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Preface 

Since the first edition of this handbook was published in 1994 the 
development of S-PLUS has continued apace, and a flexible and convenient 
“point-and-click” facility has now been added to supplement the very 
powerful command language. In addition, many new methods of analysis 
and new graphical procedures have been implemented. The changes made 
in this second edition reflect these changes in the software. Most chapters 
have been completely rewritten and many new examples are included. 
And, some of the more embarassing code from the first edition are now 
excluded. A mixture of the S-PLUS command language and the S-PLUS 
Graphical User Interface (GUI) is used throughout the book so that readers 
can become familiar with using both. An appendix gives a relatively 
concise account of the command language. 

It is hoped that this new edition will prove useful to applied statisti- 
cians, statistics students, and researchers in many disciplines who wish to 
learn about the many exciting possibilities for dealing with data presented 
by the latest versions of S-PLUS, S-PLUS 2000, and S-PLUS 6. All the data 
sets used in the text are available in the form of S-PLUS data frames from: 

www. iop. kcl. ac.uk/IoP/Departments/BioComp/SPLUS.stm 

Script files giving the command language used in each chapter are also 
available from the same address. (Comments given in the text versions 
are not included in these files.) 

Thanks are due to Ms. Harriet Meteyard  for her typing of the manuscript 
and general support during the writing of this book. 

B.S. Everitt 
June 2001 
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Distributors for S-PLUS 

In the United Kingdom, S-PLUS is distributed by 

Insightful 
Knightway House 
Park Street 
Bagshot, Surrey 
GUl9 5AQ 
United Kingdom 
Tel: +44 (0) 1276 450 111 
Fax: +44 (0) 1276 451 224 
sales@uk.insightful.com 

In the United States. the distributors are 

Insightful Corporation 
1700 Westlake Avenue North 
Suite 500 
Seattle, WA 98109-3044 
USA 
Tel: (206) 283-8802 
Fax: (206) 283-8691 
infoQinsightful.com 
Web address: www.insightful.com 
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Chapter 1 

An Introduction 
to s-PLUS 

1.1 Introduction 
S-PLUS is a language designed for data analysis and graphics developed 
at AT&T’s Bell Laboratories. It is described in detail in Becker et al. (l988), 
Chambers and Hastie (19931, Venables and Ripley (19971, and Krause and 
Olson (2000). In addition to providing a powerful language, the most 
recent versions of the software, S-PLUS 2000 and S-PLUS 6, also include 
an extensive graphical user interface (GUI) on Windows platforms (this 
is not available in UNIX). The GUI allows routine (and some not so 
routine) analyses to be carried out by simply completing various “dialog 
boxes,” and graphs to be produced and edited by a “point-and-click” 
approach. 

In this chapter we introduce both the GUI and the command line 
language, although details of the former will be left for the remaining 
chapters of the book, and of the latter, for Appendix A. 

1.2 Running S-PLUS 
On a Windows platform S-PLUS is opened by double-clicking into the file 
(or shortcut for) S-PLUS.exe. The result is an S-PLUS window containing 
a Commands window and/or an Object Explorer window. During an 
S-PLUS session, Graphics windows may be opened and often output will 
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Figure 1.1 
and script file are shown. 

Windows seen during a typical S-PLUS session: Command window 

tw scnt to a Report window, this being opened by changing the default 
for text output routing in h e  Options list. The windows secn in a typical 

title bar, is the menu bar. On the line below that is the tool bar. 
S-PLUS provides a language for the manipulation of 'objects' such 2s 

vectors and matrices; cornrnands can be typed into the Commands window 
next to the > prompt, and any resulting output will appear below, also 
in the Commands window, unless the Report window option has been 
selected. If a single command extends over one line of input, the > prompt 
changes to the plus sign, +. The contents of S-PLUS objects may be viewed 
by simply typing the name of the object. 

The Object Explorer window displays objects of the current session 
by object categoiy. This window can be opened by clicking into 

Figure 1 .I 
and script file are shown. 

Windows seen during a typical S-PLUS session: Command window 

be sent to a Report window, this being opened by changing the default 
for text output routing in the Options list. The windows seen in a typical 
S-PLUS session are shown in At the top, below the S-PLUS 
title bar, is the menu bar. On the line below that is the tool bar. 

S-PLUS provides a language for the manipulation of ‘objects’ such as 
vectors and matrices; commands can be typed into the Commands window 
next to the > prompt, and any resulting output will appear below, also 
in the Commands window, unless the Report window option has been 
selected. If a single command extends over one line of input, the > prompt 
changes to the plus sign, +. The contents of S-PLUS objects may be viewed 
by simply typing the name of the object. 

The Object Explorer window displays objects of the current session 
by object category. This window can be opened by clicking into 

Figure 1.1.
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At the end of a session, the user can select which objects created within 
the session should be saved within the ‘current directory’ or database. By 
default, this is the \-data subdirectory of the directory where the S-PLUS 
files are located, for example, in C:\Program Files\spb\-data. The com- 
mand search lists the current directory under 111. 

Since it is usually preferable to keep the data for different projects in 
different directories, it is a good idea to start an S-PLUS session by setting 
the directory in which any objects are to be saved and which may contain 
relevant objects from a previous session. This is done by ‘attaching’ the 
directory at the first position of the search path using the command: 

>attach(“c:/project/-data”,pos=l ) 

Note that forward slashes are used in the directory path rather than the 
usual backward slashes. Alternatively, two backward slashes may also be 
used. 

1.3 The S-PLUS GUI: An Introduction 
Use of the GUI involves menus, dialog boxes, and point-and-click graphics. 
For example, many statistical techniques can be applied in S-PLUS by 
using the Statistics Menu and then filling in the relevant dialog box. 
These boxes have many features in common as we shall see throughout 
the text. As an example we can look at the Linear Regression dialog. 
This is made available as follows; 

Click on Statistics. 
Select Regression. 
Select Linear. 

The resulting dialog is shown in 
To use the box to carry out a regression analysis would involve filling 

in the various sections of the box and requesting various options under 
the Results, Plot, or Predict tabs, as we shall illustrate in detail in 

The GUI approach to producing S-PLUS graphics is extensive and 
flexible, and can involve either the use of dialog boxes from the Graphics 
Menu, or the Graphics palettes. For example, to access the Scatter Plot 
dialog, click on Graph in the tools bar, select 2D and Scatter Plot is 
highlighted by default. Click OK and the dialog box shown in 
appears. 

Chapter 4. 
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Figure 1.2.

Figure 1.3
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Figure 1.2 Linear Regression dialog. 

Again, to use the box to produce a scatterplot would involve filling 

The 2D and 3D palettes are accessed by clicking on 
out the box appropriately; examples will be given in later chapters. 

or 

respectively, and are shown in These can be used after selecting 
the required data set, to give a wide variety of graphics as we shall 
illustrate later. 

© 2002 by Chapman & Hall/CRC

Figure 1.4.
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Figure 1.3 Line/Scatter Plot dialog. 

Figure 1.4 2D and 3D graphical palettes. 
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1.4 The S-PLUS Command language: 
An Introduction 

Although many users of S-PLUS will find its relatively recent GUI both 
convenient and sufficient for the analyses they require, it is the command 
language that remains the main reason that the software is so powerful 
and flexible. Familiarity with this aspect of S-PLUS enables customised 
analyses to be carried out relatively simply as we shall illustrate in later 
chapters. The differences between the GUI and the command language 
approaches and the advantages of the latter are nicely summarized in the 
following remarks made by a statistician who has been involved with 
computers for over 40 years, John Nelder: 

I am very much aware that for the modern student the menu mode is the one preferred, 
and indeed the only one known. I am, however, not convinced that the menu mode 
is optimum for all users or for all usages. The freedom of being able to say what you 
want, instead of responding to given lists, is to me worth having. Imagine how restric- 
tive conversation would be, if instead of making your own points for yourself, you 
were restricted to pointing at sets of alternatives defined by the person you were talking 
to. The frustrations would soon become apparent. 

In this section we shall simply introduce a few of the most important 
features of the S-PLUS command language, leaving a more detailed account 
to be given in Appendix A. 

1 .4.1 Elementary Commands 

Elementary commands consist of either expressions or assignments. For 
example, typing the expression 

>42+8 

in the commands window and pressing return will produce the following 
output 

Instead of evaluating just an expression, we can assign the value to a 
scalar, for example, 

>x< -42 + 8 
> X  

[I1 50 

© 2002 by Chapman & Hall/CRC 14



1.4.2 Vectors and Matrices 

Vectors may be created in several ways, the most common is via the 
concatenate function, C, which combines all values given as arguments 
to the function as a vector 

>X<-C( 1,2,3,4) 
>X 
[l] 1 2 3 4  

(Note that S-PLUS is case sensitive, x and X, for example, are regarded 
as different objects.) 

Arithmetic operations between two vectors return a vector whose 
elements are the results of applying the operation to the corresponding 
elements of the original vectors. We can also apply mathematical functions 
to vectors; the functions are simply applied to each element of the vector 

>X<-C( 1,2,3) 
>y<-~(4,9,16)  
>x*y 

>sq WY) 
[l] 2 3 4 

[l] 4 18 48 

Matrix objects are frequently needed in S-PLUS and can be created by 
use of the matrix function. For details of this function see Appendix A or 
use help(matrix) in S-PLUS. (Similar help files are available for all S-PLUS 
functions.) 

>X<-C(l,2,3) 
> y< - c (4 , 5,6) 
>xyc - m at r i x ( c ( x, y) , n row = 2) 

>XY 

1.4.3 Subsetting Matrices and Vectors 

S-PLUS has two logical values, T (true) and F (false), and a number of 
logical operations that are extremely useful in choosing particular elements 

© 2002 by Chapman & Hall/CRC 15
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from vectors and matrices. (The logical operations are listed in Appendix A.) 
We can use a logical operator to assign logical values: 

>xc -3==4 
>X 

[I1 F 

> x< - 3 c 4 
>X 

[I1 T 

>X<-C( 1,2,3,4,5) 
>x<4 
[l] T T T F F 

A logical vector can be used to extract a subset of elements from another 
vector as follows: 

>X[ xc4] 
[l] 1 2 3 

Here the elements of the vector less than 4 are selected as the values 
corresponding to T in the vector X. 

We can also select elements in x depending on the values in another 
vector y 

>X<-C( 1,2,3,4,5,6,7,8,9,10) 
> ~ ~ - ~ ( 0 , 0 , 6 , 4 , 3 , 1 , 0 , 0 , 1  ,O) 
>X[ y= = 01 

[l] 1 2 7 8 10 

1.4.4 Other S-PLUS Objects 
A number of other important S-PLUS objects are mentioned briefly here 
and in detail in Appendix A. First list objects that allow other S-PLUS 
objects to be linked together, for example, 

>X<-C(l,2,3) 
>yc- m at rix( c( 1 ,2,3,4), n ro w=2) 
>xyl i s tc- I i s t (x, y) 
>xylist 

16



“1 I1 
[ l ]  1 2 3 

>xyl is t $x 
[ l ]  1 2 3 

Note the two alternatives for referring to elements in a list; either the 
‘double bracket’ nomenclature or the $name nomenclature can be used. 

Secondly, data frames that allow numerical and character vectors to 
be bound together are the most useful way of storing sets of data. Creating 
a data frame is described in detail in Appendix A, but as a simple example: 

>heightc-c(50,60,70) 
>weightc-c(100,120,140) 
>ag ec -c( 2 0,40,60) 
> n am e s c - c (“Bob ’ I ,  “Ted ” , “A I ice ” ) 
>data<-data.frame(names,age, height,weight) 
>data 

names age height weight 

1 Bob 20 50 100 
2 Ted 40 6 0 .  120 
3 Alice 60 70 140 

A data frame can be used in S-PLUS by first ‘attaching’ it, using 

>attach (d ata) 

In this way, variables in the data frame can now be conveniently referred 
to by name. 

>age 
[ l ]  20 40 60 

The S-PLUS language also provides the facility for creating functions 
for specific analyses of interest. Details are given in Appendix A and 
examples will be given in subsequent chapters. 

© 2002 by Chapman & Hall/CRC
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Although commands can be typed into the commands window, it is 
far more convenient to use a script file (*.ssc), which is an ASCII text 
file that may be opened within S-PLUS to build up and keep a sequence 
of commands being used to analyse a particular data set, or indeed several 
data sets. In this way an entire analysis can be repeated at the press of 
a button if necessary, for example, if a data entry error is detected. The 
whole script file may be executed by selecting Script and Run from the 
menu bar or by pressing F10. Alternatively, one or more commands may 
be selected and run by highlighting the relevant text within the Script file 
and pressing the triangle insert button, 

Script files can be commented by using the hash symbol, #, at the beginning 
of a line of text; S-PLUS ignores such lines. (In all but this chapter and 
Appendix A, we shall assume that commands are being run from a script 
file and, therefore, will dispense with the > before each command seen when 
using the commands window.) To open a script file, click on File in the 
menu bar, select New, and then highlight Script File in the list that appears. 

1.5 An Example of an S-PLUS Session 
As with any software, the easiest way to learn about S-PLUS is to use it, 
and this section attempts to give readers a preview of how S-PLUS is used 
in practice, which they can follow before reaching the more demanding 
material in subsequent chapters. Here we shall use both the GUI and the 
command language approaches to carry out some relatively straightforward 
analyses of the data shown in which were originally given in 
Stanley and Miller (1979) and are also reproduced in Hand et al. (1994). (A 
more-detailed analysis of these data will be made in Chapter 4.) 

are already available as an 
S-PLUS data frame object, jets. Details of data frames and how they are 
created from the raw data are given in Appendix A. By typing jets in the 
command window and hitting return its contents will be displayed - see 

Initially it is sensible to attach the data frame using 

We shall assume that the data in 

>attach (jets) 

To begin learning about the data we might want to look at some 
suitable summary statistics for each variable; for this we can use the S-PLUS 
summary function. 

>summary (jets) 

Table 1.1,

© 2002 by Chapman & Hall/CRC

Table 1.1

Table 1.2.
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Table 1.1 Data on Jet Fighters 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

TY Pe 
FH-1 

FJ- I  
F-86A 
F9F-2 
F-94A 
F3D-1 
F-89A 

XFIOF-1 
F9F-6 

F- I  OOA 
F4D-1 
F1 F- I  

F-I 01 A 
F3H-2 

F-I 02A 
F-8A 

F-104B 
F-I05 B 

Y F-I 07A 
F- I  06A 

F-4B 
F-l11A 

FFD SPR RCF 
82 1.468 3.30 
89 1.605 3.64 

101 2.168 4.87 
107 2.054 4.72 
115 2.467 4.11 
122 1.294 3.75 
127 2.183 3.97 
137 2.426 4.65 
147 2.607 3.84 
166 4.567 4.92 
174 4.588 3.82 
175 3.618 4.32 
177 5.855 4.53 
184 2.898 4.48 
187 3.880 5.39 
189 0.455 4.99 
194 8.088 4.50 
197 6.502 5.20 
201 6.081 5.65 
204 7.105 5.40 
255 8.548 4.20 
328 6.321 6.45 

PLF 
0.1 66 
0.154 
0.1 77 
0.275 
0.298 
0.150 
0.000 
0.1 17 
0.155 
0.1 38 
0.249 
0.143 
0.1 72 
0.1 78 
0.1 01 
0.008 
0.251 
0.366 
0.106 
0.089 
0.222 
0.1 87 

SLF 
0.1 0 
0.10 
2.90 
1.10 
1 .oo 
0.90 
2.40 
1.80 
2.30 
3.20 
3.50 
2.80 
2.50 
3.00 
3.00 
2.64 
2.70 
2.90 
2.90 
3.20 
2.90 
2.00 

CAR 
0 
0 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
1 
0 
1 
0 
1 
1 
1 
1 
0 
1 

FFD first flight date, in month after January 1940 
SPR specific power, proportional to power per unit weight 
RCF flight range factor 
PLF payload as a fraction of  gross weight of  aircraft 
SLF sustained load factor 
CAR a binary variable that takes the value 1 if the aircraft 

can land on a carrier, and 0 otherwise. 

The output resulting from these commands is shown in (Like 
many S-PLUS functions, summary is generic, meaning that it can be used 
to process many different classes of data and give results appropriate to 
each particular class. Further examples will be given in subsequent chapters.) 

Summary statistics for the data in jets can also be found by using the 
GUI as follows: 

Click Statistics. 
Select Data Summaries. 
Select Summary Statistics. 

© 2002 by Chapman & Hall/CRC
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Table 1.2 The Jets Data Frame 

z jets 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

TY Pe 
FH-1 

FJ-1 
F-86A 
F9F-2 
F-94A 
F3D-1 
F-89A 

XFIOF-1 
F9F-6 

F-1 OOA 
F4D-1 
F1 F-1 

F-I01 A 
F3 H -2 

F-l02A 
F-8A 

F-l04B 
F-l05B 

Y F-lO7A 
F-l06A 

F-4B 
F-l11A 

FFD 
82 
89 

101 
107 
115 
122 
127 
137 
147 
166 
1 74 
175 
177 
184 
187 
189 
194 
197 
201 
204 
255 
328 

SPR 
1.468 
1.605 
2.1 68 
2.054 
2.467 
1.294 
2.1 83 
2.426 
2.607 
4.567 
4.588 
3.61 8 
5.855 
2.898 
3.880 
0.455 
8.088 
6.502 
6.081 
7.105 
8.548 
6.321 

RGF PLF SLF 
3.30 0.166 0.10 
3.64 0.154 0.10 
4.87 0.177 2.90 
4.72 0.275 1.10 
4.11 0.298 1.00 
3.75 0.150 0.90 
3.97 0.000 2.40 
4.65 0.117 1.80 
3.84 0.155 2.30 
4.92 0.138 3.20 
3.82 0.249 3.50 
4.32 0.143 2.80 
4.53 0.172 2.50 
4.48 0.178 3.00 
5.39 0.101 3.00 
4.99 0.008 2.64 
4.50 0.251 2.70 
5.20 0.366 2.90 
5.65 0.106 2.90 
5.40 0.089 3.20 
4.20 0.222 2.90 
6.45 0.187 2.00 

CAR 
Cannot land 
Cannot land 

Can land 
Cannot land 

Can land 
Cannot land 

Can land 
Cannot land 
Cannot land 

Can land 
Cannot land 
Cannot land 

Can land 
Cannot land 

Can land 
Cannot land 

Can land 
Can land 
Can land 
Can land 

Cannot land 
Can land 

The dialog box shown in appears. In the Data Set window 
choose jets, highlight all but Type in the Variables window and click 
OK; the results shown in appear in a Report file which might 
be printed or copied and pasted into another application. 

Perhaps separate summary statistics are required for the class of fighters 
that can land on a carrier and those that cannot. If so, they can be obtained 
by highlighting all but CAR in the Variables section of the Summary 
Statistics dialog and then highlighting CAR and Type in the Group Vari- 
ables section. This leads to the results shown in (Other summary 
statistics, for example, measures of skewness and kurtosis, can be requested 
simply by clicking on the Statistics tab of the Summary Statistics dialog.) 

A t-test for the difference in the population mean values of, say, the 
variable FFD for planes that can land and cannot land on a carrier can 
be calculated using the Two-sample t-test dialog which is accessed as 
follows: 

© 2002 by Chapman & Hall/CRC

Figure 1.5

Table 1.4

Table 1.5.
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Table 1.3 Summary Statistics for the Jet Fighter Data 

Type FFD SPR RCF 
YF-107A: 1 Min.: 82.0 Mi n.:0.455 Min.:3.300 
XFIOF-1: 1 1s t  Qu.:123.2 1st  Qu.:2.172 1st  Qu.:4.005 

FJ-I: 1 M e d  ian:l74.5 M e d  ian:3.258 M e d  ian:4.515 
FH-1: 1 Mean:166.3 Mean:3.944 Mean:4.577 
F9F-6: 1 3rd Qu.:192.8 3rd Qu.:6.025 3rd Qu.:4.972 
F9F-2: 1 Max.:328.0 Max.:8.548 Max.:6.450 

(Other):16 

PLF SLF CAR 
Mi n.:0.0000 Min.:0.100 Cannot land: l l  

1 s t  Qu.:0.1223 1st Qu.A.850 Can land: l l  
Median:0.1605 Median:2.670 

Mean:0.1683 Mean:2.265 
3rd Qu.:0.2132 3rd Qu.:2.900 

Max.:0.3660 Max.:3.500 

rn Click on Statistics. 
rn Select Compare Samples. 
rn Select 'Itvo Samples, t test. 

Again select the jets data set, highlight FFD as Variable 1 and CAR as 
Variable 2 ,  then tick the button that shows Variable 2 as a Grouping 
variable. The results shown in appear in a Report file. (With 
such a small sample it may be more appropriate to use the Wilcoxon 
rank sum test rather than the t-test; we leave this as an exercise for the 
reader since the steps are essentially identical to those described above.) 
With the command language, the same results can be found using 

> t .test ( F F D [ C A R = = "C a n La n d "1, F F D [ C A R = = " C a n n o t I and "1 

Graphics are an essential component in the analysis of any data set, 
and a vast range of graphics are available when using S-PLUS, as we shall 
see in subsequent chapters. Here, however, we consider only the con- 
struction of a simple scatterplot. Using the GUI, we proceed as follows: 

W Click on Graph. 
W Select 2D Plot. 

Table 1.6
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Figure 1.5 Summary Statistics dialog. 

The Insert Graph menu appears. Since Scatter Plot is highlighted by 
default, simply click OK to arrive at the Line/Scatter Plot dialog. Select 
the jets data set and, say, SPR as the x column (the ‘x variable’) and 
FFD as the y column (the ‘y variable’). Click OK to see the scatterplot of 
these two variables shown here in A more interesting scatterplot 
would be one with the points labelled by type of aircraft. This can again 
be constructed from the Line/Scatter Plot dialog. 

but now also select 
Type in the z Columns box, and then click the Symbol tab of the dialog. 
Tick Use Text As Symbol and in the Text to Use box select z column. 
The height of the plotting symbol might also be increased to, say, 0.15. 
Clicking OK now produces the scatterplot shown in 

alongside the correspond- 
ing scatterplot in which the points are labelled by whether the aircraft 
can or cannot land on a carrier. This diagram is obtained as follows: 

We first repeat the steps used to obtain 

Finally, it might be useful to have 
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Table 1.4 Summary Statistics for Jet Fighter Data 

* * *  Summary Statistics for data in: jets ***  

$$$”Factor Summaries”: 
CAR 

Cannot 1and:ll 
Can land:ll 

$$$”Numeric Summariesn: 
FFD SPR 

Min: 82.00000 0.455000 
1st Qu.: 123.25000 2.171750 

Mean: 166.27273 3.944455 
Median: 174.50000 3.258000 
3rd Qu.: 192.75000 6.024500 

Max: 328.00000 8.548000 
Total N: 22.00000 22.000000 

NA’s: 0.00000 0.000000 
Std Dev.: 56.94122 2.367226 

RGF 
3.3000000 
4.0050000 
4.5772727 
4.5150000 
4.9725000 
6.4500000 

22.0000000 
0.0000000 
0.7529888 

PLF 
0.00000000 
0.12225000 
0.1 6827273 
0.16050000 
0.21325000 
0.36600000 

22.00000000 
0.00000000 
0.08665541 

S LF 
0.100000 
1.850000 
2.265455 
2.670000 
2.900000 
3.500000 

22.000000 
0.000000 
1.003312 

1 With 
bar and select Graph. 

W Click OK on the Insert Graph menu that appears. 
W Select the jets data set and SPR as x and FFD as y. 
W Here, however, select CAR as z. 
W Click the Symbol tab and repeat the appropriate steps described 

above. 
W Click on OK. 

constructed and visible, click on Insert in the tool 

The resulting diagram is shown in (It may have been sensible 
here to have kept the height of the plotting symbol at its default value 
for the second diagram; we leave this as an exercise for the reader.) 

is obtained from With the command language the scatterplot in 

>plot (S P R , FFD) 

and the plot in from 

> p I o t (S P R , F F D ,type = “n”) 
> text(SPR,FFD,labels=as.character(Type)) 

Many other examples of the use of the plot function will be presented in 
later chapters. 

Figure 1.7

Figure 1.8.

Figure 1.7

Figure 1.8
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Table 1.5 Summary Statistics for Jet Fighter Data by Whether or Not 
Plane Can land on Carrier 

* * *  Summary Statistics for data in: jets * * *  

CAR Cannot land 
FFD SPR RGF PLF SLF 

Min: 82.00000 0.455000 3.3000000 0.00800000 0.100000 
1s t  Qu.: 114.50000 1.536500 3.7850000 0.14650000 1 .OOOOOO 

Mean: 151 .OOOOO 2.8691 82 4.1 554545 0.1 651 81 82 1.921 81 8 
Median: 147.00000 2.426000 4.2000000 0.15500000 2.300000 
3rd Qu.: 179.50000 3.258000 4.5650000 0.20000000 2.850000 

Max: 255.00000 8.548000 4.9900000 0.27500000 3.500000 
Total N: 11 .OOOOO 11 .OOOOOO 11 .OOOOOOO 11 .OOOOOOOO 11 .OOOOOO 

NA's: 0.00000 0.000000 0.0000000 0.00000000 0.000000 
Std Dev.: 51.03724 2.203758 0.5261248 0.07103354 1.200515 

CAR Can land 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

FFD SPR RGF PLF SLF 
Min: 101 .OOOOO 2.168000 3.9700000 0.0000000 1.000000 

1st  Qu.: 146.50000 3.173500 4.5150000 0.1035000 2.450000 
Mean: 181.54545 5.019727 4.9990909 0.1713636 2.609091 

Median: 187.00000 5.855000 4.9200000 0.1 720000 2.900000 
3rd Qu.: 199.00000 6.411500 5.3950000 0.2190000 2.950000 

Max: 328.00000 8.088000 6.4500000 0.3660000 3.200000 
Total N: 11 .OOOOO 11 .OOOOOO 11 .OOOOOOO 11 .OOOOOOO 11 .OOOOOO 

NA's: 0.00000 0.000000 0.0000000 0.0000000 0.000000 
Std Dev.: 60.75255 2.089900 0.7227926 0.1 034527 0.642580 

Table 1.6 Results of t-Test for Difference in FFD for Planes that Can 
and Cannot land on a Carrier 

Standard Two-Sample t-Test 
data: x: FFD with CAR = Cannot land, and y: FFD with CAR = Can land 
t = -1.2768, df = 20, p-value = 0.2163 
alternative hypothesis: true difference in means is not equal to  0 
95 percent confidence interval: 

sample estimates: 
mean of x 

-80.44900 19.35809 

mean of y 
151 19.35809 
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Figure 1.6 Scatterplot of SPR and FFD variables in jets data frame. 

3 5 
SPR 

7 9 

Figure 1.7 Scatterplot of SPR and FFD variables in jets data frame with points 
labelled by type of aircraft. 
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Figure 1.8 Side-by-side scatterplots for the SPR and FFD variables in the jets 
data frame. 

Exercises 
1.1. 

1.2. 

1.3. 

1.4. 

1.5. 

Investigate the use of the apply function to find the means of the 
numerical values in the jets data frame. 
Use the rep function to help produce a new two-column data frame 
for the jet fighter data in which the numerical variable values for 
all planes are arranged in a single vector with the type of plane 
rearranged accordingly. 
Use the boxplot function to construct box plots of the values of 
each numerical variable in the jets dataframe. 
Explore the use of the hist and density functions for plotting 
histograms and calculating probability density estimates for some 
of the variables in the jets data frame. 
Use the help function to find out about the pairs function and then 
apply this function to the variables in the jets data frame in ways 
that you think might be useful. 
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Chapter 2 

Describing Data and 
Assessing Distributions: 
Husbands and Wives 

2.1 Introduction 

are 

rn 
W 

rn 

The data to be used in this chapter consist of five variables recorded on 
a random sample of 100 married men and their wives. The five variables 

husbage: husband’s age in years 
husbht: husband’s height in mm 
wifeage: wife’s age in years 
wifeht: wife’s height in mm 
husbagem: husband’s age at the time of the marriage 

The data are given in The label NA is used in S-PLUS to denote 
a missing value, here generally the result of the wife declining to give 
her age! 

We shall use these data to illustrate some the features of S-PLUS for 
describing data and for assessing distributions. 

Table 2.1.
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Table 2.1 Data on Husbands and Wives 

husbage 
40 
58 
32 
42 
31 
40 
35 
45 
35 
47 
38 
45 
50 
27 
28 
37 
56 
27 
47 
31 
35 
27 
45 
59 
43 
48 
54 
43 
54 
61 
51 
54 
37 
55 
57 
34 
45 
55 
55 
44 

husbht 
1659 
1616 
1695 
1753 
1685 
1713 
1736 
1715 
1785 
1758 
1725 
1764 
1674 
1700 
1721 
1829 
1710 
1 745 
1809 
1585 
1705 
1721 
1739 
1699 
1825 
1704 
1679 
1755 
1713 
1723 
1585 
1724 
1620 
1764 
1738 
1700 
1804 
1664 
1788 
1715 

wifeage 
30 
52 
27 
NA 
23 
39 
32 
NA 
33 
43 
40 
NA 
45 
25 
25 
35 
55 
23 
43 
23 
35 
NA 
39 
52 
52 
NA 
53 
42 
50 
64 
NA 
53 
39 
45 
55 
32 
41 
43 
51 
41 

wifeht 
1620 
1420 
1660 
1635 
1610 
1610 
1700 
1522 
1680 
1630 
1600 
1689 
1640 
1580 
1650 
1670 
1600 
1610 
1620 
1570 
1580 
1560 
1610 
1440 
1570 
1635 
1560 
1590 
1600 
1490 
1504 
1640 
1650 
1620 
1560 
1640 
1670 
1760 
1600 
1570 

h us bagem 
38 
30 
23 
30 
26 
23 
31 
41 
24 
24 
31 
24 
25 
21 
23 
22 
44 
25 
25 
28 
25 
26 
25 
27 
25 
27 
NA 
20 
23 
26 
50 
20 
21 
29 
24 
22 
27 
31 
26 
24 
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Table 2.1 (Continued) Data on Husbands and Wives 

h u s bage 
42 
34 
45 
48 
44 
59 
64 
34 
37 
49 
63 
48 
64 
33 
52 
27 
33 
46 
27 
50 
42 
54 
49 
62 
34 
53 
32 
59 
55 
62 
42 
50 
51 
58 
28 
45 
57 
27 
54 
25 

husbht 
1731 
1760 
1559 
1 705 
1723 
1700 
1660 
1681 
1803 
1884 
1705 
1780 
1801 
1795 
1669 
1708 
1691 
1825 
1949 
1685 
1806 
1905 
1739 
1736 
1845 
1736 
1741 
1720 
1720 
1629 
1624 
1653 
1620 
1736 
1691 
1753 
1 724 
1725 
1630 
1815 

wifeage 
37 
34 
35 
45 
44 
47 
57 
33 
38 
46 
60 
47 
55 
45 
47 
24 
32 
47 
NA 
NA 
NA 
46 
42 
63 
32 
NA 
NA 
56 
55 
58 
38 
44 
44 
50 
23 
43 
59 
21 
NA 
26 

wifeht 
1580 
1700 
1580 
1500 
1600 
1570 
1620 
1410 
1560 
1710 
1580 
1690 
1610 
1660 
1610 
1590 
1530 
1690 
1693 
1580 
1636 
1670 
1600 
1570 
1700 
1555 
1614 
1530 
1590 
1610 
1670 
1690 
1650 
1540 
1610 
1630 
1520 
1550 
1570 
1650 

h us bagem 
23 
23 
34 
28 
41 
39 
32 
22 
23 
25 
27 
22 
37 
17 
23 
26 
21 
23 
25 
21 
22 
32 
28 
22 
24 
30 
22 
24 
21 
23 
22 
35 
30 
32 
23 
21 
24 
24 
34 
20 
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Table 2.1 (Continued) Data on Husbands and Wives 

husbage 
57 
61 
25 
32 
37 
45 
44 
52 
60 
36 
35 
50 
57 
38 
30 
50 
20 
51 
40 
59 

husbht 
1575 
1749 
1705 
1875 
1784 
1584 
1790 
1798 
1725 
1685 
1664 
1725 
1694 
1691 
1880 
1723 
1786 
1675 
1823 
1720 

wifeage 
57 
63 
23 
NA 
NA 
NA 
40 
53 
60 
32 
NA 
49 
55 
38 
31 
47 
18 
45 
39 
56 

wifeht 
1640 
1520 
1620 
1 744 
1647 
1615 
1620 
1570 
1590 
1620 
1539 
1670 
1620 
1530 
1630 
1650 
1590 
1550 
1630 
1530 

h us bagem 
20 
21 
24 
22 
22 
29 
24 
25 
21 
25 
22 
23 
24 
20 
22 
25 
19 
25 
23 
24 

2.2 Some Basic Summaries 
The analysis of most data sets begins with the calculation of suitable 
numerical summary statistics such as variable means and standard devia- 
tions, and relatively simple graphics such as histograms and boxplots 
describing variable distributions. In the case of multivariate data such as 
those in correlations between variables may also be computed 
and scattelplots of pairs of variables constructed. 

It may also be necessary to assess whether the individual variables are 
normally distributed prior to any analysis that makes this assumption. In 
addition it may be required to check whether the complete set of variables 
jointly have a multivariate normal distribution. In both cases one approach 
is to use probabilityplots, as we shall see later in the chapter. 
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2.3 Analysis Using S-PLUS 
We assume that the data in are available as the S-PLUS data 
frame huswif, with the variables labelled as shown in the previous section. 
To obtain the basic summary statistics of the data we can again use the 
Summary Statistics dialog as illustrated in Chapter 1; here, however, we 
will also request measures of skewness and kurtosis. The results are shown 
in We see that 16 of the 17 missing values in the data occur 
for the age of wife variable. Husband's age at marriage has a relatively 
high degree of skewness. 

Table 2.2 Summary Statistics for Husbands and Wives Data 

*** Summary Statistics for data in: huswif *** 

Min: 
1st  Qu.: 

Mean: 
Median: 
3rd Qu.: 

Max: 
Total N: 

NA's: 
Std Dev.: 

Skewness: 
Kurtosis: 

Min: 
1 s t  Qu.: 

Mean: 
Median: 
3rd Qu.: 

Max: 
Total N: 

NA's: 
Std Dev.: 

Skewness: 
Kurtosis: 

husbage 
20.0000000 
35.0000000 
44.6400000 
45.0000000 
54.0000000 
64.0000000 

100.0000000 
0.0000000 

11 .I 169358 
0.1539845 

-1 -01 05144 

h u sbagem 
17.000000 
22.000000 
25.868687 
24.000000 
27.500000 
50.000000 

100.000000 
1 .oooooo 
5.674228 
1.803211 
3.862735 

husbht 
1559.0000000 
1691 .OOOOOOO 
1727.5500000 
1723.0000000 
1764.0000000 
1949.0000000 
100.0000000 

0.0000000 
71.8870291 
0.2938824 
0.6896657 

wifeage 
18.0000000 
33.7500000 
42.3690476 
43.0000000 
52.0000000 
64.0000000 

100.0000000 
16.0000000 
11.4258002 
0.1 732601 

-0.7573466 

wifeht 
1410.0000000 
1570.0000000 
1605.0800000 
161 0.0000000 
1641.7500000 
1760.0000000 
100.0000000 

0.0000000 
62.8889803 
0.4584884 
0.94661 65 
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Figure 2.1 Histogram of husband’s age. 

In addition to the basic numerical summaries given in 
graphics are an essential part of the initial examination of data. Here we 
shall begin by constructing histograms for each of the five variables first 
by using the Graphics menu. 

Click on Graph. 
Select 2D and then highlight Histogram (x). 
Click OK and the Histogram/Density dialog appears. 
Select huswif as the data set and say husbage as the x column. 
Click OK to give a histogram of husband’s age. 

A similar sequence of instructions can be used to produce histograms 
of each of the other variables, and by repeated use of Insert, Graph, 

the screen the diagram will be colour; to print on a black and white 
printer use Format, Apply Style, Black and White before File, Print 
Graph Sheet.) 

would be diagrams that contain a number 
of alternative graphical displays of the same variable, for example, a histo- 
gram, a box plot, and a normal probability plot. We now examine how this 
can be constructed for the husbage variable using the command language. 

they can all be arranged on the same sheet as shown in (On 

More useful than 
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Figure 2.2 Histograms of all five variables in the huswif data frame. 

attach(huswif) 
#set up plotting area to take three graphs 
par(mfrow=c(l,3)) 
#use hist function to plot histogram and label x and y 
#axis appropriately 
h i s t ( h u s bag e , x I a b =" Ag e of h u s b a n d" , y I a b ='I F r eq u e n c y " ) 
# 
#use boxplot function and label with variable information 
boxplot(husbage,ylab="Age of husband") 
#use qqnorm function to construct a normal probability 
#plot 
qqnorm( husbage) 
qq I ine( h us bag e) 

The resulting diagram is shown in The box plot shows that 
there are no obvious outliers on this variable, and the histogram suggests 
some degree of non-normality, also indicated in the probability plot. 
Similar diagrams could be drawn for the other four variables. We leave 
© 2002 by Chapman & Hall/CRC
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Figure 2.3 Histogram, box plot, and probability plot of husband’s age. 

this and the construction of using the GUI as exercises for the 
reader. 

Having obtained both numerical and graphical information about indi- 
vidual variables in the data, we might now want to look at the relationships 
between variables. The most generally used numerical summary of these 
relationships is the correlation matrix of the variables. This can be 
obtained via the S-PLUS GUI as follows: 

rn Click on Statistics. 
rn Select Data Summaries. 
rn Select Correlations. 

In the Correlations and Covariance dialog first select the huswif data 
set; <ALL> is highlighted by default in the variables section of the dialog, 
meaning that all variables in the chosen data frame will be included in 
the calculation of the correlation matrix. We now need to consider what 
to select in the Method to Handle Missing Values box. The default of 
Fail needs to be changed for the huswif data set. So select Available and 
then click OK to give the correlation matrix shown in The 
correlations in this matrix are calculated on the basis of all observations 
available for each pair of variables. 

20 30 40 50 60 

Age of husband 

0 m 

u 0 

f 

7 
-2 -1 0 1 2 

Quantiles of Standard Normal 
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Table 2.3 Correlation Matrix for Husbands and Wives Data 

* * *  Correlations for data in: huswif *** 

husbage husbht wifeage wifeht husbagem 
husbage 1 .OOOOOOO -0.2001 8660 0.96749749 -0.2358639 0.3002488 

wifeage 0.9674975 -0.01 332892 1 .OOOOOOOO -0.2259641 0.1 118882 
wifeht -0.2358639 0.35946747 -0.22596407 1 .OOOOOOO -0.1402032 

husbagem 0.3002488 -0.25755083 0.11188819 -0.1402032 1 .OOOOOOO 

husbht -0.2001866 1 .OOOOOOOO -0.01332892 0.3594675 -0.2575508 

The values in the correlation matrix show that the ages of husbands 
and their wives are highly correlated (0.95); other pairs of variables, 
however, have only moderate correlations. 

With the command language, the same correlation matrix can be found 
using the cor function: 

co r ( h u s w i f , n a. m e t h od = “ava i I a b I e” ) 
#the na.method argument is used to select a procedure for 
#dealing with missing values 

Assessing the relationships between variables simply on the basis of 
the numerical values of their correlations is not, in general, to be recom- 
mended. Correlations can be badly distorted, for example, by outliers in 
the data, and can give misleading values if the relationships between the 
variables are anything but linear. Consequently, it is important to look at 
the numerical correlations alongside scatterplots of the variables. Scatter- 
plots of each pair of variables are obtained either via the Graphics menu 
or the plot command, both of which were illustrated in Chapter 1. Here 
there are ten possible scatterplots for the five variables, and it is convenient 
to view them displayed in the form of what is usually called a scatterplot 
matrix. Formally, a scatterplot matrix is defined as a square symmetric 
grid of bivariate scatterplots (Cleveland, 1993). The grid has p rows and 
p columns, each one corresponding to a different one of the p observed 
variables. Each of the cells of the grid shows a scatterplot of two variables. 
Because the scatterplot is symmetric about its diagonal, variable i is plotted 
against variable j in the ijth cell, and the same variables also appear in 
cell j i  with the x and y axes of the scatterplot interchanged. The reason 
for including both the upper and lower triangles in the matrix, despite 
the seeming redundancy, is that it enables a row or column to be visually 
scanned to see one variable against all others, with the scale for one 
variable lined up along the horizontal or the vertical. 
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Figure 2.4 Scatterplot matrix for all five variables in the huswif data frame. 

To obtain the scatterplot matrix of the five variables in the huswif data 
frame we can use the Graphics menu as follows: 

Click Graph. 
Choose 2D and under Axes Type highlight Matrix. 
Click on OK and the Scatter Plot Matrix dialog appears. 

W Select the huswif data frame and highlight all variables in the x 
columns box. 
Click OK. 

This leads to the scatterplot matrix seen in 
The pattern of the relationships between the pairs of variables is made 

very clear in this diagram and it is also reassuring to see that there are no 
very obvious outliers or nonlinear relations with which to be concerned. 
Consequently, the correlation matrix in does represent a reasonable 
numerical summary of the relationships between the five variables in the data. 

With the command language, the scatterplot matrix can be obtained 
with the pairs function as follows: 

pairs(huswif) 
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In some cases it may be informative to label the points in a scatterplot 
(and in a scatterplot matrix) in some way. Suppose for the huswif data 
we would like to label points according to whether the husband or wife 
is tallest, say “hw” if the husband is taller and “WH” if the wife is taller. 
The following commands label the points in this way in a scatterplot 
matrix of the data using the panel=function argument to do something 
other than simply the default, which is to plot the points in each panel 
of the grid of scatterplots. 

difhte-husbht-wifeht 
#find difference in heights of the couples 
labs<-rep(“hw”, 100) 
#use the rep function to create a vector 
#of length 100, each element of which is the label hw 
I a bs [ d i f h t c = 01 c -” W H ” 
#change elements of labs to WH for those 
#couples where the wife is taller or equal 
#in height to her husband 
pairs( huswif,panel=function(x,y)text(x,y,labels=labs,cex=O.5)) 
#use the text function to plot the contents 
#of labs in the appropriate positions in each 
#scatterplot; cex is a parameter controlling 
#the size of the plotted character. 

The resulting plot is shown in As might be expected, most 
points are labelled ‘hw’, since husbands are, in general, taller than their 
wives. (Many other examples of using the panel=function argument of 
the pairs function will be given in later chapters.) 

Earlier in this chapter probability plots were used to assess individual 
variables in the huswif data frame for normality. But it may be as important 
to assess the five variables jointly for multivariate normality. One possible 
method that can be used is a chi-squaredprobabilityplot of the generalized 
distances (Mahalanobis distance) of each observation from the mean 
vector of the data, i.e., for observation i with vector of values xi the 
distance di given by 

di = (xi - f fS-’(xi  - SZ)  

where X is the sample mean vector and S the sample covariance matrix. 
If the observations do arise from a multivariate normal distribution, these 
distances have, approximately, a chi-squared distribution with degrees of 
© 2002 by Chapman & Hall/CRC
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20 30 40 50 60 20 30 40 50 60 20 30 40 50 

Figure 2.5 Scatterplot matrix for all five variables in the huswif data frame with 
points labelled according to whether husband (hw) or wife (WH) is taller. 

freedom equal to the number of variables. So plotting the ordered distances 
against the corresponding quantiles of the appropriate chi-squared distri- 
bution should lead to a straight line through the origin. Such a plot is 
easily constructed using the S-PLUS command language and in particular 
the Mahalanobis function; suitable code is as follows; 

#first use the na.exclude function to remove observations 
#with missing values on any variable 
huswif 1 <-na.exclude(huswif) 
#use the apply function to find the mean vector of the 
#data 
meanv<-apply(huswif 1,2,mean) 
#use var function to find covariance matrix 
Sc-var(huswif 1 ) 
#use length function to find number of 
#observations in huswif l  
nc-length( huswifl [, 11) 
#Get sample quantiles 
index <-(1 :n)/(n+l) 

© 2002 by Chapman & Hall/CRC
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# l :n  produces the vector of values 1,2, ..., n 
#get corresponding chi-squared quantiles 
quant <-qchisq(index,5) 
#get generalized distances using Mahalanobis 
#function 
diste-mahal(huswif1 ,mean,S) 
#dist will contain the Mahalanobis distances of each 
#observation from the mean vector of the data. 
#plot ordered distances obtained using the 
#sort function 
p I ot ( q u a n t , so rt ( d i s t ) , y I a b= 0 rd e red d is t a n ce s” , 
x I a b=“C h i - s q u a re q u anti I es” , pc h = 1 ) 
abline(0,l) 
#use the abline function to add a line with intercept 0 
#and slope 1, i.e., the line y=x 

The resulting plot is shown in There is considerable deviation 
from a straight line in the plotted points. This gives relatively clear evidence 
that the data do not have a multivariate normal distribution, which may 
have implications for particular types of analysis that may be considered 
for the data. 

01 
0 

0 

I I I I I I I 

2 4 6 0 10 12 14 

Chi-square quantiles 

Figure 2.6 Chi-squared probability plot of all five variables in the huswif data 
frame. 
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Exercises 
2.1. 

2.2 .  

2.3. 

2.4. 

2.5. 

2.6. 

It is often important to include information about the marginal 
distributions of each variable on a scatterplot of a pair of variables. 
A simple procedure for this is the use of the rug function in S-PLUS 
(with perhaps the jitter function as well). Investigate by producing 
a scatterplot of husband’s age against wife’s age showing the mar- 
ginal distributions of each variable. 
Investigate the use of the density function in S-PLUS for enhancing 
histograms with a nonparametric estimate of the distribution of the 
variables. Additionally, examine the use of both the Graph menu 
and the 2D graphical palette for the same thing. 
Produce a scatterplot matrix of the variables in the husbands/wives 
data, with each panel the value of the correlation coefficient of the 
two variables shown. 
Use the chi-squared plotting technique for assessing multivariate 
normality described in the text to assess only the first four variables 
in the huswif data frame. Do you think these four variables do have 
a multivariate normal distribution? 
Explore the use of the hist2d function to get two-dimensional 
histograms for husband’s age and wife’s age. Use the persp function 
to view the histogram. 
Use the Scatter Plot Matrix dialog to get the scatterplot matrix of 
the five variables in the huswif data frame, enhanced with a histo- 
gram of each variable on the main diagonal. 
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Chapter 3 

Analysis of Variance: 
Poisoning Rats and 
Losi ng Weight 

3.1 Description of Data 
In this chapter we shall consider the analysis of two sets of data. The 
first, shown in involves the survival times (in 10-hour units) of 
rats subjected to three different poisons and four different treatments. This 
is an example of a 3 x 4 factorial design with four replications in each cell. 

The second data set we shall be concerned with here is shown in 
These data arise from a study into the effectiveness of slimming 

clinics. Of particular interest is the question of whether adding a technical 
manual giving advice based on psychological behaviourist theory to the 
support offered would help clients to control their diet. So the first factor is 
Condition with two levels: ‘Experimental’ (those given the manual) and 
‘Control’ (those without the manual). It was also thought important to dis- 
tinguish between clients who had already been trying to slim and those who 
had not, giving rise to the second factor, Status, again with two levels: 
‘Experienced (those who had been trying to slim for more than 1 year) and 
‘Inexperienced (those who had been trying to slim for not more than 
3 weeks). The response variable recorded for each participant in the study was 

(3.1) 
weight at 3 months - ideal weight 

Initial weight - ideal weight 

Table 3.1,

Table 3.2.
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Table 3.1 Survival Times of Rats 

Poison 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 

Treatment Time 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
4 
1 
1 
1 
1 
2 
2 
2 
2 

0.31 
0.45 
0.46 
0.43 
0.82 
1.10 
0.88 
0.72 
0.43 
0.45 
0.63 
0.76 
0.45 
0.71 
0.66 
0.62 
0.36 
0.29 
0.40 
0.23 
0.92 
0.61 
0.49 
1.24 
0.44 
0.35 
0.31 
0.40 
0.56 
1.02 
0.71 
0.38 
0.22 
0.21 
0.18 
0.23 
0.30 
0.37 
0.38 
0.29 
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Table 3.1 (Continued) Survival 
Times of Rats 

Poison 
3 
3 
3 
3 
3 
3 
3 
3 

Treatment 
3 
3 
3 
3 
4 
4 
4 
4 

Time 
0.23 
0.25 
0.24 
0.22 
0.30 
0.36 
0.31 
0.33 

In this case the design is a 2 x 2 factorial, but the number of observations 
in each of the four cells is not the same; the data are unbalanced, rather 
than balanced as in the first example. 

3.2 Analysis of Variance 
Analysis of variance (ANOVA) encompasses a set of methods for testing 
hypotheses about differences between means. Underlying ANOVA is a 
linear model, which for both data sets introduced in the previous section 
would have the following form: 

where yqk represents the k observation in the jth level of one factor and 
the ith level of the other. The parameters p, a,, PI, and y,, represent, 
respectively, overall mean, main effects of each factor, and the interaction 
between the two factors. The eyk are error terms assumed to have a normal 
distribution with zero mean and variance oz, (To make the model in 
Equation 3 . 2  identifiable, the parameters need to be constrained in some 
way, for example, by requiring that their sum over any subscript is zero.) 

For the balanced survival time data, the variability in the observations 
can be portioned into sums of squares representing poisons, treatments, 
and the poisons x treatments interaction, orthogonally; i.e., they would 
be nonoverlapping. But for the unbalanced slimming data, this is not the 
case, because, for example, there is a proportion of the variability in the 
response variable that can be attributed to (explained by) either of the 
two factors in the study. A consequence is that Condition and Status 
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Table 3.2 Slimming Data 

Condition 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

Status 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 

Response 
-14.67 
-1.85 
-8.55 

-23.03 
11.61 
0.81 
2.38 
2.74 
3.36 
2.1 0 

-0.83 
-3.05 
-5.98 
-3.64 
-7.38 
-3.60 
-0.94 
-3.39 
-4.00 
-2.31 
-3.60 
-7.69 

-13.92 
-7.64 
-7.59 
-1.62 

-12.21 
-8.85 
5.84 
1.71 

-4.1 0 
-5.19 

0.00 
-2.80 

together explain less of the variation in the response variable than the 
sum of which each explains alone. The result is that the sum of squares 
that can be attributed to a factor depends on which other factors have 
already been allocated a sum of squares; in other words, the sums of 
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squares of the factors now depend on the order in which they are 
considered. There is a lack of uniqueness in partitioning the variation in 
the response variable. This is not so for balanced data. (For a more detailed 
discussion of the problems with unbalanced designs, see Nelder, 1977, 
and Aitkin, 1978). 

3.3 Analysis Using S-PLUS 
The data sets in and are available as S-PLUS data frames 
called rats and slim, respectively, with the factors appropriately defined 
as S-PLUS factor variables and their levels suitably labelled. 

In this chapter we shall be applying the analysis of variance model 
specified in Equation 3.2 and so this is a convenient point to say a little 
about the model formulae used in S-PLUS which are common to all its 
modelling procedures. A formula in S-PLUS is a symbolic expression that 
defines the structural form of the model and is interpreted by modelling 
functions. A simple example of an S-PLUS model formula is 

y - x l  +x2+x3 

y is the response variable and x l  to x3 explanatory variables. The 
corresponding regression coefficients and the constant are implied in the 
formula. The term on the left-hand side can be an expression representing, 
say, a transformation of the response variable, for example, 

A model formula such as 

y - x l  *x2 

means that y is modelled using the main effects and the interaction of 
x l  and x3. Written out in full the model is 

y - x l  +x2+x1 :x2 

with the colon used to indicate the interaction term. 
Variables on the right-hand side of a model formula can also be 

transformed, but since arithmetic operators have a different meaning in 
formulae (as we have seen above), the expressions must be enclosed in 
the I function; for example, 

y- l (x1 *x2) 
© 2002 by Chapman & Hall/CRC
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means that y is modelled in terms of a single explanatory variable given 
by the product of xl and x2, in addition to the constant. 

More aspects of model formulae will be introduced in later chapters. 

3.3.1 Analysis of Variance of Survival Times of Rats 

The contents of the rats data frame are shown in To begin, let 
us simply obtain the analysis of variance table for these data using the 
appropriate dialog box: 

H Click on Statistics. 
H Select ANOVA. 
H Select Fixed Effects. 

The ANOVA dialog now becomes visible, and we proceed as follows: 

H Select the rats data frame. 
H Click on the Create Formula tab to access the Formula dialog. 
H Highlight Time in the Choose Variables Section. 
H Click on the Response tab. 

The following now appears in the Formula section. 

Time-1 

H Highlight both Poison and Treatment and check the Main + 
Interact tab to give the following formula: 

Time-Poison*Treatment 

This corresponds to the required main effects plus interaction model. 

1 Click on OK to return to the ANOVA dialog. 
H Click OK. 

This leads to the results shown in The analysis of variance table 
indicates that the Poison x Treatment interaction is nonsignificant, but that 
both Poison and Treatment main effects are significant. (Note that the 
S-PLUS commands equivalent to the analysis carried out using the dialog 
approach appear in the Report file.) 

So it appears that a simple main effects model is suitable for these 
data. We might now move on to consider the following: 
© 2002 by Chapman & Hall/CRC
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Table 3.3 Contents of the rats 
Data Frame 

> rats 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

Poison 
P I  
P I  
P I  
P I  
P I  
P I  
P I  
P I  
P I  
PI  
P I  
P I  
P I  
P I  
P I  
P I  
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P2 
P3 
P3 
P3 
P3 
P3 
P3 

Treatment 
A 
A 
A 
A 
B 
B 
B 
B 
C 
C 
C 
C 
D 
D 
D 
D 
A 
A 
A 
A 
B 
B 
B 
B 
C 
C 
C 
C 
D 
D 
D 
D 
A 
A 
A 
A 
B 
B 

Time 
0.31 
0.45 
0.46 
0.43 
0.82 
1.10 
0.88 
0.72 
0.43 
0.45 
0.63 
0.76 
0.45 
0.71 
0.66 
0.62 
0.36 
0.29 
0.40 
0.23 
0.92 
0.61 
0.49 
1.24 
0.44 
0.35 
0.31 
0.40 
0.56 
1.02 
0.71 
0.38 
0.22 
0.21 
0.1 8 
0.23 
0.30 
0.37 
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Table 3.3 (Continued) Contents of 
the rats Data Frame 

> rats 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 

Poison 
P3 
P3 
P3 
P3 
P3 
P3 
P3 
P3 
P3 
P3 

Treatment Time 
B 0.38 
B 0.29 
C 0.23 
C 0.25 
C 0.24 
C 0.22 
D 0.30 
D 0.36 
D 0.31 
D 0.33 

Table 3.4 Analysis of Variance of Survival Times of Rats 

*** Analysis of Variance Model  *** 

Short Output: 
Call: 

aov(formu1a = Time - Poison * Treatment, data = rats, 
na.action = na.exclude) 

Terms: 
Poison Treatment Poison:Treatment Residuals 

Sum of  Squares 1.033 0.921 0.250 0.801 
Deg. o f  Freedom 2 3 6 36 

Residual standard error: 0.1491 
Estimated effects are balanced 

Df Sum of S q  Mean S q  F Value Pr(F) 
Poison 2 1.033 0.5165 23.22 0.0000 

Treatment 3 0.921 0.3071 13.81 0.0000 
Poison:Treatment 6 0.250 0.0417 1.87 0.1123 

Residuals 36 0.801 0.0222 

1. Whether the normality assumption made by the analysis of variance 
model is justified for these data; 

2. Whether the constant variance assumption is justified; 
3. Use of multiple comparison tests to examine in more detail which 

Poison means and which Treatment means differ. 
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Figure 3.1 
times of rats. 

ANOVA dialog showing main effects model for the data on survival 

To check both the normality and constant variance assumptions, we 
shall examine the residuals from the fitted model, i.e., the differences 
between the observed values and those predicted by the model. A normal 
probability plot of the residuals will lie used to assess assumption (1 >, 
and a plot of residuals against fitted values can lie used t o  evaluate 
assumption (2). Departures from a ‘horizontal band’ shape give cause for 
concern. (More will be said about tlie use of residuals for diagnosing 
models in later chapters.) 

So we return to tlie ANOVA dialog, set up tlie main effects model for 
the rats data frame, and request that the resulting model object lie saved 
as, say, rats.aov (this is needed for the multiple comparison tests to be 
described later). The ANOVA dialog now appears as shown in 

Now click on the Plot tab and tick the Residuals v Fit and Residuals 
Normal QQ options. Finally click on OK to give the results shown in 

and the plots shown in and 
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Table 3.5 Analysis of Variance of Survival Times of Rats: Main 
Effects Model 

*** Analysis of Variance Model * * *  

Short Output: 
Call: 

aov(formu1a = Time - Poison + Treatment, data = rats, 
na.action = na.exclude) 

Terms 
Poison Treat men t Residuals 

Sum of  Squares 1.033 0.921 1.051 
Deg. of Freedom 2 3 42 

Residual standard error: 0.1582 
Estimated effects are balanced 

Df Sum of S q  Mean S q  FValue Pr(F) 
Poison 2 1.033 0.5165 20.64 5.700e-007 

Treatment 3 0.921 0.3071 12.27 6.697e-006 
Residuals 42 1.051 0.0250 
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8 
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0 
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0 

I 

0.2 
I 
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Fitted : Poison +Treatment 
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0.6 
I 
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Figure 3.2 
against fitted values. 

Residuals from main effects model for survival times of rats plotted 
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7 BO 

Q3 

I I I I I 

-2 -1 0 1 2 

Quantiles of Standard Normal 

Figure 3.3 
to rat survival data. 

Normal probability plot of residuals from main effects model fitted 

The analysis of variance table in confirms the highly signif- 
icant main effects of both Poison and Treatment. The normal plot of the 
residuals suggests some departure from normality and the residuals vs. 
fitted values plot has a ‘wedge shape’ consistent with a departure from 
the constant variance assumption. Both findings suggest that analysing 
the survival times after a suitable transformation might be more appropriate 
than analysing the raw data. We leave this possibility to be investigated 
by the reader (see Exercise 3.1), and move on here to consider the use 
of multiple comparison tests to assess just which poison means and which 
treatment means differ. We shall use a test due to Scheffk. (This test in 
particular and multiple comparison tests in general are described in Everitt, 
2001.) 

w Click on Statistics. 
w Select ANOVA. 
w Select Multiple Comparisons. 

In the Multiple Comparisons dialog, select the ratsaov created by 
previous use of the ANOVA dialog, select Poison in the Levels of section, 
and in the Method section select Scheffe. Click OK to see the numerical 
results in and the graphical display of these results as seen in 

The results indicate that the mean survival time for P3 is 
© 2002 by Chapman & Hall/CRC
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Table 3.6
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Table 3.6 Results of Scheffk’s Multiple Comparison Test for Poisons 

95% simultaneous confidence intervals for specified 
linear combinations, by the Scheffe method 

critical point: 2.5377 
response variable: Time 
rank used for Scheffe method: 2 

intervals excluding 0 are flagged by ‘****’ 

Estimate Std.Error Lower Bound Upper Bound 
PI-P2 0.0731 0.0559 -0.0688 0.21 5 
PI-P3 0.3410 0.0559 0.1 990 0.483 * * * *  
P2-P3 0.2680 0.0559 0.1260 0.410 * * * *  

I I I I I I I I I I I I 

-0.10 0.0 0.05 0.15 0.25 0.35 0.45 
simultaneous 95% confidence limits, Scheffe method 

response variable: Time 

Figure 3.4 Scheffk multiple comparison results for levels of Poison in rat survival 
data. 

significantly less than for P1 and P2, which themselves do not differ in 
mean survival time. 

Repeating the process but now selecting Treatment leads to the results 
in and It appears that the mean survival times for 
treatments A and B, A and D, and B and C differ. 

3.3.2 Analysis of Variance of Slimming Data 

The contents of the slim data frame are shown in To analyse 
this data set we shall use the command language approach. The unbal- 
anced nature of the data can be seen by examining the cell counts in the 
design. These are obtained using the tapply function and the length 
function 

tapply( Response,list(Status,Condition),length) 
© 2002 by Chapman & Hall/CRC
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Table 3.7 Results of Scheff6’s Test for Treatments 

A-B 
A-C 
A-D 
B-C 
B-D 
C-D 

95% simultaneous confidence intervals for specified 
linear combinations, by the Scheffe method 

critical point: 2.9122 
response variable: Time 
rank used for Scheffe method: 3 

intervals excluding 0 are flagged by ’****I 

Estimate Std.Error Lower Bound Upper Bound 
A-B -0.3620 0.0646 -0.5510 -0.1740 * * * *  
A-C -0.0783 0.0646 -0.2660 0.1 100 
A-D -0.2200 0.0646 -0.4080 -0.0319 * * * *  
B-C 0.2840 0.0646 0.0961 0.4720 * * * *  
B-D 0.1420 0.0646 -0.0456 0.331 0 
C-D -0.1420 0.0646 -0.3300 0.0464 

I I I I I I I I I I I I 

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5 
simultaneous 95% confidence limits, Scheffe method 

response variable: Time 

Figure 3.5 Scheff6 multiple comparison results for Treatment levels in rat survival 
data. 

to give the following: 

Exper imenta l  Cont ro l  

Exper ienced 5 11 
Inexper ienced 12 6 

To begin, it may be helpful to examine some simple plots of the data. A 
plot of mean values for each level of each factor compared to a corresponding 
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Table 3.8 Contents of the slim Data Frame 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 

Condition 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 
Experimental 

Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 
Control 

Status 
Experienced 
Experienced 
Experienced 
Experienced 
Experienced 

Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
I n ex pe ri enced 
Inexperienced 

Experienced 
Experienced 
Experienced 
Experienced 
Experienced 
Experienced 
Experienced 
Experienced 
Experienced 
Experienced 
Experienced 

Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 
Inexperienced 

Response 
-14.67 
-1.85 
-8.55 

-23.03 
11.61 
0.81 
2.38 
2.74 
3.36 
2.1 0 

-0.83 
-3.05 
-5.98 
-3.64 
-7.38 
-3.60 
-0.94 
-3.39 
4.00 
-2.31 
-3.60 
-7.69 

-13.92 
-7.64 
-7.59 
-1.62 

-12.21 
-8.85 
5.84 
1.71 

-4.10 
-5.19 
0.00 

-2.80 

plot of medians is sometimes a good place to start because it may highlight 
possible distribution problems with the data. The required plots may be 
constructed using the plot.design function. 
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Figure 3.6 Plots of means and medians for slimming data. 

par(mfrow=c(2,1)) 
#sets up plotting area to take both mean and 
#median plots 
plot.design(slim) 
plot .desig n( sli m , f un=median) 
#fun=median specifies that the medians are to 
#be plotted; the default is the mean 

The resulting diagram is shown in There is some difference 
between treatment means and medians, particularly for the Conditions 
factor. This may result from one or two outliers and we can examine this 
possibility with a further simple diagram, namely, a box plot of the 
observations at each level of each factor; this is constructed using the 
plot.factor function. 

par( mfrow=c(2,1)) 
plot.factor(slim) 

The resulting diagram appears in A number of outliers are 
revealed in this diagram. There is, for example, one participant in the 
experimental group with a very large decrease in weight (-22.03) and in 
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Figure 3.7 Box plots for slimming data. 

the 'experienced' slimmers group there is one person with a large increase 
in weight (11.61). Consideration might be given to removing these obser- 
vations but here we shall continue to include them in our analyses, and 
leave the reader to investigate the former possibility (see Exercise 3.2). 

Now we will use the aov function to fit various analysis of variance 
models to the data, beginning with models including only the main effect 
of Condition and then the main effects of both Condition and Status. 

summary(aov( Response-Condition,data=slim)) 
# the aov function requires a valid S-PLUS 
# formula and, if not already attached, 
# the name of a data frame. 
# aov returns an analysis of variance object 
# which when given to the summary function 
# produces an analysis of variance table etc 
summary(aov( Response-Condition+Status,data=slim)) 

The results are shown in 
by Condition (we now assume that the slim data frame is attached). 

Now rerun, taking Status first followed 
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Table 3.9 Analyses of Variance of the Slimming Data 
with Status Added after Condition 

> summary(aov(Response - Condition)) 
Df Sum of S q  Mean S q  FValue Pr(F) 

Condition 1 21 21.19 0.5041 0.4828 

> summary(aov(Response - Condition + Status)) 
Df Sum of S q  Mean S q  FValue Pr(F) 

Condition 1 21 21.2 0.609 0.4412 
Status 1 266 265.9 7.640 0.0095 

Residuals 32 1345 42.03 

Residuals 31 1079 34.8 

Table 3.10 Analyses of Variance of the Slimming Data 
with Condition Added after Status 

> summary(aov(Response - Status)) 
Df Sum of S q  Mean S q  FValue Pr(F) 

Status 1 285 285.0 8.435 0.006621 
Residuals 32 1081 33.8 

> summary(aov(Response - Status + Condition)) 
Df Sum of S q  Mean S q  FValue W F )  

Status 1 285 285.0 8.187 0.0075 
Condition 1 2 2.1 0.061 0.8062 
Residuals 31 1079 34.8 

s u m m ary (aov( Response - Status) ) 
summary(aov( Response-Status+Condition)) 

The results of these two commands are shown in Notice how 
the sums of squares for each factor differ depending on whether they appear 
first or second in the model. This would not be the case if the design were 
balanced (readers can confirm this by using the series of commands above, 
suitably amended, to analyse the data in the rats data frame). 

Finally, we can fit a model containing both main effects and the 
interaction. 

summary(aov( Response-Status*Condition)) 

to give the results shown in Clearly, the interaction is not 
significant, and the earlier results show that the levels of the Condition 
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Table 3.10.

Table 3.11.

57



© 2002 by Chapman & Hall/CRC

Table 3.1 1 

> summary(aov(Response - Status + Condition + Status: 

Analysis of Variance of Slimming Data 

Condition)) 
Df Sum of S q  Mean S q  FValue Pr(F) 

Status 1 285 285.0 7.924 0.0085 
Condition 1 2 2.1 0.059 0.8094 

Status:Condition 1 0 0.1 0.004 0.9524 
Residuals 30 1079 36.0 

factor do not have different means, but that there is a significant difference 
in the means of Experienced and Inexperienced slimmers. The two means 
can be found by again using the tapply function. 

tapply( Response,list(Status),mean) 

giving 

Experienced Inexperienced 

-6.832 -1.032 

Experienced slimmers show, on average, a greater weight decrease than 
inexperienced slimmers. 

Exercises 
3.1. 

3.2 .  

3.3.  

3.4. 

Reanalyse the survival times of rats data after taking a log transfor- 
mation. Examine the residuals from whatever model you now find 
is appropriate to assess whether the normality and constant variance 
assumptions are met more satisfactorily than when modelling the 
raw data. 
Reanalyse the slimming data after removing the two possible outliers 
identified in the text. Are the conclusions from the analysis the same 
as those discussed in the text? 
Use the predict function on the results of a main effects analysis of 
variance model for the survival time data to find the fitted values. 
What do these fitted values correspond to in terms of Poison and 
Treatment means? 
Investigate what happens if the aov function is applied to the 
slimming data with the Status x Condition interaction listed before 
the main effects of the two factors. 

© 2002 by Chapman & Hall/CRC 58



Chapter 4 

Multiple Regression: 
Technological Change 
in Jet Fighters 

4.1 Description of Data 
The data to be used in this chapter were introduced previously in 
Chapter 1; see The data give the values of six variables for 22 
U S .  fighter aircraft. The variables are as follows: 

FFD: First flight date, in months after January 1940 
SPR Specific power, proportional to power per unit weight 
RGF: Flight range factor 
PLF: Payload as a fraction of gross weight of aircraft 
SLF: Sustained load factor 
CAR: A binary variable specifying whether the aircraft can or 
cannot land on a carrier 

Interest lies in modelling FFD as a function of the other variables. Here 
we shall concentrate on using multiple regression. 
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4.2 Multiple Regression Model 
The multiple regression model has the general form 

where y, and xtl ,  xt2 ... xzp are, respectively, the values of a response 
variable and p explanatory variables for the ith observation in a sample 
of size n. The regression coeflcients, Po, P1 ... Pp are generally estimated 
by least squares - they represent the expected change in the response 
variable predicted by a unit change in the corresponding explanatory 
variables conditional on the values of the remaining explanatory variables. 
Significance tests for the regression coefficient can be derived by assuming 
that the residual terms E , ,  i = 1 . . . n, are from a normal distribution with 
zero mean and constant variance 02. 

For n observations of the response and explanatory variables, the 
regression model may be written concisely as 

y = x p + E  (4.2) 

where y is the n x 1 vector of responses, X is an n x ( p  + 1) matrix of 
known constants, the first column containing a series of ones correspond- 
ing to the term Po in Equation 4.1 and the remaining columns values of 
the explanatory variables. The elements of the vector P are the regression 
coefficients Po ... Pp and those of the vector E, the residual terms ,.. E,. 

Full details of multiple regression are given in Rawlings (1988). 

4.3 Analysis Using S-PLUS 
The data are stored in the data frame jets, the contents of which are 
shown in 

Before proceeding with the regression modelling of the data it may 
be helpful to examine a scatterplot matrix of the variables, particularly if 
we label the points by aircraft type. By using the GUI, this involves the 
following: 

Click Graph. 
Select 2D. 
Highlight Matrix under Axes v p e ,  and click OK. 

W Select the jets data set. 
In the x columns box highlight all variables but v p e  and CAR. 

1 In the y columns box highlight v p e .  
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Table 4.1 The jets Data Frame 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

Type 
FH-1 
FJ-1 

F-86A 
F9F-2 
F-94A 
F3D-1 
F-89A 

XFIOF-1 
F9F-6 

F-100A 
F4D-1 
F1 F - I  

F-1 01 A 
F3H-2 

F-l02A 
F-8A 

F-l04B 
F- I  05 B 

YF-107A 
F-l06A 

F-4B 
F-l11A 

FFD SPR 
82 1.468 
89 1.605 

101 2.168 
107 2.054 
115 2.467 
122 1.294 
127 2.183 
137 2.426 
147 2.607 
166 4.567 
174 4.588 
175 3.618 
177 5.855 
184 2.898 
187 3.880 
189 0.455 
194 8.088 
197 6.502 
201 6.081 
204 7.105 
255 8.548 
328 6.321 

RG F 
3.30 
3.64 
4.87 
4.72 
4.1 1 
3.75 
3.97 
4.65 
3.84 
4.92 
3.82 
4.32 
4.53 
4.48 
5.39 
4.99 
4.50 
5.20 
5.65 
5.40 
4.20 
6.45 

PLF 
0.1 66 
0.154 
0.1 77 
0.275 
0.298 
0.150 
0.000 
0.1 17 
0.155 
0.138 
0.249 
0.143 
0.1 72 
0.1 78 
0.1 01 
0.008 
0.251 
0.366 
0.106 
0.089 
0.222 
0.1 87 

SLF 
0.10 
0.10 
2.90 
1.10 
1 .oo 
0.90 
2.40 
1.80 
2.30 
3.20 
3.50 
2.80 
2.50 
3.00 
3.00 
2.64 
2.70 
2.90 
2.90 
3.20 
2.90 
2.00 

CAR 
Cannot land 
Cannot land 

Can land 
Cannot land 

Can land 
Cannot land 

Can land 
Cannot land 
Cannot land 

Can land 
Cannot land 
Cannot land 

Can land 
Cannot land 

Can land 
Cannot land 

Can land 
Can land 
Can land 
Can land 

Cannot land 
Can land 

Click on the Symbol tab and tick the Use Text As Symbol box. 
Specify y column as Text to Use. 

W Click OK. 

This leads to the labelled scatterplot matrix seen in In some 
panels fighter F-111A seems to be a possible outlier, as, to a lesser extent, 
does the F-105B. But at this stage it seems unwise to remove them, 
particularly given the small sample size. 

suggest perhaps that the relationship 
between some pairs of variables, at least, are nonlinear, for example, SPR 
and SLF. To investigate this possibility further before undertaking formal 
modelling of the data, we can plot the simple regression line linking each 
pair of variables onto the appropriate panel and a locally weighted regres- 
sion jit (see Chambers and Hastie, 1992, for comparison). To avoid 
cluttering each scatterplot in the diagram we shall in this case not label 

Some of the panels in 
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Figure 4.1 
labelled by type of aircraft. 

Scatterplot matrix of the variables in the jets data frame with points 

the plot with type of aircraft. With the command language, the required 
diagram can be found as follows: 

attach (jets) 
pa i rs ( j  e ts [ , -c( 1 ,7)], pane I =f u n ct i on (x, y) { 

PO i n ts (x, y, pc h=5) 
a b I in e (I m ( y- x) ) 
lines( lowess(x,y),lty=2)}) 

# 
#first the Type and CAR variables are removed 
#from the data frame prior to plotting 
#In the panel function the points function is 
#used to plot the data on each panel using 
#plotting character number 5, the linear 
#modelling function Im is used to regress the 
#y variable on the x variable, and the result 
#used by abline to plot the fitted regressions 
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Figure4.2 Scatterplot matrix of the variables in the jets data frame showing 
fitted lines and locally weighted regressions. 

#finally lines and lowess are used to plot 
#the results of a locally weighted regression 
#with a different line type from the linear regression fit 

The resulting diagram is shown in 
In some of the panels the locally weighted regression fit differs consid- 

erably from the linear fit, confirming in some respect our suspicion about 
the form of the relationship between some pairs of variables. But for the 
moment, at least, we shall ignore this possible complication and find the 
results of the usual multiple regression model on the data. Using again the 
command line language, the model can be applied using the Im function. 

jets.fitc-lm( FFD-SPR+RGF+PLF+SLF+CAR) 
#stores the results of applying Im in jets.fit 
summary (jets. f i t) 

The results are shown in We see that the five explanatory 
variables account for about 80% (Multiple R-Squared is 0.7967) of the 
variability of FFD. The most predictive variables appear to be SPR, RGF, 
and CAR, although since the regression coefficients and their standard 
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Table 4.2 
the Im Function 

Fitting the Multiple Regression Model Using 

> jets.fit <- Im(FFD - SPR + RGF + PLF + SLF + CAR) 
> summary(jets.fit) 

Call: Im(formula = FFD - SPR + RGF + PLF + SLF + CAR) 
Residuals: 

M in  14 Median 3 4  Max 
4 . 4 8  -13.85 0.04965 14.96 64.91 

Coefficients: 

Value Std. Error t value Pr(>ltl) 
(Intercept) -89.4837 51.8632 -1.7254 0.1037 

SPR 15.8788 3.9359 4.0343 0.0010 
RGF 43.9766 11.2427 3.9116 0.0012 

SLF 2.6411 8.3655 0.3157 0.7563 
PLF -84.1065 85.1941 -0.9872 0.3382 

CAR -20.9991 7.9932 -2.6271 0.0183 

Residual standard error: 29.41 on 16 degrees of freedom 
Multiple R-Squared: 0.7967 
F-statistic: 12.54 on 5 and 16 degrees of freedom, the p-value 

is  0.00004569 

Correlation of Coefficients: 
(Intercept) SPR RCF PLF SLF 

SPR 0.1 632 

PLF -0.3764 -0.4774 0.1328 
RGF -0.9042 -0.1540 

SLF -0.0902 -0.4866 -0.2152 0.3039 
CAR 0.4949 -0.2474 -0.4388 0.0317 0.0157 

errors are estimated conditionally on the other variables such an interpre- 
tation needs to be made with caution. Removing one of the nonsignificant 
explanatory variables and reestimating the remaining coefficients might 
lead to a different picture. We can investigate this further by fitting a variety 
of models and comparing their fits using the anova function; for example, 

jets.fit1 c-lm(FFD-SPR) 
jets. f i t2c-I m (FFD-S P R+RG F) 
anova(jets.fit1 ,jets.fit2) 
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Table 4.3 Comparing Models Using the anova Function 

> jetsfit1 c- Im(FFD - SPR) 
> jets.fit2 c- Im(FFD - SPR + RGF) 
> anova(jets.fit1, jets.fit2) 
Analysis of Variance Table 

Response: FFD 

Terms Resid. Df RSS Test Df Sum of  S q  F Value P W )  
1 SPR 20 32273.65 
2 SPR+RGF 19 20896.87 +RGF 1 11376.78 10.34407 0.004545782 

Table 4.4 Comparing Models 

> anova(jets.fit2, jets.fit3) 
Analysis o f  Variance Table 

Response: FFD 

Terms Resid. Df  RSS Test Df Sum ofSq FValue 
1 SPR + RGF 19 20896.87 
2 SPR + RGF + CAR 18 15043.81 +CAR 1 5853.064 7.003223 

P M )  
I 
2 0.01 641463 

gives the output shown in The addition of RGF after SPR reduces 
the residual sum of squares by 11,377 which has an associated p value 
of 0.0045 - highly significant. Now let’s see if adding CAR is worthwhile: 

jets.fit3c-lm( FFD-SPR+RGF+CAR) 
anova (j e ts. f i t2, j e ts . f i t3) 

Here the results shown in confirm that CAR adds significantly 
to the prediction of FFD after SPR and RGF have been used. 

Repeating this process with the remaining two variables, PLF and SLF, 
shows that neither contribute significantly after SPR, RGF, and CAR. We 
can now find the estimated parameters and their standard errors in this 
reduced model from 

summary(jets.fit3) 
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Table 4.5 Estimated Regression Coefficients etc. 
for Selected Model 

> summary(jets.fit3) 

Call: Im(formu1a = FFD - SPR + RGF + CAR) 
Residuals: 

Min IQ Median 3 4  Max 
-58.58 -18.07 4.482 14.59 58.25 

Coefficients: 
Value Std. Error t value Pr(>ltl) 

(Intercept) -109.6063 47.2135 -2.3215 0.0322 
SPR 14.9359 3.1038 4.8121 0.0001 
RGF 47.4005 10.5445 4.4953 0.0003 
CAR -20.7819 7.8530 -2.6464 0.0164 

Residual standard error: 28.91 on 18 degrees of freedom 
Multiple R-Squared: 0.7791 
F-statistic: 21.16 on 3 and 18 degrees of freedom, the p- 
value is 3.957e-006 

Correlation of Coefficients: 

(Intercept) SPR RGF 
SPR -0.0099 
RGF -0.9590 -0.2439 
CAR 0.5474 -0.2868 -0.4627 

giving the results shown in [Note that since S-PLUS codes the 
levels of CAR, 1 (can land) and -1 (cannot land) by default, the estimated 
parameter for CAR and its standard error need to be doubled to give the 
effect corresponding to a 1, 0 coding.] 

The next stage in the analysis should be an examination of the residuals 
from fitting the chosen model to check on the normality and constant 
variance assumptions. The most useful plots of these residuals are as follows: 

A plot of residuals against each explanatory variable in the model. 
The presence of a nonlinear relationship, for example, may suggest 
that a higher-order term in the explanatory variable should be 
considered. 
A plot of residual against fitted values. If the variance of the 
residuals appears to increase with predicted value, a transformation 
of the response variable may be in order. 
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A normal probability plot of the residuals. After all the systematic 
variation has been removed from the data, the residuals should 
look like a sample from a standard normal distribution. A plot of 
the ordered residuals against the expected order statistics from a 
normal distribution provides a graphical check of this assumption. 

Unfortunately, the basic ‘observed-fitted’ residuals suffer from having 
a distribution that is scale dependent because their variance is a function 
of both o2 and the diagonal values of the so-called hat matrix, H, given by 

H = X(X’X)-’X’ (4.3) 

where X is the matrix introduced in Section 4.2. (See Cook and Weisberg, 
1982, for a full explanation of the hat matrix.) Consequently, it is rather 
more useful to work with standardized residuals ri(sfd) given by 

where s2 is the usual estimate of o2 obtained as the residual mean square 
from the model fitting, yi is the observed response value, 5j is the value 
predicted from the fitted model, and hii is the ith element in the main 
diagonal of H. These standardised residuals are easily calculated using 
the 1m.influence function: 

sc-summary(jets.fit3)$sigma 
#gives the required value of s in 4.4 
h <-I m . i nf I ue n ce (j et s. f i t 3) $hat 
#gives the vector of the main diagonal elements 
#of the hat matrix in 4.3 
jets.res<-residuals(jets.fit3)/(s*sqrt( 1 -h)) 
#the residuals function gives the basic observed fitted 
#residuals from jets.fit3 

We may now plot these standardised residuals in a number of ways: 

#construct plots of the standardised residuals 
#against each of the three explanatory variables 
par(mfrow=c(l,3)) 
#set up plotting area to take all three plots 
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Figure 4.3 Standardised residuals for regression model fitted to jet fighter data 
plotted against variables SPR, RCF, and CAR. 

p I o t ( S P R , j e t s . re s , y I a b = " S t a n d a r d i s ed res id u a I s" ) 
a bl  ine (h=O, I ty=2) 
#add dotted horizontal line at y=O 
p I o t ( R G F , j e t s . re s , y I a b="S t a n d a rd i se d residua Is") 
abline( h=O,lty=2) 
p I o t ( C A R , j e t s . re s , y I a b = " S t a n d a rd i se d re s i d u a I s " ) 

This leads to It is also helpful to have the numerical values of 
the observed values, fitted values, and the standardised residuals; these 
are all given in and were obtained using 

cbind( FFD,predict(jets.fit3),jets.res) 
#the predict function gives the fitted value from the 
#model; the function cbind combines the three 
#vectors into a matrix 

It is standardised residuals outside of the interval (-2, 2) that give most 
cause for concern. Here there are two, aircraft number 4 (F9F-21, where 
the predicted value of FFD is considerably higher than the observed value, 
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Table 4.6 Observed and Predicted 
Values of FFD and the Corresponding 
Residual Values 

> cbind(FFD, predict(jets.fit31, jets.res) 

1 
2 
3 
4 
5 
6 
7 

9 
10 
11 
12 
13 
14 
15 
16 
17 

19 
20 
21 
22 

a 

18 

FFD 
a2 
89 

101 
107 
115 
122 
127 
137 
147 
166 
1 74 
175 
177 
184 
I 87 
I 89 
194 
197 
201 
204 
255 
328 

89,5231 
I 07.6855 
I 32.8333 

I 01 . m a  
I 08.2545 

I 67.8224 

165.5842 

90.3969 

132.1314 
171.0346 
160.7714 
I 69.9838 
I 71.7859 
I 66.8140 
183.0519 
154.4998 
203.7158 
21 3.2078 
228.2499 
231.6942 
237.9299 
269.7550 

jets.res 
-0.2887851 
-0.6938394 
-I .2158725 

0.5402804 

I .48ow4 
-I .1429785 

-2.1976956 

0.5095121 

0.5431492 

0.4965961 
-0.1829026 

0.1 827579 
0.1940028 
0.6282893 
0.1 4681 59 
1.41 55201 

-0.391 1602 
-0.5962569 
-1.02061 90 
-I . 0 3 6 8 ~ 2  
0.8020890 
2.5074932 

and aircraft number 22 (F-lllA), where the reverse is the case. Apart from 
these two outliers, the residuals in look reasonably well 
behaved. 

Finally, we can look at a normal probability plot of the standardised 
residuals using 

qqnorm (jets. res) 
qq Ii ne( jets. res) 

leading to 
The interpretation of a normal probability plot is often unclear, par- 

ticularly when, as with these data on jet fighters, there are only a relatively 
small number of observations. The plot can be made more informative 
by supplementing it with a confidence interval, as suggested in Atkinson 
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Figure 4.4 Normal probability plot of standardised residuals from model fitted 
to jet fighter data. 

(1987) and Cook and Weisberg (1982). In essence, the procedure involves 
the generation of m pseudo-residual vectors, e, from 

ek = I - H  ek, k = 1, ..., m 0 (4.5) 

where the Ek are n X 1 vectors of standard normal variates. 

plot using 100 simulations is as follows: 
Suitable code for the construction of such an enhanced probability 

#first change strings for categories of CAR to 0 and 1 
# 
jets$CARe-factor(jets$CAR,levels=c(“Can not land”,“Can land”), 
labels=c(O, 1 )) 
# 
# 
jets.onee-cbind(rep(1,22),jets[,c(3,4,7)]) 
#store the three explanatory variables SPR, RGF and CAR 
#chosen for the final model along with 
#a column of ones to get the usual X matrix used in 
#multiple regression 
# 
# 
jets . on ee-as. matrix( j e ts . one) 
# 
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#get hat matrix as defined in Equation 4.3 
# 
jets.hate- 
jets .on e Yo * Yo s o I v e (t (jets . on e) Yo * Yo j e t s . one) % * Yo t ( j e t s . one) 
# 
#construct a diagonal matrix as required in Equation 4.5 
# 
idente-diag(22) 
# 
#generate 100 sets of 22 standard normal variables, i.e., 2200 
normal variates 
# 
set . s eed (547) 
epsilon<-matrix(rnorm( 100*22,0,l),ncol=100) 
# 
#apply Equation 4.5 to get pseudo-residuals 
# 
e < - (i d e n t - j e t s . hat) Yo* %e ps i lo n 
# 
#now tranpose e and sort the elements in the columns 
#save the 5th and 95th ranked values and then get the 
#range of each column to give the required values for the 
#95% CI for the probability plot 
# 
ee-t(e) 
e<-apply(e,2,sort) 
ee-e[5:95,] 
E<-apply(e,2,range) 
# 
#now get a normal probability plot of the standardised residuals 
#with the confidence limits 
# 
win.graph() 
ylimc-range(jets. res, E[ 1 ,], E[2,]) 
q q n o r m ( j e t s . re s , y I i m = y I i m , y I a b = “ S t a n d a r d i s e d re s id u a I s” ) 
par(new=T) 
q q no r m (so r t ( E [ 1 , ] ) , type = “I ” , axes = F , y I i m = y I i m , x I a b =” “, y I a b = I L  ” ) 
par(new=T) 
q q norm (so rt ( E [ 2, ] ) ,type = “I”, axes = F , y I i m = y I i m , x I a b = “ ” , y I a b =“ ”) 
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Quantiles of Standard Normal 

Figure 4.5 
to jet fighter data with added confidence interval. 

The resulting plot is shown in The first and last observations 
fall outside the constructed confidence interval, and it may be worthwhile 
rerunning the regression analysis after removing these two observations. 

Normal probability plot of standardised residuals from model fitted 

Exercises 

4.1. 

4.2. 

4.3. 

4.4. 

Investigate the use of the plot function with a regression object 
from using the Im function. Try, for example, both plot(jets.fit3) 
and plot(jets.fit3,ask=T). 
Investigate the use of the Stepwise  Linear Regress ion  dialog for 
selecting a parsimonious model with which to describe the jet 
fighter data. 
Other researchers dealing with the jets data have used a log 
transformation of FFD. Examine whether this approach leads to 
conclusions different from those reached in the text. 
Many other regression diagnostics are available apart from those 
described in the text; see Rawlings (1988) for a good description. 
Use the Linear Regress ion  dialog to investigate the use of some 
of these data, particularly Cook's distance and purtiul residuals, on 
the final model selected in the text for the jet fighter. 
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Chapter 5 

Logistic Regression: 
Psychiatric Caseness 
and Mortgage Default 

5.1 Description of Data 
In this chapter we shall look at two data sets from very different application 
areas. The first, shown in consists of data collected during a 
study of a psychiatric screening questionnaire, the General Health Ques- 
tionnaire or GHQ (see Goldberg, 19721, designed to help identify possible 
psychiatric ‘caseness’. 

The second data set, kindly supplied by Professor David Hand and 
shown in arises from an investigation into the reasons for 
mortgage default. 

In the first of the two data sets, interest lies in assessing whether GHQ 
score is predictive of ‘caseness’ and whether the sex of a subject plays a 
role in this prediction. In the second data set the main question is whether 
any of the four explanatory variables might be used to identify mortgage 
loans at risk of default. 

5.2 Logistic Regression and Generalised Linear Models 
In essence, the same general question is addressed by both data sets 
introduced in the previous section, namely, ‘can a particular response 

Table 5.1,

Table 5.2,
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Table 5.1 Psychiatric Data 

ghqscore sex 
0 0 
1 0 
2 0 
3 0 
4 0 
5 0 
6 0 
7 0 
8 0 
9 0 

10 0 
0 1 
1 1 
2 1 
3 1 
4 1 
5 1 
6 1 
7 1 
8 1 
9 1 

10 1 

case nocase 
4 80 
4 29 
8 15 
6 3 
4 2 
6 1 
3 1 
2 0 
3 0 
2 0 
I 0 
1 36 
2 25 
2 8 
1 4 
3 1 
3 1 
2 1 
4 2 
3 1 
2 0 
2 0 

Gender i s  coded 0 for women and 
I for men. 

variable be predicted from a set of explanatory variables?’ This is the same 
question that is addressed by the multiple regression model that was the 
subject of the previous chapter, so readers might ask why are we consid- 
ering it again here? The reason is that the response variable for each data 
set in Section 5.1 is now binary rather than continuous - case or not 
case for the data in and defaulted on loan or not for the second. 
We could, of course, simply ignore this aspect of the data and, as in the 
previous chapter, model the expected value of the response as a linear 
function of the explanatory variables. For a binary variable this expected 
value is simply the probability of the ‘one’ category of the variable, so 
for the psychiatric data, for example, our model would be 

p = Pr(of being a case) = Po + ppex + P,ghq (5.1) 
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Table 5.2 Mortgage Default Data 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

EVER90 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 

FlCO 
576 
678 
693 
669 
542 
566 
643 
785 
461 
785 
620 
792 
748 
661 
753 
747 
720 
71 7 
763 
782 
758 
697 
690 
746 
679 
767 
733 
679 
765 
678 
782 
777 
765 
769 
720 
75 8 
724 
61 1 
639 
761 

LTV 
0.86 
0.90 
0.80 
0.75 
0.95 
0.95 
0.84 
0.58 
0.80 
0.85 
0.95 
0.79 
0.90 
0.75 
0.70 
0.95 
0.88 
0.89 
0.90 
0.90 
0.42 
0.80 
0.75 
0.90 
0.70 
0.80 
0.88 
0.75 
0.36 
0.95 
0.62 
0.80 
0.63 
0.59 
0.38 
0.90 
0.70 
0.90 
0.61 
0.50 

INCOME 
5 
3 
5 
4 
4 
3 
5 
5 
4 
5 
3 
3 
4 
5 
5 
4 
5 
4 
5 
4 
5 
5 
2 
5 
5 
2 
5 
2 
3 
5 
4 
5 
5 
5 
5 
4 
5 
5 
5 
3 

CA 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
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Table 5.2 (Continued) Mortgage Default Data 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 

EVER90 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 
0 
I 
0 
1 
0 
0 
I 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

FlCO 
549 
639 
71 9 
801 
765 
598 
603 
71 0 
774 
738 
676 
768 
765 
766 
729 
766 
671 
782 
75 6 
791 
650 
704 
664 
762 
733 
634 
797 
624 
749 
687 
732 
669 
692 
777 
682 
772 
809 
728 
669 
692 

LTV 
0.66 
0.68 
0.61 
0.73 
0.90 
0.95 
0.95 
0.67 
0.48 
0.73 
0.73 
0.78 
0.90 
0.87 
0.90 
0.68 
0.75 
0.80 
0.75 
0.89 
0.85 
0.75 
0.80 
0.62 
0.70 
0.95 
0.26 
0.90 
0.70 
0.95 
0.72 
0.80 
0.79 
0.80 
0.47 
0.80 
0.75 
0.74 
0.67 
0.75 

INCOME 
3 
6 
5 
2 
5 
5 
4 
2 
5 
5 
3 
5 
5 
5 
4 
5 
1 
2 
2 
4 
3 
3 
8 
4 
3 
5 
3 
5 
2 
3 
4 
5 
5 
3 
4 
5 
5 
5 
5 
4 

CA 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
0 
1 
1 
1 
0 
0 
1 
0 
0 
1 
1 
0 
0 
0 
1 
0 
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Table 5.2 (Continued) Mortgage Default Data 

81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

EVER90 
0 
1 
0 
0 
1 
0 
0 
1 
1 
1 
0 
0 
0 
1 
0 

FICO 
721 
742 
687 
696 
586 
727 
725 
652 
722 
606 
761 
777 
629 
742 
752 

LTV 
0.75 
0.69 
0.79 
0.83 
0.90 
0.80 
0.80 
0.95 
0.80 
0.80 
0.80 
0.80 
0.29 
0.74 
0.61 

INCOME 
5 
5 
2 
5 
5 
3 
7 
5 
5 
4 
5 
5 
5 
3 
2 

CA 
0 
0 
0 
1 
0 
I 
0 
1 
1 
0 
0 
0 
0 
0 
0 

EVER90 takes value 1 if loan has ever been 90 days past 
due date duringa specified time period, 0 otherwise. 

FICO: a credit score provided by Fair Isaac Company. 
LTV ratio of loan amount to  value of home. 
INCOME: income category of  borrower. 
CA takes value 1 if home in California, 0 otherwise. 

We could then estimate the three regression coefficients, Po, PI, and P2 
by least squares as in the previous chapter. Unfortunately, this approach 
is not satisfactory for two reasons; 

1. It can lead to fitted values for the probability of being a case 
outside the interval (0,l). 

2. The normality assumption needed in Chapter 4 to derive signifi- 
cance tests for model parameters is clearly not reasonable for a 
binary response. 

A more suitable approach to modelling a binary response is to use logistic 
regression. Here the expected value of the response variable is not 
modelled directly; instead, the logistic function of the expected value is 
used, so the model for the psychiatric data becomes 

(Po, PI, and P2 will not, of course, be the same as in Equation 5.1). 
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The logistic transformation gives the log odds of being a case, and by 
now assuming a binomial distribution for the observed response, the 
parameters in Equation 5.2 can be estimated by maximum likelihood (see 
Collett, 1991, for details). In terms of p ,  the model in Equation 5.2 can 
be rewritten as 

Fitted values of p will now lie in the interval (0,l) as required. 
The estimated regression coefficients in a logistic regression model 

give the estimated change in the log odds corresponding to a unit change 
in the corresponding explanatory variable. For easier interpretation, the 
parameters are usually exponentiated to give the estimated change in the 
odds, conditional on the other variables remaining constant. 

Logistic regression and the other modelling procedures used in earlier 
chapters, analysis of variance and multiple regression, can all be shown 
to be special cases of the generalised linear model formulation described 
in detail in McCullagh and Nelder (1989). In essence, this approach 
postulates a linear model for a suitable transformation of the expected 
value of a response variable and allows for a variety of different error 
distributions. The possible transformations are known as link functions. 
For multiple regression and analysis of variance, for example, the link 
function is simply the identity function, so the expected value is modelled 
directly, and the corresponding error distribution is normal. For logistic 
regression, the link function is logistic and the appropriate error distribu- 
tion is the binomial. Many other possibilities are opened up by the 
generalised linear model formulation; see McCullagh and Nelder (1989) 
for full details. 

5.3 Analysis Using S-PLUS 
Logistic regression is available in S-PLUS via the generalised linear model 
function, glm, or by using the Logistic Regression dialog. Both possi- 
bilities will be used in the following subsections. 

5.3.7 GHQ Data 

We shall assume that the GHQ data are available as an S-PLUS data frame 
ghq, the contents of which are shown in (Note that the data 
have been grouped to give the total number of cases and noncases for 
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Table 5.3 Contents of ghq Data Frame 

’ gh9 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

ghqscore 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

sex 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

case nocase 
4 80 
4 29 
8 15 
6 3 
4 2 
6 1 
3 1 
2 0 
3 0 
2 0 
1 0 
1 36 
2 25 
2 8 
1 4 
3 1 
3 1 
2 1 
4 2 
3 1 
2 0 
2 0 

each combination of the two explanatory variables; originally, however, 
the data would have consisted of whether or not each subject was a case.) 

We shall use the command language approach to analyse these data 
using the glm function to apply logistic regression. To begin, we shall 
consider only the single explanatory variable ghqscore. 

pc-case/(case+nocase) 
g hq<-data.f rame(g hq ,p) 
attach(ghq) 
#first calculate the proportion of cases and then 
#insert into the ghq data frame 
fit.linc-glm(p-ghqscore) 
#the default when using glm is the equivalent of 
#using the Im function, i.e., simple linear or 
#multiple regression. We fit this model first 
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#to be able to compare the results with those 
#obtained from logistic regression using 
fit.log<-glm(p-ghqscore,family=binomial, 
we i g h t s=case+ n case) 
#the argument family=binomial implements a 
# binomial distribution and if no link is 
#specified uses the logistic with the binomial choice. 
#Since the observations are grouped the weights 
#argument must be used to give the total number 
#of observations on which each observed proportion is 
#based. 
summary(fit.lin) 
summary(fit.log) 

The results are shown in In both models the regression coef- 
ficient for the GHQ variable is highly significant. The deviance term that 
occurs in measure lack of fit. Specifically, it is minus twice the 
difference between the maximized log-likelihood of the model and the 
maximum likelihood achievable, i.e., the maximized likelihood of the full 
or saturated model. For normal distributions, the deviance is simply the 
well-known residual sum of squares. The difference in deviance between 
two competing models can be used to compare them, by referring its 
value to a chi-square distribution with degrees of freedom equal to the 
difference in the degrees of freedom of the two models. 

Now we can use the predict function to look at the predicted values 
from each model: 

lin. predc-predict(f it. lin) 
log.pred<-exp(predict(fit.log))/(l +exp(predict(fit.log))) 
cbind(lin.pred,log.pred) 

The fitted values are shown in (Note that the first 11 equal the 
second 11 since they correspond to the same GHQ scores, 0 to lo.) A 
problem that immediately becomes apparent with the simple linear regres- 
sion model is that some of its predictions are greater than 1. A graphical 
comparison of the fits along with the observed proportions is also helpful 
here, and can be obtained as follows: 

Case<-case[l : I  l ]+case[ l2:22] 
Nocase<-nocase[l : I  I ]+nocase[ l2:22] 
Pc-Case/( Case+Nocase) 
#calculate the observed proportions of cases 
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Table 5.4 Linear and Logistic Regression Models for the Psychiatric Data 

z fit.lin c- glm(p - ghqscore) 
> fit.log <- glm(p - ghqscore, family = binomial, weights = case + nocase) 
> summary(fit.lin) 

Call: glm(formula = p - ghqscore) 
Deviance Residuals: 

Min 1Q Median 3Q Max 
-0.2150518 -0.1162369 -0.03278505 0.1217964 0.2516149 

Coefficients: 
Value Std. Error t value 

(Intercept) 0.1143407 0.05922838 1.930505 
ghqscore 0.1002370 0.01001142 10.012266 

(Dispersion Parameter for Gaussian family taken to be 0.0220503) 

Residual Deviance: 0.4410058 on 20 degrees of freedom 
Number of Fisher Scoring Iterations: 1 

Correlation of Coefficients: 

(Intercept) 
ghqscore -0.8451 543 

> summary(fit.log) 

Call: glm(formula = p - ghqscore, family = binomial, weights = case + nocase) 
Deviance Residuals: 

Null Deviance: 2.651447 on 21 degrees of freedom 

Min 1Q Median 3Q Max 
-1.768974 -0.7230615 0.12551 68 0.5306368 1.757787 

Coefficients: 

Value Std. Error t value 
(Intercept) -2.7107322 0.27243281 -9.950094 

ghqscore 0.7360353 0.09456846 7.783094 

(Dispersion Parameter for Binomial family taken to be I )  
Null Deviance: 130.3059 on 21 degrees of freedom 

Residual Deviance: 16.23682 on 20 degrees of freedom 
Number of Fisher Scoring Iterations: 5 

Correlation of Coefficients: 
(Intercept) 

ghqscore -0.7324319 
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Table 5.5 
Regression Models Fitted to the Psychiatric Data 

> lin.pred <- predict(fit.lin) 
> log.pred <- exp(predict(fit.log))/(l + exp(predict(fit.log))) 
> cbind(lin.pred, log.pred) 

Predicted Values for Linear and Logistic 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

lin.pred 
0.1 143407 
0.2145777 
0.3148147 
0.4150518 
0.5152888 
0.6155258 
0.7157628 
0.8159999 
0.91 62369 
1.01 64739 
1.1167110 
0.1 143407 
0.2145777 
0.3148147 
0.415051 8 
0.5152888 
0.6155258 
0.71 57628 
0.8159999 
0.91 62369 
1.01 64739 
1 .I 1671 10 

log.pred 
0.06234304 
0.121 88529 
0.22466904 
0.37692367 
0.55808875 
0.72500870 
0.84624903 
0.91993872 
0.95998065 
0.9804221 7 
0.99052540 
0.06234304 
0.121 88529 
0.22466904 
0.37692367 
0.55808875 
0.72500870 
0.84624903 
0.91993872 
0.95998065 
0.9804221 7 
0.99052540 

#corresponding to each GHQ score, after 
#combining over males and females 
pa r ( p t y = “s” ) 
ylimc-range( lin.pred,log.pred,P) 
p I o t (g h q s co r e [ 1 : 1 1 1, I i n . p red [ 1 : 1 1 1, x I a b =“G H Q” , 
y I a b = ‘ I  P ro b a b i I it y of c as err, type = “ I”, y I i m = y I i m ) 
#plots ghqscore against the predictions made 
#by the simple linear regression 
#model and draws a line through the points. 
lines(ghqscore[l :1 l], log.pred[l :1  l ] , l ty=2) 
#adds a dotted line for the logistic regression 
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x I I I I I I 

0 2 4 6 8 10 

GHQ 

Figure 5.1 
weighted regressions. 

GHQ data showing observations and fitted linear and locally 

#predictions 
points(ghqscore[l : I  11,P) 
#adds the observed proportions to the plot 
I e g e n d ( 0.3,l , c ( “ L i n e a r” , ” Log is t i c” ) , It y = 1 : 2) 
#adds a legend at a convenient place on the plot. 

The resulting graph is shown in We now see that in addition 
to giving predicted values greater than 1, the linear model provides a very 
poor description of the observed proportions. 

Now let’s consider sex as well as the GHQ score and compare the fit 
of the following three models. 

1. GHQ score 
2 .  GHQ score + sex 
3. GHQ score + sex + sex x GHQ score 

We now fit each of these three models using the glm function and then 
compare their fit using the anova function. 
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fit1 c-glm(p-ghqscore,family=binomial,weights=case+nocase) 
fit2e-glm 
p-g hqscore+sex,family=binomial,weig hts=case+nocase) 
fit3c- 
g I m ( p - g hq sco r e*sex, f am i I y = b i no m i a I, weight s=case+ n ocas e) 
anova(f it 1 ,f it2,f it3) 
#for logistic regression models the anova 
#function will lead to an analysis of 
#deviance table as described in McCullagh and Nelder. 

The results are shown in Comparing the difference in deviances 
of the models with a chi-square with a single degree of freedom indicates 
that both the GHQ score and gender are needed in the model but not 
their interaction. The estimated regression coefficients and their standard 
errors can be found using 

summary(fit2) 

and they are also shown in The fitted models are 

log (odds of being a case) = -2.49 + 0.78 ghqscore - 0.94 sex (5.4) 

The standard error of the regression coefficient for the GHQ score is 
0.099, so an approximate 95% confidence interval for the coefficient is 
(0.58, 0.98). An increase of 1 in GHQ score raises the log odds of being 
a case by between 0.58 and 0.98, conditional on gender. This becomes 
easier to interpret after the two limits are exponentiated so that we can 
relate the change to odds rather than log (odds): 

exp (c( 0.58,O. 98)) 

gives the interval (1.79, 2.66). So a l-unit increase in GHQ score increases 
the odds of being a case by about twofold. The same series of calculations 
for gender leads to the confidence interval for the odds ratio of being a 
case in males and females of (0.25, 0.601, conditional on the GHQ score. 
Clearly, for a given GHQ score, men are less likely to be cases than women. 

As with the multiple regression model considered in the previous 
chapter, fitting a logistic regression model is not complete without check- 
ing on model assumptions by examining the properties of some suitably 
defined residuals. There are a number of ways in which a fitted logistic 
model may be inadequate: 
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Table 5.6 Three Logistic Models for the Psychiatric Data Compared 

> fit1 <- glm(p - ghqscore, family = binomial, weights = case + 
nocase, data = ghq) 
> fit2 <- glm(p - ghqscore + sex, family = binomial, weights = case t 

nocase, data = ghq) 
> fit3 c- glm(p - ghqscore * sex, family = binomial, weights = case + 

nocase, data = ghq) 
> anova(fit1, fit2, fit3) 
Analysis o f  Deviance Table 

Response: p 

Terms Resid. Df  Resid. Dev Test Df Deviance 
1 ghqscore 20 16.2 
2 ghqscore + sex 19 11.1 +sex 1 5.12 
3 ghqscore * sex 18 8.8 +ghqscore:sex 1 2.35 

> summary(fit2) 

Call: glm(formu1a = p - ghqscore + sex, family = binomial, data = 
ghq, weights = case + nocase) 
Deviance Residuals: 

Min IQ Median 3Q Max 
-1.4 -0.394 0.188 0.432 1.33 

Coefficients: 

Value Std. Error t value 
(Intercept) -2.494 0.282 -8.85 

ghqscore 0.779 0.099 7.87 
sex -0.936 0.434 -2.16 

(Dispersion Parameter for Binomial family taken to be I) 

Null  Deviance: 130 on 21 degrees of  freedom 

Residual Deviance: 11.1 on 19 degrees of freedom 

Number of Fisher Scoring Iterations: 5 

Correlation of Coefficients: 
(Intercept) ghqscore 

ghqscore -0.611 
sex -0.220 -0.305 
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The linear function of the explanatory variables may be inadequate; 
for example, one or more of the explanatory variables may need 
to be transformed. 
The logistic transformation of the response probability may not be 
appropriate. 
The data may contain outliers that are not well fitted by the model. 
The assumption of a binomial distribution may not be correct. 

In logistic regression there are several types of residuals that may be 
useful for assessing one or other of those potential difficulties. Here, we 
shall define two and then illustrate their use on the GHQ data. We assume 
there are n observations of the form yi/n, i = 1, 2, ..., n and that the 
corresponding fitted value of y j  is j i  = n~$.  The ith row residual is then the 
difference yi - j i  and provides information about how well the model fits 
each particular observation. But because they are based on different np and 
for other reasons explained in Collett (1991), the raw residuals are difficult 
to interpret. Better are the Pearson residuals and the deviance residuals: 

Pearson residuals 

(5.5) 

Deviance residuals 

where sign(), - j i )  is the function that makes di positive when 2 j,) 
and negative when (yi > j,). 

Both residuals are best used after standardising by dividing by mi 
where hi is the ith diagonal element of the ‘hat matrix’ in logistic regression 
(see Collett, 1991). 

There are various ways of plotting the residuals that give different 
insights into possible model inadequacies. Three possibilities are as follows: 

Indexplot plot of residuals against observation number or index. 
Useful for the detection of outliers. 
Plot of residuals against values of the linear predictor. The occur- 
rence of a systematic pattern in the plot suggests the model is 
incorrect in some way. 
Plot of residuals against explanatory variables in the model may 
help to identify whether the variable needs to be transformed. 

© 2002 by Chapman & Hall/CRC
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Suitable commands for constructing each of these plots for the deviance 
residuals from the logistic regression model with the explanatory variables 
ghqscore and sex are as follows 

re s id < - r es id u a I s (fit 2, type = “d ev i a n c e ” ) 
#store deviance residuals from the 
#fitted model in resid 
resides<-resid/sqrt( 1 -Im.influence(fit2)$hat) 
#uses Im.influence to get the diagonal 
#elements of the logistic regression 
#equivalent of the hat matrix introduced 
#in Chapter 4 
par(mfrow=c(l, 3)) 
#set up plotting area to take three plots 
#side-by-side 
p I o t ( 1 : 22, re s id e s , x I a b = “0 b s e rva t i o n N 0. ” , 
y I a b= “S t a n d a rd i se d deviance re s i d u a I ” )  
p I o t ( p red i c t ( f i t 2), re s id e s , x I a b = “ P red i c t e d v a I u e” , 
y I a b = “S t a n d a r d is e d d ev i a n ce r es id u a I”) 
plot( g hqscore, resides,xlab=“G HQ”,ylab= 
“Stan d a rd is e d d ev i an ce re s i d u a I ” )  

The resulting diagram is shown in 
pattern in these residuals that would give cause for concern. 

There is no discernable 

5.3.2 Mortgage Default Data 

We assume that the mortgage default data are available as the data frame 
credit, the contents of which are shown in (The information 
about the income categories in the INCOME variable is confidential, 
although it is known that the category labels are monotone with increasing 
income. Here we shall simply use these labels as the values of a continuous 
variable in the modelling process.) 

We shall now use the Logistic Regress ion  dialog to undertake the 
logistic regression. To access this dialog: 

H Click on Statistics. 
H Select Regression.  

Select Logistic. 

In the dialog choose the credit data frame. As the dependent variable, 
select EVER90, and as independent variables, highlight FICO, LTV, 
INCOME, and CA. The dialog box now appears as shown in 
© 2002 by Chapman & Hall/CRC

Figure 5.2.

Table 5.7.

Figure 5.3.
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Figure 5.2 
sex fitted to CHQ data 

Residual plots for logistic regression model including ghqscore and 

Click OK to obtain the results shown in It appears that the 
variables FICO and LTV are of most importance in predicting mortgage 
default. Largely as an exercise in using some other S-PLUS features, we 
will now demonstrate how to construct some informative graphics for 
displaying the relationships involved. 

To display graphically the relationship between the variables FFCO 
and LTV and the probability of mortgage default, we first need to use the 
Logistic Regression dialog again to fit a model using only these two 
variables, and to save the fitted values. 

Click on Statistics. 
Select Regression. 
Select Logistic. 
Select credit data frame. 
Select EVER90 as dependent variable. 
Select FICO and LTV as independent variables. 
Click on Results tab. 
In Saved Results section choose Fitted Values, and in Save In 
slot select credit data frame. 
Click OK. 
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Figure 5.3 
data. 

logistic Regression dialog showing a model for the mortgage default 

The results will appear in a Report file and the new credit data frame, 
which now has the fitted values incorporated, is also shown: 

Highlight FICO. 
w Ctrl click on LTV. 

Ctrl click on fit. 
Click on 

to access 3D graph palette. 
Select Drop Line Scatter as shown in 

The results shown in which shows the relationship between 
the probability of mortgage default and FICO and LTV. A somewhat clearer 
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Figure 5.4.

Figure 5.5,
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Table 5.7 Contents of credit Data Frame 

> credit 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

row.labels 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

EVER90 
1 
1 
1 
1 
1 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 

FlCO LTV 
576 0.86 
678 0.90 
693 0.80 
669 0.75 
542 0.95 
566 0.95 
643 0.84 
785 0.58 
461 0.80 
785 0.85 
620 0.95 
792 0.79 
748 0.90 
661 0.75 
753 0.70 
747 0.95 
720 0.88 
717 0.89 
763 0.90 
782 0.90 
758 0.42 
697 0.80 
690 0.75 
746 0.90 
679 0.70 
767 0.80 
733 0.88 
679 0.75 
765 0.36 
678 0.95 
782 0.62 
777 0.80 
765 0.63 
769 0.59 
720 0.38 
758 0.90 
724 0.70 
611 0.90 
639 0.61 

INCOME 
5 
3 
5 
4 
4 
3 
5 
5 
4 
5 
3 
3 
4 
5 
5 
4 
5 
4 
5 
4 
5 
5 
2 
5 
5 
2 
5 
2 
3 
5 
4 
5 
5 
5 
5 
4 
5 
5 
5 

CA 
Other 

California 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 

California 
Other 
Other 
Other 

California 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
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Table 5.7 (Continued) Contents of credit Data Frame 

> credit 

40 
41 
42 
43 
44 
45 
46 
47 

49 
50 
51 
52 
53 
54 
55 
56 
57 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

48 

58 

78 

row.labels 
40 
41 
42 
43 
44 
45 
46 
47 

49 
50 
51 
52 
53 
54 
55 
56 
57 

59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 

48 

58 

78 

EVER90 
0 
1 
0 
0 
0 
0 
1 
1 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
1 
0 
1 
0 
1 
0 
0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

FlCO LTV 
761 0.50 
549 0.66 

719 0.61 

765 0.90 

603 0.95 
710 0.67 

639 0.68 

801 0.73 

598 0.95 

774 0.48 
738 0.73 

768 0.78 

766 0.87 

766 0.68 

782 0.80 

791 0.89 
650 0.85 

664 0.80 

676 0.73 

765 0.90 

729 0.90 

671 0.75 

756 0.75 

704 0.75 

762 0.62 
733 0.70 
634 0.95 
797 0.26 
624 0.90 
749 0.70 

732 0.72 

692 0.79 

687 0.95 

669 0.80 

777 0.80 
682 0.47 
772 0.80 
809 0.75 
728 0.74 

INCOME 
3 
3 
6 
5 
2 
5 
5 
4 
2 
5 
5 
3 
5 
5 
5 
4 
5 
1 
2 
2 
4 
3 
3 

4 
3 
5 
3 
5 
2 
3 
4 
5 
5 
3 
4 
5 
5 

a 

- 

CA 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 
Other 

California 
Other 
Other 

California 
California 
California 

Other 
Other 

California 
Other 
Other 

California 
California 

Other 
Other 

5 Other 
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Table 5.7 (Continued) Contents of credit Data Frame 

> credit 

79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

row.labels 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

EVER90 
0 
1 
0 
1 
0 
0 
1 
0 
0 
1 
1 
1 
0 
0 
0 
1 
0 

FICO 
669 
692 
721 
742 
687 
696 
586 
727 
725 
652 
722 
606 
761 
777 
629 
742 
752 

LTV 
0.67 
0.75 
0.75 
0.69 
0.79 
0.83 
0.90 
0.80 
0.80 
0.95 
0.80 
0.80 
0.80 
0.80 
0.29 
0.74 
0.61 

INCOME 
5 
4 
5 
5 
2 
5 
5 
3 
7 
5 
5 
4 
5 
5 
5 
3 
2 

CA 
California 

Other 
Other 
Other 
Other 

California 
Other 

California 
Other 

California 
California 

Other 
Other 
Other 
Other 
Other 
Other 

picture can be obtained by selecting Spline Surface from the 3D graphics 
palette 
We see that as FICO and LTV increase, the probability of mortgage default 
decreases. 

Here the resulting diagram is shown in 
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Figure 5.7.(Figure 5.6).
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Table 5.8 Logistic Regression Model for Mortgage Default Data 

* * *  Generalized Linear Model ***  

Call: glm(formu1a = EVER90 - FlCO + LTV + INCOME + CA, family= 
binomial(1ink = logit), data = credit, na.action = na.exclude, 
control = list(epsilon = 0.0001, maxit = 50, trace = F)) 

Deviance Residuals: 

M in  I Q  Median 3 4  Max 
-1.523824 -0.536522 -0.2340431 0.31 69709 2.565638 

Coefficients: 

Value Std. Error t value 
(Intercept) 19.0741 3721 5.564345576 3.427921 

LTV 5.69435393 2.800980222 2.032986 

CA 0.57827914 0.389452398 1.484852 

FlCO -0.03189893 0.007279867 4.381802 

INCOME -0.40185724 0.246608000 -1.629539 

(Dispersion Parameter for Binomial family taken to  be 1) 

Null Deviance: 118.4944 on 94 degrees of freedom 

Residual Deviance: 64.35339 on 90 degrees of freedom 

Number of Fisher Scoring Iterations: 5 
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Figure 5.4 3D Graphic palette showing Drop Line scatter choice. 

Figure 5.5 Plot of probability of mortgage default against FlCO and LTV. 
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Figure 5.6 3D Graphic palette showing Spline Surface choice. 

Figure 5.7 Spline surface for probability of mortgage default as a function of 
the variables FlCO and LTV. 
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Exercises 

5.1. In a logistic regression model for the GHQ data, which includes 
both the GHQ score and sex as explanatory variables, what would 
be the interpretation of the regression coefficient for sex? 

5.2. Find the standard errors of the fitted values from the logistic 
regression model for the GHQ data, which includes only the single 
explanatory variable ghqscore. Plot the fitted values showing the 
95% confidence interval. 
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Chapfer 6 

Analysing Longitudinal 
Data: Beating the Blues 

6.1 Description of Data 
The data to be used in this chapter arise from a study of an interactive, 
multimedia program designed to deliver cognitive bebavioural therapy 
(CBT) to depressed patients via a computer terminal; the data are shown 
in . Patients were randomly allocated to receive either the com- 
puter therapy program, which was known as Beat the Blues (BtB), or 
treatment as usual (TAU). The trial protocol specified recording a measure 
of depression prior to the beginning of treatment and then again 2, 3, 5 ,  
and 8 months after the start of the treatment. Note that some patients in 
the trial ‘drop-out’ and do not have a full set of four post-randomisation 
depression recordings. (I am grateful to Dr. Judy Proudfoot for allowing 
me to use these data.) 

The main question of interest about these data is whether or not the 
new computer approach for delivery of treatment for depression is effec- 
tive or not. 

6.2 Analysing Longitudinal Data 
Longitudinal data arise when participants in a study are measured on the 
same variable on several different occasions. The data in are an 
example in which depression is measured on five occasions, one before 

Table 6.1

Table 6.1
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Table 6.1 Beat the Blues Data 

group 
0 
0 
0 
1 
1 
1 
1 
0 
1 
1 
0 
0 
1 
1 
1 
1 
1 
0 
0 
0 
1 
1 
0 
1 
0 
0 
1 
1 
1 
0 
0 
0 
1 
1 
0 
0 
0 
0 
0 
1 

Pre 
25 
13 
17 
20 
23 
42 
16 
18 
15 
14 
19 
35 
41 
28 
24 
19 
26 
19 
15 
31 
19 
36 
13 
35 
26 
19 
16 
13 
18 
17 
15 
21 
19 
18 
22 
15 
21 
16 
22 
13 

m2 
12 
12 
17 
20 
12 
10 
10 
12 
7 

14 
16 
15 
8 

18 
5 
4 

21 
18 
15 
18 
4 

14 
15 
12 
29 
18 

1 
5 

10 
19 
25 
22 
3 
4 

10 
12 
15 
15 
22 
10 

m3 m5 m8 
5 7 7  

11 11 10 
15 14 14 
16 15 12 
4 6 5  
8 10 6 
7 9 2  

11 10 N A  
4 3 5  
6 5 5  
6 5 3  

10 10 11 
5 9 4  

17 NA N A  
5 6 6  
7 1 2  

12 8 4 
10 10 8 
18 15 15 
8 8 7  
3 3 3  
7 1 1  

N A  N A  NA 
10 8 10 
25 23 20 
23 23 23 

0 0 N A  
3 3 0  

10 6 8 
14 NA N A  
20 20 20 
14 13 12 
3 3 1  
4 9 NA 

13 12 14 
5 5 4  

17 8 13 
14 15 12 
22 23 24 
6 2 4  
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treatment begins and four after the start of treatment. Analysis of such 
data has become something of a growth industry in statistics, largely 
because of its increasing importance in clinical trials (see Everitt and 
Pickles, 2000). There are a number of possible approaches to the analysis 
of such data: 

Time-by-time analysis: A series of t-tests are used to test for 
differences between the two groups at each time point. (In exam- 
ples with more than two groups, a series of one-way analyses of 
variance might be used.) The procedure is straightforward but has 
a number of serious flaws and weaknesses that are detailed in 
Everitt (2001); consequently, it will not be pursued further here. 
Response feature analysis - the use of summary measures: Here 
the repeated measures for each participant are transformed into a 
single number considered to capture some important aspect of the 
participant’s response profile. The summary measure to use has to 
be decided on before analysis of the data begins and must, of 
course, be relevant to the particular questions that are of interest 
in the study. Commonly used summary measures include 
1. Overall mean 
2 .  Maximum (minimum) value 
3. Time to maximum (minimum) response 
4. Slope of regression line on time 
5. Time to reach a particular value (for example, a fixed percentage 

of baseline) 
Having identified a suitable summary measure, a simple t-test (or 
analysis of variance) can be applied to assess between group 
differences. 
Random effects model: A detailed analysis of longitudinal data 
requires consideration of models that represent both the level and 
the shape of a group’s profile of repeated measurements and also 
accounts adequately for the observed pattern of dependencies in 
these measurements. A flexible way to do this is to use regression- 
type models that include random effects for subjects, the presence 
of which allows for particular patterns of covariance between the 
repeated measures. For example, for the data in we might 
first postulate a simple random intercept model of the form 

where yVk represents the depression score for the kth patient on the jth 
post-randomisation occasion (Time,, taking values 2 ,  3, 5 ,  or 8) in the ith 
treatment group (Group, a dummy variable coding group membership), 

Table 6.1
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Po, PI,  and P2 are regression coefficients, and the etjk are error terms 
assumed to be normally distributed with zero mean and variance &. The 
ak are the patient random effect terms that model the shift in intercept 
for each subject; these are also assumed to be normally distributed, again 
with zero mean but variance 0,'. Such a model implies compound symmety 
for the covariance matrix of the repeated measures, i.e., equality of the 
correlation between each pair of repeated measures (see Everitt and Dunn, 
2001, for details). Other covariates such as pre-treatment depression score 
could be included in the model if necessary. Random effects models are 
described in detail in Pinheiro and Bates (2000). 

6.3 Analysis Using S-PLUS 
We shall begin by using the summary measure approach in the depression 
data in , and then move on to consider the fitting of random 
effects models to the data. For both, we shall concentrate on the command 
language approach. 

6.3.7 Summary Measure Analysis of the Depression Data 

The data are available in the depress data frame as shown in 
As the summary measure for these data we shall simply use the mean of 
the post-randomisation measures. To begin, we shall simply ignore the 
pretreatment depression score available for each patient. 

One question that needs to be addressed before calculating the chosen 
summary measure for each patient is what to do about those patients 
who drop out before the 8-month time point and, consequently, do not 
have all four intended post-randomisation depression measures. There are 
three possibilities: 

1. Consider only patients who do have all post-randomisation measures, 
2. Use all patients and calculate the mean of their available post- 

randomisation measures. 
3. Impute (estimate) the missing values in some way; for example, 

use the last obseruation carried forward approach (LOCF), in which 
the missing values are replaced by the last value recorded for a 
patient. 

For reasons explained in Everitt and Pickles (20001, the second option is 
the one generally recommended, and it is the one we will use here (but 
see Exercise 6.1). 

Table 6.1

Table 6.2
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Table 6.2 Contents of the Depress Data Frame 

> depress 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

subject 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

group 
TAU 
TAU 
TAU 
BtB 
BtB 
BtB 
BtB 
TAU 
BtB 
BtB 
TAU 
TAU 
BtB 
BtB 
BtB 
BtB 
BtB 
TAU 
TAU 
TAU 
BtB 
BtB 
TAU 
BtB 
TAU 
TAU 
BtB 
BtB 
BtB 
TAU 
TAU 
TAU 
BtB 
BtB 
TAU 
TAU 
TAU 
TAU 
TAU 
BtB 

Pre 
25 
13 
17 
20 
23 
42 
16 
18 
15 
14 
19 
35 
41 
28 
24 
19 
26 
19 
15 
31 
19 
36 
13 
35 
26 
19 
16 
13 
18 
17 
15 
21 
19 
18 
22 
15 
21 
16 
22 
13 

m 2  
12 
12 
17 
20 
12 
10 
10 
12 
7 

14 
16 
15 
8 

18 
5 
4 

21 
18 
15 
18 
4 

14 
15 
12 
29 
18 
1 
5 

10 
19 
25 
22 
3 
4 

10 
12 
15 
15 
22 
10 

m3 
5 

11 
15 
16 
4 
8 
7 

11 
4 
6 
6 

10 
5 

17 
5 
7 

12 
10 
18 
8 
3 
7 

NA 
10 
25 
23 
0 
3 

10 
14 
20 
14 
3 
4 

13 
5 

17 
14 
22 

6 

m5 m 8  
7 7  

11 10 
14 14 
15 12 
6 5  

10 6 
9 2  

10 NA 
3 5  
5 5  
5 3  

10 11 
9 4  

NA NA 
6 6  
1 2  
8 4  

10 8 
15 15 
8 7  
3 3  
1 1  

NA NA 
8 10 

23 20 
23 23 
0 NA 
3 0  
6 8  

NA NA 
20 20 
13 12 
3 1  
9 NA 

12 14 
5 4  
8 13 

15 12 
23 24 

2 4  
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TAU BtB 

Figure 6.1 Box plots of mean summary measure for Beat the Blues data. 

To begin, we shall calculate the chosen summary measure for each 
patient in the study and then use a box plot to display the measures 
graphically for each treatment group. 

attach (dep ress) 
depress. sm <-ap p I y (d e p ress [, 4: 7],1, me an, n a. rm=T) 
#use the apply function to get the mean of available 
#post-randomization measurements for each patient 
box p I ot (de p ress . s m [ g ro u p==”TA U”] , depress. s m [ g ro u p==“B t B”] , 
n a m es=c (“T A U” ,”B t 6”) , y I a b=“ M ea n d ep ress i o n sco re”) 

The resulting diagram is shown in . This suggests that the 
depression score is higher for the subjects receiving treatment as usual; 
this can be tested formally with an independent samples t-test. 

t . test ( d e p re s s . s m [ g ro u p = = “T A U ” I ,  d e p re s s . s m [ g r o u p = = “ B t B ” ] ) 

The results are shown in . There is a very significant difference 
between treatment groups, with the average depression score for TAU 
being between 4 and 10 points higher than that of the BtB group. 

We can take account of the pretreatment depression value in the 
summary measure approach by using the Im function to model the summary 
measure in terms of the pretreatment value and the treatment group. 

summary (I m (depress . s m - p re+g ro u p) ) 

The corresponding results are shown in . Since the default 
coding used by S-PLUS for the two levels of group is -1 for TAU and +1 

Figure 6.1

Table 6.3

Table 6.4
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Table 6.3 
Measure of Post-Randomisation Depression Values 

Results of Applying a &Test to the Mean Summary 

> t.test(depress.sm[group == “TAU”], depress.sm[group == ”BtB”]) 

Standard Two-Sample t-Test 

data: depress.sm[group == “TAU”] and depresssmlgroup == “BtB”1 
t = 4.91, df = 38, p-value = 0 
alternative hypothesis: true difference in means is  not equal to 0 
95 percent confidence interval: 

sample estimates: 
4.27 10.26 

mean of x mean of y 
14.2 6.94 

Table 6.4 Analysis of Mean Depression ScoreTaking Account 
of Pre-Randomisation DeDression Value 

> summary(lm(depress.sm - pre + group)) 

Call: Im(formula = depresssm - pre + group) 
Residuals: 

M in  1Q Median 3 4  Max 
-7.231 -3.032 -0.667 1.929 10.06 

Coefficients: 

Value Std. Error t value Pr(>ltl) 
(Intercept) 8.5452 2.2530 3.7928 0.0005 

pre 0.0948 0.0997 0.9511 0.3477 
group -3.7639 0.7542 4.9907 0.0000 

Residual standard error: 4.688 on 37 degrees of freedom 
Multiple R-Squared: 0.4023 
F-statistic: 12.45 on 2 and 37 degrees of freedom, the p-value 

is 0.00007319 

Correlation of Coefficients: 

(Intercept) Pre 
Pre -0.9443 

group 0.1 747 -0.1850 
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for BtB, the regression coefficient for group and its standard error need 
to be doubled to give the estimated treatment effect adjusted for pretreat- 
ment depression, and the appropriate confidence interval for the effect. 
Consequently, a 95% confidence interval for treatment effect is (-7.53 - 
1.96 x 1.51, -7.53 + 1.96 x 1.511, i.e., (-10.50, -4.57). Beat the Blues is 
estimated to reduce the depression score by between 10 and 5 points on 
average. Pretreatment score appears to have little effect on the scores 
post-treatment. 

6.3.2 Random Effects Models for the Depression Data 
Before undertaking the formal modelling of the depression data, it may 
be useful to consider some informative graphical displays. According to 
Diggle et al. (19941, there is no single prescription for making effective 
graphical displays of longitudinal data, although they do offer the following 
simple guidelines: 

Show as much of the relevant raw data as possible, rather than 
only data summaries. 
Highlight aggregate patterns of potential scientific interest. 

W Identify both cross-sectional and longitudinal patterns. 
Make easy identification of unusual individuals or unusual obser- 
vations. 

Two graphical displays of the depression data that meet some of these 
requirements will now be constructed using the S-PLUS command lan- 
guage, the first a plot of individual patient profiles and the second a plot 
of group means and standard deviations: 

It<-rep( 1,40) 
It [ g ro u p= =“ B t B”] c - 2 
#set up vector It with values 1 for TAU and 2 for BtB 
mat p I o t (c ( 0,2,3,5,8), t (d e p re s s [ ,3 : 7]), t y p e = “I”, 
It y = It , axes = F , x I a b =“V i s it” , y I a b = “ D e p re s s i o n ’ I ,  

co l= l )  
#use the matplot function to plot each patient’s profile 
#of depression values, setting the line type to 1 for TAU 
#and to 2 for BtB using the previously constructed vector 
#It. Labels but does not draw x or y axes 
axis ( 1 , at =c (0,2,3,5,8), I a b e I s=c (“ p re”, ” m 2”, 
Urn 3” , 3 ,  rn 5 I, , !> 

8 , I ) )  
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Figure 6.2 
treatment group. 

Individual participant profiles for the Beat the Blues data identifying 

#adds x-axis with tick marks at appropriate 
#points and suitably labelled 
axis(2) 
I e g e n d ( I o c a t o r ( 1 ) , c ( “T A U ” , ” B t B ” ) , It y = 1 : 2) 
#adds y-axis and a legend interactively 

The resulting plot is shown in . The tendency for the profiles 
of the patients given the BtB treatment to be lower throughout the post- 
randomisation visits is clearly visible. 

Now let us consider constructing a plot of the group means with 
standard deviation bars shown: 

m 1 c -a p p I y ( d e p re s s [ g r o u p = = “T A U ” ,3 : 7],2, m e a n , n a. r m =T ) 
sic- 
s q r t (a p p I y (d e p re s s [ g ro u p = =“TA U ” , 3  : 7],2, v a r , n a. action = ‘‘0 m it”) 
m 2 c - a p p I y ( d e p re s s [ g r o u p = = “ B t B” ,3 : 7],2, m e a n , n a. r m =T) 
s2 c - sq r t ( a p p I y (d e p re s s [ g ro u p = = “ B t B ’ I ,  3 : 7],2, va r , 
na.action=“omit”)) 
#calculate means and standard deviations of 
#each group 
times c-c(0,2,3,5,8) 
ylimc-range(m1 +sl ,m2+s2,ml - s l  ,m2-s2) 
#store values for x-axis in times and a 

Figure 6.2
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#suitable range for the y-axis in ylim 
plot(ti mes, m 1 , type=“l”,axes=F, ylim=ylim, 
x I a b = “V i s i t” , y I a b = D e p re s s i o n”) 
I i n e s ( t  i m es , m 2, I ty=2) 
#plots the mean profiles of each group with 
#different line types 
ax i s ( 1 , at = t i m e s , I a b e I s = c ( “ p re”, ” m 2”, ” m 3”, ” m 5”, ” m 8”) ) 
axis(2) 
#add x and y axes 
#now the segments function will be used to 
#add standard deviation bars to the plot 
#need to ensure that for the group with the highest 
#mean value at a particular time point to 
#standard deviation line goes upwards, and 
#for the group with the lower mean downwards. 
pm<-compare(m1 ,m2) 
m l s l < - m l + p m * s l  
m2s2<-m2-pm*s2 
#compare returns a vector of +1, -1, and 0s 
#depending on the differences between the corresponding 
#elements of m l  and m2 
segments(times,ml ,times,ml s l )  
segments(times-0.1 , m l s l  ,times+O.l , m l s l )  
segments (t i mes, m2, t i mes, m2s2) 
segments(times-0.1 ,m2s2,times+O.l ,m2s2) 
I e g e n d ( I oc a t o r ( 1 ) , c ( “T A U ” , ” B t B ” ) , It y = 1 : 2) 

The resulting diagram is shown in . On average, the depression 
values for patients given the BtB treatment are lower on each post- 
randomisation visit than those given treatment as usual. 

Now we move on to consider the fitting of random effect models to the 
depression data using the Ime function. The first step is to rearrange the 
data so that the values of the four post-randomisation depression measures 
of each patient are stacked into one long vector, and then the values of 
the subject identifier, time of measurement, treatment group, and pretreat- 
ment depression need to be replicated in accordance with this new arrange- 
ment of the response variable. Suitable commands are as follows: 

Depression~-as.vector(as.matrix(t(depress[,4:7))) 
#stacks the repeated depression values into a single vector 

Figure 6.3
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Figure 6.3 
group in the Beat the Blues data. 

Plot of mean profiles and standard deviations for each treatment 

#after transposing using the t function 
Group<-rep(group,rep(4,40)) 
Pre<-rep(pre,rep(4,40)) 
Subjectc-rep(subject, rep(4,40)) 
Time<-rep(c(2,3,5,8),40) 
depress.new<-data.frame(Subject,Group,Pre,Time, Depression) 
#the rep function is used to replicate the 
#explanatory variables, subject number and 
#time of measurement appropriately and then the 
#rearranged values are combined into a new 
#data frame. 

The first 20 rows of depressmew are shown in 
To begin, we shall fit the random effects model described by 

Equation 6.1 with the addition of the pretreatment depression value as an 
extra covariate. 

fit 1 c - I me ( Depression - P re + G ro u p +T i m e , method = “M L” , 
random=-1 ISubject,data=depress.new,na.action= 
na.omit) 
#Depression is modelled in terms of the pretreatment 
#value, treatment group, and time of measurement 

Figure 6.5
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Table 6.5 
Random Effect Models (Data for Five Patients) 

Beat the Blues Data Rearranged for Fitting 

Subject 
1 1 
2 1 
3 1 
4 1 
5 2 
6 2 
7 2 
8 2 
9 3 

10 3 
11 3 
12 3 
13 4 
14 4 
15 4 
16 4 
17 5 
18 5 
19 5 
20 5 

Group 
TAU 
TAU 
TAU 
TAU 
TAU 
TAU 
TAU 
TAU 
TAU 
TAU 
TAU 
TAU 
BtB 
BtB 
BtB 
BtB 
BtB 
BtB 
BtB 
BtB 

Pre 
25 
25 
25 
25 
13 
13 
13 
13 
17 
17 
17 
17 
20 
20 
20 
20 
23 
23 
23 
23 

Time 
2 
3 
5 
8 
2 
3 
5 
8 
2 
3 
5 
8 
2 
3 
5 
8 
2 
3 
5 
8 

Depression 
12 
5 
7 
7 

12 
I1 
11 
10 
17 
15 
14 
14 
20 
16 
15 
12 
12 
4 
6 
5 

#the random argument specifies a single random 
#effect for each ‘group’ of response values 
#the ‘group’ here being subject. 
sum mary(f i t 1 ) 

The results are shown in . Both the treatment group and time- 
fixed effects are very significant whilst the pretreatment score effect is 
again nonsignificant. The estimated standard deviation of the random 
intercept effects is 4.226 and the corresponding value for the residual 
terms is 2.738. 

Now consider a model with a random intercept and random slope for 
each patient: 

fit 2<- I me (D e p ress io n - P re+G ro u p+Ti me , met h od=“M L” , 
random-TimelSubject,data=depress.new,na.action = 
na.omit) 
summary (f i t2) 

Table 6.6
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Table 6.6 Results of Fitting Random Intercept Model to Beat 
the Blues Data 

> summary(fit1) 
Linear mixed-effects model fit by maximum likelihood 
Data: depressnew 

Al C BIC IogLik 
830.8885 848.9523 409.4443 

Random effects: 
Formula: - 1 I Subject 

(Intercept) Residual 
Std Dev: 4.22594 2.737807 

Fixed effects: Depression - Pre + Group + Time 

Value Std.Error DF t-value p-value 
(Intercept) 11.23785 2.215434 109 5.072525 <.0001 

Pre 0.10093 0.096079 37 1.050468 0.3003 
Group -3.76292 0.727953 37 -5.169180 <.0001 

Time -0.66767 0.102413 109 -6.519347 <.0001 

Correlation: 

(Intr) Pre Group 
Pre -0.925 

Group 0.164 -0.178 
Time -0.186 -0.012 -0.001 

Standardized With in-G rou p Residuals: 

Min Ql Med 4 3  Max 
-1.825689 -0.5614503 -0.07627247 0.5261911 3.095711 

Number of Observations: 150 
Number of Groups: 40 

The results are given in . The tests for the fixed effects in the 
model have results very similar to those for the random intercept model 
as do the estimated standard deviations for the random intercept terms 
and the residual terms. The estimated standard deviation of the random 
slope effects is 0.363. 

Table 6.7

© 2002 by Chapman & Hall/CRC 109



© 2002 by Chapman & Hall/CRC

Table 6.7 Results of Fitting Random intercept and Random 
Slope Model to Beat the Blues Data 

> summary(fit2) 
Linear mixed-effects model fit by maximum likelihood 
Data: depress.new 

AIC BIC IogLik 
833.3486 857.4337 -408.6743 

Random effects: 
Formula: - Time I Subject 
Structure: General positive-definite 

StdDev Corr 
(Intercept) 4.4034190 (Inter 

Time 0.3632755 -0.277 
Residual 2.5745429 

Fixed effects: Depression - Pre + Group + Time 

Value Std.Error DF t-value p-value 
(Intercept) 11.16996 2.215142 109 5.042547 <.0001 

Pre 0.10368 0.095911 37 1.081000 0.2867 
Group -3.73918 0.726462 37 -5.147112 <.0001 

Time -0.66474 0.114392 109 -5.811035 <.0001 

Correlation: 
(Intr) Pre Group 

Pre -0.924 
Group 0.164 -0.179 

Time -0.196 -0.011 -0.002 

Standardized Within-Group Residuals: 

M in  Q1 Med 4 3  Max 
-1.938337 -0.5395204 -0.1 078871 0.4987325 2.795758 

Number of Observat'ions: 150 
Number of Groups: 40 

We can assess whether the random intercept and random slopes model 
fits better than the simpler random intercepts model using the anova function. 

anova(fit1 ,fit2) 
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Table 6.8 Comparing Random Effects Models 

z anova(fit1, fit2) 
Model df AIC BIC IogLik Test L.Ratio p-value 

fit1 1 6 830.8885 848.9523 -409.4443 
fit2 2 8 833.3486 857.4337 -408.6743 1 vs 2 1.53987 0.463 

Table 6.9 Confidence Intervals for Parameters in 
Random Intercept Model for Beat the Blues Data 

> intervals(fit1) 
Approximate 95% confidence intervals 

Fixed effects: 

lower est. upper 
(Intercept) 6.90586774 11.2378455 15.5698233 

Pre -0.09113376 0.1009282 0.2929902 
Group -5.21809383 -3.7629201 -2.3077463 

Time -0.86791956 -0.6676652 -0.46741 08 

Random Effects: 
Level: Subject 

lower est. upper 
sd((1ntercept)) 2.987841 4.22594 5.977081 

Within-group standard error: 

lower est. upper 
2.27141 2.737807 3.29997 

giving the results in 
not represent an improvement in this case. 

intercept model using the intervals function. 

. Clearly, the more-complicated model does 

We can find confidence intervals for the parameters of the random 

in tervals(f i t 1 ) 

gives the confidence intervals shown in . (Remember that the 
confidence interval given for the treatment group is based on the -1,l 
coding used by default.) 

Now we need to examine the residuals from the fitted model to check 
the various assumptions made. A plot of standardised residuals against 

Table 6.8

Table 6.9
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Fitted values 

Figure 6.4 Plot of standardised residuals from random intercept model for Beat 
the Blues data. 

fitted values, for example, can be used to assess the assumption of constant 
variance of the E ~ :  

plot(fit1) 

The plot is shown in . In this plot we are looking for a systematic 
increase (or, less commonly, a systematic decrease) in the variance of the 
residuals as the fitted values increase. If this is present, the residuals on 
the right-hand side of the plot will have a greater vertical spread than 
those on the left, forming a horizontal wedge-shaped pattern. There is 
no such pattern in 

The assumption of normality for the error terms can be assessed by a 
normal probability plot of the residuals produced by the qqnorm function: 

qqnorm(fit1 ,-resid(.)lGroup) 
#the second argument specifies the residuals 
#from the fitted model and plotting by 
#treatment group 

The resulting plot is shown in 
departure from normality in either group. 

. There is little evidence of a 

Figure 6.4

Figure 6.4

Figure 6.5
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Figure 6.5 
intercept model fitted to the Beat the Blues data. 

Normal probability plot of standardized residuals from a random 

Lastly, we can assess the normality assumption of the estimated random 
effects (how these are estimated is described in Pinheiro and Bates, 20001, 
again by using the qqnorm function: 

qqnorm(fit1 ,-ranef(.)lGroup) 

giving 
from the assumption. 

. Again, there is no evidence of any serious departure Figure 6.6
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-5 b 
Random effects 

Figure 6.6 Normal probability plot of estimated random effects in a random 
intercepts model fitted to the Beat the Blues data. 

Exercises 

6.1. 

6.2. 

6.3. 

The box plot shown in suggests that the mean summary 
measure does not have the same variance in each treatment group 
and, consequently, violates at least one of the assumptions made 
by the t-test applied in the text. Investigate the use of the t-test 
function in a version that does not make this homogeneity of 
variance assumption. 
Apply the mean summary measure approach to the depression 
data after excluding all patients who do not have all four intended 
post-randomisation depression values. 
Apply the mean summary measure approach to the depression 
data after replacing missing values with the last observation carried 
forward. 

Figure 6.1
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Chapter 7 

Non I inear Regression 
and Maximum 
Likelihood Estimation: 
Athletes and Geysers 

7.1 Description of Data 
In this chapter we shall examine the functions available in S-PLUS for 
numerical optimisation in the context of both nonlinear regression and 
maximum likelihood estimation. To illustrate the former we shall use the 
data shown in , which show times in seconds recorded by the 
winners of the men’s Olympic 1500-m event from 1900 to 2000 (there 
were no Olympic Games in 1916, 1940, and 1944). Interest here will centre 
on fitting a particular regression model to the data that might be used to 
predict future winning times, and the ultimate time achievable. 

As an example of the application of maximum likelihood estimation in 
S-PLUS we shall estimate the parameters of a normal mixture distribution 
(see Everitt and Hand, 1981) fitted to the data in . These data 
consist of the waiting times between successive eruptions of the Old Faithful 
geyser in Yellowstone National Park, Wyoming, USA. There were 300 erup- 
tions observed in the period of observation (August 1 to 15, 19851, so 

contains 299 waiting times measured in minutes. Table 7.2

Table 7.2

Table 7.1
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Table 7.1 Olympic 1500-m 
Winning Times (men) 

Year 
1900 
1904 
1908 
1912 
1920 
1924 
1928 
1932 
1936 
1948 
1952 
1956 
1960 
1964 
1968 
1972 
1976 
1980 
1984 
1988 
1992 
1996 
2000 

Time 
246.00 
245.40 
243.40 
236.80 
241.80 
233.60 
233.20 
231.20 

225.20 
225.20 
221.20 
215.60 
218.10 
214.90 
21 6.30 
21 9.20 
21 8.40 
21 2.50 
215.96 
220.12 
21 5.78 
21 2.07 

227.80 

7.2 Nonlinear Regression and Maximum 
Likelihood Estimation 

An examination of the 1500-m times shows that they are improving 
(decreasing) over time. From physiological consideration it is clear that 
there is a lower limit to the times. Such considerations led Chatterjee and 
Chatterjee (1982) to suggest the three-parameter exponential for modelling 
this type of athletic records data. The model is as follows: 

E(time) = 8, + 8, exp[O,(Year - 1900)] (7.1) 

All three parameters in the model have meaningful interpretations: 
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8, is the ultimate limit. 
8, is the amount by which the first record (i.e., for year 1900) 
exceeds the ultimate limit. 
8, is the constant proportional rate of decline in the record series 
towards the ultimate limit. 

The three parameters can be estimated by minimizing the sum of squares 
of the differences between the observed values of the 1500-m times and 
those predicted by the assumed model. 

For the geyser eruption data we shall investigate whether there is any 
evidence of multimodality in the data by fitting a mixture of two normal 
densities, i.e., the density function given by 

where 

Table 7.2 Waiting Times (minutes) for Eruption of Old Faithful 

80 71 57 80 75 
60 83 65 82 84 
75 65 76 58 91 
87 49 80 60 92 
80 61 82 48 81 
81 74 59 81 66 
50 88 62 93 56 
77 53 80 55 87 
71 77 76 94 75 
79 75 78 64 80 
75 78 87 69 55 
57 90 62 87 78 
50 88 50 84 74 
69 92 68 87 61 
74 72 82 74 80 
89 45 93 72 71 
57 87 68 86 75 
76 62 83 50 85 
47 87 51 78 54 

77 
54 
50 
43 
73 
87 
89 
53 
50 
49 
83 
52 
76 
81 
49 
54 
73 
78 
87 

60 
85 
87 
89 
62 
53 
51 
85 
83 
88 
49 
98 
65 
55 
91 
79 
53 
78 
52 

86 
58 
48 
60 
79 
80 
79 
61 
82 
54 
82 
48 
89 
93 
53 
74 
82 
81 
85 

77 56 81 50 89 54 90 73 
79 57 88 68 76 78 74 85 
93 54 86 53 78 52 83 60 
84 69 74 71 108 50 77 57 
54 80 73 81 62 81 71 79 
50 87 51 82 58 81 49 92 
58 82 52 88 52 78 69 75 
93 54 76 80 81 59 86 78 
72 77 75 65 79 72 78 77 
85 51 96 50 80 78 81 72 
57 84 57 84 73 78 57 79 
78 79 65 84 50 83 60 80 
49 88 51 78 85 65 75 77 
53 84 70 73 93 50 87 77 
86 49 79 89 87 76 59 80 
65 78 57 87 72 84 47 84 
93 77 54 96 48 89 63 84 
78 76 74 81 66 84 48 93 
58 88 79 
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In this density there are five parameters to estimate: the mixing proportion, 
p ,  and the means, p, and p2, and standard deviations, (T, and 02, of each 
component normal density. If such a density function does provide a 
good description of the eruption data, it implies something fundamental 
about the mechanism of the eruption process. 

To estimate the five parameters in Equation 7.2 we shall use maximum 
likelihood, maximizing the log-likelihood of n observations x,, . . . , x,, from 
f ( x ) ,  in (7.2) i.e., 

(7.3) 
i = l  

7.3 Analysis Using S-PLUS 
Both the nonlinear regression and maximum likelihood estimation described 
in the previous section require the numerical optimisation of some specified 
function. In S-PLUS there are a number of functions available for such 
optimisation; here we illustrate the use of two of these, nls and nlminb. 

7.3.1 Modelling the Olympic 1500-m Times 

To estimate the three parameters in the nonlinear model specified in 
Equation 7.1 we shall use the nls function in S-PLUS. This function 
estimates parameters by minimizing the sum of squares of differences 
between the response and the model prediction. The data are available 
in an S-PLUS data frame Olympic. To begin, we shall store initial values 
of the three parameters, 8,, e2, and 8, along with this data frame. 

pa ram (0 I y m p i c, "theta 1 ") c-20 0 
para m (0 I y m pic, "the t a2") c-40 
para m (0 I y m pic, "the t a3") c- -0.0 1 
#these starting values are suggested by the 
#results in Chatterjee and Chatterjee, 1982. 

The contents of the amended version of Olympic are shown in 
We can now estimate the parameters using the nls function: 

0lympic.fitc-nls(Time-theta1 +theta2*exp(theta3*(Year - 
1900)),01ympic) 
#Formula used to specify the nonlinear model 
Olympic.fit$parameters 
#this object contains final values of parameters. 

Table 7.3
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Table 7.3 Contents of Olympic 
Data Frame 

Parameters: 
$thetal: 
111 200 

$t heta2: 
[I1 40 

$theta3: 
[I] -0.01 

Va r i a b I e s : 

1 
2 
3 
4 
5 
6 
7 
8 
9 

I0 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

Year Time 
1900 246.00 
1904 245.40 
1908 243.40 
1912 236.80 
1920 241.80 
1924 233.60 
1928 233.20 
1932 231.20 
1936 227.80 
1948 225.20 
1952 225.20 
1956 221.20 
1960 215.60 
1964 21 8.1 0 
1968 214.90 
1972 21 6.30 
1976 21 9.20 

1984 212.50 
1988 215.96 
1992 220.12 
1996 215.78 
2000 212.07 

1980 21 8.40 

The results are shown in . To obtain parameter estimates using 
a different set of initial values we need to use the start argument of nls, 
for example, 

Table 7.4
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Table 7.4 
to 1500-m Times Using Two Sets of Starting Values 

Final Parameter Estimates for Model Fitted 

(1) Starting values 1: 8, = 200, 8, = 40, 8, = -0.01 
thetal theta2 theta3 

Estimated values 206.0838 41.86718 -0.01733334 

(2) Starting values 2: 8, = 180, 8, = 30, 8, = -0.02 
thetal theta2 theta3 

Estimated values 206.0941 41.85928 -0.01734269 

Olympic.fit1 <-nls(Time-theta1 +theta2*exp(theta3*(Year - 
1900)),start = list(theta1 = 180,theta2 = 30,theta3 = -0.02), 
0 I y m p i c) 
Olympic.fit1 $parameters 

The results obtained with these starting values are also shown in 
They are almost identical to those obtained with the first set of starting values. 

We can now examine the fit of the model graphically by plotting the 
original observations and adding the predicted values from the fitted model. 

attach (0 I y m p i c) 
plot (Y ear ,Ti m e) 
lines(Year,predict(Olympic.fit)) 

The graph is shown in 
One way to obtain confidence intervals for the estimated parameters 

is to use the bootstrap approach, which is described in detail in Efron 
and Tibshirani (19931, but which consists essentially of repeated sampling 
of the data with replacement, followed by calculation of the parameters 
for each such bootstrap sample. In this way empirical distributions of the 
parameters can be constructed from which confidence intervals can be 
determined from the appropriate quantiles, i.e., 2.5 and 97.5% for a 95% 
confidence interval. In S-PLUS bootstrapping is available by using the 
bootstrap function 

. The fit appears to be very good. 

set.seed( 962) 
#to ensure readers have same set of random samples 
Olympic. bootc-bootstrap(Olympic,nls(Time-theta1 + 
theta2*exp(theta3*(Year - 1900)),01ympic)$parameters, B = 
1000) 
#we use 1000 bootstrap samples; starting 

Table 7.4

Figure 7.1
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1900 1920 1940 1960 1980 2000 

Year 

Figure 7.1 
prediction. 

Plot of Olympic 1500-m times and three-parameter exponential 

#values in each case will be the parameter 
#values stored with the Olympic data frame 
summary (01 y m p ic. boot) 
plot(0lympic. boot) 

The numerical results are shown in 
butions of the parameters are shown graphically in 
ical percentiles lead to 95% confidence intervals as follows: 

and the constructed distri- 
. The empir- 

The BCa (bias corrected accelerated) confidence intervals, which are based 
on an improved procedure described in Efron and Tibshirani (19931, are 
very similar. 

7.3.2 Estimating the Parameters in a Mixture Fitted 
to the Geyser Eruption Data 

Here we shall use the nlminb function to estimate the parameters in a 
mixture of two normal densities fitted to the geyser eruption data, using 
maximum likelihood. First we need to write an S-PLUS function to evaluate 

Table 7.5
Figure 7.2
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Table 7.5 Bootstrap Results for Olympic 1500-m Times 

> summary(boot) 
Call: 
bootstrap(data = Olympic, statistic = nls(Time - thetal + theta2 * 
exp(theta3 * (Year - 1900)), Olympic)$parameters, B = 1000) 

Number of Replications: 1000 

Summary Statistics: 
Observed 

thetal 206.08380 
theta2 41.86718 
theta3 -0.01 733 

Empirical Percentiles: 
2.5% 

thetal 192.79244 
theta2 35.59040 
theta3 -0.02711 

BCa Confidence Limits: 

thetal 194.23732 
theta2 34.71 046 

2.5% 

theta3 -0.02608 

Bias 

1.3503861 
-0.6986649 

-0.0006773 

5 yo 
196.08406 
36.70991 
-0.02495 

5 yo 
196.881 47 
35.72474 
-0.02399 

Correlation of Replicates: 

thetal theta2 theta3 
thetal 1.0000 -0.7339 -0.7976 
theta2 -0.7339 1 .OOOO 0.2300 
theta3 -0.7976 0.2300 1.0000 

Mean SE 
205.38513 5.355482 
43.21757 5.764726 
-0.01801 0.004886 

95% 
212.39022 
52.87415 
-0.01199 

95% 97.5% 
212.69860 213.82443 
50.23496 53.32543 
-0.011 71 -0.01062 

the log-likelihood for any values of the five parameters. We shall call this 
function LL. 

LLc-function(params,data){ 
#params contains the five parameter values of 
#the mixture density in the order, p, m u l ,  
#sigmal,  mu2, sigma2, and data contains 
#the observed values - in our example the 
#eruption waiting times 
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Figure 7.2 Bootstrap distributions of the three parameters in the three-parameter 
exponential distribution fitted to the Olympic 1500-m times (1 000 bootstrap 
samples used). 

t l  ~-dnorrn(data,params[2],params[3]) 
t2c-d n o rm (da ta, pa rams [ 41, pa rams [ 51) 
#evaluate the two normal densities using the 
#dnorm function 
fc-params[ l ] * t l+( l  -params[l])*t2 
#evaluate the mixture density for all 
#sample values 
Ilc-sum( log(f)) 
#evaluate the log-likelihood 
- 1 1  
#nlminb needs a function to minimize so 
#we set the value returned by LL to 
#minus the value of the log-likelihood 
I 

We assume the eruption waiting times are available in a vector geyser, 
and first we will need to examine a histogram of the data to get initial 
values for the five parameters in the mixture. 

hi st (g e yse r) 
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- Filled twocomponent mixture density 
. . . . . . . . Filted single normal density 

.... 
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Eruption times 

Figure 7.3 
for geyser eruption waiting times. 

Fitted single normal distribution and two-component normal mixture 

The resulting histogram is shown in (the fitted curves in the 
figure are explained later). Two modes are clearly visible, and reasonable 
starting values for the five parameters might be p = 0.5, pI = 50, (3, = 10, 
p2 = 80, and o2 = 10. 

Now we can fit the mixture distribution to the eruption waiting times, 
stored in the vector, geyser, using the nlminb function. 

geyser. resc-nlmin b(  c( 0.5,50,10,80,10), LL, 
data = geyser,lower = ~ (0 .0001  ,-lnf,0.0001, 
-lnf,O.OOOi),upper = c(0.9999,lnf,lnf,lnf, Inf)) 
#starting values of p = 0.5, mu1 = 50, s igmal = 10, 
#mu2 = 80 and sigma2 = 10 
#LL is the function to be minimized 
#and data is the extra argument used 
#by this function 
#lower bound for p is set at 0.0001 and 
#for s igmal and sigma2 0.0001. 
#an upper bound of 0.9999 is set for p 
#all other bounds are set at infinity 

This returns geyser.res, which is an S-PLUS list object containing a variety 
of information about the optimisation process. Of most interest are the 
values of the estimated parameters found from 

Figure 7.3
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geyser.res$parameters 

giving 

[ l l  0.3075936 54.2026523 4.9520039 80.3603088 7.5076321 

(Fewer decimal places could be obtained by using the options function, 
for example, options(digits = 3).) 

The fit of the mixture can be assessed by superimposing the fitted 
density onto a histogram of the observed eruption times. 

x<-seq(40,120,length = 100) 
#use the seq function to create a vector 
#of 100 values between 40 and 120 at which 
#to plot estimated mixture density 
p<-geyser.res$parameters[ 1 ] 
mu 1 <-geyser. res$parameters[2] 
s i g 1 <- g e yse r . res$ pa ram e t e rs [ 31 
m u 2< -g e yse r . res$ pa ram e t e rs [ 41 
sig2<-geyser. res$ paramete rs[ 51 
f<-pdnorm(x,mul ,s ig l  )+( 1 -p)dnorm(x,mu2,sig2) 
# f  contains fitted mixture densities corresponding 
#to the values in x 
hist(geyser,probability = T,col = 0,ylab = “Density”, 
ylim = c(0, 0.03),xlab = “Eruption waiting times”) 
#constructs histogram without colour or shading 
#and as a density function 
lines(x,f) 
#adds estimated density to histogram 

The resulting curves are shown in . It is clear that the fitted 
mixture describes the eruption waiting times very well. 

We can estimate the standard errors of the five parameters by again 
using a bootstrap approach. We first construct an S-PLUS function that 
returns the values of the five parameters for each bootstrap sample taken: 

fit1 <-function(data,start){ 
#data is a vector of sample values 
#start is a vector of 5 starting values for 
#the five parameters of the mixture; the mixing 
#proportion is constrained to be in the interval 0.0001 

Figure 7.3
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#0.9999 
data.res<-nIminb(start,LL,data = data,lower = c 
0.0001 ,NA,0.0001 ,NA,O.OOOl),upper = c(  
0.9999, N A, N A,  N A, N A)) 
#estimate the five parameters 
result <- data.res$parameters 
result 
1 

Now the bootstrap can be applied; here we shall use 500 samples (be 
patient when running this portion of code - it takes some time!). 

set.seed(9831) 
geyser. boot<-bootstrap(geyser,fitl ,args.stat = 
list(start = c(0.05, 50, 10, 80, lO)),B = 500) 
#takes 500 bootstrap samples and estimates 
#the mixture parameters for each using the 
#same starting values for each 
summary(geyser. boot) 
plot( boot) 

The results are shown in 
95% confidence intervals for the five parameters are 

and . In this case the estimated 

p:  [0.245,0.3651 
p,: [52.500, 55.7321 
c1: [4.952, 0.5271 
p2: [78.994, 81.6741 
0,: [6.385, 8.7921 

(Note that some samples cause problems for the estimation process 
because of the singularity problem described in Everitt and Hand, 1981; 
see also Exercise 7.3). 

Figure 7.4 Table 7.6
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Figure 7.4 Bootstrap distributions for the five parameters in the two-component 
normal mixture fitted to the geyser eruption waiting time data; f i t l  1 i s  the mixing 
proportion, f i t l  2 i s  the mean of the first component, fitl 2 i s  the standard deviation 
of the first component, fit14 is  the mean of the second component, and fit15 i s  
the standard deviation of the second component. 
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Table 7.6 Bootstrap Results for Geyser Waiting Times 

> summary(boot) 
Call: 
bootstrap(data = geyser, statistic = fitl, B = 500, argsstat = list( 

start = c(0.5, 50, 10, 80, 10))) 

Number of Replications: 500 

Summary Statistics: 
0 bse rved Bias Mean SE 

fitll 0.3076 -0.002743 0.3049 0.03222 
fit12 54.2027 -0.077846 54.1 248 0.82236 
fit13 4.9520 -0.129478 4.8225 0.52680 
fit14 80.3603 -0.036408 80.3239 0.69097 
fit15 7.5076 0.005208 7.5128 0.61591 

Em pi rical Percentiles: 

fitll 0.2451 0.2541 0.354 0.3648 
fit12 52.4997 52.7917 55.422 55.7321 
fit13 3.8153 3.9642 5.675 5.8460 
fit14 78.9938 79.2288 81.425 81.6744 
fit15 6.3848 6.6201 8.654 8.7921 

2.5% 5 % 95% 97.5% 

BCa Confidence Limits: 

fitll 0.2515 0.2606 0.3611 0.373 
fit12 52.5957 52.8893 55.5269 55.765 
fit13 4.0611 4.2227 5.9302 6.082 
fit14 78.9484 79.2066 81.3629 81.539 
fit15 6.6189 6.7132 8.7762 9.005 

2.5% 5% 95% 97.5% 

Correlation of Replicates: 

fitll fit12 fit13 fit14 fit15 
fitll 1.0000 0.4554 0.4573 0.3137 -0.3666 
fit12 0.4554 1.0000 0.7401 0.4760 -0.4981 
fit13 0.4573 0.7401 1.0000 0.4995 -0.5305 
fit14 0.3137 0.4760 0.4995 1.0000 -0.4802 
fit15 -0.3666 -0.4981 -0.5305 -0.4802 1.0000 
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Exercises 

7.1. Investigate the residuals from fitting the model in Equation 7.1 to 
the Olympic records data. Is there any evidence of problems with 
the model? 

7.2. Investigate the use of different numbers of bootstrap samples when 
finding confidence intervals for the parameters in the three param- 
eter exponential model for the Olympic record data. 

7.3. The mixture model in Equation 7.2 can give rise to singularity 
problems when fitted to data - essentially this means that the 
likelihood function tends towards infinity for reasons described in 
Everitt and Hand (1981). One solution is to constrain the two 
variances in the model to be the same. Fit such a model to the 
geyser eruption waiting times and construct a diagram showing a 
histogram of these times plus the two-fitted models (equal and 
unequal variances). Add an appropriate legend. 
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Chapter 8 

Survival Analysis: Motion 
Sickness and Bird Survival 

8.1 Description of Data 
Two data sets will be used in this chapter. The first, shown in , 
arises from a research programme investigating motion sickness at sea. 
Human subjects were placed in a cubical cabin mounted on a hydraulic 
piston and subjected to vertical motion for 2 hours. The length of time 
until each subject first vomited was recorded. Some subjects requested an 
early stop to the experiment and some lasted the whole 2 hours without 
vomiting. (See Burns, 1984, for full details of the study.) 

Our second data set is shown in . These data arise from 
50 female black ducks from two locations in New Jersey that were captured 
and fitted with radios. The ducks were captured over a period of about 
4 weeks and included 31 hatch-year birds (birds born during the previous 
breeding season) and 19 after-hatch birds (birds at least 1 year of age). 
The status (alive, missing, or dead) of each bird was recorded daily from 
the date of release until the end of the study. For some of the birds, death 
was not observed during the period of the study. Full details of the study 
are given in Pollock et al. (1989). 

Both these data sets involve time to the occurrence of a particular 
event (vomiting in 1. Such data are generally 
referred to by the generic term survival data even when the end point 
or event being considered is not death. Such data generally require special 
techniques for analysis for two main reasons: 

, death in 

Table 8.1

Table 8.2

Table 8.2Table 8.1
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Table 8.1 Data from Two 
Experiments on Motion Sickness: 
Time (minutes) to Vomiting 

Experiment 1 

1 30 
2 50 
3 50* 
4 51 
5 66* 
6 82 
7 92 
8 120* 
9 120* 

10 120* 
11 120* 
12 120* 
13 120* 
14 120* 
15 120* 
16 120* 
17 120* 
18 120* 
19 120* 
20 120* 
21 120* 

Experiment 2 

1 5 
2 6* 
3 11 
4 11 
5 13 
6 24 
7 63 
8 65 
9 69 

10 69 
11 79 
12 82 
13 82 
14 102 
15 115 
16 120* 
17 120* 
18 120* 
19 120* 
20 120* 
21 120* 
22 120* 
23 120* 
24 120* 
25 120* 
26 120* 
27 120* 
28 120* 

Experiment 1: 0.167 Hz frequency, 

Experiment 2: 0.333 Hz frequency, 

* Indicates a censored observation. 

0.11 g acceleration. 

0.222 g acceleration. 

1. Survival data are usually not symmetrically distributed - they will 
often be positively skewed, with a few people surviving a very 
long time compared with the majority; so assuming, for example, 
a normal distribution will not be reasonable. 
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Table 8.2 Bird Survival 

Bird 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

Time 
2 
6 
6 
7 

13 
14 
16 
16 
17 
17 
20 
21 
22 
26 
26 
27 
28 
29 
32 
32 
34 
34 
37 
40 
41 
44 
49 
54 
56 
56 
57 
57 
58 
63 
63 
63 
63 
63 
63 
63 

Indicator 
1 
0 
0 
1 
1 
0 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Age 
1 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 
1 

Weight 
1160 
1140 
1260 
1160 
1080 
1120 
1140 
1200 
1100 
1420 
1120 
1110 
1070 
940 
1240 
1120 
1340 
1010 
1040 
1250 
1200 
1280 
1250 
1090 
1050 
1040 
1130 
1320 
1180 
1070 
1260 
1270 
1080 
1110 
1150 
1030 ’ 
1160 
1180 
1050 
1280 

Length 
277 
266 
280 
264 
267 
262 
277 
283 
264 
270 
272 
271 
268 
252 
271 
265 
275 
272 
270 
276 
276 
270 
272 
275 
275 
255 
268 
285 
259 
267 
269 
276 
260 
270 
271 
265 
275 
263 
271 
281 
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Table 8.2 (Continued) Bird Survival 

Bird Time 
41 63 
42 63 
43 63 
44 63 
45 63 
46 63 
47 63 
48 63 
49 63 
50 63 

Indicator 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Age 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 

Weight 
1050 
1160 
1150 
1270 
1370 
1220 
1220 
1140 
1140 
1120 

Length 
275 
266 
263 
270 
275 
265 
268 
262 
270 
274 

Time: days observed. 
Indicator: 0 censored observation, 1: observed death 
Age 0: hatch-year birds, 1: after-hatch-year birds. 
Weight: weight of bird (g). 
Length: wing length of bird (mm). 

2. At the completion of the study, some participants may not have 
reached the end point of interest. Consequently, their exact survival 
times are not known. All that is known is that the survival times 
are greater than the amount of time the individual has been in the 
study. The survival times of these participants are said to be 
censored (more precisely, they are right-censored). 

8.2 Describing Survival Times and Cox’s Regression 
Of central importance in the analysis of survival data are two functions 
describing the distribution of survival times, the suruival function and the 
hazard function. 

8.2.1 The Survival Function 
Using T to denote survival time, the survival function, SO), is defined as 
the probability that an individual survives longer than t, 

S( t )  = Pr(T > t )  (8.1) 

The graph of S(t) against t is known as the survival curve. When there 
are no censored observations the survivor function can be estimated very 
simply as 
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(8. '2) 
number of individuals with survival times 2 t 

number of individuals in the data set 
i ( t )  = 

But when the data contain censored observations a more complex 
estimator of $t) is required, the one most commonly used is the 
Kaplan-Meier estimator, which is described in detail in Collett (1994). 

the main question of interest is whether the 
time to vomiting differs between the two experimental conditions. A graph 
of the estimated survival curves of each group will allow an informal 
assessment of this question; more formally, the survival experience of the 
two groups can be compared using what is known as the log-rank test 
(again, for details see Collett, 1994). 

For the data in 

8.2.2 The Hazard Function 

In the analysis of survival data, it is often of interest to assess which 
periods have high or low chances of the event of interest occurring 
amongst those alive at the time. Such risks can be quantified with the 
hazard function, defined as the probability that a participant experiences 
the event in a small time interval, s, given that the participant has survived 
up to the beginning of the interval, when the size of the time interval 
approaches zero, i.e., 

h(t) = limPr(t I T < t + sI T 2 t) (8.3) 
s-+ 0 

The conditioning aspect is very important. For example, the probability 
of dying at age 100 is very small because most people die before that 
age, but the probability of a person dying at age 100 given that the person 
has reached that age is much greater. (The hazard function is also often 
known as the instantaneous failure rate.) 

The hazard function is of most use as the basis for modelling the 
dependence of survival time on a number of explanatory variables (com- 
pare multiple regression, Chapter 4). Since h(t) is restricted to being 
positive, its logarithm is expressed as a linear function of the explanatory 
variables, plus an unspecified function of time a(t): 

logh(t)=loga(t)+P,x,  +... P,x, (8.4) 

where x,, . . . , x, are the explanatory variables of interest. This model was 
proposed by Cox (1972) and is known as either Cox's regression or the 

Table 8.1
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proportional hazards model. The latter name arises because for any two 
individuals at any point in time, the ratio of their hazard functions is a 
constant. Because the baseline hazard function a(t) does not have to be 
specified explicitly, the proportional hazards model is, essentially, non- 
parametric. 

The estimated regression coefficients give the change in the log hazard 
produced by a change of one unit in the corresponding explanatory 
variable. Interpretation is aided by exponentiating the coefficients to give 
the effects in terms of the hazard function directly. 

It is Cox’s regression model we shall use to investigate the data in 
to assess how survival time of the ducks is related to the other 

variables: weight, age, and length. 

8.3 Analysis Using S-PLUS 
S-PLUS has extensive features for the analysis of survival data, many of 
them described in detail in Therneau and Grambach (2000). Here we shall 
illustrate only the most commonly used of these. 

8.3. I Motion Sickness 

The motion sickness data in are available as the data frame 
motion the contents of which are shown in 

We begin by calculating the Kaplan-Meier estimates of the survival curves 
for the two experiments and plotting these curves. We will use the command 
language for this, in particular the S-PLUS functions Surv and survfit. 

attach(motion) 
motion.survc-Surv(Time,Status) 
#use surv to  create an S-PLUS survival 
#object for use in other survival analysis 
#functions 
survfit(motion.surv-Group) 
#use survfit function to get information 
#about survival time characteristics of each group 
summary(survfit(motion.surv-Group)) 
#use summary to get details of the calculation of each 
#group’s survival curve 
plot (su rvf i t (mo t ion. s u rv- G rou p) , I ty = 1 : 2) 
I e g e n d ( I o ca t o r ( 1 ) , c ( ‘I Ex p e r i m e n t 1 ” , ” Ex p e r i m e n t 2”) , 
Ity = 1:2) 

Table 8.2

Table 8.1
Table 8.3
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Table 8.3 Contents of motion Data Frame 

< motion 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Su bjeci 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Group 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Status 
1 
1 
0 
1 
0 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 

Time 
30 
50 
50 
51 
66 
82 
92 

120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 

5 
6 

11 
11 
13 
24 
63 
65 
69 
69 
79 
82 
82 

102 
115 
120 
120 
120 
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Table 8.3 (continued) Contents of motion 
Data Frame 

< motion 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Subject 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

Group 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

Status 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Time 
120 
120 
120 
120 
120 
120 
120 
120 
120 
120 

#plot the two survival curves and add a 
#suitable legend 

The numerical results are shown in and the plot in 
The plotted survival curves suggest perhaps that the time to vomiting is 
longer under the conditions of experiment 1 than experiment 2 ,  although 
the large number of censored observations in each experiment makes this 
interpretation problematical. 

A formal test of the difference between the survival curves of the two 
groups can be made using the log-rank test implemented using the survdiff 
function. This test operates by first computing the expected number of 
‘deaths’ for each unique death time, or failure time in the data set, assuming 
that the chances of dying, given that participants are at risk, is the same 
in both groups. The total number of expected deaths is then calculated 
for each group by adding the expected number of deaths for each failure 
time. The test then compares the observed number of deaths in each 
group with the expected number of deaths via a chi-squared statistic. 

survdiff(motion.surv-Group) 

The results of applying the test are shown in . There is no 
strong evidence for a real difference in the survival distributions in the 
two experiments. Time to vomiting in each experiment appears to have 
the same distribution. 

The log-rank test weights the contributions from all failure times 
equally, regardless of when they occurred. However, we have more precise 
information at the beginning when a larger proportion of participants are 

Table 8.4 Figure 8.1

Table 8.5
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Table 8.4 Characteristics of Motion Sickness Data and Details of 
Kaplan-Meier Estimation of Survival Curves 

> motion.surv <- Surv(Time, Status) 
> survfit(motion.surv - Group) 
Call: survfit(formu1a = motion.surv - Group) 

n events mean se(mean) median 0.95LCL 0.95UCL 
Group=O 21 5 105.4 6.12 NA N A  N A  
Group= l  28 14 87.1 7.80 115 79 N A  

> summary(survfit(motion.surv - Croup)) 
Call: survfit(formu1a = motion.surv - Group) 

time 
30 
50 
51 
82 
92 

time 
5 

11 
13 
24 
63 
65 
69 
79 
82 

102 
115 

n.risk 
21 
20 
18 
16 
15 

n.risk 
28 
26 
24 
23 
22 
21 
20 
18 
17 
15 
14 

Group = 0 
n.even t s u rvival 

1 0.952 
1 0.905 
1 0.854 
1 0.801 
1 0.748 

Group = 1 
n.even t su rvival 

1 0.964 
2 0.890 
1 0.853 
1 0.81 6 
1 0.779 
1 0.742 
2 0.668 
1 0.630 
2 0.556 
1 0.51 9 
1 0.482 

std.err lower 95% CI upper 95% CI 
0.0465 0.866 1 .ooo 
0.0641 0.788 1 .ooo 
0.0778 0.715 1 .ooo 
0.0894 0.644 0.997 
0.0981 0.578 0.967 

std.err 
0.0351 
0.0599 
0.0679 
0.0744 
0.0797 
0.0841 
0.0906 
0.0928 
0.0956 
0.0961 
0.0962 

lower 95% CI 
0.898 
0.780 
0.730 
0.682 
0.637 
0.594 
0.512 
0.472 
0.397 
0.361 
0.326 

upper 95% CI 
1 .ooo 
1 .ooo 
0.997 
0.976 
0.952 
0.926 
0.871 
0.841 
0.779 
0.746 
0.713 

still ‘alive’. Various tests have been proposed that give greater weight to 
earlier survival times. The P e t e  Wilcoxon method, for example, weights 
observations by the Kaplan-Meier estimate of the proportion of partici- 
pants still alive at each failure time. This method can be applied using 
the survdiff function but now including the argument rho = 1. 

survidiff(motion.surv-Group, rho = 1) 

The results of this test are also given in 
in this case to those from the log-rank test. 

. They are very similar Table 8.5
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- Experiment 1 
Experiment 2 
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Figure 8.1 
sickness study. 

Survival curves for the data from each experiment in the motion 

Table 8.5 
for the Motion Sickness Data 

Results of Two Versions of the log-Rank Test 

> survdiff(Surv(Time, Status) - Group) 
Call: 
survdiff(formu1a = Surv(Time, Status) - Group) 

N Observed Expected (O-E)"2/E (0-E)"2/V 
Group=O 21 5 8.86 1.68 3.21 
G r o u p = l  28 14 10.14 1.47 3.21 

Chisq = 3.2 on 1 degrees of freedom, p = 0.0733 
> survdiff(Surv(Time, Status) - Group, rho = 1) 
Call: 
survdiff(formu1a = Surv(Time, Status) - Group, rho = 1) 

N Observed Expected (0-E)"2/E (0-E)"2N 
Group=O 21 4.01 7.2 1.41 3.22 
G r o u p = l  28 11.49 8.3 1.22 3.22 

Chisq = 3.2 on 1 degrees of freedom, p = 0.0728 

8.3.2 Bird Deaths 
The data in are available as the data frame bird, the contents 
of which are given in 

Here we shall use the Cox Proportional Hazards dialog to fit a Cox's 
regression model to assess the effects of Age, Weight, and Length on a 
bird's survival time. 

Table 8.2
Table 8.6
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Table 8.6 Contents of bird Data Frame 

> bird 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Bird 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Time 
2 
6 
6 
7 

13 
14 
16 
16 
17 
17 
20 
21 
22 
26 
26 
27 
28 
29 
32 
32 
34 
34 
37 
40 
41 
44 
49 
54 
56 
56 
57 
57 
58 
63 
63 
63 
63 
63 
63 

Indicator 
1 
0 
0 
1 
1 
0 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
0 
1 
1 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Age 
1 
0 
1 
0 
1 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 

Weight 
1160 
1140 
1260 
1160 
1080 
1120 
1140 
1200 
1100 
1420 
1120 
1110 
1070 
940 
1240 
1120 
1340 
1010 
1040 
1250 
1200 
1280 
1250 
1090 
1050 
1040 
1130 
1320 
1180 
1070 
1260 
1270 
1080 
1110 
1150 
1030 
1160 
1180 
1050 

Length 
277 
266 
280 
264 
267 
262 
277 
283 
264 
270 
272 
271 
268 
252 
271 
265 
275 
272 
270 
276 
276 
270 
272 
275 
275 
255 
268 
285 
259 
267 
269 
276 
260 
270 
271 
265 
275 
263 
271 
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Table 8.6 (Continued) Contents of bird Data Frame 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Bird Time 
40 63 
41 63 
42 63 
43 63 
44 63 
45 63 
46 63 
47 63 
48 63 
49 63 
50 63 

Indicator 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

Age 
1 
0 
0 
0 
1 
1 
1 
0 
0 
0 
0 

Weight 
1280 
1050 
1160 
1150 
1270 
1370 
1220 
1220 
1140 
1140 
1120 

Length 
281 
275 
266 
263 
270 
275 
265 
268 
262 
270 
274 

W Click on Statistics. 
W Select Survival. 
W Select Cox Proportional Hazards. 

The Cox Proportional Hazards dialog now appears. Select bird as the 
data set and then click on Create Formula. The Formula dialog now 
become available. 

W Highlight Time and click on the Time 1 tab. 
W Highlight Indicator and click on the Censor Codes tab. 
W Click on the Add Response tab. 

This creates a suitable S-PLUS survival object as the response. Now 
highlight Age, Weight, and Length and click in the Main Effect (+) tab. 
The Formula dialog now appears as shown in 

Click OK to recover the Cox Proportional Hazards dialog and again 
click OK. The results of fitting the model are given in . Here the 
tests of the individual regression coefficients suggest that none is signifi- 
cantly different from zero. This is confirmed by Wald’s and the other two 
tests that assess the three coefficients simultaneously. The p-values asso- 
ciated with each of these indicate that here the three explanatory variables 
have no effect on the survival times of the ducks. 

Figure 8.2

Table 8.7
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Table 8.7 
Survival Data 

Results of Fitting Proportional Hazards Model to Bird 

* * *  Cox Proportional Hazards * * *  
Call: 
coxph(formu1a = Surv(Time, Indicator, type = “right”) - Age + Weight 
+ Length, data = bird, na.action = na.exclude, eps = 0.0001, 
iter.max = 10, method = “efron”, robust = F) 

n = 50 

coef exp(coef) se(coef) Z P  

Age 0.4637 1.590 0.57810 0.802 0.42 

Length 0.0125 1.013 0.04087 0.306 0.76 
Weight -0.0042 0.996 0.00289 -1.451 0.15 

exp(coef) exp(-coef) lower .95 upper 9 5  
Age 1.590 0.629 0.512 4.94 

Weight 0.996 1.004 0.990 1 .oo 
Length 1.013 0.988 0.935 1.10 

Rsquare = 0.043 (max possible = 0.923) 
Likelihood ratio test = 2.2 on 3 df, p = 0.532 
Wald test = 2.25 on 3 df, p = 0.522 
Score (logrank) test = 2.28 on 3 df, p = 0.517 

Exercises 

8.1. 

8.2. 

8.3. 

Construct separate plots of the survival curves of the data from 
each experiment on motion sickness, showing in each case the 
estimated 95% confidence interval. 
Plot the estimated survival curves of the hatch-year and after-hatch- 
year birds obtained from the bird data frame. 
Fit a stratified Cox’s model to the data in the bird data frame to 
explore the possibility that there should be separate baseline 
hazards for hatch-year and after-hatch-year birds. 
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Chapfer 9 

Exploring Multivariate 
Data: Male Egyptian Skulls 

9.1 Description of Data 
In this chapter we shall analyse the data shown in . These data 
show four measurements on male Egyptian skulls from five epochs. The 
measurements are 

MB: Maximum Breadth 
BH: Basibregmatic Height 
BL: Basialiveolar Length 
NH: Nasal Height 

One question about these data is whether there is evidence of any change 
in the skulls over time? A steady change of head shape with time would 
indicate interbreeding with immigrant populations. 

9.2 Exploring Multivariate Data 
In this chapter we shall use a variety of primarily informal graphical 
methods to explore the structure of the data in keeping in mind 
the main question of interest about the data. Some of these methods will 
have been used in previous chapters, but here we shall also useprincipal 
components analysis (see Everitt and Dunn, 2001) to help simplify the 

Table 9.1

Table 9.1
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Table 9.1 Data on Male Egyptian Skulls 

c 4000 BC c 3300 BC c 1850 BC c 200 BC c A D  150 

M B  BH BL NH M B  BH BL NH M B  BH BL NH M B  B H  BL NH M B  BH BL NH 
131 138 89 49 124 138 101 48 137 141 96 52 137 134 107 54 137 123 91 50 
125 131 92 48 133 134 97 48 129 133 92 47 141 128 95 53 136 131 95 49 
131 132 99 50 138 134 98 45 132 138 87 48 141 130 87 49 128 126 91 57 
119 132 96 44 148 129 104 51 130 134 106 50 135 131 99 51 130 134 92 52 
136 143 100 54 126 124 95 45 134 134 96 45 133 120 91 46 138 127 86 47 
138 137 89 56 135 136 98 52 140 133 98 50 131 135 90 50 126 138 101 52 
139 130 108 48 132 145 100 54 138 138 95 47 140 137 94 60 136 138 97 58 
125 136 93 48 133 130 102 48 136 145 99 55 139 130 90 48 126 126 92 45 
131 134 102 51 131 134 96 50 136 131 92 46 140 134 90 51 132 132 99 55 
134 134 99 51 133 125 94 46 126 136 95 56 138 140 100 52 139 135 92 54 
129 138 95 50 133 136 103 53 137 129 100 53 132 133 90 53 143 120 95 51 
134 121 95 53 131 139 98 51 137 139 97 50 134 134 97 54 141 136 101 54 
126 129 109 51 131 136 99 56 136 126 101 50 135 135 99 50 135 135 95 56 
132 136 100 50 138 134 98 49 137 133 90 49 133 136 95 52 137 134 93 53 
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141 140 100 51 130 136 104 53 129 142 104 
131 134 97 54 131 128 98 45 135 138 102 
135 137 103 50 138 129 107 53 129 135 92 
132 133 93 53 123 131 101 51 134 125 90 
139 136 96 50 130 129 105 47 138 134 96 
132 131 101 49 134 130 93 54 136 135 94 
126 133 102 51 137 136 106 49 132 130 91 
135 135 103 47 126 131 100 48 133 131 100 
134 124 93 53 135 136 97 52 138 137 94 
128 134 103 50 129 126 91 50 130 127 99 
130 130 104 49 134 139 101 49 136 133 91 
138 135 100 55 131 134 90 53 134 123 95 
128 132 93 53 132 130 104 50 136 137 101 
127 129 106 48 130 132 93 52 133 131 96 
131 136 114 54 135 132 98 54 138 133 100 
124 138 101 46 130 128 101 51 138 133 91 

47 136 130 99 55 142 135 
55 134 137 93 542 139 134 
50 131 141 99 55 138 125 
60 129 135 95 47 137 135 
51 136 128 93 54 133 125 
53 131 125 88 48 145 129 
52 139 130 94 53 138 136 
50 144 124 86 50 131 129 
51 141 131 97 53 143 126 
45 130 131 98 53 131 124 
49 133 128 92 51 132 127 
52 138 126 97 54 137 125 
54 131 142 95 53 129 128 
49 136 138 94 55 140 135 
55 132 136 92 52 147 129 
46 135 130 100 51 136 133 

96 
95 
99 
96 
92 
89 
92 
97 
88 
91 
97 
85 
81 

103 
87 
97 

52 
47 
51 
54 
50 
47 
46 
44 
54 
55 
52 
57 
52 
48 
48 
51 
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data, and multidimensional scaling (see Everitt and Rabe-Hesketh, 1999) 
to display graphically Mahalanobis distances (see Chapter 2) between the 
five epochs. 

Principal components analysis seeks linear compounds of the original 
variables, which are uncorrelated and which account for maximal amounts 
of the variation in these variables. By using these new variables it may 
be possible to achieve a parsimonious summary of the data in a reduced 
number of dimensions. 

Multidimensional scaling attempts to find a low-dimensional represen- 
tation of an observed distance matrix so that the Euclidean distances in 
this representation match as closely as possible in some sense the observed 
distances. In this way it may be possible to find an adequate graphical 
representation of the distances that enables any structure or pattern to be 
discovered. 

9.3 Analysis Using S-PLUS 

We assume that the data in are available as an S-PLUS data 
frame skulls, which as well as the four measurements described in the 
previous section, contains a factor variable, EPOCH, with five levels 
labelling the epoch at which the measurements were made. The contents 
of skulls is shown in 

To begin we shall construct some simple, but nonetheless informative 
graphics using the two graphics palettes which we remind readers can 
be made visible by clicking 

and 

We shall also make use of the ‘conditioning’ feature of S-PLUS that allows 
any type of graph to be plotted, conditional on the values of some variable 
(or variables). Here the conditioning will involve the categorical variable, 
EPOCH, but continuous variables may also be used, in which case the 
variable values are divided into a small number of intervals. This condi- 
tioning feature of S-PLUS has the potential to be very powerful, and we 
suggest readers experiment with the possibilities. 

Table 9.1

Table 9.2
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Table 9.2 Contents of skulls Data Frame 

> skulls 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

EPOCH 
c4000BC 
c4000BC 
c4OOOBC 
c4OOOBC 
c4000 B C 
c4000 B C 
c4000BC 
c4000BC 
c4000BC 
c4OOOBC 
c4000BC 
c4OOOBC 
c4000BC 
c4000BC 
c4OOOBC 
c4000 B C 
c4000 B C 
c4OOOBC 
c4OOOBC 
c4OOOBC 
c4000BC 
c4000BC 
c4000BC 
c4OOOBC 
c4000BC 
c4000BC 
c4000BC 
c4000BC 
c4000BC 
c4000BC 
c3300BC 
c3300BC 
c3300BC 
c33OOBC 
c33OOBC 
c3300BC 
c3300BC 
c3300BC 
c33OOBC 

MB BH BL 
131 138 89 
125 131 92 
131 132 99 
119 132 96 
136 143 100 
138 137 89 
139 130 108 
125 136 93 
131 134 102 
134 134 99 
129 138 95 
134 121 95 
126 129 109 
132 136 100 
141 140 100 
131 134 97 
135 137 103 
132 133 93 
139 136 96 
132 131 101 
126 133 102 
135 135 103 
134 124 93 
128 134 103 
130 130 104 
138 135 100 
128 132 93 
127 129 106 
131 136 114 
124 138 101 
124 138 101 
133 134 97 
138 134 98 
148 129 104 
126 124 95 
135 136 98 
132 145 100 
133 130 102 
131 134 96 

NH 
49 
48 
50 
44 
54 
56 
48 
48 
51 
51 
50 
53 
51 
50 
51 
54 
50 
53 
50 
49 
51 
47 
53 
50 
49 
55 
53 
48 
54 
46 
48 
48 
45 
51 
45 
52 
54 
48 
50 
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Table 9.2 (Continued) Contents of skulls 
Data Frame 

> skulls 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 

EPOCH 
c33OOBC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
c3300BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
c185OBC 

M B  BH BL 
133 125 94 
133 136 103 
131 139 98 
131 136 99 
138 134 98 
130 136 104 
131 128 98 
138 129 107 
123 131 101 
130 129 105 
134 130 93 
137 136 106 
126 131 100 
135 136 97 
129 126 91 
134 139 101 
131 134 90 
132 130 104 
130 132 93 
135 132 98 
130 128 101 
137 141 96 
129 133 93 
132 138 87 
130 134 106 
134 134 96 
140 133 98 
138 138 95 
136 145 99 
136 131 92 
126 136 95 
137 129 100 
137 139 97 
136 126 101 
137 133 90 
129 142 104 
135 138 102 

NH 
46 
53 
51 
56 
49 
53 
45 
53 
51 
47 
54 
49 
48 
52 
50 
49 
53 
50 
52 
54 
51 
52 
47 
48 
50 
45 
50 
47 
55 
46 
56 
53 
50 
50 
49 
47 
55 
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Table 9.2 (Continued) Contents of skulls 
Data Frame 

> skulls 

77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
1 04 
105 
106 
107 
108 
109 
110 
111 
112 
113 

EPOCH 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
cl850BC 
c200BC 
c200BC 
c200BC 
c2OOBC 
c200BC 
c200BC 
c2OOBC 
c200BC 
c200BC 
c200BC 
c200BC 
c200BC 
c2OOBC 
c200BC 
c200BC 
c200BC 
c200BC 
c2OOBC 
c200BC 
c2OOBC 
c200BC 
c200BC 
c200BC 

M B  BH BL 
129 135 92 
134 125 90 
138 134 96 
136 135 94 
132 130 91 
133 131 100 
138 137 94 
130 127 99 
136 133 91 
134 123 95 
136 137 101 
133 131 96 
138 133 100 
138 133 91 
137 134 107 
141 128 95 
141 130 87 
135 131 99 
133 120 91 
131 135 90 
140 137 94 
139 130 90 
140 134 90 
138 140 100 
132 133 90 
134 134 97 
135 135 99 
133 136 95 
136 130 99 
134 137 93 
131 141 99 
129 135 95 
136 128 93 
131 125 88 
139 130 94 
144 124 86 
141 131 97 

NH 
50 
60 
51 
53 
52 
50 
51 
45 
49 
52 
54 
49 
55 
46 
54 
53 
49 
51 
46 
50 
60 
48 
51 
52 
53 
54 
50 
52 
55 
52 
55 
47 
54 
48 
53 
50 
53 
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Table 9.2 (Continued) Contents of skulls 
Data Frame 

> skulls 

114 
115 
116 
117 
118 
119 
120 
121 
122 
123 
1 24 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 

EPOCH 
c200BC 
c200BC 
c200BC 
c200BC 
c200BC 
c200BC 
c200BC 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD150 
cAD15O 
cAD15O 
cAD150 
cAD150 
CADI 50 
cAD150 

M B  BH 
130 131 
133 128 
138 126 
131 142 
136 138 
132 136 
135 130 
137 123 
136 131 
128 126 
130 134 
138 127 
126 138 
136 138 
126 126 
132 132 
139 135 
143 120 
141 136 
135 135 
137 134 
142 135 
139 134 
138 125 
137 135 
133 125 
145 129 
138 136 
131 129 
143 126 
134 124 
132 127 
137 125 
129 128 
140 135 
147 129 
136 133 

BL 
98 
92 
97 
95 
94 
92 

100 
91 
95 
91 
92 
86 

101 
97 
92 
99 
92 
95 

101 
95 
93 
96 
95 
99 
96 
92 
89 
92 
97 
88 
91 
97 
85 
81 

103 
87 
97 

NH 
53 
51 
54 
53 
55 
52 
51 
50 
49 
57 
52 
47 
52 
58 
45 
55 
54 
51 
54 
56 
53 
52 
47 
51 
54 
50 
47 
46 
44 
54 
55 
52 
57 
52 
48 
48 
51 

© 2002 by Chapman & Hall/CRC 151



© 2002 by Chapman & Hall/CRC

Figure 9.1 Skulls data and 2D and 3D graphics. 

To access the skulls data frame for use with the two graphics palettes: 

H Click on Data. 
Choose Select Data. 

H In the Select Data dialog that now appears choose skulls in the 
Existing Data box and then click OK. 

The skulls data frame appears, and we now make the two graphics palettes 
available by clicking on the appropriate buttons. Also, we need to turn 
the condition mode on by clicking on 

(this button “toggles” between conditioning on and off and the 1 refers 
to the number of conditioning variables, which can be altered). The screen 
now looks something like 

To begin, suppose we require histograms of, say, MB for each epoch. 

W Highlight the MB column by clicking on the name. 
Now Ctrl click the EPOCH column. 
Select the Histogram option on the 2D Graph palette. 

This leads to a coloured version of . The first variable highlighted 
is the one that forms the histograms, the second is the conditioning 
variable. There is perhaps some evidence that MB increases over the 
epochs. Similar graphs could now be constructed for the other three 
measurements in the data set. 

Figure 9.1

Figure 9.2

© 2002 by Chapman & Hall/CRC
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Figure 9.2 Histograms of the variable MB for each epoch. 

Now suppose we would like a scatterplot of BH against MG for each 
epoch, with a locally weighted regression fit drawn on each graph. 

Highlight MB (this will be the x variable). 
Ctrl click on BH (this will be the y variable). 
Ctrl click on EPOCH (since the conditioning mode is on, this will 
be the conditioning variable). 
Select Loess on the 2D Graph palette. 

This series of operations leads to the graph in . Is there a 
different relationship between MB and BH in the different epochs? It is 
perhaps difficult to judge, although there appears to be a small but definite 
negative relationship in c200BC that is not present in the other epochs. 

Again, similar diagrams could be produced for all other pairs of 
variables. All such diagrams can be summarized conveniently by con- 
structing a scatterplot matrix for each of the epochs. 

Highlight MB and the Ctrl click on each of the other three 
measurement variables. 
Ctrl click on EPOCH. 
Select the Scatter Matrix option in the 2D Graph palette. 

This leads to . Although this is a rather ‘busy’ diagram, it does 
enable all the pairwise scatterplots for the five different epochs to be 

Figure 9.3

Figure 9.4
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Figure 9.3 Scatterplots of the variables MB and BH for each epoch, showing a 
locally weighted regression fit. 

viewed together, which might be helpful to an experienced archaeologist 
if not to the author! 

Now let us consider two examples of using the 3D graph palette, 
very much as exercises in the use of this feature of S-PLUS, rather than 
particularly helpful graphics for exploring the skulls data. To get two, 
three-dimensional graphs of the variables MB, BH, and BL (here we do 
not want the plots to be conditioned on epoch and so the conditioning 
button must be in the off position): 

Highlight MB. 
H Ctrl click on BH and on BL. 
H Select 3D Scatter in the 3D Graph palette. 

This gives . Such diagrams are often made clearer by ‘dropping’ 
lines from the plotted points to a plane through the origin. To construct 
this diagram, proceed as for but Select Drop Line Scatter in 
the 3D Graph palette to get 

Now let us consider some more complex methods for exploring the 
structure of the skulls data. To begin, we shall apply principal components 
to the data. This technique, described fully in Everitt and Dunn (2001) 
attempts to reduce the dimensionality of multivariate data by finding 
uncorrelated linear combinations of the original variables that account for 
maximal proportions of the variation in the data. Such variables can be 

Figure 9.5

Figure 9.5
Figure 9.6
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Figure9.4 Scatterplot matrix of variables in the skulls data frame for each 
epoch. 
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Figure 9.5 Three-dimensional scatter of the variables BH, MB, and BL. 
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? 

Figure 9.6 Three-dimensional drop-line scatter of the three variables BH, MB, 
and BL. 

used in a variety of ways, but here our main interest will be in using the 
derived components to obtain an informative graphical display of the data. 
For this analysis we shall use the command language approach. 

sku I Is. pc<- princom p( s ku I Is[, - 1 ] ,cor=T) 
#produces a principal components of the skulls 
#data after removing EPOCH. Components are 
#derived from the correlation matrix 
summary( s ku I Is. pc) 

This gives the results shown in 
for just over 33% of the variance; the first two for 64%. 

displayed using the command: 

. The first component accounts 

The loadings of the four observed variables on each component are 

skulls.pc$loadings 

The results appear in 
The first component is a contrast between MB on the one hand and 

BH and BL on the other. The second component is simply a weighted 
average of MB, BH, and NH. Interpretation of the components is not our 

Table 9.3

Table 9.4
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Table 9.3 Standard Deviations of Principal Components of the Egyptian 
Skulls Data 

> skulls.pc <- princomp(skulls[, -11, cor = T) 
> summary(skul1s.pc) 
Importance of components: 

Comp. 1 Comp. 2 Comp. 3 Comp. 4 
Standard deviation 1.1564147 1.0983595 0.8731551 0.8330136 

Proportion of Variance 0.3343237 0.3015984 0.1906000 0.1734779 
Cumulative Proportion 0.3343237 0.6359221 0.8265221 1 .OOOOOOO 

Table 9.4 Coefficients Defining the Principal 
Components of the Egyptian Skulls Data 

> skulls.pc$loadings 
Comp. 1 Comp. 2 Comp. 3 Comp. 4 

MB -0.407 0.567 -0.710 
BH 0.61 7 0.345 -0.707 
BL 0.672 -0.469 0.572 

N H  0.748 0.525 0.405 

main aim here, however; rather we shall use the scores of each skull on 
the first two components to display the data graphically. 

sku I Is. pcxc-sku I I. pc$scores[, 1 ] 
sku I Is. pcy<-sku I I. pc$scores[ ,2] 
#skulls.pcx and skul ls.pcy now contain the 
#first and second principal components scores 
#for each skul l  
pa r ( p t y= “s ” ) 
#select a square plotting area 
xl i m c - ran g e (s k u I I s . p cx) 
#find range of x values to use in plott ing 
#the data 
p I o t (s  ku I Is. pcx, s ku I I s . pcy, xI i m =xl i m , 
yl i m = xl i m , xl a b = ‘I P C 1 ” , y I a b =“ P C2”, 
type = “ n ” ) 
#set up axes of plot and label axis but do 
#not plot the data 
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Figure 9.7 Plot of skulls data in the space of the first two principal component 
scores, with points labelled by epoch. 

labs<-rep( 1 :5,rep(30,5)) 
#labs contains values 1 to 5 in sets of 30 and 
#will be used to label the plot according to epoch 
#since the EPOCH labels themselves would make 
#the plot too messy 
text(skuIIs.pcx,skuIIs.pcy,IabeIs=Iabs) 

The resulting diagram is shown in . There does appear to be 
some distinction between epochs 1 (c4000BC) and 5(cAD150) in this 
diagram, but the observations for the remaining three epochs overlap to 
a considerable extent. 

Finally, we shall calculate Mahalanobis distances (see Chapter 2) 
between each pair of epochs, and then try to represent the distances by 
Euclidean distances in two dimensions using classical multidimensional 
scaling. This technique is described in detail in Everitt and Rabe-Hesketh 
(19971, but in essence it tries to represent, in low-dimensional space, an 
observed distance matrix, by deriving coordinates for each observation 

Figure 9.7
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(epochs in this case) so that the Euclidean distances defined by these 
coordinates approximate the elements of the observed distance matrix. 
Again, we shall use the command language, and we need in particular 
to use the apply function to obtain the mean vectors of each epoch, the 
var function to obtain the covariance matrix of each epoch, the Mahal- 
anobis function to calculate the required distance matrix, and the cmd- 
scale function to apply multidimensional scaling. In this calculation we 
shall use the following estimate of the assumed common covariance 
matrix, S, 

295,  + 29.5, + 29S, + 29S,  + 29S, 
145 

S =  ( 9 . 0  

where S,, ..., S,, are the covariance matrices within each epoch. 

#Mahalanobis distances 
cent resc- m at r ix (0,5,4) 
S <-matrix(0,4,4) 
#set up matrices to take mean vectors 
#of each epoch and covariance matrix 
for(i in 1:5) { 

centres[i,]<-apply(skulls[labs==i,-l],2,mean) 
Sc-S+29*var(skulls[,-l]) 

I 
#use for loop to calculate all mean vectors and the 
#combined covariance matrix 
sc-s /145 
ma halc-mat rix( 0,5,5) 
for(i in 1:5) { 

mahal[i,]c-mahalanobis(centres,centres[i,],S) 
I 
#calculate required matrix of Mahalanobis distances 
#between epoch means 
par ( p t y = “s ” ) 
coordsc-cmdscale( mahal) 
xlimc-range(coords[, 11) 
p I o t (coo r d s , x I a b=“ C 1 ” , y I a b = “C2”, t y p e = “ n ” , x I i m =x I i m , 
ylim=xlim) 
text ( co o rd s , I a b e Is =c ( “c40 00 B C” , ”c33 0 0 B C ” , ”c 1 85 0 B C ” , 
“c200BC”,”cAD1 50”)) 
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The Mahalanobis distance matrix is shown in . The resulting 
. Here there is a very striking confirmation diagram is shown in 

of a steady change of head shape with time. 

Table 9.5 Mahalanobis Distances between Epochs 

[,I 1 [,21 [,31 [,41 [i51 
[I,] 0.00000000 0.08544641 0.7040863 1.3632193 1.9644964 
[2,] 0.08544641 0.00000000 0.5923855 1 .I838453 1.5724978 
[3,] 0.70408633 0.59238550 0.0000000 0.36791 17 0.7388707 
[4,] 1.36321930 1 .I 8384525 0.36791 17 0.0000000 0.2009955 
[5,] 1.96449636 1.57249782 0.7388707 0.2009955 0.0000000 

cAD15O 
c185OBC 

c2OOBC 

-1 .o -0.5 0.0 0.5 1 .o 
c1 

Figure 9.8 Two-dimensional solution from classical multidimensional scaling 
applied to the Mahalanobis distances between epochs. 

Table 9.5
Figure 9.8
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Exercises 

9.1. Construct a scatterplot matrix of all the principal component scores 
of the skulls data with the points in each panel labelled in some 
way by epoch. 

9.2. Use the Select Data and 2D Graph palette options to construct 
a contour plot of the bivariate density of the first two principal 
component scores of the skulls data. 

9.3. Plot the convex hull of the observations of each epoch onto the 
plot of the data in the space of the first two principal components. 
(This will involve finding out about and then using the following 
S-PLUS functions: chull and polygon.) 
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Chapter IO 

Cluster Analysis: 
low Tern peratu res 
and Voting in Congress 

10.1 Description of Data 
Two sets of data will be of concern in this chapter. The first, shown in 

, gives the lowest temperatures (in OF) recorded for various cities 
in the United States. The second, in , records the number of 
times 15 congresspeople from New Jersey voted differently in the House 
of Representatives on 19 environmental bills. 

One question of interest about the lowest temperatures data is whether 
the temperatures can be used to group the cities into distinct classes? And 
classification is also of interest for the voting data as an aid to see if the 
data imply party affiliations in the voting records of the 15 congresspeople. 

10.2 Cluster Analysis 
Cluster analysis is a generic term for a large number of relatively disparate 
techniques that seek to determine whether or not a data set contains 
distinct groups or clusters of observations and, if so, to find these groups. 
A detailed review of the area is given in Everitt et al. (2001). 

Table 10.1
Table 10.2
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Table 10.1 Lowest Temperatures in a 
Number of Cities in the United States 

January April 
-8 26 
-7 20 

-44 -1 2 
-1 2 16 
-27 7 

4 30 
-25 -2 
-8 23 
53 57 
12 31 

-22 6 
23 39 
30 46 

-1 7 23 
-6 12 

-23 5 
17 32 

-26 8 
-1 6 13 
24 31 
0 29 

-5 24 

July October 
53 28 
51 25 
35 5 
54 28 
40 17 
59 29 
43 3 
57 25 
67 64 
62 33 
36 11 
49 41 
69 51 
51 26 
52 28 
44 13 
61 34 
40 15 
33 8 
43 34 
43 28 
55 29 

The most commonly used subset of clustering methods is that generally 
referred to as agglomerative hierarchical methods. These produce a series 
of hierarchical partitions of the observations, beginning at the stage of n 
separate single-member ‘groups’ (where n is the sample size), and ending 
with a single group containing all the observations. The series of steps is 
usually summarized in a tree-like diagram known as a dendrogram. In 
most applications, users will be interested in selecting one or two partitions 
from the series that in some sense best describe the data. A number of 
informal indicators of number of groups when using this type of clustering 
procedure are described in Everitt et al. (2001). 

Most agglomerative hierarchical clustering methods operate on an n x n 
distance or dissimilarity matrix for the objects being clustered. In general, 
this will be calculated from the multivariate observations available for each 
object, and the most commonly used distance measure is Euclidean 
defined as 
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Distance between two groups taken as the distance between their 
two closest members - results in single linkage clustering. 
Distance between two groups taken as the distance between their 
two most remote members - results in complete linkage clustering. 
Distance between two groups taken as the distance between the 
average of the intergroup pairwise distances - results in average 
linkage. 

All these methods and their properties are described in Everitt et al. (2001). 

Table 10.2 Voting in Congress 

Name (Party) 
1 Hunt (R) 
2 Sandman (R) 
3 Howard (D) 
4 Thompson (D) 
5 Freylinghuysen (R) 
6 Forsythe (R) 
7 Widnall (R) 
8 Roe (D) 
9 Heltoski (D) 
10 Rodino (D) 
11 Minish (D) 
12 Rinaldo (R) 
13 Maraziti (R) 
14 Daniels (D) 
15 Patten (D) 

1 2  3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5  
0 8 15 15 10 9 7 15 16 14 15 16 7 11 13 
8 0 17 12 13 13 12 16 17 15 16 17 13 12 16 

15 17 0 9 16 12 15 5 5 6 5 4 11 10 7 
15 12 9 0 14 12 13 10 8 8 8 6 15 10 7 
10 13 16 14 0 8 9 13 14 12 12 12 10 11 11 
9 13 12 12 8 0 7 12 11 10 9 10 6 6 10 
7 12 15 13 9 7 0 17 16 15 14 15 10 11 13 

15 16 5 10 13 12 17 0 4 5 5 3 12 7 6 
1 6 1 7  5 8 1 4 1 1 1 6  4 0 3 2 1 1 3  7 5 
1 4 1 5  6 8 1 2 1 0 1 5  5 3 0 1 2 1 1  4 6 
1 5 1 6  5 8 1 2  9 1 4  5 2 1 0  1 1 2  5 5 
1 6 1 7  4 6 1 2 1 0 1 5  3 1 2 1 0 1 2  6 4 
7 13 11 15 10 6 10 12 13 11 12 12 0 9 13 

1 1 1 2 1 0 1 0 1 1  6 1 1  7 7 4 5 6 9 0 9 
1 3 1 6  7 7 1 1 1 0 1 3  6 5 6 5 4 1 3  9 0 

(10.1) 

where xik and xik represent the value of the kth variable for objects i and 
j ,  respectively. The number of variables is p .  Occasionally, however, the 
dissimilarity matrix, which is to be the basis of clustering, can arise directly, 
as with the voting data described previously. 

Differences between agglomerative hierarchical techniques occur 
because of the variety of ways in which distance between a group and 
a single object, or between two groups, can be defined. Three methods 
that are commonly used are 
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Another frequently used type of cluster analysis is based on finding a 
partition of the observations into a particular number of groups so as to 
optimise some numerical measure, small (or large for some measures) 
values of which indicate a ‘good’ clustering. One such method is k-means 
which, given an initial partition into the required number of groups, 
attempts to find an improved solution by searching for the partition that 
minimises the total within-group sum of squares of the observations. Again, 
there are various possibilities for deciding on the ‘best’ number of groups 
for a data set - see Everitt et al. (2001) for details. One simple method 
is to plot the within-clusters sum of squares against number of clusters. 
This sum of squares decreases monotonically as the number of clusters 
increases, but in many cases the decrease flattens markedly from some 
value onwards. The location of such an ‘elbow’ in the plot is often taken 
to indicate the appropriate number of clusters. Tibshirani et al. (2001) 
attempt to make this approach to identifying the number of clusters more 
formal with the introduction of the so-called ‘gap’ statistic, which for a 
sample of size n and a particular number of clusters k is defined as 

(10.2) 

where W, is the within-clusters sum of squares, and E,* denotes expecta- 
tion from a reference distribution, for which Tibshirani et al. (2001) make 
two suggestions; 

1. A uniform distribution in which each variable is generated from a 
uniform distribution over the range of the observed values for that 
variable. 

2. A uniform distribution over a box aligned with the principal com- 
ponents of the data (see Tibshirani et al. (2001) for more details). 

E,* (log( W&I is estimated by the average of B copies log( W,*) found by 
drawing a number of samples from the reference distribution, and the 
number of clusters is chosen using the following: 6 = smallest k such that 
Gap (k)  2 Gap ( k  + 1) - s ~ + ~ ,  where s, = , / m ) S D ( k )  and SD(k) is 
the standard deviation of the B replicates of log (Wk*). Further details are 
given in Tibshirani et al. (2001). 

This approach will be explored in Section 10.3.1. 

10.3 Analysis Using S-PLUS 
In the following two subsections we will describe the application of 
k-means clustering to the temperature data on U.S. cities, and then the 
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application of a number of hierarchical clustering procedures to the voting 
in Congress data. 

10.3.1 Clustering Cities in the United States on the Basis 
of their Year-Round Lowest Temperature 

The data in 
contents of which are shown in 

dialog, which can be accessed as follows: 

are available as an S-PLUS data frame lowest, the 

We shall apply the k-means method to these data using the appropriate 

Click on Statistics. 
Select Cluster Analysis. 
Select K-Means. 

Table 10.3 Contents of the lowest Data Frame 

> lowest 
Cities 

1 Atlanta 
2 Baltimore 
3 Bismark 
4 Boston 
5 Chicago 
6 Dallas 
7 Denver 
8 El Paso 
9 Honolulu 

10 Houston 
11 Juneau 
12 LA 
13 Miami 
14 Nas hvi I le 
15 NY 
16 Omaha 
17 Phoenix 
18 Port land 
19 Reno 
20 SF 
21 Seattle 
22 Washington 

January April July 
-8 26 53 
-7 20 51 

-44 -12 35 
-12 16 54 
-27 7 40 

4 30 59 
-25 -2 43 
-8 23 57 
53 57 67 
12 31 62 

-22 6 36 
23 39 49 
30 46 69 

-17 23 51 
-6 12 52 

-23 5 4 4  
17 32 61 

-26 8 40 

24 31 43 
0 29 43 

-5 24 55 

-16 13 33 

October 
28 
25 
5 

28 
17 
29 
3 

25 
64 
33 
11 
41 
51 
26 
28 
13 
34 
15 
8 

34 
28 
29 

Table 10.1
Table 10.3.
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Figure 10.1 

In the k-means clustering dialog that appears, select lowest as the data 
set and January, April, July, and October as the variables. Set the Num 
of Clusters to 3 and the Max Iterations to 50. Now click on the Results 
tab, choose Long for Output Type, check the Cluster Membership box, 
and save the cluster labels in the lowest data frame by selecting this data 
frame in the Save In slot. The dialog now looks as shown in 

Click OK and the screen now looks like that shown in 
with the Report file giving the results of the cluster analysis and the lowest 
data frame now including the cluster.id variable both visible. 

. The three clusters correspond to 
the following cities: 

Part of K-Means Clustering dialog. 

The results are shown in 

Cluster 1: Atlanta, Baltimore, Boston, Dallas, El Paso, Nashville, 
New York, Seattle, Washington, D.C. 
Cluster 2: Bismarck, Chicago, Denver, Juneau, Omaha, Portland, 
Reno 
Cluster 3: Honolulu, Houston, Los Angeles, Miami, Phoenix, San 
Francisco 

The cities in the second cluster are definitely to be avoided by those 
people fond of warm weather! Cluster 3 provides cities with much more 
appeal for such people. The cities in cluster 1 are intermediate in tem- 
perature between the other two clusters. 

Figure 10.1
Figure 10.2

Table 10.4
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Figure 10.2 Screen showing the revised lowest data frame now including cluster 
labels. 

Table 10.4 Results of K-Means Clustering 
on Lowest Temperature Data 

*** K-Means Clustering * * *  

Centers: 
January April July October 

[I,] -6.555556 22.555556 52.77778 27.33333 

[3,] 26.500000 39.333333 58.50000 42.83333 
[2,] -26.142857 3.571429 38.71429 10.28571 

Clustering vector: 
[I] 1 1 2 1 2 1 2 1 3 3 2 3 3 1 1 2 3 2 2 3 1 1 

Within cluster sum of squares: 
[I J 758.000 11 17.429 2885.1 67 

Cluster sizes: 
[I] 9 7 6 

Avai la bl e arg u men t s: 
[I] “cluster” “centers” “withinss” “size” 
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We can use the scatterplot matrix display to enable us to see the 
position of the three clusters graphically. 

W Click on Graph. 
W Select 2D Plot. 
W Choose Matrix in the Axes Type slot. 
W Select the lowest data frame in the Scatter Plot Matrix dialog. 
W Choose January, April, July, and October as x columns. 

Choose cluster.id as y columns. 
1 Check Symbol tab. 
W Tick Use Text As Symbol box. 
W As Text to Use, specify y column. 
W Change Height to 0.15. 

Click OK. 

The resulting plot is shown in . The plot shows clearly the 
division into low-, medium-, and high-temperature cities. 

The value of three for the number of clusters was chosen arbitrarily. 
It would be useful if the data themselves could provide some information 
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Figure 10.3 Scatterplot matrix of low-temperature data showing cluster labels. 

Figure 10.3
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regarding the likely number of clusters that best describes the data. To 
investigate this we shall use the suggestion made by Tibshirani et al. 
(2001), described in Section 10.2. A probably very inefficient S-PLUS 
function for computing the ‘gap’ statistic is as follows: 

gap < - f u n c t i o n (x , B= 1 0 0, K=8, method =“u n i f o rm”) { 
# 
#K is the upper limit of number of clusters 
#B is the number of samples from the reference distribution 
#method=“pc” if principal components approach wanted. 
# 
#get within cluster sums of squares for observed data 
#for the requested upper limit of number of clusters 
# 
n<-length(x[, 11) 
p<-length(x[l , I )  
S <-va r (x) 
wss l  <-(n-1 )*sum(diag(S)) 
wsso<- n u me ric (0) 
for (i i n 2 : K) { W <-su m (km ean s (x , i) $ w i t h i nss) 

wsso<-c(wsso,w) 
I 

wsso<-c(wssl ,wsso) 
# 
if ( m e t h o d == “ pc” ) { X < - sweep (x ,2, a p p I y (x ,2, m e a n ) ) 

X.Svd<-Svd(X) 
Xprime<-X%*%X.svd$v 

I 
# 
#get range of values for generating samples from the 
reference distribution 
# 
i f  ( m e t h o d == “ pc”) rang < - a p p I y ( X  p r i me ,2, range) 

# 
xstare- m at r ix( 0, n , p) 
w k. exp<- m at rix( 0, B , K) 
# 
#now generate B samples from the reference distribution 

else rang<-apply(x,2,range) 
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#and cluster each, calculating the within cluster sum of 
#squares for each solution 
# 
for(j in 1:B){ 
for(i in 1 :n) xstar[i,]c-runif(p,rang[l ,],rang[2,]) 

wss 1 <-( n- 1 )*sum ( apply(xstar,2 ,var)) 
wssc-n u me ri c (0) 
for(i in 2:K) {Wc-sum(kmeans(xstar,i)$withinss) 

i f  ( m e t h o d == " p c") xs t a r c-xs t a r Yo * Yo t ( X . svd $v) 

wssc-c(wss,w) 
I 

WSSC-c(wss1 ,wss) 
# 
wk.exp[j,]c-wss 
I 
# 
t e rm c -ap p I y (log (w k. ex p) ,2, mean) 
gap c-t e rm - I og (wsso) 
# 
sd kc-sq rt (a p p I y ( I  og (w k. exp) ,2, var) ) 
# 
s kc-sq rt (1 + 1 /B) *sd k 
# 
# 

d i f f  c-gap [ 2 : K]-s k[ 2 : K] 
di f fc-gap[ l  :(K-l)]-diff 

valuesc-seq( 1 : (K- 1 )) [diff>=O] 
n cl us t . est c- m i n (Val u es) 

resultsc- 
list(gap=gap,sk=sk,lwss=log(wsso),lwkexp=term,B=B, K=K, 
nclust.est=nclust.est) 
results 
I 

A function to produce two useful plots from the object resulting from 
the gap function is as follows: 

plotgapc-function(gapobj) { 
par(mfrow=c(l,2)) 
y I i m c- ran ge (g a po bj $ I wss I g apo b j $ I w kex p) 
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plot( 1 :gapobj$K,gapobj$lwss,ylim=ylim, 
y I a b = “0 b s e rv e d and expected I o g (w s s) ” , 
x I a b = “ N u m be r of c I us t e r s” , type = “I”) 
lines( 1 :gapobj$K,gapobj$lwkexp,lty=2) 
I e g en d ( I oca t o r ( 1 ) , c (“0 bse rve d ” , ” Expected ” ) , It y = 1 : 2) 
plot( 1 :gapobj$K,gapobj$gap, 
x I a b=“ N u m be r of c I us t e r s” , y I a b=“ G a p stat i s t i c” ,type=“ I ” ) 

I 

We can now apply these two functions to the low-temperature data: 

#store numerical part of lowest data frame as a matrix 
# 
low<-as.matrix(lowest[,-1 I )  
#apply gap statistic using each type of reference 

set.seed( 9251 ) 
gap. resc-gap( low, B=50, K=6) 
gap.res 
plot gap (gap. res) 
# 
gap . r es 1 c -g a p ( I ow , B = 5 0, K= 6, m e t h o d =“ p c” ) 
gap.res1 
plotgap(gap.res1) 

distribution in turn 

The results are shown in and the plots in and 
. We see that the ‘uniform’ method estimates the number of clusters 

to be four, but the ‘pc’ method indicates that the observations are best 
regarded as a single homogeneous set. A detailed investigation of the gap 
statistic is given in Everitt (2002). 

10.3.2 Classifying New Jersey Congresspeople on the Basis 
of their Voting Behaviour 

We assume that the voting behaviour data are available as an S-PLUS 
matrix object congress and the names and party affiliations of the con- 
gresspeople as a vector names; see 

Here we shall use the command language approach to apply the three 
agglomerative hierarchical clustering methods mentioned in Section 10.2 

Table 10.5 Figures 10.4
10.5

Table 10.6
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Table 10.5 Results from Applying the gap Function to the Low- 
Temperature Data Using Both the ‘Uniform’ and the ‘pc’ Approach 

> set.seed(9251) 
> gap.res c- gap(low, B = 50, K = 6) 
> gap.res 
$gap: 
[ I ]  0.378 0.629 1.113 1.401 1.458 1.466 

$sk: 
[ I ]  0.1075 0.0979 0.1115 0.1305 0.1421 0.1385 

$Iwss: 
[ I ]  10.04 9.28 8.47 7.91 7.61 7.38 

$Iwkexp: 
[ I ]  10.41 9.91 9.58 9.31 9.07 8.85 

$ B: 
[I1 50 

$ K  
[I1 6 

$nclust.est: 
[I1 4 

> gap.res1 c- gap(low, B = 50, K = 6, method = “pc”) 
> gap.res1 
$gap: 
[ I ]  0.3336 -0.1611 -0.0519 0.1055 0.1146 0.1082 

$sk: 
[ I ]  0.201 0.176 0.165 0.132 0.136 0.161 

$Iwss: 
[ I ]  10.04 9.28 8.47 7.91 7.61 7.38 

$Iwkexp: 
[ I ]  10.37 9.12 8.42 8.02 7.73 7.49 

$B: 
111 50 

$ K  
[I1 6 

$nclust.est: 
111 1 
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Figure 10.4 Plot of observed and expected log(wss) and gap statistic for low- 
temperature data using a uniform reference distribution. 
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Figure 10.5 Plot of observed and expected log(wss) and gap statistic for low- 
temperature data using principal components reference distribution. 
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Table 10.6 Voting Data as Stored in S-PLUS 

> congress 
[,I1 [,21 [,31 [,41 [,51 [,61 [,71 [,81 [,91 

[I,] 0 8 15 15 10 9 7 15 16 
[2,1 8 0 17 12 13 13 12 16 17 
[3,1 15 17 0 9 16 12 15 5 5 
[4,] 15 12 9 0 14 12 13 10 8 
[5,] 10 13 16 14 0 8 9 13 14 
[6,] 9 13 12 12 8 0 7 12 11 
[7,] 7 12 15 13 9 7 0 17 16 
[8,] 15 16 5 10 13 12 17 0 4 
[9,] 16 17 5 8 14 11 16 4 0 

[lo,] 14 15 6 8 12 10 15 5 3 
[II,] 15 16 5 8 12 9 14 5 2 
[12,] 16 17 4 6 12 10 15 3 I 
[13,] 7 13 11 15 10 6 10 12 13 
[14,] 11 12 10 10 11 6 11 7 7 
[15,] 13 16 7 7 11 10 13 6 5 

[,I31 [,I41 [,I51 
[I,] 7 11 13 
[2,] 13 12 16 
[3,] 11 10 7 
[4,] 15 10 7 
[5,] 10 11 11 
[6,] 6 6 10 
[7,] 10 I1 13 
[8,] 12 7 6 
[9,] 13 7 5 

[lo,] 11 4 6 
ill,] 12 5 5 
[12,] 12 6 4 
[13,1 0 9 13 
[14,1 9 0 9 
[15,1 13 9 0 
> names 
[I] “Hunt(R)” “Sandman(R)” “ Howard (D) ” 
[41 “Thompson(D)” “Freylinghuysen(R)” “Forsythe(R)” 
171 “Widnall(R)” ” Roe (D) ” “Heltoski(D)” 

“Minis h (D) ” [I 01 “Rod i no( D) ” 
[I31 “Maraziti(R)” “Daniels(D)” “Patten(D)” 

“Rinaldo(R)” 

[,I01 [,I11 [,I21 
14 15 16 
15 16 17 
6 5 4  
8 8 6  

12 12 12 
10 9 10 
15 14 15 
5 5  3 
3 2 1 
0 1  2 
1 0 1 
2 1 0 

11 12 12 
4 5 6  
6 5 4  
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to the data and to produce the resulting dendrograms. The two S-PLUS 
functions needed are hclust and plclust. 

par(mfrow=c(l,3)) 
plclust( hclust(congress,method=“connected”), 
I a bets= nam es) 
p I c I u s t ( h c I u s t ( co n g re ss , m e t h o d =“co m pact ” ) I 

I a be1 s= na m es) 
p I c I us t ( h c I us t ( co n g re ss , method =‘lave rage” ) , 
I a be1 s= na m es) 
#hclust takes a distance or dissimilarity matrix 
#and a p p I i e s e it h e r s i n g I e I i n kag e , m e t h o d = “co n n e c t e d ” , 
#co m p I e t e I i n kag e , m e t h od = “co m pact” o r 
#average I i n kag e, method “average”. 
#piclust takes the result of hclust and produces 
#the corresponding dendrogram, labelled 
#here with the names of the congressmen 

The resulting diagram showing the three dendrograms is given in 
There are similarities but also differences in the three dendrograms, a 

situation that is not uncommon when applying different methods of cluster 
analysis to the same data set! Since single linkage is well known to have 
some practical problems (see Everitt et al., 20011, we shall confine more 
detailed attention to the results from complete and average linkage. Both 
dendrograms seem most consistent with a two-group solution, and the 
names of the congresspeople in each group can easily be extracted from 

. But in applications with a larger number of observations, 
groups may be found using the cuttree function. 

ge-cuttree( hclus(congress,method=“compact”),k=2) 
#stores labels for 2 cluster solution from 
#complete linkage in g 
names[g==l 3 
names[g==2] 
#gives names of congressmen in two group 
#solution 

By simply changing to method=“average” in the above, the names of 
the congresspeople in the two-group solution from average linkage are 
obtained. Both solutions are shown in . The two solutions are 

Figure 10.6

Figure 10.6

Table 10.7
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Single linkage Complete linkage 

Pl N -  

o .  

Average linkage 

rn 

Figure 10.6 Dendrograms for single linkage, complete linkage, and average link- 
age for voting behaviour data. 

very similar with only Daniels being placed in different clusters by the 
two clustering procedures. Both solutions show very definite evidence of 
party applications in voting. 

The clustering results for these data can usefully be compared with 
the two-dimensional solution obtained by applying classical multidimen- 
sional scaling to the voting matrix 

pa r ( p t y = “s” ) 
co rd sc-cmd scal e (con g ress) 
#gets 2D classical MDS solution 
xlimc-range(cords[,l]) 
p I o t (c o r d s , x I a b = “c 1 ” , y I a b =“c2”, type = “ n ” , 
xlim=xlim,ylim=xlim) 
text(cords,labels=abbreviate( names)) 
#uses the abbreviate function to get unique 
#shorter labels for each Congressman. 
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Table 10.7 Two Cluster Solutions from Complete linkage and Average 
linkage for the Voting in Congress Data 

> g c- cutree(hclust(congress, method = “compactf’), k = 2) 
> names[g==l] 
Ill “Hunt(R)” “Sandman(R)” “Frey I ingh uysen (R)” 
[41 
I71 
> names[g==21 
[I I “Howard( D)” “Thompson( D)” ‘I Roe( D)” ” He I tos ki ( D) ” 
I51 “Rod i no (D) ” “Minis h (D) ’’ “Rinaldo( R)” “Patten( D)” 
> g <- cutree(hclust(congress, method = “average”), k = 2) 
> names[g==ll 
[I] “Hunt(R)” “Sandman(R)” “Freylinghuysen(R)” 
141 “Forsythe(R)” “Wid n al I ( R) ” “Maraziti(R)” 
> names[g==2] 
[I] “Howard(D)” “Thompson(D)” “Roe(D)” “Heltoski(D)” 
[51 “Rod i no (D) ” “Minis h (D) ” “Rinaldo(R)” “Daniels(D)” 
[91 “Patten(D)” 

“ Fo rsyt he (R) ” 
” Dan ie I s( D) ” 

“Wid n al I ( R) ” ”Maraziti( R)” 

The plot is shown in . The Democrat/Republican division 
is clearly visible, as is the fact that Sandman is a distinct outlier. In fact, 
this particular congressperson had a greater tendency to abstain than the 
others. 

Figure 10.7
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Figure 10.7 Two-dimensional solution from classical multidimensional scaling 
applied to voting behaviour data. 

Exercises 

10.1. A suggestion that has been made for deciding on the number of 
groups when using k-means clustering is to plot the values of 
within-group variance against the number of clusters and to take 
the number corresponding to any distinct ‘elbow’ in this plot. 
Investigate this possibility for the lowest temperature data. 

10.2. Display the lowest temperature data in the space of their first two 
principal component scores, indicating on the plot the three-group 
cluster solution from k-means. 

10.3. Investigate whether the two-dimensional solution for the voting 
data from classical multidimensional scaling is adequate for the 
data. 
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Chapter I I  

Bivariate Density 
Estimation and 
Discriminant Analysis: 
Blood Fat Concentration 

11.1 Description of Data 
In a study of 371 males with chest pain, data were collected on the 
concentration of plasma cholesterol and plasma triglycerides (mg/dl). The 
data are shown in . For 51 patients there was no evidence of 
heart disease; for the remaining 320 there was evidence of narrowing of the 
arteries. Interest lies in assessing whether the two measurements made can 
be used to discriminate between men with and men without heart disease. 

11.2 Bivariate Density Estimation and Discriminant 
Function Analysis 

The data in will first be explored by plotting a scattergram of 
the two variables and estimating their bivariate density function. Density 
estimation is described in detail in Silverman (19861, but for bivariate data 
it generally involves use of a kernel estimator of the form 

Table 11.1

Table 11.1
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Table 11.1 Blood Fat Data (Plasma cholesterol, plasma triglycerides) 

51 patients with no evidence of heart disease 
195,348 237,174 205,158 201,171 190,85 180,82 193,210 
170,90 150,167 200,154 228,119 169,86 178,166 251,211 
234,143 222,284 116,87 157,134 194,121 130,64 206,99 
158,87 167,177 217,114 234,116 190,132 178,157 265,73 
219,98 266,486 190,108 156,126 187,109 149,146 147,95 
155,48 207,195 238,172 168,71 21 0,91 208,139 160,116 
243,101 209,97 221,156 178,116 289,120 201,72 168,100 
168,227 207,160 

320 patients with evidence of heart disease 
184,145 
21 5,168 
221,432 
21 0,92 
208,112 
197,87 
250,118 
180,80 
21 2,130 
297,232 
168,208 
208,262 
180,102 
268,154 
21 9,454 
319,418 
250,161 
285,930 
221,268 
227,146 
224,124 
172,106 
181,119 
21 5,325 
179,126 
245,166 
193,290 
242,179 
172,207 
262,88 

263,142 
233,340 
131,137 
251,189 
284,245 
21 6,112 
243,50 
208,220 
193,188 
232,328 
197,291 
220,75 
254,153 
248,312 
159,125 
171,78 
196,130 
184,255 
204,150 
197,265 
209,82 
174,117 
191,233 
228,130 
21 8,123 
191,90 
332,250 
175,246 
190,120 
21 1,304 

185,115 
21 2,171 
21 1 , 124 
175,148 
231,181 
230,90 
175,489 
386,162 
230,158 
150,426 
41 7,198 
191,115 
191,136 
245,120 
200,152 
194,183 
298,143 
228,142 
276,199 
196,103 
223,80 
192,101 
185,130 
245,257 
279,317 
207,316 
194,116 
138,91 
144,125 
1 78,84 

271,128 
221,140 
232,258 
185,256 
171 , 165 
265,156 
200,68 
236,152 
169,112 
239,154 
172,140 

176,217 
171,108 
233,127 
244,108 
306,408 
171,120 
165,121 
193,170 
278,152 
221,179 
206,133 
186,273 
234,135 
248,142 
195,363 
244,177 
194,125 
331,134 

119,84 

173,56 
239,97 
313,256 
184,222 
258,210 
197,158 
240,196 
230,162 
181,104 
178,100 
240,441 
171,170 
283,424 
239,92 
232,131 
236,148 
175,153 
229,242 
211,91 
211,122 
251,152 
283,199 
210,217 
242,85 
264,269 
139,173 
243,112 
206,201 
105,36 
235,144 

230,304 
168,131 
240,221 
198,149 
164,76 
230,146 
185,116 
1 88,220 
189,84 
242,144 
191,115 
179,126 
253,222 
196,141 
189,135 
260,144 
251,117 
195,137 
264,259 
185,120 
140,164 
178,109 
226,72 
201,297 
237,88 
246,87 
271,89 
191,149 
201,92 
267,199 

222,151 
231,145 
176,166 
198,333 
230,492 
233,142 
21 3,130 
200,101 
180,202 
323,196 
21 7,327 
208,149 
220,172 
247,137 
237,400 
254,170 
256,271 
21 4,223 
245,446 
157,59 
197,101 
185,168 
21 9,267 
239,137 
162,91 
247,91 
197,347 
223,154 
193,259 
227,202 
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Table 1 1  .I (Continued) 
plasma triglycerides) 

Blood Fat Data (Plasma cholesterol, 

243,126 
211,306 
219,163 
173,300 
308,260 
249,146 
294,135 
266,164 
169,158 
260,98 
267,192 
270,110 
21 3,261 
131,96 
218,567 
225,240 

261,174 
249,256 
233,101 
260,127 
227,172 
258,145 
167,80 
21 7,227 
204,84 
199,153 
228,149 
188,148 
178,125 
233,141 
1 94,278 
280,218 

185, I00 
209,89 
220,153 
258,151 
168,126 
194,196 
208,201 
249,200 
184,182 
207,150 
187,115 
160,125 
172,146 
269,84 
252,233 
185,110 

171,90 
177,133 
348,154 
131,61 
178,101 
140,99 
208,148 
218,207 
206,148 
206,107 
304,149 
21 8,96 
198,103 
170,284 
184,184 
163,156 

222,229 
165,151 
1 94,400 
168,91 
164,80 
187,390 
185,231 
245,322 
198,124 
21 0,95 
140,102 
257,402 
222,348 
149,237 
203,170 
21 6,101 

231,161 
299,93 
230,137 
208,77 
151,73 
171,135 
159,82 
242,180 
242,248 
229,296 
209,376 
259,240 
238,156 
194,272 
239,38 

258,328 
274,323 
250,160 
287,209 
165,155 
221,156 
222,108 
262,169 
189,176 
232,583 
198,105 
139,54 
273,146 
142,111 
232,161 

(11.1) 

where (XI, YJ 

kernel function, commonly, the standard bivariate normal density, i.e., 

(X,,, YJ are the sample bivariate observations, h, and 
are smoothing parameters usually known as bandwidth, and K is a 

(11.2) 

In essence, the estimator is a sum of ‘bumps’ placed at the observations. 
The kernel function determines the shape of the bumps, and the band- 
width determines their width. A value often suggested for the bandwidth 
is ~ 2 - l ’ ~  (see Venables and Ripley, 19991, for each dimension. 

Following this initial exploration various discriminant function proce- 
dures will be applied to investigate the possibility of using the cholesterol 
and triglyceride measurements to discriminate between people with heart 
disease and those without. Details of such techniques are given in Everitt 
and Dunn (2001), but the simplest, linear discriminant function analysis 
consists of finding a linear function of the two variables that best distin- 
guishes between members of the two groups. The coefficients that define 
this function, a, and a2, can be shown to be given by 
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where a’ = [a,, a,], S is the estimator of the assumed common covariance 
matrix of the two groups, and X, and X, their mean vectors. Having found 
the vector, a, a discriminant score can be found for each individual as 

z = a, Cholesterol + a2 Triglycerides (11.4) 

Individuals can now be assigned to one of the two groups on the 
basis of their discriminant score by comparing it to the threshold value 
%(5, + Z,), where 5l and 5, are the mean discriminant scores of each group. 
If a score is larger than the threshold, the individual is classified into one 
group; if lower than the threshold, into the other. (This rule is based on 
the assumption that the priorprobabilities of being in either group are 
the same. It is this rather unrealistic assumption that we shall make in 
this chapter, although in designing a classification rule for use in practice, 
realistic estimates of the prior probabilities would clearly be needed. For 
the adjusted classification rule in this case, see Everitt and Dunn, 2001.) 

The performance of a discriminant analysis classification rule is 
assessed by estimating the rnisclassification rate of the rule. One possible 
estimator is the misclassification rate of the rule based on the data from 
which it was derived. This is, however, well known to be a very poor 
estimator and there are several alternatives that are preferred (see Hand, 
1998, for details). The most commonly used of the available methods is 
the so-called leaving-one-out method, in which the discriminant function 
is derived from just n - 1 members of the sample and then used to classify 
the member left out. The process is repeated n times, leaving out each 
sample member in turn. 

11.3 Analysis Using S-PLUS 
The blood fat data are available as the data frame bf, the contents of 
which are shown in 

11.3.1 Bivariate Density Estimation 
We begin by constructing a scatterplot of the data in which the members 
of the no heart disease group are identified by a minus sign and the 
members of the heart disease group by a plus sign. 

Table 11.2
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Table 11.2 Contents of bf Data Frame 

> bf 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Group 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
No heart disease 
No heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
N o  heart disease 
No heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
No heart disease 
No heart disease 
N o  heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 
N o  heart disease 

Cholesterol 
195 
237 
205 
201 
190 
180 
193 
170 
150 
200 
228 
169 
178 
251 
234 
222 
116 
157 
194 
130 
206 
158 
167 
21 7 
234 
190 
178 
265 
21 9 
266 
190 
156 
187 
149 
147 
155 
207 
238 
168 

Trig I yce rides 
348 
1 74 
158 
171 
85 
82 

21 0 
90 

167 
154 
119 
86 

166 
21 1 
143 
2a4 
87 

134 
121 
64 
99 
87 

177 
114 
116 
132 
157 
73 
98 

486 
108 
126 
109 
146 
95 
48 

195 
1 72 
71 
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Table 11.2 (Continued) Contents of bf Data Frame 

> bf 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 

Group 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
No heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
21 0 
208 
160 
243 
209 
221 
178 
289 
201 
168 
168 
207 
184 
263 
185 
271 
1 73 
230 
222 
21 5 
233 
21 2 
221 
239 
168 
231 
221 
131 
21 1 
232 
31 3 
240 
1 76 
21 0 
251 
175 
185 
184 
198 

Triglycerides 
91 

139 
116 
101 
97 

156 
116 
120 
72 

100 
227 
160 
145 
142 
115 
128 
56 

304 
151 
168 
340 
171 
140 
97 

131 
145 
432 
137 
124 
258 
256 
221 
166 
92 

189 
148 
256 
222 
149 
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Table 11.2 (Continued) Contents of bf Data Frame 

z bf 

79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 

100 
101 
102 
103 
104 
105 
106 
107 
108 
109 
110 
111 
112 
113 
114 
115 
116 
117 

Group 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
198 
208 
284 
231 
171 
258 
164 
230 
197 
21 6 
230 
265 
197 
230 
233 
250 
243 
175 
200 
240 
185 
21 3 
180 
208 
386 
236 
230 
188 
200 
212 
193 
230 
169 
181 
189 
180 
297 
232 
150 

Triglycerides 
333 
112 
245 
181 
165 
21 0 
76 

492 
87 

112 
90 

156 
158 
146 
1 42 
118 
50 

489 
68 

196 
116 
130 
80 

220 
162 
152 
162 
220 
101 
130 
188 
158 
112 
1 04 
84 

202 
232 
328 
426 
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Table 11.2 (Continued) Contents of bf Data Frame 

> bf 

118 
119 
120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
130 
131 
132 
133 
134 
135 
136 
137 
138 
139 
140 
141 
142 
143 
144 
145 
146 
147 
148 
149 
150 
151 
152 
153 
154 
155 
156 

Group 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
239 
178 
242 
323 
168 
197 
41 7 
1 72 
240 
191 
21 7 
208 
220 
191 
119 
171 
1 79 
208 
180 
254 
191 
176 
283 
253 
220 
268 
248 
245 
171 
239 
196 
247 
21 9 
159 
200 
233 
232 
189 
237 

Triglycerides 
154 
100 
144 
196 
208 
291 
198 
140 
441 
115 
327 
262 
75 

115 
84 

170 
126 
149 
102 
153 
136 
21 7 
424 
222 
1 72 
154 
31 2 
120 
108 
92 

141 
137 
454 
125 
152 
127 
131 
135 
400 
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Table 11.2 (Continued) Contents of bf Data Frame 

> bf 

157 
158 
159 
160 
161 
162 
163 
164 
165 
166 
167 
168 
169 
170 
171 
1 72 
1 73 
1 74 
1 75 
1 76 
177 
178 
179 
180 
181 
182 
183 
184 
185 
186 
187 
188 
189 
190 
191 
192 
193 
194 
195 

Group 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
31 9 
171 
194 
244 
236 
260 
254 
250 
196 
298 
306 
175 
251 
256 
285 
184 
228 
171 
229 
195 
21 4 
221 
204 
276 
165 
21 1 
264 
245 
227 
197 
196 
193 
21 1 
185 
157 
224 
209 
223 
278 

Triglycerides 
41 8 
78 

183 
108 
148 
144 
1 70 
161 
130 
143 
408 
153 
117 
271 
930 
255 
142 
120 
242 
137 
223 
268 
150 
199 
121 
91 

259 
446 
146 
265 
103 
170 
122 
120 
59 

1 24 
82 
80 

152 
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Table 11.2 (Continued) Contents of bf Data Frame 

> bf 

196 
197 

199 
200 
201 
202 
203 
204 
205 
206 
207 

209 
21 0 
21 1 
21 2 
21 3 
21 4 
21 5 
21 6 
21 7 

21 9 
220 
221 
222 
223 
224 
225 
226 
227 
228 
229 
230 
231 
232 
233 
234 

198 

208 

21 a 

Group 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
251 
140 
197 
172 
1 74 
192 
221 
283 
I 7a 
I a5 
1 a1 
191 
185 
206 
21 0 
226 
21 9 
215 
228 
245 
186 
242 
201 
239 
1 79 

279 
234 
264 
237 
162 
245 
191 
207 

139 
246 
247 
193 

21 a 

248 

Triglycerides 
152 
164 
101 
106 
117 
101 
179 
199 
109 
168 
119 
233 
130 
133 
21 7 
72 

267 
325 
130 
257 
273 
85 

297 
137 
126 
123 
31 7 
135 
269 

91 
166 
90 

31 6 
142 
1 73 

91 
290 

aa 

a7 
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Table 11.2 (Continued) Contents of bf Data Frame 

> bf 

235 
236 
237 
238 
239 
240 
241 
242 
243 
244 
245 
246 
247 
248 
249 
250 
251 
252 
253 
254 
255 
256 
257 
258 
259 
260 
261 
262 
263 
264 
265 
266 
267 
268 
269 
270 
271 
272 
273 

Group 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
332 
194 
195 
243 
271 
197 
242 
1 75 
138 
244 
206 
191 
223 
172 
190 
144 
194 
105 
201 
193 
262 
21 1 
178 
331 
235 
267 
227 
243 
261 
185 
171 
222 
231 
258 
21 1 
249 
209 
177 
165 

Trig I yce rides 
250 
116 
363 
112 
89 

347 
179 
246 
91 

177 
201 
149 
154 
207 
120 
125 
125 
36 
92 

259 
88 

304 
84 

134 
144 
199 
202 
126 
1 74 
100 
90 

229 
161 
328 
306 
256 
89 

133 
151 
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Table 11.2 (Continued) Contents of bf Data Frame 

> bf 

274 
275 
276 
277 
278 
279 
280 
281 
282 

284 
285 
286 
287 
288 

290 
291 
292 
293 
294 
295 
296 
297 
298 
299 
300 
301 
302 
303 
304 
305 
306 
307 
308 
309 
31 0 
31 1 
31 2 

283 

289 

Group 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
299 
274 
21 9 
233 
220 
348 
194 
230 
250 
1 73 
260 
258 
131 
168 
208 
287 
308 
227 
168 
178 
164 
151 
165 
249 

1 94 
140 
187 
171 
221 
294 
167 
208 
208 
185 
159 
222 
266 
21 7 

258 

Triglycerides 
93 

323 
163 
101 
153 
154 
400 
137 
160 
300 
127 
151 
61 
91 
77 

209 
260 
1 72 
126 
101 
80 
73 

155 
146 
1 45 
196 
99 

390 
135 
156 
135 
80 

201 

231 
148 

a2 
1 oa 
164 
227 
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Table 11.2 (Continued) Contents of bf Data Frame 

> bf 

313 
314 
315 
31 6 
31 7 

31 9 
320 
321 
322 
323 
324 
325 
326 
327 

329 
330 
331 
332 
333 
334 
335 
336 
337 
338 
339 
340 
341 
342 
343 
344 
345 
346 
347 

349 
350 
351 

31 a 

328 

348 

Group 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
249 

245 
242 
262 
169 
204 
184 
206 

242 

260 
199 
207 
206 
21 0 
229 
232 
267 

21 a 

198 

1 a9 

228 
I a7 
304 
140 
209 

270 

160 

257 
259 
139 
21 3 

172 

222 

198 

1 aa 

21 a 

I 78 

198 

238 

Triglycerides 
200 
207 
322 

169 

84 

1 ao 

I 58 

1 a2 
148 

248 

98 

1 24 

176 

153 
150 
107 
95 

296 

192 
149 
115 
149 
102 
376 
105 
110 

125 
96 

402 
240 
54 

261 
125 
146 
103 

156 

583 

148 

348 
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Table 11.2 (Continued) Contents of bf Data Frame 

352 
353 
354 
355 
356 
357 
358 
359 
360 
3 61 
362 
363 
364 
365 
366 
367 
368 
369 
370 
3 71 

Group 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 
Heart disease 

Cholesterol 
273 
131 
233 
269 
170 
149 
194 
142 
21 8 
194 
252 
184 
203 
239 
232 
225 
280 
185 
163 
21 6 

Tr i g I y ce rid e s 
146 
96 

141 
84 

284 
237 
272 
111 
567 
278 
233 
184 
1 70 
38 

161 
240 
21 8 
110 
156 
101 

attach( bf) 
p I o t (C h o I e s t e ro I, T r i g I y ce r i d e s ,type = “n” ) 
text(Cholesterol,Triglycerides,labels= 
rep ( “ -” , “+ ” ) , c ( 5 1 ,32 0)) ) 
I eg e n d (I ocato r ( 1 ) , c (“N o h eart disease” ,“Heart 
d i seas e”) , pc h =“-+”) 

The resulting diagram is shown in . The main features in this 
diagram are the considerable overlap between the two groups and the 
presence of an individual with an extremely high triglyceride value. This 
is individual number 171. Since the value is so extreme, this individual 
will be removed from further analyses. 

A first, very crude, estimate of the bivariate density of the two variables 
can be obtained using the hist2d function in S-PLUS, which simply counts 
the number of observations in each cell of a grid constructed for the data. 
The resulting counts can be viewed graphically using the persp function. 

Figure 11.1
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Figure 11.1 
with heart disease and those without. 

Scatterplot of cholesterol and triglycerides identifying those men 

No heart disease 

+ +  

: ++ 
+ + +  + +  + +  

Figure 11.2 Two-dimensional histogram of blood fat data. 

persp(hist2d(Cholesterol[-l7l],Triglycerides [-171]), 
z I a b=" F re q u e n c y " , x I a b=" C h o I e s t e r o I", y I a b="T r i g I y ce r i d es" ) 

The resulting diagram is shown in Figure 11.2
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A far ‘smoother’ estimate of the bivariate density can be obtained by 
using the kernel estimator approach outlined in Section 11.2. A relatively 
crude function to implement this procedure is easily constructed making 
use of, in particular, the S-PLUS outer function. 

kdenc-function(x, y, ngridx=30, ngridy=30, c0nstant.x 
=1, constant.y=l) 

#x and y are vectors containing the bivariate data 
#ngridx and ngridy are the number of points in the grid 
# 

{ 

mx c- mean(x) 
sdx c- sqrt(var(x)) 
my <- mean(y) 
sdy <- sqrt(var(y)) 

#standardize x and y before estimation using the scale 
#function 

x c- scale(x) 
y <- scale(y) 
den c- matrix(0, ngridx, ngridy) 

# 
#find possible value for bandwidth 
# 

n c- length(x) 
hx c- c0nstant.x * nA(-0.2) 
hy <- c0nstant.y * 119-0.2) 

hsqrt c- sqrt(h) 
h C- hx * hy 

#set up grid at which to calculate densities 
#use the outer function to compute densities 
#and accumulate over the n observations 

seqx c- seq(range(x)[l], range(x)[2], length=ngridx) 
seqy c- seq(range(y)[l], range(y)[2], length=ngridy) 
for(i in 1:n) { 

X c- x[i] 
Y c- y[i] 
xx c- (seqx - X)/hsqrt 
yy c- (seqy - Y)/hsqrt 
den c- den + outer(xx, yy, function(x, y) 
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exp(-0.5 * (xA2 + yA2))) 
I 

den <- den/(n * 2 * p i  * h)  
seqx <- sdx * seqx + mx 
seqy <- sdy * seqy + my 
result <- list(seqx=seqx, seqy=seqy, d e b d e n )  
result 

I 

We can now use the function kden to estimate the required bivariate 
density and then view the estimate using persp. 

den<-kden(CholesteroI[-171 ],Triglycerides[-1711) 
p e r s p ( d en $ s e q x , d e n $ s e q y , d e n $ d e n , x I a b =“C h o I e s t e r o I ” , y I a b = 
“Trig I y ce rides” , z I a b =“ D e n sit y ”) 

The resulting diagram appears in . The bivariate density looks 
relatively ‘normal’ apart from perhaps a slight ‘bumpiness’ for triglyceride 
values above 200, but there is no obvious bimodality that would indicate 
relatively clear separation between the with and without heart disease gmups. 

Figure 11.3 Kernel estimate of bivariate density function of blood fat data. 

Figure 11.3

© 2002 by Chapman & Hall/CRC
196



7 

I 
I I I I I I 

100 150 200 250 300 350 400 

Cholesterol 

Figure 11.4 Contour plot of estimated bivariate density of blood fat data. 

The density estimate might also be displayed as a contour plot using 
the S-PLUS contour function: 

co n t o u r ( d e n $ se q x , d e n $ se q y , d e n $ d e n , x I a b =“C h o I e s t e r o I”, 
y I a b = “T r i g I y c e rides” , n I eve Is = 5 0) 
#the nlevels argument is used to increase 
#the number of contours plotted 

The contour plot is shown in 

I 7.3.2 Discriminant Analysis 

We begin this subsection by constructing the linear discriminant function 
for the no heart disease/heart disease groups first from principles using, 
in particular, the solve function in S-PLUS to invert a matrix: 

#Calculate the discriminant function coefficients 
#from first principles 
# 
#first calculate the covariance matrices in each group 

Figure 11.4
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# 
# 
bf <- b f~ [ -171 ,  2:3] 
Group <- Group[-1 711 
v l  <- var(bf[Group=="No heart disease",]) 
v2 <- var(bf[Group=="Heart disease",]) 
# 
#Calculate group mean vectors 
# 
m l  <- apply(bf[Group=="No heart disease",], 2, mean) 
m2 <- apply(bf[Group=="Heart disease",], 2, mean) 
# 
#Find number of observations in each group 
# 
n 1 < - I e n g t h (G ro u p [ G ro u p==" N o he art disease"]) 
n 2 < - I e n g t h ( G ro u p [ G r o u p== " H e a r t d is e as e "1 ) 
# 
#Estimate assumed common covariance matrix 
# 
v <- ( (n l  - 1) * v l  + (n2 - 1) * v2)/(nl + n2 - 2) 
# 
#Calculate inverse of common covariance matrix and store 
#as v 
# 
v <- solve(v) 
# 
#calculate discriminant function coefficients 
# 
a c-  v Yo*% ( m l  - m2) 
# 
#calculate threshold value for discriminant rule 
# 
212 c-  ( m l  Yo*% a + m2 %*% a)/2 
# 
#plot the data labelling the members of the two groups 
#and add the discriminant function line and an 
#appropriate legend 
# 
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Figure 11.5 Plotted and discriminant function. 1 = No heart disease; 2 = heart 
disease. 

plot(bf[, 11, bf[, 21, xlab=“Cholesterol”, ylab= 
“Try g I ice rides” , type =“n”) 
text(bf[, 11, bf[, 21, labels=Group) 
legend(locator(l), c(“No heart disease”, “Heart 
disease”), pch=“l2”) 
# 
#add estimated discriminant function to scatter plot 
# 
abline(zl2/a[2], - a[l]/a[2], lwd=2, I ty= l )  

The estimated discriminant function is 

z = -0.01007 Cholesterol -0.00343 Triglycerides (11.5) 

and the threshold value is -2.62. 

Observations falling above the line would be classified as ‘heart disease’, 
those below the line as ‘no heart disease’. 

The plotted data and discriminant function are shown in Figure 11.5
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Select Multivariate. 

We can also obtain the discriminant function along with information 
about its performance in terms of estimated misclassification rate by using 
the discrim function in S-PLUS. 

bf .disc<-discrim(Group-CholesteroI+Triglycerides,data 
= bf , p r i o r = u n i f  o r m ” ) 
summary(bf.disc) 

The results are given in . The discriminant function coefficients 
given in (11.5) are obtained from this table by simply subtracting the 
appropriate linear coefficients for no heart disease and heart disease. The 
test for homogeneity of variance is not quite significant at the 5% level, 
and the tests for a difference in the bivariate means of the two groups all 
take the same pvalue since there are only two groups. The difference is 
highly significant. Here, the estimated misclassification rates estimated from 
the original sample and from the leaving-out-one method are very similar. 

The linear discriminant function derived above assumes that both 
groups have the same population covariance matrix. When this assumption 
is thought to be doubtful, a quadratic discriminant function can be derived 
(see Everitt and Dunn, 2001, for details). Largely as an exercise, we shall 
demonstrate how to find this function for the blood fat data by using the 
S-PLUS Discriminant Analysis dialog. For this analysis we shall use all 
the data, i.e., now including individual 171. 

Click on Statistics. 

Select Discriminant Analysis. 

In the Discriminant Analysis dialog, which now appears, choose bf 
as the data set, and then Group as the Dependent variable and Choles- 
terol and Triglycerides as the Independent. Select heteroscedastic for 
Covariance Struct and set Group Prior to uniform. The dialog now 
appears as shown in . Now check the Results tab and tick 
Plot. Finally, click on OK. 

and the plotted 
quadratic discriminant function is shown in . In , 
there are quadratic coefficients in addition to linear coefficients. The test 
for homogeneity of covariances differs from that in because of 
the inclusion of individual 171 in this analysis. With this individual 
included, there is a significant difference between the covariance matrices 
of the two groups. The quadratic discriminant function classifies more of 
the no heart disease correctly than the linear function, but does less well 
on the heart disease group. 

The results of the analysis are shown in 

Table 11.3

Figure 11.6

Table 11.4
Table 11.4

Table 11.3

Figure 11.7
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Table 11.3 Results from Using discrim Function on Blood Fat Data 

Call: 
discrim(Group - Cholesterol + Triglycerides, data = bf, prior = 

” u n i fo r m ” ) 

Group means: 

Cholesterol Triglycerides N Priors 
No heart disease 195 140 51 0.5 

Heart disease 21 6 177 31 0.5 

Covariance Structure: homoscedastic 
Cholesterol Triglycerides 

Cholesterol 1768 844 
Triglycerides 8205 

Constants: 

No heart disease Heart disease 
-1 1.6 -14.2 

Linear Coefficients: 

No heart disease Heart disease 
Cholesterol 0.108 0.118 

Triglycerides 0.006 0.009 

Tests for Homogeneity of Covariances: 

Statistic d f  Pr 
B0x.M 7.73 3 0.052 
adj.M 7.62 3 0.055 

Tests for the Equality of Means: 
Group Variable: Group 

Statistics F d f l  df2 Pr 
Wilks Lambda 0.9616 7.33 2 367 0.000758 

Pillai Trace 0.0384 7.33 2 367 0.000758 
Hoteling-Lawley Trace 0.0399 7.33 2 367 0.000758 

Roy Greatest Root 0.0399 7.33 2 367 0.000758 

* Tests assume covariance homoscedasticity. 
F Statistic for Wilks’ Lambda is exact. 
F Statistic for Roy’s Greatest Root is  an upper bound. 
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Table 11.3 (Continued) Results from Using discrim Function on Blood 
Fat Data 

Hotelling's T Squared for Differences in Means Between Each Group: 
F dfl df2 Pr 

N o  heart disease-Heart disease 7.33 2 367 0.000758 

95% Simultaneous Confidence Intervals Using the Dunnett Method: 
Estimate Std.Error Lower Bound 

N hrtdischolestr-Hrtdises.Cholestr -20.7 6.34 -34.9 
N hrtdiss.Trglycrd-Hrtdises.Trglycrd -36.6 13.70 -67.3 

Upper Bound 
N hrtdiss.Cholestr-Hrtdises.Cholestr -6.49 ****  
N hrtdiss.Trglycrd-Hrtdises.Trglycrd -6.03 **** 

(critical point: 2.2411) 
* Intervals excluding 0 are flagged by '****' 

Mahalanobis Distance: 
N o  heart disease Heart disease 

N o  heart disease 0.000 0.334 
Heart disease 0.000 

Kolmogorov-Smirnov Test for Normality: 
Statistic Probability 

Cholesterol 0.057 0.180 
Triglycerides 0.048 0.362 

Plug-in classification table: 
No heart disease Heart disease Error Posterior.Error 

N o  heart disease 35 16 0.314 0.461 
Heart disease 134 185 0.420 0.322 

Overall 0.367 0.391 
Stratified.Error 

N o  heart disease 0.340 
Heart disease 0.451 

Overall 0.396 
(from = rows,to = columns) 

Optimal Error Rate: 
N o  heart disease Heart disease overall 

0.449 0.449 0.449 
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Table 11.3 (Continued) Results from Using discrim Function on Blood 
Fat Data 

Rule Mean Square Error: 0.462 
(conditioned on the training data) 

Cross-validation table: 

No heart disease Heart disease Error PosteriocError 
No heart disease 34 17 0.333 0.458 

Heart disease 136 183 0.426 0.324 
Overall 0.380 0.391 

Stratified.Error 
No heart disease 0.349 

Heart disease 0.441 
Overall 0.395 

(from = rows,to = columns) 

Figure 11.6 Completed Discriminant Analysis dialog. 
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Table 11.4 Quadratic Discriminant Function Results for Blood Fat Data 

*** Discriminant Analysis *** 

Call: 
discrim(Group - Cholesterol + Triglycerides, data = bf, family = 

Classical(cov.structure = “heteroscedastic”), na.action = 
na.omit, prior = “uniform”) 

Group means: 

No heart disease 195 140 51 0.5 
Heart disease 21 6 1 79 320 0.5 

Cholesterol Triglycerides N Priors 

Covariance Structure: heteroscedastic 

Group: No heart disease 

Cholesterol Triglycerides 

Triglycerides 5519 
Cholesterol 1304 a73 

Group: Heart disease 

Cholesterol Triglycerides 
Cholesterol 1850 999 

Trig I yce rides 10373 

Constants: 

No heart disease Heart disease 
-23.2 -21.9 

Linear Coefficients: 

No heart disease Heart disease 
Cholesterol 0.148 0.1 13 

Trig I yce r id es 0.002 0.006 

Quadratic coeff icents: 

group: No heart disease 

Cholesterol Triglycerides 
Cholesterol -0.000429 0.000068 

Triglycerides -0.0001 01 
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Table 11.4 (Continued) Quadratic Discriminant Function Results for Blood 
Fat Data 

group: Heart disease 

Cholesterol Triglycerides 
Cholesterol -0.000285 0.0000274 

Triglycerides -0.0000508 

Tests for Homogeneity of Covariances: 

Statistic df Pr 
B0x.M 11.2 3 0.011 
adj.M 11.1 3 0.011 

Hotelling’s T Squared for Differences in Means between Each Group: 

F d f l  df2 Pr 
No heart disease-Heart disease 9.4 2 74.8 0.000228 
* df2 i s  Yao‘s approximation. 

95% Simultaneous Confidence Intervals Using the Dunnett Method: 

Estimate Std.Error Lower Bound 
N hrtdiss.Cholestr-Hrtdises.Cholestr -20.9 5.6 -33.6 
N hrtdiss.Trg1ycrd-H rtdises.Trglycrd -39.0 11.9 -65.9 

N h rtdiss.Trglycrd-Hrtdises.Trglycrd -12.1 ****  

Upper Bound 
N hrtdiss.Cholestr-Hrtdises.Cholestr -8.2 **** 

(critical point: 2.272) 
* Intervals excluding 0 are flagged by ‘ * * * * I  

Pairwise Generalized Squared Distances: 

No heart disease Heart disease 
No heart disease 0.000 0.315 

Heart disease 0.462 0.000 

Kolmogorov-Smirnov Test for Normality: 

Statistic Probability 
Cholesterol 0.062 0.111 

Triglycerides 0.043 0.505 
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Table 11.4 (Continued) Quadratic Discriminant Function Results for Blood 
Fat Data 

Plug-in classification table: 

N o  heart disease Heart disease Error Posterior.Error 
No heart disease 42 9 0.176 0.246 

Heart disease 177 143 0.553 0.407 
Overall 0.365 0.326 

Stratified.Error 
No heart disease 0.1 11 

Heart disease 0.552 
Overall 0.331 

(from = rows,to = columns) 

Rule Mean Square Error: 0.522 
(conditioned on the training data) 

Cross-validation table: 

No heart disease Heart disease Error Posterior.Error 
N o  heart disease 40 11 0.216 0.252 

Heart disease 177 143 0.553 0.401 
Overall 0.384 0.326 

Stratified.Error 
N o  heart disease 0.137 

Heart disease 0.526 
Overall 0.331 

(from = rows, to = columns) 
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Figure 1 1.7 Plotted quadratic discriminant function. 

Exercises 

11.1. Investigate what happens when the discrim function is used on 
the blood fat data with other than uniform priors. 

11.2. Investigate using the discrim function on the blood fat data when 
the assumption about the group covariance matrix is neither that 
they are equal nor that they are completely different. 

© 2002 by Chapman & Hall/CRC 207



Appendix A 

The S-PLUS language 

A1 Vectors and Matrices 
Vectors can be created using the concatenate function, C, which combines 
all values given as arguments to the function into a vector. 

>X<-C(l,2,3,4) 
>Y<-c( 5,6,7,8) 
>XY <-C(X,Y) 
>XY 
[ 1 ] 1 2 3 4 5 6 7 8  

The number of elements in a vector can be determined using the length 
function 

> I  en g t h (x y) 

111 8 

Particular elements of vectors can be accessed using the square bracket 
nomenclature 
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The c function can also be used to combine strings denoted by enclosing 
them in “ ”. For example: 

> n am esc -c (“ B ria n ” , ” R ac h e I”, ” H y w e I”, ” D a f y d d”) 
>names 
[ 1 3  “Brian”, “Rachel”, “Hywel”, “Dafydd” 

The c function also works with a mixture of numeric and string values, 
but in this case all elements in the resulting vector will be converted to 
strings: 

>x n a m es c-c( x, names) 
>xnames 

[8] “Dafydd” 

[I] 1 1 1  II 11299 11313 ‘I4n IIBrian9, llRachelIl IIHywelII 

Arithmetic operators (see 
for example, 

) work element-wise on vectors; so, 

>x*y 
[ I ]  5 1221 32 
>X/X 
[ l ]  1 1 1 1 
>x-y 
[I]-4 -4 -4 -4 
>2*x 
[I12 4 6 8 

Table A1 Arithmetic Operators 

Operator Meaning Expression Result 

- minus 5 - 2  3 
times 5 9 2  10 

A power 2A3 8 

+ plus 2 + 3  5 

I divided by 1012 5 

* 

We can also apply mathematical functions to vectors, and they will be 
applied element by element. (The most common of these functions are 
listed in .) To restrict the number of decimal points printed, we 
first use the options function as follows: 

Table A1

Table A2
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Table A2 Common Functions 

S-PLUS Function 
sqrt 

1% 
log10 
exP 
abs 
round 
cei I ing 
floor 
sin, cos, tan 
asin, acos, atan 

Meaning 
square root 
natural logarithm 
logarithm base 10 
exponential 
absolute value 
round to nearest integer 
round up 
round down 
s i ne, cosine, tangent 
arc sine, arc cosine, arc tangent 

opt ions (d ig it s=3) 

[ l ]  0.000 0.693 1.099 1.386 1.609 1.792 1.946 2.079 

[ l ]  2.72 7.39 20.09 54.60 148.41 403.43 1096.63 2980.96 
>sq rt(x*x+y*y) 
[ l ]  5.10 6.32 7.62 8.94 

>mI(XY) 

>exp(xy) 

Matrix objects are also frequently required when using S-PLUS and can 
be created by use of the matrix function. The general syntax is 

matrix(data, nrow, ncol, byrow=F) 

The last argument specifies whether the matrix is to be filled row by row 
or column by column, with the latter being the default. Some examples 
will help to clarify how the matrix function operates: 

>X<-mat rix( c( x, y ) , n ro w=2) 
>X 

[ J I  [A  ~ 3 1  M I  
[1,1 1 3 5 7  
[2,] 2 4 6 8 

Here, the number of columns is not specified and so is determined by 
simple division. 
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> X  c- m a t rix (c  (x , y ) , n ro w =2, by row=T) 
> X  

[ J I  ~ 2 1  ~ 3 1  ~ 4 1  
[1 ? I  1 2 3 4  
[2,] 5 6 7 8 

Here, the matrix is filled row-wise instead of by columns since byrow is 
set to true. 

Again, the square bracket convention can be used to refer to particular 
elements of matrices, or particular rows or columns, or particular subsets 
of rows and columns. 

As with vectors, arithmetic operations operate element by element 
when applied to matrices: 

>x+x 
[ J I  ~ 2 1  ~ 3 1  ~ 4 1  

[ l , ]  2 4 6 8 
[2,]  10 12 14 16 

>sq rt ( X )  

[ l , ]  1.00 1.41 1.73 2.00 
[2,] 2.24 2.45 2.65 2.83 

[ J I  ~ 2 1  [,31 ~ 4 1  
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Matrix multiplication is performed using the %*% operator 

>X% * % t (X) 

[ I l l  [,21 
[l,] 30 70 
[2,] 70 174 

Here, the matrix X is multiplied by its transpose which is found using the 
t function. Trying to multiply X by itself would lead to an error message: 

> x ?Lo *?Lox 

Error in “%*%.default” (X,X):  Number of columns of x 
should be the same as number of rows of y 

A very powerful procedure in S-PLUS is the ability to subset matrices 
and vectors using logical expressions (the symbols used for logical oper- 
ations are listed in >. In addition to logical operations, there are 
also a number of logical functions, i.e., functions that return the values T 
or F. 

>is. nu me ric( 4) 
[11 T 
>is. c harac te r (4) 
[I1 F 
> is . char ac t e r ( “ B” ) 
[I1 T 

Table A3 Logical Operators 

Meaning 
less than 
greater than 
less than or equal to 
greater than or equal to 
equal to  
not equal to  
and 
or 
not 

Table A3
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Of particular importance here is the function used for testing for missing 
values (NA in S-PLUS), is.na: 

>is.na(c( 10,2O,NA,NA,3,NA)) 
[ l ]  F F T T F T 
>!is. na(c( 1 0,20, NA, NA,3, NA)) 
[ l ]  T T F F T F 

same wa 

>x<-c( 

[ I 1  T 
>x<4 

Logical operators or functions operate on vectors and matrices in the 
as other operators, i.e., element by element: 

T T F F F  

A logical vector can be used to extract a subset of elements from 
another vector, for example, 

>X[ X<4] 
[ l ]  1 2 3 

>Y[X>=4] 
>~<-~(2,8,10,12,16,18)  

[ l ]  12 16 18 
>X<-matrix(c( 1,2,-9,-9,7,-9,8,6),ncol=2) 
>X[ X==-9] <- N A 
>X 

[ I l l  [I21 
[I91 1 7 
[2,1 2 NA 
[3,l NA 8 
[4,1 NA 6 

A2 List Objects 
List objects allow other S-PLUS objects to be linked together. For example, 

>x<-c( 1,2,3,4) 
>X<- m at rix (c( x, 1 0,20,30,40), ncol=2) 
>xXlist<-list(x,X) 
>xXI ist 
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Note that the elements of the list are referred to by a double square 
bracket notation. So, 

The components of a list can also be given names and can, of course, 
also include other list objects. 

>new I i s t < - I  ist (f i rst =x, seco nd=X, t h i rd=xXI ist) 

Now, the components of the list can also be referred to using the 
list$name notation 

>newlist$first 
[l] 1 2 3 4 

>newlist$third 
“1 11: 
[l] 1 2 3 4 
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A list object can be used to give labels to the rows and/or columns 
of a matrix which is often very useful. For example: 

>amatrix<-matrix(c( 1,2,3,10,20,30,0,0,0),nrow=3,byrow=T) 
>amatrix 

[JI ~ 2 1  ~ 3 1  
[I31 1 2 3  
[2,] 10 20 30 
[3,1 0 0 0 

> d i m names (am at r i x) -c - I is t ,; ( ‘ I  R 1 ” , “ R 
>amatrix 

c 1  c 2  c 3  
R 1 1 2 3  
R2 10 20 30 
R 3 O O O  

“ R3”) , c ( “C 1 ” , “C2 I’ , “C 3”)) 

If the matrix was large, say, 500 rows and 50 columns, then helpful 
row and column labels can be created easily using the paste function: 

> d i m n am e s ( a m at r i x ) < - I i s t ( paste ( I L  R” , 1 : 5 0 0 ) , paste (“C” , 1 : 5 0)) 

The row labels will be R1, R2, ... R500, and the column labels C1, C2, ... 
C50. 

A3 Data Frames 
Data sets in S-PLUS are usually stored as data frames, since these can 
bind together vectors of different types (for example, numeric and char- 
acter), retaining the correct type for each vector. In many respects a data 
frame is similar to a matrix so that each vector should have the same 
number of elements. The syntax for creating data frame objects is 
data.frame(vector 1 ,vector 2,. . .); here is a small example: 

>height<-c(50, 70, 45, 80, 100) 
>weight<-c( 120, 140, 100, 200, 190) 
>age<-c(20, 40, 41, 31, 33) 
> n am e s < - c (“ B o b” , “Ted”, “A I ice ” , Mary ” , “ S u e” ) 
>sex<-c(“Male”, “Male”, “Female”, “Female”, “Female”) 
>data<-data.frame (names, sex, height, weight, age) 
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>data 
names sex height weight age 

1 Bob Male 50 120 20 
2 Ted Male 70 140 40 
3 Alice Female 45 100 41 
4 Mary Female 80 200 31 
5 Sue Female 100 190 33 

Particular parts of a data frame can be extracted in the same way as 
for matrices. 

>data[,c(l, 2, 5)] 
names sex age 

1 Bob Male 20 
2 Ted Male 40 
3 Alice Female 41 
4 Mary Female 31 
5 Sue Female 33 

Column names can also be used: 
>data [ , c (I‘ n a m es” , ‘lag e” ) ] 

names age 
1 Bob 20 
2 Ted 40 
3 Alice 41 
4 Mary 31 
5 Sue 33 

Variables can also be accessed as with list objects: 

>data$age 
[l] 20 40 41 31 33 

It is, however, more convenient to ‘attach’ a data frame object and 
then work with the column names directly. For example, 

>attach(data) 
>age 
[l] 20 40 41 31 33 

Note that the attach command places the data frame in the second position 
in the search path, so if, for example, we now assign a value to age 
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Click on File. 
Select Import Data. 

a new object is created in the first position of the search path that ‘masks’ 
the age variable of the data data frame. Variables can be removed from 
the first position in the search path using the rm function. 

>rm(age) 
>age 
1 2 3 4 5  
20 40 41 31 33 

To change the value of any or all elements of age in the data data frame, 
use the syntax 

>data$age<-c(20,30,45,32,32) 

A4 Reading Data into S-PLUS 
S-PLUS can read data from a large number of different statistical packages 
and spreadsheet/database packages, including SPSS, Stata, SAS, Microsoft 
Excel, and Microsoft Access. To read a file from another package using 
the GUI, for example, 

Select F r o m  File. 

The Import Data dialog as shown in 

appropriate type in the Files type window, e.g., SPSS files Vsav). 

file data.dat in the directory C:\users\me contains the matrix data 

now appears. 
In the File name window, enter the file name and then select the 

ASCII data can be read using the scan function. For example, if the 

123 
456 
32 1 

they can be read into a vector using scan, and then converted into a 
matrix using the matrix function as usual. 

Figure A1
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~A~-rnatrix(scan(file="c:\\users\\rne\\data.dat"),nrow=3, 
by row =T) 

Note that the scan function reads the data in lexicographical order 
(down the rows), so that the byrow=T option needs to be used in the 
matrix function. 

Perhaps the most convenient way of reading-in ASCII data is by using 
the read.table function which is used in creating data frames. If the first 
row of the file contains the variable names, the header=T option causes 
these names to be used for the columns of the data frame. If, for example, 
the data in C:\users\me\chiIdren.dat contain 

age sex y 
1 1  boy 3.2 
9 boy 5.8 
13 girl 1.2 

they can be read-in using 

Figure A1   Import Data dialog.
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>chi Id<-read. ta ble(“c:\\users\\me\\c h i Id ren .dat”, header=T) 
>child 

age sex y 
1 11 boy 3.2 
2 9 boy 5.8 
3 13 girl 1.2 

In many cases, all variables will be initially read into data in numeric 
form and then categorical variables designated as factor variables with 
their categories suitably labelled by use of the factor function. For example, 
the rats data frame used in Chapter 3 was initially constructed from an 
ASCII file in which the levels of poison were coded 1, 2, and 3, and the 
levels of treatment, 1, 2, 3, and 4. These were then altered to factor 
variables as follows; 

>rats$Poison<-factor(rats$Poison,levels=l:3, 
> I a b e I s =c ( I L  P 1 ” , P 2”, P 3”)) 
>rats$Treatment<-factor(rats$Treatment,Ievels=1:4, 
>I a b e I s=c (“A”, “B” , “C” , “ D”) ) 

A5 S-PLUS Functions 
S-PLUS has over 3000 in-line functions, a substantial minority of which 
have been used in this text. Information about these functions is available 
from the help function, for example, 

>help( paste) 

Here, we shall illustrate relatively briefly the use of just a small subset 
of perhaps the most widely used and most useful functions when analysing 
data. To begin we shall look at the two functions seq and rep, which are 
often used in the construction of vectors with a particular pattern of 
elements. For each function we include a summary of the material given 
by use of help(function name) 

seq: 
Description 
Creates a vector of evenly spaced numbers. The beginning, end, spacing, 
and length of the sequence can be specified. 
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Usage 

seq(. . .) 

seq.default(from=<<see below>>, to=<<see below>>, by=<<see 
below>>, 

length=<<see below>>, along=NULL) 

Optional Arguments 

from: Starting value of the sequence. If to, by, and length are all 
given, the value for this is inferred; otherwise, the default 
is 1. 
Ending value of sequence, a value less than from is 
allowed. If from, by, and length are all given, the value 
for this is inferred; otherwise, the default is 1. 
Spacing between successive values in the sequence. If 
from, to, and length are all given, the value for this is 
inferred; otherwise, the default is 1. 

length: Number of values in the result. If from, to, and by are all 
given, the value for this is inferred. 

along: An object. The length of the object is used as the length 
of the returned value. 

to: 

by: 

It is an error to specify all of the first four arguments. 

Value 

A numeric vector with values (from, from+by, from+2*by, ... to); from 
may be larger or smaller than to. If by is specified, it must have the 
appropriate sign to generate a finite sequence. 

rep 
Description 
Replicates the input either a certain number of times or to a certain length. 

Usage 

rep(x, times=<<see below>>, length.out=<<see below>>, 
each=<<see below>>) 
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Required Arguments 

x vector. Missing values (NAs) are allowed. 
At least one of times, length.out, and each must be given. 

Optional Arguments 

times: How many times to replicate x. There are two ways 
to use times. If it is a single value, the whole of x is 
replicated that many times. If it is a vector that is the 
same length as x, the result is a vector with times111 
replications of x[ll, timed21 of x[21, etc. Zero is allowed 
in both usages; if times=O, then the length of the result 
is 0. It is an error if the length of times is neither 1 
nor the length of x. 

1ength.out: The desired length of the result. This argument may 
be given instead of times, in which case x is replicated 
as much as needed to produce a result with 1ength.out 
data values. If both times and 1ength.out are given, 
times is ignored. 
If each is supplied, each element of x is repeated each 
time. This vector is repeated again if times or 1ength.out 
is also given. 

each: 

Value 

A vector of the same mode as x with the data values in x replicated according 
to the arguments times, length.out, and each. Any names are removed. 

Details 

Missing values (NAs) and Infs are treated just like other values. 
Some examples of the use of both seq and rep are 

> seq(0, 10, length=4) 
[l] 0.000000 3.333333 6.666667 10.000000 
> seq(0, 50, by=5) 
[l] 0 5 10 15 20 25 30 35 40 45 50 
> seq(0, 10, by=0.5) 
[l] 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 
[14] 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 
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> seq(5, 0, length=3) 
[ l ]  5.0 2.5 0.0 
> seq(5) 
[ l ]  1 2 3 4 5  
> seq(-5) 
[ l ]  1 0 -1 -2 -3 -4 -5 
> rep( l0 ,  5) 
[ l ]  10 10 10 10 10 
> rep(c( l0,  I ) ,  3) 
[ l ]  10 1 10 1 10 1 
> rep(c(10, I ) ,  c(3, 2)) 
[ l ]  10 10 10 1 1 
> rep(rep(c(W I ) ,  c(3, 2)), 4) 
[ l ]  10 10 10 1 1 10 10 10 1 1 10 10 10 1 1 10 10 10 1 1 
> rep( l :5,  1:5) 
[ 1 ] 1 2 2 3 3 3 4 4 4 4 5 5 5 5 5  

Three functions of particular use in statistical work are mean, var, cor. 

mean 
Description 
Returns a number that is the mean of the data. A fraction to be trimmed 
from each end of the ordered data can be specified. 

Usage 

mean(x, trim=O, na.rm=F) 

Required Arguments 

x: Numeric object. Missing values (NAs) are allowed. 

Option a I Arguments 

trim: Fraction (between 0 and .5, inclusive) of values to be 
trimmed from each end of the ordered data. If trim=.5, 
the result is the median. 

na.rm: Logical flag: should missing values be removed before 
computation? 
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Value 

(trimmed) mean of x. 

Details 

If x contains any NAs, the result will be NA unless naxm = TRUE. 

var and cor 
Description 
Returns the variance of a vector, the variance-covariance (or correlation) 
matrix of a data matrix, or covariances between matrices or vectors. A 
trimming fraction may be specified for correlations. 

Usage 

var(x, y, na.method = “fail”, unbiased = T, Sumsquares = F) 
cor(x, y, trim = 0, na-method = “fail”, unbiased = T) 

Required Arguments 

x: Numeric matrix or vector, or data frame. May be complex. If a 
matrix, columns represent variables and rows represent obser- 
vations. If a data frame, non-numeric variables result in missing 
values in the result. 

Optional Arguments 

Y: Numeric matrix or vector, or data frame. May be 
complex. If a matrix, columns represent variables 
and rows represent observations. If a data frame, 
non-numeric variables result in missing values in the 
result. This must have the same number of observa- 
tions as x. 
A number less than .5 giving the proportion trimmed 
in the internal calculations for cor. This should be a 
number larger than the suspected fraction of outliers. 

namethod: A character string specifying how missing values are 
to be handled. Options are 

trim: 
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“fail” (stop if any missing data are found), 
“omit” (omit rows with any missing data), 
“include” (missing values in the input result in 
missing values in the output) 
“available” (use available observations, see below). 
Only enough of the string to determine a unique 
match is required. 

sum((x-mean(x))~2)/(N-1) 
unbiased: If TRUE, then variances are sample variances, e.g., 

for a vector of length N, which is unbiased if the 
values in x are obtained by simple random sampling. 
If FALSE, the definition 

is used instead. 
SumSquares: If TRUE, then un-normalized sums of squares are 

returned, with no division by either N or (N-1) (and 
unbiased is ignored). 

sum((x-mean(x)>~2)/N 

Value 

cor0 returns correlations, and varO returns variances and covariances or 
sums of squares. 

If x is a matrix, the result is a matrix such that the [i,jl element is the 
covariance (correlation) of x[,il and either y[,jl or x[,jl. If x is a vector, the 
result is a vector, with length equal to the number of columns of y (or 
length 1 if y is not supplied). 

Some examples of the use of these three functions are 

> x <- 1 : l O  
> mean(x) 
[ l ]  5.5 
> var(x) 
[ l ]  9.166667 

> mean(x) 
111 NA 
> mean(x, na.rm=T) 
[ l ]  5.5 
> va r (x , n a. method =“o m it”) 
[ l ]  9.166667 
> X <- matrix(c(1, 4 ,  6, 3, 2, 1 ,  4, 5, 6), ncol=3) 

> x <- C(X, NA) 
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> var(X) 

[JI ~ 2 1  ~ 3 1  
[l,] 6.333333 -2.5 2.5 
[2,] -2.500000 1.0 -1.0 
[3,] 2.500000 -1.0 1.0 
> cor(X) 

[ I l l  [,21 ~ 3 1  
[l  ,] 1 .OOOOOOO -0.9933993 0.9933993 
[2,] -0.9933993 1 .OOOOOOO -1 .OOOOOOO 
[3,] 0.9933993 -1 .OOOOOOO 1 .OOOOOOO 

Two very useful S-PLUS functions for applying a particular S-PLUS 
function to chosen parts of a matrix or vector are apply and tapply. 

apply 
Description 
Returns a vector or array by applying a specified function to sections of 
an array. 

Usage 

apply(X, MARGIN, FUN, ... ) 

Required Arguments 

X array. Missing values (NAs) are allowed if FUN accepts them. 
MARGIN: The subscripts over which the function is to be applied. For 

example, if X is a matrix, 1 indicates rows, and 2 indicates columns. If 
the dimensions of X are named, as in the barley data sets, then those 
names can be used to specify the margin. For a more complex example 
of the use of MARGIN, see the examples below. Note that MARGIN tells 
which dimensions of X are retained in the result. 

FUN: Function (or character string giving the name of the function) 
to be applied to the specified array sections. The character form is 
necessary only for functions with unusual names, e.g., %*%. 

Optional Arguments 

... any arguments to FUN; they are passed unchanged (including their 
names) to each call of FUN. 
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Value 

If each call to FUN returns a vector of length N, and N > 1, apply returns 
an array of dimension 

c( N , dim(X) [MARGIN]) 

If N==l and MARGIN has length > 1, the value is an array of dimension 
dim(X)[MARGINl; otherwise, it is a vector. 

tapply 
Description 
Applies a function to each cell of a ragged array, that is, to the values 
corresponding to the same levels in all of several categories. 

Usage 

tapply(X, INDICES, FUN = <<see below>>, . . ., simplify = T) 

Required Arguments 

X vector of data to be grouped by indices. Missing values (NAs) are 
allowed if FUN accepts them. 

INDICES: List whose components are interpreted as categories, each 
of the same length as X. The elements of the categories define the position 
in a multiway array corresponding to each X observation. Missing values 
(NAs) are allowed. The names of INDICES are used as the names of the 
dimnames of the result. If a vector is given, it will be treated as a list 
with one component. 

Optional Arguments 

FUN: Function or character string giving the name of the function to be 
applied to each cell. If FUN is omitted, tapply returns a vector that can 
be used to subscript the multiway array that tapply normally produces. 
This vector is useful for computing residuals. 

Details 

Evaluates a function, FUN, on data values that correspond to each cell of 
a multiway array. 
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Some examples of the use of these two functions are 

> apply(>(, 2, mean) 
[ l ]  NA 1.75 NA 
’ apply(>(, 2, max) 
[ l ]  NA 3 NA 
> apply(>(, 1, min) 
[ l ]  NA 2 1 NA 
> X c- matrix(c(1, 4, 6, NA, 3, 2, 1, 1, NA, 4, 5, 6,), 
ncol=3) 
> apply(>(, 2, mean) 
[ l ]  NA 1.75 NA 
> apply(>(, 2, mean, na.rm=T) 
[ l ]  3.666667 1.750000 5.000000 
> apply(is.na(X), 2, any)# 
[ l ]  T F T 
> x <- 1: lO 
> y <- rep(c(“NO”, “YES”), c(5, 5)) 
> z <- rep(c(“Cl” ,  “C2”, “C3”, “C4”, iiC5”), 2) 
> tapply(x, list(y), max) 
NO YES 
5 10 
> tapply(x, list(y, z), mean) 

c 1  c 2  c 3  c 4  c 5  
N O 1 2 3 4 5  

YES 6 7 8 9 10 

A very useful set of functions in S-PLUS is those relating to probability 
distributions. For most common probability distributions, S-PLUS has four 
functions with prefixes d, p, q, and r to return the density (d), cumulative 
probability (p), quantile (q), or a random sample (r). The following 
illustrates the use of these functions for the normal distribution. 

> rnorm(5, 3, 2) 
[ l ]  3.287 3.273 0.132 3.617 2.638 
> pnorm(c(-1.96, 0, 1.96)) 
[ l ]  0.025 0.500 0.975 
> qnorm(c(0.025, 0.5, 0.975)) 

> dnorm(c(-1, 0, 1)) 
[ l ]  0.242 0.399 0.242 

[ l ]  -1.96 0.00 1.96 
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A6 Graphics 
S-PLUS contains extensive graphical facilities for constructing a variety of 
plots and diagrams, from the simple to the not-so-simple. 

To begin, a device on which to plot has to be specified. Usually this 
will be a Graphics window. In Windows 98/2000/NT, such a window can 
be created using the command: 

>win.graph() 

We can now create graphics using appropriate S-PLUS commands, with 
each new graph replacing the previous one. We can also create a postscript 
file of a plot by using the command: 

> p o s t s c r i p t ( f i I e = " g r a p h . p s " ) 

After producing a postscript file we must close the file using the dev.off() 
command; otherwise, subsequent graphs will be superimposed on the 
first one. 

A large number of graphics parameters control the appearance of a 
graph. Some of these are listed in . To find out about additional 
graphics parameters, use 

>help( par) 

Trellis graphics offer access to more-sophisticated diagrams such as 
coplots and dotplots. A trellis device can be specified for these by use of 
the command: 

>trellis.device(win.graph) 

or 

>trellis.device(postscript,file = name) 

Many examples of graphs produced by using the command language are 
given in the text. 

A7 User Functions 
S-PLUS commands can be used to write new functions for specific tasks. 
Although this is a very powerful feature of the software, we give only a 
few simple examples in this section, merely to illustrate the possibilities. 

Table A4
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Table A.4 Commands to Add to Existing Graphs and Plotting Parameters 

To add to existing graphs: 

Function Description 

points (x, y) 
text (x, y, text) 
lines (x, y) 
segments ( X I ,  y l ,  x2, y 2 )  
arrows ( X I ,  y l ,  x2, y 2 )  
abline (a, b) 
legend (x, y, legend) 
title ("title", "subtitle") 

Plotting parameters: 

Parameter 

Points at coordinates x and y 
Text at specified coordinates 
Lines to  connect the points given by x and y 
Line segments from ( X I ,  y 1 )  to  (x2  to  y 2 )  
Arrows segments from ( X I ,  y l )  to (x2  to  y2)  
Line with intercept a and slope b 
Legend 
Title at top of figure 

Purpose 

type = ~~p"/"l"/"h~f/"s~f/"n~,, etc 

axes = TIF 
main 
sub 
xlab, ylab 
xlim, ylim = c(min, max) 
pch = 112l3, etc. or pch = 
"+"I".", etc 

Ity = 11213, etc 
Iwd 

Point sll in eslve r t  ical barsls t e pslnot h i ng 
Withlwi thou t axes 
Main title 
Subtitle 
x/y Axis label 
xly Axis range 
Plot character 

Line style 
Line width ( I  default) 

(More complex examples are described at various places in the text.) A 
detailed account of writing functions in S-PLUS is given in Venables and 
Ripley (2000). 

As a first illustration we shall create a function mysum, which calculates 
the power of the sum of arguments supplied and returns the result: 

>mysum<-function(a, b,p=l ) {  

(a+b)"p 

Now mysum can be used to take the power of the sum of two numbers: 
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>mysum( 1,2) 
P I  3 
>mysum(l,2,p=2) 
[ I 1  9 

The function can also be applied to numerical vectors of the same 
length: 

>ac-c(1,2,3,4) 

>mysum( a, b,p=3) 
[ l ]  216 512 1000 1728 

>b<-c( 5,6,7,8) 

>mysu m (a/2, b / l  0, p=5) 
[ l ]  1 10 52 172 

And the function can also be applied to two matrices with the same 
number of rows and the same number of columns. 

>a<- m at rix( c ( 1 ,2,3,4), nco 1=2) 
> b<-m at rix( c (5 6,7,8), ncol=2) 
>m ys u m (a, b, p=3) 

[ I l l  1921 
[ l , ]  216 1000 
[2,] 512 1728 

The general syntax of a function is 

function-namec-function (arguments) 
{ 
function body (S-PLUS expressions) 
return (0 u tpu t arguments) 
I 

The output arguments are often stored as a list, for example, 

me a nva r < - f u n c t i o n (x) 
I 
m <- m ea n (x,  n a. rm =T) 
vc-va r( x, n a. met hod=o m it”) 
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res u It c - I is t ( m e a n = m , va r i a n ce=v) 
1 

>meanvar( 1 : 10) 
$mean: 
[ I ]  5.5 

$variance: 
[ l ]  9.2 

When writing functions users should try to avoid duplicating the names 
of existing S-PLUS functions. 
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Appendix B

Answers to Selected
Exercises

Chapter 1

#
#
#Exercise 1.1
#
apply(jets[,2:6],2,mean)
#
#Exercise 1.3
#
par(mfrow=c(2,3))
box plot(FFD,ylab=“FFD”)
box plot(SPR,ylab=“SPR”)
box plot(RGF,ylab=“RGF”)
box plot(PLF,ylab=“PLF”)
box plot(SLF,ylab=“SLF”)
#
#Exercise 1.4
#
par(mfrow=c(l ,i))
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h ist (FFD ,pro ba bi I it y=T) 
I i nes( densi ty (FFD)) 

Chapter 2 
# 
# 
#Exercise 2.1 
# 
plot( husbage,wifeage) 
rug (j i tte r( h u s bage [! is . n a( h us bage)]) ,side= 1 ) 
rug(jitter(wifeage[!i~.na(wifeage)]),side=2) 
# 
# 
#Exercise 2.5 
# 
p e r s p ( h i s t 2 d ( h u s b a g e , wife a g e ) , x I a b = I L  H us b a n d ’ s 
ag e ’ I ,  y I a b = “ W if e ’ s age” , z I a b=“ F re q u en c y ” ) 
# 
# 
#Exercise 2.6 
# 
Access Scatter Plot Matrix dialog from Graphics 2D; click on 
Line/Histogram tab and tick draw histogram 
# 
# 

Chapter 3 
# 
# 
#Exercise 3.1 
# 
#Here simply use the ANOVA dialog as in the test but use 
log (Ti me) 
#as the dependent variable. 
# 
# 
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#Exercise 3.4 
# 
summary(aov( Response-Status:Condition+Status+Condition)) 
# 
#This gives exactly the same result as 
# 
summary(aov( Response-Status+Condition+Status:Condition)) 
# 
#S-PLUS does not adjust main effects for the interaction 
#composed 
#of the main effect factors. 
# 
# 

Chapter 5 
# 
# 
#Exercise 5.2 
# 
# 
s es c- p red i c t ( f i t . I og , s e . fit =T) 
# 
predict.val<-exp(ses$fit)/( 1 +exp(ses$fit)) 
Ul<- 
exp(ses$fit+l.96*ses$se.fit)/( 1 +exp(ses$fit+l.96*ses$se.fit) 

Il<-exp(ses$fit-l.96*ses$se.fit)/( 1 +exp(ses$fit-1 .96*ses$se.fit)) 
# 
y I i m c- ran g e( u I, I I) 
p I o t ( 0 : 1 0, p red i c t . va I [ 1 : 1 1 1, x I a b = “G H Q” , y I a b=“ P red i c t ed va I u e 
of probability of caseness”, 
type=“l”, ylim=ylim) 
lines(0:l O,ul[l :1 l], l ty=2) 
lines(0:10,11[1:1 l], l ty=2) 
I e g e n d ( I oca t o r ( 1 ) , c ( “ P red i c t e d ’ I ,  “9 5 %C I ”) , It y = 1 : 2) 
# 
# 

) 
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Chapter 6 
# 
# 
#Exercise 6.1 
# 
t . test ( d e p res s . s m [ g ro u p = =“T A U ” 1, d e p re ss . s m [ g r o u p==“ B t B”] , va r 
. e q ual= F) 
# 
# 
#Exercise 6.3 
# 
#function for filling in missing values in rows of a matrix 
by LOCF 
#assumes that subject drops out so that a missing value is 
not followed 
#by any genuine observations 
# 
locfe-function(>() { 

n e-  leng t h (X[, 1 1) 
pe-length(X[l ,]) 
for(i in 1:n) { 

xe-X[i,] 
ye-x[!is.na(x)] 
N c- lengt h ( y) 
if(N!=p) y~-c(~, rep(y[Nl ,p-N))  

X[i,l<-Y 
I 
X 

I 
# 
depress.locfe-apply(locf(depress[,4:7]),1 ,mean) 
t . test (depress. locf [g rou p==“TAU”], depress. locf [ g rou p==“Bt B”] 

# 
# 

) 
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Chapter 7 
# 
# 
#Exercise 7.3 
# 
# 
#### function returning - log-likelihood for a mixture of 
#two normal distributions 
#with both component distributions having the same variance 
# 
LL<-function(params,data) { 

t 1 <-d n o rm (data, param s[ 21, param s[ 31) 
t2 < -d n o r m (data, param s [ 41 , param s[ 31) 
f<-params[l]*t l+(l  -params[l])*t2 
Il<-sum( log(f)) 
- 1 1  

I 
### fit mixture to geyser data 
geyser.res<- 
nlminb(c(0.5,50,10,80),LL,data=geyser,lower=c(O.O01,- 
lnf,0.001 ,-lnf) 
,upper=c(0.999,lnf,lnf,lnf)) 
# 
same<-geyser. res$parameters 
# 
#assume parameter estimates for different component 
variances are in the vector diff 
# 
x<-seq(40,120,length=lOO) 
# 
f l  s<-dnorm(x,same[2],same[3]) 
f 2 s ~ - d  n o r m (x, same[ 41, same [ 31) 
fse-same[l]*f l  s+(l  -same[l])*f2s 
# 
f 1 d<-dnorm (x, d iff [2] ,d i f f  [3]) 
f 2d <-d n o rm (x I d i f f  [4], d i f f  [ 51) 
fde-dif f [ l ]*f l  d + ( l  -diff[ l ])*f2d 
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h is t ( g e y s e r , p ro ba b i I it y =TI co I =O , y I a b = “ Den sit y ” , y I i m =c ( 0,O. 0 5 

x I a b = I L  E r u p t i on ti m es” ) 
lines(x,fs,Ity=l ) 
lines(x,fd,lty=2) 
I e g en d ( I oca t o r ( 1 ) , c ( “ E q u a I va r i a n ce s” , “ D iff e re n t 
v a r i an c e s” ) , It y = 1 : 2) 
# 
# 

), 

Chapter 9 
# 
# 
#Exercise 9.3 
# 
# 
sku I Is . p c< - p r i n co m p (sku I Is [ , - 1 1, co r=T) 
# 
skulls.pc$loadings 
# 
# 
sku I Is. pcxe-sku I Is. pc$scores[, 1 ] 
sku I Is. pcy<-s ku I Is. pc$scores[ ,2] 
par ( p t y =“s”) 
xl i m <- ran ge (s  ku I Is . pcx) 
p I o t (s  ku I Is . pcx ,sku I Is . pc y , x I i m =x I i m , y I i m =x I i m , x I a b =“ P C 1 ’I, y I 
a b = “ P C 2 ” ,type = “ n ” ) 
labs<-rep( 1 :5,rep(30,5)) 
text (s  ku I Is . p cx , s k u I Is . pc y , I a be Is= I a b s) 
# 
#convex hull 
# 
for(i in 1:5) { 
X<-skulls.pcx[labs==i] 
Ye-skulls.pcy[labs==i] 

hull 
hull<-chull(X,Y) 
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polygon(X[hull],Y[huIl],density=l5,angle=30) 

# 
# 

1 

Chapter 10 
# 
# 
#Exercise 10.1 
# 
# 
ne-length(lowest[, 11) 
# 
#get within group sum of squares regarding data as a single 

# 
wss 1 e-  (n - 1 ) * (var (I o wes t [, 21) +va r( lo wes t [, 31) +va r( I o wes t [, 41) + 
va r ( I o w e s t [ ,5])) 
# 
#apply kmeans for 2 to 6 groups and get within cluster ss 
# 
wss<- n u m e ri c (0) 
# 
for(i in 2:6) {We- 
sum (km ean s( as. mat rix( I owes t [, 2 : 5]), i) $w i t h i n s ~ )  

cluster 

wss<-c(wss,w) 
1 

wsse-c(wss1 ,wss) 
win.graph() 
p I o t ( 1 : 6, wss , x I a b=“ N u m be r of c I us t e rs” , y I a b =“W it h i n c I u s t e r 
sum of squares”,type=“l”) 
# 
# 
Exercise 10.3 
# 
# 
#need to look at the eigenvalues in a similar way as for PCA 
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# 
coo r d s c -c m d sca I e (co n g res s , k=6, e i g =T) 
# 
p I o t ( 1 : 6, coo rd s$ e i g , type = “I”) 
# 
# 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . .  

239



© 2002 by Chapman & Hall/CRC

References 

Aitkin, M. (1978). The analysis of unbalanced cross-classifications (with discussion). 
Journal of the Royal Statistical Society, A,  41, 195-223. 

Atkinson, A.C. (1987). Plots, Transformations and Regression, Oxford Science 
Publications, Oxford, U.K. 

Becker, R.A., Chambers, J.M., and Wilks, A.R. (1988). New S Language. Wadsworth 
and Brook/Cole, Pacific Grove, California. 

Burns, K.C. (1984). Motion sickness incidence distribution of time to first emesis 
and comparison of some complex motion conditions, Aviation Space and 
Environmental Medicine, 56, 521-527. 

Chambers, J.M. and Hastie, T.J. (1992). Statistical Models in S. Wadsworth and 
BrooWCole, Pacific Grove, California. 

Chatterjee, S. and Chatterjee, S. (1982). New lamps for old: An exploratory analysis 
of running times in Olympic Games, Applied Statistics, 30, 14-22. 

Cleveland, W.S. (1993). Visualizing Data, Hobart Press, Summit, New Jersey. 
Collett, D. (1991). Modelling Bina y Data. CRC/Chapman & Hall, London. 
Collett, D. (1994). Modelling Survival Data in Medical Research. CRCKhapman 

Cook, R.D. and Weisberg, S. (1982). Residuals and Injluence in Regression. 

Diggle, P.J., Liang, K., and Zeger, S.L. (1994). Analysis ofLongitudina1 Data, Oxford 

Efron, B. and Tibshirani, R.J. (1993). An Introduction to the Bootstrap. CRC/Chap- 

Everitt, B.S. (2001). Statistics for Psychologists. Lawrence Erlbaum Associates, 

Everitt, B.S. (2002). An evaluation of the gap statistic for estimating the number 

Everitt, B.S. and Dunn, G. (2001). Applied Multivariate Data Analysis, 2nd ed. 

& Hall, London. 

CRCKhapman & Hall, London. 

Science Publications, Oxford, U.K. 

man & Hall, New York. 

Mahwah, New Jersey. 

of clusters in a data set. In preparation. 

Arnold, London. 

240



© 2002 by Chapman & Hall/CRC

Everitt, B.S. and Hand, D.J. (1981). Finite Mixture Distributions. CRCKhapman & 
Hall, London. 

Everitt, B.S. and Pickles, A. (2000). Statistical Aspects of the Design and Analysis 
of Clinical Trials. ICP, London. 

Everitt, B.S. and Rabe-Hesketh, S. (1997). The Analysis of Proximity Data. Arnold, 
London. 

Everitt, B.S., Landau, S., and Leese, M. (2001). ClusterAnalysis, 4th ed. Arnold, 
London. 

Goldberg, D. (1972). 7be Detection of Psychiatric Illness by Questionnaire. Oxford 
University Press, Oxford, U.K. 

Hand, D.J. (1998). Discriminant analysis linear. In Encyclopedia of Biostatistics, 
Vol. 2, P. Armitage and T. Colton, Eds., Wiley, Chichester, U.K. 

Hand, D.J., Daly, F., Lunn, A.D., McConway, K.J., and Ostrowski, E. (1994). 
A Handbook of Small Data Sets. CRCKhapman & Hall, London. 

Krause, A. and Olson, M. (2000). The Basics of S and S-PLUS, 2nd ed. Springer, 
New York. 

McCullagh, P. and Nelder, J.A. (1989). Generalized Linear Models. Chapman and 
Hall, London. 

Nelder, J.A., (1977). A reformulation of linear models. Journal of the Royal Statis- 
tical Society, A,  140, 48-63. 

Pinheiro, J.C. and Bates, D.M (2000). Mixed-Effects Models in S and S-PLUS. 
Springer, New York. 

Pollock, K.H., Winterstein, S.R., and Conroy, M.J. (1989). Estimation and analysis 
of survival distributions for radio-tagged animals. Biometrics, 45, 99-109. 

Rawlings, J.O. (1988). Applied Regression Analysis. Wadsworth Books, Pacific Grove, 
California. 

Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. 
CRCKhapman & Hall, London. 

Stanley, W. and Miller, M. (1979). Measuring technological change in jet fighter 
aircraft. Report no. R-2249-AF, Rand Corp., Santa Monica, California. 

Therneau, T.M. and Grambach, P.M. (2000). Modelling Suruival Data. Springer, 
New York. 

Tibshirani, R., Walther, G., and Hastie, T. (2001). Estimating the number of clusters 
in a data set via the gap statistic. Journal of the Royal Statistical Society, 
Series B, 63, 411-423. 

Venables, W.N. and Ripley B.D. (1997). Modern Applied Statistics with S-PLUS. 
Springer, New York. 

241




