
5 17 9 0.24 0.06533 0.141 0.409
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Concerning high school diplomas, Fig. 6 shows that the best results have been
noticed for the students coming from high school and teacher’s college.

The application of Cox models, model [3], as a multivariate analysis tool to
estimate the risk of abandonment, considers the covariates: gender, province of
residence, diploma, average mark, sustained credits. The results of the analysis
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confirm the previous findings: the covariates gender, diploma and credits are sig-
nificant. meaningful. The best performances in comparison to the curve of hazard
are recorded for female students, with the maximum of credits and coming from
a classical high school and teacher’s college. The more subjects to risk are males,
from professional institutes and with few credits sustained during the university
career. For more examples of this methodology see [11].

We have presented a methodology aimed at individuating, for each degree study,
the typologies of students more subject to the risk, considering the characteristics
of their careers and socio-demographic variables. The structures of the university in
Pavia devoted to the actions of tutoring can thus choose to which students’ groups
address their activities. An important research development, that we are investigat-
ing, concerns the integration between this “objective” data and data coming from
students’ questionnaires, that measure the subjective perceptions of students. As
explained by Giudici [10]. This may allow, when integrated in a statistical model, a
more refined predictive tool.
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The Poisson Processes in Cluster Analysis

André Hardy

Abstract This paper aims to review some use of the point processes in cluster
analysis. The homogeneous Poisson process is, in many ways, the simplest point
process, and it plays a role in point process theory in most respects analogous to the
normal distribution in the study of random variables. We first propose a statistical
model for cluster analysis based on the homogeneous Poisson process. The cluster-
ing criterion is extracted from that model thanks to maximum likelihood estimation.
It consists in minimizing the sum of the Lebesgue measures of the convex hulls of
the clusters. We also present a generalization of that model to the non-stationary
Poisson process, as well as some monothetic divisive clustering methods also based
on the Poisson processes. On the other hand, it is usually considered that the central
problem of cluster validation is the determination of the best number of natural
clusters. We present two likelihood ratio tests for the number of clusters based on
the Poisson processes. Most of these clustering methods and tests for the number of
clusters have been extended to symbolic data.

1 Introduction

The objective of cluster analysis is to identify a natural structure within a data
set, if any. Most of clustering methods are based on the choice of a dissimilarity
or a distance between objects. Recently spatial statistics have been increasingly
used in cluster analysis, discriminant analysis and pattern recognition. We propose
to construct statistical models for cluster analysis based on point processes (Karr
(1991)). The simplest point process is one in which points occurs totally randomly.
Poisson processes are usually considered as good models of randomness (Cox and
Isham [3]). This paper surveys some use of the Poisson processes in cluster analysis.
Section 2 presents the starting problem of the research (the estimation of a convex
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set), describes the model for cluster analysis based on the homogeneous Poisson
process and the corresponding clustering criterion (the Hypervolumes clustering
criterion). Section 3 generalizes the statistical model to the non-stationary Poisson
process. Section 4 concentrates on two hypotheses tests for the number of clusters
based on the Hypervolumes clustering criterion. Section 5 deals with the presen-
tation of monothetic divisive clustering methods based on the Poisson processes.
Section 6 reports some concluding remarks.

2 A Statistical Model for Cluster Analysis Based
on the Homogeneous Poisson Process

We introduce the definition of the homogeneous Poisson process and the condi-
tional uniformity property of that process. We present the starting problem of the
research, the estimation of a convex set, and we show how that result leads to the
Hypervolumes clustering method.

2.1 The Homogeneous Poisson Process

We assume that the data are the observation of a n random sample x1, x2, · · · , xn
inside some measurable convex domain D (with 0 < m(D) <∞) which is a subset
of the p-dimensional Euclidean space R p. m is the Lebesgue measure. Let us denote
X1, X2, · · · , Xn the random sample associated with these n data points.

2.1.1 Definition

The Poisson process is a point process in which points occur totally randomly. The
homogeneous Poisson process N with intensity q (q ∈ R) on a set D ⊂ R p (0 <

m(D) <∞) is characterized by the following two properties (Cox and Isham [3])

• If the sets A1, A2, . . . , Ak ⊂ D are disjoint sets, then the random variables
N (A1), N (A2), . . . , N (Ak) are independent (k ∈ N0).

• ∀ A ⊂ D, ∀k ∈ N0, P(N (A) = k) = (q m(A))k

k! e−q m(A).

That is for each A, N (A), the random number of points in A, has a Poisson dis-
tribution with mean qm(A) where m(.) is the p-dimensional Lebesgue measure.

2.1.2 Conditional Uniformity Property

Given that N (D) = n, then the n data points {x1, x2, · · · , xn} are independently
and uniformly distributed over D.

This conditional uniformity property allows us to write the density function asso-
ciated with the homogeneous Poisson process
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f (x) = 1

m(D)
ID(x) (1)

where ID is the indicator function of the set D. ID(x) = 1 if x ∈ D and 0
elsewhere. If x = (x1, x2, · · · , xn), the likelihood function L D takes the form

L D(x1, x2, · · · , xn) = 1

(m(D))n

n∏

i=1

ID(xi ). (2)

2.2 Starting Problem: The Estimation of a Convex Set

The research was initiated with the following problem formulated by D.G. Kendall:
“Given a realization of a homogeneous planar Poisson process of unknown intensity
within a compact convex set D, find D”. When p = 1, that problem is the well-
known bus or taxi problem of estimating an interval from which an observed set
of data points is assumed to have been drawn uniformly. H(x1, x2, · · · , xn), the
convex hull of sample x1, x2, · · · , xn , is both a sufficient statistics and a maximum
likelihood estimate of the domain D. The unbiaised estimate of D proposed by
Ripley and Rasson [22] is a dilatation of the convex hull of the points about its
centroid. An estimate C of the coefficient of dilatation is given by Moore [17] and

can be computed as C =
√

n
n−Vn

where n is the number of points and Vn the number

of points on the convex hull.

2.3 The Hypervolumes Clustering Method

The homogeneous Poisson process has the property of complete randomness in two
senses: its intensity is constant, and given that N (A) = n, the n points are inde-
pendently and uniformly located in A. For that reason the homogeneous Poisson
process is of central importance among point processes, both in theory and in prac-
tice. The homogeneous Poisson process also provides a natural starting point for the
construction of models for cluster analysis.

Consequently, the challenge was to construct a model for cluster analysis based
on the homogeneous Poisson process and on the estimation of a convex set. The
Hypervolumes clustering method (Hardy and Rasson [13], Hardy [7]) assumes that
the n p-dimensional observation points x1, x2, ..., xn are independant realiza-
tions of a homogeneous Poisson process N in a convex domain D included in the
Euclidean space R p (with 0 < m(D) < ∞). The set D is supposed to be the
union of k disjoint convex domains D1, D2, ..., Dk (with k fixed; k and Di are
unknown). The problem is to estimate the unknown domains Di in which the points
were generated. We denote by Ci ⊂ {x1, x2, · · · , xn} the subset of the data points
belonging to the domain Di (1 ≤ i ≤ k). The likelihood function L D of the model
can be written as



54 A. Hardy

L D1, D2, ··· , Dk (x1, x2, · · · , xn) = 1

(m(D1 ∪ D2 ∪ · · · ∪ Dk))
n

n∏

i=1

ID(xi )

= 1

m(D1 ∪ D2 ∪ · · · ∪ Dk)
n

ID(H(x1, x2, · · · , xn))

where H(x1, x2, · · · , xn) is the convex hull of the data points x1, x2, · · · , xn .
The maximum likelihood estimates of the k unknown domains D1, D2, ..., Dk

are the k convex hulls H(Ci ) (i = 1, 2, ..., k). The maximization of the likelihood
function L D is equivalent to the minimization of the sum of the Lebesgue measures
of the convex hulls of the clusters (Hardy [7]) i.e.

max
D1,D2,··· ,Dk

L D(x1, x2, · · · , xn) ⇐⇒ min
P∈Pk

k∑

i = 1

m(H(Ci )) (3)

where Pk is the set of all the partitions of C into k clusters and P =
{C1, C2, · · · , Ck}.

The Hypervolumes clustering criterion is defined by

Wk(P) =
k∑

i = 1

m(H(Ci )) =
k∑

i = 1

∫

H(Ci )

m(dx) (4)

where H(Ci ) is the convex hull of the points belonging to Ci and m(H(Ci )) is the
multidimensional Lebesgue measure of that convex hull. That clustering criterion
has to be minimized over the set of all the partitions of the observed sample into k
clusters. So in the context of a clustering problem, we have to find the partition P∗
such that

P∗ = arg min
P∈Pk

k∑

i = 1

∫

H(Ci )

m(dx). (5)

For example, in the one-dimensional euclidean space, convex sets of points are
intervals of points and the Lebesgue measure of an interval is its lenght. So, if we fix
the number of clusters to k, the clustering problem consists in finding the k intervals,
containing all points, such that the sum of the lenghts of the intervals is minimum.
In a two-dimensional space, the Lebesgue measure of a set is the area of that set. So
we’ve to find the k sets C1, C2, · · · , Ck , containing all points, such that the sum
of the areas of the convex hulls H(Ci ) is minimum. In a p-dimensional space, the
Lebesgue measure of a set is called the hypervolume of that set.

An algorithm (Hardy [8, 10]) has been implemented in a polynomially bounded
time. Furthermore the hypervolumes clustering method is not biased towards ellip-
soidal or hyperspherical clusters, and it fulfils most of the admissibility conditions
of Fisher and Van Ness [6].
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3 The Statistical Model Based on the Non-stationary Poisson
Process: The Generalized Hypervolumes Clustering Method

The simplest generalization of the homogeneous Poisson process is the non-
stationary Poisson process in which the rate is a function q(x) of the location. So the
next step of the research was to construct a more general model for cluster analysis,
based on the non-stationary Poisson point process.

3.1 The Non-stationary Poisson Process

We give the definition and the main property of the non-stationary Poisson process.

3.1.1 Definition

The non-stationary Poisson process N with intensity q(.) on the measurable domain
D ⊂ R p (0 < m(D) < ∞) is characterized by the following two properties (Cox
and Isham [3])

• If A1, A2, · · · , Ak are arbitrary disjoint sets, then the random variables N (A1),

N (A2), · · · , N (Ak) are independent (k ∈ N0).
• ∀A ⊂ D, N (A) has a Poisson distribution with mean

∫
A q(x)m(dx).

3.1.2 Conditional Property

Given that N (D) = n, then the n data points are independently distributed in D,
with a density function proportional to q(x).

So the density function associated with the non-stationary Poisson process is

f (x) = q(x) ID(x)∫
D q(t)m(dt)

= q(x) ID(x)

ρ(D)
(6)

where ρ(D) = ∫
D q(t)m(dt) is called the integrated intensity of the process

on D. For the homogeneous Poisson process, the intensity q is constant. So ρ(D) =∫
D q m(dt) = q m(D).

3.2 The generalized Hypervolumes Clustering Method

The generalized Hypervolumes clustering method (Kubushishi [15], Rasson and
Granville [19]) assumes that the n p-dimensional points x1, x2, ..., xn are gener-
ated by a non-stationary Poisson process N with intensity q(.) in a set D ⊂ R p (0 <

m(D) <∞) where D is the union of k disjoint convex domains D1, D2, ..., Dk .
The problem is then to estimate the unknown domains Di in which the points

were generated. The likelihood function can be written as
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L D(x1, x2, · · · , xn) =
n∏

i=1

q(xi )ID(xi )

ρ(D)

= 1

(ρ(D))n

n∏

i=1

q(xi )ID(H(x1, x2, · · · , xn)). (7)

The convex hull H(x1, x2, · · · , xn) is again the maximum likelihood estimate
of the convex domain D. The generalized Hypervolumes clustering criterion is
deduced from that statistical model, using maximum likelihood estimation.

If the intensity q(.) of the non-stationary Poisson process is known, the maxi-
mization of the likelihood function L D is equivalent to the minimization of the sum
of the integrated intensities over the convex hulls of the clusters i.e.

max
D1, D2, ··· , Dk

L D(x1, x2, · · · , xn) ⇐⇒ min
P∈Pk

k∑

i = 1

∫

H(Ci )

q(xi )m(dx) (8)

where P = {C1, C2, · · · , Ck} and Pk is the set of all the partitions of the data
points into k clusters. So the maximum likelihood estimates of the unknown convex
domains Di are their convex hulls H(Ci ) (i = 1, · · · , k).

The generalized Hypervolumes clustering criterion W ∗
k is defined by

W ∗
k (P) =

k∑

i = 1

∫

H(Ci )

q(x)m(dx) (9)

where q(.) is the intensity of the non-stationary Poisson process and H(Ci ) is the
convex hull of the points belonging to Ci (i = 1, · · · , k).

In the context of a clustering problem, we have to find the partition P∗ such that

P∗ = arg min
P∈Pk

k∑

i = 1

∫

H(Ci )

q(x) m(dx).

3.3 Estimation of the Intensity of the Non-stationary
Poisson Process

When the intensity q(.) of the non-stationary Poisson process is not known, it must
be estimated. The clustering method described in Sect. 5 in monothetic. So the
estimation of the intensity q(.) is to be made in the unidimensional case. We use
a non-parametric method: the Kernel method. The Kernel estimate q̂ of q is defined
by

q̂(x) = 1

n

n∑

i=1

1

h
K

(
x − xi

h

)
(10)
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where the Kernel K has the following properties: K is symmetric and continuous,
K ≥ 0 and

∫
K (x)dx = 1. The parameter h is the window width also called

“smoothing parameter”. The kernel estimate is a sum of “bumps” placed around the
observations xi (i = 1, 2, · · · , n). The kernel function K generates the shapes of
the bumps while the window width h determines their widths. In order to choose
h, we distinguish the notions of “bump” and “mode”. A mode of a density q is a
local maximum of that density. A bump is characterized by an interval such that the
density is concave on that interval, but not on a larger interval. Due to its properties,
we use a Normal kernel defined by

KN (x) = 1√
2π

e−
x2
2 . (11)

Silverman [23, 24] proved, in the unidimensional case, that the number of modes
for a Normal kernel is a decreasing function of the smoothing parameter h. So
for practical purposes we determine h by choosing the first value of h such that
q̂ remains multimodal.

4 Statistical Tests for the Number of Clusters Based on the
Homogeneous Poisson Point Process

The determination of the “true” number of “natural” clusters has often been con-
sidered as the central problem of cluster validation. In this section we present two
likelihood ratio tests for the number of clusters based on the Hypervolumes cluster-
ing criterion: the Hypervolumes test and the Gap test.

4.1 The Hypervolumes Test

The statistical model based on the homogeneous Poisson process allows us to
define a likelihood ratio test for the number of clusters (Hardy [8]). Let us denote
by C = {C1,C2, ...,C�} the optimal partition of the sample into � clusters and
B = {B1, B2, ..., B�−1} the optimal partition into �−1 clusters. We test the hypothe-
sis H0: k = � against the alternative H1: k = �−1, where k represents the number of
“natural” clusters (� ≥ 2). The test statistic is deduced from the statistical model for
cluster analysis based on the homogeneous Poisson process by applying a likelihood
ratio test. The test statistic is defined by

S(x1, x2, · · · , xn) = Wk(C)

Wk−1(B)
(12)

where Wk(C) (respectively, Wk−1(B)) is the value of the Hypervolumes cluster-
ing criterion associated with the best partition into k (respectively, k − 1) clusters.

Unfortunately the sampling distribution of the statistic S is not known. The first
solution to that problem is to consider an interesting property of the test statis-
tic: S(x1, x2, · · · , xn) belongs to [0, 1[. For practical purposes, we can use the
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following decision rule: reject H0 if S is “close to” 1. We apply the test in a sequen-
tial way: if �0 is the smallest value of � ≥ 2 for which we reject H0, we choose �0−1
as the best number of “natural” clusters. More recently Hardy and Blasutig [12] used
permutation tests to obtain an approximate distribution for the test statistic S.

4.2 The Gap Test

The Gap test (Kubushishi [15], Rasson, Kubushishi [20]) uses the model for cluster
analysis based on the homogeneous Poisson process. We test H0 : the n observed
points are a realization of a Poisson process in D against H1: n1 points are a
realization of a homogeneous Poisson process in D1 and n2 points in D2 where
D1 ∩ D2 = ∅ and n1 + n2 = n. The sets D, D1, D2 are convex and unknown. Let
us denote by C (respectively, C1 , C2) the set of points {x1, x2, · · · , xn} belonging
to D (respectively, D1, D2). The test statistic is given by (Kubushishi [15])

Q(x1, x2, · · · , xn) =
(

1− m(�)
m(H(C))

)n

(13)

where H(C) is the convex hull of the points belonging to C , � = H(C) \
(H(C1) ∪ H(C2)) is the “gap space” between the clusters and m is the multidi-
mensional Lebesgue measure. So the test statistic is the Lebesgue measure of the
gap space between the clusters.

The decision rule is the following: reject H0, at level α, if (asymptotic
distribution)

nm(�)
m(H(C))

− log n − (p − 1) log log n − logκ ≥ − log(− log(1− α)) (14)

where the constant κ depends on the shape of the convex domain (Janson [14],
Deheuvels et al. [4], Kubushishi [15]).

The Hypervolumes test and the Gap test have been applied to numerous data
sets with various data structures (Hardy and Beauthier [11]). These tests were also
compared to well-known stopping rules for the number of clusters available in the
scientific literature (Milligan and Cooper [16]).

5 Monothetic Divisive Clustering Methods Based on the Poisson
Processes

Polythetic partitioning methods are usually computationally complex. Therefore
Pirçon [18] proposed five monothetic divisive clustering procedures. One of them
is based on the homogeneous Poisson process and the others on the non-stationary
Poisson process. We present here the method UNHOPPKI (Unique Non HOmoge-
neous Poisson Process with Kernel Intensity).
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5.1 The Model

We consider the statistical model for cluster analysis based on the non-stationary
Poisson process. So we suppose that the n observed data points x1, x2, · · · , xn
are generated by a non-stationary Poisson process of intensity q(.) in a set D ⊂ R p,
where D is the union of k disjoint unknown convex domains D1, D2, ..., Dk . The
estimation of the intensity q(x) of the Poisson process is made by the kernel method
with a Normal kernel.

5.2 The Splitting Process

UNHOPPKI is an unsupervised monothetic divisive clustering method. The splitting
part of the process is analogue to the classical CART algorithm (Breiman et al. [2]).
At each step we split a cluster C into two subclusters C1 and C2, which minimize
the integrated intensity W G2 = ρ(H(C1)) + ρ(H(C2)) on the convex hulls of the
two clusters, or equivalently which maximizes the integrated intensity ρ(Δ) on the
gap space of the clusters. The hierarchic divisive procedure is the following

• For each variable Yi (i = 1, · · · , p) and each cluster C j ( j = 1, · · · , k) ,

– compute the estimate q̂(x) of q(x) (given in Sect. 3.3);
– find the best bipartition of C into C1 and C2 such that C = C1 ∪ C2 and

ρ(Δ) = ∫
Δ

q̂(x)m(dx) is maximal;

• choose the cluster and the variable such that the likelihood function is maximal;
• cut the cluster and repeat the procedure until a stopping rule is fulfilled.

The stopping rule is the number of points in a node. That parameter has to be
fixed by the user.

5.3 The Pruning Method

At the end of the splitting process, a complete tree is obtained. No statistical test has
been performed as yet in order to test if the splits are statistically significant. So a
pruning process is applied in order to obtain a useful tree. The Gap test is applied at
each node in order to test

• H0 : the points are distributed in only one domain D
• H1 : the points are distributed in two domains D1 and D2 (D1 ∩ D2 = ∅).

When the null hypothesis is not rejected, we conclude that the split is not statis-
tically acceptable (bad split). On the other hand, if the null hypothesis is rejected,
we consider that the split is statistically acceptable (good split). At the end of the
process we adopt the following rule: cut all the branches that contain only bad splits.
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good

bad bad

bad leafbad leaf

leaf leaf leaf good

leaf leaf

Fig. 1 Tree before pruning

Fig. 2 Tree after pruning good

leaf bad

bad leaf

leaf good

leaf leaf

For example, suppose that we obtain the following tree at the end of the splitting
process (Fig. 1).

After the pruning process we obtain the following tree (Fig. 2).

5.4 The Merging Process

In some cases, for example when the clusters are not linearly separables, it is not
possible for the method to recover the natural structure of the data at the end of
the pruning step. That’s why we’ve added a merging step after the pruning step.
Additional tests are made on the pairs of clusters not belonging to the same node.
Once more, we use the Gap test.
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6 Conclusion

The Poisson processes are usually considered as good models of randomness. So the
goal of that paper was to review some uses of these processes in order to construct
a natural model for cluster analysis. We have presented several clustering methods
based on the Poisson processes as well as two hypotheses tests for the number of
clusters. Let us mention that some of these methods have been extended to symbolic
interval variables. For example SCLASS (Rasson et al. [21]) is an extension to inter-
val variables of the method UNHOPPKI. The clustering criterion used in SCLASS
is a symbolic extension of the generalized Hypervolumes clustering criterion. The
Hypervolumes test and the Gap test have also been extended to interval variables.
The extended Gap test is used in the SCLASS procedure. The method SCLASS is
available in the SODAS 2 software.
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TWO-CLASS Trees for Non-Parametric
Regression Analysis

Roberta Siciliano and Massimo Aria

Abstract This paper shows that a regression tree problem can be turned into a
classification tree problem reducing the computational cost and providing useful
interpretation issues. A TWO-CLASS tree methodoloy for non-parametric regres-
sion analysis is introduced. Data are as follows: a numerical response variable and
a set of predictors (of categorical and/or numerical type) are measured on a sam-
ple of objects, with no probability assumption. Thus a non-parametric approach is
proposed. The concepts of prospective and retrospective splits are considered. Main
idea is to grow a binary partition of the sample of objects such that, at each node
of the tree structure, the numerical response is recoded into a dummy or two-class
variable (called theoretical response) on the basis of the optimal partition of the
objects into two groups within the set of retrospective splits. A two-stage splitting
criterion with a fast algorithm is applied: the best split of the objects is found in
the set of candidate (prospective) splits of each predictor modalities by maximizing
the predictability of the two-class response. Some applications on real world cases
and a simulation study allow to demonstrate that the two-class splitting procedure is
computationally less intensive than standard regression tree such as CART. Further-
more, the final partitions obtained by the two-class procedure and the standard one
are very similar to each other, in terms of percentage of objects belonging together
to the same terminal node. Some aids to the interpretation allow to describe the
response variable distribution in the terminal nodes.

1 Previous Work

This paper deals with tree-based methods, in particular binary segmentation or
exploratory trees [4, 10], namely recursive partitioning of a sample of units on the
basis of a set of predictors such to obtain subgroups where a response variable is
internally homogeneous and externally heterogeneous. The attention is focalized
on regression trees, considering as benchmarking CART [Breiman et al., [2]], as
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extension of AID [9]. Fast splitting algorithm [7, 11] will be also considered within
the two-stage methodology [6, 8, 13]. The result is either a classification tree when
the response variable is categorical or a regression tree when the response variable is
numerical. Usually binary trees are built up. Any segmentation procedure is charac-
terized by a splitting criterion, a stopping rule and an assignment rule of the response
class/value to each terminal node. Exploratory tree allows to describe the depen-
dence relation between the response variable and the predictors. In order to predict
the response class/value of new units on which only measurements of predictors
are known alternative confirmatory approaches can be considered, such as prun-
ing and selection by test sample or cross-validation estimates as well as ensembles
methods [4].
AID [9] was the pioneer work to grow regression trees. The splitting criterion was
based on the between group deviation of the response variable, predictors were only
of categorical type. CART [2] extended the procedure to any type of variables, intro-
duced the decrease of impurity measure, added pruning and selection for prediction
purpose. Two-stage methodology [6, 13] defined the global and the local predictabil-
ity measures to select at each node the best predictor and the best split respectively.
Fast splitting algorithms [7, 11], that are based on suitable mathematical properties
of two-stage splitting criterion, allowed to find the best split without trying out all
candidate splits and thus saving computational cost. In place of predictability mea-
sures, there have been considered statistical models such as factorial method [12],
discriminant analysis [8], logistic regression [5].

2 TWO-CLASS Trees Methodology

Let L = {y,X} be a learning sample, where the N -vector y includes either the
observations of the numerical response variable Y (in case of regression trees) or
the classes of a categorical response variable (in case of classification trees) and
the matrix X includes N row vectors x′n = (xn1, . . . , xnM )′ of measurements of
M predictors (X1, . . . , X M) of a numerical or categorical type, with N the number
of observed objects or cases. Let iY (t) be the impurity measure of the response
variable Y at node t , describing how similar the objects into the node are to each
other, the smaller the number of the impurity measure the less impure the group of
objects is. For a numerical response variable, the variation measure can be consid-
ered: the smaller the variation of Y is the less impure the group of objects is. For a
categorical response variable Y , the heterogeneity index of Gini can be considered
analogously. In the recursive partitioning, the best split of the objects at any node t is
found maximizing the decrease of impurity of Y sending a percentage ptl of objects
from the node t to the left subnode tl and a percentage ptr of objects to the right
subnode tr :

maxsΔY (s, t) = iY (t)− [iY (tl)ptl + iY (tr )ptr ] (1)
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where s is any splitting variable or dummy variable defining the split of the objects
into two sub-groups. In case of regression trees the (1) is equivalent to maximizing
the between-group deviation of Y in the two subnodes or Pearson correlation coef-
ficient. In case of classification trees the (1) is equivalent to maximizing a depen-
dence measure in two-way cross-classifications, namely the predictability τ index
of Goodman and Kruskal.

One point arises: which is the set of splits to be tried out? We distinguish between
prospective and retrospective splits of the objects at a given node.

A prospective split is any split s of the objects induced by splitting the predictor
modalities. As an example, an object goes either to the left sub-node if X ≤ c or
to the right sub-node if X > c. Standard tree-growing procedure adopts prospective
splits. Let S denote the set of prospective splits, considering all sets of splits deduced
by the predictors.

A retrospective split is any split s of the objects induced by splitting the response
modalities, without caring for the predictors. If Y is numerical then any cut point of
the real interval in which the Y is defined yields a retrospective split. Let K denote
the set of retrospective splits. It can be shown that S ⊆ K .

We define the optimal split of the objects into two sub-groups the split sopt that
maximizes the decrease of impurity (1) over all possible retrospective splits in the
set K . We define the best split of the objects into two sub-groups the split sbest

that maximizes the decrease of impurity (1) over all possible prospective splits in
the set S.

The optimal split sopt can be theoretical since it can be not necessarily generated
by any prospective split of the predictor modalities. The ΔY (sopt , t) is the upper
bound of the decrease of impurity that can be reached, as ΔY (sbest , t) ≤ ΔY (sopt , t),
so that the ratio ΔY (sbest , t)/ΔY (sopt , t), ranging from zero and one, is an efficiency
measure of the best split found at a given node, saying how good is the discrimina-
tion between the two sub-groups in terms of the response distribution into the two
subnodes.

TWO-CLASS trees for regression defines, at each node, a dummy or two-class
response (theoretical) variable Yopt describing the optimal split sopt of the objects;
then, two-stage splitting criterion for classification trees using the fast algorithm can
be applied in order to find the best (prospective) split sbest of the objects.

The partitioning algorithm TWO-CLASS Tree is formed by the following steps:

– Step 1. The domain K of retrospective splits of Y is generated;
– Step 2. The best retrospective split sopt is identified maximizing the decrease

of impurity over the set K , where as impurity measure the variation is con-
sidered; the split obtained yields to define the theoretical distribution Yopt with
two-classes;

– Step 3. The domain S of prospective splits is generated considering the
predictors X ;

– Step 4. The best prospective split sbest is identified minimizing the decrease of
impurity over the set S, where as impurity measure the Gini index of heterogene-
ity is considered and the fast algorithm is used;
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– Step 5. The partition of original Y is obtained through the split of objects due to
sbest .

The algorithm iterates, at each node, up to reaching stopping rules.

The quality of the split can be evaluated by the above mentioned efficiency mea-
sure. As a result, an exploratory tree is built up, its terminal nodes define the final
partition of the objects. The quality of the overall tree can be evaluated in terms of
Relative Mean Square Error with respect to the root node.

3 Comparative Study

Comparative study of TWO-CLASS Trees methodology has been worked out con-
sidering real data sets and a simulation plan. The benchmarking methodology is
the CART methodology for regression trees. The final exploratory trees have been
compared in terms of Relative Root Mean Square Error.

The following real data sets from a well-known archive of UCI repository have
been considered: Boston Housing, Automobile, Auto MPG, Forest Fire and Con-
crete Compressive Strength [1].

The simulation study has been planned such to consider five typologies of rela-
tionship between predictors and the response variable. Predictors have been gen-
erated from different probability distributions, such as uniform, binomial, normal,
chi-square. The response variable has been generated as linear and nonlinear func-
tion of the predictors, with an error perturbation generated by either uniform or
normal distribution. The dependent links for each simulation are formally defined
in Table 1 and graphically represented in Fig. 3.

The last column of Table 2 and the second last of Table 3 show the results of a
similarity measure, namely the percentage of objects that fall into the same group
considering the final partitions obtained by the TWO-CLASS tree and the CART
regression tree. In other words, it counts how many objects fall into terminal nodes
characterized by the same splits into both final partitions, although the splits can
be not ordered in the same sequence. As an example, in boston housing the final
partitions of TWO-CLASS tree (induced by the optimal classification of the objects)
and CART tree are similar for the 87.20% of objetcs, as also shown in the scatter
plots using different colours for the objects belonging to each group of the partition.

Table 1 Dependence functions for Y response (The letters c, k and h indicate random positive
values)

Simulation Dependent Link

Simulation 1 Y = sin (X1 + k · X4)+ error

Simulation 2 Y = (k · X2 + h · √X5
)2 + error

Simulation 3 Y = (k · X1 + h · eX3 + h · X5
)2 + error

Simulation 4 Y = 1+ sin
(
k · X1 + h · eX3 + h · X5

)2 + error
Simulation 5 Y = [c + log (X5 + h · X3)− h · X2 + (1− k) · X1 − X4

]+ error
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The quality of both the TWO-CLASS tree and the CART Tree can be evaluated in
terms of Relative Mean Square Error with respect to the root node. In Table 3 the
computational cost reduction of TWO-CLASS Tree over CART Tree in the simula-
tions.

Figure 1 shows for the dataset Boston Housing a comparison of the final partition
obtained through the methodologies TWO-CLASS Tree (sub-figure on the left) and
CART (sub-figure on the right). In order to graphically visualize the partition and
the binary splits made to every step of the algorithm, the classification has been
made in both cases, considering only two predictors. It is possible to deduce that the
final clusters tend to have an high similarity. You can deduce it also thanks to Fig. 2
which shows a comparison between the two methodologies for the dataset Forest
Fire. In the first four levels of the tree the splits coincide. These explain the most
important relations between the response and the predictors.

Fig. 1 Final partitions by TWO-CLASS Trees and CART approaches (Boston Housing Dataset)

Wind=<7,6

temp=<17,6

Similar Partition

TWO-CLASS Exploratory Tree CART Exploratory Tree

temp=<18,8

DMC=<227

FFMC=<89,

ISI=<25

ISI=<17,9

DMC=<227

temp=<18.8

FFMC=<89.2

temp=<17.6

Wind=<7.6

ISI=<17.6

DMC=<33.3

DC=<884.4

DC=<795.3

Wind=<5.4

DMC=<99.6

DC=<252.6

RH=<70

ISI=<25
N. 1

Fig. 2 Trees comparision in terms of similar splits (Forest Fire UCI archive)
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Fig. 3 Simulated datasets: Scatterplots of Sim1, Sim2, Sim3 and Sim5

It can be noticed that although the final partition is obtained through a splitting
procedure for classification, in the terminal nodes the numerical response distribu-
tion can be described as well, calculating the average and the mean square error.

4 Concluding Remarks

This paper has provided a tree-based methodological framework to non-parametric
regression analysis. A regression tree problem has been turned into a two-class par-
titioning tree procedure. This has been possible through the use of prospective and
retrospective splits. Splitting criterion has been based on decrease of impurity, other
approaches such as statistical modelling could be considered as well. TWO-CLASS
trees have been shown to provide exploratory trees with a very high percentage of
objects classified in the same way as in the CART regression trees. Main advantage
of the proposed approach is computationally and interpretative: the best split at each
node is found using a fast algorithm and, in addition, its quality can be evaluated by
an efficiency measure. As a result, it improves the quality of the final partition and
decreases the computational cost. TWO-CLASS trees framework can be fruitfully
considered for robust tree-based missing data imputation [3] as well as for three-
way trees [15]. The basic method has been implemented in MATLAB environment,
enriching the Tree Harvest Software [14].
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Part II
Classification and Discrimination





Efficient Incorporation of Additional
Information to Classification Rules

Miguel Fernández, Cristina Rueda, and Bonifacio Salvador

Abstract We propose and discuss improved classification rules when a subset of
the predictors is known to be ordered. We compare the performance of the new rules
with other standard rules in a restricted normal setting using simulation experiments
and real data exposing their good performance.

1 Introduction

Consider the classical discrimination problem with two populations Π1 and Π2 and
a new observation z = (z1, . . . , zk) that has to be classified in one of the two pop-
ulations. Let P1 and P2 be the distributions of Z in Π1 and Π2, and f1 and f2 the
corresponding density functions. If we consider the 0–1 loss function and equal a
priori probabilities for each population the Bayes rule can be written as:

Classify z in Π1iff f1(z) ≥ f2(z).

In applications it is usual that some additional information is available. It is
frequent that this information tells us that the observations from one of the pop-
ulations, for example Π1, take higher (or lower) values that those coming from the
other, i.e. Π2. For example, suppose that we are interested in discriminating among
populations Π1 that corresponds to cirrhotic patients, and Π2 corresponding to non-
cirrhotic patients. From the literature it is known (see [2]) that Hyaluronic acid (HA)
levels are increased in chronic liver diseases, in particular in patients with cirrhosis,
so that HA levels correlate with clinical severity, and that the same happens with the
levels of β-Glucuronidase activity and N-acetyl-β-d-glucosaminidase activity.

In [4] and [6] we have proposed two different ways of defining sample rules that
take into account this additional information and have lower total misclassification
probability (TMP) than the classical rules that do not consider this information. The

M. Fernández (B)
Departamento de Estadística, Universidad de Valladolid, 47005 Valladolid, Spain
e-mail: miguelaf@eio.uva.es

B. Fichet et al. (eds.), Classification and Multivariate Analysis for Complex Data
Structures, Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-642-13312-1_7, C© Springer-Verlag Berlin Heidelberg 2011

75



76 M. Fernández et al.

purpose of this work is not only to rejoin the work we have done in those papers,
but to take one step further and show how the different ways of incorporating the
additional information appearing there can be combined to obtain new rules that
outperform the ones previously defined.

In Sect. 2 we describe the different ways of defining restricted rules and present
the new ones. In Sects 3 and 4 we show their performance in a simulation study and
in real data. Sect. 5 briefly summarizes the final conclusions.

2 Discrimination Rules That Incorporate Additional Information

Although normality is not an essential condition for our rules, let us assume normal
distributions Nk(μi ,Σ), i = 1, 2 and equal a priori probabilities for the popula-
tions, that is the two populations have equal covariances matrices and all parameters
are unknown. In this way the usual Fisher’s rule is:

Classify z in Π1iff fNk(μ̂1,S)(z) ≥ fNk(μ̂2,S)(z) or equivalently,

Classify z in Π1iff (z − (c1μ̂1 + c2μ̂2)+ cδ̂)′S−1δ̂ ≥ 0, (1)

where ci = ni/(n1 + n2), c = (c1 − c2)/2, ni is the training sample size from
population Πi , S is the sample covariance matrix and μ̂i , δ̂ are the unrestricted
MLEs of μi and δ = μ1 − μ2.

Here we will also assume that the additional information tells us that observations
from Π1 tend to take higher values in each predictor than those coming from Π2.

We will use a two parameter notation, R(λ, γ ), for the rules considered in this
work. First parameter tells us what latent space set (see Sect. 2.2 below) has been
used in the definition of the rule with 0 meaning no latent space set used. The second
parameter indicates what estimator of the means is being considered (see Sect. 2.1).
When this second parameter is equal to “U” it means that an unrestricted estimator
of the means is being considered. In this way Fisher’s rule is denoted as R(0,U ).

2.1 Restricted Parameter Estimation

The most direct approach, developed in [4], is to transform the additional infor-
mation in restrictions between the parameters. For our case this implies μ1 ≥ μ2
(or δ ≥ 0) coordinatewise. This line of work appears in [5] under some sim-
plifying assumptions. We could use directly the restricted MLE (RMLE) of δ̂

in Fisher’s rule. The RMLE of δ is δ∗ = pS−1

(
θ̂1 − θ̂2

/
O+

k

)
, i.e. the projec-

tion of the estimated difference of means on the positive orthant cone O+k ={
x ∈ Rk : xi ≥ 0, i = 1, . . . , k

}
using the metric given by S−1. However, we have

found that better results can be obtained using (1) and replacing δ̂ by an estimator
of the difference of means δ that belongs to the interior of its restrictions cone (the
positive orthant) with probability 1. This may be related to the well known fact that
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the estimators belonging with positive probability to the frontier of the parametric
space are not admissible (cf. [7]). Our new estimators δ∗γ are defined as the limit
when i →∞ of the following iterative procedure:

δ̂ (i)
γ = p

S−1

(
δ̂ (i−1)
γ

/
O+

k

)
− γ p

S−1

(
δ̂ (i−1)
γ

/
O+P

k

)
, i = 1, 2, . . . (2)

where δ̂ (0)
γ = δ∗, O+P

k = {y ∈ Rk : y′x ≤ 0, x ∈ O+k
}

is the polar cone of O+k and
0 ≤ γ ≤ 1 is a parameter indicating how much into the cone is the estimator. Notice
that γ = 0 corresponds to the RMLE.

Then the classification rule R(0, γ ) is

Classify z in Π1iff (z − (c1μ̂1 + c2μ̂2)+ cδ∗γ )′S−1δ∗γ ≥ 0.

The convergence of procedure (2), several good properties of estimators δ∗γ and a
proof for the fact that rules R(0, γ ) have lower TMP than Fisher’s rule under mild
conditions may be found in [4].

2.2 Latent Space Rules

A more involved approach that leads to a new theoretical rule, and with a good
performance in practice, appears in [6]. The point is to use a 2k dimensional latent
space of nonobservable values to introduce the additional information directly in
the rule formulation. The latent space is derived assuming that for each individual
there are two vector values (S1, S2) that correspond to observations on the response
vector, under Π1 and Π2. In particular, here we assume that the marginal densities
for S1 and S2 are Nk(μi ,Σ), i = 1, 2.

Going back to our cirrhosis example, the latent space represents pairs of HA, B1
and B2 values for the same patient that would have been observed under the presence
or absence of cirrhosis. The values in this space are non observable because each
patient has only a response value and so only S1 or S2 is observed. Therefore, an
observation: t = (a, b, c) from a cirrhotic patient corresponds in the latent space to
(s1, s2) = (a, b, c, α, β, γ ) where the last three coordinates are nonobservable and
correspond to a potential observation (α, β, γ ) which would have been observed if
that patient were non-cirrhotic. A data set n × k is then represented by a data set
n × 2k in the latent space.

The key idea is that in this new setting we can translate the auxiliary information
into a presumption of a high probability for the sets,

Am =
{

s ∈ R2k : s1i ≥ s2i for at least m indexes i ⊂ { 1, . . . , k}
}
.

The reason for giving high probability to these sets is clear. If the additional infor-
mation telling us that observations from Π1 tend to take higher values coordinate-
wise than those coming from Π2 is true, then these sets must have high probability.
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Looking to the example once again and setting m = 3, the last statement means
that, for a given patient, the probability of increased HA values under cirrhosis, is
high; and the same is presumed for B1 and B2. The new representation in the latent
space allows us to consider an alternative unrestricted model and to include in a
different way the auxiliary information, using not only the marginals but also the
joint distribution of S = (S1, S2). In this way the theoretical rule can be written as:

Classify z in Π1iff w1(z,m) fNk(μ1,Σ)(z) ≥ w2(z,m) fNk(μ2,Σ)(z) (3)

where

w1(t,m) = pr(S ∈ Am/S1 = t) and w2(t,m) = pr(S ∈ Am/S2 = t).

To use these rules in practice, assumptions about the joint distribution of (S1, S2)

must be introduced and the choice of m must be considered. In [6] we proved that
values of m ≤ [k/2] are recommendable, and we proposed the following family of
models for (S1, S2):

M (λ) :

⎧
⎪⎪⎨

⎪⎪⎩

S1 = Z1 + V S1 → Nk(θ1,Σ)

S2 = Z2 + V S2 → Nk(θ2,Σ)

Z1 → Nk(θ1, λΣ), Z2 → Nk(θ2, λΣ)

V → Nk(0, (1− λ)Σ)

where λ is a parameter that measures the degree of association between S1 and S2.
For λ = 0, S1 and S2 are linearly dependent and we obtain the usual Bayes rule
(i.e. is equivalent to using no latent space), while for λ = 1, S1 and S2 are inde-
pendent. Under these assumptions expressions for computing the weights wi (t,m)

are derived in [6]. The value of these probabilities depend on μ1, μ2,Σ and λ. A
good performance was obtained in that paper using μ∗1 = c1μ̂1 + c2 (μ̂2 + δ∗),
μ∗2 = c1 (μ̂1 − δ∗) + c2μ̂2 and S as estimators of the parameters, and λ = 1. This
is the rule we denote as R(1, 0) as λ = 1 and γ = 0 (recall that δ∗ = δ∗0). Notice
that we use the RMLE as estimator of the difference of the means and from it we
recompute the estimators of the means taking into account that δ = μ1 − μ2 and
that (μ1 + μ2) /2 = c1μ1 + c2μ2 − cδ.

2.3 New Rules Combining Both Approaches

The approach used in [6] does not take advantage of the estimators defined in [4],
since the estimator of the difference of the means considered in the former paper is
just the RMLE and, therefore, the iterative procedure (2) is not used.

Moreover, it is not difficult to notice that both approaches can be combined if the
estimators obtained by the iterative procedure (2) are used when building the sample
version of rule (3).
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In this line, we will use, in the rules defined in Sect. 2.2, δ∗γ with 0 ≤ γ ≤ 1

as estimator of the difference of the means and μ
γ

1 = c1μ̂1 + c2

(
μ̂2 + δ∗γ

)
and

μ
γ

2 = c1

(
μ̂1 − δ∗γ

)
+ c2μ̂2 as estimators of μ1 and μ2. These are the rules we

denote as R(λ, γ ).
This way, we use estimators of the difference of the means δ that are in the

interior of the cone, unlike the RLME which is not admissible, and we are able to
introduce the additional information in the theoretical formulation of the rule, which
was one of the main achievements obtained from the latent space approach. In the
simulation study and the example that appear in the Sections below we will see that
the combination of both approaches give results that in most cases outperform the
TMP obtained by the use of only one of them.

3 Simulations

The purpose of this simulation study is to show the good behavior of the new com-
bined rules when compared with the ones already in the literature, Fisher’s rule, and
the ones appearing in [4] and [6].

For simplicity we concentrate on the case k = 3. The simulations have been
performed in higher dimensions obtaining similar results. As m ≤ [k/2] is recom-
mended, the only value of m considered is m = 1. We generate training samples
of size n1 = n2 = 5 from populations Π1, N (δ,Σ), and Π2, N (0,Σ). The
simulations have also been performed with bigger sample sizes (n1 = n2 = 50)
and with unbalanced sample sizes, rescaling the covariance matrices accordingly.
Similar results have also been obtained in those cases.

Forty different simulations are conducted to show cases where δ and/or Σ are
different. These parameter configurations were already considered in [4] and [6]
and are generated by 10 mean vectors and 4 covariance matrices as:

δiΣ j , i = 1, . . . , 10, j = 1, . . . , 4.

The values for the mean vector δ are determined by ‖δ‖ and cos (δ, c), where
c is the central direction of the positive orthant for the metric given by Σ−1. The
concept of central direction of a cone can be found in [1].

We consider two kind of values of the difference of means. Some of them are
inside the cone such as δ1, δ2, δ3 and δ6, δ7, δ8. These points cover situations that
are more likely to appear in applications. The higher ‖δ‖ and cos (δ, c), the more
inside the cone are the points. The rest of the values are at the frontier of the cone
of restrictions. These sort of points will not appear in applications if the variables
considered are useful to discriminate among the populations, but they represent limit
situations and therefore they are interesting from the theoretical point of view.
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Table 1 Mean vector and covariance matrices
δ1 : ‖δ‖2 = 0.5 and cos(δ, c) = 1 δ6 : ‖δ‖2 = 2 and cos(δ, c) = 1
δ2 : ‖δ‖2 = 0.5 and cos(δ, c) = 0.9 δ7 : ‖δ‖2 = 2 and cos(δ, c) = 0.9
δ3 : ‖δ‖2 = 0.5 and cos(δ, c) = 0.7 δ8 : ‖δ‖2 = 2 and cos(δ, c) = 0.7
δ4 : ‖δ‖2 = 0.5 and δ ∈ dim 2 face of O+3 δ9 : ‖δ‖2 = 2 and δ ∈ dim 2 face of O+

3
δ5 : ‖δ‖2 = 0.5 and δ ∈ dim 1 face of O+3 δ10 : ‖δ‖2 = 2 and δ ∈ dim 1 face of O+

3

∑
1 =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ ∑
2 =

⎡

⎣
1 0.3 0.3

0.3 1 0.3
0.3 0.3 1

⎤

⎦

∑
3 =

⎡

⎣
1 0.3 −0.3

0.3 1 −0.3
−0.3 −0.3 1

⎤

⎦ ∑
4 =

⎡

⎣
1 0.7 0.7

0.7 1 0.7
0.7 0.7 1

⎤

⎦

The values chosen for the covariance matrix are intended to cover usual values in
practice for the correlations coefficients. Full details of the configurations are given
in Table 1.

For each scenario, we generated 10, 000 training samples for which the rules are
determined. For each of these training samples a test observation for each of the
two populations has been classified. The values of the TMP of each of the rules
considered in this simulation appear in Table 2. The best value for each scenario
appears in bold.

In Table 2 we see that there are two rules performing better than the rest, R(1, 1)
and R(1, 0). They are the only ones appearing in bold except for the last two scenar-
ios. If we compare among them we find that R(1, 1) is the best one in 24 out of 40
cases while R(1, 0) is the best for 15, 11 of them corresponding to values not likely
to appear in applications. Therefore, we recommend R(1, 1), the rule that combines
both approaches taking advantage from the iterative estimation procedure and from
the new theoretical rule coming from the latent space.

4 Example. Pima Indians Diabetes Database

This dataset is included in the UCI repository of machine learning databases [3]. The
diagnostic, binary-value variable investigated is whether the patient shows signs of
diabetes or not. The dataset contains 768 instances and eight attributes. There are
268 elements in group 1, who are those who have tested positive for diabetes, and
500 elements in group 0. The sample size will allow us to divide the data into train-
ing and test sets for the purpose of evaluating the correct classification probability.
We consider the restrictions between population means given by the whole sample.
In this way the diabetes population is assumed to have greater mean values than the
healthy population for each of the eight variables. In two different trials we split
the dataset into training sample and test sample. Each observation belongs to the
training sample with probability 0.25 in the first trial (see Table 3) and 0.1 in the
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Table 2 TMP for the different scenarios
Scenario/Rule R(0,U) R(0,0) R(0,1) R(1,U) R(1,0) R(1,1)

Σ1δ1 0.4351 0.4078 0.3947 0.42135 0.39765 0.39175
δ2 0.43475 0.4131 0.40165 0.42175 0.4027 0.3978
δ3 0.43815 0.42005 0.415 0.4295 0.41305 0.4143
δ4 0.44215 0.42365 0.4131 0.4324 0.41235 0.41125
δ5 0.44235 0.4257 0.4266 0.43375 0.422 0.42465
δ6 0.3183 0.30725 0.3011 0.31175 0.30245 0.298
δ7 0.31435 0.30175 0.29395 0.3077 0.29765 0.29155
δ8 0.31685 0.30205 0.30295 0.31005 0.29845 0.302
δ9 0.3194 0.3049 0.30385 0.31215 0.3014 0.30165
δ10 0.3177 0.30455 0.3135 0.30965 0.30155 0.313
Σ2δ1 0.43995 0.42025 0.40735 0.41785 0.40445 0.3988
δ2 0.4426 0.42305 0.41055 0.4226 0.40845 0.4046
δ3 0.43935 0.42345 0.4161 0.42395 0.41135 0.41135
δ4 0.43735 0.4199 0.4153 0.41915 0.4092 0.41125
δ5 0.44105 0.4273 0.42965 0.43105 0.42395 0.42715
δ6 0.3151 0.30915 0.30405 0.30495 0.30075 0.29775
δ7 0.31395 0.3049 0.30115 0.3018 0.29615 0.2948
δ8 0.3128 0.30185 0.3033 0.3016 0.29665 0.29805
δ9 0.31905 0.30895 0.311 0.3075 0.3023 0.30785
δ10 0.3247 0.3087 0.3187 0.31015 0.30535 0.31845
Σ3δ1 0.4394 0.41245 0.3985 0.4292 0.40515 0.3959
δ2 0.44745 0.4188 0.40385 0.43625 0.40995 0.4005
δ3 0.44365 0.42245 0.4151 0.4342 0.41415 0.41315
δ4 0.43765 0.41405 0.4025 0.42825 0.40435 0.40025
δ5 0.439 0.41995 0.4132 0.43065 0.4119 0.41155
δ6 0.32235 0.31175 0.30555 0.3172 0.30805 0.3033
δ7 0.32115 0.3065 0.3003 0.31535 0.30215 0.29845
δ8 0.31915 0.3023 0.3001 0.31205 0.29875 0.29815
δ9 0.32455 0.31175 0.3098 0.3189 0.30695 0.30775
δ10 0.3143 0.3008 0.30505 0.30805 0.29735 0.30415
Σ4δ1 0.4342 0.423 0.41315 0.40715 0.4017 0.39745
δ2 0.44155 0.43145 0.42355 0.41485 0.41145 0.40945
δ3 0.45055 0.43775 0.42685 0.42595 0.4215 0.41775
δ4 0.4433 0.42955 0.4287 0.4243 0.42275 0.4234
δ5 0.4419 0.4377 0.44 0.43415 0.43405 0.43845
δ6 0.314 0.3112 0.3086 0.29485 0.2937 0.2929
δ7 0.3234 0.31905 0.31595 0.3062 0.30345 0.30245
δ8 0.32045 0.31305 0.30835 0.3046 0.30225 0.30025
δ9 0.31925 0.3127 0.3139 0.3055 0.30605 0.31175
δ10 0.31645 0.3074 0.3143 0.3115 0.3124 0.3153

second (see Table 4). In the first sample all restrictions are verified, so changing
parameter γ has no effect on the rule, but we can see that choosing λ = 1 improves
the results. For the second trial the order is not verified by the training means of
variables 3 and 4, and we can see that the combination of both approaches yields
the best rule. Full results are displayed in Tables 3 and 4.
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Table 3 Diabetes database. Incorrect Classification table for test sample in trial 1 (p = 0.25)

Fisher m = 4 m = 3 m = 2 m = 1

Size R(0, γ ) R(1, γ ) R(1, γ ) R(1, γ ) R(1, γ )

Group 0 377 87 87 86 87 87
Group 1 194 62 61 62 60 62
Global % 0.2609 0.2592 0.2592 0.2574 0.2609

Table 4 Diabetes database. Incorrect Classification table for test sample in trial 2 (p = 0.1)

Fisher m = 4 m = 3

Size R(0,U ) R(0, 0) R(0, 1) R(1,U ) R(1, 0) R(1, 1) R(1,U ) R(1, 0) R(1, 1)
Group 0 452 100 100 98 107 108 109 101 101 100
Group 1 240 69 69 68 59 58 59 66 65 64
Global % 0.2442 0.2442 0.2399 0.2399 0.2399 0.2428 0.2413 0.2399 0.2370

m = 2 m = 1

R(1,U ) R(1, 0) R(1, 1) R(1,U ) R(1, 0) R(1, 1)
Group 0 100 100 99 100 101 99
Group 1 70 69 68 70 69 69
Global % 0.2457 0.2442 0.2413 0.2457 0.2457 0.2428

5 Conclusions

We have defined new rules that incorporate efficiently the additional information
that may appear in applications, and proved, using simulations and real data, that
they perform better than the ones already defined for this purpose. On future works
we will try to adapt this technique to other multivariate methods.
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The Choice of the Parameter Values
in a Multivariate Model
of a Second Order Surface
with Heteroscedastic Error

Umberto Magagnoli and Gabriele Cantaluppi

Abstract The paper describes an experimental procedure to choose the values for a
multivariate vector x under these conditions: average of Y (x) equal to a target value
and least variance of Y (x), linked to x by a second order model with a heteroscedas-
tic error. The procedure consists of two steps. In the first step an experimental design
is performed in the feasible space X of the control factors to estimate, by an itera-
tive method, the parameters characterizing the response surface of the mean. Then
a second experimental design is performed on a set A, subset of X satisfying a
condition on the average of Y (x). This second step determines the choice of x by
using a classification criterion based on the ordering of the sample mean squared
errors. The research belongs to the theory of optimal design of experiments [2], that
is employed in the Taguchi Methods, used in off-line control [6].

1 Introduction

An experimental procedure is presented to assign proper values to the control fac-
tors x, which affect the response Y of a system, so that the two following optimal
conditions are satisfied: (a) equality of the mean of Y (x) to an assigned value y0 and
(b) minimum dispersion, respectively

E {Y (x)} = y0 and min
x

V ar {Y (x)} , (1)

x is assumed to belong to a specified space X , that has a practical interest for the
control factors, under the assumptions that are given below.

In particular, we consider a model of a response surface Y (x), where x = (x1, x2)

is a vector of only two explicative variables, whose optimal values we want to deter-
mine. A second-order model is used for estimating the parameters in a non-linear
situation. The response Y of the system depends, thus, on the levels of two control
variables x1, x2 according to the following relationship:
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Y (x1, x2) = μ(x1, x2)+ E(x1, x2) =
= β0 + β1x1 + β2x2 + β12x1x2 + β11x2

1 + β22x2
2 + E(x1, x2) , (2)

where: β0, β1, β2, β12, β11 and β22 are unknown parameters; the errors E(x1, x2)

are random variables independently distributed, on varying x1 and x2, as normal
random variables, E(x1, x2) ∼ N (0, σ 2

E (x1, x2)), with zero means and variances
σ 2

E (x1, x2), which, we assume, depend upon the levels x1, x2 according to an
unknown functional relationship. We observe that relationship (2) takes into account
the linear effects of x1 and x2 on the response level of Y as well as the quadratic
and the interaction ones and that the presence of heteroscedasticity characterizes the
behaviour of the response Y .

2 The Procedure

To choose the levels of x1 and x2 two experimental designs and a selection procedure
are performed.

The First Experimental Design. To estimate the β parameters in (2) we assume to
observe the response of the random variable Y for each experimental condition in a
three-level full factorial design, with n replications for each experimental condition,
according to the following experimental design matrix:

D =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

x11 x21 x11x21 x2
11 x2

21

x11 x22 x11x22 x2
11 x2

22

x11 x23 x11x23 x2
11 x2

23
...

...
...

...
...

x13 x21 x13x21 x2
13 x2

21

x13 x22 x13x22 x2
13 x2

22

x13 x23 x13x23 x2
13 x2

23

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

=

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

d′1
d′2
d′3
...

d′7
d′8
d′9

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

,

where x1r , x2s , r, s = 1, 2, 3, denote the levels of the variables x1 and x2; while
(x1, x2) belong, without loss of generality, to the square experimental region X =
[−1, 1]× [−1, 1], see [4].

Observe that alternative experimental designs could also be adopted to estimate
the β parameters, such as the saturated second order or the fractional factorial ones.
The three-level full factorial design allows us to estimate the variance of the error
too, although this result can be obtained also through the replications of the experi-
mental design.

We will consider also a sampling design where the 9 × n trials are performed
on the same points of the support pertaining the three-level full factorial design but
with a different number of replications for each experimental condition established
according to a D-optimal design for homoscedastic linear models. Should the het-
eroscedasticity in the errors not be present, both the determinant of the covariance
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matrix of the parameter estimates and the variance of the estimated response Y over
the region X would be, in this way, minimized (see [2] and [5]). D-optimal designs
for the heteroscedastic situation are considered in [1], [9], [10] and [11], where the
structure of a parametric model to describe the heteroscedasticity of the errors is
assumed to be known.

Relationships pertaining only the three-level full factorial design are presented.
The adaptation to the D-optimal design (for the homoscedastic case) involves taking
into account the different number of replications for each experimental condition.

Let X be the matrix, 9n × (1+ 5), obtained by concatenating the unitary
vector 1, 9n × 1, with the stacking of the elements 1n×1d′j , j = 1, . . . , 9;
in this way elements, which theoretically give the same variance, are grouped.
Let Y be the column vector, 9n × 1, whose elements are the responses of the
Y variable, defined by (2), for each experimental condition and replication. Let
β = [β0 β1 β2 β12 β11 β22]′ be the column vector, (1+ 5) × 1, containing the
unknown parameters, and E the column vector, 9n × 1, whose elements are the
error components E(x1ri , x2si ) ∼ N (0, σ 2

E (x1r , x2s)), i = 1, . . . , n. Observe
that the value σ 2

E (x1r , x2s) of the variance of E is independent of i . Accord-
ing to (2) we have Y = Xβ + E, being E ∼ N (0,�), and � = In ⊗ �

the diagonal matrix, 9n × 9n, whose non-zero elements are the variances of
the errors in the vector E; � = diag[σ 2

E (x11, x21), σ
2
E (x11, x22), σ

2
E (x11, x23),

σ 2
E (x12, x21), σ

2
E (x12, x22), σ

2
E (x12, x23), σ

2
E (x13, x21), σ

2
E (x13, x22), σ

2
E (x13, x23)].

If the elements of � were known we could apply the generalized least squares
estimator of the parameters β:

β̂ =
(

X′�−1X
)−1

X′�−1Y;

since we cannot assume that the elements of � are known, one can make recourse
to the estimation method presented in [8], see also [3]. Referring to this estimation
method we suggest a specific iterative procedure, which at each step p provides a
provisional estimate β̂ p of β and a provisional estimate �̂p of the matrix �:

β̂ p =
(

X′�̂
−1
p−1X

)−1
X′�̂

−1
p−1Y;

�̂p = In ⊗ S2
p = In ⊗ diag[s2

p(x1r , x2s); r, s = 1, 2, 3];

where s2
p(x1r , x2s) =

(
Y j − X j β̂ p

)′ (
Y j − X j β̂ p

)
/ (n − 1− 5) with

X j =
[
1 1d′j

]
; 1 is the unitary vector, n × 1, and the index j denotes also the

subset of elements in the vector Y corresponding to the n replications x1ri , x2si , i =
1, 2, . . . , n, of each experimental condition specified by the levels x1r , x2s .

The generalized least squares estimate β̂ p is based on �̂p−1 and we assume that,

in the first step, β̂1 is the ordinary least squares estimate, β̂1 =
(
X′X

)−1 X′Y.

The final estimate of the parameters β is given by the β̂ values, obtained at the
end of the iteration procedure, when β̂ p−1 is sufficiently near to β̂ p, and the final
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estimate of the variances σ 2
E (x1r , x2s) corresponding to the levels r and s of the

control variables is

s2(x1r , x2s) = 1

n − 1− 5

(
Y j − X j β̂

)′ (
Y j − X j β̂

)
, for r, s = 1, 2, 3.

For all pairs of values x1, x2 of the feasible space, X , of the two control factors we
may define also the value of the estimated response, μ(x1, x2), of the variable Y :

ŷ(x1, x2) = β̂0 + β̂1x1 + β̂2x2 + β̂12x1x2 + β̂11x2
1 + β̂22x2

2 . (3)

The Second Experimental Design. Let y0 be a target value of the response Y and
let ε > 0 be a value defined by the experimenter. By considering the relationship
ŷ(x1, x2) − ε ≤ y0 ≤ ŷ(x1, x2) + ε, that defines a set of acceptable y values
including the target value y0, we can define a subset A ⊂ X of x1, x2 values, that
depends, according to (3), on the estimates of the β parameters obtained in the
first experimental design. The set A may be considered as a set of experimental
conditions that ensure the system to satisfy the target value y0. We observe that all
the points in the set A are characterized approximately by the same mean value of
the response variable Y . We extend this set in the new region A+ defined by adding
to each element in the set A its neighbouring elements.

In the set of the M points on the feasible space of x1 and x2 belonging to the set
A+ we consider a subset of K points – that is K pairs (x1k, x2k), k = 1, 2, . . . , K –
to submit to the procedure presented below. The K points may be extracted by
making use of a sampling without replacement or with a systematic sampling.

The Selection Procedure. We submit the subset of K points (x1k, x2k), k =
1, . . . , K , sampled in the second experimental design to the following experimental
procedure.

1. Obtain m replications of the experiment on every experimental condition belong-
ing to this set of K points.

2. Estimate the mean, ȳ(x1k, x2k), and the variance, s2
Y (x1k, x2k), with the m repli-

cations of the response Y for every experimental condition in the set of K points.
3. To identify the most desirable experimental conditions re-order the K points

(x1k, x2k) according, see [7], to their estimated mean squared error

M SEY (x1k, x2k) =
[
ȳ(x1k, x2k)− y0

]2 + s2
Y (x1k, x2k),

where y0 is the target value for the response Y .
4. Choose the points characterized by the least mean squared error levels.

We observe that the final selection of the ideal experimental condition from this set
of points may be performed by the experimenter by having also recourse to econom-
ical arguments; say, the ideal experimental condition could be the one minimizing a
cost function over this final set of points.
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3 Some Results Obtained by Simulation

A simulation example is proposed to evaluate the experimental procedure with
regard to a system whose response is defined, according to (2), as follows:

Y (x1, x2) = 2.6− 5.2x1 − 5.2x2 − 2.4x1x2 + 4x2
1 + 4x2

2 + E(x1, x2). (4)

The errors E(x1, x2) are independently distributed as normal random variables
E(x1, x2) ∼ N (0, σ 2

E (x1, x2)) with variances depending upon the control factors
according to the relationship, assumed to be unknown to the experimenter

σ 2
E (x1, x2) = 0.03125−0.0625x1+0.0625x2+0.375x1x2+0.25x2

1+0.25x2
2 . (5)

The target value y0 = 6 is considered for Y : the corresponding “optimal” experi-
mental condition (x10 = −0.26, x20 = 0.26) is characterized by least variance.

The first experimental design is performed on X = [−1, 1]× [−1, 1] by making
recourse to both a three-level full factorial design, with n = 10 trials for each exper-
imental condition x11 = −1, x12 = 0, x13 = 1, and x21 = −1, x22 = 0, x23 = 1,
and a D-optimal experimental design for homoscedastic models.

The set A+ is defined, in the second experimental design, by the experimental
conditions that ensure, according to the parameter estimates obtained in the first
experimental design, values of the response Y far from y0 no more than ε = 0.15.

The feasible space X is assumed to consist of a mesh of 81×81 = 6,561 possible
experimental conditions. Sample of different sizes, K , extracted with the simple
random sampling without replacement and the systematic sampling techniques, with
various numbers, m, of replications for each experimental condition are considered.
Observe that the value of m is independent of n.

The interest has been focused, for different replication sizes N of the proce-
dure, on the following properties: (a) The fraction of simulations with some points,
among those sampled in the set A+, belonging also to a set C defined by exper-
imental conditions satisfying σ 2

E (x1r , x2s) ≤ σ 2
0 = 1.5 × σ 2

E (x10, x20), where
σ 2

E (x10, x20) = 0.072 is the least variance level for the “optimal” experimental
condition (x10, x20). (b) The average number of the sampled points belonging to
C ∩A+, see Fig. 1.

With regard to the properties (a) and (b) both experimental designs, considered
in the first step, give similar results, see Table 1. We observe that they are both sub-
optimal, since an explicit relationship to model the presence of heteroscedasticity
has not been considered. Table 1 shows that, for almost every N and K , over 90%
of the replications of the procedure present at least a value in C∩A+. With regard to
the average number of the sampled points in C ∩A+ the systematic sampling works
generally better than the simple random sampling without replacement.

For each replication, i = 1, . . . , N , of the simulation, let Wi be the random
variable describing the number of pairs (x1k, x2k) in C ∩ A+ among the K pairs
sampled in A+. If p denotes the probability to sample a pair in C ∩ A+, then
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Fig. 1 Response surfaces for the mean and the variance, see (4) and (5). A+ is the set between
the thicker contour levels of the mean. C is the convex set defined by the thicker contour level
of the variance. The points in A+ denote the experimental conditions that have been sampled in
the second experimental design; they are numbered according to the ranking of the mean squared
errors of Y ; the best one, identified by the number 1, has a value of 0.11866

Table 1 The fraction of simulations with some of the points in the set A+ belonging also to the
region C and the average number of the sampled points in C ∩A+
y0 = 6 Simple random sampling Systematic sampling

N K 10 15 20 10 15 20

50 a 0.840, 1.960 0.980, 3.300 1.000, 3.980 1.000, 2.840 1.000, 3.940 1.000, 5.460
100 a 0.900, 2.160 0.980, 3.380 0.990, 4.240 1.000, 2.780 1.000, 4.230 1.000, 5.470
200 a 0.920, 2.320 0.965, 3.375 0.995, 4.345 0.985, 2.835 1.000, 4.280 1.000, 5.430
500 a 0.916, 2.186 0.968, 3.420 0.998, 4.414 0.984, 2.856 1.000, 4.288 1.000, 5.512

50 b 0.940, 2.400 1.000, 3.820 1.000, 4.800 0.980, 2.860 1.000, 4.340 0.980, 5.520
100 b 0.900, 2.250 0.990, 3.510 1.000, 4.650 0.990, 2.750 1.000, 4.350 0.990, 5.500
200 b 0.940, 2.340 0.985, 3.405 1.000, 4.795 0.995, 2.730 1.000, 4.245 0.995, 5.410
500 b 0.932, 2.318 0.988, 3.356 1.000, 4.530 0.988, 2.818 1.000, 4.254 0.998, 5.376
a 1st experimental design: 3-level full factorial with 10 trials for each experimental condition
b 1st experimental design: D-optimal with 90 trials on the same set of the 3-level full factorial
K : number of sampled points in the region A+,
N : number of replications of the whole procedure
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Wi ∼ W ∼ Bin (K , p). We remind that in each replication the empirical value
p and the set A+ depend upon the estimates of the parameters in (4) obtained in the
first step.

With reference to the following system of hypotheses

H0 : p ≥ p0 versus H1 : p < p0 (6)

we can decide to accept the null hypothesis H0 : p ≥ p0, in presence of N replica-
tions of the simulation, depending on the value of one of the statistics T =∑N

i=1 Wi

or R = ∑N
i=1 Wi/N , where T ∼ Bin (N K , p). Table 3 reports the critical val-

ues for R at the significance level α = 0.05 for each pair N , K . If we consider
p0 = 0.20 for the simple random sampling and p0 = 0.25 for the systematic
sampling we may observe that every average number of experimental conditions in
C∩A+, see Table 1, is greater than the pertaining critical value. For K = 10, 15, 20
we may expect to sample respectively at least 2, 3 and 4 values close to the theoret-
ical value (x10, x20). The best experimental conditions can be chosen by sorting the
mean squared errors of the response Y for each pair (x1k, x2k). Figure 1 shows an
example of the points, sampled in the second experimental design, ordered accord-
ing to their estimated mean squared errors for K = 10: four of the sampled points
are in C ∩A+.

To study the attitude of the procedure to select experimental conditions with
low variance of the error E , Table 2 reports the average number of experimental
conditions with rank of the mean squared error of Y lower than r0, where r0 is 4,
6, 8 for K = 10, 15, 20. A test similar to (6) can be performed to check if the
probability that “the best sampled experimental conditions are in the set C ∩A+” is
greater than a value p0. The critical values corresponding to the different N , K for
the statistic R are reported for α = 0.05 in Table 3. If we consider p0 = 0.15 for the

Table 2 Average number of experimental conditions, among the four with least MSE, in C ∩A+
y0 = 6 Simple random sampling Systematic sampling

m 10 10 10 20 20 20 10 10 10 20 20 20
N K 10 15 20 10 15 20 10 15 20 10 15 20

50 a 1.360 2.520 3.140 1.440 2.540 3.260 2.460 3.400 4.460 2.540 3.420 4.620
100 a 1.560 2.610 3.330 1.640 2.610 3.460 2.440 3.620 4.460 2.530 3.630 4.630
200 a 1.705 2.555 3.325 1.795 2.605 3.505 2.505 3.625 4.455 2.565 3.685 4.620
500 a 1.668 2.592 3.406 1.742 2.678 3.544 2.496 3.612 4.460 2.568 3.710 4.594
50 b 1.780 2.920 3.600 1.900 2.960 3.800 2.480 3.680 4.440 2.540 3.740 4.520

100 b 1.680 2.680 3.570 1.740 2.740 3.720 2.390 3.710 4.390 2.460 3.800 4.540
200 b 1.730 2.630 3.710 1.785 2.725 3.830 2.370 3.600 4.425 2.445 3.685 4.560
500 b 1.738 2.576 3.504 1.836 2.692 3.658 2.446 3.636 4.386 2.522 3.728 4.528
a 1st experimental design: 3-level full factorial with 10 trials for each experimental condition
b 1st experimental design: D-optimal with 90 trials on the same set of the 3-level full factorial
K : number of sampled points in the region A+,
m: number of replications for each sampled point,
N : number of replications of the whole procedure
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Table 3 Critical values for the statistic R = ∑N
i=1 Wi /N at the significance level α = 0.05 to

test the hypotheses H0 : p ≥ p0, H1 : p < p0 with reference to a binomial random variable
W ∼ Bin(K , p)

p0 = 0.25 p0 = 0.20 p0 = 0.15

N K 10 15 20 10 15 20 10 15 20

50 2.180 3.360 4.560 1.700 2.640 3.580 1.240 1.940 2.640
100 2.280 3.480 4.680 1.790 2.750 3.710 1.320 2.020 2.740
200 2.340 3.555 4.775 1.855 2.820 3.795 1.370 2.090 2.815
500 2.400 3.626 4.858 1.908 2.886 3.868 1.418 2.148 2.882

simple random sampling and p0 = 0.20 for the systematic sampling, which seems
to have a better performance, we may observe that every average number of “best”
experimental conditions in C ∩ A+ is greater than the pertaining critical value. We
may then expect to have respectively for K = 10, 15, 20 at least 1.5, 2.25 and 3
values in C ∩ A+ characterized by a rank of the mean squared error lower than r0
among the sampled experimental conditions.

4 Conclusions

An experimental procedure is proposed to choose the values of control factors to
realize a target value for the response of a system described by a second order model
with heteroscedastic error. To ensure a good definition of the response surface for the
mean, the space X pertaining a first experimental design is defined over a wide range
for all control factors. To search the experimental condition with least variance the
attention is then focused, by a second experimental design, on a restricted set A+,
whose elements satisfy approximately a condition on the average of Y .

The procedure may help the operator, by simulation, to choose the parameters –
like the experimental design, the number of experimental trials, the extension of the
set A+ and the size of the sample in A+ – which can affect a particular type of
experimentation. An example of simulation is reported to study the behaviour of
the procedure. Future developments will regard the analysis of the behaviour of the
procedure in presence of various theoretical relationships for the variance, of various
specifications of the experimental parameters n, K ,m and of a possible definition
of the set A+ as a function of the precision of the β parameter estimates obtained
through the proposed algorithm and the study of the performance of the estimation
algorithm proposed in the first step.
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Mixed Mode Data Clustering: An Approach
Based on Tetrachoric Correlations

Isabella Morlini

Abstract In this paper we face the problem of clustering mixed mode data by
assuming that the observed binary variables are generated from latent continuous
variables. We perform a principal components analysis on the matrix of tetrachoric
correlations and we then estimate the scores of each latent variable and construct a
data matrix with continuous variables to be used in fully Guassian mixture models
or in the k-means cluster analysis. The calculation of the expected a posteriori (EAP)
estimates may proceed by simply considering a limited number of quadrature points.
Main results on a simulation study and on a real data set are reported.

1 Introduction

One possible approach to cluster analysis is the mixture maximum likelihood
method, in which the data to be clustered are assumed to come from a finite mixture
of populations. The method has been well developed and much used for the case
of normal populations. A main advantage in using Gaussian distributions is that a
number of possible restrictions on the covariance matrices has been proposed in
literature (e.g., [1, 3]) to deal with different local dependencies and, at the same
time, to alleviate the problem of the rapidly growing of the parameters with the data
dimension and with the number of clusters. A large range of Gaussian models are
available, from the simple spherical one to the least parsimonious where all elements
of the covariance matrix are allowed to vary across clusters. Practical applications,
however, often involve mixture of categorical and continuous variables. Everitt [4]
and Everitt and Merette [5] extended the normal model to deal with mixed mode
data but the computation involved in their model is so extensive that is only fea-
sible for data with very few categorical variables. Lawrence and Krzanowski [7]
and Vermunt & Magidson [12] propose conditional Gaussian models with local
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independence structure. Local dependencies are specified only between pairs of
categorical variables and between pairs of continuous variables and are dealt via
joint multinomial and multivariate normal distributions. In the “Latent Gold” pack-
age [11] the dependence between a categorical and a continuous variable may be
dealt with a sort of “trick”, by doubling the categorical variable and treating the
variable also as a covariate. The estimated dependence, however, may not vary
between groups. The mixture model for large data sets implemented in the pack-
age SPSS is also based on joint multinomial and gaussian distributions and postu-
late the hypothesis of local independence between a categorical and a continuous
variable.

Here we face the problem of clustering data with different scales and allow-
ing local dependencies also between a categorical and a continuous variable by
assuming that each observed categorical variable is generated from a latent con-
tinuous variable and by estimating the scores of these latent variables. In eco-
nomics, these variables are called utility functions and the assumption is that the
response (which may be, for example, the presence or the absence of a public
service or a public utility) are determined by the crossing of certain thresholds
in these functions (see, among others, [8]). Heckman [6] models whether or not
American states have introduced fair-employment legislation and describes the cor-
responding latent response as the “sentiment” favoring fair-employment legislation.
In genetics, the latent response is interpreted as the “liability” to develop a qual-
itative trait or phenotype. There are also examples of continuous variables which
are sampled as binary (among others, bit data which are originated by electric
voltages). Skrondal and Rabe-Hesketh [10], pp. 16–17, report various interpreta-
tions of these latent variables and also state that assuming a latent continuous vari-
able may be useful regardless of whether the latent response can be given a real
meaning.

This work represents the first step in the construction of fully Gaussian models
for classification, in which correlations among variables may vary across groups and
also variable selection may be faced differently in each group. Here we estimate the
scores of each latent variable and reach a data matrix with all continuous variables
to be used in these models. An application shows that some benefits of using a data
matrix with all continuous variables instead of a mixed mode data matrix may be
reached in the k-means cluster analysis.

2 From Binary Variables to Continuous Variables

The essential feature of the method to be described in this section is that the observed
categorical variables are generated from underlying latent continuous variables
according to the values of a set of thresholds. Here we formalize results regarding
binary variables but the theory may be extended to multinomial variables by esti-
mating the matrix of polychoric correlations. Given p vectors of binary variables
observed for a sample of size n, a contingency table for each couple of variables Xk

and X j is constructed, with the following cell frequencies:
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xk = 0 xk = 1

x j = 0 e jk b jk

x j = 1 c jk d jk

The estimated value for the threshold generating the variable Xk is the value hk
satisfying Φ(hk) = (e jk + c jk)/n. For variable X j it is the value h j satisfying
Φ(h j ) = (e jk + b jk)/n, where Φ is the standard normal cumulative distribution
function. We then estimate the tetrachoric correlation coefficient r jk conditional on
these thresholds, via maximum likelihood. The solution may be found iteratively or
by using the following approximate analytic solution:

r jk = sin

⎛

⎝π

2

(

1+ 4e jkb jkc jkd jkn2

(e jkd jk − b jkc jk)2(e jk + d jk)(b jk + c jk)

)−1/2
⎞

⎠ (1)

In tables with zero frequencies, zero values are set to 0.5. In a simulation study with
5000 different data sets of size (100 × 6) generated from 10 multivariate normal
populations, the estimator (1) has been shown to give better results than the other
ones based on approximate analytic solutions of the likelihood function. The (n× p)
matrix of the scores of the p latent continuous variables is reached with expected a
posteriori (EAP) estimates. In order to reach semi parametric estimates, we consider
a model based on principal components rather than on factors (see, for example, [2]
and [9], for EAP estimates reached by considering a fully parametric model where
also thresholds, eigenvalues and eigenvectors associated with each factor are esti-
mated by maximizing the likelihood function). We perform a principal component
analysis on the matrix of tetrachoric correlations (which does not require previous
smoothing if the matrix is not positive definite) and consider the following model:

ti j = a j1yi1 + a j2yi2 + . . .+ a jk yik + . . .+ a jp yip (2)

where ti j is the score of principal component j for case i , a jk are the loadings
(eigenvectors) and yik is the score for case i relative to the k latent variable associ-
ated with the observed categorical variable xk as follows: xik = 1 if yik ≥ hk and
xik = 0 if yik < hk . As assumed for the thresholds estimates, y ∼ N (0, I ) and
t ∼ N (0,Λ) where Λ is a diagonal matrix with elements λ2

j =
∑p

k=1 a2
jk equal

to the eigenvalues. The EAP estimator of the j th principal component score is the
mean of the posterior distribution of t j , which is expressed by:

t̃i j = E(ti j |xi ;w) =
∫

t j f (t j |xi ;w)dt j =
∫

t j f (xi |t j ;w)g(t j |w)
∫

f (xi |t j ;w)g(t j |w)dt j
dt j (3)
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where w is the vector of known parameters (the thresholds and the eigenvectors).
In the following equations, for economy of space, w will be omitted. Given σ 2

jk =
λ2

j − a2
jk =

∑
h =k a2

jh , then

P(xik = 1|t j ) = 1

σ jk
√

2π

∫ ∞

hk

e

(
−(ti j−a jk yik )

2/2σ 2
jk

)

dyik (4)

Introducing the change in the variable:

P(xik = 1|t j ) = 1

a jk
√

2π

∫ (ti j−a jk hk)/σ jk

−∞
e(−z2/2)dz (a jk > 0) (5)

P(xik = 1|t j ) = 1

−a jk
√

2π

∫ ∞

(ti j−a jk hk)/σ jk

e(−z2/2)dz (a jk < 0) (6)

Letting z jk = (ti j − a jkhk)/σ jk and Fjk(t j ) = (a jk)
−1Φ(z jk) when a jk > 0,

Fjk(t j ) = |a jk |−1(1 − Φ(z jk)) when a jk < 0, assuming the independence of the
binary variables xk conditional on each component t j , it results

f (xi |t j ) =
p∏

k=1

Fjk(t j )
xik [1− Fjk(t j )]1−xik (7)

We consider S quadrature points and estimate the scores as follows:

t̃i j =
S∑

s=1

ts j
φ(ts j )

∏p
k=1 Fjk(t j )

xik [1− Fjk(t j )]1−xik

∑S
s=1 φ(ts j )

∏p
k=1 Fjk(t j )xik [1− Fjk(t j )]1−xik

(8)

where ts j are equally spaced points in [−z j , z j ] with Φ(−z j/λ j ) = 0.001, φ(ts j )

are the density functions of these points in the N (0, λ2
j ) curve times the interval

size.
Given the estimates t̃i j , the EAP estimates ỹik of the latent variables may be then

reached through analogous steps. The EAP estimator of the kth variable scores is
the mean of the posterior distribution of yk , which is expressed by:

ỹik = E(yik |xik; ti ) =
∫

yk f (yk |xik; ti )dyk =
∫

yk f (xik |yk; ti )g(yk)∫
f (xik |yk; ti )g(yk)dyk

dyk

(9)
Let y+ik be the values yik ≥ hk and y−ik be the values yik < hk , then
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P(xik = 1|yk; t̃i j ) = 1

a jk
√

2π

∫ t̃i j−a jk y+ik
σ jk

−∞
e−z2/2dz (a jk > 0) (10)

P(xik = 1|yk; t̃i j ) = 1

|a jk |
√

2π

∫ ∞
t̃i j−a jk y+ik

σ jk

e−z2/2dz (a jk < 0) (11)

P(xik = 0|yk; t̃i j ) = 1

|a jk |
√

2π

∫ t̃i j−a jk y−ik
σ jk

−∞
e−z2/2dz (a jk < 0) (12)

P(xik = 0|yk; t̃i j ) = 1

a jk
√

2π

∫ ∞
t̃i j−a jk y−ik

σ jk

e−z2/2dz (a jk > 0) (13)

Let

z+jk =
t̃i j − a jk y+ik

σ jk
z−jk =

t̃i j − a jk y−ik
σ jk

(14)

and F+jk(yk) = (a jk)
−1Φ(z+jk) when a jk > 0, F+jk(yk) = |a jk |−1(1−Φ(z+jk)) when

a jk < 0, F−jk(yk) = |a jk |−1Φ(z−jk) when a jk < 0, F+jk(yk) = (a jk)
−1(1−Φ(z−jk))

when a jk > 0. Then f (xik |yk; ti ) = ∑p
j=1 F+jk(yk)

xik F−jk(yk)
1−xik × φ(t̃i j ). Con-

sidering S quadrature points we estimate the scores as follows:

ỹik =
S∑

s=1

ysk

φ(ysk)
∑p

j=1(F+jk(ys)
xik F−jk(ys)

1−xik × φ(t̃i j ))
∑S

s=1 φ(ysk)(
∑p

j=1 F+jk(ys)xik F−jk(ys)1−xik × φ(t̃i j ))
(15)

where ysk are equally spaced points in [−z j hk] when xik = 0, in [hk z j ] when
xik = 1, with Φ(−z j ) = 0.001, φ(ysk) being the density functions of these points
in the N (0, 1) curve times the interval size.

3 Main Results on a Simulation Study and on a Real Data Set

A simulation study is used to evaluate the accuracy of the tetrachoric correlations
and the scores estimates. From 10 standard multivariate normal populations with
correlation matrices P with equal elements ρrc, r = c, out of the main diagonal,
ranging form 0.0 to 0.95, we generate 5,000 data sets (500 from each population)
of size (100× 6). We then dichotomize the 6 variables by imposing random thresh-
olds from a uniform distribution in the interval [−2+ 2]. The mean absolute errors
(MAEs) for the thresholds estimates for each variables (averaged over the 5,000
data sets and the 100 observations of each set) are always less than 0.06. Consider-
ing “difficult variables”, originated by thresholds outside the interval [−1 + 1], the
MAEs increase to 0.11. These less accurate estimates also lead to larger errors for
the scores estimates. Using (1), the mean absolute errors (MAEs) obtained for the
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different ρ, averaged over the 500 data sets generated with each correlation matrix,
the 100 observations of each set and the 15 correlation coefficients, are:

ρ = 0 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.95

0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.03

Results seem particularly accurate for all values of ρ. Mean errors also decrease as
long as the real correlations among variables increase. Boxplots of the MAEs for
the eigenvalues of the principal components, calculated between the eigenvalues of
the correlation matrix P used to generate the data and the correlation matrix R of the
generated data, are reported in Fig. 1. For values of ρrc not exceeding 0.8, estimates

Fig. 1 Boxplots of the mean absolute errors of the eigenvalues plotted along the original corre-
lations ρrc . In the left-hand boxes, errors are calculated between eigenvalues of the tetrachoric
correlation matrix and eigenvalues of the matrix R of the generated data. In the right-hand boxes,
errors are calculated between eigenvalues of the tetrachoric correlation matrix and eigenvalues
of the matrix P used to generate the data. In the upper boxes errors are averaged over the six
eigenvalues. In the lower boxes, errors are calculated only for the first eigenvalues
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of all the eigenvalues better recover the computed correlation matrix, rather than the
matrix used to generate the data. This is not true for the first eigenvalue: when this
one is large (and the correlations are larger than 0.8) the estimates better recover
the first eigenvalues of the matrix P. We then estimate the scores of each latent
variable and of the principal components. The MAEs, averaged over the 500 data
sets generated for each correlation matrix and over the six variables and the 100
observations of each set, are:

ρ = 0 ρ = 0.2 ρ = 0.3 ρ = 0.4 ρ = 0.5 ρ = 0.6 ρ = 0.7 ρ = 0.8 ρ = 0.9 ρ = 0.95

MAE (t̃i j ) 0.87 0.70 0.69 0.65 0.64 0.60 0.57 0.51 0.45 0.42
MAE (ỹi j ) 0.59 0.59 0.58 0.58 0.58 0.59 0.58 0.58 0.58 0.59

As long as the correlation among variables increases, there is an improvement in
the principal components estimates. On the contrary, results regarding the latent
variables do not seem to depend on ρ. Estimates of the scores of the latent vari-
ables show improvements in average accuracy when the generated thresholds are
close to zero, that is are close to the mean (and the median) of the latent variables.
When the thresholds are beyond the range [−1 + 1], average errors are signifi-
cantly greater. Average errors, however, are always less than the variance of each
variable and results seem enough accurate. Table 1 reports the MAEs of the latent
variables scores obtained in a further study. Here the 6 binary variables are obtained
by generating a (5000 × 6) data set from the same zero-mean multivariate normal
populations as before, but with fixed thresholds: −2, −0.5, 0, 0.2, 0.5, 2. Average
errors (in the last row) show that the accuracy of the EAP estimates increases as
long as the threshold approaches zero. On the other hand, considering the errors
computed for different values of the true scores, we note that minima average errors
(reported in bold) are obtained for values near the thresholds. The worst fittings are
obtained for large positive values when the threshold is −2 and for large negative
values when the threshold is +2. For variables with thresholds −0.2, 0, 0.2 and 0.5,
the correlations between real and estimated scores are 0.74, 0.78, 0.78 and 0.75,
respectively.

Table 1 Mean Absolute Errors for the estimates of the 6 latent variables scores, divided into 9
groups. Groups are based on the magnitude of the true score values

thresh.= −2 thresh.= −0.5 thresh.= 0.0 thresh.= 0.2 thresh.= 0.5 thresh.= 2

scores MAEs MAEs MAEs MAEs MAEs MAEs
< −1.3 0.62 1.02 1.46 1.62 1.89 2.74
[−1.3− 0.8) 0.20 0.32 0.77 0.92 1.21 1.99
[−0.8− 0.5) 0.17 0.11 0.40 0.56 0.84 1.60
[−0.5− 0.3) 0.48 0.23 0.11 0.27 0.54 1.28
[−0.3+ 0.0) 0.75 0.08 0.17 0.08 0.29 1.00
[+0.0+ 0.3) 1.02 0.29 0.15 0.23 0.08 0.73
[+0.3+ 0.5) 1.30 0.55 0.13 0.09 0.19 0.47
[+0.5+ 0.8) 1.61 0.83 0.41 0.22 0.13 0.18
≥ +0.8 2.40 1.54 1.14 0.96 0.64 0.41

average 0.77 0.53 0.48 0.48 0.50 0.75
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We then consider the internet advertisement data set from the UCI machine learn-
ing depository (http://archive.ics.uci.edu/ml/). The features encode the geometry of
the image as well as phrases occurring in the URL, the image’s URL and alt text,
the anchor text, and words occurring near the anchor text. The cluster membership
of each image is known (clusters are: advertisement or not advertisement). After
removing instances with missing values and selecting binary variables with relative
frequencies higher than 0.1, we reach a data set with 2,359 instances, 3 continuous
variables and 10 binary variables. We perform a k-means cluster analysis and we run
the mixture model implemented in SPSS first with mixed mode variables (normaliz-
ing continuous variables in the interval [0 1]) and then with all continuous variables
(with the estimated scores of the binary ones). The classification error rate decrease
from 33 to 30% with k-means and from 35 to 32% with the mixture model.

4 Concluding Remarks

Although it is clearly impossible to generalize from the results presented, it does
appear that estimating the scores of the latent continuous variables generating the
binary values may improve the clustering results and, above all, it allows fully Gaus-
sian models with different correlations among the variables in each group to be used
for classification. This paper describes an initial investigation into the feasibility of
estimating the scores of each latent continuous variable. In literature, only EAP
estimates of the most relevant factors have been presented, for the different aims
of estimating composed items that are assumed to represent a particular set of con-
structs and for data reduction. Here the aim is to reach a continuous data matrix,
of the same dimension of the original one. Possible variations and improvements
to the method proposed are relevant topics for future research. Future simulations
involve data generated from distributions rather than the normal, to explore whether
the EAP estimates work well also in these cases. Indeed, although the threshold
estimates are based on the normal distribution and the ti j and the yi j are supposed
to be Gaussian, EAP estimates are little affected by the choice of this distribution
since loadings and eigenvalues are not estimated by maximum likelihood.
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Optimal Scaling Trees for Three-Way Data

Valerio A. Tutore

Abstract The framework of this paper is developed on tree-based models for three-
way data. Three-way data are measurements of variables on a sample of objects in
different occasions (i.e. space, time, factor categories) and they are obtained when
prior information play a role in the analysis.

Three way data can be analyzed by exploratory methods, i.e., the factorial
approach (TUCKER, PARAFAC, CANDECOMP, etc.) as well as confirmatory
methods, i.e., the modelling approach (log-trilinear association models, simultane-
ous latent budget models, etc.).

Recently, we have introduced a methodology for classification and regression
trees in order to deal specifically with three-way data. Main idea is to use a strat-
ifying variable or instrumental variable to distinguish either groups of variables or
groups of objects. As a result, prior information plays a role in the analysis providing
a new framework of classification and regression trees for three-way data.

In this paper we introduce a tree-based method based on optimal scaling in order
to account of the presence of non-linear correlated groups of variables. The results
of a real world application on Tourist Satisfaction Analysis in Naples will be also
presented.

1 Introduction

Three-way data are data classified in three ways. Longitudinal data, i.e., are three
way, because of repeated observation of the same variables on the same objects.

So far segmentation methods for classification and regression trees have been
proposed as supervised approach to analyze data sets where a response variable
and a set of predictors are measured on a sample of objects or cases. Classifica-
tion and regression trees are a fundamental approach to data mining and prediction
[1, 6]. In particular, they can be fruitfully used for either exploratory or confirmatory
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analysis. A further extension is two-stage discriminant trees [11] based on multiple
factorial splits.

From the exploratory point of view, in binary segmentation, the aim is to find the
best split of a predictor to split the cases into two sub-groups in order to reduce the
impurity of the response within each sub-group. The recursive splitting of the cases
yields a tree structure. As an example, partitioning procedures such as two-stage seg-
mentation and fast algorithm use the concept of global prediction of each explana-
tory variable and the local prediction due to each split of predictor categories [8].

Following the pioneer work [15] and further developments [16, 14], this paper
provides the methodology for the analysis of three-way data characterized at the
same time by sets of objects and sets of predictors. Therefore, data sets can be
described by a cube, namely a set of variables (including both predictors and
responses) is measured on a sample of objects in a number of distinct situations,
also called occasions. Each slide of the cube is a two-way data matrix, i.e. units
times variables. Typically, the occasions are associated to modalities of a categorical
variable. Alternatively, a time variable could be also considered as well.

As an alternative to other methods for either exploratory analysis [7] or confir-
matory analysis [9, 12, 13], main idea is to analyse this type of data with suitable
methods for classification and regression trees. In the following we propose a parti-
tioning procedure for exploratory trees dealing with three-way data.

2 The Data and the Two-Stage Splitting Criterion

The three ways of the data set are cases, attributes and situations, respectively. Let
D be the three-way data matrix of dimensions N , V , Q, where N is the number
of cases, objects or units, V is the number of variables, Q is the number of situa-
tions. Assume that the V variables can be distinguished into two groups, namely
there are M predictor variables X1, . . . , Xm, . . . , X M and C response variables
Y1, . . . ,Yc, . . . ,YC where M + C = V . The Q situations refer to modalities of
a stratifying variable, which is called instrumental variable. Alternatively a time
variable can be also considered for longitudinal data analysis.

Predictors can be of categorical and/or numerical type whereas responses can be
either categorical or numerical, thus a distinction can be made between a classifica-
tion problem and a regression problem respectively.

The two-stage splitting criterion for C = 1 can be defined as follows:

max
m

∑

q

γY (t |q Xm)pY (t |q) (1)

max
s

∑

q

γY (t |s)pY (t |q) (2)

for q = 1, . . . , Q (i.e. subsamples), m = 1, . . . , M (i.e. predictors), s = 1, . . . , S
(i.e. splitting variables), with

∑
q pY (t |q) = 1, where γY (t |q Xm) is the global

impurity proportional reduction measure of Y due to each predictors Xm and γY (t |s)
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Fig. 1 The structure of
three-way data
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the local impurity proportional reduction measure of Y due to each splitting vari-
able s. The first one is a weighted average of the measures calculated across the Q
occasions. A suitable weighting system pY (t |q) can be given by the percentage of
the total impurity of the response in each subsample.

Analogously, it can be defined the local impurity proportional reduction measure
due to each splitting variable. On the basis of the type of response variables, we can
choose a suitable impurity measure for classification trees as well as for regression
trees. In particular, impurity measures for classification can be measured by entropy,
Gini index, misclassfication-ratio, whereas the ones for regression can be measured
by variation or deviation.

In the following, we consider a special constrained version of the three-way data
matrix D, as described in Fig. 1. In particular, the instrumental variable allows to
distinguish subsamples such as groups of objects.

3 The Method

Let Y be the output, namely the response variable, and let X = {X1, . . . , X M } be
the set of M inputs, namely the predictor variables. In addition, let ZO be the strati-
fying object variable with Q categories. The response variable is a nominal variable
with J classes and the M predictors are all categorical variables (or categorized
numerical variables). The sample is stratified according to the Q categories of the
instrumental variable ZO .

We assume that the M predictors are structured into K non-linear internally cor-
related groups of variables. To deal with non-linear correlated groups of variables
we consider Nonlinear Canonical Correlation Analysis and the approach of Gifi [3].

This allows to summarize the information within each group through a latent
factor. Nonlinear Canonical Correlation Analysis is applied before the segmenta-
tion procedure. Optimal scaling means that for each categorical variable a nonlinear
transformation is permitted, so that it maximizes the analysis criterion [2, 17]. We
find the NLCCA’s object scores minimizing
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K∑

t=1
tr (X−Qt At )

′ (X−Qt At )

X′X = nI,u′X = 0,q = f(h), f ∈ C(h)
(3)

where X are object scores, Qt are the transformed variables from the original vari-
able matrix H and At are the collection of multiple and single category quantifica-
tions across variables and sets, C(h) is the set of possible transformations of h, f
refers to a transformation. In this way we found category quantifications of the sets
of variables, our new predictors, i.e. the latent factors υk for k = 1, . . . , K , to be
considered in the recursive partitioning.

The above approach allowed to reduce the dimensionality of the analysis, shifting
the attention toward a set of latent predictors synthesis of the original variables.
Therefore, the latent predictors allowed to define the set of all possible splits as
candidates for the best split of the objects. In this field Tutore et al. [15] introduced
Partial Predictability Trees based on the use of predictability indexes for three-way
cross-classifications. The idea is to extend the nonlinear transformation to data struc-
tured into three ways with different groups of individuals.

We consider the two-stage splitting criterion based on the predictability τ index
of Goodman and Kruskal [4] for two-way cross-classifications: in the first stage,
the best group of predictors is found maximizing the global prediction with respect
to the response variable; in the second stage, the best split of the best group of
predictors is found maximizing the local prediction.

In the following, we extend this criterion in order to consider the predictability
power explained by each group/split with respect to the response variable condi-
tioned by the instrumental variable ZO .

For this purpose, we consider the predictability indexes used for three-way cross-
classifications, namely the multiple τm and the partial τp predictability index of Gray
and Williams [5], that are extensions of the Goodman and Kruskal τs index.

At each node, in the first stage, among all available groups of predictors υk for
k = 1, . . . , K , we maximize the partial index τp(Y |υk, ZO ) to find the best predic-
tor υ∗ conditioned by the instrumental variable Z O :

τp(Y |υk, Z O) = τm(Y |υk Z O)− τs(Y |Z O)

1− τs(Y |Z O )
(4)

where τm(Y |Xm ZO ) and τs(Y |Z O ) are the multiple and the simple predictability
measures and υg are the object scores of the groups constructed by correlated orig-
inal variables. In the second stage, we find the best split s∗ of the best predictor υ∗
maximizing the simple index τs(Y |s, ZO ).

4 The Analysis

In this section, we present an application about tourism satisfaction survey in
Naples. This survey of N = 1,878 tourists has been collected measuring the level
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Fig. 2 Original variables and
latent variables

of global satisfaction and the level of satisfaction with respect to three dimensions
of the service, each considering three aspects.

The ordinal predictors (professionality, structures, competitivity, maintenance,
security, attractions, accessibility, information, mobility) have 5 levels of satisfac-
tion. Fig. 2 shows the original variables and the new latent variables obtained by
correlated original variables.

The response variable has two classes distinguishing the satisfied and the unsat-
isfied tourists. The three dimensions are accommodation, territory, info-mobility.
We choose as instrumental variable Z O the nationality of the tourists with three
categories (Italian, European, Extra-European). Fig. 3 shows the final binary tree

Fig. 3 Tree Graph - Tourism Satisfaction Survey
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Fig. 4 Path 1-11 - Tourism Satisfaction Survey

with 18 terminal nodes in which we marked the predictor and the split at each
nonterminal node.

In the end, Fig. 4 shows the path from root node to node n = 11. In particular,
in Fig. 4 we report the response classes distribution of the objects within the three
strata of ZO , for the predictor selected in each nonterminal node.

In each node we indicate the total number of subjects, the number of subjects
divided into the three categories of the instrumental variable and for each category
we report in bold the number of satisfied tourists and in italics the number of unsat-
isfied tourists. For the terminal nodes we indicate with two different colours the
presence of satisfied or unsatisfied tourists.

As an example, we can see that in node 10 there is a bigger presence of unsat-
isfied than satisfied tourists, but relatively to z2 and z3 there are more satisfied than
unsatisfied tourists. Then it’s possible to interpret in a different way that terminal
node respect to the presence of nationality of the tourists.

5 Conclusions

In a previous work [15], we presented a partitioning procedure for a data mining
problem, consisting in find a tree-based model for the analysis of a large set of
within group correlated predictors. The goal was to define a suitable variable to
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summarize each group of predictors. Two results were found: a multiple split was
considered at each node of the tree and it was possible to understand the relevance
of each group and not of the single original variable in the splitting procedure. This
procedure was called optimal scaling tree.

In another work [16], we introduced a stratifying variable in the analysis account-
ing of prior information through specific constraints upon objects. With this method,
called Partial Predictability Tree, the stratifying variable allowed to distinguish
groups of objects, thus a suitable splitting criterion has been defined to find the best
simultaneous partition of the objects. Main issue was to provide distinct response
distributions in each node sample and the best split was found as a compromise of
the impurity reduction of all response class distributions in the distinct subsamples.

This paper combines the two main ideas of the previous works providing optimal
scaling trees using an instrumental variable for the analysis of three-way data. The
goal is to understand the structure of the data in presence of complex data with
blocks of objects as well as blocks of predictors. An application on a real data set has
been briefly described in order to show the advantages of our approach. The results
of several applications have been very promising, showing that our methodology:

1. allows to understand the partial dependence structure on subsamples within ter-
minal as well as nonterminal nodes;

2. works with a few number of latent factors playing the role of predictors and,
then, it decreases redundant information;

3. overcomes the limits of classical approach in the analysis of data structured in
complex way.

The procedure has been implemented in MATLAB environment enriching the Tree
Harvest Software [10] developed by the research unit in Naples). We are developing
it as an alternative to standard tree-based methods for special structures of data.
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A Study on Text Modelling via Dirichlet
Compound Multinomial

Concetto Elvio Bonafede and Paola Cerchiello

Abstract This contributions deals with a generative approach for the analysis of
textual data. Instead of creating heuristic rules for the representation of documents
and word counts, we employ a distribution able to model words along text consid-
ering different topics. In this regard, following Minka proposal [5], we implement a
Dirichlet compound Multinomial distribution that is a mixture of random variables
over words and topics. On the basis of this model we evaluate the predictive perfor-
mance of the distribution by using seven different classifiers and taking into account
the count of words in common between text document and reference class.

1 Introduction

With the rapid growth of on-line information, text categorization has become one of
the key techniques for handling and organizing data in textual format. Text catego-
rization techniques are an essential part of text mining and are used to classify new
documents and to find interesting information contained within several on-line web
sites. Since building text classifiers by hand is difficult, time-consuming and often
not efficient, it is worthy to learn classifiers from examples.

In this proposal we employ a generative approach for the analysis of textual data.
Thus, following Minka [5] and Madsen et al. [3] proposals, in Sec. 2 we develop a
“Dirichlet Compound Multinomial” (DCM) distribution that is a mixture over words
and topics, and we show how to estimate the parameters of the models.

Then, in Sec. 3, we have the application and the predictive performance of the
distribution by using seven different classifiers. Conclusions are Sec. 4.
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2 Background: The Dirichlet Compound Multinomial

The DCM distribution introduced by Minka is an hierarchical model: on one hand,
the Dirichlet random variable is devoted to model the Multinomial parameters θ ; on
the other hand, the Multinomial variable models the words count vectors comprising
the document. The distribution function of the DCM mixture model is:

p(x̄ |α) =
∫

θ

p(x̄ |θ)p(θ |α)dθ. (1)

where p(θ |α) is the Dirichlet distribution:

p(θ |α) = Γ (
∑W

w=1 αw)∏W
w=1 Γ (αw)

W∏

w=1

θαw−1
w (2)

with θw the probability of emitting a word w and αw the Dirichlet parameters
for each word; thereby the whole set of words (bag-of-words) is modelled. The
expression “bag of words” is typical in text modelling context and refers to the
words present in a corpora considered as an unordered vector, disregarding gram-
mar. Instead p(x̄ |θ) is the Multinomial distribution:

p(x̄ |θ) = n!
∏W

w=1 xw

W∏

w=1

θ xw
w (3)

in which x̄ is the words’ count vector and xw is the count for each word.
Thus a text (a document in a set) is modelled as a “bag-of-bags-of-words”, (see

[3, 5]) and developing the previous integral we obtain:

p(x̄ |α) = n!
∏W

w=1 xw

Γ (
∑W

w=1 αw)

Γ (
∑W

w=1(xw + αw))

W∏

w=1

Γ (xw + αw)

Γ (αw)
; (4)

From another point of view we can state that in the DCM model the Dirichlet
represents a general topic that compound the set of documents and each Multino-
mial, linked to specific sub-topics, make the emission of some words more likely
than other for a specific document. Thus the DCM could be also described as “bag-
of-scaled-documents”.

Moreover the added value of the DCM approach consists in the ability to handle
the “burstiness” of a rare word without introducing heuristics [6]. Burstiness is the
tendency of rare word appearing many times in a single document; if a word does
appear once, it is much more likely to appear again, i.e. words appear in bursts.

When we consider the entire set of documents (D) where each document is inde-
pendent and identified by its count vector, (D = {x̄1, x̄2, ..., x̄N }), the likelihood of
the whole documents set (D) is:
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p(D|α) =
N∏

d=1

p(x̄d |α)

=
N∏

d=1

(
Γ (
∑W

w=1 αw)

Γ (xd +∑W
w=1 αw)

W∏

w=1

Γ (xdw + αw)

Γ (αw)

)

; (5)

where xd is the sum of the counts of every word in the document d-th (
∑W

w=1 xdw)
and xdw the count of word w-th for the document d-th. The log-likelihood and the
gradient necessary to find the parameters are respectively:

log(p(D|α)) =
N∑

d

(

logΓ

(
W∑

w=1

αw

)

− logΓ

(

xd +
W∑

w

αw

))

+

+
N∑

d

W∑

w

(logΓ (xdw + αw)− logΓ (αw)) (6)

gw = ∂log(p(D|α)
αw

=

=
N∑

d

(

Ψ

(
W∑

w

αw

)

− Ψ

(

xd +
W∑

w

αw

)

+ Ψ (xdw + αw)− Ψ (αw)

)

(7)

wi th Ψ (z) = dΓ (z)

dz
= digamma f unction

Now we have the task of maximizing the log-likelihood and finding the param-
eters. Among different methods we have chosen the fixed-point iteration. Such a
method has its roots in the the Expected Maximization (EM) algorithm (see [2])
which can be built up in different ways.

One possibility is to see the EM as a lower bound maximization where we
alternate the E-step to calculate an approximation of the lower bound for the log-
likelihood and maximize it in the M-step until a stationary point (zero gradient) is
reached (see [4]).

However if we are able to find a lower bound for the log-likelihood we can max-
imize it via a fixed-point iteration in fact it is the same principle of considering the
EM as a lower bound maximization (see [4, 5]).

So for the DCM the lower bound with log(p(D|α)) is the following quantity:

log(p(D|α)) ≥ −(∑W
w αw − 1)

∑N
d [bd +∑W

w adwlogαw] + (const.) (8)

where bd = Ψ (xd +∑W
w αw)− Ψ (

∑W
w αw)

and adw = (Ψ (xdw + αw)− Ψ (αw))αw

this allows us to use a fixed point iteration which steps are:
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Fig. 1 Average alpha versus count vector and alphas’ histogram

αk+1
w = αk

w

∑N
d

[
Ψ (xdw + αk

w)− Ψ (αk
w)
]

∑N
d

[
Ψ (xd +∑W

w αk
w)− Ψ (

∑W
w αk

w)
] (9)

where xd is the sum of the counts of each word in the document d-th (
∑W

w=1 xdw),
xdw the count of word w-th for the document d-th and αk

w the Dirichlet coefficient
for word w at the k-th step. The algorithm is stopped when a degree of approxima-
tion ε is reached; in our case we have used an ε equal to 10−10.

The parameters found out, as said before, have an important characteristic: they
follow the “burstiness” phenomenon of words. In fact the smaller an αw is, the more
“burstinesss” effect is contained within a word, as revealed in Fig. 1.

3 Application

With the scope of analyzing the performance of the classification procedure, we
have used the Reuter-21,5781 data set which contains 21,578 documents identified
by the following attributes: topics, places, peoples, organizations, exchanges and
companies.

1 http://kdd.ics.uci.edu/databases/reuters21578/reuters21578.html
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For classification purposes, we consider topics as document classes to predict.
The original topics are 135 and most of the documents are unknown, thus we employ
46 classes (topics) characterizing 8,045 documents. We use this data set according
two different approaches:

1. First of all we evaluate the best classifier, based on the parameters extracted
from the DCM distributions, by considering the whole documents set divided
into training (with 80% of documents) and test set distributed over 46 classes.
Thus there are 6,436 training documents with a vocabulary (already filtered and
stemmed) of 15,655 words.

2. Secondly we compare DCM to sbDCM by using a training data set with only
2,051 documents containing a vocabulary of 4,096 words.

In the first we have used three kind of classifiers developed in Rennie et al. [6]
and their four compositions so to have seven different classifiers to be tested and
to evaluate their performance. These classifiers select the document class with the
highest posterior probability:

l(d) = argmaxc

[

log p(θc)+
N∑

w=1

fw log θcw

]

(10)

where fw is the frequency count of word w in a document, p(θc) is a prior distribu-
tion over the set of topics (that we consider uniformly distributed) and log(θcw) is
the weight for word w.

The weight for each class is estimated as a function of alpha coefficients:

ˆθcw = Ncw + αw

Nc +∑Nc
w=1 αw

(11)

where Ncw is the number of times word w appears in the documents of class c, Nc
the total number of words occurrences in class c.

Rennie et al. [6] propose three main classifiers which are the normal (N), the
complement (C) and the mixed (M) ones:

1. Normal:

l(d) = argmaxc

[

log p(θc)+
N∑

w=1

fw log
Ncw + αw

Nc +∑Nc
w=1 αw

]

; (12)

2. Complement Version (COMP):

l(d) = argmaxc

[

log p(θc)−
N∑

w=1

fw log
Nc̃w + αw

Nc̃ +
∑Nc̃

w=1 αw

]

; (13)

where Nc̃w is the number of times word w occured in documents in all classes
excepted c and Nc̃ is the total number of word occurrences in classes other
than c.
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3. Mixed:

l(d) = argmaxc

[

log p(θc)+
N∑

w=1

fw log
Ncw + αw

Nc +∑Nc
w=1 αw

−
N∑

w=1

fw log
Nc̃w + αw

Nc̃ +∑Nc̃
w=1 αw

]

;
(14)

3.1 Performance of the Dirichlet Compound Multinomial

In this section we describe the evaluation performed on different classifiers by using
the parameters estimated from the DCM distribution. Thus, our training data set is
compound of 6,436 documents with a vocabulary (already filtered and stemmed) of
15,655 words so we have to estimate 15,655 α′s. The alpha is able to model the
“burstinesss” of a word in fact the smaller the α parameters are, the more bursty the
emission of words is. This phenomenon is characteristic of rare words, therefore α′s
coefficients are, on average, smaller for less counted words. This is showed in Fig. 1
where there are displayed the mean values of an α for each word count appearing in
the document collection and the relative histogram. The average value of overall α′s
is 0.0,342, the standard deviation is 0.1,087 and maximum and minimum values
are respectively 6.6,074 and 0.0,025. As we can see from the histogram of α′s the
document collection is characterized by bursty words.
Once obtained coefficient α′s we employ seven different classifiers, three of which
are described in Rennie et al. [6] (normal (N), complement (C) and mixed (M)). The
remaining ones are proposed as the appropriate combination of the previous ones,
in order to improve their characteristics.

In fact the new four classifiers are set in function of the number of words that
a test-document has in common with the set of documents that compound a class;
in this way we create a classifier in function of the number of words in common.
Thus we analyze the following additional classifiers: Complement + Mixed + Nor-
mal (CMN), Complement + Normal (CN), Complement + Mixed (CM), Mixed +
Normal (MN).

In order to evaluate the classification performance we employ three performance
indexes:

1. (Ind1) The proportion of true positive over the total number of test-documents.

(
D∑

d=1

T Pd

D

)

× 100;

2. (Ind2) The proportion of classes that we are able to classify.

(
C∑

c=1

Ic

C

)

× 100;

where Ic is an indicator that we set 1 if at least one document of the class is
classified correctly, otherwise we set 0.
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3. (Ind3) The proportion of true positive within each class over the number of test
documents present in the class.

(
1

C

C∑

c=1

T Pc

Mc

)

× 100;

where Mc is the number of test-documents in each class, T Pc is the number of
true positive in the class and C the number of classes (46).

With regards to the last four composite classifiers, such indexes have been cal-
culated by varying the number of words in common between the test document and
the class. In particular for our test we have used three different thresholds for the
number of words (n): 15, 10 and 5. For example, we indicate with the initials C M_n
the classification rule that employs classifier C when the number of common words
are less or equal to n and classifier M when the number of words in common is more
than n. Instead, the initial C M N_n.m identifies the using of classifier C until n, the
classifier N over m and the classifier M between n and m.

For the data at hand the number of words in common between the two sets (train-
ing and evaluation set) varies between 1 and 268.

The above mentioned combination is based on the following idea: if the number
of words in common between the bag of words and the correct class is low, then
the most informative content is in the complement set. Otherwise the needed infor-
mation is contained either in the normal set or in the complement one. Taking into
account such consideration we have set up different combination and we concluded
that the useful trade-off among classifiers is equal to 10 (see Table 1).

The results are reported in Table 1. As we can see the best classifiers are the
mixed and the CM_10 ones.

Table 1 Comparison among classifiers

Classifier Ind1 Ind2 Ind3

Normal 73.46% 100% 66.74%
Comp. 66.93% 39% 10.26%
Mixed 76.88% 100% 66.79%
CM_5 76.88% 100% 66.79%
CM_10 76.94% 100% 66.84%
CM_15 76.13% 100% 65.15%
CMN_10.50 75.14% 100% 67.18%
CMN_10.152 76.69% 100% 67.11%
CMN_10.200 76.81% 100% 66.80%
CN_5 73.65% 100% 66.74%
CN_10 73.65% 100% 66.83%
CN_15 72.90% 100% 65.16%
NM_5 73.46% 100% 66.74%
NM_10 73.58% 100% 66.78%
NM_15 73.64% 100% 66.82%
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These are able to classify respectively 1,237 and 1,238 over 1,609 documents
that are distributed not uniformly among classes (46). These classifiers are able to
classify at least a document per class even if there are classes containing only two
documents. Between them the CM_10 classifier has index three slightly better than
mixed one. The worse classifier, in this case, is the complement version alone. From
the reported results we can conclude that the DCM distribution is a valid approach
for modelling textual data and it is worthy to further investigate on its characteristics.

Moreover the Log-Likelihhod (LL) and the corrected Akaike Information Cri-
terion (AICc)2 before and after the optimization procedure are respectively: LL
from −222,385 to −205,286 and AICc from 454,264 to 420,066.

4 Conclusion

In this contribution we show the characteristics of the DCM distribution employable
in the context of text analysis with the purpose of document classification. DCM
main feature is the capability to take into account the “burstiness” phenomenon of
rare words. With the α coefficients coming from the DCM distribution we imple-
ment a classification procedure which uses the Naive Bayes classifier. Among all the
proposed classification rules, we have shown that the best performances are obtained
by composition of complement classifier and mixed (i.e. we use the complement
when we have less then 10 words in common and mixed for more than 10) and by
the mixed alone.

Moreover the DCM distribution models each document as a “bag-of-scaled-
document” where the Dirichlet random variable generates the general topic and the
Multinomial one the specific sub-topics that compound the document. In Cerchiello
and Bonafede [1] the DCM is developed and modified in order to insert directly
unknown or known topics within the model by means of a new vector of parameters.
Such information will be useful to expand and improve the application of this model.
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Automatic Multilevel Thresholding Based
on a Fuzzy Entropy Measure

D. Bruzzese and U. Giani

Abstract Histogram Thresholding is an image processing technique whose aim is
that of separating the objects and the background of the image into non overlapping
regions. In gray scale images this task is obtained by properly detecting, on the
corresponding gray levels histogram, the valleys that space out the concentration of
the pixels around the characteristic gray levels of the different image structures. In
this paper, a novel procedure will be discussed exploiting fuzzy set theory and fuzzy
entropy to find automatically the optimal number of thresholds and their location in
the image histograms.

1 Introduction

Typical computer vision applications often require an image segmentation pre-
processing step in order to extract the distinct objects enclosed in the image fore-
ground. For intensity images, several approaches to image segmentation have been
proposed in last years. According to the image features exploited, they can be
broadly classified into three main classes: edge-based, region-based and cluster-
based techniques [1].

Edge-based methods disclose objects by highlighting their contours, usually
characterized by a sharp change in the intensity levels of neighboring pixels. The
main advantage of such approach is that the edge representation of an image effi-
ciently reduces the amount of data to be processed. However, the accuracy of the
results can be seriously compromised if broken boundaries are present; in this case
edge-linking techniques become necessary for contour filling (e.g. [7]). Further-
more, noise may result in erroneous edges and thus expensive preprocessing work
has to be done in order to filter-out noisy edges.

Region-based methods, on the contrary, proceed by grouping adjacent pixels with
uniform properties like grayscale, texture, and so forth. Thereafter a coarse-grained
segmentation is obtained by merging adjacent regions according to the similarities
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among the properties in these regions. Region-based segmentation usually produces
coherent regions with no gaps due to missing edge pixels. However, while edge
definition is quite simple to set, both from a logical and a formal point of view, the
criteria for region memberships are more difficult to assess.

In histogram-based techniques, the image structures are elicited only by look-
ing at the shape properties of the intensity level histogram. The main assumption
on which these methods rely is that no spatial information is required to segment
the image because the different objects can be uncovered by looking at the shape
properties of the histogram. Actually, in a well-defined image, the corresponding
histogram presents a deep valley between two peaks. Around these peaks the object
and background gray levels are concentrated and the optimum threshold value must
be located in the valley region. According to the number of objects that have to be
recognized, bi-level or multi-level thresholding techniques are employed.

In this paper a novel procedure, exploiting Fuzzy Set theory in the context of
multilevel histogram thresholding, will be discussed.

The paper is structured as follows. After a brief recall of Fuzzy Set theory and
Fuzzy Histogram Thresholding techniques (Sec. 2), the proposed algorithm (Sect. 3)
will be discussed and its application on several real and synthetic images will be
shown (Sect. 4). The issues for discussion and for future research work will set out
at the last section.

2 Fuzzy Set Theory and Histogram Thresholding

Let X be a universe of elements; a Fuzzy Set A is defined as in [11],

A = {x, μA(x)|x ∈ X, μA(x) ∈ [0, 1]} (1)

where μ is called the membership function or grade of membership and measures
the coherence of each x ∈ X with the properties that characterize the fuzzy set A. In
computer vision applications an image can be considered as an array of fuzzy single-
tons, the pixels, each having a value of membership denoting the grade of possessing
some specific property (for example brightness) that depends on the problem to be
solved.

After the pioneristic work of Murthy and Pal [5], several thresholding algorithms
based on fuzzy set theory are reported in the literature (see [8] for exhaustive and up-
to-date survey of image thresholding methods). In these approaches, usually, Fuzzy
Set Theory intervenes at a double level. First, for each candidate threshold, the gray
values have to be mapped to the fuzzy domain by using an appropriate membership
function, and, in a second step, a measure of fuzziness for the whole image have
to be computed. The optimum threshold is found by minimizing (maximizing) the
index of fuzziness over the gray-level range.

Our proposal represents an extension of the procedure that was originally dis-
cussed in Huang and Wang [2] and afterwards refined in a subsequent work [3]. Here
the authors propose a multilevel thresholding technique based on the optimization
of a Fuzzy Classification Entropy which describes the fitness of the histogram to a
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multimodal distribution. According to our opinion, the main drawback of the proce-
dure relies on the fact that the number of thresholds is required as input parameter
of the algorithm; moreover, the computational complexity of the searching phase,
when the number of classes increases, requires to abandon an exhaustive search in
favour of some sub-optimal search strategy.

The proposed algorithm, on the contrary, by using a divide et impera paradigm,
iteratively applies the general scheme of Fuzzy Histogram Thresholding until a
stopping rule is met. The stopping rule adopts a sensitivity criterion that allows to
control the granularity of the resulting segmentation and gets automatically to find
the optimal number of thresholds and their location in the image histograms. In the
following section, the details of the proposed procedure will be outlined.

3 Automatic Multilevel Fuzzy Histogram Thresholding

In the description of the algorithm, the following notation will be adopted. Let Γ =
{xi , i = 1, .., L} be a set of consecutive bin values, (e.g. in Image Analysis L=256
and x1 = 0, x2 = 1, .., xL = 255), and let ni be the corresponding bin frequency.
Let c = {xs, ..., xr ; s, r ∈ {1, .., L} ; s < r} be a generic range (segment) of bin
values. After an initialization step in which the whole set Γ is added to the set � of
candidate segments, the recursion begins.

Let c∗ = {xs∗ , ..., xr∗, s∗, r∗ ∈ {1, .., L} , s∗ < r∗} be the range being processed;
for each bin t ∈ c∗ the corresponding value is set as candidate threshold and the
fuzzy membership function is computed by using the m-function, proposed in [2]

μ(xi ) = C

C + |xi − μr | , r =
{

0 if xs∗ ≤ xi ≤ t
1 if t < xi ≤ xr∗

(2)

where μ0 and μ1 denote the averages of those bins, respectively, up to and from the
t-th x value with t ∈ {1, ..., L} and C is a normalization factor. Once the grades of
membership have been obtained, a fuzzy entropy measure is computed [6].

Ht (μ) = k
∑

i

{μ(xi ) ln [μ(xi )]− [1− μ(xi )] ln [1− μ(xi )]} × ni (3)

where the factor k constraints the fuzzy entropy in the closed interval [0,1].
The bin value that achieves the minimum of the measure of fuzziness, t∗, is added

to the set of potential thresholds. In order to become effective, at least one of the
two adjacent intervals branched off from t∗ should present a relative increment of
the fuzzy entropy larger than the sensitivity criterion ε. If this condition is met, the
threshold t∗ become effective and that (those) interval(s) with a relative increment
of the fuzzy entropy larger than ε is (are) added to �. The segment in � with the
maximum entropy value is thus processed in the next cycle of the recursion. The
procedure stops when the set of candidate segments become empty.
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The pseudo-code of the algorithm is shown in the following box.

Input: Histogram-like structure I = {xi , ni }, Sensitivity Criterion ε

Output: Array of thresholds locations t
Initialization: Set c∗ = {x1, ..., xL}, add c∗ to �
Step 1: For each xi ∈ c∗, set t = xi and do

Step 1.1: Compute the fuzzy membership values μ(xi ), (xi ∈ c∗),
using eq. 2

Step 1.2: Compute the fuzzy Entropy Ht (μ), using eq. 3

Step 2: Find t∗ = arg mint∈c∗
[

Ht (μ)
]

and remove c∗ from �
Step 3: Set cl = {min(c∗), ..., t∗}, cr = {t∗ + 1, ...,max(c∗)}
Step 4: For each k ∈ {l, r} set ck = c∗ and compute t∗k by applying Step 1

and Step 2
Step 5: if ∃ k ∈ {l, r} : StoppingRule (ck) = False, then add ck

to �, add t∗k to t

Step 6: if �(�) > 0 then find c∗ = arg maxc∈�
[

Ht∗(μ)
]

and go to Step 1

else return

StoppingRule: If
[Ht∗k (μ)−Ht∗ (μ)]

Ht∗ (μ)} > ε then StoppingRule (ck) = False

With the intent of clarify the working mechanism of the proposed procedure, its
application to a fluorescent microscope image of Staphylococcus Aureus bacteria is
shown in Fig. 1. In this example and in the following applications the sensitivity
criterion was set equal to 0.05.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Fig. 1 (a) original Staphylococcus Aureus image; (b) gray level histogram of image (a); (c-f) steps
of the proposed procedure.
In the Initialization phase, the entire gray level range is set as candidate segment and for each
t ∈ [0, 255] the fuzzy entropy is computed. The gray level achieving the minimum value of the
fuzzy entropy is t∗ = 198 (c). The two contiguous intervals cl = [0, 198] and cr = [199, 255]
are thus processed by computing Ht (μ), t ∈ cl and Ht (μ), t ∈ cr (d). Since cl shows a relative
increment of the fuzzy entropy greater than ε, the threshold t∗ = 198 become effective, cl is added
to �, while cr is discarded because of the Stopping Rule.
In the next step, the only eligible candidate in �, c∗ = [0, 198], is processed. The potential thresh-
old t∗ = 87 (that was obtained in the previous step) splits c∗ into the two sets cl = [0, 87] and
cr = [88, 198]. Applying steps 1 and 2 to both of them, it turns out that cr = [88, 198] should be
discarded, while cr = [88, 198] could be added to � because of a relative increment of the Fuzzy
Entropy greater than ε; t∗ = 87 is thus added to t (e).
Finally the segment c∗ = [88, 198] is processed. Because both the two sub-branches springing
from the potential threshold t∗ = 128 encounter the Stopping Rule (f) the procedure stops. The
image is thus segmented using the threshold set t = {87, 198}
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Fig. 1 (continued)

4 Experimental Results

The algorithm has been applied on different images (both real and artificially gen-
erated); the results have been compared with those obtained with a different auto-
matic multilevel thresholding technique [9] where the optimum number of classes is
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identified by minimizing a cost function that takes into account both the discrepancy
between the thresholded and the original images and a penalty term proportional to
the number of bits used to represent the thresholded image. The individual thresh-
olds are instead chosen by optimizing the Total Correlation function of the image
histogram [10].

Different quantitative evaluation criteria will be used to test the performance of
the two methods. In case of synthetic image, where ground-truth information is
available, the misclassification error (ME), calculated by comparing the threshold-
ing results with the ideal results, will be computed. In case of real images, the Non
Uniformity measure (NU) proposed by Levin and Nazif [4] will be adopted. This
measure is defined as a weighted average of the within-class variance normalized by
the variance of the overall distribution. NU ranges from 0 to 1 where values close to
0 correspond to a well segmented image.

In Fig. 2a, a synthetic image (400× 800 pixels, 256 gray levels) with two rectan-
gles of different size and different intensity levels (level 26 for the darker rectangle
and level 128 for the brighter one) on a white background (gray level 255) is shown.
Fig. 2b shows the same image after adding Gaussian noise with 0 mean and standard
deviation equal to 15. The histogram of the noisy image is reported in Fig. 2c. Both
the algorithms correctly identify the number of classes, but they differ in the location
of the corresponding thresholds getting to very different results.

In Fig. 3 the thresholded images of the Staphylococcus Aureus bacteria obtained
with the proposed algorithm (a) and with the procedure in [9] (b) are shown. As can
be noticed the fuzzy segmentation, characterized by the threshold set t = {87, 198},

Fig. 2 (a) Original image: two rectangles of different intensity and different size on a white back-
ground, (b) noisy image, (c) histogram of the noisy image, (d)–(e) thresholding results of the noisy
image by the proposed method (t = {76, 161}, ε = 0.05, M E = 0.0130) and Sezgin and Taşaltín
algorithm (t = {49, 78}, M E = 0.1135)
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(a) (b)

Fig. 3 (a) Thresholded image using the proposed approach: t = {87, 198}, NU=0.0325. (b)
Thresholded image using Sezgin and Taşaltín algorithm: t = {133, 179, 228}, NU=0.0425

discloses both the bacteria and the fluid structure linking them; both these objects
are covered by the darker gray levels, but they were not recognizable by looking
at the original image histogram (Fig. 1b). The algorithm proposed in [9], applied
on the same image, spawns three different thresholds: {133, 179, 228}. The first
threshold is shifted to the right thus causing the bacteria to appear more coarse-
grained; furthermore the fluid structure is split up into two different objects (sprung
from the two thresholds t2 = 179 and t3 = 198) that actually do not seem to match
with patterns really enclosed in the original image.

In Fig. 4 three different microscope images together with their corresponding
gray-level histograms are shown. The number of obtained thresholds, their posi-
tion and the NU value associated to the segmented images are show in Table 1.

Fig. 4 (a) Legionella image; (b) Histogram of image (a); (c) Red Blood Cells image; (d) Histogram
of image (c); (e) Foam image; (d) Histogram of image (e)
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Table 1 Threshold values t and NU values for images in Fig 4. Method-1 refers to the proposed
algorithm (ε = 0.05) while Method-2 refers to Sezgin and Taşaltín algorithm

Method-1 Method-2
Image t NU t NU

Legionella image {59, 92, 127, 211} 0.0856 {59, 83, 150} 0.1436
Red Blood Cells image {160, 193, 208} 0.0635 {81, 165} 0.1138
Foam image {60} 0.2991 {38, 55, 81, 118, 160} 0.0439

As can be noticed, in all the cases the two algorithms differ in the number of dis-
covered thresholds. Foam image is the only one in which the proposed approach
underperforms, according to the NU measure, Sezgin and Taşaltín method. For this
image our approach identifies only one threshold which allows to separate the foam
structure from the background (segmented images are not shown) whereas Sezgin
and Tasaltín algorithm splits the structure into several regions that actually seem to
reflect more illumination conditions than different morphological elements.

5 Concluding Remarks

Image thresholding is a low-level image analysis task that can be considered as
the bottle-neck of the development of image processing technology because all the
subsequent tasks rely heavily on the quality of the image segmentation process. It is
quite a simple task in well-defined images where, usually, the histogram has a deep
valley between two peaks around which the object and background’s gray levels are
condensed but in case of multilevel thresholding, methodological and computational
hindrances stand out.

The algorithm presented in this paper tries to overcome all these drawbacks and
appears as a multipurpose technique suitable to segment histogram-like structures
by looking at the compactness of the signal around characteristic values.

However, in order to provide a methodological validation of the algorithm, the
analytical properties of the stopping rules have to be investigated. Actually this rule
exploits a sensitivity criterion ε that depends on the subjective choice of the user.
Although simulation results have shown that the number of classes do not change
significantly by varying ε in the range [0.05 − 0.15] (data not shown), future work
will be devoted to modify the stopping rule by dynamically tune the sensitivity
criterion according to the characteristics of the specific image being processed.
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Some Developments in Forward Search
Clustering

Daniela G. Calò

Abstract The Forward Search (FS) represents a useful tool for clustering data that
include outlying observations, because it provides a robust clustering method in
conjunction with graphical tools for outlier identification. In this paper, we show that
recasting FS clustering in the framework of normal mixture models can introduce
some improvements: the problem of choosing a metric for clustering is avoided;
membership degree is assessed by posterior probability; a testing procedure for out-
lier detection can be devised.

1 Introduction

The Forward Search (FS) is a method of revealing the structure of multivariate data.
It provides a robust approach to clustering and allows to detect observations that do
not belong to any cluster.

Given a set of n independent d-dimensional observations {x1, . . . , xn}, the FS
clustering procedure described in Chap. 7 of [2] consists of three main phases: (1)
a preliminary analysis, providing information on cluster existence and definition,
which ends with the specification of a number, say K , of “tentative” clusters: Tk, k =
1, . . . , K ; (2) an exploratory analysis of the tentative clusters, in order to ensure that
most of their units are correctly classified; (3) a confirmatory analysis, where units
not yet classified are allocated by running a Forward Search with K populations.

Atkinson et al. [3] have suggested to augment the forward plots of the monitoring
statistic with bootstrap envelopes, to be used in both phase 1 (in order to provide
reliable inference on cluster identification) and phase 3 (in order to confirm each
of the clusters finally found). In addition, Atkinson and Riani [1] have improved
phase 1 by using many searches from randomly selected starting points; when
monitored through the Random Start Forward Plot (RSFP), these searches provide
information about the number of clusters and cluster membership. The present paper
focuses on phase 3, with the aim of proposing possible improvements. In its original
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formulation given in [2], phase 3 starts by robustly selecting a subset Ck from each
tentative cluster (Ck ⊂ Tk , k = 1, . . . , K ) and progresses as summarized in the
following steps:

• Set the starting basic subset, Bm (where m denotes its size) :

Bm ←
⋃

k
Ck

• While m < n

– Estimate the Mahalanobis distance of x j from each cluster centroid (for j =
1, . . . , n):

D j,m,k = [(x j − x̄k,m)
T S−1

k,m(x j − x̄k,m)]1/2

where x̄k,m and Sk,m respectively denote the mean vector and (unbiased)
covariance matrix computed on the set of units in Bm assigned to cluster k

– Allocate units to the nearest cluster, i.e. according to:

arg mink(D j,m,k)

– Order all n observations by increasing “overall outlyingness”, measured by:

D j,m =
{

D j,m,k if x j ∈ Tk

mink(D j,m,k) if x j is unassigned
(1)

– Update the basic subset as the set of the first m + 1 units in the ranking1:

Bm+1 = {x[1],m , x[2],m , . . . , x[m+1],m}; m ← m + 1

In the above sketched procedure, two issues could deserve further attention and
probably have some room for improvement.

Firstly, at each step of the search, units are allocated to clusters by comparing
Mahalanobis distances from the groups, i.e. according to the elliptical K -means
allocation criterion. When some clusters are more dispersed than others, it may
happen that loose clusters overwhelm the tighter ones. Atkinson et al. [2] suggest to
use distances standardized by the determinant of the estimated covariance matrix.
Alternatively, Authors working in elliptical K -means clustering propose to circum-
vent the problem by adopting the so-called normalized Mahalanobis distance instead
of the standard one (e.g. [11]). However, different distances can lead to searches with
different behavior.

Moreover, as far as unassigned units are concerned, a “soft” assignment could
be preferable in case of partially overlapping clusters, where it may be impossible

1 The user can specify several options about the way the basic subset should grow (see [2], p. 371)
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to assign these units unambiguously to a cluster. For this reason, Atkinson et al.
[2] suggest to monitor cluster membership of unassigned units, so as to gain some
insights on the uncertainty associated with their classification. In particular, they
propose to assess the membership degree of an observation to a cluster by the pro-
portion of steps in which that observation is allocated to that cluster. A simpler
alternative to this heuristic solution would be to describe membership degrees by
the posterior probabilities of belonging to the parental populations of the clusters.

Both these issues could be tackled by rephrasing the FS clustering procedure in
the framework of model-based clustering. We explore this possibility in the case of
a finite mixture of normal distributions, as illustrated in the following.

2 A Model-Based Formulation of FS Clustering

The Forward Search with K populations presented in [2] can be naturally recast in
the framework of model-based clustering.

In fact, it is designed so that K Forward Searches are carried out simultaneously
on the whole data, each one inside a distinct cluster. Hence, it relies on the under-
lying assumption that each cluster comes from a normally distributed population
(or, more generally, an elliptically distributed one). It is worth noting that the same
assumption is also involved when, following [1], envelopes derived for multivariate
normal distribution are used to finally confirm the clusters found.

If the normality assumption is made explicit, then a mixture model with K d-
dimensional Gaussian components turns out:

p(x) =
K∑

k=1

πkφ(x |μk ,Σk), (2)

where each component φ(·) is parameterized by its mean vector μk and covari-
ance matrix Σk , and is weighted by the corresponding mixing proportion πk .

In this section, we will devise a mixture-based version of the procedure sketched
in Sect. 1, starting from the same robust initialization of the basic subset.

We observe that the first two operations carried out iteratively by the search are
nothing but the estimation and the allocation step in elliptical K -means algorithm,
respectively. Since this algorithm is a “hard” assignment version of the normal mix-
ture model (see [4]), it is natural to replace these operations with the individual
M-step and E-step of the EM (Expectation-Maximization) iteration, respectively2.

Therefore, when dealing with a mixture of K normal populations, FS iterations
can be reformulated as follows:

2 We remind that an E-step computes the estimate z jk of the conditional probability that obser-
vation x j belongs to cluster k given the current parameter estimates (for j = 1, . . . , n and
k = 1, . . . , K ), and an M-step computes parameter estimates given the conditional probabilities.
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• While m < n

– (M-step) Compute π̂k,m , μ̂k,m , Σ̂k,m , given the current membership degrees
– (E-step) “Soft” assignment, given the current parameter estimates:

z = π̂k,mφ(x |μ̂k,m, Σ̂k,m)
∑K

k=1 π̂k,mφ(x |μ̂k,m , Σ̂k,m)

– Order all n observations by increasing “overall outlyingness”
– Update: Bm+1 = {x[1],m, x[2],m, . . . , x[m+1],m}; m ← m + 1

The most tricky issue is that a coherent ranking criterion is needed in order to
progress in the search. Any statistic measuring how typical an observation x is of a
mixture can serve the purpose: in the following, two possible choices are proposed.

An immediate measure of typicality is the value that the estimated mixture den-
sity function takes in x , that is p̂(x) =∑K

k=1 π̂kφ(x |μ̂k , Σ̂k). If we take its negative
natural logarithm as a measure of outlyingness, the basic subset Bm represents (or
is a close approximation of) the subset of observations minimizing

∑m
i −logp(xi ).

Therefore, the estimates computed on Bm can be interpreted as trimmed likelihood
estimates of mixture parameters, and the whole FS procedure can be viewed as a
strategy for robustly fitting mixtures, alternative to the one recently proposed in
[9]. In addition, plotting the values of −log p̂(x[m+1,m]) against m can serve for
effectively monitoring the inclusion of outlying points during the search (as shown
in [5]), thus helping in the choice of the trimming percentage.

In our experiments we used the typicality measure proposed by McLachlan and
Basford in [8]. They assume that the mixture is fitted to Bm = {xhk, h = 1, . . . ,mk

and k = . . . K } consisting of m = ∑
k mk random observations from (2) that

have been previously classified, and compare the new observation x to each of the
fitted components of the mixture in turn, forming a typicality measure with respect
to each component mean. This measure, say ak(x), is the p-value of the following
test-statistic:

mk(νk + 1)

(mk + 1)d(νk + d)
D2(x; μ̂k, Σ̂k) (3)

where the null distribution of (3) is known to be Fd,νk+1, with νk = mk − d − 1
and mk denoting the number of observations assigned to cluster k. If the p-value
is sufficiently small for all the components, then x is supposed to be an outlier.
Therefore, the Authors suggest to assess how typical x is of the mixture by:

a(x) =
{

ak(x) if x ∈ Bm

maxk[ak(x)] if x /∈ Bm
(4)

Note that definition (4) is in strict analogy with (1) as far as the treatment of
assigned/unassigned units is concerned.
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When used as a ranking criterion, this typicality measure has an appealing fea-
ture: observations assigned to the same cluster are sorted according to their Maha-
lanobis distance. This implies that observations belonging to a given cluster are
included in the same order as if a search on that single cluster was carried out.

It is worth noting that using this measure in the search implies that at each step
statistic (3) is computed on subset Bm , which can be taken as a random sample from
the mixture only when m is close to the sum of the cluster sizes; generally, it is
a truncated subset of such a sample. This remark invalidates its use for inferential
purposes, but does not invalidate its use as a mere ranking criterion.

2.1 An Illustrative Example

The performance of the proposed strategy is illustrated on a simulated example, with
two not completely separated clusters having different dispersion, and compared
with that of FS clustering in [2]3. The data set is a random sample of size n = 300
from the mixture given by: p(x) = (2/3)φ(x; (0, 0), 6I2)+ (1/3)φ(x; (5, 5), I2).

Two “tentative” clusters can be identified via the RSFP (with 100 random starts).
The starting subsets, C1 and C2, are selected by applying the method of robustly
centered ellipses to each tentative cluster, trying different amounts of trimming. The
compared strategies are run starting from this common initialization of the basic
subset, and the final “hard” clustering is compared with actual classification. Due to
the arbitrariness in the choice of the metric, function fwdmv was run both with the
standardized Mahalanobis distance and the usual one, and the best result (in terms
of classification performance) was registered.

Table 1 Misclassification rates (in percentage) estimated on 10 independent replicates

Technique Fraction= 0.5 Fraction= 0.7 Fraction= 0.9

FS 3.13 3.00 2.77
Mixture-based FS 1.90 1.93 1.90

Table 1 shows the percentage (averaged over 10 simulations) of observations
misclassified by the original procedure (FS) and the mixture-based one (MFS) for
three trimming fractions. On this simulated example, MFS achieves lower error rates
that the best performance attained by the default setting of FS. Moreover, it proves
to be less sensitive to the amount of trimming in the tentative clusters, which can
be of particular interest form the user’s perspective: in fact, the smaller the size of
the starting subset the more confident one is that the initial inclusion of outliers is
avoided.

3 The latter procedure was carried out in R using package Rfwdmv; phase 3 was performed by
running the default version of function fwdmv. The proposed procedure has been implemented
using package mclust (see [6] and [7]) for mixture modelling. In its present implementation there
is the constraint that the value mk in (3) cannot decrease when passing from a step to the next one
(for k = 1, . . . , K ), which seems reasonable in the Forward Search setting.
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3 An Additional Advantage of Mixture-Based Forward Search

In case of contaminated data, both the FS original procedure and its mixture-based
version may lead to a biased final classification. However, the search is designed
so that outlying observations remain the last ones to be included. Thus, a possible
solution could be to stop the search when signalled by suitable diagnostic plots (as
we briefly mentioned in Sect. 2). Besides yielding a robust classification, this can
identify possibly outlying observations which may be of interest in their own right.

The mixture-based approach offers an alternative way to deal with contaminated
data. In fact, as a probabilistic model is assumed, the task of outlier detection can be
defined and managed rigourously, not only through exploratory techniques. Thus,
provided that strong clustering information is attained during phase 1 and phase 2,
the idea is to finally confirm it by means of an outlier testing procedure.

The task of testing for outliers from a mixture can be accomplished by the typi-
cality measure (4). According to [8], an observation x is assessed as being atypical
if its typicality value, a(x), is smaller than a specified significance level. This means
that x will be labelled as outlying only if it is outlying w.r.t. all of the mixture com-
ponents, coherently with the definition of “outlier” in the multiple cluster setting.

As pointed out in Sect. 2, this test requires a random sample from the mixture.
The basic subsets corresponding to the peaks in the RSFP can be taken as random
samples, each one from a distinct component of the mixture, provided that the peaks
are clear enough. For each peak, it could be generally wise to take an “earlier” subset
(that is, to stop the trajectory showing the peak a number of steps before it), so that
the risk of including moderately outlying observations is reduced. This subset is
obtained by elliptical truncation, since it consists of the observations having the
smallest distances; hence, the estimates computed on it should be corrected accord-
ing to Tallis’ result (see [10]), so that consistency to the normal model is achieved.

To get some insight about the effectiveness of this outlier detection strategy, a
limited simulation study was conducted, considering both clean and contaminated
data. Clean data consist of two clusters (n1 = n2 = 300) from standard normal
distributions located at μ1 = 01d and μ2 = 2χd,.991d , respectively, with d =
4. Separate contamination consists of 60 additional data from a standard normal
density centered in 4χd,.991d . Diffuse contamination consists of 60 additional points
drawn from a normal distribution (having sample location and covariances equal to
five times the sample ones) and falling outside both the χd,.99 ellipses of clean data.
For better understanding, an instance of the last two settings for d = 2 is plotted in
Fig. 1.

For each setting, 500 replicates were generated. For each instance, the RSFP
was built and the trajectories showing the two most relevant peaks were identified;
two “earlier subsets” were selected accordingly, so that their size is 80% the size
indicated by the corresponding peak; statistic (3) was computed on the pool of these
subsets and performed on all observations in the sample, at the 5% and 1% level.
The mean percentage of misclassified observations in reported in Table 2.

We can see that on clean data type I error (that is the percentage of null points
identified as outlying by the test) is slightly above the target significance level. This



Some Developments in Forward Search Clustering 141

−2 0 2 4 6 8 10

−
2

0
2

4
6

8
10

−10 −5 0 5 10

−
10

−
5

0
5

10

Fig. 1 A bivariate analogue of the separate and diffuse contamination situations. Planted outliers
are marked by a cross. The 99 % level ellipses of the true mixture components are shown

Table 2 The average percent of type I and type II misclassification errors

Significance Error Clean Separate Diffuse
level type data contamination contamination

α = 0.01 Type I 1.11 1.17 0.92
α = 0.01 Type II 0.07 3.48
α = 0.05 Type I 5.38 5.34 4.65
α = 0.05 Type II 0.04 0

is not surprising because McLachlan and Basford’s test performs multiple testing,
thus it is expected to have poor control over the overall significance level.

When outliers are concentrated in a cluster, nearly all true outlying points are
identified as outlying, for both the levels of significance. Diffuse contamination is
more challenging: given α = 0.01, type II error is equal to 3.48%. A possible expla-
nation is that moderate outliers may still introduce some bias: when some outliers
happen to be included before the peak, the guess for the cluster size is inflated, thus
Tallis’ correction factor overinflates the covariance matrix estimate and this causes
some outliers to be missed. If we set α = 0.05, all outliers are correctly identified,
but a larger type I error must be tolerated.

To better appreciate the method capabilities a real data experiment is finally
reported. The data consist of three variables observed on 103 investment funds, and
have been extensively analyzed in [2]. The proposed outlier detection procedure
started by the inspection of the RSFP, which reveals two clear peaks/clusters: they
were elliptically truncated so that the size of the resulting cluster is about 0.8 times
the size of the original one. At the 1% level, a set of 9 observations are nominated
as outliers (units 14, 21, 39, 50, 52, 54, 77, 80, 89, highlighted in Fig. 2), which
includes the 6 observations (21, 50, 52, 54, 77, 89) identified by [2] using the tradi-
tional FS graphical exploratory tools.
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Fig. 2 Financial data: scatterplot matrix. Points declared as outliers by McLachlan and Basford’s
test are labelled. Clusters are denoted by dots and crosses

4 Concluding Remarks

Forward Search (FS) clustering is naturally recast in the framework of normal
mixture models, thus simplifying some difficulties and augmenting the traditional
exploratory tools provided by the FS. The proposals presented in this paper can be
considered also according to a reversed perspective, where one wants to investigate
whether normal mixture models can benefit from the FS as well. In particular, they
could help in handling the problem of outliers: by using a trimming strategy, based
on the mixture-based FS clustering procedure, or by an outlier testing procedure,
provided that enough information is available from the Random Start Forward Plot.
These conjectures are going to be investigated and are the matter of future research.
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Spectral Graph Theory Tools for Social Network
Comparison

Domenico De Stefano

Abstract The problem faced in this paper is related to the comparison between
two undirected networks on n actors. Actors are in two different configurations Gk

(k = 1, 2). Comparison is based on the evaluation of the how the relational node
distances evolve in the passage from the first net (G1) to the second net (G2). The
procedure consists of two steps: (i) define an appropriate relational distance among
nodes of the two networks; (ii) compare the corresponding distance matrices. The
first step is based on the so-called Euclidean Commute-Time Distance among the n
nodes computed from a random walk on the graph and Laplacian matrix. The second
step concerns the comparison between the obtained distance matrices by using Mul-
tidimensional Scaling techniques. The procedure has a wide range of application,
especially for experimental purposes in social network applications where this issue
has not been treated systematically.

1 Introduction

Network comparison represents a widely explored topic, especially within Pattern
Recognition (PR) field. In many PR applications, a crucial operation is the compar-
ison among objects or between an object and a model to which the object could be
related [6]. When we deal with graphs this comparison is made by using some kind
of graph matching algorithm.

A natural way to deal with graph matching problems is represented by kernel
methods [9]. Roughly speaking a kernel k(x, x ′) is a measure of similarity between
objects x and x ′ that satisfies the conditions of symmetry, that is k(x, x ′) = k(x ′, x)
and positive semi-definiteness [9]. When objects are graphs, the kernels allow to
compute the dot product of a pair of graphs in a vector space without explicitly
define a mapping between them.
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Alternatively, it is possible to use another general family of procedures known as
graph embedding methods. Graph embedding permits to explicitly find a mapping
between graphs and real vectors that allows to operate in the associated space [1],
[14].

Recently, new approaches are based on merging both graph kernel based methods
and graph embedding in order to extend the statistical tools for graph comparison
tasks [4]. In this paper we use graph embedding procedures in order to compare
social networks. A social network can be represented by a graph, but with respect to
later it presents peculiar aspects related to the ties formation among actors. In SNA
the comparison issue has not yet been systematically addressed. A first step to face
it could be to work on the graph representation and to use the results above outlined
for graph comparison.

In particular, we deal with network comparison problem by using a special graph
embedding technique related to the spectral properties of the network. We follow
the work of Bai et al. [1] where graph comparison is based on applying multidimen-
sional scaling (MDS) to a matrix of shortest geodesic distances and then the embed-
ding is used for graph matching. However, the use of geodesic distances among
nodes does not capture the complexity of the structure typical of a social network.
Indeed, generally in social network analysis (SNA, from now on) is necessary to take
into account both the dependence structure and the node neighborhood characteris-
tics. For these reason, here we embed the matrix of the Euclidean commute-time
distance (ECTD) among nodes, rather than the geodesic distance matrix. Indeed,
ECTD has very interesting properties related to well-known quantities used in SNA.

The paper is organized in two parts: in the first one we introduce the two steps
of the comparison procedure for social networks, i.e. the development of the node
relational distance and its use in exploratory network comparison; the second part
concerns an example of a possible application, that shows how the procedure works
on real networks.

2 Network Comparison in Social Network Analysis

In the present paper, we will answer to the following research question: given two
observed configurations of a single social network is it possible to define a compar-
ison (in a static fashion) between these states in such a way one can measure the
difference between them?

Different methods are scattered in SNA literature to handle network compar-
ison problems. Basically two approaches are used: (i) classic approach [3]; (ii)
local structures censuses approach [7]. In the following, we indicate these methods,
respectively, with MA and MB.

A network is a mathematical object G = (V, E) composed of two sets: a set V ≡
{v1, v2, . . . , vn} of cardinality |V | = n, containing nodes (actors) and a set E ≡
{e1, e2, . . . , em}, of cardinality |E | = m, containing edges (ties) that are pairs of
connected actors. The network configurations are totally represented by its edgeset
E. A network G = (V, E) can be fully described by its adjacency matrix A, a n× n
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square matrix whose entries ai j (with i, j = 1, . . . , n) are equal to 1 when the edge
ei j belongs to the edgeset E, 0 otherwise.

Briefly, the MA class of methods is based on the comparison between the matri-
ces A related to the two nets by using well-known statistical indices. The compari-
son is made by measuring the observed differences between two adjacency matrices
by mean of an index α (for example the correlation coefficient or the Goodman-
Kruskal Gamma) [3]. The MB approach is a procedure used to compare two or
more networks that consists in comparing the distributions of the local structures,
e.g. triads, observed in each of the k configurations [7]. In MB is supposed that
two networks are similar if they share an high number of equals triad isomorphism
classes. This method is developed by constructing a t×k contingency table C whose
rows are indexed by the t local structure isomorphism classes [15] (t = 16 in the
case of triad censuses) and columns are indexed by the k observed networks. C is
projected in a factorial space by means of Correspondence Analysis [7].

Alternatively, we propose to use a method based on a particular relational node
distance. Differently from MA and MB (that are both based on adjacency matrix
analysis) we also provide some evidence that other graph related matrices could be
more useful, than matrix A, for certain SNA exploratory issues.

3 The Graph Embedding Approach for Social
Networks Comparison

In the present approach we take into account that any network comparison process
may be based exclusively on the underlying relational structure embedded in the
nets. It means that a meaningful network comparison approach may pass through
the detection of the differences that occurs in actors interrelations. In particular we
distinguish between two classes of actor interrelations: direct interrelations, with
which we refer to the set of links in E among the actors; indirect interrelations,
with which we mean the indirect connectivity, i.e. the sharing of a common neigh-
borhood. Indeed, it is reasonable to suppose that network distance may depend on
changes in both direct and indirect connectivity modifications. In other terms, these
two kinds of connections jointly influence network topological structure. Therefore
two networks presenting notable differences in these connectivity characteristics are
very distant from each other.

Our first purpose is to develop a quantity that describes the actor relational posi-
tion in a given configuration. We require that this quantity must capture the actors
distance in terms of their direct and indirect interrelations. The procedure to build
up this distance is based on spectral graph theory concepts [5]. In particular we
use the laplacian matrix of the network, its pseudo-inverse and the specification
of a random walk on the network. Afterward we will compare network configu-
rations by detecting the differences in actors relational distances observed in the
network states. As we will see, this distance has the nice property of being an
euclidean distance among the nodes. This allows us to compare configurations by
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using statistical exploratory approach for metric data. To summarize, the proposed
procedure consists of two steps: i) definition of the node relational distance and
of the distance matrices Δk (with k = 1, 2) for each compared configuration; (ii)
comparison between the obtained Δk matrices.

Step 1: Definition of node relational distance matrix. In order to define the node
distance matrix on a network we require that the compared networks are on the
same actor set V ≡ {v1, v2, . . . , vn} of cardinality n. At least we require that exists
a one-to-one correspondence between the two graphs nodesets. Furthermore, for the
computation of the node relational distance, we need to introduce: (i) the laplacian
matrix L; (ii) its pseudo-inverse L+; (iii) a random walk on the network (RW); (iv)
transition related quantities.

The laplacian matrix L is formally the discrete analogue of the Laplace operator.
In the spectral graph theory literature, there are several definitions of L [5]. We
will use the non normalized version of L: L = D − A, where D is the diagonal
node-degree matrix and A is the adjacency matrix of the network G. The laplacian
matrix, its pseudo-inverse L+ and their spectra have several important properties
related to the network connectivity [5]. In particular the matrix L+ is a valid kernel
[13]. Here we are interested in the properties connected to the RW transition related
quantities. A RW on a graph is a first-order reversible Markov chain (MC) on the
nodes [10]. The transition probability to pass from a starting node i to an adjacent
node j is: Pri, j = Pr [s(t + 1) = j |s(t) = i] = ai j∑n

j=1 a. j
= ai j

di
, where ai j is the

(i, j)-th entry of A of Gk , di is the degree of i-th actor, s(t) = i and s(t+1) = j are
the states of the MC at the time t and t + 1, respectively. The transition probability
matrix is then defined as: P = D−1A. Briefly, the MC evolution is characterized by:
x(0) = x0; x(t + 1) = Pt x(t).

For a random walker, on a RW, it is possible to define two transition related
quantities. These are directly connected to the elements of L+. The first one is the
average first passage time, m( j |i) which represents the mean number of steps, a
random walker needs, to reach for the first time the node j starting from the node i.
This quantity measures the minimum time until hitting state j is reached, as Ti j =
min(t ≥ 0|s(t) = j, s(0) = i). It is possible to prove that this quantity is directly
obtained by the (i, j)-th element l+i j of L+ [8]: m( j |i) =∑n

h=1 l+ih − l+i j − l+jh + l+j j .
Where h indicates the intermediate nodes between i and j.

The second related quantity is the average commute time (CT ), which is a transi-
tion related quantity defined from m( j |i): CT (i, j) = m( j |i)+ m(i | j). CT repre-
sents the mean number of steps, a random walker needs, to reach for the first time the
node j starting from i and coming back again to the node i. It is easy to show that also
this quantity is computed by the L+ elements [13]: CT (i, j) = VG(l

+
i i + l+j j −2l+i j ),

where VG is the volume of the graph (i.e. the sum of all the node degrees). It can be
showed that this quadratic form is a distance [11]. In particular the CT distance (not
in average) between two nodes is expressed as: CT (i, j) = l+i i + l+j j − 2l+i j .

The principal property of the CT is that its square root is an Euclidean distance
in the space �n of the nodes called Euclidean commute time distance (ECTD) [13].
Briefly, ECTD is a Mahalanobis distance with weight matrix L+. The useful prop-
erty of ECT D(i, j) is that it decreases when the number of walks between i and j
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increases and/or the length of these walks decreases. In short, if between two actors
there is a low ECTD they can be considered close to each other, given that they have
many short paths connecting them. From a SNA viewpoint, ECTD captures both
the closeness and the degree centrality of actors [15]. The first step of our proposed
method ends with the computation of the two ECTD distance matrices Δk for the
two networks Gk .

Step 2: Definition of node relational distance matrix. The second step of the
procedure consists in the comparison between the ECTD distance matrices. In this
phase we have to capture the change in CT, or equivalently in ECTD, registered for
the ik-th node in the passage through the k network configurations. The change in CT
between i and j does not necessarily corresponds to the appearance/disappearance
of a link between them (i.e it is not only expressed by their direct interrelations).
However, it could equally mean that their neighborhood has now changed (i.e.
a modification of their indirect interrelations is occurred). In particular, CT (i, j)
decreases if i and j share more common neighbors, viceversa it increases if the
number of common neighbors decreases. We distinguish two ways of comparing the
networks Gk equipped with ECTD: (i) adopting an exploratory comparison tools in
order to measure and/or to visualize the elementwise distance registered through the
two configurations; (ii) implementing an analytical comparison based on a synthetic
index representing the difference between the Δk (e.g. by using the euclidean matrix
norm). We focus on the first comparison approach because the second can be easily
obtained by the n × n distance matrix whenever an appropriate matrix distance
has been selected. Our exploratory comparison solution allows us to visualize the
occurred networks differences by applying a metric MDS in combination with a
non-orthogonal procrustes transformation1 [2]. This approach seems to be the most
appropriate in social networks comparison because it allows a node by node compar-
ison, which is desirable because a single distance measure does not capture network
complexity. Moreover, the procedure works well especially when we are able to
identify the single nodes, either because of the small network size either because of
availability of labels or actors attributes. This is not a lack of generality because in
SNA, the network size is relatively small and the actors are univocally labelled [15].
Briefly with MDS, it is possible to identify the relational differences emerged in the
passage through the configurations.

4 A Simulated Applicative Example

In order to show how the procedure works we run an example on simulated data. In
this section we will explain how the presented method has a wide range of applica-
tion especially when additional nodes information are available. We simulate data

1 Non-orthogonal procrustes transformation operates on a selected configuration object and it
allows to match it to another configuration object as closely as possible, i.e. without lose their
metric properties.
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(a) Network G1 (b) Network G2
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Fig. 1 (a) Initial network configuration G1; (b) successive network configuration G2

concerning the relational behavior of a set of 14 firm employers2 [12]. Let suppose
we know, for each actor, the role covered in the firm, in other words we suppose that
additional node attributes are available. In particular we have: 3 supervisors (S1, S2,
S4); 2 instructors (I1, I2); 9 workers (W1, W2,. . . , W9). We indicate with capital
letters (i.e. I1, . . ., S1, . . ., W9) the actors observed in G1 and with small letters
(i.e. i1, . . ., s1, . . ., w9) the ones observed in G2. The purpose is to compare the
cooperation/relationship status among them over two distinct time points, i.e. over
the passage through the two distinct network configurations G1 and G2 (Fig. 1).
The first step consists in obtaining the corresponding ECTD matrices Δ1 and Δ2
for G1 and G2 by means of the computations in Sect. 3. Once we have the Δk we
can carry out an MDS for each of them (see Fig. 2). As it is clear from Fig. 2
and from the networks (Fig. 1), the most central actors are closer to the origin
because their mean relative ECTD (with respect to all the other nodes) is small.
The comparison between the two configurations is based on the loss and on the gain
in centrality of nodes (in terms of ECTD). Indeed, for example actor W5 (Fig. 2,
part (a)) is the most central actor in the first configuration whereas in the second
network its position becomes a little more peripheral (Fig. 2, part (b)). The use of a
non-orthogonal procrustes transformation 3 assures the best superimposition of the
two partial networks MDS (fig. 3).

Here we can visually appreciate the changes in relational node distances. For
example, let suppose that we are interested in the instructors and supervisors rela-
tional changes in the two configurations. We can detect the relative positions, with
respect to all the other nodes, in a given configuration. For example, instructor 3 is
more central in the configuration G2 than in G1. This means that I3 relative distance
(instructor 3 in G1) is comparatively larger than the one observed for the same actor
(i3) in G2. Similarly, for actor S2 (supervisor 2 in G1), its ECTD sharply decreases.

2 We adopt the population size of 14 units and some particular actor labels to recall the Elton
Mayo’s experiments to which this example is inspired.
3 Here we choose this particular kind of transformation for simplicity but it is possible also to
choose different procrustes transforms. For example the orthogonal procrustes transform allows to
select whether or not a translation and a scaling are allowed in the transform.
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Fig. 2 (a) MDS on the Δ1 corresponding to the initial network configuration G1; (b) MDS on
the Δ2 corresponding to the configuration G2. On the axis there are the ECTD distances. In the
text-boxes some examples of data interpretation

Fig. 3 Representation of G1 and G2 in the common 2-dimensional Euclidean space obtained by
Procrustean transformation. With circles we indicate actors in G1 (capital letters), with rhombus
actors in G2 (small letters). On the axis there are the ECTD distances. In the text-boxes some
examples of data interpretation

Indeed, its position in second configuration G2 (s2) is closer to the other points. It is
possible to be more precise by measuring ECTD between nodes by means of their
coordinates. Since ECTD expresses the centrality and the connectivity of the actors
we can interpret it in a relational fashion and use it for comparison purposes.
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5 Concluding Remarks

In the present paper we showed how the use of spectral graph theory quantities can
be used to represent distance in a social network, and how this distance may have
a nice relational interpretation. The procedure is mainly based on the consideration
that distance between networks should always be interpreted in a relational sense
and in an elementwise fashion, taking into account both direct and indirect nodes
interrelations. Indeed, networks are complex relational structures whose differences
lie in the relative node connections changes. Therefore, the principal advantage of
this approach, based on pattern recognition methods, with respect the usual social
network analysis matching procedures (MA and MB) consists in the fact that we can
operate elementwise comparisons rather than obtain global measures. For example,
MA simply returns an index, which is very useful for quick comparisons but is
clearly not suitable for more complex issues. Also in MB approaches we consider
whole networks just as single points in a factorial space. The presented procedure
allows to compare, principally in a visual fashion (but also analytically, by means
of nodes coordinates), the actors relational distance (in ECTD) changes in order to
have information on the whole network modifications occurred in the passage from
G1 to G2. However, also in the presented approach a global matrix index can be
used in order to have a synthetic comparison. It could be use canonical matrix norm
between Δ1, Δ2, though just one quantity could be not enough for a complex task.
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Improving the MHIST-p Algorithm for
Multivariate Histograms of Continuous Data

Mauro Iacono and Antonio Irpino

Abstract In many different applications (ranging from OLAP databases to query
optimization) having an approximate distribution of values in a data set is an impor-
tant improvement that allows a relevant saving of time or resources during computa-
tions. Histograms are a good solution, offering a good balance between computation
cost and accuracy. Multidimensional data require more complicated handling in
order to keep these two requirements within significant usefulness. In this paper
we propose an improvement of the MHIST-p algorithm for the generation of multi-
dimensional histograms and compare it with other approaches from literature.

1 Introduction

Important areas of scientific, civil and commercial applications are characterized by
considerable amounts of relevant data, scattered in a known defined range. These
data are usually specially relevant if considered inside (arbitrary) intervals, and the
most of the information represented by these data can be obtained by manipulating
an aggregate description of them. This is the case of results of measurements, such
as in scientific applications, that are usually raw values affected by error, or geo-
graphical coordinates, such as in georeferenced information, which locate a single
spot but usually tag other information that is relevant for the surrounding area. These
data tend to assume almost as many different values as the number of the available
observations, but cannot be discretized a priori into intervals because of the different
possible applications and the intrinsic value of the information. Nevertheless, given
the application, the availability of synthesis tools that enable a fast approximate
knowledge of data with low computational demands is highly advisable. This is
the case of many applications that span from advanced database manipulations to
low-level database query optimization [7, 3].
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2 Motivation

The need for efficient and approximate synthetic representation of data can be easily
motivated. A first “classic” example is given by OLAP (On-Line Analytical Pro-
cessing) database applications. In this field data are not important in their single
atomic informational content but as a whole, and the goal is to be able to manipulate
synthetic (approximated) information by considering aggregations over the different
aspects of the facts represented by data. OLAP applications do not focus on punctual
data but on trends over (multidimensional) aggregations obtained by fast tools for
slicing and dicing data according to the needs, so an approximate but manageable
description is perfect for the task.

A fundamental field of application is completely different but crucial in relational
databases. User queries are analyzed by the query optimizer of the DBMS and an
execution plan is obtained by the analysis that minimizes the use of resources in
intermediate tables during JOIN operations. In order to compute the approximate
dimensions of intermediate tables and to choose between alternatives, a compact
and computationally inexpensive approximate description of data distributions is
needed.

In all these cases, the complete description of data is complex, while the punctual
description is sparse. An intermediate description suitable for our needs must satisfy
three conditions:

• compactness;
• low space cost and complexity for the representation;
• incremental update.

A fourth, desirable condition is the possibility of handling multi-dimensional
data. An appropriate tool is given by histograms.

3 Histograms and Related Works

In [6] we can find the state of the art of the histogram generation procedures from
large databases. One of the main criticism, that in our opinion biased the research,
is about the two different definitions of histograms reported by the author. Trying
to identify a historical birthday for the term and use of histograms in statistics, the
author correctly reports the definition of Karl Pearson which created the term “his-
togram” to refer to a “common form of graphical representation”. He then goes on:

In the Oxford English Dictionary quotes from “Philosophical Transactions of the Royal
Society of London” Series A, Vol. CLXXXVI, (1895), p. 399, it is mentioned that “[The
word ’histogram’ was] introduced by the writer in his lectures on statistics as a term for a
common form of graphical representation, i.e., by columns marking as area the frequency
corresponding to the range of their base.”

In this definition the proportionality relationship between the frequency and the
area of the rectangles (columns) is clear. Further in the text, the common error of



Improving the MHIST-p Algorithm for Multivariate Histograms of Continuous Data 157

identifying a histogram as a particular case of a (vertical) “bar chart” clearly appears
(the same error is also present in Microsoft Excel�). The error is related to the
definition also proposed in [6], where the author assumes as common definition the
following:

Even today this point [the histogram are conceived as a visual aid to statistical approxi-
mation] is still emphasized in the common conception of histogram: Webster’s defines a
histogram as “a bar graph of a frequency distribution in which the widths of the bars are
proportional to the classes into which the variable has been divided and the heights of bars
are proportional to the class frequencies”.

In statistics, this is true only if the widths (or the classes) of the bars are all equal!
We assume the definition of Karl Pearson as correct, considering that a histogram

is a way of representing a density distribution.
In many interesting relevant cases (e. g. databases recording raw instrumental

measures from sensors) two hypotheses are valid:

• a) data assume continuous values into a specified range, generally distributed over
all possible samples: we will refer to this hypothesis as the continuous descriptors
hypothesis;

• b) the scale of different measures is quite different: we will refer to this hypothesis
as the non-homogeneity hypothesis.

Among several algorithms proposed in the literature [7, 10, 2, 8], in order
to obtain improved performance in the relevant cases we propose to modify the
MHIST-p [2] algorithm for building a multivariate histogram. Good histograms
partition data sets into buckets with close-to-uniform internal tuple density. Unfortu-
nately, current multidimensional histogram techniques do not always produce close-
to-uniform partitions of the data sets, as we discuss in the following. A partition of
a multidimensional data domain results in a set of disjoint rectangular buckets that
covers all the points in the domain and assigns to each bucket some aggregated infor-
mation, usually the number of tuples enclosed. The choice of rectangular buckets is
justified by two main reasons: first, rectangular buckets make it easy and efficient
to intersect each bucket and a given range query to estimate selectivities. Second,
rectangular buckets can be represented concisely, which allows a large number of
buckets to be stored using the given budget constraints.

In [7] a taxonomy of partitioning schemes for building multidimensional his-
tograms is presented, which is illustrated in Fig. 1. In the grid partitioning scheme
(Figure 1(a)), each dimension di is divided into pi disjoint intervals, obtaining a grid

Fig. 1 Three strategies for
bucketing data (a) Grid (b) Rescursive (c) Arbitrary
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of Q in pi buckets. A recursive partition (Fig. 1b) starts with one bucket covering the
whole domain, and repeatedly divides some existing bucket in two parts along some
dimension. Finally, the arbitrary partition scheme (Fig. 1c) imposes no restrictions
on the arrangement of buckets. In principle, all schemes are equivalent in the sense
that we can simulate any partition that follows one scheme with the others (possibly
using more buckets).

4 Improving MHIST-p

We improve the MHIST algorithm in order to overcome two main drawbacks deriv-
ing from the nature of the data to be summarized. In the general MHIST-p algorithm,
data are described by a data table Xn×p = [xi, j ], in which each row is a record
and each column is a numerical field. According to our hypotheses, the j − th
( j = 1, . . . , p) variable describing each record is a continuous variable, i.e. we
observe n different values for each row.

The MHIST-p algorithm belongs to a family of algorithms that search the best
rectangular partition of a p-dimensional description space by using non-overlapping
p-dimensional rectangular regions. The general MHIST-p algorithm operates as fol-
lows:

Step 0 A maximum number (denoted with k) of p-dimensional rectangles for the
partition of the data domain is chosen. In the beginning, there is only one
(s = 1) p-dimensional rectangle (including the whole data domain) associ-
ated with p univariate distributions (one for each dimension).

Step 1 From the set of Tp×s = [t j ] the j − th marginal distribution that is the most
in need of partitioning is chosen.

Step 2 Next, the t j is split at the point of maximum difference (in absolute value)
with the uniform distribution, that is at the point where the Kolmogoroff
distance between the data distribution and the uniform cdf has a maximum.
s is augmented of one, i.e. the initial rectangle is split in two non overlapping
rectangles. The algorithm iterates from Step 1 until s ≤ k.

Performances of the algorithm strongly depend on the criterion used to define which
distribution is the most in need of partitioning. For V-Optimal histograms [6] con-
sidered by the standard MHIST-p algorithm, this means a marginal distribution that
has the maximum variance of the source parameter value (the observed values or
the frequency associated with an observed value): but considering the continuous
descriptors and the non-homogeneity hypotheses, the classic [2, 6] criteria are inad-
equate. Moreover, the main assumption in designing histograms is the uniformity
hypothesis (i.e. data are uniformly distributed within each p-dimensional rectangle).
To cope with this drawback we propose to use a different criterion to select and to
split the variable needing to be partitioned. For each distribution of the set T , we
compute the mean square error between the observed distribution function and the
uniform distribution defined by the bounds of the domain of t j . This criterion allows
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the algorithm to be more consistent with the uniformity, the continuous descriptors
and the non-homogeneity hypotheses. In order to demonstrate improvements, two
kinds of validation procedures can be used:

Goodness of fit: comparison of the real data multivariate distribution with the distri-
bution associated to the new multivariate histogram representation. The main
drawback is related to the continuous descriptors hypothesis that can consid-
erably slow down the validation process;

Selectivity estimation: one of the strategies proposed in [2, 8] for preparing a collec-
tion of a large set of validating queries (to simulate user behavior), followed by
a verification of the results returned without using the multivariate histogram
in terms of absolute frequencies and those obtained using the multivariate his-
togram.

5 An Application on Real and Artificial Datasets

To show different situations, the process will be applied on two data sets: a real
data set and a synthetic data set. For the sake of simplicity, we refer to two 2D
datasets, but the method is extensible to more than two dimensions. The first dataset
is extracted by the Forest Covertype data [1] and considers the “Elevation” and
“Horizontal distance from roadways” variables on the first 11,340 tuples, that have
been used as training set for classification purposes. The second is a synthetic dataset
of 40,000 tuples generated from a mixture of 40 bivariate and independent gaus-
sian variables. We generated three histograms for each dataset respectively con-
sisting in 20, 40 and 100 buckets. We compared our proposal with the MHIST
algorithm variant that uses the Maxdiff criterion for splitting buckets, using the
observed values as source parameter (see Fig. 2. In a Maxdiff histogram, there is
a bucket boundary between two adjacent source parameter values if the difference
between these values is the largest difference possible (for further details please
refer to [4]). Both the algorithms have the same computing cost in terms of memory
usage (2 × dimensions × No.Buckets plus the frequencies of each bucket) and
executed operations (No.Buckets × tuples in the worst case for step 2). Given
a data set D, a histogram H , and a validation workload W , the average absolute
error E(D, H,W ) is calculated according to [2] as the mean absolute error between
predicted frequency by the model and the effective frequency of data as:

E(D, H,W ) = 1

|W |
∑

q∈W

|Pre(H, q)− Obs(D, q)| (1)

where Pre(H, q) is the estimated number of tuples returned by query q, using
histogram H for the estimation, and Obs(D, q) is the actual number of D tuples
returned by q. We choose average absolute errors as the accuracy metric, since rela-
tive errors tend to be less robust when the actual number of tuples for some queries
is zero or near zero. In general, however, absolute errors greatly vary across data
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sets, making it difficult to report results for different data sets. Therefore, for each
experiment, we normalize the average absolute error by dividing it by the estimated
result size obtained by assuming a single bucket over all the data domain, i.e. in the
case where no histogram is available. We refer to the resulting metric as Normalized
Absolute Error. We compute the Normalized Absolute Error in order to validate
the technique by using a goodness of fit approach, comparing the histograms with
respect to the data distribution, and by using a selectivity estimation strategy. Effec-
tiveness of the description can be evaluated by properly simulating the behavior of
users. We focus on the performance evaluation of this technique in the case of range
queries. According to [8], users can be modeled with two general behaviors while
accessing data: access by windows with constant dimensions (while exploring data,
with no idea of their nature) or by windows with a constant number of elements in
it (in case of expertise about the nature of data, examining a quantity of the infor-
mation that is considered manageable). Accesses happen according to a strategy for
choosing the center of the window: distributed as a uniform (or gaussian) in a first
approach, depending on the hypotheses about data, or distributed according to the
data distribution, in the case in which knowledge about data is available and every
element of the distribution is equally important for the user. In order to evaluate the
selectivity estimation, in analogy with [2] we must select:

• proper data sets on which the validation has to be performed;
• a type of query on which the validation can be based;
• a distribution for the generation of the queries.
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dimensional classes using Mhist with Maxdiff (left) and Kolmogoroff (right)
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We start with a training workload that consists of 10,000 square queries, the
centers of which follow the three cited distributions:

Uniform: The query centers are uniformly distributed in the data domain.
Gauss: The query centers follow a Gauss distribution independent of the data

distribution.
Data: The query centers follow the data distribution.

The range constraints we used for our experiments are:

V[1%]: The range queries are squares the area of which is 1% of the area defined
by the data domain, to model the case in which the user specifies the query
values in terms of a window area.

T[1%]: The range queries are squares covering a region containing 1% of total
tuples, to model the situation in which the user has knowledge about the
data distribution and issues queries with the intention of retrieving a given
number of tuples.

The Normalized Absolute Error results are reported in Table 1 with histograms
generated on data consisting of 20, 40 and 100 buckets.

6 Conclusions and Perspectives

In this paper we presented an improvement for the MHIST algorithm that consid-
erably improves the quality of the histograms in case of very scattered data. We
demonstrated by simulation that our splitting criterion gives a better description of
data with the same amount of buckets. We are convinced that techniques for the
extraction of multivariate histograms will get more and more important because of
the exponential growth of databases and the increasing use of data stream analysis
techniques and tools, since of their inherent capability of preserving a good approx-
imation of statistical dependence of multivariate data. Future works include further
investigation on possible improvements and the application of the technique.
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On Building and Visualizing Proximity Graphs
for Large Data Sets with Artificial Ants

Julien Lavergne, Hanane Azzag, Christiane Guinot, and Gilles Venturini

Abstract We present in this paper a new incremental and bio-inspired algorithm
that builds proximity graphs for large amounts of data (i.e. 1 million). It is inspired
from the self-assembly behavior of real ants where each ant progressively becomes
attached to an existing support and then successively to other attached ants. The ants
that we have defined will similarly build a complex hierarchical graph structure.
Each artificial ant represents one data. The way ants move and connect depends on
the similarity between data. Our hierarchical extension, for huge amounts of data,
gives encouraging running times compared to other incremental building methods
and is particularly well adapted to the visualization of groups of data (i.e. clus-
ters) thanks to the super-node structure. In addition the visualization using a force-
directed algorithm respects the real distances between data.

1 Introduction

We deal in this paper with the following problem: given a large data set of n data
d1, . . . , dn (i.e. 1 million) and a similarity measure between these data, we would
like to allow the domain expert to explore this large amount of data in a visual and
content-based way. We consider that the expert would like to get an overview of the
data as well as details [11] obtained by the local exploration of a neighborhood rela-
tion. This relation is based on the similarity between data. The problem of exploring
a large data set can be solved by incrementally etablishing a hierarchical proximity
graph between the data according to their similarities and by visualizing the graph
and facilitating its exploration.

We thus concentrate on methods which can be used for building neighborhood
graphs (see a survey in [6]). These graphs, also called proximity graphs, are used
in data mining, machine learning or clustering. However, these standard algorithms
have a high complexity, and therefore they may not be efficient for large data sets. To
overcome this limitation, extensions to these methods have been proposed in order
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to incrementally build a proximity graph, but these are not suitable for exploration
tasks [6]. For this purpose, we have studied a biomimetic method for the incremental
construction of such graphs. We proposed an approach which builds a hierarchical
proximity graph suitable for interactive visual exploration tasks.

The remaining of this paper is organized as follows: in Sect. 2, we present the
principles of self-assembly behavior and our initial algorithm, AntGraph, which
incrementally builds a proximity graph from a data set. We also detail the local
decision rules which govern the ants behavior. In Sect. 3, we present the main prin-
ciples of our approach, which extends our initial algorithm, to build a hierarchical
proximity graph from a large data set (i.e. 1 million). We detail a new model which
introduces a hierarchical structure in the proximity graph construction. Section 4 is
devoted to the experimental results obtained on several databases and a comparison
with another incremental method [6]. Finally Sect. 5 concludes on this work and
presents perspectives.

2 Initial Bio-Inspired Algorithm

Several clustering problems have been solved with bio-inspired algorithms like
genetic algorithms [7] or swarm intelligence [3]. These population-based methods
have several advantages: they can be run in a distributed way and do not require
data pre-classification (or initial information such as the number of classes). They
can deal with numerical data as well as symbolic and textual data (provided that a
similarity or distance can be defined). Several of them can be easily extended to deal
with incremental clustering. In this paper, we deal with such approaches in order to
cluster data with artificial ants by building a proximity graph [6].

The initial algorithm that we have extended is called AntGraph [9], and is itself
inspired from AntTree [1], a hierarchical clustering algorithm. AntGraph learns a
graph-based clustering of data. It is inspired by the self-assembly behavior of real
ants that progressively build a living structure by connecting their bodies together
[10]. We have generalized this principle for building proximity graphs. The algo-
rithm takes as input a data set of individuals described either by features or by a
similarity matrix. The set is large and considered as a stream (which may be ran-
domly sorted). The first ant of the stream is selected and denoted by a1. This ant will
be the support of the structure and the input node of the graph. Then, the remaining
ants are introduced one by one in the graph. Let ai denotes such an ant. ai moves in
the graph until it finds a convenient location where to connect. For this purpose, ai

follows the path of maximum similarity (see Fig. 1). Let apos denotes the ant (node)
where ai is located. The following cases have to be considered: (1) apos does not
have any neighbor to explore: ai connects to apos ; (2) a neighbor of apos is more
similar to ai than apos : ai moves onto this neighbor; (3) apos is the most similar
ant to ai (in apos local neighborhood): ai connects to apos and to all neighbors of
apos which are similar enough (i.e. their similarity to ai is above a given similarity
threshold St ). This threshold is locally computed as follows: St = α ∗ sim(ai , apos)

with {α ∈ R, 0 ≤ α ≤ 1}.
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Fig. 1 Building principle with artificial ants. ai moves from ant to ant (i.e. it follows the path of
greatest local similarity). Steps 1, 2 and 3 illustrate the beginning of the construction of a proximity
graph whereas step 4 generalizes this construction

Ants become rapidly connected because they locally follow the path of greatest
similarity, a way to cut through large data sets. One may notice that we can easily
add some data without restarting the algorithm. AntGraph is thus incremental. We
have compared its results with standard algorithms for building proximity graphs
(Relative Neighborhood Graph [13]) with data sets containing up to 5620 data (Opt-
digits data set, [2]). We propose in the next section an extension of this algorithm
in order to (1) cluster a much larger amount of data (up to 1 million) in a very short
time; (2) visualize and navigate through the obtained hierarchical proximity graph.

3 Hierarchical Approach and Visualization

Our approach deals with the construction of a hierarchical graph for a large amount
of data using the AntGraph building principle [9]. Consider a graph built with Ant-
Graph for a large amount of data (i.e. 1 million). The visualization and exploration
of this graph (i.e. 1 million of nodes and many more links) with a force-directed
algorithm is impossible [5]. We cannot visualize distinct clusters with all data and
their neighborhood relations.

We propose the use of a super-node model which introduces a hierarchical
structure in the graph. Our idea is the following one: we consider that each node
(data/ant) of a proximity graph can become a super-node which can be the support
of a sub-graph (with its own localized neighborhood relations). Each super node thus
contains a proximity graph, and each node of this graph can recursively become a
super-node. More precisely, each ant in a graph is basically a standard node (i.e. it
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contains one data only as in the previous approach) but when it becomes a super-
node (sub-graph) it may contain a graph with a maximum of r data (for instance,
r = 500). The building principle described in the previous section has been modified
in the following way.

First, the initial support ant a1 is considered as a super-node. The other ants enter
the graph by this super-node. When such a moving ant ai has found a convenient
location apos where to connect, it becomes connected to apos if and only if the super-
node is not saturated. If the maximum number of nodes in the current super-node
has been reached, then apos is turned into a super-node. ai enters this super-node and
repeats the same algorithm until it becomes connected. When all ants are connected,
we obtain a hierarchical graph, where each sub-graph is “small” enough in order to
be displayed with force-directed algorithm [5]). This algorithm benefits from the
previous properties of AntGraph: the construction is incremental and fast (see next
section), the similarities between data are represented in a proximity graph. Using
the hierarchical structure, we can deal with much larger data sets.

As far as visualization is concerned, the structured graph can be displayed in the
following way: let us consider a given super-node. The size of this node is limited
and can be displayed in 2D or 3D. We illustrate this with Figs. 2 and 3, which
respectively represents the 2D visualizations of the first super-node of two hierar-
chical proximity graphs built with our extension from Optdigits and Waveform data
sets [2] whereas the Fig. 4 displays in 3D the first subgraph of another hierarchical
proximity graph built from the Gen-1,000,000 data set.

Fig. 2 Visualization of the super-node ant a1 for the Optdigits data set with a r = 500. Different
colored clusters can be seen which correspond to 10 real classes. We can notice that the visual size
of nodes is relative to the number of data/nodes they contain
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Fig. 3 Visualization of the super-node ant a1 for the Waveform data set with a r value fixed to
300 (maximum size of a super-node (subgraph)). Different colored clusters can be seen which
correspond to 3 real classes

Fig. 4 Visualization of the super-node ant a1 for the Gen-1000000 data set with a r value fixed to
300. Different colored clusters can be seen which correspond to 5 real classes
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As we can see, the user (domain expert or not) may easily view the groups of data.
He can also distinguish centered or isolated data. Several interactions are possible
like 3D displacements around the graph, zoom with distortion, visualizing the size
of a super-node, and a stereoscopic mode (i.e. immersion in a virtual reality environ-
ment). Moreover when clicking on a super-node, the user may enter this super-node
and our method displays the content of this super node (i.e. force-directed visu-
alization of the graph takes a few seconds only for limited number of nodes, i.e.
500). Thus we have developed an application to evaluate the clustering quality of
our algorithm with real users (user validation process). We compared our method to
three other clustering methods (one interactive, i.e. POI [4] and two automatic, i.e.
Ascendant Hierarchical Clustering (AHC) [8, 12] and AntTree) on several artificial
and real-world databases [1, 2]. To respect the limited number of pages, we can
summarize that our method is able to cluster data with a quality close to POI and
AHC, even slightly better than AntTree (all these methods encounter difficulties
on databases with overlaps). Currently we continue experiments with real users on
larger databases.

4 Results

We have performed an experimental study on numerical databases (artificial and
real-world) having from 5,000 to 1 million data. We have generated some artificial
data sets (i.e. Gen-{10000, 25000, 60000, 100000 and 1000000}) with uniform laws
(i.e. each set owns five non-overlapping classes). The real-world data sets (Wave-
form with 5,000 data, Letter Recognition with 20,000 data and Forest Covertype
with 581,012 data) come from the UCI Repository of Machine Learning [2]. All
sets have been randomly sorted.

We have measured execution times for building hierarchical proximity graphs
for different sizes of databases (see above). In the Table 1, our method gives very
interesting execution times for all tested databases. For a set of 1 million of data, we
respectively build, according to the maximal size of a super-node (i.e. tested values
{300, 500 and 700}), a hierarchical proximity graph in less than 27 min, 51 min and
71 min. The Forest Covertype data set requires additional running time because the
number of attributes is more important (i.e. 54): in our incremental approach, the
similarities are computed in real-time (and cannot be pre-computed due to the size
of the data set).

We have also performed a comparative study between our approach and another
incremental proximity graphs construction method [6]. Authors consider in their
experiments large data sets from 5,000 to 75,000 with a dimension of 50. We have
reported execution times obtained with that method in Table 2. We can notice that
to build a proximity graph from the 75,000 data set, that algorithm requires 156 min
whereas our approach etablishes a proximity graph from the Forest Covertype data
set (i.e. 581,012 data with 54 attributes) in less than 43 min (for a size of super-
node r = 300). Even for a maximum of super-node cardinality of 700, we obtain
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Table 1 Texec is execution times in seconds for tested data sets with r = {300, 500 and 700}
(maximum number of nodes in a super-node). C , M and N are respectively the number of real
classes, data, and attributes

Bases C M N
r = 300 r = 500 r = 700

Texec Texec Texec

Waveform 3 5,000 21 3.324 0.389 3.872 0.373 5.610 0.722
Gen-10,000 5 10,000 10 6.196 1.026 5.908 0.534 6.200 0.151
Letter Recognition 26 20,000 16 16.357 2.456 15.065 1.542 14.989 1.924
Gen-25,000 5 25,000 10 22.720 3.252 20.605 1.895 28.124 4.496
Gen-60,000 5 60,000 10 94.273 5.452 88.342 6.379 82.519 9.328
Gen-100,000 5 100,000 10 184.946 8.392 225.932 13.387 162.836 16.652
Forest Covertype 7 581,012 54 2,536.986 39.028 4,545.774 89.843 6,365.348 103.234
Gen-1,000,000 5 1,000,000 10 1,590.067 32.958 3,075.201 60.34 4,305.867 78.982

Table 2 Texec is execution
times in seconds for tested
data sets with the other
incremental method [6]. M
and N are respectively the
number of data and attributes

M N Texec in seconds

5,000 50 578.4
10,000 50 1,203.0
20,000 50 2,453.4
40,000 50 4,954.8
50,000 50 6,385.8
75,000 50 9,333.6

a proximity graph in 71 min. We point out that the domain expert can visualize
neighborhood relations between all data in a hierarchical proximity graph built with
our approach. Finally for about the same number of attributes between these data
sets and Forest Covertype, we can notice that our method is much faster than [6].

5 Conclusions

As a conclusion, our approach offers the possibility to build, visualize and explore
very large proximity graphs. Our approach has several advantages thanks to the
properties of our algorithm (both for graphs construction and visualization). It ben-
efits from the initial method AntGraph and also has a simple setup.

It is suitable for processing large data sets and achieves a partitioning of data in
the form of a large hierarchical proximity graph in competitive execution times com-
pared to other incremental building approaches [6]. Therefore the domain expert can
adapt, according to his needs, the desired number of data to visualize and explore at
a time (maximum cardinality of a super-node).

As perspectives, we are currently studying several improvements like providing
the user with a global visualization (in the current implementation, the user loses the
context, i.e. global shape of the graph, when entering a super-node). We will apply
this algorithm to the indexing of large data sets (i.e. documents from the web) in the
context of strategic watch and content-based search.
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Including Empirical Prior Information in Test
Administration

Mariagiulia Matteucci and Bernard P. Veldkamp

Abstract In this work, the issue of using prior information in test administration is
taken into account. The focus is on the development of procedures to include back-
ground variables which are strongly related to the latent ability, adopting a Bayesian
approach. Because the desirability of prior information for the ability estimation
in item response modelling depends on the goals of the test, only some kinds of
educational tests might profit of this approach. The procedures will be evaluated in
an empirical context and some recommendations about the use of prior information
will be given.

1 Introduction

The typical situation in educational testing is to have a collection of k items designed
to measure single or multiple latent traits, commonly denominated ability. Further-
more, some kind of collateral information on the individuals may be available. In
this paper, the issue of including prior information in an empirical context is consid-
ered. In particular, the inclusion of background variables which are strongly related
to the latent ability in the item response model is investigated. A linear relation
between the background and the latent variables is considered and the empirical
prior is modelled through a Bayesian approach. It depends on the goals of the test
whether it is desirable to include prior information for ability estimation.

2 Joint Modelling of Measurement Model
and Prior Information

Given the responses to k binary items, a single ability to be measured, and collateral
information about the examinees, three points should be specified in order to include
prior information in the item response model: the relation between the response
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variables and the ability, the relation between the ability and the background vari-
ables, and the estimation method. From an item response theory (IRT) perspective,
the mathematical relationship between the probability of a correct response and the
ability may be described by a wide range of models. When both item difficulty and
discrimination are considered, the two-parameter normal ogive model (see [5, 6])
may be appropriate in case of binary items

P(Yi j = 1|θi , α j , δ j ) = Φ(α jθi − δ j ) =
∫ α j θi−δ j

−∞
1√
2π

e−z2/2dz, (1)

where Yi j is the binary response variable of individual i to item j , with i = 1, . . . , n
and j = 1, .., k, α j and δ j are the item discrimination and difficulty, respectively, θi
is the latent ability of person i , and Φ is the standard normal cumulative distribution
function. Abilities θ1, . . . , θn are assumed to be a random sample from a normal
distribution with mean equal to 0 and standard deviation equal to 1 for identification
purposes. Model (1) is usually preferred for Bayesian estimation, particularly using
the Gibbs sampler [4] within the MCMC methods.

The introduction of prior information in the model can be performed by consid-
ering a set of P covariates or background variables X p, with p = 1, . . . , P , which
are strongly related to the latent ability θ , as described in the following equation

θi = β0 + β1 Xi1 + . . .+ βP Xi P + εi , (2)

where the error terms are assumed to be independent and normally distributed as
εi ∼ N (0, σ 2). Following Eq. (2), the ability is assumed to be measured by the
background variables with error. Therefore, the conditional distribution of θi , given
the X p’s, is normal

θi |Xi1, . . . , Xi P ∼ N (β0 + β1 Xi1 + . . .+ βP Xi P ; σ 2). (3)

The measurement model together with the structural part represents a particular
case of the MIMIC model, where indicators are allowed to be also continuous (see
e.g. [10]). When cluster effects are present, a multilevel factorial model can be used.
The direct estimation of the β’s coefficients and the residual variance σ 2 may be
conducted substituting relation (2) into the IRT model. This kind of estimation has
been conducted through MML via EM algorithm for the Rasch model by [9, 10, 11]
and for the two-parameter logistic model by [12]. On the other hand, the inclusion
of prior information is possible within the MCMC methods. The Gibbs sampler has
been implemented to estimate a general multilevel IRT model, where covariates of
first and second order are included [2]. Furthermore, the same algorithm has been
used to model hierarchically the measurement model (1) and prior information in
the form of response times [3].

Starting from the application of the Gibbs sampler to model (1) by [1], the
idea is to extend the algorithm with the inclusion of prior information on θ . From
another point of view, the work can be seen as the equivalent of simplifying the
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multilevel IRT model described in [3] to a one-level model with covariates on
the latent ability. The presence of a dichotomous variable Yi j , indicating correct
or incorrect response of person i to item j, is modeled through the introduction of
the underlying variables Zi j , conditionally independent and identically distributed
as Zi j ∼ N (α jθi − δ j ; 1), with i = 1, . . . , n individuals and j = 1, . . . , k items.
From a fully Bayesian perspective, the joint posterior distribution of interest is

P(Z, θ , ξ ,β, σ 2|Y,X) = P(Z|θ , ξ ,Y)P(θ |β, σ 2,X)P(ξ)P(β)P(σ 2), (4)

where ξ is the vector of the item parameters and the other variables are in matrix
notation. Because distribution (4) has an intractable form, the Gibbs sampler algo-
rithm can be applied in order to iteratively sample from the following conditional
distributions:

1. Z|θ , ξ ,Y;
2. θ |Z, ξ ,β, σ 2;
3. ξ |θ,Z;
4. β|θ, σ 2;
5. σ 2|θ ,β.

The conditional distribution of the independent Zi j is normal, with expected
value ηi j = α jθi − δ j and variance equal to 1, truncated by 0 to the left if Yi j = 1
and to the right if Yi j = 0

Zi j |θ, ξ ∼
{

N (ηi j , 1) with Zi j > 0 if Yi j = 1,
N (ηi j , 1) with Zi j ≤ 0 if Yi j = 0.

(5)

To obtain the conditional distribution of the θ , we should start from the normal
regression model Zi j = α jθi − δ j + υi j to obtain

Zi j + δ j = α jθi + υi j , (6)

where υi j i.i.d.∼ N (0, 1). Eq. (6) describes the multiple regression of (Zi j + δ j ) on
the regressors α j , with j = 1, . . . , k, considering θi as regression coefficient. There-
fore, the likelihood function of θi follows the normal distribution with mean equal
to the least square estimate of θi , specifically θ̂i = ∑k

j=1 α j (Zi j + δ j )/
∑k

j=1 α
2
j ,

and variance v = 1
/∑k

j=1 α
2
j . The prior distribution for θi is expressed by (3); it

follows that the θi ’s are independent and their posterior distribution is normal and
parameterized as

θi |Z, ξ ,β, σ 2 ∼ N

(
θ̂i/v + Xiβ/σ

2

1/v + 1/σ 2
; 1

1/v + 1/σ 2

)

. (7)
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By following the same approach, consider the normal regression model

Z j = [θ − 1]ξ j + υ j , (8)

where θ is the n-dimensional vector of individual abilities, -1 is a n-dimensional
vector with entries equal to -1, ξ j = [α j ; δ j ]′ is the vector of item parameters
for item j, and υ j = (υ1 j , . . . , υnj )

′ is a random sample from a standard normal
distribution. The model can be interpreted as the regression of Z j on the explanatory
variables W = [θ −1], considering the ξ j as regression coefficients. Therefore, the
likelihood function for the ξ j follows a multivariate normal distribution with mean

equal to the usual least squares estimate ξ̂ j = (W′W)−1W′Z j and variance equal to
(W′W)−1. A possibile choice for the prior distribution is a prior covariance matrix
for the item parameters denoted by

Σ0 =
(

s2
α 0
0 s2

δ

)
,

where sα and sδ are the prior standard deviations for α j and δ j . In this case, the
conditional posterior distribution of ξ j is a multivariate normal as follows

ξ j |θ ,Z ∼ N ((W′W+Σ−1
0 )−1W′Z j ; (W′W+Σ−1

0 )−1). (9)

The algorithm can be applied with different prior distributions for item param-
eters: the most common is to use P(ξ) ∝ ∏k

j=1 I (α j > 0) to ensure positive

discriminations (see [1, 2]). The posterior distribution of β, depending on θ and σ 2,
can be found starting from the regression (2), which in vector notation is

θ = Xβ + ε, (10)

where θ is the n-dimensional vector of abilities, X is the n × (P + 1) matrix of
covariates, with the first column of ones to model the intercept term, β is the vector
of regression coefficients of length P+1 and ε is the n-dimensional vector of the
error terms. With a non informative prior on β, the posterior distribution follows

β|θ , σ2 ∼ N (β̂; σ 2(X′X)−1), (11)

where β̂ = (X′X)−1X′θ .
Finally, a conjugate prior for the variance σ 2 is a scaled inverse Chi-square

distribution with parameters ν0 and σ 2
0 . If ν0 = 0 we obtain a non informative

prior for σ 2, i.e. P(σ 2) ∝ σ−2. The likelihood function for σ 2 is proportional to

exp
[
− 1

2σ 2

∑n
i=1(θi − Xiβ)

2
]
. Therefore, the posterior distribution of σ 2 becomes

σ 2|θ,β ∼ I nv − χ2(n; S2), (12)

where S2 = 1
n (θ − Xβ)′(θ − Xβ).



Including Empirical Prior Information in Test Administration 177

Starting from a set of starting values, the Gibbs sampler proceeds with the itera-
tive sampling from the conditional distributions until convergence. The choice of
starting values is not crucial in MCMC but reasonable initial points may speed
convergence.

3 Simulation Study

In this section, simulation studies are presented to understand the parameter recov-
ery of the Gibbs sampler in the estimation of the 2PNO model extended to the pres-
ence of background variables on latent variables described in Sect. 2. The algorithm
has been implemented in MATLAB [7].

In the first study, binary responses to 14 items have been generated for 1,500
individuals according to model (1). Furthermore, a simple regression has been
considered to model the relationship between the ability and the covariate, i.e.
θ = −0.3 + 0.6X1 + ε, where ε ∼ N (0, 0.46) and X1 has been drawn from
N (0.5, 1.5). True values for the item parameters are shown in the second and third
column of Table 1, respectively. For the simulation, 100 dataset have been generated
according to the above specifications. For a single dataset, the Gibbs sampler has a
run length of 5,000 iterations, with a burn-in of 500, and took around 3 minutes on
a Intel(R) Pentium(R) M processor 1.73 GHz. Totally, the algorithm took around 4
h to estimate the joint model for 100 samples. The starting values have been fixed
to zeros for both difficulty parameters and ability scores, while all initial discrimi-
nation parameters are set to one. Prior standard deviations sα = sδ = 1 have been
chosen for the item parameters. Results for the item parameter estimates are shown
in Table 1.

Table 1 Item parameter recoverya

True values Gibbs sampler

Item α j δ j α̂ j δ̂ j

01 0.675 −1.041 0.688 (0.058) −1.042 (0.051)
02 0.585 0.480 0.591 (0.048) 0.474 (0.040)
03 0.240 0.868 0.242 (0.042) 0.869 (0.038)
04 0.662 0.688 0.678 (0.048) 0.692 (0.045)
05 0.143 −0.086 0.146 (0.043) −0.086 (0.036)
06 1.272 0.093 1.269 (0.086) 0.095 (0.046)
07 0.369 −0.031 0.375 (0.038) −0.030 (0.034)
08 0.644 −0.277 0.649 (0.047) −0.277 (0.035)
09 0.681 −1.079 0.680 (0.052) −1.081 (0.055)
10 0.621 −0.161 0.625 (0.050) −0.168 (0.042)
11 0.532 0.543 0.537 (0.043) 0.538 (0.041)
12 0.984 0.673 0.995 (0.075) 0.669 (0.055)
13 0.667 0.457 0.670 (0.050) 0.462 (0.038)
14 0.345 −0.654 0.349 (0.040) −0.656 (0.037)
astandard deviations in brackets
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Table 2 Parameter recovery
for the regression coefficients
and the variance of the error
termb

True values Gibbs sampler

β0 −0.3 −0.299 (0.018)
β1 0.6 0.602 (0.012)
σ 2 0.46 0.459 (0.021)

bstandard deviations in brackets

The estimated parameters seem to reflect quite precisely the true values for the
item parameters. In Table 2 the estimates for the regression coefficients and the
variance of the error term are reported.

The algorithm is able to recover with high precision the parameters of the regres-
sion between the ability and the covariate. The Gibbs sampler is not sensitive to the
choice of starting values; furthermore, the algorithm has shown a fast convergence
to the true values.

The second simulation study has been conducted to show the parameter recovery
of the regression parameters according to different sample sizes and test lengths
(7 and 14 items). Data have been simulated for 14 items (see Table 1 for the item
parameters) and a sample size of 1, 500, 700 and 300. The regression model underly-
ing the data is the same of the first simulation study. Then, data have been simulated
for 1, 500, 700 and 300 individuals only for the first 7 items. The results of the
MCMC procedure with 5, 000 iterations and a burn-in phase of 500 are shown in
Table 3.

The regression parameters are reproduced quite precisely for all the combina-
tions of test length and sample size and this encourages the use of the algorithm
in different situations. Anyway, we can notice that as both the sample size and the
number of items decrease, the precision of estimates decreases, especially for the
variance σ 2.

4 Real Data Application

Data were available from 666 test takers that completed an intelligence test in the
Netherlands [8]. The items have been pre-calibrated by using the two-parameter
logistic model, therefore maximum likelihood estimates of the ability are known for
all the examinees.

In the analysis, the relation between Number series responses as collateral infor-
mation for the estimation of the Raven’s matrices test is investigated. A multiple
regression model for the ability in Raven’s matrices on Number series performance,
educational background and minority orientation has been specified. The model is
θi = β0+β1 Xi1+β2 Xi2+β3 Xi3+β4 Xi4+ εi , where X1 represents the estimated
abilities on the Number series items, X2 is the education variable equal to 1 for
university and 0 for higher vocational, and X3, X4 are indicator variables for the
minority orientation (X3 = 1 for Dutch native, X4 = 1 for western immigrant, and
non-western immigrant reference category). The Gibbs sampler has been run for
5,000 iterations and a burn-in of 500 iterations has been considered to estimate the
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Table 4 Item parameter
estimates for the Raven’s
matrices test

α̂ j sd(α̂ j ) δ̂ j sd(δ̂ j )

0.476 0.075 −0.503 0.055
1.033 0.141 −0.720 0.076
0.599 0.085 −0.341 0.053
0.181 0.065 0.363 0.050
0.526 0.077 −0.346 0.053
0.952 0.124 −0.418 0.063
0.903 0.138 −1.354 0.116

Table 5 Estimated
parameters for the linear
regression of ability on
Raven’s matrices on all
covariates d

Estimates

β0 intercept 0.037 (0.078)
β1 number series 0.655 (0.068)
β2 university 0.118 (0.095)
β3 Dutch 0.176 (0.104)
β4 western immigrant −0.012 (0.134)
σ 2 variance 0.763 (0.052)

dstandard deviations in brackets

IRT model and the regression equation for the ability jointly. Table 4 shows the item
parameter estimates for the Raven’s matrices subscale.

The results on the coefficients and on σ 2 for the complete regression model are
described in Table 5.

The estimated β1 = 0.655 highlights a positive and large effect of the Number
series predictor on the Raven’s matrices ability, given the standard normal scale of
the ability. The results show a small positive effect of the university respect to the
higher vocational education because β2 = 0.118. Furthermore, a moderate positive
effect is noticed for Dutch natives with respect to immigrants (β3 = 0.176) while
the effect of being a western immigrant is not significant and almost null (β4 =
−0.012).

5 Concluding Remarks

In this work, a Gibbs sampler algorithm has been developed to include in the esti-
mation of the 2PNO model a series of background variables which can be predictive
of the ability level. The simulation study has shown the capability of the algorithm
of recovering both item and regression parameters. Finally, the application to data
from intelligence tests has been given as an example of the context in which the
algorithm can be used. In operational testing, the algorithm can be used to initialize
the ability estimation, given the estimated coefficients for a set of related covariates.
This can be especially useful in adaptive testing.
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Part IV
Robustness and Classification





Italian Firms’ Geographical Location in
High-tech Industries: A Robust Analysis

Matilde Bini and Margherita Velucchi

Abstract Recent debates in economic-statistical research concern the relationship
between firms’ performance and their capabilities to develop new technologies and
products. Several studies argue that economic performance and geographical prox-
imity strongly affect firms’ level of technology. The aim of the paper is twofold.
Firstly, we propose to generalize this approach and to develop a model to identify
the relationship between the firm’s technology level and some firm’s characteristics.
Secondly, we use an outlier detection method to identify units that affect the analysis
results and the estimates stability. This analysis is implemented using a generalized
regression model with a diagnostic robust approach based on forward search. The
method we use reveals how the fitted regression model depends on individual obser-
vations and the results show how the firms’ technology level is influenced by their
geographical proximity.

1 Introduction

Recent economic-statistical literature investigates the relationship between firms’
performance and their capabilities to develop new technologies and products. Sev-
eral studies argue that economic performance and geographical proximity strongly
affect firms’ level of technology (high-tech and low-tech), proxied by sectors in
which they operate. Following this literature, a technological clustering approach
has been developed [2]. A technological cluster is a geographical concentration of
high technology firms; they often form around scientific research centers, such as
universities or national labs ([5]; Fallah and Ibrahim, 2004) or close to larger inno-
vative and internationalized firms [4]. Innovative activities are strongly geograph-
ically agglomerated and this has led many researchers to investigate the causes of
this phenomenon [7]. Also, innovative behavior varies considerably across regions
and sectors [3, 9] and the existence of clusters reveals important insights about the
microeconomics of competition and the role of location in competitive advantage of
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firms. Clusters’ influences on competition have taken on growing importance in an
increasingly complex, knowledge-based, and dynamic economies.

The aim of the paper is twofold. Firstly, we suggest a model to identify the
relationship between the sector of the firm and some firm’s characteristics such as
size (proxied by total sales and added value in log terms),1 age and geographical
location. We use large agglomeration as a proxy of geographical location because
it is the classification adopted by ISTAT (Istituto Nazionale di Statistica) although
this is just a very rough definition of geographical proximity. Secondly, to test this
model, we use an outlier detection method so we identify units (firms) that affect
the analysis results and the stability of estimates obtained by fitting the model.
The method we use reveals how the fitted regression model depends on individ-
ual observations and the results show how the firms’ technology level is influenced
by their geographical proximity. The analysis is implemented using a generalized
regression model with a diagnostic robust approach based on forward search [1].
Since the response variable in our model is dichotomous (high-tech and low-tech
level), a logistic regression model is fitted. We use a cross section data set of Ital-
ian entreprises that presented their balance sheet in 2006 for manufacturing sectors
provided by AIDA (Analisi Informatizzata Delle Aziende, Bureau Van Dijk).

2 The Model: A Robust Approach to Detect Outliers

The approach we follow is proposed by Atkinson and Riani [1]. The fit of a logit
model on this data set allows to select the significant covariates. We aim at identi-
fying the relationships between the firm’s technology level and their characteristics
such as size, age and geographical location. The forward search algorithm is applied
to a regression analysis and it reveals the hidden structure of the data. This approach
is useful when extreme, anomalous units are present, helping downweigthing or
discarding them. The algorithm is based on a robust fit on very few observations.
Then, a successive fit is done with larger subsets. The initial subset is identified
using the least median of squares method [10] that guarantees that no outliers are
included in the initial subset.

Formally, following Atkinson and Riani [1], let Z = (X, y) be a data matrix of
dimension n× (p + 1). If n is moderate and p << n, the choice of the initial subset

can be performed by exhaustive enumeration of all

(
n
p

)
distinct p-tuple:

S(p)
i1,...,i p

≡ {zi1 , . . . , zi p },
where zT

i j
is the ij-th row of Z, for j = 1, . . . , p and 1 ≤ i j = i j∗ ≤ n.

Specifically, let ιT = [i1, . . . , i p] and let e
i,S(p)

ι
be the least squares residual for

the unit i given the model has been fitted with the observations in S(p)
ι . The initial

1 Sales and added value have been transformed in log terms for scale reasons and for an easier
interpretation of the results.
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subset is S(p)∗ which satisfies

e2

[med],S(p)∗
= min

ι

[
e2

[med],S(p)
ι

]

where e2

[k],S(p)
ι

is the k-th ordered squared residual among e2

i,S
(p)
ι

, with i = 1. . . . n

and med is the integer part of (n + p + 1) /2. If

(
n
p

)
is too large, the choice is

made using 3, 000 p-tuples sampled from Z matrix. The subset size is increased by
one and the model refitted to the observations with the smallest residuals for the
increased subset size. The result is an ordering of the observations by closeness to
the assumed model. Usually one observation enters the subset used for fitting, but
sometimes two or more observations enter the subset as one or more leave. GLMs
have been accomplished according to this forward search.

3 Data Set Description and Some Results

The data set we use is a cross section of Italian manufacturing firms. We consider
785 medium sized limited companies (with one associate) having different levels
of technological intensity [8], firm’s age and geographical location (North-West,
North-East, Center, South, Sicily and Sardinia). We limit our analysis to medium
sized limited companies because they are the most dynamic and growing among
Italian firms, representing the so called fourth capitalism [6]. Descriptive statistics
in Table 1 show that, as expected, only 28% of the firms operate in a high tech
sector and their age is quite high (around 24 year old). From further results that are
not included for lack of space, we also see that they live longer than their larger or
smaller counterparts. This is in line with the definition of the fourth capitalism firms:
successful, dynamic and flexible medium sized entreprises. Following the ISTAT
classification, geographical location statistics show that the vast majority of these
firms are in the North of Italy: 46.8% in the North-East and 35.6% in North-West.
11.8% are from Center and 5% from South and Islands.

We estimate an extended model including all covariates (geographical location,
firm’s age, size proxied both by added value and sales) and, by means of the forward
search algorithm, we select the link logit as the best among the alternatives. Fig. 1
shows that this link fits well but for some units. The plot of the Goodness of Link

Table 1 Descriptive Statistics for medium–sized Italian firms (2006). 785 observations from AIDA
data set

Added
Tech Sales (log) value (log) Age

Mean: 0.28 3.77 4.07 24.14
Median: 0.00 3.71 4.02 22.00
St. Dev.: 0.45 0.56 0.14 10.89
Skewness: 0.98 0.47 3.60 1.92
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Fig. 1 Forward Search: Goodness of Link Test

Test shows anomalous values at the end and at steps 688–698 of the forward search
that lie out of the significant bounds (5% level).2

From the preliminary analysis on links emerges that a deeper study is necessary
not only for units entering the last steps of the search but also for units that affect
the behavior of the link logit (steps 688–698). The last observations entering the
model cause an increase in the residual deviance and a decrease in the Pseudo-R2

statistic.3

Figure 2 reports the stability of the estimates showing that the same group of
units influences the significance. This figure shows that the estimates are very unsta-
ble especially at the beginning of the procedure. Moreover, the significance of the
estimates change as sample size increases. Concerning the relevant variables of our
analysis, geographical location and firm’s age are significant throughout the pro-
cedure: mature firms are less likely to operate in high-tech, risky industries and
geographical location strongly affects the technological intensity of firms. In par-
ticular, it emerges a North-South gradient in technological intensity: working in the
northern regions, particularly in the north-east ones, increases the probability of a
higher technological intensity while working in the central and southern regions
does not statistically affect it. Table 2 reports the estimates results for the whole
sample at the final step of the forward search; they coincide with results obtained
without the procedure.

2 This result is due to the presence of units differing from the bulk of the data that may derive from
different populations. Further results on links comparison are available upon request.
3 Detailed results are available upon request.
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Fig. 2 Forward plots of scaled coefficient estimates and of t values for the coefficients. Whole
sample
Variables in Figure 2 are labelled as C1: North-West area, C2: North-East area, C3: Center area,
C4: South area, C5: sales (log), C6: added value (log), C7: age.

Table 2 Results of the estimated model. Whole sample

Coefficient St.err t-stat p-value

Intercept −4.136 2.132 −1.940 0.053
Area: North-West −0.213 0.089 −2.381 0.018
Area: North-East −0.177 0.092 −1.917 0.055
Area: Center −0.092 0.103 −0.890 0.374
Area: South −0.013 0.162 −0.078 0.936
Sales 0.073 0.213 0.342 0.734
Added value 0.723 0.662 1.093 0.276
Age −0.011 0.008 −1.444 0.150

The comparison between Table 1 and Fig. 2 shows the relevance of the procedure
in detecting anomalous units affecting both the estimates and their significance as
sample size increases. For example, estimates show a sudden peak at steps 688–698
suggesting a further and deeper analysis on those units. Fig. 3 reports the Goodness
of Link Test after deletion of units affecting the stability of estimates and the trajec-
tory of the logit Link Test remains within the boundaries (5%). In Fig. 4, coefficients
and t-stats from the estimation on the reduced sample point out that geographical
location is still significant while the firms’ age is only weakly significant. Added
value becomes extremely significant throughout the procedure, as confirmed by the
estimates from the last step, reported in Table 3. On the one hand, high added value
firms are more likely to have high technological intensity while, on the other, mature
firms risk less and tend to operate in low tech sectors.

Our analysis reveals that a small number of units (steps 688–698) and the last
units entering the forward search (last 26 steps) alter the results. A detailed focus
on these units show that they have very peculiar characteristics. The firms iden-
tified as outliers entering at steps 688–698 (11 units), turn out to be “made in
Italy” (fashion and leather goods), quite large firms with high sales and added value
(281,013,000 euro sales and 85,559 euro added value, on average) mainly located in
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Fig. 3 Forward Search: Goodness of link test after units deletion

Fig. 4 Forward plots of scaled coefficient estimates and of t values for the coefficients. Whole
sample
Variables in Figure 4 are labelled as C1: North-West area, C2: North-East area, C3: Center area,
C4: South area, C5: sales (log), C6: added value (log), C7: age.

the North-West industrial districts as shown in Table 4. These firms are internation-
alized and famous brands; among these, Max Mara, Marina Rinaldi and Marella
(textiles), Luxottica (eye glasses), Bonomelli (food). Firms entering last steps of
the procedure (last 26 steps), instead, are smaller with both sales and added value
lower than the whole sample (6,803,100 euro sales and 1,812 euro added value, on
average) located mainly in the North and in the Center of Italy. On average, the
outliers are also younger (18.6 years old) and more dynamic firms than these units
but they both strongly deviate from the assumed model.



Italian Firms’ Geographical Location in High-tech Industries: A Robust Analysis 191

Table 3 Results of the estimated model after outliers deletion
Coefficient St.err t-stat p-value

Intercept −16.280 3.506 −4.644 0.000
Area: North-West −0.194 0.092 −2.096 0.036
Area: North-East −0.416 0.119 −3.506 0.000
Area: Center −0.189 0.130 −1.453 0.147
Area: South −0.061 0.219 −0.278 0.781
Sales −0.306 0.247 −1.240 0.215
Added value 4.009 1.027 3.904 0.000
Age −0.016 0.008 −1.849 0.065

Table 4 Results of the estimated model after outliers deletion
High Added

Means obs tech Sales value North-west North-east Center South Islands Age

Sample 785 28% 24,093 5,461 47% 35% 12% 5% 1% 24.2
Outliers 11 33% 281,013 85,559 50% 25% 0% 25% 0% 18.6
Last units 26 28% 6,831 1,812 38% 31% 27% 4% 0% 27.2

The robust analysis shows that the technological level is strongly influenced by
added value, geographical location and only weakly by age of firms. This relation-
ship is strong for medium sized firms while it is weak for large sized and interna-
tionalized enterprises.

4 Conclusive Remarks

This paper deals with the technological clustering approach and suggests a model
to identify the relationships between the firm’s technological level and its charac-
teristics (size, age and geographical location). An outlier detection method is used
to identify units that affect the results and the stability of estimates. We use a gen-
eralized regression model with a diagnostic robust approach based on the forward
search algorithm that allows to identify clusters of units (outliers) having peculiar
characteristics. This approach better explains firms’ heterogeneity and the role of
added value and geographical location in creating the fertile context for techno-
logical clusters. Our model shows that larger firms in North-East and North-West
industrial districts are more likely to have high technological intensity. We identify
also a group of firms, outliers, in Made in Italy sectors like fashion and food that do
not fit the model and over-perform with respect to the whole sample.

Acknowledgments We are grateful to Luigi Biggeri and Marco Riani for their comments and
suggestions that strongly improved this work.
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Robust Tests for Pareto Density Estimation

Aldo Corbellini and Lisa Crosato

Abstract A common practice to determine the extension and heaviness of heavy
tails of income, return and size distributions is the sequential estimation and fit-
ting of one or several models, starting from a group of the largest observations and
adding one observation at a time [14]. In the early stages this kind of procedure
shows high sensitivity of the shape parameter estimates to single observations, the
end of the search being fixed when the shape parameter value estimates reach a
plateau. In this paper we propose a stepwise fitting of a heavy-tailed model, the
Pareto II distribution [1], previously applied to the size distribution of business
firms. The procedure, based on the forward search technique [2], is data-driven
since observations to be added at each iteration are determined according to the
results of the estimation carried out at the preceding step and not, as in sequential
fitting, according to their rank.

1 Introduction

Recent literature, in both economics and finance, has dealt with the parametric mod-
elling of heavy tails recurrent in several variables, from personal income to firm size
[9], from returns to innovation [18] to financial returns [10, 14].

In cross section datasets observations belonging to the heavy tails are often the
most important, because of their relative weight in terms of income, total assets,
total returns etc. Parameters that measure the tail thickness are then used in income
analysis and industrial economics as inequality and concentration indicators respec-
tively. In financial return time series data, the presence of heavy tails indicates
the occurrence of profits under or above the average. Investors and, more gener-
ally, stakeholders are obviously concerned about the frequency and magnitude of
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extremal returns, so determining a cut-off value for the tails and estimating their
weight is not a secondary matter.

The benchmark distribution to assess the extension and thickness of heavy tails
in industrial economics and income studies is the Pareto I distribution [13], whose
fitting capacity is unfortunately often restricted to a small percentage of observations
(usually the largest). In the empirical financial literature, instead, data are mainly
modelled through the stable distribution family [10, 14], which allows for heavy
tails both on the positive and on the negative side. In particular, in extreme value
theory [3, 7, 11, 15], the limiting threshold of heavy tails and the estimation of the
tail index are determined via a sequential procedure. Estimation and fitting start
from a group of the largest observations, then proceed adding one observation at
each step according to its rank (where the observation number 1 is the largest),
and stopping when the estimated value for the shape parameter reaches a certain
degree of stability. A well known problem of this kind of procedure is the trade-off
between the efficiency and the bias of the estimate, since adding observations leads
to a smaller variance but also to higher residuals between true data and the model
[18]. As a consequence, the literature has mainly focused on comparing different
estimator performances [16] in terms of asymptotic efficiency.

In this paper we propose a robust stepwise testing procedure for the Pareto II 1

distribution [1], which has previously been shown to describe adequately the dis-
tribution of business firms in Italy [6]. Our procedure relies on the forward search
technique [2], a powerful overall approach suited for detection of masked outliers,
for evaluation of their effects on models fitted to data and for investigation of model
inadequacy.

Our search procedure has two steps. At the preliminary stage, a group of obser-
vations is selected to form a Basic Subset (BSB). The BSB is set up by isolating
a group of observations that, by itself, yields the best-fitting Pareto II model to all
the observations. Secondly, the observations added at each step are selected only
according to their contribution to the goodness-of-fit of the model, and not accord-
ing to their ranked size. Finally, using Monte Carlo confidence intervals, we are able
to determine the percentage of observations consistent with the null hypothesis of
Pareto II and to highlight the effect exerted on the fitted model by each observation.

The paper is organized as follows: the next section describes our robust proce-
dure for estimation of the Pareto II distribution’s parameters. In Sect. 3 we illustrate
some results based on asymptotic confidence intervals obtained for pseudo-random
realizations from the Pareto II distribution. In particular, we show that applying our
algorithm to Pareto II-type data contaminated by values from a normal distribution
leads to a correct identification of the Paretian subset. Sect. 4 summarizes and dis-
cusses further research.

1 The Pareto II distribution is the second model Pareto proposed [13] to describe empirical income

distributions. Its distribution function (CDF) is given by
[

F(x) = 1− (1+ x−μ
σ

)−α]
.
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2 Robust Stepwise Fitting of the Pareto II Distribution

The traditional approach to heavy tail fitting [14] relies on the hypothesis that the
largest observations form the hard core of some Paretian distribution. Therefore,
they are used as the starting group to be enlarged successively by the sequential
inclusion of smaller observations, until the desired stability in the parameter esti-
mates is reached. Of course, the focus on extreme values is fully motivated by the
interest in the occurrence of rare (extremely below or above the average) events,
so that to treat them simply as outliers would be self-defeating. Still, we question
the robustness of this procedure, arguing that including in the initial subset extreme
values, which actually are by definition atypical observations, does not provide an
ordering of the data according to the model.

On the contrary, in the wake of the Forward Search, our approach starts by finding
a Basic Subset (BSB), defined here as the group of observations2 that shows the
best fit of the Pareto II distribution independently of their position along the ranked
observations. The goodness-of-fit is assessed using a robust version of the Pearson
statistic, i.e. summarizing the difference between theoretical and actual frequencies
along cells by the median. In this paper, the units added at each step of the Forward
Search are cells of observations rather than single observations, due to the nature of
the Pearson statistic. Thus, also the BSB is constructed on a cell basis.

Once the BSB has been identified, i.e. once we have identified the most “Pare-
tian” observations among the data, we proceed to an adjustment of the estimates
based on the inclusion of the remaining observations according to a goodness-of-fit
criterion. In fact, at each iteration of the Forward Search, the algorithm first adds the
single cell of observations best ranked by the Pearson statistic at the preceding step,
and secondly performs Maximum Likelihood Estimation (MLE) on the newfound
BSB, that grows with the iterations. In this way, we order all cells up to the last one
according to the feasibility of their inclusion in the search.

The first issue we have to face is to formalize the method for selecting the p cells
composing the BSB.3

Let X = {x1, x2, . . . , xn} be the vector of obervations partitioned in r cells,4

denoted by {c1, c2, . . . , cr }, and let i j denote the group of observations falling in
cell c j . Now, if r is moderate (e.g. not greater than 100), the choice of the ini-
tial subset can be performed by exhaustive enumeration of all

(r
p

)
distinct p-tuples

S(p) ≡ {i1, . . . , i p}. If
(r

p

)
is too large, we use instead some arbitrary large number

of combinations, say k with k <
(r

p

)
.

2 For the sake of brevity, we refer to the data undergoing the procedure as observations, wether
they are realizations of a random variable observed on a specific statistical unit or pseudo-random
realizations of the Pareto II-type.
3 At this stage we do not assign any particular vale to p in order to maintain a general approach.
4 Cells are chosen to have equal probabilities under the hypothesized distribution [12].
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Selection of the BSB is realized through the following steps.

1. Estimation of the unknown vector of parameters, θ̂ , whose components are μ̂,
α̂ and σ̂ , is carried out separately on the basis of the observations belonging to
each S(p)

j , for j = 1, 2, . . . , k. For this purpose the Log-likelihood function of
the Pareto II distribution [1] is maximized through the constrained optimization
routine collection nlminb provided by the R software.

2. Calculation of the goodness-of-fit Pearson statistic between the overall distribu-
tion and the model defined by each S(p)

j is performed on single cells. In particu-
lar, let the residual e

i,S(p)
j

be defined as the relative difference between actual and

theoretical frequencies for cell ci , i = 1, 2, . . . , r , i.e.

e
i,S(p)

j
= [
(

f i
a − f i

t j

)2
/ f i

t j ]

with j = 1, 2, . . . , k. Note that for one cell we have k residuals, each correpond-
ing to a Pareto II model estimated from a different S(p)

j .

3. The entire set of S(p)
j combinations is ranked from smallest (rank 1) to largest

(rank k) according to the median value of the residuals over all cells, denoted by
e

med,S(p)
j

4. The BSB, S(p)∗ , is identified as the top-ranked combination, i.e. the one satisfying

e
med,S(p)∗

= min
j=1,...,k

[e
med,S(p)

j
]. (1)

Therefore, the BSB is defined as the subset of cells that provides the model best
fitting the whole set of observations. Once selected, the BSB is then augmented by
one cell at each iteration until all cells are included in the estimation subset.

In the second phase we use a similar procedure to the above. However, since the
focus is now on establishing a model-driven order of inclusion for observations, the
goodness-of-fit ranking is carried out on single cells and not, as above, on the basis
of a summary measure.

In the classical formulation of the forward search for regression, given a subset
of dimension m ≥ p, say S(m)∗ , we move to dimension m + 1 by selecting the
m + 1 observations with the smallest squared least squares residuals, the observa-
tions being chosen by ordering all squared residuals e2

i,S(m)∗
, i = 1, . . . , r . In most

moves from m to m + 1 just one new observation joins the subset. It may also
happen that two or more observations join S(m)∗ as one or more leave. However, our
experience is that such an event is quite unusual, only occurring when the search
includes one observation that belongs to a cluster of outliers. At the next step the
remaining outliers in the cluster seem less outlying and so several may be included
at once. Of course, several other observations then have to leave the subset.

Here we observe the same pattern, although not with reference to single obser-
vations but to single cells, in that only one cell enters the subset at each step. Let
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{c′1, c′2, . . . , c′p, c′p+1, . . . , c′r } be all cells reordered such that the first p cells belong

to S(p)∗ . We denote by c′i , i = p + 1, p + 2, . . . , r all remaining cells. In order to
enlarge the BSB we proceed along the following path:

1. MLE of the parameters θ̂ based on all observations belonging to S(p)∗
2. Calculation of the residual e

i,S(p)
j

separately for each c′i , i = p+ 1, p+ 2, . . . , r

3. Ordering of the cells not yet included in the estimation subset on the basis of the
residual in (2)

4. Addition of the top-ranked cell, c′∗, to S(p)∗
In the next iteration, when searching for the p + 2-th cell to be included, the

estimation will be performed on the elements of S(p+1)
i =S(p)∗ ∪ c′∗ and so on for all

cells.

3 Forward Chi-Square Test

The stepwise procedure presented in the previous section represents an attempt to
integrate the processes of estimation and goodness-of-fit in turn in order to assess
iteratively which observations have to be considered as realizations of the theoretical
model. So far, in fact, we have defined firstly a robust group of observations to serve
as a start-up subset for estimation and secondly an ordering of cells according to
the estimated model, but we have not yet specified a criterion to mark the cells not
consistent with the model itself.

In this section, we apply the procedure of Sect. 2 both to data in large part
consistent with the Pareto II distribution5 and to Pareto II-type data contaminated
by values from a normal distribution. Furthermore, using Monte Carlo confidence
intervals for the χ2 statistic [17] built on pseudo-random realizations of Pareto II
distribution, we show that the application of our algorithm to the former dataset
imply the recognition of almost all data as Pareto II distributed, while application of
the same to the latter dataset leads to a correct isolation of the Paretian subset and,
as a byproduct, of the outliers.

Firstly we perform the forward search over the empirical dataset [6].
The Forward Search approach typically uses the smallest possible subset to start

the estimation with (composed for example by m = p observations, equal to the
number of parameters in the regression model). We fix the dimension of the BSB
in p = 4 cells, which is the minimum number of cells required in order to obtain

5 Total Assets for Italian firms of the Chemical sector are extracted from the AIDA database,
processed and managed by Bureau van Dijck Electronic Publishing. AIDA tracks accounts and
activities for 500,000 Italian companies with sales greater than 500,000 Euros, plus ownership and
management for the top 20,000 companies.
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correct critical points for the Pearson statistic.6 As about the total number of cells to
divide the observations in, we exceed the usual recommended number r = 2n2/5 and
fix it to r = 140 cells in order to reduce the probability of observations conforming
to different distributions to occupy the same cell. Also, since in this case

(r
p

)
exceed

15 millions of combinations, to determine the composition of the BSB we use 1,000
combinations of cells. At each step of the search, the algorithm produces the χ2

statistics of goodness-of-fit and stores them in a vector of length r − p = 136
denoted by χ2

e , where e stands for empirical.
In a second time, we repeat the above pattern on a Paretian dataset contaminated

by positive random draws from a normal distribution. Using estimates from Italian
chemical firms, with fixed μ̂, α̂ and σ̂ , we start by generating a dataset of n =
1, 344 Pareto II realizations, contaminated in a second stage by a cluster of normal
distributed outliers. We call outliers the normal realizations because they are not
consistent with the null hypothesis of Pareto II distribution. Of course, it is important
to maintain paretian and normal observations in separate cells. We now dispose of a
second vector of χ2 statistics, χ2

c , where c stands for contaminated.
Finally, the forward search is carried over 100,000 sets of n = 1, 344 pseudo-

random realizations from the Pareto II distribution estimated on empirical data. We
thus obtain a matrix χ2

s sized 136 × 100, 000 to generate Monte-Carlo confidence
intervals for the chi-square statistic. In this way we obtain Monte Carlo envelopes
useful to highlight whether possible rejection of the Pareto II hypothesis depends on
particular cells or it is diffused throughout the data.

In either case, a graph is drawn to represent chi-square values, both the empirical
and the simulated ones, associated to the different steps of the forward search. In
particular, χ2

e and the envelope given by the 5,25,50,75 and 95-th percentiles of χ2
s

rows are plotted to get a forward chi-square graphical test (see Fig. 1).
The rationale behind this approach is that when a cell not consistent with the

Pareto II hypothesis is added to the estimation subset, the chi-square statistic assess-
ing the goodness-of-fit of the model with data in hand should overcome the bound-
aries of the Monte Carlo chi-square confidence interval, which are parameter inde-
pendent.

The left panel in Fig. 1 refers to the original dataset and shows that the χ2

statistic, when calculated on data largely consistent with the Pareto II distribution,
lies inside the confidence envelopes in correspondence of all but 2 cells. The right
panel, on the other hand, where the Pareto II realizations contaminated by normal
realizations are examined, shows that the null hypothesis is rejected starting from the
introduction of a number of cells slightly larger than r/2. In this way, the suggested
procedure enables us to discriminate between these two cases and, more, to identify
the observations deriving from alternative distributions.

6 If raw data MLE are available, the correct critical points for the Pearson statistic fall between
χ2 (M − k − 1) critical points and those of χ2 (M − 1), where k is the number of parameters to
be estimated [5]. Therefore, in the Pareto II case, 4 is the minimum number of cells required.
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Fig. 1 Forward χ2 test. The dotted line represents the χ2 statistic for empirical (left
panel)/contaminated (right panel) observations. Solid lines represent the 5,25,50,75 and 95th per-
centiles of simulated χ2 statistics. On the x-axis cells are reordered according to their inclusion in
the forward search

4 Concluding Remarks

The main contribution of this paper is to develop a robust estimation procedure for
the Pareto II distribution through the forward search. To our knowledge, this repre-
sents the first attempt to extend the forward search routine to estimation and fitting
of a distributional form rather than of parameters in a specified model. Furthermore,
this procedure allows us to avoid two common practices in distribution modelling.
The first is to reject a given model tested over the whole sample with no preliminary
analysis of single firm effect. The second concerns the use of sequential algorithms
which, in order to capture the extreme realizations behaviour, could miss an overall
awareness of the data.

In the suggested approach the introduction of extreme (influential) observations
is signaled by sharp changes in the curves that monitor parameter estimates, or any
other statistics at every step. In this context, the robustness of the method does not
derive from the choice of a particular estimator with a high breakdown point, but
from the progressive inclusion of the observations into a subset which, in the first
steps, is outlier free. As a bonus of the suggested procedure, the cells of observations
can be naturally ordered according to the specified null model and it is possible to
know which and how many of them are compatible with a particular specification.
Furthermore, the suggested approach enables us to analyze the inferential effect
of the atypical observations (outliers) on the results of statistical analyses. Finally,
given that the sequence of subsets during the search are not random subsamples of
the data, but contain the cells which give the best fit, we expect that the χ2 test in
the central part of the search will not have a χ2 distribution. The graphical super-
imposition of simulated χ2 statistics indicates when the rejection of the Pareto II
hypothesis depends on particular cells.
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The choice of modelling Pareto II distribution realizations is motivated here by
our previous effort to assess the behaviour of firms belonging to the Italian stock
exchange. Further research could extend the forward search routine to robust estima-
tion of the parameters which index other heavy tailed distributions, and in particular
could prove useful in studying the distribution of economic growth rates, both on the
micro and on the macro side. Detection of heavy-taildness in broadly studied time
series data, such as the GDP time series (for both the USA and Italy, see [8]), could
widen the study of possible generating processes which lead to non-normally dis-
tributed growth rates [4]. Another possible line of development requires a modifica-
tion of the cell definition in order to minimize the probability of mixing realizations
from different distributions in the same cell. Concluding, a systematic comparison of
the proposed procedure with sequential methods over different data sources would
allow a better understanding of the pro and cons from both perspectives.
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Bootstrap and Nonparametric Predictors
to Impute Missing Data

Agostino Di Ciaccio

Abstract A new nonparametric technique to impute missing data is proposed in
order to obtain a completed data-matrix, capable of producing a degree of reliability
for the imputations. Without taking into account strong assumptions, we introduce
multiple imputations using bootstrap and nonparametric predictors. It is shown that,
in this manner, we can obtain better imputations than with other known methods
producing a more reliable completed data-matrix. Using two simulations, we show
that the proposed technique can be generalized to consider non-monotone patterns
of missing data with interesting results.

1 Introduction

Following Little and Rubin [7] we can distinguish between basically three missing
data mechanisms. Data are said to be “missing at random” (MAR) if the mechanism
resulting in its omission is independent of its (unobserved) value. If its omission
is also independent of the observed values, than the missingness process is said
to be “missing completely at random” (MCAR). Finally, if the missingness process
depends on the unobserved values, it is said to be “missing not at random” (MNAR).
The MCAR data can be handled quite easily while the MNAR data remains hard to
analyse. The literature has focused mainly on the MAR mechanism, which can be
considered realistic in many situations. In this paper we propose a non-parametric
method to analyse MAR data, comparing it to the well-known Multiple Imputa-
tion technique using an extensive simulation approach. The proposed method can
analyse non-monotone patterns of missing data, i.e. missing values can be observed
for any variable and unit. Moreover, it is able to compute a reliable complete data-
matrix without strong assumptions on the distribution of data.
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2 Multiple Imputation

The term Multiple Imputation (MI) is usually used to indicate a technique pro-
posed by Rubin [11]. With this technique, several values are imputed for each miss-
ing value so that the data-matrix is completed, say, m times. The imputations are
obtained, ideally, drawing from the Bayesian posterior predictive distribution, that
is, the distribution of the missing data given the observed data with the parameters
integrated out using the prior distribution. Indicating by θ the parameter to estimate,
we obtain m estimators θ̂ j and m corresponding variance estimators σ 2

θ̂ j
. Averaging

θ̂ j we obtain θ̂ as the point estimator of θ . Let
(average within imputation variance) (between-imputation variance)

σ̄ 2
θ̂
= m−1

m∑

j=1

σ 2
θ̂ j

σ̃ 2
θ̂
= (m − 1)−1

m∑

j=1

(
θ̂ j − θ̂

)2
(1)

The variance of the estimator θ̂ is estimated by

σ̂ 2
θ̂
= σ̄ 2

θ̂
+
(

1+ m−1
)
σ̃ 2
θ̂

(2)

This formula is the famous “Rubin’s Rule” [11]. It is usually assumed that

σ̂−1
θ̂

(
θ̂ − θ

)
∼ tv (3)

which allows us to calculate confidence intervals and tests [11].
The validity of this approach depends on some assumptions. The imputations

have to be drawn from what Rubin calls a proper multiple imputation procedure:
if the multiple imputations are proper, then θ̂ is a consistent, asymptotically nor-
mal estimator and σ̂ 2

θ̂
, given by (2), is a weakly unbiased estimator of its asymp-

totic variance in sufficiently regular models. This technique shows good properties
with multinormal data in the presence of a large sample, but in many cases the MI
assumptions will not be completely satisfied and so we should be cautious in trusting
the obtained confidence intervals and tests [9]. Moreover, MI does not give us a
completed data-matrix, which is convenient to have in many cases. Other problems
for MI are:

• Difficulties in analysing a large number of variables
• Difficulties in analysing mixed measurement level data
• Multinormality may be non-realistic
• It cannot consider constraints on the imputations
• It cannot consider bounds or complex survey designs
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However, single imputations cannot reflect the uncertainty for the predictions
of the unknown missing values and consequently the variances of the parameter
estimates will be biased downward.

Moreover, MI is capable to analyse non-monotone patterns of missing data, i.e.
the most common situation in which missing values are observed for several vari-
ables without any kind of order or pattern. If we can assume multivariate normality,
having a monotone missing pattern, we can apply parametric methods such as the
Regression method [11, 12] or the predictive mean matching method [13]. Hav-
ing a non-monotone pattern of missing data, we should consider a more complex
approach which requires an iterative procedure. Obtaining a complete matrix is not
the aim of MI, but by calculating an adequate number of complete matrices (>20),
we can obtain an estimation of each missing value by the mean of the imputed
values.

As MI needs the posterior predictive distribution, we are required to know the
multivariate distribution of data, which is usually unknown and often far from a
multivariate Normal (e.g. when there are mixed measurement level variables). It
has been noted that parametric assumptions, such as multivariate normality, seem to
be much more sensitive in missing-data problems [5]. To overcome this difficulty,
recent extensions of the MI approach consider mixtures of Gaussian distributions
[17, 4].

On the other hand, for Non-Normal data, non-parametric approaches appear to be
more appropriate in estimating a complete data-matrix and in assessing the accuracy
of an estimator in a missing data situation.

3 Bootstrap and Missing Data Imputation

Given a sample x , a population parameter θ and an unbiased estimator θ̂ , fixing
randomly a number of missing data in the sample, we define θ̂imp the estimator of θ
based on the completed data, where missing have been imputed by some procedure.

The bias of θ̂imp is

Ex,m

(
θ̂imp − θ

)
= Ex

(
θ̂ − θ

)
+ Ex,m

(
θ̂imp − θ̂

)
= Ex,m

(
θ̂imp − θ̂

)
(4)

where Ex,m(.) indicate the expectation with respect to the sample (x) and the miss-
ing data (m) draw. Considering the MSE of θ̂imp , from expression (4), after some
steps, we obtain:

Ex,m

(
θ̂imp − θ

)2 ≈ Ex

(
θ̂ − θ

)2 + Ex,m

(
θ̂imp − θ̄imp

)2 + Ex

(
θ̄imp − θ̂

)2
(5)

where we have indicated with θ̄imp the mean of θ̂imp .
The first term on the right hand is independent of the missing data. The sec-

ond and third terms on the right hand are, respectively, the variance of θ̂imp and its
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squared bias. If we impute all missing values with the true values, these two terms
are zero. In general we should choose an imputation method which produces low
bias and variance terms. Instead of obtaining multiple imputations through a multi-
variate Bayesian predictive distribution, we could consider other ways of obtaining
several imputations for each missing value. For example, Rubin [11] considered
an alternative to MI based on Nearest Neighbours, using only two imputed data-
matrices. Van Buuren et al. [16] proposed the Multivariate Imputation by Chained
Equations (MICE) which requires specifying a conditional distribution for the miss-
ing data in each incomplete variable. Under the assumption that a corresponding
multivariate distribution exists, MICE constructs a Gibbs sampler to generate mul-
tiple imputations. This approach requires us to specify only the conditional distri-
butions and then iterates over all conditionally specified imputation models. This
implies several advantages with respect to MI: the univariate problems are simpler
than multivariate ones and it is possible to consider mixed measurement variables,
bounds, constraints between variables, interactions and so on. A similar approach
is used by Sequential Regression for Multiple Imputations, [10], implemented by
IVEware software. In both metods the estimation algorithm proceeds iteratively:

Step 1: select the variable with smallest amount of missing values then use an
appropriate regressive model (linear regression, logistic regression, Poisson loglin-
ear) applied to the complete data to obtain an estimation of missing values. The
variable is then considered complete and the process continues with the next vari-
able.

Step 2: each variable with missing data is regressed using all the other variables
with completed data. Each regression updates the imputed values of the variable
including a random noise. This process continue for a predeterminated number of
rounds.

The main problem with these methods is that they may not converge to a dis-
tribution if the separate models are not compatible with a multivariate distribution,
though Van Buuren et al. [15] showed, by simulation studies, that reasonable impu-
tations were obtained even when the separate models were incompatible. Other
interesting proposals include the use of decision trees [8, 2]. This approach has
the advantage of being able to analyse variables with different measurement levels
using a single model.

Here we propose a method based on regression trees and Bootstrap Aggregating
[1], considering a data-matrix with missing data for one or more variables (quali-
tative or quantitative). We are mainly interested in obtaining an estimated complete
data-matrix, but our proposal also proved useful in making inferences on population
parameters.

The use of Bootstrap for missing data problems is not new [5, 6, 14]. The use of
Bagging with non-parametric predictors was recently considered in Di Ciaccio and
Vallely [3].

Having just a single quantitative variable with missing data, we can consider
all the other variables as covariates and, by using an adequate prediction model
estimated on the complete data, we can estimate the missing values. This procedure
can be repeated several times on different bootstrap samples obtaining an empirical
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distribution for each missing value. If we are using a Regression Tree model, we
know from the literature that aggregating these predicted values (usually by the
mean) we can obtain a reliable estimation of the missing values. Moreover, using the
obtained empirical distributions, we can calculate confidence intervals for a param-
eter of the population. Di Ciaccio and Vallely [3] used this nonparametric approach
to impute missing data for only one quantitative variable Y. Considering a non-linear
relationship between Y and the other variables, they showed that an approach based
on Regression Trees with Bagging gives better results than MI. In particular, it was
shown that RTB had, in most cases, lower variability than MI due to missingness.
Moreover, they compared RTB and MI with respect to the width and coverage of
estimated confidence intervals of the Y mean, obtaining good performance for RTB.
In this paper we propose an extension of that method to analyse non-monotone
patterns of missing data for two or more variables.

4 Bagged Trees to Predict Missing Data

Using an approach similar to MICE or IVEware, but considering a non-parametric
approach, we could initialize, for example by the mean, the missing values in the
data-matrix, and then, iteratively until convergence, consider each variable with
missing data as the target variable. This method is illustrated in Table 1. The index
we used to evaluate the convergence of the procedure is:

δ = 1

nmis

J∑

j=1

1

σ 2
j

∑

i∈M j

(
x̂ t

i j − x̂ t−1
i j

)2
(6)

where nmis is the total number of missing values, σ 2
j the variance of the j-th variable,

M j the subset of indices in which the j-th variable is missing. The iterative process
stops anyway when the maximum number of iterations T is achieved.

Indicate by x̂ (t)i j the estimated value, obtained by the model at step t, of the miss-
ing value xi j . In the update step 8 use the formula:

x̂ t
i j = γ x̂ t−1

i j + (1− γ ) x̂(t)i j (7)

with 0 < γ < 1. This procedure does not introduce explicitly a noise, as in the
Chained Equations approach. Instead, it tries to achieve the best estimation of the
missing values. To evaluate the proposed algorithm we considered two simulations
which analyse two opposite cases:

1. We generated 300 random populations from multinormal distributions with 5
independent quantitative variables.

2. We generated 300 random populations from non-normal data with 5 not inde-
pendent quantitative variables
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From each population we extracted one sample of 120 units, then we randomly
drew 30% of the missing values on the first two variables X1and X2 giving a larger
probability to units having X3 higher than the median. The predictor model used
in step 6, is a Regression Tree with Bagging (RTB), with 20 bootstrap replications,
which allows us to calculate confidence intervals for the parameters of interest [3].
In particular, we fixed T=50 and γ = 0.9. For a comparison, we applied MI with
25 imputations to the same data and also the simplest univariate approach which
imputes the mean computed on complete data (MEAN).

We evaluated:

1. The difference between the imputed and the real data values, by the weighted
sum of square:

SSEW = 1

nmis

J∑

j=1

1

σ 2
j

∑

i∈M j

(
x̂i j − xi j

)2
(8)

This index measures the reliability of the final completed data matrix.
2. The difference between the true mean and the mean obtained on imputed data,

for the variables X1and X2.
3. The difference between correlation coefficients on the population and on imputed

samples (in particular, we compared r13; r14; r15).

From the results of the simulations, shown in Table 1 and Table 2, we can deduce
that having independent variables, also in the case of multinormal data, both MI and
RTB do not work better than MEAN, which shows a good performance. Indeed, both
RTB and MI iteratively try to emphasize the relation between each variable and the
others, while the MEAN procedure is coherent with the independence of the vari-

Table 1 The algorithm

1. For each variable: initialize missing data with the mean
2. Iterate (t ≤ T )
3. Iterate (j=1 to num. of variables)
4. Set the variable j as the target variable
5. Select cases which do not have missing value for variable j
6. Estimate the predictor model
7. Estimate missing values of variable j by the predictor model
8. Update missing values of variable j. Go to step (3).
9. If δ < 0.001 or t = T then STOP else go to step (2).

Table 2 Results of imputation on multinormal data with independent variables: number of samples
favourable to each method

RTB MI Mean

SSEW 37 0 263
Difference on the mean X1 91 93 116
Difference on correlation

coefficients
30 0 270
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Table 3 Results of imputation on non-normal data with non-independent variables: number of
samples favourable to each method

RTB MI Mean

SSEW 266 34 0
Difference on the mean X1 93 146 61
Difference on correlation

coefficients
138 104 58

ables. In the opposite case, with non-normal non-independent data (Table 3), RTB
appears preferable: it is definitely better when considering SSEW, i.e. the difference
between real and imputed data, and is also better when considering the estimated and
the true correlation coefficients. MI appears better than RTB only for the estimation
of the X1 mean. This last result can be explained looking at (5). If θ̂imp is the sample
mean, we do not need the estimates of missing values to be close to the correspond-
ing true values. In fact, exchanging the missing estimates inside of each variable we
would obtain the same estimate of θ̂imp. Moreover, distribution of θ̂imp will be close
to a Normal and the hypotheses of MI allow to make variance of θ̂imp smaller. In
Fig. 1 we show the values of SSEW for the simulation with multinormal data and
independent variables (each point is a distinct population). The values for RTB and
MI are depicted on the graph, while the values of MEAN constitutes the abscissa.
Points above the bisector have an SSEW larger then MEAN: we can see that MI has
the SSEW values higher than MEAN and also than RTB. Concluding, the results of

Fig. 1 Multinormal data with independent variables: SSEW for RTB, MI with respect to MEAN
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the two simulations suggest that before choosing the imputation method, we should
investigate the interdependence of the variables and evaluate the assumptions of
multinormality. It is also evident the good performance obtained by the proposed
method.
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On the Use of Boosting Procedures to Predict the
Risk of Default

Giovanna Menardi, Federico Tedeschi and Nicola Torelli

Abstract Statistical models have been widely applied with the aim of evaluating the
risk of default of enterprises. However, a typical problem is that the occurrence of
the default event is rare, and this class imbalance strongly affects the performance
of traditional classifiers. Boosting is a general class of methods which iteratively
enforces the accuracy of any weak learner, but it suffers from some drawbacks in
presence of unbalanced classes. Performance of standard boosting procedures to
deal with unbalanced classes is discussed and a new algorithm is proposed.

1 Introduction

Credit risk models and methods aim at finding rules to measure the risk associated
with credit applications or to separate defaulter credit applicants from non-defaulter
ones. The decision about giving credit to an applicant may determine profits or costs
to the lenders according to how “good” or “bad” his/her subsequent behavior will
be. Moreover the recent supervisory regulation of the New Basel Capital Accord
[2] imposes the minimum consistency of capital required to internationally active
banks as proportional to the credit risk and determines the prerequisites for an inter-
nal rating based approach. Since this may determine lower capital requirements in
comparison with external rating information, it has strongly affected the internal
banking processes of modeling and measuring the credit risk. These reasons make
clear the need of developing accurate models and methods to help lenders in their
decision.

The statistical approach to this problem is mainly based on classification algo-
rithms (see, e.g., [12]) which aim at finding what would have been the best rule to
apply on a sample of previous applicants. The advantage of these procedures is that
the subsequent behavior of these applicants is known. Our interest is on methods
for separating defaulter enterprises from non-defaulter ones. In this context, a typ-
ical problem occurs because the proportion of defaulter firms is very close to zero,
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leading to a strong imbalance between the two classes. As a consequence the perfor-
mance of the estimated models might be significantly affected since the classifiers
learn from the most prevalent class and tend to ignore the rare examples [6].

In this work we evaluate the opportunity of using boosting methods to predict
the default event. The potential of boosting techniques is often limited when applied
to imbalanced data sets. In this paper an adjustment to prevent these drawbacks is
proposed and applied to some real data sets.

2 Boosting Overview

Boosting refers to a general class of iterative methods to produce accurate pre-
diction rules by combining any weak classifier. In its most popular formulation
called AdaBoost (see, e.g., [10]), it takes as an argument a training sample T =
(x1, y1), . . . , (xm, ym) where each xi belongs to some domain X ∈ R

p, and each
label yi varies in Y = {−1, 1}. At each iteration t a distribution of weights Dt is
set over the training set and a weak classifier is built on the training set according
to Dt . The algorithm starts by setting all weights at the same value, but at any
successive round, the relative weights of misclassified examples are increased. The
procedure stops after a fixed number of iterations. All the weak classifiers contribute
to the prediction of the trained and new unlabeled examples in proportion to their
accuracy. The pseudo code is reported in Fig. 1.

The algorithm is designed to maintain a distribution of weights over the training
set in order to force the weak learner to focus on the hardest to classify examples.
The weight update factor is based on the accuracy of the weak learner (αt is a
decreasing function of εt ) and it is chosen in order to minimize an upper bound
to the misclassification error rate on the training set. This bound decreases when
any of the weak learner is improved. This way to adapt to the error rate of the weak
classifiers makes the basis for the name of the algorithm “AdaBoost”.

It has been observed that the weak learner error εt tends to increase with the
number of iterations. [11] admit that it is an increasing function of t , “possibly

Fig. 1 Pseudo code for the boosting algorithm AdaBoost
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even converging to 1/2”. They state that “characterizing the conditions under which
the increase is slow is an open problem” and observe that, when it increases too
quickly, Adaboost may perform poorly. Being γt the accuracy of the weak learner t
(γt = 1/2−εt ), an upper bound to the training error is given by: exp(−2

∑T
t=1 γ

2
t ).

This implies that convergence to 0 of the training error depends on the behavior of εt .
However, not only the training accuracy of a weak learner is increased by boosting
algorithms, but also a characterization of the generalization error is possible. This
is given in [11] in terms of margin, defined as proportional to y

∑T
t=1 αt ht(x). The

margin takes values in [−1, 1], being positive if and only if the example is correctly
classified by H and its magnitude (considered as a measure of confidence in the
prediction) increases with the number of iterations. Moreover, larger margins in the
training set translate in a lower upper bound for the test set error. Since this bound is
entirely independent from the number of boosting iterations T , this might be inter-
preted as a capability of boosting to avoid overfitting. Hence, the better performance
on the training set translates in a smaller generalization error rate.

2.1 Boosting in Presence of Unbalanced Classes

Three main classes of boosting algorithms have been applied to unbalanced class
problems:

1. The algorithms of the first category, to which AdaBoost belongs, treat all cor-
rectly and incorrectly classified examples equally by increasing the weights of
false positive or false negative examples in the same proportions. Prediction of
new unlabeled examples is an average of the single classifications, weighted
according to the overall accuracy of the single classifiers.

2. A more suitable category of boosting algorithms in presence of rare classes is the
one to which AdaCost belongs [4], where a different cost of misclassification is
given to the training examples. In a class imbalance framework it corresponds to
give a higher misclassification cost to the rare class examples.

3. The third family of boosting procedures is expressly conceived to take into
account rare classes. RareBoost [7] is the most significant representative of this
family. Here, the weights on the training examples are increased (decreased)
by giving a different treatment to false (true) positive and negative predictions.
The final classification considers both the positive and the negative accuracy of
the single classifiers. However, RareBoost is based on the assumption that the
weighted true positive rate is greater than the weighted false positive rate. In the
presence of a class imbalance problem such a constraint is rarely satisfied, being
the small class associated with both poor recall and precision values.

In this work we have addressed the issue of analyzing the behavior of AdaBoost.
Since Adaboost increases the weight of misclassified observations, when it is

run on unbalanced training sets it has the interesting feature of raising the average
weight of the instances of the rare class in the first iterations. This process goes on as
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long as the accuracy of the weak learners is affected mostly from their performance
on the majority class. It is:

∑
yi=1 Dt(i) <

1
2 ⇒

∑
yi=1 Dt+1(i) >

∑
yi=1 Dt (i).

This implies that, in a given number of iterations, the weak learner places essentially
half of the global weight to the units of the rare class.

Despite this suitable behavior, our experience suggests that two drawbacks have
to be taken in consideration when applying boosting to an imbalance class problem:

1. Since each weak learner is evaluated basing on its accuracy, and since (as seen
above) the error εt is an increasing function of t , the final classifier will be mostly
affected by the first weak learners.

2. For large training sets, the skewer the distribution of the classes is, the quicker
εt increases and in a few iterations it converges to 1/2, leading the algorithm to
a standstill.

While the first issue leads to a better performance on the frequent class than in the
rare one (and some adjustments have been proposed to address this problem), the
second point may affect the classifier ability to discriminate between the two classes.
Basically, fewer iterations are used in order to build the final classifier and therefore,
the feature of boosting to improve on single classifiers is weakened.

Moreover, given the resistance of boosting to overfit, the performance loss
observed in case of class imbalance also translates in a higher generalization error.

3 The ROSEBoost Approach for Dealing with Class Imbalance

Although AdaBoost performs quite accurately even in presence of rare classes, a
modification aimed at avoiding the εt convergence to 1/2 would help us to make the
most of boosting. A possible solution would consist in including a stochastic com-
ponent in the algorithm, for allowing it to run for the desired number of iterations
without coming to the standstill and possibly going on in learning from the errors.

In our previous work [9], we addressed the issue of classification in presence of
rare classes and propose an effective strategy to balance the distribution of the labels,
based on the smoothed bootstrap generation of synthetic examples. This strategy,
called ROSE (Random Over-Sampling Examples) is here used in conjunction with
AdaBoost in order to jitter the data and possibly avoid the convergence of εt to 1/2.

ROSE produces an augmented sample of data (especially belonging to the rare
class) by simulating new examples from an estimate of the conditional density f
of the two classes. The procedure for generating one new example from the class
y ∈ Y consists in two steps:

1. select xi ∈ {(x j , y j ) : y j = y} with probability P(xi )

2. sample x from K Hy (xi ), with K Hy a probability distribution centered at xi and
Hy a matrix of scale parameters. K Hy (xi ) is usually chosen in the set of the
symmetric distributions (e.g. K is a Gaussian distribution) and it is an estimate
of the local density of xi .
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Essentially, ROSE selects observed data belonging to the class y and generates
new examples in its neighborhood, where the width of the neighborhood is deter-
mined by Hy . It is worthwhile to note that:

f̂ (x|y) =
∑

i :yi=y

Pr(xi )Pr(x |xi ) =
∑

i :yi=y

Pr(xi )K Hy (x− xi ).

Hence, if the uniform distribution is set over the xi ROSE generates new exam-
ples from the kernel density estimate of f (x|y), y ∈ Y, while non-uniform P(xi )

correspond to the generation of new data from a weighted kernel estimate of the
conditional densities of the class y. Instead, the selection of xi from x1, . . . , xm in
the first step of ROSE would entail the generation of new data from f̂ (x).

This idea, combined with AdaBoost, gives rise to ROSEBoost, which may be
thought of as a stochastic version of AdaBoost (see the pseudo code in Fig. 2).
Both the algorithms start with an input training set T and an uniform distribution
of weights Dt , and at each successive iteration a weak classifier is built based on
the distribution of weights. The update mechanism of Dt is such that the weights
of the misclassified examples is increased while the weights of the well labeled
examples is decreased. Moreover, in both algorithms each weak learner contributes
to the combined classifier according to its accuracy.

However, while AdaBoost estimates the classifiers on different weighted versions
of the observed data, ROSEBoost uses, at each iteration, a new training set T ∗,
generated according to ROSE, from the weighted kernel estimate of the density
underlying the observed data. The key feature of ROSEBoost is that the training set
T ∗ used at each round is generated by giving to each (xi , yi ) ∈ T a probability of
being selected in the first step of ROSE which is proportional to its weight. In this
way ROSE generates new data mainly from the hardest to classify examples.

Fig. 2 Pseudocode for the boosting algorithm ROSEBoost
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The idea of including a random element in boosting to generate new data has been
already put forward by [8] and [3]. In [8] the use of AdaBoost in conjunction with
Over/Under-Sampling and Jittering of the data (JOUS-Boost) is proposed with the
aim of classification with unequal costs or, equivalently, at quantiles other than 1/2.
The authors perform oversampling of the rare (or higher misclassification cost) class
and add independent uniform noise to the training data for which over-sampling
creates replications. [3] propose to include in a boosting algorithm their SMOTE
procedure of generating new sinthetic examples. The new examples are generated
according to the characteristics of the k−nearest neighbors of the rare events.

ROSE and its boosting version ROSEBoost extend this idea by placing it on a
sounder theoretical basis which finds its justification in kernel methods. Moreover,
their flexibility allows to include many of the existing procedures (as traditional
oversampling and JousBoost) as a special case and hence provides an unified frame-
work to data augmentation methods aimed at facing the class imbalance problem.

4 Some Real Data Applications

We have applied the methods discussed in the previous sections to some simulated
and real data sets to compare their accuracy in a class imbalance framework. For
brevity, the results deriving from three real data applications only are reported.

The first considered data set has been built by merging data from the Infocamere
archive and the Business Register, with the aim of discriminating the defaulter and
non defaulter firms. It consists of vital statistics (e.g. changes of the legal status,
occurrence of a corporate merger or breakup, number of employees), balance sheet
items and financial ratios of all the commercial companies located in a North Eastern
province of Italy. The occurrence of a bankruptcy condition is considered as the
default event. This data set is a notable example of classification in presence of rare
classes, amounting the proportion of defaulter firms to less than the 7�.

The second data set, known as the “German credit data”, has been taken from the
UCI Machine Learning Repository [1]. In its numerical formulation it includes 24
attributes observed on a set of 1,000 customers to be classified as good or bad credit
risks. Since the original data set shows a balanced distribution of the two classes of
customers, 500 examples have been drawn from the provided data by giving to the
bad customers a probability of being selected amounting to the 2%. The remaining
data have been used for testing the accuracy of the classification.

The third data set has been also drawn from the UCI Machine Learning Repos-
itory. It is known as the “Breast Cancer Wisconsin (Prognostic) Data Set” and rep-
resents 32 follow-up attributes observed on 196 breast cancer cases. The response
variable is the possible recurrence of the cancer. A training set amounting to the 50%
of the observed cases has been selected by giving to the positive examples a prob-
ability of selection amounting to the 3%, in order to get an unbalanced distribution
of the responses. The remaining cases have been used as testing examples.

Four classification strategies have been run on the described data sets: a classi-
fication tree, AdaBoost, AdaCost and ROSEBoost. The three boosting algorithms
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Table 1 AUC values of the classification procedures on test sets drawn from the Infocamere
archive, German credit data and Breast cancer data respectively. The AUC values are averages
obtained by running the classifiers on 100 randomly selected samples

Defaulter firms data German credit data Breast cancer data

Classification tree 0.626 0.573 0.539
AdaBoost 0.766 0.656 0.568
AdaCost 0.759 0.623 0.556
ROSEBoost 0.815 0.663 0.613

have been trained by combining stumps for 300 iterations. AdaCost has been
performed by giving to the rare examples a misclassification cost ten times higher
than the negative examples. In order to choose the parameters H+ and H− in Rose-
Boost, the asymptotically optimal smoothing matrix for the normal distribution has
been used for both the classes. The performance of the classifiers has been evaluated
by measuring the area under the ROC curve [5] on a test set (AUC). Results are in
Table 1. The classification trees perform just slightly better than the random choice.
The increased accuracy of AdaBoost is notable, but even if the improvements are
not remarkable in all the considered data sets, the application of ROSEBoost results
in larger areas under the ROC curves. AdaCost performs better than classification
trees but cannot even compete with AdaBoost.

5 Discussion and Concluding Remarks

In this work we have provided a deeper insight to the boosting behavior in dealing
with rare classes. It has arisen that, even if in the last few years several boosting
algorithms have focused this issue, there is still the lack of an univocally accepted
approach to the problem. The boosting algorithms specifically conceived to per-
form classification in presence of rare events are based on some strong assumptions
rarely satisfied, while methods taking account for higher misclassification costs for
the rare examples turn out not to outperform the standard AdaBoost. Moreover,
it has been shown that, although AdaBoost usually can improve the accuracy of
a weak learner even in presence of rare classes, in such situations it suffers from
some drawbacks that prevent it from making the most. For these reasons we have
proposed ROSEBoost, a new boosting algorithm based on the idea of generating
new artificial cases from the local density of the observed data. It has been shown
that this idea has a sounder theoretical justification because it corresponds to the
simulation of synthetic training examples from the kernel density estimate of the
data. It should be noticed that we do not perform the classification by using density
estimation (which would entail a further complication in our task) but we exploit
the good properties of the kernel methods to enlarge the rare class (or, in general the
hardest to classify examples) by sampling the observed data without producing ties
in the training set.
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A deeper investigation about the properties of ROSEBoost is necessary, and the
choice of the optimal smoothing matrices Hy of the kernel density estimates has
to be addressed in the context of data generation. In the described applications the
asymptotically optimal smoothing matrix for the normal distribution, has been cho-
sen as a rule of thumb, conditionally to the class label. More sophisticated methods
for selecting the smoothing matrices can be used, by addressing the choice for our
problem: this would entail, for instance, the use of some optimality criterion at each
iteration of the boosting process. However, ROSEBoost turns out to be not only
a good competitor of AdaBoost in classification problems with unbalanced data,
but the results deriving from the described applications have shown that it tends to
overperform the standard boosting methods. Moreover the generation of unobserved
data might help in increasing the ability of generalization of the classifier.
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Assessing Similarity of Rating Distributions
by Kullback-Leibler Divergence

Marcella Corduas

Abstract A mixture model for ordinal data modelling (denoted CUB) has been
recently proposed in literature. Specifically, ordinal data are represented by means
of a discrete random variable which is a mixture of a Uniform and shifted Binomial
random variables. This article proposes a testing procedure based on the Kullback-
Leibler divergence in order to compare CUB models and detect similarities in the
structure of judgements that raters express on set of items.

1 Introduction

There are many research areas where interest is in the measurement of perceived
attributes of a given object or phenomenon. This happens, for instance, in medicine
when perceived chronic pain levels are analyzed, in business economics when cus-
tomers satisfaction is considered or in psychology and sociology for the analysis
of human behaviours. The best known statistical models for describing preferences,
ratings or, in general, ordinal data have been developed using the Generalized Linear
Models approach (see, amongst others, [1, 11, 12]).

Alternatively, a statistical model, namely CUB, was proposed by D’Elia and Pic-
colo [5], Piccolo [14], in order to describe the probability distribution of the random
variable generating the observed ordinal data. The model arises from a conceptual
description of the psychological mechanism running the individual’s choices in a
rating process. Specifically, two components of this process are identified. The first
one relates to the uncertainty that each judge conveys to his/her final judgement
when his/her opinion has to be summarized by means of a grading scale. As a mat-
ter of fact, extreme feelings of liking/disliking towards the item object of evaluation
probably originate sharper opinions and, then, less uncertainty in the selection of the
corresponding extreme scores, whereas, fuzzy opinions are likely to originate inter-
mediate scores which are selected with larger uncertainty. The second component,
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instead, is connected to the fundamental personal feeling of liking/disliking that the
rater has for the item.

Both these features of the rater’s choice are taken into account by defining a
mixture of distributions: a discrete uniform and a shifted binomial distribution.

The CUB model has proved to be effective in numerous real applications arising
in various fields such as social analysis, medicine, sensometrics and linguistics.

In complex surveys where several items are investigated, the comparison among
the satisfaction level associated to each item is usually summarized by means of
some indices such as the average or mode of the observed rating distributions which
fail to produce a clear picture of evaluations or opinions expressed by respondents.

In this article, the use of Kullback-Liebler (KL) divergence is proposed in order
to detect significant similarities and differences in the overall judgements expressed
by raters and modelled by means of CUB models. Specifically, a testing procedure
based on KL divergence is discussed and a clustering technique is presented. The
proposed method is finally illustrated by means of a real data set from a survey on
the perception of work riskiness in an industrial plant.

2 The CUB Model

The preference or score that a subject expresses describes a random variable R such
that:

P(R = r) = π

(
m − 1
r − 1

)
(1− ξ)r−1ξm−r + (1− π)

1

m
, r = 1, 2, . . . ,m (1)

where ξ ∈ [0, 1], π ∈ (0, 1] and m is the number of grades for evaluating an item.
For a given m > 3, then, R is a Mixture of a Uniform and a (shifted) Binomial
distribution.

The parameter π determines the role of uncertainty in the final judgment: the
lower the weight (1− π) the smaller the contribution of the Uniform distribution in
the mixture. On the other hand, the parameter ξ characterizes the shifted Binomial
distribution and, therefore, depending on the meaning of the highest score (positive
or negative judgment) it denotes the strength of “liking” (or “disliking”) expressed
by raters with respect to the item.

In a further extension of the model the influence of external factors in the final
judgement is considered [14, 15]. Specifically, two relations, which connect the
model parameters to significant covariates by means of a logistic link function,
are added to (1). The following discussion, however, will focus on models without
covariates.

In presence of experiments involving the judgement of several items, a graph
of the CUB estimated coefficients, π̂ and ξ̂ , in the parameter space has been often
used in order to assess how close the models are [6]. However, this representation
may result in misleading interpretations of data since the user tends to assess the
closeness of two (estimated) CUB distributions in terms of the Euclidean distance
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between the corresponding estimated parameters. As a matter of fact, the role of
CUB coefficients is very different in determining the shape of the estimated distribu-
tion [13] and the dissimilarity between two CUB distributions cannot be explained
by the simple Euclidean distance between the related parameter estimates.

3 Assessing Similarity of CUB Models

Thus, in order to perform the comparison of CUB models in a convincing manner,
we propose using the KL divergence measure. For this purpose, we recall a general
result derived by Kupperman [9]. Consider two discrete populations each character-
ized by a probability distribution function having the same functional form p(x, θ i )

with unspecified vector parameters θ i , i = 1, 2. Also assume that p(x, θ i ) > 0, ∀x .
Suppose that we have two samples of N1 and N2 observations randomly drawn from
the specified i-th population, respectively, and we wish to decide if they were in fact
generated from the same population. In order to test the hypothesis H0 : θ1 = θ2
against H1 : θ1 j = θ2 j , the KL divergence statistic is defined by:

Ĵ = N1 N2

N1 + N2

[
∑

x

(p(x, θ1)− p(x, θ2)) ln
p(x, θ1)

p(x, θ2)

]

θ1=θ̂1,θ2=θ̂2

(2)

where the vector parameters θ1 and θ2 have been replaced by the maximum like-
lihood estimators. Then, it can be shown that Ĵ is asymptotically distributed as a
χ2

g random variable when the null hypothesis is true, being g the dimension of the
vector parameter [8]. In the case under investigation, g = 2.

A strategy for comparing and grouping CUB models is as follows. First, the KL
divergence is evaluated for each couple of models and a binary matrix is built by
setting the (i, j)th entry equal to 0, when the hypothesis of homogeneity of the i-th
and j-th models is rejected, and 1 otherwise.

Secondly, this matrix is rearranged into an approximate block diagonal form. A
clearly defined (unit) triangle immediately under the diagonal will indicate a cluster
of items for which the judgements expressed by respondents, summarized by means
of the CUB distributions, are similar. The presence of any zero value in such a
triangle indicates that the cluster may be elongated or constituted by other well
separated small clusters.

Several algorithms were proposed in literature for this aim (see for instance,
Climer and Zhang [4] and references reported therein). In particular, in the rest of
this article, we will refer to the BEA algorithm (that is the bond energy algorithm
by [2, 10]). This procedure operates on an M × N matrix A of nonnegative entries
and changes the arrangement of the rows and columns of A in order to maximize
the expression:

ME =
M∑

j=1

N∑

k=1

a j,k [a j,k−1 + a j,k+1 + a j−1,k + a j+1,k], (3)
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where the maximization is over all N !M ! possible arrays that can be obtained from
permuting A (with the convention that a0,k = aM+1,k = a j,0 = a j,N+1 = 0). The
idea is that large values will be drawn to other large values (and vice versa small
values to other small values) so as to increase the overall sum of the products. In
general, the method has an additivity property so that the optimization of ME can
be performed in two steps. Nevertheless, in the specific case that we are considering,
since the binary matrix is symmetric, the same optimal ordering must hold for both
rows and columns; hence it is only necessary to compute this ordering once. 1

Finally, groups of items for which the raters express similar structure of judge-
ments can be recognized as unit blocks along the diagonal of the reordered matrix.

4 An Application

The proposed procedure is illustrated by means of a case study concerning the
perception of 348 employees about 10 types of causes and contributory factors of
accidents at work (structural collapse, contact with electrical appliances, contact
with moving machinery/part, eye contact, vehicle contact, fire or explosions, slip
and falls, strain, contact with sharp edges, hits) and 5 aspects of risk perception
(injury seriousness, frequency, fear of exposure, own ability to control or avoid risk,
and training) from a survey in a printing and publishing plant. The judgements are
expressed using a 7 point Likert scale where 7 relates to the highest perceived risk.

The data set was analyzed by Cerchiello et al. [3] who illustrated the risk per-
ception by means of the plot of the estimated CUB model coefficients for each risk
factor. Fig. 1 illustrates this type of plot for two categories: “Accidents Frequency”
and “Ability to control/avoid hazards” and the graph of the related estimated CUB
distribution. Note that although R is a discrete random variables, the CUB distri-
butions are represented by lines in order to enhance the distribution shape. In both
cases, the related CUB models are characterized by a rather low π̂ coefficient which
implies a fairly large uncertainty component. This remark applies to most of the
items object of this study. Moreover, the graphs in the lower panels enhance that
there are some hazards (“structural collapse”, “contact with electrical appliances”,
“vehicle contact”, “fire or explosions”, “strain”, “contact with sharp edges”) which
workers firmly believe to be able to control or avoid. The CUB distributions of the
items are well separated. The grouping which can be detected in the graph repre-
senting the estimated coefficients in the parameter space is confirmed by the corre-
sponding graph of the estimated CUB distributions. Instead, in case of the “Acci-
dents Frequency” the interpretation of the above mentioned graphs is less clear. As a
matter of fact, the closeness of some points in the parameter space cannot be easily
recognized by the similarity of the distributions.

1 The algorithm was implemented using GAUSS 8.0 system by Aptech Inc.; a routine is also
available in the multivariate data analysis package of R (multiv).
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Fig. 1 Model coefficients (left panel) and estimated CUB distributions (right panel)
Legend: (O) structural collapse, (�) contact with electrical appliances, (×) contact with moving
machinery/part, (�) eye contact, (•) vehicle contact, (�) fire or explosions, (�) slip and falls, (+)
strain, (�) contact with sharp edges, (�) hits.

Then, the proposed BEA technique is applied to all the observed items in order
to detect groups of items which generate a similar overall perception of risk among
workers. The significance level is set to 5%. Hereinafter the causes of injuries are
numbered sequentially for each perceived risk, so that the first factor (injury seri-
ousness) related to the various causes are numbered from 1 to 10; the second factor
from 11 to 20 and so on.

The procedure identifies the following groups: G1 = (13, 14, 24, 27, 30),
G2 = (10, 20, 34, 40, 46, 47, 50), G3 = (6, 12, 22, 23, 26, 28, 42, 43, 44, 45),
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G4 = (11, 19), G5 = (16, 21, 5), G6 = (2, 8, 15, 25, 41), G7 = (29, 33, 37),
G8 = (31, 32, 38, 39), G9 = (1, 9). The remaining items are initially isolated, but
allowing for elongated clusters leads to further agglomerations: (35,36) with G8,
(17) with G1, (7) with G3 and, finally, only the following detached items are left:
(3),(4),(18),(48),(49).

The CUB distributions of the clustered items are illustrated in Fig. 2 On one
hand, workers are very uncertain in rating risk factors related to some items. The
clusters G5, G2, G6, G7 show rather flat distributions with a modest dominance of
low (G2), high (G7) or middle (G6) rates. Also, we unexpectedly find that “training”
that workers have undergone for preventing any of the considered hazards is not per-
ceived as adequate (as regards this aspect, most CUB distributions related to various
accident causes belong to G1, G2, G3). On the other hand, workers have a clear and
precise opinion about the “injury seriousness” derived from “structural collapses”
and “contact with sharp edges” (G9) and, as mentioned above, they believe that
“their own ability to control” is sufficient for reducing risks in relation to most haz-
ards (G8) with the exception of “contact with eyes” and “hits” (G2). This result is
consistent with usual findings in the printing publishing industry (see, for instance,
Healy [7]) where fingers and hands lacerations, fractures and dislocations are the
most frequent injuries because of the wide use of manual work and the proximity of
workers with machineries, and heavy paper and ink rollers.

Fig. 2 Clustered items by KL divergence
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Fig. 3 Isolated elements:
(3),(4),(18),(48),(49)

Moreover, workers do not show agreement of opinions on the “fear of exposure”
to the various hazards in their firm. Most of the related ratings distributions belong
to G1, G3 and G5, showing either uniform or negative skewed distribution. The
isolated elements (Fig. 3) show rather flat distributions which again confirm that a
part from few items for which workers have a clear and marked mental image, they
find rather difficult to rate risk factors. From these findings, for instance, decision
makers could plan some firm policy in order to increase workers’ awareness about
risk factors. Then, the proposed technique could provide useful results by comparing
the distributions of ratings on a certain item observed in two time points: before and
after the implementation of such policy. Finally, in Fig. 4, the estimated coefficients
of the clustered CUB models are represented in the parameter space. The shape of
clusters is generally stretched along the horizontal axis, confirming the substantially
different role of the two parameters.
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Fig. 4 Clusters of estimated CUB models in the parameter space
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5 Final Remarks

The proposed technique helps the identification of similarities in the behaviour of
groups of judges when they are asked to express their ratings on a set of items.
Specifically, the technique is able to discriminate the different patterns of the scores
distributions with respect to skewness, kurtosis, mode. Moreover, it helps to cluster
items with respect to the overall ratings that the subjects express and it effectively
overcomes the shortcomings of the coefficients plot.
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Sector Classification in Stock Markets:
A Latent Class Approach

Michele Costa and Luca De Angelis

Abstract Stock indices related to specific economic sectors play a major role in
portfolio diversification. Notwithstanding its importance, the traditional sector clas-
sification shows several flaws and it may not be able to properly discriminate the
risk-return profile of financial assets. We propose a latent class approach in order
to correctly classify the stock companies into homogenous groups under risk-return
profile and to obtain sector indices which are consistent with the standard portfolio
theory. Our results allow to introduce a methodological dimension in the stock’s
classification and to improve the reliability of sector portfolio diversification.

1 Introduction

Stock indices related to specific economic sectors play a major role in financial
markets because they represent a main reference in portfolio diversification.

The purpose of this paper is to introduce a new sector classification, obtained
by exploiting the potential of latent class (LC) models for classifying stock compa-
nies into homogenous groups under risk-return profile. The underlying hypothesis
is that stocks belonging to the same sector are homogeneous, or, at least, that sectors
characterize and influence the stock dynamics in a relevant way. In this framework,
different sectors should be characterized by different risk and return levels. More-
over, sectors should be affected by the economic cycle thus introducing a distinc-
tion between pro-cyclic and anti-cyclic sectors. In order to achieve these goals, it is
essential that the assignment of a single stock to a sector happens following a correct
and strict methodological process.

The traditional sector classification shows several flaws on which it is urgent to
suggest effective solutions. First, the traditional sector classification turns out to be
strongly static, since it is rarely updated from the moment of a company IPO on
the stock market. Second, stock companies frequently operate in different sectors,
while sector classification considers only the main business. Finally, product sector
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could not represent the relevant classification element in order to discriminate the
risk-return profile.

The traditional observable sector classification is compared to the new classifi-
cation, non-observable and achieved in LC field. The new proposal allows to both
introduce a methodological dimension in the stocks classification and improve the
investment opportunities.

In Sect. 2 we briefly introduce the LC model, while in Sect. 3 are illustrated the
specification and the estimation of the LC model which better explains the asso-
ciations among the variables. In Sect. 4 we explore the new stocks classification
obtained by the estimated LC model and we show how this new classification is
consistent with the standard portfolio theory and it improves the financial perfor-
mance. Sect. 5 concludes.

2 Methodology

LC models provide an excellent framework in order to develop a new stock’s clas-
sification because they require the use of manifest categorical variables and allow
to explain the associations among the observed indicators through a set of latent
categorical variables.

Standard portfolio theory evaluates stock risk-return profile on the basis of two
latent variables, risk and expected return, which are usually approximated by means
of two continuous variables, that is the standard deviation (S) and the mean (M) of
the past observed returns. However, the characteristic of both S and M to be simple
approximations, likely different from the true measures of the expected return and
the risk, is frequently neglected. In order to stress the importance of this point, and
also with the purpose of achieving a greater flexibility in the stock’s classification,
we propose to express S and M in the form of categorical ordinal variables. By
using categorical ordinal variables we are able to go over the punctual value rigidity,
thus avoiding a possible improper ranking imposed by the observed values. More
specifically, we propose to reclassify stock’s mean return punctual values into a few
(two, three) categories, where the classes indicate low and high (or low, medium,
and high) mean return. For example, let’s consider a stock characterized by a low
mean return, e.g. M = 0.01, and therefore classified in category 1 of the categorical
indicator for the mean. It seems quite intuitive to deduce that the expected return
of this stock will assume a low value, while it seems more difficult to affirm that
the expected return will be exactly equal to 0.01. This new classification, based on
ordinal variables, suggests a more flexible ranking and hence a likely closer corre-
spondence between mean indicator and expected return.

An analogous procedure can be applied also to risk indicators. A further improve-
ment in risk evaluation can be obtained by taking into account also extreme values,
which frequently strongly characterize the return distributions. To this purpose, we
propose to include among the manifest variables also the first percentile (P) of the
return distributions.
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Fig. 1 LC model graphical
representation

In the following we adopt the simplest possible specification, where indicator
variables M, S, and P (with indices m, s, and p, respectively) have two categories,
low and high, defined on the basis of the median. In addition we use the traditional
sector C (with index c) as covariate.

The LC model is based on the local independence assumption which implies that
all the relationship among the indicator variables are explained by the latent variable
X. As shown in Fig. 1, the covariate C directly influences the latent variable but not
the indicators.

A LC model with such configuration is specified as

πmspc =
K∑

x=1

πxmspc

where K denotes the number of latent classes and

πxmspc = πcπx |cπmsp|x = πcπx |cπm|xπs|xπp|x . (1)

As classical latent class theory specifies, πxmspc is the proportion of units in
the five-way contingency table, πx |c is the probability of belonging to latent class
x (given the covariate c), πmsp|x is the probability of having a particular observed
response pattern (m, s, p) given X = x, and πc is the probability of each traditional
sector. The other π parameters are conditional response probabilities: for instance,
πm|x is the probability of being in category m of variable M, given that one belongs
to latent class x. Model in Eq. (1) is known as the classical parameterization of the
unrestricted LC model introduced by Lazarsfeld [3] with external variables [2].

One important goal of LC analysis is to determine the smallest number of latent
classes K which is sufficient to explain the associations observed among the indi-
cator variables. K is determined by comparing the log-likelihood ratio chi-square
statistic L2 of models with different number of latent classes and the Akaike infor-
mation criterion [1]. The determination of the number of latent classes is a signifi-
cant step in our work because it represents the number of sectors in which the new
classification is constituted. Furthermore, a test for the choice of K greatly improves
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the determination of the number of sectors, moving this decision from a subjective
ground to a methodologically correct framework.

The last step of LC analysis is to classify units into the appropriate latent class.
Units are assigned to the class for which the posterior membership probability is the
highest. This approach is usually known as LC cluster model because the goal of
classification into K homogenous groups is identical to that of cluster analysis [4].

Finally, in order to compare the latent class methodology with respect to some
more traditional clustering approach, we refer to the K-means technique, which can
be viewed as a particular case of LC model [5]. Since the K-means approach does
not provide diagnostic statistics able to indicate the number of clusters, this choice
has to be made in advance. In order to ensure a greater comparability, in the follow-
ing we suggest for the K-means method the same number of clusters as in the LC
model.

3 Model Estimation

We estimate LC models with a different number of latent classes in order to deter-
mine the smallest number which is able to account for the relationship observed
among the indicator variables by using Latent Gold computer program [6].

We analyze a data set concerning the monthly return distribution from January
2002 to December 2007 of 136 stocks quoted at the Italian stock market. The
selected stocks belong to 5 of the 10 sectors of the Global Industry Classification
Standard (GICS): energy, consumer discretionary, utilities, finance, and materials.

The analysis typically starts by fitting the 1-class baseline model, which implies
mutual independence among the variables. If the baseline model provides an ade-
quate fit to the data, no LC analysis is needed, since there is no association among
the variables to be explained.

The results of the different LC models are reported in Table 1. According to the
L2 statistic (L2 = 110.63, d f = 32, p < .01), the 1-class model must be rejected,
thus indicating that the amount of association between the observed variables is too
large to be explained without involving a latent variable with, at least, 2 classes.

The 2-class model provides a significant reduction of L2 (63% from the baseline
model). However, this statistic is still too high (L2 = 40.65, d f = 27, p < .05).
Adding a third class to the model provides a further reduction in L2 (a 74% reduction
over the baseline model) and also provides an adequate overall fit. Table (1) shows

Table 1 Results from LC models with different number of classes
Model LL NPar L2 df p-value AIC(LL)

1-class −282.789 3 110.628 32 1.4E−10 571.579
2-class −247.798 8 40.646 27 0.04 511.596
3-class −242.125 13 29.300 22 0.14 510.251
4-class −239.544 18 24.137 17 0.12 515.088
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Table 2 3-class unrestricted LC model results, conditional probabilities and indicator means

Class 1 Class 2 Class 3
Indicator 0.4332 0.2904 0.2763

πm=low|x 0.5752 0.0280 0.9053
M πm=high|x 0.4248 0.9720 0.0947

mean 1.4248 1.9720 1.0947

πs=low|x 0.0089 0.7675 0.9872
S πs=high|x 0.9911 0.2325 0.0128

mean 1.9911 1.2325 1.0128

πp=low|x 0.0555 0.9573 0.7146
P πp=high|x 0.9445 0.0427 0.2854

mean 1.9445 1.0427 1.2854

that according to the AIC statistic, which takes parsimony into account, the 3-class
model is also preferred over the 4-class model.

Also a further diagnostic statistic, the bivariate residual χ2-based test [4], con-
firms the choice of the 3-class model.

Table 2 reports maximum likelihood estimation results for the 3-class model.
The parameter estimates show that the three classes have quite similar probabilities:
43% of the stocks are estimated to be in Class 1 (πx=1 = 0.43), 29% in Class 2
(πx=2 = 0.29), and the remaining 28% in Class 3 (πx=3 = 0.28).

The characteristics of the three classes can be determined on the basis of the
means of the indicators for each latent variable. The main feature which charac-
terises the first class is the high risk: Class 1 has the highest values of indicators S
and P (their means are 1.99 and 1.94, respectively) and M mean equal to 1.42. The
second class is characterized by low risk and high return: Class 2 shows the lowest P
mean (1.04), S mean equal to 1.23, and the highest M mean (1.97). According to its
values of S and P means (1.01 and 1.29 respectively), the third class is characterized
by low risk and the lowest value of M mean (1.09).

The conditional probabilities πm|x , πs|x , and πp|x in Table (2) underline that the
characteristics of the three classes are quite well defined under the stock risk-return
profile: Class 2 is the latent class which allows the best investment opportunities,
Class 1 is the most risky, and Class 3 is defined by low risk but also low return.

In order to stress the advantages of our proposal, we develop the analysis also
by referring to the traditional K-means technique, performed by using the original
values of mean, standard deviation and first percentile.

According to K-means (Table 3 and Fig. 2), stocks are classified into three quite
heterogeneous clusters: Cluster 1 includes 52 stocks and it is characterized by the
highest mean and the lowest standard deviation and 1st percentile, Cluster 2 is com-

Table 3 Results from the K-means method
Cluster Mean Std.Dev. 1st Perc. Size Class 1 Class 2 Class 3

1 0.926 5.925 −11.379 52 0 32 20
2 0.722 9.017 −18.931 65 39 11 15
3 0.408 12.251 −29.222 19 19 0 0
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Fig. 2 K-means method results: mean and standard deviation of stock’s returns in the three clusters

posed by 65 stocks and it assumes medium values of the three indicators, and Cluster
3, of only 19 stocks, is characterized by the lowest mean and the highest values
of standard deviation and 1st percentile. The stock’s classification achieved with
K-means shows some difference with respect to the classification obtained by using
the 3-class LC model. The last three columns in Table (3) show how the stocks
assigned to each cluster are classified into the latent classes. Cluster 1 is composed
by the stocks allocated into Class 2 and Class 3 of the LC classification. Into Cluster
2 are allocated stocks from all the three classes, in majority from Class 1. Finally,
Cluster 3 contains the stocks originally assigned to the first latent class. Analyzing
intersections and differences between the K-means clusters and the latent classes,
it highlights that LC model is able to define more homogenous sectors under the
risk-return profile.

4 The New Stock’s Classification

The LC model estimation allows to assign each stock to one of the three classes, thus
obtaining the new classification. The new sectors are constituted by 58, 43, and 35
stocks respectively. For each traditional sector, Table 4 shows the weight of the latent
classes. It can be observed that the majority (62.9%) of Consumer Discretionary
stocks is classified into Class 1, while none of the utility stocks is assigned to the
first latent class. In all other cases traditional sectors quite equally contribute to

Table 4 Allocation of the traditional sectors into the latent classes
Traditional Sector Class 1 Class 2 Class 3

Energy 0.3902 0.4020 0.2078
Consumer Discretionary 0.6293 0.1353 0.2354
Finance 0.3517 0.3745 0.2738
Utilities 0.0002 0.4754 0.5243
Materials 0.4257 0.3139 0.2604
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Table 5 Sector indices mean, standard deviation, percentiles, and Sharpe ratio

Index Class 1 Class 2 Class 3 Energy Cons. Disc. Finance Utilities Materials

Mean 0.65 1.39 0.25 2.26 0.62 0.82 0.75 0.73
St.Dev. 5.66 3.64 3.73 6.05 4.92 4.54 4.43 4.70
1st Perc. −14.2 −7.1 −9.5 −13.3 −12.3 −10.9 −11.7 −10.7
5th Perc. −9.7 −5.6 −6.1 −8.0 −8.7 −6.7 −7.9 −8.2
Sharpe 0.07 0.32 0.01 0.33 0.08 0.13 0.12 0.11

Fig. 3 Efficient frontiers calculated on traditional sectors and latent classes

the definition of all the new classes. We interpret this behavior as evidence that
traditional sectors are not consistent under the stock risk-return profile.

Furthermore, in order to evaluate and compare the different performances, we
calculate equal-weighted indices for each of both the traditional and the new sectors.
Table 5 reports mean, standard deviation, 1st and 5th percentile, and Sharpe ratio of
these indices. According to Sharpe ratio [8], which measures the excess return (with
respect to 3-month Italian Treasury Bill) per unit of risk, Classes 2 performs better
than all of the analyzed traditional sectors, except for Energy. On the contrary, Class
1 and Class 3 perform the worst.

In the framework of the standard portfolio theory [7], we finally compare the
efficient frontier based on the traditional sectors to the efficient frontier related to
the new classification. As shown in Fig. 3, the latter (solid line) performs much
better than the one calculated on traditional sectors (dashed line): for a given level
of return mean, it indicates a much lower standard deviation.

5 Conclusions

Our work shows how LC models represent an appropriate method in order to clas-
sify stocks into homogenous groups under risk-return profiles. We find evidence
of a three-class latent model which allows to obtain a new stocks classification.
Our proposal allows to overcome some problems related to traditional sector clas-
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sification and to indicate a methodologically correct solution. Finally, our results
are consistent with the standard portfolio theory and provide more efficient portfo-
lio allocations than traditional sector classification, thus giving new and improved
investment opportunities.
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Partitioning the Geometric Variability in
Multivariate Analysis and Contingency Tables

Carles M. Cuadras and Daniel Cuadras

Abstract Most methods of multivariate analysis obtain and interpret an appropri-
ate decomposition of the variability. In canonical variate analysis, multidimensional
scaling and correspondence analysis, the variability of the data is measured in terms
of distances. Then the geometric variability (inertia) plays an important role. We
present a unified approach for describing four methods for representing categorical
data in a contingency table. We define the generalized Pearson contingency coeffi-
cient and show situations where this measure can be different from the geometric
variability.

1 Introduction

A common practice in multivariate analysis is to obtain an appropriate decompo-
sition of the variability. When the variability can be summarized in a covariance
matrix Σ, the total variance tr(Σ) and the generalized variance |Σ |, are two general
measures of dispersion depending on the eigenvalues of Σ.

Often the variability is related to a distance measure. A clear example is the
sample variance of n univariate observations, which can be expressed as the average
of unidimensional Euclidean distances between n2 pair of observations. In some
multivariate methods such as canonical variate analysis, multidimensional scaling
and correspondence analysis, the variability of the data is measured in terms of
distances. In these methods it is natural to consider the geometric variability (GV)
as a measure of dispersion. We also define the generalized Pearson contingency
coefficient (GPC). Although GV is in general equivalent to GPC, we show situations
where both measures are essentially different.
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2 Geometric Variability

2.1 Finite Set

Let Ω = {ω1, . . . , ωg} be a set with g objects, δ a distance function on Ω

providing the g × g distance matrix Δg = (δi j ), where δi j = δ(ωi , ω j ). Let
w = (w1, . . . , wg)

′ a weight vector such that w′1 = ∑g
i=1 wi = 1, with wi ≥ 0

and 1 the column vector of ones. The geometric variability (GV) of Ω with respect
to δ is defined by

Vδ=1

2

g∑

i, j=1

wiδ
2
i jw j = 1

2
w′Δ(2)

g w,

where Δ(2)
g = (δ2

i j ).

The GV as one half the average of distances, was considered by Light and
Margolin [15] in categorical data analysis, by Rao [16] in studying the quadratic
entropy and by Cuadras et al. [7] in distance-based discriminant analysis.

The GV is usually related to the problem of displaying the elements of Ω as

points in Euclidean space of low dimension. Assuming (Ig − 1w′)
(
−1

2Δ
(2)
g

)
(Ig −

w1′) s.d.p., the weighted metric MDS solution finds the spectral decomposition

D1/2
w (Ig − 1w′)

(
−1

2
Δ(2)

g

)
(Ig − w1′)D1/2

w = UΛ2U ′, (1)

where Dw =diag(w). Matrix X = D−1/2
w UΛ contains the principal coordinates of

Ω.

Let G = X X ′ and d the column vector with the diagonal entries in G. Then
Δ
(2)
g = d1′ + 1d ′ − 2G. Since w′X = 0 and w′1 = 1, we have d ′w =

tr(D1/2
w G D1/2

w ) = tr(UΛ2U ′) = tr(Λ2). Thus the geometric variability (also called
inertia) is Vδ =∑K

i=1 λ
2
i .

2.2 Random Vector

Let X be a random vector with pdf f (x), with respect to a suitable measure, and
support S. Let δ (x, y) be a distance function between the observations of X. The
GV of X with respect to δ is defined by

V δ (X) = 1

2

∫

S×S
δ2 (x, y) f (x) f (y) dxdy.

Let us suppose that there exists a representation ψ : S → L of S in a Euclidean
(or separable Hilbert) space L with inner product 〈·, ·〉 and related norm || · ||, such
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that δ2(x, y) = ||ψ(x)−ψ(y)||2. Then V δ (X) = E ||ψ(X)||2− ||E(ψ(X)||2, which
is formally similar to the variance. Related to V δ (X) is the proximity function from
an observation x to the population represented by X

φ2
δ(x) =

∫

S
δ2(x, y) f (y)dy−Vδ (X) .

If we transform the distance δ̃2(ω, ω′) = aδ2(ω, ω′)+ b, if ω = ω′, then Ṽδ(X) =
aVδ(X) + b/2 and φ2

δ̃
(x) = aφ2

δ(x) + b/2. Thus we can consider suitable choices

of a, b and generate the probability density fδ(x) = exp(−φ2
δ (x)). Then

I ( f || fδ) = Vδ (X)− H( f ) ≥ 0,

where I ( f || fδ) is the Kullback-Leibler divergence and H( f ) is the Shannon
entropy. Therefore H( f ) is the lower bound for the GV of a random vector. It can
be proved that GV reaches H( f ) only if fδ(x) coincides wit the true density f (x).
See Cuadras et al. [4], [7].

2.3 Mixtures

Now suppose that f (x) = w1 f1(x)+ · · ·+wg fg(x) is the mixture of g densities
with the same support S. Assume that the above representation ψ : S → L exists.
Then the GV with respect to a distance δ is given by

V δ (X) = V (μ1, . . . , μg)+
g∑

i=1

wi Vi ,

where V (μ1, . . . , μg) = 1
2

∑g
i, j=1 wi δ

2(μi , μ j )w j = ∑g
i=1 wiδ

2(μi , μ), with

μi = Ei (ψ(X)), δ2(μi , μ j ) = ||μi − μ j ||2, μ = w1μ1+ · · ·+wgμg, and
Vi = 1

2

∫
S×S δ

2 (x, y) fi (x) fi (y) dxdy. We can interpret Vδ (X) as the total GV,
which splits into two parts: between and within groups GV, as it is shown in the
next section.

3 Distance-Based Analysis of Variance

Suppose g ≥ 2 independent data sets of sizes n1, . . . , ng coming from the popula-
tions Π1, . . . ,Πg . To test H0 : Π1 = · · · = Πg let us assume that, by means of a
distance function δ between observations, we can obtain the intra-distance matrices
Δ11, . . . , Δgg, and the inter-distance matrices Δ12, . . . , Δg−1g. The overall dis-
tance matrix is Δ, and the GV can be defined for Δ and for each group separately.
By taking principal coordinates, we can obtain the following p × p matrices:
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T =∑g
k,h=1

∑nk ,nh
i,i ′=1(xki − xhi ′)(xki − xhi ′)′,

B =∑g
k,h=1 nknh(xk − xh)(xk − xh)

′,

Wk =∑nk
i,i ′=1(xki − xki ′)(xki − xki ′)′,

which satisfy T = B+ n
∑g

k=1 n−1
k Wk . Hence tr(T) =tr(B)+ n

∑g
k=1 n−1

k tr(Wk),

where n = ∑
ni . Thus, for general multivariate data and working only with dis-

tances, it is possible to decompose GV as follows:

Vδ(total) = Vδ(between)+ n−1
g∑

i=1

ni Vδ(within i). (2)

For testing H0 we can use the statistic γ = Vδ(between)/Vδ(total), see [3].
An early example is Light and Margolin [15]. They proposed an analysis of

variance for categorical data (CATANOVA). Let N = (ni j ) be an I × J contin-
gency table and P = n−1 N the correspondence matrix, where n = ∑

i j ni j . Let
K = min{I, J } and r = P1, Dr =diag(r), c = P ′1, Dc =diag(c), the vectors
and diagonal matrices with the marginal frequencies of P. The marginals counts are
ni · and n· j . CATANOVA deals with categorical data in I groups and J categories,
and uses the distance δi j = 1 if i and j are the same category, 0 otherwise. With
the marginal vector (n·1, . . . , n·J ) and (ni1, . . . , ni J ) for each group, the above GV
(total, between and within) are the total, between and within groups sum of squares:

Vδ(total) = T SS = n
2 − 1

2n

∑J
j=1 n2

. j ,

Vδ(between) = BSS = 1
2

(∑I
i=1

1
ni ·
∑J

j=1 n2
i j

)
− 1

2n

∑J
j=1 n2· j ,

Vδ(within) = W SS = n
2 − 1

2

∑I
i=1

1
ni ·
∑J

j=1 n2
i j .

Then T SS = BSS + W SS and a test is proposed based on R2 = BSS/T SS. See
[15] for details.

4 Contingency Tables

4.1 General Approach

There are several methods for visualizing the rows and columns of a contingency
table. We present a general approach, which includes correspondence analysis (CA).
In these methods, besides the GV, it is also used the generalized Pearson contingency
coefficient.

Given N = (ni j ), we consider r, Dr , P, etc., defined above. In order to represent
the rows and columns of N , Goodman [9] introduced the generalized nonindepen-
dence analysis (GNA) by means of the SVD:
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D1/2
r (I − 1r ′)(R[D−1

r P D−1
c ])(I − c1′)D1/2

c = UΛV ′, (3)

where R(x), for x > 0, is any monotonically increasing function and R(M) is
applied term by term. The principal coordinates for rows and columns are given by
A = D−1/2

r UΛ, B = D−1/2
c VΛ. Clearly GNA reduces to CA when R(x) = 1.

A suitable choice of R(x) is the Box-Cox transformation R(x) = (xα − 1)/α if
x > 0, R(x) = ln(x) if α = 0. With this function, let us consider the following
SVD depending on three parameters:

D1/2
r (I − γ 1r ′)

(
1

α

[(
D−1

r P D−1
c

)α − 11′
])

Dβ
c = UΛV ′, (4)

where Mα = (mα
i j ). Note that (I − c1′) in (3) is missing in (4), see below.

The principal coordinates for the I rows and the standard coordinates for
the J columns of N are given by A = D−1/2

r UΛ and B∗ = D−βc V ,
respectively. B∗ is used in the sense that A, B∗ reconstitute the model: (I −
γ 1r ′)

(
1
α
[(D−1

r P D−1
c )α − 11′]

)
= AB ′∗. However, different weights are used for

the column graphical display, for instance, B = Dβ
c VΛ.

Implicit with this (row) representation is the squared distance between rows

δ2
i i ′ =

J∑

j=1

[(
pi j

ri c j

)α
−
(

pi ′ j
ri ′c j

)α]2

c2β
j . (5)

The first principal coordinates account for a relative high percentage of iner-
tia. This parametric approach has been explored by Cuadras and Cuadras [5] and
Greenacre [11]. See also [6]. Here we use Greenacre’s α parametrization.

The GV (for representing rows) is one half average of the distances weighted by
the row marginal frequencies: GV = 1

2r ′Δ(2)r, where Δ(2) = (δ2
i i ′) is the I × I

matrix of squared parametric distances (5).
For measuring the dispersion in model (4), let us introduce the generalized Pear-

son contingency coefficient

φ2(α, β) =
I∑

i=1

J∑

j=1

[(
pi j

ri c j

)α

− 1

]2

ri c
2β
j .

Note that GV = φ2(α, β) = 0 under statistical independence between rows and
columns. In general GV = φ2(α, β). The unified approach for all methods (cen-
tered and uncentered) discussed below, are given in Table 1.

Two remarks: 1) From (I −1r ′)(D−1
r P D−1

c −11′) = D−1
r P D−1

c −11′, the cen-
tered (γ = 1) and uncentered (γ = 0) solutions coincide in CA and also in NSCA.
2) In order to give a weighted MDS approach compatible with (1), we mainly
consider generalized versions without right-centering, i.e., without post-multiplying
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Table 1 Four methods for representing rows and columns in a contingency table

Inertia (centered) γ = 1 Inertia (uncent.) γ = 0
Method GV =∑ λ2

i φ2(α, β) =∑ λ2
i

CA α = 1, β = 1/2 GV =∑i, j

(
pi j

ri c j
− 1

)2
ri c j φ2(1, 1/2) = GV

Pearson-Benzécri
HD α = β = 1/2 GV = 1−∑ j (

∑
i
√

pi j ri )
2 φ2(1/2, 1/2) =

Matusita-Rao 2(1−∑i, j
√

pi j ri c j )

LR α = 0, β = 1/2 GV =∑i, j c j ri (ln(pi j/ri ))
2 φ2(0, 1/2) =

Aitchison-Greenacre −∑ j c j (
∑I

i=1 ri ln(pi j/ri ))
2 ∑

i, j

(
ln

pi j
ri c j

)2
ri c j .

NSCA α = β = 1

Lauro-D’Ambra GV =∑i, j

(
pi j
ri
− c j

)2
ri φ2(1, 1) = GV

(
1
α
[(D−1

r P D−1
c )α − 11′]

)
by (I − c1′). In fact, we can display columns in the

same graph of rows without applying this post-multiplication. To do this, com-
pute the SVD (HI Q)′(HI A) = RDS′, with D diagonal and HI the unweighted
I × I centering matrix. Then (HI Q) = (HI A)RS and if we take principal coor-
dinates HI A for the rows, and identify each column as the dummy row profile
(0, . . . , 0, 1, 0, . . . , 0), then the centered projection B = HJ RS′ provides standard
coordinates for the columns [5], [6]. See also [8].

We next describe five methods for representing contingency tables: correspon-
dence analysis (CA), Hellinger distance analysis (HD), non-symmetrical correspon-
dence analysis (NSCA), the log-ratio alternative (LR), which only can be used for
positive frequencies, and double-centered LR.

4.2 Correspondence Analysis (Centered = Uncentered)

D1/2
r (D−1

r P D−1
c − 11′)D1/2

c = UΛV ′ (α = 1, β = 1/2).

1. Chi-square distance between rows: δ2
i i ′ =

∑J
j=1

(
pi j
ri
− pi ′ j

ri ′

)2
1
c j

2. To represent rows and columns: A = D−1/2
r UΛ, B = D−1/2

c VΛ.

3. Decomposition of inertia: φ2(1, 1/2) = GV (see Table 1).

This method can be justified under many different perspectives, see [10]. For a
cumulative frequency approach, see [2].

4.3 Hellinger Distance Analysis (Centered and Uncentered)

C.: D1/2
r (I − 1r ′)(D−1/2

r P1/2 D−1/2
c − 11′)D1/2

c = UΛV ′ (α = β = 1/2, γ = 1),

U.: D1/2
r (D−1/2

r P1/2 D−1/2
c − 11′)D1/2

c = UΛV ′ (α = β = 1/2, γ = 0).
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1. Hellinger distance between rows: δ2
i i ′ =

∑J
j=1(

√
pi j/ri −√pi ′ j/ri ′)2

2. To represent rows and columns: A = D−1/2
r UΛ, B∗ = D−1/2

c V .
3. Decomposition of inertia: φ2(1/2, 1/2) = GV (see Table 1).

Note that
∑

i, j
√

pi j ri c j ) is the so-called affinity coefficient and that GV <

φ2(1/2, 1/2). See [17].

4.4 Nonsymmetrical CA (Centered = Uncentered)

D1/2
r (D−1

r P D−1
c − 11′)Dc = UΛV ′ (α = β = 1).

1. Distance between rows: δ2
i i ′ =

∑J
j=1

(
pi j
ri
− pi ′ j

ri ′

)2

2. To represent rows and columns: A = D−1/2
r UΛ, B = VΛ.

3. Decomposition of inertia: φ2(1, 1) = GV (see Table 1).

GV is related to the Goodman-Kruskal coefficient τ =
[∑I

i=1
∑J

j=1
(

pi j
ri
− c j

)2
ri

]
/t , where t = 1 −∑I

i=1 r2
i . The numerator of τ represents the

overall predictability of the columns given the rows. This solution is also related to
BSS,W SS and T SS, see Sect. 3. Then R2 = BSS/T SS is a measure of associa-
tion which coincides with τ. See [12, 13].

4.5 Log-Ratio Analysis (Centered and Uncentered)

C.: D1/2
r (I − 1r ′) ln(D−1

r P D−1
c )D1/2

c = UΛV ′ (α = 0, β = 1/2, γ = 1),

U.: D1/2
r ln(D−1

r P D−1
c )D1/2

c = UΛV ′ (α = 0, β = 1/2, γ = 0).

1. Log-ratio distance between rows: δ2
i i ′ =

∑J
j=1 c j

(
ln

pi j
ri
− ln

pi ′ j
ri ′

)2

2. To represent rows and columns: A = D−1/2
r UΛ, B∗ = D−1/2

c VΛ.

3. Decomposition of inertia: φ2(0, 1/2) = GV (see Table 1).

Note that GV < φ2(0, 1/2).

4.6 Double Centered Log-Ratio Analysis

In LR analysis Lewi [14] and Greenacre [11] considered the weighted double-
centered solution
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D1/2
r (I − 1r ′) ln(D−1

r P D−1
c )(I − 1c′)′D1/2

c = UΛV ′,

called spectral map. The unweighted double-centered solution, called variation dia-
gram, was considered by Aitchison and Greenacre, [1]. In this solution the role of
rows and columns is symmetric and the distance is unweighted.
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One-Dimensional Preference Data Imputation
Through Transition Rules

Luigi Fabbris

Abstract Preferences may be elicited with methods based either on pair compari-
son between items or ordering/sorting one or more items out of the given set. In both
cases, the multivariate analysis of preferences requires that preferability is expressed
for all pairs of items, so that an irreducible dominance matrix can be defined and
mathematically processed. In this paper we present, apply and evaluate a new tran-
sition rule for the estimation of empty cells of a dominance matrix. The method was
applied to preference data on students’ guidance services. The new methodology
showed to be more reliable than other methods in the literature.

1 Preference Elicitation in Surveys

The preferences of respondents for items listed in a survey questionnaire may be
elicited in several ways. The elicitation method is to be suited to the type of survey,
type of population and communication medium. In general, computer assisted inter-
viewing systems offer excellent opportunities of item pairing, multimedia question
administration and experiment embedding.

An advisable data collection method is pair comparison, which consists in
administering items pair wise and asking the eligible respondents to select the
most adequate item within each administered pair. So, if the list includes q items,
q(q − 1)/2 distinct pairs of items are to be administered. Other popular methods
are those of picking the k (k ≥ 1) preferred items from the list or ordering the q
items of the list. The former method is prone to response error as q diverges and k is
small; the latter one is difficult to respondents and can plausibly be administered to
motivated respondents at particular settings. Whatever the data collection method,
scholars share the feeling that no more than 4 or 5 items can be administered for an
aware choice, even less if items are long sentences, without risking refusal to collab-
oration and inconsistency in responses. The only method that does not suffer from
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list’s length is the one-by-one rating of items. Nevertheless, this method presents the
inconveniency of low discriminatory power.

In the following we deal with the method of pair comparisons among q items
[3]. If q is large, the number of pairs diverges and the pair comparison procedure is
no longer viable. Hence, if we are stuck with the pair comparison procedure, more
compact methods have to be used in order to overcome this difficulty and preserve
the possibility of score estimation in a one-dimensional setting [4]. These methods
are aimed at reducing the number of pairwise comparisons and applying transition
rules for imputing the preferences ignored at the data collection level.

A transition rule is a function which derives the unknown quantitative preference
pi j from pik and pkj (i = j = k = 1, . . . , q), where pi j is the preference rate for
item i over item j and pik and pkj denote analogous preference rates. A transition
rule may be applied in contingent situations in which the collected responses are
inadequate for estimating the preferences between all possible pairs of items. For
instance, suppose that a list of q items (q is even, without loss of generality) is
divided in two equal parts for facilitating the respondents to order items of or pick
items from a list. Thus just half of the possible relationships between the q items,
i.e. q(q − 1)/4, can be estimated directly with the obtained responses. The other
half, given by the unmatched pairs, is to be estimated indirectly.

Transitivity rules depend on the researcher’s hypothesis about the underlying
relationship between preferences. In Sect. 2 we present transition rules that are pop-
ular in the scaling literature and introduce a new rule for between-items preference
estimation in case of incomplete data. This allows us to estimate the items’ scores
following the method of principal eigenvalue extraction of the dominance matrix
[10, 11].

We applied some transitions rules to a sample of 1,526 Padua University students.
The data collection was based on an anonymous self-completion questionnaire. The
items were included into 10 sets of university services. Since, for each set, q was
divisible by 4, we created 6 distinct questionnaires by pairing all possible subsets
of two quarters of an item set and administered each questionnaire to a random
sub-sample of students. Thus, all items matched to each other at least once and a
dominance matrix could have been filled with the preference estimates. For practi-
cal reasons, one of the questionnaires was not administered; therefore some of the
planned pairs did not match.

The estimation procedure will be applied to unpublished data on student’s prefer-
nces for before-university guidance services. We discuss also the possibility to esti-
mate preferences between items belonging to non-observed pairs in a multivariate
analysis of preference framework. Results are presented in Sect. 3 and discussed in
Sect. 4.

2 One-Dimensional Preference Rating Method

Let us suppose that the observed preferences between all possible pairs of q items be
ordered in a (q×q) skew symmetric matrix P= {pi j = 1− p ji (i = j = 1, . . . , q)}
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where pi j ≥ 0 denotes the probability for item i to be preferred to item j (heretofore
i > j) by n judges and pii = 0. If no permutation of rows and columns is possible
that reduces P into a block matrix where one or more off-diagonal blocks are zero,
matrix P is “irreducible”. We ignore the trivial case pi j = 0.5 for all i = j .

The Perron-Frobenius theorem states that a positive irreducible matrix, such as
P, can be associated to

• an eigenvalue λ1, which is the largest real and positive root of the characteristic
equation

P w = λw, (1)

with the uniqueness constraint w′w = 1 [10],
• a unique, simple and positive eigenvector w with which a normalized score of

entry i (i = 1, . . . , q) can be calculated: w∗i = wi/
∑q

i wi such that
∑q

i w
∗
i = 1.

The scores define the relative intrinsic position of the q items in the 0÷1 interval
(see [6]).

According to Parker [9] inequality, the largest eigenvalue in modulus of a positive
matrix P= {pi j } must verify:

λ1 ≤ max(p1+ + p+1, . . . , pq+ + p+q)/2, (2)

where pi+ and p+ j stand for i-th row and j-th column sum of P: pi+ =∑q
j pi j and

p+ j =∑q
i pi j . In a skew symmetric matrix, the upper bound of λ1 equals (q−1)/2

and can be attained in the trivial case pi+ = p+i = 0.5 for all elements [5].
If some cells of matrix P are either empty, or some estimates are unreliable

because based on a limited sample size, we may estimate the preferences with a
transition function. A transition function for pi j is an increasing function of the two
(positive) preferences pik and pkj (i = j = k = 1, . . . , q ≥ 3).

The function is undefined if pik = 0 and pkj = 1 because k is absolutely pre-
ferred to both i and j so that no preference between i and j can be inferred [7].

If the transition condition is verified for all distinct i, j, k (i = j = k =
1, . . . , q) items, P is of unit rank and λ1 gets its minimum value. If this condition is
verified, we expect either that pik ≤ p jk or pik ≥ p jk for all 1 ≤ k ≤ q if pi j is
to be estimated. This condition is more restrictive than the general conditions given
by Jech [7]. Besides, cardinal consistency is not guaranteed even if pik ≤ p jk or
pik ≥ p jk for all 1 ≤ k ≤ q.

We will verify the effectiveness of the so-called “weak” rule [2]:

if (pik, pkj ) > 0.5 ⇒ π̂i j > 0.5, (3)

which generates purely a ranking and implies that the only estimate we can produce
for πi j with (3) is 0.5. We will also apply the “moderate” rule:

if (pik , pkj ) ≥ 0.5 ⇒ π̂i j ≥ min(pik, pkj ), (4)
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which in practice is estimated as: π̂i j = min(pik , pkj ). The “strong” transition rule
is:

if (pik , pkj ) ≥ 0.5 ⇒ π̂i j ≥ max(pik, pkj ), (5)

thus, even in this case, we estimate pi j with its limiting value: π̂i j = max(pik , pkj ).
The rules are symmetric with respect to 0.5 that is the indifference measure of

preference. The symmetric weak rule is formulated as: if (pik, pkj ) < 0.5 ⇒ π̂i j <

0.5 but the estimate is again 0.5. The symmetric moderate and strong inequali-
ties are reversed, i.e. the moderate rule becomes: if (pik , pkj ) ≤ 0.5 ⇒ π̂i j ≤
max(pik, pkj ) and the strong one: if (pik , pkj ) ≤ 0.5 ⇒ π̂i j ≤ min(pik , pkj ).

We suggest the adoption of a new transition rule that generates estimates beyond
the intervals defined by pik and pkj . It is an extension of rule (5). The rule, which
we name “linear”, partitions the interval between 1 and max(pik , pkj ) if pik ≥
pkj ≥ 0.5 and the interval between 0 and min(pik, pkj ) if pik ≤ pkj ≤ 0.5. If pik

and pkj are larger than 0.5, the “linear” estimate goes beyond pik and approaches
one, proportionally to the distance between pkj and 0.5, the indifference condition.
The larger this distance, the larger the difference between “strong” and “linear”
estimates. If pik ≥ pkj ≥ 0.5 the rule for πi j = Pr(i > j) estimation is:

π̂i j = pik + (1− pik)
pkj − 0.5

0.5
, (6)

or equivalently:

π̂i j = pik + 2(1− pik)(pkj − 0.5). (7)

Symmetrically, if pik ≤ pkj ≤ 0.5, the estimate lies between 0 and pik and is:

π̂i j = 2pik pk j . (8)

The linear transition rule is not eligible if either pik > 0.5 and pkj < 0.5 or pik <

0.5 and pkj > 0.5. These occurrences imply intransitivity and can be considered
inconsistent expressions of preferences.

A dominance matrix whose λ1 reaches its maximum value, (q − 1)/2, is fully
intransitive. So, we can define an index of transitivity based on the main eigenvalue:

I ′t =
(q − 1)/2− λ1

q − 1/2
= 1− 2λ1

q − 1
, (9)

that becomes larger as the proportion of transition occurrences diverges. Its mini-
mum value equals 0. Another index may be based on inconsistent transitions, nc̄,
counted over the whole q(q − 1) preferences and adjusted for the number t of ties
(i.e. number of times pi j = 0.5 in the dominance matrix P):
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(a) (b) (c)

Fig. 1 Transitive (a), intransitive (b) and tied (c) relations between units i , j , k

Fig. 2 Paths from i to j through the other q-2 units of the examined set

I
′′
t = 1− nc̄

max(nc̄)
= 1− nc̄

q[(q − 1)(q − 2)− t] , (10)

which varies in the 0÷ 1 interval and may be expressed in percent (Fig. 1).
The number of possible transitions is the number of possible paths through which

pi j can be reached. This number depends on q and t , being the number of all distinct
paths through any k-th element (k = 1, . . . , q) different from i-th and j-th (Fig. 2),
ties excluded.

The conditions pik ≥ pkj ≥ 0.5 and pik ≤ pkj ≤ 0.5 imply that any linear
algorithm based on the unconditional product of pik and pkj is not viable. In fact,
if both preference probabilities are larger than 0.5, we expect that pi j be larger than
the larger of the two probabilities (and of course larger than 0.5). This favours the
“strong” transition rule with respect to the moderate one. Moreover, the weak tran-
sition rule is trivial because 0.5 represents the ignorance position about population
preferences since the two conditions k > j and j > k are equivalent.

We compare the above-described rules also with another estimator based on the
product of pik and pkj [7]:

π̂i j = pik pk j

pik pk j + pki p jk
. (11)

The estimate of πi j is averaged over all c (c = 1, . . . , q−2) consistent transition
estimates, π̂i j (k), so to improve the estimate’s stability:

¯̂πi j = 1

c

c∑

k

π̂i j (k). (12)

If all π̂i j (k) are inconsistent, ¯̂πi j = 0.5. If we refer to a known pi j , we can
evaluate the unreliability of estimates with an absolute loss function (see also [8]:

L1 = E | ¯̂πi j − pi j | , (13)
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where E(.) stands for the expected value of the argument, or with an Euclidean one:

L2 =
√

E( ¯̂πi j − pi j )
2 . (14)

3 An Application

Four cells of the dominance matrix were empty because of incompleteness of the
data collection process (Table 1). There are 4 ways for estimating each of the miss-
ing preferences. For instance, for estimating p37, we can “transit” through and then
average 4 couples of the observed preferences: p31 ∩ p17; p32 ∩ p27; p35 ∩ p57;
p36 ∩ p67. The first, the second and the fourth transitions are eligible; the third is a
limiting case because p57 = 0.5.

The estimates in the four upper-triangle empty cells are computed with rules (4),
(5), (6) and (11) and then averaged. The estimation through rule (3) gives always
0.5 and can be considered a trivial case. Symmetric preferences are one minus the
given estimates. We can found 5 inconsistencies and 11 valid estimates. The average
estimates of the four unknown preferences are presented in Table 2 (grey cells).

For measuring the reliability of the examined methods we simulated the absence
of the expressed preferences and then compared the average of the transition-based
estimates with the observed preferences through formulae (13) and (14). The esti-
mates of preferences are presented in Table 2 and their evaluative statistics in
Table 3.

Formulae (5), (6) and (11) give preference and efficiency estimates that are sim-
ilar to each other and are different from those obtainable with formula (4). All this
indicates a clear preferability for stronger transitivity rules if preferences are to be
indirectly estimated. The linear and the ratio methods are the most reliable ones;
the former performs slightly better than the latter. The transitivity occurrences are
slightly more than one third for the three functions (5), (6) and (11), lower than that
of the response-based matrix (0.463). Nevertheless, if we ignore ties (i.e. phk = 0.5
for any h and k), the three transition rules would perform somewhat worse than the
moderate one (0.391) but better than directly observed preferences (0.349). Hence,

Table 1 Dominance matrix between 8 before-university guidance services according to Padua
University (Italy) students, 2007

Item 1 2 3 4 5 6 7 8

1 0 0.461 0.275 0.488 0.488 0.617 0.558 0.847
2 0.539 0 0.353 0.568 0.500 0.622 0.597 0.891

3 0.725 0.647 0 0.714 0.566 0.717

4 0.512 0.432 0.286 0 0.327 0.495
5 0.512 0.500 0.434 0.673 0 0.578 0.500 0.830
6 0.383 0.378 0.283 0.505 0.422 0 0.532 0.847

7 0.442 0.403 0.500 0.468 0 0.804

8 0.153 0.109 0.170 0.153 0.196 0
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Table 2 Estimates of the preferences between before-university guidance services at Padua
University (1st within-cell value: rule (4); 2nd value rule: (5); 3rd value: rule (6), 4th value: rule
(9))

Item 2 3 4 5 6 7 8

1 0.494 0.479 0.505 0.496 0.490 0.516 0.588
0.460 0.358 0.617 0.449 0.488 0.553 0.826
0.455 0.343 0.621 0.446 0.483 0.565 0.855
0.454 0.339 0.621 0.445 0.483 0.568 0.868

2 0.500 0.503 0.500 0.520 0.524 0.565
0.434 0.648 0.597 0.598 0.560 0.832
0.434 0.649 0.597 0.612 0.579 0.854
0.434 0.650 0.597 0.615 0.583 0.864

3 0.546 0.500 0.602 0.547 0.664

0.679 0.647 0.650 0.664 0.854

0.710 0.647 0.722 0.693 0.901

0.719 0.647 0.734 0.702 0.918

4 0.498 0.512 0.420 0.512

0.427 0.617 0.529 0.847

0.425 0.626 0.448 0.851

0.425 0.628 0.448 0.853

5 0.504 0.515 0.523
0.569 0.578 0.847
0.572 0.590 0.854
0.573 0.592 0.876

6 0.500 0.532
0.422 0.804
0.422 0.817
0.422 0.823

7 0.500
0.830
0.830
0.830

Table 3 Distance between observed and estimated preferences in the dominance matrix P
presented in Table 1 by type of transitivity rule and loss function

Loss function Moderate Strong Linear Product

Mean absolute distance 0.124 0.061 0.055 0.057
Euclidean distance 0.164 0.073 0.071 0.072
Transitivity index (formula 8) 0.391 0.357 0.369 0.369

measures of goodness of preference fitting and transitions’ regularity are not neces-
sarily coherent.

4 Conclusions

In this paper we put forward a new method for estimating preference data between
couples of items, grounded on a transitivity rationale. The mathematical character-
istics of the method do not allow us to state that our method is definitely superior
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to others (see also the pertinent Arrow’s impossibility theorems: [1]). That is why
we applied several rules to a dataset and showed that our new method is fairly
more reliable than other known methods for estimating preference probabilities.
This brings us to state that our approach is consistent with the idea of modelling the
observed preferences and guessing transition rules for the estimation of unmeasured
preferences and even for a second stage “smoothing” of preferences.

Of course, more comparisons with other transition estimators could improve
our considerations and other empirical analyses will help researchers to detect the
empirical superiority of either methods.
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About a Type of Quasi Linear Estimating
Equation Approach

Giulio D’Epifanio

Abstract In this work, a type of quasi-linear system is presented, which is able
to identify the “true” value of parameter-profile in the setup of “generalized linear
mixed models”. A type of quasi-linearization of the link function is used, which
would preserve basic sampling properties of conditioned moments of the random
latent profile. Then, an approach is outlined in estimating. It uses a weighted quasi-
linear estimating system which is exactly unbiased. Due to quasi-linearization, it
might be solved by using easy-to-implement recursive procedures.

1 Introduction

It is well known that, except for the linear mixed models, the full maximum-
likelihood(FML) function is analytically intractable within the setup of “general-
ized linear mixed models” (GLMM), whenever the system of random effects is
multi-dimensional, because random effects enter the model non-linearly. Therefore
in estimation, direct FML-based approaches, which typically implement Gauss-
Hermite-like quadrature formulas, are burdensome although adaptive quadrature
rules [9] would promise to overcome some problems. On the other hand, simulation-
based approaches (like Gibbs sampling or MCMC) will be difficult to implement
as unitary-task (e.g. see [12]) in general-purpose statistical packages. However,
practitioners would feel trouble in specifying unambiguous stopping-rules and in
interpreting results based on convergence-diagnostic tools. Thus, in literature (e.g.
for a review, see [10, 11]), several approximate approaches were proposed and
compared, which were based on Taylor’s expansion of the link-function. Unfor-
tunately, the comparative study of Rodriguez and Goldman [11] raised serious
doubts, whenever the random-effects are multi-dimensional and sizeable, in using
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approximate approaches.1 The basic problem was that their underlying estimating
systems are structurally biased. Therefore, researches on general approaches in tack-
ling both the “non linearity” and the “multi-dimensionality” should deserve further
attention.

In this work, our primary purpose is to communicate a, perhaps little known,
theoretical note on which estimation might be based. This note concerns a certain
type of “quasi-linear” structural system, which might be used to identify the “true”
value of a parameter-profile within the GLMM setup. This system uses certain
quasi-linear operators which, in a certain sense, would mimic the (1st and 2nd order)
conditional implicit full-moments of the latent profile of random parameters given
data (formally, these would be Bayes rules). This note says that, using these quasi-
linear operators, at the “true” value of parameters, the universal sampling proper-
ties of the (1st and 2nd order) full-conditional implicit moments would be exactly
preserved. Thus, this note is a theoretical foundation on which exactly unbiased
types of weighted quasi-linear-estimating-systems may be developed. In practice,
using quasi-linearization, the structure of certain procedures and formulas might be
generalized from the Gaussian-linear case to the very larger setup of GLMM. Fur-
thermore, this structural-linearity might be useful in developing easy-to-implement
and effective estimation procedures.

In Sect. 2, a reference model is presented in structural GLMM format. In Sect. 3,
a type of quasi-linearization is proposed, certain quasi-linear-Bayes operators are
defined and the main note is presented. In Sect. 4, statistical estimating is outlined.
In Sect. 5, an empirical comparative study is reported.

2 The Reference Model in GLMM

Without a practical and theoretical loss of generality, in order to delineate cer-
tain objects and concepts, we re-formulate the “three-level logit-normal model”
of Rodriguez and Goldman ([11], pp. 340–341) in general structural-GLMM for-
mat (1)-(2). There, compact notations are used, which are adapted to hierarchical
structure. The realized observable full-outcome profile x := (xk, k := 1, . . . , n) is
partitioned on n top-level data-slices, which are structured on hierarchy of clusters
so that xk := (xk[ j i], [ j i] := 1, . . . , pk) denotes the k-th top-level data-slice,
xk j := (xk[ j i], i := 1, . . . , pkj ) his sub data-slice k j . Here, [ j i] denotes the com-
plex index such that xk[ j i] := xk ji , which runs over the pk 1st-level units within
top-level data-slice k; indexes j and i run, respectively, over the qk 2nd-level units
and the pkj 1st-level units within sub-data-slice k j of data-slice k.

1 Implementing the three-level logit-normal model over reference-data sets, this study shows that
all approximate first order (the “marginal quasi-likelihood” and the “first order penalized quasi-
likelihood”) procedures have led to a substantial underestimation of the fixed and random effects.
But, approximate second order procedures (the “second order marginal quasi-likelihood” and the
“second order penalized quasi-likelihood”) were numerically unstable, actually failing conver-
gence. Even Gibbs sampling experienced problems concerning convergence.
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Xk[ j i] | θk[ j i], 1
indep.∼ Bin(θk[ j i], 1), (1)

θk[ j i](ηk) := exp(ηk[ j i])(1+ exp(ηk[ j i]))−1,

ηk | mk,Σk
indep.∼ Φpk (mk(β),Σk(Σ̃k)),mk(β) := Zkβ, (2)

V ec(Σk(Σ̃k(ζ )) := (Wk ⊗Wk)V ec(Σ̃k(ζ )) = (Wk ⊗Wk)Mkζ

k := 1, . . . , n, [ j i] := 1, . . . , pk .

In (1), the observable outcome profile xk is a realization of a set of condition-
ally independent binary random outcomes Xk[ j i] from the binomial distribution
Bin(θk[ j i], 1) (for a single observation) with parameter θk[ j i] = Pr(Xk[ j i] = 1).
The latent profile ηk := (ηk[ j i], [ j i] := 1, . . . , pk) is a realization from the pk-
variate-normal Φpk (mk,Σk) with expectation mk and matrix of variance-covariance
Σk . In (2), structural parameters (mk,Σk) are constrained, by means of spe-
cific parameters β and Σ̃k , on a linear manifold whose points are represented by
coordinate-parameters γ := (β, ζ ). Here,2 β is the vector of fixed effects, ζ is the
parameter-profile which enters the (vectorized by using the standard Kronecker’s
product) variance-covariance matrix V ec (Σ̃k(ζ )) := Mkζ of random effects,
where Mk is a proper matrix operator which is specific for the k-th top-level unit;
Zk and Wk denote proper design matrices.

2 Recall the “three-level logit-normal model” ([11], pp. 340-341):

Xkji |θk ji , 1
indep.∼ Bin(θk ji , 1), logi t (θk ji ) = Zkjiβ + ε

{2}
k j + ε

{3}
k .

Here, ε{2}k j and ε
{3}
k denote, respectively, 2nd and 3rd level (centered on zero) Gaussian random

effects with variance, respectively, σ 2
2 and σ 2

3 . Rewrite model in matrix form as follows:

logi t (θk) = Zkβ + Γ
{1}

k

⎡

⎢
⎣
ε
{2}
k1
.....

ε
{2}
kqk

⎤

⎥
⎦+ Γ

{1}
k Γ

{2}
k ε

{3}
k = Zk

⎡

⎣
β{1}
β{2}
β{3}

⎤

⎦+Wk

⎡

⎢
⎢⎢
⎣

⎡

⎢
⎣
ε
{2}
k1
.....

ε
{2}
kqk

⎤

⎥
⎦

ε
{3}
k

⎤

⎥
⎥⎥
⎦
.

Here, the profile β := (β{1}, β{2}, β{3}) of fixed effects is partitioned across levels; Zk :=
[Z {1}k , Γ

{1}
k Z {2}k , Γ

{1}
k Γ

{2}
k Z {3}k ] and Wk := (Γ

{1}
k , Γ

{1}
k Γ

{2}
k ) are the design matrices. Note that

Z {1}k , Z {2}k and Z {3}k are design sub-matrices (including level-specific covariates) which are spe-

cific, respectively, for the 1st, 2nd and 3rd level; Γ {1}k and Γ
{2}

k are grouping matrix operators,

respectively, for the 1st and 2nd level units (Γ {1}k groups 1st level units according to the 2nd level

unit at which they belong; Γ {2}k groups 2nd level units within their common 3rd level unit). Assume

that random effects (ε{2}k1 , . . . , ε
{2}
kqk

) are independent and that, for any k and j := 1, . . . , qk , ε{2}k j

and ε
{3}
k also are independent. Then, the variance-covariance matrix of system of random effect is

Σ̃k(ζ ) := V ar [

⎡

⎢⎢
⎢
⎣

⎡

⎢
⎣
ε
{2}
k1
.....

ε
{2}
kqk

⎤

⎥
⎦

ε
{3}
k

⎤

⎥⎥
⎥
⎦
] =

⎡

⎢
⎣

diag(σ 2
2 , . . . , σ

2
2︸ ︷︷ ︸

qk

) 0

0 σ 2
3

⎤

⎥
⎦ , where ζ := (σ 2

2 , σ
2
3 ).
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Estimation concerns the full coordinate-parameter profile γ := (β, ζ ). Identifi-
ability of coordinate-parameters is assumed, at least locally, by supposing proper
conditions on design matrices.

3 Quasi-Linearization and the Main Note

Let Mk(mk,Σk) := E(Θk;mk ,Σk) and Sk(mk,Σk) := V ar(Θk;mk,Σk) denote,
respectively, the vector of expectations and the matrix of variance-covariance, which
are associated to the random profile Θk which will take values θk in system (1). Let
us define the following transformation:

θ
QL
k (ηk;mk ,Σk) := Mk(mk,Σk)+ Dθk |θ−1

k (Mk(mk ,Σk)(γ ))
(ηk − mk) (3)

Here, transformation (3) linearizes3 θk(ηk) by using the tangent of function
θk(ηk) at the point θ−1(Mk(mk,Σk)), and then re-centering it at Mk(mk,Σk), rather
than at mk as usual Taylor expansion would do. By reversing now (3) with respect
to the profile ηk , the quasi-linearized(QL-) recovery of ηk is provided by

η
QL
k (θk;mk ,Σk) := (Dθk)

−1
|Mk (mk ,Σk )

(θk − Mk(mk,Σk))+ mk (4)

We will see later that, using QL-transform (4), some objects (expectations, vari-
ances, etc.) could be reported from the “natural” (but, “strongly non linear”) scale
of θk (θk ∈ [0, 1]) to that (“quasi-linear”) of η

QL
k (ηQL

k ∈ [−∞,+∞]), which
would approximate the original (“linear”) scale of profile ηk . Notice here centering:
for any mixing distribution, which is associated to parameters (mk,Σk) in system
(1), E(ηQL

k (Θk);mk,Σk) = E(ηk;mk,Σk) = mk . Emphasize also the structural-
generality of QL-transform: quasi-linearization (4) is compatible with any strictly
monotone sufficiently regular function, whenever it was used in (1–2) alternatively
to the logit-function.

Let us define now the following QL-objects:

x̂k(mk,Σk) := (Dθk)
−1
|Mk (mk ,Σk )

(xk − Mk(mk,Σk))+ mk ,

Σ̂k(mk,Σk) := V ar(ηQL
k (Θk);mk,Σk) = (Dθk)

−1
|Mk
· V ar(Θk;mk,Σk) · (Dθk)

−1
|Mk

Λ̂k := (Dθk)
−1
|Mk
·Λk · (Dθk)

−1
|Mk

, where Λk

:=
∫

V ar(Xk | θk(ηk)) ·Φpk (ηk;mk,Σk)dηk

R̂k := Σ̂k · (Λ̂k + Σ̂k)
−1.

3 here, Dθk := ∂θk (ηk )
∂ηk

is the derivative matrix of the (pk-)vector-valued anti-link function θk(ηk),
which is diagonal because θki (ηk1, . . . , ηkpk ) = θki (ηki ), i := 1, . . . , pk .
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Here, x̂k(mk,Σk) denotes the “artificially adjusted” data set, which is temporar-
ily QL-recovered from the actual data set xk , given mixing density at (mk,Σk);
Σ̂k(mk,Σk) denotes the variance-covariance matrix of ηQL

k .
Now, a notable consequence of quasi-linearization (4) is that expectation of

random profile X̂k(mk,Σk) is exactly centered on profile mk while its variance-
covariance matrix is (Λ̂k + Σ̂k) (for technical details, see [2, 3]. Finally, we could
define now the “quasi-linear” operators T QL B

xk and V QL B
xk as follows:

T QL B
xk

(mk,Σk) := R̂k · (x̂k − mk)+ mk ,

V QL B
xk

(mk,Σk) := Λ̂k(Λ̂k + Σ̂k)
−1 · Σ̂k +ΔT QL B

xk
⊗ (ΔT QL B

xk
)tr .

Here, ΔT QL B
xk

:= T QL B
xk

(mk,Σk)− mk = R̂k · (x̂k − mk).

By construction, quasi-linear operators T QL B
xk and Λ̂k(Λ̂k + Σ̂k)

−1Σ̂k have
a structure which would imitate that, respectively, of the “linear Bayes expecta-
tion” and of the “linear Bayes variance-covariance matrix” (see [6]). Therefore,
they might be conventionally referred as QL-Bayes rules. Thus, R̂k would mimic
the shrinkage factor. In particular, provided that responses Xk were Gaussian and
the link-function was the identity-function, QL-operators T QL B

xk and V QL B
xk would

exactly coincide with their full-Bayes counterparts. As a consequence of “quasi-
linearization”, we would emphasize now the following note.

The main note. Let us assume model (1) and (2) and let γ0 := (β0, ζ0) denote
the “true” value-profile. Then, for any γ0, the following system

E(mk ,Σk)(γ0)[T QL B
Xk

(mk,Σk)(γ̃ )] = mk(γ̃ ), (5)

E(mk ,Σk)(γ0)[V ec V QL B
Xk

(mk,Σk)(γ̃ )] = V ec Σ̂k(mk,Σk)(γ̃ ),

k := 1, . . . , n

is solved, with respect to the unknown profile γ̃ , by γ̃ = γ0 itself.
Here, E(mk ,Σk)(γ0)[.] denotes expectation, over the sample space of Xk , in system

(1)-(2), whenever the true-value profile γ was set at γ0. This note (for technical
details, see [2, 3] might be used to recursively characterize the “true” value-profile
within the setup (1) and (2). Then, as a practical consequence of “quasi-linearity”
in estimating, types of exactly unbiased weighted QL-estimating-systems may be
developed, which would be relatively easy to solve.

4 Estimating

Without claim to completeness, we would like to outline here developments of
quasi-linearization in estimating.
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4.1 A General Quasi-Linear Estimating System

Let Δxk (γ ) :=
[

ΔT QL B
xk (mk,Σk)(γ )

ΔV ecV QL B
xk (mk,Σk)(γ )

]

:=
[

T QL B
xk (mk,Σk)(γ )− mk(γ )

V ecV QL B
xk (mk,Σk)(γ )− V ecΣ̂k(mk,Σk)(γ )

]

denote the vector of vari-

ations of QL-operators on the mixing density which is associated to the point
(mk,Σk) at coordinate γ := (β, ζ ) of the linear manifold (2). Given any realization
of profiles X1, . . . , Xk , . . . , Xn from stochastic system (1-2), consider the following
QL-system:

n∑

k=1

[
∂

∂γ
(mk, V ec(Σk))(γ )

]tr

· [W−1
k ((mk,Σk)(γ )) ·Δxk (γ )] = 0. (6)

This system would combine, using convenient weights, independent top-cluster-
specific estimating-functions [1, 5], both for expectations and variance-covariances,
which are specified according to working conjectures over space of constrained
parameters. Here, W−1

k ((mk,Σk)(γ )) denotes a generic symmetric (positive defi-
nite or semi-definite) weighting matrix. Let h denote the dimension of full parameter

profile γ ,
[

∂
∂γ
(mk, V ec(Σk))(γ )

]
denote the ((pk + pk × pk) × h) matrix whose

columns are the coordinate vectors which are tangent to linear manifold (2).
Mimicking the intrinsic-recursive characterization of the “true” profile γ0 in the

main note, a solution γ ∗ of (6) might be operationally characterized as follows:
search for that profile γ ∗, which represents point p(γ ∗) on linear manifold (2),
such that the full profile of weighted variations (W−1

k Δxk (γ ), k := 1, .., n) would
be orthogonal to manifold (2) at p(γ ∗).

As a consequence of the main note, we could realize that system (6) is exactly
unbiased regardless of the weighting system. Therefore, recalling the general the-
ory of estimating equation,4 the main requirement would satisfied here in order to
assure that there exists a sequence of solutions of (6) which converges (under proper
conditions, in some statistical sense) to the true value γ0, provided model (1–2) was
correctly specified. Afterwards, we propose to estimate the value γ0, of true profile
in (1–2), by searching for γ ∗ := (β∗, ζ ∗) values such that γ ∗ solves estimating
system (6).

4.2 A Decomposable Estimating System

Consider now a weighting system such that, for generic top-level cluster k, the
weighting-matrix has the following block partitioned structure:

4 Technically, solutions of (6) would be M-estimators [7]. Then, under the conditions that were
given in Huber ([7], pag. 131) there exists a sequence which is consistent and asymptotically
normal.
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Wk(γ ) :=
(
Sk 0
0 S̃k ⊗ S̃k

)
(γ ). (7)

Here, Sk and S̃k denote symmetric, positive definite or positive semi-definite
(pk × pk) matrices. Although in principle different choices are admissible,5 this
structure of weighting seems sufficiently general to adapt to concrete situations of
interest. It seems conceptually difficult to conceive and justify mixed weights for
expectations and variance-covariances specific estimating functions. Then, using
weighting structure (7), system (6) might be separated in the following two inter-
crossed estimating sub-systems:

n∑

k=1

Ztr
k · Sk(β, ζ ) · R̂k(β, ζ ) · (x̂k(β, ζ )− Zkβ) = 0, (8)

n∑

k=1

{(Wk ⊗Wk) ·Mk)
tr · (S̃k ⊗ S̃k)(β, ζ )

·V ec{V QL B
xk

(mk,Σk)− Σ̂k(mk,Σk)}(β, ζ ) = 0 (9)

Consider now matrices Fk(β, ζ ) and Gk(β, ζ ) such that6 Σ̂k(β, ζ ) = Fk(β, ζ ) ·
Σk(ζ )·Gtr

k (β, ζ ). Then, using some matricial algebra (for details, see [2, 3]), system
(8) and (9) might be rewritten as the following fixed-point system:

β =
{

n∑

k=1

Ztr
k · (Sk R̂k)(β, ζ ) · Zk

}−1 { n∑

k=1

Ztr
k (Sk R̂k)(β, ζ ) · x̂k(β, ζ )

}

(10)

ζ =
{

n∑

k=1

[Mtr
k · (W tr

k S̃k Gk Wk)⊗ (W tr
k S̃k R̂k Fk Wk)](β, ζ ) ·Mk )

}−1

(β, ζ )·

·
{

n∑

k=1

Mtr
k [(W tr

k S̃k)⊗ (W tr
k S̃k)] · V ec (ΔT QL B

xk
⊗ (ΔT QL B

xk
)tr )

}

(β, ζ )

(11)

Therefore, estimations are implicitly identified by solutions of fixed-point system
(10)-(11), which may be recursively solved.

5 In practice, choice of weighting system should adhere to specific goals. For instance, in finite
population sampling, weighting might be used to contrast non responding effects. However, from a
theoretical perspective, although non relevant to consistency, weighting system may have a crucial
role in matters that concern efficiency.
6 For any (β, ζ ), a matrix Fk should exist such that Gk = Fk and Σ̂k(β, ζ ) = Fk(β, ζ ) · Σk(ζ ) ·
Ftr

k (β, ζ ) because, by construction, both Σ̂k and Σk are positive semi-definite symmetric matrices
which have the same dimension and the same rank
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4.3 Special Weighting and Approximate Asymptotic Formulas

As a special relevant case of weighting in (7), we propose7 to set Sk = S̃k := Σ̂−
k ,

where Σ̂−
k is the Moore-Penrose generalized inverse matrix of Σ̂k . Then, Eq. (10)

might be rewritten, provided proper conditions as:

β =
⎧
⎨

⎩

n∑

k=1

Ztr
k · (Λ̂k + Σ̂k)

−1(β, ζ ) · Zk

⎫
⎬

⎭

−1⎧⎨

⎩

n∑

k=1

Ztr
k (Λ̂k + Σ̂k)

−1(β, ζ ) · x̂k(β, ζ )

⎫
⎬

⎭
.

Let β∗(x) denote a solution of the FP-equation above, supposing that ζ := ζ0
was assigned. Suppose now that, within some proper hypothetical design while n
increases, a sequence of solutions β∗ exists which converges to the “true value” β0
in probability. Then (although exact sampling properties of β∗(X) over the sample
space of random profile X would be difficult to establish) asymptotic properties
might be inherited8 by those of the following (hypothetical) “one-step ahead” itera-
tion:

β̂(x) =
⎧
⎨

⎩

n∑

k=1

Ztr
k · (Λ̂k + Σ̂k)

−1 · Zk

⎫
⎬

⎭

−1⎧⎨

⎩

n∑

k=1

Ztr
k · (Λ̂k + Σ̂k)

−1 · x̂k(x)

⎫
⎬

⎭
(β0, ζ0).

(12)

Thus, the asymptotic variance-covariance matrix of β∗(x) may be approximately
evaluated by the following formula:

AsyV ar [β∗(X)] ≈ AsyV ar [β̂(X)] =
{

n∑

k=1

Ztr
k · (Λ̂k + Σ̂k)

−1(γ ∗) · Zk

}−1

,

(13)
which would provide also evaluation of standard errors for the fixed-effects. Here,
QL-based formula (13) might have some practical interest due to the relative sim-
plicity in implementing calculations. Notice that, if responses xk were Gaussian
and the link was the identity function, then β∗(x) exactly would coincide with the
usual (e.g. see [4]) FML estimate and (13) with the exact FML-matrix of variance-
covariance.

7 This choice would be the optimal, in the class of QL-linear estimating Eq. (8 and 9), [2, 3]
8 We suppose here that subsequent iterations of updating Eq. (12) may be neglected, provided
the sample size is sufficiently large. Here, to recall certain analogies, see McCullagh and Nelder
([8], pp. 328, pp. 347–348). Recalling sampling identities of X̂k , due to quasi-linearization, we
could see that random vector β̂(X) is unbiased while its variance-covariance matrix has a typical
sandwich-like structure. Thus, sequence of solutions β∗(x) would be asymptotically unbiased with
the asymptotical variance-covariance matrix provided by V ar(β0,ζ0)[β̂(X)].
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5 A Comparative Study

A comparative study is presented in Table 1, which would complete that of
Rodriguez et al. [11] over a reference data-set “the modern prenatal care”. This
data set is critical in that it exhibits high clustering effect due to relatively large
random effects in small-sized groups. In Table 1, EFP (“Empirical Fixed Point”)
denotes a procedure which implemented recursive updating of fixed-point Equations
(10 and 11), by using weighting (7) with Sk := S̃k := Σ̂−

k . It used only matrix
algebra and 1-dimensional quadrature-formula, although in principle 2-dimensional
integrals would be necessary (regardless of whether or not dimension of the sys-
tem of random effects is higher than two) for exact implementing of QL-objects.
Simulation-based studies on asymptotics are reported in D’Epifanio [2].

6 Concluding Remarks

Based on structural sampling properties of quasi-linearized latent implicit moments,
we have proposed an approach which uses a type of non-standard estimating system.
It is flexible enough to be adapted to different criteria of weighting, robust with
respect to the size of variances of random effects. Intrinsically by construction, it
should be structurally robust (recalling M-estimators) with respect to the exact form
of mixing density. Furthermore, it is easy to implement through effective numerical
procedures, which do not need simulation based tools. Some formulas and algo-
rithms extend, in their structure under certain specific choices of weighting, the
usual one (which are been developed using maximum likelihood), from the Gaussian
setup to the larger class of the “generalized linear mixed models”.
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Causal Inference Through Principal
Stratification: A Special Type of Latent Class
Modelling

Leonardo Grilli

Abstract Principal stratification is an increasingly adopted framework for drawing
counterfactual causal inferences in complex situations. After outlining the frame-
work, with special emphasis on the case of truncation by death, I describe an appli-
cation of the methodology where the analysis is based on a parametric model with
latent classes. Then, I discuss the special features of latent class models derived
within the principal strata framework. I argue that the concept of principal strati-
fication gives latent class models a solid theoretical basis and helps to solve some
specification and fitting issues.

1 Introduction

Principal stratification is a conceptual framework developed in the setting of coun-
terfactual causal inference to deal with situations where the causal path from the
treatment to the outcome includes an intermediate variable that cannot be ignored
[3]. Examples are non-compliance [1, 2, 10], where the intermediate variable is
the compliance status, estimation of direct effects [14, 16], where the intermediate
variable is a variable whose effect one wishes to control for, surrogacy in clinical
trials [7, 8], where the intermediate variable is a surrogate endpoint, and truncation
by death [4, 5, 18, 19], where the intermediate variable determines the existence of
the outcome.

Basically, the problem with intermediate variables is that they are measured after
treatment and thus they are not balanced among the treatment arms. Therefore, the
conventional estimators of the causal effect of an intermediate variable are generally
biased; moreover, conditioning on an intermediate variable may bias the estimators
of other causal effects of interest.

The application described in the next section focuses on truncation by death, a
case taking its name from the studies on the quality of life, where the outcome of
interest does not exist for patients who died. The simplest approach is to carry out
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the analysis on the patients who survived, but this is likely to yield biased results
since survival is a post-treatment variable and conditioning on it destroys the ran-
domized structure of the experiment. Zhang and Rubin [18] noted that the same
issue may arise in experiments for comparing educational programmes. In fact, they
applied principal stratification to the hypothetical case of a randomized experiment
concerning two high school educational programmes, where the intermediate vari-
able is graduation and the outcome is the score on a final test. This is an instance
of truncation by death since the outcome of interest exists only for students who
graduated.

Later Grilli and Mealli [4, 5] used principal strata to tackle a case of truncation by
death in the evaluation of the effectiveness of two degree programmes with respect
to job opportunities, where the treatment is the degree programme (Economics
vs Political Science), the intermediate variable is the graduation status (graduated
within 9 years) and the outcome is the employment status (having a permanent job).
This is another instance of truncation by death: since the aim is to assess the relative
effectiveness of graduation in different degree programmes, the employment status
is not defined for students who did not graduated.

A further application of principal stratification to deal with truncation by death
is given by Zhang, Rubin and Mealli [19] in the context of the effectiveness of job-
training programs: indeed, estimating the effects of training programs on wages is
complicated by the fact that, even in a randomized experiment, wages are truncated
by nonemployment, that is, they are only observed and well-defined for individuals
who are employed.

The paper proceeds with a section illustrating principal stratification through an
application to the effectiveness of degree programmes and a section discussing the
latent class perspective of principal stratification.

2 Principal Stratification: Basic Ideas and an Application

The principal stratification framework requires a treatment with a finite number of
levels and two post-treatment variables, namely an intermediate variable and an
outcome. The nature of the intermediate variable determines the type of strata: a
discrete intermediate variable implies discrete strata, while a continuous intermedi-
ate variable implies continuous strata. It will be clear that only discrete strata can
be seen as latent classes. The simplest case of discrete principal strata arises when
both the treatment and the intermediate variable are binary, implying four principal
strata.

The principal stratification framework will be illustrated through the application
of Grilli and Mealli [4, 5], who analyzed 1941 freshmen of the University of Flo-
rence: 1,068 enrolled in Economics and 873 in Political Science.

The treatment Zi takes the value 1 if student i enrolled in Economics and 0
if enrolled in Political Science. Under the standard Stable Unit Treatment Value
Assumption [3] (SUTVA), the post-treatment variables are defined as follows. The
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intermediate variable Si (zi ) is 1 or 0 if student i graduated or did not graduate
within 9 years when enrolled in degree programme zi . The outcome Yi (zi ) is 1 or 0
if student i had or did not have a permanent job at the time of the interview (i.e. from
one to two years after the degree) when enrolled in programme zi and graduated.

Since for each individual the treatment assumes a single value, for every post-
treatment variable only one of the two potential versions can be observed: Sobs

i =
Si (Zi ) and Y obs

i = Yi (Zi ). Since both the treatment and the intermediate variable
are binary, there are four principal strata:

• GG (Graduated, Graduated) if Si (1) = 1 and Si (0) = 1;
• G N (Graduated, Not graduated) if Si (1) = 1 and Si (0) = 0;
• N G (Not graduated, Graduated) if Si (1) = 0 and Si (0) = 1;
• N N (Not graduated, Not graduated) if Si (1) = 0 and Si (0) = 0.

The principal stratum of individual i cannot be observed since either Zi = 0 or
Zi = 1. The principal stratum is thus a latent class, denoted with a latent variable
Ci taking values in the set {GG,G N , N G, N N}. The probability that an individual
belongs to a given principal stratum can be estimated. A crucial feature is that, given
the values of the treatment Zi and the intermediate variable Sobs

i , some principal
strata are ruled out: for example, a student who enrolled in Economics (Zi = 1) and
then graduated (Sobs

i = 1) can only belong to the strata GG and G N , so the strata
N G and N N are inadmissible and their probability is null.

The key feature of the principal strata is that they are defined by the couple of
potential values of the intermediate variable, so they are not affected by the treatment
and thus can be seen as categories of an unobserved pre-treatment covariate.

The terms entering the causal effect of interest Yi (1) − Yi (0) are both defined
only in the GG stratum, i.e. students who would be able to graduate in both pro-
grammes. The estimand of main interest is thus the Average Causal Effect (ACE)
on employment in the GG stratum, i.e. the difference between the probabilities of
being employed for Economics and Political Science in the subset of students that
would be able to graduate in any of the two degree programmes.

Grilli and Mealli [4, 5] included also some covariates xi . In general, covariates
are important when the treatment is not randomized, since the unconfoundedness
assumption required for the causal interpretation of the effect of the treatment is
more reasonable if stated conditional on good covariates. Formally, the treatment is
conditionally unconfounded when Zi ⊥ {Si (0), Si (1),Yi (0),Yi (1)}|xi .

Under the assumptions of SUTVA and conditional unconfoundedness, the data
generating process can be defined in terms of the following two sets of probabil-
ities: (a) probabilities of the principal strata {πGG:i , πG N :i , πN G:i , πN N :i }, e.g.
πGG:i = Pr(Ci = GG|xi ); (b) probabilities of the outcome conditional on the prin-
cipal stratum

{
γ1,GG:i , γ0,GG:i , γ1,G N :i , γ0,N G:i

}
, where the number 0 or 1 in the

subscript is the value of Zi . For example, γ0,GG:i = Pr(Yi (0) = 1|Ci = GG, xi ).
Here the γ ’s for other combinations of programme and principal stratum, such as
Zi = 1 and Ci = N G, are not defined.
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As in the majority of the applications with principal strata, the treatment and
the intermediate variable are both binary, leading to four principal strata. However,
while in many settings it is sensible to assume that certain strata are empty (e.g.
the assumption of no defiers in an experiment with non-compliance), in the present
context such assumptions are not plausible in the light of the symmetry of the two
treatments, so all the strata are allowed to exist and thus every observed group is
generated by a mixture of two distributions.

The principal stratification framework can be exploited to carry out a non-
parametric analysis based on large-sample bounds [5] or to build a parametric model
to be fitted with Bayesian or likelihood methods [4]. In the example, the likelihood
is a product over four observable groups defined by Zi and Sobs

i :

∏

i : Zi=1, Sobs
i =0

{πN G:i + πN N :i } ×
∏

i : Zi=1, Sobs
i =1

{
πGG:i B1,GG:i + πG N :i B1,G N :i

}×
∏

i : Zi=0, Sobs
i =0

{πG N :i + πN N :i } ×
∏

i : Zi=0, Sobs
i =1

{
πGG:i B0,GG:i + πN G:i B0,N G:i

}

where the B’s are the Bernoulli likelihoods for the γ ’s, for example B1,GG:i is
(
γ1,GG:i

)Y obs
i
(
1− γ1,GG:i

)1−Y obs
i .

The parametric model devised by Grilli and Mealli [4] is made of two compo-
nents: a multinomial logit model for the probabilities of the principal strata condi-
tional on the covariates (the π ’s) and a set of logit models for the probabilities of
the outcome conditional on both the covariates and the principal stratum (the γ ’s).
The model is thus a latent class model, but the principal stratification framework
entails some peculiarities that make the analysis different from traditional latent
class modelling.

3 Principal Stratification and Latent Class Modelling

In the previous section it has been shown that in the case of discrete principal strata
the corresponding statistical model is a latent class (LC) model. Note that even if
almost all applications assume discrete strata, the principal strata can also be con-
tinuous: For example, Jin and Rubin [6] tackled partial compliance by defining the
strata as couples of proportion of compliance to drug and proportion of compliance
to placebo.

The connection between principal stratification and LC modelling has been rec-
ognized in the case of non-compliance, with reference to the simple instance of a
binary treatment and a binary compliance status (all-or-none compliance). In the
notation of the previous section, the intermediate variable Si (zi ) is the compli-
ance status under treatment zi . The target quantity, called Complier Average Causal
Effect (CACE), is the average difference Yi (1)−Yi (0) for individuals in the principal
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stratum of compliers, namely the individuals that comply with the treatment regard-
less of the assigned treatment [1].

Bengt Muthén described CACE modelling in terms of LC modelling in [11] and
then implemented the idea in the Mplus software, whose user’s manual [12] reports
a re-analysis of Little and Yau’s data [9]. In Mplus the class membership restric-
tions are handled by the so-called training data, i.e. an auxiliary dataset declaring,
for each sample unit, which classes are admissible and which classes are not. The
possibility to specify a CACE model as an LC model with restrictions is also noted
by Vermunt and Magidson in the manual of the software Latent GOLD [17], where
the class membership restrictions are inserted via the Known Class option.

The latent class perspective in CACE modelling was exploited also by Skrondal
and Rabe-Hesketh in their book on Generalized Linear Latent Mixed Models [15],
where they showed how a CACE model can be written as an LC model that fits the
GLLAMM framework. Moreover, they re-analyzed Little and Yau’s data using the
Stata gllamm command [13].

The mentioned treatments of CACE via LC models are aimed at showing that
causal inference can be carried out within a general statistical modelling framework
based on latent variables. However, the implications of the connection have not been
investigated. Moreover, there seems to be no discussion of the connection in the
more general principal stratification framework, thus including topics such as direct
effects and truncation by death.

Let us use the notation introduced in the previous section and let us denote the
latent class corresponding to the principal stratum with Ci = c for c ∈ C. An LC
model derived within a framework with discrete principal strata differs from a gen-
eral LC model in several respects: (a) the number of classes (i.e. the cardinality of
C) and their meaning is determined a priori, as each class corresponds to a principal
stratum; (b) an individual can only belong to a subset of latent classes, i.e. given
the data the probabilities of belonging to certain classes are zero by assumption:
∃c ∈ C such that Pr(Ci = c|Zi , Sobs

i , xi ) = 0. Truncation by death adds another
peculiarity, namely: (c) latent class membership determines whether the outcome is
defined or not (and its probability in case it is defined): ∃c ∈ C such that Yi (zi ) is not
defined.

Feature a allows to avoid the tricky problem of a data-driven choice of the num-
ber of latent classes and the somewhat arbitrary exercise of attaching labels to the
classes. Feature b makes estimation simpler with respect to a standard LC model
with the same number of classes, since some components of the mixtures are ruled
out by assumption. Feature c is specific to truncation by death in the principal strata
framework and does not apply to standard LC models, where it is not conceivable
to let the outcome be defined or not depending on the class.

As for model specification, principal stratification gives solid arguments to put
restrictions on the latent classes based on substantive assumptions or on the design:
for example, in experiments with non-compliance [1, 2] the latent class of defiers
can be assumed to be empty based on considerations on the behaviour of the indi-
viduals, while the latent class of always takers is empty if the design prevents people
assigned to control from taking the active treatment.
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Last but not least, a latent class model with a structure derived within the princi-
pal strata framework guarantees that the model is consistent with the principles of
counterfactual causal inference and thus the parameters refer to well-defined causal
quantities.

References

1. Angrist, J.D., Imbens, G.W., Rubin, D.B.: Identification of causal effects using instrumental
variables. J. Am. Stat. Assoc. 91, 444–472 (1996)

2. Barnard, J., Frangakis, C.E., Hill, J.L., Rubin, D.B.: Principal stratification approach to broken
randomized experiments: a case study of school choice vouchers in New York City. J. Am.
Stat. Assoc. 98, 299–323 (2003)

3. Frangakis, C.E., Rubin, D.B.: Principal stratification in causal inference, Biometrics 58, 21–29
(2002)

4. Grilli, L., Mealli, F.: University studies and employment. An application of the principal strata
approach to causal analysis. In: Fabbris, L. (ed.) Effectiveness of University Education in Italy,
pp. 219–232. Physica-Verlag, Heidelberg (2007)

5. Grilli, L., Mealli, F.: Nonparametric bounds on the causal effect of university studies on job
opportunities using principal stratification. J. Educ. Behav. Stat. 33, 111–130 (2008)

6. Jin, H., Rubin, D.B.: Principal stratification for causal inference with extended partial compli-
ance. J. Am. Stat. Assoc. 103, 101–111 (2008)

7. Joffe, M.M., Greene, T.: Related causal frameworks for surrogate outcomes. Biometrics 65,
530–538 (2009)

8. Li, Y., Taylor, J.M.G., Elliott, M.R.: A Bayesian approach to surrogacy assessment using prin-
cipal stratification in clinical trials. Biometrics. 66, 523–531 (2010)

9. Little, R.J., Yau, L.H.Y.: Statistical techniques for analyzing data from prevention trials: treat-
ment of no-shows using Rubins causal model. Psychol. Methods 3, 147–159 (1998)

10. Mattei, A., Mealli, F.: Application of the principal stratification approach to the Faenza ran-
domized experiment on breast self-examination. Biometrics 63, 437–446 (2007)

11. Muthén, B.O.: Beyond SEM: general latent variable modeling. Behaviormetrika 29, 81–117
(2002)

12. Muthén, L.K., Muthén, B.O.: Mplus User’s Guide, 5th ed. Muthén & Muthén, Los Angeles,
CA (2007)

13. Rabe-Hesketh, S., Skrondal, A., Pickles, A.: GLLAMM Manual, U.C. Berkeley Division of
Biostatistics Working Paper Series. Working Paper 160. University of California, Berkeley,
CA (2004)

14. Rubin, D.B.: Direct and indirect causal effects via potential outcomes. Scand. J. Stat. 31,
161–170 (2004)

15. Skrondal, A., Rabe-Hesketh, S.: Generalized Latent Variable Modeling: Multilevel, Longitu-
dinal, and Structural Equation Models. Chapman & Hall/CRC Press, Boca Raton, FL (2004)

16. VanderWeele, T.: Simple relations between principal stratification and direct and indirect
effects. Stat. Probab. Lett. 78, 2957–2962 (2008)

17. Vermunt, J.K., Magidson, J.: Technical Guide for Latent GOLD 4.0: Basic and Advanced.
Statistical Innovations Inc., Belmont, MA (2005)

18. Zhang, J.L., Rubin, D.B.: Estimation of causal effects via principal stratification when some
outcomes are truncated by ‘death’. J. Educ. Behav. Stat. 28, 353–368 (2003)

19. Zhang, J.L., Rubin, D.B., Mealli, F.: Likelihood-based analysis of causal effects of job-training
programs using principal stratification. J. Am. Stat. Assoc. 104, 166–176 (2009)



Scaling the Latent Variable Cultural Capital via
Item Response Models and Latent Class
Analysis

Isabella Sulis, Mariano Porcu, and Marco Pitzalis

Abstract One of the main tasks of an educational system is to enrich the Cultural
Capital of its students. The Cultural Capital linked to social origins is considered
crucial in determining students’social life and subsequent professional achievement.
This work moves from an ad hoc survey carried out on a sample of students who
enrolled or applied for an entrance test at the university. The Cultural Capital is
treated as a latent variable which students are supposed to possess at a greater or
lesser degree. Latent Class Analysis is adopted in order to provide a non arbitrary
scaling of Cultural Capital and to sort out mutually exclusive classes of students.
Moreover, Item Response Models are implemented to assess the calibration of the
questionnaire as an instrument to measure the Cultural Capital of the surveyed pop-
ulation.

1 Introduction

This paper deals with the role played by Cultural Capital (CC) in shaping stu-
dents’choices with respect to the transition from high school to university. Its main
aim is to propose a way of quantifying the intangible construct CC via a survey
questionnaire and to spot out differences in the amount of CC owned by clusters of
students. This issue is investigated with an ad hoc survey carried on in 2007 at the
University of Cagliari. According to Pierre Bourdieu’s standpoint [5], we assume
the CC as a strategic resource that involves the construction of individual habits
linked to a defined position in a relational space. In Pierre Bourdieu’s theory, the CC
has three different forms: embodied, objectified, institutionalized [4]. We focus on
the embodied form of CC which is the product of family socialization and cultural
activities.

Hereafter, we will suppose that each individual possesses a basic amount of CC ,
namely the inherited CC (CCI H ). This basic amount of CC is measured consid-
ering the highest level of formal education reached by students’parents. It is called
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inherited because we suppose that it is an asset owned by students’ parents and auto-
matically transmitted to the family. This work focuses on two more sub-components
of CC that can be considered the results of family and individual choices / actions
/ activities: (i) the family made CC (CCF M – built up by positive actions made by
students’families); (ii) the pro-active CC(CCP A – built up by the students) or self
constructed.

2 The Survey

In order to shed some light on the cultural characteristics of the population of uni-
versity students a survey has been carried out at the University of Cagliari. The
analysis has been run in a more extended research project aimed to investigate upon
the transitions school-university in an isolated regional context such as Sardinia.

This work, specifically, aims to quantify the amount of CC owned by university
students in order to investigate on factors which influence the educational achieve-
ment taking into account the social and geographic context in which students have
grown up. A sample has been selected from the population of students who com-
pleted their secondary school schemes in 2006 and applied for an entrance test
or directly enrolled at the University of Cagliari in the 2006–2007 academic year
(69.3% of the population applied for an entrance test and the 31.7% directly enrolled
to a faculty). A CATI survey was carried out in April–May 2007. The sampling rate
has been set equal to about 10% of the overall population. The sample size is equal
to 494 units. The 7.6% of the sample is composed by students who did not applied at

Table 1 Some descriptive statistics

Variables Sample Population Variables Sample Population

School∗ (%) Age

Liceo 45.95 46.84 Mean 19.88 19.93
Not-Liceo 54.05 53.16 Median 19.28 19.37
Faculty (%) SD 2.74 2.75

Economics 10.88 11.87 Final mark§

Pharmacy 4.31 4.29 Mean 79.07 79.23
Law 12.73 11.79 Median 78.00 78.00
Engineering 16.22 17.90 SD 12.51 14.18
Literature 10.88 9.92 Sex (%)
Foreign Languages 4.52 5.78 F 58.10 62.05
Medicine 3.29 4.80 M 41.90 37.95
Educational Science 6.16 7.77
Sciences† 13.76 14.84
Political Science 9.65 11.09
None‡ 7.60 -
∗The Liceo provides a classical education such as the old British Grammar Schools.
†Math, Physics, Biology, Chemistry, Natural Science, Computer Science.
‡The sample column contains 37 people who did not enrol after failing the admission tests.
§ At school graduation (in hundreds of pts.).
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Table 2 Items contains and percentage of positive responses

Items % Yes

CCF M
I1 Student’s parents belong to a cultural association 22.9
I2 Student has attended non-school music classes 40.9
I3 Student has attended non-school foreign language classes 36.7
I4 Student’s family has traveled for holidays 72.4
I5 Student has visited cultural expositions with parents 10.9
I6 Student’s parents have used to buy non-school books as a gift 24.5
CCP A
I7 The student has bought books as a gift 12.9
I8 The student has bought non-school books for herself 38.9
I9 The student has attended classical music live performances 2.4
I10 The student has attended pop music live performances 11.3
I11 The student has attended jazz music live performances 1.2
I12 The student belongs to a cultural association 22.1

the University of Cagliari after failing the admission test to a specific faculty. Some
descriptive statistics are depicted in Table 1.

The family made and the pro-active sub-components are measured by actions
/ activities made by the students or by their families. These actions are described
by the items listed in Table 2. For each of the 12 items the percentage of positive
answers is reported in the last column. Item contents have been defined in order
to build up a measurement instrument which made possible comparisons across
students belonging to different faculties and to have a picture of their general level
of CC at the moment they enter at the university. The selected actions require that
students / families own a minimum amount of CC in order to be acted and the
minimum threshold varies across them. Questionnaire items concern general habits
that are not linked to university / school curricula. The family made sub-component
loads all items which require that the family has activated a specific action in order to
be positively answered by students (i.e. to enrol children to private language classes
or music lecturers, to visit cultural exposition, or to travel for holiday, etc.). The
pro-active sub-component is addressed to account for all the activities / habits that
students practice without a direct involvement or support of the family but for a
personal interest (i.e., to attend music live exhibition, to buy books, or to belong to
a cultural association, etc.). In the following we focus on the analysis of these two
sub-components and on the statistical methods useful to scale them.

3 Scaling the Cultural Capital via LCA

Latent Class Analysis (LCA) is applied in order to sort out a number R of mutually
exclusive classes of individuals (the latent classes of the categorical latent variable)
who are supposed to possess different amount of the latent variables [1, 3, 8] mov-
ing from individual responses to the manifest variables (cross classification of I
polythomus or binary indicators). Individuals (students) are classified into clusters
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based upon membership probabilities (posterior probabilities). Each latent class
(LC) groups students who share the same level of Cultural Capital (with respect to
the specific dimension defined by the set of items). The assumption of a basic latent
class model is that responses Yj(Y j1, . . . ,Y j I ) of individual j ( j = 1, . . . , n) to a
set of (binary or polythomous) manifest variables I (i = 1, . . . , I ) are independent
conditionally upon the latent classes r = 1, . . . , R of the categorical latent variable
θ to which the individual belongs to. In the case of binary items, Yi j is an indicator
variable (which can assume values 0 or 1), πir the probability that an observation
in class r answers positively to item i (the item-response probabilities conditional
upon the latent class membership), γr the probability to belong to class r of the
latent variable θ (the latent class membership); the probability to observe a specific
response pattern given that the student is in the latent class r is defined as:

πy j1...y j I |θr =
I∏

i=1

π
y ji
ir (1− πir )

(1−y ji ). (1)

The contribution of individual j to to the likelihood is obtained by the summing the
Eq. 3 over the R latent classes. The LCA has been estimated adopting the poLCA
package implemented in R by D. A. Linzer and J. Lewis [8] which uses the EM
algorithm in order to maximizing the log-likelihood function.

Table 3 shows the LCA for the 2, 3, and 4 LCA models measures of fit. The
analysis was carried out separately for each sub-component. The 3 class model was
retained for both. Moving from the item response probability conditional upon the
LC memberships the profile of each LC was sketched out and LCs were ordered
according to the degree of CC owned by their members (moving from the lowest
to the highest amount). The criteria adopted for sorting out classes is based on the
item response probability conditional upon class membership: values of πi |θr was
used to sort out the LCs and to label them. Moreover, the rate of positive answers
to each item (see Table 2) helps us to classify each item in the range among easy
and difficult. According to the criteria used to sort out categories, the relation C1 <

C2 < C3 holds on both sub-components.
Looking at the rate of positive answers in Table 2 arises that item I5 (to visit

cultural expositions) contains information on the activity that requires students the
highest level of family made CC in order to be made. The rate of positive responses
is 11.3%. It is followed by I1, I6, I3, I2 and I4, which have percentages equal to
22.9, 24.5, 36.7, 40.9 and 72.4%, respectively. It is interesting to highlight that the
three activities with the lowest rates of positive responses are those which requires a
direct involvement of students’parents in the action. Students clustered in C2 show a
slightly higher probability than students clustered in C3 to answer positively to items
I1 and I2. However, considering that in the remaining four items students classified
in C3 show higher probability of providing positive answers, we rank C2 < C3.
Furthermore, students clustered in C3 are those who possess an amount of family
made CC sufficient to answer positively to item I5.

Looking at the second component pro-active CC it seems straightforward to
order C1 < C2 < C3. The ranking of the items according to the rate of positive
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answers is: I11, I9, I10, I7, I12, I8. Students in C1 exhibit a probability close
to 0 to score positively in four items out of six, whereas students in C3 show
the highest probabilities to score positively in four items out of six (I7, I9, I10,
I11). The response pattern of the second class is in the middle. Predicted class
membership (CM) vectors are [0.47, 0.42, 0.11] for the first sub-component and
[0.60, 0.38, 0.02] for the second one.

On the basis of the family made sub-component, the first class (C1) identifies
students who received from their family low intensity actions (L I A) of CC , the
second (C2) moderate intensity actions (M I A) and the third (C3) high intensity
actions (H I A). On the pro-active sub-component, students in C1 are classified as
no active (N A), those in C2 as slightly active (S A) and those in C3 as moderately
active (M A). From this classification arises that the second component is strongly
biased towards negative categories.

The result depicted in this first analysis is that the level of Cultural Capital is
measured on the basis of actions made by students or by their families which are not
“calibrated” with respect to the intensity of CC owned by the population of students
surveyed.

Furthermore, results could suggest that the rule chosen in order to classify a stu-
dent response as positive (i.e., the actions described in the item had to be made fre-
quently) seems to be too restrictive with respect to the overall level of CC observed
in the sample. This consideration holds for both sub-components: just one item out
of twelve has a rate of positive answers greater than 50%. The next part of the paper
is devoted to an explorative analysis of the characteristics of the actions (which
signal different intensity of CC) selected as indicators of the two sub-components
in order to assess how much they are calibrated with respect to the level of CC
owned by the surveyed population.

4 Assessing the Difficulty Level of the Survey Questionnaire
Using a Bidimensional IRT

In this section we use some tools provided by the Item Response Theory (IRT)
in order to get a relative measure of the difficulty level of the questionnaire. The
aim is to better understand the LCA results on the light of the characteristics of
the items used to scale the two unobservable sub-components of the CC . An item
in the questionnaire is considered relatively difficult with respect to another if it
requires a higher level of family made or pro-active CC in order to be positively
answered. Basically, IRT models assumes that the chance to score positively to an
item depends on two parameters related to that item (in psychometric literature such
parameters are called difficulty and discrimination) and on a subject parameter (abil-
ity parameter). Higher levels of the ability (the latent variable) imply an increase in
the probability to observe a positive response to each item [2, 6, 7]. In order to
jointly measure both sub-components of students’ CC – CCP A and CCF M – two
ability parameters are introduced in the model. This is done by considering the latent
variable CC as a bidimensional random variable with a known distribution.
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Specifically, the probability that unit j answers positively to an item i is modeled
as function of a difficulty parameter (βi ), a discrimination parameter (λi ) and two
person parameters (θ j )

logi t (πi j ) = βi +
2∑

r=1

λirθ jr ; (2)

the latter have been specified bivariate normal θ j [θF M j , θP Aj ] ∼ N (0,Σ). The
main advantage of modelling the latent variable CC using a bidimensional model
rather than fitting a model for each set of indicator is that the connection between
the two sub-components are specifically taken into account and the estimates of
the parameters relay on the overall observations. Moreover, the approach allows to
have estimates of the difficulty parameters which are comparable across the two
sub-components [9]. In the framework of the quantification of the CC the lower is
βi , the higher is the intensity of the CC measured by the aspect i and the higher is
the minimum level of CC required to students in order to provide a positive answer.
Thus, the higher is βi the easier is the item (i.e. the lower is the intensity of CC
measured by a question). The vector Λi [λi1, λi2] is composed by two binary indi-
cators which specify on which dimension item i loads. We made the assumption that
items have the same power to discriminate between subjects with different levels of
ability by fixing loadings equal to one on each sub-component. Each θ jr measures
the intensity of sub-component r of the latent variable, namely CCP A or CCF M , in
subject j . The higher is the level of θ jr in student j , the greater is the probability
that he/she answers positively to items which tap on dimension r .

Looking at the sub-component CF M (Table 4) the easiest item is I4 (to travel
frequently for holidays with family) with an odds to observe a positive answer equal
about to 3. The odds associated to items I2 (β2 = −0.43, odds = 0.65) and I3 (β3 =
−0.64, odds = 0.53) highlight that both are relatively easier than the remaining three
items (I1, I6, I5). The most difficult item is I5 (β5 = −2.39) with an odds to answer
positively equal to 0.09.

In the second sub-component CCP A, the two easiest items I8(−0.57) and I12
(−1.57) have odds equals to 0.56 and 0.21; the most difficult items are I9 and I11
which have item parameters equal to −4.29 and −5.02 and odds close to 0.

Table 4 Results of the bidimensional item response model

Item parameter estimates

Item Coef. CCF M (odds) p-value Item Coef. CCP A (odds) p-value

I1 −1.41 (0.24) 0.00 I7 −2.33 (0.10) 0.00
I2 −0.43 (0.65) 0.00 I8 −0.57 (0.56) 0.00
I3 −0.64 (0.53) 0.00 I9 −4.29 (0.01) 0.00
I4 1.12 (3.06) 0.00 I10 −2.51 (0.08) 0.00
I5 −2.39 (0.09) 0.00 I11 −5.02 (0.01) 0.00
I6 −1.30 (0.27) 0.00 I12 −1.57 (0.21) 0.00

Random effects estimates
var(θF M ): 0.82 (SE= .14), var(θP A): 1.33 (SE= .27), cor(θF M , θP A) 0.72
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Fig. 1 Box plot of posterior means of students θF M and θP A by CCF M and CCP A class
membership

The main results singled out by the model is that the structure of the test appears
to be “too difficult” with respect to the average level of the CC owned by the
surveyed students. Specifically, excluding item I4, all item parameters have a neg-
ative sign and the highest odd to get a positive answer is 0.65. On the second sub-
component the test appears to be even more difficult to cope with: four items upon
six have odds equal or lower than 0.10 (i.e. item I7, I9, I11).

The posterior means – empirical Bayes predictions [10] – of the person param-
eters for both sub-components (CCF M and CCP A) show that differences in the
intensity of cultural capital are clearer highlighted by using the LCA methods which
considers both latent variables categorical. The distribution of the posterior means
of students person parameters on the two sub-components conditional upon the
class-membership is depicted in Fig. 1. The bunching of the sample in three clusters
obtained with LCA seems to be adequate and this result validates the classification
obtained adopting LCA.

5 Some Final Remarks

The attention of this research has been focused on the analysis of the items com-
posing the sections of questionnaire addressed to measure two sub-components of
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the latent variable Cultural Capital, namely CCF M and CCP A, and on their relative
effectiveness in highlighting differences in the amount of Cultural Capital owned by
students. For each sub-component the LCA was used in order to classify students in
three mutually exclusive classes characterized by different intensity of the amount
possessed of the latent variables. The bidimensional model (IRT), adopted in order
to validate the results of the LCA, provides a relative evaluation of the difficulty of
the questions relaying on responses to the overall set of 12 indicators. It shows also
a classification of students and items which are consistent with the results obtained
using LCA: the most difficult items are those which are scored positively just by
students belonging to LC C3, whereas the probability to answer positively to items
(relatively) easy does not show significant differences among the three categories.
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Assessment of Latent Class Detection in PLS
Path Modeling: a Simulation Study to Evaluate
the Group Quality Index performance

Laura Trinchera

Abstract Structural Equation Models assume homogeneity across the entire sam-
ple. In other words, all the units are supposed to be well represented by a unique
model. Not taking into account heterogeneity among units may lead to biased results
in terms of model parameters. That is why, nowadays, more attention is focused on
techniques able to detect unobserved heterogeneity in Structural Equation Models.
However, once unit partition obtained according to the chosen clustering methods, it
is important to state if taking into account local models provides better results than
using a single model for the whole sample. Here, a new index to assess detected unit
partition will be presented: the Group Quality Index. A simulation study involving
two different simulation schemes (one simulating the so called null hypothesis of
homogeneity among units, and the other taking into account the heterogenous sam-
ple case) will be presented.

1 Introduction

Heterogeneity among units is an important issue in statistical analysis. Treating the
sample as homogeneous, when it is not, may seriously affect the results [6]. In Struc-
tural Equation Models (SEM) [2, 7] all the units are most often supposed to be well
described by a unique model. Nevertheless, this hypothesis may often turn to be
false. Recently, several techniques able to provide clustering in PLS Path Modeling
(PLS-PM) [8, 10] have been presented [5, 6, 9]. However, no matter which method
is used to cluster units, once the latent groups are identified, it is important to assess
the differences between the detected classes of units and to evaluate the quality
of the obtained partition. The first point essentially entails comparing the obtained
local models to one another as well as with the global model. In PLS-PM framework
only non parametric procedures and resampling methods, such as a bootstrap based
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technique, are available. As regards the second point, i.e. assess the quality of the
obtained partition, no specific index or methods have been developed until now.
Here we meet this need by presenting a new index to evaluate the quality of the
obtained partition: the Group Quality Index (GQI).

The remainder of the paper it is organized as follows: first we introduce the GQI
(cf. 2), then a simulation study to asses the GQI properties is presented (cf. 3),
to conclude a discussion on the obtained results and of the directions of further
research is provided (cf. 4).

2 A New Index to Assess Group Separation in PLS-PM:
The Group Quality Index

Assessing the quality of a PLS-PM is a difficult task. It is well known, that PLS-
PM is a completely distribution free approach [10]. Thus, standard fit index and
inferential process are not yet valid. Moreover, PLS-PM does not seem to optimize
a well established global scalar function. Hence, no comparable global goodness of
fit criteria are available. Furthermore, it is a variance-based model strongly oriented
to prediction. Thus, model validation focuses on the model predictive capability.
Following this idea, Amato et al. [1] recently proposed the Goodness of Fit (GoF)
index. This remains the only available measure to evaluate the global model fitting
in a PLS-PM model. Such index has been developed in order to take into account
the model performance in both the measurement and the structural model, that is
why two different parts compose the index:

GoF =

√√√√√

∑
q:Pq>1

∑Pq
p=1 Cor2

(
x pq , ξ̂q

)

∑
q:Pq>1 Pq

×
∑J

j=1 R2
(
ξ̂ j , ξ̂q:ξq→ξ j

)

J
(1)

where Pq is the number of manifest variables in the q-th block, x pq is the generic
manifest variable in the q-th block, ξ̂q is the generic latent variable score, J is the
number of endogenous latent variables in the model and ξ̂ j is the generic endoge-
nous latent variable score.

By looking at Eq. in (1) it is possible to notice that both terms of the product
under the square root can be seen as portions of explained variances. As it is well
known the R2 index in a simple regression is an indicator of how well the model
fits the data. In fact, the smaller the variability of the residual values around the
regression line relative to the overall variability is, the better the prediction obtained
by the model is. The residuals play a central role in stating the quality of a model.
Following this idea it is possible to rewrite the GoF index using residuals as:
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GoF =

√√√
√√

1
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∑
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(

1−
∑N

i=1 e2
i pq

∑N
i=1

(
xipq − x pq

)2

)

×
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√

1

J

J∑

j=1

⎛

⎜
⎝1−

∑N
i=1 f 2

i j

∑N
i=1

(
ξ̂i j − ξ̂ j

)2

⎞

⎟
⎠ (2)

where eipq is the measurement model residual for the i-th unit, corresponding to
the p-th manifest variable in the q-th block, i.e. the communality residual, and fi j is
the structural model residual for the i-th unit, corresponding to the j-th endogenous
block. These two kinds of residuals are the same as used in REBUS-PLS algo-
rithm. For further information about how computing these residuals please refers
to Trinchera [9] and Esposito Vinzi et al. [5]. In particular, the communality resid-
uals are the residuals of the simple regressions of each manifest variable on the
corresponding latent variable, while the structural residuals are the residuals of the
OLS simple and multiple regressions of the endogenous latent variables on their
exogenous latent variables.

If more than one class is taken into account, i.e. if the N units are split into K
classes each one of size nk , the GoF index as expressed in Eq. (2) can be refor-
mulated leading to the GQI. Therefore, in the case of K classes the GQI can be
expressed as:

GQI =

√√√√√
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⎞

⎟
⎠

⎤

⎥
⎦

(3)

This index is equal to the GoF in the case of a unique class, i.e. when K = 1 and
n1 = N . In other words, the GQI computed for the whole sample as a unique class
is equal to the GoF index computed for the global model.

If local models performing better than the global model are detected the GQI
index will be higher than the GoF value computed for the global model. As a matter
of fact, local models performing better than the global model mean working with
residuals that are smaller than the ones computed for the global model. And this
directly entails obtaining a higher GQI index than the one obtained for the global
model. Of course, the GQI can be considered as an average of the class specific GoF
index. Nevertheless, expressing the GQI as in Eq. (3), allows us to directly compare
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the same index among different partitions of the units (and with the aggregate solu-
tion of the global model too).

To assess the quality of the detected partition it is possible to perform a permuta-
tion test procedure [3] involving T random replications of the unit partition (keeping
constant the group proportions as detected by the chosen clustering method). In this
way an empirical distribution of the GQI index will be obtained. The GQI of the
partition obtained by the chosen clustering method will be compared to the empirical
distribution in order to assess if the detected partition performs better than a random
assignment of the units, and better than the global model.

In the next section a simulation study to investigate the properties of the GQI is
presented. The use of GQI to asses unit partition in a real case application is shown
in [4].

3 Simulation Study

3.1 Design of the Numerical Example and Data Simulation

This simulation study aims at testing the GQI capability in assessing unit parti-
tion in two different situations, i.e. when the simulated data are affected by unob-
served heterogeneity and the simulated local models really differ as regards model
parameters, and when the simulated data are strictly homogenous, i.e. when the
simulated local models do not differ. Here, a simple marketing type model will be
used. The postulated model is composed of one latent endogenous variable, Cus-
tomer Satisfaction, and two latent exogenous variables, Price Fairness and Quality
(cf. Fig. 1). Each latent exogenous variable (Price Fairness and Quality) has five
manifest variables (reflective mode), and the latent endogenous variable (Customer
Satisfaction) is measured by three indicators (reflective mode). Here, we want to
assess if in case of heterogenous data, the partition showing the highest GQI is the
one whit the highest prediction power, i.e. the simulated one. This study intention-
ally uses a clear cut example of a marketing related path model for data simulation

Fig. 1 Experimental model



Assessment of Latent Class Detection in PLS Path Modeling 285

purposes. The data generation procedure is based on the LISREL-type approach.
In other words, once the model parameters are established, the data are generated
according to the implied covariance matrix, using a specific SAS-IML c© macro
developed by the author. For both the simulation schemes two latent classes, each
of 200 units, are supposed to exist. Thus, the data on the aggregate level for each
of the numerical examples includes 400 units. Moreover, for each of the postulated
simulation scheme 100 sets of simulated data are computed. In total, the analysis
involves 200 marketing related numerical examples on different sets of simulated
data.

3.1.1 Simulation Scheme for the Heterogeneous Data-Sets

Unobserved heterogeneity involving both the structural and the measurement mod-
els directly means working with local models that are different as regards both the
path coefficient values and the measurement model parameter values (i.e. the load-
ing and outer weight values). In a simple model, as the one postulated above, hetero-
geneity in the model implies detecting price sensitive consumers, or those requiring
price fairness, and consumers who have the strongest preference for another par-
ticular product attribute, e.g. quality. For more details on simulation scheme for
heterogenous data-sets please refers to Table 1. 100 data-sets keeping the postu-
lated features have been simulated. For each of these 100 data-set the GQI index
is computed for both the global model (i.e. by computing the residuals of each unit

Table 1 Simulated values for model parameters

Heterogenous data-sets Homogenous data-sets
Model parameters Class 1 Class 2 Both class 1 and class 2

No. of units 200 200 200
Path Coefficients:
Price→Sat 0.9 0.1 0.8
Quality→Sat 0.1 0.9 0.8

Loadings Price:

P1 0.9 0.9 0.9
P2 0.9 0.9 0.9
P3 0.1 0.9 0.9
P4 0.9 0.9 0.9
P5 0.9 0.9 0.9

Loadings Quality:

Q1 0.9 0.9 0.9
Q2 0.9 0.9 0.9
Q3 0.9 0.1 0.9
Q4 0.9 0.9 0.9
Q5 0.9 0.9 0.9

Loadings Satisfaction:

S1 0.9 0.9 0.9
S2 0.9 0.9 0.9
S3 0.9 0.9 0.9
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from the global model regardless of the unit membership to a class) and the simu-
lated local models (i.e. by computing the residuals of each unit from its own local
model). Afterwards, for each simulated data-set, 100 random replications of the
unit partition in two classes (keeping constant the group proportions as simulated)
are computed in order to perform a permutation test. In this way an empirical distri-
bution of the GQI index is obtained. The GQI obtained for the simulated partition
is compared to the empirical distribution in order to assess if the detected partition
(in our case the simulated partition) performs better than a random assignment of
the units, and better than the global model.

3.1.2 Simulation Scheme for the Homogeneous Data-Sets

In the case of homogenous data-sets all the units are supposed to be well described
by a unique model. Two fictitious latent classes showing the same model parame-
ters both in the measurement and in the structural models have been simulated [see
Table 1]. 100 data-sets keeping the postulated features have been simulated. For
each of these 100 data-sets the GQI index is computed for both the global model
and the simulated fictitious local models. Once again, for each simulated data-set,
100 random replications of the unit partition in two classes (keeping constant the
group proportions as simulated) are computed in order to perform a permutation
test. Of course, we expect that the GQI indexes for both the global model solution
and the (fictitious) partitioned data solution are similar. Moreover, we expect that
the GQI value computed for the partitioned data solution is not an extreme value of
the obtained empirical distribution.

3.2 Simulation Study Results

Following the permutation test approach, each of the 200 data-sets (both homoge-
nous and heterogeneous data) has been randomly divided 100 times into two classes
of the same size as the simulated ones. The GQI has been computed for each of the
random partitions of the units. An empirical distribution of the GQI values for a two
class partition of the units is therefore obtained for each of the simulated data-sets.

Firstly we present the results obtained for the heterogeneous data-sets. In par-
ticular, in Table 2 and in Fig. 2(a) the results obtained as regards one of the 100
simulated heterogenous data-sets are shown. In Fig. 3, instead, the GQI distribution
for all the 100 heterogeneous data-sets is shown. For each of the simulated heteroge-
nous data-sets, the GQI value obtained from the simulated partition of the units, i.e.
for real different latent classes, is definitely an extreme value of the distribution
(cf. Figs. 2(a) and 3). Moreover, analyzing the box-plot obtained for the empirical
distribution of the GQI values for a generic heterogenous data-set (cf. Fig. 2(a)), it
is possible to notice that the GQI computed for the global model (i.e. the GoF value
computed for the global model) is the smaller value obtained for the GQI, except
for extreme solutions. This means that a unit partition always surpassed the perfor-
mance of the global model. In other words, the global model has to be definitely
considered as affected by heterogeneity. Moreover, the GQI value obtained for the
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Table 2 Permutation test results for a generic heterogeneous data-set and a generic homogeneous
data-set : simple statistics

Heterogenous Homogenous
Simple statistics data-set data-set

No. of observations 102 102
Minimum 0.445 0.881
Maximum 0.831 0.884
1st Quartile 0.451 0.882
Median 0.453 0.883
3rd Quartile 0.456 0.883
Mean 0.429 0.883
Lower bound on mean (95%) 0.450 0.883
Upper bound on mean (95%) 0.465 0.882

GQI for SIMULATED partition 0.820 0.882
GQI for the GLOBAL model 0.449 0.883

(a) results for an heterogenous data-set (b) results for an homogenous data-set

Fig. 2 Empirical distribution of the GQI values obtained by permutation test

Fig. 3 Permutation test results for all the heterogeneous data-sets
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Fig. 4 Permutation test results for all the homogeneous data-sets

simulated partition is the highest obtained value. In Table 2 the simple statistics con-
cerning the empirical distribution of a generic heterogenous data-set are presented.
Here we can notice that the GQI index computed for the simulated partition is an
extreme value as regards the empirical confidence interval (α = 0.05) obtaining
by permutation test. To conclude, analyzing the Fig. 3, it is possible to notice that
similar results are obtained for all the heterogenous simulated data-sets. This allows
us to assess that in the case of heterogenous data the simulated partition of the units
is better than a random assignment of the units, and is definitely better (in terms of
prediction power) than the global model solution.

Results obtained for the homogeneous data-sets are presented in Table 2 and in
Figs. 2(b) and 4. Once again results obtained for a generic homogenous data-set
are presented in Table 2 and in Fig. 2(b), while the empirical distributions for all
the homogeneous data-sets are shown in Fig. 4. Differently form the heterogeneous
case, in homogenous data-sets the GQI value obtained for the fictitious latent classes
is close to the global model ones, as it was obviously expected. As a matter of fact
the two latent classes show the same model parameters than the global model. Thus
residuals from the local models are similar to residuals computed from the global
model. Moreover, random partitions of units in two classes do not improve the pre-
dictive power of the models. Following the permutation test approach in the case of
homogeneous data-sets no unit partition has to be considered better than the global
model solution, i.e. none of the GQI values can be considered as an extreme value
(cf. Fig. 2(b)). Similar results are obtained for all the homogeneous data-sets. In
fact, the empirical confidence interval (α = 0.05) for each of the 100 homogeneous
data-sets always contains both the global model solution and the simulated one.

4 Discussion and Conclusions

Here, a new index to assess detected unit partition has been presented: the Group
Quality Index (GQI). This index is a reformulation of the GoF index in a multi-
group optic. It allows to assess the quality of the obtained unit partition when
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performing a clustering method in PLS-PM. This simulation study shows that in
the case of homogeneous datasets, the GQI computed for a unit partition equals the
GQI computed for the non partitioned data-set. Instead, in the case of heterogeneous
datasets, the GQI computed for the best unit partition is an extreme value of the GQI
empirical distribution. Thus, we can conclude that the GQI index can be considered
as a good indicator to assess if taking into account local models provides better
performance (in terms of predictivity power) then using a single model for the whole
sample. As future developments are concerned a more complex and more complete
simulation study need to be performed so as to consider differences in groups size.
Moreover, statistical significance of differences between local parameters needs to
be further investigated.

Acknowledgments The Author thanks Vincenzo Esposito Vinzi and Michel Tenenhaus for the
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Non-Linear Relationships in SEM with Latent
Variables: Some Theoretical Remarks
and a Case Study

Giuseppe Boari, Gabriele Cantaluppi, and Stefano Bertelli

Abstract The object of the work is to take into account non-linear relationships in
path analysis models with latent variables. Some theoretical remarks are made to
introduce the context where the presence of non-linearity is to be considered with
reference to both the inner and the outer model.

Diagnostic tools to test the existence of a non-linear relationship are also pre-
sented, mainly with reference to the so-called Kano model. In particular, a procedure
based upon the regression of the response variable, with respect to properly defined
dummy variables, is considered.

An application to data coming from a survey on the customers of a financial
organization is finally presented.

1 Introduction

The structural equation models (SEM) with latent variables typically consider the
following relations

η = Bη + �ξ + ζ (1)

x = �xξ + δ y = �yη + ε (2)

where the inner model (1) states the structural linear relationship among exoge-
nous latent variables, ξ , and the endogenous ones, η, explained by the matrices of
coefficients B, lower triangular, and �; the outer measurement model (2) defines
the linear relationship, so-called reflective, among the latent variables, ξ and η, and
the corresponding manifest variables x and y. When some proxy variables of the
formative type are present, see [2], some relations in the measurement model are
inverted or of the MIMIC (Multiple Indicators Multiple Causes) type. All previous
variables are defined to be the differences from their average values.
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However, in several applications, the relations (1) and (2) do not appear to be of
the linear type; this is mainly attributable, with no loss of generality, to the following
factors:

1. in the structural model

a. presence of quadratic relations
b. interaction effects

2. in the measurement model

a. scaling problems
b. Kano model relationships.

2 Presence of Non-Linearity in the Inner Model

We remember that the structural model is usually assumed to be of the recursive
nature; then a multiple regression approach may be adopted during the Partial Least
Squares (PLS) estimating stage of the structural coefficients. Therefore the preced-
ing 1.a and 1.b cases of non-linearity can be easily dealt with, in the inner model,
by considering, where necessary, additional variables consisting, in the former case,
of the square of the regressors, while in the latter case, of the product of those for
which the interaction effect is assumed. These new latent variables are obtained from
the latent scores estimated during the iterative stage of the PLS algorithm and with
respect to the linear path model initially formulated. For example, with reference to
Ping (cf. [5], [6] and [7]), in order to consider also second order relationships, we
can formulate the model (1) by considering, for example, the following one

η = Bη + B2η
2 + �ξ + �2ξ

2 + ζ (3)

where η2 and ξ2 are vectors whose elements are the squares of the corresponding
elements in η and ξ ; the matrices B2 and �2, lower triangular, present non zero
coefficients in correspondence to the existence of quadratic recursive relations.

Note that the preceding model (3) is considered only during the phase of estima-
tion of the regression coefficients, while, during the first PLS phase, that is to say
the iterative one (aimed at the construction of the latent scores), the estimation pro-
cedure is to be treated according to (1), which does not take into account non-linear
relationships, since the base model, null hypothesis “of linearity”, is being tested.

3 Presence of Non-Linearity in the Outer Model

The non-linear relations, possibly occurring in the reflective measurement model
(2), may arise in consequence of several factors; we will take into account only the
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two mentioned above, that is the problems deriving from scaling procedures and
those concerning the relationships considered by the Kano model.

3.1 Scaling Problems

The non-linear nature of the relations among the generic latent variable and the
corresponding connected proxy variables may ensue from the well-known problem
of the use of conventional measurement scales, usually employed to gather the data
(Likert scales, with a fixed number, k, of steps are typically used). In this case, the
approach proposed by Thurstone (cf. [8]), also presented in [9], seems to be the
more promising, attaining the following results: linearity among the transformed
proxy variables and the corresponding latent variable; distributional normality of
the random variables.

Let X be the specific measured variable: we recall that the Thurstone approach
assumes that the observations are generated by a monotone transformation of the
realizations of a normal random variable, W , which describes the so-called objec-
tive “continuum” implicitely used by the interviewed subjects, in providing their
evaluations.

A simplified scaling procedure may consist in assuming, for this normal random
variable, a mean value corresponding to the sample median x̂0.50 and a standard
deviation given by the following relation

σ̂ = max
(
x̂0.84 − x̂0.50, x̂0.50 − x̂0.16

)
,

where x̂ p is the quantile of order p of the sample distribution of X . The transforma-
tions of the observed scores x j are then obtained with the inverse of the cumulative
distribution function ΦW (·) of that normal distribution and the empirical one, F̂(·),
according to the following relationship

x∗j = Φ−1
W (F̂(x j )) ( j = 1, ..., k − 1)

and conventionally defining

x∗k = max
(
x∗k−1, x̂0.50 + 3σ̂

)
.

Observe that the empirical distribution F̂(·) is defined by means of the sample dis-
tribution of X and max (·) is now used to avoid that the last scale level will assume
a value less than x∗k−1.
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3.2 Kano Model Relationships

In other occasions, the non-linear relation among the proxy variables and the latent
one may be explained by making use of the Kano models, particularly suitable for
the evaluations regarding some tangible aspects chosen to measure the level of qual-
ity or satisfaction assigned by the customers to a specific aspect of a product or a
service.

We will consider, for instance, the various items of a questionnaire defining the
overall evaluation about the personnel of a financial branch: courtesy, technical
competence, responsiveness capacity and personal look. We recall that every item
is associated to a single element of the sets of manifest variables x or y .

Relationships (2) may be classified in the following three types (see [4]):

• basic (must-be or expected)
• linear
• attractive (or exciting).

The first and third types are characterized by the behaviour represented in the two
drawings of Fig. 1. The identification of the type of relation to be used in a particular
situation should be identified, for instance, by observing the scatter-plot diagrams of
the available observations for each item and the corresponding levels of the overall
satisfaction, properly reconstructed when direct observations are not available.

In particular the x axis represents the perceived level of fulfilment of the attribute,
while the y one represents the corresponding satisfaction level. With regard, e.g.,
to relationships of the “basic” type, a complete fulfilment of the attribute does not
improve satisfaction; on the converse, if the attribute is totally unfulfilled, this causes
a complete dissatisfaction.

In fact, considering the i th proxy variable Xi j (i = 1, ..., p j ) linked to the latent
ξ j , we may distinguish, with reference to the effective availability of the latent
scores ξ j , among the three following situations:

• the scores are estimated by the PLS procedure;
• the scores are obtained by simply summing the observed values;
• the scores are available from a further observed variable (partial overall).

Fig. 1 Types of Kano non-linear relationships left: must-be or expected right: exciting
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Observe that the relationship among the latent variable describing the perceived
level of satisfaction and its manifest indicators is, as already mentioned, of the
reflective type, while the Kano model assumes that satisfaction depends upon the
perceived level of fulfilment of the attribute. This is consistent with our suggestion
of testing the null hypothesis “of linearity”, since evidence of non-linearity in Kano
relationship supports the hypothesis of non-linearity also in relationship (2).

In the literature, two different procedures are suggested, with the aim of identi-
fying the presence of non-linearity, which are based, respectively, on the analysis of
proper 2× 2 contingency tables, or, on the other hand, on the regression analysis of
models referring to appropriate dummy variables.

We recall, however, that the statistics produced by the reliability analysis, which
has to be performed, see [10], preliminary to the analysis, for testing the existence
and the validity of the latent construct corresponding to ξ j (under the assumption
of additivity of the measures), may give information useful in showing the possible
presence of non linear relations; in particular, in addition to the Cronbach alpha
and the Dillon-Goldstein Rho indices, the “item to total correlation” and “alpha if
deleted” statistics may be used to this purpose.

3.2.1 Contingency 2 × 2 tables

The procedure, presented in [1], may be, in our opinion, effectively employed only
when the conventional scale used to gather the data explicitly provides the indif-
ference position (objective zero). In this case, the presence of non linearity may be
showed by the analysis of 2× 2 contingency tables built as follows.

With reference to the generic manifest variable Xi j and to the available scores of
the corresponding latent variable ξ j , let define the events

D = dissatisfaction, if ξ j ≤ indifference level D̄ otherwise
F = failure, if Xi j ≤ indifference level F̄ otherwise

and compute the occurrences deriving by the two-way classification showed in the
following table

F F̄
D a b
D c d

(4)

containing the relative frequencies a, b, c, d.
When both b and c are approximately closed to zero (b = c = 0) we can suspect

the presence of linearity. Furthermore, we may distinguish between “basic” and
“attractive” relationship by observing, before all, that the main interest is the study
of Xi j as a function of ξ j and that the group of manifest variables linked to ξ j

should present a mutual positive correlation, being elements of the same measure-
ment scale: the analysis is to be managed, by consequence, with reference to the
conditional events F |D, F̄ |D, F |D̄ and F̄ |D̄. In particular, once defined the statistic
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S = a

a + b
− c

c + d
, (5)

it may be observed that S → 1 suggests a “basic” relationship, while S → 0 denotes
an “attractive” relationship.

We have to remark that, in order to correctly obtain in practice the entries of
the contingency table (4), a proper definition of the indifference value has to be
given, also considering that the estimated latent scores do not possess an explicit
indefference level. We suggest to use the medians of the involved variables.

3.2.2 Regression with Dummy Variables

In [3] a very simple procedure for detecting the presence of non linearity is sug-
gested; it is based on the regression analysis of the relation among the dependent
variable “sub-overall” (the ξ j scores, both estimated or computed) and the dummy
variables Hi and Li , i = 1, ..., p j , defined as

Hi = 1 if Xi j ≥ third quantile, Hi = 0 otherwise (6)

Li = 1 if Xi j ≤ first quantile, Li = 0 otherwise (7)

by estimating the parameters of the following regression model:

ξ∗j = const+
p j∑

i=1

(ai Hi + bi Li ) . (8)

When the coefficients ai and bi , relating to the manifest Xi j , are significant and
have opposite sign, then a linear relation is present between Xi j and ξ j . If only ai
is significant, it is the case of an “attractive” attribute; while if only bi is significant
the attribute Xi j may be defined to be of the “basic” type.

3.3 An Application and Concluding Remarks

The procedures previously described were then applied to a real case, in order to
go deep into the analysis of a model of Customer Satisfaction and compare their
performances. In particular, the applicative example we are introducing concerns
the evaluations given by 200 customers on the facilities of a financial service during
a wider Customer Satisfaction Survey.

The corresponding reference model is represented by a structural equation model
with latent variables and it is used to estimate the overall customer satisfaction level
and its relationship with other measurable aspects of the service. Fig. 2 shows that
part of the model that refers to the evaluation of the physical appearance of the
offices and their practical organization (ξ1), measured by means of the following
three manifest variables:
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Fig. 2 Path diagram section of the relationships considered

X11 = opening time

X21 = neatness of the offices

X31 = comfort and privacy.

The scores of the latent variable ξ1 were estimated with a Partial Least Squares
(PLS) procedure; then, in order to evaluate more in detail the kind of relationship
between ξ1 and the proxies X11, X21 and X31, the dummy variables defined in (6)
and (7) were computed and model (8) coefficients estimated.

The Top Managers of the financial organization, that performed the survey, had
the suspect that linearity was not definitely appropriate to capture the effective rela-
tions among the involved variables; for this reason we proposed to implement this
innovative approach to detect the possible presence of non-linearity with regard to
the analysis of the particular aspect “facilities” of the site where the financial service
is provided.

Table 1 shows the results of the application of the contingency 2× 2 tables pro-
cedure. Observe that the test for non-linearity may be also performed in a sligthly
different way than the form (5) proposed by the authors. One can directly test, for
example, the equality of the following percentages

b

a + b
versus

c

c + d
,

whose rejection gives evidence of non-linearity.
Table 2 summarizes the numerical results of the regression with dummy variables

procedure.

Table 1 Testing non-linearity by means of contingency 2× 2 tables

Attribute b/(a + b) c/(c + d) z p-value

opening time 0.20 0.26 1.011 0.312
neatness of the offices 0.52 0.13 6.476 0.000
comfort and privacy 0.30 0.19 1.873 0.061
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Note that in the reference structural model (1) and (2) the variables are considered
to be differences from the corresponding average; hence the “const” in the model
(8) has zero value.

It can be observed that both procedures suggest that the “neatness of the offices”
attribute (see the corresponding boldface p − value figure) presents non-linearity.
Furthermore, on the basis of the regression procedure, we may clearly classify this
attribute as “basic”: it leaves customer not particularly satisfied when fulfilled but
dissatisfied if unfulfilled.

The remaining relationships appear to be of the linear type.

Table 2 Parameter estimates of model (8), used to check the presence of non-linear relationships

Li Hi
Attribute bi p-value ai p-value

opening time −0.864 0.000 0.250 0.045
neatness of the offices −0.596 0.000 −0.044 0.703
comfort and privacy −0.750 0.000 0.613 0.000

To conclude, we can assess that the regression procedure gives a more complete
interpretation of the actual relationship existing among variables. It also overcomes
the problem of the indifference level definition.
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Multidimensional Scaling Versus Multiple
Correspondence Analysis When Analyzing
Categorization Data

Marine Cadoret, Sébastien Lê, and Jérôme Pagès

Abstract Categorization is a cognitive process in which subjects are asked to group
a set of object according to their similarities. This task was used for the first time in
psychology and is becoming now more and more popular in sensory analysis. Cat-
egorization data are usually analyzed by multidimensional scaling (MDS). In this
article we propose an original approach based on multiple correspondence analysis
(MCA); this new methodology which provides new insights on the data will be
compared to one specified procedure of MDS.

1 Introduction

Categorization, also known as sorting task, is a data collection which consists in
asking J subjects to partition a set of I objects function of their similarities. Once
collected, data are gathered in a co-occurrences matrix which is most of the times
analyzes by multidimensional scaling (MDS).

An alternative consists in gathering the data in an individuals×variables data
table, where the individuals are the objects and the variables are the subjects con-
sidered as qualitative variables: each category corresponds to a group of objects
(these data can also be viewed as a concatenation of J incidence matrices where
each matrix contains as many rows as there are objects and as many columns as the
subject j provides groups). Therefore this data table can be analyzed by multiple
correspondence analysis (MCA). This MCA is the core of a new approach to ana-
lyze categorization data [2]. In comparison to [2] that refers only to MCA to analyze
categorization data, the aim of this article is to compare the analyses of these data
by MDS on the one hand and MCA on the other hand.
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2 Methods

2.1 Multidimensional Scaling

Let C denotes the co-occurrences matrix of dimensions I × I in which the general
term c(i, l) corresponds to the number of subjects that have put the objects i and
l in a same group. From C , several matrices of distance can be calculated. A first
one, denoted D, in which the general term dMDS1(i, l) corresponds to the number
of subjects that haven’t put i and l together, is calculated:

dMDS1(i, l) = J − c(i, l)

This matrix is the one the most used in sensory analysis: Lawless [10], Lawless
et al. [11], Faye et al.[6].

A second possible matrix of distances [3] is:

dMDS2(i, l) = √2(J − c(i, l))

In MDS, once the distance is chosen, two types of MDS are proposed: metric
MDS on the one hand and non-metric MDS on the other hand. Both MDS work from
a dissimilarities or distances matrix but the metric MDS is based on the distances
whereas the non-metric MDS is based on the ranks (in this case, the use of one of
the two distances is equivalent).

When analyzing categorization data, the analyst uses usually non-metric MDS;
but this choice is done without giving a real justification. In this context the distances
themselves have a real meaning with respect to the data and deserve to be considered
as such which brings us to consider only the case of metric MDS. In the sequel when
we use the acronym MDS it will refer to metric MDS.

In metric MDS, when a distance d is chosen, a matrix of scalar products between
objects, denoted W , is computed using the Torgerson’s formula. The general term
of this matrix denoted w(i, l) is obtained the following way:

w(i, l) = −1

2
(d2(i, l)− d2(i, .)− d2(., l)+ d2(., .)),

where d2(i, .) = 1
I

∑I
j=1 d2(i, j) and d2(., .) = 1

I 2

∑I
j=1

∑I
i=1 d2(i, j).

This matrix is then diagonalized in order to obtain the coordinates of the objects
in a new coordinate space. This procedure is called principal coordinates analysis
[1, 8].

When the distance used is Euclidean, all the eigenvalues are positive or null;
when the distance is not Euclidean, some eigenvalues can be negative. In this last
case an Euclidean approximation is realized for example in considering only the
eigenvectors associated with positive eigenvalues (this way of doing is optimal
[4, 7]).
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2.2 Multiple Correspondence Analysis

Categorization data are gathered in a table of dimensions I × J in which each row i
corresponds to an object, each column j corresponds to a subject, and the cell (i, j)
corresponds to the label of the group to which the object i belongs, for the subject
j . Each column of the table can be assimilated to a qualitative variable with K j
categories, where K j denotes the number of groups used by the subject j .

The data table is of type individuals × qualitative variables and thus concerns
multiple correspondence analysis. In this analysis, the data are taken into account
via the so-called disjunctive table, denoted X , which comprises here I rows and
K = ∑

K j columns of general term xik which is equal to 1 if object i belongs to
group k and 0 if not.

MCA provides a representation of the objects that is obtained similarly to the one
provided by PCA (by maximizing the inertia of the projected scatter plot on a new
coordinate basis). This set of objects lies in a K -dimensional space (more precisely,
considering the constraints in MCA, it lies in a (K − J )-dimensional space). In this
space, the distance between two objects i and l is thus defined:

d2
MC A(i, l) = 1

J

∑

k

I

Ik
(xik − xlk)

2

where Ik denotes the number of objects in the group k. For this (Euclidean) distance,
(1) two objects i and l are superimposed if they were put together by all the subjects,
(2) two objects are all the more distant as they were placed in two different groups
by a great number of subjects.

More precisely, a group k (associated with subject j) contributes to this distance
in a way inversely proportional to its size: the assignment to a group of small size
moves an object away from all the others.

2.3 Elements of Comparison Between the Two Methods

Firstly we compare MDS to MCA by looking at the distances (induced by each
method) between two elements on the one hand and between one element and the
center of gravity on the other hand. After that, we look at some helps for interpreting
provided for each method.

Distances between two objects. In MDS, for the first transformation, the cho-
sen distance dM DS1 between 2 objects i and l can also be expressed through the
disjunctive data table:

dMDS1(i, l) = J − c(i, l)

= 1

2

∑

k

(xik − xlk)
2
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Since (xik − xlk)
2 is equal to the absolute value of the difference, dMDS1 appears

as a distance of L1-type which is not Euclidean. This distance corresponds to the
square of the distance of MCA up to the coefficient 1/Ik .

If we use the second transformation, the distance of MDS becomes:

dMDS2(i, l) = √2(J − c(i, l))

=
√∑

k

(xik − xlk)2

As this distance corresponds to the distance of MCA up to the coefficient 1/Ik , it
is Euclidean. This leads to prefer this second transformation to the first one. In the
sequel it is this second transformation which is considered.

For both, whatever the transformation used, contrary to MCA, the size of the
groups provided by the subjects is not apparently integrated in the distance between
two objects.

Remarks: As only MCA seems to take into account the size of the groups, it will
be interesting to consider the case where the Ik are constant: it corresponds to the
case where the number of groups and the number of objects per group are the same
for all the subjects. This may happen in practice as a constraint in some experiments
[9]; from a theoretical point of view this case is worth of interest since the direct
effect of the size of the groups on the distances is no longer effective. For the second
transformation, when the Ik are constant, the distance of MDS corresponds to the
the distance of MCA (up to a coefficient I

J Ik
to be meticulous, but this constant

doesn’t change the shape of the cloud).
Distances to the centre of gravity. To specify the role of each object in the anal-

ysis, we compute its distance to the centre of gravity (denoted GI ) of the whole
objects. In MDS in the case of an Euclidean distance (which is the case of dMDS2),
the square distance of an object to the centre of gravity can be expressed through
the Torgerson’s formula :

d2(i,G I ) = w(i, i)

= d2(i, .)− 1

2
d2(., .)

= 1

I

I∑

l=1

d2(i, l)− 1

2
d2(., .)

In the particular case of dMDS2, it can be rewritten:

d2
MDS2(i,G I ) = J − 1

I 2

∑

k

I 2
k −

2

I

∑

k

xik Ik,
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where the first two terms are constant and only the third one depends on i . In this
distance, the size of the groups is integrated : an object i is all the more distant from
the centre of gravity as it is often isolated.

In MCA, this distance is obtained the following way:

d2
MCA(i,G I ) = I

J

∑

k

xik

Ik
− 1,

where one can find the impact of Ik . As for MDS, in MCA an object i is all the more
distant from the centre of gravity as it is often put in a group of small size.

Remarks: When the Ik are constant, with respect to the distance induced by
MCA all the objects i are equidistant from the centre of gravity and this distance
is equal to:

d2
MCA(i,G I ) = I

Ik
− 1

In MDS for the second transformation, all the objects are also equidistant from the
centre of gravity:

d2
MDS2(i,G I ) = J (1− Ik

I
)

But contrary to MCA, this distance depends on the number of subjects.
Helps for the interpretation. MDS and MCA are based on a singular value

decomposition which provides eigenvalues. These eigenvalues provide an indication
of the quality of representation associated with each dimension. In MCA, it exists
a further interpretation: the eigenvalue associated with a dimension corresponds to
the mean of the correlation ratios between the different variables (subjects) and this
dimension; the eigenvalues are therefore interpretable. Thus, an eigenvalue λs of
1 corresponds to a situation where the correlation ratio between this dimension s
and each subject is of 1: therefore, this dimension is a common structure to all the
subjects. In categorization, an eigenvalue of 1 corresponds to the case where an
object (or a group of objects) was systematically isolated by all the subjects. The
disjunctive table once reordered reveals a diagonal block structure on the data. In
MCA, an axis associated with an eigenvalue of 1 opposes this object (or this group
of objects) to all the others. There is no equivalent property in MDS.

Because MCA works from individual data (and MDS only from aggregate data),
different results and representations can be added to MCA. These further represen-
tations are very useful for the user. They constitute a complete factorial approach for
sorting task data (FAST) described in [2]; some elements are just mentioned here.
First this approach provides a representation of the objects and of the categories. In
addition it provides a representation of the subjects which can be interpreted jointly.
This representation of the subjects is obtained by using the equivalence between
MCA and multiple factor analysis (MFA) [5]: to do so each subject is considered
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as a group of one variable. Elements of validation by means of confidence ellipses
around the objects are also available and are obtained by re-sampling the subjects. In
the case of qualified categorization (when people are asked to describe the groups by
some words), the label of each group can be the words used to describe the groups.
In this case, the optimal representation of the labels/categories provided by MCA
becomes a representation of the words.

3 Application

3.1 Data

In order to compare the two approaches (MDS and MCA) we use a data set in
which the Ik are not constant (because in this case the results are similar) and more
particularly in which one object has been systematically isolated by all the subjects.
In this example (cf. Table 1), 3 subjects have realized a categorization on 10 objects
and they all have isolated the object J .

Table 1 Categorizations of 3 subjects on 10 objects (left) and associated co-occurrences table
(right)

S1 S2 S3

A 1 1 1
B 1 1 1
C 1 2 3
D 3 1 2
E 2 3 1
F 2 2 2
G 3 2 3
H 3 3 2
I 2 3 3
J 4 4 4

A B C D E F G H I J

A 3 3 1 1 1 0 0 0 0 0
B 3 3 1 1 1 0 0 0 0 0
C 1 1 3 0 0 1 2 0 1 0
D 1 1 0 3 0 1 1 2 0 0
E 1 1 0 0 3 1 0 1 2 0
F 0 0 1 1 1 3 1 1 1 0
G 0 0 2 1 0 1 3 1 1 0
H 0 0 0 2 1 1 1 3 1 0
I 0 0 1 0 2 1 1 1 3 0
J 0 0 0 0 0 0 0 0 0 3

3.2 Case of an Object Isolated by All the Subjects

As expected, the first eigenvalue of MCA is equal to 1 (cf. Table 2) and the first
axis opposes this object to the others (cf. Fig. 1). The second dimension of MCA
opposes the objects A and B (always in a same group, cf. Table 1) to the others.

Concerning MDS, the first dimension opposes objects A and B to the others
and therefore corresponds to the second dimension of the MCA (cf. Table 3). The
dimensions 2 and 3 which have the same eigenvalue are defined up to a rotation
(they correspond to the third and fourth of MCA).

In MDS, the singular case of J appears only on the fourth dimension (cf. Table 3).
It is explained by its contribution to the total inertia (cf. Table 4) which is relatively
much more important in MCA than in MDS. Thus, in MDS, the association between



MDS versus MCA in Analyzing Categorization Data 307

Table 2 Eigenvalues and percentage of variance on the dimensions of MCA and MDS

Dim.1 Dim.2 Dim.3 Dim.4

Eigenvalues
MCA 1 0.667 0.478 0.478
MDS 6 4.303 4.303 3.6

Percentage of variance
MCA 33.33 22.22 15.94 15.94
MDS 27.78 19.92 19.92 16.67
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Fig. 1 Representation of the objects in the first plane of MCA (left) and MDS (right)

A and B contributes more to the total inertia than the object J itself and appears on
the first dimension. Whereas in MCA, the object J is so distant to the center of
gravity (cf. Table 4) that it is singled out on the first dimension.

This example shows the difference in the hierarchy of the dimensions in MCA
and MDS. And especially that an object which is systematically isolated by all the
subjects (and so very particular) will appear always on the first dimension of the
MCA but not necessary in MDS. However, this particularity is a major feature of
the data set which as such must be appear first.

Table 3 Correlation coefficients between factors of MCA and MDS
MCA

Dim.1 Dim.2 Dim.3 Dim.4

MDS

Dim.1 0 1 0 0
Dim.2 0 0 0.998 −0.063
Dim.3 0 0 −0.063 −0.998
Dim.4 1 0 0 0

Table 4 Distances of the objects to the centre of gravity for MCA and MDS

A B C D E F G H I J

MCA 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 2.333 9
MDS 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 2.04 3.24
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4 Conclusion

Practitioners often analyze categorization data using MDS. Another approach using
MCA has been proposed. In this paper we compare these two approaches and we
show that MCA has two main advantages of high importance:

• The principle of integrating the size of the groups when computing the distances
between them is crucial: in particular in the borderline case where one object (or
a set of objects) is systematically isolated from the others by the subjects this will
be emphasized by MCA (and not by MDS).

• The possibility to supplement the representation of the objects with some other
graphical and numerical outputs (just mentioned here but developed in [2]).
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Multidimensional Scaling as Visualization Tool
of Web Sequence Rules

Antonio D’Ambrosio and Marcello Pecoraro

Abstract Web Mining can be defined as the application of Data mining processes to
Web data. In the field of Web Mining, we distinguish among Web Content Mining,
Web Structure Mining and Web Usage Mining. Web Content Mining is the Web
Mining process which analyze various aspects related to the contents of a web site
such as text, banners, graphics etc. Web Structure Mining is the branch of Web
Mining that analyze the structure of the Net (or a sub-part) in terms of connection
among the web pages and their linkage design. Finally, Web Usage Mining goal is
to understand the usage custom behaviors of web sites users. Within the context of
Web Usage Mining, pattern discovery and pattern analysis allow to profile users
and their preferences. The sequence rules are association rules ordered in time.
Given a data set coming from a web site which is characterized by a sequence of vis-
its, the proposal is to understand the differences among browsing sections through
a Multidimensional Scaling solution, and then obtain a graphical tool which allows
to visualize in a new way the sequence rules. The resulting application is half way
between Web Usage Mining and Web Structure Mining.

1 Introduction

Web Mining is the Data Mining process applied to Data coming from a single web-
site, a group of websites or from a server [5, 6]. Usually, Web Mining is divided
into three main branches: Web Content Mining, Web Usage Mining and Web Struc-
ture Mining [8]. The input data of Web Usage Mining process comes usually from
log-files or tracking applications. The data are usually connection and visit informa-
tion (time of connection, visited page, downloaded document etc.). Instead, in Web
Content, normally, the data are the text contained in the pages (or specific words
like in text mining). In a Web Structure framework we consider the linkage scheme
between the page of a website, or between pages published various website. Our
idea is to use the traditional input of a Web Usage Mining process to understand the
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similarity among pages of a website, a typical target of a Web Structure Analysis,
and then to visualize the relative sequence rules. In this sense, our application is
half way between structure and usage. In other words we propose an alternative site
map based on “indirect opinions” made by website users. We complete this map
with the indication of the stronger relationship between pages, instead of linkage
schema usually adopted in these cases. This approach recalls the known Process
Mining idea, in which the analyzed website is seen as a unique entity, a unique
process where the link, the usage and the content are strictly related and considered
together.

2 The Idea

This work provides a visualization method based on the use of Multidimensional
Scaling for applications where data are not collected in a direct-way, but in the
case that data are collected by an automatic system (tracking) used for the regular
server activity. As it is known, Multidimensional Scaling has four main purposes
[3]: it is an explorative technique, it can be used for testing structural hypotheses,
it is a technique for exploring psychological structures, it can be used as a model
of similarity judgments. We propose to understand the differences among browsing
sections through sessions analysis via MDS as exploratory tool. The idea is to obtain
a similarity visualization among web pages based on user’s visit habits. Recall that
MDS attempts to model similarity or dissimilarity as distances among points in a
geometric space. On such extent web sections are “similar” when a given navigation
path is treaded by several users. For this reason we talk about implicit behaviors
because similarity among web navigation sessions is not obtained in explicit way
[4]. Particular attention will be dedicated to data pre-processing task and to the
choice of the most appropriated distance measure for the specific problem.

3 The Data

The dataset used for the application comes from UCI machine learning repository.
It refers to about a million of navigation sessions collected in a single day on
msnbc.com, an American general purpose portal and from the news related portion
of msn.com. All the web-pages of this website are originally grouped into seventeen
sections (Frontpage, News, Tech, Local etc.). On the rows there are all the single
navigation sessions. The columns represent the clicking path. On the first column,
there is the first section visited, on the second column the second section visited and
so on (Table 1).

Raw data have been processed by putting into columns all of the seventeen sec-
tion of the website, then for each navigation session the time each section was visited
has been counted. The cells contain the absolute frequency of a given visited section
in a certain session, namely the total number of clicks made by the users in a given
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Table 1 The structure of the data

Session

First
section
visited

Second
section
visited

Third
section
visited

Fourth
section
visited

Fifth
section
visited

Sixth
section
visited ...

1 Frontpage Sports News News Weather
2 Frontpage Opinion Local Tech Opinion Opinion Living
3 Weather Travel Tech
4 News News News Local On-air Frontpage
5 BBS Travel Business Travel Living Living Living
6 Frontpage Sports Local Sports News Opinion
... ... ... ... ... ... ... ...

Table 2 The processed data

Session Frontpage News Tech Local Opinion On-air ...

1 1 2 0 0 0 0 ...
2 1 0 1 1 3 0 ...
... ... ... ... ... ... ... ...

section of the website (Table 2). As the processed dataset is in fact a frequency table,
the chi-square distance is used as distance measure for the multidimensional scaling
solution because it is the most appropriate in dealing with frequencies.

4 The MDS Solution

Figure 1 shows the Multidimensional scaling solution, the goodness of fit indexes
are shown in the Table 3. Note how both STRESS and fit measures are quite good.
Recall that STRESS measures could be close to zero as well as fit measures could
be close to one.

Looking at the two-dimensional MDS solution, the front page is a particular sec-
tion because it is very often the access to the web site and it also is the bridge for the
access to the other sections. Note how sections as Sports and Wheater differ from
News, Local and On air. These are specific sections that are normally visited with
specific interests. Note also how the section Sports differs from the section News
even if they can be considered as belonging to the macro-category News.

The first dimension can be interpreted as the popularity of the sections as well
as the second one can be seen as the informative content of the sections. Indeed in
the upper side of the figure, there are Weather, Sports and MSN sports, the most
specialized contents of the web-page. Instead, in the lower side, there are the most
“general” informative web-pages like News, Local and On-air. This kind of analysis
seems to work good because it shows how users of a web site remark the differences
among sections with their implicit behavior. With this approach, the definition of a
similarity among web site sections is based on user’s behavior. In this way MDS
solution gets a graphical representation of the web-site structure seen with the eyes
of a particular group of people.
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Fig. 1 MDS solution

Table 3 Goodness of fit measures
STRESS and Fit Measures

Normalized raw STRESS 0.029
STRESS-I 0.171
STRESS-II 0.313
D.A.F. 0.971
Tucker’s Coefficient of Congruence 0.985

5 Direct and Indirect Sequence Rules

The graphical MDS solution can be usefully used to visualize the (direct and indi-
rect) sequence rules, namely the association between structures. Association rules
are statements to find interesting rules between two or more objects in a large
database [1, 7]. A rule is interesting if it satisfies minimum support and minimum
confidence threshold (strong rule), so a rule G ⇒ L is strong if its support and its
confidence respect a minimum threshold.

Let G be an item (in our case, a section) called antecedent and let L be an item
(a section) called consequent . Recall that:

SupportG⇒L = P(G ∩ L);
Con f idenceG⇒L = P(G ∩ L)/P(G),

where the support is the proportion of observations in the union of the antecedent
and consequent (hence, it is the estimate of the probability of simultaneously observ-
ing both the antecedent and the consequent), and the confidence is the support of the
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Fig. 2 Bar chart of visited sections

previously mentioned rule divided by the support of the antecedent (hence, it is the
estimate of the probability of the consequent given the antecedent).

When the rules are ordered in time, these statements are called sequence rules
because G comes first L . Following Blanc and Giudici [2], we distinguish between
indirect and direct rules.

A sequence rule is:

• indirect, when between the visited section G and the visited section L , one can
visit other sections;

• direct, when one visits first the section G and then, sequentially, the section L .

Looking at Fig. 2, it can be noted that about 37% of visitors gets only one “click” on
the web site, as well as more than 50% of visitors leave the web site after no more
than two clicks.

For that reason the sequence rules have been computed for visitors with no less
than ten clicks in their navigation session.

Notice that visitors can get several clicks on the same section in the same navi-
gation session because each section contains a group of related pages. For instance,
the section Sport can contain several pages dedicated to different sports.

Figure 3 shows the MDS solution of this reduced version of the dataset and it
represents the visualization of the indirect rules. Normalized Raw STRESS and
STRESS-I indexes are, respectively, equal to 0.028 and 0.167.

Circles which represent the points in the geometrical space are proportional to
the support of the single section with itself in the same navigation session.
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Fig. 3 Indirect rules. Circles are proportional to the support of the single section with itself. Lines
connect the support between two sections

Lines connect the support between two sections. The minimum support consid-
ered was equal to 0.2.

Note that most of the time the same section is visited (not consecutively)
two or more times in the same navigation session. Important indirect rules are
also Frontpage ⇒ Misc, Frontpage ⇒ Business, Frontpage ⇒ News,
Frontpage ⇒ Local, News ⇒ Opinion.

More interesting is the visualization of the direct rules (see Fig. 4). In this case
circles are proportional to the support of the single section with itself for two sequen-
tial clicks. The lines connect support between two sections, as in the previous figure.
Following the suggestion of Blanc and Giudici [2], an imaginary section called Start
has been added in the figure. In this way, the figure shows at the first click which
section has been visited by visitors (just looking at the line between the start section
and any other). In this case the minimum support considered was equal to 0.03. The
most visited section on the first click is Frontpage, On air and News. The figure
emphasizes that most of the sections are visited (at least) two times consecutively,
but it depends obviously on the nature of this specific data set: recall that a given
section can include several pages.

Looking at both figures, the sequences Frontpage ⇒ News and Frontpage ⇒
Misc are the ones which are confirmed in both indirect and direct rules. It is straight-
forward to note that the closeness of the sections in the geometrical space is inde-
pendent from the sequence rules. The MDS configuration shows how two or more
sections are similar given the navigation habit of the users, but it does not mean that
there is a clicking sequence among close sections. It is an alternative graphical tool
to visualize the structure of a web site compared to the classical site-maps.
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Fig. 4 Direct rules. Circles are proportional to the support of the single section with itself. Lines
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6 Conclusions

The Multidimensional Scaling analysis allows to visualize the sections of the web
site in terms of their similarity. This similarity is governed by the frequency where-
with visitors of the web site visit the sections. In this sense we talk about implicit
behaviors of visitors: the MDS solution gets a graphical representation of the web-
sites structure as seen with the eyes of their users. By adding the sequence rules
to the MDS solution, it is possible to visualize the connection between the visited
sections (governed by given association rules) through a graphical representation
which permits simultaneously to keep the similarity structure (or the preference
structure) of the web sections. Indeed this kind of analysis returns an interesting
graphical tool which allows to represent in a geometrical space the visited sections
according their clicking frequency. This visualization allows to better represent, in
a subsequent step, the sequence rules because it is a non-random configuration of
the web sections (or the web pages) in the geometrical space, and it is an alternative
representation compared to the classical site-maps. With such an approach, it is pos-
sible investigate about the association among structures but not about the navigation
paths: future works will be addressed to this last topic.

Acknowledgments Authors are grateful to the anonymous referees for their useful and interesting
comments.
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Partial Compliance, Effect of Treatment
on the Treated and Instrumental Variables

Antonio Forcina

Abstract Under the assumption that treatment assignment has no direct effect on
the response, a non parametric probabilistic model of the distribution involving the
latent confounder under partial compliance leads to a generalized definition of the
effect of treatment on the treated and reveals that the instrumental variable estimand
equals a suitable average of such causal effects only when certain restrictions hold.
An application to a popular data set concerning reduction of cholesterol level is used
as an illustration.

1 Introduction

The literature on causal inference under non ignorable imperfect compliance is
extensive; most contributions are based on the notion of potential outcomes and
the distribution of counterfactual quantities. Hernán and Robins [9], in the case of
binary compliance, clarify the relation between structural mean models and describe
conditions under which the instrumental variable estimator equals the effect of treat-
ment on the treated. When the response is binary, Vansteelandt and Goetghebeur
[15] extend structural mean models to allow for logistic link; Goetghebeur and
Molenberghs [8] propose a model for the generalized effect of treatment on the
treated closely related to the one to be discussed below. The approach based on
the notion of principal strata [5] concentrates on estimating the effect of treatment
on compliers (see, [1] for the case when compliance is binary and [10], for the
extension to the context of partial compliance). Efron and Feldman [3] formulate a
parametric regression model which allows them to estimate che overall causal effect.
In the case of a binary response, Ten Have et al. [14] examine the properties of an
estimator of the marginal causal odds ratio. In the case when treatment assigned,
treatment received and response are all binary, Balke and Pearl [2] have computed
sharp bounds for the overall average causal effect of the treatment by formulating a
plain probabilistic model of the latent distribution within a causal diagram. Geneletti
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and Dawid [7] show that definitions and results concerning the effect of treatment on
the treated may be derived within a Decision theoretic approach to causal inference.

This paper extends the probabilistic formulation of Balke and Pearl [2] to the
case where treatment received and response are not binary and concentrates on the
average effect of treatment on the treated. With partial compliance, this effect may
be defined as a function Δ(t1; t0) giving the improvement that subjects who self
selected the amount of treatment T = t0 would have received by taking T = t1 as
compared to T = 0. We show that, under a set of conditions which extend those
given for instance by Hernán and Robins [9], the instrumental variable estimand is
a suitable average of quantities of the form Δ(1; t), the effects of full compliance
among those who self selected T = t . Our results reveal that the usual instrumental
variable estimand implies a simple linear model of the form Δ(1, t)t = Δ(t; t).

After formulating an unrestricted latent class model in Sect. 2, in Sect. 3 we
derive the relation between the instrumental variable estimand and the effect of
treatment on the treated. Advantages and limitations of a latent class approach to
causal inference are discussed in Sect. 4. The data analyzed by Efron and Feldman
[3] are used in Sect. 5 to exemplify and discuss the methods introduced in the paper.

2 A Latent Class Model for Partial Compliance

In the following we assume that a binary treatment Z is randomized within a pop-
ulation, with 0 denoting control and 1 active treatment. Unobservable individual
heterogeneity, which may affect compliance behavior and response, will be rep-
resented by a qualitative discrete latent variable U and U will denote the set of
its possible levels. Let T denote the actual amount of active treatment taken by a
given unit, this is assumed to depend on Z and U ; for notational convenience, we
assume that T is discrete and varies from 0 (no treatment) to 1 (full compliance).
Let Y denote a binary, ordered qualitative or quantitative discrete response which is
assumed to be independent of Z given U and T ; an assumption known as exclusion-
restriction. When Y is binary, 0 will denote failure and 1 success; when Y is ordered,
we assume that a suitable set of scores measuring success of treatment have been
assigned. Notice that, for patients in the control arm, T measures the amount of
active treatment eventually taken, if available.

These statements may be translated into the following causal directed acyclic
graph (DAG) which is identical to the one used for example by Balke and Pearl [2]
(Fig. 1)

U

Z X Y

Fig. 1 Causal graph for the basic model of partial compliance
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2.1 Notation

In the following, when no ambiguity may arise, conditioning variables will be
denoted by their value, for instance, P(Y = y | u, t) will mean P(Y = y | U =
u, T = t). The relevant features of the manifest distribution conditional on Z may
be determined by parameters of the form ptz = P(T = t | z) and E(Y | t, z). For the
latent distribution, let the marginal of U be denoted by π , a vector with elements
P(U = u), u ∈ U , τ t z denotes the vector whose elements are the compliance
probabilities P(T = t | u, z), ∀u ∈ U ; similarly θ t will be the vector containing the
conditional expectations E(Y | u, t).

A crucial ingredient of the model is the posterior distribution of the latent U
given T, Z which may be interpreted as the distribution of the latent within specific
subsets of the population characterized by their behavior relative to treatment and
compliance. This probability may be expanded by using marginal independence
between U and Z

P(U = u | t, z) = P(U = u)P(T = t | u, z)
∑

u P(U = u)P(T = t | u, z)
.

Let π t z be the vector whose elements are the posterior probabilities P(U = u | t, z),
u ∈ U ; because the denominator equals P(T = t | z) = ptz , we may write,

π t z = diag(τ t z)π/ptz . (1)

3 The Effect of Treatment on the Treated

Within the causal DAG presented above, the causal effect of T within a given value
of the latent U may be measured by the difference

E(Y | T = x, u)− E(Y | T = 0, u);

when u varies in U , this defines the vector δ(x) = θ x−θ0 of causal effects across the
latent that would be obtained by enforcing T = t . By averaging the elements of δ(x)
with the posterior probabilities of self selecting a given level T = t of compliance,
we obtain the effect of treatment on the treated generalized to the case of partial
compoliance

Δz(x; t) = δ(x)′π t z,∀x > 0, (2)

this may be interpreted as the average causal effect of an amount T = x of treatment
among those who took T = t . For the special case of binary compliance see Hernán
and Robins [9], p. 367, Heckman (discussion of [1]) and Geneletti and Dawid [7].
When t = x , Δz(x; t) is not a proper conditional expectation, nonetheless it is a
meaningful causal parameter.
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3.1 The Instrumental Variable Estimand

Because Z is binary, the probabilistic analog of the so called instrumental variable
estimator may be written in the form

δI V = Cov(Y, Z)

Cov(T, Z)
= E(Y | Z = 1)− E(Y | Z = 0)

E(T | Z = 1)− E(T | Z = 0)
.

For what follows it is useful to state the two following results whose proofs are given
in the Appendix:

Theorem 1 The vector of conditional covariances may be decomposed as

Cov(Y, Z | u) =
∑

t>0

diag(τ t1 − τ t0)δ(t). (3)

This equation may be interpreted as the latent class analog of Eq. (9) in Angrist et al.
([1], Sect. 2.2), extended to the case of T non binary. It indicates that, conditional
on the latent, the overall effect of Z on Y may be decomposed as the sum of the
products of the effect of Z on T times the effect of T on Y .

By using (3) it is possible to express the numerator of the instrumental variable
estimand in terms of the partial effects of treatment on the treated

Theorem 2 The numerator of δI V may be written as

Cov(Y, Z) =
∑

t>0

[Δ1(t; t)(pt1 − pt0)+ pt0(Δ1(t; t)−Δ0(t; t))]. (4)

This expression is useful to relate the instrumental variable estimand to an average
causal effect as described below.

When T may take one or more values between 0 and 1 and the treatment is not
available in the control arm, (4) implies that

δI V =
∑

t>0(Δ1(t; t)/t)(tpt1)∑
t>0 tpt1

; (5)

this may be interpreted as follows: under a linear structural mean model Robins
[12] saying that Δ1(t; t) = tψ , clearly δI V = ψ . Under the slightly more general
model Δ1(t; t) = tΔ1(1; t), δI V equals the average effect of full compliance across
subjects who self selected different values of T = t with weights proportional to
tpt1. This suggests the following extension of the instrumental variable estimand:
let g(t) be a known function which is strictly increasing and such that g(0) = 0 and
g(1) = 1; then if we assumed that Δ1(t; t) = g(t)Δ1(1; t), the appropriate measure
of causal effect would be provided by

δI V,g = Cov(Y, Z)

Cov(g(T ), Z)

which is still an average of Δ1(1; t)’s where heavier weights for stronger com-
pliance depend on the g function. Possible instances of g(t) are: tk , (exp(t) −
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1)/(exp(1) − 1), log(t + 1)/ log(2). Though a model for the causal ratio
Δ1(t; t)/Δ1(1; t) cannot be identified from the data alone, when the experiment
is double blind and compliance is measured in the control arm, Δ1(t; t) may be
identified under reasonable assumptions (see [3]) and its shape may allow to explore
possible specifications of g(t); an investigation along these lines is contained in
Sect. 5.

4 Discussion

This paper describes a plain probabilistic model for the identification of treatment
effects under partial compliance. This is not to claim that the latent class formu-
lation proposed here is superior, the idea being that different formalism may be
seen as different “languages”, “each with their virtues and vices”, as Lauritzen [11]
put it. Because the latent variable is meant to represent all possible confounders as
for instance in Balke and Pearl [2], the causal effects as defined at the beginning
of Sect. 3 are not merely probabilistic quantities but a close analog of individual
causal effects. By taking this philosophical attitude, the paper indicates that the plain
probabilistic formulation reveals certain features, like the bivariate structure of the
effect of treatment on the treated extended to partial compliance and its relation
to the instrumental variable estimator, which seems to add something new to the
understanding of the problem. A latent class model may also be useful as a data
generating tool to examine which latent construction is necessary for the causal
quantities Δz(x, t) to be, for instance, constant in t and increasing in x or to satisfy
the condition of “no effect modification by Z”.

Though latent class models imply the existence of perfectly homogeneous latent
groups of experimental units; this is mainly a conceptual rather than a substantial
restriction as long as we are not interested in estimating the full latent distribution
but simply certain average causal effects. Forcina [4], in the much simpler case of
binary compliance, in an attempt to identify the full latent distribution, was forced
to assume deterministic latent class models. According to Frangakis [6] intervention
is not a fundamental concept within the latent class formulation, but this is a merely
philosophical objection. According to Robins et al. [13] a latent class formulation
is isomorphic to a causal DAG; as such, there does not exist any parameter which
represents the effect of treatment on the treated and proposed a partially determinis-
tic DAG where such parameter exists. As far as I can understand, this means that a
“G-formula” does not exist and thus does not contradicts the results given in Sect. 3.

5 Application

Efron and Feldman [3] (EF for brevity in the following) describe and analyze in
detail a placebo-controlled double-blind randomized clinical trial aiming to measure
the efficacy of cholestyramine for lowering cholesterol level. Because treatment was
not available in the control arm, we may assume that P(T = t | Z = 0) = 0,
thus the instrumental variable estimate is also equal to the average causal effect of
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Table 1 Average causal effects among the treated by deciles of compliance

Deciles D1 D2 D3 D4 D5

t 0.04 0.14 0.27 0.41 0.59
Δ1(t; t) 0.6 10.2 4.0 11.6 18.9
σ(Δ1(t; t)) 19.4 20.3 18.3 26.7 25.4
Deciles D6 D7 D8 D9 D10
t 0.77 0.90 0.94 0.97 0.99
Δ1(t; t) 29.9 27.8 42.0 49.5 55.1
σ(Δ1(t; t)) 27.4 32.2 31.3 29.2 27.0

treatment on the treated in its extended formulation given in (5); this is equal to 41.4
with a s.e. of 3.54, estimated with the delta method.

Because compliance to placebo was also recorded, EF assumed that an unbiased
estimate of Δ1(t; t) may be obtained by comparing the average response among
treated and untreated with the same quantile level t of compliance. The estimates of
Δ1(t; t) and their s.e. within deciles of compliance are displayed in Table 1. EF used
the corresponding quantile estimates to fit various parametric models; by assuming
that π t1 = π t0 and that θ ′0π t1 is linear in t , they were able to estimate the value t̄ for
which Δz(t̄; t̄) equals the causal effect on the whole population: (θ t̄ − θ0)

′π . This
estimate is then extended linearly to full treatment giving a value of 34.5± 4.8; this
is smaller than the IV estimator which gives higher weights to the more compliant
patients.

Here we use these estimates simply to try different g(t) functions in the model
Δ1(t; t) = g(t)Δ1(1; t) and then compute corresponding generalized instrumental
variable estimators. The model is clearly non identifiable because both g(t) and
Δ1(1; t) depend on t . Table 2 below gives the R2 measure of fit by weighted
least squares, of several alternative forms of g(t) and the corresponding generalized
instrumental variable estimate and standard errors under the special assumption that
Δ1(1; t) was constant. Though the cubic model fits best, we believe that it is too
much affected by the last two deciles and provides probably an overestimate of the
causal effect. On the basis of these estimates, the quadratic model provides, perhaps,
the most reliable estimate.

Jin and Rubin [10] analyzed the same data by assuming the existence of several
Principal Strata of subjects characterized by their level of potential compliance rel-
ative to treatment and placebo and derived estimates of posterior medians within
certain typical Strata in a parametric bayesian model. Their estimate for full com-
pliers (when the correlation between the two compliance behaviors is assumed to be

Table 2 Comparison of different generalized instrumental variable estimators

Model for Δ1(x; x) R2 Estimate s.e.

φx 0.83 41.4 3.33
φx2 0.89 51.6 3.35
φx3 0.91 59.2 3.43
φ

exp(x)−1
exp(1)−1 0.88 45.9 3.32
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0) equals 50 with a s.e. of about 3.2, a result which is in close agreement with the
generalized instrumental variable estimate based on a quadratic model.

Acknowledgments The author would like to thank D.R. Cox, P. Dawid, T. Richarson and T. Van-
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Appendix

Proof (Propositions 1 and 2) By using the fact that Z⊥U and Y⊥Z | T,U and the
identity τ 0z = 1−∑t>0 τ t z ,

E(Y | Z) =
∑

t

∑

u

E(Y | u, t, Z)P(t | u, Z)P(u)

=
∑

t

θ ′t diag(τ t z)π =
∑

t

θ ′tπ t z ptz = θ ′0π +
∑

t>0

(θ t − θ0)
′diag(τ t x )π .
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The numerator of the instrumental variable estimator E(Y | Z = 1)−E(Y | Z = 0)
may then be expanded as follows,

=
∑

t>0

(θ t − θ0)
′diag(τ t1 − τ t0)π =

∑

t>0

(θ t − θ0)
′(π t1 pt1 − π t0 pt0)

=
∑

t>0

[Δ1(t; t)(pt1 − pt0)+ pt0(Δ1(t; t)−Δ0(t; t)).



Method of Quantification for Qualitative
Variables and their Use in the Structural
Equations Models

C. Lauro, D. Nappo, M.G. Grassia, and R. Miele

Abstract The article is about the problem of the treatment of qualitative variables
in the Structural Equation Models with attention to the case of Partial Least Squares
Path Modeling. In literature there are some proposals based on the application of
known statistical tecniques to quantify the qualitative variables. Starting from these
works we propose an external quantification for only qualitative variables by the
Alternating Least Squares, obtaining the optimal quantification (vectors of optimal
scaling), a future objective to develop an algorithm that computes simultaneously
the vectors of optimal scaling and the optimal regression coefficients, between the
variables. We will present an application of our method to a real dataset.

1 Introduction

In social and marketing research the study of qualitative indicators to explain some
theories is very important, and their use to clarify the casual relationship is always
more frequent. The presence of qualitative indicators in the estimation of casual
models, as a Structural Equations Model (SEM [4]), is very frequent, as we remem-
ber that in this kind of model generally the ordinal variables that we know to be
qualitative variables are used. The escamotage is to assume the continuity for these
variables, even if the scale of measure could be different between the variables.
With this assumption we can use all statistical techniques created for the study of
quantitative variables. This practice has a large use in the literature, especially for
the Partial Least Squares-Path Modeling (PLS-PM, [10]), in which distributional
hypothesies on data are not necessary. The problems for the estimation are with a
major frequence in presence of dicotomic variables (0/1, absence/presence) or with
variables expressed on small scale of values (3 or 4 values): in these cases it is easy
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to have a problem of significativity of the estimation because the assumption of
continuity of variables is not correct.

We consider a scenario in which we have to estimate a model PLS-PM with
qualitative variables (nominal, ordinal) and we propose a different metodology that
allows us to obtain an external quantification in order to use the classical algorithm
of PLS-PM, to obtain the estimation of the relationship. We have used this approach
to estimate a model, in which the latent blocks are composed by nominal and ordinal
manifest variables.

2 Different Ways to Quantify the Qualitative Variables

Generally in statistics to analyze a qualitative variable is used the binary coding
or the association of an integer number to the modalities (but without the numeric
significant) in order to use the quantitative techniques. Sometimes in the PLS-PM
with this coding we observe that the estimation of the relationship are not signifi-
cant, because the coefficients have the interval confidence around the zero. In the
context of covariance SEM approach to the estimation of the parameters of a model,
the problem is solved by the estimation of the tetracoric/policoric and poliserial
correlation.1 For the PLS-PM a useful validation procedure does not exist when we
have to introduce in the model the qualitative indicators to obtain more informa-
tion. However there are some proposals made by Jakobowicz and Derquenne [3]
and P.G. Lovaglio (2002), that try to individuate some solutions to the problem. E.
Jakobowicz and C. Derquenne [3] propose an algorithm, called Partial Maximum
Likelihood (PML), based on the Generalized Linear Models (GLM), in which they
take into account of the different nature of variables (nominal, numerical or ordinal),
whose final aim is to obtain a quantification of qualitative variables and the estima-
tion of model parameters. The analysis then continues by performing the classical
PLS-PM algorithm. They modify the first step of the PLS-PM algorithm, according
to the nature of manifest variables (nominal or ordinal). The authors introduce the
concept of reference variable as the initial estimation of the latent variable: it is a
manifest variable of any latent block associated to the j-th block that is supposed to
better explain the latent concept. The vector of the initial weights will be equal to
(Lohmöller [7] has demonstrated that for any initial vector of weights the algorithm
of PLS-PM converges):

w0
jh = cov(x jh, xi1) (1)

where xi1 is the reference variable chosen between the blocks associated to j
block. The authors propose a series of statistical methodologies well known in

1 The tetracoric correlation coefficient, introduced by Pearson, is the estimated correlation coeffi-
cient of two continuous variables distributed as a normal, underlying two dicotomic ordinal vari-
ables. The correlation between a continuous and dicotomic (politomic) variable is called biserial
(poliserial) correlation coefficient.
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literature, whose differences between themselves are related to the nature of the
variable x jh and the reference variable xi1. In particular if the reference variable
is numeric and the manifest variable is nominal an ANOVA model will be used.
In the opposite case the chosen model will be a logistic one. If they are both
categorical a Logistic model with one effect will be used, while if the reference
variable is nominal with r categories and the manifest variable is numeric, a poly-
tomic Logistic model will be chosen; if the reference variable is nominal and the
manifest variable nominal a Logistic model with one effect will be applied.The
inner estimation is the same as in the classical PLS-PM algorithm, while for the
outer estimation it is important to consider the nature of the manifest variables.
Another proposal in the literature is of P.G. Lovaglio [8], that proposes an algo-
rithm for the estimation of a latent variable measured by causes and indicators.
The nature of the observed variables can be nominal, ordinal or numerical: the
algorithm computes a regression model in which there are a set of manifest vari-
ables X that are explicative, and a set Y of manifest variables that are dependent
and that define a latent variable. The algorithm estimates, alternating two steps,
the best quantification for the variables X and Y (in the case in which the sets
are composed by qualitative variables) and the best estimation of the parameters
of the model. The algorithm proposed belongs to the family of Alternating Least
Square Optimal Scaling (ALSOS; [2, 9]), and in particular it is based on the join
between two approaches: one is the Non Linear Regression of the set Y on X to
obtain the optimal quantification for both variables, and the second is the Princi-
pal Component Analysis to obtain the estimation of the latent variable as the first
component of Ŷ ′Ŷ . These two methods, that forms the two steps are alternating
until the convergence and the results are the estimation of the regression coef-
ficients and the optimal quantification for the qualitative variables. It is obtained
the convergence, because at each iteration the residual is smaller than the previous
ieration; the aim is the maximization of the redundance index and of the multi-
ple R2. The proposal of Jakobowicz and Derquenne is very interesting, but it is
costituited by methods based on distributional hypothesis, as the ANOVA or the
Logistic model, that is beyond of the characteristics of PLS-PM. Besides in the
proposal of Jakobowicz and Derquenne the weights of the manifest variables are
not univocally determined, because their estimation depends by their measurement
level. The proposal of Lovaglio, based on an iterative algorithm, has characteristics
similar to the PLS-PM and its applicability to each kind of variable, it makes it
more useful and adaptable. The fundamental characteristic of this algorithm is the
simultaneous estimation of the vector of scaling and of the parameters of the model,
in this case the regression coefficients. So it has the same characteristics of the
PLS-PM with the added of an unique function to optimize respect the parameters
of the model. The purpose of this proposal is the estimation of a latent variable
and not of a SEM model, obtainig as results the quantification and the estimation
of the parameters of the regression model with mixed variables. In the context of
PLS-PM and following the previous works (Jakobowicz and Derquenne, Lovaglio)
we propose a different method for the external quantification, by (the ALSOS
algorithm).
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3 Alternating Least Squares Algorithm

Given a data matrix n×m of metric variables, Principal Component Analysis (PCA)
is a common technique to reduce the dimensionality of the data set, projecteing
variables into a subspace �p where p % m. The ECkart-Young theorem states
that this classical form of linear PCA can be formulated by means of a loss func-
tion. Its minimization leads to a n × p matrix of component scores and an m × p
matrix of component loadings. The actual computerprograms for PCA impose some
restrictions about the completeness of the data matrix and interval measurement of
variables. In the social science is usually not justified the assumption of interval
scales, and often the data matrix are incomplete. In this case it is possible to use
the Nonlinear Principal Component Analysis (NPCA), where the term nonlinear
pertains to nonlinear transformation of the observed variables. According to the Gifi
[2] terminology the NPCA can be defined as homogeneity analysis with restrictions
on the quantification matrix YI . The ALS algorithm generalizes the approach of
PCA to general types of variables. The Non linear PCA in the ALSOS system is
derived as homogenety analysis with some costraints; the loss function is

σ(X; Y1, ....,YI ) = J−1tr(X − Gi Yi )
′(X − Gi Yi ) (2)

with the constraint of rank-one

Yi = qiβ
′
i with i ∈ I (3)

The constraints are imposed on the multiple category quantifications, with qi a li
column vector of single category quantifications for variable i , and βi a p-column
vector of weights (component loadings). In this way each quantification matrix Yi

is restricted to be of rank one, that is the quantifications in p dimensional space
are proportional to each other. With the introduction of the rank one restrictions
it is possible to have multidimensional solutions for object scores with a single
quantification for the categories of the variables, and it is possible to introduce the
measurement level of the variables in the analysis. At this point it is necessary to take
into account of the restrictions imposed by the measurement level of the variables.
This means that we have to project the estimated vector q̂i on the cone Ci : in the
case of ordinal variables the cone Ci is the cone of monotone transformation [5]
given by Ci = qi |qi (1) ≤ qi (2) ≤ .....qi (li ). So the projection is obtained across a
monotone regression in the metric Di (weights). In the case of numerical data the
corresponding cone is a ray given by Ci = {qi |qi = γi + δi si }, where si is a given
vector, for example, the original variable quantifications. So the projection problem
is a regression problem; for nominal variables the cone is the �l

i space and the pro-

jection is done by simply setting qi = q̂i , so Ŷi = q̂i β̂
′
i and the algorithm proceeds

with the estimation of the object scores. This solution is reffered in the literature as
the PRINCALS (Principal Components analysis by Alternating Least Squares; [1])
solution (principal component analysis by means of alternating least squares). The
PRINCALS model allows the data analyst to treat each variable differently; some
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way be treated as multiple nominal and some others as single nominal, ordinal or
numerical. Moreover, with some additional effort one can also incorporate in the
analysis nominal variables of mixed measurement level, that is variables with some
categories measured on an ordinal scale (e.g. Likert scale) and some on a nominal
scale (e.g. categories in survey questionnaires corresponding to the answer “do not
know”).

3.1 Alternating Least Squares Algorithm: The Model for AVSI

The proposed methodology has been applied to the AVSI2 database obtained by
a statistical research [6] made in three Countries of Africa (Rwanda, Uganda and
Kenya) with the aim to evaluate if and in which measure there were changes, for
the children belonged to the AVSI project, in the hygienic-sanitary condition, in the
education and in the environment, after 1 year from the start of the program. The
research has regarded a sample of 1,254 children, being this number proportional to
the number of children in each Country. Face to face interviews have been performed
to fill standardized questionnaires composed by 204 variables, most of which are
qualitative. By analyzing the variables and the possible relationship between them
it was possible to determine a SEM model that was estimated with the PLS-PM
algorithm. It must be remarked that the questionnaire did not create for this kind
of analysis, so many problems came up during the application of this technique.
The model, called “Status of the child”, has as aim to evaluate the factors that
impact on the life condition of the children, and it is composed by eight latent
variables: three latent endogenous blocks summarize the Status of the child, Family
characteristics, House (the characteristics of the house where children live), Avsi
intervention, based on three sub latent variables describing the supports offered to
the family, for the school and nutrition. An outcome block of the model is associated
to guardian satisfaction depending on the general Status reached by the Child in the
year of the survey. The problems that came up in the application are relative to
the treatment of qualitative variables, codifying as dichotomy (0/1), many of which
have been eliminated from the model, because they weren’t statistically significant
for the model. The model developed after the quantification shows an improvement
both in terms of loss of information (a smaller number of manifest variables are
eliminated from the model with respect to the other in which same blocks remain
with only two manifest variables), in terms of fitting the model to the data, and
in terms of significant results. The blocks that presented a major number of non
significant manifest variables (m.v.) are “Guardian satisfaction” that passes from
four to two manifest variables and “Housing condition” that passes from four to

2 AVSI Foundation is an international, not-for-profit, non-governmental organization (NGO)
founded in Italy in 1972. AVSI has programs in over 40 countries in Africa, Latin America, Eastern
Europe, the Middle East, and Asia. AVSI has implemented several programs in education, health-
care, construction, emergency response, water and sanitation, food and nutrition, and psychosocial
support for children, adults and even the elderly persons in the community.
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two manifest variables; the block “Support for the school” loses two manifest vari-
ables in both models, while “Nutritional support” loses only one indicator for both
models. The block that remains unchanged is “Support for family”,while “Status of
child”, in the model without quantification, has four manifest variables versus five
in the other model. Family environment, instead, has four manifest variables in the
model with quantification versus three in the other. So the reduction in the number
of eliminated variables is an advantage for the determination of the latent concept,
because through the quantification the scale of variables is extended, resulting in
better significance for the determination of the causes of Status of children belong-
ing to the AVSI program. The improvements are also in terms of fitting of the model
to the data and in terms of the significance of the casual relationship between the
latent variables (see Tables 1 and 2).

The results of the inner model without the quantification show that the rela-
tionship between “Status of child” and “Guardian Satisfaction” is not significative
because the confidence interval is around the zero and the value of the T Statistic is
small, then it has been eliminated from the model. In the quantified model, instead,
this relationship is significative, even if it keeps having a value of T Statistic high.
Regard to the other casual relationship, we can note that the block AVSI interven-
tion in the model quantified has a relative contribute lower than in the other model
(respectively 3.48 and 20.82): in the model quantified we have an improvement in
the blocks with more manifest variables that impact on the Status of child (the block
Housing condition has a contribute of 40.28, while Family environment of 56.23).
For the block “AVSI intervention” we can see that with respect to the model not
quantified the situation is not changed much: the latent blocks “Family support” and
“Support for the school” have the major impact (this is also because these kinds
of help are more frequent than the other) on the “AVSI intervention” respect to the
“Nutritional and health support” . The relationship between the latent concepts, in
the model quantified, are all significative, as also the relation between Status of child
and Guardian satisfaction, even if the impact of the first latent is weak (path coef-
ficient is 0.0966). Table 3 reports the values of the normalized Gof index, average
communality and average redundancy for both models. The important difference
is in the comparison between the two normalized Gof index: the model quantified
shows a better fitting to the data (the normalized Gof is equal to 0.40) even if it’s
inferior to the mean value, with respect to the other model that presented a lower
Gof index (0.38). Respect to the average communality the model not quantified has
a slightly higher mean value superior with respect to the other model (0.3986 versus
0.3961); also for the average redundancy the quantified model has a better perfor-
mance (0.113 versus 0.097). From the results we can conclude that by perform-
ing an a priori quantification of qualitative indicators it is possible to obtain some
improvement in the results of the model, both about the outer model (minor lost
of information) and about the inner model (we have better estimation of the causal
relationship between latent concepts). About the application we must remember that
the questionnaire was not built to be treated with Structural Equation Models and
the database had a big number of missing values that affected the stability of the
model.
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Table 3 Comparison between the two models

Model with quantification Model not quantified

Gof normalized 0.4005 0.3791
Average communality 0.3961 0.3986
Average redundancy 0.1130 0.0973

4 Conclusion

Despite many proposals in literature for the quantification of qualitative variables,
the problem does not have a unique solution and researcher are looking for new
ways to solve it. The large use of the PLS-PM, we have said, it is due to the possi-
bility to analyze a matrix with the number of variables bigger than of observation,
the absence of distributional hyphotesis, the possibility to estimate the relationship
in presence of multi-colinearity. Even if the PLS-PM is useful in all these cases,
sometimes it fails in presence of a set of when we have the qualitative manifest
variables. Future work is oriented to the development of an algorithm that embraces
one or more steps of quantification for only qualitative variables:in this way we can
obtain the best quantification, taking into account, from an hand, of the variable
nature, and, on the other hand, of the purpose and of the method to use.

The final aim is to have an algorithm capable to estimate a model with all kinds
of variables, nominal, ordinal and numerical.
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Monitoring Panel Performance Within and
Between Sensory Experiments by Multi-Way
Analysis

Rosaria Romano, Jannie S. Vestergaard, Mohsen Kompany-Zareh,
and Wender L.P. Bredie

Abstract In sensory analysis a panel of trained assessors evaluates a set of samples
according to specific sensory descriptors. The training improves objectivity and
reliability of assessments. However, there can be individual differences between
assessors left after the training that should be taken into account in the analysis.
Monitoring panel performance is then crucial for optimal sensory evaluations. The
present work proposes to analyze the panel performance within single sensory eval-
uations and between consecutive evaluations. The basic idea is to use multi-way
models to handle the three-way nature of the sensory data.

1 Introduction and Data Description

The present work investigates panel performance in sensory experiments from a
project considering organic milk at the University of Copenhagen. One of the objec-
tives of the project was to establish knowledge about production of high quality
organic milk with a composition and flavor different from conventionally produced
milk. Specifically, the basic aim was to describe how specific types of pasture
and legumes affect the sensory attributes of milk. Two different sensory experi-
ments were conducted consecutively in 2007: the first in spring and the second in
autumn. Milk samples from seven different farms representing two different breeds
(Holstein-Friesland and Jersey) were analyzed by sensory descriptive analysis [11]
(12 attributes in the spring experiment and 16 attributes in the autumn experiment).
Information on milk production was also provided: (a) pasture; (b) proportion of
legumes. The two experiments described in Table 1 presented small differences: in
spring only 6 samples were evaluated; the panel in both experiments included 9
assessors but some of them differed from one experiment to another.

Investigating panel performance in sensory experiments is crucial. Even if the
assessors are well trained they are human subjects variable over time and among
themselves. Thus monitoring their performance is necessary for the efficient use
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Table 1 Data description

Spring experiment:
Samples:
7 varieties of milk with respect to:
– 2 cow races: Holstein-Fries (HF), Jersey (JE);
– 7 farms: WB, EMC, UGJ, JP, HM, OA, KI.
Panel:
9 assessors, 3 replicates.
Sensory descriptors:
Odor (green), appearance (yellow), flavor (creamy, boiled-milk, sweet, bitter, metallic,
sourness, stald-feed) after taste (astringent0, fatness, astringent20).
Measurement scale:
Continuous scale anchored at 0 and 15.
Production variables:
Pasture; proportion of legumes.
Autumn experiment:
Samples:
6 varieties of milk with respect to:
– 2 cow races: Holstein-Fries (HF), Jersey (JE);
– 6 farms: EMC, UGJ, JP, HM, OA, KI (no WB).
Panel:
9 assessors, 3 replicates.
Sensory descriptors:
Odor (green, feed, stald), appearance (yellow, grey), flavor (creamy, boiled-milk, sweet,
bitter, metallic, sourness, feed) after taste (astringent0, fatness, feed, astringent20).
Measurement scale:
continuous scale anchored at 0 and 15.
Production variables:
Pasture; proportion of legumes.

of sensory data. As measuring instruments, they must meet the requirements of
all measurement methods. Specifically, assessors should use the scale correctly
(location and range); score the same product consistently in different replicates
(reliability/repeatability); score in agreement, on average, with the panel (valid-
ity/consistency); score significant different to different products (sensitivity).

Different approaches to analyze the assessors’ performance have been proposed
in literature: univariate methods mostly based on the ANOVA model [7, 13]; mul-
tivariate methods aiming to find a consensus profile [1, 9, 15]; multi-way methods
allowing for a simultaneous analysis of samples, attributes and assessors [8].

In the present work, multi-way models [16] are used in order to evaluate the panel
performance within and between the experiments. The aim is to analysing data from
each single experiment and the relation between the different experiments over the
time keeping the natural multi-way structure of the data. First, focus is given on
each experiment separately: (a) the PARAllel FACtor (PARAFAC) model [3, 10] is
used to investigate individual differences between assessors; (b) the N-way Partial
Least Squares (N-PLS) model [2] is used to test the predictive ability of the panel.
Then, the model from one experiment is tested using data from the other experiment
to investigate the performance of the panel as a whole over the time.
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2 Methods

2.1 Modeling Assessors’ Performance by PARAFAC

PARAFAC is a generalization of PCA to higher order arrays. Let X be the three way
array holding the scores xi jk given by K assessors, on I products, according to J
attributes. The model can be written as:

xi jk =
F∑

f=1

ai f b j f ck f + ei jk (1)

where ai f , b j f , ck f are the elements of the loading matrices A, B and C, and F is the
number of components. The solution to the model can be found by the Alternating
Least Squares (ALS), minimizing the sum of squares of the residual ei jk .

Using PARAFAC, variation in the products space and in the assessors space can
be modeled at the same time. PARAFAC permits to investigate individual differ-
ences in sensitivity, reproducibility, and consistency [6]. Focusing on the assessors
dimension, the higher the loadings the higher the sensitivity. There is disagreement
if one or more assessors have loadings opposite to the rest of the panel. The vari-
ability of each assessor is shown up in the residual analysis.

2.2 Modeling Panel Predictive Ability by N-PLS

N-PLS model is a straightforward extension of the bi-linear PLS regression [12] in
case of higher order arrays. Focus here is on the tri-linear PLS, where the explana-
tory variables are collected in a three way array X (I × J × K) and the dependent
variables in a two-way array Y (I × M). The algorithm aims at decomposing the
cube X into a set of triads satisfying a certain criterion. A triad consists of one
score vector (t), one weight-vector (wj) on the second order, and one weight-vector
(wk) on the third order. In case of one dependent variable y, the algorithm finds the
vectors (wj) and (wk) that satisfies:

max
w jwk

⎡

⎣cov(t, y)|min
I∑

i=1

J∑

j=1

K∑

k=1

(xi jk − tiw
j
jw

k
k )

2

⎤

⎦ (2)

From X the weight vectors (wj) and (wk) are determined and these, in turn, define
the score vector (t) as the least-squares model of X. The scores are successively
determined to have maximal covariance with the dependent variable. Finally, the
scores are related to the dependent variable by regression.

In presence of several dependent variables it is possible to use the algorithm in (2)
to model each dependent variable separately. Alternatively, it is possible to model
all the variables simultaneously as in the PLS2 algorithm.
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Table 2 PARAFAC results
Components Core consistency Explained variance Sum-sq residuals

Spring experiment
1 100% 21.3% 19153
2 100% 27.9% 17523
3 unstable results · · · · · ·
Autumn experiment
1 100% 17.1% 14580
2 100% 23.1% 13534
3 unstable results · · · · · ·

N-PLS is used for the prediction of production data [y1: pasture, y2: proportion
of the legumes] from sensory data. The aim is to test the predictive ability of the
panel in the two experiments.

2.3 Modeling Panel Performance Between Experiments

The basic aim here is to compare panel performance in the two experiments. As
discussed in Sect. 1, panel compositions are not exactly the same. However, it is
possible to consider the panel as a whole. Under this assumption, a PARAFAC
model with two components is performed on the autumn experiment data and used
to predict the spring data. Residuals from this model are then compared with resid-
uals from PARAFAC with two components on the spring data. If residuals from
application of PARAFAC on spring data are very low as compared to the residuals
from the prediction, then considerable differences between the two evaluations exist.

3 Results

PARAFAC model is performed on the data centered across samples [5]. This pre-
processing removes differences between assessors in level. No scaling is applied to
any mode. No scaling on the attributes, because they are on the same unit and range.
Scaling of the assessors has diverse implications and different scaling methods may
be used [14]. However, this is not the focus of the work, so the choice is to not
scaling this mode. Analysis of core consistency [4], explained variance and residual
analysis presented in Table 2 suggest using a model with two components in both
spring and autumn experiments. Models with additional components seem to be
quite unstable.

Results from PARAFAC model with two components in the two experiments
are shown in Fig. 1. For sake of space only loadings from assessors’ mode are
presented. In spring, the first component shows a good agreement of the panel but
different sensitivities: assessors 8, 1 and 5 are the most sensitive. On the second
factor it seems there is no consistency as the assessors are divided into two groups:
assessors 7 and 8 are the most sensitive, whereas assessors 2, 6 and 9 are not sensi-
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Fig. 1 PARAFAC assessors’ loadings in the spring experiment (left); PARAFAC assessors’
loadings in the autumn experiment (right)

tive at all. Similar results in autumn: good panel agreement on the first component
with differences in sensitivity and no consistency on the second component. Here
there is also disagreement as some assessors have opposite loadings with respect to
the panel. Residual analysis provides results (not shown here) on the variability of
each assessor with respect to the single attribute and over all the attributes together.
A comparative analysis of the results in both experiments, including loadings and
residuals as well, shows that the panel in autumn performed better than in spring: in
autumn there was a group of good assessors, whereas in spring only a reduced num-
ber. The improvement can be due to a better panel performance (training effect) but
also to differences in the samples in the two experiments (season effect). However,
the first hypothesis seems more realistic. The panel improvement may be due much
more to the previous experience as the improvement is related to the agreement of
the panel in describing the sensory descriptors rather than on a clearer discrimination
of the samples.

N-PLS modeling with a number of factors from 1 to 5 is applied on data from
the two experiments. The aim is to make a calibration model for the prediction
of quantitative production data [y1: pasture, y2: proportion of legumes] from the
sensory assessment of milk. Figure 2 shows the root mean squares errors (RMSE)
from calibration (RMSEC) and cross validation (RMSECV), respectively, obtained
for the two dependent variables. Segmented cross-validation including all replicates
in the same segment is used to avoid optimistic results due the fact that replicates
of the samples are used for their own prediction. The calibration suggests a good
model with 5 components. However, RMSCV shows that the explained variance
is just over-fitting and not real information. Hence, the panel used in the spring
experiment provides a not valid model for predicting the production variables.

Results from cross validation in the autumn experiment (not shown here) suggest
that in case of y1 the explained variance is just over-fitting, while considering y2
an improvement in the prediction by introduction of the second and the third factor
is obtained. The panel used in the autumn experiment provides then a valid model
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Fig. 2 N-PLS on spring experiment

for predicting the second dependent variable (proportion of the legumes). In Fig. 3
a slight linear trend is observed for y1 (first raw) and a clear linear relation for
y2 (second raw) for any choice of number of components from 1 to 5. Hence, the
panel predictive ability in the autumn experiment is better than in spring. However,
it must be stressed that more information was provided in the autumn experiment (4
additional attributes).

Residuals from PARAFAC on the autumn experiment for the prediction of the
spring experiment and residuals from PARAFAC on the spring data directly are
compared. No preprocessing for both PARAFAC models has been selected in order
to make the results comparable. There are four more attributes in autumn (com-
pared to spring) and one more sample in spring (compared to autumn), which were

Fig. 3 N-PLS on autumn experiment
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Fig. 4 PARAFAC residuals

eliminated before the prediction. The residuals with respect to the samples mode
shown in Fig. 4 are not very different from each other. Of course, the ones from the
spring experiment are the lowest but they have similar shape: samples 6, 10, 12, 17
present the highest values in both experiments. This shows the similarity between
the autumn and the spring experiment, i.e. the spring experiment has a structure
similar to the autumn experiment. There are some differences, but these may be due
to the season effect as the two evaluations span from spring to autumn.

4 Conclusions

The aim of the project was to use multi-way models for monitoring panel perfor-
mance within and between the two experiments. Results from PARAFAC model
have shown that the panel in the autumn experiment performed better than the panel
in the spring. The improvement can be due to a better panel performance and/or
to differences in the samples between the two experiments. Regarding to the panel
performance for predicting production data, it was possible to build a valid model
on the autumn experiment only, and for one single dependent variable. However, it
must be stressed that more information was provided in the autumn experiment. To
further investigate this aspect, we have used the PARAFAC model from the autumn
data to predict results on spring data. We found out that spring experiment had a
structure similar to the autumn experiment. There were some differences, but these
may be due to the season effect as the two evaluations span from spring to autumn.
Thus, the conclusion is that even if the assessment in spring was much noisy and it
was not possible to build a valid model due to a lack of information, it provided a
valid sensory evaluation as well.
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A Proposal for Handling Categorical Predictors
in PLS Regression Framework

Giorgio Russolillo and Carlo Natale Lauro

Abstract To regress one or more quantitative response variables on a set of pre-
dictor variables of different nature, it is necessary to transform non-quantitative
predictors in such a way that they can be analyzed together with the other variables
measured on an interval scale. Here, a new proposal to cope with this issue in Partial
Least Squares (PLS) regression framework is presented. The approach consists in
quantifying each non-quantitative predictor according to Hayashi’s first quantifi-
cation method, using the dependent variable (or, in the multivariate case, a linear
combination of the response variables) as an external criterion. The PLS weight of
each variable which is quantified according to the proposed approach is coherent
with the statistical relationship between its original non-quantitative variable and
the response variable(s) as expressed in terms of Pearson’s correlation ratio. Firstly,
the case where one variable depends on a set of both categorical and quantitative
variables is discussed; then, a modified PLS algorithm, called PLS-CAP, is pro-
posed to obtain the quantifications of the categorical predictors in the multi-response
case. An application on real data is presented in order to enhance the properties
of the quantification approach based on the PLS-CAP with respect to the classical
approach based on the dummy code of the categorical variables.

1 Introduction

The PLS regression (PLSR) approach [3] has become a common tool in many areas
of social and economic sciences. However, PLSR is thought to handle quantitative
variables, whereas in these fields researchers are often interested in the investigation
of the dependence structure of a set of response variables on a block of predictor
variables that are measured at different scale levels (nominal, ordinal or interval).
Hence, it arises the need of handling categories so as to make them numerical.

A simple approach to cope with the quantification problem, which can be easily
used in whatever regression context, is to replace each non-quantitative predictor
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with the corresponding dummy matrix. This approach, however, does not consider
the concept of categorical variable as a unicum, because categories are analyzed
as they were distinct variables. Hence, the model assigns a value to the impact of
each category, while the researcher is interested in the impact of each explanatory
variable on response(s). In order to overcome these problems, a better strategy seems
to be the quantification of each category by a numeric value, in such a way that each
qualitative variable is transformed in a corresponding quantitative variable to be
used into the PLS regression model.

In the OLS framework, MORALS [5] and ACE [1] algorithms are the most
largely used in literature to optimize the transformation functions according to the
multiple or canonical correlation criterion.

In the following a quantification criterion transform categories into values, in
such a way that each qualitative predictor is transformed in a unique novel quantita-
tive variable, is presented in PLS framework.

2 The Univariate Response Case

PLSR predicts a single (PLS1 algorithm) or several (PLS2 algorithm) dependent
variables both as a linear combination of a set of predictor variables, and as a lin-
ear combination of a set of latent variables t1 . . . ta . . . tA. At the same time, it is
also a powerful visualization tool, because latent variables compose a lower dimen-
sional subspace in which information on predictor variables, useful to explain the
responses, is resumed. It is a very flexible regression tool, able to handle large data
sets regardless of the shape of the data matrices, the presence of a (limited) number
of missing data and multicollinearity. In this section PLS1 algorithm background
will be provided and a criterion to quantify categorical predictors will be presented.

2.1 PLS1 Algorithm Backgrounds

Let x1 . . . x j . . . xP be a set of predictor variables and y be a response variable mea-
sured on N observations. The first PLS component t1 is built as a linear combination
of the X-variables whose weights are the P elements of the vector w1 (t1 = Xw1).
The vector w1 is computed as w1 ∝ cov(X, y)/var(y) , i.e. as the normalized OLS
regression coefficients of each x j on y. If variables are centered and normalized to
unitary variance, w1 j ∝ cov(x j , y).

The second PLS component is computed working on the residuals y1 of a OLS
simple regression of y on t1 and the residuals X1 j of OLS simple regressions of each
x j on t1; in formulas:

y1 = y− c1t1,where c1 = y′t1/t′1t1

x1 j = x j − p1 j t1,where p1 j = x′
j t1/t′1t1



A Proposal for Handling Categorical Predictors in PLS Regression Framework 345

The second component is defined as t2 = X1w2, where w2 ∝ cov(X1, y1)/var(y1).
However, it can be expressed even in terms of the X-matrix as t2 = Xw∗2.

We use the same procedure for computing the following components ta =
Xa−1wa = Xw∗a .

The search of new components is stopped when the last component does not
significantly improve the model predictive capability, in accordance with a cross-
validation procedure.

PLSR coefficients are computed as bP L S(A) = ∑A
a=1 caw∗a . As a consequence,

the regression coefficient of a generic predictor x j in a single component PLSR
model depends directly on its weight in the construction of the component, and it is
proportional to ρ(x j ,y).

2.2 A Quantification Criterion for Categorical Predictors in
Univariate PLS Regression

Let’s consider a PLSR model where y depends on M + L = P variables where
xqq

1 . . . xqq
m . . . xqq

M are quantitative predictors and xql
1 . . . xql

l . . . xql
L are categorical

ones. Without loss of generality, all quantitative variables in the model are assumed
centered and normalized to unitary variance.

From a geometrical point of view, each quantitative predictor is a vector in the
N -dimensional space defined by the rows of X. Let Gl of order N x Kl be the
indicator matrix of the categorical predictor xql

l having Kl categories. Each categor-

ical variable xql
l , instead, can be geometrically represented as the subspace spanned

by the columns of Gl . Any vector in this subspace is a quantification of xql
l that

respects the constraint for which observations belonging to the same group assume
the same value. Since the idea underlying the model is that each independent vari-
able is a predictor of the response variable, it seems coherent to quantify categorical
predictors in such a way that each resulting quantified variable is able to explain at
best the response. Starting from this idea, the proposed approach is based on a PLS
regression model in which each categorical predictor xql

l is transformed in a linear
combination of the columns of Gl , denoted xqq

l , that maximizes Pearson’s correla-
tion coefficient ρ(xqq

l ,y). To optimize this criterion, xqq
l is computed as the projection

of y on the space spanned by the columns of Gl ; the resulting vector is then normal-
ized to unitary variance in order to make it homogeneous with the other variables:

xqq
l ∝ Gl

(
G′

lGl
)−1 G′

ly.

This quantification procedure corresponds to the application of the Hayashi’s first
quantification method [2] to each categorical variable: Hayashi proposed this quan-
tification criterion in order to predict a quantitative criterion variable (in our case the
y variable) on the basis of the information concerning the categorical attributes of
each observation. Each quantified predictor is positively correlated to y; moreover,
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the strength of this correlation is measured by the between group deviance of y given
xql

l categories, because bet (y|xql
l ) = codev(xqq

l , y). This equivalence is very useful
for the interpretation of the parameters w1 and bP L S(1) of the model because, since
they are a function of ρ(xqq

l ,y), they can be expressed (and interpreted) as a function

of the correlation ratio η2
(xql

l ,y)
. In particular, it can be easily shown that

bP L S(1)
l ∝ ηy|xql

l

Hence, the proposed approach for handling categorical predictors assures that, in
the PLS framework, the importance that regression algorithm gives to quantified
variables is consistent with the capability of the categories of xql

l in predicting y.
From this point of view, the quantification criterion allows to transfer the predictive
properties of original categorical variables to the PLS regression coefficients of their
quantifications .

3 The Multivariate Response Case

When there are more response variables y1 . . . yq . . . yQ , PLS regression decom-
poses both X and Y as a product of a common set of components t1 . . . ta . . . tA and
a set of specific loadings (respectively p and c). The weights of the first component
are the elements of the normalized vector w1 maximizing covariance between t1
and a linear combination u1 of the response variables. As in the univariate case, the
subsequent components are calculated working on Xa and Ya , which are respec-
tively the regression residuals of Xa−1 and Ya−1 on ta , under the constraints that
t′ata−1 = 0 and w′

awa = 1.

3.1 The PLS2 Algorithm

From the computational point of view, the difference between PLS1 and PL2 regres-
sion is that in the multivariate case each component is extracted through an itera-
tive algorithm. In each iteration, Y-scores, X-weights, X-scores and Y-weights are
sequentially calculated each one as a function of the previous one. In particular, the
iterative procedure for the computation of the first PLS component is the following:

Step 0: Select whatever initial vector u1 (typically the first column of Y)
Step 1: w1 ∝ X′u1
Step 2: t1 = Xw1
Step 3: c1 ∝ Y′t1
Step 4: u1 = Yc1/c

′
1c1

Repeat steps 1–4 until the convergence of u1.
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As matter of fact, PLS1 algorithm is a particular case of the PLS2 one where ca

is a scalar and ua is proportional to y.

3.2 Quantifying the Categorical Predictors in the Multivariate
Case: The PLS-CAP Algorithm

In the PLS2 algorithm, w1 is calculated as a function of u1; in particular, each weight
w1 j is proportional to ρ(xj,u1).

Coherently with this feature of the PLS2 algorithm, the proposal here is to replace
each xql

l by the (normalized) orthogonal projection of u1 on the space spanned by
the columns of Gl

xqq
l ∝ Gl

(
G′

lGl
)

G′
lu1.

As a consequence, the weight of a quantified predictor in the construction of the
first component can be interpreted in terms of u1 correlation ratio square root given
the categories of xql

l . Similarly, the generic single component regression coefficient

bP L S(1)
lq = w1l c1q can be interpreted both as a function of ρ(xqq

l ,u1)
and as a function

of η
(u1|xql

l )

As a matter of fact, quantified predictors cannot be obtained by a one-step pro-
cedure because of the iterative computation of PLS2 parameters: xqq

l is a function
of u1, but u1 is, in its turn, a function of xqq

l . In order to overcome this problem,
an adjusted PLS algorithm, called PLS-CAP (PLS for CAtegorical Predictors), is
proposed.

PLS-CAP computes the first component through an iterative procedure which
yields the quantified predictor too. In this iterative procedure (shown in Fig. 1) there
are two additional steps, as compared to the classical PLS algorithm. At the first,
the quantified predictors are calculated following the previously shown criterion:

For each l in (1:L): xqq
l ∝ Gl

(
G′

lGl
)

G′
l u1

Then, the predictor matrix is updated by juxtaposing the new quantified variables to
the quantitative ones:

X = [Xqt |Xqq]

The iterative procedure of the PLS-CAP algorithm calculates at the same time the
first component and the quantification for each category. Similarly to the classical
PLS2 algorithm, the PLS-CAP can be applied even in the univariate regression case
as it is a generalization of the latter.
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Fig. 1 The PLS-CAP iterative procedure. The steps of the classical PLS algorithm are rounded by
an ellypses, while the steps characteristic of PLS-CAP algorithm are rounded by a rectangle

4 An Application to Real Data: The “Cars” Dataset

In the “Cars” dataset a dependent variable (price), six quantitative predictors (dis-
placement, horse power, length, width, weight, speed) and two qualitative predictors
(nationality and trimmings), having respectively six and three categories, are mea-
sured on eighteen car models. It is a simple dataset, but very useful to pinpoint the
differences between the PLS-CAP approach and the classical one, in which each
categorical predictor is transformed into an indicator matrix.

The data set was modeled in two ways. In the first, the variable “price” is
regressed on six quantitative and nine dummy predictors (“Italy”, “Germany”,
“France”, “Japan”, “Great Britain”, “URSS”, “very good trimmings”, “good trim-
mings” and “medium trimmings”). In the second, there are the two (quantified)
categorical variables instead of the nine dummy predictors. The two models are
named “PLS-Dummy” and “PLS-CAP” respectively. The “PLS-Dummy” regres-
sion model assigns a regression coefficient to each quantitative predictor and each
category, coded as a dummy variable. On the contrary, the “PLS-CAP” model finds
out a regression coefficient for each predictor variable, independently on the nature.

Cross validation procedure led us to keep two components for both the models
according to the SIMCA-P 10.0 software rules. Even if PLS-CAP model is built on
a lower number of predictor variables, its explicative ability (according to R2 index)
is fully comparable with the explicative ability of the PLS-Dummy model.

Predictive abilities of the two models, according to Q2 index, were investigated.
The Q2 index is a cross validated R2 index: it measures the model ability in pre-
dicting observations which are not used in the construction of the model. PLS-CAP
model showed a higher performance in this sense (Table 1).
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Table 1 The comparison between explicative and predictive power of the two models

Model R2 Q2

PLS-dummy 0.93 0.79
PLS-VIP 0.93 0.83

Finally, the ranking of the predictors on the basis of their importance in the pre-
diction was investigated, according to the VIP (Variable Importance in the Predic-
tion) index [4]. The VIP score for the j th variable is calculated as

VIPA j =

√√
√√√

p
∑A

a=1
∑Q

q=1 R2
(yq ,ta)

A∑

a=1

⎡

⎣
Q∑

q=1

R2
(yq ,ta)

⎤

⎦w2
a j

where R2
(yq ,ta)

represents the part of variability of yq explained by ta . The VIP index

is a useful tool for variable selection in PLSR framework: it provides a measure of
the impact of all the dependent variables, and so it can be used both in the univariate
and multivariate cases. Moreover, since the average of squared VIP scores equals 1,
“greater than one rule" is generally used as a criterion for variable selection.

In Table 2, the predictors ordered by their importance in the prediction (accord-
ing to VIP index) are shown. In the PLS-CAP model the variable “trimmings” is
definitively the most important in the prediction, whereas the PLS-Dummy model
does not yield a univocal value for this variable, but just for each of its modalities.
Since the categories take first, but also fourth and tenth place in the ranking, it is not
trivial to understand the real importance of trimmings in the prediction of the price.
Moreover, these results can deceive, because the pseudo-variable “good trimmings”

Table 2 The predictor variables ranked by VIP index in PLS-Dummy and PLS-CAP models

(a) PLS-Dummy model (b) PLS-CAP model

Variable VIP Variable VIP

Trimmings (VG) 1.62 Trimmings 1.47
Horse power 1.43 Horse power 1.07
Weight 1.35 Weight 1.01
Trimmings (G) 1.27 Length 0.94
Length 1.20 Displacement 0.91
Displacement 1.17 Width 0.89
Width 1.08 Speed 0.83
Speed 1.07 Nationality 0.71
Nationality (U) 0.85
Trimmings (M) 0.59
Nationality (D) 0.57
Nationality (F) 0.40
Nationality (I) 0.37
Nationality (GB) 0.19
Nationality (J) 0.17
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seems to be a bad predictor of the price, at the opposite of “very good trimmings”
and “medium trimmings”; what really happens is that trimmings as a whole is a very
good predictor of price, because cars with good trimmings have a medium price,
while cars with very good trimmings have a higher price and cars with medium
trimmings have a lower price.

5 Conclusions

PLS-CAP algorithm makes PLSR able to work even with predictor variables mea-
sured at a different scale level. Relations between quantified predictors and response
variable(s) can be read in terms of both correlation ratio and correlation coefficients.
The first interpretation assures the coherence of the quantified predictor coefficients
with respect to the explicative power of the original categorical variable. The latter
assures comparability with the coefficients of the other predictors.

Since PLS-CAP keeps the concept of a categorical variable as a unique entity, the
PLSR model gains in terms of interpretability without losing in terms of predictivity.
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On the Use of Archetypes and Interval Coding
in Sensory Analysis

Maria Rosaria D’Esposito, Francesco Palumbo, and Giancarlo Ragozini

Abstract Archetypal analysis is a statistical method aiming at synthesizing a set
of multivariate observations through few points not necessarily observed. On the
other hand, coding data as interval values allows to include variability and variation
in the data itself. This work proposes the use of archetypal analysis for interval-
coded sensory data to synthesize profiling data taking into account assessor panel
variability.

1 Introduction

In sensory analysis, properties or attributes of products are judged by a panel of
assessors through the use of their senses. These attributes are mainly exploited as
statistical variables in order to profile the products of several brands, to analyze
relationships among them, and to explain individual differences on the basis of
other individual features [9]. The sensory data collection process usually yields
a three-way data table where a panel of assessors evaluate n different brands or
products with respect to a set of p attributes. When the focus is on the products, the
within panelist variability may be a relevant issue. Even if the judges are usually
trained in the use of the measurement scale and in the evaluation techniques, indi-
vidual judgments may be biased by subjective impressions. In order to overcome
this problem, panel average scores for each attribute are tipically considered prior
to further analysis on product descriptions [9]. Collapsing the assessor dimension
allows us to simplify the data analysis process and to use classical parametric and
non parametric multivariate methods. However, it ignores individual differences,
and reduces the capabilities for panel monitoring [5].

Alternatively, a wide range of statistical methods that consider the whole set of
scores have been proposed [1, 5, 10]. These methods provide information about
relationships among assessors, among attributes and among products. They are,
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however, quite complex, and hence a variety of plotting tools have been invented
to simplify both interpretation and presentation of results [2, 5, 11, 15]. All these
methods exploit very simple graphics such as line plots, correlation plots and Man-
ahattan plots or rely on some dimension reduction techniques. As they mainly focus
attention on each assessor, on each product or on each attribute in turn, it is difficult
to gain an overall view of data characteristics and relationships.

In this paper, we focus on product description. To overcome some of the above-
mentioned problems− loss of information due to averaging scores and plots that are
not fully suited to a simple and thorough representation of the data − we propose
a method that combines archetypal analysis and interval-valued data coding. The
archetypes are multivariate objects that make it possible to synthesize data through
few representative products. They yield well-separate sensory profiles with which all
the other products can be compared and provide information that can be visualized
through a set of both simple and more sophisticated graphical representations. On
the other hand, the interval-coding allows us to keep part of the panelist variability
among assessors without averaging.

The paper is organized as follows: Sections 2 and 3 present the essentials of
archetypal analysis and interval coding for sensory data, respectively. Section 4
provides our proposal for extending archetypal analysis to interval-coded sensory
data. Section 5 has an illustrative example.

2 Archetypal Analysis

In this section, we recall the essentials of archetypal analysis [4], focusing on its
useful characteristics in sensory data profile analysis. Archetypal analysis is a sta-
tistical method aiming at synthesizing a set of multivariate observations through
few points which are not necessarily observed. These points, the archetypes, can be
considered a sort of “pure” types as all the data points must be a combination of
them. In addition, to ensure that these pure points are as close as possible to the
observed data, archetypes must be also a convex combination of the data points.

Let X be a n × p data matrix having xi j (i = 1 . . . n; j = 1 . . . p) as gen-
eral element. Formally, the archetypes a′k , k = 1, . . . ,m, are those points in the
p-dimensional Euclidean space such that

a′j = β ′j X (1)

with

β j i ≥ 0 ∀ j, i β ′j 1 = 1 ∀ j, (2)

where X is the observed data matrix, a′j the j th row of the A matrix, and the convex
combination coefficient β j i ’s are the n elements of the β ′j vectors, i.e. the weights
of the n observations in determining the j th archetype.
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At the same time, all the points x′i should also be expressed as a mixture of
archetpes:

x′i = α′i A (3)

with

αi j ≥ 0 ∀i, j α′i 1 = 1 ∀i, (4)

where x′i , i = 1, . . . , n, are the observed data, A = (a ji ) is the matrix containing the
archetype coordinates, and α′i is the vector of the convex combination coefficients
of the m archetypes for the i-th data point, with generic elements αi j , j = 1, . . . ,m.

Equations (1), (2), (3) and (4) imply that the archetypes coincide with the vertices
of the data convex hull [12]. However, the number of these is usually too large to
provide a useful synthesis of the data and, thus, a smaller number m of them has to be
chosen. This goal is achieved by modifying Eq. (3) and choosing the m archetypes
(a′1, . . . , a′m) as those points that:

(a′1, . . . , a′m;α′1, . . . , α′m) :
n∑

i=1

∥
∥x′i − α′i A

∥
∥2

2 = min! (5)

holding Eq. (1), and the constraints (2) and (4).
The solution to this minimization problem depends on m, and in order to make

this choice Cutler and Breiman [4] suggest looking at the quantity:

RSS(m) =
n∑

i=1

∥∥x′i − x̃′i (m)
∥∥2

2 (6)

where x̃′i (m) = α′i (m) · A(m) are the best approximations of the observations x′i
through the m archetypes. The residual sum of squares RSS(m) is then the sum of
the squared Euclidean distances of the observed data from their best approximation,
and therefore it measures to what extent the m archetypes synthesize the data.

Archetypal analysis has found application in several fields: physics and astron-
omy, medicine, performance analysis and benchmarking [2, 8, 12, 14]. In our frame-
work, archetypal analysis will make it possible to define some non-observed prod-
ucts that synthesize all the information and that are characterized by well-separate
sensory profiles.

3 Interval Coding in Sensory Analysis

As previously stated, in sensory experiments a group of assessors usually express
their judgment on a set of products according to some perception variables. In this
framework, we deal with two sources of variability: variability among assessors



356 M.R. D’Esposito et al.

and variability among products. Of course, the analysis aims to study the variabil-
ity among products. However, the scores of a panel of assessors are registered in
order to check for possible biased evaluations due to the subjective influences of
the assessor. For this reason, variability among assessors can be considered a sort
of undesired side effect. In sensory analysis, this issue is usually addressed by tak-
ing averaging into consideration, and thus completely loosing all the information
regarding panelist variability. In our opinion, therefore, interval data coding repre-
sents a better solution than simple score averaging as it allows the two variability
sources to be kept separate and yet included in the analysis at the same time.

With respect to the classical single-valued data, indeed, interval data can capture
different sources of incertitude in the data such as measurement errors and repeated
measures.

The interval coding of the assessor judgment scores can be achieved by consid-
ering the range, or the interquartile range, of scores on each attribute. In this way
panel variability is included in the analysis. In order to also consider differences
among replicates, appropriate interval coding could be envisioned.

The generic n × p interval data matrix [X] has row [x]′i, with general term
[x]i j = [xi j , xi j ], i = 1, . . . , n and j = 1, . . . , p, with xi j and xi j as the mini-
mum and maximum observed values. From a geometric point of view, the [x]′i’s are
parallelotopes in a p-dimensional space.

The general term [x]i j can be also represented by the midpoint xc
i j and range (or

radius) xr
i j notation:

[x]i j = [xi j , xi j ] = [xc
i j − xr

i j , xc
i j + xr

i j ]. (7)

The interval matrix [X] is split into Xc and Xr which are called center and range
matrices, respectively.

4 Archetypes for Interval Coded Data

In order to define a generalization of archetypal analysis for interval coded data,
recall that archetypes can be obtained as those points providing the best approxima-
tion of observed data in terms of closeness. To achieve this best approximation, it is
necessary to define a distance function for use in the minimization problem (5).

As regards interval data, from a geometric point of view, a general unidimen-
sional [x] = {xc, xr } interval represents a compact and closed subset of the space
R. Let us define the unidimensional space of all compact subsets with IR. The dis-
tance between two subsets ([x]i , [x]i ′) in IR is defined according to the Hausdorff
distance as:

H([x]i , [x]i ′) = max{| xi − xi ′ |, | xi − xi ′ |} == | xc
i − xc

i ′ | − | xr
i − xr

i ′ | (8)
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Defining the distance in the space IR
p is a well known but still unresolved issue

in the statistical analysis of interval-valued data, where IR
p indicates the p-

dimensional space of all compact and closed subsets in R
p. In fact, it is not possible

to generalize the distance in (8) to IR
p. In order to obtain a good approximation of

the Hausdorff metric in R
p, out of all the proposed approaches we will adopt the

one proposed by de Souza and de Carvalho [6].
Similarly to the single value case, some interval archetypes [A] which should

synthesize the locations and the shapes of all the other data are defined. These
archetypes are parallelotopes such that the others can be expressed as a convex
combination of them, and they are a convex combination of all the others. We will
show that archetypal analysis for interval data can be solved for the two sets of
archetypes: Ac = (ac

ji ) and Ar = (ar
ji ), respectively, in the spaces of centers and

ranges. To ensure a unique solution, D’Esposito et al. [7] have proposed imposing
the constrain that the mixture coefficients α′i are the same for the two spaces, repre-
senting the algebraic linkage between the two spaces. The parallelotope-archetypes
[A] are such that they minimize the quantity:

H RS(m) =
n∑

i=1

p∑

k=1

⎛

⎝

∣∣∣∣
∣∣
xc

ik −
m∑

j=1

αi j a
c
jk

∣∣∣∣
∣∣
+
∣∣∣∣
∣∣
xr

ik −
m∑

j=1

αi j a
r
jk

∣∣∣∣
∣∣

⎞

⎠ , (9)

where αi j indicates the weight of j-th archetype on the i th statistical unit. The
H RS(m) function in (9) represents the distance among the observed parallelotopes
and their representation in terms of archetypes in the Hausdorff metrics generaliza-
tion in IR

p. As for the single value case, the minimization problem in (9) is subject
to the constraints αi j ≥ 0 ∀i, j, α′i 1 = 1 ∀i , given that:

a′cj = β ′cj Xc and a′rj = β ′rj Xr (10)

with

βc
ji ≥ 0 βr

ji ≥ 0 ∀ j, i β ′cj 1 = 1 β ′rj 1 = 1 ∀ j, (11)

All computational details are skipped for sake of space. However, it is important to
remark that solutions cannot be achieved by the classical alternate least squares. The
minimization is achieved by solving a mathematical programming problem [3, 7].
Note that, the solution for the archetypes obtained in terms of midpoints and ranges
can be re-expressed in terms of intervals using the correspondence in (7).

5 An Illustrative Example

This section shows some of the main results obtained by exploiting the capabilities
of interval data archetypal analysis on a dataset concerning cheese sensory profiles
[13]. The data refer to a sample of 14 cheeses and to a double sensory experiment
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which involved a panel of 12 assessors using scores on the scale from one to nine.
In this example we have kept 13 of the original attributes and we have limited our
attention to the first sensory experiment. The 13 variables considered fall into three
groups: odour, flavour and fatness. Acidic (Acidic), Intensity (Int), Rancid (Rancid)
and Sun (Sun) are considered with respect to both Odour and Flavour, they can be
distinguished according to the label suffix: od and fl. Sweet (Sweet), Salty (Salty),
Bitter (Bitter), Metallic (Met) form the second group and are only flavour variables.
Fatness (Fat) differs from all the other variables and represents the third singleton
group because it can be ascribed neither to the flavour nor to the odour. In this exam-
ple, we define the interval data for each attribute using the upper and lower scores
from the 12 assessors, ending up with 13 interval data for each of the 14 cheeses.
On the basis of the H RS(m) values, as m varies, and on the interpretability of the
archetypes, we set m = 3. The solution is achieved by solving the mathematical
optimization problem in (9). Using 100 different random starting points, we veri-
fied the stability of the reported solution. This guarantees that the three computed
archetypes are not local minima.

Figure 1 represents all 14 cheeses in terms of the related α weights in the
Cartesian space R

(3). As a consequence of the linear constraints
∑

j αi j = 1
(∀i = 1, . . . ,m), it has to be noted that the α′i weights lie in a (m − 1) = 2 dimen-
sional space, i.e. in a planar triangle. The three vertices of the triangle correspond
to the three archetypes: in particular a′1 coincides with the cheese C13, a′2 corre-
sponds to the points C7 and C12, and finally a′3 with the cheese C14. The remaining
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Fig. 1 Scatterplot of the 14 cheeses in R3: the coordinates of each cheese are the α weights
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Table 1 the α weights for the 14 cheeses with three archetypes

Product α1 α2 α3

C_1 0.389 0.556 0.054
C_2 0.000 0.800 0.200
C_3 0.077 0.923 0.000
C_4 0.076 0.611 0.314
C_5 0.021 0.929 0.050
C_6 0.514 0.476 0.009
C_7 0.000 1.000 0.000
C_8 0.000 0.992 0.008
C_9 0.251 0.749 0.000
C10 0.010 0.326 0.665
C11 0.000 0.774 0.226
C12 0.000 1.000 0.000
C13 1.000 0.000 0.000
C14 0.000 0.000 1.000

10 objects can be expressed in terms of linear combination of these three points
using the scores in the vectors {βc, βr }. The weights are also reported in Table 1,
where the four rows referring to the archetypes have been highlighted. Figure 1 and
Table 1 point out that the majority of the cheeses are clustered around the archetype
a′2, while the other two archetypes are isolated points. Hence, a′2 sensory profile
synthesizes the majority of the cheese profiles, apart from the other two archetypes
and the cheese C10 which is closer to a′3.

The three archetypes expressed as intervals are also graphically displayed as
three stars in Fig. 2, where in each star the two polygons refer to the lower and
upper bound of the archetype intervals.

Looking at Fig. 2 and Table 2 it is worth noting that the differences among
cheeses can be ascribed mainly to acidity, rancidity, saltiness and, to a lesser degree,
bitterness. a′1 and a′3 are quite similar and they synthesize cheeses with low rancid-
ity. However, a′1 is also characterized by higher scores on acidity (and also higher
ranges), while a′3 is characterized by higher scores on saltiness and bitterness. On
the other hand, the other archetype a′2 presents much higher scores on rancidity
and much lower scores on acidity. Furthermore, the midranges in Table 2 show that
rancidity is perceived according to a very subjective scale. Indeed, both the odour

Fig. 2 Archetypes displayed as stars: in each star the two polygons refer to the lower and upper
bound of the archetype intervals. a′1, a′2, a′3 from left to right



360 M.R. D’Esposito et al.

Table 2 Midpoints and midranges archetypes components

Odour (suffix “od”) Flawour (suffix “fl”)

Var Int Acidic Sun Rancid Int Acidic Sweet Salty Bitter Sun Met Rancid Fat

Archetypes midpoints

ac
1
′ 5.086 4.929 2.736 1.740 5.850 5.237 2.662 4.196 3.721 2.558 2.673 2.509 3.859

ac
2
′ 6.345 3.207 4.120 4.664 6.251 2.896 2.432 4.181 4.407 3.861 2.976 4.774 3.696

ac
3
′ 5.584 3.407 3.272 1.709 6.062 4.255 2.648 4.310 4.221 3.166 2.597 1.921 3.721

Archetypes midranges

ar
1
′ 0.999 1.465 0.856 0.320 0.643 1.477 0.821 1.052 1.318 0.766 0.827 0.730 0.769

ar
2
′ 0.887 1.052 1.081 1.956 1.000 0.992 0.741 0.935 1.149 1.317 1.011 1.863 0.781

ar
3
′ 0.575 0.950 1.050 0.225 0.600 1.100 0.850 1.550 1.400 1.100 0.850 0.150 0.850

and the flavour components are characterized by large intervals between the lower
and the upper bound.

This example shows how the analysis carried out by archetypes plus interval-
coded data can easily highlight product characteristics.

Acknowledgments The authors are grateful to T. Næs and R. Romano for the cheeses dataset.
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From Histogram Data to Model Data Analysis

Marina Marino and Simona Signoriello

Abstract The aim of this work is to propose a new approach for dealing with his-
togram data in symbolic data analysis framework. The idea is to approximate his-
togram data using B-spline functions in order to synthetize the information within
data trough some characteristic function parameters. This parameters will be the
new data that could be, subsequently, analyzed with methodologies of multidimen-
sional data analysis.

1 Introduction

The Symbolic Data Analysis techniques that have been developed during the last
decade [1], represent new and well adoptable instruments for the complex nature of
real phenomena. Different methods [2] are developed for different types of data to
analyze, which is the starting point for any statistical analysis.

The simplest symbolic data is the interval data that consider the variation of a
phenomenon in term of its bounds or intervals. It means that this kind of data give
us little information regarding the interval variability owing to the hypothesis of uni-
form distribution throughout the interval of phenomenon variation. In order to take a
better description of real world into account the use of histogram data could be more
appropriate [5, 7, 12]. The techniques developed up to now that analyze the relation
among histograms are based on probability density or on cumulative frequencies of
the histograms. In this paper, we propose a new way to treat with histograms: all
the histograms are transformed in models by means of approximations with func-
tions belonging to the same family in order to synthetize the information within
histograms trough some characteristic function parameters. So data are described
by a set of parameters and an error term due to approximation. The type of function
used to approximate the histograms characterizes the choice of the parameters of
the model. Among approximation functions, it is chosen to use B-splines [3].
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This paper is organized as follow: in Sect. 2 we briefly recall the definition of
histogram data and a new type of symbolic data, called “Model Data”, is proposed;
moreover, we recall some basic properties of B-spline. In Sect. 3, we present a way
to approximate a histogram using B-spline functions. Finally, in Sect. 4, starting
from real data, the histogram transformation process is shown.

2 Histogram Data and Model Data

2.1 Histogram Data

Due to recent developments in data warehousing, a huge amount of continuous data
are stored at any occurrence. In these case, aggregation of some kind is necessary
even if only to reduce the dataset to a more manageable size for subsequent analysis.
There are innumerable ways to aggregate such datasets. In many real experiences,
data are collected and/or represented by frequency distributions. If Y is a numerical
and continuous variable, many distinct values yi can be observed. In these cases, the
values are usually grouped in a smaller number H of consecutive and disjoint bins
Ih (groups, classes, intervals, etc.). The frequency distribution of the variable Y is
given considering the number of data values nh falling in each Ih .

The histogram data, as symbolic data, is described by a partition of an interval
into buckets (or sub intervals) weighted by probabilities or relative frequencies. For
a generic variable, the i-th histogram data is a model to represent an empirical dis-
tribution described as a set of H ordered pairs Y (i) = (Ih, πh) such that:

Ihi ≡
[
zhi , zhi

]
zhi ≤ zhi ∈ �,

⋃
h=1,...,H Ihi =

[
minh=1,...,H {zhi },maxh=1,...,H {zhi }

]
,

πh ≥ 0,
∑

h=1,...,H
πh = 1.

2.2 Model Data

In this paper, the term “Model Data” is referred to a set of parameters of the mathe-
matical model used to approximate histogram data.

The data represented by a histogram are transformed into a model that synthe-
sizes the shape of distribution with a certain error, obviously depending on the kind
of approximation. We are looking for the best trade-off between model and error.
This concerns the choice of the model, or better the choice of the number of param-
eters to use in the approximation, and the error due to the approximation. Since our
data have been suitable processed as a function, they may be summarized through
function parameters and some indices of goodness of fit. So for each variable we
will get m functions, each of which corresponds to the i th observation. New data
have to be proportional in number to the function parameters, in this way any func-
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Table 1 Table of the parameters of the new data

Parameters

var 1 var 2 · · · var s

oss 1 b111, . . . , b11l , I11 b121, . . . , b12l , I12 · · · b1s1, . . . , b1sl , I1s
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

oss m bm11, . . . , bm1l , Im1 bm21, . . . , bm2l , Im2 · · · bms1, . . . , bmsl , Ims

tion will be replaced by its own parameters and new data will be as many as the
units × variables×number of parameters. Assuming that all the functions have
l parameters (b1, . . . , bl ) and an appropriate index (I ) of goodness of fit, we can
summarize the data as in Table 1.

The problem is now to derive a suitable function that, from a mathematical point
of view, is the best approximation of the data. Among approximation functions,
we choose to use spline functions [3] because of the simplicity of their construction,
their easiness and accuracy of evaluation, and their capacity to approximate complex
shapes through rather smooth curve. In particular, we focus our attention on B-
splines that are spline functions that has minimal support with respect to a given
degree, smoothness, and domain partition.

2.2.1 B-spline

In this section we briefly recall some basic properties of B-spline [3] which are
essential in our discussion.

The B-spline functions of degree p compose a basis in the subspace of all the
spline functions of degree p. Actually, a spline function of degree p, defined on a
knots set {tk}k=0,...,n , can be expressed as a linear combination of B-spline functions
Bi,p on the same knots sequence {tk}k=0,...,n :

S(t) =
m∑

i=0

Pi Bip(t), (1)

where Pi are m+ 1 control points and the B-spline functions are built in the follow-
ing way:

Bi,1(t) =
{

1 ti ≤ t ≤ ti+1
0 otherwise

Bi,p(t) = t−ti
ti+p−1−ti

Bi,p−1(t)+ ti+p−t
tp−ti+1

Bi+1,p−1(t).

Therefore, a B-spline curve involve a set of m + 1 control points, a vector of n + 1
knots and a degree p, and for them the following expression must holds: n = m +
p + 1.
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Note that, the term B-spline usually refers even, to a spline curve parametrized
by spline functions that are expressed as linear combinations of B-splines. In partic-
ular, a B-spline function exploits all the properties of a spline functions and take
advantage of the following ones: strong convex hull property (a B-spline curve
is included in the convex domain of its control polygon); local change property
(changing the position of the control points Pi affects the curve S(t) only in the inter-
val [ti , ti+p+1)); affine invariance property (if an affine transformation is applied to
a B-Spline curve, the result can be achieved by the affine image of its control points).

3 Histogram Approximation by B-spline

We would like to derive a smoother approximation from a histogram to the under-
lying distribution. We can do this by constructing a spline function s(t) of degree
p, pass through the starting and the final points of histogram, whose average value
over each bar interval equals the height of that bar. Let z(i) be the left edge of the
i-th bar and h(i) its height, we want our spline s(t) to satisfy:

(∫ z(i+1)

z(i)
s(t)dt

)

/ (z(i + 1)− z(i)) = h(i).

Since our purpose is to be able to compare different histograms, we are going to
transform the obtained spline functions in B-spline function to compare their control
points.

Fixed p = 2, what we get are as many control points as the number of histogram
bars. Indeed, since the relation m = n − p − 1 holds and having imposed that
the curve have to pass through starting and final points, (i.e. the knots sequence is
{t0, t0, t1, . . . , tn − 1, tn, tn}), we will have m = n − 1. In that case, the obtained
model perfectly fits the histogram shape and gives an approximation error equal to
zero (Fig. 1).

However, our aim is to work with a number of parameters (i.e. control points)
less than the number of histogram bars, otherwise we could simply deal with the
frequencies of the related histogram classes.

Fig. 1 Smoothing a
histogram by quadratic spline
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The idea is to get a priori a smaller fixed number of control points equal for all the
histograms and thus to obtain different approximation errors. A way to reduce the
number of control points is to decrease the number of knots and/or to increase the
spline function degree. However, the degree of the B-spline usually do not exceed
three, so the number of knots have to be reduced. According to some experimental
results, we set the number of knots inside the interval

[
int
( k

2

)− 1, int
( k

2

)+ 1
]
,

where k is the number of histogram bars, and later work out a suitable index of
goodness of fit that allows us to know the approximation quality. Then, the problem
is how to find an optimal knots sequence. The location of knots should be established
in terms of the best fitting function.

So the starting point is to define a way to compute the approximation error. We
can obtain a measure of error as the sum of the squares of the differences between the
histogram bar area and the spline function area. In this way we build the objective
function to minimize in order to find out the optimal sequence of knots. So we have
to solve the following bound-constrained optimization problem:

argmin
∑H

h=1

∫ Ri
Li

[s(t)− h(i)]2 dt
s.t. t0 ≤ t ≤ tn

|ti − ti+1| > (zi+1 − zi ) .

(2)

In that way we are going to get a different knots sequence for each histogram and for
this reason the B-spline parameters will not be comparable. In order to set the same
set of knots for every histogram, a first idea could be to create a knots sequence as
the average of the obtained knots. Starting from that sequence we will build final
approximating B-spline functions for each histogram. Note that the error introduced
replacing the optimal sequence with the sequence of knots average is incorporated
in the new approximation error.

It is worth to remark that the control points obtained from the model built on the
optimal knots sequence give us information on the histogram form. This form is not
referable to a density function and is defined by parameters not statistically inter-
pretable. Subsequently, it can happen that B-spline approximation function, having
to pass through the histogram extremities, can assume also negative value.

4 Histogram Transformation Process: An Example

We have considered a dataset representing the sequential “Time Biased Corrected”
state climatic division monthly Average Temperatures recorded in the 48 states of
US from 1895 to 2007 (Hawaii and Alaska are not present in the dataset).1

1 The original dataset is freely available at the National Climatic Data Center website of US
http://www1.ncdc.noaa.gov/pub/data/cirs/drd964x.tmpst.txt
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The starting point of transformation process is a single value units×variables matrix
where each unit is observed in N occasions. The units are the 48 states, the variable
are the months of the year and the occasions are the years.

The steps of the process are summarized as follow:

• Step 1: Histograms building.
Starting from original data, it is possible to build histograms by pooling occa-
sions. We want to obtain standardized histograms with the same number of bars
of same width. Regarding the number of classes, the Sturges formula [10] has
been used: K & 1+log2 N where N is the number of occasions; in our case, being
N = 113, we set K = 8 . Moreover, to have a comparison among histograms we
transform the histogram in [0, 1] by means:

y = x − min(x)

max(x)− min(x)
(3)

where x is the occasions vector. In this way we have built histograms with the
same bins {z1, . . . , zK+1}. At the end, a new matrix is obtained where in each
column there is an histogram variable (see histograms in Fig. 2)

• Step 2: Choose the optimal knots sequence.
As said before we want to construct B-splines on a number of knots within[
int
( k

2

)− 1, int
( k

2

)+ 1
]
. For our data we choose to work on five knots, two

knots are fixed to the extremities, while the others are chosen by the optimal
process (2) inside the interval (0, 1). So, we obtain three significant values for
each histogram (the other two are equal for all the histograms).

• Step 3: Average knots sequence computation.
Our purpose is to compare the control points Pi of (1) and so the Bi (t) must be
built on the same knots sequence to get the same bases. In order to get the same
knots sequence for each histogram variable, a mean vector of the knots is built.
So, we will have a mean knots sequence for each variable.

• Step 4: B-spline building.
B-splines are constructed starting from the average knots sequence by means of
(1). So each histogram is approximate by means of a B-spline (Fig. 2).

• Step 5: Calculation of parameters matrix.
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Fig. 2 Matrix of histogram data approximated by B-spline
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Table 2 Table of the parameters of real data

January February · · · December

Alabama c.p. −0.001, 0.591, −0.081 −0.028, 0.482, 0.056 · · · 0.029, 0.689, −0.139
err. 9.48E − 5 6.01E − 5 · · · 5.76E − 4
loc. 46.80 47.95 · · · 47.25
size 27.00 20.70 · · · 18.30

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Wyoming c.p. −0.124, 0.569, 0.146, −0.003, 0.287, 0.211 · · · 0.050, 0.279, 0.101
err. 2.99E − 4 8, 72E − 5 · · · 5.51E − 4
loc. 16.65 21.50 · · · 19.95
size 25.50 21.80 · · · 21.50

We will build the matrix containing the control points that are the parameters
of the approximation function which will be used during subsequently analysis.
Moreover, we would like to keep information about goodness of fit. A measure
of this can be the minimum of the objective function in (2).
Note that, we worked on histogram data that were normalized in the interval
[0, 1] and we approximated them by means of B-spline functions whose control
points will be calculated to get information about the histogram shape. Doing the
transformation on [0, 1] the histogram shape and the spline do not change.
Finally, since a histogram is a symbolic data that is characterized by three fun-
damental measures: location, size and shape, we need to retrieve data about
location and size. The information about the histogram location come from
(max(x)+min(x))/2, while the information about the size come from the width
of all the interval that is max(x)− min(x).

To sum it up, we have a matrix of 12 blocks (one for each month) of order 48 × 6
where 48 is the number of states considered and 6 is the number of parameters
(Table 2). The first three parameters are the B-spline control points and give us
information about the shape, the fourth parameter is the error term, the fifth and
the sixth are the location and the size of the histogram.

5 Conclusion and Future Work

In this work we have presented a way to deal with histograms by means of a suit-
able approximation functions. The aim was to synthetize the information within
histograms trough B-spline function parameters (and an approximation error term)
to take into account histogram shape. The choice of B-spline function is one of the
possible choices. In a different context we could consider approximating histograms
through density functions of probability as long as they enter in a family of functions
and have the same number of parameters and as long as the latter are comparable.
The last case brings a certain inflexibility to the model although contributing with a
notable simplicity and interpretation. Our approach, indeed, offers major flexibility
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in the choice of model and a possible situation comparability not referable to one
single theoretical model. Alternative proposals are the use of moment generating
functions or “Lambda Generalized” [11] that can represent a compromise between
flexibility and statistical meaning.

Moreover, to consider the same set of B-splines knots for all histograms to com-
pare parameters among histogram we chose to compute the average of the optimal
set of knots for each histogram. Of course, more sophisticated choice can be used; in
particular, a choice based on global optimization approach have to be investigated.

Finally, the transformation carried out on histograms in this paper, allows us to
work in a more simple way on this kind of symbolic data. After the histograms
have been transformed, the next stage will be their treatment according to classical
techniques of Multidimensional Analysis as factorial and/or classification methods.
Among factorial techniques, it is relevant the use of methods suitable for the study
of variable described by a block of parameters as the Multiple Factor Analysis [4].
Furthermore, to classify symbolic models the core problem is to define an adequate
distance between models [9]; an idea can be the generalization of distance defined
in [8], as proposed in [6].
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Use of Genetic Algorithms When Computing
Variance of Interval Data

Jaromír Antoch and Raffaele Miele

Abstract In many areas of science and engineering it is of great interest to com-
pute different statistics under the interval uncertainty. Unfortunately, this task often
turns out to be very complex. For example, finding the bounds of the interval that
includes all possible values produced by the calculation of quantities like variance
or covariance for interval valued dataset is a NP-hard task. In this paper a genetic
algorithm is proposed to tackle with this problem. An application of the algorithm
is presented and compared with the result of an exhaustive search using the same
data, which has been performed on a grid computing infrastructure.

1 Introduction

Use of interval analysis in engineering is a topic of great interest because many
measurement instruments return interval data. The same type of problems arise in
statistics whenever we are measuring unprecisely defined objects as, e.g., length of
the disease, height or volume of the tree, etc. One of the main reasons why interval
analysis became a hot topic in informatics is rounding and/or discrete representation
of continuous processes in computers, etc.

It is easy to accept the idea that interval representation can be richer than the
scalar one, however, more difficult to be analysed. Typical reason why interval data
are reduced to the scalars lies in the fact that there are routinely not available ade-
quate techniques to treat them in their native form. Unfortunately, transformation of
the interval data into the scalars is typically accompanied by the loss of information.

Interval analysis can be roughly described as follows. Let us have two intervals
x = [x, x] and y = [y, y], and some operation op. Then interval operation op on x
and y can be defined as

op (x, y) = {op(x, y) | x ∈ x, y ∈ y} . (1)
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In other words, the result of an interval operation applied to x and y corresponds to
the range of all possible values of op if applied to any couple (x, y) such that x ∈ x
and y ∈ y.

Interesting examples of interval data can be found in [4, 9]. Another approach,
which is described in [6], synthesizes a variable with the set of all possible values
that could be obtained from it by supplying real-valued arguments from the respec-
tive intervals. For a detailed overview of the application of interval statistics see
[5, 10]. For other ways how to treat interval data see [2].

Interval analysis considered in this paper consists in finding extremes of studied
operator (operation) when applied to the interval data. Generally, it corresponds to
solving following box-constrained optimization problem, i.e.

min,max { f (x1, x2, · · · , xn) | xi ∈ [ ai , bi ], i = 1, . . . , n} , (2)

where the objective function f is expression of the statistic of interest and xi ’s rep-
resent possible realizations of the (interval) observations that, as a whole, define a
hypercube K = ∏n

i=1[ ai , bi ]. For some functions there exist analytical solution,
e.g. for the sample mean. In this case the bounds of the interval mean are the mean
of the inferior endpoints and the mean of the superior endpoints. For details see [5].
It can be shown that for monotone functions it is often possible to get the interval
in an explicit form. However, more frequent are the situations in which this is not
possible. Moreover, finding the endpoints of the solution set becomes a complicated
problem in which specialized algorithms are to be applied when searching for solu-
tions together with the exploitation of specific properties of the objective function
in an effort to reduce the amount of computation to be performed.

Figure 1 shows examples of different types of interval data. As pointed out in [5],
it appears that for different types of intervals different algorithms are efficient. All
the datasets that do not belong into the first nine categories are qualified as general.
For such data sets it is typical that finding an exact solutions in an affordable amount
of time is practically impossible, because the only way how to proceed is exhaustive
search over the multidimensional cube defined by all intervals.

2 Specific Problem

Let us consider n intervals Ii = [ai , bi ], ai ≤ bi , i = 1, . . . , n, and denote by K
their cartesian product, i.e. K = I1 ⊗ . . . ⊗ In = [a1, b1] ⊗ . . . ⊗ [an, bn] ⊂ R

n ,
where R

n denotes n-dimensional Euclidean space. Our task is to find among all the
vectors falling into K that one which has maximal variance, i.e. to find

xmax = arg max
x∈K

1

n − 1

n∑

i=1

(
xi − xn

)2
, (3)
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Fig. 1 Different types of interval dataset. Source: [5]

where xn = n−1∑n
i=1 xi . Symbol arg maxx∈K denotes, as is usual, argument of

the maxima, i.e. that value x ∈ K for which the maximum is attained. It is worth of
noticing that solution(s) of (3) coincide(s) with the solution of the problem to find

arg max
x∈K

1

n − 1

n∑

i=1

∣∣ xi − xn

∣∣ . (4)

It can be easily shown that solution of our task is not necessarily unique. More-
over, it is clear that the normalization either by 1/n or 1/(n − 1) etc. does not play
the role on the results. Following assertion, which will be of key importance for our
genetic algorithm, has been proven in [1].

Assertion 1 Assume the above mentioned setup. Then solution(s) of (3) coincide
with one (or more) vertex(es) of K. �

Remark 1 It is important to notice that (3) is equivalent to finding

arg max
x∈K

1

n(n − 1)

∑

1≤i< j≤n

(
xi − x j

)2
. (5)
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From the geometric point of view this means that we are looking for that corner of
K, which has the largest distance from the straight line passing through the origin
and the point (1, . . . , 1)′. Formal proof can be found in [1].

3 Genetic Algorithm

3.1 General Remarks

Genetic algorithms (GA) are stochastical procedures that provide a random-search
based alternative to the traditional optimization methods using powerful search tech-
niques to locate near optimal (and, sometimes, optimal) solutions in complex opti-
mization problems. They can be briefly described as stochastic algorithms whose
search methods mimic natural phenomena based on genetic inheritance and selec-
tion. GA perform multidirectional search by maintaining a population of potential
solutions and assuring knowledge formation and exchange between different direc-
tions, see [8] for details. Potential solutions of the problem evolve. More precisely, at
each generation better solutions reproduce, while relatively bad solutions eventually
die off. GA’s have been successfully applied to many real world optimization prob-
lems like scheduling processes, travelling salesman problem, etc. For more details
see, e.g., [7].

To be able to use any genetic algorithm, it is necessary to define:

• Genetic representation of the data and parameters of the problem.
• Evaluation (fitness) function.
• Genetic operators (crossover, mutation) altering the population.
• Values of the parameters used by the algorithm (population size, number of gen-

erations, probabilities to apply genetic operators, selective pressure, etc.).

A genetic algorithm is described by the following scheme:
procedure genetic algorithm
begin

choose a coding to represent variables
t ← 0
initialize population P(t)
evaluate population P(t)
while (not terminating condition) do

t ← t + 1
select P(t) from P(t − 1)
modify P(t) using crossover and mutation
evaluate P(t)

end
end
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3.2 Specification for Our Specific Problem

For most applications, in particular when the objective function and the search
domain are not too complex, the most critical point is the one related to the encoding
of respective objects, while the other can be usually easily accomplished or chosen
by empirical evidence.

Representation of variance in the form (5) is the key point allowing us to concen-
trate only on the vertexes of the cube K. It is evident that there exist a 1–1 mapping
between the set of all vertexes of K and a set of vectors α = (α1, . . . , αn)

′ ∈ {0, 1}n ,
where αi = 1 corresponds to the choice xi = ai while αi = 0 corresponds to
the choice xi = bi . Thanks to the fact that the assignment of chromosomes and
vertexes of K is natural and the fitness function is given by the variance calculated
for given vector x, it is enough to set the population size S, crossover k, mutation
probability pM and stopping rule.

Summarizing, above described representation allows us to attack the problem
with a genetic algorithm in which the fitness function is the variance we want
to maximize, and a candidate solution is modeled as a combination of boundary
points of the intervals whose coding is (natively) binary. The other parameters of
the genetic algorithm have been, for our example, chosen empirically as follows:

• Initial generation has been chosen randomly, i.e., the genes were simulated from
the alternative distribution Alt (1/2).

• Crossover scheme : single point crossover with k ≈ 0.6n.
• Mutation probability pM ≈ 0.01.
• Fitness f (α) = var x, where x is that vertex of K that corresponds to the chro-

mosome α.
• Population size card(S) = 100.
• Number of generations 300.
• Elitism was used, i.e., the best individual of a generation is cloned with the new

one.

Finally, take a look on the sensitivity of the procedure when changing the param-
eters. Basic conclusion is that the mutation probability considerably influences both
the population size card(S) and number of generations. Other parameters do not
play so important role. More specifically:

• If we increase mutation probability, we must either considerably increase the
number of generations or population size. For example, the choice pM = 0.025
recommended by the literature required either to double the population size or to
triple the number of generations.

• Choice of the initial generation does not have substantial impact on the speed to
arrive to the optimal solution.

• Crossover scheme does not have an impact on the speed to arrive to the optimal
solution. Single point crossover gave us practically the same results as two point
or random crossover.
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4 Example

The algorithm has been tested on many real and simulated datasets. General con-
clusion is that the convergence for suitably tuned parameters has been very fast in
all considered situations. Moreover, it seems to scale well with the problem dimen-
sionality.

The quality of the solution(s) found by the genetic algorithm has been checked
on a Grid Computing Environment of the University of Naples Federico II, which
has been used for an exhaustive search leading to the optimal solution. In all the sim-
ulations that have been performed the genetic algorithm found the global maximum
in less than one thousand of iterations. As an example we have chosen a general
type dataset consisting of 40 interval observations. The data are reported in Table 1.

According to [5] there does not exists for this type of the data other algorithms
enabling to find xmax than exhaustive search. It took us about 4 h on a cluster
with 16 multi-kernel processors to reveal that xmax correspond to the point given
in Table 2. Notice that we have found the same point using our genetic algorithm in
less than several hundred iterations, taking less than a second of CPU on one of the
processors.

Table 1 Data
ai bi ai bi ai bi ai bi

−47.50 28.75 40.75 95.00 −10.00 7.75 27.75 57.00
47.25 91.75 −47.00 30.50 −81.50 −72.25 49.75 85.50
38.50 81.50 −95.75 −25.25 −94.00 −18.75 12.75 90.75
−53.50 45.00 −34.00 −28.25 −65.50 22.00 18.50 85.50
−46.50 93.50 −1.25 34.50 −3.25 83.25 −93.00 −83.00
−98.25 −40.75 16.50 81.25 −90.25 −77.00 −95.75 −52.00
−34.50 −28.00 −21.75 39.75 −24.75 −1.25 −66.00 −61.25

51.00 64.00 30.25 80.25 42.50 79.75 −77.50 −42.75
−88.50 −71.50 −14.50 −6.00 −11.00 −5.00 −32.50 −13.50
−93.75 −33.00 −22.50 1.25 −19.50 6.75 −42.25 20.00

Table 2 Solution
−47.50 91.75 81.50 45.00 93.50 −98.25 −34.50 64.00

95.00 −47.00 −95.75 −34.00 34.50 81.25 39.75 80.25
7.75 −81.50 −94.00 −65.50 83.25 −90.25 −24.75 79.75

57.00 85.50 90.75 85.50 −93.00 −95.75 −66.00 −77.50
−88.50 −93.75 −14.50 −22.50 −11.00 −19.50 −32.50 −42.25

5 Conclusions and Perspectives

As has been shown in [3] e.g., finding the upper bound of variance for interval
data is a NP-Hard problem. Even if in some cases it is possible relatively quickly
find it through exploiting the characteristics of some particular interval variables, a
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computationally affordable algorithm for all kind of datasets does not exist. In this
paper an heuristics based on a genetic algorithm has been presented that founds the
optimum in all the real and simulated data we have been able to analyse with a grid
computing infrastructure. Of course, the computational complexity of the problem
does not allow the grid to perform exhaustive search when the number of statistical
units grows above a certain threshold, however, the behavior of the algorithm seems
to be robust with respect to the dimension of the dataset (the number of iterations
required to converge does not explode when the number of units increases). Future
directions of research, some of which are already in progress, are leading towards:

• Fine tuning of the algorithms.
• Calculations of bounds for more complex quantities like covariance, correlation

and regression coefficients.
• Study of the convergence speed of the algorithms.
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Spatial Visualization of Conceptual Data

Michel Soto, Bénédicte Le Grand, and Marie-Aude Aufaure

Abstract Numerous data mining methods have been designed to help extract
relevant and significant information from large datasets. Computing concept lat-
tices allows clustering data according to their common features and making all
relationships between them explicit. However, the size of such lattices increases
exponentially with the volume of data and its number of dimensions. This paper
proposes to use spatial (pixel-oriented) and tree-based visualizations of these con-
ceptual structures in order to optimally exploit their expressivity.

1 Introduction

Information retrieval and navigation have become very difficult in current infor-
mation systems because of data’s volume and lack of structure. Building Galois
lattices provides raw data with a structure, through clusters of concepts linked by
generalization/specialization relationships. The interest of such concept lattices was
studied in previous work [9, 10]. The conceptual navigation layer created by Galois
lattices provides users with an additional – structured – abstraction level for their
navigation. However, the number of concepts increases exponentially with the size
of data and its number of dimensions. In such case, graphical representations such
as Hasse diagrams become useless. This article proposes a spatial representation of
large Galois lattices through a pixel-oriented and a tree-based visualization.

This paper is organized as follows. Section 2 presents the context of this work, in
particular Formal Concept analysis and Galois lattice upon which our methodology
relies. Section 3 proposes a pixel-oriented representation of large concept lattices
whereas Sect. 4 focuses on a tree-based visualization intended for navigation. Sec-
tion 5 finally concludes and presents perspectives of this work for the future.
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2 Context

This methodology is generic and may be applied to any type of data. In this paper
its use is illustrated on a dataset called tourism, consisting of 126 Web pages about
tourism, described by the most significant terms they contain (among 60 possible
words such as specific countries).

2.1 Formal Concept Analysis and Galois Lattices

Formal Concept Analysis (FCA) is a mathematical approach to data analysis which
provides information with structure. FCA may be used for conceptual clustering as
shown in [5, 12].

The notion of Galois lattice to describe a relationship between two sets is the
basis of a set of conceptual classification methods. This notion was introduced by
[1, 2]. Galois lattices group objects into classes that materialize concepts of the
domain under study. Individual objects are discriminated according to the properties
they have in common. This algorithm is very powerful as it performs a semantic
classification.

2.1.1 Galois Lattices Basic Concepts

Consider two finite sets D (a set of objects) and M (the set of these objects’ proper-
ties), and a binary relation R ⊆ DxM between these two sets.

Let o be an object of D andp a property of M. We have oRp if the object o has
the property p. According to Wille’s terminology [6]:

Fc = (D, M, R) (1)

is a formal context which corresponds to a unique Galois lattice, representing natural
groupings of D and M elements.

Let P(D) be the powerset of D and P(M) the powerset of M. Each element of the
lattice is a couple, also called concept, noted (O, A). A concept is composed of two
sets O ∈ P (D) and A ∈ P(M) which satisfy the two following properties (2):

A = f(O), where f(O) = {a ∈ M|for all o ∈ O, oRa}
O = f’(A), where f’(A) = {o ∈ D|for all a ∈ A, oRa} (2)

O is called the extent of the concept and A its intent. The extent represents a
subset of objects and the intent is made of these objects’ common properties.

A partial order on concepts is defined as follows (3):

Let C1 = (O1, A1) and C2 = (O2, A2), C1 < C2 ⇔ A2 ⊆ A1 ⇔ O1 ⊆ O2. (3)
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In the context of the tourism dataset, each page (url) is an object and its properties
are the most frequent terms it contains. In this case, the Galois lattice then consists
of concepts comprising sets of Web pages (objects) – in the extents – described by
their common terms (common properties) – in the intents. For example, pages about
restaurants, gastronomy in France will be gathered in the extent of a concept with
these three common properties in the intent.

2.2 Galois Lattices’ Interpretation

Galois lattices are very well fitted to showing the various types of connections
among the Web pages in the tourism dataset (comprised of 126 urls about tourism)
as they cluster these pages according to the terms they have in common. However
their complexity in size due to the very high number of concepts they contain makes
them very difficult to interpret with traditional Hasse diagrams.

The authors of [7] have defined interest measures to reduce the size of large
concept lattices and apply their method to healthcare social communities.

The lattice represented on Fig. 1 was computed from the set of 126 Web pages
about tourism. The total number of significant terms used to characterize these pages

Fig. 1 Large lattice’s Hasse diagram
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is 60. The lattice contains 2,214 concepts, linked by 7,758 edges; as illustrated by
the Fig. 1, its interpretation from the visualization as a Hasse diagram is impossible.

Our approach aims at enhancing Galois lattices interpretation by proposing large
lattices visualizations through two different techniques: a pixel-oriented and a tree-
based visualization.

2.3 Related Work

The goal of the work presented here is to provide a visual representation of a large
Galois lattice, allowing users to interpret it at a glance. We aim at creating a kind
of visual footprint of the lattice. Among the state of the art, some works generate
a map resulting from a query and may represent several hundreds or thousands of
documents [4, 11].

In the context of visualization, it seems natural to limit the data space to three
dimensions. In order to cope with the dimension issue, three techniques exist: sim-
ilarity measures (e.g. the vector model), dimension reduction (multidimensional
scaling, Principal Components Analysis) and spatial configuration (triangulation,
treemaps). Visualization is the most important part as it provides users with an intu-
itive vision which can be understood and used immediately. Some reduction tech-
niques propose their own visualization; although their interpretation is not always
easy, their results may be used as bases for other visualization techniques such as
the pixelization [8] presented in the following section.

3 Galois Lattice’s Pixel-Oriented Visualization

The methodology used in this section to generate 2D spatial visualizations of Galois
lattices is the same as in [3]. The approach consists in representing data as coloured
pixels placed in the 2D space along to a Peano–Hilbert curve.

We have applied this method not to the visualization of data itself but of the
Galois lattice generated from them. Each concept thus corresponds to a pixel to
which a colour must be assigned. Each concept is made of an extent (the list of
objects contained in the concept) and of an intent (the list of properties shared by
the extension’s objects). Each intent’s property is a dimension of the concept. A
PCA is performed to reduce this number to three (for the Red, Green and Blue
colour components). The values of the obtained (X, Y, Z) triples are usually low.
In order to get more satisfying values, the inverse Ohta’s transform is used as in
[3] to approximate the three components of PCA for a natural colour image. This
inverse transform is applied to each concept and the values are normalized to be well
distributed between 0 and 255. Finally, concepts are ordered according to their RGB
vector in order to cluster concepts with similar colours on a straight line – i.e. a 1D
space. Each pixel’s coordinates are assigned in the 2D space along a Peano–Hilbert
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Fig. 2 Pixel-oriented
visualization

Fig. 3 Clusters identification

curve. This curve places the points of a straight line on a plane by minimizing the
Euclidian distance of points which are close on the straight line.

Figure 2 represents the pixelization obtained from the methodology described in
Sect. 3 and applied to the Galois lattice of Fig. 1.

From a first visual analysis of this pixelization, some clusters of pixels may be
identified as shown on Fig. 3. Each cluster of pixels reflects a cluster of concepts
of the lattice. The Euclidian and colorimetric proximity of pixels symbolizes the
semantic proximity of the corresponding concepts in the lattice. These clusters show
how the lattice’s concepts get organized, which was impossible from the Hasse dia-
gram of Fig. 1. This cartography thus allows to consider one or several exploration
strategies for the lattice and consequently for the data from which it was computed.
In order to check the validity of this interpretation, the portion of the lattice which
corresponds to the pixels of the yellow zone (pointed by an arrow on the Fig. 3) was
re-built. This zone contains 16 pixels and corresponds to 16 concepts of the Fig. 1.

Given CZ the set of concepts corresponding to the pixels of the studied zone, we
define:

Cp-ext = {parent (ci)/parent (ci) /∈ Cz and ci ∈ Cz} and Cf-ext = {child (ci)/child
(ci) /∈ Cz and ci ∈ Cz}, with i varying from 1 to card (Cz).

Finally, we define C′p-ext as the set Cp-ext minus all the parents which have only
one child in Czand C′f-ext the set Cf-ext minus all children which have a single parent
in Cz.

The Fig. 4 represents the part of the lattice built from C′p-ext∪ Cz∪ C′p-ext. On this
figure the red nodes belong to Cz and the blue nodes belong to C′p-ext∪ C′p-ext. The
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Fig. 4 Portion of Galois Lattice

obtained graph is connex and we may thus conclude that there is a real semantic
proximity among Cz’s concepts and that this proximity is correctly represented by
the cluster of pixels comprised within the studied zone.

This representation provides an overall understanding of the dataset’s implicit
structure. Figure 3 shows that the tourism dataset is structured in six main clusters
out of a total of 11. Nevertheless, this representation neither allows to explore the
dataset nor to understand the content of the information contained in the dataset. In
the next section, we propose a representation providing these two capabilities.

4 Galois Lattice’s Tree-Based Visualization

One of the goals stated above is to enhance navigation in large Galois lattices.
Exploring concepts in a Hasse diagram is inappropriate when the number of con-
cepts is very high. In this section, we propose to extract a tree of concepts from
the Hasse diagram in order to reduce the total number of concepts and provide a
hierarchical representation for an intuitive navigation.
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4.1 Tree Extraction Algorithm

The tree extracted from the Hasse diagram provides a hierarchical representation of
the complex system with different levels of detail (or scales). The result is therefore
a hierarchical clustering where clusters may be overlapping (as they are selected
concepts from the lattice). The root of the tree contains all objects; the next level
groups some objects together in possibly overlapping clusters, the next level is a
finer grouping of objects, etc. The number of levels of detail is given by the depth
of the tree.

Figure 5 describes the detail of the tree extraction process.

The lower bound of the lattice is noted Inf and the upper bound is noted
Sup.  
A = allFathers (Sup); 
While A ≠ {Sup} do

D = ∅; // set of fathers of A with minimal distance to Sup, where 
metric = number of links in the lattice between two nodes) 

A’= ∅; // set of selected parents from A 
/** selection of parents of A with minimal distance to Sup **/ 

For each concept a∈ A and a≠ Sup do 
F = allFathers (a);
Da = ∅; // set of fathers of a with minimal distance to 

Sup 
For each parent f ∈ F do 

If distance (f, Sup) = minDistance (F, Sup) then
Da = Da ∪{f}; 

End if
End for
If card (Da) = 1 then // only 1 parent of a has the mini-

mal distance to Sup 
Tree = Tree + (a, Da); // adding a and its se-

lected parent in the tree 
A = A – {a};
A’ = A’ ∪ Da; 

else D = D ∪ Da; 
End if 

End for
// * selecting concepts having an already selected father in A’ **/ 

For each concept a ∈ A and a ≠ Sup  do
For each parent f ∈ A’ do

If is Father (f,a) then // f has a father already
selected in A’ 

Tree = Tree + (a,{f}); // adding a and
its father in the tree 

A = A – {a};
Enf if

End for
End for

/** selecting random fathers in D **/ 
For each concept a ∈ A and a ≠ Sup do

// randomly select a father of a within D
f = randomFather (a, allFathers (a), D)
Tree = Tree + (a, {f}); // adding a and its father in the 

tree 
A’ = A’∪ {f}; 

End for
A = A’;

End While

Fig. 5 Tree extraction algorithm
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As the clustering algorithm presented here is based on Galois conceptual clas-
sification, the generated clusters are conceptually and semantically relevant. This
algorithm also exploits the generalisation/specialisation relationship inherent to the
Galois lattice.

The construction of the clusters’ tree starts from the finest level of detail, i.e. the
upper bound of the lattice: the leaf clusters of the tree are thus the most specific
concepts of the lattice – i.e. the parent concepts of the upper bound.

For each leaf, one unique parent concept is selected which is a generalisation of
the leaf concept. This selection is done according to a hierarchy of criteria in case a
concept has several parent concepts in the lattice. These criteria are the following:
first, if one of the candidate parents has a lower distance to the upper bound of the
lattice (where the distance between two nodes corresponds to the number of links
in the lattice between these two nodes), then it is selected as the unique parent. This
choice has been made in order to select nodes which bring significant information
by filling wider “gaps” between nodes. Moreover, this choice minimizes the number
of nodes in the resulting tree.

The following criterion aims at minimizing the overall number of nodes in the
final tree: if one of the candidate parents has already been chosen as a unique parent
by a sibling node, then it is selected as the unique parent for the current node too.
Another criterion is related to potential weights assigned to properties but it has not
been used here. Finally if several nodes are still candidate parents, one of them is
selected randomly. A unique parent is then selected for each selected concept, and
so on until the upper bound of the lattice is reached. At the end of this process, a

Fig. 6 Clusters visualization
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Table 1 Conceptual clustering statistics

• Number of clusters = 272

• Number of concepts in the original lattice = 2,214

• Proportion of eliminated concepts = 87.7%

• Number of levels in the cluster tree = 7

– Proportion of clusters at level 1 = 0.4%
– Proportion of clusters at level 2 = 10.7%
– Proportion of clusters at level 3 = 22.8%
– Proportion of clusters at level 4 = 30.5%
– Proportion of clusters at level 5 = 24.6%
– Proportion of clusters at level 6 = 8.8%
– Proportion of clusters at level 7 = 2.2%

• Proportion of obvious clusters = 11%

• Proportion of clusters selected because of a minimal distance to the lower bound of
the lattice = 18.4%

• Proportion of clusters selected through the sibling relationship = 11%

• Proportion of cluster selected randomly = 59.6%

tree is created. Each level of the tree contains clusters which correspond to a specific
level of detail

4.2 Clusters Analysis

Once the tree of clusters is generated, different measures may be computed, e.g. the
proportion of concepts of the initial lattice which were not selected to be clusters.
An example representation of the tree computed from the tourism dataset is shown
on Fig. 6 and the corresponding statistics appear in Table 1.

The depth of the tree is interesting because it indicates the number of naviga-
tion levels which may be provided to the user. The distribution of clusters at each
abstraction level is also studied. If a cluster has no parent, it means that it cannot be
generalized. On the other hand, a cluster with no children corresponds to the most
specific level.

This representation provides a global understanding of the nature of the informa-
tion contained in the explored dataset. From the above example we learn that this
tourism dataset is mainly related to France, gastronomy, camping and to a region of
France named Loire. Then users may explore specific clusters by clicking on them.

5 Conclusion

This paper described a methodology to provide a conceptual help for navigation
in large and poorly structured datasets, based on the use of Galois lattices. The
interpretation of large lattices is impossible with traditional graphical representation.



388 M. Soto et al.

We proposed a pixel-oriented and a tree-based visualization which are comple-
mentary as the former provides an overall understanding of the structuration of the
data and the latter provides (a) a semantic understanding of the data thanks to labels
associated to the cluster and (b) the capability to navigate within the hierarchy of
clusters for information retrieval

In the future, we will conduct experimentations with real end users in order to
validate the interpretations obtained with these visualizations and study to what
extent they might be automated.
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A Test of LBO Firms’ Acquisition Rationale:
The French Case

R. Abdesselam, S. Cieply and A.L. Le Nadant

Abstract We investigate whether the characteristics of Leveraged Buy-Out (LBO)
targets before the deal differ from those of targets that have undergone another type
of transfer of shares. Specifically, we examine the size, value, industry, quotation
and profitability of French targets involved in transfers of shares between 1996 and
2004. Using two different methods (a classical logit regression and a mixed discrim-
inant analysis), results show that LBO targets are more profitable, that they are more
frequently unquoted, and that they more often belong to manufacturing industries in
comparison with the targets involved in other types of transfers of shares.

1 Introduction

Leveraged Buy-Outs (LBO) are acquisitions of a significant equity stake of a com-
pany by private investors using additional debt financing. Since the evolution of
the LBO as a common form of takeover of public or private firms in the 1980s,
several companies, hereafter referred to as “LBO firms”, specialized in making this
type of investment with venture capital raised in the private equity market. This
activity in France has experienced an extraordinary increase. From 1997 to 2006,
the amounts invested in these transactions increased nine-fold, from 1.259 to 10.164
euro-billion [3].

France is a leader in the LBO market in continental Europe but it is still far
behind the United Kingdom and the United States which are the focus of the vast
majority of the academic literature (see [6] for a recent overview on LBOs). In
this context, we investigate French LBOs in order to provide new evidence on the
profile of LBO targets. We test a number of hypotheses derived from LBO firms’
acquisition rationale that may explain the French LBO targets’ underperformance
after the transaction [7, 8, 15, 16]. This analysis allows us to check if LBO firms
meet various financial criteria when evaluating an LBO target.
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2 Theoretical Predictions

To predict the types of targets that are likely to engage in LBOs, we present the
specific criteria that are used by LBO firms in their acquisition rationale. LBO firms
look for a variety of characteristics in potential investments and are, thus, similar
in their basic criteria for takeovers candidates (e.g. mature industries, stable cash
flows, low operational risk).

LBO firms generally have two objectives. They seek, first, to maximize their
future capital gain from the sale of shares and, second, to minimize the risk of
non-payment of the acquisition debt. LBOs create heavy leverage that may be inef-
ficient for firms that expect unstable earnings or plan to engage in new projects.
Moreover, heavy leverage may carry with it costs associated with an increased like-
lihood of insolvency. Since the company’s cash flow is used to service the debt,
“the most significant risk in an LBO is that the company will not achieve the cash
flow necessary to service the large acquisition debt” [18]. Consequently, LBO firms
and lenders are most interested in the target’s future and past capacity to generate
large and steady levels of cash flow. In France, Desbrières and Schatt [7] show that
companies undergoing LBOs are the ones which have the greatest ability to remu-
nerate the funds provided by investors and lenders. They find that acquired firms are
more profitable than industry average prior to the LBO, which is consistent with the
results of Singh [19].

Several characteristics make it possible to define an eligible target for LBO deals.
A study by Cressy et al. [5] suggests that LBO firms’ skill in investment selection
and financial engineering techniques may play a more important role than manage-
rial incentives in raising post LBO performance [11, 12]. A description of financial
criteria used by LBO firms to evaluate potential targets follows.

First, one widely accepted conclusion is that the level of financial leverage a
firm can bear is a function of its business risk. Business risk is one of the primary
determinants of a firm’s debt capacity and capital structure [14]. Firms with high
degrees of business risk have less capacity to sustain high financial risk, and thus,
can use less debt. Firms with risky income streams are less able to assume fixed
charges in the form of debt service. Johnson [13] states that firms with more volatile
earnings growth may experience more states where cash flows are too low for debt
service. For this reason, LBO firms avoid investments in highly cyclical businesses
since stability of earnings and cash flow is critical to the success of an LBO. The
empirical data developed by Lehn and Poulsen [17] support this view as almost half
of their sample of LBOs were in five industries (retailing, textiles, food process-
ing, apparel, and bottled and canned soft drinks) that are all consumer nondurable
goods industries for which the income elasticity of demand would be relatively low.
Otherwise an LBO target’s activity must not require heavy investments. In capital-
intensive industries, relatively large amounts of tangible capital assets are required.
During the LBO, new investments have to be limited. Moreover, the target expected
growth has to be positive but not too high because a high growth rate would create
high working capital requirements. The discussion here suggests the following alter-
native hypothesis. The likelihood that a target is acquired through an LBO depends
on its industry (H1).
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We expect that LBOs are positively linked with mature and non-cyclical indus-
tries and negatively related to the target’s industry capital intensity. In particular, we
expect that transportation, warehousing and storage (called Transport) is negatively
related to LBOs as this industry is cyclical (H1a). On the contrary, wholesale and
retail trade industry or hotels and restaurants are indeed cyclical sectors but they are
characterized by a low capital intensity. We expect that they are positively linked
with LBOs (H1b). We expect that firms in high technology sectors related to LBOs
as capital requirements and business risk are high in high-growth firms (H1c). The
situation of manufacturing industries is more ambiguous. They are typically very
cyclical. But there are important differences among them in how they are affected
by a downturn. For instance, the food manufacturing industry is non-cyclical.
Otherwise they are rather mature so that growth rates and new investments are
limited.

Second, the target profitability ought to be historically high and well controlled.
Desbrières and Schatt [7] show that return on equity is higher for LBO targets two
years before the deal, and that return on investment is greater two years before and
the year preceding the deal. We thus propose the following alternative hypothesis.
The likelihood that a target is acquired through an LBO should be positively related
to its profitability (H2). Third, only a handful of Public-to-Private transactions (PTP)
are completed in France each year because of a number of issues, arising from
French corporate ownership structure and legislation [14]. Consequently, the very
great majority of French LBOs involve privately held, rather small companies. To
test this idea, we propose the following alternative hypotheses. The likelihood that
a target is acquired through an LBO should be negatively related to its quotation on
the stock exchange (H3) and the likelihood that a target is acquired through an LBO
should be negatively related to its size and value (H4).

3 Sample Selection and Methodology

To test the hypotheses we construct a buy-out sample and a control sample of non-
LBO transfers of shares over the period 1996–2004. Our total sample is extracted
from the Zephyr database published by Bureau Van Dijk. Since 1996, this database
has collected information on various types of deals including mergers and acquisi-
tions, initial public offerings (IPOs), joint ventures and private equity deals, with no
minimum deal value. Information concerns the type of deals which can be mergers1,
acquisitions of majority interests (all cases in which the acquirer ends up with 50%
or more of the votes of the target), transfers of minority stakes (below 50%), LBOs,
or IPOs, which involve targets2. Information also concerns the deal value and the
deal financing and method of payment. Moreover, Zephyr collects information on
the characteristics of each type of actors involved into the deals: targets, buyers and

1 Mergers are business combinations in which the number of companies decreases after the
transaction.
2 Targets are companies being sold, or companies in which a stake is being sold.
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sellers. Some variables are qualitative such as sector, quotation, country. Others are
continuous such as firms’ size and profitability.

In this database, we select all deals (3,495) corresponding to transfers of own-
ership rights which involve French targets and which were completed during the
period January 1, 1996 – May 5, 2004. The availability of variables limits our sam-
ple size to 664 deals which are classified into two groups: LBOs (126 deals) versus
non-LBOs (538 deals).

To test the hypotheses, we use then compare the results of two decision-making
concurentes methods on mixed (qualitative and quantitative) predictors. We can also
use decision tree method. The first method is a logistic model, run through SAS
system, in which the endogenous variable is the LBO likelihood and the exogenous
variables are the targets’ characteristics. The second method is a mixed discriminant
analysis (MDA) [1], run through SPAD system, which aims to differentiate the two
groups of deals according to mixed characteristics of targets. It is a classical dis-
criminant analysis [9, 10] carried out on the principal factors of a Mixed Principal
Component Analysis of explanatory mixed variables [2]. Alternatively, the decision
tree method could have been used.

The LBO likelihood is the variable we want to explain. The other variables
characterize target companies. Some variables are continuous: deal value, target
size (total assets and turnover) and target profitability (Return On Equity -ROE-
and Return On Assets -ROA-). The deal date is taken into account by introducing
a quantitative variable that represents the number of years between the deal date
and 1996. The qualitative variables used are the target sector and quotation. The
descriptive data of variables are presented in Tables 1 and 2.

Targets belong to different sectors. Among them, the sector of high technology is
the most represented one (39.31%), followed by manufacturing industries (30.72%)
and services (13.25%). Moreover, 65.36% of the deals (434) involve unquoted
targets.

Table 1 Summary statistics of continuous variables

Variable Label Frequency Mean Std dev. Min Max

CDAT Date
(years)

657 3.478 1.668 1 8

DVAL Deal value
( Euro–Mil.)

664 115.382 561.214 0.018 7900.00

TTAS Total assets
(Euro–Mil.)

664 858.809 4516.230 0.025 53228.00

ROE Return on
equity

664 0.416 6.215 −38.320 136.05

ROA Return on
assets

664 −0.112 0.445 −3.030 0.73

TTUR Turnover
(Euro–Mil.)

664 692.874 3361.250 0.013 36351.00
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Table 2 Descriptive statistics of qualitative variables

Cumulative
Variable modalities Frequency Percent frequency Percent

LBO likelihood
LBO 126 18.98 126 18.98
Non-LBO 538 81.02 664 100.00

Target sectors

Construction 11 1.66 11 1.66
High-tech 261 39.31 272 40.96
Hotel-restaurant 7 1.05 279 42.02
Manufactured 204 30.72 483 72.74
Retail-wholesaling 59 8.89 542 81.63
Services 88 13.25 630 94.88
Transport 25 3.77 655 98.64
Utilities 9 1.36 664 100.00

Target quoted/unquoted

Quoted 230 34.64 230 34.64
Unquoted 434 65.36 664 100.00

4 Empirical Results

With the logistic model, we find no significant link between the LBO likelihood
and the deal value or the size of target, whatever may be the measure of size, total
turnover or total assets. This result is not consistent with H4. This may be related to
the Zephyr database coverage. The great majority of French LBOs involves privately
held firms and Zephyr may cover mainly the largest deals with public information
available. The significant explanatory variables of LBOs are: the target sector, quo-
tation and ROA (Table 3). More precisely, the LBO likelihood is positively linked
with ROA (consistent with H2) and with manufacturing industries and negatively
linked with quotation (consistent with H3) and high technology (consistent with
H1a and H1c).

With the mixed discriminant analysis method, results (Table 4) are very signif-
icant (PROBA = 0.0001 < 5%). Among the introduced mixed variables, some
results are the same as with the logistic regression. LBO targets exhibit higher ROA
than other targets (consistent with H3). They are more frequently unquoted (con-
sistent with H3) and belong to manufacturing industries. They belong less than the
average to transport industries (consistent with H1a). With the mixed discriminant
analysis, we find that LBO targets also exhibit higher ROE (consistent with H2)
and belong more often to the sector of Retail and wholesaling (partially consistent
with H1b). According to the mixed discriminant analysis and contrary to the logistic
model, the high technology industry does not differentiate between the two groups
of transfers of shares.
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Table 3 Binary logistic model – SAS results

Analysis of Maximum Likelihood Estimates

Standard Wald
Parameter DF Estimate error chi-Square Pr > ChiSq

Intercept 1 −1.7206 0.3403 25.5619 <.0001
TZCL Construction 1 0.2514 0.6927 0.1317 0.7167
TZCL High-tech 1 −1.5692 0.3429 20.9396 <.0001∗∗
TZCL Hotel-restaurant 1 0.6074 0.9715 0.3909 0.5318
TZCL Manufactured 1 0.5762 0.2711 4.5174 0.0336∗
TZCL Retail-wholesaling 1 0.4191 0.3738 1.2573 0.2622
TZCL Services 1 −0.5872 0.3679 2.5482 0.1104
TZCL Transport 1 −0.6023 0.5460 1.2170 0.2699
TQUO Quoted 1 −1.1234 0.1677 44.8537 <.0001∗∗
CDAT Code date 1 −0.0216 0.0670 0.1039 0.7471
DVAL Deal value (Millions) 1 0.000237 0.000236 1.0099 0.3149
TTAS Target total assets 1 0.000072 0.000162 0.1970 0.6571
ROE Return on equity 1 0.0609 0.0589 1.0688 0.3012
ROA Return on assets 1 2.6568 0.5975 19.7753 <.0001∗∗
TTUR Target turnover 1 −0.00023 0.000227 1.0405 0.3077
∗∗ Significance less or equal than 1%; ∗ Significance ]1–5%]

Finally, when we compare the number of observations well classified (Table 5)
with each method, we can conclude that the performances of the two methods are
quite the same.

5 Discussion and Conclusion

This paper provides an empirical test of four hypotheses about private equity firms’
acquisition rationale. The characteristics of companies undergoing LBO transac-
tions have been extensively investigated within the US and the UK but not in con-
tinental Europe. This gap in the literature is critical for France as [7, 8, 15, 16]
showed that the implications for French LBOs are unique (sources, targets’ ex post
performance, selection by LBO firms, etc.). Our study examines whether the charac-
teristics of French LBO targets differ from those of firms that have been transferred
through another type of deal.

To test the hypotheses we construct a buy-out sample and a control sample of
non-LBO transfers of shares over the period 1996–2004. In the first method used,
a classical logistic regression, we use a dummy variable to discriminate between
the two groups of deals. To check the robustness of our results, we also use a sec-
ond method, a mixed discriminant analysis which is, to our knowledge, new to the
literature on private equity and LBOs.

Results confirm our main theoretical prediction according to which the character-
istics of LBO targets differ significantly from the characteristics of other firms that
have not been sold through an LBO. More precisely, results show, as expected, that
LBO targets are more profitable [7, 8, 16], that they are more frequently unquoted,
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Table 5 Comparison – Classification results

Number of Observations well classified into Group (Percent)

Training Sample (80%) Test Sample (20%)

Method (Frequency : 664) Total (Frequency : 166) Total

LOGISTIC 513(81.82%) 627∗ 121(81.76%) 148∗
MDA 539(81.17%) 664 135(81.33%) 166
∗ Missing values

and that they more often belong to mature and rather non-cyclical industries [17].
Interestingly, we do not identify any sign of abnormality in the selection of French
LBO targets by private equity firms over the period 1996–2004. Our results suggest
that private equity firms behave in accordance with financial standards when they
screen targets for LBO deals. This is not consistent with the study of [16], which
finds an unexpected risky profile of French LBO targets. This is also not consistent
with Wright et al. [20] who argue that, if we consider LBOs as a vehicle for strategic
innovation and renewal that stimulates growth opportunities, then the need for a low
business risk of LBO targets becomes less necessary, LBO firms seeking above all
to realize entrepreneurial opportunities.

Finally, our analysis relies on data from a single country, France, where the pri-
vate equity industry has already entered its maturity phase and LBO firms have had
the opportunity to accumulate relevant experience. This raises concern about the
generalizability of our results to other countries, in particular to those with signifi-
cantly less developed private equity markets such as, for instance, Italy and Spain.
Hence future research might examine and compare the selection of LBO targets in
different European countries.
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Kernel Intensity for Space-Time Point Processes
with Application to Seismological Problems

Giada Adelfio and Marcello Chiodi

Abstract Dealing with data coming from a space-time inhomogeneous process,
there is often the need of semi-parametric estimates of the conditional intensity
function; isotropic or anisotropic multivariate kernel estimates can be used, with
windows sizes h. The properties of the intensities estimated with this choice of h
are not always good for specific fields of application; we could try to choose h in
order to have good predictive properties of the estimated intensity function. Since a
direct ML approach cannot be followed, we propose an estimation procedure, com-
putationally intensive, based on the subsequent increments of likelihood obtained
adding an observation at time. The first results obtained are very encouraging. Some
application in statistical seismology is presented.

1 Introduction

When dealing with data coming from a space-time inhomogeneous process, like
seismic data, fire data, or even disease data, there is often the need of obtaining
reliable estimates of the conditional intensity function, or of the marginal intensity
function. According to the field of application, intensity function can be estimated
through some assessed parametric model, where parameters are estimated by Maxi-
mum Likelihood method and then intensities (conditional or marginal) are estimated
using the parameter estimates. In an exploratory context , some kind of nonparamet-
ric estimation is required [4]; we could also have this necessity if we need to assess
the adequacy of an estimated parametric model; in some other model, like ETAS
model [8], or in a clustered intensity function [3], some component of the spatial
intensity function is not made explicit and must be estimated from data in a non-
parametric way. Often, isotropic or anisotropic kernel estimates can be used, using
the Silverman rule to choose the windows sizes h [9]. If the purpose of the study
is just the estimation of h, to choose h in order to have good predictive properties
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of the estimated intensity function could be useful; for this purpose, a direct ML
approach cannot be followed, unless we use a penalizing function.

In [4] the seismicity of the Southern Tyrrhenian Sea is described by the use of
Gaussian kernels and the optimum value of h is chosen such as to minimize the
mean integrated square error (MISE) of the estimator f̂ (·). A variable bandwidth
procedure is proposed in [1].

In the next section a predictive approach for the bandwidth parameters estima-
tion is presented, while in the third section some kind of application to statistical
seismology is briefly sketched. Conclusive remarks and directions for future works
are provided in the last section.

2 Intensity Function and Predictive Likelihood

Suppose we have a general d-dimensional closed region, Zd and that one of the
dimension is t ∈ T , the time, or however a dimension with a meaningful ordering
such that Zd = Sd−1 × T . Let P a random collection of k points in Zd from
time t1 until the time tk such that i < j ⇐⇒ ti < t j and each observation Pi is
constituted by: zT

i =
{
sT

i , ti
}
, i = 1, 2, . . . , k; the conditional intensity function of

the process is:

λ(z) = λ(s, t |Ht ) = lim
Δt,Δs→0

E [#(t, t +Δt; s, s+Δs|Ht )]

ΔtΔs

where Ht is the space-time occurrence history of the process up to time t ; Δt
and Δs are time and space increments; E [#(t, t +Δt; s, s+Δs|Ht )] is the history-
dependent expected number of events occurring in the volume [t, t +Δt] × [s, s+
Δs].

Assuming that θ is a vector of smoothing parameters in a semi-parametric con-
text, the log-Likelihood for the point process [7], given the m observed values zi , is:

log L(θ) =
m∑

i=1

log λ(zi ; θ)−
∫ Tmax

T0

∫

Ωs

λ(z; θ) ds dt (1)

where Ωs is the observed space region and (T0 − Tmax ) is the observed period
of time and the intensities λ(·) depend on unknown parameters θ estimated by
θ̂(Htm ) ≡ θ̂(z1, z2, . . . , zi , . . . , zm).

In the rest of the paper we use the log-likelihood in (1) evaluated at θ̂(Htm ),
that is:

log L(θ̂(Htm ); Htm ) =
m∑

i=1

log λ(zi ; θ̂(Htm ))−
∫ Tmax

T0

∫

Ωs

λ(z; θ̂(Htm )) ds dt (2)
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We try to find a trade-off between fitting to observed data and prediction of future
data; the context of space-time point processes is different from regression prob-
lems, where we can use cross validation techniques, or from time series context,
where we can compare the observed value ym+1 with an estimated value ŷm+1,
depending only on the previous m observations. The problem does not arise if we
use likelihood computed on different sets of data and with different estimates. We
use a variation of the likelihood to measure the ability of the observations until tm
to give information on the next observation. Let:

log L(θ̂(Htm ); Htm+1) =
m+1∑

i=1

log λ(zi ; θ̂(Htm ))−
∫ tm+1

T0

∫

ΩS

λ(z; θ̂(Htm )) ds dt

(3)
be the likelihood computed on the first m + 1 observation but using the estimates
based on observation only until tm ; e.g. λ(z; θ̂(Htm )) can be an intensity function
computed by an anisotropic kernel method with a multivariate window θ̂ using the
first m points. So we use the difference between (3) and (2) to measure the predictive
information of the first m observations on the (m + 1)− th:

δl(θ̂(Htm ); Htm+1) = log L(θ̂(Htm ); Htm+1)− log L(θ̂(Htm ); Htm ) (4)

For the sake of brevity, we report here only essential ideas with few details;
briefly we use δl(θ̂(Htm ); Htm+1) to estimate some smoothing parameter θ . In a fash-
ion similar to cross-validation criterion we could choose θ̃(Htm ) which maximizes
a predictive likelihood:

FLPm1,m2(θ̂) =
m2∑

m=m1

δl(θ̂(Htm ); Htm+1) :

FLPm1,m2(θ̃) ≥ F L Pm1,m2(θ̂) ∀θ̂ ∈ Θ

with m2 = k − 1 and maybe m1 is such that tm1 − T0 ≈ Tmax−T0
2 . Although this

aspect will not be introduced in the present paper, we could use the quantities in (4)
for diagnostic purposes, in comparison with some previous approach, such as the
one in [2].

The method seems to give better kernel estimates of space-time intensity func-
tion with respect to classical methods, either using isotropic or anisotropic kernel
function.

The solution of the approach is almost objective and data-driven. On the other
hand it is computationally expensive [5], although some approximations are here
introduced to improve the speed of computation of multiple integrals in the like-
lihood (based on Gaussian quadrature), very useful when anisotropic kernels are
considered.
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We applied this technique to seismological data, although it is capable to be
applied in quite different contexts.

3 Applications to Seismological Field

One of the most important model in statistical seismology is the ETAS model [8],
a self-exciting point process describing earthquakes catalogs as a realization of a
branching or epidemic-type point process. The main hypothesis of the model states
that all events, both a mainshock or an aftershock, have the possibility of gener-
ating offsprings. The conditional intensity function of the ETAS model in a point
x, y, t,m is defined by:

λ(x, y, t,m|Ht ) = J (m)(μ(x, y)+
∑

t j<t

g(t − t j ) f (x − x j , y − y j |m j )) (5)

where J (m) is the magnitude distribution, g(·) and f (·) are parametric temporal and
spatial functions and μ(x, y), estimated by semi-parametric approach, describes the
spontaneous activity.

In [3] a seismic catalog is described as the realization of a clustered inhomo-
geneous Poisson process, that is obtained assuming that points of the background
seismicity come from a space-time Poisson process (spatially inhomogeneous) and
that among these there is a number k of mainshocks that can generate aftershocks
sequences, inhomogeneous both in space and times, and with an intensity also linked
to the magnitude of the main event. The intensity function is:

λ(x, y, t; θ) = λtμ(x, y)+ K0

k∑

j=1; t j<t

g j (x, y)
exp[α(m j − m0)]
(t − t j + c j )

p j

where θ = (λt , K0, c j , p j , α); t j and m j are time of the first event and magnitude
of the mainshock of the cluster j , g j (x, y) is the space intensity of the cluster j and
μ(x, y) is the background one; K0 and λt are the weights of the clustered seismicity
and of the background one, respectively; c j and p j are parameters of the clusters
time distributions to be estimated; g j (x, y) and μ(x, y) must be estimated by semi-
parametric methods.

3.1 Evaluation of Seismic Gap

A number of statistical models with intensities λ(·; θ) have been proposed for rep-
resenting the intensity function of earthquakes. The parametric models estimation
suffers by many drawbacks, often related to the definition of a reliable mathematical
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Fig. 1 Epicenters of earthquakes occurred in the South Tyrrhenian Sea from 1981 to 2005, in the
region defined by 37.9◦ ∼ 39.31◦N and 11.52◦ ∼ 16◦E for all depth and magnitude

model from the geophysical theory and to the sensitivity of statistical estimates to
the composition of the space-time region under study. Many of the disadvantages of
the parametric modelling can be avoided by using also nonparametric techniques,
such as those presented in this paper, which provides estimate with few constrains
and are supposed to fit well to observed data.

In this paper, given a specific space-time region of interest, a parametric model
is compared with a nonparametric one to try to identify the so called seismic gap.
A seismic gap can be defined as a segment of an active geologic fault that has not
produced seismic events for an unusually long time; gaps are often considered sus-
ceptible to future strong earthquakes occurrence and therefore their identification
may be useful for predictive purposes.

For this purpose we analyze the seismic activity of the South Tyrrhenian Sea
from 1981 to 2005 (epicentral coordinates are showed in Fig. 1).

In Fig. 2 the three dimensional contour-plot of the nonparametric space-time
intensity function estimated for the observed seismicity is showed.

The values of the parameters h estimated by the proposed approach are reported
in Table 1.

Therefore, we compare the ETAS model with intensity function given in (5) and
estimated by ML, with the nonparametric one by a graphical approach (see Fig. 3
for latitude-time domain).
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Fig. 2 Three dimensional
contour-plot (three levels)
of the space-time intensity
function for the seismicity
of the observed area

Table 1 Values of h estimated for the seismicity of the observed area by the proposed approach

ht (days) hx (Degree of longitude) hy (Degree of latitude)

60.2083 0.1259 0.0738

Regions with ratio values smaller than one are identified by a brighter grey, while
regions with a ratio larger than one are identified by a darker grey: darker areas indi-
cate that the observed seismicity is smaller than those calculated by the estimated
space-time ETAS model.

Darker grey area around the source region before large earthquakes that induced
a big sequence of events may be observed.

Also in time domain, this approach can identify gaps interval most of all before
main event. In Fig. 4 (on the top) temporal kernel estimation is showed, together
with quiescent periods, defined as those time intervals for which the intensity λ(·) is
less than a fixed threshold (in the fig. it is identified by the horizontal broken line);
this threshold has been suggested by subjective choices, as discussed in [6]. In this
figure, the quiescent periods are indicated by shaded intervals, also reported in the
time-magnitude plot (on the bottom) for the events with magnitude greater than 4.5.
In particular we observe that this periods seem to occur mostly before events with
large magnitude values, that induce a sequence of events and are denoted by peaks
of intensity and on the other hand periods that have been identified as quiescent ones
do not contain large events.

Although we think that this approach is just a starting analysis to deal with this
kind of issue, since it needs further data to be available and the application of more
rigorous methodology, it may provide a useful starting-point for studies aimed to
seismic hazard evaluation.
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4 Conclusive Remarks

In this paper a nonparametric approach for space-time point processes is introduced.
This method is based on a variation of the likelihood function to assess the capability
of each observation to give information on the next ones. The introduced approach
is used for describing the seismicity of an observed area in the Southern Tyrrhenian
Sea.

The nonparametric approach makes possible a reasonable characterization of the
observed seismicity, since it does not constrain the process to have predetermined
properties.

The estimated model seems to follow adequately the seismic activity of the
observed area, characterized by highly variable changes both in space and in time
and because of its flexibility, it provides a good fitting to local space-time changes
as just suggested by data.

The method is actually still in progress, since we are developing a nonparametric
model with variable bandwidth values, to study variations of seismic activity in
space and time and to analyze possible correlation between the estimated inten-
sity function and particular distributions of some structural features (i.e. geological
structures) of the studied region.
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Summarizing and Mining Streaming Data
via a Functional Data Approach

Antonio Balzanella, Elvira Romano, and Rosanna Verde

Abstract In recent years, the analysis of data streams has become a challenging
task since many applicative fields generate massive amount of data that are difficult
to store and to analyze with traditional techniques. In this paper we propose a strat-
egy to summarize pseudo periodic streaming data affected by noise and sampling
problems, by means of functional profiles. It is a clustering strategy performed in a
divide and conquer manner. In the on-line step, a set of summarization structures,
collect statistical information on data. Starting from these, in the off-line step, the
final clustering structure and the set of functional profiles are computed.

1 Introduction

Recent advances in sensors technology have motivated the development of strategies
for the analysis of data generated continuously over time. Application fields include
medical information management, climate monitoring and forecasting, telecommu-
nications.

This huge, potentially unbounded, amount of data cannot be entirely stored and
the requirement of real time monitoring makes not feasible the usual mining tech-
niques.

Strategies for the so called data streams, present several computational and min-
ing challenges:

• It is no longer possible to process data efficiently by using multiple passes
• The data, after processing, are discarded or archived such to be not easily

available
• The memory resources are reduced with reference to the amount of data to

process

In such a context, high quality approximated answers can be acceptable, if these
are available just when required.
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Approximation algorithms often use summarizing structures (synopsis) that are
incrementally updated with the on-line collecting of data. Some example are: his-
tograms, wavelets, sketches.

In this paper we will focus on summarizing pseudo periodic streaming data. To
reach this aim, we detect proper summarizing structures by means of a clustering
algorithm which will perform a single pass on data.

We assume that our reference data, are a set of discrete measured values of an
unknown function f (t), characterized by groups of measurements which repeat over
time with tiny variations. Such variations are risen by noise, sampling frequency
which changes over time, informative content.

The novelty of the approach consists in the introduction of functional profiles for
the representation of sets of similar item-sets, such to keep into account noise and
variable sampling frequency.

To our knowledge, the problem of summarizing pseudo periodic data in data
stream framework has been only recently dealt in [6]. The authors propose to build
a graph to summarize data. The conceptual schema is to split the incoming data
into waves, detected using valley points, to represent these using Piecewise Linear
Representation (PLR) and to use waves matching for updating the graph. Especially
a new wave, after to be transformed to a segments sequence, is tested for matching to
the data in the graph. If no matching is found within an error bound, a new element
is added to the graph; if there is full matching a counter for the wave is increased;
if only some segment in the PLR representation matches, the unmatched segments
are added to the graph.

Our approach shares some idea with [2] since it integrates the micro-cluster tech-
nique to perform on-line summarization preserving the locality of the data and the
snapshots to recall summary statistics from different time horizons.

This is a divide and conquer approach since a wide set of statistical information
on data is on-line collected and starting from these a final summarizing structure is
built.

The statistical information are stored into micro-clusters which are continuously
updated with the arrival of new data points. Each micro-cluster summarizes set of
data selected through a similarity criterion. Their number is chosen to be as wide
as possible constrained by the computational and storing resources. An off-line
clustering strategy can be performed taking as input the summaries represented by
micro-clusters to get higher level clusters and profiles, which can be more easily
understood by the user.

The micro-clusters are stored at specific time points, which are referred as snap-
shots, in order to keep the history of the streams.

Our approach differs from this last one since the input data are subsequences
rather than single multidimensional points. We introduce a different definition of
micro-cluster where the main concept is a functional representation of a set of
subsequences of the stream. Moreover, we aim at finding functionals profiles to
summarize the whole data stream.

The rest of the paper is organized as follows. In Sect. 2 we provide the details of
the proposed strategy, in Sect. 3 we review the strategy on data, in Sect. 4 conclu-
sions and open problems are discussed.
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2 A Functional Approach for Dealing with Streaming Data

Before to introduce our strategy for summarizing a streaming time series we provide
some definition and notation.

Let S be a streaming time series defined as an ordered set S =
[S1, . . . , St , . . . , S∞] of unbounded real valued variables observed on a grid T =
[T1, . . . , Tt , . . . , T∞]. It is possible to define the subsequence Q = [qt ′, . . . , qt ′′

]
as

a finite sampling of ordered values of S.
Each subsequence is obtained starting from a time-based window W , that is a

finite set of elements of T with variable size Δ(t).
Based on the above definition and according to our procedure, each subsequence

Q represents the raw functional form [5]. Since noise is part of the data we determi-
nate a true functional form, called functional subsequence (f-sub), which describes
the trend of the flowing data, by using regression spline functions. A functional
subsequence is defined as follows:

Definition 1 Let Q be a subsequence, and t
′ = ξ1 < . . . < ξ j < . . . < ξa = t

′′
be a

sharing of [t ′, t
′′ ] in a distinct points, called knots, a functional subsequence (f-sub)

is a regression spline function obtained by minimizing a linear least square prob-
lem. In particular B-spline basis functions are used as basis functions for univariate
regression. Formally, a functional subsequence can be written as:

f − sub =
p∑

l=1

βl Bl(t) (1)

Where p = a + splineorder + 1 are the number of parameters, β =(
β1, . . . , βp

)′
is the vector of spline coefficients and B = (

B1, . . . , Bp
)

are the
B-spline functions [3].

Based on the above definitions our strategy is performed as follows:

1. On-line step

a. splitting S into subsequences of different length;
b. identification of functional micro-clusters to collect statistical

information on detected subsequences;

2. Off-line step

a. profiles identification starting from the functional microclusters;

The first challenge consists in defining a criterion to select subsequences.
Evolving streams with pseudo periodicity are composed of waves with various

time lengths and key values. The idea is to check the fluctuations of the streaming
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time series and to use the change points (minima and maxima points) to select the
subsequences.

The detection is performed starting from the time windows on data. These are
identified through two threshold values h1 and h2 given as input.

Each time window has the beginning time point t ′ in correspondence of a max-
imum point M1 such that M1 > h1 and the ending t ′′ in correspondence of
the following maximum point M2 such that M2 > h1. An additional time point
t ′ < t∗ < t ′′ such that S(t∗) is a minimum point and S(t∗) < h2, has to exist to
define the time window.

To deal with the evolution of the data flow, the threshold values h1 and h2 are
incrementally updated using the average value of the past detected change points.
For h1, the updating is performed as follows:

h1 = α

⎛

⎝
j=N∑

j=1

M1

⎞

⎠÷ N (2)

where N is the number of past maxima points and α is an adjustment parameter. The
updating of h2 can be performed in a similar way, using the past minima points.

Starting from the subsequences the central issue is to on-line collect the statistics
needed for computing the profiles in the off-line step. The functional micro-clusters
are the tool we advice to solve this problem.

A f -microcluster for a set of f -sub is a data structure constituted by the follow-
ing components:

• the functional prototype gc(t), which summarizes a set of f -subs;
• the number nc of allocated f -subs;
• the beginning time point t ′ and the ending time point t ′′ for each allocated f -sub.

Starting from a set of k f -micro-clusters, the on-line algorithm tries to allocate
each new detected f -sub to an existing f-micro-cluster according to a dissimilarity
criterion. If exists a f -micro-cluster such that the computed distance is less than a
threshold value, the f -sub is allocated. On the contrary, a new f -micro-cluster is
created and the functional subsequence is chosen as prototype. Then, the f -micro-
cluster is updated according to the new information provided.

The updating consists in increasing the number of allocated functional subse-
quences, in storing the beginning time point t ′ and the ending time point t ′′ of the
subsequence and in computing the new prototype.

Since subsequences, due to not constant sampling frequency, come from win-
dows of different temporal length, we have to introduce a criterion to compute
dissimilarity taking into account this issue.

We propose to stretch or shrink each detected subsequence to a new time grid
with a common size Δ(tp) = (t ′′p − t ′p). This is performed before to compute the
relative functional subsequence.

Given a subsequence Q obtained from a time based window W =[
t ′, . . . , tm, . . . , t ′′

]
, the stretched or shrank subsequence Q will be defined on
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a time grid W2 of size Δ(tp) such that it is a set of discrete ordered elements[
t ′p, . . . , tn, . . . , t ′′p

]
of T where tn = (tm − t ′) ∗Δ(tp)/(t

′′ − t
′
)+ tp′ .

The stretched or shrinked subsequences are used to compute f -subs. Since the
latter are defined on Δ(t p) the heterogeneity across f -subs is captured by the het-
erogeneity of the estimated coefficients [1].

In order to deal with query, where it is asked to summarize the data structure
before a given time point and to monitor the evolution of the monitored phe-
nomenon, it is proposed to store on disk the set of f -micro-clusters at prefixed
time points, these are referred as snapshots according to [2].

In the Off-line analysis of functional micro-clusters step, the summary of the data
structure is mined. It is a k-means clustering procedure where the input data are
the prototypes stored in the f -microclusters on-line collected. The allocation step
assigns each prototype to a class according to the proximity to the mean profile.
This is followed by the representation step where the mean profiles are computed as
average function of prototypes assigned to the classes at the allocation step weighted
by the number of the represented curves nc, until the convergence of the algorithm.

3 Main Results

In order to show the effectiveness of our strategy we have performed tests on real
and synthetic datasets. Here we review the main results for one of these.

It is an univariate time series containing one million data points[4]. It shows
high periodicity but never exactly repeats itself. Each observation is generated by
independent invocations of the function:

ȳ =
7∑

i=−3

1

2i
sin(2π(22+i + rand(2i ))t̄) (3)

where 0 ≤ t̄ ≤ 1.
Original data have been split into 10 sections, here we consider the time series

obtained by joining these sections to get a single time series made by one million
data points.

To get our summarizing structure we perform our experiments using several
parameters sets (Table 1):

In the first two experiments we have evaluated the impact of the initial max and
min thresholds, on the capability to detect proper windows.

These are critical parameters since too high or too low values cause the detection
of time windows which do not capture the periodicity in data. If too high values
for h1 and too low values for h2 are chosen, two or more periodic patterns can be
included in the same time window and the on-line clustering will generate a func-
tional micro-cluster including, as prototype, the join of two periods. At the opposite,
if too low values for h1 and too high values for h2 are chosen, the detected time
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Table 1 Chosen parameters for the performed tests

Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4

Initial h2 value −0.22 −0.11 −0.11 −0.11
Initial h1 value +0.22 +0.16 +0.16 +0.16
α 0.8 0.8 0.8 0.8
Number of

observations for
each window

100 100 100 100

Number of knots 5 5 5 5
Distance threshold 0.8 0.8 0.6 0.8

window will include only a part of the real period. This generates an unreasonable
amount of functional micro-clusters.

Our procedure provides a criterion to adapt the windows cutting points that is
effective for adapting to the evolution of the flow of data, however a good initial
choice considerably improves the windows detection process.

The values for min and max thresholds evaluated in the first experiment show
that the 75% of windows are detected in a proper way, this is becouse the adapting
of the thresholds to data occurs slowly due to a wrong choice of parameters. At the
opposite, the values used in the second experiment turn out to be effective, capturing
correcltly the periodiceness in data.

The parameters for experiment 2, are chosen by building two empirical distri-
butions from a training dataset: a first one for maxima points and a second one for
minima points. By extracting the 90th percentile from these distributions, we get the
analyzed values.

In the experiment 3 and 4, we have evaluated how the distance threshold affects
the summarization quality.

Higher threshold values, strongly reduce the number of detected functional
micro-clusters but deteriorate the quality of representation of each functional proto-
type. Lower values, improve the summarization quality but increase the number of
required functional micro-clusters.

On the test dataset, the parameter set of the experiment 3, generates 82 func-
tional micro-clusters. The number of sub-sequences allocated to each functional
micro-cluster ranges from 1 to 8. For the parameter set of the experiment 4, we
get 32 functional micro-clusters and the number of sub-sequences allocated to each
functional micro-cluster ranges from 1 to 31.

Starting from the on-line summarization, we have evaluated the effectiveness of
the off-line procedure to get the final clustering structure.

The testing has been performed comparing the representation quality of the pro-
files got from our procedure to the ones obtained using the k-means algorithm on
stocked functional subsequences.

Especially, we evaluate if the mean square error (MSE) of functional profiles
obtained starting from the analysis of the functional micro-clusters, well compares
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Fig. 1 A set of functional micro-clusters with the allocated functional subsequence

to the MSE of the prototypes of standard clustering algorithm performed having
available the whole set of data.

To reach this aim we run the off-line weighted k-means procedure on the f-micro-
cluster to get five clusters. The profiles shown in Fig. 1.

To evaluate the quality of representation with reference to the original data we
need to generate a partition of the original functional subsequences starting from the
partition of the functional micro-clusters prototypes.

Since each f-micro-cluster includes references to the allocated sub-sequences,
for testing purposes, we can build a partition of the functional sub-sequences where
each cluster includes the f -subs pointed by the f -micro-clusters prototype. Conse-
quently, the MSE of the profiles resulting from weighted k-means, with reference to
the f -subs allocated to the cluster, can be computed.

For the clustering on stocked data, the k-means algorithm has been applied on
the functional subsequences on-line detected. The main difference is that we do
not use the dimensionality reduction performed by on-line updating of functional
micro-cluster, but we use the data of each window. The cluster number has been
still set to five and the MSE has been computed for the prototypes in each cluster.

The results are evaluable in the following table (Table 1):
The results, confirm that a higher number of functional micro-cluster improve

the representation quality however useful results are obtained in both cases.

Table 2 Main results
Distance threshold = 0.6 Distance threshold = 0.8 k-means

Total MSE 2.9 3.3 2.71
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4 Conclusions

In this paper, we have introduced a new strategy for summarizing streaming time
series. In order to evaluate the effectiveness of our strategy in terms of accuracy and
sensitivity, a study has been conducted on synthetic data.

The approach is useful to underline the sub-structures on sea waves data. The
future research direction aims at examining the impact of different criteria to select
the windows, as well as in the definition of a criterion to keep constant the number
of f-microclusters during the online step.
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Clustering Complex Time Series Databases

Francesco Giordano, Michele La Rocca, and Maria Lucia Parrella

Abstract Time series data account for a large fraction of the data stored in financial,
medical and scientific database. As a consequence, in the last decade there has been
an explosion of interest in mining time series data and several new algorithms to
index, classify, cluster and segment time series have been introduced. In this paper
we focus on clustering of time series from a large database provided by a large
Italian electric company, and the power consumption of a specific class of power
users, that is the business and industrial customers, is measured. The aim of this
paper is to propose an effective clustering technique in the frequency domain where
the need of computational and memory resources is much reduced in order to make
the algorithm efficient for large and complex temporal data bases.

1 Introduction

Time series analysis has been often associated with the discovery and use of patterns
(such as periodicity, seasonality, or cycles), and prediction of future values. One key
difference between traditional time series analysis and data mining on time series
is the large number of series involved in temporal data mining. Due to the huge
amount of data, highly automated analysis techniques become crucial in such appli-
cations and classical techniques, based on non-automatic interactive and iterative
schemes, become soon impractical. Automatic model building requires both a ade-
quate analysis of all pitfalls in data warehousing and an accurate data pre-processing
involving (i) proper time series construction from observed raw data; (ii) automated
outlier detection; (iii) right temporal aggregation. Those issues make temporal data
mining an area of research that is at the intersection of several disciplines, includ-
ing statistics, temporal pattern recognition, temporal databases, optimisation, high-
performance computing, parallel computing and visualization.

Temporal data mining includes indexing, clustering, classification and segmen-
tation. In this paper the focus will be on clustering. These techniques generally have
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been developed along two main directions. The first is completely based on a para-
metric model, usually linear, for the time series (see Corduas and Piccolo, [3] inter
alia). Given a proper metric, such as the AR-metric of Piccolo [5] which measures
the EuclidEan distance between the coefficients of a stationary, gaussian AR(∞)
process, a dissimilarity matrix is built and used for clustering. The second approach
uses nonparametric techniques such as wavelets, bootstrap, and kernel methods. In
this framework stands out the technique proposed in Alonso et al. [1], where the
full probability density of the forecasts is estimated by using a resampling method
combined with a nonparametric kernel estimator. A measure of discrepancy is then
defined and the resulting dissimilarity matrix is used for clustering. In any case the
approach, while being nonparametric in its spirit, estimates the forecast density by
using the AR-sieve bootstrap which is consistent for linear processes only.

In this paper a novel clustering algorithm based on spectral techniques is pro-
posed and used to cluster complex time series from a large database provided by
an Italian electric company. The series refer to the consumption of electricity, mea-
sured at intervals of 15 min, of a particular class of users, the business and indus-
trial firms. The database contains 65,245 time series for the year 2006 of length
365× 24× 4 = 35,040, involving 2,286.1848× 106 observations.

To motivate the proposed clustering scheme the plots for three different users of
the analyzed database are reported (see Figs. 1 and 2). As main features we can
distinguish: (i) Cycles: time series are generally characterized by periodic com-
ponents (monthly, weakly, daily and intra-daily cycles); (ii) Long memory: high
frequency observations raise the question on the fractional integration of the series;
(iii) Stationarity: apart from the cycles, the plots show substantial stationarity.
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Fig. 1 The load curves for three different users, zooming on january 2006
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Fig. 2 Estimated ACFs of the series plotted in Fig. 1

The peculiarities highlighted above and the high dimension of the database make
the analysis complex, and point towards highly automated procedures, based on a
frequency domain analysis, which are able: (i) to efficiently detect the structure of
the series and (ii) to reduce the computational burden and the amount of data to be
stored.

The paper is organized as follows. In the next section the clustering algorithm
is introduced and discussed. In Sect. 3 the results of the application to real data are
reported along with some concluding remarks.

2 The Clustering Algorithm

The basic idea of our clustering scheme can be justified as follows. Denote with
{Xt } the data generating process. By using the Wold representation of a stationary
process, we can write

Xt − μ = Vt + Zt , (1)

where Zt is a linear process, also known as the stochastic component, and Vt is
an harmonic process, given by a combination of (say m) sinusoidal functions. In
particular,
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Vt =
m∑

j=1

A j cos(ω j t + φ j ), 0 ≤ ω j ≤ π. (2)

The spectrum of the process, denoted with gX (ω), identifies the dominant frequen-
cies ω, i.e. those explaining large portions of variation in the data. A stationary
process as in (1) will possess a mixed spectrum, with a discrete component asso-
ciated to the harmonic process Vt and a continuous component associated to the
stochastic process Zt (for a more detailed and technical definition see, for example,
Priestley [6]). Intuitively, the cycles we observe in the energy consumption series
are mainly connected with the component Vt . Given the uncorrelation of Vt and Zt ,
the variance of the process is V ar(Xt ) = V ar(Vt ) + V ar(Zt). We argue that a
large portion of the variability in the data is due to the component Vt . Therefore,
a clustering procedure for this kind of time series may be naturally based on the
explanation of V ar(Vt ). This is connected with the identification of the discrete
component of the spectrum, which therefore become the main step of the clustering
procedure.

The clustering procedure is based on the following steps:

1. For each time series (user), denoted with u = 1, . . . , T , estimate the spectrum
by using any consistent estimator (see, for example, Priestley, [6])

ĝu
X (ω j ), 0 ≤ ω j = 2π j

n
≤ π; j = 0, 1, . . . ,m; m =

[n

2

]
,

where ω j are the discrete frequencies and [x] denote the integer part of x .
2. By (2), for each user u = 1, .., T , use a Whittle test with a Bartlett window to

test the following hypotheses (for the details on the test, see Priestley [6]):

H0 : A j = 0 j = 1, . . . ,m

H1 : A j = 0 at least for one j.

Derive the relevant discrete frequencies for the user u, as those frequencies ω j

for which H0 is rejected. Denote these frequencies with ωu
j , j = 1, 2, . . ..

3. For each user u and a fixed integer h1, extract the first most important (relevant)
frequencies ωu

( j), for j = 1, . . . , h1, such that:

ĝu
X (ω

u
(1)) ≥ ĝu

X (ω
u
(2)) ≥ . . . ≥ ĝu

X (ω
u
(h1)

),

among which the first, that is ωu
(1), is called the dominant frequency of the user u.

For an easier interpretability, convert each frequency ωu
(i) into the correspondent

period Pu,i (expressed in hours, days, weeks, etc...). Derive the matrix of the
relevant periods P for all the users (see Fig. 3, on the left, and Remark 2).

4. By using only the first column of the matrix P as raw data, derive the distribution
of the dominant periods Pi . Denote with δi the percentage of users which have Pi
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P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P1 1 P1 2 P1 h1

P2 1 P2 2 P2 h1

...
...

. . .
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. . .
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PT 1 PT 2 PT h1

⎞
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Periods

% users
(δi)

P1 δ1
P2 δ2
· · · · · ·
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Pr δr

100%

; D =
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,
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⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3 On the left, the matrix P of the relevant periods, the first column of which reports the
dominant periods observed in the database. In the center, the distribution of the dominant periods
observed in the database. On the right, the dissimilarity matrix D

as dominant period, i.e. for which Pu,1 = Pi , for u = 1, . . . , T and i = 1, . . . , r .
Suppose that δ1 ≥ δ2 ≥ . . . ≥ δr (see Fig. 3, in the center, and Remark 2).

5. Consider the first c most observed dominant periods, i.e. the periods Pi for which
δi ≥ δc, for a given c or a given threshold δc (see Remarks 1 and 2).

6. For a fixed integer h2 ≤ h1, define the binary matrix D, whose generic element
du,s is equal to one if the period Ps appears in the first h2 positions of the u-th
row of matrix P, for u = 1, . . . , T and s = 1, . . . , c; otherwise du,s is equal to
zero (see Fig. 3, on the right).
The matrix D acts as a dissimilarity matrix. If two rows i and j of the matrix
are equal, this means that the load curves of the users i and j are characterized
by the presence of the same relevant periodic components, although each load
curve might present some other less important periodic component (see also
Remark 1).

7. By considering the different combinations of the relevant periods Pi , i =
1, . . . , c, derive the 2c clusters of users by associating the rows (=users) of the
matrix D with the same sequence of zeroes/ones (see Remark 3).

Remark 1 The parameters h1, h2 and c (or equivalently the threshold δc) behave
like tuning parameters for the clustering procedure and must be fixed in some way.
More investigations would be useful in order to determine the influence of such
parameters on the results.

Remark 2 Identification of the discrete component from a mixed spectrum, that is
identification of the “jumps” in the function gX (ω), is particularly difficult when
starting from the estimated spectrum. Difficulties arise since a smooth peak could
be confounded with a jump (and vice versa) by simply modifying the smoothing
parameter of the kernel estimator. For this reason, in order to enforce the faith in
correctly identifying the discrete part of the spectrum, we consider in step 5 only
the first c most observed dominant cycles, that is only the periods Pi with a strong
evidence in the database.

Remark 3 By construction, the procedure can identify potentially 2c clusters,
but some of them could be empty. This happens when there is an exclusive
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disjunction relationship between some of the periodic components, at least in the
“relevant positions”.

Remark 4 Nonstationarity and fractional integration of the process (long memory)
would compromise the spectral estimations, in particular the Whittle test [2]. In
order to verify these features on our data, we performed the nonparametric test of
Lobato and Robinson [4]. Consider the following hypothesis

H0 : d = 0 vs H1 : d = 0,

where d is the integration parameter of the process. The percentage of rejections
of H0 in the resampling procedure proposed in Lobato and Robinson [4] did not
exceed the nominal coverage error (3% against 5%). So the hypothesis H0 could
not be rejected for the analyzed database.

Remark 5 gaussianity of {Xt } is generally desirable in spectral analysis. Any-
way, dropping the normality condition has little effect on the large sample
distributions [7].

3 An Application to a Real Temporal Data Base

The proposed clustering procedure is used to cluster the time series of electricity
consumption of business and industrial firms as recorded by a large electric com-
pany. For each observed time series, we performed two different estimations of the
spectral density. The first was based on the original observations in order to capture
the intra-daily periodic components. The second estimation was aimed to identify
weekly and monthly cycles and, to avoid masking effects due to high frequency
components, time series have been aggregated into daily observations.

The Whittle test was performed in order to identify the relevant frequencies ωu
j

for each time series, as described in the step 2 of the procedure. Each relevant
frequency was then converted into the correspondent period P , for an easier inter-
pretation of the results. We selected the following smoothing parameters: (i) we
considered h1 = 5 relevant frequencies (or periods). We built the matrix P of order
64,522 × 5, as shown in Fig. 3. (ii) With the first column of matrix P, we derived
the distribution of the dominant periods and then we selected the first c = 5 most
observed dominant periods Pi , for i = 1, . . . , 5. (iii) We derived the binary matrix
D by matching the presence of each dominant period Pi in the first h2 = 3 relevant
frequencies of each user, that is in the first h2 = 3 columns of the matrix P, for each
user u = 1, . . . , T . When collecting the results, we noted that only few frequen-
cies were systematically observed. From the daily data, we identified three different
weekly cycles, having period respectively of about 1, 2, and 3 weeks (respectively
denoted as W1, W2 and W3). From the hourly observations, we identified a daily
cycle of about 24 h and an intra-daily cycle of about 4 h (respectively denoted as D1
and D2). The following table summarizes the results, reporting also the percentages
of users on the total which present each period as dominant period (δi ).
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Dominant period Approximate time % of users on the total (δi )

D1 4 hours 79.8%
D2 1 day 15.3%
W3 3 weeks 2.4%
W2 2 weeks 0.5%
W1 1 week 0.3%

Cluster C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16

Main none W1 W2 W3 D1 W1 W2 W3 D2 W1 W2 W3 D1 W1 W2 W3
Cycles D1 D1 D1 D2 D2 D2 D2 D1 D1 D1

D2 D2 D2
Users 2265 242 59 545 1880 1080 27 302 16200 603 173 1342 25978 10212 150 1602
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Fig. 4 The aggregated time series representing the identified clusters of users (from 1 to 8)

On the basis of such results, we derived the matrix D by assigning to each
series a binary code, i.e. by constructing a vector of zeroes and ones depending on
whether each frequency wasn’t or was present in the three first positions of matrix
P. Potentially we had to consider 25 = 32 different codes or clusters, but we found
that there is an exclusive disjunction relationship between some frequencies and
this implies that some codes reported null dimension. Finally we observed 16 + 1
relevant clusters (we add a cluster C0 including the series which had more than
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Fig. 5 The aggregated time series representing the identified clusters of users (from 9 to 16)

50% null observations, in order to exclude from the analysis the anomalous series).
The following table reports the main characteristics and the dimensions of the 16
clusters.

In Figs. 4 and 5 we show the results. Each cluster is represented by the global
load path, that is the global energy consumption series for all the users in the cluster.
As desired, the 16 patterns shows different characteristics of the series, although
each one is characterized by a substantial regular path, even when the cluster has a
very high dimension (for example, the clusters C13 and C14). This could be consid-
ered a very encouraging result. Even summing up thousands of users belonging to
the same cluster, a clear periodic pattern is still evident from the plots.
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Use of a Flexible Weight Matrix in a Local
Spatial Statistic

Massimo Mucciardi

Abstract Most of local indices of spatial autocorrelation utilize a classical adja-
cency matrix as interconnection system. In this paper we attempt to use generalized
matrix of spatial weights for measuring local autocorrelation. The work concludes
with a comparison of local autocorrelation indices according to different hypotheses
of neighborhood.

1 Introduction

The concept of local spatial autocorrelation is based on the idea of spatial outlier,
that is a instability point in a spatial process underlying. In these terms, the local
spatial autocorrelation expresses itself in the identification of the units character-
ized by extreme value of variable. These extreme values are identified through the
comparison between and the value assumed by the process in the contiguity units
[1]. As point out by Unwin A. and Unwin D. [8], the aim of local index is to learn
more about each individual datum by relating it in some way to the value observed
at neighbouring locations. This can be carried out by using the visualization of the
resulting maps as a direct analytical procedure. Moreover, it is possible that within
the same dataset, a different degree of spatial autocorrelation could be present; both
positive and negative autocorrelation could even exist within the same dataset [2].
In this case, global measures of spatial autocorrelation would fail to pick up these
different degree of spatial dependence within data. Consequently, a global statis-
tic might misleadingly indicate that there is no spatial autocorrelation in a dataset,
when there is a strong positive autocorrelation in one part of territory and nega-
tive autocorrelation in another. Whatever “local statistic” is used, there is a need
to define a “local neighbourhood”. Most of local spatial indices utilize a classical
(0–1) matrix of weight as the interconnection system. In these paper we try to use
generalized matrix of spatial weights [4] for measuring local autocorrelation. The
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paper concludes with a comparison of local autocorrelation indices according to
different hypotheses of neighbourhood.

2 Local Measure of Spatial Autocorrelation
with S-DSMA Procedure

In a local index of spatial autocorrelation each unit is characterized by one value of
the index; it gives the individual contribution of that location in the global spatial
autocorrelation measured on all locations. Although there are available different
indices in literature, in these paper we focus a “local Moran” statistic only. Local
Moran’s statistic for each observation may be defined as follows [1]:

Ii =
n∑

j, j =i

wi j z j (1)

where the observation zi and z j are in standardized form and the weight wi j are
in row-standardized form. As observed earlier, the local index is the product of the
standardized local value and the weighted mean of the standardized neighboring
value. Thus, similarly to the global index, it can be positive, negative or equal to
zero. It is negative when there is an association of opposite values at neighboring
locations, and positive in the case of spatial association of similar values. At this
point, use of binary 0–1 weight is attractive and computationally convenient [8],
but there also are several other possible methods. A variety of approaches, from
the use of simple 0–1 adjacency, through various measure of distance and length
between the zones, have been experimented and is not possible to review them all
here. More recently a “general weight matrix” has been proposed according the
S-DSMA procedure [4]. We should briefly remember that the procedure determines
different types of weight matrices with “threshold distance” hk : (1) matrix Δk

whose values δi j represent the interconnection between the territorial barycenters
or centroids of the aerial units; (2) matrix Ek whose values represent εi j the inter-
connection between the territorial barycenters or centroids of the aerial units with
weights sensitive to the effective distance of each unit; (3) matrix Bk whose val-
ues γi j represent the weights in function of the physical characteristics (surface)
of the aerial units only; (4) matrix Ωk whose values δi j are obtained introducing
a suitable function (mean) on the coefficients obtained from the two matrices Ek

and Bk . In this case, factors of “distance” and “surface” in aerial units are evalu-
ated simultaneously. Lastly, a mixed matrix Ωk

c is possible using it in the case we
combine adjacency (0–1 matrix) and surface (Bk) between the units [7]. Therefore,
the distinguishing feature of this approach is to obtain a “flexible weights matrix”
in relation to the phenomenon under investigation. In the following section we are
going to apply a local index with S-DSMA procedure for detecting spatial outlier
and/or spatial clusters.
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3 Application and Conclusion

The comparison between standard measure of local spatial autocorrelation and local
measure obtained using our procedure is performed using no GIS package S-Joint
(for more details see Appendix). This software allows us to consider the matrix of
binary contiguity W k (rook case) and the matrix Δk , Ek , Bk , Ωk and Ωk

c , according
to hypothesis of neighborhood. In any case, the comparison will be made consid-
ering Ωk only. The proposed application calculates the local spatial autocorrela-
tion for Italian region localization rate relative to public administration sector [3].
As evidenced by the simultaneous analysis through local indices of autocorrela-
tion (Table 1) and the Moran scatterplot (Fig. 1, the use of S-DSMA (hypothesis
Ω) determines a different indices quantification). Consequently, Moran scatterplot
seems to be less dispersive, indicating, in our opinion, more evidence of two clus-
ters made respectively by northern regions (with low levels of specialization in the
public administration sector) and southern regions (with high levels of specializa-
tion in the public administration sector). In conclusion, this paper has developed
and applied a new technique for measuring local autocorrelation. Local measure
of spatial autocorrelation with S-DSMA procedure, allow us to detect the regions
with significant (positive or negative) deviations from the national average, and to
determine the intensity of the interactions between neighbouring locations. Finally,
we underline that the main disadvantage of traditional local statistics is their strong

Table 1 Comparison between Ii (W) and Ii (Ω)

Region Zi
∑n

j, j =i wi j za
j

∑n
j, j =i ωi j zb

j Ii (W) Ii (Ω)

Piemonte −1.248 −0.206 −0.603 0.257 0.752∗
Valle d’Aosta 1.064 −1.248 −0.894 −1.328 −0.951∗
Lombardia −1.638 −0.969 −0.580 1.588∗ 0.950∗
Trentino 0.194 −1.587 −0.818 −0.308 −0.159
Veneto −1.535 −0.820 −0.589 1.260∗ 0.905∗
Friuli −0.549 −1.535 −0.886 0.842 0.486
Liguria −0.044 −1.132 −0.698 0.050 0.031
Emilia −1.289 −1.002 −0.449 1.291∗ 0.578∗
Toscana −0.859 −0.243 −0.462 0.209 0.397∗∗
Umbria −0.247 −0.166 −0.337 0.041 0.083
Marche −0.932 −0.245 −0.246 0.229 0.230
Lazio 1.295 0.023 −0.061 0.029 −0.079
Abruzzo −0.126 0.476 0.067 −0.060 −0.008
Molise 1.064 0.375 0.185 0.399 0.197
Campania 0.438 0.772 0.516 0.338 0.226
Puglia −0.108 0.764 0.794 −0.082 −0.086
Basilicata 0.790 0.547 0.736 0.432 0.581∗∗
Calabria 1.311 1.070 0.732 1.402∗ 0.960∗
Sicilia 1.599 1.065 0.871 1.703∗ 1.392∗
Sardegna 0.820 1.161 1.295 0.951∗∗ 1.062
∗p < 0.05; ∗∗p < 0.01.
a1st spatial order, 35 joints.
b1st spatial order – h-distance (379 km), 82 joints.
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Fig. 1 Dynamic Moran scatterplot for standardized Italian region localization rate: hypothesis W
and hypothesis Ω . (H-H indicates high index point with high index neighbors; L-L indicates low
index point low index neighbors; H-L indicates high index point with low index neighbors; L-H
indicates low index point high index neighbors; the slope of the regression line through the points
is proportional to the global Moran’s I for the dataset)
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dependence on the definition of neighbourhood. Therefore, different hypothesis of
neighbourhood would be proposed in order to reach a comprehensive analysis of the
data.

Appendix: S-Joint Software

S-Joint is a multi-document interface program realized in C++ language that offers
several spatial analysis operations in a simple and intuitive way [5, 6]. The cur-
rent version of this program has been planned to run under Microsoft Windows.
The graphic interface was built on the QT library (ver. 3.3.2) by Trolltech. Other
libraries used were: OpenGL (3D graphic library), LibQGLViewer (QT OpenGL
support library), QWT (graphics extension to the Qt GUI application framework),
GDAL and OGR (geospatial data abstraction library). S-Joint can open data files,
vector maps (point, line and polygonal maps) and raster maps. It is also possible to
create regular grids. The vector maps and the grids are shown in three-dimensional
windows in order to give greater flexibility in operations such as, for instance, rota-
tions, translations and zooming. Point and polygonal maps, data files and grids can
be used to do spatial analysis studies. Moreover the ESRI shapefile (.shp) format,
the MapInfo (.mif), the common separated value (.csv), the ARC/INFO coverage
(.adf), the USGS SDTS, the dBase (.dbf) have been implemented. In the current
development phase, it is also possible to calculate the traditional spatial autocor-
relation index (Moran and Geary), to join-count statistics and the local Moran, to
show the Moran scatterplot and to calculate new autocorrelation measures based
on a “generalized weight system”. S-Joint implements the S-DSMA procedure with
a local reweighting [4] in relation to weights system (see Tables 2 and 3). It is
also possible to choose other systems of weights depending on the map topol-
ogy (polygonal maps will have different methods of weights creation compared
to point maps). Furthermore, each of these systems provides us with a vast num-
ber of options which add some more flexibility in the matrix generation. Among
the other S-Joint characteristics, we can take into account the layer management,
weight matrix importing/exporting to different formats capability, the possibility of
selecting/deselecting the vector maps in order to do local analysis. Another impor-
tant add-on feature is the program ability to recognize if a map is using a geo-
graphical or a projected coordinate system, in order to calculate distances between
points and polygonal map areas in different ways. (For more details visit URL:
http://ww2.unime.it/scistat/homepages/mucciardi/down/manuale.pdf)
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Constrained Variable Clustering and the Best
Basis Problem in Functional Data Analysis

Fabrice Rossi and Yves Lechevallier

Abstract Functional data analysis involves data described by regular functions
rather than by a finite number of real valued variables. While some robust data anal-
ysis methods can be applied directly to the very high dimensional vectors obtained
from a fine grid sampling of functional data, all methods benefit from a prior sim-
plification of the functions that reduces the redundancy induced by the regularity.
In this paper we propose to use a clustering approach that targets variables rather
than individual to design a piecewise constant representation of a set of functions.
The contiguity constraint induced by the functional nature of the variables allows a
polynomial complexity algorithm to give the optimal solution.

1 Introduction

Functional data [13] appear in applications in which objects to analyse display some
form of variability. In spectrometry, for instance, samples are described by spectra:
each spectrum is a mapping from wavelengths to e.g., transmittance.1 Time varying
objects offer a more general example: when the characteristics of objects evolve
through time, a loss free representation consists in describing these characteristics
as functions that map time to real values.

In practice, functional data are given as high dimensional vectors (e.g., more
than 100 variables) obtained by sampling the functions on a fine grid. For smooth
functions (for instance in near infrared spectroscopy), this scheme leads to highly
correlated variables. While many data analysis methods can be made robust to this
type of problem (see, e.g., [6] for discriminant analysis), all methods benefit from a
compression of the data [12] in which relevant and yet easy to interpret features are
extracted from the raw functional data.
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1 In spectrometry, transmittance is the fraction of incident light at a specified wavelength that
passes through a sample.
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There are well-known standard ways of extracting optimal features according
to a given criterion. For instance in unsupervised problems, the first k principal
components of a dataset give the best linear approximation of the original data in
R

k for the quadratic norm (see [13] for functional principal component analysis
(PCA)). In regression problems, the partial least-squares approach extracts features
with maximal correlation with a target variable (see also Sliced Inversion Regression
methods [4]). The main drawback of those approaches is that they extract features
that are not easy to interpret: while the link between the original features and the
new ones is linear, it is seldom sparse; an extracted feature generally depends on
many original features.

A different line of thoughts is followed in the present paper: the goal is to extract
features that are easy to interpret in terms of the original variables. This is done by
approximating the original functions by piecewise constant functions. We first recall
in Sect. 2 the best basis problem in the context of functional data approximation.
Section 3 shows how the problem can be recast in term of a constrained clustering
problem for which efficient solutions are available.

2 Best Basis for Functional Data

Let us consider n functional data, (si )1≤i≤n . Each si is a function from [a, b] to R,
where [a, b] is a fixed interval common to all functions (more precisely, si belongs
to L2([a, b]), the set of square integrable functions on [a, b]). In terms of functional
data, linear feature extraction consists in choosing for each feature a linear operator
from L2([a, b]) to R. Equivalently, one can choose a function φ from L2([a, b])
and compute 〈si , φ〉L2 = ∫ b

a φ(x)si (x)dx . In an unsupervised context, using e.g., a
quadratic error measure, choosing the k best features consists in finding k orthonor-
mal functions (φi )1≤i≤k that minimise the following quantity:

n∑

i=1

∥
∥∥∥∥∥

si −
k∑

j=1

〈si , φk〉L2φk

∥
∥∥∥∥∥

2

L2

. (1)

The (φi )1≤i≤k form an orthonormal basis of the subspace that they span: the optimal
set of such functions is therefore called the best basis for the original set of functions
(si )1≤i≤n .

If the φk are unconstrained, the best basis is given by functional PCA [13]. How-
ever, in order for the corresponding feature to be easy to interpret, the φk should
have compact supports, the simple case of φk = I[uk ,vk ] being the easiest to analyse
(I[u,v](x) = 1 when x ∈ [u, v] and 0 elsewhere).

The problem of choosing an optimal basis among a set of bases has been studied
for some time in the wavelet community [3, 15]. In unsupervised context, the best
basis is obtained by minimizing the entropy of the features (i.e., of the coordinates
of the functions on the basis) in order to enable compression by discarding the
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less important features. Following [12, 14] proposes a different approach, based
on B-splines: a leave-one-out version of Eq. (1) is used to select the best B-splines
basis. While the orthonormal basis induced by the B-splines does not correspond
to compactly supported functions, the dependency between a new feature and the
original ones is still localized enough to allow easy interpretation. Nevertheless
both approaches have some drawbacks. Wavelet based methods lead to compactly
supported basis functions but the basis has to be chosen in a tree structured set of
bases. As a consequence, the support of a basis function cannot be any sub-interval
of [a, b]. The B-spline approach suffers from a similar problem: the approximate
supports have all the same lengths leading either to a poor representation of some
local details or to a large number of basis functions.

3 Best Basis via Constrained Clustering

3.1 From Best Basis to Constrained Clustering

The goal of the present paper is to select an optimal basis using only basis functions
of the form I(u,v), without restriction on the possible intervals among sub-interval

of [a, b].2 Let us consider
(
φ j = 1

v j−u j
I(u j ,v j )

)

1≤ j≤k
such an orthonormal basis.

We assume that the ((u j , v j ))1≤ j≤k form a partition of [a, b]. Obviously, we have
〈φ j , si 〉 = 1

v j−u j

∫ v j
u j

si (x)dx , i.e., the feature corresponding to φ j is the mean value

of si on [u j , v j ]. In other words,
∑k

j=1〈si , φk〉L2φk is a piecewise constant approx-

imation of si (which is optimal according to the L2 norm).
In practice, functional data are sampled on a fine grid with support points

a ≤ t1 < . . . < tm ≤ b, i.e., rather than observing the functions (si )1≤i≤n ,
one gets the vectors (si (tl))1≤i≤n,1≤l≤m from R

m . Then 〈φ j , si 〉 can be approx-
imated by 1

|I j |
∑

l∈I j
si (tl) where I j is the subset of indexes {1, ...,m} such that

tl ∈ (u j , v j ) ⇔ l ∈ I j . Any partition of ((u j , v j ))1≤ j≤k of [a, b] corresponds to
a partition of {1, ...,m} in k subsets (I j )1≤ j≤k that satisfies an ordering constraint:
if r and s belong to I j then any integer t ∈ [r, s] belongs also to I j . Finding the
best basis means for instance minimizing the sum of squared errors given by Eq. (1)
which can be approximated as follows

n∑

i=1

k∑

j=1

∑

l∈I j

⎛

⎝si (tl)− 1

|I j |
∑

u∈I j

si (tu)

⎞

⎠

2

=
k∑

j=1

Q(I j ), (2)

where

2 The notations (u, v) is used to include all the possible cases of open and close boundaries for the
considered intervals.
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Q(I ) =
n∑

i=1

∑

l∈I

(

si (tl)− 1

|I |
∑

u∈I

si (tu)

)2

(3)

The second version of the error shows that it corresponds to an additive quality
measure of the partition of {1, ...,m} induced by the (I j )1≤ j≤k . Therefore, finding
the best basis for the sampled functions is equivalent to finding an optimal partition
of {1, ...,m} with some ordering constraints and according to an additive cost func-
tion. A suboptimal solution to this problem, based on an ascending (agglomerative)
hierarchical clustering, is proposed in [9].

3.2 Dynamic Programming

However, an optimal solution can be reached in a reasonable amount of time, as
pointed out in [10]: when the quality criterion of a partition is additive and when a
total ordering constraint is enforced, a dynamic programming approach leads to the
optimal solution (this is a generalization of the algorithm proposed by Bellman for
a single function in [2, 16]; see also [1, 8] for rediscoveries/extensions of this early
work). The algorithm is simple and proceeds iteratively by computing F( j, k) as
the value of the quality measure (from Eq. (2)) of the best partition in k classes of
{ j, ...,m}:
1. initialization: set F( j, 1) to Q({ j, . . . ,m}) for all j
2. iterate from p = 2 to k:

a. for all 1 ≤ j ≤ m − p + 1 compute

F( j, p) = min
j≤l≤m−p+1

Q({ j, . . . , l})+ F(l + 1, p − 1)

The minimizing index l = l( j, p) is kept for all j and p. This allows to reconstruct
the best partition by backtracking from F(1, k): the first class of the partition is
{1, . . . , l(1, k)}, the second {l(1, k) + 1, . . . , l(l(1, k) + 1, k − 1)}, etc. A similar
algorithm was used to find an optimal approximation of a single function in [2, 11].
Another related work is [7] which provides simultaneously a functional clustering
and a piecewise constant approximation of the prototype functions.

The internal loop runs O(km2) times. It uses the values Q({ j, . . . , l}) for all
j ≤ l. Those quantities can be computed prior to the search for the optimal partition,
using for instance a recursive variance computation formula, leading to a cost in
O(nm2). More precisely, we are interested in

Qi, j,l =
l∑

r= j

(si (tr )− Mi, j,l)
2, (4)

where
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Mi, j,l = 1

l − j + 1

l∑

u= j

si (tu). (5)

For a fixed function si , the Mi, j,l and Qi, j,l are computed and stored in two m × m
arrays, according to the following algorithm:

1. initialisation: set Mi, j, j = si (t j ) and Qi, j, j = 0 for all j ∈ {1, . . . ,m}
2. compute Mi,1, j and Qi,1, j for j > 1 recursively with:

Mi,1, j = 1

j

(
( j − 1)Mi,1, j−1 + si (t j )

)

Qi,1, j = Qi,1, j−1 + j

j − 1
(si (t j )− Mi,1, j )

2

3. compute Mi, j,l and Qi, j,l for l > j > 1 recursively with:

Mi, j,l = 1

l − j + 1

(
(l − j + 2)Mi, j−1,l − si (t j−1)

)

Qi, j,l = Qi, j−1,l − l − j + 1

l − j + 2
(si (t j−1)− Mi, j,l)

2

This algorithm is applied to each function leading to a total cost of O(nm2) with a
O(m2) storage. The full algorithm has therefore a complexity of O((n + k)m2).

3.3 Extensions

As pointed out in [10], the previous scheme can be used for any additive quality
measure. It is therefore possible to use e.g., a piecewise linear approximation of the
functions on a sub-interval rather than a constant approximation (this is the origi-
nal problem studied in [2] for a single function). However, additivity is a stringent
restriction. In the case of a piecewise linear approximation for instance, it prevents
the introduction of continuity conditions: if one searches for the best continuous
piecewise linear approximation of a function, then the optimized criterion is no
more additive (this is in fact the case for all spline smoothing approaches expect
the piecewise constant ones).

In addition, for the general case of an arbitrary quality measure Q there might
be no recursive formula for evaluating Q. In this case, the cost of computing the
needed quantities might exceed O(nm2) and reach O(nm3) or more, depending on
the exact definition of Q.

That said, the particular case of leave-one-out is quite interesting. Indeed when
the studied functions are noisy, it is important to rely on a good estimate of the
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approximation error to avoid overfitting the best basis to the noise. It is straightfor-
ward to show that the leave-one-out (l.o.o.) estimate of the total error from Eq. (2)
is given by

n∑

i=1

k∑

j=1

∑

l∈I j

( |I j |
|I j | − 1

)2
⎛

⎝si (tl)− 1

|I j |
∑

u∈I j

si (tu)

⎞

⎠

2

, (6)

when l.o.o. is done on the sampling points of the functions. This is an additive
quality measure which can be computed using from the Qi, j,l , that is in an effi-
cient recursive way. As shown above, the piecewise constant approximation with
k segments is obtained via the computation of the best approximation for all l in
{1, . . . , k}. It is then possible to choose the best l based on the leave-one-out error
estimate at the same cost as the one needed to compute the best approximation for
the maximal value of l. This leads to two variants of the algorithm. In the first one,
the standard algorithm is applied to compute all the best bases and the best number
of segments is chosen via the l.o.o. error estimate (which can be readily computed
once the best basis is known). In the second one, we compute the best basis directly
according to the l.o.o. error estimate, leveraging its additive structure. It is expected
that this second solution will perform better in practice, as it constrains the best
basis to be reasonable (see Sect. 4 for an experimental validation). For instance, it
will never select an interval with only one point whereas this could be the case for
the standard solution. As a consequence, the standard solution will likely produce
bases with rather bad leave-one-out performances and tend to select a too small
number of segments (see Sect. 4 for an example of this behavior).

4 Experiments

We illustrate the algorithm on the Wine dataset3 which consists in 124 spectra of
wine samples recorded in the mid infrared range at 256 different wavenumbers4

between 4,000 and 400 cm−1. Spectra number 34, 35 and 84 of the learning set of
the original dataset have been removed as they are outliers. As shown on Fig. 1 the
function approximation problem is interesting as the smoothness of the spectrum
varies along the spectral range and an optimal basis will obviously not consist in
functions with supports of equal size. Figure 2 shows an example of the best basis
obtained by the proposed approach for k = 16 clusters, while Fig. 3 gives the subop-
timal solution obtained by a basis with equal length intervals (as used in [14]). The
uniform length approach is clearly unable to pick up details such as the peak on the
right of the spectra. The total approximation error (Eq. (2)) is reduced from 62.66

3 This dataset is provided by Prof. Marc Meurens, Université catholique de Louvain, BNUT unit,
and available at http://www.ucl.ac.be/mlg/index.php?page=DataBases.
4 The wavenumber is the inverse of the wavelength.
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Fig. 1 Three spectra from the Wine dataset

with the uniform approach to 7.74 with the optimal solution. On the same dataset,
the greedy ascending hierarchical clustering approach proposed in [9] reaches a
total error of 8.55 for a similar running time of the optimal approach proposed in
the present paper.

To test the leave-one-out approach, we have first added a Gaussian noise with
0.04 standard deviation (the functions take values in [−0.265, 0.581]). Then we
look for the best basis up to 64 segments. As expected, the total approximation error
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Fig. 2 Example of the optimal approximation results for 16 clusters on the Wine dataset
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Fig. 3 Example of the uniform approximation results for 16 clusters on the Wine dataset

decreases with the number of segments and would therefore lead to a best basis
with 64 segments. Moreover, as explained in the previous Section, the bases are
not controlled by a l.o.o. error estimate. As a consequence, the optimization leads
very quickly to basis with very small segments (starting at k = 12, there is at least
one segment with only one sample point in it). Therefore, the l.o.o. error estimate
applied to this set of bases selects a quite low number of segments, namely k = 11.
When the bases are optimized according to the l.o.o. error estimate, the behavior is
more smooth in the sense that small segments are always avoided. The minimum
value of the l.o.o. estimate leads to the selection of k = 20 segments.

Table 1 summarizes the results by displaying the total approximation error on the
noisy spectra and the total approximation error on the original spectra (the ground
truth) for the three alternatives. The full l.o.o. approach leads clearly to the best
results, as illustrated on Figs. 4 and 5.

Those experiments show that the proposed approach is flexible and provides an
efficient way to get an optimal basis for a set of functional data. We are currently
investigating supervised extensions of the approach following principles from [5].

Table 1 Total squared errors for the Wine dataset with noise

Basis Noisy data Real spectra

k = 64 (standard approach) 37.28 14.35
k = 11 (l.o.o. after the standard approach) 63.19 17.35
k = 20 (full l.o.o.) 54.07 12.07
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Fig. 4 Best basis selected by leave-one-out with the standard approach combined with loo
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Fig. 5 Best basis selected by leave-one-out with the full loo approach
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Plaid Model for Microarray Data:
an Enhancement of the Pruning Step

Luigi Augugliaro and Angelo M. Mineo

Abstract Microarrays have become a standard tool for studying gene functions. For
example, we can investigate if a subset of genes shows a coherent expression pattern
under different conditions. The plaid model, a model-based biclustering method, can
be used to incorporate the addiction structure used for the microarray experiment.
In this paper we describe an enhancement for the plaid model algorithm based on
the theory of the false discovery rate.

1 Introduction

There has been considerable recent interest in the analysis of microarray experi-
ments. A typical microarray experiment investigates thousands of genes, record-
ing their expression level over tens of samples. A bicluster identifies a group of
genes and an associated group of samples on which the genes are characterized by
a similar expression level. This fact may indicate a common biological function.
Several clustering methods have been developed in recent years in order to iden-
tify a bicluster, such as gene-shaving [3], EMMIX-GENE [6], EMMIX-WIRE [8],
spectral biclustering [4] and the plaid model [5], among the others. The plaid model
is a model-based clustering method that can be used to study structured microarray
experiments, for this reason it is usually preferred to the other methods. Aim of this
paper is to present an enhancement of the version of the plaid model algorithm pro-
posed in [9], in order to reduce the uncertainty related to the parameters used in the
pruning step to remove ill-fitted genes and samples. To increase the interpretation
and the accuracy of the pruning step, we have based the proposed enhancement on
the theory of the false discovery rate developed by Benjamini and Hochberg [1].
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2 The Plaid Model

The plaid model, proposed in [5], is defined as sum of a series of additive lay-
ers, intended to describe and capture the underlying structure of a gene expression
matrix. The first layer, defined background layer, is used to take into account the
global effects in the data, while any subsequent layer represents additional effects
corresponding to the bicluster that exhibits a strong pattern not explained by the
general formulation of the plaid model. Let Yi j be the expression level of the i-th
gene in the j-th sample, the plaid model is defined as follows:

Yi j =
L∑

l=0

μl
i jρ

l
i κ

l
j + εi j , (1)

where l is the layer index starting from zero, the background layer, to L , the number
of biclusters, and εi j is a residual error. The mean parameter μl

i j for the l-th layer is
defined as sum of three effects, namely

μl
i j = μl + αl

i + βl
j , (2)

where μl is the mean effect and αl
i , β

l
j are the gene and sample effect in the l-

th layer, respectively. Lazzeroni and Owen [5] proposed different variants of the
model, but the form (2) is usually the most suitable for the analysis of microarray
data. The full model is similar to the model used in a two-way analysis of variance,
expected that the two-way interaction between genes and samples is replaced by
cluster effects, cluster by gene effects and cluster by sample effects. In this way
the plaid model tries to decompose the gene by sample interaction into additive
layers that are more easily interpretable. Finally, ρl

i and κ l
j are cluster membership

parameters defined for l ≥ 1; ρl
i is equal to one if the i-th gene is an element of

the l-th layer, zero otherwise. Similarly, κ l
j is the cluster membership for the j-th

sample and is equal to one if the j-th sample is an element of the l-th layer, zero
otherwise.

3 The Proposed Enhancement

Turner et al. [9] proposed a new algorithm for the plaid model which uses binary
least squares to fit the cluster membership parameters. According to the authors, the
proposed algorithm reduces the level of “false” structure incorporated in the model.
A further enhancement was proposed in [10]. The authors proposed a variation
in the pruning method, used to remove ill-fitted genes and samples, based on the
adjustment of the sum of squares for the associated degrees of freedom. Then, the
gene and sample pruning is obtained by means of two parameters, namely τ1 and τ2,
which can be interpreted as the minimum adjusted R2 desired for genes and samples.
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The problem with this variation is that does not exist a criterion to choose a value
for τ1 and τ2. In order to remove this uncertainty, we have developed a variation
of the plaid model algorithm that is based on the algorithm proposed by Benjamini
and Hochberg [1] to control the false discovery rate. This variation requires a new
element for the original algorithm proposed in [9], namely, a statistical test. Using a
statistical test developed to identify differentially expressed genes, we can overcome
another important limitation of the original algorithm, namely, the lack of consid-
eration of the technological features of the GeneChip used for the experiment [7].
This limitation has serious consequences in the accuracy of the layer search step. To
overcome this problem, we propose to use a statistical test specific for the platform
used for the analysis, such as the statistical test developed by Tusher et al. [11] or the
statistical test developed by Efron et al. [2], among others. In the following of this
paper, we shall assume that we are working with the modified t-statistic proposed
by Tusher et al. [11] and called relative distance, namely:

d(i) = Ȳ0(i)− Ȳ1(i)

s(i)+ s0
, (3)

where Ȳ0(i) and Ȳ1(i) are the average levels of expression for the i-th gene under
the state 0 and 1, respectively; s(i) is the standard deviation of repeated expression
measurements and the correction factor s0 is introduced in order to minimize the
coefficient of variation of d(i) (see [11] for a more complete description). Using the
modified t-statistic (3) and the algorithm developed in [1], the proposed variation of
the pruning step is the following: let Ẑ l be the residual matrix from the plaid model
with l layers and let Ẑ l(ρ̂l) be the submatrix of Ẑ l defined using the estimated class
membership parameters ρ̂l . Using κ̂ l as classification factor, for each row of Ẑ l(ρ̂l)

we compute the permuted adjusted p-values (pa
i ), then fixing a significant level of

5%, the proposed pruning rule for the ill-fitted genes is the following

ρ̃l
i =

{
1, if ρ̂l

i = 1 and pa
i ≤ 0.05

0, otherwise.

In a similar way we can prune the samples that are ill-fitted to the bicluster,
namely, let Ẑ l(κ̂ l) be the submatrix of Ẑ l defined using the estimated class mem-
bership parameters κ̂ l and ρ̂l as classification factor, the pruning rule for the samples
is the following

κ̃l
j =

{
1, if κ̂l

j = 1 and pa
j ≤ 0.05

0, otherwise.

Different significant levels can be used to define the wideness of a bicluster; for
example, we can reduce the significant value used in the proposed enhancement in
order to obtain a tighter bicluter. Since these values are chosen using the theory of
the false discovery rate, the proposed enhancement reduces the uncertainty related
with the parameters used in the pruning step. In Table 1 we have reported the algo-
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Table 1 The proposed algorithm for the plaid model

1: Compute Ẑ the matrix of residuals from the model so far
2: Compute starting values ρ̂0;i and κ̂0; j using one-way k-means clusters
3: s = 1
4: Update the layer effects using the submatrix of Ẑ indexed by ρ̂s−1;i and κ̂s−1; j
5: Update the cluster membership parameters
6: Follow steps 4 to 5 for s = 2, 3, . . . , S iterations
7: Compute the layer effects μ̂S+1, α̂S+1;i and β̂S+1; j
8: Prune bicluster to remove ill-fitted genes and samples using the rules

ρ̃i =
{

1, if ρ̂S+1;i = 1 and pa
i ≤ 0.05

0, otherwise

κ̃ j =
{

1, if κ̂S+1; j = 1 and pa
j ≤ 0.05

0, otherwise
9: Compute the layer sum of squares

L SS =∑i, j (μ̂+ α̂S+1;i + β̂S+1; j )
2ρ̃i κ̃ j

10: Permute the matrix Z and follow steps 2 to 9; repeat T times
11: Accept bicluster if LSS is greater than LSS for all permuted runs, otherwise stop
12: Refit all layers in the model R times, then search for next layer

rithm developed in [9] with the proposed enhancement for the pruning step. The
index layer is removed in order to simplify the notation.

In the next section we evaluate the proposed enhancement with the original algo-
rithm proposed in [9].

4 Simulation Studies

Aim of this section is to evaluate the behaviour of the proposed enhancement by
means of simulation studies. We assume that we have a plaid model with only one
layer defined using an expression matrix obtained with a 384-well micro fluidic card
and with sample size n = 30; in this way, we have an expression matrix with 384
rows and 30 columns. The background layer is generated using a standard normal
distribution, while the simulated layer is defined using the following values:

μ1 = 1

α1 = [−2,−1, 0, 1, 2, 3, 4, 3, 2, 1, 0,−1,−2]T︸ ︷︷ ︸
13×1

(4)

β1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]T︸ ︷︷ ︸
10×1

.

These values were chosen in order to evaluate how the size of the estimated layer
is related with the parameters τ1 and τ2 of the algorithm proposed in [9] and with
the adjusted p-values used in the method proposed in this paper. For this reason we
have simulated 10,000 expression matrices and for each of them we have applied
the considered algorithms.
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Table 2 Percentage of layers identified for different values of the pruning parameters τ1 and τ2

No. of layers No. of layers
τ1 τ2 1 2 3 4 5 τ1 τ2 1 2 3

0.5 0.5 0.85 0.14 0.02 0.8 0.5 0.99 0.01
0.6 0.87 0.12 0.01 0.6 0.99 0.01
0.7 0.56 0.34 0.08 0.02 0.7 0.99 0.01
0.8 0.58 0.36 0.05 0.01 0.8 0.73 0.26 0.01
0.9 0.82 0.17 0.01 0.9 0.94 0.06

0.6 0.5 0.88 0.11 0.01 0.9 0.5 0.97 0.03
0.6 0.88 0.11 0.01 0.6 0.99 0.01
0.7 0.52 0.36 0.10 0.02 0.01 0.7 0.98 0.02
0.8 0.43 0.43 0.10 0.03 0.8 0.99 0.01
0.9 0.28 0.62 0.10 0.9 0.99 0.01

0.7 0.5 0.91 0.08 0.01
0.6 0.91 0.08 0.01
0.7 0.88 0.11 0.01
0.8 0.38 0.41 0.17 0.04
0.9 0.91 0.07 0.02

In Table 2 we have reported the percentage of number of layers identified using
different values of the pruning parameters. This table clearly shows two impor-
tant aspects of the original plaid model algorithm; the first one is that the method
proposed in [9] is characterized by an high level of structural instability when τ1
assumes values lower than 0.6. In this case the algorithm usually identifies one or
two layers. The second aspect that characterizes the original algorithm is the joined
effect of τ1 and τ2 on the percentage of number of layers identified. This aspect
is very important since it is not possible to identify the correct number of layers
working with a pruning parameter at once. For example, in this simulation study
when τ1 is fixed at 0.7 the proportion of plaid models identified with a single layer
varies from 0.91 to 0.38. Then, we have tried to see if there is an interaction effect
between τ1 and τ2 by using a linear regression model and a GLM with a binomial
distribution for the error structure (in both cases we have considered the proportion
of identified single layer models as response variable), but this interaction effect
does not seem significant (results not shown).

In Table 3 we have computed the proportion of layers identified using the pro-
posed algorithm for different combinations of the adjusted p-values. In particular,
we can see that the proposed algorithm is characterized by a low level of structural
instability since the number of layers varies from 3 to 0. Moreover, we have not
observed a joined effect between the two adjusted p-values.

Another aspect that we think is important in order to evaluate the performance
of a biclustering method is the size of the identified biclusters. This aspect is of
particular interest since is closely connected with the real aim of the analysis. For
example, a biclustering method that finds clusters too tight in respect of the real
structure of the expression matrix, can lead to incorrect conclusions since we are
leaving out important samples related with the differentially expressed genes. To
evaluate this important aspect, we can see that using the parameter values defined in
(4) we obtain the following layer
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Table 3 Percentage of layers identified for different values of the adjusted p-values

No. of layers
pa

i pa
j 0 1 2 3

0.10 0.10 0.005 0.974 0.018 0.003
0.05 0.008 0.973 0.018 0.001
0.01 0.008 0.969 0.022 0.001

0.05 0.10 0.023 0.976 0.001
0.05 0.015 0.984 0.001
0.01 0.011 0.988 0.001

0.01 0.10 0.14 0.86
0.05 0.14 0.86
0.01 0.15 0.85

L13×10 =

⎡

⎢
⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢
⎣

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6 6 6
5 5 5 5 5 5 5 5 5 5
4 4 4 4 4 4 4 4 4 4
3 3 3 3 3 3 3 3 3 3
2 2 2 2 2 2 2 2 2 2
1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0

⎤

⎥
⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥
⎦

from which we observe that the first two and the last two rows cannot be identified
by the considered algorithms since they are confounded with the background layer,
which is obtained using a standard normal distribution. For this reason, in order to
evaluate the performance of the algorithms to identify the real size of the bicluster,
we consider as optimal a bicluster with 9 rows and 10 columns.

In Table 4 we have reported the mean and the variance of the number of rows
and columns when we have a single layer identified by the original algorithm. To
complete our analysis, we have also reported the proportion of single layers identi-
fied by the original algorithm seen in table 2. The conclusion that we can draw from
this table is that the algorithm proposed in [9] gains in stability excluding important
samples. For example, when we choose τ1 = 0.9 and τ2 = 0.9 we have an optimal
stability of the algorithm (the proportion of single layers identified is 0.99), but the
mean value of the number of rows identified is about two. Table 5 is obtained using
the algorithm with the proposed enhancement. We can clearly see that the proposed
algorithm overcomes the problem with the accuracy previously observed. When
we choose the adjusted p-values equal to 0.01 we have an high level of stability
(the proportion of single layers identified is equal to 0.85) and at the same time
we have an high level of accuracy: indeed, in this case we have always found the
optimal layer.
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Table 5 Relationship between stability and accuracy obtained using the plaid model with the
proposed enhancement

Rows Columns

pa
i pa

j % of 1 Layer Mean Var Mean Var

0.10 0.10 0.974 8.66 0.90 10.00 0.00
0.05 0.973 8.68 0.87 10.00 0.00
0.01 0.969 8.64 0.95 10.00 0.00

0.05 0.10 0.976 8.64 0.97 9.51 1.83
0.05 0.984 8.64 0.94 9.52 1.68
0.01 0.988 8.68 0.96 9.57 1.63

0.01 0.10 0.86 9 0.00 10 0.00
0.05 0.86 9 0.00 10 0.00
0.01 0.85 9 0.00 10 0.00

5 Conclusions

Plaid model, a model-based clustering method, is one of the most used method to
identify sets of genes characterized by a coherent expression pattern over a limited
number of samples. Its usefulness is related with the possibility to study different
structured microarray experiments. However, in our application we have observed
some difficulties with the choice of the parameters used in the pruning step. These
difficulties are related with the lack of a well founded criterion that permits to
choose the values used to remove ill-fitted genes and samples from the bicluster.
To overcome this problem, in this paper we have proposed an enhancement for the
plaid model algorithm developed in [9], which is based on the theory of the false
discovery rate. In this way, we obtain a better model interpretation, by reducing
the uncertainty related with the parameters used in the pruning step. The second
important advantage that we have by using the proposed algorithm is that we have
an increase in the accuracy of the size of the identified layers. This is due to the
fact that we have related the pruning step to the adjusted p-values of a specific test
statistic, namely the relative distance proposed in [11], which also considers the
technological features of the GeneChip used for the experiment [7].
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Classification of the Human Papilloma Viruses

Abdoulaye Baniré Diallo, Dunarel Badescu, Mathieu Blanchette, and
Vladimir Makarenkov

Abstract In this study we present a whole-genome phylogenetic classification of
the human papilloma viruse (HPV) family. We found that the high risk of carcino-
genicity taxa are clustered together. The most likely insertion and deletion (indel)
scenarios of HPV nucleotides were computed. We also searched for relationships
between the number of indels which occurred during the evolution of the HPV
family and the degree of carcinogenicity of considered taxa. Linear and polynomial
redundancy analyses (RDA) were carried out to relate the HPV carcinogenicity with
the number of insertions, deletions and conservations.

1 Introduction

Human papilloma viruses (HPV) form a family of viruses that are well-known for
their genomic diversity [1] and potential to cause cervical cancer. Nowadays, about
a hundred of HPVs have been identified and the whole genomes of more than eighty
of them have been sequenced [6]. They are double-stranded, circular DNA genomes
with sizes close to 8 Kbp with complex evolutionary relationships and a small set
of genes. A new HPV is recognized as a new HPV type if its complete genome
has been cloned and the DNA sequence of the gene L1 differs by more than 10%
from the closest known HPV type [3, 8, 9]. Older classifications grouped HPVs
according to their higher or lower risk of cutaneous or mucosal diseases. Most of the
studies were based on a single gene (usually E6 or E7) analysis. The latter genes are
predominantly found in cancer cells due to the binding of their products to the p53
tumour suppressor protein and the retinoblastoma gene product, respectively [12].
Diagnostics of 3,607 women with cervical cancer from 25 countries revealed that
about 89% of them had squamous cell carcinoma (SQUAM cancer) and about 5%
had adenosquamous carcinoma (ADENO cancer) ([9]; see also Fig. 1 below). It is
worth noting that more than the half of the infection cases are due to the types 16 and
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Fig. 1 Distribution of 11 carcinogenic HPVs in terms of the SQUAM and ADENO cancers (drawn
using the data from [9]). Total numbers (a) and percentages of cases (b) are represented on a
logarithmic scale. Category “Other Squam” is composed of HPV types being found only for the
Squamous cell carcinoma and accounting less than 3% of cases, namely: HPVs-52, 56, 73, 68, 82,
26, 66, 11, 6, HR, 53, 55, 81 and 83. HPVs-35, HR, 68 and X were not considered in this study
because their complete genomes were not yet available

18 of HPV ([2]; Fig. 1). Here we studied a whole genome phylogenetic classification
of the HPVs and the insertion and deletion (indel) distribution among HPV lineages
leading to the different types of cancer. Multiple linear and polynomial regressions
and redundancy analyses were used to relate the taxa carcinogenicity with the num-
ber of insertions, deletions and conservations, which, in this study, include both
conservations and mutations of nucleotides, and estimate the significance of the
obtained relationships.

2 Inferring the History of Evolutionary Events

Available genomes of HPVs identified by the ICTV [6] were downloaded and
aligned using ClustalW [11]. The alignment length was 10,426 bp. The phyloge-
netic tree of 83 HPVs (Fig. 2) was inferred using the PHYML method [5] with the
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Fig. 2 Phylogenetic tree of 83 HPVs obtained using the PHYML method. The white labelled nodes
identify the exiting HPV groups according to the NCBI taxonomy browser and the shaded ones (A
and B) distinguish between the non carcinogenic and carcinogenic families. The 21 carcinogenic
HPVs are indicated in bold (see Fig. 1)

HKY model of evolution. As suggested in [12], the bovine PV of type 1 was used
as an outgroup to root the phylogenetic tree. The bootstrap scores were computed
to assess the robustness of the edges. For clarity, they are not indicated in Fig. 2.
Mention that they are higher than 80% for most of the edges. In the obtained tree,
most of the HPV groups (denoted by numerated nodes) are in agreement with the
NCBI/ICTV classifications based on the gene L1. Thus, the evolution of the gene
L1 to classify those taxa reflects the whole genome evolution. The most dangerous
HPV taxa (see Fig. 2), causing both the ADENO and SQUAM cancers are located
in the subtrees rooted by the nodes 16 and 18. The rare HPV-types (less than 3%
of all cases; see the caption of Fig. 1) causing the SQUAM cancer only are rather
spread around in the large subtree rooted by the node A (Fig. 2). We also inferred
the phylogenetic trees for all HPV genes and found that, on average, two HPV gene
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Table 1 For each of the 15 genes of HPV, this table reports the numbers of the conserved, inserted
and deleted regions (and the percentages of nucleotides in these regions) in all lineages of the tree
in Fig. 2. Note that the percentages of conservations, insertions and deletions do not sum up to
100% because of the gaps added by the multiple sequence alignment algorithm. These gaps are not
explained by deletions but are due to insertions that occurred in the other lineages of the tree

Genes Cons. Ins. Del. %Cons. %Ins. %Del.

E1 12, 111 601 2, 774 91.8 0.3 1
E1A 1, 784 509 320 91.8 1.4 0.6
E2 13, 304 306 3, 460 85.2 0.1 2.2
E4 6, 318 195 2, 117 85.1 0.1 3.8
E5 1, 688 356 503 73.1 2.1 3.1
E5A 208 162 68 79.3 8.2 1.3
E5B 101 31 19 16.3 7.7 0.2
E6 7, 323 613 1, 529 89.0 0.2 1.1
E7 3, 457 0 1, 393 59.4 0 3.9
E8 84 0 0 52.6 0 0
L1 9, 664 314 2, 751 92.7 0.1 1.0
L2 21, 716 494 5, 138 92.3 0.4 2.6
X 484 0 230 43.7 0 1.8
Y 1, 457 54 679 83.2 0.3 2.6
Z 0 0 6 0 0 0.4

phylogenies differ topologically from each other by about 5% (i.e., the Robinson
and Foulds distance was used to compare the gene phylogenies).

To quantify the indel distribution, the most likely indel scenarios were computed
using a heuristic algorithm described in [4]. For a given phylogenetic tree and the
associated multiple sequence alignment, this algorithm computes the set of inser-
tion and deletion events using a tree-based Hidden Markov Model (HMM). Table 1
presents the distribution of the predicted indel and conservation events for all HPV
genes. The indel frequencies are higher in the subtrees rooted by the node 61, where
only low-risk-carcinogenicity HPVs are located (Fig. 2). The groups located in the
subtree rooted by the node A have usually a higher percentage of conserved char-
acters on each edge. One can conclude that the organisms of this subtree inherited
their carcinogenicity from their least common ancestor. The detailed analysis of the
edges of this subtree should be carried out but this goes beyond the scope of this
article.

3 Finding Relationships Between the Two Types of Cancer
and the Indel/Conservation Distributions in the HPV Genes

We carried out linear and polynomial regressions to establish relationships between
the explanatory variables (conservations, insertions and deletions in our case) and
response variables (cancer/no cancer outcomes for the SQUAM and ADENO can-
cers, respectively). To perform the regression, we considered the eight most impor-
tant HPV genes for the group of 83 HPV viruses (Table 2). The numbers of
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conserved, inserted and deleted regions as well as the percentages of characters
involved in these evolutionary events, reported in Table 1, formed the matrix of
explanatory variables X. Two binary variables, consisting of the SQUAM and
ADENO cancer outcomes, formed the matrix of response variables Y. If a HPV
organism can initiate the SQUAM cancer (21 of such HPV organisms were consid-
ered) the corresponding value of the first response variable was set to 1, and if it
can initiate the ADENO cancer (nine of such HPV organisms were considered) the
value of the second response variable was set to 1, otherwise they were set to 0.

Linear and polynomial regressions were carried out separately for the eight genes
in Table 2 and for the whole genomic sequences. Generally, both linear and poly-
nomial models were significant: most of the p-values for the linear and polynomial
regressions were smaller than 0.05 (Table 2). We also performed the test of the
difference between the polynomial and linear regressions (last column of Table 2)
according to the method discussed in [7]. This test allows one to estimate the possi-
bility of overfitting the data by polynomial regression. If both polynomial and linear
models are significant, the significance of the difference between them suggests that
the polynomial model is more appropriate in this case, otherwise it suggests the
overfitting by polynomial regression and the linear model is preferable.

The results in Table 2 indicate that for the genes E4 and L2 the presence and
absence of the SQUAM and ADENO cancers correlate the best with the considered
evolutionary events. These two genes should be further analysed by virologists inter-
ested by studying the carcinogenic human papilloma viruses. In this way, we carried
out linear (for the gene L2 because the difference between the polynomial and linear
regressions for this gene was not significant, see Table 2) and polynomial (for gene
the E4 because this difference was significant) redundancy analysis (RDA) to find
the detailed relationship between the carcinogenic HPVs and the insertion, dele-
tion and conservation (including actual conservations and mutations) events they
underwent. RDA [10] allows one to model relationships between the explanatory

Table 2 Percentages of variance accounted for by the linear and polynomial regression for the
8 most important HPV genes and for the whole genomes; p-values of the linear and polynomial
regressions as well as of their difference are reported. The genes, E4 and L2, for which the best
results were obtained, are highlighted. The numbers of taxa available for each gene are shown
between the parentheses in the first column

% of % of
variance for variance for Lin. regr. Pol. regr. Difference

Genes lin. regr. pol. regr. p-value p-value p-value

E1 (81) 24.89 41.02 0.01 0.01 0.03
E2 (81) 24.49 41.70 0.01 0.01 0.02
E4 (57) 32.12 58.47 0.01 0.01 0.01
E5 (20) 39.84 64.98 0.49 0.72 0.71
E6 (81) 31.80 43.42 0.01 0.01 0.08
E7(81) 30.89 38.36 0.01 0.01 0.17
L1(83) 24.74 33.38 0.01 0.01 0.30
L2 (83) 42.55 47.54 0.01 0.01 0.64
All genes 27.57 36.15 0.02 0.03 0.65
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Fig. 3 Linear (case a – for the gene L2) and polynomial (case b – for the gene E4) RDA biplots
for the 83-taxa HPV dataset. Triangles represent the three types of HPVs: viruses causing both
types of cancer: HPVs-16, 18, 31, 33, 35, 39, 45, 58 and 59; viruses causing only the SQUAM
cancer: HPVs-6, 11, 26, 52, 53, 55, 56, 66, 73, 81, 82 and 83; and, non carcinogenic HPVs. Note
that all HPVs causing the ADENO cancer also cause the SQUAM cancer. Dashed arrows represent
two binary response variables: SQUAM and ADENO cancers. Solid arrows represent the numbers
of conserved, inserted and deleted regions and the corresponding percentages of the conserved,
inserted and deleted nucleotides

variables (conservations, insertions and deletions), response variables (cancer/no
cancer outcomes for the SQUAM and ADENO cancers) and considered group of
species (83 HPV organisms). For instance, the polynomial RDA, introduced in [7],
allows for modeling non-linear relationships between the explanatory and response
variables. The correlation biplot [7] was used in this study to represent the rela-
tionships between the variables in X and Y. In such a biplot the angles between
the variables from sets X and Y reflect their correlations; projecting a HPV type
(denoted by a triangle in Fig. 3) at right angle on a response variable y approx-
imates the value of this HPV type along this variable; projecting a HPV type at
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right angle on an explanatory variable x approximates the value of this HPV type
along this variable. In total, six response variables corresponding to the columns
of Table 1 for both genes L2 (Fig. 3a) and E4 (Fig. 3b), and 2 combined variables
%Ins.x%Del and Ins.x%Del for the gene E4 only (Fig. 3b) were depicted. The two
represented combined variables were chosen among all available combined vari-
ables because they provided the strongest positive correlations with the SQUAM
cancer arrow (Fig. 3b); all other combined variables are not represented in poly-
nomial biplot because they don’t correlate strongly, either positively or negatively,
with the two response variables depicted by dashed arrows. While observing the
biplot ordination diagram for the gene L2 (Fig. 3a), the following main trends can
be noticed: both types of carcinogenic HPVs have a greater number of conserved
and deleted nucleotides compared to the non carcinogenic HPVs, whereas the non
carcinogenic HPVs usually have a higher number of insertions. Also, the presence of
the SQUAM cancer is strongly positively correlated with the percentage of deleted
nucleotides in the lineages of the gene L2, and both SQUAM and SQUAM cancer
types are strongly negatively correlated with the number of insertions. As to the gene
E4 (Fig. 3b), the presence of the SQUAM cancer is strongly positively correlated
with the percentage of inserted nucleotides as well as with the two depicted com-
bined variables consisting of the products of the percentages of inserted and deleted
nucleotides and of the number of insertions and percentage of deletions. Also, the
SQUAM cancer HPVs are strongly negatively correlated to the percentages of con-
served and deleted nucleotides. Finally, for the gene E4 both types of carcinogenic
HPVs have a higher number of insertions compared to the non carcinogenic ones.

4 Conclusion

In this article we studied the classification of the Human Papilloma Viruses (HPV)
presumed to be the main cause of the cervical cancer. First, we inferred the PHYML
phylogenetic tree [5] of the 83 available HPV organisms (Fig. 2) on the basis of
the whole genome phylogenies. We found that all HPV groups (see the 12 HPV
subtrees denoted by white nodes in Fig. 2) are monophyletic (i.e., compatible with
the current NCBI/ICTV classifications). Then, we inferred the most likely insertion
and deletion scenarios for each of the 15 considered HPV genes (Table 1) and found
that most of them have more than 90% of the characters conserved throughout the
evolution. Multiple linear and polynomial regressions were carried out in order to
establish relationships between the conservation, insertion and deletion events and
cancer/no cancer outcomes. We found that the presence and absence of both types
of cancer correlated the best with the considered evolutionary events in the genes
E4 and L2, and the only gene for which the regression p-values were not significant
was the gene E5. This result warranted additional investigations of the genes E4
and L2 consisting of the linear [10] and polynomial [7] RDA conducted for them.
RDA biplots drawn for these two genes, shown in Fig. 3, present the detailed rela-
tionships between the SQUAM and ADENO cancers, three types of HPV groups
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and six selected evolutionary events. Further investigations should be conducted by
virologists based on the findings on this study. It would be also interesting to study
a model examining the conservation and mutation events separately.
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Toward the Discovery of Itemsets
with Significant Variations in Gene Expression
Matrices

Mehdi Kaytoue, Sébastien Duplessis, and Amedeo Napoli

Abstract Gene expression matrices are numerical tables that describe the level of
expression of genes in different situations, characterizing their behaviour. Biologists
are interested in identifying groups of genes presenting similar quantitative varia-
tions of expression. This paper presents new syntactic constraints for itemset mining
in particular Boolean gene expression matrices. A two dimensional gene expression
profile representation is introduced and adapted to itemset mining allowing one to
control gene expression. Syntactic constraints are used to discover itemsets with
significant expression variations from a large collection of gene expression profiles.

1 Introduction and Motivations

Microarray biotechnology is able to quantitatively measure the expression of a gene
in a given biological environment or situation, which is relative to its activity. When
considering the expression of a gene in m situations (different cells, times, . . . ), a so-
called gene expression profile (GEP) can be written as a numerical m-dimensional
vector, describing the behaviour of the gene. A gene expression matrix (GEM) is a
collection of n gene expression profiles (see Table 2) that may be represented as an
n × m numerical table (see Table 1): each line is the profile of a gene.

A widely admitted hypothesis states that genes having a similar expression pro-
file may participate in a same biological function or process [14]. Then, classical
clustering methods are used to extract clusters of genes (k-means, hierarchical clus-
tering, see [5] for a survey in GEM analysis). A cluster represents a set of genes
that globally have a similar gene expression profile (or line in the table) w.r.t. a
similarity measure, e.g. the group {g1, g2} in Table 1 when considering Euclidean
distance. Such genes are said to be co-expressed. However these methods extract
global patterns and may not be well designed to take into account inherent noise
of microarray due to experimental manipulations. Moreover a biological function is
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Table 1 A gene expression matrix (GEM) composed of five gene expression profiles (GEP)

Gene/situation Sa Sb Sc

g1 21,050 21,950 1,503
g2 23,025 24,100 1,708
g3 62,57 5,057 6,500
g4 5,392 6,020 7,300
g5 23,070 22,021 25,548

Table 2 GEP standard vectorial representation. Each vector reflects the behaviour of a gene

Gene Gene expression profile (GEP)

g1 (21,050, 21950, 1503)
g2 (23,025, 24100, 1708)
g3 (6257, 5057, 6500)
g4 (5392, 6020, 7300)
g5 (23070, 22021, 25548)

not necessarily active in all situations of a given dataset. A gene may be involved in
several processes/functions, therefore clustering methods should allow overlapping
of clusters, which is not often the case.

Biclustering methods, see [8] for a survey in GED analysis, perform a simulta-
neous clustering of the rows and columns of a table, and thus highlight bi-clusters,
or local associations between both gene and situation sets, i.e. extracting blocks or
“subtables” of similar values. Intuitively, bi-clusters are composed of genes sharing
similar and local expression patterns across a subset of biological situations, e.g.
genes of {g1, g2, g5} in Table 1 share intuitively a similar sub-profile in situations Sa

and Sb only. Due to complexity in numerical data, heuristics are used to reduce the
result size (or simply enable its computation) and may miss bi-clusters of interest:
result is generally composed of one bicluster (the best) or K (a priori chosen) [8].
Therefore overlapping is rarely possible.

It is now part of a growing area to consider symbolic methods for knowledge
discovery in Boolean gene expression matrices such as itemset search, association
rule extraction, and formal concept analysis, see [10] for a smooth introduction to
these methods and [1, 3, 12] for applications to GED analysis. As these methods
work on a binary table, the expression matrix is firstly discretized, then local pat-
terns are extracted. Generally, the discretization procedure consists in choosing a
threshold t for each gene expression profile (see [1, 12] for examples of threshold
calculation). Values higher than t are said to be over-expressed and encoded in “1”,
“0” otherwise. In such derived Boolean expression matrices, whole set of patterns
(namely, itemset, assocation rules and formal concepts) is generally tractable but too
large to be analysed by human-experts. Some solutions exist to reduce it: the use
of a minimal pattern frequency as pruning constraint, (approximative) condensed
representations and a posteriori extracted pattern clustering [2].

Due to the discretization technique used, symbolic methods [10] extracting local
patterns in such derived data may highlight one type of variation of expression only,
w.r.t. to the threshold t , i.e. above or below t . In this paper, we propose an interval-
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based discretization (Sect. 2) of a GEM. It builds a 2-dimensional vector for each
GEP. This transformation allows to apply classical itemset search algorithms to the
complex data that are GEM (Sect. 3). We define in Sect. 4 some constraints to fully
characterize and control expression variations and retain the most variant expression
patterns. It dramatically prunes the result, in fact an itemset lattice. Starting from
a real-world dataset, Sect. 5 shows that high variations allow biologists to easily
discriminate groups of genes and to discover biological processes involving them.
Finally, a conclusion draws future researches.

2 Gene Expression Profile Representation

A gene expression profile (GEP) is considered as a vector of numerical values
such as (21,050, 21,950, 1,503) for gene g1 in Table 1 describing the expression
of the gene in given situations (Sa, Sb, Sc). Expression values are ranged from 0
(not expressed) to 65,535 (highly expressed), as being monitored with NimbleGen
Systems Oligonucleotide Arrays technology1. Discretization is based on an interval
set T determined either by the expert or statistical methods, e.g. quantile histogram
intervals. T is set of intervals that dichotomize the expression value domain into
disjunctive intervals, such as T = {[0, 10000), [10000, 20000), [20000, 65535)}.

Now a gene expression profile can be represented as a 2-dimensional vector
g = {(a1, n1), ..., (am, nm)} where ak is a biological situation and nk is the index
of an interval in T with k ∈ [1,m]. In the example, nk ∈ {0, 1, 2} according to
|T | = 3. This transformation is illustrated from Tables 2 to 3, i.e. from numer-
ical gene expression profiles (GEP) to 2D-GEP. For example, all the values of
gene expression profile g3 are included in the first interval (index 0) of T for
each situation Sa , Sb and Sc, therefore it can be represented by the 2D-vector
((Sa, 0), (Sb, 0), (Sc, 0)).

This representation allows one to mine gene expression data to extract patterns
of genes having similar expression values, i.e. in the same interval, in some or all
situations. Moreover, this also allows in Sect. 4 to characterize expression variations
that biologists wish to highlight. As we can consider that each 2D-GEP is composed
of items, i.e. elements of the Cartesian product S × N where S is a set of situations
and N the index set of T , next section formalizes itemset search for 2D-GEP.

Table 3 2D-GEP vectorial representation

Gene 2D-gene expression profil (2D-GEP)

g1 ((Sa, 2), (Sb, 2), (Sc, 0))
g2 ((Sa, 2), (Sb, 2), (Sc, 0))
g3 ((Sa, 0), (Sb, 0), (Sc, 0))
g4 ((Sa, 0), (Sb, 0), (Sc, 0))
g5 ((Sa, 2), (Sb, 2), (Sc, 2))

1 http://www.nimblegen.com/
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3 Itemset Search

A classical definition of an itemset is the following [10]. Given a set of object O and
a set of properties P , an item corresponds to a property of an object, and an itemset,
or a pattern, to a set of items: an object is said to own an item. The number of items
in an itemset determines its length. Its image corresponds to set of objects owning
all items of the itemset. We call support of an itemset the cardinality of its image.

The number of potential itemsets is 2|P|, i.e. the number of all possible subsets
of P . Using condensed representations such as closed itemsets [11] allows to reduce
this number. An itemset is closed if maximal in its equivalence class, i.e. its length
is maximal w.r.t. all other itemsets having the same image.

A 2D-GEP is composed of pairs that can be considered as items: a 2D-GEP
is an object owning pairs. For example, 2D-GEP g1 owns property (Sa, 2) and
not property (Sa, 1). It is now possible to apply classical itemset search algo-
rithms, e.g. Charm [4]. On the example, the set of object O = {g1, ..., g5} and
P = {Sa, Sb, Sc} × {0, 1, 2}, remembering that |T | = 3. Computation returns 5
closed itemsets, see Table 4, among which {(Sa, 2), (Sb, 2), (Sc, 0)}. Its image is
{g1, g2}, meaning that the genes g1 and g2 are co-expressed by sharing similar
values in the same interval for all situations (depending on T ).

Table 4 Closed itemsets extracted in Table 3
Closed itemsets Image

{(Sa, 2), (Sb, 2), (Sc, 2)} {g5}
{(Sa, 0), (Sb, 0), (Sc, 0)} {g3, g4}
{(Sa, 2), (Sb, 2), (Sc, 0)} {g1, g2}
{(Sa, 2), (Sb, 2)} {g1, g2, g5}
{(Sc, 0)} {g1, g2, g3, g4}

In Table 4, an illustration of how itemsets extraction is a kind of bi-clustering
allowing to take noise into account can be made. {(Sa, 2), (Sb, 2), (Sc, 0)} is a
global pattern, i.e. involving all the situations, and represents a cluster. {(Sa, 2),
(Sb, 2)} is a local pattern, i.e. involving a subset of the situations only, and repre-
sents a bi-cluster. Moreover, though the value derived into (Sc, 2) may be an artefact
for gene g5, i.e. should have been (Sc, 0), the group {g1, g2, g5} nevertheless exists.

4 Minimal Variation Constraints

A gene expression matrix can contain thousands of genes and dozens of situations.
Depending on the choice of the discretization intervals in T , the size of both property
and resulting itemset sets may be still very large: closure constraint on itemsets is
not enough. A classical solution [11] is to retain frequent-closed itemsets, i.e. having
a support greater than a given minimal support.
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Here, we suggest another possibility. The biologists focus on gene groups pre-
senting similar expression values in some or all situations and having the most
important variations of expression simultaneously. Interpretation of variations leads
after experimental validations to the discovery of gene functions and biological
processes. Large variations are important to discriminate genes responsible for a
particular cellular process [14]. As less than 10% of genes have a high variation of
expression from a situation to another [5], we can suppose that a large part of the
whole set of itemsets presents no or “small” variations of expression (latter defined).

In our context, an itemset B = {(a1, n1), ..., (am, nm)}, where ak is a biological
situation and nk is the index of an interval in T with k ∈ [1,m], is a pattern for a
group of genes (actually composing the image of B). B is composed of valuations
controlling expression in situations (pairs). Numerical syntactic constraints can be
designed to characterize variations of expression and retain from the very large
collection of itemsets only those having most important variations. The key idea
is the following: the itemset B = {(Sa, 1), (Sb, 1), (Sc, 1)} presents no variation of
expression: all n such as (s, n) ∈ B are equals, i.e. the expression values are always
in the same interval.

Filter to retain itemsets showing variations of expression. In the current and
two next paragraphs, we consider (pi , ki ) and (p j , k j ) as two distinct pairs of an
itemset B, with i = j . A variation is defined as a non null difference between
ki and k j . Then we can define a variation constraint: retaining variant itemsets
consists in keeping those having at least one variation, i.e. respecting the predi-
cate (1). Others, called constant itemsets, are removed. We leave to the reader to
check that {(Sa, 2), (Sb, 2), (Sc, 2)} is constant and that {(Sa, 3), (Sb, 2), (Sc, 2)} is
variant.

Filter to control variation amplitude. One may notice that {(Sa, 15), (Sb, 2),
(Sc, 2)} has unformally higher variations than {(Sa, 3), (Sb, 2),(Sc, 2)}, because
15− 2 > 3− 2. Thus to have more control on variations, we define an α-variation
constraint: an α-variation is a difference between ki and k j of at least α, i.e.
|ki − k j | ≥ α. Then an itemset B is α-variant if it respects the predicate (2), with
α ≥ 0, i.e. it has at least one α-variation, e.g. {(a, 2), (b, 6), (c, 6)} with α ≤ 4.

Filter to control occurrences of an α-variation. Finally, yet another may notice
that {(Sa, 15), (Sb, 2), (Sc, 12)} has more variations than {(Sa, 15), (Sb, 2), (Sc, 2)}.
Then the (α, β)-variation constraint is defined as follows: an itemset is (α, β) −
variant if it respects the predicate (3), with α ≥ 0 and β ≥ 1. Intuitively an
(α, β)−variant itemset presents at least a number β of α-variations, e.g. the itemset
{(a, 2), (b, 6), (c, 11)} is (4, 3)-variant, while {(a, 2), (b, 6), (c, 8)} is not.

isV ariant (B) ≡ ∃(ai , ki ) ∈ B and ∃(a j , k j ) ∈ B such as ki = k j (1)

isαV ariant (B, α) ≡ ∃(ai , ki ) ∈ B and ∃(a j , k j ) ∈ B such as |ki − k j | ≥ α (2)

isαβV ariant (B, α, β) ≡ |{((ai , ki ), (a j , k j )) wi th |ki − k j | ≥ α}| ≥ β (3)

α and β are two parameters allowing the biologist to focus on the most important
variations. The choice of these parameters strongly depends on the choice T .
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5 Experiments

In this section, we show the efficiency of the introduced constraints on real data.
Biologists at the UMR IAM (INRA) study the symbiosis between the fungus Lac-
caria bicolor and the tree Populus. Thanks to molecular exchanges between root
tissues, the productivity of a Populus forest may be increased by 30%. The recent
sequencing of Laccaria bicolor genome predicted more than 20,000 genes [9]. It
remains now to study their expression in many environments to understand their
functions in the fungal lifestyle. A gene expression matrix is available at the Gene
Expression Omnibus at National Centre for Biotechnology Information (NCBI)2. It
is composed of 22,294 genes in lines and 7 various biological situations in columns,
i.e. free-living cells (M81306 and MS238), young (FBe) and mature (FBl) fruiting
body cells and fungal cells in association with roots of trees (MPgh, Mpiv, and MD).

Before experimenting our approach, we present a standard k-means result in
Fig. 1 with k = 10. Most of the clusters prototypes do not present any variation.
Increasing the number k of clusters or using fuzzy k-means do not change the prob-
lem. In contrary, our method generates lots of prototypes w.r.t. the number of chosen
intervals but directly characterizes most informative patterns, i.e. variant. Indeed, an
itemset represents an intelligible description of genes composing its image.

Firstly, we work with all the 22, 294 genes and a set of situations S =
{M P, M D, Fbe, F Bl, Myc}. M P represents in-symbiosis cells (mean of M Pgh
and Mpiv), and Myc represents mycelium cells (mean of M81306 and M S238).
The expert biologist chooses a set of intervals T = {[0, 2000), [20000, 40000),
[40000, 65535)} for all situations. In certain data, T may differ for each sit-
uation. In our case, microarray manufacturer automatically normalized GED.
Search returns 893 itemsets among which 35 that have a minimal length
of 4 and that are (2, 3) − variant . Two of them are presented in Fig. 2
(a) B = {(M D, 0), (F Be, 2), (F Bl, 2), (Myc, 0)} and (b) B = {(M P, 2),
(M D, 2), (F Be, 2), (F Bl, 2), (Myc, 0)}. These itemsets are patterns of genes shar-

Fig. 1 A k-means algorithm result. Left: parallel coordinates. Right: cluster cardinality. Designed
with Knime (http://www.knime.org). Intuitively, more than 75% of the genes are captured in clus-
ters whose prototype characterizes no variations of expression

2 http://www.ncbi.nlm.nih.gov/geo/ as series GSE9784
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Fig. 2 Each picture is a graphical representation of an itemset. Y-axis contains the situations.
X-axis is the expression value axis. Each line represents the numerical vector of the GEP of each
gene composing the image of the corresponding itemset

ing the same behaviour. Most of the genes of the 35 itemsets remain today of
unknown function. However, some hypothesis can be made. Genes of group (a) may
be involved in processes of the fruit body structure: their expression values are high
only in Fbe and F Bl. Genes of group (b) may play a major role in symbiosis: their
expression is high in in-symbiosis and fruit cells and low in free-living mycelium
cells: symbiosis is favoured when the fruit is well established.

A second experiment follows the same principle with more situations (6) and
more intervals (15). We extract 71, 391 itemsets and retain those of minimal length
4 that are (4, 2) − variant : 9, 324 itemsets remain. Most of them have a support
less than 10. Then, we also add the minimal frequency constraint: support must be
greater than 10. Then 54 itemsets remain and are analysable. The image of two of
them is presented in Fig. 2 (c) and (d). Genes of (c) are strongly co-expressed but
their function is here again unknown. However, they have been identified as poten-
tial proteins of the same type in the yeast species Candida albicans by comparing
DNA sequences. Genes of (d) may be involved in growth of mycelium.

We have shown two experiments, the first with a few intervals for discretization,
i.e. |T | small, and the second with a high number. The choice of the number of
intervals and their size is difficult and directly influences the quality (not studied
in this paper) and the cardinality of the result (Fig. 3). If |T | is low, the number
of itemsets and their quality is generally low w.r.t. a higher |T |. If |T | is high,
the number of itemsets explodes, but the quality is better, and the filters allow to
reduce it (Fig. 4). Genes of Fig. 2 (c) and (d) would have been buried with less
similar genes with |T | = 3. Instead of manually choosing intervals, some possibili-
ties may be investigated. Firstly, intervals can be computed automatically according
to some criterion of optimization. Most of the time, this criterion refers to known
class membership of a part of objects [7]. However, most of the genes of interest
in Laccaria bicolor are unknown, and known genes have generally an expression
without variations of expression across the situations we study. Another possibility
is to calculate intervals that optimize the support of the resulting itemsets, e.g. [13]
with genetic algorithms. However, it is supposed that biological processes can not
be characterized by a large amount of genes. Finally, a similar method has been
designed without transforming data in [6]. However, it is there harder to consider
variations in sense of this paper and should be investigated.
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6 Conclusion

In this paper, we have presented a method for transforming complex data describing
gene expression profiles into standard nominal tables. This enables to apply clas-
sical itemset search algorithms to these complex data. Classically, when data are
discretized it goes with loss of information. We limit this loss by introducing a two
dimensional representation of objects that allows to control the original numerical
values, by retaining the most variant patterns and pruning the result.
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